Science.gov

Sample records for acenaphthene fluorene phenanthrene

  1. Solid-liquid equilibria for binary mixtures composed of acenaphthene, dibenzofuran, fluorene, phenanthrene, and diphenylmethane

    SciTech Connect

    Lee, M.J.; Chen, C.H.; Lin, H.

    1999-09-01

    The liquidus lines were determined with a solid-disappearance method for binary mixtures composed of acenaphthene, dibenzofuran, fluorene, phenanthrene, and diphenylmethane. While the first four substances are model compounds of wash oil, which has widely been used as a solvent to remove aromatics from coal oven gas, diphenylmethane is a high-boiling and low-melting compound that is a potential additive to modify the performance of wash oil. Each of the seven binaries appears to be a simple eutectic system, as evidenced by the experimental results. The Wilson and the NRTL models were employed to correlate the solid-liquid equilibrium data. Both activity coefficient models were found to represent accurately the nonideality of the liquid-phase for the investigated systems.

  2. Acenaphthene

    Integrated Risk Information System (IRIS)

    Acenaphthene ; CASRN 83 - 32 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  3. Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by a Mycobacterium sp.

    PubMed Central

    Boldrin, B; Tiehm, A; Fritzsche, C

    1993-01-01

    Mycobacterium sp. strain BB1 was isolated from a former coal gasification site. It was able to utilize phenanthrene, pyrene, and fluoranthene as sole sources of carbon and energy and to degrade fluorene cometabolically. Exponential growth with solid phenanthrene, pyrene, and fluoranthene was obtained in fermentor cultures. The growth rates were 0.069, 0.056, and 0.040 h-1, respectively. Several metabolites of phenanthrene and fluorene metabolism were identified. PMID:8328808

  4. Bioremediation of polycyclic aromatic hydrocarbon (PAH) compounds: (acenaphthene and fluorene) in water using indigenous bacterial species isolated from the Diep and Plankenburg rivers, Western Cape, South Africa.

    PubMed

    Alegbeleye, Oluwadara Oluwaseun; Opeolu, Beatrice Olutoyin; Jackson, Vanessa

    This study was conducted to investigate the occurrence of PAH degrading microorganisms in two river systems in the Western Cape, South Africa and their ability to degrade two PAH compounds: acenaphthene and fluorene. A total of 19 bacterial isolates were obtained from the Diep and Plankenburg rivers among which four were identified as acenaphthene and fluorene degrading isolates. In simulated batch scale experiments, the optimum temperature for efficient degradation of both compounds was determined in a shaking incubator after 14 days, testing at 25°C, 30°C, 35°C, 37°C, 38°C, 40°C and 45°C followed by experiments in a Stirred Tank Bioreactor using optimum temperature profiles from the batch experiment results. All experiments were run without the addition of supplements, bulking agents, biosurfactants or any other form of biostimulants. Results showed that Raoultella ornithinolytica, Serratia marcescens, Bacillus megaterium and Aeromonas hydrophila efficiently degraded both compounds at 37°C, 37°C, 30°C and 35°C respectively. The degradation of fluorene was more efficient and rapid compared to that of acenaphthene and degradation at Stirred Tank Bioreactor scale was more efficient for all treatments. Raoultella ornithinolytica, Serratia marcescens, Bacillus megaterium and Aeromonas hydrophila degraded a mean total of 98.60%, 95.70%, 90.20% and 99.90% acenaphthene, respectively and 99.90%, 97.90%, 98.40% and 99.50% fluorene, respectively. The PAH degrading microorganisms isolated during this study significantly reduced the concentrations of acenaphthene and fluorene and may be used on a larger, commercial scale to bioremediate PAH contaminated river systems.

  5. Fluorene and Phenanthrene Uptake and Accumulation by Wheat, Alfalfa and Sunflower from the Contaminated Soil.

    PubMed

    Salehi-Lisar, Seyed Yahya; Deljoo, Somaye; Harzandi, Ahmad Mosen

    2015-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are diverse organic contaminants released into the environment by both natural and anthropogenic activities. These compounds have negative impacts on plants growth and development. Although there are many reports on their existence in different parts of plant, their uptake and translocation pathways and mechanisms are not well understood yet. This paper highlights the uptake, translocation and accumulation of PAHs by wheat, sunflower and alfalfa through an experimental study under controlled conditions. Seeds were cultivated in a soil containing 50 mg/kg of phenanthrene and fluorene and their concentrations in plants roots and shoots were determined using a gas chromatograph after 7 and 14 days. The results showed that phenanthrene and fluorene concentrations in the treated plants were increased over the time. PAHs bioavailability was time and species dependent and generally, phenanthrene uptake and translocation was faster than that of fluorene, probably due to their higher Kow. Fluorene tended to accumulate in roots, but phenanthrene was transported to aerial parts of plants.

  6. Biomarkers indicate mixture toxicities of fluorene and phenanthrene with endosulfan toward earthworm (Eisenia fetida).

    PubMed

    Nam, Tae-Hoon; Kim, Leesun; Jeon, Hwang-Ju; Kim, Kyeongnam; Ok, Yong-Sik; Choi, Sung-Deuk; Lee, Sung-Eun

    2017-04-01

    α-Endosulfan and some polycyclic aromatic compounds (PAHs) are persistent in the environment and can reach crop products via contaminated agricultural soils. They may even be present as mixtures in the soil and induce mixture toxicity in soil organisms such as earthworms. In this study, the combined toxicities of PAHs with α-endosulfan were determined in Eisenia fetida adults using an artificial soil system. α-Endosulfan and five PAHs were tested for their acute toxicity toward E. fetida in artificial soils. Only α-endosulfan, fluorene, and phenanthrene showed acute toxicities, with LC50 values of 9.7, 133.2, and 86.2 mg kg(-1), respectively. A mixture toxicity assay was conducted using α-endosulfan at LC10 and fluorene or phenanthrene at LC50 in the artificial soils. Upon exposure to the mixture of fluorene and α-endosulfan, earthworms were killed in increasing numbers owing to their synergistic effects, while no other mixture showed any additional toxicity toward the earthworms. Along with the acute toxicity results, the biochemical and molecular changes in the fluorene- and phenanthrene-treated earthworms with or without α-endosulfan treatment demonstrated that enhancement of glutathione S-transferase activity was dependent on the addition of PAH chemicals, and the HSP70 gene expression increased with the addition of α-endosulfan. Taken together, these findings contribute toward understanding the adverse effects of pollutants when present separately or in combination with other types of chemicals.

  7. Mechanistic Studies on the Dibenzofuran Formation from Phenanthrene, Fluorene and 9–Fluorenone

    PubMed Central

    Li, Shanqing; Zhang, Qingzhu

    2015-01-01

    We carried out molecular orbital theory calculations for the homogeneous gas‑phase formation of dibenzofuran from phenanthrene, fluorene, 9-methylfluorene and 9-fluorenone. Dibenzofuran will be formed if ∙OH adds to C8a, and the order of reactivity follows as 9-fluorenone > 9-methylfluorene > fluorene > phenanthrene. The oxidations initiated by ClO∙ are more favorable processes, considering that the standard reaction Gibbs energies are at least 21.63 kcal/mol lower than those of the equivalent reactions initiated by ∙OH. The adding of ∙OH and then O2 to phenanthrene is a more favorable route than adding ∙OH to C8a of phenanthrene, when considering the greater reaction extent. The reaction channel from fluorene and O2 to 9-fluorenone and H2O seems very important, not only because it contains only three elementary reactions, but because the standard reaction Gibbs energies are lower than −80.07 kcal/mol. PMID:25756381

  8. Detoxification of fluorene, phenanthrene, carbazole, and p-cresol as studied by the Microtox

    SciTech Connect

    Renoux, A.Y.; Millette, D.; Samson, R.

    1995-12-31

    A column experiment was conducted in order to study the evolution of the toxicity of creosote-related compound mixtures during aerobic biodegradation in a saturated hydrodynamic groundwater environment. The Microtox assay was used to characterize the toxicity of phenanthrene, fluorene, carbazole and p-cresol, separately and in mixtures, and to evaluate their detoxification during biodegradation. Phenanthrene, fluorene and p-cresol, separately solubilized in an aqueous phase, produced toxic effects on P. phosphoreum luminescence emission; 15 min-IC50 values of 140 {micro}g/L, 600 {micro}g/L and 1,500 {micro}g/L respectively were determined. Carbazole appeared as poorly toxic. The detoxification of the mixture solutions was demonstrated after having passed through the columns. Phenanthrene, fluorene and carbazole combined at different proportion produced between 24.4% and 49.3% of inhibition, whereas at the last port of the columns the inhibition values of the outflows averaged 6%. The presence of 10,000 {micro}g/L of p-cresol enhanced this efficiency of detoxification, since the inhibition of the mixture with the other compounds, which was 81.4% before injection, decreased to 15.8% after having passed through the first 5 cm of the column, and was not detectable at its last two pores. The acute toxicity test corroborated the chemical analysis, reflecting the compound elimination.

  9. Competitive metabolism of naphthalene, methylnaphthalenes, and fluorene by phenanthrene-degrading pseudomonads

    SciTech Connect

    Stringfellow, W.T.; Aitken, M.D.

    1995-01-01

    Polynuclear aromatic hydrocarbons (PAHs) typically exist as complex mixtures in contaminated soils, yet little is known about the biodegradation of PAHs in mixtures. We have isolated two physiologically diverse bacteria, Pseudomonas stutzeri P-16 and P. saccharophila P-15, from a creosote-contaminated soil by enrichment on phenanthrene as the sole carbon source and studied their ability to metabolize several other two- and three-ring PAHs. Naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene served as growth substrates for both organisms, while fluorene was only cometabolized. We also studied the effects of these compounds on initial rates of phenanthrene uptake in binary mixtures. Lineweaver-Burk analysis of kinetic measurements was used to demonstrate competitive inhibition of phenanthrene uptake by all four compounds, suggesting that multiple PAHs are being transformed by a common enzyme pathway in whole cells. Estimates of the inhibition coefficient, K{sub i}, are reported for each compound. The occurrence of competitive metabolic processes in physiologically diverse organisms suggests that competitive metabolism may be a common phenomenon among PAH-degrading organisms. 44 refs., 3 figs., 4 tabs.

  10. Fluorene

    Integrated Risk Information System (IRIS)

    Fluorene ; CASRN 86 - 73 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )

  11. Metabolism of naphthalene, fluorene, and phenanthrene: preliminary characterization of a cloned gene cluster from Pseudomonas putida NCIB 9816.

    PubMed Central

    Yang, Y; Chen, R F; Shiaris, M P

    1994-01-01

    A modified cloning procedure was used to obtain large DNA insertions (20 to 30 kb) from Pseudomonas putida NCIB 9816 that expressed polycyclic aromatic hydrocarbon (PAH) transformation activity in Escherichia coli HB101. Four subclones (16 [in both orientations], 12, and 8.5 kb in size) were constructed from the initial clones. Naphthalene, fluorene, and phenanthrene transformations were investigated in these eight NCIB 9816 clones by a simple agar plate assay method, which was developed to detect and identify potential PAH metabolites. Results indicated that the necessary genes encoding the initial ring fission of the three PAHs in E. coli cells are located in an 8.5-kb EcoRI-XhoI portion, but the lower-pathway genes are not present in a 38-kb neighborhood region. These NCIB 9816 clones could transform naphthalene and phenanthrene to salicylic acid and 1-hydroxy-2-naphthoic acid, respectively. With the same clones, fluorene was degraded to 9-hydroxyfluorene, 9-fluorenone, and two unidentified compounds. Genetic similarity between the NAH7 upper-pathway genes and the cloned NCIB 9816 genes was confirmed by Southern blot DNA-DNA hybridization. In spite of this genetic similarity, the abilities of the two clusters to transform multiple PAHs were different. Under our experimental conditions, only the metabolites from naphthalene transformation by the NAH7 clone (pE317) were detected, whereas the NCIB 9816 clones produced metabolites from all three PAHs. Images PMID:8157584

  12. Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by a Mycobacterium sp

    SciTech Connect

    Boldrin, B.; Tiehm, A.; Fritzsche, C. )

    1993-06-01

    Contamination of the environment with polycyclic aromatic hydrocarbons are considered hazardous so remediation of contaminated sites is of interest. This paper describes the isolation and characterization of a scotochromogenic Mycobacterium sp. that metabolizes pyrene, flouranthene, phenanthrene, and several other aromatic compounds as sole carbon sources. Exponential, non-substrate-limited degradation and growth as characteristic parameters of the bacterium are investigated. 26 refs., 1 fig., 2 tabs.

  13. Phenanthrene

    Integrated Risk Information System (IRIS)

    Phenanthrene ; CASRN 85 - 01 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  14. Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds.

    PubMed Central

    Grifoll, M; Selifonov, S A; Gatlin, C V; Chapman, P J

    1995-01-01

    Pseudomonas cepacia F297 grew with fluorene as a sole source of carbon and energy; its growth yield corresponded to an assimilation of about 40% of fluorene carbon. The accumulation of a ring meta-cleavage product during growth and the identification of 1-indanone in growth media and washed-cell suspensions suggest that strain F297 metabolizes fluorene by mechanisms analogous to those of naphthalene degradation. In addition to fluorene, strain F297 utilized for growth a wide variety of polycyclic aromatic compounds (PACs), including naphthalene, 2,3-dimethylnaphthalene, phenanthrene, anthracene, and dibenzothiophene. Fluorene-induced cells of the strain also transformed 2,6-dimethylnaphthalene, biphenyl, dibenzofuran, acenaphthene, and acenaphthylene. The identification of products formed from those substrates (by gas chromatography-mass spectrometry) in washed-cell suspensions indicates that P. cepacia F297 carries out the following reactions: (i) aromatic ring oxidation and cleavage, apparently using the pyruvate released for growth, (ii) methyl group oxidations, (iii) methylenic oxidations, and (iv) S oxidations of aromatic sulfur heterocycles. Strain F297 grew with a creosote-PAC mixture, producing an almost complete removal of all aromatic compounds containing 2 to 3 rings in 14 days, as demonstrated by gas chromatography analysis of the remaining PACs recovered from cultures. The identification of key chemicals confirmed that not only are certain compounds depleted but also the anticipated reaction products are found. PMID:7487007

  15. Use of {sup 13}C NMR to assess the biodegradation of 1-{sup 13}C-labeled acenaphthene in the presence of creosote polynuclear hydrocarbons (PAHs) and naphthalene by mixed bacterial cultures

    SciTech Connect

    Selifonov, S.A.; Bortiatynski, J.M.; Nanny, M.A.; Hatcher, P.G.

    1996-10-01

    1-{sup 13}C-acenaphthene mixed with creosote PAH`s or naphthalene was incubated with bacterial strains known to degrade naphthalene, phenanthrene and acenaphthene. After incubation, the reaction mixtures were extracted with organic solvent, and the biodegradation products were identified by {sup 13}C NMR. An accumulation of intermediate degradation products was identified and attributed to the non-specific action of naphthalene catabolic pathways of the mixed bacterial cultures. An acenaphthene degrading strain, Pseudomonas sp. strain A2279 was added to the nixed bacterial cultures to minimize the formation of the observed dead-end products. The {sup 13}C NMR spectra obtained from the experiments in which strain A2279 was present clearly showed the complete biodegradation of 1-{sup 13}C-acenaphthene without the accumulation of {sup 13}C-labeled products. This set of experiments clearly demonstrates the utility of {sup 13}C NMR as an effective tool for the assessment of the biodegradation of PAH`s such as 1-{sup 13}C-acenaphthene by various microbial strains.

  16. Colonization on root surface by a phenanthrene-degrading endophytic bacterium and its application for reducing plant phenanthrene contamination.

    PubMed

    Liu, Juan; Liu, Shuang; Sun, Kai; Sheng, Yuehui; Gu, Yujun; Gao, Yanzheng

    2014-01-01

    A phenanthrene-degrading endophytic bacterium, Pn2, was isolated from Alopecurus aequalis Sobol grown in soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Based on morphology, physiological characteristics and the 16S rRNA gene sequence, it was identified as Massilia sp. Strain Pn2 could degrade more than 95% of the phenanthrene (150 mg · L(-1)) in a minimal salts medium (MSM) within 48 hours at an initial pH of 7.0 and a temperature of 30 °C. Pn2 could grow well on the MSM plates with a series of other PAHs, including naphthalene, acenaphthene, anthracene and pyrene, and degrade them to different degrees. Pn2 could also colonize the root surface of ryegrass (Lolium multiflorum Lam), invade its internal root tissues and translocate into the plant shoot. When treated with the endophyte Pn2 under hydroponic growth conditions with 2 mg · L(-1) of phenanthrene in the Hoagland solution, the phenanthrene concentrations in ryegrass roots and shoots were reduced by 54% and 57%, respectively, compared with the endophyte-free treatment. Strain Pn2 could be a novel and useful bacterial resource for eliminating plant PAH contamination in polluted environments by degrading the PAHs inside plants. Furthermore, we provide new perspectives on the control of the plant uptake of PAHs via endophytic bacteria.

  17. Evaluation of Fluorene Polyester Film Capacitors (PREPRINT)

    DTIC Science & Technology

    2010-02-01

    AFRL-RZ-WP-TP-2010-2098 EVALUATION OF FLUORENE POLYESTER FILM CAPACITORS (PREPRINT) Jeffery Stricker, James Scofield, Navjot Brar, and...February 2010 4. TITLE AND SUBTITLE EVALUATION OF FLUORENE POLYESTER FILM CAPACITORS (PREPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER...to include cycling from ambient to 200 °C. 15. SUBJECT TERMS Fluorene polyester , Capacitor , Packaging, High Temperature, DC/DC converter 16

  18. Naphthalene and acenaphthene decomposition by electron beam generated plasma application

    SciTech Connect

    Ostapczuk, A.; Hakoda, T.; Shimada, A.; Kojima, T.

    2008-08-15

    The application of non-thermal plasma generated by electron beam (EB) was investigated in laboratory scale to study decomposition of polycyclic aromatic hydrocarbons like naphthalene and acenaphthene in flue gas. PAH compounds were treated by EB with the dose up to 8 kGy in dry and humid base gas mixtures. Experimentally established G-values gained 1.66 and 3.72 mol/100 eV for NL and AC at the dose of 1 kGy. NL and AC removal was observed in dry base gas mixtures showing that the reaction with OH radical is not exclusive pathway to initialize PAH decomposition; however in the presence of water remarkably higher decomposition efficiency was observed. As by-products of NL decomposition were identified compounds containing one aromatic ring and oxygen atoms besides CO and CO{sub 2}. It led to the conclusion that PAH decomposition process in humid flue gas can be regarded as multi-step oxidative de-aromatization analogical to its atmospheric chemistry.

  19. The Study of Acenaphthene and its Complexation with Water

    NASA Astrophysics Data System (ADS)

    Steber, Amanda; Perez, Cristobal; Rijs, Anouk; Schnell, Melanie

    2016-06-01

    Acenaphthene (Ace) is a three ring polycyclic aromatic hydrocarbon (PAH), which consists of naphthalene and a non-aromatic five member ring. Ace has been previously been studied by microwave spectroscopy where the rotational constants were reported[1]. New measurements from 2-8 GHz using chirped pulse-Fourier transform microwave spectroscopy (CP-FTMW) will be presented. The high sensitivity achieved enabled us to observe all 13C isotopologues in natural abundance and determine the Kraitchman substitution structure. The spectra of Ace complexed with water and H218O were also recorded at this frequency range. From these spectra, we have been able to assign the complexes Ace-(H2O)n, n=1-3 and (Ace)2-H2O and experimentally derive the O-atom position of the H2O. The Ace-(H2O)3 complex is especially interesting as the water aggregate forms a slightly distorted cyclic water trimer from that observed in the IR[2]. These complexes could give insight about the formation of ice grains in the interstellar medium. [1] Thorwirth, S., Theulé, P., Gottlieb, C.A., McCarthy, M.C., Thaddeus, P. Astrophys. J., 662, 1309-1314, 2007. [2] Keutsch, F.N., Cruzan, J.D., Saykally, R.J. Chem. Rev., 103, 2533-2577, 2003.

  20. Oxidation of polynuclear aromatic hydrocarbons in water. 2: UV radiation and ozonation in the presence of UV radiation

    SciTech Connect

    Beltran, F.J.; Garcia-Araya, J.F.; Rivas, J.; Ovejero, G.

    1995-05-01

    Direct photolysis with UV radiation (254 nm) and oxidation with ozone combined with UV radiation of three polynuclear aromatic hydrocarbons, fluorene, phenanthrene, and acenaphthene, has been studied. Quantum yields of the direct photolysis of the PAHs determined were 7.5 {times} 10{sup {minus}3}, 6.9 {times} 10{sup {minus}3}, and 52 {times} 10{sup {minus}3} mol(photon){sup {minus}1} for fluorene, phenanthrene, and acenaphthene, respectively. Contributions of direct ozonation, direct photolysis, and radical oxidation have also been estimated for the oxidation with ozone combined with UV radiation. Fluorene is oxidized by direct photolysis and radical reactions, phenanthrene through direct mechanisms, ozonation, and photolysis, and acenaphthene mainly by direct ozonation.

  1. Using orthogonal design to determine optimal conditions for biodegradation of phenanthrene in mangrove sediment slurry.

    PubMed

    Chen, Jian Lin; Au, Kwai Chi; Wong, Yuk Shan; Tam, Nora Fung Yee

    2010-04-15

    In the present paper, the effects of four factors, each at three levels, on biodegradation of phenanthrene, a 3-ring PAH, in contaminated mangrove sediment slurry were investigated using the orthogonal experimental design. The factors and levels were (i) sediment types (clay loam, clayey and sandy); (ii) different inoculums (Sphingomonas sp., a mixture of Sphingomonas sp. and Mycobacterium sp., and without inoculum); (iii) presence of other PAHs (fluorene, pyrene, and none); and (iv) different salinities (5, 15 and 25 ppt). Variance analysis based on the percentages of Phe biodegradation showed that the presence of other PAHs had little effect on phenanthrene biodegradation. The kinetics of phenanthrene biodegradation in all experiments was best fitted by the first order rate model. The highest first order rate constant, k value was 0.1172 h(-1) with 97% Phe degradation; while the lowest k value was 0.0004 and phenanthrene was not degraded throughout the 7-d experiment. The p values of k for the four factors followed the same trend as that for the biodegradation percentage. Difference analysis revealed that optimal phenanthrene biodegradation would take place in clay loam sediment slurry at low salinity (5 to 15 ppt) with the inoculation of both Sphingomonas sp. and Mycobacterium sp.

  2. Replica plating method for estimating phenanthrene-utilizing and phenanthrene-cometabolizing microorganisms

    SciTech Connect

    Shiaris, M.P.; Cooney, J.J.

    1983-02-01

    A replica plating method was developed for detecting and enumerating phenanthrene-degrading microorganisms. The method is designed to discriminate between aquatic organisms that utilize phenanthrene as the sole carbon and energy source and organisms that cometabolize phenanthrene. The method was used to demonstrate that phenanthrene utilizers and phenanthrene cometabolizers coexist in estuarine sediments.

  3. Vegetative bioremediation of phenanthrene

    SciTech Connect

    Malathi, A.; Banks, M.K.; Schwab, A.P.

    1994-12-31

    The role of vegetation to stimulate the degradation and detoxification of toxic and recalcitrant organic chemicals at low soil concentrations is brought about by several mechanisms of plant-soil interactions, including improvement of physical and chemical properties of contaminated soils, increase in soil microbial activity and increase in contact between microbes associated with the roots and toxic compounds in a contaminated soil. This represents a potential cost effective and low maintenance alternative for waste management. However, there is not enough information concerning specific application of plants, chemicals and soils either in the form of laboratory or field results. In the research to be presented, different and diverse perennial plant species [grasses (monocot), legumes, and dicots] were collected from the native prairie grasslands and tested for their efficiency in mineralization of phenanthrene. The mineralization of phenanthrene was evaluated by the measurement of {sup 14}CO{sub 2} from the radiolabeled target compound incubated in a rhizosphere soil microcosm. Results from this study will indicate the potential of using different types of plants to enhance degradation of PAHs in contaminated soils.

  4. Gas- and particle-phase products from the photooxidation of acenaphthene and acenaphthylene by OH radicals

    NASA Astrophysics Data System (ADS)

    Riva, Matthieu; Healy, Robert M.; Flaud, Pierre-Marie; Perraudin, Emilie; Wenger, John C.; Villenave, Eric

    2017-02-01

    This work is focused on the gas-phase oxidation of acenaphthylene and acenaphthene by OH radicals and associated secondary organic aerosol (SOA) formation under low and high-NOx conditions. Experiments were carried out in an atmospheric simulation chamber using a proton transfer reaction time-of-flight-mass spectrometer (PTR-TOF-MS) and an aerosol time-of-flight-mass spectrometer (ATOFMS) to chemically characterize the gas- and particle-phase products, respectively. Due to the structures of these two aromatic compounds, the proposed chemical mechanisms exhibit some differences. In the case of acenaphthene, H-atom abstraction from the saturated cyclopenta-fused ring was found to be competitive with the OH-addition to the aromatic rings. During the photooxidation of acenaphthene using nitrous acid (HONO), aromatic ring-opening products such as indanone and indanone carbaldehyde, generated through OH addition to the aromatic ring, were formed in higher yields compared to low-NOx conditions. In the case of acenaphthylene, OH addition to the unsaturated cyclopenta-fused ring was strongly favored. Hence, ring-retaining species such as acenaphthenone and acenaphthenequinone, were identified as the main reaction products in both gas- and particle-phases, especially under high-NOx conditions. Subsequent SOA formation was observed in all experiments and SOA yields were determined under low/high-NOx conditions to be 0.61/0.46 and 0.68/0.55 from the OH-initiated oxidation of acenaphthylene and acenaphthene, respectively.

  5. Thermal kinetic and dielectric parameters of acenaphthene crystal grown by vertical Bridgman technique

    NASA Astrophysics Data System (ADS)

    Karuppusamy, S.; Dinesh Babu, K.; Nirmal Kumar, V.; Gopalakrishnan, R.

    2016-05-01

    The bulk acenaphthene crystal was grown in a single-wall ampoule by vertical Bridgman technique. X-ray diffraction analysis confirmed the orthorhombic crystal system of title compound with space group Pcm21. Thermal behavior of compound was studied using thermogravimetry—differential scanning calorimetry analysis. Thermal kinetic parameters like activation energy, frequency factor, Avrami exponent, reaction rate and degree of conversion were calculated using Kissingers and Ozawa methods under non-isothermal condition for acenaphthene crystal and reported for the first time. The calculated thermal kinetic parameters are presented. Dielectric studies were performed to calculate the dielectric parameters such as dielectric constant, dielectric loss, AC conductivity, and activation energy from Arrhenius plot.

  6. Ba2phenanthrene is the main component in the Ba-doped phenanthrene superconductor

    NASA Astrophysics Data System (ADS)

    Yan, Xun-Wang; Huang, Zhongbing; Lin, Hai-Qing

    2014-12-01

    We have systematically investigated the crystal structure of Ba-doped phenanthrene with various Ba doping levels by the first-principles calculations combined with the X-ray diffraction (XRD) spectra simulations. Although the experimental stoichiometry ratio of Ba atom and phenanthrene molecule is 1.5:1, the simulated XRD spectra, space group symmetry and optimized lattice parameters of Ba1.5phenanthrene are not consistent with the experimental ones, while the results for Ba2phenanthrene are in good agreement with the measurements. The strength difference of a few XRD peaks can be explained by the existence of pristine phenanthrene. Our findings suggest that instead of uniform Ba1.5phenanthrene, there coexist Ba2phenanthrene and undoped phenanthrene in the superconducting sample. The electronic calculations indicate that Ba2phenanthrene is a semiconductor with a small energy gap less than 0.05 eV.

  7. Ba{sub 2}phenanthrene is the main component in the Ba-doped phenanthrene superconductor

    SciTech Connect

    Yan, Xun-Wang; Huang, Zhongbing; Lin, Hai-Qing

    2014-12-14

    We have systematically investigated the crystal structure of Ba-doped phenanthrene with various Ba doping levels by the first-principles calculations combined with the X-ray diffraction (XRD) spectra simulations. Although the experimental stoichiometry ratio of Ba atom and phenanthrene molecule is 1.5:1, the simulated XRD spectra, space group symmetry and optimized lattice parameters of Ba{sub 1.5}phenanthrene are not consistent with the experimental ones, while the results for Ba{sub 2}phenanthrene are in good agreement with the measurements. The strength difference of a few XRD peaks can be explained by the existence of pristine phenanthrene. Our findings suggest that instead of uniform Ba{sub 1.5}phenanthrene, there coexist Ba{sub 2}phenanthrene and undoped phenanthrene in the superconducting sample. The electronic calculations indicate that Ba{sub 2}phenanthrene is a semiconductor with a small energy gap less than 0.05 eV.

  8. Oxidation of Acenaphthene and Acenaphthylene by Human Cytochrome P450 Enzymes

    PubMed Central

    Shimada, Tsutomu; Takenaka, Shigeo; Murayama, Norie; Yamazaki, Hiroshi; Kim, Joo-Hwan; Kim, Donghak; Yoshimoto, Francis K.; Guengerich, F. Peter; Komori, Masayuki

    2016-01-01

    Acenaphthene and acenaphthylene, two known environmental polycyclic aromatic hydrocarbon (PAH) pollutants, were incubated at 50 µM concentrations in a standard reaction mixture with human P450s 2A6, 2A13, 1B1, 1A2, 2C9, and 3A4 and the oxidation products were determined using HPLC and LC-MS. HPLC analysis showed that P450 2A6 converted acenaphthene and acenaphthylene to several mono- and di-oxygenated products. LC-MS analysis of acenaphthene oxidation by P450s indicated the formation of 1-acenaphthenol as a major product, with turnover rates of 6.7, 4.5, and 3.6 nmol product formed/min/nmol P450 for P450 2A6, 2A13, and 1B1, respectively. Acenaphthylene oxidation by P450 2A6 showed the formation of 1,2-epoxyacenaphthene as a major product (4.4 nmol epoxide formed/min/nmol P450) and also several mono- and di-oxygenated products. P450 2A13, 1B1, 1A2, 2C9, and 3A4 formed 1,2-epoxyacenaphthene at rates of 0.18, 5.3 2.4, 0.16, and 3.8 nmol/min nmol P450, respectively. 1-Acenaphthenol, which induced Type I binding spectra with P450 2A13, was further oxidized by P450 2A13 but not P450 2A6. 1,2-Epoxyacenaphthene induced Type I binding spectra with P450 2A6 and 2A13 (Ks 1.8 and 0.16 µM, respectively) and was also oxidized to several oxidation products by these P450s. Molecular docking analysis suggested different orientations of acenaphthene, acenaphthylene, 1-acenaphthenol, and 1,2-epoxyacenaphthene in their interactions with P450 2A6 and 2A13. Neither these four PAHs induced umu gene expression in a Salmonella typhimurium NM tester strain. These results suggest, for the first time, that acenaphthene and acenaphthylene are oxidized by human P450s 2A6 and 2A13 and other P450s to form several mono- and di-oxygenated products. The results are of use in considering the biological and toxicological significance of these environmental PAHs in humans. PMID:25642975

  9. Excitonic interaction in the fluorene dimer

    NASA Astrophysics Data System (ADS)

    Wessel, John; Beck, Steven; Highstrete, Clark

    1994-12-01

    The fluorene van der Waals dimer exhibits a complex origin spectrum. This region has been studied by resonance two-photon ionization and by fluorescence excitation spectroscopies. The spectra can be interpreted on the basis of intermediate strength exciton coupling, in which the electronic interaction is comparable to the van der Waals vibrational energies. The spectra are reasonably well described by two distorted adiabatic potential surfaces, which correspond to the two excitonic components of the origin system. A single Franck-Condon active intermolecular mode provides a reasonable description of the system, however the potentials have significant cubic and quartic contributions. Non-Born-Oppenheimer nuclear momentum coupling is present and intermodal (IVR) interactions are observed, even for intermolecular modes as low as v=1. The results are remarkably different from prior observations of excitonic structure in other systems, providing a detailed picture of coupling between electronic and intermolecular motion in a van der Waals dimer.

  10. Toxic photoproducts of phenanthrene in sunlight

    SciTech Connect

    McConkey, B.L.; Duxbury, C.L.; El-Alawi, Y.S.; Dixon, D.G.; Greenberg, B.M.

    1995-12-31

    Phenanthrene, one of the most prevalent PAHs, undergoes a significant increase in toxicity on exposure to sunlight. Over a period of several days exposure to light, the toxicity of an aqueous phenanthrene solution increased dramatically. This increase in toxicity is largely due to the primary photoproduct, 9,10-phenanthrenequinone. This compound is more toxic than phenanthrene at equimolar concentrations, and is more water soluble than phenanthrene, increasing its bioavailability. Although many PAHs are potent photosensitizers, phenanthrene did not exhibit a significant increase in toxicity due to photosensitization. Photo-oxidation was the principal cause of photoinduced toxicity, with 9,10-phenanthrenequinone being formed via an unstable intermediate. In addition, mixtures of phenanthrene and 9,10-phenanthrenequinone exhibited potentially synergistic effects, as shown by joint toxicity testing using Photobacterium phosphoreum. Thus, mixtures of oxidized PAHs produced by photoaction in the environment create a significant risk to the biosphere.

  11. Metabolism of phenanthrene by Phanerochaete chrysosporium

    SciTech Connect

    Sutherland, J.B.; Selby, A.L.; Freeman, J.P.; Evans, F.E.; Cerniglia, C.E. )

    1991-11-01

    The white rot fungus Phanerochaete chyrsosporium metabolized phenanthrene when it was grown for 7 days at 37C in a medium containing malt extract, D-glucose, D-maltose, yeast extract, and Tween 80. After cultures were grown with (9-{sup 14}C)phenanthrene, radioactive metabolites were extracted from the medium with ethyl acetate, separated by high-performance liquid chromatography, and detected by liquid scintillation counting. Metabolites from cultures grown with unlabeled phenanthrene were identified as phenanthrene trans-9, 10-dihydrodiol, phenanthrene trans-3, 4-dihydrodiol, 9-phenanthrol, 3-phenanthrol, 4-phenanthrol, and the novel conjugate 9-phenanthryl {beta}-D-glucopyranoside. Identification of the compounds was based on their UV absorption, mass, and nuclear magnetic resonance spectra. Since lignin peroxidase was not detected in the culture medium, these results suggest the involvement of monooxygenase and epoxide hydrolase activity in the initial oxidation and hydration of phenanthrene by P. chrysosporium.

  12. Mineralization of phenanthrene by a Mycobacterium sp

    SciTech Connect

    Guerin, W.F.; Jones, G.E.

    1988-04-01

    A Mycobacterium sp., designated strain BG1, able to utilize the polycyclic aromatic hydrocarbon phenanthrene as the sole carbon and energy source was isolated from estuarine sediment following enrichment with the hydrocarbon. Unlike other phenanthrene degraders, this bacterium degraded phenanthrene via 1-hydroxy-2-naphthoic acid without accumulating this or other aromatic intermediates, as shown by high-performance liquid chromatography. Degradation proceeded via meta cleavage of protocatechuic acid. Different nonionic surfactants (Tween compounds) solubilized the phenanthrene to different degrees and enhanced phenanthrene utilization. The order of enhancement, however, did not correlate perfectly with increased solubility, suggesting physiological as well as physicochemical effects of the surfactants. Plasmids of approximately 21, 58, and 77 megadaltons were detected in cells grown with phenanthrene but not in those which, after growth on nutrient media, lost the phenanthrene-degrading phenotype. Given that plasmid-mediated degradations of aromatic hydrocarbons generally occur via meta cleavages, it is of interest that the addition of pyruvate, a product of meta cleavage, supported rapid mineralization of phenanthrene in broth culture; succinate, a product of ortho cleavage, supported growth but completely repressed the utilization of phenanthrene. The involvement of plasmids may have given rise to the unusual degradation pattern that was observed.

  13. Effect of concentration, temperature, and freezing rate on the phosphorescence parameters of acenaphthene in n-hexane matrices

    NASA Astrophysics Data System (ADS)

    Zhdanova, N. V.; Deryabin, M. I.

    2016-04-01

    The effect of the concentration, temperature, and freezing rate on the spectra, kinetics, and intensity of phosphorescence of acenaphthene in polycrystalline n-hexane matrices has been studied. The specific features of the transformation of quasi-lines in the phosphorescence spectrum of molecules embedded in an n-hexane crystal lattice into broad molecular bands at high concentrations of the solution (~10‒1 mol/L) have been considered. It has been demonstrated that a distortion of the n-hexane crystal lattice at a high concentration of embedded acenaphthene molecules can be a cause of the observed transformation of the quasi-line spectrum.

  14. Oxidation of polynuclear aromatic hydrocarbons in water. 1: Ozonation

    SciTech Connect

    Beltran, F.J.; Encinar, J.M.; Rivas, J.; Ovejero, G.

    1995-05-01

    The oxidation of three polynuclear aromatic hydrocarbons (PAHs), fluorene, phenanthrene, and acenaphthene, in aqueous solution with ozone has been studied. The influence of hydroxyl radical inhibitors, pH, ozone partial pressure, and temperature was investigated. All the PAHs studied show high oxidation rates with ozone. The ozonation of fluorene seems to be due to both direct and hydroxyl radical reactions while for the rest of the PAHs the ozonation develops only through direct reactions with ozone. Rate constants for the direct reaction between these PAHs and ozone have also been calculated. The reactivity with ozone goes in the following order: fluorene < phenanthrene < acenaphthene. The contribution of radical reactions represents more than 90% in the ozonation of fluorene in most cases except in the presence of hydroxyl radical inhibitors. In a standard agitated reactor the kinetic regime of the absorption of ozone corresponds to a slow reaction in the case of fluorene and phenanthrene and to a fast reaction in the case of acenaphthene.

  15. Estuarine ecology of phenanthrene-degrading bacteria

    NASA Astrophysics Data System (ADS)

    Guerin, William F.; Jones, Galen E.

    1989-08-01

    Phenanthrene degrading bacteria were ubiquitously distributed in waters and sediments of the Great Bay Estuary, NH, as determined using a 14C-phenanthrene mineralization assay. Similar activities were observed in water samples collected in March and June when these were incubated at 18 °C even though ambient water temperatures were 1-4 °C and 10-22 °C, respectively. This observation indicated the constant presence of a mesophilic phenanthrene-degrading bacterial population in the estuary. Among water samples, the highest biodegradation activities were associated with samples collected downstream from a dredging operation which introduced high concentrations of coal tar PAH (polycyclic aromatic hydrocarbons) into the Cocheco River, and in areas receiving PAH from pleasure and commercial boating activities. Mid-estuarine maxima in biodegradation activity during both sampling trips suggested adaptation of the microbial flora to the salinities prevailing in the low turnover, high residence time portion of the Estuary at the time of sampling. Despite the hydrophobicity of phenanthrene, no correlation between biodegradation rates and particulate matter concentrations were observed. Similarly, concentrations of nutrients and dissolved and particulate organic matter correlated poorly with biodegradation rates. Better agreements between 14C-phenanthrene mineralization potentials and plate counts on a phenanthrene/toluene agar (PTA) medium were observed. Phenanthrene biodegradative activities and numbers of culturable bacteria growing on PTA were governed by the degree of previous exposure to PAH.

  16. Comparing anthracene and fluorene degradation in anthracene and fluorene-contaminated soil by single and mixed plant cultivation.

    PubMed

    Somtrakoon, Khanitta; Chouychai, Waraporn; Lee, Hung

    2014-01-01

    The ability of three plant species (sweet corn, cucumber, and winged bean) to remediate soil spiked with 138.9 and 95.9 mg of anthracene and fluorene per kg of dry soil, respectively, by single and double plant co-cultivation was investigated. After 15 and 30 days of transplantation, plant elongation, plant weight, chlorophyll content, and the content of each PAH in soil and plant tissues were determined. Based on PAH removal and plant health, winged bean was the most effective plant for phytoremediation when grown alone; percentage of fluorene and anthracene remaining in the rhizospheric soil after 30 days were 7.8% and 24.2%, respectively. The most effective combination of plants for phytoremediation was corn and winged bean; on day 30, amounts of fluorene and anthracene remaining in the winged bean rhizospheric soil were 3.4% and 14.3%, respectively; amounts of fluorene and anthracene remaining in the sweet corn rhizospheric soil were 4.1% and 8.8%, respectively. Co-cultivation of sweet corn and cucumber could remove fluorene to a higher extent than anthracene from soil within 15 days, but these plants did not survive and died before day 30. The amounts of fluorene remaining in the rhizospheric soil of corn and cucumber were only 14% and 17.3%, respectively, on day 15. No PAHs were detected in plant tissues. This suggests that phytostimulation of microbial degradation in the rhizosphere was most likely the mechanism by which the PAHs were removed from the spiked soil. The results show that co-cultivation of plants has merit in the phytoremediation of PAH-spiked soil.

  17. Protonation effect on the electronic structure of small PAHs: Acenaphthylene and Acenaphthene

    NASA Astrophysics Data System (ADS)

    Omidyan, Reza

    2011-12-01

    The low lying singlet and triplet electronic excited states of neutral and protonated Acenaphthylene (C12H8, ACYN) and Acenaphthene (C12H10, ACN) have been investigated extensively by RI-MP2 and RI-CC2 methods. The first and second electronic excited tates (S1, S2) of protonated ACYN and ACN have ππ∗ nature and lie in the visible or UV region. Similar to naphthalene, anthracene, and other linear PAHs, the protonation of ACYN and ACN leads to a strong red shift of the electronic transition as compared to the neutral molecule. The calculations indicate a charged transfer character of S1-S0 transition in protonated ACYN and ACN as well as protonated naphthalene.

  18. Comparative embryotoxicity of phenanthrene and alkyl-phenanthrene to marine medaka (Oryzias melastigma).

    PubMed

    Mu, Jingli; Wang, Juying; Jin, Fei; Wang, Xinhong; Hong, Huasheng

    2014-08-30

    Alkylated polycyclic aromatic hydrocarbons (alkyl-PAHs) are the predominant form of PAHs in oil, comprising 85-95% of total PAHs. However, little attention has been paid to these chemicals in ecological risk assessment of marine oil spill. A comparative study of the toxic effects of phenanthrene and retene (7-isopropyl-1-methylphenanthrene, an alkyl-phenanthrene) on the early life stage of marine medaka (Oryzias melastigma) was conducted. Results showed that retene was significantly more toxic than phenanthrene, and marine medaka could be more sensitive to retene than some freshwater fishes. Retene had a higher excretion rate than phenanthrene during the larvae stage. Both of compounds resulted in developmental malformation of marine medaka embryos, with phenanthrene affecting on peripheral vascular system and yolk sac, while retene affecting on cardiac tissues. The toxicity of phenanthrene might be mainly related to its anesthetic effects, and that of retene might be related to the CYP1A-mediated toxicity of its metabolites.

  19. Neutral and cation spectroscopy of fluorene-Arn clusters

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Pitts, Jonathan D.; Nadarajah, Ravindrakumar; Knee, J. L.

    1997-11-01

    Fluorene-Arn complexes formed in a pulsed supersonic jet have been studied in their S1 state using two color REMPI spectroscopy with mass resolved detection. The appearance and shifts of the S1 origins relative to the fluorene monomer are measured for cluster sizes up to n = 30. The shifts and appearance of these bands are used to identify multiple conformations at low n and have indicated a shift from two sided clustering by Ar at low n to primarily one sided clustering at large n. The ionic ground state of the smaller clusters (n⩽6) are studied using mass analyzed threshold ionization (MATI) spectroscopy. The change of the ionization potentials as a function of cluster size has been determined. In the case of the fluorene-Ar4 cluster, the MATI spectrum of two separate cluster conformations was measured, revealing significantly different ionization potentials. Vibrational dynamics has been studied in several smaller clusters (n⩽3) by measuring MATI and ZEKE spectra when pumping vibronic transitions in the fluorene chromophore. Significantly enhanced coupling of the chromophore to van der Waals modes is observed in going from n = 1 to n = 3.

  20. Optically enhanced nuclear cross polarization in acridine-doped fluorene

    SciTech Connect

    Oshiro, C.M.

    1982-06-01

    The objective of this work has been to create large polarizations of the dilute /sup 13/C nuclei in the solid state. The idea was to create /sup 1/H polarizations larger than Boltzmann and to use the proton enhanced nuclear induction spectroscopy cross polarization technique to then transfer this large polarization to the /sup 13/C spin system. Optical Nuclear Polarization (ONP) of acridine-doped fluorene single crystals was studied. In addition, ONP of powdered samples of the acridine-doped fluorene was studied. In general, many compounds do not crystallize easily or do not form large crystals suitable for NMR experiments. Powdered, amorphous and randomly dispersed samples are generally far more readily available than single crystals. One objective of this work has been to (first) create large /sup 1/H polarizations. Although large optical proton polarizations in single crystals have been reported previously, optically generated polarizations in powdered samples have not been reported. For these reasons, ONP studies of powdered samples of the acridine-doped fluorene were also undertaken. Using ONP in combination with the proton enhanced nuclear induction spectroscopy experiment, large /sup 13/C polarizations have been created in fluorene single crystals. These large /sup 13/C polarizations have permitted the determination of the seven incongruent chemical shielding tensors of the fluorene molecule. Part 2 of this thesis describes the proton enhanced nuclear induction spectroscopy experiment. Part 3 describes the ONP experiment. Part 4 is a description of the experimental set-up. Part 5 describes the data analysis for the determination of the chemical shielding tensors. Part 6 presents the results of the ONP experiments performed in this work and the chemical shielding tensors determined.

  1. Biodegradation kinetics of phenanthrene solubilized in surfactant micelles

    SciTech Connect

    Grimberg, S.J.; Aitken, M.D.

    1995-12-31

    The biodegradation of phenanthrene solubilized in surfactant micelles was studied using a simple, well-defined laboratory system. The system was designed to evaluate whether phenanthrene present in micelles of the nonionic surfactant Tergitol NP-10 was available to a phenanthrene-degrading bacterium. Results indicate that micellized phenanthrene is essentially unavailable to the microorganism, so that only the phenanthrene present in the aqueous phase is degraded. A modified Michaelis-Menten equation was developed to quantify the effects of surfactant concentration on phenanthrene uptake rates. Experimental data were described well with this equation.

  2. Microbial degradation of acenaphthene and naphthalene under denitrification conditions in soil-water systems.

    PubMed Central

    Mihelcic, J R; Luthy, R G

    1988-01-01

    This study examined the microbial degradation of acenaphthene and naphthalene under denitrification conditions at soil-to-water ratios of 1:25 and 1:50 with soil containing approximately 10(5) denitrifying organisms per g of soil. Under nitrate-excess conditions, both acenaphthene and naphthalene were degraded from initial aqueous-phase concentrations of about 1 and several mg/liter respectively, to nondetectable levels (less than 0.01 mg/liter) in less than 9 weeks. Acclimation periods of 12 to 36 days were observed prior to the onset of microbial degradation in tests with soil not previously exposed to polycyclic aromatic hydrocarbon (PAH) compounds, whereas acclimation periods were absent in tests with soil reserved from prior PAH degradation tests. It was judged that the apparent acclimation period resulted from the time required for a small population of organisms capable of PAH degradation to attain sufficient densities to exhibit detectable PAH reduction, rather than being a result of enzyme induction, mutation, or use of preferential substrate. About 0.9% of the naturally occurring soil organic carbon could be mineralized under denitrification conditions, and this accounted for the greater proportion of the nitrate depletion. Mineralization of the labile fraction of the soil organic carbon via microbial denitrification occurred without an observed acclimation period and was rapid compared with PAH degradation. Under nitrate-limiting conditions the PAH compounds were stable owing to the depletion of nitrate via the more rapid process of soil organic carbon mineralization. Soil sorption tests showed at the initiation of a test that the total mass of PAH compound was divided in comparable proportions between solute in the aqueous phase and solute sorbed on the solid phase. The microbial degradation of the PAH compound depends on the interrelationships between (i) the desorption kinetics and the reversibility of desorption of sorbed compound from the soil, (ii

  3. Adsorption and degradation of PAH compounds in soil. Progress report. [Acenaphthene, naphthalene

    SciTech Connect

    Mihelcic, J.R.; Luthy, R.G.

    1986-05-01

    Organic contaminant fate in soil/water systems can be affected by the biological characteristics of the soil and of the pollutant. This work investigates biodegradation of polycyclic aromatic hydrocarbons (PAH) in a soil environment under denitrification conditions. The objectives of the work over the past quarter were to compile and assess literature related to biological degradation of PAH under denitrification conditions, and to perform experiments to verify PAH degradation under denitrification conditions. Information from the literature is being utilized to develop a model to describe organic substrate usage when PAH is discharged into soil/water environments devoid of oxygen. An important concept which will be incorporated into the model is that PAH competes with other naturally occurring organic carbon sources as a substrate for biological metabolism in soil/water systems. Experiments were conducted to examine the degradation of naphthalene and acenaphthene under denitrification conditions. Several tests were also performed to examine denitrification without the presence of PAH to assess the contribution of available soil carbon as an organic carbon substrate. Results are discussed. 10 refs., 12 figs.

  4. The Halophyte Cakile maritima Reduces Phenanthrene Phytotoxicity.

    PubMed

    Shiri, Moez; Rabhi, Mokded; El Amrani, Abdelhak; Abdelly, Chedly

    2015-01-01

    In a previous study, we showed that the halophyte plant model Thellungiella salsuginea was more tolerant to phenanthrene (Polycyclic Aromatic Hydrocarbon: PAH) than its relative glycophyte Arabidopsis thaliana. In the present work, we investigated the potential of another halophyte with higher biomass production, Cakile maritma, to reduce phenanthrene phytotoxicity. Sand was used instead of arable soil with the aim to avoid pollutant degradation by microorganisms or their interaction with the plant. After 6 weeks of treatment by 500 ppm phenanthrene (Phe), stressed plants showed a severe reduction (-73%) in their whole biomass, roots being more affected than leaves and stems. In parallel, Guaiacol peroxidase (GPX) activity was increased by 185 and 62% in leaves and roots, respectively. Non-enzymatic antioxidant capacity (assayed by ABTS test) was maintained unchanged in all plant organs. The model halophytic plant Thellungiella salsuginea was used as a biomarker of phenanthrene stress severity and was grown at 0 (control), 125, 250, and 375 ppm. T. salsuginea plants grown on the sand previously contaminated by 500 ppm Phe then treated by C. maritma culture (phytoremediation culture) showed similar biomass production as plants subjected to 125 ppm Phe. This suggests that the phytotoxic effects of phenanthrene were reduced by 75% by the 6-week treatment by C. maritima. Our findings indicate that C. maritima can constitute a potentially good candidate for PAH phytoremediation.

  5. Adsorption of phenanthrene on natural snow.

    PubMed

    Domine, Florent; Cincinelli, Alessandra; Bonnaud, Elodie; Martellini, Tania; Picaud, Sylvain

    2007-09-01

    The snowpack is a reservoir for semivolatile organic compounds (SVOCs) and, in particular, for persistent organic pollutants (POPs), which are sequestered in winter and released to the atmosphere or hydrosphere in the spring. Modeling these processes usually assumes that SVOCs are incorporated into the snowpack by adsorption to snow surfaces, but this has never been proven because the specific surface area (SSA) of snow has never been measured together with snow composition. Here we expose natural snow to phenanthrene vapors (one of the more volatile POPs) and measure for the first time both the SSA and the chemical composition of the snow. The results are consistent with an adsorption equilibrium. The measured Henry's law constant is H(Phen)(T) = 2.88 x 10(22) exp(-10660/7) Pa m2 mol(-1), with Tin Kelvin. The adsorption enthalpy is delta H(ads) = -89 +/- 18 kJ mol(-1). We also perform molecular dynamics calculations of phenanthrene adsorption to ice and obtain AHads = -85 +/- 8 kJ mol(-1), close to the experimental value. Results are applied to the adsorption of phenanthrene to the Arctic and subarctic snowpacks. The subarctic snowpack, with a low snow area index (SAI = 1000), is a negligible reservoir of phenanthrene, butthe colder Arctic snowpack, with SAI = 2500, sequesters most of the phenanthrene present in the (snow + boundary layer) system.

  6. Degradation of phenanthrene on plant leaves by phyllosphere bacteria.

    PubMed

    Waight, Karen; Pinyakong, Onruthai; Luepromchai, Ekawan

    2007-10-01

    The activity of phyllosphere bacteria in the degradation of phenanthrene was investigated as a mechanism for the removal of atmospheric phenanthrene after its deposition on plant leaves. Initially, leaf samples of six plant species were collected from two roadsides in Bangkok to determine the presence of phenanthrene-degrading bacteria. The numbers of phenanthrene-degrading phyllosphere bacteria were varied and ranged from 3.5 x 10(4) to 1.95 x 10(7) CFU/g, in which the highest number was found from Ixora sp. Further studies were carried out in the laboratory by spraying phenanthrene on Ixora sp. leaves and then monitoring the amount of deposited phenanthrene and number of phenanthrene-degrading bacteria after incubation. The results showed that the amount of phenanthrene was significantly reduced on leaves containing phenanthrene-degrading bacteria. These were detected along with a rapid increase in the number of bacteria on leaves. The results indicated that many phyllosphere bacteria could utilize phenanthrene to support their growth and thereby reduce the amount of deposited phenanthrene on leaf surfaces. Several phenanthrene-degrading bacteria were later isolated from the leaves and identified with a high 16S rDNA sequence similarity to the genera Pseudomonas, Microbacterium, Rhizobium, and Deinococcus.

  7. Oxidative degradation of phenanthrene by the ligninolytic fungus phanerochaete chrysosposium

    SciTech Connect

    Hammel, K.E.; Gai, W.Z.; Green, B.; Moen, M.A.

    1992-01-01

    The ligninolytic fungus Phanerochaete chrysosporium oxidized phenanthrene and phenanthrene-9,10-quinone (PQ) at their C-9 and C-10 positions to give a ring-fission product, 2,2'-diphenic acid (DPA), which was identified in chromatographic and isotope dilution experiments. DPA formation from phenanthrene was somewhat greater in low-nitrogen (ligninolytic) cultures than in high-nitrogen (nonligninolytic) cultures and did not occur in uninoculated cultures. The oxidation of PQ to DPA involved both fungal and abiotic mechanisms, was unaffected by the level of nitrogen added, and was significantly faster than the cleavage of phenanthrene to DPA. Phenanthrene-trans-9,10-dihydrodiol, which was previously shown to be the principal phenanthrene metabolite in nonligninolytic P. chrysosporium cultures, was not formed in the ligninolytic cultures employed here. These results suggest that phenanthrene degradation by ligninolytic P. chrysosporium proceeds in order from phenanthrene -> PQ -> DPA, involves both ligninolytic and nonligninolytic enzymes, and is not initiated by a classical microsomal cytochrome P-450. The extracellular lignin peroxidases of P. chrysosporium were not able to oxidize phenanthrene in vitro and therefore are also unlikely to catalyze the first step of phenanthrene degradation in vivo. Both phenanthrene and PQ were mineralized to similar extents by the fungus, which supports the intermediacy of PQ in phenanthrene degradation, but both compounds were mineralized significantly less than the structurally related lignin peroxidase substrate pyrene was.

  8. Oxidation of polynuclear aromatic hydrocarbons in water. 4: Ozone combined with hydrogen peroxide

    SciTech Connect

    Beltran, F.J.; Rivas, J.; Ovejero, G.

    1996-03-01

    Three polynuclear aromatic hydrocarbons, fluorene, phenanthrene, and acenaphthene, have been treated in water with ozone combined with hydrogen peroxide. The effect of hydrogen peroxide concentration, pH, and bicarbonate ions has been investigated. The process goes through direct and radical reactions in the case of fluorene and phenanthrene oxidation, while acenaphthene is removed exclusively by direct ozonation. At concentrations of hydrogen peroxide higher than 10{sup {minus}5} M, ozone mass transfer controls the process rate, regardless of pH. In any case, however, the presence of hydrogen peroxide does not improve the oxidation rate compared to ozonation alone due to the importance of the direct reactions. Intermediate compounds identified during oxidation with ozone alone and combined with UV radiation or hydrogen peroxide are similar and justify the high consumption of ozone in these processes.

  9. Oxidative degradation of phenanthrene by the ligininolytic fungus Phanerochaete chrysosporium

    SciTech Connect

    Hammel, K.E.; Moen, M.A. ); Wen Zhigai; Green, B. )

    1992-06-01

    The ligninolytic fungus Phanerochaete chrysosporium oxidized phenanthrene and phenanthrene-9,10-quinone (PQ) at their C-9 and C-10 positions to give a ring-fission product, 2,2[prime]-diphenic acid (DPA), which was identified in chromatographic and isotope dilution experiments. DPA formation from phenanthrene was somewhat greater in low-nitrogen cultures than in high-nitrogen cultures and did not occur in uninoculated cultures. The oxidation of PQ to DPA involved both fungal and abiotic mechanisms, was unaffected by the level of nitrogen added, and was significantly faster than the cleavage of phenanthrene to DPA. Phenanthrene-trans-9,10-dihydrodiol, which was previously shown to be the principal phenathrene metabolite in nonligninolytic P. chrysosporium cultures, was not formed in the ligninolytic cultures employed here. These results suggest that phenanthrene degradation by ligninolytic P. chrysosporium proceeds in order from phenanthrene [yields] PQ [yields] DPA, involves both ligninolytic and nonligninolytic enzymes, and is not initiated by a classical microsomal cytochrome P-450. The extracellular lignin peroxidases of P. chrysosporium were not able to oxidize phenanthrene in vitro and therefore are also unlikely to catalyze the first step of phenanthrene degradation in vivo. Both phenanthrene and PQ were mineralized to similar extents by the fungus, which supports the intermediacy of PQ in phenanthrene degradation, but both compounds were mineralized significantly less than the structurally related lignin peroxidase substrate pyrene was.

  10. Carrier Battle Group (CVBG) Homeporting in the Puget Sound Area, Washington State. Volume 1. Chapters 1-12.

    DTIC Science & Technology

    1986-11-01

    0.005 Naphthalene ɘ.005 Acenaphthene ɘ.005 Fluorene ɘ.005 V Fluoranthene ɘ.005 Phenanthrene ɘ.005 - Pyrene ɘ.005 Benzo (B) Fluoranthene ɘ.005...sediment erosion concerns and limit vegetation root contact with the contaminated sediment layer. A low dike structure must be constructed to contain...that are comprised principally of bacteria, diatoms, algae, and their exudates , develop on ship hulls coated with OT paint and could affect the nature

  11. H- and J-aggregation of fluorene-based chromophores.

    PubMed

    Deng, Yonghong; Yuan, Wen; Jia, Zhe; Liu, Gao

    2014-12-11

    Understanding of H- and J-aggregation behaviors in fluorene-based polymers is significant both for determining the origin of various red-shifted emissions occurring in blue-emitting polyfluorenes and for developing polyfluorene-based device performance. In this contribution, we demonstrate a new theory of the H- and J-aggregation of polyfluorenes and oligofluorenes, and understand the influence of chromosphere aggregation on their photoluminescent properties. H- and J-aggregates are induced by a continuous increasing concentration of the oligofluorene or polyfluorene solution. A relaxed molecular configuration is simulated to illustrate the spatial arrangement of the bonding of fluorenes. It is indicated that the relaxed state adopts a 21 helical backbone conformation with a torsion angle of 18° between two connected repeat units. This configuration makes the formation of H- and J-aggregates through the strong π-π interaction between the backbone rings. A critical aggregation concentration is observed to form H- and J-aggregates for both polyfluorenes and oligofluorenes. These aggregates show large spectral shifts and distinct shape changes in photoluminescent excitation (PLE) and emission (PL) spectroscopy. Compared with "isolated" chromophores, H-aggregates induce absorption spectral blue-shift and fluorescence spectral red-shift but largely reduce fluorescence efficiency. "Isolated" chromophores not only refer to "isolated molecules" but also include those associated molecules if their conjugated backbones are not compact enough to exhibit perturbed absorption and emission. J-aggregates induce absorption spectral red-shift and fluorescence spectral red-shift but largely enhance fluorescence efficiency. The PLE and PL spectra also show that J-aggregates dominate in concentrated solutions. Different from the excimers, the H- and J-aggregate formation changes the ground-state absorption of fluorene-based chromophores. H- and J-aggregates show changeable

  12. Organic dyes based on fluorene and its derivatives

    NASA Astrophysics Data System (ADS)

    Kurdyukova, I. V.; Ishchenko, Aleksandr A.

    2012-03-01

    Data on various types of organic dyes based on fluorene and its derivatives, including polymethine, styryl, triphenylmethane, spiran, merocyanine, porphyrin and polymeric dyes, as well as azo dyes and donor-acceptor polyenes, are described systematically. The key methods for their synthesis are considered. The properties of the dyes are analyzed and summarized. The principles of development of modern functional materials based on these dyes are outlined. The use of these materials in advanced fields of science and technology such as photovoltaics, electroluminescence, nonlinear optics, holography, sensing photodynamic therapy are considered. The bibliography includes 476 references.

  13. Two-electron carbon dioxide reduction catalyzed by rhenium(I) bis(imino)acenaphthene carbonyl complexes.

    PubMed

    Portenkirchner, Engelbert; Kianfar, Elham; Sariciftci, Niyazi Serdar; Knör, Günther

    2014-05-01

    Rhenium(I) carbonyl complexes carrying substituted bis(arylimino)acenaphthene ligands (BIAN-R) have been tested as potential catalysts for the two-electron reduction of carbon dioxide. Cyclic voltammetric studies as well as controlled potential electrolysis experiments were performed using CO2-saturated solutions of the complexes in acetonitrile and acetonitrile-water mixtures. Faradaic efficiencies of more than 30 % have been determined for the electrocatalytic production of CO. The effects of ligand substitution patterns and water content of the reaction medium on the catalytic performance of the new catalysts are discussed.

  14. Evidence for a novel pathway in the degradation of fluorene by Pseudomonas sp. strain F274.

    PubMed Central

    Grifoll, M; Selifonov, S A; Chapman, P J

    1994-01-01

    A fluorene-utilizing microorganism, identified as a species of Pseudomonas, was isolated from soil severely contaminated from creosote use and was shown to accumulate six major metabolites from fluorene in washed-cell incubations. Five of these products were identified as 9-fluorenol, 9-fluorenone, (+)-1,1a-dihydroxy-1-hydro-9-fluorenone, 8-hydroxy-3,4-benzocoumarin, and phthalic acid. This last compound was also identified in growing cultures supported by fluorene. Fluorene assimilation into cell biomass was estimated to be approximately 50%. The structures of accumulated products indicate that a previously undescribed pathway of fluorene catabolism is employed by Pseudomonas sp. strain F274. This pathway involves oxygenation of fluorene at C-9 to give 9-fluorenol, which is then dehydrogenated to the corresponding ketone, 9-fluorenone. Dioxygenase attack on 9-fluorenone adjacent to the carbonyl group gives an angular diol, 1,1a-dihydroxy-1-hydro-9-fluorenone. Identification of 8-hydroxy-3,4-benzocoumarin and phthalic acid suggests that the five-membered ring of the angular diol is opened first and that the resulting 2'-carboxy derivative of 2,3-dihydroxy-biphenyl is catabolized by reactions analogous to those of biphenyl degradation, leading to the formation of phthalic acid. Cell extracts of fluorene-grown cells possessed high levels of an enzyme characteristic of phthalate catabolism, 4,5-dihydroxyphthalate decarboxylase, together with protocatechuate 4,5-dioxygenase. On the basis of these findings, a pathway of fluorene degradation is proposed to account for its conversion to intermediary metabolites. A range of compounds with structures similar to that of fluorene was acted on by fluorene-grown cells to give products consistent with the initial reactions proposed. PMID:8074523

  15. Phenanthrene biodegradation kinetics in unsaturated soils

    SciTech Connect

    Johnson, C.R.; Scow, K.M.

    1995-12-31

    Organic compounds when sorbed to soil solids are thought to be unavailable to soil microorganisms. The biodegradation kinetics of sorbed chemicals should thus be influenced by sorption/desorption processes as well as by the metabolic capacities of soil microbes. In the research, phenanthrene, a hydrophobic polyaromatic hydrocarbon, was used as a model compound to investigate the biodegradation kinetics of strongly sorbing organic compounds in soil. Biodegradation kinetics for phenanthrene in seven soils with moisture contents near field capacity were measured during a six and one half month experiment. Phenanthrene biodegradation rates initially increased in all soils and then declined. The declining portion of the biodegradation rate versus time plots exhibited either first order or biphasic kinetics. Both first order and biphasic kinetics are consistent with models which link microbial degradation to substrate sorption/desorption from equilibrium and kinetically controlled sorption sites. No single rate constant or analytical expression adequately captured the complexity of the observed biodegradation rates. This result is again consonant with a process derived from coupled biological and physical systems. Biodegradation kinetics were quantified using a combination of fitted and descriptive parameters. Significant correlations exist between several of the descriptive parameters. The correlations observed between descriptive biodegradation parameters mirror correlations expected from the hypothesized underlying biological process and help evince the influence this underlying process exerts on observed biodegradation kinetics.

  16. Structural origin for electron affinity of phenanthrene and ion cores of phenanthrene anion clusters

    NASA Astrophysics Data System (ADS)

    Lee, Sang Hak; Song, Jae Kyu; Kim, Seong Keun

    2015-04-01

    We studied anion clusters of phenanthrene using photoelectron spectra and theoretical calculations. The electron affinity of phenanthrene, which lies between those of naphthalene and anthracene, was explained by the orbital interaction model that reflected the structural differences among these molecules. The spectral feature of the photoelectron spectra indicated strong electron-vibration coupling along two symmetric vibrational modes. Since the spectral features of each ion core structure were uniquely characteristic, we could identify that the pentamer anion had coexisting monomeric and trimeric cores on the basis of the shape of the photoelectron spectra and the size-dependent evolution of the electron affinity.

  17. Synthesis of polyamides from diamines of the fluorene series

    NASA Technical Reports Server (NTRS)

    Fedotova, O. Y.; Korshak, V. V.; Nesterova, Y. I.

    1984-01-01

    Aromatic polyamides were prepared by polycondensation of isophthaloyl chloride and 2,7-diaminofluorene, 2,7-dimainofluorenone, or 2,5-diaminofluorenone in AcNMe2 or N-methyl-2-pyrrolidinone at 20 deg - 30 deg for 1.5-2 hr. Isophthaloyl chloride-2,5-diaminofluorenone copolymer 39609-29-51 was sol. in AcNMe2, N-methyl-2-pyrrolidinone, DMF, and hexamethylphosphoramide, whereas isophthaloyl chloride-2,7-diamino-fluorene copolymer 39609-30-3 and isophthaloyl chloride-2,7-diamino-fluorenone copolymer 39609-31-0 were not sol. in the solvents cited. The aromatic polyamides revealed thixotropic properties in 0.5% solutions in H2SO4.

  18. Nonradiative decay mechanism of fluoren-9-ylidene malononitrile ambipolar derivatives.

    PubMed

    Estrada, Leandro A; Cai, Xichen; Neckers, Douglas C

    2011-03-24

    We report recent results on the nonradiative decay (NRD) of fluoren-9-ylidene malononitrile (FM) ambipolar derivatives (FMDs). 2,7- and 3,6-disubstituted FMDs present distinctive photophysics. Charge separation was found dominant for excited state relaxation. The radiative decay (RD) is sensitive to changes in temperature and solvent medium only for the case of 3,6-FMDs. Excited state deactivation of carbazole-containing 3,6-FMD (CPAFM36) was exclusively nonradiative in polar solvents with excited state lifetimes shorter than 10 ps. The charge separation/recombination mechanism of the corresponding FMDs is suggested to fall in the inverted Marcus region of electron transfer. Given the electron-withdrawing properties of the FM unit, its ambipolar derivatives are suggested as potential candidates for air-stable organic thin-film transistors and molecular organic photovoltaics.

  19. An Undergraduate Laboratory Project Involving Photocyclizations in Independent Syntheses of Novel Chrysenes and Phenanthrenes.

    ERIC Educational Resources Information Center

    Letcher, R. M.

    1981-01-01

    Describes a project and experimental procedures, suitable for a final year organic chemistry course, in which students synthesize a variety of substituted phenanthrenes, chrysenes, and benzo phenanthrenes. (SK)

  20. Biodegradation of phenanthrene in soils in the presence of surfactants

    SciTech Connect

    Jahan, K.

    1993-01-01

    This research addresses the effect of low surfactant concentrations on the biodegradation of slightly soluble organic compounds in the presence and absence of soil. Biodegradation of phenanthrene in excess of its aqueous solubility by an acclimated mixed culture was studied in the presence of nonionic surfactants. Nonionic surfactants were selected over other types of surfactants because of their higher hydrocarbon solubilizing power, weaker adsorption to charged sites, less toxicity to bacteria, and poor foaming properties. Surfactants were tested to measure their effectiveness for increasing the solubility of phenanthrene, their adsorption on the soil matrix, their biodegradability, their effect on the adsorption of phenanthrene and on the rates of biodegradation of phenanthrene. Solubility enhancement studies of phenanthrene by the surfactants indicated relatively small effects at sub-micellar surfactant concentrations. Batch biodegradation studies in which phenanthrene was available as particulates and as a surface coating on sand were carried out in closed BOD bottles in the Hach manometric system. Addition of surfactants at 25 mg/L enhanced biodegradation rates as measured by oxygen uptake, protein production and disappearance of phenanthrene. A dynamic model which couples dissolution and biodegradation processes could adequately represent the experimental batch data. Modelling studies suggest that biodegradation was accelerated because the dissolution rates of phenanthrene increased in presence of the surfactants. Continuous flow column studies with phenanthrene coated Jordan sand was carried out to simulate groundwater flow conditions. Sorption studies on Jordan aquifer sand indicated that this low-carbon aquifer material adsorbs small amounts of phenanthrene as well as surfactants. The tests show that low surfactant concentrations were marginally beneficial in washing phenanthrene from precoated sand.

  1. A fluorene-modified porphyrin for efficient dye-sensitized solar cells.

    PubMed

    Wu, Cheng-Hua; Pan, Tsung-Yu; Hong, Shang-Hao; Wang, Chin-Li; Kuo, Hshin-Hui; Chu, Yang-Yun; Diau, Eric Wei-Guang; Lin, Ching-Yao

    2012-05-07

    Porphyrins bearing a polyaromatic or a heterocyclic group are prepared to study their fundamental and photovoltaic properties. Solar cells sensitized with a fluorene-modified porphyrin outperform other dyes in the series, reaching ~90% efficiency of N719 dye.

  2. Thermodynamic study of (anthracene + phenanthrene) solid state mixtures.

    PubMed

    Rice, James W; Fu, Jinxia; Sandström, Emma; Ditto, Jenna C; Suuberg, Eric M

    2015-11-01

    Polycyclic aromatic hydrocarbons (PAH) are common components of many materials, such as petroleum and various types of tars. They are generally present in mixtures, occurring both naturally and as byproducts of fuel processing operations. It is important to understand the thermodynamic properties of such mixtures in order to understand better and predict their behavior (i.e., fate and transport) in the environment and in industrial operations. To characterize better the thermodynamic behavior of PAH mixtures, the phase behavior of a binary (anthracene + phenanthrene) system was studied by differential scanning calorimetry, X-ray diffraction, and the Knudsen effusion technique. Mixtures of (anthracene + phenanthrene) exhibit non-ideal mixture behavior. They form a lower-melting, phenanthrene-rich phase with an initial melting temperature of 372 K (identical to the melting temperature of pure phenanthrene) and a vapor pressure of roughly lnP/Pa = -2.38. The phenanthrene-rich phase coexists with an anthracene-rich phase when the mole fraction of phenanthrene (xP) in the mixture is less than or equal to 0.80. Mixtures initially at xP = 0.90 consist entirely of the phenanthrene-rich phase and sublime at nearly constant vapor pressure and composition, consistent with azeotrope-like behavior. Quasi-azeotropy was also observed for very high-content anthracene mixtures (2.5 < xP < 5) indicating that anthracene may accommodate very low levels of phenanthrene in its crystal structure.

  3. Thermodynamic study of (anthracene + phenanthrene) solid state mixtures

    PubMed Central

    Rice, James W.; Fu, Jinxia; Sandström, Emma; Ditto, Jenna C.; Suuberg, Eric M.

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAH) are common components of many materials, such as petroleum and various types of tars. They are generally present in mixtures, occurring both naturally and as byproducts of fuel processing operations. It is important to understand the thermodynamic properties of such mixtures in order to understand better and predict their behavior (i.e., fate and transport) in the environment and in industrial operations. To characterize better the thermodynamic behavior of PAH mixtures, the phase behavior of a binary (anthracene + phenanthrene) system was studied by differential scanning calorimetry, X-ray diffraction, and the Knudsen effusion technique. Mixtures of (anthracene + phenanthrene) exhibit non-ideal mixture behavior. They form a lower-melting, phenanthrene-rich phase with an initial melting temperature of 372 K (identical to the melting temperature of pure phenanthrene) and a vapor pressure of roughly lnP/Pa = −2.38. The phenanthrene-rich phase coexists with an anthracene-rich phase when the mole fraction of phenanthrene (xP) in the mixture is less than or equal to 0.80. Mixtures initially at xP = 0.90 consist entirely of the phenanthrene-rich phase and sublime at nearly constant vapor pressure and composition, consistent with azeotrope-like behavior. Quasi-azeotropy was also observed for very high-content anthracene mixtures (2.5 < xP < 5) indicating that anthracene may accommodate very low levels of phenanthrene in its crystal structure. PMID:26973354

  4. Evaluating phenanthrene sorption on various wood chars

    USGS Publications Warehouse

    James, G.; Sabatini, D.A.; Chiou, C.T.; Rutherford, D.; Scott, A.C.; Karapanagioti, H.K.

    2005-01-01

    A certain amount of wood char or soot in a soil or sediment sample may cause the sorption of organic compounds to deviate significantly from the linear partitioning commonly observed with soil organic matter (SOM). Laboratory produced and field wood chars have been obtained and analyzed for their sorption isotherms of a model solute (phenanthrene) from water solution. The uptake capacities and nonlinear sorption effects with the laboratory wood chars are similar to those with the field wood chars. For phenanthrene aqueous concentrations of 1 ??gl-1, the organic carbon-normalized sorption coefficients (log Koc) ranging from 5.0 to 6.4 for field chars and 5.4-7.3 for laboratory wood chars, which is consistent with literature values (5.6-7.1). Data with artificial chars suggest that the variation in sorption potential can be attributed to heating temperature and starting material, and both the quantity and heterogeneity of surface-area impacts the sorption capacity. These results thus help to corroborate and explain the range of log Koc values reported in previous research for aquifer materials containing wood chars. ?? 2004 Elsevier Ltd. All rights reserved.

  5. Optical excitations in star-shaped fluorene molecules.

    PubMed

    Montgomery, Neil A; Denis, Jean-Christophe; Schumacher, Stefan; Ruseckas, Arvydas; Skabara, Peter J; Kanibolotsky, Alexander; Paterson, Martin J; Galbraith, Ian; Turnbull, Graham A; Samuel, Ifor D W

    2011-04-14

    A detailed study of the low-energy optical transitions in two families of star-shaped molecules is presented. Both families have 3-fold rotational symmetry with oligofluorene arms attached to a central core. In one family, the core of the molecule is a rigid meta-linked truxene, while the other is a meta-linked benzene moiety. The low-energy transitions were studied both experimentally and using time-dependent density functional theory (TD-DFT). The optical transitions of these new star-shaped molecules were compared with corresponding linear oligofluorenes. Both families of star-shaped molecules showed higher absorption and fluorescence dipoles and photoluminescence quantum yields than straight chain oligofluorenes. TD-DFT calculations show that absorption takes place across the entire molecule, and after excited state relaxation, the emission results from a single arm. In both theory and experiment the transition dipole moments show an approximate n(0.5) dependence on the number of fluorene units in each arm.

  6. Phenanthrene degradation by Biejerinickia sp. B8/36

    SciTech Connect

    Strandberg, G.W.; Abraham, T.J. Jr.; Frazier, G.C.

    1986-01-01

    The use of fossil fuels has greatly increased the ubiquity of polynuclear aromatic hydrocarbons (PAHs) in the environment, and their potential toxicity has generated considerable interest in the ability of microorganisms to utilize and/or detoxify these pollutants. One PAH of concern is phenanthrene. Numerous microbial species are known to degrade phenanthrene and there appear to be several metabolic routes available, depending upon the species, strain, and even the cultural conditions. Although there is a substantial amount of literature on the metabolic pathways of phenanthrene utilization, the authors have found little information regarding the effects of environmental conditions on phenanthrene degradation rates. Such information would be of importance to understanding the fate of this compound in natural and controlled (i.e., wastewater treatment) biological systems. During preliminary experiments, the authors found Beijerinickia sp. B3/36 to be unable to grow solely on phenanthrene, but capable of growth and phenanthrene utilization when yeast extract was supplied. The authors discuss the effects of pH and temperature on growth and phenanthrene degradation by intact cells of Biejerinickia sp. B8/36.

  7. Factors affecting sequestration and bioavailability of phenanthrene in soils

    SciTech Connect

    White, J.C.; Kelsey, J.W.; Hatzinger, P.B.; Alexander, M.

    1997-10-01

    A study was conducted to determine factors affecting the sequestration and changes in bioavailability as phenanthrene persists in soils. Phenanthrene became sequestered in seven soils differing appreciably in organic matter and clay content as measured by earthworm uptake, bacterial mineralization, or extractability. Phenanthrene also became sequestered as it aged in soil aggregates of various sizes as measured by decline in availability to a bacterium, a mild extractant, or both. Wetting and drying a soil during aging reduced the amount of phenanthrene recovered by a mild extractant and the rate and extent of bacterial mineralization of the hydrocarbon. After biodegradation of phenanthrene added to the soil, more of the compound remained if it had been aged than if it had not been aged. Wetting and drying the soil during aging further increased the amount of phenanthrene remaining after biodegradation. The rate and extent of bacterial mineralization of phenanthrene were less in leached than in unleached soil. Aging/sequestration is thus markedly affected by soil properties and environmental factors.

  8. [Effects of dissolved organic matter on phenanthrene adsorption by soil].

    PubMed

    Xiong, Wei; Ling, Wan-ting; Gao, Yan-zheng; Li, Qiu-ling; Dai, Jing-yu

    2007-02-01

    This paper studied the effects of exotic and native dissolved organic matter (DOM) on the phenanthrene adsorption by three soils differed in soil organic carbon content (foc). The exotic DOM came from decayed rice straw, while the native DOM was extracted from the test soils. In all cases, the adsorption of phenanthrene by treated soils could be well described with linear-type model, and there was a positive correlation between adsorption coefficient (Kd) and foc Compared with the control, the Kd value of test soils after native DOM removed was increased by 7. 08% -21. 4% , and the increment (deltaKd) was positively correlated with fo,, indicating that the presence of soil native DOM impeded the phenanthrene adsorption by soil. The effects of exotic DOM on phenanthrene adsorption had a close relation with its added concentration in soil-water system. Within the range of 0-106 mg DOC x L(-1) , the K, value increased first, and then decreased with the increase of added exotic DOM concentration. Lower concentrations of added exotic DOM promoted the phenanthrene adsorption by soil, while higher concentrations ( I> or =52 mg DOC x L(-1)) of it obviously impeded this adsorption. These effects of exotic and native DOM on soil phenanthrene adsorption were considered to be related to the association of phenanthrene with DOM in solution, and the ' cumulative adsorption effect' between soil solid and aqueous phases.

  9. Toxic effect of biosurfactant addition on the biodegradation of phenanthrene.

    PubMed

    Shin, Kyung-Hee; Ahn, Yeonghee; Kim, Kyoung-Woong

    2005-11-01

    The effect of the biosurfactant rhamnolipid on phenanthrene biodegradation and cell growth of phenanthrene degraders was investigated. To compare the effect of rhamnolipid addition, two bacterial strains, 3Y and 4-3, which were isolated from a diesel-contaminated site in Korea, were selected. Without the biosurfactant, large amounts of phenanthrene were degraded with both strains at neutral pH, with higher rates of phenanthrene degradation when the cell growth was higher. Upon the addition of 240 mg/L rhamnolipid, the phenanthrene degradation and optical density were reduced, with this inhibitory effect similar for both 3Y and 4-3. To explain this inhibition, the cell growths of both strains were monitored with various concentrations of rhamnolipid, which showed significant toxic effects toward strain 3Y, but was nontoxic toward 4-3. Combining the inhibitory and toxicity results with regard to the biodegradation, different mechanisms can be suggested for each strain. In the biodegradation experiments, the toxicity of rhamnolipid itself mainly was responsible for the inhibitory effect in the case of 3Y, whereas the toxicity of solubilized phenanthrene or the increased toxicity of rhamnolipid in the presence of solubilized phenanthrene could have resulted in the inhibitory effect in the case of 4-3. This study demonstrated that the effectiveness of biosurfactant-enhanced biodegradation can be significantly different depending on the strain, and the toxicity of the biosurfactant should be considered as an important factor.

  10. Fluorene-fluorenone copolymer: Stable and efficient yellow-emitting material for electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Panozzo, S.; Vial, J.-C.; Kervella, Y.; Stéphan, O.

    2002-10-01

    We have synthesized and characterized a new fluorene copolymer exhibiting bright yellow luminescence. In order to ensure a complete π-stacking of the active layer, a 9-fluorenone monomeric unit (FOne) has been used as comonomer in conjunction with the more classical 9,9-di-n-nonylfluorene unit. As expected with fluorene-based materials, when excited at 370 nm, the corresponding dilute copolymer solution photoluminescence spectra exhibit a main peak centered at 450 nm in the blue part of the visible spectrum. However, in the solid state, immediate structural reorganization of the layer occurs, leading to a red-shifted emission (bright yellow emission) centered at 550 nm. The origin of the emitted light has been attributed to excimers and/or aggregates based on short FOne segments and involves mainly exciton transfer between nonaggregated fluorene segments and aggregated ones. It is noteworthy that organic light-emitting devices based on these new materials exhibit no spectral evolution upon device operation. However, although stacking leads generally to a detrimental quenching of the luminescence in the solid state, as for regular poly(alkyl-fluorene), the luminescence efficiency of the fluorene-fluorenone copolymer remains suitable for device preparation. High material stability is attributed to an efficient and fast structural reorganization of the active layer, triggered by the small proportion of fluorenone. High electroluminescence efficiency, when compared to aggregated regular poly(alkyl-fluorene), results from an improved electron injection, a better carrier transport, and the conjunction of an efficient energy transfer from fluorene segments to excimers and/or aggregates with the implication of spin triplet, which is often lacking when using regular semiconducting polymers.

  11. New metabolites in the degradation of fluorene by Arthrobacter sp. strain F101.

    PubMed Central

    Casellas, M; Grifoll, M; Bayona, J M; Solanas, A M

    1997-01-01

    Identification of new metabolites and demonstration of key enzyme activities support and extend the pathways previously reported for fluorene metabolism by Arthrobacter sp. strain F101. Washed-cell suspensions of strain F101 with fluorene accumulated 9-fluorenone, 4-hydroxy-9-fluorenone, 3-hydroxy-1-indanone, 1-indanone, 2-indanone, 3-(2-hydroxyphenyl) propionate, and a compound tentatively identified as a formyl indanone. Incubations with 2-indanone produced 3-isochromanone. The growth yield with fluorene as a sole source of carbon and energy corresponded to an assimilation of about 34% of fluorene carbon. About 7.4% was transformed into 9-fluorenol, 9-fluorenone, and 4-hydroxy-9-fluorenone. Crude extracts from fluorene-induced cells showed 3,4-dihydrocoumarin hydrolase and catechol 2,3-dioxygenase activities. These results and biodegradation experiments with the identified metabolites indicate that metabolism of fluorene by Arthrobacter sp. strain F101 proceeds through three independent pathways. Two productive routes are initiated by dioxygenation at positions 1,2 and 3,4, respectively. meta cleavage followed by an aldolase reaction and loss of C-1 yield the detected indanones. Subsequent biological Baeyer-Villiger reactions produce the aromatic lactones 3,4-dihydrocoumarin and 3-isochromanone. Enzymatic hydrolysis of the former gives 3-(2-hydroxyphenyl) propionate, which could be a substrate for a beta oxidation cycle, to give salicylate. Further oxidation of the latter via catechol and 2-hydroxymuconic semialdehyde connects with the central metabolism, allowing the utilization of all fluorene carbons. Identification of 4-hydroxy-9-fluorenone is consistent with an alternative pathway initiated by monooxygenation at C-9 to give 9-fluorenol and then 9-fluorenone. Although dioxygenation at 3,4 positions of the ketone apparently occurs, this reaction fails to furnish a subsequent productive oxidation of this compound. PMID:9055403

  12. Effect and localization of phenanthrene in maize roots.

    PubMed

    Dupuy, Joan; Leglize, Pierre; Vincent, Quentin; Zelko, Ivan; Mustin, Christian; Ouvrard, Stéphanie; Sterckeman, Thibault

    2016-04-01

    Polycyclic aromatic hydrocarbons (PAHs) have a toxic effect on plants, which limits the efficiency of phytomanagement of contaminated soils. The mechanisms underlying their toxicity are not fully understood. A cultivation experiment was carried out with maize, used as model plant, exposed to sand spiked with phenanthrene (50 or 150 mg kg(-1) dw). Epi-fluorescence microscopic observation of root sections was used to assess suberization of exodermis and endodermis and phenanthrene localization along the primary root length. For 10 days of cultivation, exodermis and endodermis suberization of exposed maize was more extensive. However, after 20 days of exposure, exodermis and endodermis of non-exposed roots were totally suberized, whilst PHE-exposed roots where less suberized. Early extensive suberization may act as barrier against PHE penetration, however longer exposure inhibits root maturation. Phenanthrene patches were located only near suberized exodermis and endodermis, which may therefore act as retention zones, where the hydrophobic phenanthrene accumulates during its radial transport.

  13. Effects of surfactants on extraction of phenanthrene in spiked sand.

    PubMed

    Chang, M C; Huang, C R; Shu, H Y

    2000-10-01

    Problems associated with polynuclear aromatic hydrocarbon (PAH) contaminated site in environmental media have received increasing attention. To resolve such problems, innovative in situ methods are urgently required. This work investigated the feasibility of using surfactants to extract phenanthrene on spiked sand in a batch system. Phenanthrene was spiked into Ottawa sand to simulate contaminated soil. Six surfactants, Brij 30 (BR), Triton X-100 (TR), Tergitol NP-10 (TE), Igepal CA-720 (IG), sodium dodecyl sulfate (SDS) and hexadecyl trimethyl ammonium bromide (HTAB) were used. Adjusting the extraction time, mixing speed and surfactant concentration yielded the optimum extracting conditions. The concentration of phenanthrene was identified with HPLC. Under the experimental conditions, results indicated that those surfactants were highly promising on site remediation since the residual phenanthrene concentration was effectively reduced. The optimum operating conditions were obtained at 30 min, 125 rpm and surfactant concentrations in 4%.

  14. Pentachlorophenol and phenanthrene biodegradation in creosote contaminated aquifer material.

    PubMed

    Mohammed, S A; Sorensen, D L; Sims, R C; Sims, J L

    1998-07-01

    Contamination of the subsurface environment at the Libby Superfund Site, Montana, includes polycyclic aromatic hydrocarbons and f1p4achlorophenol due to accidental spills and improper disposal of wood preserving wastes. Biodegradation is a treatment technology gaining wide application in the treatment of hazardous waste sites. A microcosm study was conducted to evaluate the effect of temperature, sampling depth, nutrient addition, and oxygen on the biodegradation potential of phenanthrene and pentachlorophenol in aquifer samples using radiolabeled chemicals. Mineralization of phenanthrene reached 14% but was less than 1% for pentachlorophenol over the 56 day incubation period. Phenanthrene mineralization in microcosms at 10 degrees C was not significantly different from those at 20 degrees C. This may have been due to microbial community acclimation to lower temperatures at the site. Average volatilization was less than 2% for both phenanthrene and pentachlorophenol. After 56 days, most of the radiolabeled chemical was either solvent extractable or soil bound.

  15. H2 Ejection from Polycyclic Aromatic Hydrocarbons: Infrared Multiphoton Dissociation Study of Protonated Acenaphthene and 9,10-dihydrophenanthrene

    NASA Astrophysics Data System (ADS)

    Szczepanski, Jan; Oomens, Jos; Steill, Jeffrey D.; Vala, Martin T.

    2011-01-01

    The infrared multiple-photon dissociation (IRMPD) spectra of protonated acenaphthene ([ACN+H]+) and 9,10-dihydrophenanthrene ([DHP+H]+) have been recorded using an infrared free electron laser after the compounds were protonated by electrospray ionization and trapped in a Fourier transform ion cyclotron mass spectrometer. In both compounds, the loss of two mass units is predominant. Density functional calculations (B3LYP/6-311++G(d,p)) of the infrared spectra of all possible protonated isomers of each species showed that the observed IRMPD spectra are best fit to the isomer with the largest proton affinity and lowest relative electronic energy. Potential energy surfaces of the most stable isomers of [ACN+H]+ and [DHP+H]+ have been calculated for H and H2 loss. The lowest energy barriers are for loss of H2, with predicted energies 4.28 and 4.15 eV, respectively. After H2 ejection, the adjacent aliphatic hydrogens migrate to the bare ejection site and stabilize the remaining fragment. Single H loss may occur from [ACN+H]+ but the energy required is higher. No single H loss is predicted from [DHP+H]+, only H migration around the carbon skeleton. The vibrational bands in the parent closed-shell protonated polycyclic aromatic hydrocarbons are compared to bands observed from the interstellar medium.

  16. Low energy emission bands in a small molecular fluorene derivative for organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lou, S. L.; Yu, H. S.; Ma, W. M.; Jiang, Y.; Zhang, Q.

    2008-11-01

    6,6'-(9H-fluoren-9,9-diyl)bis(2,3-bis(9,9-dihexyl-9H-fluoren-2-yl)quinoxaline) (BFLBBFLYQ) was a novel small molecular fluorene material with fluorescence maxima at 450 nm in spin cast films. Compared to spin cast films, BFLBBFLYQ vacuum evaporated deposition films exhibited different photo-physical properties. The low energy emission bands from 530 to 570 nm were observed from the electroluminescence (EL) and photoluminescence (PL) spectra of BFLBBFLYQ films evaporated deposition in ultrahigh vacuum circumstance, and the origin of these emission features were investigated and discussed. Also, the emissive properties of BFLBBFLYQ spin cast films upon thermal annealing and under UV irradiation in air were characterized for the effect of thermal oxidization and photo-oxidization.

  17. N-(9H-Fluoren-9-yl­idene)-4-methyl­aniline

    PubMed Central

    Bai, Su-Zhen; Lou, Xin-Hua; Li, Hong-Mei; Shi, Hui

    2009-01-01

    In the title compound, C20H15N, the fluorene unit is essentially planar [r.m.s. deviation 0.0334 Å] and the benzene ring bound to the imine N atom bears a methyl group which is nearly coplanar [dihedral angle 0.5 (1)°]. The dihedral angle between the substituent benzene ring and the 9H-fluoren-9-imine unit is 71.1 (3)°. Inter­molecular π–π inter­actions between the benzene rings of adjacent fluorene units [centroid–centroid distance 3.8081 (13) Å] are present in the crystal structure, resulting in a one-dimensional supra­molecular architecture. PMID:21582831

  18. Bioaccumulation and toxicity of phenanthrene applied to different freshwater algae

    SciTech Connect

    Hailing-Sorensen, B.; Nyholm, N.; Rucker, N.; Peterson, H.

    1994-12-31

    Phenanthrene, a polycyclic aromatic hydrocarbon of medium lipophilicity (log K{sub ow} = 4.46) was chosen as a model compound for investigating mechanisms of bioaccumulation of hydrophobic chemicals in microalgae and relations between expressed toxicity and bioaccumulation. {sup 14}C labelled phenanthrene was used for easy quantification of its phase distribution. Results obtained with the green algae Selenastrum capricornutum and Scenedesmus armatus will be presented together with additional results from planned experiments with diatoms and cyanobacteria and interpreted considering cell size and lipid content of the different algae, For the same species bioconcentration factors (BCFs) were influenced to some extent by nutritional status and were slightly higher for unwashed cells than for washed cells. Much surprisingly, however, BCFs increased strongly with decreasing cell concentration. With chemostat grown nutrient deficient and washed Selenastrum cells, for example, the following BCF figures (mg phenanthrene/mg dry weight) were found: 3.8{center_dot}10{sup 4} 1.7{center_dot}10{sup 5} and 1.6{center_dot}10{sup 6}. Sorption of phenanthrene onto algae was rapid. Similar results have been reported in the literature for other compounds. The toxicity of phenanthrene increased with decreasing algal cell concentration probably as a result of increasing BCF`S. Toxicity experiments comprised both short term {sup 14}C assimilation assays and growth tests, and the phase distribution of phenanthrene was accounted for.

  19. Cosolvent-enhanced electrokinetic remediation of soils contaminated with phenanthrene

    SciTech Connect

    Li, A.; Cheung, K.A.; Reddy, K.R.

    2000-06-01

    This research was carried out to evaluate feasibility of using an electrokinetic technique to remove hydrophobic organic pollutants from soils, with the assistance of a cosolvent (n-butylamine, tetrahydrofuran, or acetone) added to the conducting fluid. The experiments were carried out on glacial till clay with phenanthrene as the test compound. Desorption equilibrium was investigated by batch tests. The electrokinetic experiments were conducted using a 19.1 cm long x 6.2 cm inside diameter column under controlled voltage. Water or 20% (volume) cosolvent solution was constantly supplied at the anode. The concentration of phenanthrene in the effluent collected at the cathode was monitored. Each experiment lasted for 100 to 145 days. Results showed that the presence of n-butylamine significantly enhanced the desorption and electrokinetic transport of phenanthrene; about 43% of the phenanthrene was removed after 127 days or 9 pore volumes. The effect of acetone was not as significant as butylamine. The effluent flow in the tetrahydrofuran experiments was minimal, and phenanthrene was not detected in the effluent. The use of water as the conducting solution did not cause observable phenanthrene migration.

  20. Toxic photoproducts of phenanthrene and anthracene in sunlight

    SciTech Connect

    Duxbury, C.L.; McConkey, B.J.; Mallakin, A.; Dixon, D.G.; Greenberg, B.M.

    1995-12-31

    Phenanthrene and anthracene, two of the most prevalent PAHs, undergo significant increases in toxicity on exposure to sunlight. Over a period of several days exposure to light, the toxicity of an aqueous solution of phenanthrene or anthracene increased dramatically. This increase in toxicity is largely due to the primary products formed by these two PAHs due to light exposure. These compounds are more toxic than the parent compounds at equimolar concentrations. Although anthracene is a potent photosensitizer, phenanthrene did not exhibit a significant increase in toxicity due to photosensitization. Photo-oxidation was the principal cause of photoinduced toxicity, with 9,10-phenanthrenequinone being the primary product. This compound is more water soluble than phenanthrene increasing its bioavailability. In addition, mixtures of phenanthrene and 9,10-phenanthrenequinone exhibited toxicity similar to the quinone added alone. This was shown by joint toxicity testing using Lemna gibba and Daphnia magna. These two organisms are currently being used in the lab to further test individual oxidized products of anthracene and phenanthrene that occur as a result of exposure to sunlight.

  1. Biodegradation of high concentrations of mixed polycyclic aromatic hydrocarbons by indigenous bacteria from a river sediment: a microcosm study and bacterial community analysis.

    PubMed

    Muangchinda, Chanokporn; Yamazoe, Atsushi; Polrit, Duangporn; Thoetkiattikul, Honglada; Mhuantong, Wuttichai; Champreda, Verawat; Pinyakong, Onruthai

    2017-02-01

    This study assessed the biodegradation of mixtures of polycyclic aromatic hydrocarbons (PAHs) by indigenous bacteria in river sediment. Microcosms were constructed from sediment from the Chao Phraya River (the main river in Thailand) by supplementation with high concentrations of fluorene, phenanthrene, pyrene (300 mg kg(-1) of each PAH), and acenaphthene (600 mg kg(-1)). Fluorene and phenanthrene were completely degraded, whereas 50% of the pyrene and acenaphthene were removed at the end of the incubation period (70 days). Community analyses revealed the dynamics of the bacterial profiles in the PAH-degrading microcosms after PAH exposure. Actinobacteria predominated and became significantly more abundant in the microcosms after 14 days of incubation at room temperature under aerobic conditions. Furthermore, the remaining PAHs and alpha diversity were positively correlated. The sequencing of clone libraries of the PAH-RHDα genes also revealed that the dioxygenase genes of Mycobacterium sp. comprised 100% of the PAH-RHDα library at the end of the microcosm setup. Moreover, two PAH-degrading Actinobacteria (Arthrobacter sp. and Rhodococcus ruber) were isolated from the original sediment sample and showed high activity in the degradation of phenanthrene and fluorene in liquid cultivation. This study reveals that indigenous bacteria had the ability to degrade high concentrations of mixed PAHs and provide clear evidence that Actinobacteria may be potential candidates to play a major role in PAH degradation in the river sediment.

  2. Comparative study of the solid-matrix luminescence properties of perdeuterated phenanthrene and phenanthrene adsorbed on several solid matrices

    SciTech Connect

    Ramasamy, S.M.; Hurtubise, R.J.

    1996-09-01

    Temperature was varied over a wide range to determine its effect on the luminescence properties of deuterated phenanthrene and phenanthrene adsorbed on a number of solid matrices. Not only were insights into the effects of temperature and solid matrices on the luminescence properties acquired but also the deuterium isotope effect revealed unique information about the role played by the solid matrix in the luminescence of the model compounds. In addition, comparisons of nonradiative rate constants and the efficiencies of intersystem crossing revealed important differences among the solid matrices in altering these parameters. The perdeuterated phenanthrene and phenanthrene proved to be useful probes for investigating the effects of solid matrices on the excited triplet state of phosphors because the excited singlet state of the lumiphor was affected very little by the solid matrices, and the rate constants of phosphorescence for the two phosphors are essentially the same. {copyright} {ital 1996 Society for Applied Spectroscopy.}

  3. Isolation and characterization of a fluorene-degrading bacterium: identification of ring oxidation and ring fission products.

    PubMed Central

    Grifoll, M; Casellas, M; Bayona, J M; Solanas, A M

    1992-01-01

    An Arthrobacter sp. strain, F101, able to use fluorene as the sole source of carbon and energy, was isolated from sludge from an oil refinery wastewater treatment plant. During growth in the presence of fluorene, four major metabolites were detected and isolated by thin-layer chromatography and high-performance liquid chromatography. 9-Fluorenol, 9H-fluoren-9-one, and 3,4-dihydrocoumarin were identified by UV spectra, mass spectrometry, and 300-MHz proton nuclear magnetic resonance. The fourth metabolite has been characterized, but precise identification was not possible. Since strain F101 is not able to grow with fluorenone, two different pathways of fluorene biodegradation are suggested: one supports cell growth and produces 3,4-dihydrocoumarin as an intermediate and probably the unidentified metabolite, and the other produces 9-fluorenol and 9H-fluoren-9-one and appears to be a dead-end route. Images PMID:1444405

  4. Use of bromodeoxyuridine immunocapture to identify psychrotolerant phenanthrene-degrading bacteria in phenanthrene-enriched polluted Baltic Sea sediments

    SciTech Connect

    Edlund, A.; Jansson, J.

    2008-05-01

    The aim of this study was to enrich and identify psychrotolerant phenanthrenedegrading bacteria from polluted Baltic Sea sediments. Polyaromatic hydrocarbon (PAH)-contaminated sediments were spiked with phenanthrene and incubated for 2 months in the presence of bromodeoxyuridine that is incorporated into the DNA of replicating cells. The bromodeoxyuridine-incorporated DNA was extracted by immunocapture and analyzed by terminal-restriction fragment length polymorphism and 16S rRNA gene cloning and sequencing to identify bacterial populations that were growing. In addition, degradation genes were quantified in the bromodeoxyuridine-incorporated DNA by real-time PCR. Phenanthrene concentrations decreased after 2 months of incubation in the phenanthrene-enriched sediments and this reduction correlated to increases in copy numbers of xylE and phnAc dioxygenase genes. Representatives of Exiguobacterium, Schewanella,Methylomonas, Pseudomonas, Bacteroides and an uncultured Deltaproteobacterium and a Gammaproteobacterium dominated the growing community in the phenanthrene spiked sediments. Isolates that were closely related to three of these bacteria (two pseudomonads and an Exiguobacterium sp.) could reduce phenanthrene concentrations in pure cultures and they all harbored phnAc dioxygenase genes. These results confirm that this combination of culture-based and molecular approaches was useful for identification of actively growing bacterial species with a high potential for phenanthrene degradation.

  5. Using biodegradation kinetics to measure availability of aged phenanthrene to bacteria inoculated into soil

    SciTech Connect

    Schwartz, E.; Scow, K.M.

    1999-08-01

    The rate of biodegradation of pollutants in soil can be limited by the pollutant's availability to microorganisms. The authors have developed a bioassay for the availability of phenanthrene to bacteria that degrade phenanthrene in soil. The assay uses a soil in which phenanthrene is degraded very slowly. The rate of phenanthrene mineralization in this soil may be increased substantially through bioaugmentation with a bacterial inoculum. By delaying inoculation, it is possible to manipulate the time phenanthrene is present in soil before accelerated biodegradation begins. A phenanthrene concentration much lower than the affinity constant of the inoculum is added; thus, biodegradation kinetics approach first order. Because the phenanthrene first-order rate constant for the inoculum is the same regardless of the phenanthrene residence time in soil, the change in phenanthrene availability to the inoculum can be measured over time. The availability of phenanthrene to bacteria declined in a biphasic double exponential pattern with time. The initial rapid decline in availability resembled the change in amount of phenanthrene extracted from soil with hexane-water. However, after phenanthrene had been present in the soil longer than 300 h, the fraction extracted with hexane-water declined faster than the substrate available to the bacterial inoculum, suggesting that the bacteria are able to access a pool of phenanthrene unavailable to hexane.

  6. Fluorene biodegradation and identification of transformation products by white-rot fungus Armillaria sp. F022.

    PubMed

    Hadibarata, Tony; Kristanti, Risky Ayu

    2014-06-01

    A diverse surfactant, including the nonionic Tween 80 and Brij 30, the anionic sodium dodecyl sulphate, the cationic surfactant Tetradecyltrimethylammonium bromide, and biosurfactant Rhamnolipid were investigated under fluorine-enriched medium by Armilaria sp. F022. The cultures were performed at 25 °C in malt extract medium containing 1 % of surfactant and 5 mg/L of fluorene. The results showed among the tested surfactants, Tween-80 harvested the highest cell density and obtained the maximum specific growth rate. This due Tween-80 provide a suitable carbon source for fungi. Fluorane was also successfully eliminated (>95 %) from the cultures within 30 days in all flasks. During the experiment, laccase production was the highest among other enzymes and Armillaria sp. F022-enriched culture containing Non-ionic Tween 80 showed a significant result for laccase activity (1,945 U/L). The increased enzyme activity was resulted by the increased biodegradation activity as results of the addition of suitable surfactants. The biotransformation of fluorene was accelerated by Tween 80 at the concentration level of 10 mg/L. Fluorene was initially oxidized at C-2,3 positions resulting 9-fluorenone. Through oxidative decarboxylation, 9-fluorenone subjected to meta-cleavage to form salicylic acid. One metabolite detected in the end of experiment, was identified as catechol. Armillaria sp. F022 evidently posses efficient, high effective degrader and potential for further application on the enhanced bioremediation technologies for treating fluorene-contaminated soil.

  7. Novel carbazole/fluorene hybrids: host materials for blue phosphorescent OLEDs.

    PubMed

    Shih, Ping-I; Chiang, Chih-Long; Dixit, Ajay Kumar; Chen, Ching-Kun; Yuan, Mao-Chuan; Lee, Rei-Yuen; Chen, Chin-Ti; Diau, Eric Wei-Guang; Shu, Ching-Fong

    2006-06-22

    [reaction: see text] A series of carbazole/fluorene (CBZm-Fn) hybrids were effectively synthesized through Friedel-Crafts-type substitution of the carbazole rings. These compounds were thermally and morphologically stable host materials for OLED applications. Efficient blue phosphorescent OLEDs were obtained when employing CBZ1-F2 as the host and FIrpic as the guest.

  8. New spiro[benzotetraphene-fluorene] derivatives: synthesis and application in sky-blue fluorescent host materials.

    PubMed

    Cha, Jae-Ryung; Lee, Chil-Won; Gong, Myoung-Seon

    2014-07-01

    Blue light-emitting spiro[benzotetraphene-fluorene] (SBTF)-based host materials, 3-(1-naphthyl)-10-naphthylspiro[benzo[ij]tetraphene-7,9'-fluorene] (1), 3-(2-naphthyl)-10-naphthylspiro[benzo[ij]tetraphene-7,9'-fluorene] (2), and 3-[2-(6-phenyl)naphthyl]-10-naphthylspiro[benzo[ij]tetraphene-7,9'-fluorene] (3) were designed and prepared via multi-step Suzuki coupling reactions. Introducing various aromatic groups into SBTF core lead to a reduction in band gap and a determination of the color purity and luminescence efficiency. Typical sky-blue fluorescent organic light emitting diodes with the configuration of ITO/N,N'-di(1-naphthyl)-N,N'-bis[(4-diphenylamino)phenyl]-biphenyl-4,4'-diamie (60 nm)/N,N,N',N'-tetra(1-biphenyl)-biphenyl-4,4'-diamine (30 nm)/host: dopant (30 nm, 5%)/LG201 (electron transporting layer, 20 nm)/LiF/Al were developed using SBTF derivatives as a host material and p-bis(p-N,N-diphenyl-aminostyryl)benzene (DSA-Ph) as a sky-blue dopant material. A device obtained from three materials doped with DSA-Ph showed color purity of 0.148 and 0.239, a luminance efficiency of 7.91 cd/A, and an external quantum efficiency >4.75% at 5 V.

  9. H(+)/phenanthrene symporter and aquaglyceroporin are implicated in phenanthrene uptake by wheat (Triticum aestivum L.) roots.

    PubMed

    Zhan, Xinhua; Zhang, Xiaobin; Yin, Xiaoming; Ma, Hengliang; Liang, Jianru; Zhou, Lixiang; Jiang, Tinghui; Xu, Guohua

    2012-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous organic pollutants that are toxic to human and nonhuman organisms. Dietary intake of PAHs is a dominant route of exposure for the general population because food crops are a major source of dietary PAHs. The mechanism for crop root uptake of PAHs remains unclear. Here we reveal that wheat root uptake of PAHs involves active and passive processes. The passive uptake is mercury and glycerol dependent. Mercury and glycerol inhibit uptake, indicating that aquaglyceroporins sensitive to mercury contribute to passive uptake. Active uptake is mediated by a phenanthrene/H symporter. The electrical response of wheat roots triggered by phenanthrene consists of two sequential phases: depolarization followed by repolarization. The depolarization is phenanthrene concentration dependent, with saturation kinetics that have an apparent of K(m) 10.8 μmol L(-1). As uptake proceeds, external solution pH increase is noticed. Lower pH favors the uptake. Vanadate and 2,4-dinitrophenol suppress the electrical response to phenanthrene and phenanthrene uptake, suggesting that plasma membrane H(+)-ATPase is involved in the establishment of an electrochemical proton gradient acting as a driving force for active uptake. Therefore, it is suggested that aquaglyceroporin and phenanthrene/H symporter are implicated in phenanthrene uptake. Our results provide insight into PAH uptake mechanism in wheat roots that is relevant to strategies for reducing PAH accumulation in wheat for food safety, improving phytoremediation of PAH-contaminated soils or water by agronomic practices and genetic modification to target remedial plants for higher PAH uptake capacity.

  10. Effect of Model Sorptive Phases on Phenanthrene Biodegradation: Different Enrichment Conditions Influence Bioavailability and Selection of Phenanthrene-Degrading Isolates

    PubMed Central

    Grosser, Robert J.; Friedrich, Michael; Ward, David M.; Inskeep, William P.

    2000-01-01

    The sorption of organic contaminants by natural organic matter (NOM) often limits substrate bioavailability and is an important factor affecting microbial degradation rates in soils and sediments. We hypothesized that reduced substrate bioavailability might influence which microbial assemblages are responsible for contaminant degradation under enrichment culture conditions. Our primary goal was to characterize enrichments in which different model organic solid phases were used to establish a range of phenanthrene bioavailabilities for soil microorganisms. Phenanthrene sorption coefficients (expressed as log KD values) ranged from 3.0 liters kg−1 for Amberlite carboxylic acid cation-exchange resin (AMB) to 3.5 liters kg−1 for Biobeads polyacrylic resin (SM7) and 4.2 liters kg−1 for Biobeads divinyl benzene resin (SM2). Enrichment cultures were established for control (no sorptive phase), sand, AMB, SM7, and SM2 treatments by using two contaminated soils (from Dover, Ohio, and Libby, Mont.) as the initial inocula. The effects of sorption by model phases on the degradation of phenanthrene were evaluated for numerous transfers in order to obtain stable microbial assemblages representative of sorptive and nonsorptive enrichment cultures and to eliminate the effects of the NOM present in the initial inoculum. Phenanthrene degradation rates were similar for each soil inoculum and ranged from 4 to 5 μmol day−1 for control and sand treatments to approximately 0.4 μmol day−1 in the presence of the SM7 sorptive phase. The rates of phenanthrene degradation in the highly sorptive SM2 enrichment culture were insignificant; consequently, stable microbial populations could not be obtained. Bacterial isolates obtained from serial dilutions of enrichment culture samples exhibited significant differences in rates of phenanthrene degradation performed in the presence of SM7, suggesting that enrichments performed in the presence of a sorptive phase selected for different

  11. Bioventing remediation and ecotoxicity evaluation of phenanthrene-contaminated soil.

    PubMed

    García Frutos, F Javier; Escolano, Olga; García, Susana; Babín, Mar; Fernández, M Dolores

    2010-11-15

    The objectives of soil remediation processes are usually based on threshold levels of soil contaminants. However, during remediation processes, changes in bioavailability and metabolite production can occur, making it necessary to incorporate an ecotoxicity assessment to estimate the risk to ecological receptors. The evolution of contaminants and soil ecotoxicity of artificially phenanthrene-contaminated soil (1000 mg/kg soil) during soil treatment through bioventing was studied in this work. Bioventing was performed in glass columns containing 5.5 kg of phenanthrene-contaminated soil and uncontaminated natural soil over a period of 7 months. Optimum conditions of mineralisation (humidity=60% WHC; C/N/P=100:20:1) were determined in a previous work. The evolution of oxygen consumption, carbon dioxide production, phenanthrene concentration and soil toxicity were studied on sacrificed columns at periods of 0, 3 and 7 months. Toxicity to soil and aquatic organisms was determined using a multispecies system in the soil columns (MS-3). In the optimal bioventing treatability test, we obtained a reduction rate in phenanthrene concentration higher that 93% after 7 months of treatment. The residual toxicity obtained at the end of the treatment was not attributed to the low phenanthrene concentration, but to the ammonia used to restore the optimal C/N ratio.

  12. Relative role of eukaryotic and prokaryotic microorganisms in phenanthrene transformation in coastal sediments

    SciTech Connect

    MacGillivray, A.R.; Shiaris, M.P. )

    1994-04-01

    The relative role of eukaryotic versus prokaryotic microorganisms in phenanthrene transformation was measured in slurries of coastal sediment by two different approaches: detection of marker metabolites and use of selective inhibitors on phenanthrene biotransformation. Phenanthrene biotransformation was measured by polar metabolite formation and CO[sub 2] evolution from [9-[sup 14]C]phenanthrene. Both yeasts and bacteria transformed phenanthrene in slurries of coastal sediment. Two products of phenanthrene oxidation by fungi, phenanthrene trans-3,4-dihydrodiol and 3-phenanthrol, were produced in yeast-inoculated sterile sediment. However, only products of phenanthrene oxidation typical of bacterial transformation, 1-hydroxy-2-naphthoic acid and phenanthrene cis-3,4-dihydrodiol, were isolated from slurries of coastal sediment with natural microbial populations. Phenanthrene trans-dihydrodiols or other products of fungal oxidation of phenanthrene were not detected in the slurry containing a natural microbial population. A predominant role for bacterial transformation of phenanthrene was also suggested from selective inhibitor experiments. Addition of streptomycin to slurries, at a concentration which suppressed bacterial viable counts and rates of [methyl-[sup 3]H]thymidine uptake, completely inhibited phenanthrene transformation. Treatment with colchicine, at a concentration which suppressed yeast viable counts, depressed phenanthrene transformation by 40%, and this was likely due to nontarget inhibition of bacterial activity. The relative contribution of eukaryotic microorganisms to phenanthrene transformation in inoculated sterile sediment was estimated to be less than 3% of the total activity. We conclude that the predominant degraders of phenanthrene in muddy coastal sediments are bacteria and not eukaryotic microorganisms. 35 refs., 2 figs., 1 tab.

  13. Relative Role of Eukaryotic and Prokaryotic Microorganisms in Phenanthrene Transformation in Coastal Sediments

    PubMed Central

    MacGillivray, A. Ronald; Shiaris, Michael P.

    1994-01-01

    The relative role of eukaryotic versus prokaryotic microorganisms in phenanthrene transformation was measured in slurries of coastal sediment by two different approaches: detection of marker metabolites and use of selective inhibitors on phenanthrene biotransformation. Phenanthrene biotransformation was measured by polar metabolite formation and CO2 evolution from [9-14C]phenanthrene. Radiolabeled metabolites were tentatively identified by high-performance liquid chromatography (HPLC) separation combined with UV/visible spectral analysis of HPLC peaks and comparison to authentic standards. Both yeasts and bacteria transformed phenanthrene in slurries of coastal sediment. Two products of phenanthrene oxidation by fungi, phenanthrene trans-3,4-dihydrodiol and 3-phenanthrol, were produced in yeast-inoculated sterile sediment. However, only products of phenanthrene oxidation typical of bacterial transformation, 1-hydroxy-2-naphthoic acid and phenanthrene cis-3,4-dihydrodiol, were isolated from slurries of coastal sediment with natural microbial populations. Phenanthrene trans-dihydrodiols or other products of fungal oxidation of phenanthrene were not detected in the slurry containing a natural microbial population. A predominant role for bacterial transformation of phenanthrene was also suggested from selective inhibitor experiments. Addition of streptomycin to slurries, at a concentration which suppressed bacterial viable counts and rates of [methyl-3H]thymidine uptake, completely inhibited phenanthrene transformation. Treatment with colchicine, at a concentration which suppressed yeast viable counts, depressed phenanthrene transformation by 40%, and this was likely due to nontarget inhibition of bacterial activity. The relative contribution of eukaryotic microorganisms to phenanthrene transformation in inoculated sterile sediment was estimated to be less than 3% of the total activity. We conclude that the predominant degraders of phenanthrene in muddy coastal

  14. Redox isomerism in the lanthanide complex [(dpp-Bian)Yb(DME)(mu-Br)]2 (dpp-Bian = 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene).

    PubMed

    Fedushkin, Igor L; Maslova, Olga V; Baranov, Eugeny V; Shavyrin, Andrei S

    2009-03-16

    Ytterbium reacts with 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (1, dpp-Bian) in 1,2-dimethoxyethane (DME) to give complex (dpp-Bian)Yb(DME)(2) (2). Oxidation of 2 with an 0.5 mol equivalent of dibromostilbene affords dimeric compound [(dpp-Bian)Yb(DME)(mu-Br)](2) (3). Molecular structures of 2 and 3 were determined by single-crystal X-ray analysis. In complex 3 in a DME solution, a temperature-dependent reversible intramolecular electron transfer between the ligand and the metal takes place.

  15. 8-acenaphthen-1-yl-1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one derivatives as orphanin FQ receptor agonists.

    PubMed

    Wichmann, J; Adam, G; Röver, S; Cesura, A M; Dautzenberg, F M; Jenck, F

    1999-08-16

    A series of 8-acenaphthen-1-yl-1-phenyl-1,3,8-triaza-spiro[4.5]decan+ ++-4-one derivatives 1 was studied with respect to the binding affinity for the orphanin FQ (OFQ) and opioid (mu, kappa, delta) receptors. The influence of stereochemistry as well as the substitution pattern of the phenyl-ring in position 1 on the affinity for the orphanin FQ receptor and selectivity to opioid (mu, kappa, delta) receptors is discussed. The most interesting compound 1c was tested for its anxiolytic-like properties in vivo.

  16. Inoculation of a phenanthrene-degrading endophytic bacterium reduces the phenanthrene level and alters the bacterial community structure in wheat.

    PubMed

    Liu, Juan; Xiang, Yanbing; Zhang, Zhiming; Ling, Wanting; Gao, Yanzheng

    2017-03-28

    Colonization by polycyclic aromatic hydrocarbon (PAH)-degrading endophytic bacteria (PAHDEB) can reduce the PAH contamination risk in plant. However, little information is available on the impact of PAHDEB colonization on the endophytic bacterial community of inner plant tissues. A phenanthrene-degrading endophytic bacterium (PDEB), Massilia sp. Pn2, was inoculated onto the roots of wheat and subjected to greenhouse container experiments. The endophytic bacterial community structure in wheat was investigated using high-throughput sequencing technology. The majority of endophytic bacteria in wheat were Proteobacteria, and the dominant genus was Pseudomonas. Phenanthrene contamination clearly increased the diversity of endophytic bacteria in wheat. The cultivable endophytic bacteria counts in wheat decreased with increasing the level of phenanthrene contamination; the endophytic bacterial community structure changed correspondingly, and the bacterial richness first increased and then decreased. Inoculation of strain Pn2 reduced the phenanthrene contamination in wheat, enlarged the biomass of wheat roots, changed the bacterial community structure and enhanced the cell counts, diversity and richness of endophytic bacteria in phenanthrene-contaminated wheat in a contamination level-dependent manner. The findings of this investigation provide insight into the responses of endophytic bacterial community in plant to external PAH contamination and PAHDEB colonization.

  17. Phenanthrene removal from soil slurries with surfactant-treated oxides

    SciTech Connect

    Park, J.W.; Jaffe, P.R.

    1995-06-01

    A soil-slurry washing technique to decontaminate soils containing low-solubility nonionic organic pollutants was investigated, using phenanthrene as a model pollutant. The technique is based on first transferring the sorbed phenanthrene from the soil to anionic surfactant-coated oxide particles, and then separating these anionic surfactant-coated oxide particles with the sorbed phenanthrene from the soil slurry via a magnetic separation technique. The decontamination of two soils with different particle sizes and soil organic matter content was investigated. The proposed soil-slurry washing technique was effective in removing a strongly sorbing nonionic organic contaminant from soil slurries. Various operational scenarios of multistage soil-slurry reactors were evaluated with a mathematical model.

  18. Plasmid-mediated mineralization of naphthalene, phenanthrene, and anthracene

    SciTech Connect

    Sanseverino, J. IT Corp., Knoxville, TN ); Applegate, B.M.; King, J.M.H.; Sayler, G.S. )

    1993-06-01

    The biochemistry and genetics of the naphthalene degradation pathway contained on plasmid NAH7 have been well characterized. However, not much is known about the substrate specificity of the enzymes of nah operons and whether the nah-encoded enzymes are capable of metabolizing higher polyaromatic hydrocarbons. This paper shows that NAH7 and NAH7-like plasmids can mediate metabolism of phenanthrene and anthracene as well as naphthalene. In addition, a mutant blocked in the nahG (salicylate hydroxylase) gene produced unidentified metabolites when it is grown in the presence of phenanthrene and anthracene. This implies that phenanthrene and anthracene are degraded through the nah plasmid-encoded system. 29 refs., 3 figs., 2 tabs.

  19. Superconductivity at 5 K in alkali-metal-doped phenanthrene.

    PubMed

    Wang, X F; Liu, R H; Gui, Z; Xie, Y L; Yan, Y J; Ying, J J; Luo, X G; Chen, X H

    2011-10-18

    Organic superconductors have π-molecular orbitals, from which electrons can become delocalized, giving rise to metallic conductivity due to orbital overlap between adjacent molecules. Here we report the discovery of superconductivity at a transition temperature (T(c)) of ~5 K in alkali-metal-doped phenanthrene. A 1-GPa pressure leads to a 20% increase of T(c), suggesting that alkali-metal-doped phenanthrene shows unconventional superconductivity. Raman spectra indicate that alkali-metal doping injects charge into the system to realize the superconductivity. The discovery of superconductivity in A(3)phenanthrene (where A can be either K or Rb) produces a novel broad class of superconductors consisting of fused hydrocarbon benzene rings with π-electron networks. An increase of T(c) with increasing number of benzene rings from three to five suggests that organic hydrocarbons with long chains of benzene rings are potential superconductors with high T(c).

  20. Effect of cosolutes on the sorption of phenanthrene onto mineral surface of river sediments and kaolinite.

    PubMed

    Wu, Yinghong; Liu, Fang; Zhang, Wen; Wang, Lei

    2014-01-01

    Sorption of phenanthrene onto the natural sediment with low organic carbon content (OC%), organic-free sediment, and kaolinite was investigated through isotherm experiments. Effects of cosolutes (pyrene, 4-n-nonyphenol (NP), and humic acid (HA)) on phenanthrene sorption were also studied by comparing apparent solid-water distribution coefficients (K d (app)) of phenanthrene. Two addition sequences, including "cosolute added prior to phenanthrene" and "cosolute and phenanthrene added simultaneously," were adopted. The Freundlich model fits phenanthrene sorption on all 3 sorbents well. The sorption coefficients on these sorbents were similar, suggesting that mineral surface plays an important role in the sorption of hydrophobic organic contaminants on low OC% sediments. Cosolutes could affect phenanthrene sorption on the sorbents, which depended on their properties, concentrations, and addition sequences. Pyrene inhibited phenanthrene sorption. Sorbed NP inhibited phenanthrene sorption at low levels and promoted sorption at high levels. Similar to NP, effect of HA on phenanthrene sorption onto the natural sediment depended on its concentrations, whereas, for the organic-free sediment and kaolinite, preloading of HA at high levels led to an enhancement in phenanthrene K d (app) while no obvious effect was observed at low HA levels; dissolved HA could inhibit phenanthrene sorption on the two sorbents.

  1. [Adsorption of phenanthrene from aqueous solution on cetylpyridinium bromide (CPB) -modified zeolite].

    PubMed

    Li, Jia; Lin, Jian-Wei; Zhan, Yan-Hui; Chen, Zu-Mei; Wang, Peng-Jun

    2014-02-01

    Surfactant-modified zeolites (SMZs) with different coverage types were prepared by loading of different amounts of cetylpyridinium bromide (CPB) onto natural zeolites and were used as adsorbents to remove phenanthrene from aqueous solution. The adsorption of phenanthrene from aqueous solution on monolayer and bilayer SMZs as a function of adsorbent dosage, initial phenanthrene concentration, contact time, and temperature was investigated using batch experiments. Results showed monolayer and bilayer SMZs were effective for the removal of phenanthrene from aqueous solution. The phenanthrene removal efficiency of SMZs increased with increasing adsorbent dosage, but the amount of phenanthrene adsorbed on SMZs decreased with increasing adsorbent dosage. The adsorption kinetics of phenanthrene on SMZs well followed a pseudo-second-order kinetic model. The equilibrium adsorption data of phenanthrene on SMZs at a low concentration of phenanthrene in solution could be described by the Linear equation and Freundlich equation. The main mechanism for phenanthrene adsorption onto monolayer SMZ is hydrophobic interaction, and the main mechanism for phenanthrene adsorption onto bilayer SMZ is organic partitioning. The calculated thermodynamic parameters such as Gibbs free energy change (deltaG(theta)), enthalpy changes (deltaH(theta)), and entropy change (deltaS(theta)) showed that the adsorption process of phenanthrene on SMZs is spontaneous and exothermic in nature. When the CPB loading amount of bilayer SMZ was twice as much as that of monolayer SMZ, the phenanthrene adsorption capacity for bilayer SMZ was slightly higher than that for monolayer SMZ. In a conclusion, both monolayer and bilayer SMZs are promising adsorbents for the removal of phenanthrene from water and wastewater, and monolayer SMZ is a more cost-effective adsorbent for phenanthrene removal than bilayer SMZ.

  2. (Biphenyl-2-alkyne) derivatives as common precursors for the synthesis of 9-iodo-10-organochalcogen-phenanthrenes and 9-organochalcogen-phenanthrenes.

    PubMed

    Grimaldi, Tamiris B; Lutz, Guilherme; Back, Davi F; Zeni, Gilson

    2016-11-08

    In this paper, we report our results on the cyclization of (biphenyl-2-alkyne) derivatives to give two different types of phenanthrene derivatives, 9-iodo-10-organochalcogen-phenanthrenes and 9-organochalcogen-phenanthrenes. The strategy for the synthesis was based on the use of electrophilic cyclization for the preparation of 9-iodo-10-organochalcogen-phenanthrenes and iron(iii) chloride/diorganyl diselenide-mediated intramolecular cyclization to prepare 9-organochalcogen-phenanthrenes. The effects of solvent, temperature, reaction time and stoichiometry on the efficiency of cyclization reactions were investigated. The standard reaction conditions were compatible with many functional groups in the substrates, such as methyl, chlorine, fluorine and methoxyl. This protocol was efficient for diorganyl diselenides and disulfides but ineffective for diorganyl ditellurides. The resulting phenanthrenes were further functionalized through Sonogashira reactions followed by the electrophilic cyclization reaction to give the selenophene-fused aromatic compounds.

  3. Effect of Cosolutes on the Sorption of Phenanthrene onto Mineral Surface of River Sediments and Kaolinite

    PubMed Central

    2014-01-01

    Sorption of phenanthrene onto the natural sediment with low organic carbon content (OC%), organic-free sediment, and kaolinite was investigated through isotherm experiments. Effects of cosolutes (pyrene, 4-n-nonyphenol (NP), and humic acid (HA)) on phenanthrene sorption were also studied by comparing apparent solid-water distribution coefficients (Kdapp) of phenanthrene. Two addition sequences, including “cosolute added prior to phenanthrene” and “cosolute and phenanthrene added simultaneously,” were adopted. The Freundlich model fits phenanthrene sorption on all 3 sorbents well. The sorption coefficients on these sorbents were similar, suggesting that mineral surface plays an important role in the sorption of hydrophobic organic contaminants on low OC% sediments. Cosolutes could affect phenanthrene sorption on the sorbents, which depended on their properties, concentrations, and addition sequences. Pyrene inhibited phenanthrene sorption. Sorbed NP inhibited phenanthrene sorption at low levels and promoted sorption at high levels. Similar to NP, effect of HA on phenanthrene sorption onto the natural sediment depended on its concentrations, whereas, for the organic-free sediment and kaolinite, preloading of HA at high levels led to an enhancement in phenanthrene Kdapp while no obvious effect was observed at low HA levels; dissolved HA could inhibit phenanthrene sorption on the two sorbents. PMID:25147865

  4. Potential of a white-rot fungus Pleurotus eryngii F032 for degradation and transformation of fluorene.

    PubMed

    Hadibarata, Tony; Kristanti, Risky Ayu

    2014-02-01

    The white-rot fungus Pleurotus eryngii F032 showed the capability to degrade a three fused-ring aromatic hydrocarbons fluorene. The elimination of fluorene through sorption was also investigated. Enzyme production is accompanied by an increase in biomass of P. eryngii F032 during degradation process. The fungus totally degraded fluorine within 23 d at 10-mg l(-1) solution. Fluorene degradation was affected with initial fluorene concentrations. The highest enzyme activity was shown by laccase in the 10-mg l(-1) culture after 30 d of incubation (1620 U l(-1)). Few activities of enzymes were observed in the fungal cell at the varying concentration of fluorene. Three metabolic were detected and separated in ethylacetate extract, after isolated by column chromatography. The metabolites, 9-fluorenone, phthalic acid, and benzoic acid were identified using UV-vis spectrophotometer and gas chromatography-mass spectrometry (GC-MS). The results show the presence of a complex mechanism for the regulation of fluorene-degrading enzymes.

  5. Two-stage mineralization of phenanthrene by estuarine enrichment cultures

    SciTech Connect

    Guerin, W.F.; Jones, G.E.

    1988-04-01

    The polycyclic aromatic hydrocarbon phenanthrene was mineralized in two stages by soil, estuarine water, and sediment microbial populations. At high concentrations, phenanthrene was degraded, with the concomitant production of biomass and accumulation of Folin-Ciocalteau-reactive aromatic intermediates. Subsequent consumption of these intermediates resulted in a secondary increase in biomass. Analysis of intermediates by high-performance liquid chromatography, thin-layer chromatography, and UV absorption spectrometry showed 1-hydroxy-2-naphthoic acid (1H2NA) to be the predominant product. A less pronounced two-stage mineralization pattern was also observed by monitoring /sup 14/CO/sub 2/ production from low concentrations (0.5 mg liter/sup -1/) of radiolabeled phenanthrene. Here, mineralization of /sup 14/C-labeled 1H2NA could explain the incremental /sup 14/CO/sub 2/ produced during the later part of the incubations. Accumulation of 1H2NA by isolates obtained from enrichments was dependent on the initial phenanthrene concentration. The production of metabolites during polycyclic aromatic hydrocarbon biodegradation is discussed with regard to its possible adaptive significance and its methodological implications.

  6. Effect of surfactant addition on phenanthrene biodegradation in sediments

    SciTech Connect

    Tsomides, H.J.; Hughes, J.B.; Thomas, J.M.; Ward, C.H.

    1995-12-31

    A laboratory study was conducted to determine whether commercial surfactants enhance the bioremediation of PAH-contaminated sediments. Phenanthrene was chosen as a representative PAH. An inoculum of PAH-degrading microorganisms, enriched from an aquatic sediment, was used in sediment-water slurry microcosm biodegradation experiments. Of seven nonionic surfactants tested, only one (Triton X-100) did not inhibit phenanthrene mineralization at concentrations above the critical micelle concentration (CMC). Temporal studies on Triton X-100 revealed that while it initially inhibited mineralization in sediment-free microcosms, after 1 week Triton X-100 slightly improved phenanthrene biotransformation and mineralization in microcosms with and without sediment. For all treatments, phenanthrene disappearance was complete after 9 d. and mineralization reached 50 to 65% after 12 d. Sorption to the sediment appears to have reduced the free aqueous surfactant concentration, thereby reducing surfactant toxicity to the microorganisms. These results suggest that many surfactants are toxic to PAH-degrading microorganisms, and while surfactant addition may not always have adverse effects on biodegradation, the use of surfactants might not be necessary to achieve complete contaminant removal.

  7. Effect of surfactant addition on phenanthrene biodegradation in sediments

    SciTech Connect

    Tsomides, H.J.; Hughes, J.B.; Thomas, J.M.; Ward, C.H.

    1995-06-01

    A laboratory study was conducted to determine whether commercial surfactants enhance the bioremediation of PAH-contaminated sediments. Phenanthrene was chosen as a representative PAH; an inoculum of PAH-degrading microorganisms, enriched from an aquatic sediment, was used in sediment-water slurry microcosm biodegradation experiments. Of seven non-ionic surfactants tested, only one (Triton X-100) did not inhibit phenanthrene mineralization at concentrations above the critical micelle concentration (CMC). Temporal studies on Triton X-100 revealed that while it initially inhibited mineralization in sediment-free microcosms, after 1 week Triton X-100 slightly improved phenanthrene biotransformation and mineralization in microcosms with and without sediment. For all treatments, phenanthrene disappearance was complete after 9 d, and mineralization reached 50 to 65% after 12 d. Sorption to the sediment appears to have reduced the free aqueous surfactant concentration, thereby reducing surfactant toxicity to the microorganisms. These results suggest that many surfactants are toxic to PAH-degrading microorganisms, and while surfactant addition may not always have adverse effects on biodegradation, the use of surfactants might not be desirable to achieve complete contamination removal.

  8. Fluorene-Based Two-Dimensional Covalent Organic Framework with Thermoelectric Properties through Doping.

    PubMed

    Wang, Liangying; Dong, Bin; Ge, Rile; Jiang, Fengxing; Xu, Jingkun

    2017-03-01

    Organic semiconductors have great potential as flexible thermoelectric materials. A fluorene-based covalent organic framework (FL-COF-1) was designed with the aim of creating an enhanced π-π interaction among the crystalline backbones. By the introduction of fluorene units into the frameworks, the FL-COF-1 had high thermal stability with a BET surface area over 1300 m(2) g(-1). The open frameworks were favorable for doping with iodine and followed with the improved charge carrier mobility. The compressed pellet of I2@FL-COF-1 exhibited a high Seebeck coefficient of 2450 μV K(-1) and power factor of 0.063 μW m(-1) K(-2) at room temperature, giving the first example of COFs' potential application as thermoelectric materials.

  9. A new boronic acid fluorescent sensor based on fluorene for monosaccharides at physiological pH

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Rahman; Mohadjerani, Maryam; Pooryousef, Mona; Eslami, Abbas; Emami, Saeed

    2015-06-01

    Fluorescent boronic acids are very useful fluorescent sensor for detection of biologically important saccharides. Herein we synthesized a new fluorene-based fluorescent boronic acid that shows significant fluorescence changes upon addition of saccharides at physiological pH. Upon addition of fructose, sorbitol, glucose, galactose, ribose, and maltose at different concentration to the solution of 7-(dimethylamino)-9,9-dimethyl-9H-fluoren-2-yl-2-boronic acid (7-DMAFBA, 1), significant decreases in fluorescent intensity were observed. It was found that this boronic acid has high affinity (Ka = 3582.88 M-1) and selectivity for fructose over glucose at pH = 7.4. The sensor 1 showed a linear response toward D-fructose in the concentrations ranging from 2.5 × 10-5 to 4 × 10-4 mol L-1 with the detection limit of 1.3 × 10-5 mol L-1.

  10. Fluoreno[4,3-c]fluorene: a closed-shell, fully conjugated hydrocarbon.

    PubMed

    Rose, Bradley D; Vonnegut, Chris L; Zakharov, Lev N; Haley, Michael M

    2012-05-04

    The synthesis and optoelectronic properties of 24 π-electron, formally antiaromatic 4,11-di-t-butyl-1,8-dimesitylfluoreno[4,3-c]fluorene (FF) are presented. The solid-state structure shows that the outer rings are aromatic, while the central four rings possess a bond-localized 2,6-naphthoquinone dimethide motif (in red). The biradical character of FF is assessed experimentally and computationally; the results of which implicate a closed-shell ground state.

  11. Rhizoremediation of phenanthrene and pyrene contaminated soil using wheat.

    PubMed

    Shahsavari, Esmaeil; Adetutu, Eric M; Taha, Mohamed; Ball, Andrew S

    2015-05-15

    Rhizoremediation, the use of the plant rhizosphere and associated microorganisms represents a promising method for the clean up of soils contaminated with polycyclic aromatic hydrocarbons (PAHs) including phenanthrene and pyrene, two model PAHs. Although numerous studies have been published reporting the degradation of phenanthrene and pyrene, very few evaluate the microbial basis of the rhizoremediation process through the application of molecular tools. The aim of this study was to investigate the effect of wheat on the degradation of two model PAHs (alone or in combination) and also on soil bacterial, fungal and nidA gene (i.e. a key gene in the degradation of pyrene) communities. The addition of wheat plants led to a significant enhancement in the degradation of both phenanthrene and pyrene. In pyrene-contaminated soils, the degradation rate increased from 15% (65 mg/kg) and 18% (90 mg/kg) in unplanted soils to 65% (280 mg/kg) and 70% (350 mg/kg) in planted treatments while phenanthrene reduction was enhanced from 97% (394 mg/kg) and 87% (392 mg/kg) for unplanted soils to 100% (406 mg/kg) and 98% (441 mg/kg) in the presence of wheat. PCR-DGGE results showed that the plant root let to some changes in the bacterial and fungal communities; these variations did not reflect any change in hydrocarbon-degrading communities. However, plate counting, traditional MPN and MPN-qPCR of nidA gene revealed that the wheat rhizosphere led to an increase in the total microbial abundance including PAH degrading organisms and these increased activities resulted in enhanced degradation of phenanthrene and pyrene. This clearer insight into the mechanisms underpinning PAH degradation will enable better application of this environmentally friendly technique.

  12. Effects of sediment resuspension on the degradation of phenanthrene

    SciTech Connect

    LeBlanc, L.A.; Gulnick, J.; Brownawell, B.J.; Taylor, G.T.

    1995-12-31

    Degradation of bulk organic matter in sediments is enhanced by oxic/anoxic cycling, a feature common in coastal sediments which are resuspended into overlying waters. The authors are examining the effect of periodic cycling of sediment between an oxic water column and a reducing sediment bed on polycyclic aromatic hydrocarbon (PAH) degradation by altering resuspension frequency in controlled laboratory exposures. Rates of initial degradation in coastal sediment have been studied for {sup 14}C-labeled phenanthrene in sediments that were suspended at the following frequencies: 12/day, 6/day, 1/day, 0.25/day and 0/day in liter-sized flow through chambers. Results to date show that degradation rates are initially log linear, with the greatest initial rates (2.4--2.7%/day) occurring in the first three treatments. In treatments resuspended less frequently, this rate decreases with time and is followed at 10--12 days, by another rate increase, which may indicate the stimulation of a bacterial subpopulation. Rates of PAH mineralization are tied to the lability and mineralization of other pools of sediment organic matter, that in turn are also affected also by oxic/anoxic cycling. Addition of fresh diatom detritus stimulated the rates of phenanthrene degradation in resuspension experiments where labile organic matter had already been consumed and microbial activity was low; in contrast diatom addition depressed phenanthrene degradation in sediment exposures with more labile organic matter remaining. The authors are further addressing the behavior of phenanthrene in exposures where they vary the concentration of initial phenanthrene and the concentration and nature of co-substrates.

  13. Sublethal responses of the striped mullet (Mugil cephalus L. ) to fluorene analogs

    SciTech Connect

    Wofford, H.W.

    1981-01-01

    Juvenile striped mullet (Mugil cephalus) were exposed for up to 12 days to 10 to 10,000 ..mu..g/l fluorene and three fluorene analogs (dibenzofuran, carbazole, and dibenzothiophene). These constituents of oil and coal were all acutely toxic to mullet at concentrations below their maximum solubility in seawater. The relative toxicity of the four analogs was related to their lipophilic nature and chemical reactivity. These pollutants were capable of inducing the corticosteroid stress response and resulting secondary stress responses in mullet. Plasma cortisol concentrations were significantly elevated, followed by a rise in plasma glucose. Responses were mild compared to those elicited by physical stress. Liver glycogen content was initially depressed, and later was restored to levels higher than the controls. Minor changes were observed in plasma lipids, with plasma triglyceride concentrations showing a consistent elevation upon exposure to dibenzofuran. Plasma osmolality was not significantly altered. Components of the xenobiotic metabolizing system of mullet were also affected by exposure to the four compounds. Large increases in liver glutathione concentration were observed, along with slight elevations in liver ascorbic acid content and ..beta..-glucuronidase activity. The fluorene analogs caused profound behavioral changes, which appeared to be related to a pharmacological effect on brain biogenic amine levels.

  14. Fluorene- and benzofluorene-cored oligomers as low threshold and high gain amplifying media

    SciTech Connect

    Kazlauskas, Karolis Kreiza, Gediminas; Bobrovas, Olegas; Adomėnienė, Ona; Adomėnas, Povilas; Juršėnas, Saulius; Jankauskas, Vygintas

    2015-07-27

    Deliberate control of intermolecular interactions in fluorene- and benzofluorene-cored oligomers was attempted via introduction of different-length alkyl moieties to attain high emission amplification and low amplified spontaneous emission (ASE) threshold at high oligomer concentrations. Containing fluorenyl peripheral groups decorated with different-length alkyl moieties, the oligomers were found to express weak concentration quenching of emission, yet excellent carrier drift mobilities (close to 10{sup −2} cm{sup 2}/V/s) in the amorphous films. Owing to the larger radiative decay rates (>1.0 × 10{sup 9 }s{sup −1}) and smaller concentration quenching, fluorene-cored oligomers exhibited down to one order of magnitude lower ASE thresholds at higher concentrations as compared to those of benzofluorene counterparts. The lowest threshold (300 W/cm{sup 2}) obtained for the fluorene-cored oligomers at the concentration of 50 wt % in polymer matrix is among the lowest reported for solution-processed amorphous films in ambient conditions, what makes the oligomers promising for lasing application. Great potential in emission amplification was confirmed by high maximum net gain (77 cm{sup −1}) revealed for these compounds. Although the photostability of the oligomers was affected by photo-oxidation, it was found to be comparable to that of various organic lasing materials including some commercial laser dyes evaluated under similar excitation conditions.

  15. Study of the degradation activity and the strategies to promote the bioavailability of phenanthrene by Sphingomonas paucimobilis strain 20006FA.

    PubMed

    Coppotelli, Bibiana M; Ibarrolaza, Agustin; Dias, Romina L; Del Panno, Maria T; Berthe-Corti, Luise; Morelli, Irma S

    2010-02-01

    The present study describes the phenanthrene-degrading activity of Sphingomonas paucimobilis 20006FA and its ability to promote the bioavailability of phenanthrene. S. paucimobilis 20006FA was isolated from a phenanthrene-contaminated soil microcosm. The strain was able to grow in liquid mineral medium saturated with phenanthrene as the sole carbon source, showing high phenanthrene elimination (52.9% of the supplied phenanthrene within 20 days). The accumulation of 1-hydroxy-2-naphthoic acid and salicylic acid as major phenanthrene metabolites and the capacity of the strain to grow with sodium salicylate as the sole source of carbon and energy indicated that the S. paucimobilis 20006FA possesses a complete phenanthrene degradation pathway. However, under the studied conditions, the strain was able to mineralize only the 10% of the consumed phenanthrene. Investigations on the cell ability to promote bioavailability of phenanthrene showed that the S. paucimobilis strain 20006FA exhibited low cell hydrophobicity (0.13), a pronounced chemotaxis toward phenanthrene, and it was able to reduce the surface tension of mineral liquid medium supplemented with phenanthrene as sole carbon source. Scanning electron micrographs revealed that: (1) in suspension cultures, cells formed flocks and showed small vesicles on the cell surface and (2) cells were also able to adhere to phenanthrene crystals and to produce biofilms. Clearly, the strain seems to exhibit two different mechanisms to enhance phenanthrene bioavailability: biosurfactant production and adhesion to the phenanthrene crystals.

  16. Adsorption of Polycyclic Aromatic Hydrocarbons (PAHS) from Aqueous Solutions on Different Sorbents

    NASA Astrophysics Data System (ADS)

    Smol, Marzena; Włodarczyk-Makuła, Maria; Włóka, Dariusz

    2014-12-01

    This paper presents the results of the possibility and effectiveness of PAHs removal from a model aqueous solution, during the sorption on the selected sorbents. Six PAHs (naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene) listed by EPA for the analysis in the environmental samples were determined. Model aqueous solution was prepared with RESTEK 610 mix PAHs standard. After the sorption process, decrease in the concentration of individual hydrocarbons was observed. The removal percentage was dependent on the type of sorbent (quartz sand, mineral sorbent, activated carbon). The highest efficiency (98.1%) was observed for activated carbon.. The results shows that the sorption processes can be used in aqueous solutions treatment procedures.

  17. Environmental Aging of Polycyclic Aromatic Hydrocarbons on Soot and its Effect on Source Identification

    PubMed Central

    Kim, Daekyun; Kumfer, Benjamin M.; Anastasio, Cort; Kennedy, Ian M.; Young, Thomas M.

    2009-01-01

    Soot associated PAHs were exposed to simulated sunlight to investigate disappearance rates under environmental aging conditions and to examine the robustness of diagnostic ratios for PAH source apportionment. Naphthalene, acenaphthylene, acenaphthene, and fluorene showed an obvious two-phase disappearance in all experiments while phenanthrene and anthracene exhibited this behavior for all but the highest soot loading. The first phase loss is 5-40 times faster than the second phase loss and occurred within 3 h for naphthalene, acenaphthylene, acenaphthene, and fluorene and within 10 h for phenanthrene and anthracene. Two-phase disappearance was not observed for any of the higher molecular weight PAHs with 4-6 rings. Each PAH has a unique loss rate via photodegradation and volatilization and these rates of some PAHs were affected by soot loadings; phenanthrene and anthracene showed similar rates in the first phase and increased loss rates in the second phase as soot loading increased. In the absence of light, the loss of PAHs was related to both temperature and molecular characteristics. Due to differences in disappearance rates of individual PAHs under illumination over extended times, prolonged exposure to sunlight could change the interpretation of some diagnostic ratios used previously for PAH source identification. This result indicates that more consistent and accurate methods that take into consideration the longevity of particulate PAHs are needed for reliable source apportionment. PMID:19443013

  18. The mechanisms by which phenanthrene affects the photosynthetic apparatus of cucumber leaves.

    PubMed

    Jin, Liqiao; Che, Xingkai; Zhang, Zishan; Li, Yuting; Gao, Huiyuan; Zhao, Shijie

    2017-02-01

    Phenanthrene is a polycyclic aromatic hydrocarbon (PAH) that is widely distributed in the environment and seriously affects the growth and development of plants. To clarify the mechanisms of the direct effects of phenanthrene on the plant photosynthetic apparatus, we measured short-term phenanthrene-treated cucumber leaves. Phenanthrene inhibited Rubisco carboxylation activity, decreasing photosynthesis rates (Pn). And phenanthrene inhibited photosystem II (PSII) activity, thereby blocking photosynthetic electron transport. The inhibition of the light and dark reactions decreased the photosynthetic electron transport rate (ETR) and increased the excitation pressure (1-qP). Under high light, the maximum photochemical efficiency of photosystem II (Fv/Fm) in phenanthrene-treated cucumber leaves decreased significantly, but photosystem I (PSI) activity (Δ I/Io) did not. Phenanthrene also caused a J-point rise in the OJIP curve under high light, which indicated that the acceptor side of PSII QA to QB electron transfer was restricted. This was primarily due to the net degradation of D1 protein, which is caused by the accumulation of reactive oxygen species (ROS) in phenanthrene-treated cucumber leaves under high light. This study demonstrated that phenanthrene could directly inhibit photosynthetic electron transport and Rubisco carboxylation activity to decrease net Pn. Under high light, phenanthrene caused the accumulation of ROS, resulting in net increases in D1 protein degradation and consequently causing PSII photoinhibition.

  19. [Enhanced fixation of phenanthrene in soils amended with exotic organic materials].

    PubMed

    Ren, Li-Li; Ling, Wan-Ting; Gao, Yan-Zheng

    2008-03-01

    This paper studied the enhanced fixation of phenanthrene in clay loam soil, sandy silt soil, and silt loam soil under effects of exotic organic materials (EOMs) commercial organic fertilizer and peat. The results showed that after the addition of EOMs, the adsorption isotherms of phenanthrene in test soils were still linear, and distribution was the predominant mechanism for phenanthrene adsorption by soil. The adsorption of phenanthrene was significantly enhanced by the addition of EOMs, and the enhancement of distribution constant (Kd) was positively correlated with the content of soil organic carbon (foc), indicating that the higher the soil foc, the more significant the promotion effect of EOMs addition on phenanthrene adsorption. On the contrary, the desorption of phenanthrene was obviously inhibited by the addition of EOMs. After 64 days of EOMs addition, the extractable amount of phenanthrene was decreased significantly, compared with the control. Since the organic matter content of peat was higher than that of commercial organic fertilizer, the decrease of extractable phenanthrene in soils added with peat was more significant. In addition, the higher the soil foc, the stronger inhibition effect of EOMs on extractability of phenanthrene. On the whole, exotic EOMs could promote the adsorption, while inhibit the desorption and reduce the extractability of phenanthrene in soils.

  20. Solubilities of eta-octadecane, phenanthrene, and eta-octadecane/phenanthrene mixtures in supercritical propane at 390 and 420. Kappa. and pressures to 60 bar

    SciTech Connect

    Dimitrelis, D.; Prausnitz, J.M. )

    1989-07-01

    Solubility data were obtained for n-octadecane, phenanthrene, and a nearly equimolar n-octadecane/phenanthrene mixture in supercritical propane. Solubilities were measured in a flow apparatus at 390 and 420 {Kappa} over the pressure range 35-60 bar. The experimental data is correlated using the perturbed-hard-chain equation of state. Agreement between experiment and correlation is good.

  1. Numerical taxonomy of phenanthrene-degrading bacteria isolated from the Chesapeake Bay.

    PubMed Central

    West, P A; Okpokwasili, G C; Brayton, P R; Grimes, D J; Colwell, R R

    1984-01-01

    Phenanthrene-degrading bacteria were isolated from Chesapeake Bay samples by the use of a solid medium which had been overlaid with an ethanol solution of phenanthrene before inoculation. Eighteen representative strains of phenanthrene-degrading bacteria with 21 type and reference bacteria were examined for 123 characteristics representing physiological, biochemical, and nutritional properties. Relationships between strains were computed with several similarity coefficients. The phenogram constructed by unweighted-pair-group arithmetic average linkage and use of the simple Jaccard (SJ) coefficient was used to identify seven phena. Phenanthrene-degrading bacteria were identified as Vibrio parahaemolyticus and Vibrio fluvialis by their clustering with type and reference strains. Several phenanthrene-degrading bacteria resembled Enterobacteriaceae family members, although some Vibrio-like phenanthrene degraders could not be identified. PMID:6508314

  2. Numerical taxonomy of phenanthrene-degrading bacteria isolated from the Chesapeake Bay

    SciTech Connect

    West, P.A.; Okpokwasili, G.C.; Brayton, P.R.; Grimes, D.J.; Colwell, R.R.

    1984-11-01

    Phenanthrene-degrading bacteria were isolated from Chesapeake Bay samples by the use of a solid medium which had been overlaid with an ethanol solution of phenanthrene before inoculation. Eighteen representative strains of phenanthrene-degrading bacteria with 21 type and reference bacteria were examined for 123 characteristics representing physiological, biochemical, and nutritional properties. Relationships between strains were computed with several similarity coefficients. The phenogram constructed by unweighted-pair-group arithmetic average linkage and use of the simple Jaccard (S/sub J/) coefficient was used to identify seven phena. Phenanthrene-degrading bacteria were identified as Vibrio parahaemolyticus and Vibrio fluvialis by their clustering with type and reference strains. Several phenanthrene-degrading bacteria resembled Enterobacteriaceae family members, although some Vibrio-like phenanthrene degraders could not be identified. 22 references, 1 figure, 2 tables.

  3. Characterising the exchangeability of phenanthrene associated with naturally occurring soil colloids using an isotopic dilution technique.

    PubMed

    Tavakkoli, Ehsan; Juhasz, Albert; Donner, Erica; Lombi, Enzo

    2015-04-01

    The association of polycyclic aromatic hydrocarbons (PAHs) with inorganic and organic colloids is an important factor influencing their bioavailability, mobility and degradation in the environment. Despite this, our understanding of the exchangeability and potential bioavailability of PAHs associated with colloids is limited. The objective of this study was to use phenanthrene as a model PAH compound and develop a technique using (14)C phenanthrene to quantify the isotopically exchangeable and non-exchangeable forms of phenanthrene in filtered soil water or sodium tetraborate extracts. The study was also designed to investigate the exchangeability of colloidal phenanthrene as a function of particle size. Our findings suggest that the exchangeability of phenanthrene in sodium tetraborate is controlled by both inorganic and organic colloids, while in aqueous solutions inorganic colloids play the dominant role (even though coating of these by organic matter cannot be excluded). Filter pore size did not have a significant effect on phenanthrene exchangeability.

  4. Infrared Absorption Spectrum of Matrix-Isolated Phenanthrene

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Stanley P. Sander

    2016-10-01

    The far-to-mid Infrared absorption spectrum of phenanthrene (C14H10), one of the polycyclic aromatic hydrocarbons (PAHs), has been measured in an argon matrix at 5 K. Thirty two fundamental bands for phenanthrene have been observed; one of them is detected for the first time (v54 = 1398.0 cm-1) and eight of them are detected for the first time at temperatures below room temperature (v43 = 233.8 cm-1, v42 = 425.2 cm-1, v66 = 441.6 cm-1, v65 = 499.0 cm-1, v21 = 546.3 cm-1, v63 = 714.5 cm-1, v18 = 1033.7 cm-1 and v55 = 1362.5 cm-1). The relative intensities of these 32 bands have been measured; three ( v21, v18, v54) of which are measured for the first time and six ( v43, v42, v66, v65, v63, and v55) of which are measured for the first time at temperatures below room temperature. Our low temperature study of the vibrational bands for phenanthrene provides important information for the spectral analysis of the Composite Infrared Spectrometer (CIRS) aboard the Cassini Spacecraft.

  5. Sublethal effects of phenanthrene, nicotine, and pinane on Daphnia pulex

    SciTech Connect

    Savino, J.F.; Tanabe, L.L. )

    1989-05-01

    Nearly 500 compounds were detected in the tissues of Great Lakes fish as compared to 8 in tissues of hatchery-reared fish. Lethal concentrations for many representative compounds were determined by testing their acute toxicity (48-hr EC50) to Daphnia pulex. However, the population growth and survival of aquatic organisms over longer time intervals are usually affected at concentrations much lower than the EC50 for a specific chemical. To develop a general relationship between acute and chronic concentrations for representative compounds detected in Great Lakes fish, the authors initiated full-life-cycle testing on D. pulex with phenanthrene, nicotine, and pinane. Growth and fecundity of daphnids was measured in 16-d tests in the laboratory. Phenanthrene and nicotine were highly toxic and pinane was moderately toxic to D. pulex in acute studies. For phenanthrene, a compound of the polycyclic aromatic hydrocarbons (PAHs) that has been associated with incomplete combustion of organic matter. For nicotine, a compound in the heterocyclic nitrogen class of chemicals that has been used as an insecticide, the EC50 was 0.24 mg/L. Cyclic alkanes, many of which are constituents of crude oil were represented by pinane for which the EC50 was 3.35 mg/L.

  6. Plasmid-mediated mineralization of naphthalene, phenanthrene, and anthracene.

    PubMed Central

    Sanseverino, J; Applegate, B M; King, J M; Sayler, G S

    1993-01-01

    The well-characterized plasmid-encoded naphthalene degradation pathway in Pseudomonas putida PpG7(NAH7) was used to investigate the role of the NAH plasmid-encoded pathway in mineralizing phenanthrene and anthracene. Three Pseudomonas strains, designated 5R, DFC49, and DFC50, were recovered from a polynuclear aromatic hydrocarbon-degrading inoculum developed from a manufactured gas plant soil slurry reactor. Plasmids pKA1, pKA2, and pKA3, approximately 100 kb in size, were isolated from these strains and characterized. These plasmids have homologous regions of upper and lower NAH7 plasmid catabolic genes. By conjugation experiments, these plasmids, including NAH7, have been shown to encode the genotype for mineralization of [9-14C]phenanthrene and [U-14C]anthracene, as well as [1-14C]naphthalene. One strain, Pseudomonas fluorescens 5RL, which has the complete lower pathway inactivated by transposon insertion in nahG, accumulated a metabolite from phenanthrene and anthracene degradation. This is the first direct evidence to indicate that the NAH plasmid-encoded catabolic genes are involved in degradation of polynuclear aromatic hydrocarbons other than naphthalene. Images PMID:8328809

  7. Induction of PAH degradation in a phenanthrene-degrading pseudomonad

    SciTech Connect

    Stringfellow, W.T.; Chen, S.H.; Aitken, M.D.

    1995-12-31

    Recent evidence suggests that different polycyclic aromatic hydrocarbon (PAH) substrates are metabolized by common enzymes in PAH-degrading bacteria, implying that inducers for low-molecular-weight PAH degradation may coinduce for the metabolism of higher-molecular-weight compounds. The authors have tested this hypothesis with a well-characterized PAH-degrading bacterium, Pseudomonas saccharophila P-15. Growth of P-15 on salicylate, a metabolite of phenanthrene degradation, and a known inducer for naphthalene degradation, induced the metabolism of both substrates. Several potential inducers were then tested for their effects on metabolism of the four-ring compounds pyrene and fluoranthene, neither of which is a growth substrate for P-15, but both of which can be metabolized by this organism. Incubation of P-15 in the presence of phenanthrene or salicylate induced the metabolism of pyrene and fluoranthene in resting-cell assays. Catechol, another intermediate of naphthalene and phenanthrene degradation, did not induce the metabolism of either compound and interfered with the inducing effect of salicylate. These results have implications for strategies designed to maintain PAH degradation in contaminated environments, particularly for compounds that are degraded slowly or are degraded only by nongrowth metabolism.

  8. Biostimulation as an attractive technique to reduce phenanthrene toxicity for meiofauna and bacteria in lagoon sediment.

    PubMed

    Louati, Hela; Said, Olfa Ben; Soltani, Amel; Got, Patrice; Cravo-Laureau, Cristiana; Duran, Robert; Aissa, Patricia; Pringault, Olivier; Mahmoudi, Ezzeddine

    2014-03-01

    A microcosm experiment was setup to examine (1) the effect of phenanthrene contamination on meiofauna and bacteria communities and (2) the effects of different bioremediation strategies on phenanthrene degradation and on the community structure of free-living marine nematodes. Sediments from Bizerte lagoon were contaminated with (100 mg kg(-1)) phenanthrene and effects were examined after 20 days. Biostimulation (addition of nitrogen and phosphorus fertilizer or mineral salt medium) and bioaugmentation (inoculation of a hydrocarbonoclastic bacterium) were used as bioremediation treatments. Bacterial biomass was estimated using flow cytometry. Meiofauna was counted and identified at the higher taxon level using a stereomicroscope. Nematodes, comprising approximately two thirds of total meiofauna abundance, were identified to genus or species. Phenanthrene contamination had a severe impact on bacteria and meiofauna abundances with a strong decrease of nematodes with a complete disappearance of polychaetes and copepods. Bioremediation counter balanced the toxic effects of phenanthrene since meiofauna and bacteria abundances were significantly higher (p < 0.01) than those observed in phenanthrene contamination. Up to 98 % of phenanthrene removal was observed. In response to phenanthrene contamination, the nematode species had different behavior: Daptonema fallax was eliminated in contaminated microcosms, suggesting that it is an intolerant species to phenanthrene; Neochromadora peocilosoma, Spirinia parasitifera, and Odontophora n. sp., which significantly (p < 0.05) increased in contaminated microcosms, could be considered as "opportunistic" species to phenanthrene whereas Anticoma acuminata and Calomicrolaimus honestus increased in the treatment combining biostimulation and bioaugmentation. Phenanthrene had a significant effect on meiofaunal and bacterial abundances (p < 0.05), with a strong reduction of density and change in the nematode communities

  9. Evidence of polycyclic aromatic hydrocarbon biodegradation in a contaminated aquifer by combined application of in situ and laboratory microcosms using (13)C-labelled target compounds.

    PubMed

    Bahr, Arne; Fischer, Anko; Vogt, Carsten; Bombach, Petra

    2015-02-01

    The number of approaches to evaluate the biodegradation of polycyclic aromatic hydrocarbons (PAHs) within contaminated aquifers is limited. Here, we demonstrate the applicability of a novel method based on the combination of in situ and laboratory microcosms using (13)C-labelled PAHs as tracer compounds. The biodegradation of four PAHs (naphthalene, fluorene, phenanthrene, and acenaphthene) was investigated in an oxic aquifer at the site of a former gas plant. In situ biodegradation of naphthalene and fluorene was demonstrated using in situ microcosms (BACTRAP(®)s). BACTRAP(®)s amended with either [(13)C6]-naphthalene or [(13)C5/(13)C6]-fluorene (50:50) were incubated for a period of over two months in two groundwater wells located at the contaminant source and plume fringe, respectively. Amino acids extracted from BACTRAP(®)-grown cells showed significant (13)C-enrichments with (13)C-fractions of up to 30.4% for naphthalene and 3.8% for fluorene, thus providing evidence for the in situ biodegradation and assimilation of those PAHs at the field site. To quantify the mineralisation of PAHs, laboratory microcosms were set up with BACTRAP(®)-grown cells and groundwater. Naphthalene, fluorene, phenanthrene, or acenaphthene were added as (13)C-labelled substrates. (13)C-enrichment of the produced CO2 revealed mineralisation of between 5.9% and 19.7% for fluorene, between 11.1% and 35.1% for acenaphthene, between 14.2% and 33.1% for phenanthrene, and up to 37.0% for naphthalene over a period of 62 days. Observed PAH mineralisation rates ranged between 17 μg L(-1) d(-1) and 1639 μg L(-1) d(-1). The novel approach combining in situ and laboratory microcosms allowed a comprehensive evaluation of PAH biodegradation at the investigated field site, revealing the method's potential for the assessment of PAH degradation within contaminated aquifers.

  10. Selection of nonionic surfactants in enhancing biodegradation of phenanthrene in soil

    SciTech Connect

    Jahan, K.; Ahmed, T.; Maier, W.J.

    1996-12-31

    This research addresses the influence of sub-cmc concentrations of selected commercial nonionic surfactants on the biodegradation of phenanthrene. Various types of nonionic surfactants were tested to determine their ability to enhance the availability of phenanthrene to microorganisms in soil systems. Nonionic surfactants were selected as they are known to have greater hydrocarbon solubilizing power, less toxicity to microbial populations and low foaming property. Surfactants were tested to measure their effectiveness for increasing solubility of phenanthrene, their sorption on the soil matrix, their biodegradability and also their effect on the sorption and biodegradation of phenanthrene. Batch and column studies were carried out for the biodegradation experiments. Batch isotherm experiments were conducted to characterize the sorption of surfactants and phenanthrene. Solubility enhancement of phenanthrene by the selected surfactants was mainly a micellar phenomena. Sorption of phenanthrene and the surfactants could be represented by the linear isotherm model. Sorption of phenanthrene was enhanced in the presence of surfactants. Batch and column biodegradation studies indicate that biodegradation of phenanthrene was enhanced in the presence of the surfactants. None of the surfactants were biodegraded during the timecourse of these experiments. This study indicates that surfactant selection for in-situ bioremediation of insoluble hydrocarbons will depend on a large number of factors with main emphasis on the hydrocarbon solubilizing power, low toxicity to Zn bacteria and the environment and low sorptive properties.

  11. Synthesis of the k-region monofluoro- and difluorobenzo(c)phenanthrenes

    SciTech Connect

    Mirsadeghi, S.; Whittaker, N. ); Thakker, D.R. ); Prasad, G.K.B.

    1989-06-23

    Polycyclic aromatic hydrocarbons are metabolically activated by cytochrome P-450 and epoxide hydrolase to ultimate mutagens and carcinogens. Substitution by fluorine at specific positions has been used to elucidate metabolic activation and detoxication pathways of polycyclic aromatic hydrocarbons. Substitution by fluorine at the K-region C-6 position of the weak carcinogen benzo(c)phenanthrene (1) causes a > 4-fold increase in its tumorigenicity. Out of the six possible monofluorobenzo(c)phenanthrenes, only 5-fluorobenzo(c)phenanthrene (8a) has not been evaluated as a carcinogen, presumably because a convenient synthetic method for the 5-fluoro derivative has not been available. Hence, a new method has been developed for the synthesis of 8a from readily available starting materials. The method consists of selective bromination of benzo(c)phenanthrene (1) to 5-bromobenzo(c)phenanthrene (3), substitution of bromine by an amino group, and a modified Schiemann reaction of 5-aminobenzo(c)phenanthrene (6a) to yield 5-fluorobenzo(c)phenanthrene (8a). An improved method for the synthesis of 6-fluorobenzo(c)phenanthrene (19) has also been developed which consists of bromofluorination of {beta}-naphthylstyrene, followed by selective dehydrobromination and photocyclization of the fluorostyrene to the 6-fluoro derivative 19. The above methods, with minor modifications, also provided synthetic routes for the preparation of the difluoro derivatives 5,7-, 5,8-, and 6,7-difluorobenzo(c)phenanthrenes.

  12. Effect of surfactants, dispersion and temperature on solubility and biodegradation of phenanthrene in aqueous media.

    PubMed

    Pantsyrnaya, T; Blanchard, F; Delaunay, S; Goergen, J L; Guédon, E; Guseva, E; Boudrant, J

    2011-03-01

    In the present study surfactant addition with the help of either a mechanical dispersion or a thermal treatment was applied in order to increase the solubility and the bioavailability of phenanthrene in aqueous media, and therefore to promote its biodegradation. Among four tested surfactants (Tween 80, Brij 30, sodium dodecyl sulphate and rhamnolipids), Brij 30 (0.5 gL(-1)) showed the best results allowing us to attain about 20 mgL(-1) of soluble phenanthrene. An additional thermal treatment at 60°C for 24h, 200 rpm permitted to increase the solubility of phenanthrene in the presence of Brij 30 (0.5 gL(-1)) to about 30 mgL(-1). Higher dispersions of phenanthrene particles as well as the reduction of their size were obtained using Ultra-Turrax and French press. The biodegradation of phenanthrene by Pseudomonas putida was then investigated. The reduction of size of phenanthrene particles by mechanical dispersion did not influence its biodegradation, suggesting that P. putida consumed only soluble phenanthrene. The addition of Brij 30 (0.5 gL(-1)) permitted to obtain more phenanthrene metabolized. The use of Brij 30 coupled with a transitory heating of phenanthrene-containing medium at 60°C led to an even more complete biodegradation. This might be a promising way to enhance biodegradation of PAHs.

  13. Synthesis and Characterization of New Tercopolymer Containing Thienothiophene, Thiophene and Fluorene for Organic Thin-Film Transistors.

    PubMed

    Tan, Xiaofeng; Park, Jong Man; Ma, Jae Yeol; Kim, Yun-Hi

    2015-02-01

    We have designed and synthesized the novel p-type polymer containing thienothiophene, thiophene and fluorene with OTFT characteristics. The polymer was synthesized by the palladium catalyzed Suzuki coupling reaction with thienothiophene derivatives, thiophene derivatives and fluorene derivatives. The obtained PTT2BTF can dissolve in common organic solvents such as toluene, THF, chloroform, chlorobenzene and dichlorobenzene. PTT2BTF has a number average molecular weight (Mn) of 25,000 with a poly dispersity index (PDI) of 1.66. PTT2BTF showed good thermal stability with high Td of 407 °C. The OTFT characteristics of the polymer (PTT2BTF) were fabricated. Organic semiconductor was found to exhibit typical p-channel FET characteristics with a hole mobility of 6.3 x 10(-5) cm2/Vs and a threshold voltage of - 4 V. Keywords: OTFT, Thiophene, Fluorene, Solution Process.

  14. Time resolved spectroscopy of 2-(dimethylamine)fluorene. Solvent effects and photophysical behavior

    NASA Astrophysics Data System (ADS)

    Sánchez, Francisco G.; Díaz, Aurora N.; Algarra, Manuel; Lovillo, Josefa; Aguilar, Alfonso

    2011-12-01

    The effect of different solvents on the fluorescent properties of 2-(dimethylamine)fluorene (DAF) were studied. In aprotic solvents we detected a strongly emissive intramolecular charge transfer (ICT) state that decayed by intersystem crossing to triplet. In proton-accepting solvents DAF exhibits in the excited state an intramolecular proton transfer. An ionized species is postulated, which simultaneously twists to a rotated conformation in the excited state. Thus, the specific solvent interactions supplement but do not replace the twist mechanism and accompany the charge transfer accepted as the prerequisite for twisted intramolecular charged transfer (TICT) state formation.

  15. Spirally configured cis-stilbene/fluorene hybrids as bipolar, organic sensitizers for solar cell applications.

    PubMed

    Chao, Wei-Shan; Liao, Ken-Hsien; Chen, Chien-Tien; Huang, Wei-Kai; Lan, Chi-Ming; Diau, Eric Wei-Guang

    2012-05-18

    Hybrids based on a dibenzosuberene core bearing a spiro-fluorene junction at the C-5 position and with amino donor and β-thiophenyl-α-cyanoacrylic acid acceptor groups at C-3 and C-7, respectively, serve as new organic sensitizer materials for solar cell applications. Solar cell devices based on these materials show a conversion efficiency (η) of up to 6.1% (V(oc) = 697 mV, J(sc) = 12.2 mA cm(-2), FF = 0.72) under AM 1.5 G conditions. The best IPCE values exceed 75% within the 450-550 nm absorption range.

  16. Large third-order nonlinear optical response of conjugated copolymers consisting of fluorene and carbazole units

    NASA Astrophysics Data System (ADS)

    Zhan, Xiaowei; Liu, Yunqi; Zhu, Daoben; Liu, Xuchun; Xu, Gang; Ye, Peixian

    2002-08-01

    Off-resonant third-order nonlinear optical properties using degenerate four-wave mixing measurements in solution at 1064 nm have been studied for novel π-conjugated, processible, optically transparent and thermally stable copolymers constituted of carbazole and fluorene. The second-order hyperpolarizability γ1111 per repeat unit of the polymer containing alkyne segment (Cz-PFE) is as high as 6.5×10 -31 esu. The large nonlinearity of Cz-PFE is attributed to its rigid planar and intrachain charge transfer structure.

  17. Bigger and Brighter Fluorenes: Facile π-Expansion, Brilliant Emission and Sensing of Nitroaromatics.

    PubMed

    Ramakrishna, Jagarapu; Venkatakrishnan, Parthasarathy

    2017-01-17

    π-Expanded butterfly-like 2D fluorenes and 3D spirobifluorenes 1-5 were synthesized via a DDQ-mediated oxidative cyclization strategy with a high regioselectivity. Through structural modification via π-expansion, it was possible to achieve near-ultraviolet absorption, bright-blue emission, very high near-unity fluorescence quantum yields in solution as well as in film states, and deep-lying HOMO energy levels with excellent thermal stabilities. Furthermore, these electron-rich compounds displayed a notable behavior towards sensing of nitroaromatic explosives, such as picric acid, up to a detection limit of 0.2 ppb.

  18. Structure-properties relationship of carbazole and fluorene hybrid trimers: experimental and theoretical approaches.

    PubMed

    Tomkeviciene, Ausra; Grazulevicius, Juozas V; Volyniuk, Dmytro; Jankauskas, Vygintas; Sini, Gjergji

    2014-07-21

    Synthesis and properties of fluorene and carbazole derivatives having three electrophores per molecule with different architectures are reported. The synthesized compounds possess high thermal stabilities with 5% weight loss temperatures exceeding 350 °C. They form glasses with glass transition temperatures ranging from 60 to 68 °C. Cyclovoltammetric experiments revealed the high electrochemical stability of the fluorene trimer. In contrast, 2- and 2,7-fluorenyl substituted carbazole derivatives show irreversible oxidation in the CV experiments. The electron photoemission spectra of the films of the synthesized compounds revealed ionization potentials of 5.65-5.89 eV. Hole drift mobilities in the amorphous layers of the synthesized compounds reach 10(-2) cm(2) V(-1) s(-1) at high electric fields, as established by a xerographic time-of-flight technique. DFT calculations show that HOMO and LUMO orbitals of the compounds are very similar in energy and shape. The similar hole mobilities observed for the three compounds are discussed in the frame of the Marcus theory. An important influence of the alkyl groups on the ionization potentials and on the hole mobilities was also observed and its origin is discussed.

  19. Investigation of intermolecular interactions between fluorene-based conjugated polymers using the dispersion-corrected DFT

    NASA Astrophysics Data System (ADS)

    Ayoub, Sarah; Lagowski, Jolanta B.

    2015-03-01

    Alternating triphenylamine-fluorene, TPAFn (n=1-3), and fluorene-oxadiazole OxFn (n=1-3) conjugated copolymers are important components of novel high-efficiency multi-layer organic light-emitting diodes (OLEDs). In this work, we investigate the intermolecular interactions between the various combinations of monomers of OxFn-TPAFn (n=1-3) copolymers using the dispersion-corrected density functional theory (B97D) method. The monomer combinations are taken with and without the presence of long alkyl chains in order to study the effect of side-chains on the polymer backbone intermolecular interactions. The dispersion effect is studied by comparing the structures of the interacting monomers with those in vacuum. In addition, we calculate intermolecular distances, energy gaps and binding energies of monomer dimers corresponding to different pairings of OxFn-TPAFn (n=1-3) monomers. Our results show that the combination of OxF3-TPAF2 monomers exhibites the highest binding energy, closest intermolecular distance, and the best matching of chain lengths amongst all of the combinations of OxFn-TPAFn (n=1-3) monomers. Experiments have shown that OxF3-TPAF2 combination gives the best performance for OLEDS made of OxF-TPAF polymer layers.

  20. Extractive biodegradation and bioavailability assessment of phenanthrene in the cloud point system by Sphingomonas polyaromaticivorans.

    PubMed

    Pan, Tao; Deng, Tao; Zeng, Xinying; Dong, Wei; Yu, Shuijing

    2016-01-01

    The biological treatment of polycyclic aromatic hydrocarbons is an important issue. Most microbes have limited practical applications because of the poor bioavailability of polycyclic aromatic hydrocarbons. In this study, the extractive biodegradation of phenanthrene by Sphingomonas polyaromaticivorans was conducted by introducing the cloud point system. The cloud point system is composed of a mixture of (40 g/L) Brij 30 and Tergitol TMN-3, which are nonionic surfactants, in equal proportions. After phenanthrene degradation, a higher wet cell weight and lower phenanthrene residue were obtained in the cloud point system than that in the control system. According to the results of high-performance liquid chromatography, the residual phenanthrene preferred to partition from the dilute phase into the coacervate phase. The concentration of residual phenanthrene in the dilute phase (below 0.001 mg/L) is lower than its solubility in water (1.18 mg/L) after extractive biodegradation. Therefore, dilute phase detoxification was achieved, thus indicating that the dilute phase could be discharged without causing phenanthrene pollution. Bioavailability was assessed by introducing the apparent logP in the cloud point system. Apparent logP decreased significantly, thus indicating that the bioavailability of phenanthrene increased remarkably in the system. This study provides a potential application of biological treatment in water and soil contaminated by phenanthrene.

  1. Evaluation of phenanthrene toxicity on earthworm (Eisenia fetida): an ecotoxicoproteomics approach.

    PubMed

    Wu, Shijin; Xu, Xian; Zhao, Shiliang; Shen, Feichao; Chen, Jianmeng

    2013-10-01

    The goal of this study was to identify promising new biomarkers of phenanthrene by identifying differentially expressed proteins in Eisenia fetida after exposure to phenanthrene. Extracts of earthworm epithelium collected at days 2, 7, 14, and 28 after phenanthrene exposure were analyzed by two dimensional electrophoresis (2-DE) and quantitative image analysis. Comparing the intensity of protein spots, 36 upregulated proteins and 45 downregulated proteins were found. Some of the downregulated and upregulated proteins were verified by MALDI-TOF/TOF-MS and database searching. Downregulated proteins in response to phenanthrene exposure were involved in glycolysis, energy metabolism, chaperones, proteolysis, protein folding and electron transport. In contrast, oxidation reduction, oxygen transport, defense systems response to pollutant, protein biosynthesis and fatty acid biosynthesis were upregulated in phenanthrene-treated E. fetida. In addition, ATP synthase b subunit, lysenin-related protein 2, lombricine kinase, glyceraldehyde 3-phosphate dehydrogenase, actinbinding protein, and extracellular globin-4 seem to be potential biomarkers since these biomarker were able to low levels (2.5 mg kg(-1)) of phenanthrene. Our study provides a functional profile of the phenanthrene-responsive proteins in earthworms. The variable levels and trends in these spots could play a potential role as novel biomarkers for monitoring the levels of phenanthrene contamination in soil ecosystems.

  2. Slow Desorption of Phenanthrene from Silica Particles: Influence of Pore Size, Pore Water, and Aging Time

    SciTech Connect

    Huesemann, Michael H.; Fortman, Timothy J.; Riley, Robert G.; Thompson, Christopher J.; Wang, Zheming; Truex, Michael J.; Peyton, Brent M.

    2006-01-16

    When micro-porous and meso-porous silica particles were exposed to aqueous phenanthrene solutions for various durations it was observed that sorbed-phase phenanthrene concentrations increased with aging time only for meso-porous but not micro-porous silicas. Desorption equilibrium was reached almost instantaneously for the micro-porous particles while both the rate and extent of desorption decreased with increasing aging time for the meso-porous silicas. These findings indicate that phenanthrene can be sequestered within the internal pore-space of meso-porous silicas while the internal surfaces of micro-porous silicas are not accessible to phenanthrene sorption, possibly due to the presence of physi- or chemi-sorbed water that may sterically hinder the diffusion of phenanthrene inside water-filled micro-pores. By contrast, the internal surfaces of these micro-porous silicas are accessible to phenanthrene when aging methods are employed which assure that pores are devoid of physi-sorbed water. Consequently, when phenanthrene was incorporated into these particles using either supercritical CO2 or via solvent soaking, the aqueous desorption kinetics were extremely slow indicating effective sequestration of phenanthrene inside micro-porous particles. Finally, a two-compartment conceptual model is used to interpret the experimental findings.

  3. Enhanced phenanthrene biodegradation in soil by slender oat root exudates and root debris.

    PubMed

    Miya, R K; Firestone, M K

    2001-01-01

    To investigate the mechanisms by which slender oat (Avena barbata Pott ex Link) enhances phenanthrene biodegradation, we analyzed the impacts of root exudates and root debris on phenanthrene biodegradation and degrader community dynamics. Accelerated phenanthrene biodegradation rates occurred in soils amended with slender oat root exudates as well as combined root debris + root exudate as compared with unamended controls. Root exudates significantly enhanced phenanthrene biodegradation in rhizosphere soils, either by increasing contaminant bioavailability and/or increasing microbial population size and activity. A modified most probable number (MPN) method was used to determine quantitative shifts in heterotrophic and phenanthrene degrader communities. During the first 4 to 6 d of treatment, heterotrophic populations increased in all amended soils. Both root debris-amended and exudate-amended soil then maintained larger phenanthrene degrader populations than in control soils later in the experiment after much of the phenanthrene had been utilized. Thus, root amendments had a greater impact over time on phenanthrene degraders than heterotrophs resulting in selective maintenance of degrader populations in amended soils compared with controls.

  4. Estimation of direct-contact fraction for phenanthrene in surfactant solutions by toxicity measurement.

    PubMed

    Lee, Hyo J; Lee, Min W; Lee, Dae S; Woo, Seung H; Park, Jong M

    2007-09-30

    The toxicity of solutions containing nonionic surfactants Tween 80, Brij 35 and/or phenanthrene to Pseudomonas putida ATCC 17484 was investigated. The fraction of direct contact between micellar-phase phenanthrene and bacterial cell surface was estimated by using the toxicity data and a mathematical model. The mathematical model was used to calculate phenanthrene concentration in the micellar phase and aqueous pseudophase separately. The first-order death rate constant increased from 0.088+/-0.016 to 0.25+/-0.067 h(-1) when the phenanthrene concentration was increased from 0 to 5.17 x 10(-6)M (equals water solubility). The intrinsic toxicity of surfactant was higher in Brij 35 than in Tween 80. When phenanthrene concentration was increased to 9.7 x 10(-5)M in surfactant solutions, the death rate constant increased to 1.8 +/- 0.024 and 0.41 +/- 0.088 h(-1) for 8.4 x 10(-4)M Brij 35 and 7.6 x 10(-4)M Tween 80. The direct-contact fraction was 0.083 and 0.044 for Brij 35 and Tween 80, respectively, under these conditions using exponential model. The toxicity increased with increasing phenanthrene concentration at a fixed surfactant concentration. The toxicity decreased with increasing the surfactant concentration at a fixed phenanthrene concentration due to decreased contact of bacteria with phenanthrene present in the interior of surfactant micelles.

  5. Physiological and molecular responses of springtails exposed to phenanthrene and drought.

    PubMed

    Holmstrup, Martin; Slotsbo, Stine; Schmidt, Stine N; Mayer, Philipp; Damgaard, Christian; Sørensen, Jesper G

    2014-01-01

    Interaction between effects of hazardous chemicals in the environment and adverse climatic conditions is a problem that receives increased attention in the light of climate change. We studied interactive effects of phenanthrene and drought using a test system in which springtails (Folsomia candida Willem) were concurrently exposed to a sublethal phenanthrene level via passive dosing from silicone (chemical activity of 0.010), and sublethal drought from aqueous NaCl solutions (water activity of 0.988). Previous studies have shown that the combined effects of high levels of phenanthrene and drought, respectively, interact synergistically when using lethality as an end-point. Here, we hypothesized that phenanthrene interferes with physiological mechanisms involved in drought tolerance, and that drought influences detoxification of phenanthrene. However, this hypothesis was not supported by data since phenanthrene had no effect on drought-protective accumulation of myo-inositol, and normal water conserving mechanisms of F. candida were functioning despite the near-lethal concentrations of the toxicant. Further, detoxifying induction of cytochrome P450 and glutathione-S-transferase was not impeded by drought. Both phenanthrene and drought induced transcription of heat shock protein (hsp70) and the combined effect of the two stressors on hsp70 transcription was additive, suggesting that the cellular stress and lethality imposed by these levels of phenanthrene and drought were also additive.

  6. Pulmonary surfactant suppressed phenanthrene adsorption on carbon nanotubes through solubilization and competition as examined by passive dosing technique.

    PubMed

    Zhao, Jian; Wang, Zhenyu; Mashayekhi, Hamid; Mayer, Philipp; Chefetz, Benny; Xing, Baoshan

    2012-05-15

    Adsorption of phenanthrene on carbon nanotubes (CNTs) was examined in the presence of pulmonary surfactant (Curosurf) and its main components, dipalmitoyl phosphatidylcholine (DPPC) and bovine serum albumin (BSA). A passive-dosing method based on equilibrium partitioning from a preloaded polymer was successfully employed to measure phenanthrene binding and speciation at controlled freely dissolved concentrations while avoiding phase separation steps. Curosurf, DPPC, and BSA could all linearly solubilize phenanthrene, and phenanthrene solubilization by Curosurf was 4 times higher than individual components (DPPC or BSA). In the presence of Curosurf, DPPC or BSA, adsorption of phenanthrene by multiwalled CNTs (MWCNTs) was suppressed, showing competitive adsorption between pulmonary surfactant (or DPPC, BSA) and phenanthrene. Competitive adsorption between Curosurf and phenanthrene was the strongest. Therefore, when phenanthrene-adsorbed CNTs enter the respiratory tract, phenanthrene can be desorbed due to both solubilization and competition. The bioaccessibility of phenanthrene adsorbed on three MWCNTs in the respiratory tract would be positively related to the size of their outer diameters. Moreover, the contribution of solubilization and competition to desorption of phenanthrene from MWCNTs was successfully separated for the first time. These findings demonstrate the two mechanisms on how pulmonary surfactants can enhance desorption and thus possibly biological absorption of phenanthrene adsorbed on CNTs.

  7. Removal of phenanthrene in contaminated soil by combination of alfalfa, white-rot fungus, and earthworms.

    PubMed

    Deng, Shuguang; Zeng, Defang

    2017-01-23

    The aim of this study was to investigate the removal of phenanthrene by combination of alfalfa, white-rot fungus, and earthworms in soil. A 60-day experiment was conducted. Inoculation with earthworms and/or white-rot fungus increased alfalfa biomass and phenanthrene accumulation in alfalfa. However, inoculations of alfalfa and white-rot fungus can significantly decrease the accumulation of phenanthrene in earthworms. The removal rates for phenanthrene in soil were 33, 48, 66, 74, 85, and 93% under treatments control, only earthworms, only alfalfa, earthworms + alfalfa, alfalfa + white-rot fungus, and alfalfa + earthworms + white-rot fungus, respectively. The present study demonstrated that the combination of alfalfa, earthworms, and white-rot fungus is an effective way to remove phenanthrene in the soil. The removal is mainly via stimulating both microbial development and soil enzyme activity.

  8. Effect of root exudates on sorption, desorption, and transport of phenanthrene in mangrove sediments.

    PubMed

    Jia, Hui; Lu, Haoliang; Dai, Minyue; Hong, Hualong; Liu, Jingchun; Yan, Chongling

    2016-08-15

    The effect of root exudates on the environmental behaviors of phenanthrene in mangrove sediments is poorly understood. In order to evaluate their influence, comprehensive laboratory experiments were performed using batch equilibrium and thin-layer chromatography (TLC) analyses. In the presence of root exudates, sorption of phenanthrene was inhibited, whereas desorption and mobility were promoted, and were elevated as root exudate concentrations increased. Among the three representative low molecular weight organic acids (LMWOAs) (citric, oxalic, and acetic acids), citric acid promoted desorption and mobility of phenanthrene more effectively than the other two. In addition, application of artificial root exudates (AREs) enhanced phenanthrene desorption, and mobility was always lower than that with the same concentration of LMWOAs, suggesting that LMWOAs predominantly affected the fate of phenanthrene in sediments. The results of this study could enhance our understanding of the mobility of persistent organic pollutants in sediment-water system.

  9. Bioavailability of labile and desorption-resistant phenanthrene sorbed to montmorillonite clay containing humic fractions

    SciTech Connect

    Lahlou, M.; Ortega-Calvo, J.J.

    1999-12-01

    The biodegradation of {sup 14}C-labeled phenanthrene in the presence of particles of montmorillonite and fulvic and humic acid-montmorillonite complexes was studied in a batch system. A mathematical model that takes into account the contribution to mineralization by the slowly desorbing compound was used to calculate the initial mineralization rates. Sorption of phenanthrene to the particles was determined in sorption isotherms, and desorption was measured during successive water extractions. Mineralization rates in equilibrated suspensions were higher than predicted from aqueous equilibrium concentrations, and in some cases, montmorillonite and fulvic acid-montmorillonite complexes stimulated the phenanthrene transformation rates. In contrast with the high bioavailability exhibited by phenanthrene sorbed as a labile form, biodegradation of the desorption-resistant phenanthrene occurred slowly and followed zero-order kinetics, which indicated a limitation caused by slow desorption. The results suggest that the mechanism of sorption may cause a differential bioavailability of the sorbed compound.

  10. Solubilization of phenanthrene above cloud point of Brij 30: a new application in biodegradation.

    PubMed

    Pantsyrnaya, T; Delaunay, S; Goergen, J L; Guseva, E; Boudrant, J

    2013-06-01

    In the present study a new application of solubilization of phenanthrene above cloud point of Brij 30 in biodegradation was developed. It was shown that a temporal solubilization of phenanthrene above cloud point of Brij 30 (5wt%) permitted to obtain a stable increase of the solubility of phenanthrene even when the temperature was decreased to culture conditions of used microorganism Pseudomonas putida (28°C). A higher initial concentration of soluble phenanthrene was obtained after the cloud point treatment: 200 against 120μM without treatment. All soluble phenanthrene was metabolized and a higher final concentration of its major metabolite - 1-hydroxy-2-naphthoic acid - (160 against 85μM) was measured in the culture medium in the case of a preliminary cloud point treatment. Therefore a temporary solubilization at cloud point might have a perspective application in the enhancement of biodegradation of polycyclic aromatic hydrocarbons.

  11. Adsorption and bioaccessibility of phenanthrene on carbon nanotubes in the in vitro gastrointestinal system.

    PubMed

    Li, Wei; Zhao, Jian; Zhao, Qing; Zheng, Hao; Du, Peng; Tao, Shu; Xing, Baoshan

    2016-10-01

    Adsorption and bioaccessibility of phenanthrene on graphite and multiwalled carbon nanotubes (CNTs) were investigated in simulated gastrointestinal fluid using a passive dosing system. The saturated adsorption capacity of phenanthrene on different adsorbents follows an order of hydroxylated CNTs (H-CNTs)>carboxylated CNTs (C-CNTs)>graphitized CNTs (G-CNTs)>graphite, consistent with the order of their surface area and micropore volume. The change of phenanthrene adsorption on the adsorbents is different with the presence of pepsin (800mg/L) and bile salts (500mg/L and 5000mg/L, abbreviated as BS500 and BS5000). Both solubilization of phenanthrene by pepsin and bile salts and their competition with phenanthrene for the adsorption sites play a role. In addition, the large increase of the maximum adsorption capacity in BS5000 solution indicates an enhanced dispersion of CNTs or an exfoliation of graphite by bile salts, which consequently increases the exposed surface area. The bioaccessibility increases in pepsin and BS500 solution with a growing free phenanthrene concentration. Although the bioaccessibility of phenanthrene stalls or slightly decreases in the middle range of free phenanthrene concentration in BS5000 solution, the bioaccessibility overall is much higher than that in pepsin and BS500 solution at the same phenanthrene level. It is impossible to separate the effect of competition from dispersion (or exfoliation) at this stage, but the relative contribution of solubilization to phenanthrene desorption in pepsin and BS500 solutions was quantified, which improves our understanding of the mechanisms on bioaccessibility of adsorbed pollutants on CNTs.

  12. Iron-Catalyzed Tandem Conia-Ene/Friedel-Crafts Reactions of o-Alkynyldihydrochalcones: Access to Benzo[b]fluorenes.

    PubMed

    Akbar, Sikkandarkani; Srinivasan, Kannupal

    2016-02-05

    o-Alkynyldihydrochalcones when treated with a catalytic amount of anhydrous FeCl3 in refluxing 1,2-dichloroethane underwent tandem Conia-ene and Friedel-Crafts reactions to yield benzo[b]fluorene derivatives in good yields.

  13. Natural attenuation of fluorene and pyrene in contaminated soils and assisted with hydroxypropyl-β-cyclodextrin. Effect of co-contamination.

    PubMed

    Madrid, F; Rubio-Bellido, M; Villaverde, J; Tejada, M; Morillo, E

    2016-11-15

    The objectives of this study were to investigate the mutual effect of the PAHs fluorene and pyrene on their respective biodegradation and dissipation processes in an agricultural soil, and to determine the effect of hydroxypropyl-β-cyclodextrin (HPBCD), used to increase the bioavailability of PAHs, on such processes. Fluorene dissipation was primarily due to abiotic processes, although a small contribution from biodegradation was also observed. Therefore, fluorene dissipation did not increase with HPBCD and its presence did not significantly alter the dehydrogenase activity. In contrast to fluorene, pyrene dissipation depended primarily on biotic factors, with endogenous soil microorganisms capable of degrading pyrene, with large increases in dehydrogenase activity. HPBCD increased biodegradation rate of pyrene. The co-contamination of soil with both PAHs did not affect fluorene evolution, but significantly inhibited pyrene biodegradation. The different abilities of soil bacterial consortia to catabolize these PAHs are discussed. Additionally, the possibility that the abiotic loss of fluorene through volatilization had a significant effect on the microbial community biodegradation of both fluorene and pyrene is examined.

  14. Heavy metal effects on the biodegradation of fluorene by Sphingobacterium sp. KM-02 isolated from PAHs-contaminated mine soil

    NASA Astrophysics Data System (ADS)

    Nam, I.; Chon, C.; Jung, K.; Kim, J.

    2012-12-01

    Polycyclic aromatic hydrocarbon compounds (PAHs) are widely distributed in the environment and occur ubiquitously in fossil fuels as well as in products of incomplete combustion and are known to be strongly toxic, often with carcinogenic and mutagenic properties. Fluorene is one of the 16 PAHs included in the list of priority pollutants of the Environmental Protection Agency. The fluorene-degrading bacterial strain Sphingobacterium sp. KM-02 was isolated from PAHs-contaminated soil near an abandoned mine impacted area by selective enrichment techniques. Fluorene added to the Sphingobacterium sp. KM-02 culture as sole carbon and energy source was 78.4% removed within 120 h. A fluorene degradation pathway is tentatively proposed based on mass spectrometric identification of the metabolic intermediates 9-fluorenone, 4-hydroxy-9-fluorenone, and 8-hydroxy-3,4-benzocoumarin. Further the ability of Sphingobacterium sp. KM-02 to bioremediate 100 mg/kg fluorene in mine soil was examined by composting under laboratory conditions. Treatment of microcosm soil with the strain KM-02 for 20 days resulted in a 65.6% reduction in total amounts. These results demonstrate that Sphingobacterium sp. KM-02 could potentially be used in the bioremediation of fluorene from contaminated soil. Mine impacted area comprises considerable amounts of heavy metals such as cadmium, lead, mercury, arsenic, and copper. Although some of these metals are necessary for biological life, excessive quantities often result in the inhibition of essential biological reactions via numerous pathways. A number of reports collectively show that various metals, such as Al, Co, Ni, Cu, Zn, Pb, and Hg at a range of concentrations have adverse effects on the degradation of organic compounds. However, at present there is only limited information on the effect of individual heavy metals on the biological degradation of polyaromatic hydrocarbons (PAHs) including fluorene. Moreover, heavy metal effects were not

  15. Thermal, spectroscopic, and solvent influence studies on mixed-ligand copper(II) complexes containing the bulky ligand: Bis[N-(p-tolyl)imino]acenaphthene.

    PubMed

    El-Ayaan, Usama; Gabr, I M

    2007-05-01

    Four mixed-ligand copper(II) complexes containing the rigid bidentate nitrogen ligand bis[N-(p-tolyl)imino]acenaphthene (abb. p-Tol-BIAN) ligand are reported. These complexes, namely [Cu(p-Tol-BIAN)(2)](ClO(4))(2)1, [Cu(p-Tol-BIAN)(acac)](ClO(4)) 2, [Cu(p-Tol-BIAN)Cl(2)] 3 and [Cu(p-Tol-BIAN)(AcOH)(2)](ClO(4))(2)4 (where acac, acetylacetonate and AcOH, acetic acid) have been prepared and characterized by elemental analysis, spectroscopic, magnetic and molar conductance measurements. ESR spectra suggest a square planar geometry for complexes 1 and 2. In complexes 3 and 4, a distorted tetrahedral arrangement around copper(II) centre was suggested. Solvatochromic behavior of all studied complexes indicates strong solvatochromism of their solutions. The observed solvatochromism is mainly due to the solute-solvent interaction between the chelate cation and the solvent molecules. Thermal properties and decomposition kinetics of all complexes are investigated. The kinetic parameters (E, A, Delta H, Delta S and Delta G) of all thermal decomposition stages have been calculated using the Coats-Redfern and other standard equations.

  16. H{sub 2} EJECTION FROM POLYCYCLIC AROMATIC HYDROCARBONS: INFRARED MULTIPHOTON DISSOCIATION STUDY OF PROTONATED ACENAPHTHENE AND 9,10-DIHYDROPHENANTHRENE

    SciTech Connect

    Szczepanski, Jan; Vala, Martin T.; Oomens, Jos; Steill, Jeffrey D.

    2011-01-20

    The infrared multiple-photon dissociation (IRMPD) spectra of protonated acenaphthene ([ACN+H]{sup +}) and 9,10-dihydrophenanthrene ([DHP+H]{sup +}) have been recorded using an infrared free electron laser after the compounds were protonated by electrospray ionization and trapped in a Fourier transform ion cyclotron mass spectrometer. In both compounds, the loss of two mass units is predominant. Density functional calculations (B3LYP/6-311++G(d,p)) of the infrared spectra of all possible protonated isomers of each species showed that the observed IRMPD spectra are best fit to the isomer with the largest proton affinity and lowest relative electronic energy. Potential energy surfaces of the most stable isomers of [ACN+H]{sup +} and [DHP+H]{sup +} have been calculated for H and H{sub 2} loss. The lowest energy barriers are for loss of H{sub 2}, with predicted energies 4.28 and 4.15 eV, respectively. After H{sub 2} ejection, the adjacent aliphatic hydrogens migrate to the bare ejection site and stabilize the remaining fragment. Single H loss may occur from [ACN+H]{sup +} but the energy required is higher. No single H loss is predicted from [DHP+H]{sup +}, only H migration around the carbon skeleton. The vibrational bands in the parent closed-shell protonated polycyclic aromatic hydrocarbons are compared to bands observed from the interstellar medium.

  17. On the excited state dynamics of vibronic transitions. High-resolution electronic spectra of acenaphthene and its argon van der Waals complex in the gas phase.

    PubMed

    Álvarez-Valtierra, Leonardo; Plusquellic, David F; Yi, John T; Pratt, David W

    2011-09-01

    Rotationally resolved fluorescence excitation spectroscopy has been used to study the dynamics, electronic distribution, and the relative orientation of the transition moment vector in several vibronic transitions of acenaphthene (ACN) and in its Ar van der Waals (vdW) complex. The 0(0)(0) band of the S(1) ← S(0) transition of ACN exhibits a transition moment orientation parallel to its a-inertial axis. However, some of the vibronic bands exhibit a transition moment orientation parallel to the b-inertial axis, suggesting a Herzberg-Teller coupling with the S(2) state. Additionally, some other vibronic bands exhibit anomalous intensity patterns in several of their rotational transitions. A Fermi resonance involving two near degenerate vibrations has been proposed to explain this behavior. The high-resolution electronic spectrum of the ACN-Ar vdW complex has also been obtained and fully analyzed. The results indicate that the weakly attached argon atom is located on top of the plane of the bare molecule at ~3.48 Å away from its center of mass in the S(0) electronic state.

  18. Photochemical oxidation of phenanthrene sorbed on silica gel

    SciTech Connect

    Barbas, J.T.; Sigman, M.E.; Dabestani, R.

    1996-05-01

    There have been relatively few detailed studies of PAH photochemical degradation mechanisms and products at solid/air interfaces under controlled conditions. Results from mechanistic studies on particulate simulants are important in understanding the fates of PAH sorbed on similar materials in natural settings. In this study, the photolysis of phenanthrene (PH) on silica gel, in the presence of air, has been carefully examined. Once sorbed onto the silica surface, PH is not observed to repartition into the gas phase, even under vacuum, and dark reactions of PH are not observed at the silica/air interface. Photolysis (254 nm) of PH leads to the formation of 2,2`-biformylbiphenyl (1), 9,10-phenanthrenequinone (2), cis-9,10-dihydrodihydroxyphenanthrene (3), benzocoumarin (4), 2,2`-biphenyldicarboxylic acid (5), 2-formyl-2`-biphenylcarboxylic acid (6), 2-formylbiphenyl (7), 1,2-naphthalenedicarboxylic acid (8), and phthalic acid (9). These products account for 85-90% of the reacted PH. The photoproducts are independent of excitation wavelength (254 and 350 nm), and the reaction proceeds entirely through an initial step involving the addition of singlet molecular oxygen to the ground state of phenanthrene with subsequent thermal and/or photochemical reactions of the initially formed product. 20 refs., 3 figs., 1 tab.

  19. Thermodynamics and existing phase of Ba-phenanthrene

    NASA Astrophysics Data System (ADS)

    Heguri, Satoshi; Thi Nhu Phan, Quynh; Tanabe, Yoichi; Tanigaki, Katsumi

    2015-03-01

    The recent discovery of superconductivity in potassium doped picene suggested the possibility of a new class of superconductors. The problem is that no satisfactory guide to improve the superconducting shielding fraction had been provided until recently. However, a high superconducting shielding fraction of 65 % was reported for Ba1.5(phenanthrene). Considering this situation, phenanthrene (PHN) appears to be a key material for confirming the existence of metallicity and superconductivity in the aromatic hydrocarbon (AHC) family, and also for clarifying the physical properties and superconducting mechanism of AHC superconductors. In the present work, the thermodynamics for intercalation of PHN with Ba is studied in comparison with its isomer of anthracene (AN). Contrarily to previous reports by other authors, the important observation that Ba is intercalated into neither PHN nor AN without affecting their molecular structures is unambiguously made by differential scanning calorimetry measurements and annealing time dependences observed by powder x-ray diffraction measurements. The reactions of Ba and PHN at elevated temperatures lead this system to molecular decomposition instead of intercalation. The phenomena of metallicity and superconductivity in PHN intercalated with alkaline earth metals (Ba or Sr) should be reconsidered.

  20. Biodegradation of phenanthrene and pyrene in compost-amended soil.

    PubMed

    Yuan, Shaw Y; Su, Lai M; Chang, Bea V

    2009-06-01

    This study investigated the biodegradation of the polycyclic aromatic hydrocarbons (PAHs) phenanthrene and pyrene in compost and compost-amended soil. The degradation rates of the two PAHs were phenanthrene>pyrene. The degradation of PAH was enhanced when the two PAHs were present simultaneously in the soil. The addition of either of the two types of compost (straw and animal manure) individually enhanced PAH degradation. Compost samples were separated into fractions with various particle size ranges, which spanned 2-50 microm, 50-105 microm, 105-500 microm, and 500-2000 microm. We observed that the compost fractions with smaller particle sizes demonstrated higher PAH degradation rates. However, when the different compost fractions were added to soil, compost particle size had no significant effect on the rate of PAH degradation. Of the micro-organisms isolated from the soil-compost mixtures, strains S1, S2, and S8, which were identified as Arthrobacter nicotianae, Pseudomonas fluorescens, and Bordetella Petrii, respectively, demonstrated the best degradation ability.

  1. Multisubstrate biodegradation kinetics of naphthalene, phenanthrene, and pyrene mixtures

    SciTech Connect

    Guha, S.; Peters, C.A.; Jaffe, P.R.

    1999-12-05

    Biodegradation kinetics of naphthalene, phenanthrene and pyrene were studied in sole-substrate systems, and in binary and ternary mixtures to examine substrate interactions. The experiments were conducted in aerobic batch aqueous systems inoculated with a mixed culture that had been isolated from soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Monod kinetic parameters and yield coefficients for the individual parameters and yield coefficients for the individual compounds were estimated from substrate depletion and CO{sub 2} evolution rate data in sole-substrate experiments. In all three binary mixture experiments, biodegradation kinetics were comparable to the sole-substrate kinetics. In the ternary mixture, biodegradation of naphthalene was inhibited and the biodegradation rates of phenanthrene and pyrene were enhanced. A multisubstrate form of the Monod kinetic model was found to adequately predict substrate interactions in the binary and ternary mixtures using only the parameters derived from sole-substrate experiments. Numerical simulations of biomass growth kinetics explain the observed range of behaviors in PAH mixtures. In general, the biodegradation rates of the more degradable and abundant compounds are reduced due to competitive inhibition, but enhanced biodegradation of the more recalcitrant PAHs occurs due to simultaneous biomass growth on multiple substrates. In PAH-contaminated environments, substrate interactions may be very large due to additive effects from the large number of compounds present.

  2. Antiallergic phenanthrenes and stilbenes from the tubers of Gymnadenia conopsea.

    PubMed

    Matsuda, Hisashi; Morikawa, Toshio; Xie, Haihui; Yoshikawa, Masayuki

    2004-09-01

    The methanolic extract from the tubers of Gymnadenia conopsea showed an antiallergic effect on ear passive cutaneous anaphylaxis reactions in mice. From the methanolic extract, three new dihydrophenanthrenes, gymconopins A ( 1), B ( 2), and C ( 3), and a new dihydrostilbene, gymconopin D ( 4), were isolated together with 10 known phenanthrene and stilbene constituents. The structures of the new compounds were determined on the basis of physicochemical evidence. Next, the inhibitory effects of the principal constituents on the release of beta-hexosaminidase, as a marker of degranulation, in RBL-2H3 cells were examined and five phenanthrenes, gymconopin B ( 2), 4-methoxy-9,10-dihydrophenanthrene-2,7-diol ( 6), 1-(4-hydroxybenzyl)-4-methoxyphenanthrene-2,7-diol ( 7), 1-(4-hydroxybenzyl)-4-methoxy-9,10-dihydrophenanthrene-2,7-diol ( 8), and blestriarene A ( 9), and six dihydrostilbenes, gymconopin D ( 4), batatacin III ( 10), 3'- O-methylbatatacin III ( 11), 3,3'-dihydroxy-2-(4-hydroxybenzyl)-5-methoxybibenzyl ( 12), 3',5-dihydroxy-2-(4-hydroxybenzyl)-3-methoxybibenzyl ( 13), and 3,3'-dihydroxy-2,6-bis(4-hydroxybenzyl)-5-methoxybibenzyl ( 14) were found to inhibit the antigen-induced degranulation by 65.5 to 99.4 % at 100 microM in RBL-2H3 cells.

  3. Analysis of the organic contaminants in the condensate produced in the in situ underground coal gasification process.

    PubMed

    Smoliński, Adam; Stańczyk, Krzysztof; Kapusta, Krzysztof; Howaniec, Natalia

    2013-01-01

    Addressing the environmental risks related to contamination of groundwater with the phenolics, benzene, toluene, ethyl benzene, xylene (BTEX) and polycyclic aromatic hydrocarbons (PAHs), which might be potentially released from the underground coal gasification (UCG) under adverse hydrogeological and/or operational conditions, is crucial in terms of wider implementation of the process. The aim of this study was to determine the main organic pollutants present in the process condensate generated during the UCG trial performed on hard coal seam in the Experimental Mine 'Barbara', Poland; 8,933 L of condensate was produced in 813 h of experiment duration (including 456 h of the post-process stage) with average phenolics, BTEX and PAH concentrations of 576,000, 42.3 and 1,400.5 μg/L, respectively. The Hierarchical Clustering Analysis was used to explore the differences and similarities between the samples. The sample collected during the first 48 h of the process duration was characterized by the lowest phenanthrene, anthracene, fluoranthene and pyrene contents, high xylene content and the highest concentrations of phenolics, benzene, toluene and ethyl benzene. The samples collected during the stable operation of the UCG process were characterized by higher concentrations of naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, while in the samples acquired in the post-process stage the lowest concentrations of benzene, toluene, naphthalene, acenaphthene and fluorene were observed.

  4. Graphene functionalisation with a conjugated poly(fluorene) by click coupling: striking electronic properties in solution.

    PubMed

    Castelaín, Marta; Martínez, Gerardo; Merino, Pablo; Martín-Gago, José Á; Segura, José L; Ellis, Gary; Salavagione, Horacio J

    2012-04-16

    Graphene flakes covalently modified with a conjugated polymer, poly[(9,9-dihexylfluorene)-co-alt-(9,9-bis-(6-azidohexyl)fluorene)] (PFA), were efficiently synthesised by a Cu-catalysed Huisgen 1,3-dipolar cycloaddition between alkyne-modified graphene and an azide-functionalised polymer. Two approaches for the modification of graphene with alkyne groups were investigated (coupling with a diazonium salt generated in situ or an amidation reaction) and the optimum conditions determined. The success of the click-coupling approach was confirmed by FTIR, (1)H NMR, Raman, and X-ray photoelectron spectroscopy (XPS). The absorption and emission spectra of the click product show a strong solvent dependency.

  5. Spectroscopy and single-molecule emission of a fluorene-terthiophene oligomer.

    PubMed

    Khalil, G E; Adawi, A M; Robinson, B; Cadby, A J; Tsoi, W C; Kim, J-S; Charas, A; Morgado, J; Lidzey, D G

    2011-10-27

    We study the thiophene-based oligomer poly[2,7-(9,9-bis(2'-ethylhexyl)fluorene)-alt-2,5-terthiophene] (PF3T) in solution and when dispersed at low concentration into a polynorbornene matrix. We find that at high concentration in solution the 0-0 electronic transition observed in fluorescence is suppressed, a result indicative of the formation of weakly coupled H-aggregates. At low concentration in a polymer matrix, emission from both single molecules and molecular aggregates is observed. We find that the fluorescence spectra of most PF3T emitters are composed of a number of relatively narrow emission features, indicating that the emission usually occurs from multiple chromophores. A small number of PF3T molecules are however characterized by single chromophore emission, spectral blinking, and narrowed emission peaks.

  6. Surfaces wettability and morphology modulation in a fluorene derivative self-assembly system

    NASA Astrophysics Data System (ADS)

    Cao, Xinhua; Gao, Aiping; Zhao, Na; Yuan, Fangyuan; Liu, Chenxi; Li, Ruru

    2016-04-01

    A new organogelator based on fluorene derivative (gelator 1) was designed and synthesized. Organogels could be obtained via the self-assembly of the derivative in acetone, toluene, ethyl acetate, hexane, DMSO and petroleum ether. The self-assembly process was thoroughly characterized using field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), UV-vis, FT-IR and the contact angle. Surfaces with different morphologies and wetting properties were formed via the self-assembly of gelator 1 in the six different solvents. Interestingly, a superhydrophobic surface with a contact angle of 150° was obtained from organogel 1 in DMSO and exhibited the lotus-effect. The sliding angle necessary for a water droplet to move on the glass was only 15°. Hydrogen bonding and van der Waals forces were attributed as the main driving forces for gel formation.

  7. Solution-processed photovoltaics with a 3,6-bis(diarylamino)fluoren-9-ylidene malononitrile.

    PubMed

    Karak, Supravat; Homnick, Paul J; Renna, Lawrence A; Venkataraman, D; Mague, Joel T; Lahti, Paul M

    2014-10-08

    3,6-Bis(N,N-dianisylamino)-fluoren-9-ylidene malononitrile (FMBDAA36) was used as an electron donor material in solution-processed organic photovoltaic devices with configuration ITO/PEDOT:PSS/(1:3[w/w] FMBDAA36:PC71BM)/LiF/Al to give power conversion efficiencies up to 4.1% with open circuit voltage VOC = 0.89 V, short circuit current JSC = 10.35 mA cm(-2), and fill factor FF = 44.8%. Conductive atomic force microscopy of the active layer showed granular separation of regions exhibiting easy versus difficult hole transport, consistent with bulk heterojunction type phase separation of FMBDAA36 and PC71BM, respectively. Single-crystal X-ray diffraction analysis showed pure FMBDAA36 to form columnar π-stacks with a 3.3 Å intermolecular spacing.

  8. Antagonism of phenanthrene cytotoxicity for human embryo lung fibroblast cell line HFL-I by green tea polyphenols.

    PubMed

    Mei, Xin; Wu, Yuan-Yuan; Mao, Xiao; Tu, You-Ying

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) have been detected in some commercial teas around the world and pose a threat to tea consumers. However, green tea polyphenols (GTP) possess remarkable antioxidant and anticancer effects. In this study, the potential of GTP to block the toxicity of the model PAH phenanthrene was examined in human embryo lung fibroblast cell line HFL-I. Both GTP and phenanthrene treatment individually caused dose-dependent inhibition of cell growth. A full factorial design experiment demonstrated that the interaction of phenanthrene and GTP significantly reduced growth inhibition. Using the median effect method showed that phenanthrene and GTP were antagonistic when the inhibitory levels were less than about 50%. Apoptosis and cell cycle detection suggested that only phenanthrene affected cell cycle significantly and caused cell death; GTP lowered the mortality of HFL-I cells exposed to phenanthrene; However, GTP did not affect modulation of the cell cycle by phenanthrene.

  9. Transport of dissolved organic macromolecules and their effect on the transport of phenanthrene in porous media

    SciTech Connect

    Magee, B.R.; Lion, L.W.; Lemley, A.T. )

    1991-02-01

    The retardation factor (R) of phenanthrene in a sand column was reduced by an average factor of 1.8 in the presence of dissolved organic matter (DOM) derived from soil, suggesting that a phenanthrene-DOM complex enhanced the transport of phenanthrene. Distribution coefficients (K{sub d}'s) were determined in batch and column studies for combinations of phenanthrene and DOM with sand. The retardation factor in the advective-dispersive transport equation was modified to reflect the pressure of a carrier by incorporating both the retardation and pore exclusion of the carrier itself. The best prediction of phenanthrene transport in the presence of DOM was provided by modeling the retardation by using two K{sub d}'s derived from column experiments of DOM alone and phenanthrene alone, along with the K{sub d} for phenanthrene binding to DOM. Sensitivity analyses indicated that the critical model parameters are the distribution coefficients for the hydrophobic pollutant binding to the stationary phase and binding to the carrier, as well as the carrier concentration.

  10. Low impact of phenanthrene dissipation on the bacterial community in grassland soil.

    PubMed

    Niepceron, Maïté; Beguet, Jérémie; Portet-Koltalo, Florence; Martin-Laurent, Fabrice; Quillet, Laurent; Bodilis, Josselin

    2014-02-01

    The effect of phenanthrene on the bacterial community was studied on permanent grassland soil historically presenting low contamination (i.e. less than 1 mg kg(-1)) by polycyclic aromatic hydrocarbons (PAHs). Microcosms of soil were spiked with phenanthrene at 300 mg kg(-1). After 30 days of incubation, the phenanthrene concentration decreased rapidly until its total dissipation within 90 days. During this incubation period, significant changes of the total bacterial community diversity were observed, as assessed by automated-ribosomal intergenic spacer analysis fingerprinting. In order to get a deeper view of the effect of phenanthrene on the bacterial community, the abundances of ten phyla and classes (Actinobacteria, Acidobacteria, Bacteroidetes, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, Verrucomicrobiales, Gemmatimonadetes, and Planctomycetes) were monitored by quantitative polymerase chain reaction performed on soil DNA extracts. Interestingly, abundances of some bacterial taxa significantly changed as compared with controls. Moreover, among these bacterial groups impacted by phenanthrene spiking, some of them presented the potential of phenanthrene degradation, as assessed by PAH-ring hydroxylating dioxygenase (PAH-RHDα) gene detection. However, neither the abundance nor the diversity of the PAH-RHDα genes was significantly impacted by phenanthrene spiking, highlighting the low impact of this organic contaminant on the functional bacterial diversities in grassland soil.

  11. Visible light photodegradation of phenanthrene catalyzed by Fe(III)-smectite: role of soil organic matter.

    PubMed

    Jia, Hanzhong; Li, Li; Fan, Xiaoyun; Liu, Mingdeng; Deng, Wenye; Wang, Chuanyi

    2013-07-15

    In the present study, phenanthrene is employed as a model to explore the roles played by three soil organic matter (SOM) fractions, i.e., dissolved organic matter (DOM), humic acid (HA), and fulvic acid (FA), in its photodegradation with assistance of Fe(III)-smectite under visible-light. Slight decrease in phenanthrene photodegradation rate was observed in the presence of DOM, which is explained in terms of oxidative-radical competition between DOM and target phenanthrene molecules due to the high electron-donor capacity of phenolic moieties in DOM. On the other hand, a critic content is observed with FA (0.70mg/g) and HA (0.65mg/g). Before reaching the critic content, the removal of phenanthrene is accelerated; while after that, the photodegradation rate is suppressed. The acceleration of phenanthrene degradation can be attributed to the photosensitization of FA and HA. Due to the strong interaction between phenanthrene and the phenyl rings, however, the retention of phenanthrene on SOM-Fe(III)-smectite in the presence of high content of HA or FA is enhanced, thus slowing down its photodegradation. Those observations provide valuable insights into the transformation and fate of PAHs in the natural soil environment and open a window for using clay-humic substances complexes for remediation of contaminated soil.

  12. Oxidative stress and DNA damage responses to phenanthrene exposure in the estuarine guppy Poecilia vivipara.

    PubMed

    Machado, Anderson Abel de Souza; Hoff, Mariana Leivas Müller; Klein, Roberta Daniele; Cordeiro, Gilson Junior; Lencina Avila, Jannine Marquez; Costa, Patrícia Gomes; Bianchini, Adalto

    2014-07-01

    Despite ubiquitous phenanthrene contamination in aquatic coastal areas, little is known regarding its potential effects on estuarine fishes. The present work evaluated the response of a large suite of oxidative stress- and DNA damage-related biomarkers to phenanthrene exposure (10, 20 and 200 μg L(-1), 96 h) using DMSO as the solvent in estuarine guppy Poecilia vivipara (salinity 24 psu). Phenanthrene affected oxidative stress-related parameters, and decreased antioxidant defenses and reactive oxygen species in the gills and muscle overall. Lipid peroxidation occurred in muscle at 200 μg L(-1) phenanthrene. Genotoxicity was increased at 20 μg L(-1), while 200 μg L(-1) caused a relative decrease in erythrocyte release into the bloodstream. These findings indicated that phenanthrene is genotoxic and can induce oxidative stress, depending on tissue and phenanthrene concentration analyzed. Thus, some of the biomarkers analyzed in the present study are sufficiently sensitive to monitor the exposure of the guppy P. vivipara to phenanthrene in salt water. However, further studies are required for a better interpretation of the dose-response patterns observed.

  13. Phenanthrene mineralization along a natural salinity gradient in an Urban Estuary, Boston Harbor, Massachusetts

    SciTech Connect

    Shiaris, M.P. )

    1989-01-01

    The effect of varying salinity on phenanthrene and glutamate mineralization was examined in sediments along a natural salinity gradient in an urban tidal river. Mineralization was measured by trapping {sup 14}CO{sub 2} from sediment slurries dosed with trace levels of ({sup 14}C)phenanthrene or ({sup 14}C)glutamate. Sediments from three sites representing three salinity regimes (0, 15, and 30%) were mixed with filtered column water from each site. Ambient phenanthrene concentrations were also determined to calculate phenanthrene mineralization rates. Rates of phenanthrene mineralization related significantly to increasing salinity along the transect as determined by linear regression analysis. Rates ranged from 1 ng/hour/g dry sediment at the freshwater site to >16 ng/hour/g dry sediment at the 30% salinity site. Glutamate mineralization also increased from the fresh-water to the marine site; however, the relationship to salinity was not statistically significant. The results suggest that phenanthrene degraders in low salinity estuarine sediments subject to salt water intrusion are tolerant to a wide range of salinities buy phenanthrene degradation in brackish waters is mainly a function of obligate marine microorganisms.

  14. Response of uptake and translocation of phenanthrene to nitrogen form in lettuce and wheat seedlings.

    PubMed

    Zhan, Xinhua; Yuan, Jiahan; Yue, Le; Xu, Guohua; Hu, Bing; Xu, Renkou

    2015-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are widespread chemicals that are potentially carcinogenic and toxic to human due to dietary intake of food crops contaminated by PAHs. To date, the mechanisms underlying root uptake and acropetal translocation of PAHs in crops are poorly understood. Here we describe uptake and translocation of phenanthrene (a model PAH) in relation to nitrogen form and concentration in wheat and lettuce seedlings. At concentrations of 0-15 mM, phenanthrene uptake by roots is enhanced with an increase in ammonium and inhibited with an increment of nitrate. Phenanthrene concentration in shoots is much lower than in roots, suggesting that the direction of phenanthrene transport is acropetal. Ammonium reduces both phenanthrene accumulation and bioconcentration factor in shoots, as well as translocation factor, but nitrate elevates them. Phenanthrene uptake increases nutrient solution pH in the treatments with either nitrate or ammonium. Thus, it is concluded that the root uptake and acropetal translocation of phenanthrene in crops are associated with nitrogen form. Our results provide both a novel insight into the mechanism on PAH transport in higher plants and a promising agronomic strategy to minimize PAH contamination in crops or to improve phytoremediation of PAH-contaminated soils or water via nitrogen management.

  15. Genetic determinants involved in the biodegradation of naphthalene and phenanthrene in Pseudomonas aeruginosa PAO1.

    PubMed

    Qi, Jing; Wang, Bobo; Li, Jing; Ning, Huanhuan; Wang, Yingjuan; Kong, Weina; Shen, Lixin

    2015-05-01

    Pseudomonas sp. are predominant isolates of degradation-competent strains while very few studies have explored the degradation-related genes and pathways in most of the degrading strains. P. aeruginosa PAO1 was found capable of degrading naphthalene and phenanthrene efficiently. In order to investigate the degradation-related genes of naphthalene and phenanthrene in P. aeruginosa PAO1, a random promoter library of about 5760 strains was constructed. Thirty-two clones for differentially expressed promoters were obtained by screening in the presence of sub-inhibitory concentration of naphthalene and phenanthrene. Among them, 13 genes were up-regulated and 15 were down-regulated in the presence of naphthalene as well as phenanthrene. The four remaining genes have different regulation tendencies by naphthalene or phenanthrene. By comparing the growth between the wild type and mutants as well as the complementations, the roles of seven selected up-regulated genes on naphthalene and phenanthrene degradation were investigated. Five of the seven selected up-regulated genes, like PA2666 and PA4780, were found playing key roles on the degradation in P. aeruginosa PAO1. Also, the results imply that these genes participate in the overlapping part of naphthalene and phenanthrene degradation pathways in PAO1. Results in the article offer the convenience quick method and platform for searching degradation-related genes. It also laid a foundation for understanding of the role of the regulated genes.

  16. Dynamics of microbial community during bioremediation of phenanthrene and chromium(VI)-contaminated soil microcosms.

    PubMed

    Ibarrolaza, Agustín; Coppotelli, Bibiana M; Del Panno, María T; Donati, Edgardo R; Morelli, Irma S

    2009-02-01

    The combined effect of phenanthrene and Cr(VI) on soil microbial activity, community composition and on the efficiency of bioremediation processes has been studied. Biometer flask systems and soil microcosm systems contaminated with 2,000 mg of phenanthrene per kg of dry soil and different Cr(VI) concentrations were investigated. Temperature, soil moisture and oxygen availability were controlled to support bioremediation. Cr(VI) inhibited the phenanthrene mineralization (CO(2) production) and cultivable PAH degrading bacteria at levels of 500-2,600 mg kg(-1). In the bioremediation experiments in soil microcosms the degradation of phenanthrene, the dehydrogenase activity and the increase in PAH degrading bacteria counts were retarded by the presence of Cr(VI) at all studied concentrations (25, 50 and 100 mg kg(-1)). These negative effects did not show a correlation with Cr(VI) concentration. Whereas the presence of Cr(VI) had a negative effect on the phenanthrene elimination rate, co-contamination with phenanthrene reduced the residual Cr(VI) concentration in the water exchangeable Cr(VI) fraction (WEF) in comparison with the soil microcosm contaminated only with Cr(VI). Clear differences were found between the denaturing gradient gel electrophoresis (DGGE) patterns of each soil microcosm, showing that the presence of different Cr(VI) concentrations did modulate the community response to phenanthrene and caused perdurable changes in the structure of the microbial soil community.

  17. Effects of nanoplastics and microplastics on toxicity, bioaccumulation, and environmental fate of phenanthrene in fresh water.

    PubMed

    Ma, Yini; Huang, Anna; Cao, Siqi; Sun, Feifei; Wang, Lianhong; Guo, Hongyan; Ji, Rong

    2016-12-01

    Contamination of fine plastic particles (FPs), including micrometer to millimeter plastics (MPs) and nanometer plastics (NPs), in the environment has caught great concerns. FPs are strong adsorbents for hydrophobic toxic pollutants and may affect their fate and toxicity in the environment; however, such information is still rare. We studied joint toxicity of FPs with phenanthrene to Daphnia magna and effects of FPs on the environmental fate and bioaccumulation of (14)C-phenanthrene in fresh water. Within the five sizes particles we tested (from 50 nm to 10 μm), 50-nm NPs showed significant toxicity and physical damage to D. magna. The joint toxicity of 50-nm NPs and phenanthrene to D. magna showed an additive effect. During a 14-days incubation, the presence of NPs significantly enhanced bioaccumulation of phenanthrene-derived residues in daphnid body and inhibited the dissipation and transformation of phenanthrene in the medium, while 10-μm MPs did not show significant effects on the bioaccumulation, dissipation, and transformation of phenanthrene. The differences may be attributed to higher adsorption of phenanthrene on 50-nm NPs than 10-μm MPs. Our findings underlined the high potential ecological risks of FPs, and suggested that NPs should be given more concerns, in terms of their interaction with hydrophobic pollutants in the environment.

  18. [Sorption and desorption of phenanthrene by organo-mineral complexes with different bridge cations].

    PubMed

    Ni, Jin-zhi; Luo, Yong-ming; Wei, Ran; Li, Xiu-hua; Qian, Wei

    2008-12-01

    Sorption and desorption of phenanthrene by organo-mineral complexes with Ca2+, Fe3+ and Al3+ as bridge cations were studied according to the association type between organic matter and minerals in natural soils. The results showed that the data of phenanthrene sorption and desorption by different cation saturated montmorillonite and their corresponding humic acid and mineral complexes could be fitted with Freundlich model, and the order of the sorption capacities (Kf) were Ca-Mont (0.184) > Fe-Mont (0.028) > Al-Mont (0.015) and Fe-Mont-HA (2.341) > Ca-Mont-HA (1.557) > Al-Mont-HA (1.136), respectively. The Kf values of humic acid and mineral complexes were far greater than those of minerals, which demonstrated that humic acid made great contributions to the sorption of phenanthrene in the organo-mineral complexes. However, the Kf values of the organo-mineral complexes with different bridge cations were not consistent with their organic carbon content, which indicated that both the organic carbon content and the combined types between organic matter and mineral could affect the sorption capacity of phenanthrene by the organo-mineral complexes. The desorption hysteresis of phenanthrene was significant for Ca2+ and Al3+ bridged organo-mineral complexes. Desorption hysteresis of phenanthrene was mainly from the sorption of phenanthrene by organic matter, and the contributions of mineral to the desorption hysteresis were not significant.

  19. On the nature of the fluorenone-based emission in oxidized poly(dialkyl-fluorene)s

    NASA Astrophysics Data System (ADS)

    Ferenczi, T. A. M.; Sims, M.; Bradley, D. D. C.

    2008-01-01

    This study examines the underlying nature of the green emission band observed as a result of oxidation in dialkyl-fluorene polymers. Specifically, we set out to further determine whether an inter- (excimeric) or intra-molecular fluorenone-based excited state is involved. The emission properties of poly(9,9-dihexylfluorene) dispersed at low concentration in a solid polystyrene matrix are carefully explored. In situ, time-resolved photoluminescence measurements are made during photo-oxidation of the blend and during subsequent exposure to an atmosphere saturated with the vapour of a good solvent. The polystyrene matrix suppresses the appearance of the green emission band during oxidation but the subsequent solvent vapour exposure then activates it. The same effect (activation of the green emission) can be achieved by thermally annealing the matrix above its glass transition temperature. Moreover, the activation of the green emission can be reversed by dissolving the film and re-casting. This behaviour is attributed to controlling the phase structure of the polyfluorene/polystyrene blend and is considered strong evidence for an origin of the green band emission in the formation of excimer-like states between co-facially arranged fluorenone moieties. The photoluminescence behaviour of 9-fluorenone and fluorene molecular mixtures in solution is also studied. This model system allows analysis of the green emission band independent of relative intra- and inter-molecular energy transfer effects since this system is affected only by inter-molecular energy transfer. These results provide further evidence for an excimeric origin of the green emission.

  20. Coordination polymers assembled from semirigid fluorene-based ligand: A couple of enantiomers

    SciTech Connect

    Li, Liang; Wang, Zihao; Chen, Qiang; Zhou, Xinhui; Yang, Tao; Zhao, Qiang; Huang, Wei

    2015-11-15

    A couple of Mg(II)-based coordination polymer enantiomers [MgL(DMF)(H{sub 2}O){sub 3}]{sub n} (R-MgL and S-MgL), and a Zn(II)-based coordination polymer [ZnL(DMF)]{sub n} (ZnL) have been synthesized by the solvothermal reactions between the achiral ligand 4,4′-(9,9-dimethyl-9H-fluorene-2,7-diyl)dibenzoic acid (H{sub 2}L) and the corresponding metal salts. The MgL was obtained as the racemic conglomerate from the one pot reaction. The single crystal X-ray structural analyses reveal that MgL crystallize in the chiral space group P2{sub 1} and possesses the right- or left-handed homochiral 1D Mg–O–C helical chain. The ZnL crystallize in the non-centrosymmetrical space group Aba2 and possesses the 2D network comprised of 1D Zn–O–C meso-helical chains and ligands. The MgL and ZnL complexes exhibit strong coordination-perturbed ligand-centered blue emissions when excited at 320 nm. Their second-order nonlinear optical effects and thermal properties have also been studied. - Highlights: • A couple of Mg(II)-based enantiomers were obtained as the racemic conglomerate. • The ligand is 4,4′-(9,9-dimethyl-9H-fluorene-2,7-diyl)dibenzoic acid. • MgL features the right- or left-handed homochiral 1D Mg–O–C helical chain. • ZnL features the 1D Zn–O–C meso-helical chain. • Both MgL and ZnL display the intense solid-state blue emissions.

  1. Characteristics of phenanthrene-degrading bacteria isolated from soils contaminated with polycyclic aromatic hydrocarbons.

    PubMed

    Aitken, M D; Stringfellow, W T; Nagel, R D; Kazunga, C; Chen, S H

    1998-08-01

    Ten bacterial strains were isolated from seven contaminated soils by enrichment with phenanthrene as the sole carbon source. These isolates and another phenanthrene-degrading strain were examined for various characteristics related to phenanthrene degradation and their ability to metabolize 12 other polycyclic aromatic hydrocarbons (PAH), ranging in size from two to five rings, after growth in the presence of phenanthrene. Fatty acid methyl ester analysis indicated that at least five genera (Agrobacterium, Bacillus, Burkholderia, Pseudomonas, and Sphingomonas) and at least three species of Pseudomonas were represented in this collection. All of the strains oxidized phenanthrene according to Michaelis-Menten kinetics, with half-saturation coefficients well below the aqueous solubility of phenanthrene in all cases. All but one of the strains oxidized 1-hydroxy-2-naphthoate following growth on phenanthrene, and all oxidized at least one downstream intermediate from either or both of the known phenanthrene degradation pathways. All of the isolates could metabolize (oxidize, mineralize, or remove from solution) a broad range of PAH, although the exact range and extent of metabolism for a given substrate were unique to the particular isolate. Benz[a]anthracene, chrysene, and benzo[a]pyrene were each mineralized by eight of the strains, while pyrene was not mineralized by any. Pyrene was, however, removed from solution by all of the isolates, and the presence of at least one significant metabolite from pyrene was observed by radiochromatography for the five strains in which such metabolites were sought. Our results support earlier indications that the mineralization of pyrene by bacteria may require unique metabolic capabilities that do not appear to overlap with the determinants for mineralization of phenanthrene or other high molecular weight PAH.

  2. A comparison of the accumulation of phenanthrene by marine amphipods in water versus sediment

    SciTech Connect

    Fusi, T.; Weber, L.J.

    1995-12-31

    The objective of this research is to compare the accumulation of the polycyclic aromatic hydrocarbon phenanthrene by marine amphipods from sediment and interstitial water versus from a water only exposure system. The equilibrium partitioning theory assumes that the exposure and response of benthic invertebrates are the same when exposed to the same contaminant concentration in water and interstitial water. In this series of experiments, three infaunal marine amphipod species; Eohaustorius estuarius (non tube-forming, burrowing amphipod), Leptocheirus plumulosus (burrow-building amphipod) and Grandidierella japonica (tube-building amphipod), were exposed to {sup 14}C-phenanthrene under three experimental conditions: (1) sediment spiked at a concentration resulting in an interstitial water concentration of 2.5 {micro}g/l phenanthrene; (2) sediment spiked at a concentration resulting in interstitial water concentration of 2.5 {micro}g/l and the overlying water spiked at 2.5 {micro}g/l phenanthrene; (3) a water only exposure with the water at a concentration of 2.5 {micro}g/l phenanthrene, The exposures were conducted in a static renewal system with the overlying and exposure water being replaced every 8 hours. The bioaccumulation of phenanthrene was followed over 72 hours. In all three species of amphipods, the accumulation of phenanthrene was significantly greater in the water only exposure than in the two sediment exposures. At 72 hours, the amphipod body burdens of phenanthrene in the water only exposures were, depending on the species, 7 to 24 times that of the sediment only exposures. The results suggest that water only exposures may overestimate sediment or interstitial exposure to phenanthrene and other nonionic, lipophilic compounds.

  3. Cysteine-β-cyclodextrin enhanced phytoremediation of soil co-contaminated with phenanthrene and lead.

    PubMed

    Wang, Guanghui; Wang, Yin; Hu, Suhang; Deng, Nansheng; Wu, Feng

    2015-07-01

    It is necessary to find an effective soil remediation technology for the simultaneous removal of hydrophobic organic contaminants and heavy metals from contaminated soils. In this work, a novel cysteine-β-cyclodextrin (CCD) was synthesized by the reaction of β-cyclodextrin with cysteine, and the structure of CCD was confirmed by (1)H-NMR, (13)C-NMR, FT-IR spectroscopy and elemental analysis. Pot-culture experiments were conducted to investigate the effects of CCD on the phytoremediation of soil co-contaminated with phenanthrene and lead. The results showed that CCD can enhance the phytoremediation of soil co-contaminated with phenanthrene and lead. When CCD was added to the co-contaminated soil, the concentrations of phenanthrene and Pb in roots and shoots of ryegrass (Lolium perenne L.) significantly increased, the presence of CCD is beneficial to the accumulation of phenanthrene and Pb in ryegrass, and the residual concentrations of phenanthrene and Pb in soils significantly decreased. Under the co-contamination of 500 mg Pb kg(-1) and 50 mg PHE kg(-1), the bioconcentration factor of phenanthrene and Pb in the presence of CCD was increased by 1.43-fold and 4.47-fold, respectively. After CCD was added to the contaminated soils, the residual concentration of phenanthrene and Pb in unplanted soil was decreased by 18 and 25%, respectively. However, for the planted soil, the residual concentration of phenanthrene and Pb was decreased by 48 and 56%, respectively. CCD may improve the bioavailability of phenanthrene and Pb in co-contaminated soil; CCD enhanced phytoremediation technology may be a good alternative for the removal of hydrophobic organic contaminants and heavy metals from contaminated soils.

  4. Utilizing surfactants to control the sorption, desorption, and biodegradation of phenanthrene in soil-water system.

    PubMed

    Jin, Haiwei; Zhou, Wenjun; Zhu, Lizhong

    2013-07-01

    An integrative technology including the surfactant enhanced sorption and subsequent desorption and biodegradation of phenanthrene in the soil-water system was introduced and tested. For slightly contaminated agricultural soils, cationic-nonionic mixed surfactant-enhanced sorption of organic contaminants onto soils could reduce their transfer to plants, therefore safe-guarding agricultural production. After planting, residual surfactants combined with added nonionic surfactant could also promote the desorption and biodegradation of residual phenanthrene, thus providing a cost-effective pollution remediation technology. Our results showed that the cationic-nonionic mixed surfactants dodecylpyridinium bromide (DDPB) and Triton X-100 (TX100) significantly enhanced soil retention of phenanthrene. The maximum sorption coefficient Kd of phenanthrene for contaminated soils treated by mixed surfactants was about 24.5 times that of soils without surfactant (Kd) and higher than the combined effects of DDPB and TX100 individually, which was about 16.7 and 1.5 times Kd, respectively. On the other hand, TX100 could effectively remove phenanthrene from contaminated soils treated by mixed surfactants, improving the bioavailability of organic pollutants. The desorption rates of phenanthrene from these treated soils were greater than 85% with TX100 concentration above 2000 mg/L and approached 100% with increasing TX100 concentration. The biodegradation rates of phenanthrene in the presence of surfactants reached over 95% in 30 days. The mixed surfactants promoted the biodegradation of phenanthrene to some extent in 10-22 days, and had no obvious impact on phenanthrene biodegradation at the end of the experiment. Results obtained from this study provide some insight for the production of safe agricultural products and a remediation scheme for soils slightly contaminated with organic pollutants.

  5. Impact of exotic and inherent dissolved organic matter on sorption of phenanthrene by soils.

    PubMed

    Gao, Yanzheng; Xiong, Wei; Ling, Wanting; Wang, Xiaorong; Li, Qiuling

    2007-02-09

    The impacts of exotic and inherent dissolved organic matter (DOM) on phenanthrene sorption by six zonal soils of China, chosen so as to have different soil organic carbon (SOC) contents, were investigated using a batch technique. The exotic DOM was extracted from straw waste. In all cases, the sorption of phenanthrene by soils could be well described by the linear equation. The presence of inherent DOM in soils was found to impede phenanthrene sorption, since the apparent distribution coefficients (K(d)(*)) for phenanthrene sorption by deionized water-eluted soils were 3.13-21.5% larger than the distribution coefficients (K(d)) by control soils. Moreover, the enhanced sorption of phenanthrene by eluted versus control soils was in positive correlation with SOC contents. On the other hand, it was observed that the influence of exotic DOM on phenanthrene sorption was related to DOM concentrations. The K(d)(*) values for sorption of phenanthrene in the presence of exotic DOM increased first and decreased thereafter with increasing the added DOM concentrations (0-106mgDOC/L). The K(d)(*) values at a low exotic DOM concentration (< or =28mgDOC/L) were 14.7-48.4% larger than their control K(d) values. In contrast, higher concentrations (> or =52mgDOC/L) of added exotic DOM clearly impeded the distribution of phenanthrene between soil and water. The effects of exotic and inherent DOM on phenanthrene sorption by soils may primarily be described as 'cumulative sorption', association of phenanthene with DOM in solution, and modified surface nature of soil solids due to DOM binding.

  6. Naturally occurring phenanthrene degrading bacteria associated with seeds of various plant species.

    PubMed

    Fernet, Jennifer L; Lawrence, John R; Germida, James J

    2016-01-01

    Seeds of 11 of 19 plant species tested yielded naturally occurring phenanthrene degrading bacteria when placed on phenanthrene impression plates. Seed associated phenanthrene degrading bacteria were mostly detected on caragana, Canada thistle, creeping red fescue, western wheatgrass, and tall wheat grass. Based on 16S rRNA analysis the most common bacteria isolated from these seeds were strains belonging to the genera Enterobacteria, Erwinia, Burkholderia, Pantoea, Pseudomonas, and Sphingomonas. These plants may provide an excellent source of pre-adapted bacterial-plant associations highly suitable for use in remediation of contaminated soil environments.

  7. Effect of n-alkyl chain length on the complexation of phenanthrene and 9-alkyl-phenanthrene with $beta;-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Rima, J.; Aoun, E.; Hanna, K.

    2004-06-01

    The characteristics of host-guest complexation between β-cyclodextrin (β-CD) and phenanthrene derivatives (phenanthrene, n-propyl, n-butyl and n-hexyl-phenanthrene) were investigated by fluorescence spectrometry. Linear and non-linear regression methods were used to estimate the formation constants ( K1). A 1:1 stoichiometric ratio and an effect of n-alkyl chain length on the formation constant were observed for the binary inclusion complex between guest and β-CD. The formation constant dramatically increases with the length of n-alkyl, it starts from the value of 140 l mol -1 for the phenanthrene to reach the value of 580 l mol -1 for hexyl-phenanthrene. The effect of the temperature on the fluorescence intensity of each complex (guest-host) was also studied; and then the thermodynamic parameters were calculated. The main inclusion site seems to be aromatic moiety for short chain molecules, and it moves toward the alkyl chain part, as the chain becomes longer.

  8. Infrared Spectra of Perdeuterated Naphthalene, Phenanthrene, Chrysene, and Pyrene

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Sandford, Scott A.; Hudgins, Douglas M.; Arnold, James O. (Technical Monitor)

    1996-01-01

    Calculations are carried out using density functional theory (DFT) to determine the harmonic frequencies and intensities of perdeuterated naphthalene, phenanthrene, pyrene, and chrysene. We also report matrix- isolation spectra for these four species. The theoretical and experimental frequencies and relative intensities for the perdeuterated species are in generally good agreement. The effect of perdeuteration is to reduce the sum of the integrated intensities by a factor of about 1.75. This reduction occurs for all vibrational motions, except for the weak low frequency ring deformation modes. There is also a significant redistribution of the relative intensities between the out-of-plane C-D bands relative to those found for the out-of-plane C-H bands. The theoretical isotopic ratios provide an excellent diagnostic of the degree of C-H(C-D) involvement in the vibrational bands, allowing in most cases a clear distinction of the type of motion.

  9. Drift mobility of holes in phenanthrene single crystals

    NASA Technical Reports Server (NTRS)

    Sonnonstine, T. J.; Hermann, A. M.

    1974-01-01

    The temperature dependence of drift mobilities of holes in single crystals of phenanthrene was measured in the range from 203 to 353 K in three crystallographic directions. Below the anomaly temperature of 72 C, the mobility temperature dependences are consistent with the Munn and Siebrand slow-phonon hopping process in the b direction and the Munn and Siebrand slow-phonon coherent mode in the a and c prime directions. The drift mobility temperature dependences in crystals that have been cooled through the anomaly temperature in the presence of illumination and an electric field are consistent with the model of Spielberg et al. (1971), in which the hindered vibration of the 4,5 hydrogens introduces a new degree of freedom above 72 C.

  10. Thermodynamics and existing phase of Ba-phenanthrene

    NASA Astrophysics Data System (ADS)

    Heguri, Satoshi; Thi Nhu Phan, Quynh; Tanabe, Yoichi; Tanigaki, Katsumi

    2014-10-01

    The thermodynaqmics for intercalation of phenanthrene (PHN) with Ba, for which superconductivity has been reported, is studied in comparison with its isomer of a linear aromatic hydrocarbon of anthracene (AN). Contrary to previous reports by other authors, the important observation that Ba is intercalated into neither PHN nor AN without affecting their molecular structures is unambiguously made by differential scanning calorimetry measurements and annealing time dependences observed by powder x-ray diffraction (XRD) measurements. The reactions of Ba and PHN at elevated temperatures lead this system to molecular decomposition instead of intercalation, resulting in the Ba C2 carbide or amorphous carbon formation, which is clearly supported by XRD and Raman spectroscopy. The phenomena of metallicity and superconductivity in PHN intercalated with alkaline-earth metals (Ba or Sr) should be reconsidered.

  11. Determination of phenanthrene bioavailability by using a self-dying reporter bacterium: test with model solids and soil.

    PubMed

    Shin, Doyun; Nam, Kyoungphile

    2012-02-20

    The present study was conducted to investigate the performance and feasibility of a self-dying reporter bacterium to visualize and quantify phenanthrene bioavailability in soil. The self-dying reporter bacterium was designed to die on the initiation of phenanthrene biodegradation. The viability of the reporter bacterium was determined by a fluorescence live/dead cell staining method and visualized by confocal laser scanning microscopic observation. Phenanthrene was spiked into four types of model solids and a sandy loam. The bioavailability of phenanthrene to the reporter bacterium was remarkably declined with the hydrophobicity of the model solids: essentially no phenanthrene was biodegraded in the presence of 9-nm pores and about 35.8% of initial phenanthrene was biodegraded without pores. Decrease in bioavailability was not evident in the nonporous hydrophilic bead, but a small decrease was observed in the porous hydrophilic bead at 1000 mg/kg of phenanthrene. The fluorescence intensity was commensurate with the extent of phenanthrene biodegradation by the reporter bacterium at the concentration range from 50 to 500 mg/kg. Such a quantitative relationship was also confirmed with a sandy loam spiked up to 1000 mg/kg of phenanthrene. This reporter bacterium may be a useful means to determine phenanthrene bioavailability in soil.

  12. Measuring the toxicity of alkyl-phenanthrenes to early life stages of medaka (Oryzias latipes) using partition-controlled delivery.

    PubMed

    Turcotte, Dominique; Akhtar, Parveen; Bowerman, Michelle; Kiparissis, Yiannis; Brown, R Stephen; Hodson, Peter V

    2011-02-01

    Alkyl-phenanthrenes are a class of compounds present in crude oil and toxic to developing fish. Most research on alkyl-phenanthrenes has focused on retene (7-isopropyl-1-methyl-phenanthrene), but little is known about the chronic toxicity of related congeners to the early life stages of fish. This project is the first to describe the chronic toxicity of a series of alkyl-phenanthrenes to the embryos of Japanese medaka (Oryzias latipes) using the partition-controlled delivery (PCD) method of exposure and is the first to establish a relationship between toxicity of alkyl-phenanthrenes and log P. With PCD, test concentrations were maintained by equilibrium partitioning of test chemicals from polydimethylsiloxane (PDMS) films containing various concentrations of C1 to C4 phenanthrenes. Log film:solution partition constants (log K(fs)) and aqueous solubility limits were determined for each alkyl-phenanthrene. The prevalence of abnormalities in fish embryos increased in an exposure-dependent manner, with median effective concentration (EC50) values lower than experimental solubility limits of the compounds, and typical of environmental concentrations. Alkyl-phenanthrenes were more toxic to medaka embryos than unsubstituted phenanthrene, with effects resembling those of dioxin and indicating a specific receptor-based mechanism of toxicity. These results extend conclusions for the Exxon Valdez oil spill, suggest a specific mechanism of toxicity for alkyl-phenanthrenes, and provide a model for assessing the risks of mixture toxicity.

  13. Effects of phenanthrene on the mortality, growth, and anti-oxidant system of earthworms (Eisenia fetida) under laboratory conditions.

    PubMed

    Wu, Shijin; Wu, Ermiao; Qiu, Lequan; Zhong, Weihong; Chen, Jianmeng

    2011-04-01

    To assess the toxic effects of phenanthrene on earthworms, we exposed Eisenia fetida to artificial soils supplemented with different concentrations (0.5, 2.5, 12.5, mgkg(-1) soil) of phenanthrene. The residual phenanthrene in the soil, the bioaccumulation of phenanthrene in earthworms, and the subsequent effects of phenanthrene on growth, anti-oxidant enzyme activities, and lipid peroxidation (LPO) were determined. The degradation rate of low concentrations of phenanthrene was faster than it was for higher concentrations, and the degradation half-life was 7.3d (0.5 mgkg(-1)). Bioaccumulation of phenanthrene in the earthworms decreased the phenanthrene concentration in soils, and phenanthrene content in the earthworms significantly increased with increasing initial soil concentrations. Phenanthrene had a significant effect on E. fetida growth, and the 14-d LC(50) was calculated as 40.67 mgkg(-1). Statistical analysis of the growth inhibition rate showed that the concentration and duration of exposure had significant effects on growth inhibition (p<0.001). Superoxide dismutase (SOD) activity increased at the beginning (2 and 7d) and decreased in the end (14 and 28 d). Catalase (CAT) activity in all treatments was inhibited from 1 to 14 d of exposure. However, no significant perturbations in malondialdehyde (MDA) content were noted between control and phenanthrene-treated earthworms except after 2d of exposure. These results revealed that bioaccumulation of phenanthrene in E. fetida caused concentration-dependent, sub-lethal toxicity. Growth and superoxide dismutase activity can be regarded as sensitive parameters for evaluating the toxicity of phenanthrene to earthworms.

  14. Sorption of phenanthrene and benzene on differently structural kerogen: important role of micropore-filling.

    PubMed

    Zhang, Yulong; Ma, Xiaoxuan; Ran, Yong

    2014-02-01

    Shale was thermally treated to obtain a series of kerogen with varied maturation. Their chemical, structural and porous properties were related to the sorption and/or desorption behaviors of phenanthrene and benzene. As the treatment temperature increases, aliphatic and carbonyl carbon of the kerogen samples decrease, while their aromaticity and maturation increase. Meanwhile, the isothermal nonlinearity of phenanthrene and benzene increases whereas the sorption capacity and micropore adsorption volumes (Vo,d) initially increase and then decrease. The Vo,d of benzene is significantly correlated with, but higher than that of phenanthrene, suggesting similar micropore filling mechanism and molecular sieve effect. The benzene desorption exhibits hysteresis, which is related to the pore deformation of the kerogen and the entrapment of solute in the kerogen matrix. The Vo,d of phenanthrene and benzene on the kerogen samples accounts for 23-46% and 36-65% of the maximum sorption volumes, respectively, displaying the importance of the micropore filling.

  15. Hydrocracking phenanthrene and 1-methyl naphthalene: Development of linear free energy relationships

    SciTech Connect

    Landau, R.N.; Korre, S.C.; Neurock, M.; Klein, M.T.; Quann, R.J.

    1994-12-31

    The catalytic hydrocracking reaction pathways, kinetics and mechanisms of 1-methyl naphthalene and phenanthrene were investigated in experiments at 350 C and 68.1 atm H{sub 2} partial pressure (190.6 atm total pressure), using a presulfided Ni/W on USY zeolite catalyst. 1-methyl naphthalene hydrocracking led to 2-methyl naphthalene, methyl tetralins, methyl decalins, pentyl benzene and tetralin. Phenanthrene hydrocracking led to dihydro, tetrahydro and octahydro phenanthrene, butyl naphthalene, tetralin to butyl tetralin and dibutyl benzene. The rate constants for the dealkylation of butyl tetralins produced in the phenanthrene hydrocracking network conform to a linear free energy relationship (LFER), with the heat of formation of the leaving alkyl carbenium ion as the reactivity index.

  16. Ab initio study of the optical properties of crystalline phenanthrene, including the excitonic effects

    NASA Astrophysics Data System (ADS)

    Dadsetani, Mehrdad; Nejatipour, Hajar; Ebrahimian, Ali

    2015-05-01

    Using the ab initio methods for solving the Bethe-Salpeter equation on the basis of the FPLAPW method, optical properties of crystalline phenanthrene were calculated, in a comparison to its isomer, anthracene. It was found that despite the similarity of the structural, electronic, and the overall optical properties in a 40 eV energy range, phenanthrene and anthracene show significant differences in their optical spectra in the energy range below band gaps. Phenanthrene has two spin singlet excitonic features whereas anthracene shows one. The singlet and the lowest triplet binding energies of phenanthrene were found to be larger than anthracene. In this study, in addition, a comparison has been made between the optical spectra in RPA and the existing experimental data.

  17. The impact of carbon nanomaterials on the development of phenanthrene catabolism in soil.

    PubMed

    Oyelami, Ayodeji O; Semple, Kirk T

    2015-07-01

    This study investigates the impact of different types of carbon nanomaterials (CNMs) namely C60, multi-walled carbon nanotubes (MWCNTs) and fullerene soot on the catabolism of (14)C-phenanthrene in soil by indigenous microorganisms. Different concentrations (0%, 0.01%, 0.1% and 1%) of the different CNMs were blended with soil spiked with 50 mg kg(-1) of (12)C-phenanthrene, and aged for 1, 25, 50 and 100 days. An increase in the concentration of MWCNT- and FS-amended soils showed a significant difference (P = 0.014) in the lag phase, maximum rates and overall extent of (14)C-phenanthrene mineralisation. Microbial cell numbers did not show an obvious trend, but it was observed that control soils had the highest population of heterotrophic and phenanthrene degrading bacteria at all time points.

  18. Effects of plant species identity, diversity and soil fertility on biodegradation of phenanthrene in soil.

    PubMed

    Oyelami, Ayodeji O; Okere, Uchechukwu V; Orwin, Kate H; De Deyn, Gerlinde B; Jones, Kevin C; Semple, Kirk T

    2013-02-01

    The work presented in this paper investigated the effects of plant species composition, species diversity and soil fertility on biodegradation of (14)C-phenanthrene in soil. The two soils used were of contrasting fertility, taken from long term unfertilised and fertilised grassland, showing differences in total nitrogen content (%N). Plant communities consisted of six different plant species: two grasses, two forbs, and two legume species, and ranged in species richness from 1 to 6. The degradation of (14)C-phenanthrene was evaluated by measuring indigenous catabolic activity following the addition of the contaminant to soil using respirometry. Soil fertility was a driving factor in all aspects of (14)C-phenanthrene degradation; lag phase, maximum rates and total extents of (14)C-phenanthrene mineralisation were higher in improved soils compared to unimproved soils. Plant identity had a significant effect on the lag phase and extents of mineralisation. Soil fertility was the major influence also on abundance of microbial communities.

  19. Monitoring plant response to phenanthrene using the red edge of canopy hyperspectral reflectance.

    PubMed

    Zhu, Linhai; Chen, Zhongxin; Wang, Jianjian; Ding, Jinzhi; Yu, Yunjiang; Li, Junsheng; Xiao, Nengwen; Jiang, Lianhe; Zheng, Yuanrun; Rimmington, Glyn M

    2014-09-15

    To investigate the mechanisms and potential for the remote sensing of phenanthrene-induced vegetation stress, we measured field canopy spectra, and associated plant and soil parameters in the field controlled experiment in the Yellow River Delta of China. Two widely distributed plant communities, separately dominated by reed (Phragmites australis) and glaucous seepweed (Suaeda salsa), were treated with different doses of phenanthrene. The canopy spectral changes of plant community resulted from the decreases of biomass and foliar projective coverage, while leaf photosynthetic pigment concentrations showed no significance difference among treatments. The spectral response to phenanthrene included a flattened red edge, with decreased first derivative of reflectance. The red edge slope and area consistently responded to phenanthrene, showing a strong relationship with aboveground biomass, coverage and canopy pigments density. These results suggest the potential of remote sensing and the importance of field validation to correctly interpret the causes of the spectral changes.

  20. Influence of surfactant sorption on the removal of phenanthrene from contaminated soils.

    PubMed

    Zhou, Wenjun; Zhu, Lizhong

    2008-03-01

    Laboratory column flushing experiments were conducted to remove phenanthrene from contaminated soils by Triton X-100 (TX100) with an aim to investigating the effect of surfactant sorption on the performance of surfactant-enhanced remediation process. The effluent concentration of phenanthrene from soil columns showed strong dependence on the sorption breakthrough curves of TX100. The removal of phenanthrene from contaminated soils was enhanced only when the sorption breakthrough of TX100 occurred and the influent concentration of TX100 was greater than the critical enhanced flushing concentration (CEFC). The sorption of surfactant onto soils and the subsequent partitioning of contaminants into soil-sorbed surfactant had a significant effect on the solute equilibrium distribution coefficient (KD) and thus the flushing efficiency for phenanthrene. A model was developed to predict KD and CEFC values for simulating the performance of surfactant-enhanced flushing for contaminated soils. These results are of practical interest in developing effective and safe surfactant-enhanced remediation technologies.

  1. Increase in bioavailability of aged phenanthrene in soils by competitive displacement with pyrene

    SciTech Connect

    White, J.C.; Hunter, M.; Pignatello, J.J.; Alexander, M.

    1999-08-01

    Competitive sorption to natural solids among mixtures of organic compounds has been documented in the literature. This study was conducted to determine co-solute competitive effects on the biological and physical availability of polycyclic aromatic hydrocarbons in soils after long contact periods (aging). Sterile suspensions of Mount Pleasant silt loam (Mt. Pleasant, NY, USA) and Pahokee peat soils were spiked with phenanthrene and allowed to age for 3 or 123 d before inoculation with a phenanthrene-degrading bacterium in the presence or absence of the nonbiodegradable co-solute pyrene. As expected, mineralization decreased with aging in the samples not amended with pyrene. However, addition of pyrene just prior to inoculation at 123 d significantly mitigated this decrease; that is, the extent of mineralization was greater in the 123-d pyrene-amended samples than in the 123-d nonamended samples. Parallel experiments on sterile soils showed that pyrene increased the physical availability of phenanthrene by competitive displacement of phenanthrene from sorption sites. First, the addition of pyrene increased recovery of 123-d-aged phenanthrene by mild solvent extraction. Second, addition of pyrene (at three concentrations) dramatically reduced the apparent distribution coefficient (K{sub d}{sup app}) of several concentrations of 60-, 95-, and 111-d-aged phenanthrene. At the lowest phenanthrene and highest pyrene concentrations, reductions in the K{sub d}{sup app} of phenanthrene in the peat soil reached 83%. The competitive displacement effect observed in this study adds further support to the dual mode model of sorption to soil organic matter. The displacement of an aged contaminant by a nonaged co-solute might also prove useful in the development of novel remediation strategies.

  2. Assessment of phenanthrene bioavailability in aged and unaged soils by mild extraction.

    PubMed

    Khan, Muhammad Imran; Cheema, Sardar Alam; Shen, Chaofeng; Zhang, Congkai; Tang, Xianjin; Shi, Jiyan; Chen, Xincai; Park, Joonhong; Chen, Yingxu

    2012-01-01

    It has become apparent that the threat of an organic pollutant in soil is directly related to its bioavailable fraction and that the use of total contaminant concentrations as a measure of potential contaminant exposure to plants or soil organisms is inappropriate. In light of this, non-exhaustive extraction techniques are being investigated to assess their appropriateness in determining bioavailability. To find a suitable and rapid extraction method to predict phenanthrene bioavailability, multiple extraction techniques (i.e., mild hydroxypropyl-β-cyclodextrin (HPCD) and organic solvents extraction) were investigated in soil spiked to a range of phenanthrene levels (i.e., 1.12, 8.52, 73, 136, and 335 μg g( - 1) dry soil). The bioaccumulation of phenanthrene in earthworm (Eisenia fetida) was used as the reference system for bioavailability. Correlation results for phenanthrene suggested that mild HPCD extraction was a better method to predict bioavailability of phenanthrene in soil compared with organic solvents extraction. Aged (i.e., 150 days) and fresh (i.e., 0 day) soil samples were used to evaluate the extraction efficiency and the effect of soil contact time on the availability of phenanthrene. The percentage of phenanthrene accumulated by earthworms and percent recoveries by mild extractants changed significantly with aging time. Thus, aging significantly reduced the earthworm uptake and chemical extractability of phenanthrene. In general, among organic extractants, methanol showed recoveries comparable to those of mild HPCD for both aged and unaged soil matrices. Hence, this extractant can be suitable after HPCD to evaluate risk of contaminated soils.

  3. Preparation and structure of ([mu]-phenanthrene)- and ([mu]-pyrene)bis(tricarbonylchromium)

    SciTech Connect

    Peitz, D.J.; Palmer, R.T.; Radonovich, L.J.; Woolsey, N.F. )

    1993-11-01

    The preparations of the bis(tricarbonylchromium) complexes of phenanthrene and pyrene are reported. These materials were characterized by spectroscopic means, including both their solution and solid CP/MAS NMR spectra. The X-ray crystal structure showed both complexes to have the anticipated anti orientation of the tricarbonylchromium moieties. In the phenanthrene complex, the rotomer conformations for the two tricarbonylchromium groups are different, whereas the pyrene complex has a center of inversion. 28 refs., 4 figs., 8 tabs.

  4. Fate of phenanthrene and mineralization of its non-extractable residues in an oxic soil.

    PubMed

    Wang, Yongfeng; Xu, Jun; Shan, Jun; Ma, Yini; Ji, Rong

    2017-05-01

    The fate of organic pollutants in the environment, especially the formation and stability of non-extractable (i.e., bound) residues (NERs) determines their environmental risk. Using (14)C-tracers, we studied the fate of the carcinogen phenanthrene in active or sterilized oxic loamy soil in the absence and presence of the geophagous earthworm Metaphire guillelmi and characterized the NERs derived from phenanthrene. After incubation of (14)C-phenanthrene in active soil for 28 days, 40 ± 3.1% of the initial amount was mineralized and 70.1 ± 1.9% was converted to NERs. Most of the NERs (>92%) were bound to soil humin. Silylation of the humin-bound residues released 45.3 ± 5.3% of these residues, which indicated that they were physically entrapped, whereas the remainder of the residues were chemically bound or biogenic. By contrast, in sterilized soil, only 43.4 ± 12.6% of the phenanthrene was converted to NERs and all of these residues were completely released upon silylation, which underlines the essential role of microbial activity in NER formation. The presence of M. guillelmi in active soil significantly inhibited phenanthrene mineralization (24.4 ± 2.6% mineralized), but NER formation was not significantly affected. Only a small amount of phenanthrene-derived residues (1.9-5.3% of the initial amount) accumulated in the earthworm body. When humin-bound residues were mixed with fresh soil, 33.9% (humin recovered from active soils) and 12.4% (humin recovered from sterilized soils) of the residues were mineralized after 75 days of incubation, respectively, which indicated a high bioavailability of NERs, albeit lower than the initial addition of phenanthrene. Our results indicated that many phenanthrene-derived NERs, especially those physically entrapped, are still bioavailable and may pose a toxic threat to soil organisms.

  5. Phenanthrene degradation in soil by ozonation: Effect of morphological and physicochemical properties.

    PubMed

    Rodriguez, J; García, A; Poznyak, T; Chairez, I

    2017-02-01

    The aim of this study was to characterize the ozone reaction with phenanthrene adsorbed in two types of soils (sand and agricultural). The effect of soil physicochemical properties (texture, bulk density, particle density, porosity, elemental composition, permeability, surface area and pore volume) on the phenanthrene decomposition was evaluated. Commercial sand has a uniform morphology (spherical) with a particle size range between 0.178 and 0.150 mm in diameter, regular elemental composition SiO2, specific density of 1701.38 kg/m(3), a true density of 2492.50 kg/m(3), with an effective porosity of 31%. On the other hand, the agricultural soil had heterogeneous morphology, particle size between 0.1779 and 0.05 mm in diameter, elemental composition was montmorrillonite silicon oxide, apparent density of 999.52 kg/m(3), a true density of 2673.55 kg/m(3), surface area of 34.92 m(2)/g and porosity of 57%. The percentage of phenanthrene decomposition in the sand was 79% after 2 h of treatment. On the other hand, the phenanthrene degradation in the agricultural soil was 95% during the same reaction time. The pore volume of soil limited the crystal size of phenanthrene and increased the contact surface with ozone confirming the direct impact of physicochemical properties of soils on the decomposition kinetics of phenanthrene. In the case of agricultural soil, the effect of organic matter on phenanthrene decomposition efficiency was also investigated. A faster decomposition of initial contaminant and byproducts formed in ozonation was obtained in natural agricultural soil compared to the sand. The partial identification of intermediates and final accumulated products produced by phenanthrene decomposition in ozonation was developed. Among others, phenanthroquinone, hydroquinone, phenanthrol, catechol as well as phthalic, diphenic, maleic and oxalic acids were identified.

  6. Root exudates modify bacterial diversity of phenanthrene degraders in PAH-polluted soil but not phenanthrene degradation rates.

    PubMed

    Cébron, Aurélie; Louvel, Brice; Faure, Pierre; France-Lanord, Christian; Chen, Yin; Murrell, J Colin; Leyval, Corinne

    2011-03-01

    To determine whether the diversity of phenanthrene-degrading bacteria in an aged polycyclic aromatic hydrocarbon (PAH) contaminated soil is affected by the addition of plant root exudates, DNA stable isotope probing (SIP) was used. Microcosms of soil with and without addition of ryegrass exudates and with ¹³C-labelled phenanthrene (PHE) were monitored over 12 days. PHE degradation was slightly delayed in the presence of added exudate after 4 days of incubation. After 12 days, 68% of added PHE disappeared both with and without exudate. Carbon balance using isotopic analyses indicated that a part of the ¹³C-PHE was not totally mineralized as ¹³CO₂ but unidentified ¹³C-compounds (i.e. ¹³C-PHE or ¹³C-labelled metabolites) were trapped into the soil matrix. Temporal thermal gradient gel electrophoresis (TTGE) analyses of 16S rRNA genes were performed on recovered ¹³C-enriched DNA fractions. 16S rRNA gene banding showed the impact of root exudates on diversity of PHE-degrading bacteria. With PHE as a fresh sole carbon source, Pseudoxanthomonas sp. and Microbacterium sp. were the major PHE degraders, while in the presence of exudates, Pseudomonas sp. and Arthrobacter sp. were favoured. These two different PHE-degrading bacterial populations were also distinguished through detection of PAH-ring hydroxylating dioxygenase (PAH-RHD(α)) genes by real-time PCR. Root exudates favoured the development of a higher diversity of bacteria and increased the abundance of bacteria containing known PAH-RHD(α) genes.

  7. Large and ultrafast third-order optical nonlinearity of novel copolymers containing fluorene and tetraphenyldiaminobiphenyl units in backbones

    NASA Astrophysics Data System (ADS)

    Huang, Wentao; Wang, Shufeng; Yang, Hong; Gong, Qihuang; Zhan, Xiaowei; Liu, Yunqi; Zhu, Daoben

    2001-12-01

    A femtosecond time-resolved optical Kerr gate method, using 115 fs laser pulses at 830 nm, has been applied to investigate the third-order nonlinearity of two novel copolymers containing fluorene and tetraphenyldiaminobiphenyl units in their backbones. Ultrafast off-resonant optical Kerr responses have been observed and the magnitude of the second-order hyperpolarizability was measured as large as 10 -30 esu. The origin of the extraordinary large value was explored and compared to other organic materials.

  8. Phenanthrene-degrader community dynamics in rhizosphere soil from a common annual grass

    SciTech Connect

    Miya, R.K.; Firestone, M.K.

    2000-04-01

    Enhanced rates of phenanthrene biodegradation were observed in rhizosphere soils planted with slender oat (Avena barbata Pott ex Link) compared with unplanted bulk soil controls. Soil microbial populations were characterized using a modified most probable number (MPN) method to determine quantitative shifts in heterotrophic and phenanthrene degrader communities while principal component analysis (PCA) of fatty acid methyl ester (FAME) data from isolated phenanthrene degraders was used to identify qualitative differences and degrader community diversity. The average heterotrophic bacterial population over time was about three times larger in rhizosphere soil than in bulk soil while phenanthrene degrading populations increased by as much as an order of magnitude between 24 and 28 days after planting (DAP). Thus, phenanthrene degraders were selectively enriched in rhizosphere soil compared with bulk soil. The greatest selection for degraders occurred during the later stages of plant development from 24 to 32 DAP. A PCA plot of the FAME data from phenanthrene degrader isolates indicated that the rhizosphere degraders were less diverse than bulk soil degraders. These results give some insight into the mechanisms responsible for enhanced biodegradation and selective degrader enrichment in Rhizosphere soils.

  9. Effects of a nonionic surfactant on biodegradation of phenanthrene and hexadecane in soil

    SciTech Connect

    Macur, R.E.; Inskeep, W.P.

    1999-09-01

    The influence of a nonionic (alcohol ethoxylate) surfactant (Witconol SN70) on biodegradation of phenanthrene and hexadecane (nonaqueous-phase liquid) in soil was studied in batch and transport systems. Simultaneous enhancement of phenanthrene and hexadecane degradation was noted at surfactant doses resulting in aqueous-phase surfactant concentrations below the critical micelle concentration (CMC). Conversely, degradation rates of both compounds declined to essentially zero at supra-CMC doses, suggesting that distinct mechanisms of inhibition and enhancement were operating depending on the effective surfactant concentration. Surfactant doses resulting in enhanced degradation correlated with enhanced gross microbial activity as determined using total CO{sub 2} evolution rates. Supra-CMC does that resulted in inhibited degradation did not suppress gross microbial activity. Furthermore, measurements of phenanthrene solubilization and surface tension indicated that phenanthrene was solubilized at supra-CMC levels of surfactant. Mechanisms of inhibition of phenanthrene and hexadecane degradation at supra-CMC surfactant concentrations may include changes in interfacial chemistry and subsequent mass transfer processes due to sorbed surfactant, reduced bioavailability of micelle-bound phenanthrene and hexadecane, or inhibition of specific members of the microbial community responsible for hydrophobic organic compound degradation.

  10. A battery of bioassays for the evaluation of phenanthrene biotoxicity in soil.

    PubMed

    Khan, Muhammad Imran; Cheema, Sardar Alam; Tang, Xianjin; Hashmi, Muhammad Zaffar; Shen, Chaofeng; Park, Joonhong; Chen, Yingxu

    2013-07-01

    A battery of bioassays was used to assess the ecotoxicological risk of soil spiked with a range of phenanthrene levels (0.95, 6.29, 38.5, 58.7, 122, and 303 μg g(-1) dry soil) and aged for 69 days. Multiple species (viz. Brassica rapa, Eisenia feotida, Vibrio fischeri), representing different trophic levels, were used as bioindicator organisms. Among acute toxicity assays tested, the V. fischeri luminescence inhibition assay was the most sensitive indicator of phenanthrene biotoxicity. More than 15 % light inhibition was found at the lowest phenanthrene level (0.95 μg g(-1)). Furthermore, comet assay using E. fetida was applied to assess genotoxicity of phenanthrene. The strong correlation (r (2) ≥ 0.94) between phenanthrene concentration and DNA damage indicated that comet assay is appropriate for testing the genotoxic effects of phenanthrene-contaminated soil. In the light of these results, we conclude that the Microtox test and comet assay are robust and sensitive bioassays to be employed for the risk evaluation of polycyclic aromatic hydrocarbon-contaminated soil.

  11. Spatial Distribution of Bacterial Communities and Phenanthrene Degradation in the Rhizosphere of Lolium perenne L.

    PubMed Central

    Corgié, S. C.; Beguiristain, T.; Leyval, C.

    2004-01-01

    Rhizodegradation of organic pollutants, such as polycyclic aromatic hydrocarbons, is based on the effect of root-produced compounds, known as exudates. These exudates constitute an important and constant carbon source that selects microbial populations in the plant rhizosphere, modifying global as well as specific microbial activities. We conducted an experiment in two-compartment devices to show the selection of bacterial communities by root exudates and phenanthrene as a function of distance to roots. Using direct DNA extraction, PCR amplification, and thermal gradient gel electrophoresis screening, bacterial population profiles were analyzed in parallel to bacterial counts and quantification of phenanthrene biodegradation in three layers (0 to 3, 3 to 6, and 6 to 9 mm from root mat) of unplanted-polluted (phenanthrene), planted-polluted, and planted-unpolluted treatments. Bacterial community differed as a function of the distance to roots, in both the presence and the absence of phenanthrene. In the planted and polluted treatment, biodegradation rates showed a strong gradient with higher values near the roots. In the nonplanted treatment, bacterial communities were comparable in the three layers and phenanthrene biodegradation was high. Surprisingly, no biodegradation was detected in the section of planted polluted treatment farthest from the roots, where the bacterial community structure was similar to those of the nonplanted treatment. We conclude that root exudates and phenanthrene induce modifications of bacterial communities in polluted environments and spatially modify the activity of degrading bacteria. PMID:15184156

  12. Enhancing phenanthrene biomineralization in a polluted soil using gaseous toluene as a cosubstrate.

    PubMed

    Ortiz, Irmene; Auria, Richard; Sigoillot, Jean-Claude; Revah, Sergio

    2003-02-15

    Laboratory experiments were conducted to study the potential of adding gaseous toluene, as a readily degradable carbon source, to enhance phenanthrene mineralization in polluted soil (1,000 mg/kg(dry soil)) aged for 400 days. Experiments were conducted in 0.5-L column reactors packed with a mixture of (80:20 w(wet)/w(wet)) spiked soil and vermiculite and fed with 1 g m(-3)reactor h(-1) toluene load in air. Removal efficiencies of 100% for toluene and greater than 95% for phenanthrene were obtained in 190 h. Evolved CO2 showed that phenanthrene mineralization increased from 39% to 86% in columns treated with gaseous toluene. Phthalic acid was identified as the principal soluble intermediate, which accumulated when no toluene was added. Increased phenanthrene uptake and mineralization with toluene can be attributed to increased biomass and the induction of enzymes involved in the intermediate mineralization. In microcosm experiments, phthalic acid mineralization increased from 19% to 81% within 50 h in the presence of toluene. Experiments with 14C-labeled phenanthrene confirmed the enhancement of phenanthrene mineralization from 45% to 83% in 385 h with toluene as a second carbon source. The results indicate thatthe addition of an appropriate gaseous cosubstrate could be an adequate strategy to enhance mineralization of PAHs in soil.

  13. Pyrene and phenanthrene sorption to model and natural geosorbents in single- and binary-solute systems.

    PubMed

    Zhang, Jing; Séquaris, Jean-Marie; Narres, Hans-Dieter; Vereecken, Harry; Klumpp, Erwin

    2010-11-01

    Sorption of pyrene and phenanthrene to model (illite and charcoal) and natural (Yangtze sediment) geosorbents were investigated by batch techniques using fluorescence spectroscopy. A higher adsorption of phenanthrene was observed with all sorbents, which is related to the better accessibility of smaller molecules to micropores in the molecular sieve sorbents. In addition, pyrene sorption in binary-solute systems with a constant initial concentration of phenanthrene (0.1 μmol L(-1) or 2 μmol L(-1)) was studied. A 0.1 μmol L(-1) concentration of phenanthrene causes no competitive effect on the pyrene sorption. A 2 μmol L(-1) concentration of phenanthrene significantly suppresses the sorption of pyrene, especially in the low concentration range; nonlinearity of the pyrene sorption isotherms thus decreases. The competitive effect of 2 μmol L(-1) phenanthrene on the pyrene sorption is overestimated by the ideal adsorbed solution theory (IAST) using the fitted single sorption results of both solutes. An adjustment of the IAST application by taking into account the molecular sieve effect is proposed, which notably improves the IAST prediction for the competitive effect.

  14. Highly Soluble p-Terphenyl and Fluorene Derivatives as Efficient Dopants in Plastic Scintillators for Sensitive Nuclear Material Detection.

    PubMed

    Sellinger, Alan; Yemam, Henok A; Mahl, Adam; Greife, Uwe; Tinkham, Jonathan; Koubek, Joshua

    2017-04-10

    Plastic scintillators are commonly used as first-line detectors for special nuclear materials. Current state-of-the-art plastic scintillators based on poly(vinyltoluene) (PVT) matrices containing high loadings (>15.0 wt%) of 2,5-diphenyloxazole (PPO) offer neutron signal discrimination in gamma radiation background (termed pulse shape discrimination, PSD), however they suffer from poor mechanical properties. In this work, a series of p-terphenyl and fluorene derivatives were synthesized and used as dopants in PVT based plastic scintillators as possible alternatives to PPO to address the mechanical property issue and to study the PSD mechanism. The derivatives were synthesized from low cost starting materials in high yields using simple chemistry. The photophysical and thermal properties were investigated for their influence on radiation sensitivity/detection performance, and mechanical stability. A direct correlation was found between the melting point of the dopants and the subsequent mechanical properties of the PVT based plastic scintillators. Select fluorene derivatives produced scintillator samples whose mechanical properties exceeded those of the commercial PPO based scintillators while producing acceptable PSD capabilities. The physical properties of the synthesized dopants were also investigated to examine their effect on the samples. Planar derivatives of fluorene were found to be highly soluble in PVT matrices with little to no aggregation induced effects.

  15. The structures of fluorene-(H2O)1,2 determined by rotational coherence spectroscopy

    NASA Astrophysics Data System (ADS)

    Laman, David M.; Joly, Alan G.; Ray, Douglas

    2003-07-01

    Rotational coherence spectroscopy (RCS), via time-correlated single photon counting, and two-color resonant two-photon ionization (R2PI) time-of-flight mass spectrometry, have been used to characterize fluorene-(water)1,2 [FL-(H2O)1,2] van der Waals clusters generated in supersonic jets. Rotational coherence traces have been obtained at excitation energies corresponding to several resonant features in the S1←S0 R2PI spectra of FL-(H2O)1,2. RCS simulations and diagonalization of the moment of inertia tensor have been used to obtain S1 excited state rotational constants and structures of FL-(H2O)1,2 that are consistent with the experimental rotational coherence traces. The RCS results indicate that: (i) the water molecule in FL-H2O resides above the central five member ring and interacts with both aromatic sites; (ii) the water molecules in FL-(H2O)2 form a water dimer that is most likely oriented along the long axis of fluorene and is hydrogen-bonded to both aromatic sites. The S1←S0 R2PI spectra of FL-(D2O)1,2 and FL-HDO have also been obtained. The 000 transition is a doublet in the R2PI spectra of FL-H2O, FL-D2O, and a singlet in the R2PI spectrum of FL-HDO. The presence of this doublet in the FL-H2O/D2O spectra, and the absence of such a splitting in the FL-HDO spectrum, is an indication of internal rotation of the water molecule on a potential energy surface that changes upon electronic excitation. Lastly, the use of RCS and time-resolved fluorescence as a tool for assigning features in R2PI spectra that are of ambiguous origin due to fragmentation of higher mass clusters into lower mass channels is demonstrated.

  16. Enumeration of phenanthrene-degrading bacteria by an overlayer technique and its use in evaluation of petroleum-contaminated sites

    SciTech Connect

    Bogardt, A.H.; Hemmingsen, B.B. )

    1992-08-01

    Bacteria that are capable of degrading polycyclic aromatic hydrocarbons were enumerated by incorporating soil and water dilutions together with fine particles of phenanthrene, a polycyclic aromatic hydrocarbon, into an agarose overlayer and pouring the mixture over a mineral salts underlayer. The phenanthrene-degrading bacteria embedded in the overlayer were recognized by a halo of clearing in the opaque phenanthrene layer. Diesel fuel- or creosote-contaminated soil and water that were undergoing bioremediation contained 6 [times] 10[sup 6] to 100 [times] 10[sup 6] phenanthrene-degrading bacteria per g and ca. 5 [times] 10[sup 5] phenanthrene-degrading bacteria per ml, respectively, whereas samples from untreated polluted sites contained substantially lower numbers. Unpolluted soil and water contained no detectable phenanthrene degraders or only very modest numbers of these organisms.

  17. Impact of mycelia on the accessibility of fluorene to PAH-degrading bacteria.

    PubMed

    Schamfuß, Susan; Neu, Thomas R; van der Meer, Jan Roelof; Tecon, Robin; Harms, Hauke; Wick, Lukas Y

    2013-07-02

    Mycelia have been recently shown to actively transport polycyclic aromatic hydrocarbons (PAH) in water-unsaturated soil over the range of centimeters, thereby efficiently mobilizing hydrophobic PAH beyond their purely diffusive transport in air and water. However, the question if mycelia-based PAH transport has an effect on PAH biodegradation was so far unsolved. To address this, we developed a laboratory model microcosm mimicking air-water interfaces in soil. Chemical analyses demonstrated transport of the PAH fluorene (FLU) by the mycelial oomycete Pythium ultimum that was grown along the air-water interfaces. Furthermore, degradation of mycelia-transported FLU by the bacterium Burkholderia sartisoli RP037-mChe was indicated. Since this organism expresses eGFP in response to a FLU flux to the cell, it was also as a bacterial reporter of FLU bioavailability in the vicinity of mycelia. Confocal laser scanning microscopy (CLSM) and image analyses revealed a significant increase of eGFP expression in the presence of P. ultimum compared to controls without mycelia or FLU. Hence, we could show that physically separated FLU becomes bioavailable to bacteria after transport by mycelia. Experiments with silicon coated glass fibers capturing mycelia-transported FLU guided us to propose a three-step mechanism of passive uptake, active transport and diffusion-driven release. These experiments were also used to evaluate the contributions of these individual steps to the overall mycelial FLU transport rate.

  18. Alcohol-soluble interfacial fluorenes for inverted polymer solar cells: sequence induced spatial conformation dipole moment.

    PubMed

    Chen, Lie; Liu, Xiangfu; Wei, Yingkai; Wu, Feiyan; Chen, Yiwang

    2016-01-21

    Three fluorene-based alcohol-soluble organic small molecule electrolytes (SMEs) with different conjugated backbones, namely, TFTN-Br, FTFN-Br and FTTFN-Br, were designed as cathode interfacial layers for inverted polymer solar cells (i-PSCs). The insertion of SMEs to the ITO/active layer interfaces effectively lowered the energy barrier for electron transport and improved the inherent compatibility between the hydrophilic ITO and hydrophobic active layers. Due to these advantages, the device based on poly(3-hexylthiophene) (P3HT):(6,6)-phenyl-C61 butyric acid methyl ester (PC61BM) with TFTN-Br as the cathode interfacial layer achieved an improved power conversion efficiency (PCE) of 3.8%, which is a 26% improvement when compared to the standard device comprising ZnO cathode interfacial layers (PCE = 3.0%). Devices with FTFN-Br and FTTFN-Br also showed an improved PCE of 3.1% and 3.5%, respectively. The variation in device performance enhancement was found to be primarily correlated with the different conformation of their assembly onto the electrode caused by the joint sequence of the polar group of the SMEs, consequently impacting the dipole moment and interface morphology. In addition, introducing SMEs as the cathode interfacial layer also produced devices with long-term stability.

  19. Fluorene-9-bisphenol is anti-oestrogenic and may cause adverse pregnancy outcomes in mice

    PubMed Central

    Zhang, Zhaobin; Hu, Ying; Guo, Jilong; Yu, Tong; Sun, Libei; Xiao, Xuan; Zhu, Desheng; Nakanishi, Tsuyoshi; Hiromori, Youhei; Li, Junyu; Fan, Xiaolin; Wan, Yi; Cheng, Siyu; Li, Jun; Guo, Xuan; Hu, Jianying

    2017-01-01

    Bisphenol A (BPA) is used in the production of plastic but has oestrogenic activity. Therefore, BPA substitutes, such as fluorene-9-bisphenol (BHPF), have been introduced for the production of so-called ‘BPA-free' plastics. Here we show that BHPF is released from commercial ‘BPA-free' plastic bottles into drinking water and has anti-oestrogenic effects in mice. We demonstrate that BHPF has anti-oestrogenic activity in vitro and, in an uterotrophic assay in mice, induces low uterine weight, atrophic endometria and causes adverse pregnancy outcomes, even at doses lower than those of BPA for which no observed adverse effect have been reported. Female mice given water containing BHPF released from plastic bottles, have detectable levels of BHPF in serum, low uterine weights and show decreased expressions of oestrogen-responsive genes. We also detect BHPF in the plasma of 7/100 individuals, who regularly drink water from plastic bottles. Our data suggest that BPA substitutes should be tested for anti-oestrogenic activity and call for further study of the toxicological effects of BHPF on human health. PMID:28248286

  20. (Fluoren-9-ylidene)methanedithiolato complexes of gold: synthesis, luminescence, and charge-transfer adducts.

    PubMed

    Vicente, José; González-Herrero, Pablo; García-Sánchez, Yolanda; Jones, Peter G; Bardají, Manuel

    2004-11-15

    Piperidinium 9H-fluorene-9-carbodithioate and its 2,7-di-tert-butyl-substituted analogue [(pipH)(S(2)CCH(C(12)H(6)R(2)-2,7)), R = H (1a), t-Bu (1b)] and 2,7-bis(octyloxy)-9H-fluorene-9-carbodithioic acid [HS(2)CCH(C(12)H(6)(OC(8)H(17))(2)-2,7), 2] and its tautomer [2,7-bis(octyloxy)fluoren-9-ylidene]methanedithiol [(HS)(2)C=C(C(12)H(6)(OC(8)H(17))(2)-2,7), 3] were employed for the preparation of gold complexes with the (fluoren-9-ylidene)methanedithiolato ligand and its substituted analogues. The gold(I) compounds Q(2)[Au(2)(mu-kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)], where Q(+) = PPN(+) or Pr(4)N(+) for R = H (Q(2)4a) or Q(+) = Pr(4)N(+) for R = OC(8)H(17) [(Pr(4)N)(2)4c], were synthesized by reacting Q[AuCl(2)] with 1a or 2 (1:1) and excess piperidine or diethylamine. Complexes of the type [(Au(PR'3))(2)(mu-kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)] with R = H and R' = Me (5a), Et (5b), Ph (5c), and Cy (5d) or R = t-Bu and R' = Me (5e), Et (5f), Ph (5g), and Cy (5h) were obtained by reacting [AuCl(PR'(3))] with 1a,b (1:2) and piperidine. The reactions of 1a,b or 2 with Q[AuCl(4)] (2:1) and piperidine or diethylamine gave Q[Au(kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)] with Q(+) = PPN(+) for R = H [(PPN)6a], Q(+) = PPN(+) or Bu(4)N(+) for R = t-Bu (Q6b), and Q(+) = Bu(4)N(+) for R = OC(8)H(17) [(Bu(4)N)6c]. Complexes Q6a-c reacted with excess triflic acid to give [Au(kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(kappa(2)-S,S-S(2)CCH(C(12)H(6)R(2)-2,7))] [R = H (7a), t-Bu (7b), OC(8)H(17) (7c)]. By reaction of (Bu(4)N)6b with PhICl(2) (1:1) the complex Bu(4)N[AuCl(2)(kappa(2)-S,S-S(2)C=C(C(12)H(6)(t-Bu)(2)-2,7))] [(Bu(4)N)8b] was obtained. The dithioato complexes [Au(SC(S)CH(C(12)H(8)))(PCy(3))] (9) and [Au(n)(S(2)CCH(C(12)H(8)))(n)] (10) were obtained from the reactions of 1a with [AuCl(PCy(3))] or [AuCl(SMe(2))], respectively (1:1), in the absence of a base. Charge-transfer adducts of general composition Q[Au(kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2

  1. Toxicity of polycyclic aromatic hydrocarbons. I. Effect of phenanthrene, pyrene, and their ozonized products on blood chemistry in rats

    SciTech Connect

    Yoshikawa, T.; Ruhr, L.P.; Flory, W.; Giamalva, D.; Church, D.F.; Pryor, W.A.

    1985-06-30

    Male Sprague-Dawley rats were treated with a single ip injection of physiological saline (3.0 ml/kg), dimethyl sulfoxide (DMSO, 3.0 ml/kg), phenanthrene (150 mg/kg), ozonized products of phenanthrene (150 mg/kg), pyrene (150 mg/kg), or ozonized products of pyrene (150 mg/kg). Phenanthrene, pyrene, and their ozonized products were dissolved in DMSO (50 mg/ml). Serum aspartate aminotransferase (AST) activity was increased significantly 24 hr after ip administration of DMSO when compared with physiological saline. Phenanthrene produced a significant elevation of serum AST and gamma-glutamyl transpeptidase (GGTP) levels related to physiological saline and DMSO-injected rats 24 hr after injection. However, GGTP levels for groups treated with DMSO or phenanthrene were not significantly increased when compared with saline groups 72 hr after injection. Ozonized products of phenanthrene produced a significant elevation of serum AST, alanine aminotransferase (ALT), GGTP, and bilirubin levels when compared with groups treated with physiological saline, DMSO, and phenanthrene 24 or 72 hr after injections. The ozonized products of phenanthrene also produced significant elevation of serum creatinine levels compared with physiological saline, DMSO, and phenanthrene groups at 24 hr after treatment and of blood urea nitrogen (BUN) levels at 24 and 72 hr.

  2. High-pressure/high-temperature gas-solubility study in hydrogen-phenanthrene and methane-phenanthrene systems using static and chromatographic techniques

    SciTech Connect

    Malone, P.V.

    1987-01-01

    The design and discovery of sources for alternative energy such as coal liquefaction has become of major importance over the past two decades. One of the major problems in such design in the lack of available data, particularly, for gas solubility in polycyclic aromatics at high temperature and pressure. Static and gas-liquid partition chromatographic methods were used for the study of hydrogen-phenanthrene and methane-phenanthrene systems. The static data for these two binaries were taken along 398.2, 423.2, 448.2, and 473.2 K isotherms up to 25.23 MPa. Gas-liquid partition chromatography was used to study the infinite dilution behavior of methane, ethane, propane, n-butane, and carbon dioxide in the hydrogen-phenanthrene system as well as hydrogen, ethane, n-butane, and carbon dioxide in the methane-phenanthrene binary. The principle objective was to examine the role of the elution gas. Temperatures were along the same isotherms as the static data and up to 20.77 MPa. With the exception of carbon dioxide, Henry's constants were calculated for all systems. Expressions for the heat of solution as a function of pressure were derived for both binary and chromatographic data. Estimates of delta H/sub i/sup sol/ at high pressure were presented.

  3. Carbon Nanotube Properties Influence Adsorption of Phenanthrene and Subsequent Bioavailability and Toxicity to Pseudokirchneriella subcapitata.

    PubMed

    Glomstad, Berit; Altin, Dag; Sørensen, Lisbet; Liu, Jingfu; Jenssen, Bjørn M; Booth, Andy M

    2016-03-01

    The bioavailability of organic contaminants adsorbed to carbon nanotubes (CNTs) remains unclear, especially in complex natural freshwaters containing natural organic matter (NOM). Here, we report on the adsorption capacity (Q(0)) of five CNTs exhibiting different physicochemical properties, including a single-walled CNT (SWCNTs), multiwalled CNTs (MWCNT-15 and MWCNT-30), and functionalized MWCNTs (hydroxyl, -OH, and carboxyl, -COOH), for the model polycyclic aromatic hydrocarbon phenanthrene (3.1-800 μg/L). The influence of phenanthrene adsorption by the CNTs on bioavailability and toxicity was investigated using the freshwater algae Pseudokirchneriella subcapitata. CNTs were dispersed in algal growth media containing NOM (DOC, 8.77 mg/L; dispersed concentrations: 0.5, 1.3, 1.3, 3.3, and 6.1 mg/L for SWCNT, MWCNT-15, MWCNT-30, MWCNT-OH, and MWCNT-COOH, respectively). Adsorption isotherms of phenanthrene to the dispersed CNTs were fitted with the Dubinin-Ashtakhov model. Q(0) differed among the CNTs, increasing with increasing surface area and decreasing with surface functionalization. SWCNT and MWCNT-COOH exhibited the highest and lowest log Q(0) (8.891 and 7.636 μg/kg, respectively). The presence of SWCNTs reduced phenanthrene toxicity to algae (EC50; 528.4) compared to phenanthrene-only (EC50; 438.3), and the presence of MWCNTs had no significant effect on phenanthrene toxicity. However, phenanthrene adsorbed to NOM-dispersed CNTs proved to be bioavailable and contribute to exert toxicity to P. subcapitata.

  4. Discrete electronic-vibrational fluorescence spectra in the low-pressure phenanthrene and naphthacene vapors

    SciTech Connect

    Mirumyants, S.O.; Kozlov, V.K.; Vandyukov, E.A.

    1986-10-01

    In recent years considerable attention has been paid to developing methods for analysis and control of air pollutants. In this work the results of the study on quasiline fluorescence spectra for phenathrene and naphthacene in the gas phase are presented. Despite the fact that phenanthrene is a stereoisomer of anthracene, the shapes and intensities of their absorption and fluorescence spectra are markedly different. The oscillator strength of the first electronic transition in anthracene vapors is 50 times larger than that for the phenanthrene vapor (0.1 and 0.002, respectively). Therefore, the studies of the quasiline fluorescence spectrum of the phenanthrene vapor required a long exposition period (from 7 to 31 h) during the photographic detection. It is known that phenanthrene exhibits a characteristic quasiline spectrum in the 34584000-A range in frozen solutions. The authors have also investigated the possibility of obtaining structured quasiline vapor spectra for a more complex aromatic compound such as naphthacene which comprises four benzyl rings. In conclusion, the quasiline fluorescence spectra for phenanthrene and naphthacene in the gas phase have been obtained for the first time. In certain experimental conditions, phenanthrene and naphthacene emit wellresolved quasiline spectra which are dependent on the excitation frequency, temperature, and vapor pressure. For both compounds there is a frequency range for quasiline fluorescence excitation for which a shift of the quasiline spectrum occurs if the excitation frequency is changed within that range. Also more accurate values for the frequencies of the O-O electronic transition in phenanthrene and naphthacene have been obtained. Diagrams are included.

  5. Proteomic analysis of plasma membrane proteins in wheat roots exposed to phenanthrene.

    PubMed

    Shen, Yu; Du, Jiangxue; Yue, Le; Zhan, Xinhua

    2016-06-01

    Polycyclic aromatic hydrocarbons (PAHs) are potentially carcinogenic and toxic to humans through ingestion of contaminated food crops. PAHs can enter crop roots through proton/PAH symporters; however, to date, the symporter remains unclear. Here we reveal, for the first time, the plasma membrane proteome of Triticum aestivum seedling roots in response to phenanthrene (a model PAH) exposure. Two-dimensional gel electrophoresis (2-DE) coupled with MALDI-TOF/TOF-MS and protein database search engines were employed to analyze and identify phenanthrene-responsive proteins. Over 192 protein spots are reproducibly detected in each gel, while 8 spots are differentially expressed under phenanthrene treatment. Phenanthrene induces five up-regulated proteins distinguished as 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase 2, enolase, heat shock protein 80-2, probable mediator of RNA polymerase II transcription subunit 37e (heat shock 70-kDa protein 1), and lactoylglutathione lyase. Three proteins identified as adenosine kinase 2, 4-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl glucoside beta-D-glucosidase 1c, and glyceraldehyde-3-phosphate dehydrogenase 3 are down-regulated under exposure to phenanthrene. The up-regulated proteins are related to plant defense response, antioxidant system, and glycolysis. The down-regulated proteins involve the metabolism of high-energy compounds and plant growth. Magnesium, which is able to bind to enolase, can enhance the transport of phenanthrene into wheat roots. Therefore, it is concluded that phenanthrene can induce differential expression of proteins in relation to carbohydrate metabolism, self-defense, and plant growth on wheat root plasma membrane. This study not only provides novel insights into PAH uptake by plant roots and PAH stress responses, but is also a good starting point for further determination and analyses of their functions using genetic and other approaches.

  6. Carbon 13 chemical shift tensors in aromatic compounds. 3. Phenanthrene and triphenylene

    SciTech Connect

    Soderquist, A.; Hughes, C.D.; Horton, W.J.; Facelli, J.C.; Grant, D.M.

    1992-04-08

    Measurements of the principal values of the {sup 13}C chemical shift tensor are presented for the three carbons in triphenylene and for three different {alpha} carbons in phenanthrene. The measurements in triphenylene were made in natural abundance samples at room temperature, while the phenanthrene tensors were obtained from selectively labeled compounds (99% {sup 13}C) at low temperatures ({approx} 25 K). The principal values of the shift tensors were oriented in the molecular frame using ab initio LORG calculations. The steric compression at C{sub 4} in phenanthrene and in corresponding positions in triphenylene is manifested in sizable upfield shift in the {sigma} 33 component relative to the corresponding {sigma} 33 values at C{sub 1} and C{sub 9} in phenanthrene. The upfield shift in {sigma} 33 is mainly responsible for the well-known upfield shift of the isotropic chemical shifts of such sterically perturbed carbons. In phenanthrene c{sub 9} exhibits a unique {sigma} 22 value reflecting the greater localization of {pi}-electrons in the c{sub 9}-C{sub 10} bond. This localization of the {pi}-electrons at the C{sub 9}-C{sub 10} bond in the central ring of phenanthrene also corresponds with the most likely ordering of electrons described by the various Kekule structures in phenanthrene. The analysis of the {sup 13}C chemical shieldings of the bridgehead carbons in the triphenylene provides significant experimental information on bonding between rings in polycyclic aromatic compounds. 39 refs., 8 fig., 3 tab.

  7. Long term sorption kinetics of phenanthrene in aquifer materials

    SciTech Connect

    Ruegner, H.; Kleineidam, S.; Grathwohl, P.

    1999-05-15

    Most aquifer materials are heterogeneous in terms of grain size distribution and petrography. To understand sorption kinetics, homogeneous subfractions, either separated from heterogeneous sands and gravels or fragments of fresh rocks, have to be studied. In this paper the authors present data on long-term sorption kinetics of phenanthrene for homogeneous samples consisting of one type of lithocomponents or fresh rock fragments in different grain sizes. Diffusion rate constants were determined in batch experiments using a/ numerical model for retarded intraparticle pore diffusion and correlated to grain size and intraparticle porosity of the lithocomponents. Sorption isotherms were nonlinear for all samples investigated. The numerical model described the sorption kinetics very well for coarse sand and gravels. Tortuosity factors, which were obtained as final fitting factors, agreed with Archie`s law predictions based on the intraparticle porosity. The dependency of sorptive uptake on grain size revealed that for smaller grains intrasorbent diffusion may become significant. This is attributed to relatively large particulate organic matter (POM) within the sedimentary rock fragments. Specifically, charcoal and coal particles, which were found in some of the sandstones, controlled the sorptive uptake rates.

  8. Sublethal effects of phenanthrene, nicotine, and pinane on Daphnia pulex

    USGS Publications Warehouse

    Savino, Jacqueline F.; Tanabe, Lila L.

    1989-01-01

    Chronic studies of Daphnia Pulex exposed to different concentrations of phenanthrene, nicotine, and pinane produced consistent sublethal effects among replicates and concentrations. The LOEC's for growth and fecundity with each chemical tested were 3 to 30% of the 48-hr EC50's. Growth decreased as concentration increased for each chemical tested, and fecundity approached zero at 2 to 5 times the LOEC for each chemical. In this study chemicals representing PAHs, heterocyclic nitrogen compounds, and cyclic alkanes, produced detectable sublethal effects in daphnids at less than 0.1 ppm in water. These chronic studies, in conjuction with the more extensive acute toxicity testing (Passino and Smith 1987; Perry and Smith 1988; Smith et al. 1988), provided a relatively quick but thorough toxicological assessment of a large array of chemicals and demonstrated the relative importance of different classes of compounds in changing growth and survival trends in given populations of native organisms. Classic toxicity tests continue to provide a reliable backdrop of results with which the effects of new chemicals or mixtures can be compared.

  9. Polyurethane foam (PUF) passive samplers for monitoring phenanthrene in stormwater.

    PubMed

    Dou, Yueqin; Zhang, Tian C; Zeng, Jing; Stansbury, John; Moussavi, Massoum; Richter-Egger, Dana L; Klein, Mitchell R

    2016-04-01

    Pollution from highway stormwater runoff has been an increasing area of concern. Many structural Best Management Practices (BMPs) have been implemented for stormwater treatment and management. One challenge for these BMPs is to sample stormwater and monitor BMP performance. The main objective of this study was to evaluate the feasibility of using polyurethane foam (PUF) passive samplers (PSs) for sampling phenanthrene (PHE) in highway stormwater runoff and BMPs. Tests were conducted using batch reactors, glass-tube columns, and laboratory-scale BMPs (bioretention cells). Results indicate that sorption for PHE by PUF is mainly linearly relative to time, and the high sorption capacity allows the PUF passive sampler to monitor stormwater events for months or years. The PUF passive samplers could be embedded in BMPs for monitoring influent and effluent PHE concentrations. Models developed to link the results of batch and column tests proved to be useful for determining removal or sorption parameters and performance of the PUF-PSs. The predicted removal efficiencies of BMPs were close to the real values obtained from the control columns with errors ranging between -8.46 and 1.52%. This research showed that it is possible to use PUF passive samplers for sampling stormwater and monitoring the performance of stormwater BMPs, which warrants the field-scale feasibility studies in the future.

  10. Hydroxypropyl-β-cyclodextrin extractability and bioavailability of phenanthrene in humin and humic acid fractions from different soils and sediments.

    PubMed

    Gao, Huipeng; Ma, Jing; Xu, Li; Jia, Lingyun

    2014-01-01

    Organic matter (OM) plays a vital role in controlling polycyclic aromatic hydrocarbon (PAH) bioavailability in soils and sediments. In this study, both a hydroxypropyl-β-cyclodextrin (HPCD) extraction test and a biodegradation test were performed to evaluate the bioavailability of phenanthrene in seven different bulk soil/sediment samples and two OM components (humin fractions and humic acid (HA) fractions) separated from these soils/sediments. Results showed that both the extent of HPCD-extractable phenanthrene and the extent of biodegradable phenanthrene in humin fraction were lower than those in the respective HA fraction and source soil/sediment, demonstrating the limited bioavailability of phenanthrene in the humin fraction. For the source soils/sediments and the humin fractions, significant inverse relationships were observed between the sorption capacities for phenanthrene and the amounts of HPCD-extractable or biodegradable phenanthrene (p < 0.05), suggesting the importance of the sorption capacity in affecting desorption and biodegradation of phenanthrene. Strong linear relationships were observed between the amount of HPCD-extractable phenanthrene and the amount degraded in both the bulk soils/sediments and the humin fractions, with both slopes close to 1. On the other hand, in the case of phenanthrene contained in HA, a poor relationship was observed between the amount of phenanthrene extracted by HPCD and the amount degraded, with the former being much less than the latter. The results revealed the importance of humin fraction in affecting the bioavailability of phenanthrene in the bulk soils/sediments, which would deepen our understanding of the organic matter fractions in affecting desorption and biodegradation of organic pollutants and provide theoretical support for remediation and risk assessment of contaminated soils and sediments.

  11. Identification of a Novel Metabolite in the Degradation of Pyrene by Mycobacterium sp. Strain AP1: Actions of the Isolate on Two- and Three-Ring Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Vila, Joaquim; López, Zaira; Sabaté, Jordi; Minguillón, Cristina; Solanas, Anna M.; Grifoll, Magdalena

    2001-01-01

    Mycobacterium sp. strain AP1 grew with pyrene as a sole source of carbon and energy. The identification of metabolites accumulating during growth suggests that this strain initiates its attack on pyrene by either monooxygenation or dioxygenation at its C-4, C-5 positions to give trans- or cis-4,5-dihydroxy-4,5-dihydropyrene, respectively. Dehydrogenation of the latter, ortho cleavage of the resulting diol to form phenanthrene 4,5-dicarboxylic acid, and subsequent decarboxylation to phenanthrene 4-carboxylic acid lead to degradation of the phenanthrene 4-carboxylic acid via phthalate. A novel metabolite identified as 6,6′-dihydroxy-2,2′-biphenyl dicarboxylic acid demonstrates a new branch in the pathway that involves the cleavage of both central rings of pyrene. In addition to pyrene, strain AP1 utilized hexadecane, phenanthrene, and fluoranthene for growth. Pyrene-grown cells oxidized the methylenic groups of fluorene and acenaphthene and catalyzed the dihydroxylation and ortho cleavage of one of the rings of naphthalene and phenanthrene to give 2-carboxycinnamic and diphenic acids, respectively. The catabolic versatility of strain AP1 and its use of ortho cleavage mechanisms during the degradation of polycyclic aromatic hydrocarbons (PAHs) give new insight into the role that pyrene-degrading bacterial strains may play in the environmental fate of PAH mixtures. PMID:11722898

  12. Sorption/desorption reversibility of phenanthrene in soils and carbonaceous materials

    SciTech Connect

    Guohui Wang; Sybille Kleineidam; Peter Grathwohl

    2007-02-15

    Sorption/desorption of phenanthrene in two soil samples and carbonaceous materials was found to yield co-incident equilibrium isotherms and no significant hysteresis was observed. Additionally, release of native phenanthrene was investigated. Equilibrium sorption and desorption isotherms were determined using pulverized samples of Pahokee peat, lignite, and high-volatile bituminous coal, a mineral soil, and an anthropogenic soil. Instead of the conventional decant-and-refill batch method, sorption/desorption was driven by temperature changes using consistent samples. Sorption started at 77{sup o}C and was increased by reducing the temperature stepwise to 46, 20, and finally 4{sup o}C. For desorption the temperature was increased stepwise again until 77{sup o}C was reached. Besides the co-incident sorption and desorption isotherms at each temperature step, the solubility-normalized sorption/desorption isotherms of all different temperatures collapse to unique overall isotherms. Leaching of native phenanthrene occurred at much lower concentrations but was well predicted by extrapolation of the spiked sorption isotherms indicating that the release of native phenanthrene involves the same sorption/desorption mechanisms as those for newly added phenanthrene. 35 refs., 4 figs., 5 tabs.

  13. Adsorption of phenanthrene on multilayer graphene as affected by surfactant and exfoliation.

    PubMed

    Zhao, Jian; Wang, Zhenyu; Zhao, Qing; Xing, Baoshan

    2014-01-01

    Surfactant mediated exfoliation of multilayer graphene and its effects on phenanthrene adsorption were investigated using a passive dosing technique. In the absence of surfactant (sodium cholate, NaC), multilayer graphene had higher adsorption capacity for phenanthrene than carbon nanotube and graphite due to the higher surface area and micropore volume. The observed desorption hysteresis is likely caused by the formation of closed interstitial spaces through folding and rearrangement of graphene sheets. In the presence of NaC (both 100 and 8000 mg/L), phenanthrene adsorption on graphene was decreased due to the direct competition of NaC molecules on the graphene surface. With the aid of sonication, multilayer graphene sheets were exfoliated by NaC, leading to better dispersion. The degree of dispersion depended on the graphene-NaC ratio in aqueous solution rather than critical micelle concentration of NaC, and the good dispersion occurred after reaching adsorption saturation of NaC molecules on graphene sheets. In addition, exfoliation weakened the competition between phenanthrene and NaC and enhanced the adsorption capacity of graphene for phenanthrene due to exposed new sites. The findings on exfoliation of graphene sheets and related adsorption properties highlight not only the potential applications of multilayer graphene as efficient adsorbent but also its possible environmental risk.

  14. Stereoselective metabolism of anthracene and phenanthrene by the fungus Cunninghamella elegans

    SciTech Connect

    Cerniglia, C.E.; Yang, S.K.

    1984-01-01

    The fungus Cunninghamella elegans oxidized anthracene and phenanthrene to form predominately transdihydrodiols. The metabolites were isolated by reversed-phase high-pressure liquid chromatography for structural and conformational analyses. Comparison of the circular dichroism spectrum of the fungal trans-1,2-dihydroxy-1,2-dihydroanthracene to that formed by rat liver microsomes indicated that the major enantiomer of the trans-1,2-dihydroxy-1,2-dihydroanthracene formed by C. elegans had an S,S absolute stereochemistry, which is opposite to the predominately 1R,2R dihydrodiol formed by rat liver microsomes. C. elegans oxidized phenanthrene primarily in the 1,2-positions to form trans-1,2-dihydroxy-1,2-dihydrophenanthrene. In addition, a minor amount of trans-3,4-dihydroxy-3,4-dihydrophenanthrene was detected. Metabolism at the K-region (9,10-positions) of phenanthrene was not detected. Comparison of the circular dichroism spectra of the phenanthrene trans-1,2- and trans-3,4-dihydrodiols formed by C. elegans to those formed by mammalian enzymes indicated that each of the dihydrodiols formed by C. elegans had an S,S absolute configuration. The results indicate that there are differences in both the regio- and stereoselective metabolism of anthracene and phenanthrene between the fungus C. elegans and rat liver microsomes. 26 references.

  15. Impact of activated carbon on the catabolism of (14)C-phenanthrene in soil.

    PubMed

    Oyelami, Ayodeji O; Ogbonnaya, Uchenna; Muotoh, Chitom; Semple, Kirk T

    2015-06-01

    Activated carbon amendment to contaminated soil has been proposed as an alternative remediation strategy to the management of persistent organic pollutant in soils and sediments. The impact of varying concentrations (0%, 0.01%, 0.1% and 1.0%) of different types of AC on the development of phenanthrene catabolism in soil was investigated. Mineralisation of (14)C-phenanthrene was measured using respirometric assays. The increase in concentration of CB4, AQ5000 or CP1 in soil led to an increase in the length of the lag phases. Statistical analyses showed that the addition of increasing concentrations of AC to the soil significantly reduced (P < 0.05) the extent of (14)C-phenanthrene mineralisation. For example, for CB4-, AQ5000- and CP1-amended soils, the overall extent of (14)C-phenanthrene mineralisation reduced from 43.1% to 3.28%, 36.9% to 0.81% and 39.6% to 0.96%, respectively, after 120 days incubation. This study shows that the properties of AC, such as surface area, pore volume and particle size, are important factors in controlling the kinetics of (14)C-phenanthrene mineralisation in soil.

  16. Ethanol and phenanthrene increase the biomass of fungal assemblages and decrease plant litter decomposition in streams.

    PubMed

    Barros, Diana; Oliveira, Patrícia; Pascoal, Cláudia; Cássio, Fernanda

    2016-09-15

    Fungi, particularly aquatic hyphomycetes, have been recognized as playing a dominant role in microbial decomposition of plant litter in streams. In this study, we used a microcosm experiment with different levels of fungal diversity (species number and identity) using monocultures and combinations with up to five aquatic hyphomycete species (Articulospora tetracladia, Tricladium splendens, Heliscus submersus, Tetrachaetum elegans and Flagellospora curta) to assess the effects of ethanol and phenanthrene on three functional measures: plant litter decomposition, fungal biomass accrual and reproduction. Alder leaves were conditioned by fungi for 7days and then were exposed to phenanthrene (1mgL(-1)) dissolved in ethanol (0.1% final concentration) or ethanol (at the concentration used to solubilise phenanthrene) for further 24days. Exposure to ethanol alone or in combination with phenanthrene decreased leaf decomposition and fungal reproduction, but increased fungal biomass produced. All aspects of fungal activity varied with species number. Fungal activity in polycultures was generally higher than that expected from the sum of the weighted performances of participating species in monoculture, suggesting complementarity between species. However, the activity of fungi in polycultures did not exceed the activity of the most productive species either in the absence or presence of ethanol alone or with phenanthrene.

  17. Biodegradation of phenanthrene in sand columns in the presence of nonionic surfactants

    SciTech Connect

    Norris, D.; Ahmed, T.

    1994-12-31

    The effects of three nonionic surfactants on phenanthrene (C{sub 14}H{sub 10}) removal and mineralization by aerobic bacteria were studied using a bench-scale apparatus. Columns were packed with fine sand coated with a mixture of (9-{sup 14}C) labeled and unlabeled phenanthrene (0.33 mg/g) and then inoculated by pumping acclimated bacteria. Surfactants at a concentration of 50 mg/L in an oxygenated buffer solution were then pumped through the media for 14 days at average pore velocities of 1 m/d to 3 m/d. Mineralization of phenanthrene was estimated by {sup 14}CO{sub 2} activity in the column effluent and total removal was measured by the change in {sup 14}C activity of the sand. Depending on the surfactant, mineralization was either inhibited or enhanced. A two-fold increase in flow rate increased phenanthrene mineralization and total removal greater than the effect of surfactant addition alone. Total removal ranged from 86.4% to 40.3% of the initial phenanthrene present.

  18. Spatial and temporal variation of phenanthrene-degrading bacteria in intertidal sediments

    SciTech Connect

    Berardesco, G.; Dyhrman, S.; Gallagher, E.; Shiaris, M.P.

    1998-07-01

    Phenanthrene-degrading bacteria were isolated from a 1-m{sup 2} intertidal sediment site in Boston Harbor. Samples were taken six times over 2 years. A total of 432 bacteria were isolated and characterized by biochemical testing. When clustered on the basis of phenotypic characteristics, the isolates could be separated into 68 groups at a similarity level of approximately 70%. Several groups corresponded to well-characterized species belonging the genera Vibrio and Pseudomonas. Only 51 of the 437 isolates hybridized to a DNA probe that encodes the upper pathway of naphthalene and phenanthrene degradation in Pseudomonas putida NCIB 9816. A cluster analysis indicated that the species composition of the phenanthrene-degrading community changed significantly from sampling date to sampling date. At one sampling time, 12 6-mm-diameter core subsamples were taken within the 1-m{sup 2} site to determine the spatial variability of the degrading communities. An analysis of molecular variance, performed with the phenotypic characteristics, indicated that only 6% of the variation occurred among the 12 subsamples, suggesting that the subsamples were almost identical in composition. The authors concluded that the communities of phenanthrene-degrading bacteria in the sediments are very diverse, that the community structure undergoes significant change with time but does not vary significantly on a spatial scale of centimeters, and that the predominant genes that encode phenanthrene degradation in the communities are not well-characterized.

  19. The development of phenanthrene catabolism in soil amended with transformer oil.

    PubMed

    Lee, Philip H; Doick, Kieron J; Semple, Kirk T

    2003-11-21

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants frequently associated with light non-aqueous-phase liquids (LNAPLs) in soil. Microbial degradation comprises a major loss process for PAHs in the environment. Various laboratory studies, using known degraders, have shown reduced or enhanced mineralisation of PAHs when dissolved in different LNAPLs. Effects due to the presence of LNAPLs on indigenous micro-organisms, however, are not fully understood. A pristine pasture soil was spiked with [14C]phenanthrene and transformer oil to 0, 0.01 and 0.1%, and incubated for 180 days. The catabolic potential of the soil towards phenanthrene was assessed periodically during ageing. The extent of the lag phase (prior to >5% mineralisation), maximum rates and overall extents of mineralisation observed during the course of a 14-day bioassay appeared to be dependent upon phenanthrene concentration, the presence of transformer oil, and soil-contaminant contact time. Putatively, transformer oil enhanced acclimation and facilitated the development of measurable catabolic activity towards phenanthrene in a previously uncontaminated pasture soil. Exact mechanisms for the observed enhancement, longer-term fate/degradation of the oil and residual phenanthrene, and effects of the presence of the oil on the indigenous microbes over extended time frames warrant further investigation.

  20. Viability of phenanthrene biodegradation by an isolated bacterial consortium: optimization and scale-up.

    PubMed

    Moscoso, F; Ferreira, L; Deive, F J; Morán, P; Sanromán, M A

    2013-02-01

    In the present work, biodegradation of phenanthrene by a bacterial consortium (LB2), isolated from lab-polluted soils has been investigated. The 16S rRNA gene-based molecular analysis revealed that the bacterial consortium LB2 consisted of two strains showing a very high homology with Staphylococcus warneri and Bacillus pumilus. The optimization of phenanthrene degradation by the consortium LB2, using a central composite face-centered design was carried out taking into account three important parameters such as temperature, pH, and phenanthrene concentration. Near complete phenanthrene degradation was reached by consortium LB2 at the optimal conditions (pH of 7.5 and 37.5 °C) in less than 48 h. Moreover, the efficiency of phenanthrene biodegradation was assessed by using logistic and Luedeking and Piret-type models. Finally, the process was implemented at bench-scale bioreactor and the main degradation routes were identified based on GC-MS data.

  1. Nitrite-induced enhancement of toxicity of phenanthrene in fish and its implications for coastal waters

    NASA Astrophysics Data System (ADS)

    Shailaja, M. S.; Rodrigues, A.

    2003-04-01

    Coastal areas are prone to varying degrees of anthropogenic chemical contamination. In many coastal environments experiencing reducing conditions in the water column, nitrite is produced as a result of denitrification. With a view to determining the effect of a natural stress such as the presence of nitrite in water on the xenobiotic metabolism in fish, the euryhaline cichlid Oreochromis mossambicus was exposed for up to 9 days to environmentally relevant concentrations of water-borne nitrite and phenanthrene, a polycyclic aromatic hydrocarbon. Analyses of different biomarkers in the treated fish indicated significant increase in the metabolism of phenanthrene as a result of exposure to nitrite. For example, the activity of the biotransformation enzyme measured as 7-ethoxyresorufin- O-deethylase activity was, in the presence of 1 μM nitrite, nearly twice that produced by phenanthrene alone. Similarly, biliary fixed fluorescence values reflecting phenanthrene and its metabolites were rendered 1.7 times higher when exposed simultaneously to nitrite. Contact with nitrite and phenanthrene together also led to severe hepatic damage with possible cell death as inferred from the large enhancement in sorbitol dehydrogenase activity in the serum and reduced liver somatic index.

  2. The impact of biochar on the bioaccessibility of (14)C-phenanthrene in aged soil.

    PubMed

    Ogbonnaya, O U; Adebisi, O O; Semple, K T

    2014-11-01

    Biochar is a carbon rich product from the incomplete combustion of biomass and it has been shown to reduce bioavailability of organic contaminants through adsorption. This study investigated the influence of 0%, 1%, 5% and 10% of two different particle sized wood biochars (≤2 mm and 3-7 mm) on the bioaccessibility of (14)C-phenanthrene (10 mg kg(-1)) in aged soil. The extent of (14)C-phenanthrene mineralisation by phenanthrene-degrading Pseudomonas sp. inoculum was monitored over a 14 day period in respirometric assays and compared to hydroxypropyl-β-cyclodextrin (HPCD) aqueous extraction. Notably, biochar amendments showed significant reduction in extents of mineralisation and HPCD extraction. Linear correlations between HPCD extractability and the total amount mineralised revealed good correlations, with 2 mm biochar showing a best fit (r(2) = 0.97, slope = 1.11, intercept = 1.72). Biochar reduced HPCD extractability and bioaccessibility of (14)C-phenanthrene to microorganisms in a similar manner. Biochar can aid risk reduction to phenanthrene exposure to biota in soil and HPCD can serve as a useful tool to assess the extent of exposure in biochar-amended soils.

  3. The influence of sediment resuspension on the degradation of phenanthrene in flow-through microcosms.

    PubMed

    LeBlanc, Lawrence A; Gulnick, Jeanne D; Brownawell, Bruce J; Taylor, Gordon T

    2006-03-01

    The effect of sediment resuspension on the mineralization of phenanthrene was examined in microcosms and sediment slurries. In computer-controlled, flow-through microcosms, 14C-phenanthrene-amended sediments were resuspended into overlying oxic water at frequencies of 12, 4, 1, 0.25 and 0 d(-1). In slurry bottle experiments 14C-phenanthrene-amended sediments were continuously resuspended under oxic (excess air headspace) and anoxic (N2 headspace) conditions and mineralization was measured at periods from 2 h to 7 days. Our main findings were: (1) mineralization rate constants from the microcosms ranged from 0.001 to 0.01 d(-1) and increased with frequency of resuspension, (2) these rates fell between those measured in oxic and anoxic slurries and were predicted within a factor of 2.5 by a model in which mineralization depended on the degree of oxygen exposure, and (3) the phenanthrene-degrading bacterial community was more active in resuspended sediments incubated in the microcosms than in sediments which were not resuspended, or which were stored under refrigeration. We conclude from these experiments that the effects of sediment resuspension on phenanthrene degradation are consistent with a primary role of average oxygen exposure, and also an alteration in the PAH-degrading activity of microbial populations.

  4. Sorption-desorption hysteresis of phenanthrene--effect of nanopores, solute concentration, and salinity.

    PubMed

    Wu, Wenling; Sun, Hongwen

    2010-11-01

    Phenanthrene sorption and desorption from sediment/soil in fresh and saline water were measured, and effects of nanopores, solute concentration, and salinity on sorption-desorption hysteresis were discussed. The extent and kinetics of sorption-desorption hysteresis depend much on the pore distribution of the sorbents, and greater but slower-developed hysteresis occurred on the sorbent with higher specific surface area and more nanopores. In saline water, phenanthrene sorption was enhanced as compared to freshwater, with logKF increasing from 2.84 and 3.08 to 2.96 and 3.33 for the two sorbents, respectively; however, the sorption-desorption hysteresis was weakened, as indicated by the lower hysteresis index in saline water as compared to those in freshwater. In successive desorption, the irreversible sorbed amount of phenanthrene increased with increasing phenanthrene concentration until a maximum (Qmaxirr) was achieved, and the subsequent sorption became reversible. In saline water, Qmaxirr is much lower (10 mg kg(-1)) as compared to freshwater (36 mg kg(-1)), and phenanthrene sorption was almost reversible, especially at high concentrations. N2 sorption illustrated that soil organic matter had changed to a more condensed conformation in saline water, as indicted by the reduced surface area (from 9.6 to 7.3 m2 g(-1)), which is unfavorable for irreversible sorption.

  5. Cytoplasmic pH-Stat during Phenanthrene Uptake by Wheat Roots: A Mechanistic Consideration.

    PubMed

    Zhan, Xinhua; Yi, Xiu; Yue, Le; Fan, Xiaorong; Xu, Guohua; Xing, Baoshan

    2015-05-19

    Dietary intake of plant-based foods is a major contribution to the total exposure of polycyclic aromatic hydrocarbons (PAHs). However, the mechanisms underlying PAH uptake by roots remain poorly understood. This is the first study, to our knowledge, to reveal cytoplasmic pH change and regulation in response to PAH uptake by wheat roots. An initial drop of cytoplasmic pH, which is concentration-dependent upon exposure to phenanthrene (a model PAH), was followed by a slow recovery, indicating the operation of a powerful cytoplasmic pH regulating system. Intracellular buffers are prevalent and act in the first few minutes of acidification. Phenanthrene activates plasmalemma and tonoplast H(+) pump. Cytolasmic acidification is also accompanied by vacuolar acidification. In addition, phenanthrene decreases the activity of phosphoenolpyruvate carboxylase and malate concentration. Moreover, phenanthrene stimulates nitrate reductase. Therefore, it is concluded that phenanthrene uptake induces cytoplasmic acidification, and cytoplasmic pH recovery is achieved via physicochemical buffering, proton transport outside cytoplasm into apoplast and vacuole, and malate decarboxylation along with nitrate reduction. Our results provide a novel insight into PAH uptake by wheat roots, which is relevant to strategies for reducing PAH accumulation in wheat for food safety and improving phytoremediation of PAH-contaminated soils or water by agronomic practices.

  6. Effects of biosurfactant-producing bacteria on biodegradation and transport of phenanthrene in subsurface soil.

    PubMed

    Chang, Jae-Soo; Cha, Daniel K; Radosevich, Mark; Jin, Yan

    2015-01-01

    This study investigated the effects of surfactant-producing microorganism, Pseudomonas aeruginosa ATCC 9027, on phenanthrene (PHE) biodegradation by two different PHE-degrading bacteria (Isolate P5-2 and Pseudomonas strain R) in soil. Phenanthrene mineralization experiments were conducted with soils inoculated with one of PHE-degraders and/or the surfactant-producer. Influence of co-inoculation with the surfactant-producing bacteria on phenanthrene transport and biodegradation was also examined in soil columns. P. strain R mineralized phenanthrene faster and to a greater extent than Isolate P5-2 in the test soil. Co-inoculation with the surfactant-producing bacteria significantly enhanced phenanthrene biodegradation by P. strain R but it did not affect the biodegradation by Isolate P5-2 in both batch and column systems. Production of biosurfactants by P. aeruginosa ATCC 9027 was negligible under the given conditions. This study demonstrated that bioaugmentation with surfactant-producing bacteria could enhance in situ bioremediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs) and the beneficial effect of the bioaugmentation depended on types of PAH-degrading microorganisms present.

  7. Resonant two-photon ionization of fluorene rare-gas van der Waals complexes

    NASA Astrophysics Data System (ADS)

    Leutwyler, Samuel; Even, Uzi; Jortner, Joshua

    1983-12-01

    Resonant two-photon ionization combined with time-of-flight mass spectrometry was applied for the interrogation of the S0 → S1 electronic-vibrational excitations of van der Waals complexes of fluorene (FL) with rare-gas atoms and N2 in supersonic jets. Energy-resolved and mass-resolved spectra of FL ṡ Ne, FL ṡ Arn (n=1-3), FL ṡ Kr, FL ṡ Xe, and FL ṡ N2 were recorded over the energy range 0-800 cm-1 above the electronic origin of S1. The red microscopic spectral shifts of the electronic origins of FL ṡ R (R=Ar, Kr, and Xe) complexes are dominated by dispersive interactions, being proportional to the polarizability of R. The vibrational level structure of FL ṡ Rn (R=Ar, Kr, and Xe) complexes exhibits intramolecular vibrational excitations of FL, as well as intermolecular vibrations, which involve the relative motion of FL and R in the complex. The spectra of FL ṡ Ne and FL ṡ N2 reveal a rich vibrational structure in the vicinity of the electronic origin, indicating a substantial change of the nuclear configuration upon electronic excitation. Upper and lower bounds on the dissociation energies of FL ṡ R (R=Ne, Kr, and Xe) and FL ṡ Ar2 were inferred from the vibrational level structure in the mass-resolved spectra, where the disappearance of the signal of the parent van der Waals ion and the appearance of the ion signal of the fragments mark the onset of the vibrational predissociation process.

  8. Influence of structure-selective fluorene-based polymer wrapping on optical transitions of single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tange, Masayoshi; Okazaki, Toshiya; Iijima, Sumio

    2013-12-01

    To understand how fluorene-based polymers selectively extract specific semiconducting single-wall carbon nanotubes (SWCNTs), we compared the optical transitions of SWCNTs wrapped with poly(9,9-dioctylfluorene-alt-pyridine) (PFOPy), i.e., structure-selective polymers, with those wrapped with poly(9,9-di-n-dodecylfluorene) (PFD), i.e., non-selective polymers, in organic solvents by using photoluminescence (PL) excitation spectroscopy. Two (n,m) species of PFOPy-wrapped SWCNTs with intermediate chiral angles exhibited blue-shifted emissions compared with the PFD-wrapped SWCNTs. The shifts in the peaks of PL signals cannot be explained in terms of the dielectric screening effect, but can plausibly be explained in terms of the strains of specific SWCNTs due to the PFOPy wrapping. Moreover, the emissions of specific SWCNTs wrapped with PFOPy were not blue-shifted as much when the solvent was changed from toluene to p-xylene, and this result could be accounted for by a change in the rigidity of the fluorene backbone. Moreover, using p-xylene instead of toluene lowered the selectivity of the SWCNT extraction, thereby suggesting the importance of having a rigid fluorene backbone for selective extraction of SWCNTs.To understand how fluorene-based polymers selectively extract specific semiconducting single-wall carbon nanotubes (SWCNTs), we compared the optical transitions of SWCNTs wrapped with poly(9,9-dioctylfluorene-alt-pyridine) (PFOPy), i.e., structure-selective polymers, with those wrapped with poly(9,9-di-n-dodecylfluorene) (PFD), i.e., non-selective polymers, in organic solvents by using photoluminescence (PL) excitation spectroscopy. Two (n,m) species of PFOPy-wrapped SWCNTs with intermediate chiral angles exhibited blue-shifted emissions compared with the PFD-wrapped SWCNTs. The shifts in the peaks of PL signals cannot be explained in terms of the dielectric screening effect, but can plausibly be explained in terms of the strains of specific SWCNTs due to the PFOPy

  9. The influence of mechanochemical modification on prevention of toxic ability of humic acids towards phenanthrene in aquatic environment

    NASA Astrophysics Data System (ADS)

    Shekhovtsova, N. S.; Maltseva, E. V.; Glyzina, T. S.; Ovchinnikova, I. S.

    2015-11-01

    The aim of the research work is to quantify interaction between phenanthrene with modified humic acids in aquatic environment. The changes in the structure and properties of humic acids after modifications were studied with 1H NMR spectroscopy and potentiometric titration methods. Our research demonstrates that the application of thiourea as a modified agent increases the binding capacity of humic acids towards phenanthrene.

  10. Effect of corn plant on survival and phenanthrene degradation capacity of Pseudomonas sp. UG14LR in two soils.

    PubMed

    Chouychai, Waraporn; Thongkukiatkul, Amporn; Upatham, Suchart; Pokethitiyook, Prayad; Kruatrachue, Maleeya; Lee, Hung

    2012-07-01

    A study was undertaken to assess if corn (Zea mays L.) can enhance phenanthrene degradation in two soils inoculated with Pseudomonas sp. UG14Lr. Corn increased the number of UG14Lr cells in both soils, especially in the acidic soiL Phenanthrene was degraded to a greater extent in UG14Lr-inoculated or corn-planted soils than uninoculated and unplanted soils. The spiked phenanthrene was completely removed within 70 days in all the treatments in slightly alkaline soil. However, in acidic soil, complete phenanthrene removal was found only in the corn-planted treatments. The shoot and root lengths of corn grown in UG14Lr-inoculated soils were not different from those in non-inoculated soil between the treatments. The results showed that in unplanted soil, low pH adversely affected the survival and phenanthrene degradation ability of UG14Lr. Planting of corn significantly enhanced the survival of UG14Lr cells in both the bulk and rhizospheric soil, and this in turn significantly improved phenanthrene degradation in acidic soil. Re-inoculation of UG14Lr in the acidic soil increased the number of UG14Lr cells and enhanced phenanthrene degradation in unplanted soil. However, in corn-planted acidic soils, re-inoculation of UG14Lr did not further enhance the already active phenanthrene degradation occurring in both the bulk or rhizospheric soils.

  11. MEASURING GROWTH OF A PHENANTHRENE DEGRADING BACTERIAL INOCULUM IN SOIL WITH A QUANTITATIVE COMPETITIVE POLYMERASE CHAIN REACTION METHOD. (R825433)

    EPA Science Inventory

    We measured growth of a phenanthrene-degrading bacterium, Arthrobacter, strain RP17, in Forbes soil, amended with 500 small mu, Greekg g−1 phenanthrene using a quantitati...

  12. Phenanthrene Bioavailability and Toxicity to Daphnia magna in the Presence of Carbon Nanotubes with Different Physicochemical Properties.

    PubMed

    Zindler, Florian; Glomstad, Berit; Altin, Dag; Liu, Jingfu; Jenssen, Bjørn M; Booth, Andy M

    2016-11-15

    Studies investigating the effect of carbon nanotubes (CNTs) on the bioavailability and toxicity of hydrophobic organic compounds in aquatic environments have generated contradictory results, and the influence of different CNT properties remains unknown. Here, the adsorption of the polycyclic aromatic hydrocarbon phenanthrene (70-735 μg/L) to five types of CNTs exhibiting different physical and chemical properties was studied. The CNTs were dispersed in the presence of natural organic matter (nominally 20 mg/L) in order to increase the environmental relevance of the study. Furthermore, the bioavailability and toxicity of phenanthrene to Daphnia magna in the absence and presence of dispersed CNTs was investigated. Both CNT dispersion and adsorption of phenanthrene appeared to be influenced by CNT physical properties (diameter and specific surface area). However, dispersion and phenanthrene adsorption was not influenced by CNT surface chemical properties (surface oxygen content), under the conditions tested. Based on nominal phenanthrene concentrations, a reduction in toxicity to D. magna was observed during coexposure to phenanthrene and two types of CNTs, while for the others, no influence on phenanthrene toxicity was observed. Based on freely dissolved concentrations, however, an increased toxicity was observed in the presence of all CNTs, indicating bioavailability of CNT-adsorbed phenanthrene to D. magna.

  13. [Phylogenetic analysis of the genes for naphthalene and phenanthrene degradation in Burkholderia sp. strains].

    PubMed

    Izmalkova, T Yu; Sazonova, O I; Kosheleva, I A; Boronin, A M

    2013-06-01

    The genetic systems responsible for naphthalene and phenanthrene catabolism have been analyzed in the five strains of Burkholderia sp. isolated from soil samples (West Siberia) contaminated by heavy residual fuel oil and in the strain Burkholderia sp. BS3702 from the laboratory collection isolated from soil samples of the coke gas works (Vidnoe, Moscow oblast). The results of this work demonstrate that naphthalene and phenanthrene degradation in the above strains is encoded by the sequences not homologous to the classical nah genes of pseudomonades. In the Burkholderia sp. BS3702 strain, the initial stages of phenanthrene degradation and the subsequent stages of salicylate degradation are controlled by the sequences of different evolutionary origins (phn and nag genes).

  14. Factors affecting the microbial degradation of phenanthrene in soil. (Reannouncement with new availability information)

    SciTech Connect

    Manilal, V.B.; Alexander, M.

    1991-12-31

    Because phenanthrene was mineralized more slowly in soils than in liquid media, a study was conducted to determine the environmental factors that may account for the slow biodegradation in soil. Mineralization was enhanced by additions of phosphate but not potassium, and it was reduced by additions of nitrate. Aeration or amending the soil with glucose affected the rate of mineralization, although not markedly. Phenanthrene was sorbed to soil constituents, the extent of sorption being directly related to the percentage of organic matter in the soil. Soluble phenanthrene was not detected after addition of the compound to a muck soil. The rate of mineralization was slow in the organic soil and higher in mineral soils with lower percentages of organic matter. We suggest that sorption by soil organic matter slows the biodegradation of polycyclic aromatic hydrocarbons that are otherwise readily metabolized.

  15. Metabolism of phenanthrene by the marine cyanobacterium Agmenellum quadruplicatum PR-6

    SciTech Connect

    Narro, M.L.; Baalen, C. van ); Cerniglia, C.E. ); Gibson, D.T. )

    1992-04-01

    Under photoautotrophic growth conditions, the marine cyanobacterium Agmenellum quadruplicatum PR-6 metabolized phenanthrene to form trans-9,10-dihydrophenanthrene (phenanthrene trans-9,10-dihydrodiol) and 1-methoxyphenanthrene as the major ethyl acetate-extractable metabolites. Small amounts of phenanthrols were also formed. The metabolites were purified by high-pressure liquid chromatography and identified from their UV, infrared, mass and proton magnetic resonance spectral properties. A. quadruplicatum PR-6 formed phenanthrene trans-9,10-dihydrodiol with a 22% enantiomeric excess of the ({minus})-9S,10S-enantiomer. Incorporation experiments with {sup 18}O{sub 2} showed that one atom of oxygen from O{sub 2} was incorporated into the dihydrodiol. Toxicity studies, using an algal lawn bioassay, indicated that 9-phenanthrol and 9,10-phenanthrenequinone inhibit the growth of A. quadruplicatum PR-6.

  16. Constraint on the potassium content for the superconductivity of potassium-intercalated phenanthrene

    SciTech Connect

    Huang, Qiao-Wei; Zhao, Xiao-Miao; Zhong, Guo-Hua; Zhang, Jiang; Zhang, Chao; Lin, Hai-Qing; Chen, Xiao-Jia

    2014-03-21

    Raman-scattering measurements were performed on K{sub x}phenanthrene (0 ⩽ x ⩽ 6.0) at room temperature. Three phases (x = 3.0, 3.5, and 4.0) are identified based on the obtained Raman spectra. Only the K{sub 3}phenanthrene phase is found to exhibit the superconducting transition at 5 K. The C–C stretching modes are observed to broaden and become disordered in K{sub x}phenanthrene with x = 2.0, 2.5, 6.0, indicating some molecular disorder in the metal intercalation process. This disorder is expected to influence the nonmetallic nature of these materials. The absence of metallic character in these nonsuperconducting phases is found from the calculated electronic structures based on the local density approximation.

  17. Identification of soil bacteria able to degrade phenanthrene bound to a hydrophobic sorbent in situ.

    PubMed

    Regonne, Raïssa Kom; Martin, Florence; Mbawala, Augustin; Ngassoum, Martin Benoît; Jouanneau, Yves

    2013-09-01

    Efficient bioremediation of PAH-contaminated sites is limited by the hydrophobic character and poor bioavailability of pollutants. In this study, stable isotope probing (SIP) was implemented to track bacteria that can degrade PAHs adsorbed on hydrophobic sorbents. Temperate and tropical soils were incubated with (13)C-labeled phenanthrene, supplied by spiking or coated onto membranes. Phenanthrene mineralization was faster in microcosms with PAH-coated membranes than in microcosms containing spiked soil. Upon incubation with temperate soil, phenanthrene degraders found in the biofilms that formed on coated membranes were mainly identified as Sphingomonadaceae and Actinobacteria. In the tropical soil, uncultured Rhodocyclaceae dominated degraders bound to membranes. Accordingly, ring-hydroxylating dioxygenase sequences recovered from this soil matched PAH-specific dioxygenase genes recently found in Rhodocyclaceae. Hence, our SIP approach allowed the detection of novel degraders, mostly uncultured, which differ from those detected after soil spiking, but might play a key role in the bioremediation of PAH-polluted soils.

  18. Van der Waals density functional study of the structural and electronic properties of La-doped phenanthrene

    SciTech Connect

    Yan, Xun-Wang; Huang, Zhongbing; Lin, Hai-Qing

    2013-11-28

    By the first principle calculations based on the van der Waals density functional theory, we study the crystal structures and electronic properties of La-doped phenanthrene. Two stable atomic geometries of La{sub 1}phenanthrene are obtained by relaxation of atomic positions from various initial structures. The structure-I is a metal with two energy bands crossing the Fermi level, while the structure-II displays a semiconducting state with an energy gap of 0.15 eV, which has an energy gain of 0.42 eV per unit cell compared to the structure-I. The most striking feature of La{sub 1}phenanthrene is that La 5d electrons make a significant contribution to the total density of state around the Fermi level, which is distinct from potassium doped phenanthrene and picene. Our findings provide an important foundation for the understanding of superconductivity in La-doped phenanthrene.

  19. Effects of root exudates on the leachability, distribution, and bioavailability of phenanthrene and pyrene from mangrove sediments.

    PubMed

    Jia, Hui; Lu, Haoliang; Liu, Jingchun; Li, Jian; Dai, Minyue; Yan, Chongling

    2016-03-01

    In this study, column leaching experiments were used to evaluate the leachability, distribution and bioavailability of phenanthrene and pyrene by root exudates from contaminated mangrove sediments. We observed that root exudates significantly promoted the release and enhanced the bioavailability of phenanthrene and pyrene from sediment columns. The concentration of phenanthrene and pyrene and cumulative content released from the analyzed sediment samples following root exudate rinsing decreased in the following order: citric acid > oxalic acid > malic acid. After elution, the total concentrations of phenanthrene and pyrene in sediment layers followed a descending order of bottom (9-12 cm) > middle (5-7 cm) > top (0-3 cm). Furthermore, a positive correlation between leachate pH values and PAH concentrations of the leachate was found. Consequently, the addition of root exudates can increase the leachability and bioavailability of phenanthrene and pyrene.

  20. Uptake and elimination of (9-/sup 14/C)phenanthrene in the turkey wing mussel (Arca zebra)

    SciTech Connect

    Solbakken, J.E.; Knap, A.H.; Searle, C.E.; Palmork, K.H.

    1983-04-01

    Turkey wing mussels of both sexes were collected from Harrington Sound, Bermuda and dosed after a week-long acclimation period with (9-/sup 14/C)phenanthrene (714 MBq/mmol). They were transferred into 8 liters of seawater containing 8 ..mu..g of labelled phenanthrene. Results show that the accumulation of labelled phenanthrene in the turkey wing mussel was very low compared to that found in other species. In the hepatopancreas, the uptake of phenanthrene based on the water concentration was only 4% of the corresponding value found in the calico clam (Macrocallista maculata) inhabiting the same area. In comparison, the uptake of phenanthrene in a temperate mollusc such as the horse mussel (Modiola modiolus) was also considerably higher than in the turkey wing (approx. 4 times). It therefore seems likely that these are due to species variations rather than environmental variations between subtropical and temperate areas. (JMT)

  1. Effect of microbial polymers on the sorption and transport of phenanthrene in a low-carbon sand

    SciTech Connect

    Dohse, D.M.; Lion, L.W. )

    1994-04-01

    Extracellular polymers of bacterial origin were analyzed for their effect on the sorption behavior of phenanthrene on a low-carbon aquifer sand. Batch experiments indicated that 85% of the polymers tested acted to decrease the distribution coefficient. Column experiments revealed a decrease in the retardation factor of phenanthrene by approximately 40% in the presence of an extracellular polymer produced by a Gram-negative motile rod isolated from a coal tar waste site. This polymer did not, however, influence the mineralization of phenanthrene and was not rapidly degraded by a mixed culture. The combination of the ability of the polymer to influence phenanthrene transport as well as its apparent persistence and lack of a negative effect on phenanthrene degradation suggest the extracellular polymers can act as agents that enhance PAH transport in natural systems. 50 refs., 8 figs., 2 tabs.

  2. Toxicity of sediment-associated pyrene and phenanthrene to Limnodrilus hoffmeisteri (Oligochaeta: Tubificidae)

    SciTech Connect

    Lotufo, G.R.; Fleeger, J.W.

    1996-09-01

    Acute and sublethal toxicities of sediment-spiked pyrene and phenanthrene to Limnodrilus hoffmeisteri Cleparede were investigated. Phenanthrene was acutely toxic at high sediment concentrations (10-d median lethal concentration of 297.5 {micro}g g{sup {minus}1}; 252.2--348.3, 95% confidence interval [Cl]). Pyrene was not acutely toxic, even at concentrations as high as 841 {micro}g g{sup {minus}1}. A significant impact of pyrene and phenanthrene on the feeding activity of L. hoffmeisteri was demonstrated through daily collection of egested fecal material during 5- and 10-d experiments. A short (5-d) exposure detected toxic effects more efficiently than a 10-d exposure, yielding IC25 values (estimated concentration causing a 25% reduction of measured endpoint in relation to the control[s]) of 58.9 {micro}g g{sup {minus}1} (32.1--89.4, 95% CI) for pyrene and 28.4 {micro}g g{sup {minus}1} (10.0--41.3, 95% CI) for phenanthrene. Effects on burrowing behavior and reproduction were assessed in a 28-d sediment exposure. Low burrowing avoidance (< 25%) was detected in high phenanthrene concentrations (143--612 {micro}g g{sup {minus}1}) but was not detected with pyrene. Offspring production was significantly reduced in dosed sediments yielding IC25 values of 59.1 {micro}g g{sup {minus}1} (38.3--112.5, 95% CI) for pyrene and 40.5 {micro}g g{sup {minus}1} (12.1--165.5, 955 CI) for phenanthrene. Decreases in egestion rates in the presence of nonpolar contaminants should be quantified when investigating the effects of bioturbation by deposit feeders on the flux of contaminants from sediment into the water column.

  3. Correlation between biological and physical availabilities of phenanthrene in soils and soil humin in aging experiments

    SciTech Connect

    White, J.C.; Hunter, M.; Nam, K.; Pignatello, J.J.; Alexander, M.

    1999-08-01

    The bioavailability of an organic compound in a soil or sediment commonly declines with the soil-chemical contact time (aging). A series of parallel desorption and bioavailability experiments was carried out on phenanthrene previously aged up to {approximately}100 d in Mount Pleasant silt loam (Mt. Pleasant, NY, USA) or Pahokee peat soil to determine as a function of the aging period the degree of correlation between the reduction in bioavailability and the rate and extent of desorption and the influence of soil organic matter composition on availability. The mineralization of phenanthrene by two bacteria and the uptake of phenanthrene by earthworms showed expected declines with aging. Likewise, the rate of phenanthrene desorption in the absence of organisms decreased with aging. The decline in initial rate of mineralization or desorption was nearly an order of magnitude after 50 to 60 d of aging. Plots of normalized rates of mineralization or desorption practically coincided. Similarly, plots of normalized fraction mineralized or fraction desorbed during an arbitrary period gave comparable slopes. The partial removal of organic matter from the peat by extraction with dilute NaOH to leave the humin fraction reduced the biodegradation of phenanthrene aged for 38 and 63 d as compared to the nonextracted peat, but the effect disappeared at longer incubation times. The rate of desorption from samples of peat previously extracted with NaOH or Na{sub 4}P{sub 2}O{sub 7} declined with aging and, for a given aging period, was significantly slower than from nonextracted peat. This work shows that the reduction in bioavailability of phenanthrene over time in soil is directly correlated with reduction of its physical availability due to desorption limitations. In addition, this study shows that removal of extractable humic substances leads to a decline in the rate of desorption and in the bioavailability of the substrate.

  4. Phenanthrene-triggered Chlorosis is caused by elevated Chlorophyll degradation and leaf moisture.

    PubMed

    Shen, Yu; Li, Jinfeng; Gu, Ruochen; Yue, Le; Zhan, Xinhua; Xing, Baoshan

    2017-01-01

    Leaf is an important organ in responding to environmental stresses. To date, chlorophyll metabolism under polycyclic aromatic hydrocarbon (PAH) stress is still unclear. Here we reveal, for the first time, the chlorophyll metabolism of wheat seedling leaves in response to phenanthrene (a model PAH) exposure. In this study, the hydroponic experiment was employed, and the wheat seedlings were exposed to phenanthrene to observe the response at day 1, 3, 5, 7 and 9. Over the exposure time, wheat leaf color turns light. With the accumulation of phenanthrene, the concentrations of glutamate, 5-aminolevulinic acid, uroporphyrinogen III, protoporphyrin IX, Mg-protoporphyrin IX and protochlorophyllide increase while the concentrations of porphobilinogen and Chlorophyll b decrease. Also chlorophyll a content rises initially and then declines. Uroporphyrinogen III synthase and chlorophyllase are activated and porphobilinogen deaminase activity declines in the treatments. Both chlorophyll synthesis and degradation are enhanced, but the degradation rate is faster. Phenanthrene accumulation has significant and positive effects on increase of glutamate, 5-aminolevulinic acid, uroporphyrinogen III, protoporphyrin IX, Mg-protoporphyrin IX and protochlorophyllide concentrations. There is a negative correlation between phenanthrene accumulation and total chlorophyll. Additionally, the leaf moisture increases. Therefore, it is concluded that wheat leaf chlorosis results from a combination of accelerated chlorophyll degradation and elevated leaf moisture under phenanthrene exposure. Our results are helpful not only for better understanding the toxicity of PAHs to plants and crop PAH-adaptive mechanism in the environment, but also for potentially employing the changes of the chlorophyll-synthesizing precursors and enzyme activities in plant leaves as indicators of plant response to PAH pollution.

  5. Water quality, organic chemistry of sediment, and biological conditions of streams near an abandoned wood-preserving plant site at Jackson, Tennessee

    USGS Publications Warehouse

    Bradfield, A.D.; Flexner, N.M.; Webster, D.A.

    1993-01-01

    An investigation of water quality, organic sediment chemistry, and biological conditions of streams near an abandoned wood-preserving plant site at Jackson, Tennessee, was conducted during December 1990. The study was designed to assess the extent of possible contamination of water and biota in the streams from creosote-related discharge originating at this Superfund site. Central Creek, adjacent to the plant, had degraded water quality and biological conditions. Water samples from the most downstream station on Central Creek contained 30 micrograms per liter of pentachlorophenol, which exceeds the State's criterion maximum concentrations of 9 micrograms per liter for fish and aquatic life. Bottom-sediment samples from stations on Central Creek contained concentrations of acenaphthene, napthalene, and phenanthrene ranging from 1,400 to 2,500 micrograms per kilogram. Chronic or acute toxicity resulted during laboratory experiments using test organisms exposed to creosote-related contaminants. Sediment elutriate samples from Central Creek caused slightly to highly toxic effects on Ceriodaphnia dubia. Pimephales promelas, and Photobacterium phosphoreum. Fish-tissue samples from this station contained concentrations of naphthalene. dibenzofuran, fluorene, and phenanthrene ranging from 1.5 to 3.9 micrograms per kilogram Blue-green algae at this station represented about 79 percent of the organisms counted, whereas diatoms accounted for only 11 percent. Benthic invertebrate and fish samples from Central Creek had low diversity and density. Sediment samples from a station on the South Fork Forked Deer River downstream from its confluence with Central Creek contained concentrations of acenaphthene, anthracene, chrysene, fluoranthene, fluorene, pyrere, and phenanthrene ranging from 2,800 to 69,000 micrograms per kilogram. Sediment elutriate samples using water as elutriate from this station contained concentrations of extractable organic compounds ranging from an estimated

  6. Improving the simulation of vibrationally resolved electronic spectra of phenanthrene: A computational Investigation

    NASA Astrophysics Data System (ADS)

    Pang, Min; Yang, Pan; Shen, Wei; Li, Ming; He, Rongxing

    2015-05-01

    Based on the density functional theory and its time-dependent extension, the properties of the ground and the first excited states of phenanthrene were calculated. In harmonic and anharmonic approximations, the well-resolved absorption and emission spectra of phenanthrene were simulated using the Franck-Condon approximation combined with the Herzberg-Teller and Duschinsky effects, and the results reproduced the experimental spectra very well. The mirror symmetry breakdown between absorption and emission spectra is induced mainly from the Herzberg-Teller effect and Duschinsky mode mixing. Moreover, most of the vibrational modes were tentatively assigned and compared with the experiment.

  7. Enantiomeric composition of the trans-dihydrodiols produced from phenanthrene by fungi

    SciTech Connect

    Sutherland, J.B.; Fu, P.P.; Von Tungeln, L.S.; Cerniglia, C.E. ); Yang, S.K. ); Casillas, R.P.; Crow, S.A. )

    1993-07-01

    Phenanthrene and other polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants. PAHs are frequently bioaccumulated by animals and can be activated to mutagenic and carcinogenic metabolites, but they are resistant to biodegradation by microorganisms. Although PAHs do not generally serve as carbon or energy sources for fungi, many fungi cometabolize one or more PAHs to trans-dihydrodiols. In this study, circular dichroism spectroscopy and chiral stationary-phase high-performance liquid chromatography is used to compare the stereoselectivity of three species of fungi that metabolize phenanthrene to trans-dihydrodiols, Cunninghamella elegans, Syncephalastrum racemosum, and Phanerochaete chrysosporium. 30 refs., 5 figs., 1 tab.

  8. Different effects of copper (II), cadmium (II) and phosphate on the sorption of phenanthrene on the biomass of cyanobacteria.

    PubMed

    Tao, Yuqiang; Li, Wei; Xue, Bin; Zhong, Jicheng; Yao, Shuchun; Wu, Qinglong

    2013-10-15

    Due to the large surface area and high organic carbon content of cyanobacteria, organic contaminants can be readily sorbed on cyanobacteria during algal blooms, and then be transferred to the food web. This process is likely to be affected by the coexisting metals and nutrients, however, the possible impacts remain unclear. Effects of Cu(2+), Cd(2+), and phosphate on the sorption of phenanthrene on cyanobacterial biomass collected from an algal bloom were therefore studied. Continuous decrease in phenanthrene sorption was observed in the presence of low concentrations of Cu(2+), and Cd(2+) (<0.04 mmol L(-1)), because Cu(2+) and Cd(2+) were coadsorbed with phenanthrene on the surface of cyanobacteria as suggested by scanning electron microscopy-energy dispersive X-ray (SEM-EDX) and Fourier transform infrared (FTIR) analyses. Phenanthrene sorption began to increase with the further increase in Cu(2+) concentration, but remained lower than that in the absence of Cu(2+). This increase in sorption was ascribed to the cation-π interaction between Cu(2+) and phenanthrene, as suggested by the enhanced ultraviolet absorbance at 251 nm. In contrast, sorption rebounding of phenanthrene did not occur in the presence of higher concentrations of Cd(2+). The different effects of Cu(2+) and Cd(2+) on phenanthrene sorption were attributed to that Cd(2+) required much more energy than Cu(2+) to form cation-π complexes with phenanthrene in the solutions. Phenanthrene sorption decreased continuously with the increase in phosphate concentration. Phosphate blocked the binding sites, modified the cell morphology, and increased the negative charge as well as the hydrophilicity of the cyanobacterial surface, thereby suppressing phenanthrene sorption. This study indicates that sorption of aromatic organic compounds by cyanobacteria could be significantly alerted by concentrations and properties of the coexisting transition metals and phosphates, which may subsequently affect their

  9. The EmhABC efflux pump decreases the efficiency of phenanthrene biodegradation by Pseudomonas fluorescens strain LP6a.

    PubMed

    Adebusuyi, Abigail A; Smith, Angela Y; Gray, Murray R; Foght, Julia M

    2012-08-01

    Pseudomonas fluorescens strain LP6a, designated here as strain WEN (wild-type PAH catabolism, efflux positive), utilizes the polycyclic aromatic hydrocarbon phenanthrene as a carbon source but also extrudes it into the extracellular medium using the efflux pump EmhABC. Because phenanthrene is considered a nontoxic carbon source for P. fluorescens WEP, its energy-dependent efflux seems counter-productive. We hypothesized that the efflux of phenanthrene would decrease the efficiency of its biodegradation. Indeed, an emhB disruptant strain, wild-type PAH catabolism, efflux negative (WEN), biodegraded 44% more phenanthrene than its parent strain WEP during a 6-day incubation. To determine whether efflux affected the degree of oxidation of phenanthrene, we quantified the conversion of ¹⁴C-phenanthrene to radiolabeled polar metabolites and ¹⁴CO₂. The emhB⁻ WEN strain produced approximately twice as much ¹⁴CO₂ and radiolabeled water-soluble metabolites as the WEP strain. In contrast, the mineralization of ¹⁴C-glucose, which is not a known EmhB efflux substrate, was equivalent in both strains. An early open-ring metabolite of phenanthrene, trans-4-(1-hydroxynaphth-2-yl)-2-oxo-3-butenoic acid, also was found to be a substrate of the EmhABC pump and accumulated in the supernatant of WEP but not WEN cultures. The analogous open-ring metabolite of dibenzothiophene, a heterocyclic analog of phenanthrene, was extruded by EmhABC plus a putative alternative efflux pump, whereas the end product 3-hydroxy-2-formylbenzothiophene was not actively extruded from either WEP or WEN cells. These results indicate that the active efflux of phenanthrene and its early metabolite(s) decreases the efficiency of phenanthrene degradation by the WEP strain. This activity has implications for the bioremediation and biocatalytic transformation of polycyclic aromatic hydrocarbons and heterocycles.

  10. Electron injection studies in TiO2 nanocrystalline films sensitized with fluorene dyes and photovoltaic characterization. The effect of co-adsorption of a bile acid derivative

    NASA Astrophysics Data System (ADS)

    Dori, M.; Seintis, K.; Stathatos, E.; Tsigaridas, G.; Lin, T.-Y.; Lin, J. T.; Fakis, M.; Giannetas, V.; Persephonis, P.

    2013-03-01

    In this Letter, the electron injection in TiO2 films sensitized with six fluorene sensitizers is studied by femtosecond time resolved fluorescence spectroscopy using nanocrystalline Al2O3 films as reference. The sensitizers are dipolar organic molecules with the fluorene group utilized as a conjugated bridge. The electron injection efficiency is correlated to the structure, conjugation length and excited state potential of the sensitizers. One of the sensitizers has been studied using different amounts of cheno-deoxy cholic acid as co-adsorbent. In order to correlate the efficiency of electron injection with the device performance, quasi solid-state solar cells have been fabricated and characterized.

  11. Behavioral toxicity and physiological changes from repeated exposure to fluorene administered orally or intraperitoneally to adult male Wistar rats: A dose-response study.

    PubMed

    Peiffer, Julie; Grova, Nathalie; Hidalgo, Sophie; Salquèbre, Guillaume; Rychen, Guido; Bisson, Jean-François; Appenzeller, Brice M R; Schroeder, Henri

    2016-03-01

    Fluorene is one of the most abundant polycyclic aromatic hydrocarbons (PAHs) in the environment by reason of its high volatility. Demonstrated to be a neurotoxicant through inhalation, it was also identified as a contributive PAH to food contamination. Since no data are available on its oral neurotoxicity, the purpose of the present study was to assess the behavioral and physiological toxicity of repeated oral administration of fluorene to adult Wistar male rats. Animals were daily treated with fluorene at 1, 10 or 100mg/kg/day for 28 consecutive days. Administration was intraperitoneal (i.p.) or oral (p.o.) to evaluate the influence of the route of exposure on fluorene toxicity. Following this period of treatment, animals in both groups were subjected to similar cognitive evaluations, namely anxiety (elevated-plus maze), locomotor activity (open-field) and learning and memory abilities (eight-arm maze and avoidance test of an aversive light stimulus), as well as physiological measurements. The behavioral testing occurred from the 28th to the 60th day of the experiment during which fluorene treatment continued uninterrupted. At the end of this period, the concentration levels of fluorene and of three of its monohydroxylated metabolites in blood and brain were determined using a GC-MS/MS method. The results demonstrated a reduction in rat anxiety level at the lowest doses administered (1 and 10mg/kg/day) regardless of the treatment route, whereas locomotor activity and learning abilities remained unchanged. Moreover, a less significant weight gain was noticed in animals i.p.- and p.o.-treated with 100mg/kg/day during the 28-day period of treatment, which, upon comparison with the three other groups, induced a body weight gap that was maintained throughout the experiment. Significant increases in relative liver weight were also observed in a dose-dependent manner in orally treated rats and only in animal treated i.p. with 100mg/kg/day. According to the dose, higher

  12. Triplet exciton state and related phenomena in the β -phase of poly(9,9-dioctyl)fluorene

    NASA Astrophysics Data System (ADS)

    Rothe, C.; King, S. M.; Dias, F.; Monkman, A. P.

    2004-11-01

    Using both time-resolved emission and cw photoinduced absorption spectroscopy as a function of temperature, the aggregation phenomena ( β -phase formation) observed in poly(9,9-dioctyl)fluorene is studied. All spectra of the β phase, including absorption, prompt and delayed fluorescence, phosphorescence, and photoinduced triplet absorption feature very narrow linewidths, which are unique within the class of conjugated polymers. From the comparison of the latter data with amorphous polyfluorene, poly(9,9-diethylhexyl)fluorene, as well as with the fully planar ladder-type poly(paraphenylene), we conclude that the origin of the β phase cannot simply be an extended intrachain conjugation, but interchain interactions are involved. Furthermore, the β phase acts as an energetic trap for both singlet and triplet excitons initially created on amorphous chain segments. The delayed fluorescence kinetics of the β phase were measured at different temperatures. From the analysis of these decays within the framework of dispersive triplet migration in a Gaussian density of states distribution, further evidence is provided that the delayed fluorescence originates from triplet-triplet annihilation. At room temperature, it is clear that triplet excitons migrate over large distances, exceeding that of singlet excitons. Also, the segregation time between dispersive triplet migration and classical thermally activated hopping, is in the case of β -phase containing samples, dependent on the separation of the β -phase domains.

  13. Two-photon spectroscopy of the biphenyl chromophore. The electronic excited states of biphenyl and fluorene below 50000 cm -1

    NASA Astrophysics Data System (ADS)

    Dick, Bernhard; Hohlneicher, Georg

    1985-03-01

    The two-proton excitation spectra of biphenyl and fluorene in dilute solution have been measured up to 50000 cm -1. Both spectra exhibit a medium intense band system in the range 32000-42000 cm -1, and a strong band above 45000 cm -1. The lowest frequency feature is assigned to a B 3 symmetry transition in biphenyl and the corresponding B 2 transition in fluorene. The polarization of the higher bands leads to the assignment of two A states at 38000 and 47000 cm -1. The origin of the electronically excited states of the biphenyl chromophore is discussed by simple composite molecule considerations as well as CNDO Cl calculations. The latter give a semiquantitative picture of transition energies and transition probabilities for one-and two-photon allowed excitations. A compilation of one-photon spectra and calculations from the literature is included in the analysis to provide a consistent picture of the electronically excited states of the biphenyl chromophore up to 50000 cm -1.

  14. Syntheses and Chemosensory of Anthracene and Phenanthrene Bisimide Derivatives

    NASA Technical Reports Server (NTRS)

    Bogusz, Zachary A.

    2004-01-01

    As the present technology of biochemical weapons advances, it is essential for science to attempt to prepare our nation for such an occurrence. Various areas of current research are devoted to precautionary measures and potential antidotes for national security. A practical application of these precautions would be the development of a chemical capable of detecting harmful gas. The benefits of being capable to synthesis a chemical compound that would warn and identify potentially deadly gases would ensure a higher level of safety. The chemicals in question can be generalized as bisimide anthracene derivatives. The idea behind these compounds is that in the presence of certain nerve gases, the compound will actually fluoresce, giving an indication that there is a strong likelihood of the presence of a nerve gas and ensure the proper precautionary measures are taken. The fluorescence is due to the quenching of an electric proton transfer within the structure of the molecule. The system proves to be very unique on account of the fact that the fluorescence can be "turned off" by reducing the system. By utilizing the synthesis designed by Dr. Faysal Ilhan, four distinct compounds can be synthesized through photochemical reactions involving para- and ortho- diketones. The photochemistry involved is very modem and much research is being devoted to fully understanding the possibilities and alternative applications of such materials. and meta-nitro anthracene bisimide (ABI-NO2), the amine of each (ABI-NH2), a para- and meta-nitro phenanthrene bisimjde (PBI-NO2), and the amine of each (PBI-NH2). Upon synthesizing these distinct compounds, I must then purify and analyze them in order to obtain any relevant trends, behaviors, and characteristics. The chemical composition analyses that will be conducted are the procedures taken by Dr. Daniel Tyson on previous experiments. The results generated from the data will point further research in the correct direction and hopefully

  15. Risks of single-walled carbon nanotubes acting as contaminants-carriers: potential release of phenanthrene in Japanese medaka (Oryzias latipes).

    PubMed

    Su, Yu; Yan, Xiaomin; Pu, Yubing; Xiao, Feng; Wang, Dongsheng; Yang, Min

    2013-05-07

    The performance of carbon nanotubes (CNTs) acting as contaminants-carriers in vivo is critical for understanding the environmental risks of CNTs. In this study, the whole-body accumulation and tissue distribution of phenanthrene in Japanese medaka was examined in the presence of single-walled carbon nanotubes (SWCNTs) and the potential release of phenanthrene was investigated from two types of SWCNTs suspensions that differed in surface charge and stability. The results showed that the coexistence of SWCNTs facilitated the accumulation of phenanthrene in the digestive track of fish and therefore enhanced the whole-body phenanthrene concentration by 2.1 fold after exposure for 72 h. Meanwhile, 6.4-48 and 20-34 times higher phenanthrene concentrations were measured in the liver and brain of fish exposure to the two mixtures, respectively, when comparing with the phenanthrene alone treatment with equal concentration of soluble phenanthrene. The extra phenanthrene was from the SWCNTs-associated phenanthrene that accumulated in the digestive track indicating the release of phenanthrene from SWCNTs did occur in fish. Moreover, the neutrally charged SWCNTs showed different agglomeration behaviors from the negatively charged SWCNTs, which could affect the accumulation of SWCNTs in the digestive track of fish and subsequently influence the retention of phenanthrene associated with the carbon nanotubes.

  16. COSOLVENT EFFECTS ON PHENANTHRENE SORPTION-DESORPTION ON A FRESH-WATER SEDIMENT

    EPA Science Inventory

    This study evaluated the effects of the water-miscible cosolvent methanol on the sorption-desorption of phenanthrene by the natural organic matter (NOM) of a fresh-water sediment. A biphasic pattern was observed in the relationship between the log of the carbon-normalized sorpti...

  17. Crystal structure search and electronic properties of alkali-doped phenanthrene and picene

    NASA Astrophysics Data System (ADS)

    Naghavi, S. Shahab; Tosatti, Erio

    2014-08-01

    Alkali-doped aromatic compounds have shown evidence of metallic and superconducting phases whose precise nature is still mysterious. In potassium and rubidium-doped phenanthrene, superconducting temperatures around 5 K have been detected, but such basic elements as the stoichiometry, crystal structure, and electronic bands are still speculative. We seek to predict the crystal structure of M3-phenanthrene (M = K, Rb) using ab initio evolutionary simulation in conjunction with density functional theory (DFT), and find metal but also insulator phases with distinct structures. The original P21 herringbone structure of the pristine molecular crystal is generally abandoned in favor of different packing and chemical motifs. The metallic phases are frankly ionic with three electrons acquired by each molecule. In the nonmagnetic insulating phases the alkalis coalesce reducing the donated charge from three to two per phenanthrene molecule. A similar search for K3-picene yields an old and a new structure, with unlike potassium positions and different electronic bands, but both metallic retaining the face-to-edge herringbone structure and the P21 symmetry of pristine picene. Both the new K3-picene and the best metallic M3-phenanthrene are further found to undergo a spontaneous transition from metal to antiferromagnetic insulator when spin polarization is allowed, a transition which is not necessarily real, but which underlines the necessity to include correlations beyond DFT. Features of the metallic phases that may be relevant to phonon-driven superconductivity are underlined.

  18. Strain in strain-free benzenoid hydrocarbons: The case of phenanthrene

    NASA Astrophysics Data System (ADS)

    Radenković, Slavko; Gutman, Ivan; Đorđević, Slađana

    2015-04-01

    Benzenoid molecules possessing bays are traditionally considered as 'strain-free'. Yet, repulsion between the two bay H-atoms affects the length of the near-lying carbon-carbon bonds. A method is developed to estimate the energy of this strain. In the case of phenanthrene its value was found to be about 7 kJ/mol.

  19. Preparation and characterization of a novel graphene/biochar composite for aqueous phenanthrene and mercury removal.

    PubMed

    Tang, Jingchun; Lv, Honghong; Gong, Yanyan; Huang, Yao

    2015-11-01

    A graphene/biochar composite (G/BC) was synthesized via slow pyrolysis of graphene (G) pretreated wheat straw, and tested for the sorption characteristics and mechanisms of representative aqueous contaminants (phenanthrene and mercury). Structure and morphology analysis showed that G was coated on the surface of biochar (BC) mainly through π-π interactions, resulting in a larger surface area, more functional groups, greater thermal stability, and higher removal efficiency of phenanthrene and mercury compared to BC. Pseudo second-order model adequately simulated sorption kinetics, and sorption isotherms of phenanthrene and mercury were simulated well by dual-mode and BET models, respectively. FTIR and SEM analysis suggested that partitioning and surface sorption were dominant mechanisms for phenanthrene sorption, and that surface complexation between mercury and C-O, CC, -OH, and OC-O functional groups was responsible for mercury removal. The results suggested that the G/BC composite is an efficient, economic, and environmentally friendly multifunctional adsorbent for environmental remediation.

  20. Bioremediation enhancement of phenanthrene contaminated soils by chemical pre-oxidation

    SciTech Connect

    Van Kemenade, I.; Anderson, W.A.; Scharer, J.M.; Moo-Young, Murray

    1995-12-31

    A two-step oxidation process was investigated for the treatment of phenanthrene contaminated soil fines (particle diameter {le}63 {mu}m) resulting from a soil washing process. Oxone{reg_sign} (2KHSO{sub 5}{center_dot}KHSO{sub 4}{center_dot}K{sub 2}SO{sub 4}) and hydrogen peroxide (H{sub 2}O{sub 2}) were used as oxidants for the chemical pre-oxidation step and unacclimatized municipal activated sludge was employed in the subsequent biodegradation step. Oxone was found to have an oxidation efficiency approximately ten-fold greater than hydrogen peroxide on a stoichiometric basis. In comparison to chemical oxidation only, a 24 hour pre-oxidation step using 5 and 10 g/L Oxone followed by a 5 day biological oxidation step enhanced removal of phenanthrene from the soil by 115% and 32%, respectively. Similarly, a 48 hour pre-oxidation step utilizing 5 and 10 g/L Oxone followed by a 5 day biological oxidation step enhanced the removal of phenanthrene from the soil by 113% and 43%, respectively. Based on this preliminary assessment, a treatment protocol that integrates a 24 hour chemical preoxidation step with 5 g/L Oxone followed by a 5 day biological oxidation step appears to be an effective combination for the remediation of this phenanthrene contaminated soil. 21 refs., 4 figs., 2 tabs.

  1. Novel Phenanthrene-Degrading Bacteria Identified by DNA-Stable Isotope Probing.

    PubMed

    Jiang, Longfei; Song, Mengke; Luo, Chunling; Zhang, Dayi; Zhang, Gan

    2015-01-01

    Microorganisms responsible for the degradation of phenanthrene in a clean forest soil sample were identified by DNA-based stable isotope probing (SIP). The soil was artificially amended with either 12C- or 13C-labeled phenanthrene, and soil DNA was extracted on days 3, 6 and 9. Terminal restriction fragment length polymorphism (TRFLP) results revealed that the fragments of 219- and 241-bp in HaeIII digests were distributed throughout the gradient profile at three different sampling time points, and both fragments were more dominant in the heavy fractions of the samples exposed to the 13C-labeled contaminant. 16S rRNA sequencing of the 13C-enriched fraction suggested that Acidobacterium spp. within the class Acidobacteria, and Collimonas spp. within the class Betaproteobacteria, were directly involved in the uptake and degradation of phenanthrene at different times. To our knowledge, this is the first report that the genus Collimonas has the ability to degrade PAHs. Two PAH-RHDα genes were identified in 13C-labeled DNA. However, isolation of pure cultures indicated that strains of Staphylococcus sp. PHE-3, Pseudomonas sp. PHE-1, and Pseudomonas sp. PHE-2 in the soil had high phenanthrene-degrading ability. This emphasizes the role of a culture-independent method in the functional understanding of microbial communities in situ.

  2. Relationship between organic matter content of soil and the sequestration of phenanthrene

    SciTech Connect

    Nam, K.; Chung, N.; Alexander, M.

    1998-12-01

    A study was conducted to determine the relationship between organic matter content of soil and the availability of aged phenanthrene. Phenanthrene was aged for 200 days in sterile samples of dissimilar soils, soils treated with H{sub 2}O{sub 2} to reduce the content of organic matter, and sand. Sequestration as measured by the extent of mineralization of phenanthrene by an added bacterium was appreciable in samples with >2.0% organic C, and the bioavailability of the hydrocarbon declined with time of aging. Sequestration was not evident in soils or sand with <2.0% organic C. Phenanthrene aged for 200 days was more slowly degraded than the freshly added compound in soils with >2.0% organic C, but a small effect on rate was evident in soil and sand with <2.0% organic C. More of the compound remained after biodegradation of the hydrocarbon aged for 200 days than if it was not aged, with the largest amount remaining in soils with >2.0% organic C and the least in sand. Aging as measured by a decline in extractability of 1-butanol was evident in all soils, although the rate was fastest in soil with >2.0% organic C. The volume occupied by pores of <10-{micro}m diameter was higher in soils containing more organic matter and was negligible in sand. The authors suggest that the organic matter content of soil is a major determinant of sequestration.

  3. Calcium-mediated modulation of Pseudomonas mendocina NR802 biofilm influences the phenanthrene degradation.

    PubMed

    Mangwani, Neelam; Shukla, Sudhir K; Rao, T Subba; Das, Surajit

    2014-02-01

    A potential biofilm forming and phenanthrene utilizing marine bacterium Pseudomonas mendocina NR802 was isolated from Rushukulya, Odisha, East Coast of India. The effect of Ca(2+) and Mg(2+) on biofilm growth and phenanthrene degradation was evaluated. Among the various tested concentrations, 20 mM of Ca(2+) and Mg(2+) showed a significant enhancement in biofilm production by the bacterium. The SEM-EDAX study showed that the elemental composition of the biofilm varied significantly when grown in the presence of Ca(2+) and Mg(2+). The CSLM analysis of biofilms grown in the presence of 20 mM Ca(2+) and Mg(2+) reveal the critical role of these ions on biofilm architectural parameters such as total biomass, biofilm thickness, roughness coefficient and surface to biovolume ratio. Ca(2+) was found to enhance the extracellular polymeric substances (EPS) production and phenanthrene degradation. Ca(2+) enhanced the biofilm growth in a dose dependent manner, whereas Mg(2+) significantly increased the cell growth in biofilm. More than 15% increase in phenanthrene degradation was observed when biofilm was grown in the presence of an additional 20 mM Ca(2+). This study also supports the fundamental role of Ca(2+) in biofilm growth, architecture as well as biofilm-mediated pollutant degradation.

  4. Biodegradation of Phenanthrene by Pseudomonas sp. JPN2 and Structure-Based Degrading Mechanism Study.

    PubMed

    Jin, Jingnan; Yao, Jun; Zhang, Qingye

    2016-11-01

    The strain Pseudomonas sp. JPN2 had a high potential to degrade phenanthrene degrading 98.52 % of the initial amount of 100 mg L(-1) after 10 days incubation. The analysis of metabolites demonstrated that the cleavage of phenanthrene started at the C9 and C10 positions on the aromatic ring by the dioxygenation reaction, and then further degraded via a phthalate pathway. To understand the interaction between phenanthrene and the amino acid residues in the active site of the target enzyme, a molecular docking simulation was performed. The results showed that the distances of C9-O1 and C10-O2 atoms were 3.47 and 3.67 Å, respectively. The C9 and C10 positions of the phenanthrene ring are much closer to the dioxygen molecule in the active site relative to the other atoms. Therefore, the C9 and C10 positions are vulnerable to attack in the initial oxygenation process.

  5. Effect of surfactant on phenanthrene metabolic kinetics by Citrobacter sp. SA01.

    PubMed

    Li, Feng; Zhu, Lizhong; Zhang, Dong

    2014-11-01

    To attain a better understanding of the effects of surfactants on the metabolic kinetics of hydrophobic organic compounds, the biodegradation of phenanthrene by Citrobacter sp. SA01 was investigated in a batch experiment containing Tween 80, sodium dodecyl benzene sulfonate and liquid mineral salt medium. The Monod model was modified to effectively describe the partition, phenanthrene biodegradation and biopolymer production. The results showed that Tween 80 and sodium dodecyl benzene sulfonate (each at 50mg/L) enhanced phenanthrene metabolism and poly-β-hydroxybutyrate production as indicated by the increasing amounts of intermediates (by 17.2% to 47.9%), and percentages of poly-β-hydroxybutyrate (by 107.3% and 33.1%) within the cell dry weight when compared to their absence. The modified Monod model was capable of predicting microbial growth, phenanthrene depletion and biopolymer production. Furthermore, the Monod kinetic coefficients were largely determined by the surfactant-enhanced partition, suggesting that partitioning is a critical process in surfactant-enhanced bioremediation of hydrophobic organic compounds.

  6. Phenanthrene binding by humic acid-protein complexes as studied by passive dosing technique.

    PubMed

    Zhao, Jian; Wang, Zhenyu; Ghosh, Saikat; Xing, Baoshan

    2014-01-01

    This work investigated the binding behavior of phenanthrene by humic acids (HA-2 and HA-5), proteins (bovine serum albumin (BSA)), lysozyme and pepsin), and their complexes using a passive dosing technique. All sorption isotherms were fitted well with Freundlich model and the binding capability followed an order of HA-5 > HA-2 > BSA > pepsin > lysozyme. In NaCl solution, phenanthrene binding to HA-BSA complexes was much higher than the sum of binding to individual HA and BSA, while there was no enhancement for HA-pepsin. Positively charged lysozyme slightly lowered phenanthrene binding on both HAs due to strong aggregation of HA-lysozyme complexes, leading to reduction in the number of binding sites. The binding enhancement by HA-BSA was observed under all tested ion species and ionic strengths. This enhancement can be explained by unfolding of protein, reduction of aggregate size and formation of HA-BSA complexes with favorable conformations for binding phenanthrene.

  7. Photooxygenation of alkynylperylenes. Formation of dibenzo[jk,mn]phenanthrene-4,5-diones.

    PubMed

    Maeda, Hajime; Nanai, Yasuaki; Mizuno, Kazuhiko; Chiba, Junya; Takeshima, Sakiko; Inouye, Masahiko

    2007-11-09

    3-(1-Alkynyl)perylenes undergo oxygenation when subjected to irradiation with visible light under aerated conditions. The structures of novel oxygenated products formed in this manner are assigned as regioisomeric dibenzo[jk,mn]phenanthrene-4,5-diones.

  8. Remediation of phenanthrene-contaminated soil by simultaneous persulfate chemical oxidation and biodegradation processes.

    PubMed

    Mora, Verónica C; Madueño, Laura; Peluffo, Marina; Rosso, Janina A; Del Panno, María T; Morelli, Irma S

    2014-06-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous compounds with carcinogenic and/or mutagenic potential. To address the limitations of individual remediation techniques and to achieve better PAH removal efficiencies, the combination of chemical and biological treatments can be used. The degradation of phenanthrene (chosen as a model of PAH) by persulfate in freshly contaminated soil microcosms was studied to assess its impact on the biodegradation process and on soil properties. Soil microcosms contaminated with 140 mg/kgDRY SOIL of phenanthrene were treated with different persulfate (PS) concentrations 0.86-41.7 g/kgDRY SOIL and incubated for 28 days. Analyses of phenanthrene and persulfate concentrations and soil pH were performed. Cultivable heterotrophic bacterial count was carried out after 28 days of treatment. Genetic diversity analysis of the soil microcosm bacterial community was performed by PCR amplification of bacterial 16S rDNA fragments followed by denaturing gradient gel electrophoresis (DGGE). The addition of PS in low concentrations could be an interesting biostimulatory strategy that managed to shorten the lag phase of the phenanthrene biological elimination, without negative effects on the physicochemical and biological soil properties, improving the remediation treatment.

  9. Bacterial mineralization of phenanthrene on thermally activated palygorskite: A (14)C radiotracer study.

    PubMed

    Biswas, Bhabananda; Sarkar, Binoy; Naidu, Ravi

    2017-02-01

    Clay-bacterial interaction can significantly influence the biodegradation of organic contaminants in the environment. A moderate heat treatment of palygorskite could alter the physicochemical properties of the clay mineral and thus support the growth and function of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria. By using (14)C-labelled phenanthrene and a model bacterium Burkholderia sartisoli, we studied the mineralization of phenanthrene on the surface of a moderately heat-treated (up to 400°C) palygorskite. The heat treatment at 400°C induced a reduction of binding sites (e.g., by the elimination of organic matter and/or channel shrinkage) in the palygorskite and thus imparted a weaker sequestration of phenanthrene on its surface and within the pores. As a result, a supplement with the thermally modified palygorskite (400°C) significantly increased (20-30%; p<0.05) the biomineralization of total phenanthrene in a simulated soil slurry system. These results are highly promising to develop a clay mineral based technology for the bioremediation of PAH contaminants in water and soil environments.

  10. Novel Phenanthrene-Degrading Bacteria Identified by DNA-Stable Isotope Probing

    PubMed Central

    Luo, Chunling; Zhang, Dayi; Zhang, Gan

    2015-01-01

    Microorganisms responsible for the degradation of phenanthrene in a clean forest soil sample were identified by DNA-based stable isotope probing (SIP). The soil was artificially amended with either 12C- or 13C-labeled phenanthrene, and soil DNA was extracted on days 3, 6 and 9. Terminal restriction fragment length polymorphism (TRFLP) results revealed that the fragments of 219- and 241-bp in HaeIII digests were distributed throughout the gradient profile at three different sampling time points, and both fragments were more dominant in the heavy fractions of the samples exposed to the 13C-labeled contaminant. 16S rRNA sequencing of the 13C-enriched fraction suggested that Acidobacterium spp. within the class Acidobacteria, and Collimonas spp. within the class Betaproteobacteria, were directly involved in the uptake and degradation of phenanthrene at different times. To our knowledge, this is the first report that the genus Collimonas has the ability to degrade PAHs. Two PAH-RHDα genes were identified in 13C-labeled DNA. However, isolation of pure cultures indicated that strains of Staphylococcus sp. PHE-3, Pseudomonas sp. PHE-1, and Pseudomonas sp. PHE-2 in the soil had high phenanthrene-degrading ability. This emphasizes the role of a culture-independent method in the functional understanding of microbial communities in situ. PMID:26098417

  11. Simultaneous sorption of phosphate and phenanthrene to inorgano-organo-bentonite from water.

    PubMed

    Ma, Jianfeng; Zhu, Lizhong

    2006-08-25

    The nonbiodegradable organic pollutants and excess phosphate can not be effectively removed from municipal wastewater by the widely used bioprocess, thus they are harmful to aquatic environment. In this investigation, the feasibility of utilizing inorgano-organo-bentonite (IOB), which was bentonite mineral modified with both Fe polycations and cetyltrimethylammonium bromide (CTMAB), was explored to simultaneously remove phosphate and phenanthrene from water. The results showed that the IOB had strong affinity for both phosphate and polycyclic aromatic hydrocarbons (PAHs) such as phenanthrene in water. It was found that more than 95% phosphate and 99% phenanthrene were removed from water within 30 min. The sorption of phosphate on IOB proved to be an anion/OH(-) exchange reaction. Compared with organobentonite and bentonite mineral, the settlement separation of IOB from aquatic phase was greatly improved. The residual turbidity reached a minimum value of 10 nephelometric turbidity units (NTU) in 60 min. It was indicated that IOB is a favorable sorbent and can simultaneously remove nonbiodegradable organic pollutants such as phenanthrene and phosphate after the bioprocess in wastewater treatment.

  12. Biodegradation of phenanthrene using adapted microbial consortium isolated from petrochemical contaminated environment.

    PubMed

    Janbandhu, Anjali; Fulekar, M H

    2011-03-15

    In developing countries like India, there are many industrial areas discharging effluent containing large amount of polyaromatic hydrocarbon (PAH) which causes hazardous effect on the soil-water environment. The objective of this study was to isolate and characterize high-efficiency PAH-degrading microbial consortium from 3 decade old petrochemical refinery field located in Nagpur, Maharashtra with history of PAH disposal. Based on biochemical tests and 16S rDNA gene sequence analysis the consortium was identified as Sphingobacterium sp., Bacillus cereus and a novel bacterium Achromobacter insolitus MHF ENV IV with effective phenanthrene-degrading ability. The biodegradation data of phenanthrene indicates about 100%, 56.9% and 25.8% degradation at the concentration of 100mg/l, 250 mg/l and 500 mg/l respectively within 14 days. The consortium and its monoculture isolates also utilized variety of other hydrocarbons for growth. To best of our knowledge this is the first time that Achromobacter insolitus has been reported to mineralize phenanthrene effectively. GC-MS analysis of phenanthrene degradation confirmed biodegradation by detection of intermediates like salicylaldehyde, salicylic acid and catechol. All the results indicated that the microbial consortium have a promising application in bioremediation of petrochemical contaminated environments and could be potentially useful for the study of PAH degradation and for bioremediation purposes.

  13. Remediation of phenanthrene from contaminated kaolinite by electroremediation-Fenton technology.

    PubMed

    Alcantara, T; Pazos, M; Gouveia, S; Cameselle, C; Sanroman, M A

    2008-07-01

    Polycyclic aromatic hydrocarbons (PAHs) cause a high environmental impact when released into the environment. The objective of this study was to evaluate the capacity to decontaminate polluted soils with phenanthrene as a model PAH using a combination of two technologies: electrokinetic remediation and Fenton process. Kaolinite was used as a model sample that was artificially polluted at the laboratory at an initial concentration of phenanthrene of 500 mg kg(-1) of dried kaolinite. The standard electrokinetic process resulted in negligible removal of phenanthrene from the kaolinite sample. Faster and more efficient degradation of this compound can be promoted by introduction of a strong oxidant into the soil such as hydroxyl radicals. For this reason, the Fenton reactions have been induced in several experiments in which H(2)O(2) (10%) was used as flushing solution, and kaolinite polluted with iron was used. When anode and cathode chambers were filled with H(2)O(2) (10%), the kaolinite pH is maintained at an acid value around 3.5 without pH control and an overall removal and destruction efficiency of phenanthrene of 99% was obtained in 14 days by applying a voltage gradient of 3 V cm(-1). Therefore, it is evident that a combined technology of electrokinetic remediation and Fenton reaction is capable of simultaneously removing and degrading of PAHs in polluted model samples with kaolinite.

  14. Effects of dissolved organic matter derived from forest leaf litter on biodegradation of phenanthrene in aqueous phase.

    PubMed

    Cai, Dan; Yang, Xiuhong; Wang, Shizhong; Chao, Yuanqing; Morel, J L; Qiu, Rongliang

    2017-02-15

    Dissolved organic matter (DOM) released from forest leaf litter is potentially effective for the degradation of polycyclic aromatic hydrocarbons (PAHs), yet the inherent mechanism remains insufficiently elucidated. In this study, we investigated the effects of DOM derived from Pinus elliottii and Schima superba leaf litter on the degradation of phenanthrene by the phenanthrene degrading bacterium Sphingobium sp. Phe-1. DOM from different origins and at a large range of concentrations enhanced the degradation rate of phenanthrene. DOM derived from P. elliottii leaf litter decomposed for 12 months used at a concentration of 100mg/L yielded the highest degradation rate (16.9% in 36h) and shortened the degradation time from 48h to 24h. Changes in the composition of DOM during degradation as measured by EEMs-FRI showed that proteins and tyrosine in the DOM supplied readily available nutrients that stimulated biological activity of Phe-1, increasing its growth rate and catechol 2,3-dioxygenase activity. Simultaneously, fulvic acid and humic acid in the DOM enhanced phenanthrene bioavailability by increasing the solubility and mass transfer of phenanthrene, enhancing the uptake kinetics of Phe-1, and increasing the bacteria's direct access to DOM-associated phenanthrene. Humic acid was co-metabolized by Phe-1, resulting in further stimulation of phenanthrene degradation.

  15. Phenanthrene degradation by Pseudoxanthomonas sp. DMVP2 isolated from hydrocarbon contaminated sediment of Amlakhadi canal, Gujarat, India.

    PubMed

    Patel, Vilas; Cheturvedula, Sravanthi; Madamwar, Datta

    2012-01-30

    Amlakhadi canal, flowing through Ankleshwar (Gujarat, India) has been impinged with various xenobiotic compounds, released in industrial discharges, over last many decades. Twenty five bacterial strains capable of phenanthrene degradation were isolated from sediments of Amlakhadi canal. The best strain amongst them was identified as Pseudoxanthomonas sp. DMVP2 based on 16S rRNA gene sequence analysis, and selected for further studies. Experiments were carried out for optimization of abiotic parameters for efficient phenanthrene degradation. Strain DMVP2 was able to degrade 300 ppm of phenanthrene completely in minimal medium containing peptone (0.1%, w/v) as nitrogen source with initial pH 8.0 at 37°C under shaking condition (150 rpm) within 120 h. Strain DMVP2 was able to consume 1,600 mg/l of phenanthrene even at high initial concentration (4,000 mg/l) of phenanthrene. Identification of phthalic acid as major metabolite on GC-MS analysis and detection of protocatechuate dioxygenase activity revealed that phenanthrene was metabolized by phthalic acid-protocatechuate acid pathway. Strain DMVP2 was also able to utilize other xenobiotic compounds as sole carbon source and degrade phenanthrene in presence of other petroleum hydrocarbons. Consequently, Pseudoxanthomonas sp. DMVP2 has potential applications in bioremediation strategies.

  16. Stepwise adsorption of phenanthrene at the fly ash-water interface as affected by solution chemistry: experimental and modeling studies.

    PubMed

    An, Chunjiang; Huang, Guohe

    2012-11-20

    Fly ash (FA) is predominantly generated from coal-fired power plants. Contamination during disposal of FA can cause significant environmental problems. Knowledge about the interaction of FA and hydrophobic organic pollutants in the environment is very limited. This study investigated the adsorption of phenanthrene at the interface of FA and water. The performance of phenanthrene adsorption on FA and the effects of various aqueous chemistry conditions were evaluated. The adsorption isotherms exhibited an increasing trend in the adsorbed amounts of phenanthrene, while a stepwise pattern was apparent. A stepwise multisite Langmuir model was developed to simulate the stepwise adsorption process. The adsorption of phenanthrene onto FA was noted to be spontaneous at all temperatures. The thermodynamic results indicated that the adsorption was an exothermic process. The adsorption capacity gradually decreased as pH increased from 4 to 8; however, this trend became less significant when pH was changed from 8 to 10. The binding affinity of phenanthrene to FA increased after the addition of humic acid (HA). The pH variation was also responsible for the changes of phenanthrene adsorption on FA in the presence of HA. High ionic strength corresponded to low mobility of phenanthrene in the FA-water system. Results of this study can help reveal the migration patterns of organic contaminants in the FA-water system and facilitate environmental risk assessment at FA disposal sites.

  17. Biradicals from benzoenyne-allenes. Application in the synthesis of 11H-benzo[b]fluoren-11-ols, 1H-cyclobut[a]indenes, and related compounds.

    PubMed

    Li, H; Zhang, H R; Petersen, J L; Wang, K K

    2001-10-05

    New synthetic pathways to 11H-benzo[b]fluoren-11-ols, 1H-cyclobut[a]indenes, and related compounds via biradicals generated from benzoenyne-allenes were developed. Treatment of the diacetylenic propargylic alcohols 13, derived from condensation between benzophenones and the lithium acetylide of 1-(2-ethynylphenyl)-2-phenylethyne, with thionyl chloride produced the 11-chloro-11H-benzo[b]fluorene 14 and, after hydrolysis, the corresponding 11H-benzo[b]fluoren-11-ols 15. The transformation involved a sequence of reactions, including a biradical-forming C2-C6 cyclization (Schmittel cyclization) reaction of the chlorinated benzoenyne-allene intermediates followed by an intramolecular radical-radical coupling to form the formal Diels-Alder adducts. Interestingly, in the case of the diacetylenic propargylic alcohol 26, obtained from dibenzosuberenone (25), an intramolecular [2 + 2] cycloaddition reaction of the chlorinated benzoenyne-allene intermediate occurred, furnishing the 1H-cyclobut[a]indene 27 exclusively. The dramatic change of the reaction pathway could be attributed to the emergence of a steric strain due to the nonbonded interactions with the chloro substituent along the pathway toward the formal Diels-Alder adduct 31. On the other hand, the non-chlorinated benzoenyne-allene, derived from prototropic isomerization of the diacetylenic hydrocarbon 60, underwent a formal Diels-Alder reaction to furnish the 11H-benzo[b]fluorene-type hydrocarbon 61 exclusively.

  18. Phenanthrene derivatives from roots and rhizomes of Asarum heterotropoides var. mandshuricum.

    PubMed

    Jing, Yu; Zhang, Yi-Fan; Shang, Ming-Ying; Yu, Jie; Tang, Jia-Wei; Liu, Guang-Xue; Li, Yao-Li; Li, Xiao-Mei; Wang, Xuan; Cai, Shao-Qing

    2017-03-01

    Five new phenanthrene derivatives: 9-ethoxy-7-methoxy-aristololactam IV (1), norcepharadione A N-β-d-glucopyranoside (2), aristololactamoside I (3), aristololactamoside II (4) and aristothiolactoside (5) together with eleven known phenanthrene derivatives (6-16) were isolated from the ethanol extract of the roots and rhizomes of Asarum heterotropoides var. mandshuricum. The aristololactams with substitution of ethoxy at C-9 position (1, 9, and 10) and the sulfur-containing phenanthrene derivative (5) were reported in the genus Asarum for the first time. Furthermore, six phenanthrene glucoside derivatives (2-5, 13 and 14) were also found in this genus for the first time and compounds 7 and 9-15 were isolated from the genus Asarum for the first time. Six of them (1, 2, 9, 10, 13 and 14) were submitted to cytotoxicity test against human renal proximal tubular epithelial cell lines (HK-2) using MTT and LDH assays. Compounds 1 and 10 showed significant cytotoxic activity against HK-2 cell lines with IC50 values of 18.18 and 20.44μmol/L in MTT assay and 84.36 and 35.06μmol/L in LDH assay, respectively. Compound 9 showed moderate cytotoxicity in MTT assay with IC50 values of 95.60μmol/L, but no cytotoxicity in LDH assay. Compounds 2, 13 and 14 showed cytotoxic effect in neither MTT assay nor LDH assay. Considering the other nephrotoxic phenanthrene derivatives (6, 8, 12, 15 and 16) previously tested, the results implied the potency of renal toxicity of this herb used as a medicine.

  19. Rapid impact of phenanthrene and arsenic on bacterial community structure and activities in sand batches.

    PubMed

    Cébron, A; Arsène-Ploetze, F; Bauda, P; Bertin, P N; Billard, P; Carapito, C; Devin, S; Goulhen-Chollet, F; Poirel, J; Leyval, C

    2014-01-01

    The impact of both organic and inorganic pollution on the structure of soil microbial communities is poorly documented. A short-time batch experiment (6 days) was conducted to study the impact of both types of pollutants on the taxonomic, metabolic and functional diversity of soil bacteria. For this purpose sand spiked with phenanthrene (500 mg kg(-1) sand) or arsenic (arsenite 0.66 mM and arsenate 12.5 mM) was supplemented with artificial root exudates and was inoculated with bacteria originated from an aged PAH and heavy-metal-polluted soil. The bacterial community was characterised using bacterial strain isolation, TTGE fingerprinting and proteomics. Without pollutant, or with phenanthrene or arsenic, there were no significant differences in the abundance of bacteria and the communities were dominated by Pseudomonas and Paenibacillus genera. However, at the concentrations used, both phenanthrene or arsenic were toxic as shown by the decrease in mineralisation activities. Using community-level physiological profiles (Biolog Ecoplates™) or differential proteomics, we observed that the pollutants had an impact on the community physiology, in particular phenanthrene induced a general cellular stress response with changes in the central metabolism and membrane protein synthesis. Real-time PCR quantification of functional genes and transcripts revealed that arsenic induced the transcription of functional arsenic resistance and speciation genes (arsB, ACR3 and aioA), while no transcription of PAH-degradation genes (PAH-dioxygenase and catechol-dioxygenase) was detected with phenanthrene. Altogether, in our tested conditions, pollutants do not have a major effect on community abundance or taxonomic composition but rather have an impact on metabolic and functional bacterial properties.

  20. The variability of standard artificial soils: cadmium and phenanthrene sorption measured by a batch equilibrium method.

    PubMed

    Bielská, Lucie; Hovorková, Ivana; Kuta, Jan; Machát, Jiří; Hofman, Jakub

    2017-01-01

    Artificial soil (AS) is used in soil ecotoxicology as a test medium or reference matrix. AS is prepared according to standard OECD/ISO protocols and components of local sources are usually used by laboratories. This may result in significant inter-laboratory variations in AS properties and, consequently, in the fate and bioavailability of tested chemicals. In order to reveal the extent and sources of variations, the batch equilibrium method was applied to measure the sorption of 2 model compounds (phenanthrene and cadmium) to 21 artificial soils from different laboratories. The distribution coefficients (Kd) of phenanthrene and cadmium varied over one order of magnitude: from 5.3 to 61.5L/kg for phenanthrene and from 17.9 to 190L/kg for cadmium. Variations in phenanthrene sorption could not be reliably explained by measured soil properties; not even by the total organic carbon (TOC) content which was expected. Cadmium logKd values significantly correlated with cation exchange capacity (CEC), pHH2O and pHKCl, with Pearson correlation coefficients of 0.62, 0.80, and 0.79, respectively. CEC and pHH2O together were able to explain 72% of cadmium logKd variability in the following model: logKd=0.29pHH2O+0.0032 CEC -0.53. Similarly, 66% of cadmium logKd variability could be explained by CEC and pHKCl in the model: logKd=0.27pHKCl+0.0028 CEC -0.23. Variable cadmium sorption in differing ASs could be partially treated with these models. However, considering the unpredictable variability of phenanthrene sorption, a more reliable solution for reducing the variability of ASs from different laboratories would be better harmonization of AS preparation and composition.

  1. The coupling of the plant and microbial catabolisms of phenanthrene in the rhizosphere of Medicago sativa.

    PubMed

    Muratova, Anna; Dubrovskaya, Ekaterina; Golubev, Sergey; Grinev, Vyacheslav; Chernyshova, Marina; Turkovskaya, Olga

    2015-09-01

    We studied the catabolism of the polycyclic aromatic hydrocarbon phenanthrene by four rhizobacterial strains and the possibility of enzymatic oxidation of this compound and its microbial metabolites by the root exudates of alfalfa (Medicago sativa L.) in order to detect the possible coupling of the plant and microbial metabolisms under the rhizospheric degradation of the organic pollutant. A comparative study of phenanthrene degradation pathways in the PAH-degrading rhizobacteria Ensifer meliloti, Pseudomonas kunmingensis, Rhizobium petrolearium, and Stenotrophomonas sp. allowed us to identify the key metabolites from the microbial transformation of phenanthrene, including 9,10-phenanthrenequinone, 2-carboxybenzaldehyde, and 1-hydroxy-2-naphthoic, salicylic, and o-phthalic acids. Sterile alfalfa plants were grown in the presence and absence of phenanthrene (0.03 g kg(-1)) in quartz sand under controlled environmental conditions to obtain plant root exudates. The root exudates were collected, concentrated by ultrafiltration, and the activity of oxidoreductases was detected spectrophotometrically by the oxidation rate for various substrates. The most marked activity was that of peroxidase, whereas the presence of oxidase and tyrosinase was detected on the verge of the assay sensitivity. Using alfalfa root exudates as a crude enzyme preparation, we found that in the presence of the synthetic mediator, the plant peroxidase could oxidize phenanthrene and its microbial metabolites. The results indicate the possibility of active participation of plants in the rhizospheric degradation of polycyclic aromatic hydrocarbons and their microbial metabolites, which makes it possible to speak about the coupling of the plant and microbial catabolisms of these contaminants in the rhizosphere.

  2. Thermosetting composite matrix materials based on allyl and/or propargyl substituted cyclopentadiene, indene and fluorene

    NASA Astrophysics Data System (ADS)

    Tregre, Gregory Jude

    A series of all-hydrocarbon thermoset composite matrix resins was synthesized via electrophilic substitution of cyclopentadiene, indene, and fluorene ring systems with allyl and/or propargyl halides under phase transfer conditions. Reaction of cyclopentadiene with allyl chloride (ACP resin), propargyl bromide (PCP resin) or various feed ratios of allyl chloride and propargyl bromide (APCP resins) yielded mixtures of products with 2-6 substituents per cyclopentadiene ring. Reaction of indene with allyl chloride (Al resins) or propargyl bromide (PI resins) yielded mixtures of products with 2-4 substituents per indene. In both sets of resins the allyl functionality obtained a greater average degree of substitution than the analogous propargyl species. Differential scanning calorimetric (DSC) analysis of the multifunctional resins showed broad, high-energy thermal cures in all cases. The enthalpies of cure for ACP and PCP were 750 J/g and 805 J/g, respectively, with peak cure energies occurring at 310 and 248sp°C. The enthalpy of cure for APCP resins ranged from 750 J/g to 800 J/g with higher propargyl-functional resins yielding higher enthalpies of cure. Physically mixed ACP/PCP resin systems gave peak cure temperatures and energy values comparable to APCP resins. The enthalpies of cure for Al and PI-resins were 480 J/g and 630 J/g, respectively. Peak cure temperature for Al resin was 320sp°C, while the peak cure for PI resin occurred at 282sp°C. Infrared spectroscopy (IR) and nuclear magnetic resonance spectroscopy (NMR) were used to evaluate mechanisms of cure in the experimental resins. The allyl functional resins cured through a combination of ene reactions and polyaddition reactions. The propargyl functional resins cured through ene reactions and polyadditions but also underwent some cyclotrimerization of the propargyl functionalities. A small amount of autoxidation was seen in all of the resins. Thermal stability and carbon yields of the cured resins were

  3. (Fluoren-9-ylidene)methanedithiolato complexes of platinum: synthesis, reactivity, and luminescence.

    PubMed

    Vicente, José; González-Herrero, Pablo; Pérez-Cadenas, María; Jones, Peter G; Bautista, Delia

    2005-10-03

    Platinum(II) complexes with (fluoren-9-ylidene)methanedithiolato and its 2,7-di-tert-butyl- and 2,7-dimethoxy-substituted analogues were obtained by reacting different chloroplatinum(II) precursors with the piperidinium dithioates (pipH)[(2,7-R2C12H6)CHCS2] [R = H (1a), t-Bu (1b), or OMe (1c)] in the presence of piperidine. The anionic complexes Q2[Pt{S(2)C=C(C12H6R(2)-2,7)}2] [R = H, (Pr(4)N)(2)2a; R = t-Bu, (Pr4N)(2)2b, (Et4N)(2)2b; R = OMe, (Pr4N)(2)2c] were prepared from PtCl(2), piperidine, the corresponding QCl salt, and 1a-c in molar ratio 1:2:2:2. In the absence of QCl, the complexes (pipH)(2)2b and [Pt(pip)(4)]2b were isolated depending on the PtCl(2):pip molar ratio. The neutral complexes [Pt{S2C=C(C12H6R(2)-2,7)L(2)] [L = PPh(3), R = H (3a), t-Bu (3b), OMe (3c); L = PEt(3), R = H (4a), t-Bu (4b), OMe (4c); L(2) = dbbpy, R = H (5a), t-Bu (5b), OMe (5c) (dbbpy = 4,4'-di-tert-butyl-2,2'-bipyridyl)] were similarly prepared from the corresponding precursors [PtCl2L2] and 1a-c in the presence of piperidine. Oxidation of Q(2)2b with [FeCp2]PF6 afforded the mixed Pt(II)-Pt(IV) complex Q2[Pt2{S2C=C[C12H6(t-Bu)(2)-2,7]}4] (Q(2)6, Q = Et4N+, Pr4N+). The protonation of (Pr4N)(2)2b with 2 equiv of triflic acid gave the neutral dithioato complex [Pt2{S2CCH[C12H6(t-Bu)(2)-2,7]}4] (7). The same reaction in 1:1 molar ratio gave the mixed dithiolato/dithioato complex Pr4N[Pt{S2C=C[C12H6(t-Bu)(2)-2,7]}{S2CCH[C12H6(t-Bu)(2)-2,7]}] (Pr(4)N8) while the corresponding DMANH+ salt was obtained by treating 7 with 2 equiv of 1,8-bis(dimethylamino)naphthalene (DMAN). The crystal structures of 3b and 5c.CH2Cl2 have been solved by X-ray crystallography. All the platinum complexes are photoluminescent at 77 K in CH2Cl2 or KBr matrix, except for Q(2)6. Compounds 5a-c and Q8 show room-temperature luminescence in fluid solution. The electronic absorption and emission spectra of the dithiolato complexes reveal charge-transfer absorption and emission energies which are significantly lower

  4. Conjugated poly(fluorene-quinoxaline) for fluorescence imaging and chemical detection of nerve agents with its paper-based strip.

    PubMed

    Jo, Seonyoung; Kim, Daigeun; Son, Sang-Ho; Kim, Yongkyun; Lee, Taek Seung

    2014-01-22

    Conjugated polymer of poly(fluorene-co-quinoxaline) was synthesized via Suzuki coupling polymerization. The emission color of the polymer can be tuned depending on the concentration of the polymer in solution. A low-energy bandgap is observed both in the concentrated solution and in the solid state, caused by aggregation of the polymer chains, resulting in long wavelength emission from the quinoxaline moiety, while short wavelength emission can be seen in diluted, well-dissolved solution. The presence of quinoxaline units enables us to demonstrate fluorescence switching and imaging. Paper-based strips containing the polymer are prepared via simple immersion of filter paper in the polymer solution for practical use in the detection of nerve agents. The emission of the paper-based strip is quenched upon exposure to diethyl chlorophosphate (DCP), a nerve agent simulant, and the initial emission intensity can be almost restored by treatment with aqueous sodium hydroxide solution, making a possible reversible paper-based sensor.

  5. Sorption characteristics of phenanthrene and pyrene to surfactant-modified peat from aqueous solution: the contribution of partition and adsorption.

    PubMed

    Zhou, Yanbo; Zhang, Ruzhuang; Gu, Xiaochen; Zhao, Qing; Lu, Jun

    2015-01-01

    In this paper, the sorption characteristics and mechanisms of phenanthrene and pyrene onto peat (PT) and surfactant-modified peat (MPT) were investigated. Sorption results fit closely to the Partition model and Freundlich model, the coefficient of determination (R²) were higher than 0.98 and 0.99, respectively. The contributions of partition and adsorption to the total sorption of phenanthrene and pyrene by PT and MPT were analyzed quantitatively. Results indicate that the sorption process is a combination of partition and adsorption, and partition plays a major role in the sorption process. The contribution of partition increased with the increasing of initial concentrations of polycyclic aromatic hydrocarbons. The sorption ability of phenanthrene and pyrene by PT and MPT followed the order of pyrene > phenanthrene. MPT has demonstrated potential as a promising new class of materials for environmental remediation of organic pollutants.

  6. Flocculant in wastewater affects dynamics of inorganic N and accelerates removal of phenanthrene and anthracene in soil.

    PubMed

    Fernandez-Luqueno, F; Thalasso, F; Luna-Guido, M L; Ceballos-Ramírez, J M; Ordoñez-Ruiz, I M; Dendooven, L

    2009-06-01

    Recycling of municipal wastewater requires treatment with flocculants, such as polyacrylamide. It is unknown how polyacrylamide in sludge affects removal of polycyclic aromatic hydrocarbons (PAH) from soil. An alkaline-saline soil and an agricultural soil were contaminated with phenanthrene and anthracene. Sludge with or without polyacrylamide was added while emission of CO(2) and concentrations of NH(4)(+), NO(3)(-), NO(2)(-), phenanthrene and anthracene were monitored in an aerobic incubation experiment. Polyacrylamide in the sludge had no effect on the production of CO(2), but it reduced the concentration of NH(4)(+), increased the concentration of NO(3)(-) in the Acolman soil and NO(2)(-) in the Texcoco soil, and increased N mineralization compared to the soil amended with sludge without polyacrylamide. After 112d, polyacrylamide accelerated the removal of anthracene from both soils and that of phenanthrene in the Acolman soil. It was found that polyacrylamide accelerated removal of phenanthrene and anthracene from soil.

  7. Reduction in the earthworm metabolomic response after phenanthrene exposure in soils with high soil organic carbon content.

    PubMed

    McKelvie, Jennifer R; Whitfield Åslund, Melissa; Celejewski, Magda A; Simpson, André J; Simpson, Myrna J

    2013-04-01

    We evaluated the correlation between soil organic carbon (OC) content and metabolic responses of Eisenia fetida earthworms after exposure to phenanthrene (58 ± 3 mg/kg) spiked into seven artificial soils with OC contents ranging from 1 to 27% OC. Principal component analysis of (1)H nuclear magnetic resonance (NMR) spectra of aqueous extracts identified statistically significant differences in the metabolic profiles of control and phenanthrene-exposed E. fetida in the 1% OC soil only. Partial least squares analysis identified a metabolic response in the four soils with OC values ≤11% which was well correlated to estimated phenanthrene porewater concentrations. The results suggest that the higher sorption capability of high OC soils decreased the bioavailability of phenanthrene and the subsequent metabolic response of E. fetida.

  8. Fine tuning of fluorene-based dye structures for high-efficiency p-type dye-sensitized solar cells.

    PubMed

    Liu, Zonghao; Li, Wenhui; Topa, Sanjida; Xu, Xiaobao; Zeng, Xianwei; Zhao, Zhixin; Wang, Mingkui; Chen, Wei; Wang, Feng; Cheng, Yi-Bing; He, Hongshan

    2014-07-09

    We report on an experimental study of three organic push-pull dyes (coded as zzx-op1, zzx-op1-2, and zzx-op1-3) featuring one, two, and three fluorene units as spacers between donors and acceptors for p-type dye-sensitized solar cells (p-DSSC). The results show increasing the number of spacer units leads to obvious increases of the absorption intensity between 300 nm and 420 nm, a subtle increase in hole driving force, and almost the same hole injection rate from dyes to NiO nanoparticles. Under optimized conditions, the zzx-op1-2 dye with two fluorene spacer units outperforms other two dyes in p-DSSC. It exhibits an unprecedented photocurrent density of 7.57 mA cm(-2) under full sun illumination (simulated AM 1.5G light illumination, 100 mW cm(-2)) when the I(-)/I3(-) redox couple and commercial NiO nanoparticles were used as an electrolyte and a semiconductor, respectively. The cells exhibited excellent long-term stability. Theoretical calculations, impedance spectroscopy, and transient photovoltage decay measurements reveal that the zzx-op1-2 exhibits lower photocurrent losses, longer hole lifetime, and higher photogenerated hole density than zzx-op1 and zzx-op1-3. A dye packing model was proposed to reveal the impact of dye aggregation on the overall photovoltaic performance. Our results suggest that the structural engineering of organic dyes is important to enhance the photovoltaic performance of p-DSSC.

  9. Influences of humic acid on the bioavailability of phenanthrene and alkyl phenanthrenes to early life stages of marine medaka (Oryzias melastigma).

    PubMed

    Liu, Yangzhi; Yang, Chenghu; Cheng, Pakkin; He, Xiaojing; Zhu, Yaxian; Zhang, Yong

    2016-03-01

    The influences of humic acid (HA) on the environmental behavior and bioavailability of parent polycyclic aromatic hydrocarbons (PAHs) and alkyl PAHs were investigated and compared using the early life stages of marine medaka (Oryzias melastigma, O. melastigma). It was demonstrated that the binding affinity of parent phenanthrene (PHE) with HA was smaller than that of 3-methyl phenanthrene (3-MP) and 9-ethyl phenanthrene (9-EP). Furthermore, the bioaccumulation of the three PAHs and the levels of lipid peroxidation (LPO) were calculated to study the changes in bioavailability of PAHs in presence of HA. The results indicated that the addition of HA significantly decreased the bioaccumulation and toxicity of PAHs by decreasing free PAHs concentrations. The bioavailable fractions of HA-bound PAHs in bioaccumulation (α) and toxicity (β) were evaluated, indicating that the HA-bound 3-MP and 9-EP show higher bioavailability in bioaccumulation and lower bioavailability in toxicity relative to those of PHE. The β/α values were less than 1 for all PAH treatment groups containing HA, suggesting that the fraction of HA-bound PAHs contributing to bioaccumulation was higher than that of HA-bound PAHs inducing toxic effect. In addition, we proposed that the free PAHs generated by desorption from HA in the cell were toxic by showing that the β/α ratio values are correlated with the log KOW values (p = 0.007 and R(2) = 0.8355). Thus, oil spill risk assessments should consider both alkyl PAHs and the factors that influence the bioavailability and toxicity of PAHs in the natural aquatic environments.

  10. Effect of bioaugmentation to enhance phytoremediation for removal of phenanthrene and pyrene from soil with Sorghum and Onobrychis sativa

    PubMed Central

    2014-01-01

    The use of plants to remove Poly-aromatic-hydrocarbons (PAHs) from soil (phytoremediation) is emerging as a cost-effective method. Phytoremediation of contaminated soils can be promoted by the use of adding microorganisms with the potential of pollution biodegradation (bioaugmentation). In the present work, the effect of bacterial consortium was studied on the capability of Sorghum and Onobrychis sativa for the phytoremediation of soils contaminated with phenanthrene and pyrene. 1.5 kg of the contaminated soil in the ratio of 100 and 300 mg phenanthrene and/or pyrene per kg of dry soil was then transferred into each pot (nine modes). The removal efficiency of natural, phytoremediation and bioaugmentation, separately and combined, were evaluated. The samples were kept under field conditions, and the remaining concentrations of pyrene and phenanthrene were determined after 120 days. The rhizosphere as well as the microbial population of the soil was also determined. Results indicated that both plants were able to significantly remove pyrene and phenanthrene from the contaminated soil samples. Phytoremediation alone had the removal efficiency of about 63% and 74.5% for pyrene and phenanthrene respectively. In the combined mode, the removal efficiency dramatically increased, leading to pyrene and phenanthrene removal efficiencies of 74.1% and 85.02% for Onobrychis sativa and 73.84% and 85.2% for sorghum, respectively. According to the results from the present work, it can be concluded that Onobrychis sativa and sorghum are both efficient in removing pyrene and phenanthrene from contamination and bioaugmentation can significantly enhance the phytoremediation of soils contaminated with pyrene and phenanthrene by 22% and 16% respectively. PMID:24406158

  11. Effect of bioaugmentation to enhance phytoremediation for removal of phenanthrene and pyrene from soil with Sorghum and Onobrychis sativa.

    PubMed

    Baneshi, Mohammad Mehdi; Rezaei Kalantary, Roshanak; Jonidi Jafari, Ahmad; Nasseri, Simin; Jaafarzadeh, Nemat; Esrafili, Ali

    2014-01-09

    The use of plants to remove Poly-aromatic-hydrocarbons (PAHs) from soil (phytoremediation) is emerging as a cost-effective method. Phytoremediation of contaminated soils can be promoted by the use of adding microorganisms with the potential of pollution biodegradation (bioaugmentation). In the present work, the effect of bacterial consortium was studied on the capability of Sorghum and Onobrychis sativa for the phytoremediation of soils contaminated with phenanthrene and pyrene. 1.5 kg of the contaminated soil in the ratio of 100 and 300 mg phenanthrene and/or pyrene per kg of dry soil was then transferred into each pot (nine modes). The removal efficiency of natural, phytoremediation and bioaugmentation, separately and combined, were evaluated. The samples were kept under field conditions, and the remaining concentrations of pyrene and phenanthrene were determined after 120 days. The rhizosphere as well as the microbial population of the soil was also determined. Results indicated that both plants were able to significantly remove pyrene and phenanthrene from the contaminated soil samples. Phytoremediation alone had the removal efficiency of about 63% and 74.5% for pyrene and phenanthrene respectively. In the combined mode, the removal efficiency dramatically increased, leading to pyrene and phenanthrene removal efficiencies of 74.1% and 85.02% for Onobrychis sativa and 73.84% and 85.2% for sorghum, respectively. According to the results from the present work, it can be concluded that Onobrychis sativa and sorghum are both efficient in removing pyrene and phenanthrene from contamination and bioaugmentation can significantly enhance the phytoremediation of soils contaminated with pyrene and phenanthrene by 22% and 16% respectively.

  12. Effects of oil dispersant and oil on sorption and desorption of phenanthrene with Gulf Coast marine sediments.

    PubMed

    Gong, Yanyan; Zhao, Xiao; O'Reilly, S E; Qian, Tianwei; Zhao, Dongye

    2014-02-01

    Effects of a model oil dispersant (Corexit EC9500A) on sorption/desorption of phenanthrene were investigated with two marine sediments. Kinetic data revealed that the presence of the dispersant at 18 mg/L enhanced phenanthrene uptake by up to 7%, whereas the same dispersant during desorption reduced phenanthrene desorption by up to 5%. Sorption isotherms confirmed that at dispersant concentrations of 18 and 180 mg/L, phenanthrene uptake progressively increased for both sediments. Furthermore, the presence of the dispersant during desorption induced remarkable sorption hysteresis. The effects were attributed to added phenanthrene affinity and capacity due to sorption of the dispersant on the sediments. Dual-mode models adequately simulated sorption isotherms and kinetic data in the presence of the dispersant. Water accommodated oil (WAO) and dispersant-enhanced WAO increased phenanthrene sorption by up to 22%. This information is important for understanding roles of oil dispersants on the distribution and transport of petroleum PAHs in seawater-sediments.

  13. Biodegradation of phenanthrene in bioaugmented microcosm by consortium ASP developed from coastal sediment of Alang-Sosiya ship breaking yard.

    PubMed

    Patel, Vilas; Patel, Janki; Madamwar, Datta

    2013-09-15

    A phenanthrene-degrading bacterial consortium (ASP) was developed using sediment from the Alang-Sosiya shipbreaking yard at Gujarat, India. 16S rRNA gene-based molecular analyses revealed that the bacterial consortium consisted of six bacterial strains: Bacillus sp. ASP1, Pseudomonas sp. ASP2, Stenotrophomonas maltophilia strain ASP3, Staphylococcus sp. ASP4, Geobacillus sp. ASP5 and Alcaligenes sp. ASP6. The consortium was able to degrade 300 ppm of phenanthrene and 1000 ppm of naphthalene within 120 h and 48 h, respectively. Tween 80 showed a positive effect on phenanthrene degradation. The consortium was able to consume maximum phenanthrene at the rate of 46 mg/h/l and degrade phenanthrene in the presence of other petroleum hydrocarbons. A microcosm study was conducted to test the consortium's bioremediation potential. Phenanthrene degradation increased from 61% to 94% in sediment bioaugmented with the consortium. Simultaneously, bacterial counts and dehydrogenase activities also increased in the bioaugmented sediment. These results suggest that microbial consortium bioaugmentation may be a promising technology for bioremediation.

  14. Polycyclic aromatic hydrocarbon removal from water by natural fiber sorption.

    PubMed

    Khan, Eakalak; Khaodhir, Sutha; Rotwiron, Paritta

    2007-08-01

    The use of two natural sorbents, kapok and cattail fibers, were investigated for polycyclic aromatic hydrocarbon (PAH) removal from water. Naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, and fluoranthene were the PAHs studied. For comparative purposes, a commercial polyester fiber sorbent was included in the investigation. The PAH sorption and retention capabilities of the three fibers were determined through batch and continuous-flow experiments under non-competitive and competitive conditions. In the batch experiments, cattail fiber was the most effective sorbent. Kapok fiber provided the lowest PAH retention, while cattail fiber had slightly less PAH retention than polyester fiber. When two PAHs were present in the same system, a competitive effect on the much less hydrophobic PAH was observed. Similar results were obtained in the column experiments, except that polyester fiber performed much poorer on naphthalene. Cattail fiber is a promising sorbent for treating PAH-contaminated water, such as urban runoff.

  15. Toxicological profile for polycyclic aromatic hydrocarbons. Final report

    SciTech Connect

    Not Available

    1990-12-01

    The ATSDR Toxicological Profile for Polycyclic Aromatic Hydrocarbons (PAHs): Acenaphthene, Acenaphthylene, Anthracene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(g,h,i)perylene, Benzo(k)fluoranthene, Chrysene, Dibenzo(a,h)anthracene, Fluoranthene, Fluorene, Indeno(1,2,3-cd)pyrene, Phenanthrene, Pyrene is intended to characterize succinctly the toxicological and health effects information for the substance. It identifies and reviews the key literature that describes the substance's toxicological properties. Other literature is presented but described in less detail. The profile begins with a public health statement, which describes in nontechnical language the substance's relevant toxicological properties. The adequacy of information to determine the substance's health effects is described. Research gaps in nontoxic and health effects information are described. Research gaps that are of significance to the protection of public health will be identified in a separate effort. The focus of the document is on health and toxicological information.

  16. Degradation of polycyclic aromatic hydrocarbons by a marine fluidized-bed enrichment

    SciTech Connect

    Melin, E.S.; Puhakka, J.A.; Maennistoe, M.; Ferguson, J.F.

    1995-12-31

    Aerobic polycyclic aromatic hydrocarbon (PAH)-degrading bacteria from marine sediments were enriched and maintained in a fluidized-bed reactor (FBR). The FBR was continuously fed a mixture of naphthalene, biphenyl, 2-methylnaphthalene, 2,6-dimethylnaphthalene, acenaphthene, fluorene, and phenanthrene; and the effluent concentrations remained below 0.03 mg/L (detection limit) over a period of 6 months. In batch vial assays, the relative rates of PAH degradation were controlled by their solubilities and, in some cases, by their substitution patterns. The enrichment also degraded several other PAHs, including anthracene and pyrene. The results demonstrate that the predominant PAH constituents of coal-tar creosote can be degraded and that PAH-contaminated saline waters can be remediated by the marine enrichment.

  17. A headspace solid-phase microextraction procedure coupled with gas chromatography-mass spectrometry for the analysis of volatile polycyclic aromatic hydrocarbons in milk samples.

    PubMed

    Aguinaga, N; Campillo, N; Viñas, P; Hernández-Córdoba, M

    2008-06-01

    A sensitive and solvent-free method for the determination of ten polycyclic aromatic hydrocarbons, namely, naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene and chrysene, with up to four aromatic rings, in milk samples using headspace solid-phase microextraction and gas chromatography-mass spectrometry detection has been developed. A polydimethylsiloxane-divinylbenzene fiber was chosen and used at 75 degrees C for 60 min. Detection limits ranging from 0.2 to 5 ng L(-1) were attained at a signal-to-noise ratio of 3, depending on the compound and the milk sample under analysis. The proposed method was applied to ten different milk samples and the presence of six of the analytes studied in a skimmed milk with vegetal fiber sample was confirmed. The reliability of the procedure was verified by analyzing two different certified reference materials and by recovery studies.

  18. Digestive determinants of benzo[a]pyrene and phenanthrene bioaccumulation by a deposit-feeding polychaete

    SciTech Connect

    Penry, D.L.; Weston, D.P.

    1998-11-01

    The uptake of hydrophobic contaminants from ingested sediment can contribute significantly to body burdens of deposit feeders, and feeding behavior and digestive physiology can play important roles in bioaccumulation. The authors examined the uptake of polycyclic aromatic hydrocarbons (PAHs) by the deposit-feeding polychaete Abarenicola pacifica in experiments in which worms were first acclimated to low or high organic carbon sediments with 0.08 or 0.45% total organic carbon, respectively and then transferred to low or high organic carbon test sediments contaminated with radiolabeled phenanthrene or benzo[a]pyrene. Ingestion rate was measurements are essential in many types of bioaccumulation studies because differences in ingestion rates between sediment types may confound some traditional measures of bioavailability. Physiological acclimation to the low or high organic carbon sediments did not appear to affect PAH uptake from the test sediments, but acclimation did affect biotransformation capabilities, particularly for phenanthrene.

  19. Impact of activated carbon, biochar and compost on the desorption and mineralization of phenanthrene in soil.

    PubMed

    Marchal, Geoffrey; Smith, Kilian E C; Rein, Arno; Winding, Anne; Wollensen de Jonge, Lis; Trapp, Stefan; Karlson, Ulrich G

    2013-10-01

    Sorption of PAHs to carbonaceous soil amendments reduces their dissolved concentrations, limiting toxicity but also potentially biodegradation. Therefore, the maximum abiotic desorption of freshly sorbed phenanthrene (≤5 mg kg(-1)) was measured in three soils amended with activated carbon (AC), biochar or compost. Total amounts of phenanthrene desorbed were similar between the different soils, but the amendment type had a large influence. Complete desorption was observed in the unamended and compost amended soils, but this reduced for biochar (41% desorbed) and AC (8% desorbed). Cumulative amounts mineralized were 28% for the unamended control, 19% for compost, 13% for biochar and 4% for AC. Therefore, the effects of the amendments in soil in reducing desorption were also reflected in the extents of mineralization. Modeling was used to analyze key processes, indicating that for the AC and charcoal treatments bacterial activity did not limit mineralization, but rather desorption into the dissolved phase.

  20. The growth of phenanthrene from naphthalene by C2H2 additions

    NASA Astrophysics Data System (ADS)

    Bauschlicher, Charles W., Jr.

    2015-07-01

    Two paths are investigated for the growth of phenanthrene from naphthalene by the addition of C2H2 groups. The first series of steps leads to acenaphthylene (ACN), which is consistent with the path found previously. The addition of C2H2 to ACN can yield a product with two adjacent five-membered rings. Opening one five-membered ring produces a five-membered ring with CH2 side group. This can be converted to a six-membered ring in a manner analogous to the hydrogen atom catalysed fulvene to benzene conversion. A second path, with a somewhat higher barrier, can also lead to the phenanthrene product. The transition state for the second path is essentially isoenergetic with the stating material of ACN + C2H2 + H.

  1. Mechanistic characterization of adsorption and slow desorption of phenanthrene aged in soils

    SciTech Connect

    Abdul Abu; Steve Smith

    2006-09-01

    Long-term adsorption of phenanthrene to soils was characterized in a silt-loam (LHS), a sandy soil (SBS) from an uncontaminated area of a former coal treatment facility in the north of England and a podzolized soil (CNS) by use of the Polanyi-Manes model, a Langmuir-type model, and a black carbon-water distribution coefficient (K{sub BC}) at a relative aqueous concentration (C{sub e}/S{sub w}) of 0.002 - 0.32. Aqueous desorption kinetic tests and temperature-programmed desorption (TPD) were also used to evaluate phenanthrene diffusivities and desorption activation energies. Adsorption contribution in soils was 48-70% after 30 days and 64-95% after 270 days. Significant increases in adsorption capacity with aging suggest that accessibility of phenanthrene to fractions of SBS soil matrix was controlled by sorptive diffusion at narrow meso- and micropore constrictions. Similar trends were not significant for LHS silt-loam or CNS podzol. Analysis of TPD profiles reveal desorption activation energies of 35-53 kJ/mol and diffusivities of 1.6 x 10{sup -7-}9.7 10{sup -8} cm{sup 2}/s. TPD tests also indicate that the fraction of phenanthrene mass not diffusing from soils was located within micropores and narrow width mesopores with a corresponding volume of 1.83 10{sup -5-}6.3710{sup -5} cm{sup 3}/g. These values were consistent with the modeled adsorption contributions, thus demonstrating the need for such complimentary analytical approach in the risk assessment of organic contaminants. 41 refs., 2 figs., 4 tabs.

  2. A novel solubilization of phenanthrene using Winsor I microemulsion-based sodium castor oil sulfate.

    PubMed

    Zhao, Baowei; Zhu, Lizhong; Gao, Yanzheng

    2005-03-17

    Problems associated with polycyclic aromatic hydrocarbons (PAHs) contaminated site in environmental media have received increasing attention. Ex situ soil washing is commonly used for treating contaminated soils by separating the most contaminated fraction of the soil for disposal. Surfactant-enhanced soil washing is being considered with increasing frequency to actually achieve soil-contaminant separation. In this research, a novel solubilization of phenanthrene and extraction of phenanthrene from spiked soil by sodium castor oil sulfate (SCOS) microemulsion was presented and compared with the conventional surfactants, Triton X-100 (TX100), Tween 80 (TW80), Brij35, sodium dodecylbenzene sulfonate (SDBS) and sodium dodecyl sulfate (SDS). Unlike conventional surfactants, SCOS forms stable microemulsion in water and thus behaves much like a separate bulk phase in concentrating organic solutes. The extent of solubility enhancement is linearly proportional to the concentration of SCOS microemulsion, in contrast with the effect of a conventional surfactant in which a sharp inflection occurs in the vicinity of the measured critical micelle concentration. SCOS microemulsion exhibits the largest mass solubilization ratio among the selected surface active agents (SAAs) in both soil-free system and soil-water system. The partitioning coefficients of phenanthrene between the emulsified phase and the aqueous phase, Kem, is slightly larger than those between the micellar pseudo phase and the aqueous phase, Kmc. The extraction experiments demonstrate high and fast desorption of phenanthrene from spiked soil by SCOS microemulsion perhaps due to its high solubilization capacity compared with the conventional surfactant solutions. The results show that SCOS could be an attractive alternative to synthetic surfactants in ex situ washing for PAH-contaminated soils.

  3. Transcriptomics reveals extensive inducible biotransformation in the soil-dwelling invertebrate Folsomia candida exposed to phenanthrene

    PubMed Central

    Nota, Benjamin; Bosse, Mirte; Ylstra, Bauke; van Straalen, Nico M; Roelofs, Dick

    2009-01-01

    Background Polycyclic aromatic hydrocarbons are common pollutants in soil, have negative effects on soil ecosystems, and are potentially carcinogenic. The Springtail (Collembola) Folsomia candida is often used as an indicator species for soil toxicity. Here we report a toxicogenomic study that translates the ecological effects of the polycyclic aromatic hydrocarbon phenanthrene in soil to the early transcriptomic responses in Folsomia candida. Results Microarrays were used to examine two different exposure concentrations of phenanthrene, namely the EC10 (24.95 mg kg-1 soil) and EC50 (45.80 mg kg-1 soil) on reproduction of this springtail, which evoked 405 and 251 differentially expressed transcripts, respectively. Fifty transcripts were differential in response to either concentration. Many transcripts encoding xenobiotic detoxification and biotransformation enzymes (phases I, II, and III) were upregulated in response to either concentration. Furthermore, indications of general and oxidative stress were found in response to phenanthrene. Chitin metabolism appeared to be disrupted particularly at the low concentration, and protein translation appeared suppressed at the high concentration of phenanthrene; most likely in order to reallocate energy budgets for the detoxification process. Finally, an immune response was evoked especially in response to the high effect concentration, which was also described in a previous transcriptomic study using the same effect concentration (EC50) of cadmium. Conclusion Our study provides new insights in the molecular mode of action of the important polluting class of polycyclic aromatic hydrocarbons in soil animals. Furthermore, we present a fast, sensitive, and specific soil toxicity test which enhances traditional tests and may help to improve current environmental risk assessments and monitoring of potentially polluted sites. PMID:19457238

  4. [Structural changes of aged biochar and the influence on phenanthrene adsorption].

    PubMed

    Tang, Wei; Guo, Yue; Wu, Jing-Gui; Huang, Zhao-Qin; Dai, Jing-Yu

    2014-07-01

    Biochars prepared by pyrolysis of rice husk at 350 degrees C and 550 degrees C were incubated in the lucifugal thermostat for 300 d. Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), Scanning Electron Microscopy (SEM), and Nuclear Magnetic Resonance (NMR) techniques were applied to explore the structural change before and after incubation. It was found that the oxygen content was increased after incubation, suggesting the formation of oxygen-containing functional groups. Incubation of the biochars also enhanced their nonlinear adsorption of phenanthrene. Structural change subjected to incubation was in fact affected by the pyrolysis temperatures at which the biochars were synthesized. Increase of polarity and decrease of aromaticity were found for biochars prepared at 350 degrees C. In contrast, incubation of biochars prepared at 550 degrees C resulted in increased aliphatic contents and aromaticity, as well as decrease of carboxyl group. The adsorption capacity of phenanthrene predicted by Langmuir model was 3.57 and 2.35 mg x g(-1) for new and aged biochar with lower pyrolysis temperature, respectively. It was assumed that change of the surface structure of the biochars due to aging inhibited the adsorption. On the contrary, aging of biochares prepared at 550 degrees C resulted in enhanced adsorption capacity of phenanthrene from 0.42 to 4.17 mg x (-1), which was probably correlated to the partition effect due to enhanced aromaticity. The data obtained in this research suggested that aging of biochars potentially affected the fate of the pollutants in environment.

  5. Effects of oil dispersant on ozone oxidation of phenanthrene and pyrene in marine water.

    PubMed

    Gong, Yanyan; Zhao, Dongye

    2017-04-01

    This work investigated effects of a popular oil dispersant (Corexit EC9500A) on oxidation of phenanthrene and pyrene (two model polycyclic aromatic hydrocarbons) in Gulf coast seawater under simulated atmospheric ozone. The degradation data followed a two-stage pseudo-first order kinetics, a slower initial reaction rate followed by a much faster rate in longer time. The ozonation rate for pyrene was faster than that for phenanthrene. The presence of 18 and 180 mg/L of the dispersant inhibited the first-order degradation rate by 32-80% for phenanthrene, and 51-85% for pyrene. In the presence of 18 mg/L of the dispersant, the pyrene degradation rate increased with increasing ozone concentration, but decreased with increasing solution pH and temperature, while remained independent of ionic strength. For the first time, the results indicate that atmospheric ozone may play a significant role in the weathering of dispersed persistent oil components in natural and engineered systems.

  6. Phenanthrene and pyrene sorption and intraparticle diffusion in polyoxymethylene, coke, and activated carbon

    SciTech Connect

    Sungwoo Ahn; David Werner; Hrissi K. Karapanagioti; Donald R. McGlothlin; Richard N. Zare; Richard G. Luthy

    2005-09-01

    The authors report sorption isotherms and uptake kinetics for phenanthrene and pyrene with three organic model sorbents: polyoxymethylene (POM), coke breeze, and activated carbon. Batch equilibration and kinetic experiments were combined with the direct observation of the long-term diffusion of phenanthrene and pyrene as measured within cross-sectioned particles using microprobe laser-desorption laser-ionization mass spectroscopy ({mu}L{sup 2}MS). For POM pellets, the intraparticle concentration profiles predicted from kinetic batch experiments and a polymer diffusion model with spherical geometry are in agreement with the independent {mu}L{sup 2}MS measurements. For coke particles, the apparent diffusivities decreased with smaller particle size. These trends in diffusivities were described by a sorption-retarded pore diffusion model with a particle-size-dependent solid-water partitioning coefficient obtained from apparent equilibrium observed in the kinetic batch studies. For activated carbon, the {mu}L{sup 2}MS measurements showed faster radial diffusion of phenanthrene and pyrene into the particle interior than predicted from diffusion models based on a single sorption domain and diffusivity. A branched pore kinetic model, comprising polycyclic aromatic hydrocarbon (PAH) macropore diffusion with kinetic exchange of PAH between macroporous and microporous domains, fits the experimental observations better. It is not possible to make independent parameter estimations for intraparticle diffusion in activated carbon using present procedures. 41 refs., 4 figs., 3 tabs.

  7. Desorptive behavior of pentachlorophenol (PCP) and phenanthrene in soil-water systems

    SciTech Connect

    Fall, C.; Chaouki, J.; Chavarie, C.

    2000-04-01

    Recent investigations have prompted the need for a better understanding of the complete desorptive behavior of hydrophobic organic compounds in soils. The present study evaluated the irreversibilities associated with the desorption of pentachlorophenol (PCP) and phenanthrene from different types of soils. The study also examined the influence of solid-liquid ratio of the current batch desorption tests, specifically the completeness and accuracy of data gathered for establishing isotherms. Results demonstrated that the desorption of PCP and phenanthrene from contaminated soils can lead to three different types of behavior: complete reversibility, partial reversibility, or total irreversibility. The equilibrium adsorption constant (K{sub d}) is identified as a key parameter that indirectly sets the extent of hysteresis during the reverse process of desorption. According to the data, irreversibility occurs more in soils with a large adsorption capacity, that is, when K{sub d} is approximately 50 mL/g or more in the case of the phenanthrene- and PCP-soil systems evaluated. Furthermore, to facilitate the desorption experiments overall, the study proposes selection criteria for the solid-liquid ratio of batch tests to allow for variations in the adsorption capacity of each soil.

  8. Factors affecting the biodegradation of phenanthrene initially dissolved in different nonaqueous-phase liquids

    SciTech Connect

    Carroquino, M.J.; Alexander, M.

    1998-02-01

    A study was conducted of the importance of measured partitioning rate, the nonaqueous-phase liquid (NAPL)-water interfacial area, and the toxicity of NAPLs to the biodegradation of constituents of NAPLs. Bacterial mineralization of phenanthrene was slower if the compound was initially dissolved in phthalate esters than in aliphatic hydrocarbons with several NAPL-water interfacial areas. The differences were not the result of toxicity of the test NAPLs. The rates of partitioning of phenanthrene from NAPLs to water were faster with larger interfacial areas, but a consistent influence of interfacial area on the rate of mineralization was not evident. The measured rates of partitioning from NAPLs to water under sterile conditions varied among the NAPLs, the mass transfer rates being slower with phthalate esters than with alkanes. The rates of mineralization of phenanthrene initially in NAPLs were correlated with measured partitioning rates, but the rates of biodegradation were sometimes faster than the partitioning rates measured under sterile conditions. Although the rates of biodegradation of a constituent of nontoxic NAPLs are generally related to rates of mass transfer determined under sterile conditions, the authors suggest that the partitioning rate determined in the absence of microorganisms is not an adequate predictor of the maximum rate of biodegradation of such constituents.

  9. Effect of multi-walled carbon nanotubes on phytotoxicity of sediments contaminated by phenanthrene and cadmium.

    PubMed

    Song, Biao; Zeng, Guangming; Gong, Jilai; Zhang, Peng; Deng, Jiaqin; Deng, Canhui; Yan, Jin; Xu, Piao; Lai, Cui; Zhang, Chen; Cheng, Min

    2017-04-01

    To implement effective control and abatement programs for contaminants accumulating in sediments, strategies are needed for evaluating the quality of amended sediments. In this study, phytotoxicity of the sediments contaminated by cadmium and phenanthrene was evaluated after in situ remediation with multi-walled carbon nanotubes (MWCNTs) as adsorbents. Adsorption experiments and measurement of aqueous concentrations of the contaminants in overlying water were used to investigate the remediation effectiveness from physical and chemical aspects. The results indicated that MWCNTs showed a much better adsorption performance towards phenanthrene and Cd(II) compared with the sediments. The in situ remediation with MWCNTs could distinctly decrease the aqueous concentrations of phenanthrene and Cd(II) released from the sediments, reducing environmental risk towards overlying water. Influences of MWCNTs dose, MWCNTs diameter, and contact time on phtotoxicity of the contaminated sediments were studied. No significant inhibition of the amended sediments on germination of the test species was observed in the experiments, while the root growth was more sensitive than biomass production to the changes of contaminant concentrations. The analysis of Pearson correlation coefficients between evaluation indicators and associated remediation parameters suggested that phytotoxicity of sediments might inaccurately indicate the changes of pollutant content, but it was significant in reflecting the ecotoxicity of sediments after remediation.

  10. Effects of rhamnolipids on cell surface hydrophobicity of PAH degrading bacteria and the biodegradation of phenanthrene.

    PubMed

    Zhao, Zhenyong; Selvam, Ammaiyappan; Wong, Jonathan Woon-Chung

    2011-03-01

    The effects of rhamnolipids produced by Pseudomonas aeruginosa ATCC9027 on the cell surface hydrophobicity (CSH) and the biodegradation of phenanthrene by two thermophilic bacteria, Bacillus subtilis BUM and P. aeruginosa P-CG3, and mixed inoculation of these two strains were investigated. Rhamnolipids significantly reduced the CSH of the hydrophobic BUM and resulted in a noticeable lag period in the biodegradation. However, they significantly increased the CSH and enhanced the biodegradation for the hydrophilic P-CG3. In the absence of rhamnolipids, a mixed inoculation of BUM and P-CG3 removed 82.2% of phenanthrene within 30 days and the major contributor of the biodegradation was BUM (rapid degrader) while the growth of P-CG3 (slow degrader) was suppressed. Addition of rhamnolipids promoted the surfactant-mediated-uptake of phenanthrene by P-CG3 but inhibited the uptake through direct contact by BUM. This resulted in the domination of P-CG3 during the initial stage of biodegradation and enhanced the biodegradation to 92.7%.

  11. Surface tailored organobentonite enhances bacterial proliferation and phenanthrene biodegradation under cadmium co-contamination.

    PubMed

    Mandal, Asit; Biswas, Bhabananda; Sarkar, Binoy; Patra, Ashok K; Naidu, Ravi

    2016-04-15

    Co-contamination of soil and water with polycyclic aromatic hydrocarbon (PAH) and heavy metals makes biodegradation of the former extremely challenging. Modified clay-modulated microbial degradation provides a novel insight in addressing this issue. This study was conducted to evaluate the growth and phenanthrene degradation performance of Mycobacterium gilvum VF1 in the presence of a palmitic acid (PA)-grafted Arquad® 2HT-75-based organobentonite in cadmium (Cd)-phenanthrene co-contaminated water. The PA-grafted organobentonite (ABP) adsorbed a slightly greater quantity of Cd than bentonite at up to 30mgL(-1) metal concentration, but its highly negative surface charge imparted by carboxylic groups indicated the potential of being a significantly superior adsorbent of Cd at higher metal concentrations. In systems co-contained with Cd (5 and 10mgL(-1)), the Arquad® 2HT-75-modified bentonite (AB) and PA-grafted organobentonite (ABP) resulted in a significantly higher (72-78%) degradation of phenanthrene than bentonite (62%) by the bacterium. The growth and proliferation of bacteria were supported by ABP which not only eliminated Cd toxicity through adsorption but also created a congenial microenvironment for bacterial survival. The macromolecules produced during ABP-bacteria interaction could form a stable clay-bacterial cluster by overcoming the electrostatic repulsion among individual components. Findings of this study provide new insights for designing clay modulated PAH bioremediation technologies in mixed-contaminated water and soil.

  12. High-Capacity and Photoregenerable Composite Material for Efficient Adsorption and Degradation of Phenanthrene in Water.

    PubMed

    Liu, Wen; Cai, Zhengqing; Zhao, Xiao; Wang, Ting; Li, Fan; Zhao, Dongye

    2016-10-18

    We report a novel composite material, referred to as activated charcoal supported titanate nanotubes (TNTs@AC), for highly efficient adsorption and photodegradation of a representative polycyclic aromatic hydrocarbon (PAH), phenanthrene. TNTs@AC was prepared through a one-step hydrothermal method, and is composed of an activated charcoal core and a shell of carbon-coated titanate nanotubes. TNTs@AC offered a maximum Langmuir adsorption capacity of 12.1 mg/g for phenanthrene (a model PAH), which is ∼11 times higher than the parent activated charcoal. Phenanthrene was rapidly concentrated onto TNTs@AC, and subsequently completely photodegraded under UV light within 2 h. The photoregenerated TNTs@AC can then be reused for another adsorption-photodegradation cycle without significant capacity or activity loss. TNTs@AC performed well over a wide range of pH, ionic strength, and dissolved organic matter. Mechanistically, the enhanced adsorption capacity is attributed to the formation of carbon-coated ink-bottle pores of the titanate nanotubes, which are conducive to capillary condensation; in addition, the modified microcarbon facilitates transfer of excited electrons, thereby inhibiting recombination of the electron-hole pairs, resulting in high photocatalytic activity. The combined high adsorption capacity, photocatalytic activity, and regenerability/reusability merit TNTs@AC a very attractive material for concentrating and degrading a host of micropollutants in the environment.

  13. Phenanthrene and pyrene sorption and intraparticle diffusion in polyoxymethylene, coke, and activated carbon.

    PubMed

    Ahn, Sungwoo; Werner, David; Karapanagioti, Hrissi K; McGlothlin, Donald R; Zare, Richard N; Luthy, Richard G

    2005-09-01

    We report sorption isotherms and uptake kinetics for phenanthrene and pyrene with three organic model sorbents: polyoxymethylene (POM), coke, and activated carbon. We combine batch equilibration and kinetic experiments with the direct observation of the long-term diffusion of phenanthrene and pyrene as measured within cross-sectioned particles using microprobe laser-desorption laser-ionization mass spectroscopy (muL2MS). For POM pellets, the intraparticle concentration profiles predicted from kinetic batch experiments and a polymer diffusion model with spherical geometry are in agreement with the independent muL2MS measurements. For coke particles, the apparent diffusivities decreased with smaller particle size. These trends in diffusivities were described by a sorption-retarded pore diffusion model with a particle-size-dependent solid-water partitioning coefficient obtained from apparent equilibrium observed in the kinetic batch studies. For activated carbon, the muL2MS measurements showed faster radial diffusion of phenanthrene and pyrene into the particle interior than predicted from diffusion models based on a single sorption domain and diffusivity. A branched pore kinetic model, comprising polycyclic aromatic hydrocarbon (PAH) macropore diffusion with kinetic exchange of PAH between macroporous and microporous domains, fits the experimental observations better. Because of parallel macro- and microdiffusion processes, nonlinear sorption isotherms, and a concentration-dependent diffusivity, it is not possible to make independent parameter estimations for intraparticle diffusion in activated carbon using our present procedures.

  14. Turbulent Coagulation of Particles Smaller Than the Length Scales of Turbulence and Equilibrium Sorption of Phenanthrene to Clay: Implications for Pollutant Transport in the Estuarine Water Column

    DTIC Science & Technology

    1997-05-01

    estuaries was modeled using phenanthrene, bacterial extracellular polymer and kaolinite clay as surrogates for a hydrophobic organic pollutant...coefficients obtained for phenanthrene sorption to kaolinite and bentonite in the presence of varying amounts of DOM represented by alginic acid and tannic...acid. 333 Table B.3: Literature values for sorption between phenanthrene, humic acid and kaolinite for [DOM]a = 10 mg/L 334 Table E.1: Sample output data

  15. [Distribution of polycyclic aromatic hydrocarbons in soil profiles in southeast suburb of Beijing wastewater irrigation area].

    PubMed

    He, Jiang-Tao; Jin, Ai-Fang; Chen, Su-Nuan; Wei, Yong-Xia

    2009-05-15

    3 borehole profiles samples were collected using Eijkelkamp soil sampler from the wastewater irrigation area of Beijing Southeast suburb. The soil samples were collected from surface to 5.5 m underground every 0.5 m. Physical-chemical properties of the samples such as clay content, total amount of clay minerals, cation exchange capacity (CEC), total organic compounds (TOC), etc. were analyzed. 16 polycyclic aromatic hydrocarbons (PAHs) defined by the U.S. EPA were also analyzed with gas chromatography-mass spectrometry (GC-MS). Results show that 14 PAHs were detected in the surface soil samples. The concentrations of PAHs range from 4 microg/kg to 428 microg/kg. Under the surface,both species and concentrations of PAHs in soil samples drop very fast. Only 2 rings and 3 rings PAHs were detected, which were naphthalene,phenanthrene, fluorene, acenaphthylene, acenaphthene, and fluoranthene. Clay content, total amount of clay minerals, CEC and TOC have significant correlations at 0.05 level between each other. Under the surface, clay contents also have a relationship with low-rings PAHs concentration. Where the layers have higher clay contents,the PAHs have higher concentrations. The contents of PAHs changing along the profiles also show that, low-rings PAHs are easier to migrate than high-rings PAHs. The sequence of the migration capabilities of low-ring PAHs is acenaphthene > fluorene > naphthalene > phenanthrene > acenaphthylene > fluoranthene. However, high-ring PAHs were only detected in surface soil samples. That means low-rings PAHs can reach the deep layers of the vertical profiles under long-term wastewater irrigation. Therefore, the shallow groundwater has the possibility to be contaminated.

  16. Effect of a commercial alcohol ethoxylate surfactant (C11-15E7) on biodegradation of phenanthrene in a saline water medium by Neptunomonas naphthovorans.

    PubMed

    Li, Jing-Liang; Bai, Renbi

    2005-02-01

    Biodegradation of poorly soluble polycyclic aromatic hydrocarbons (PAHs) has been a challenge in bioremediation. In recent years, surfactant-enhanced bioremediation of PAH contaminants has attracted great attention in research. In this study, biodegradation of phenanthrene as a model PAHs solubilized in saline micellar solutions of a biodegradable commercial alcohol ethoxylate nonionic surfactant was investigated. The critical micelle concentration (CMC) of the surfactant and its solubilization capacity for phenanthrene were examined in an artificial saline water medium, and a type of marine bacteria, Neptunomonas naphthovorans, was studied for the biodegradation of phenanthrene solubilized in the surfactant micellar solutions of the saline medium. It is found that the solubility of phenanthrene in the surfactant micellar solutions increased linearly with the surfactant concentrations, but, at a fixed phenanthrene concentration, the biodegradability of phenanthrene in the micellar solutions decreased with the increase of the surfactant concentrations. This was attributed to the reduced bioavailability of phenanthrene, due to its increased solubilization extent in the micellar phase and possibly lowered mass transfer rate from the micellar phase into the aqueous phase or into the bacterial cells. In addition, an inhibitory effect of the surfactant on the bacterial growth at high surfactant concentrations may also play a role. It is concluded that the surfactant largely enhanced the solubilization of phenanthrene in the saline water medium, but excess existence of the surfactant in the medium should be minimized or avoided for the biodegradation of phenanthrene by Neptunomonas naphthovorans.

  17. Fluorene-Based Copolymers Containing Dinaphtho-s-indacene as New Building Blocks for High-Efficiency and Color-Stable Blue LEDs.

    PubMed

    Guo, Xin; Cheng, Yanxiang; Xie, Zhiyuan; Geng, Yanhou; Wang, Lixiang; Jing, Xiabin; Wang, Fosong

    2009-05-19

    By incorporating a new building block, 7,7,15,15-tetraoctyldinaphtho-s-indacene (NSI), into the backbone of poly(9,9-dioctylfluorene) (PFO), a novel series of blue light-emitting copolymers (PFO-NSI) have been developed. The insertion of the NSI unit into the PFO backbone leads to the increase of local effective conjugation length, to form low-energy fluorene-NSI-fluorene (FNF) segments that serve as exciton trapping sites, to which the energy transfers from the high-energy PFO segments. This causes these copolymers to show red-shifted emissions compared with PFO, with a high efficiency and good color stability and purity. The best device performance with a luminance efficiency of 3.43 cd · A(-1) , a maximum brightness of 6 539 cd · m(-2) , and CIE coordinates of (0.152, 0.164) was achieved.

  18. Accurate spectroscopy of polycyclic aromatic compounds: from the rotational spectrum of fluoren-9-one in the millimeter wave region to its infrared spectrum.

    PubMed

    Maris, Assimo; Calabrese, Camilla; Melandri, Sonia; Blanco, Susana

    2015-01-14

    The rotational spectrum of fluoren-9-one, a small oxygenated polycyclic aromatic hydrocarbon, has been recorded and assigned in the 52-74.4 GHz region. The determined small negative value of the inertia defect (-0.3 u Å(2)) has been explained in terms of vibrational-rotational coupling constants calculated at the B3LYP/cc-pVTZ level of theory. Vibrational anharmonic analysis together with second-order vibrational perturbation theory approximation was applied both to fluorenone and its reduced form, fluorene, to predict the mid- and near-infrared spectra. The data presented here give precise indication on the fluorenone ground state structure, allow for an accurate spectral characterization in the millimeter wave and infrared regions, and hopefully will facilitate extensive radio astronomical searches with large radio telescopes.

  19. Role of microbial adhesion in phenanthrene biodegradation by Pseudomonas fluorescens LP6a

    NASA Astrophysics Data System (ADS)

    Abbasnezhad, Hassan

    Biodegradation of poorly water soluble hydrocarbons, such as n-alkanes and polycyclic aromatic hydrocarbons (PAHs) is often limited by the low availability of the pollutant to microbes. Adhesion of microorganisms to the oil-water interface can influence this availability. Our approach was to study a range of compounds and mechanisms to promote the adhesion of a hydrophilic PAH degrading bacterium, Pseudomonas fluorescens LP6a, to an oil-water interface and examine the effect on biodegradation of phenanthrene by the bacteria. The cationic surfactants cetylpyridinium chloride (CPC), poly-L-lysine and chlorhexidine gluconate (CHX) and the long chain alcohols 1-dodecanol, 2-dodecanol and farnesol increased the adhesion of P. fluorescens LP6a to n-hexadecane from ca. 30% to ca. 90% of suspended cells adhering. The alcohols also caused a dramatic change in the oil-water contact angle of the cell surface, increasing it from 24° to 104°, whereas the cationic compounds had little effect. In contrast, cationic compounds changed the electrophoretic mobility of the bacteria, reducing the mean zeta potential from --23 to --7 mV in 0.01M potassium phosphate buffer, but the alcohols had no effect on zeta potential. This results illustrate that alcohols acted through altering the cell surface hydrophobicity, whereas cationic surfactants changed the surface charge density. Phenanthrene was dissolved in heptamethylnonane and introduced to the aqueous growth medium, hence forming a two phase system. Introducing 1-dodecanol at concentrations of 217, 820 or 4100 mg/L resulted in comparable increases in phenanthrene biodegradation of about 30% after 120 h incubation with non-induced cultures. After 100 h of incubation with LP6a cultures induced with 2-aminobenzoate, 4.5% of the phenanthrene was mineralized by cultures versus more than 10% by the cultures containing initial 1-dodecanol or 2-dodecanol concentrations of 120 or 160 mg/L. The production and accumulation of metabolites in

  20. Single-layer electroluminescent devices based on fluorene-1H-pyrazolo[3,4-b]quinoxaline co-polymers

    NASA Astrophysics Data System (ADS)

    Pokladko-Kowar, Monika; Danel, Andrzej; Chacaga, Łukasz

    2013-11-01

    A fluorene based copolymer was synthesized for electroluminescent application. To the main chain of polymer the nitrogen heterocyclic, 1H-pyrazolo[3,4-b]quinoxaline, unit was introduced. The incorporation of this derivative tuned the emission from the blue to yellow-green one. A simple, single layered device was fabricated with the configuration ITO/PEDOT/co-poly-FLU-PQX/Ca/Mg.

  1. Enhanced performance in fluorene-free organometal halide perovskite light-emitting diodes using tunable, low electron affinity oxide electron injectors.

    PubMed

    Hoye, Robert L Z; Chua, Matthew R; Musselman, Kevin P; Li, Guangru; Lai, May-Ling; Tan, Zhi-Kuang; Greenham, Neil C; MacManus-Driscoll, Judith L; Friend, Richard H; Credgington, Dan

    2015-02-25

    Fluorene-free perovskite light-emitting diodes (LEDs) with low turn-on voltages, higher luminance and sharp, color-pure electroluminescence are obtained by replacing the F8 electron injector with ZnO, which is directly deposited onto the CH3NH3PbBr3 perovskite using spatial atmospheric atomic layer deposition. The electron injection barrier can also be reduced by decreasing the ZnO electron affinity through Mg incorporation, leading to lower turn-on voltages.

  2. Bioconcentration of phenanthrene and metabolites in bile and behavioral alterations in the tropical estuarine guppy Poecilia vivipara.

    PubMed

    Torreiro-Melo, Anny Gabrielle A G; Silva, Juliana Scanoni; Bianchini, Adalto; Zanardi-Lamardo, Eliete; de Carvalho, Paulo Sérgio Martins

    2015-08-01

    Quantification of polycyclic aromatic hydrocarbon (PAH) metabolites in fish bile is widely used to evaluate levels of internal PAH contamination in fish, whereas behavioral effects are deemed important to address potential risks to fish populations. The estuarine guppy Poecilia vivipara was exposed for 96h to waterborne phenanthrene at concentrations of 10, 50, 200 and 500μgL(-1). Phenanthrene and metabolites in bile were analyzed by fixed fluorescence at 260/380nm (excitation/emission) wavelengths. Phenanthrene increased in the bile of exposed fish in a dose-dependent pattern, and log bile bioconcentration factors ranged from 4.3 to 3.9 at 10 and 500μgL(-1) phenanthrene, respectively, values that are similar to predicted bioconcentration factors based on phenanthrene Kow. Swimming resistance index was reduced to 81% of control values at 500μgL(-1). Alteration of swimming speed was non monotonic, with a significant speed increase relative to control fish in treatments 50 and 200μgL(-1) phenanthrene, respectively, followed by a speed decrease in fish exposed to 500μgL(-1). However, swimming trajectories of fish exposed to 50, 200 and 500μgL(-1) was altered by the development of a repetitive circular swimming behavior, in contrast to the controls that explored the entire experimental arena. This change in swimming patterns apparently explains the reduction in prey capture rates at 200μgL(-1) phenanthrene. This study provides important information enabling the use of the estuarine guppy P. vivipara to monitor PAH metabolites in bile and its bioconcentration, linking internal exposure with ecologically relevant behavioral effects in the species.

  3. Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost.

    PubMed

    Marchal, Geoffrey; Smith, Kilian E C; Rein, Arno; Winding, Anne; Trapp, Stefan; Karlson, Ulrich G

    2013-02-01

    Carbonaceous soil amendments are applied to contaminated soils and sediments to strongly sorb hydrophobic organic contaminants (HOCs) and reduce their freely dissolved concentrations. This limits biouptake and toxicity, but also biodegradation. To investigate whether HOCs sorbed to such amendments can be degraded at all, the desorption and biodegradation of low concentrations of (14)C-labelled phenanthrene (≤5 μg L(-1)) freshly sorbed to suspensions of the pure soil amendments activated carbon (AC), biochar (charcoal) and compost were compared. Firstly, the maximum abiotic desorption of phenanthrene from soil amendment suspensions in water, minimal salts medium (MSM) or tryptic soy broth (TSB) into a dominating silicone sink were measured. Highest fractions remained sorbed to AC (84±2.3%, 87±4.1%, and 53±1.2% for water, MSM and TSB, respectively), followed by charcoal (35±2.2%, 32±1.7%, and 12±0.3%, respectively) and compost (1.3±0.21%, similar for all media). Secondly, the mineralization of phenanthrene sorbed to AC, charcoal and compost by Sphingomonas sp. 10-1 (DSM 12247) was determined. In contrast to the amounts desorbed, phenanthrene mineralization was similar for all the soil amendments at about 56±11% of the initially applied radioactivity. Furthermore, HPLC analyses showed only minor amounts (<5%) of residual phenanthrene remaining in the suspensions, indicating almost complete biodegradation. Fitting the data to a coupled desorption and biodegradation model revealed that desorption did not limit biodegradation for any of the amendments, and that degradation could proceed due to the high numbers of bacteria and/or the production of biosurfactants or biofilms. Therefore, reduced desorption of phenanthrene from AC or charcoal did not inhibit its biodegradation, which implies that under the experimental conditions these amendments can reduce freely dissolved concentration without hindering biodegradation. In contrast, phenanthrene sorbed to compost

  4. Trinuclear nickel coordination complexes of phenanthrene-9,10-dione dioxime.

    PubMed

    Williams, Owen M; Cowley, Alan H

    2016-04-01

    A trinuclear nickel complex of phenanthrene-9,10-dione dioxime (H2pqd), namely bis-[μ2-9,10-bis-(oxido-imino)-phenanthrene]-bis-[μ2-10-(oxido-imino)phenanthrene-9-one oxime](phenanthrene-9,10-dione dioxime)trinickel(II) toluene disolvate, [Ni3(C14H8N2O2)2(C14H9N2O2)2(C14H10N2O2)]·2C7H8, has been isolated and its crystal structure determined. This complex features three independent Ni(II) atoms that are arranged in a triangular fashion along with five supporting ligands. There are two square-planar Ni(II) atoms and a third pseudo-octa-hedral Ni(II) atom. While the square-planar Ni(II) atoms are stacked, there are no ligand bridges between them. Each square-planar Ni(II) atom, however, bridges with the pseudo-octa--hedral Ni(II) atom through Ni-N-O-Ni and Ni-O-Ni bonds. A fluorido-bor-ation reaction of the proton-bridged species gave the analogous complex bis-(μ2-bis-{[10-(oxido-imino)-9,10-di-hydro-phenanthren-9-yl-idene]amino}di-fluorido-borato)(phenanthrene-9,10-dione dioxime)trinickel(II) dichloromethane trisolvate, [Ni3(C28H16BF2N4O2)4(C14H10N2O2)]·3CH2Cl2, which shows the same binding structure, but features a widened Ni-Ni inter-action between the square-planar Ni(II) atoms. The proton-bridged complex completes the macrocyclic coordination around the square-planar Ni(II) atoms by means of an O-H⋯O hydrogen bond. Both compounds feature O-H⋯N hydrogen bonds between the oxime and the N atoms attached to square-planar nickel atom. The nickel units show no direct inter-action with their nearest neighbors in the extended lattice. Two π-stacking inter-actions between adjacent mol-ecules are found: one with a centroid-centroid distance of 3.886 (2) Å and the other with a centroid-centroid distance of 4.256 (3) Å. In the latter case, although not aromatic, the distance to the centroid of the central phenanthrene ring is shorter, with a distance of 3.528 (3) Å. Toluene mol-ecules occupy the solvent channels that are oriented along the c axis. In

  5. Trinuclear nickel coordination complexes of phenanthrene-9,10-dione dioxime

    PubMed Central

    Williams, Owen M.; Cowley, Alan H.

    2016-01-01

    A trinuclear nickel complex of phenanthrene-9,10-dione dioxime (H2pqd), namely bis­[μ2-9,10-bis­(oxido­imino)­phenanthrene]­bis­[μ2-10-(oxido­imino)phenanthrene-9-one oxime](phenanthrene-9,10-dione dioxime)trinickel(II) toluene disolvate, [Ni3(C14H8N2O2)2(C14H9N2O2)2(C14H10N2O2)]·2C7H8, has been isolated and its crystal structure determined. This complex features three independent NiII atoms that are arranged in a triangular fashion along with five supporting ligands. There are two square-planar NiII atoms and a third pseudo-octa­hedral NiII atom. While the square-planar NiII atoms are stacked, there are no ligand bridges between them. Each square-planar NiII atom, however, bridges with the pseudo-octa­­hedral NiII atom through Ni—N—O—Ni and Ni—O—Ni bonds. A fluorido­bor­ation reaction of the proton-bridged species gave the analogous complex bis­(μ2-bis­{[10-(oxido­imino)-9,10-di­hydro­phenanthren-9-yl­idene]amino}di­fluorido­borato)(phenanthrene-9,10-dione dioxime)trinickel(II) dichloromethane trisolvate, [Ni3(C28H16BF2N4O2)4(C14H10N2O2)]·3CH2Cl2, which shows the same binding structure, but features a widened Ni—Ni inter­action between the square-planar NiII atoms. The proton-bridged complex completes the macrocyclic coordination around the square-planar NiII atoms by means of an O—H⋯O hydrogen bond. Both compounds feature O—H⋯N hydrogen bonds between the oxime and the N atoms attached to square-planar nickel atom. The nickel units show no direct inter­action with their nearest neighbors in the extended lattice. Two π-stacking inter­actions between adjacent mol­ecules are found: one with a centroid–centroid distance of 3.886 (2) Å and the other with a centroid–centroid distance of 4.256 (3) Å. In the latter case, although not aromatic, the distance to the centroid of the central phenanthrene ring is shorter, with a distance of 3.528 (3) Å. Toluene mol­ecules occupy the solvent channels that are

  6. Theoretical characterization on photoelectric properties of benzothiadiazole- and fluorene-based small molecule acceptor materials for the organic photovoltaics.

    PubMed

    Sui, Mingyue; Li, Shuangbao; Pan, Qingqing; Sun, Guangyan; Geng, Yun

    2017-01-01

    The upper efficiency of heterojunction organic photovoltaics depends on the increased open-circuit voltage (V oc) and short-circuit current (J sc). So, a higher lowest unoccupied molecular orbital (LUMO) level is necessary for organic acceptor material to possess higher V oc and more photons absorbsorption in the solar spectrum is needed for larger J sc. In this article, we theoretically designed some small molecule acceptors (2∼5) based on fluorene (F), benzothiadiazole, and cyano group (CN) referring to the reported acceptor material 2-[{7-(9,9-di-n-propyl-9H-fluoren-2-yl)benzo[c][1,2,5]thiadiazol-4-yl}methylene]malononitrile (1), the crucial parameters affecting photoelectrical properties of compounds 2∼5 were evaluated by the density functional theory (DFT) and time dependent density functional theory (TDDFT) methods. The results reveal that compared with 1, 3 and 4 could have the better complementary absorption spectra with P3HT, the increased LUMO level, the improved V oc, and the decreased electronic organization energy (λ e). From the simulation of transition density matrix, it is very clear that the excitons of molecules 3 and 4 are easier to separate in the material surface. Therefore, 3 and 4 may become potential acceptor candidates for organic photovoltaic cells. In addition, with the increased number of CN, the optoelectronic properties of the molecules show a regular change, mainly improve the LUMO level, energy gap, V oc, and absorption intensity. In summary, reasonably adjusting CN can effectively improve the photovoltaic properties of small molecule acceptors. Graphical Abstract Structure-property relationship of small molecule acceptors could be rationally evaluated in the article. The changes of conjugate length and CN are important strategies to alter the photovoltaic properties of small molecule acceptors. Therefore, taking the K12/1 as a reference, we have theoretically designed a series of small molecule acceptors (2-4). The calculated

  7. Behavioural alterations from exposure to Cu, phenanthrene, and Cu-phenanthrene mixtures: linking behaviour to acute toxic mechanisms in the aquatic amphipod, Hyalella azteca.

    PubMed

    Gauthier, Patrick T; Norwood, Warren P; Prepas, Ellie E; Pyle, Greg G

    2016-01-01

    Phenanthrene (PHE) and Cu are two contaminants commonly co-occurring in marine and freshwater environments. Mixtures of PHE and Cu have been reported to induce more-than-additive lethality in the amphipod, Hyalella azteca, a keystone aquatic invertebrate, yet little is understood regarding the interactive toxic mechanisms that mediate more-than-additive toxicity. Understanding the interactions among toxic mechanisms among Cu and PHE will allow for better predictive power in assessing the ecological risks of Cu-PHE mixtures in aquatic environments. Here we use behavioural impairment to help understand the toxic mechanisms of Cu, PHE, and Cu-PHE mixture toxicity in the aquatic amphipod crustacean, Hyalella azteca. Our principal objective was to link alterations in activity and ventilation with respiratory rates, oxidative stress, and neurotoxicity in adult H. azteca. Adult amphipods were used for all toxicity tests. Amphipods were tested at sublethal exposures of 91.8- and 195-μgL(-1) Cu and PHE, respectively, and a Cu-PHE mixture at the same concentrations for 24h. Neurotoxicity was measured as acetylcholinesterase (AChE) activity, where malathion was used as a positive control. Oxidative stress was measured as reactive oxygen species (ROS) production. Phenanthrene-exposed amphipods exhibited severe behavioural impairment, being hyperstimulated to the extent that they were incapable of coordinating muscle movements. In addition, respiration and AChE activity in PHE-exposed amphipods were increased and reduced by 51% and 23% respectively. However, ROS did not increase following exposure to phenanthrene. In contrast, Cu had no effect on amphipod behaviour, respiration or AChE activity, but did lead to an increase in ROS. However, co-exposure to Cu antagonized the PHE-induced reduction in ventilation and negated any increase in respiration. The results suggest that PHE acts like an organophosphate pesticide (e.g., malathion) in H. azteca following 24h sublethal

  8. Isolation, plant colonization potential, and phenanthrene degradation performance of the endophytic bacterium Pseudomonas sp. Ph6-gfp.

    PubMed

    Sun, Kai; Liu, Juan; Gao, Yanzheng; Jin, Li; Gu, Yujun; Wang, Wanqing

    2014-06-26

    This investigation provides a novel method of endophyte-aided removal of polycyclic aromatic hydrocarbons (PAHs) from plant bodies. A phenanthrene-degrading endophytic bacterium Pseudomonas sp. Ph6 was isolated from clover (Trifolium pratense L.) grown in a PAH-contaminated site. After being marked with the GFP gene, the colonization and distribution of strain Ph6-gfp was directly visualized in plant roots, stems, and leaves for the first time. After ryegrass (Lolium multiflorum Lam.) roots inoculation, strain Ph6-gfp actively and internally colonized plant roots and transferred vertically to the shoots. Ph6-gfp had a natural capacity to cope with phenanthrene in vitro and in planta. Ph6-gfp degraded 81.1% of phenanthrene (50 mg · L(-1)) in a culture solution within 15 days. The inoculation of plants with Ph6-gfp reduced the risks associated with plant phenanthrene contamination based on observations of decreased concentration, accumulation, and translocation factors of phenanthrene in ryegrass. Our results will have important ramifications in the assessment of the environmental risks of PAHs and in finding ways to circumvent plant PAH contamination.

  9. Isolation and characterization of a novel phenanthrene (PHE) degrading strain Psuedomonas sp. USTB-RU from petroleum contaminated soil.

    PubMed

    Masakorala, Kanaji; Yao, Jun; Cai, Minmin; Chandankere, Radhika; Yuan, Haiyan; Chen, Huilun

    2013-12-15

    The phenanthrene degrading novel bacterium strain USTB-RU was isolated from petroleum contaminated soil in Dagan oilfield, southeast of Tianjin, northeast China. The novel isolate was identified as Pseudomonas sp. USTB-RU on the basis of morphological, physicochemical characteristics and analysis of 16S rDNA gene sequence. The strain could degrade 86.65% of phenanthrene at an initial concentration of 100 mg L(-1) in 8 days and identified intermediate metabolite evident the biodegradation of phenanthrene through protocatechuate metabolic pathway. The strain showed the potential to produce surface-active compounds that may have caused for the resulted efficient biodegradation through enhancing the substrate bioavailability. The results highlighted that the adaptability of USTB-RU to grow in a range of temperature, pH and potential to utilize various commonly co-exist pollutants in contaminated site other than phenanthrene as sole carbon and energy source. Further, susceptibility of the strain for the tested antibiotics inferred the possibility to absence of risk of spreading drug resistant factor to other indigenous bacteria. Therefore, the isolated novel strain USTB-RU may have a high potential for application in in situ bioremediation of phenanthrene contaminated environment.

  10. Comparative proteomics reveal the mechanism of Tween80 enhanced phenanthrene biodegradation by Sphingomonas sp. GY2B.

    PubMed

    Liu, Shasha; Guo, Chuling; Dang, Zhi; Liang, Xujun

    2017-03-01

    Previous study concerning the effects of surfactants on phenanthrene biodegradation focused on observing the changes of cell characteristics of Sphingomonas sp. GY2B. However, the impact of surfactants on the expression of bacterial proteins, controlling phenanthrene transport and catabolism, remains obscure. To overcome the knowledge gap, comparative proteomic approaches were used to investigate protein expressions of Sphingomonas sp. GY2B during phenanthrene biodegradation in the presence and absence of a nonionic surfactant, Tween80. A total of 23 up-regulated and 19 down-regulated proteins were detected upon Tween80 treatment. Tween80 could regulate ion transport (e.g. H(+)) in cell membrane to provide driving force (ATP) for the transmembrane transport of phenanthrene thus increasing its uptake and biodegradation by GY2B. Moreover, Tween80 probably increased GY2B vitality and growth by inducing the expression of peptidylprolyl isomerase to stabilize cell membrane, increasing the abundances of proteins involved in intracellular metabolic pathways (e.g. TCA cycle), as well as decreasing the abundances of translation/transcription-related proteins and cysteine desulfurase, thereby facilitating phenanthrene biodegradation. This study may facilitate a better understanding of the mechanisms that regulate surfactants-enhanced biodegradation of PAHs at the proteomic level.

  11. Isolation, plant colonization potential, and phenanthrene degradation performance of the endophytic bacterium Pseudomonas sp. Ph6-gfp

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Liu, Juan; Gao, Yanzheng; Jin, Li; Gu, Yujun; Wang, Wanqing

    2014-06-01

    This investigation provides a novel method of endophyte-aided removal of polycyclic aromatic hydrocarbons (PAHs) from plant bodies. A phenanthrene-degrading endophytic bacterium Pseudomonas sp. Ph6 was isolated from clover (Trifolium pratense L.) grown in a PAH-contaminated site. After being marked with the GFP gene, the colonization and distribution of strain Ph6-gfp was directly visualized in plant roots, stems, and leaves for the first time. After ryegrass (Lolium multiflorum Lam.) roots inoculation, strain Ph6-gfp actively and internally colonized plant roots and transferred vertically to the shoots. Ph6-gfp had a natural capacity to cope with phenanthrene in vitro and in planta. Ph6-gfp degraded 81.1% of phenanthrene (50 mg.L-1) in a culture solution within 15 days. The inoculation of plants with Ph6-gfp reduced the risks associated with plant phenanthrene contamination based on observations of decreased concentration, accumulation, and translocation factors of phenanthrene in ryegrass. Our results will have important ramifications in the assessment of the environmental risks of PAHs and in finding ways to circumvent plant PAH contamination.

  12. Quantifying the biodegradation of phenanthrene by Pseudomonas stutzeri P16 in the presence of a nonionic surfactant.

    PubMed Central

    Grimberg, S J; Stringfellow, W T; Aitken, M D

    1996-01-01

    The low water solubility of polycyclic aromatic hydrocarbons is believed to limit their availability to microorganisms, which is a potential problem for bioremediation of polycyclic aromatic hydrocarbon-contaminated sites. Surfactants have been suggested to enhance the bioavailability of hydrophobic compounds, but both negative and positive effects of surfactants on biodegradation have been reported in the literature. Earlier, we presented mechanistic models of the effects of surfactants on phenanthrene dissolution and on the biodegradation kinetics of phenanthrene solubilized in surfactant micelles. In this study, we combined the biodegradation and dissolution models to quantify the influence of the surfactant Tergitol NP-10 on biodegradation of solid-phase phenanthrene by Pseudomonas stutzeri P16. Although micellized phenanthrene does not appear to be available directly to the bacterium, the ability of the surfactant to increase the phenanthrene dissolution rate resulted in an overall increase in bacterial growth rate in the presence of the surfactant. Experimental observations could be predicted well by the derived model with measured biokinetic and dissolution parameters. The proposed model therefore can serve as a base case for understanding the physical-chemical effects of surfactants on nonaqueous hydrocarbon bioavailability. PMID:8779577

  13. Tuning the Electrical Memory Behavior from Nonvolatile to Volatile in Functional Copolyimides Bearing Varied Fluorene and Pyrene Moieties

    NASA Astrophysics Data System (ADS)

    Jia, Nanfang; Qi, Shengli; Tian, Guofeng; Wang, Xiaodong; Wu, Dezhen

    2016-12-01

    For producing polymer based electronics with good memory behavior, a series of functional copolyimides were designed and synthesized in this work by copolymerizing 3,3',4,4'-diphenylsulfonetetracarboxylic dianhydride (DSDA) with (9,9'-bis(4-aminophenyl)fluorene) (BAPF) and N,N-bis(4-aminophenyl) aminopyrene (DAPAP) diamines. The synthesized copolyimides DSDA/(DAPAP/BAPF) were denoted as coPI-DAPAPx (x = 100, 50, 20, 10, 5, 1, 0), where x% represents the molar fraction of the DAPAP unit in the diamines. Characterization results indicate that the coPI-DAPAPx exhibits tunable electrical switching behaviors from write once read many times (WORM, nonvolatile, coPI-DAPAP100, coPI-DAPAP50, coPI-DAPAP20, coPI-DAPAP10) to the static random access memory (SRAM, volatile, coPI-DAPAP5, coPI-DAPAP1) with the variation of the DAPAP content. Optical and electrochemical characterization show gradually decreasing highest occupied molecular orbital levels and enlarged energy gap with the decrease of the DAPAP moiety, suggesting decreasing charge-transfer effect in the copolyimides, which can account for the observed WORM-SRAM memory conversion. Meanwhile, the charge transfer process was elucidated by quantum chemical calculation at B3LYP/6-31G(d) theory level. This work shows the effect of electron donor content on the memory behavior of polymer electronic materials.

  14. Protective spin-labeled fluorenes maintain amyloid beta peptide in small oligomers and limit transitions in secondary structure

    PubMed Central

    Altman, Robin; Ly, Sonny; Hilt, Silvia; Petrlova, Jitka; Maezawa, Izumi; Kálai, Tamás; Hideg, Kálmán; Jin, Lee-Way; Laurence, Ted A.; Voss, John C.

    2015-01-01

    Alzheimer’s disease is characterized by the presence of extracellular plaques comprised of amyloid beta (Aβ) peptides. Soluble oligomers of the Aβ peptide underlie a cascade of neuronal loss and dysfunction associated with Alzheimer’s disease. Single particle analyses of Aβ oligomers in solution by fluorescence correlation spectroscopy (FCS) were used to provide real-time descriptions of how spin-labeled fluorenes (SLFs; bi-functional small molecules that block the toxicity of Aβ) prevent and disrupt oligomeric assemblies of Aβ in solution. Furthermore, the circular dichroism (CD) spectrum of untreated Aβ shows a continuous, progressive change over a 24-hour period, while the spectrum of Aβ treated with SLF remains relatively constant following initial incubation. These findings suggest the conformation of Aβ within the oligomer provides a complementary determinant of Aβ toxicity in addition to oligomer growth and size. Although SLF does not produce a dominant state of secondary structure in Aβ, it does induce a net reduction in beta secondary content compared to untreated samples of Aβ. The FCS results, combined with electron paramagnetic resonance spectroscopy and CD spectroscopy, demonstrate SLFs can inhibit the growth of Aβ oligomers and disrupt existing oligomers, while retaining Aβ as a population of smaller, yet largely disordered oligomers. PMID:26374940

  15. Impact of intramolecular twisting and exciton migration on emission efficiency of multifunctional fluorene-benzothiadiazole-carbazole compounds

    NASA Astrophysics Data System (ADS)

    Karpicz, R.; Puzinas, S.; Krotkus, S.; Kazlauskas, K.; Jursenas, S.; Grazulevicius, J. V.; Grigalevicius, S.; Gulbinas, V.

    2011-05-01

    Novel donor-acceptor compounds consisting of singly bonded fluorene (Fl), benzothiadiazole (BT), and carbazole (Cz) functional units in the same molecule were investigated. Analysis of the optical spectra and fluorescence transients of the compounds revealed the domination of intramolecular charge transfer (ICT) states with high fluorescence quantum yield (72%-85%). A similar Cz-Fl-Cz compound exhibiting 100% fluorescence quantum yield and no ICT character was also studied as a reference to reveal the impact of electron-accepting BT groups. Thorough examination of the optical properties of the compounds in different media, i.e., dilute solution and polymer matrix, indicated their twisted conformations due to steric hindrance in the ground state and flattened geometry in the excited state for both reference and ICT compounds. Remarkable fluorescence efficiency losses (amounting to 70%) observed upon casting the molecular solutions into neat films were determined to originate from the low-fluorescent twisted conformers and migration-facilitated exciton quenching. The majority of emission efficiency losses (over 70%) were caused by the twisted conformers, whereas only less than 30% by exciton-migration-induced nonradiative deactivation.

  16. Tuning the Electrical Memory Behavior from Nonvolatile to Volatile in Functional Copolyimides Bearing Varied Fluorene and Pyrene Moieties

    NASA Astrophysics Data System (ADS)

    Jia, Nanfang; Qi, Shengli; Tian, Guofeng; Wang, Xiaodong; Wu, Dezhen

    2017-04-01

    For producing polymer based electronics with good memory behavior, a series of functional copolyimides were designed and synthesized in this work by copolymerizing 3,3',4,4'-diphenylsulfonetetracarboxylic dianhydride (DSDA) with (9,9'-bis(4-aminophenyl)fluorene) (BAPF) and N, N-bis(4-aminophenyl) aminopyrene (DAPAP) diamines. The synthesized copolyimides DSDA/(DAPAP/BAPF) were denoted as coPI-DAPAP x ( x = 100, 50, 20, 10, 5, 1, 0), where x% represents the molar fraction of the DAPAP unit in the diamines. Characterization results indicate that the coPI-DAPAP x exhibits tunable electrical switching behaviors from write once read many times (WORM, nonvolatile, coPI-DAPAP100, coPI-DAPAP50, coPI-DAPAP20, coPI-DAPAP10) to the static random access memory (SRAM, volatile, coPI-DAPAP5, coPI-DAPAP1) with the variation of the DAPAP content. Optical and electrochemical characterization show gradually decreasing highest occupied molecular orbital levels and enlarged energy gap with the decrease of the DAPAP moiety, suggesting decreasing charge-transfer effect in the copolyimides, which can account for the observed WORM-SRAM memory conversion. Meanwhile, the charge transfer process was elucidated by quantum chemical calculation at B3LYP/6-31G(d) theory level. This work shows the effect of electron donor content on the memory behavior of polymer electronic materials.

  17. Protective spin-labeled fluorenes maintain amyloid beta peptide in small oligomers and limit transitions in secondary structure

    SciTech Connect

    Altman, Robin; Ly, Sonny; Hilt, Silvia; Petrlova, Jitka; Maezawa, Izumi; Kálai, Tamás; Hideg, Kálmán; Jin, Lee-Way; Laurence, Ted A.; Voss, John C.

    2015-12-01

    Alzheimer’s disease is characterized by the presence of extracellular plaques comprised of amyloid beta (Aβ) peptides. Soluble oligomers of the Aβ peptide underlie a cascade of neuronal loss and dysfunction associated with Alzheimer's disease. Single particle analyses of Aβ oligomers in solution by fluorescence correlation spectroscopy (FCS) were used to provide real-time descriptions of how spin-labeled fluorenes (SLFs; bi-functional small molecules that block the toxicity of Aβ) prevent and disrupt oligomeric assemblies of Aβ in solution. The FCS results, combined with electron paramagnetic resonance spectroscopy and circular dichroism spectroscopy, demonstrate SLFs can inhibit the growth of Aβ oligomers and disrupt existing oligomers while retaining Aβ in a largely disordered state. Furthermore, while the ability of SLF to block Aβ toxicity correlates with a reduction in oligomer size, our results suggest the conformation of Aβ within the oligomer determines the toxicity of the species. Attenuation of Aβ toxicity, which has been associated primarily with the soluble oligomeric form, can be achieved through redistribution of the peptides into smaller oligomers and arrest of the fractional increase in beta secondary structure.

  18. Pyrene-fluorene hybrids containing acetylene linkage as color-tunable emitting materials for organic light-emitting diodes.

    PubMed

    Thomas, K R Justin; Kapoor, Neha; Bolisetty, M N K Prasad; Jou, Jwo-Huei; Chen, Yu-Lin; Jou, Yung-Cheng

    2012-04-20

    New blue- to yellow-emitting materials have been developed by incorporating fluorene-based chromophores on pyrene core with acetylene linkage and using multifold palladium-catalyzed cross-coupling reactions. Both mono- and tetrasubstituted derivatives have been synthesized and characterized. The tetrasubstituted derivatives displayed red-shifted emission when compared to the monosubstituted derivative indicative of an extended conjugation in the former. End-capping with a diphenylamine unit further red-shifted the absorption and emission profiles and imparted a weak dipolar character to the molecules. Amine-containing derivatives displayed positive solvatochromism in the fluorescence spectra indicating a more polar excited state due to an efficient charge migration from the diphenylamine donor to the pyrene π-acceptor. All of the derivatives were tested as emitting dopants with host material 4,4'-bis(9H-carbazol-9-yl)biphenyl (CBP) in a multilayered OLED and found to exhibit bright blue or yellow electroluminescence. The device utilizing 1,3,6,8-tetrasubstituted pyrene derivative as a dopant emitter displayed highest maximum luminescence 4630 cd/m(2) with power efficiency 3.8 lm/W and current efficiency 7.1 cd/A at 100 cd/m(2) attributable to the proper alignment of energy levels that led to the efficient harvesting of excitons. All of the devices exhibited color purity over a wide range of operating voltages.

  19. Metabolism of a Representative Oxygenated Polycyclic Aromatic Hydrocarbon (PAH) Phenanthrene-9,10-quinone in Human Hepatoma (HepG2) Cells

    PubMed Central

    2014-01-01

    Exposure to polycyclic aromatic hydrocarbons (PAHs) in the food chain is the major human health hazard associated with the Deepwater Horizon oil spill. Phenanthrene is a representative PAH present in crude oil, and it undergoes biological transformation, photooxidation, and chemical oxidation to produce its signature oxygenated derivative, phenanthrene-9,10-quinone. We report the downstream metabolic fate of phenanthrene-9,10-quinone in HepG2 cells. The structures of the metabolites were identified by HPLC–UV–fluorescence detection and LC–MS/MS. O-mono-Glucuronosyl-phenanthrene-9,10-catechol was identified, as reported previously. A novel bis-conjugate, O-mono-methyl-O-mono-sulfonated-phenanthrene-9,10-catechol, was discovered for the first time, and evidence for both of its precursor mono conjugates was obtained. The identities of these four metabolites were unequivocally validated by comparison to authentic enzymatically synthesized standards. Evidence was also obtained for a minor metabolic pathway of phenanthrene-9,10-quinone involving bis-hydroxylation followed by O-mono-sulfonation. The identification of 9,10-catechol conjugates supports metabolic detoxification of phenanthrene-9,10-quinone through interception of redox cycling by UGT, COMT, and SULT isozymes and indicates the possible use of phenanthrene-9,10-catechol conjugates as biomarkers of human exposure to oxygenated PAH. PMID:24646012

  20. Effect of pressure on solid-liquid equilibrium for decane + octacosane, decane + p-xylene + octacosane, and decane + p-xylene + phenanthrene mixtures

    SciTech Connect

    Lee, Hyoguk; Groves, F.R.; Wolcott, J.M. )

    1993-04-01

    Saturation conditions were measured for decane + octacosane, decane + p-xylene + octacosane, and decane + p-xylene + phenanthrene mixtures for approximately 10 mol % solid content and pressures up to 20 MPa. The solubility of octacosane in decane decreased by 43% at 312.4 K as the pressure increased from atmospheric to 20 MPa. The effect of pressure on phenanthrene solubility was much less.

  1. Metabolism of a representative oxygenated polycyclic aromatic hydrocarbon (PAH) phenanthrene-9,10-quinone in human hepatoma (HepG2) cells.

    PubMed

    Huang, Meng; Zhang, Li; Mesaros, Clementina; Zhang, Suhong; Blaha, Michael A; Blair, Ian A; Penning, Trevor M

    2014-05-19

    Exposure to polycyclic aromatic hydrocarbons (PAHs) in the food chain is the major human health hazard associated with the Deepwater Horizon oil spill. Phenanthrene is a representative PAH present in crude oil, and it undergoes biological transformation, photooxidation, and chemical oxidation to produce its signature oxygenated derivative, phenanthrene-9,10-quinone. We report the downstream metabolic fate of phenanthrene-9,10-quinone in HepG2 cells. The structures of the metabolites were identified by HPLC-UV-fluorescence detection and LC-MS/MS. O-mono-Glucuronosyl-phenanthrene-9,10-catechol was identified, as reported previously. A novel bis-conjugate, O-mono-methyl-O-mono-sulfonated-phenanthrene-9,10-catechol, was discovered for the first time, and evidence for both of its precursor mono conjugates was obtained. The identities of these four metabolites were unequivocally validated by comparison to authentic enzymatically synthesized standards. Evidence was also obtained for a minor metabolic pathway of phenanthrene-9,10-quinone involving bis-hydroxylation followed by O-mono-sulfonation. The identification of 9,10-catechol conjugates supports metabolic detoxification of phenanthrene-9,10-quinone through interception of redox cycling by UGT, COMT, and SULT isozymes and indicates the possible use of phenanthrene-9,10-catechol conjugates as biomarkers of human exposure to oxygenated PAH.

  2. Recovery of Phenanthrene-Degrading Bacteria After Simulated In Situ Persulfate Oxidation in Contaminated Soil

    PubMed Central

    Richardson, Stephen D.; Lebron, Benjamin L.; Miller, Cass T.; Aitken, Michael D.

    2010-01-01

    A continuous-flow column study was conducted to investigate the long-term effects of persulfate oxidation on the abundance and activity of the indigenous microbial community and phenanthrene-degrading bacteria in contaminated soil from a former manufactured gas plant (MGP) site. Approximately six pore volumes of a 20 g/L persulfate solution were introduced into the column, followed by simulated groundwater for 500 d. Soil samples were collected from the surface of the soil bed and along the column length immediately before and after persulfate injection and up to 500 d following injection. Exposure to persulfate led to a two- to three-log reduction in total bacterial 16S rRNA genes, severe inhibition of 14C-acetate mineralization (as a measure of general microbial activity), and a decrease in community diversity. However, relatively rapid recovery of both bacterial gene abundance and activity was observed within 30 d after persulfate exposure. Mineralization of 14C-phenanthrene was also inhibited but did not recover until 100 d post-oxidation. Known phenanthrene-degrading bacterial groups decreased to below detection limits throughout the column, with recovery times from 100 d to 500 d after persulfate injection. These findings suggest that coupling biological processes with persulfate oxidation is possible, although recovery of specific contaminant degraders may occur much later than the general microbial community recovers. Furthermore, the use of total bacterial quantity or non-specific measures of activity as a surrogate for the recovery of contaminant degraders may be inappropriate for evaluating the compatibility of chemical treatment with subsequent bioremediation. PMID:21162560

  3. Catalytic synthesis of high-value chemicals from coal-derived liquids. Conversion of phenanthrene derivatives into anthracene derivatives

    SciTech Connect

    Song, C.; Lai, W.C.

    1998-12-31

    It is known that phenanthrene and its derivatives are abundant in coal-derived liquids from coal carbonization, pyrolysis, and liquefaction; however, they have found little use in industry. On the other hand, anthracene and its derivatives are more useful materials for industrial applications. Thus, it is highly desirable to convert phenanthrene derivatives to anthracene derivatives. The authors have found that some chemically modified mordenites and Y-zeolites can selectively promote the transformation of sym-octahydrophenanthrene (sym-OHP) into sym-octahydroanthracene (sym-OHA) at lower temperatures. In this work, the effects of zeolite catalysts and reaction conditions on the ring-shift isomerization of sym-OHP into sym-OHA were studied through experiments at 200--300 C under an initial pressure of 0.79 MPa N{sub 2} or H{sub 2}. They also explored the simultaneous hydrogenation-ring-shift isomerization of phenanthrene using zeolite-supported metal catalysts.

  4. Phenotypic and genotypic characterization of phenanthrene-degrading fluorescent Pseudomonas biovars

    SciTech Connect

    Johnsen, K.; Andersen, S.; Jacobsen, C.S.

    1996-10-01

    The genus Pseudomonas is a group of gram-negative motile rods know for large metabolic versatility as well as pathogenicity to plants, animals and humans. A large number of bacteria from this group capable of degrading polycyclic aromatic hydrocarbons have been isolated in soils and aquifers, but the identification is often conducted only to the Pseudomonas sp. level. This study aims to characterize a group of bacteria from the fluorescent Pseudomonas group degrading phenanthrene by four different methods to assess the bacterial diversity of the closely related group. 37 refs., 3 figs., 1 tab.

  5. Accumulation and elimination of (9-/sup 14/C)phenanthrene in the calico clam (Macrocallista maculata)

    SciTech Connect

    Solbakken, J.E.; Jeffrey, F.M.H.; Knap, A.H.; Palmork, K.H.

    1982-05-01

    The accumulation and elimination of radoactivity is studied after exposure of (9-/sup 14/C) phenanthrene in various tissues in the calico clam (Macrocallista maculata). Results show that accumulation is highest in the lipid-rich hepatopancreas, and the elimination is very efficient compared to the horse mussel. The calico clam, which is a sand-dwelling organism, can easily come in contact with hydrocarbon contaminated sedments and might accumulate the hydrocarbons at different extents in various tissues. The efficient elimination, however, will prevent a lasting accumulation. (JMT)

  6. Disposition of phenanthrene and octachlorostyrene in spiny lobsters, Panulirus argus, after intragastric administration

    SciTech Connect

    Solbakken, J.E.; Knap, A.H.

    1986-11-01

    Spiny lobster (Panulirus argus) is a commercial crustacean in Bermuda. It was therefore of interest to study the fate of xenobiotics in the species as very little attention has been paid to toxicological studies with spiny lobsters. Earlier it was found that the temperate crustacean, Nephrops norveqicus (Norway lobster) had the ability to accumulate and eliminate phenanthrene. The aim of this investigation was to gain a better understanding of the fate of xenobiotics in crustaceans under different environmental conditions, and to compare the polycyclic aromatic hydrocarbon, phenenthrene, with the more environmentally persistent chlorinated compound octachlorostyrene, a by-product of magnesium metal production.

  7. Biodegradability of nonaqueous-phase liquids affects the mineralization of phenanthrene in soil because of microbial competition

    SciTech Connect

    Morrison, D.E.; Alexander, M.

    1997-08-01

    A study was conducted to determine the effects of biodegradability of nonaqueous-phase liquids (NAPLs) and microbial competition on the biodegradation in soil of a constituent of the NAPLs. The rates of mineralization of phenanthrene dissolved in 8 mg of 2,2,4,4,6,8,8-heptamethylnonane (HMN), di(2-ethylhexyl) phthalate (DEHP), or pristane per g of soil were faster than the rates when the compound was dissolved in hexadecane or dodecane. Addition of inorganic N and P to the soil increased the mineralization rate in the first two but not the last two NAPLs. N and P addition did not enhance mineralization of phenanthrene when added in 500 {micro}g of hexadecane, pristane, or HMN per g of soil. Hexadecane was rapidly degraded, pristane was slowly metabolized, DEHP was still slower, and HMN was not mineralized in the test period. Mixing the soil stimulated mineralization of phenanthrene dissolved in HMN but not in hexadecane. Mineralization of phenanthrene dissolved in HMN was the same if the gas phase contained 21%, 2.1%, or traces of O{sub 2}. In contrast, the biodegradation of phenanthrene dissolved in hexadecane, although the same at 21 and 2.1% O{sub 2}, was not observed if traces of O{sub 2} were present. The mineralization was slower in unshaken soil-water mixtures if phenanthrene was added in hexadecane than in HMN or pristane, but the rates with the 3 NAPLs were increased by shaking the suspensions. The authors suggest that the biodegradability of major components of NAPLs and microbial competition for N, P, or O{sub 2} will have a major impact on the rate of transformation of minor constituents of NAPLs.

  8. Effect of humic fractions and clay on biodegradation of phenanthrene by a Pseudomonas fluorescens strain isolated from soil

    SciTech Connect

    Ortega-Calvo, J.J.; Saiz-Jimenez, C.

    1998-08-01

    The mineralization of phenanthrene in pure cultures of a Pseudomonas fluorescens strain, isolated from soil, was measured in the presence of soil humic fractions and montmorillonite. Humic acid and clay, either separately or in combination, shortened the acclimation phase. A higher mineralization rate was measured in treatments with humic acid at 100 {micro}g/ml. Humic acid at 10 {micro}g/ml stimulated the transformation only in the presence of 10 g of clay per liter. The authors suggest that sorption of phenanthrene to these soil components may result in a higher concentration of substrate in the vicinity of the bacterial cells and therefore may increase its bioavailability.

  9. Dietary taurine supplementation ameliorates the lethal effect of phenanthrene but not the bioaccumulation in a marine teleost, red sea bream, Pagrus major.

    PubMed

    Hano, Takeshi; Ito, Mana; Ito, Katsutoshi; Kono, Kumiko; Ohkubo, Nobuyuki

    2017-03-01

    The present study was performed to evaluate the effect of dietary taurine on the hepatic metabolic profiles of red sea bream (Pagrus major) and on phenanthrene (a polyaromatic hydrocarbon) toxicity and bioaccumulation. The fish were fed a diet supplemented with 0% (TAU0%), 0.5% (TAU0.5%), or 5% (TAU5%) taurine for 40-55d and subjected to phenanthrene acute toxicity and bioaccumulation tests. Taurine deficiency in feed severely affected the hepatic metabolic profiles of fish, which indicated a complementary physiological response to taurine deficiency. For the acute toxicity test, fish were fed the test diets for 55d and were then exposed to 0-893µg/L phenanthrene for 96h. Tolerance to phenanthrene was significantly improved by 0.5% of taurine inclusion in feed relative to TAU0%, but not by 5.0% inclusion. Reduced glutathione in the liver, which acts as an oxygen-free radical scavenger, was associated with a reduction in the toxicity of phenanthrene. For the bioaccumulation test, fish were fed the test diets for 40d and were thereafter chronically exposed to 20µg/L phenanthrene for 13d followed by depuration for 3d. The activity of hepatic biomarker, ethoxyresorufin-O-deethylase, was increased by phenanthrene exposure in the taurine inclusion groups. However, phenanthrene concentrations in the liver and muscle of fish fed TAU5.0% tended to be higher than those of fish fed TAU0% and TAU0.5% during the exposure period. These results indicate that 0.5% of taurine inclusion in feed plays an important role in the alleviation of phenanthrene toxicity but not bioaccumulation. Furthermore, larger amount of taurine inclusion (TAU5%) did not show marked beneficial effects against phenanthrene exposure. This study provides insight about a major concern of environmental contaminants into aquatic environment and can be effectively used for improvement of aquaculture.

  10. An experimental and theoretical investigation of Acenaphthene-5-boronic acid: conformational study, NBO and NLO analysis, molecular structure and FT-IR, FT-Raman, NMR and UV spectra.

    PubMed

    Karabacak, Mehmet; Sinha, Leena; Prasad, Onkar; Asiri, Abdullah M; Cinar, Mehmet

    2013-11-01

    The solid state Fourier transform infrared (FT-IR) and FT-Raman spectra of Acenaphthene-5-boronic acid (AN-5-BA), have been recorded in the range 4000-400cm(-1) and 4000-10cm(-1), respectively. Density functional theory (DFT), with the B3LYP functional was used for the optimization of the ground state geometry and simulation of the infrared and Raman spectra of the molecule. The vibrational wave numbers and their assignments were examined theoretically using the Gaussian 09 set of quantum chemistry codes and the normal modes were assigned by a scaled quantum mechanical (SQM) force field approach. Hydrogen-bonded dimer of AN-5-BA, optimized by counterpoise correction, has also been studied by B3LYP at the 6-311++G(d,p) level and the effects of molecular association through O-H⋯O hydrogen bonding have been discussed. The (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by Gauge-Including Atomic Orbital (GIAO) method. Natural bond orbital (NBO) analysis has been applied to study stability of the molecule arising from charge delocalization. UV spectrum of the title compound was also recorded and the electronic properties, such as frontier orbitals, and band gap energies were measured by TD-DFT approach. The first order hyperpolarizability 〈β〉, its components and associated properties such as average polarizability and anisotropy of the polarizability (α and Δα) of AN-5-BA was calculated using the finite-field approach.

  11. Microbial degradation of dissolved organic matter (DOM) and its influence on phenanthrene-DOM interactions.

    PubMed

    Hur, Jin; Lee, Bo-Mi; Shin, Hyun-Sang

    2011-11-01

    Microbial degradation-induced changes in the characteristics of dissolved organic matter (DOM), and the subsequent effects on phenanthrene-DOM interactions were investigated based on the microbial incubation of DOM collected from four different sources for 28 d. Partially biodegraded DOM presented higher specific UV absorbance (SUVA), lower protein-like fluorescence, higher humic-like fluorescence, lower aliphatic carbon fraction, and higher hydrophobic neutral fractions compared to the original DOM. Microbial changes in DOM led to an increase in the isotherm nonlinearity as well as the extent of phenanthrene binding. A negative relationship between SUVA and the Freundlich n values was established for the original and the biodegraded DOM, suggesting that aromatic condensed structures may play important roles in providing nonlinear strong binding sites irrespective of microbial degradation. In contrast, there were two separate slopes of the correlations between the percentage of hydrophobic acid (HoA) fraction and the n values for the original and the biodegraded DOM with a higher slope exhibited for the latter, implying that the microbial utilization of oxygen-containing structures in the HoA fractions may contribute to enhancing the associated isotherm nonlinearity.

  12. Properties of the low-lying electronic states of phenanthrene: Exact PPP results

    SciTech Connect

    Chakrabarti, A.; Ramasesha, S.

    1996-10-05

    The authors report properties of the exact low-lying states of phenanthrene, its anion and dianion within the Pariser-Parr-Pople (PPP) model. The experimentally known singlet states of the neutral molecule are well reproduced by the model. The intensities for one and two photon absorption to various single states are also in good agreement with experiment. From the bond orders of these states, the authors predict the equilibrium geometries. The relaxation energies of these states, computed from charge-charge correlations and bond orders, are presented. The authors also present results of ring current calculations in the singlet ground state of phenanthrene. The authors have also reported energies, spin densities, bond orders, and relaxation energies of several triplet states and compared then with experiments as well as with other calculations, where available. The fine structure constants D and E, computed in the lowest triplet state, compare well with those obtained from experiments. These properties are also presented for the anions and the dianions. The PPP model in these cases predicts a low-energy (< 1 eV) dipole excitation. 31 refs., 4 figs., 9 tabs.

  13. Temperature-dependent conformational variation of chromophoric dissolved organic matter and its consequent interaction with phenanthrene.

    PubMed

    Chen, Wei; Liu, Xiao-Yang; Yu, Han-Qing

    2017-03-01

    Temperature variation caused by climate change, seasonal variation and geographic locations affects the physicochemical compositions of chromophoric dissolved organic matter (CDOM), resulting in difference in the fates of CDOM-related environmental pollutants. Exploration into the thermal induced structural transition of CDOM can help to better understand their environmental impacts, but information on this aspect is still lacking. Through integrating fluorescence excitation-emission matrix coupled parallel factor analysis with synchronous fluorescence two-dimensional correlation spectroscopy, this study provides an in-depth insight into the temperature-dependent conformational transitions of CDOM and their impact on its hydrophobic interaction with persistent organic pollutants (with phenanthrene as an example) in water. The fluorescence components in CDOM change linearly to water temperature with different extents and different temperature regions. The thermal induced transition priority in CDOM is protein-like component → fulvic-like component → humic-like component. Furthermore, the impact of thermal-induced conformational transition of CDOM on its hydrophobic interaction with phenanthrene is observed and explored. The fluorescence-based analytic results reveal that the conjugation degree of the aromatic groups in the fulvic- and humic-like substances, and the unfolding of the secondary structure in the protein-like substances with aromatic structure, contribute to the conformation variation. This integrated approach jointly enhances the characterization of temperature-dependent conformational variation of CDOM, and provides a promising way to elucidate the environmental behaviours of CDOM.

  14. Impacts of heterogeneous organic matter on phenanthrene sorption--Different soil and sediment samples

    USGS Publications Warehouse

    Karapanagioti, Hrissi K.; Childs, Jeffrey; Sabatini, David A.

    2001-01-01

    Organic petrography has been proposed as a tool for characterizing the heterogeneous organic matter present in soil and sediment samples. A new simplified method is proposed as a quantitative means of interpreting observed sorption behavior for phenanthrene and different soils and sediments based on their organic petrographical characterization. This method is tested under singe solute conditions and at phenanthrene concentration of 1 μg/L. Since the opaque organic matter fraction dominates the sorption process, we propose that by quantifying this fraction one can interpret organic content normalized sorption distribution coefficient (Koc) values for a sample. While this method was developed and tested for various samples within the same aquifer, in the current study the method is validated for soil and sediment samples from different sites that cover a wide range of organic matter origin, age, and organic content. All 10 soil and sediment samples studied had log Koc values for the opaque particles between 5.6 and 6.8. This range of Koc values illustrates the heterogeneity of opaque particles between sites and geological formations and thus the need to characterize the opaque fraction of materials on a site-by-site basis.

  15. The effect of soil: water ratios on the mineralisation of phenanthrene: LNAPL mixtures in soil.

    PubMed

    Doick, Kieron J; Semple, Kirk T

    2003-03-14

    Contamination of soil by polycyclic aromatic hydrocarbons is frequently associated with non-aqueous-phase liquids. Measurement of the catabolic potential of a soil or determination of the biodegradable fraction of a contaminant can be done using a slurried soil respirometric system. This work assessed the impact of increasing the concentration of transformer oil and soil:water ratio on the microbial catabolism of [(14)C]phenanthrene to (14)CO(2) by a phenanthrene-degrading inoculum. Slurrying (1:1, 1:2, 1:3 and 1:5 soil:water ratios) consistently resulted in statistically higher rates and extents of mineralisation than the non-slurried system (2:1 soil:water ratio; P<0.01). The maximum extents of mineralisation observed occurred in the 1:2-1:5 soil:water ratio microcosms irrespective of transformer oil concentration. Transformer oil concentrations investigated displayed no statistically significant effect on total mineralisation (P>0.05). Soil slurries 1:2 or greater, but less than 1:5 (soil:water), are recommended for bioassay determinations of total contaminant bioavailability due to greater overall mineralisation and improved reproducibility.

  16. Oxidative metabolism of phenanthrene and anthracene by soil pseudomonads. The ring-fission mechanism

    PubMed Central

    Evans, W. C.; Fernley, H. N.; Griffiths, E.

    1965-01-01

    1. Phenanthrene is oxidatively metabolized by soil pseudomonads through trans-3,4-dihydro-3,4-dihydroxyphenanthrene to 3,4-dihydroxyphenanthrene, which then undergoes cleavage. 2. Some properties of the ring-fission product, cis-4-(1-hydroxynaphth-2-yl)-2-oxobut-3-enoic acid, are described. The Fe2+-dependent oxygenase therefore disrupts the bond between C-4 and the angular C of the phenanthrene nucleus. 3. An enzyme of the aldolase type converts the fission product into 1-hydroxy-2-naphthaldehyde (2-formyl-1-hydroxynaphthalene). An NAD-specific dehydrogenase is also present in the cell-free extract, which oxidizes the aldehyde to 1-hydroxy-2-naphthoic acid. This is then oxidatively decarboxylated to 1,2-dihydroxynaphthalene, thus allowing continuation of metabolism via the naphthalene pathway. 4. Anthracene is similarly metabolized, through 1,2-dihydro-1,2-dihydroxyanthracene to 1,2-dihydroxyanthracene, in which ring-fission occurs to give cis-4-(2-hydroxynaphth-3-yl)-2-oxobut-3-enoic acid. The position of cleavage is again at the bond between the angular C and C-1 of the anthracene nucleus. 5. Enzymes that convert the fission product through 2-hydroxy-3-naphthaldehyde into 2-hydroxy-3-naphthoic acid were demonstrated. The further metabolism of this acid is discussed. 6. The Fe2+-dependent oxygenase responsible for cleavage of all the o-dihydroxyphenol derivatives appears to be catechol 2,3-oxygenase, and is a constitutive enzyme in the Pseudomonas strains used. PMID:14342521

  17. Investigating the role of mineral-bound humic acid in phenanthrene sorption.

    PubMed

    Feng, Xiaojuan; Simpson, André J; Simpson, Myrna J

    2006-05-15

    Contaminant-soil interaction studies have indicated that physical conformation of organic matter atthe solid-aqueous interface is important in governing hydrophobic organic compound (HOC) sorption. To testthis, organo-clay complexes were constructed by coating montmorillonite and kaolinite with peat humic acid (PHA) in Na+ or Ca2+ dominated solutions with varying pH and ionic strength values. The solution conditions encouraged the dissolved PHA to adopt a "coiled" or "stretched" conformation prior to interacting with the clay mineral surface. Both kaolinite and montmorillonite organo-clay complexes exhibited higher phenanthrene sorption (Koc values) with decreasing pH, indicating that the coiled configuration provided more favorable sorption conditions. Evidence from 1H high-resolution magic angle spinning (HR-MAS) nuclear magnetic resonance (NMR) indicated that polymethylene groups were prevalent at the surface of the organo-clay complexes and may enhance sorptive interactions. Preferential sorption of polymethylene groups on kaolinite and aromatic compounds on montmorillonite may also contribute to the difference in phenanthrene sorption by PHA associated with these two types of clay. This study demonstrates the importance of solution conditions in the sorption of nonionic, hydrophobic organic contaminants and also provides evidence for the indirect role of clay minerals in sorption of contaminants at the soil-water interface.

  18. Flame-retardant EPDM compounds containing phenanthrene to enhance radiation resistance

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Huang, Wei; Jiang, Shu-Bin; Li, Xiao-Yan; An, You; Li, Chuang; Gao, Xiao-Ling; Chen, Hong-Bing

    2017-01-01

    Ethylene propylene diene monomer (EPDM) compounds with good flame-retardant and γ-ray radiation resistant properties were prepared by adding complex flame retardants and phenathrene. The resultant EPDM formulations have a long time to ignition (TTI >46 s), a low peak heat release rate (PHRR 341 kW/m2) and a high limited oxygen index (LOI >30). Effects of γ-ray radiation on the resultant flame-retardant EPDM was investigated. The formulated EPDM is a crosslinking dominated polymer under γ-ray radiation. The γ-ray radiation resistant property of EPDM was enhanced by adding phenanthrene. Elongation at break of EPDM formulated with phenanthrene could retain 91% after being irradiated to 0.3 MGy and still retains 40% elongation even after being irradiated to 0.9 MGy, which is much better the control. It is expected that the formulated flame-retardant and radiation resistant EPDM materials could meet the requirements for use in radiation environments.

  19. Effects of outer membrane vesicle formation, surface-layer production and nanopod development on the metabolism of phenanthrene by Delftia acidovorans Cs1-4.

    PubMed

    Shetty, Ameesha; Hickey, William J

    2014-01-01

    Nanopods are extracellular structures arising from the convergence of two widely distributed bacterial characteristics: production of outer membrane vesicles (OMV) and formation of surface layers (S-layers). Nanopod production is driven by OMV formation, and in Delftia acidovorans Cs1-4 growth on phenanthrene induces OMV/nanopod formation. While OMV production has been associated with many functions, particularly with pathogens, linkage to biodegradation has been limited to a membrane stress response to lipophilic compounds. The objectives of this study were to determine: 1.) Whether induction of nanopod formation was linked to phenanthrene metabolism or a non-specific membrane stress response, and 2.) The relative importance of OMV/nanopod formation vs. formation of the S-layer alone to phenanthrene utilization. Membrane stress response was investigated by quantifying nanopod formation following exposure to compounds that exceeded phenanthrene in membrane stress-inducing potential. Naphthalene did not induce nanopod formation, and toluene was a weak inducer compared to phenanthrene (two- vs. six-fold increase, respectively). Induction of nanopod formation by growth on phenanthrene was therefore linked to phenanthrene metabolism and not a membrane stress response. Impacts on phenanthrene biodegradation of OMV/nanopod production vs. S-layer formation were assessed with D. acidovorans Cs1-4 mutants deficient in S-layer formation or OMV/nanopod production. Both mutants had impaired growth on phenanthrene, but the loss of OMV/nanopod production was more significant than loss of the S-layer. The S-layer of D. acidovorans Cs1-4 did not affect phenanthrene uptake, and its primary role in phenanthrene biodegradation process appeared to be enabling nanopod development. Nanopods appeared to benefit phenanthrene biodegradation by enhancing cellular retention of metabolites. Collectively, these studies established that nanopod/OMV formation was an essential characteristic of

  20. [Effect of the inoculant strain Sphingomonas paucimobilis 20006FA on the bacterial composition of a phenanthrene-degrading consortium].

    PubMed

    Madueño, L; Coppotelli, B M; Morelli, I S

    2009-01-01

    The effect of the inoculant strain Sphingomonas paucimobilis 20006FA on the bacterial composition of a phenanthrene-degrading consortium obtained from a pristine soil in sequencing batch cultures was studied. Inoculated (F200+1) and non-inoculated (F200) phenanthrene-degrading consortia, were obtained. Bacterial diversity of consortia was studied at cultivable (phenotype and genotype characterization) and non-cultivable (PCR-DGGE) levels. During the successive cultures, a loss in the phenanthrene-degrading capacity and a decrease in the bacterial diversity were observed in both consortia. Although inoculation did not produce any significant changes in the consortia phenanthrene-degrading capacity (29.9% F200 and 27.6% F200+1), it did produce changes in the bacterial composition, showing a differential structural dynamics in the DGGE profiles of the inoculated consortium. In both consortia, a dominant band placed at the same position as that of the DNA of the inoculant strain in the DGGE gel could be observed. However, isolated cultures from the consortia which had an identical band position to that of S. paucimobilis 20006FA in the PCR-DGGE profile showed low similarity with respect to the inoculant strain (RAPD).

  1. CeO2 nanoparticles induce no changes in phenanthrene toxicity to the soil organisms Porcellionides pruinosus and Folsomia candida.

    PubMed

    Tourinho, Paula S; Waalewijn-Kool, Pauline L; Zantkuijl, Irene; Jurkschat, Kerstin; Svendsen, Claus; Soares, Amadeu M V M; Loureiro, Susana; van Gestel, Cornelis A M

    2015-03-01

    Cerium oxide nanoparticles (CeO2 NPs) are used as diesel fuel additives to catalyze oxidation. Phenanthrene is a major component of diesel exhaust particles and one of the most common pollutants in the environment. This study aimed at determining the effect of CeO2 NPs on the toxicity of phenanthrene in Lufa 2.2 standard soil for the isopod Porcellionides pruinosus and the springtail Folsomia candida. Toxicity tests were performed in the presence of CeO2 concentrations of 10, 100 or 1000mg Ce/kg dry soil and compared with results in the absence of CeO2 NPs. CeO2 NPs had no adverse effects on isopod survival and growth or springtail survival and reproduction. For the isopods, LC50s for the effect of phenanthrene ranged from 110 to 143mg/kg dry soil, and EC50s from 17.6 to 31.6mg/kg dry soil. For the springtails, LC50s ranged between 61.5 and 88.3mg/kg dry soil and EC50s from 52.2 to 76.7mg/kg dry soil. From this study it may be concluded that CeO2 NPs have a low toxicity and do not affect toxicity of phenanthrene to isopods and springtails.

  2. Potential use of a self-dying reporter bacterium to determine the bioavailability of aged phenanthrene in soil: comparison with physicochemical measures.

    PubMed

    Shin, Doyun; Nam, Kyoungphile

    2014-01-30

    The potential bioavailability of phenanthrene aged in soil was determined by using a self-dying reporter bacterium, and the results were compared to two physicochemical measures, Tenax TA(®) bead-assisted desorption, and hydroxypropyl-β-cyclodextrin (HPCD) extraction. The reporter bacterium, capable of degrading phenanthrene as a sole carbon and energy source, was genetically reconstructed to die when it degrades phenanthrene. Therefore, population change of the reporter cells can be viewed as the quantification of bioavailable phenanthrene. When Ottawa sand was used as an aging matrix, the amounts of bioavailable phenanthrene (i.e. little gradual decrease) were similar, regardless of aging time, and consistent between the reporter bacterium and the two physicochemical measures. However, decrease in bioavailable phenanthrene with aging was readily evident in sandy loam with organic matter of 11.5%, with all three measures. More importantly, when the reporter bacterium was used, a rapid and significant decrease in the bioavailable fraction from 1.00 to 0.0431 was observed. The extent of decrease in bioavailable fraction was less than 40% in the two physicochemical measures, but was nearly 100% in the reporter bacterium, during the first 3 months of aging. Our results suggest that the phenanthrene fraction available to bacterial degradation, and probably the fraction that really manifests toxicity, may be much smaller than the fractions predicted with the physicochemical measures.

  3. Effect of short-chain organic acids on the enhanced desorption of phenanthrene by rhamnolipid biosurfactant in soil-water environment.

    PubMed

    An, Chun-jiang; Huang, Guo-he; Wei, Jia; Yu, Hui

    2011-11-01

    This study investigated the effect of short-chain organic acids on biosurfactant-enhanced mobilization of phenanthrene in soil-water system. The desorption characteristics of phenanthrene by soils were assessed in the presence of rhamnolipid and four SCOAs, including acetic acid, oxalic acid, tartaric acid and citric acid. The tests with rhamnolipid and different organic acids could attain the higher desorption of phenanthrene compared to those with only rhamnolipid. Among the different combinations, the series with rhamnolipid and citric acid exhibited more significant effect on the desorption performance. The removal of phenanthrene using rhamnolipid and SCOAs gradually increased as the SCOA concentration increased up to a concentration of 300 mmol/L. The effects of pH, soil dissolved organic matter and ionic strength were further evaluated in the presence of both biosurfactant and SCOAs. The results showed that the extent of phenanthrene desorption was more significant at pH 6 and 9. Desorption of phenanthrene was relatively lower in the DOM-removed soils with the addition of biosurfactant and SCOAs. The presence of more salt ions made phenanthrene more persistent on the solid phase and adversely affected its desorption from contaminated soil. The results from this study may have important implications for soil washing technologies used to treat PAH-contaminated soil and groundwater.

  4. Biodegradation and adsorption of C1- and C2-phenanthrenes and C1- and C2-dibenzothiophenes in the presence of clay minerals: effect on forensic diagnostic ratios.

    PubMed

    Ugochukwu, Uzochukwu C; Head, Ian M; Manning, David A C

    2014-07-01

    The impact of modified montmorillonites on adsorption and biodegradation of crude oil C1-phenanthrenes, C1-dibenzothiophenes, C2-phenanthrenes and C2-dibenzothiophenes was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. Consequently, the effect on C1-dibenzothiophenes/C1-phenanthrenes, C2-dibenzothiophenes/C2-phenanthrenes, 2+3-methyldibenzothiophene/4-methyldibenzothiophene and 1-methyldibenzothiophene/4-methyldibenzothiophene ratios commonly used as diagnostic ratios for oil forensic studies was evaluated. The clay mineral samples were treated to produce acid activated montmorillonite, organomontmorillonite and homoionic montmorillonite which were used in this study. The different clay minerals (modified and unmodified) showed varied degrees of biodegradation and adsorption of the C1-phenanthrenes, C1-dibenzothiophenes, C2-phenanthrenes and C2-dibenzothiophenes. The study indicated that as opposed to biodegradation, adsorption has no effect on the diagnostic ratios. Among the diagnostic ratios reviewed, only C2-dibenzothiophenes/C2-phenanthrenes ratio was neither affected by adsorption nor biodegradation making this ratio very useful in forensic studies of oil spills and oil-oil correlation.

  5. [Effect of nonionic surfactant Tween80 and DOM on the behaviors of desorption of phenanthrene and pyrene in soil-water systems].

    PubMed

    Wang, Gen-Mei; Sun, Cheng; Xie, Xue-Qun

    2007-04-01

    Batch experiments were conducted to study the effects of dissolved organic matter (DOM) and nonionic surfactant (Tween80) on the desorption of phenanthrene and pyrene in soil-water systems. The results showed that DOM derived from pig manure and pig manure compost increased the desorption of phenanthrene and pyrene in soil-water systems, and the effect of pig manure compost DOM was better than that of pig manure DOM; with the increase of Tween80, the desorption rate of phenanthrene and pyrene also increased compared with the control, especially at high concentration of Tween80 (150 mg x L(-)). And at this concentration, the desorption rates were increased by 1.7 times for phenanthrene and 6.2 times for pyrene than that of the control. The combined effects of Tween80 and DOM on the desorption of phenanthrene and pyrene were influenced by the concentration of Tween80. When Tween80 at low concentration, the combined effects were not significant. Howerver, with 150 mg x L(-1) Tween80 in soil-water systems, the desorption rates of phenanthrene and pyrene were drastically higher than the sum of DOM and Tween80. The results also indicated that DOMs with high molecular-size fraction ( > 25 000 could attain a higher desorption of both phenanthrene and pyrene in soil-water systems than their lowmolecular-size counterpart (< 1000) under the same experiments conditions.

  6. Aryl hydrocarbon receptor protein and Cyp1A1 gene induction by LPS and phenanthrene in Atlantic cod (Gadus morhua) head kidney cells.

    PubMed

    Holen, Elisabeth; Olsvik, Pål Asgeir

    2014-10-01

    The objective of this study was to evaluate interactions between environmental toxicants and cod immune cells during inflammation. Phenanthrene is abundant in plant oils (rapeseed, palm, and soya oil) as compared to fish oils, and consequently constitute an undesirable element in plant replacement diets in aquaculture. Phenanthrene was added to head kidney cell cultures, alone or together with LPS (lipopolysaccharide) or poly I: C (polyinosinic acid: polycytidylic acid), and the responses were evaluated in terms of protein and gene expression. The results showed that LPS, poly I: C or phenanthrene, added to the cultures separately, induced aryl hydrocarbon receptor (AhR) protein expression. Phenanthrene treatment in combination with LPS induced AhR protein expression and Cyp1A1 gene transcription, which not was observed combining poly I: C and phenanthrene. Phenanthrene exposure up regulated the transcription of common stress and detoxification enzymes like catalase, caspase 3 and glutathione S-transferase alfa 3 subunit B (GSTAB3), while LPS exposure alone or combined with phenanthrene down regulated GSTAB3 and catalase in cod leukocytes. It seems clear that immune regulation and phenanthrene induced signaling pathways interact; transcriptional down regulation of detoxification and antioxidant enzymes by LPS could indicate that combating bacterial infections is the number one priority in these cells, and that AhR and Cyp1A1 is somehow involved in this signaling cascade. LPS seems to affect the mitogen activated protein kinases (MAPKs) pathways (P-p38 and ERK1/2) thus modulating the AhR protein and Cyp1A1 gene transcription, while phenanthrene possibly activates AhR by ligand binding.

  7. Use of humic acids derived from peat and lignite as phenanthrene sorbents

    NASA Astrophysics Data System (ADS)

    Sofikitis, Elias; Giannouli, Andriana; Kalaitzidis, Stavros; Christanis, Kimon; Karapanagioti, Hrissi K.; Papanicolaou, Cassiani

    2015-04-01

    A broad range of materials is being applied for environmental remediation of water, among them sorbents such as humic acids. Being natural substances, the extraction and purification of humic acids might be cheaper than the production of synthetic sorbents. Having higher absorbing capacity than most of the sorbents used to date, humic acids have a competitive advantage against commonly used sorbents such as active charcoals and biochar. Humic acids are "complex colloidal super-mixtures" that are characterized by their functional groups. Therefore, composition and molecular formula can vary depending on the properties of the parent material. The aim of this project was (a) to study the sorption capacity of humic acids derived from peat and lignite samples picked up from deposits spread throughout Greece and (b) to compare the results with these of the parent materials. This comparison provides an insight to which matrix samples are suitable for further chemical treatment for the isolation of humic acids to be used as sorbents. The selected model pollutant was phenanthrene, which is a PAH that consists of three fused benzene rings. Humic acids were extracted according to the methodology proposed by the IHSS, slightly modified, in order to fit better to the properties of organic sediments. Sorption experiments were conducted by mixing 0.004 g of the sorbent (peat or lignite or humic acid) with aqueous solutions of phenanthrene at different concentrations of 30, 50, 100, 300, and 500 μg/L. The results show that phenanthrene sorption is higher for the humic acid than for the original lignite and peat samples. The original samples display higher sorption at the lower phenanthere solutions (30 μg/L; Kd ranges from 15,000 to 47,000 L/kg) than at the higher one (500 μg/L; Kd ranges from 4,100 to 13,000 L/Kg) suggesting non-linear sorption. The humic acids display mainly linear isotherms with Kd ranges from 6,600 to 120,000 L/kg. Concerning the suitability of the studied

  8. Two-photon absorption cross section determination for fluorene derivatives: analysis of the methodology and elucidation of the origin of the absorption processes.

    PubMed

    Belfield, Kevin D; Bondar, Mykhailo V; Hernandez, Florencio E; Przhonska, Olga V; Yao, Sheng

    2007-11-08

    A comprehensive analysis of the well-known open aperture Z-scan method, using a modified equation for the change in transmittance, is presented and accounts for discrepancies in two-photon absorption (2PA) cross sections between picosecond and femtosecond excitation. This new approach takes into account excited-state absorption and stimulated emission of the molecules studied. The two-photon absorption cross-section spectra of a series of six fluorene-based derivatives, determined using picosecond pulses, over a broad spectral range (500-900 nm), and this approach using a modified fitting procedure in the open aperture Z-scan is reported. We demonstrate that the fluorene derivatives exhibit two-photon absorption cross-section values between 700 and 5000 GM, when excited into the two-photon allowed electronic state. Excitation anisotropy spectra, measured to investigate the nature of the observed linear and nonlinear absorption bands, are presented and provide insight into the 2PA process.

  9. trans/cis-Isomerization of fluorene-bridged azo chromophore with significant two-photon absorbability at near-infrared wavelength.

    PubMed

    Chu, Chih-Chien; Chang, Ya-Chi; Tsai, Bo-Kai; Lin, Tzu-Chau; Lin, Ja-Hon; Hsiao, Vincent K S

    2014-12-01

    Azo-containing materials have been proven to possess second-order nonlinear optical (NLO) properties, but their third-order NLO properties, which involves two-photon absorption (2PA), has rarely been reported. In this study, we demonstrate a significant 2PA behavior of the novel azo chromophore incorporated with bilateral diphenylaminofluorenes (DPAFs) as a π framework. The electron-donating DPAF moieties cause a redshifted π-π* absorption band centered at 470 nm, thus allowing efficient blue-light-induced trans-to-cis photoisomerization with a rate constant of 2.04 × 10(-1) min(-1) at the photostationary state (PSS). The open-aperture Z-scan technique that adopted a femtosecond (fs) pulse laser as excitation source shows an appreciably higher 2PA cross-section for the fluorene-derived azo chromophore than that for common azobenzene dyes at near-infrared wavelength (λex =800 nm). Furthermore, the fs 2PA response is quite uniform regardless of the molecular geometry. On the basis of the computational modeling, the intramolecular charge-transfer (ICT) process from peripheral diphenylamines to the central azo group through a fluorene π bridge is crucial to this remarkable 2PA behavior.

  10. [Influence of dissolved organic matter on the eco-toxicity of phenanthrene in a soil].

    PubMed

    Zhan, Xin-hua; Wan, Yin-jing; Zhou, Li-xiang

    2004-05-01

    Biological and physico-chemistry experiments were conducted to study the effects of dissolved organic matter (DOM) on eco-toxicity of phenanthrene in a soil. The results showed that DOM was a kind of surfactant. The sensitive range of phe inhibiting wheat root elongation was from 0 to 200 mg/kg, and median inhibition concentration (IC50) was 200 mg/kg. In the presence of DOM, the eco-toxicity of phe could be alleviated and the inhabited degree was related to the content of hydrophobic components and surface activity. This effect could be strengthened by the high concentration of DOM. As a kind of hydrophobic organic compound, phe could reduce the moisture of topsoil, and DOM would slightly increase the moisture of topsoil polluted by phe. It was concluded that DOM could lighten the eco-toxicity of phe in soil.

  11. NAH plasmid-mediated catabolism of anthracene and phenanthrene to naphthoic acids.

    PubMed Central

    Menn, F M; Applegate, B M; Sayler, G S

    1993-01-01

    Pseudomonas fluorescens 5R contains an NAH7-like plasmid (pKA1), and P. fluorescens 5R mutant 5RL contains a bioluminescent reporter plasmid (pUTK21) which was constructed by transposon mutagenesis. Polymerase chain reaction mapping confirmed the localization of lux transposon Tn4431 300 bp downstream from the start of the nahG gene. Two degradation products, 2-hydroxy-3-naphthoic acid and 1-hydroxy-2-naphthoic acid, were recovered and identified from P. fluorescens 5RL as biochemical metabolites from the biotransformation of anthracene and phenanthrene, respectively. This is the first report which provides direct biochemical evidence that the naphthalene plasmid degradative enzyme system is involved in the degradation of higher-molecular-weight polycyclic aromatic hydrocarbons other than naphthalene. Images PMID:8328810

  12. Evaluation of the application potential of bentonites in phenanthrene bioremediation by characterizing the biofilm community.

    PubMed

    Huang, Yili; Zhang, Jing; Zhu, Lizhong

    2013-04-01

    Application of clay minerals in bioremediation has emerged as a new and promising research field. In this study, the application of calcinated bentonite (CB) and calcinated organobentonite (COB) in phenanthrene (Phe) bioremediation showed high Phe removal efficiency. Clone libraries based on 16S rRNA gene and scanning electronic microscopy showed that diverse taxa of bacteria formed biofilms on both COB and CB particles. The family Sphingomonadaceae was the major group and made up 18% and 23% of the COB and CB biofilm composition, respectively. All and 80% of dioxygenase genes from COB and CB biofilms were closely related to that of Sphingomonas sp., and others matched to that of Comamonas and Mycobacterium. The selective effect of COB on bacterial community was also evident. This study characterized for the first time the bacterial diversity of biofilm community and functional Phe degrading groups on bentonites particles, and provided useful information for future applications.

  13. Adsorption of phenanthrene by quaternary ammonium surfactant modified peat and the mechanism involved.

    PubMed

    Zhou, Y B; Chen, L; Wang, X Q; Xu, Y X; Lu, J

    2012-01-01

    Removal of phenanthrene (PHE) from aqueous solution by adsorption onto quaternary ammonium surfactant modified peat was studied. The results show that surfactant modification enhanced the PHE adsorption capacity of peat. Low temperature and neutral pH favored PHE adsorption. Peat modified with long carbon chain surfactant performed better than peat modified with short carbon chain surfactant. The magnitude of PHE adsorption capacity followed the order of MP-HPB>MP-HTAB>MP-TBAB>RP, ranged from 924 to 1,228 μg g(-1). A negative trend between adsorption capacity (y) and (O+N)/C ratio of biosorbent (x) was observed (y = -1,369.6x + 2,176), which confirmed the negative effect of polarity on polycyclic aromatic hydrocarbon (PAH) removal. The study provides a guide to modify raw materials to enhance adsorption of hydrophobic organics.

  14. The growth, photosynthesis and antioxidant defense responses of five vegetable crops to phenanthrene stress.

    PubMed

    Ahammed, Golam Jalal; Wang, Meng-Meng; Zhou, Yan-Hong; Xia, Xiao-Jian; Mao, Wei-Hua; Shi, Kai; Yu, Jing-Quan

    2012-06-01

    Polycyclic aromatic hydrocarbons (PAHs) are global environmental problem. To better understand the growth and physiological responses to atmospheric PAHs, we investigated biomass, photosynthetic machinery and antioxidant system in pakchoi, cucumber, flowering chinese cabbage, tomato and lettuce under various levels of phenanthrene (PHE) stress. Foliar exposure to PHE for 14d resulted in a dose dependent decrease in growth, photosynthesis and chlorophyll contents. With few exceptions, antioxidant enzymes (superoxide dismutase, guaicol peroxidase, catalase, ascorbate peroxidase and glutathione reductase) were upregulated following exposure to PHE. Dose dependent increase in malondialdehyde contents together with H(2)O(2) accumulation suggested an occurrence of oxidative stress following PHE exposure. However, to some extent, growth and antioxidant defense responses differ from species to species. Difference in defense capacity might result in different tolerance and phytotoxicity among the studied vegetables. Taken together, phytotoxicity of PHE to five vegetables could be sequenced in the following order: pakchoi>cucumber>lettuce>tomato>flowering chinese cabbage.

  15. Planar conjugated polymers containing 9,10-disubstituted phenanthrene units for efficient polymer solar cells.

    PubMed

    Li, Guangwu; Kang, Chong; Li, Cuihong; Lu, Zhen; Zhang, Jicheng; Gong, Xue; Zhao, Guangyao; Dong, Huanli; Hu, Wenping; Bo, Zhishan

    2014-06-01

    Four novel conjugated polymers (P1-4) with 9,10-disubstituted phenanthrene (PhA) as the donor unit and 5,6-bis(octyloxy)benzothiadiazole as the acceptor unit are synthesized and characterized. These polymers are of medium bandgaps (2.0 eV), low-lying HOMO energy levels (below -5.3 eV), and high hole mobilities (in the range of 3.6 × 10(-3) to 0.02 cm(2) V(-1) s(-1) ). Bulk heterojunction (BHJ) polymer solar cells (PSCs) with P1-4:PC71 BM blends as the active layer and an alcohol-soluble fullerene derivative (FN-C60) as the interfacial layer between the active layer and cathode give the best power conversion efficiency (PCE) of 4.24%, indicating that 9,10-disubstituted PhA are potential donor materials for high-efficiency BHJ PSCs.

  16. Enhanced electrokinetic removal of phenanthrene from clay soil by periodic electric potential application.

    PubMed

    Reddy, Krishna R; Saichek, Richard E

    2004-01-01

    Electrokinetically enhanced in-situ flushing using surfactants has the potential to remove polycyclic aromatic hydrocarbons (PAHs) from low permeability clay soils; however, previous research has shown that the applied electric potential produces complex physical, chemical, and electrochemical changes within clay soils that affect mass transfer and overall efficiency. This article presents the results of a laboratory investigation conducted to determine the contaminant mass removal by using a periodic voltage application. The periodic voltage effects were evaluated by performing four different bench-scale electrokinetic tests with the voltage gradient applied continuously or periodically, under relatively low voltage (1.0 VDC/cm) and high anode buffering (0.1 M NaOH) as well as high voltage (2.0 VDC/cm) and low anode buffering (0.01 M NaOH) conditions. For all the tests, kaolin soil was used as a representative clay soil and it was spiked with phenanthrene, a representative PAH, with a target concentration of 500 mg/kg. A nonionic polyoxyethylene surfactant, Igepal CA 720, was used as the flushing solution in all the tests. The voltage was applied according to a cycle of five days of continuous application followed by two days of "down time," when the voltage was not applied. The results of these experiments show that considerable contaminant removal can be achieved by employing a high, 2.0 VDC/cm, voltage gradient along with a periodic mode of voltage application. The increased removal was attributed to increased phenanthrene solubilization and mass transfer due to the reduced flow of the bulk solution during the down time as well as to the pulsed electroosmotic flow that improved flushing action.

  17. Spectroscopic characterization of dissolved organic matter isolates from sediments and the association with phenanthrene binding affinity.

    PubMed

    Hur, Jin; Lee, Bo-Mi; Shin, Kyung-Hoon

    2014-09-01

    In this study, selected spectroscopic characteristics of sediment organic matter (SOM) were compared and discussed with respect to their different isolation methods, the source discrimination capabilities, and the association with the extent of phenanthrene binding. A total of 16 sediments were collected from three categorized locations including a costal lake, industrial areas, and upper streams, each of which is likely influenced by the organic sources of algal production, industrial effluent, and terrestrial input, respectively. The spectroscopic properties related to aromatic structures and terrestrial humic acids were more pronounced for alkaline extractable organic matter (AEOM) isolates than for the SOM isolates based on water soluble extracts and pore water. The three categorized sampling locations were the most differentiated in the AEOM isolates, suggesting AEOM may be the most representative SOM isolates in terms of describing the chemical properties and the organic sources of SOM. Parallel factor analysis (PARAFAC) based on fluorescence excitation-emission matrix (EEM) showed that a combination of three fluorescent groups could represent all the fluorescence features of SOM. The three categorized sampling locations were well discriminated by the percent distributions of humic-like fluorescent groups of the AEOM isolates. The relative distribution of terrestrial humic-like fluorophores was well correlated with the extent of phenanthrene binding (r=0.571; p<0.05), suggesting that the presence of humic acids in SOM may contribute to the enhancement of binding with hydrophobic organic contaminants in sediments. Principal component analysis (PCA) further demonstrated that the extent of SOM's binding affinity might be affected by the degree of biogeochemical transformation in SOM.

  18. Photodegradation of phenanthrene by N-doped TiO2 photocatalyst.

    PubMed

    Sirisaksoontorn, Weekit; Thachepan, Surachai; Songsasen, Apisit

    2009-07-15

    The photodegradation of phenanthrene has been catalyzed by nanostructures of TiO2 doped with nitrogen, N-doped TiO2. The N-doped TiO2 was prepared from the sol-gel reaction of Titanium(IV) bis(ethyl acetoacetato)diisopropoxide with 25% ammonia solution. The N-doped TiO2 was calcined at various temperatures from 300 to 700 degrees C. X-ray diffraction (XRD) results showed that N-doped TiO2 remained amorphous at 300 degrees C but anatase-to-rutile transformation started at 400 degrees C and was complete at 700 degrees C. The average particle size calculated from Scherrer's equation was in the range of 9-51 nm with surface area (S(BET)) of 253.7-4.8 m2/g. X-ray photoelectron spectroscopy (XPS) results confirmed the incorporation of nitrogen atoms (Ti-N bond) in the N-doped catalyst. Moreover, the percentage of nitrogen determined by Elemental analysis was 0.236% of N-doped calcined at 400 degrees C. UV-Vis reflection spectra indicated that N-doped TiO2 calcined at 400 degrees C shifted to the higher absorption edge in the range of visible light. N-doped TiO2 calcined at 400 degrees C successfully catalyzed the photodegradation of phenanthrene (80% conversion) whereas N-doped TiO2 calcined at 500 degrees C and P25 TiO2 failed as catalysts.

  19. Development of a method for the determination of naphthalene and phenanthrene in workplace air using diffusive sampling and thermal desorption GC-MS analysis.

    PubMed

    Lindahl, Roger; Claesson, Anna-Sara; Khan, Muhammad Akhtar; Levin, Jan-Olof

    2011-07-01

    Diffusive sampling methods have been validated for the determination of naphthalene and phenanthrene in workplace air. The diffusive sampler tested was the Perkin Elmer ATD tube, and the analysis was performed with thermal desorption, gas chromatography, and mass spectrometric detection. The sampling methods were validated in controlled test atmospheres, mainly according to the protocol proposed in the European standard EN 838. For the determination of naphthalene, the diffusive sampling rate was 0.41 ml min(-1) with a coefficient of variation (CV) of 19%. The mean sampling rate for phenanthrene was 0.49 ml min(-1) with a CV of 21%. Field tests confirmed the naphthalene results but could not be used to confirm the phenanthrene results. The method is not recommended for phenanthrene sampling unless the method has been tested in the specific environment and the results confirm the laboratory tests.

  20. Combined remediation of Cd-phenanthrene co-contaminated soil by Pleurotus cornucopiae and Bacillus thuringiensis FQ1 and the antioxidant responses in Pleurotus cornucopiae.

    PubMed

    Jiang, Juan; Liu, Hongying; Li, Qiao; Gao, Ni; Yao, Yuan; Xu, Heng

    2015-10-01

    Remediation of soil co-contaminated with heavy metals and PAHs by mushroom and bacteria is a novel technique. In this study, the combined remediation effect of mushroom (Pleurotus cornucopiae) and bacteria (FQ1, Bacillus thuringiensis) on Cd and phenanthrene co-contaminated soil was investigated. The effect of bacteria (B. thuringiensis) on mushroom growth, Cd accumulation, phenanthrene degradation by P. cornucopiae and antioxidative responses of P. cornucopiae were studied. P. cornucopiae could adapt easily and grow well in Cd-phenanthrene co-contaminated soil. It was found that inoculation of FQ1 enhanced mushroom growth (biomass) and Cd accumulation with the increment of 26.68-43.58% and 14.29-97.67% respectively. Up to 100% and 95.07% of phenanthrene were removed in the bacteria-mushroom (B+M) treatment respectively spiked with 200mg/kg and 500mg/kg phenanthrene. In addition, bacterial inoculation alleviated oxidative stress caused by co-contamination with relative decreases in lipid peroxidation and enzyme activity, including malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). This study demonstrated that the integrated remediation strategy of bacteria and mushroom is an effective and promising method for Cd-phenanthrene co-contaminated soil bioremediation.

  1. Investigating the foliar uptake and within-leaf migration of phenanthrene by moss (Hypnum cupressiforme) using two-photon excitation microscopy with autofluorescence.

    PubMed

    Keyte, Ian; Wild, Edward; Dent, John; Jones, Kevin C

    2009-08-01

    Mosses have the potential to play a significant role in the global cycling and fate of semivolatile organic compounds (SVOCs), due to their extensive distribution at high latitudes and the long-range atmospheric transport of SVOCs. Unlike vascular plants mosses lack a substantial cuticle, vascular system, or root structure, taking up water, nutrients and SVOCs primarily from the atmosphere. Mosses have thus been effectively used as passive air samplers for many SVOCs in urban and rural locations. The potential differences in atmospheric uptake and within-leaf movement storage and processing of SVOCs between vascular and nonvascular living plants were investigated here by comparing the uptake and behavior of phenanthrene in spinach (Spinacia oleracea) and moss (Hypnum cupressiforme), using two-photon excitation microscopy coupled with autofluorescence. Chemical uptake, movement storage, and compartmentalization of phenanthrene was directly detected, visualized, and monitored over a 12 day period following exposure to gas phase phenanthrene. Species differences in the uptake of phenanthrene between moss and spinach leaves were observed, showing how morphological differences affect the foliar uptake of SVOCs. In spinach, phenanthrene accumulated within the cellular cytoplasm and vacuole. In moss, phenanthrene accumulated predominantly within the cell walls, before later migrating across the cell membrane into adjacent cells and the cellular cytoplasm. The study represents a further demonstration of how different plant species can display different and complex transport and storage pathways for the same chemical, and highlights the importance of the cellular structure and plant morphological and physiological features in controlling this behavior.

  2. Adsorption of carbamazepine by carbon nanotubes: effects of DOM introduction and competition with phenanthrene and bisphenol A.

    PubMed

    Lerman, Ilya; Chen, Yona; Xing, Baoshan; Chefetz, Benny

    2013-11-01

    Carbon nanotubes, organic contaminants and dissolved organic matter (DOM) are co-introduced into the environment. Thus, the interactions between these components have to be evaluated to better understand their environmental behavior. In this study, single-walled carbon nanotubes (SWCNTs) were used as sorbent, carbamazepine was the primary adsorbate, and bisphenol A and phenanthrene were used as competitors. Strong competition with bisphenol A and no effect of phenanthrene on adsorption of carbamazepine was obtained. The hydrophobic neutral fraction of the DOM exhibited the strongest reductive effect on carbamazepine adsorption, most probably due to interactions in solution. In contrast, the hydrophobic acid fraction decreased carbamazepine adsorption mainly via direct competition. When DOM and bisphenol A were co-introduced, the adsorption of carbamazepine was significantly reduced. This study suggests that the chemical nature of DOM can significantly affect the sorptive behavior of polar organic pollutants with carbon nanotubes when all are introduced to the aquatic system.

  3. New diagnostic ratios based on phenanthrenes and anthracenes for effective distinguishing heavy fuel oils from crude oils.

    PubMed

    Zhang, Haijiang; Wang, Chuanyuan; Zhao, Ruxiang; Yin, Xiaonan; Zhou, Hongyang; Tan, Liju; Wang, Jiangtao

    2016-05-15

    The heavy fuel oils (HFOs) and crude oils are the main oil types in the marine oil spill accidents in China. It is usually a challenge to distinguish the HFOs from crude oils due to the highly similar physicochemical characteristics. In this paper, the distributions of phenanthrene (Phe), anthracene (Ant), methyl-phenanthrene (MP) and methyl-anthracene (MA) in hundreds of HFOs and crude oils samples which were collected from all over the world were characterized. Nine new diagnostic indexes, such as Ant/(Ant+Phe) and other eight diagnostic ratios based on the MP isomers and MA, were developed for effective distinguishing HFOs from crude oils. The histogram with normal fit plots, the double ratio plots and Bayes discriminant analysis (BDA) method were employed to illustrate the effectiveness of the new diagnostic indexes. BDA model based on nine new diagnostic indexes demonstrated high precision with discriminant ratio which lay between 93.92% and 99.32%.

  4. Removal and Biodegradation of Phenanthrene, Fluoranthene and Pyrene by the Marine Algae Rhodomonas baltica Enriched from North Atlantic Coasts.

    PubMed

    Arias, Andrés H; Souissi, Anissa; Glippa, Olivier; Roussin, Marion; Dumoulin, David; Net, Sopheak; Ouddane, Baghdad; Souissi, Sami

    2017-03-01

    This study is focused on the removal, accumulation and degradation of three environmental ubiquitous polycyclic aromatic hydrocarbons (PAHs), phenanthrene (PHE), fluoranthene (FLA) and pyrene (PYR), by the marine alga Rhodomonas baltica enriched from the English Channel. After separation, purification and culture in several phases, R. baltica was exposed to PAH concentrations that are frequently encountered in the field in several anthropized environments. The results showed that R. baltica can grow under PAH stress, efficiently remove up to 70% of these compounds from the medium by 216 h of culture and selectively bioaccumulate PAHs by their hydrophobicity. Between PHE, FLA and PYR, phenanthrene was the compound with higher degradation rates throughout incubation. The equilibrium partitioning theoretical approach showed that physico-chemical partitioning, rather than active bioconcentration, was the major factor governing the bioaccumulation, outlying a potential application in decontamination processes for this species.

  5. PHOTOACTIVATION AND TOXICITY OF MIXTURES OF POLYCYCLIC AROMATIC HYDROCARBON COMPOUNDS IN MARINE SEDIMENT

    EPA Science Inventory

    The direct toxicity and photoinduced toxicity of sediment-associated acenaphthene, phenanthrene, fluoranthene, and pyrene were determined for the marine amphipod Rhepoxynius abronius. The four polycyclic aromatic hydrocarbons (PAHs) were spiked into sediment in a concentration se...

  6. Plant-accelerated dissipation of phenanthrene and pyrene from water in the presence of a nonionic-surfactant.

    PubMed

    Gao, Yanzheng; Ling, Wanting; Wong, Ming H

    2006-06-01

    Plant-accelerated dissipation of phenanthrene and pyrene in water in the presence of a nonionic-surfactant (Brij35) was studied. The mechanisms involved were evaluated, based on the investigation of plant uptake of these compounds from water with Brij35. The presence of ryegrass (Lolium multiflorum Lam) clearly enhanced the dissipation of tested PAHs in water with 0-296 mg l(-1) Brij35. The first-order rate constants (K), calculated from the first-order kinetic models for these PAH degradation (all significant at P < 0.05, n=8), of phenanthrene and pyrene in the presence of ryegrass were 16.7-50% and 47.1-108% larger than those of plant-free treatments, whereas half-lives (T1/2) of the former were 14.3-33.4% and 32.0-52.0% smaller than the latter, respectively. However, the promotion of PAH dissipation by ryegrass was found to significantly decrease with increasing Brij35 concentrations. In the range of 0-296 mg l(-1), low concentrations (< or = 74.0 mg l(-1)) of Brij35 generally enhanced plant uptake and accumulation of phenanthrene and pyrene, based on the observed plant concentrations and accumulated amounts of these chemicals from water. In contrast, Brij35 at relatively high concentrations (> or = 148 mg l(-1)) markedly restricted plant uptake of these PAHs. Plant accumulation of phenanthrene and pyrene accounted for 6.21-35.0% and 7.66-24.3% of the dissipation enhancement of these compounds from planted versus unplanted water bodies. In addition, plant metabolism was speculated to be another major mechanism of plant-accelerated dissipation of these PAHs in water systems. Results obtained from this study provided some insight with regard to the feasibility of phytoremediation for PAH contaminated water bodies with coexisted contaminants of surfactants.

  7. Effects of nonionic surfactants on the microbial mineralization of phenanthrene in soil-water systems. [Quarterly report

    SciTech Connect

    Laha, S.; Luthy, R.G.

    1992-05-01

    The purpose of the work reported in this paper was to determine whether the inhibitory effect on microbial degradation of phenanthrene was specific to the nonionic surfactants used previously, i.e., the alkylethoxylate and alkylphenol ethoxylate surfactants. Thus, a number of nonionic surfactants of varying structures and properties were selected for further investigation. In addition, several tests were performed to verify results from earlier experiments.

  8. Transcriptional responses indicate attenuated oxidative stress in the springtail Folsomia candida exposed to mixtures of cadmium and phenanthrene.

    PubMed

    de Boer, Muriel E; Ellers, Jacintha; van Gestel, Cornelis A M; den Dunnen, Johan T; van Straalen, Nico M; Roelofs, Dick

    2013-05-01

    Since the 'omics revolution', the assessment of toxic chemical mixtures has incorporated approaches where phenotypic endpoints are connected to a mechanistic understanding of toxicity. In this study we determined the effect of binary mixtures of cadmium and phenanthrene on the reproduction of Folsomia candida and investigated the cellular mechanisms underlying this response. Mixture toxicity modeling showed an antagonistic deviation from concentration addition for reproduction effects of the mixtures. Subsequent transcriptional response analysis was done using five mixtures at the modeled 50 % effect level for reproduction. The transcription profiles of 86 high throughput RT-qPCR assays were studied by means of partial least squares regression analysis. The first and second principal components (PCs) were correlated with global responses to cadmium and phenanthrene, while correlations with the mixture treatments were found in the higher PCs. Specifically associated with the mixture treatments were a biotransformation phase II gene, four mitochondrial related genes and a gene involved in the biosynthesis of antioxidant selenoproteins. Membrane integrity related gene inductions were correlated with the single phenanthrene treatment but not with the mixtures. Immune and inflammatory response assays did not correlate with any of the mixtures. These results suggest moderated oxidative stress, a higher mitochondrial maintenance and less compromised membrane function in the mixture exposed samples compared to the separate cadmium or phenanthrene exposures. The antagonism found for inhibition of reproduction may partially originate from these differences. Mechanistic studies on mixture toxicity can ultimately aid risk assessment by defining relevant toxicity pathways in organisms exposed to real-world mixture exposures present in the field.

  9. Thermal-delayed fluorescence of pyromellitic dianhydride—anthracene trap in charge-transfer pyromellitic dianhyride—phenanthrene host crystal

    NASA Astrophysics Data System (ADS)

    Kozankiewicz, B.

    1990-10-01

    The fluorescence, phosphorescence and delayed fluorescence in an anthracene-doped pyromellitic dianhydride—phenanthrene crystal is studied within the temperature range 200-330 K. The dominating long-lived emission for temperatures above 250 K is thermal-delayed fluorescence, originating from the singlet trap created by thermal promotion of the triplet trap. The trap is formed on the pyromellitic dianhydride—anthracene complex unit. The activation energy of thermal promotions is ≈ 2500 cm -1.

  10. Enhancing plant-microbe associated bioremediation of phenanthrene and pyrene contaminated soil by SDBS-Tween 80 mixed surfactants.

    PubMed

    Ni, Hewei; Zhou, Wenjun; Zhu, Lizhong

    2014-05-01

    The use of surfactants to enhance plant-microbe associated dissipation in soils contaminated with polycyclic aromatic hydrocarbons (PAHs) is a promising bioremediation technology. This comparative study was conducted on the effects of plant-microbe treatment on the removal of phenanthrene and pyrene from contaminated soil, in the presence of low concentration single anionic, nonionic and anionic-nonionic mixed surfactants. Sodium dodecyl benzene sulfonate (SDBS) and Tween 80 were chosen as representative anionic and nonionic surfactants, respectively. We found that mixed surfactants with concentrations less than 150 mg/kg were more effective in promoting plant-microbe associated bioremediation than the same amount of single surfactants. Only about (m/m) of mixed surfactants was needed to remove the same amount of phenanthrene and pyrene from either the planted or unplanted soils, when compared to Tween 80. Mixed surfactants (< 150 mg/kg) better enhanced the degradation efficiency of phenanthrene and pyrene via microbe or plant-microbe routes in the soils. In the concentration range of 60-150 mg/kg, both ryegrass roots and shoots could accumulate 2-3 times the phenanthrene and pyrene with mixed surfactants than with Tween 80. These results may be explained by the lower sorption loss and reduced interfacial tension of mixed surfactants relative to Tween 80, which enhanced the bioavailability of PAHs in soil and the microbial degradation efficiency. The higher remediation efficiency of low dosage SDBS-Tween 80 mixed surfactants thus advanced the technology of surfactant-enhanced plant-microbe associated bioremediation.

  11. Effect of freeze-thawing cycles on aging behavior of phenanthrene, pyrene and their mixture in soil.

    PubMed

    Zhao, Qing; Xing, Baoshan; Tai, Peidong; Yang, Kun; Li, Hong; Zhang, Lizhu; Lin, Gao; Li, Peijun

    2013-05-01

    This work was initiated to study the competitive sorption effect on phenanthrene and pyrene extraction during the aging process in phaeozem, burozem, aquorizem and krasnozem with or without freeze-thawing cycles. Soils contaminated with 100 μg g(-1) phenanthrene and 100 μg g(-1) pyrene separately and combined were extracted by 10 g L(-1) surfactant SDBS solution at various times over 120 days. The competitive effect on extraction efficiency may either increase or decrease with increasing soil contact time, depending on the properties of the accessible adsorption sites. The increased difference in extraction efficiency change has a positive correlation with soil organic carbon content. The change in extraction efficiency between no freeze-thawing and freeze-thawing in soils contaminated with both hydrocarbons was smaller compared to it with phenanthrene or pyrene alone due to the similar roles freeze-thawing and competitive effect plays, causing contaminant molecules to occupy the high-energy adsorption sites and expanding the glassy domain of soil organic matter. No general conclusions were obtained among the frequency of freeze-thawing cycles, soil moisture and extraction efficiency. This study validates our previous conceptual freeze-thawing model and is expected to help the development of the environmental fate and risk assessment.

  12. [Influence of Three Low-Molecular-Weight Organic Acids on the Adsorption of Phenanthrene in Purple Soil].

    PubMed

    Xie, Li; Chen, Ben-shou; Zhang, Jin-zhong; Lu, Song; Jiang, Tao

    2016-03-15

    The effects of three low-molecular-weight organic acids (citric acid, malic acid and oxalic acid) on the adsorption of phenanthrene in purple soil were studied by static adsorption experiment. The results showed that the adsorption kinetic process of phenanthrene in purple soil could be described by the second-order kinetic model, and the adsorption rate constant would significantly decrease in the presence of the three low-molecular-weight organic acids ( LMWOAs). The adsorption thermodynamic process could be well described by linear adsorption model, which was dominated by distribution role. The three LMWOAs could promote the adsorption of phenantherene in purple soil when their concentrations were less than 5 mmol · L⁻¹, whereas inhibit the adsorption when their concentrations were more than 10 mmol · L⁻¹, and the inhibition would increase with increasing concentrations. Moreover, the inhibitory ability displayed a decreasing order of citric acid, oxalic acid, and malic acid when their concentrations were 20 mmol · L⁻¹, which is related to the molecular structure and acidity of the three LMWOAs. Compared with the control, the content of dissolved organic matter (DOM) released from purple soil showed a trend of first decrease and then increase with increasing LMWOAs concentration, and the adsorption capacity of phenanthrene in purple soil was negatively related to DOM content.

  13. Simultaneous control of phenanthrene and drought by dual exposure system: the degree of synergistic interactions in springtails was exposure dependent.

    PubMed

    Schmidt, Stine N; Holmstrup, Martin; Damgaard, Christian; Mayer, Philipp

    2014-08-19

    Organisms in the environment are exposed to multiple stressors. However, for terrestrial invertebrates, it remains difficult to study the effects of combined stressors under well-defined exposure conditions. Thus, the current study develops a new dual exposure system for the simultaneous and independent control of chemical and drought exposure in bioassays with terrestrial organisms: Passive dosing from silicone controlled the chemical activity of phenanthrene (chemical stress), while saline solutions controlled the water activity (drought stress) in the closed exposure system. The dual exposure system was then applied in a full factorial experiment with seven exposure levels (7(2)), which aimed at determining the combined effects of phenanthrene and drought on the survival of the terrestrial springtail Folsomia candida after 7 d exposure. Fitting an "independent action" model to the complete data set revealed statistically significant synergy between phenanthrene and drought (p < 0.0001). However, the degree of synergy was exposure dependent with some synergy at higher and only minor synergy at lower exposure levels. This emphasizes the need for taking exposure levels into account when extrapolating synergy observations from (eco)toxicological studies done at high exposure levels.

  14. N-[(9H-Fluoren-9-yl-idene)(2-meth-oxy-phen-yl)meth-yl]-1,1,1-tri-methyl-silanamine.

    PubMed

    Li, Zhong-Yuan; Wang, Peng; Chen, Xia

    2014-01-01

    The title mol-ecule, C24H25NOSi, is a hydrolysis product of the reaction between 9-tri-methyl-silyfluorenyl lithium and 2-meth-oxy-benzo-nitrile. The fluorene ring system is substanti-ally planar, with an r.m.s. deviation of 0.0288 Å from the best-fit plane through its 13 C atoms. This plane forms a dihedral angle of 58.07 (7)° with the 2-meth-oxy-benzyl-amine ring plane. In the crystal, mol-ecules are linked by N-H⋯π and C-H⋯π inter-actions, which leads to the formation of two-dimensional network lying parallel to the bc plane.

  15. Rotationally resolved S1<-- S0 electronic spectra of fluorene, carbazole, and dibenzofuran: evidence for Herzberg-Teller coupling with the S2 state.

    PubMed

    Yi, John T; Alvarez-Valtierra, Leonardo; Pratt, David W

    2006-06-28

    Rotationally resolved fluorescence excitation spectra of the S1 <-- S0 origin bands and higher vibronic bands of fluorene (FLU), carbazole (CAR), and dibenzofuran (DBF) have been observed and assigned. Analyses of these data show that replacement of the CH2 group in FLU with a NH group in CAR and an O atom in DBF produces only localized changes in structure, in the ground state. But the three molecules exhibit different changes in geometry when they are excited by light. The S1 states of the three molecules also are electronically very different. The S1 <-- S0 transition moments of CAR and DBF are parallel to the C2 symmetry axis whereas the corresponding transition moment in FLU is perpendicular to this axis. Herzberg-Teller coupling involving the S2 state also has been observed in the spectra of higher vibronic bands of CAR and DBF. Possible reasons for these behaviors are discussed.

  16. Rotationally resolved S1<--S0 electronic spectra of fluorene, carbazole, and dibenzofuran: Evidence for Herzberg-Teller coupling with the S2 state

    NASA Astrophysics Data System (ADS)

    Yi, John T.; Alvarez-Valtierra, Leonardo; Pratt, David W.

    2006-06-01

    Rotationally resolved fluorescence excitation spectra of the S1←S0 origin bands and higher vibronic bands of fluorene (FLU), carbazole (CAR), and dibenzofuran (DBF) have been observed and assigned. Analyses of these data show that replacement of the CH2 group in FLU with a NH group in CAR and an O atom in DBF produces only localized changes in structure, in the ground state. But the three molecules exhibit different changes in geometry when they are excited by light. The S1 states of the three molecules also are electronically very different. The S1←S0 transition moments of CAR and DBF are parallel to the C2 symmetry axis whereas the corresponding transition moment in FLU is perpendicular to this axis. Herzberg-Teller coupling involving the S2 state also has been observed in the spectra of higher vibronic bands of CAR and DBF. Possible reasons for these behaviors are discussed.

  17. Quantitation of a minor enantiomer of phenanthrene tetraol in human urine: correlations with levels of overall phenanthrene tetraol, benzo[a]pyrene tetraol, and 1-hydroxypyrene.

    PubMed

    Hochalter, J Bradley; Zhong, Yan; Han, Shaomei; Carmella, Steven G; Hecht, Stephen S

    2011-02-18

    Polycyclic aromatic hydrocarbons (PAH) are well established carcinogens that are likely to play a role in causing some human cancers. One accepted pathway of PAH metabolic activation is the formation of bay region diol epoxides. Some individuals may be particularly susceptible to PAH carcinogenesis because they metabolically activate PAH more effectively than others. We have used the measurement of urinary phenanthrene tetraols (Phe-tetraols) as a biomarker of PAH exposure plus metabolic activation since bay region diol epoxides are hydrolyzed to tetraols. Because of stereoselectivity in Phe metabolism, Phe-(1R,2S,3R,4S)-tetraol (4) results mainly from the bay region diol epoxide pathway, and Phe-(1S,2R,3S,4R)-tetraol (7) is formed mainly from the reverse diol epoxide pathway, not generally associated with carcinogenicity. The latter pathway accounts for more than 95% of human urinary Phe-tetraol. In most previous studies, Phe-tetraol was quantified without enantiomeric resolution, using a relatively rapid and practical method, applicable to large studies. It was not clear, however, whether measurement of overall unresolved Phe-tetraol would accurately represent the bay region diol epoxide metabolic activation pathway. Therefore, in this study we specifically quantified Phe-(1R,2S,3R,4S)-tetraol (4) by supplementing our usual analysis with chiral HPLC separations and using [(13)C(6)]Phe-(1R,2S,3R,4S)-tetraol as internal standard. We then investigated the relationship of urinary levels of 4 to those of Phe-tetraols (4 + 7), quantified without enantiomeric resolution. We applied these methods to urine samples from cigarette smokers and highly PAH-exposed creosote workers. The results were also compared to levels of benzo[a]pyrene-7,8,9,10-tetraol and 1-hydroxypyrene in the same samples. Levels of 4 were highly correlated with those of 4 + 7 (r > 0.9, P < 0.0001) in both types of urine samples. Strong correlations of 4 and 4 + 7 with benzo[a]pyrene-7,8,9,10-tetraol

  18. Complete genome sequence of the phenanthrene-degrading soil bacterium Delftia acidovorans Cs1-4

    SciTech Connect

    Shetty, Ameesha R.; de Gannes, Vidya; Obi, Chioma C.; Lucas, Susan; Lapidus, Alla; Cheng, Jan-Fang; Goodwin, Lynne A.; Pitluck, Samuel; Peters, Linda; Mikhailova, Natalia; Teshima, Hazuki; Han, Cliff; Tapia, Roxanne; Land, Miriam; Hauser, Loren J.; Kyrpides, Nikos; Ivanova, Natalia; Pagani, Ioanna; Chain, Patrick S. G.; Denef, Vincent J.; Woyke, Tanya; Hickey, William J.

    2015-08-15

    Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental pollutants and microbial biodegradation is an important means of remediation of PAH-contaminated soil. Delftia acidovorans Cs1-4 (formerly Delftia sp. Cs1-4) was isolated by using phenanthrene as the sole carbon source from PAH contaminated soil in Wisconsin. Its full genome sequence was determined to gain insights into a mechanisms underlying biodegradation of PAH. Three genomic libraries were constructed and sequenced: an Illumina GAii shotgun library (916,416,493 reads), a 454 Titanium standard library (770,171 reads) and one paired-end 454 library (average insert size of 8 kb, 508,092 reads). The initial assembly contained 40 contigs in two scaffolds. The 454 Titanium standard data and the 454 paired end data were assembled together and the consensus sequences were computationally shredded into 2 kb overlapping shreds. Illumina sequencing data was assembled, and the consensus sequence was computationally shredded into 1.5 kb overlapping shreds. Gaps between contigs were closed by editing in Consed, by PCR and by Bubble PCR primer walks. A total of 182 additional reactions were needed to close gaps and to raise the quality of the finished sequence. The final assembly is based on 253.3 Mb of 454 draft data (averaging 38.4 X coverage) and 590.2 Mb of Illumina draft data (averaging 89.4 X coverage). The genome of strain Cs1-4 consists of a single circular chromosome of 6,685,842 bp (66.7 %G+C) containing 6,028 predicted genes; 5,931 of these genes were protein-encoding and 4,425 gene products were assigned to a putative function. Genes encoding phenanthrene degradation were localized to a 232 kb genomic island (termed the phn island), which contained near its 3’ end a bacteriophage P4-like integrase, an enzyme often associated with chromosomal integration of mobile genetic elements. Other biodegradation pathways reconstructed from the genome sequence included: benzoate (by the acetyl-CoA pathway

  19. Complete genome sequence of the phenanthrene-degrading soil bacterium Delftia acidovorans Cs1-4

    DOE PAGES

    Shetty, Ameesha R.; de Gannes, Vidya; Obi, Chioma C.; ...

    2015-08-15

    Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental pollutants and microbial biodegradation is an important means of remediation of PAH-contaminated soil. Delftia acidovorans Cs1-4 (formerly Delftia sp. Cs1-4) was isolated by using phenanthrene as the sole carbon source from PAH contaminated soil in Wisconsin. Its full genome sequence was determined to gain insights into a mechanisms underlying biodegradation of PAH. Three genomic libraries were constructed and sequenced: an Illumina GAii shotgun library (916,416,493 reads), a 454 Titanium standard library (770,171 reads) and one paired-end 454 library (average insert size of 8 kb, 508,092 reads). The initial assembly contained 40 contigs inmore » two scaffolds. The 454 Titanium standard data and the 454 paired end data were assembled together and the consensus sequences were computationally shredded into 2 kb overlapping shreds. Illumina sequencing data was assembled, and the consensus sequence was computationally shredded into 1.5 kb overlapping shreds. Gaps between contigs were closed by editing in Consed, by PCR and by Bubble PCR primer walks. A total of 182 additional reactions were needed to close gaps and to raise the quality of the finished sequence. The final assembly is based on 253.3 Mb of 454 draft data (averaging 38.4 X coverage) and 590.2 Mb of Illumina draft data (averaging 89.4 X coverage). The genome of strain Cs1-4 consists of a single circular chromosome of 6,685,842 bp (66.7 %G+C) containing 6,028 predicted genes; 5,931 of these genes were protein-encoding and 4,425 gene products were assigned to a putative function. Genes encoding phenanthrene degradation were localized to a 232 kb genomic island (termed the phn island), which contained near its 3’ end a bacteriophage P4-like integrase, an enzyme often associated with chromosomal integration of mobile genetic elements. Other biodegradation pathways reconstructed from the genome sequence included: benzoate (by the acetyl

  20. Magnetic adsorbents for the removal of Hg (II) and phenanthrene from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Isari, Ekavi; Karapanagioti, Hrissi K.; Manariotis, Ioannis D.; Werner, David

    2015-04-01

    Activated carbon (AC) acts as a strong binding agent that lowers the pollutant concentration and, thus its toxicity. Another promising sorbent material in environmental applications is biochar (BC) which is obtained from the incomplete combustion of carbon-rich biomass under oxygen-limited conditions. Both of these materials could be used as soil or sediment amendments that would lower the toxicity in the aqueous phase. A draw back of this technique is that although the pollutant will remain non- bioavailable for many years being sorbed into these sorbents, it actually stays into the system. The objective of this study was (a) to synthesize a magnetic powdered activated carbon (AC/Fe) and magnetic powdered biochar (BC/Fe) produced from commercial AC1 and AC2 samples and biochar respectively and (b) to evaluate the potential use of AC/Fe and BIO/Fe to remove aqueous Hg (II) or phenanthrene while being magnetically recoverable. The BC was produced from olive pomace. The surface area, the pore volume, and the average pore size of each sorbent were determined using gas (N2) adsorption-desorption cycles and the Brunauer, Emmett, and Teller (BET) equation. Isotherms with 30 adsorption and 20 desorption points were conducted at liquid nitrogen temperature (77K). Open surface area and micropore volume were determined using t-plot method and Harkins & Jura equation. For both AC/Fe, surface area measurements resulted in 66% those of corresponding AC. For BC/Fe, the surface area was 82% that of BC. Batch experiments with all sorbent samples and mercury solutions were conducted at room temperature (25oC) and at pH 5 in order to compare the sorption properties of the materials. Similar tests were performed with phenanthrene solutions. Based on mercury isotherm data, AC/Fe and BC/Fe are effective sorbents but with lower sorption capacity compared to the initial materials (50-75% lower). All these properties point to promising materials that can effectively be used for in

  1. Keto defect sites in fluorene-based organic field-effect transistors: The origin of rapid degradation on the performance of the device

    NASA Astrophysics Data System (ADS)

    Noh, Yong-Young; Kim, Dong-Yu; Yoshida, Yuji; Yase, Kiyoshi; Jung, Byung-Jun; Lim, Eunhee; Shim, Hong-Ku; Azumi, Reiko

    2005-05-01

    The effect of keto defects in fluorene units on the performance of organic field-effect transistors (OFETs) was examined based on fluorene end-capped fused bithiophenes (BFTT) and biphenyl end-capped fused bithiophene oligomers (BPTT). The formation of keto defects after various periods of UV illumination in air on BFTT films was confirmed by the increase of the long-wavelength emission at 2.1-2.3eV in the photoluminescent (PL) spectrum and the generation of a Fourier transfer infrared (FTIR) peak at 1721cm-1, corresponding to the carbonyl stretching mode of the fluorenone moiety. For both BPTT films irradiated in air and BFTT in nitrogen, i.e., a keto-free system, no increase in long-wavelength emission in the PL spectrum, was found and the peak corresponding to the carbonyl stretching mode of the fluorenone moiety was absent in the FTIR spectrum. The threshold voltage, i.e., switch-on voltage, of the OFETs was increased and the field-effect mobility and on-state drain current were rapidly decreased after the formation of ketonic defects, since these defects induce the formation of numerous trap sites in the band gap of the semiconducting conjugated oligomer. The density of trap sites (Nt) generated after the formation of keto defects was determined using space-charge-limited current spectroscopy. A Nt of around 2.7×1015cm-3 was found for the BFTT film due to the formation of keto defects after 6h of UV irradiation.

  2. Soil Mineral Composition Matters: Response of Microbial Communities to Phenanthrene and Plant Litter Addition in Long-Term Matured Artificial Soils

    PubMed Central

    Babin, Doreen; Vogel, Cordula; Zühlke, Sebastian; Schloter, Michael; Pronk, Geertje Johanna; Heister, Katja; Spiteller, Michael; Kögel-Knabner, Ingrid; Smalla, Kornelia

    2014-01-01

    The fate of polycyclic aromatic hydrocarbons (PAHs) in soil is determined by a suite of biotic and abiotic factors, and disentangling their role in the complex soil interaction network remains challenging. Here, we investigate the influence of soil composition on the microbial community structure and its response to the spiked model PAH compound phenanthrene and plant litter. We used long-term matured artificial soils differing in type of clay mineral (illite, montmorillonite) and presence of charcoal or ferrihydrite. The soils received an identical soil microbial fraction and were incubated for more than two years with two sterile manure additions. The matured artificial soils and a natural soil were subjected to the following spiking treatments: (I) phenanthrene, (II) litter, (III) litter + phenanthrene, (IV) unspiked control. Total community DNA was extracted from soil sampled on the day of spiking, 7, 21, and 63 days after spiking. Bacterial 16S rRNA gene and fungal internal transcribed spacer amplicons were quantified by qPCR and subjected to denaturing gradient gel electrophoresis (DGGE). DGGE analysis revealed that the bacterial community composition, which was strongly shaped by clay minerals after more than two years of incubation, changed in response to spiked phenanthrene and added litter. DGGE and qPCR showed that soil composition significantly influenced the microbial response to spiking. While fungal communities responded only in presence of litter to phenanthrene spiking, the response of the bacterial communities to phenanthrene was less pronounced when litter was present. Interestingly, microbial communities in all artificial soils were more strongly affected by spiking than in the natural soil, which might indicate the importance of higher microbial diversity to compensate perturbations. This study showed the influence of soil composition on the microbiota and their response to phenanthrene and litter, which may increase our understanding of

  3. Soil mineral composition matters: response of microbial communities to phenanthrene and plant litter addition in long-term matured artificial soils.

    PubMed

    Babin, Doreen; Vogel, Cordula; Zühlke, Sebastian; Schloter, Michael; Pronk, Geertje Johanna; Heister, Katja; Spiteller, Michael; Kögel-Knabner, Ingrid; Smalla, Kornelia

    2014-01-01

    The fate of polycyclic aromatic hydrocarbons (PAHs) in soil is determined by a suite of biotic and abiotic factors, and disentangling their role in the complex soil interaction network remains challenging. Here, we investigate the influence of soil composition on the microbial community structure and its response to the spiked model PAH compound phenanthrene and plant litter. We used long-term matured artificial soils differing in type of clay mineral (illite, montmorillonite) and presence of charcoal or ferrihydrite. The soils received an identical soil microbial fraction and were incubated for more than two years with two sterile manure additions. The matured artificial soils and a natural soil were subjected to the following spiking treatments: (I) phenanthrene, (II) litter, (III) litter + phenanthrene, (IV) unspiked control. Total community DNA was extracted from soil sampled on the day of spiking, 7, 21, and 63 days after spiking. Bacterial 16S rRNA gene and fungal internal transcribed spacer amplicons were quantified by qPCR and subjected to denaturing gradient gel electrophoresis (DGGE). DGGE analysis revealed that the bacterial community composition, which was strongly shaped by clay minerals after more than two years of incubation, changed in response to spiked phenanthrene and added litter. DGGE and qPCR showed that soil composition significantly influenced the microbial response to spiking. While fungal communities responded only in presence of litter to phenanthrene spiking, the response of the bacterial communities to phenanthrene was less pronounced when litter was present. Interestingly, microbial communities in all artificial soils were more strongly affected by spiking than in the natural soil, which might indicate the importance of higher microbial diversity to compensate perturbations. This study showed the influence of soil composition on the microbiota and their response to phenanthrene and litter, which may increase our understanding of

  4. Phenanthrene sorption with heterogeneous organic matter in a landfill aquifer material

    USGS Publications Warehouse

    Karapanagioti, H.K.; Sabatini, D.A.; Kleineidam, S.; Grathwohl, P.; Ligouis, B.

    1999-01-01

    Phenanthrene was used as a model chemical to study the sorption properties of Canadian River Alluvium aquifer material. Both equilibrium and kinetic sorption processes were evaluated through batch studies. The bulk sample was divided into subsamples with varying properties such as particle size, organic content, equilibration time, etc. in order to determine the effect of these properties on resulting sorption parameters. The data have been interpreted and the effect of experimental variables was quantified using the Freundlich isotherm model and a numerical solution of Fick's 2nd law in porous media. Microscopic organic matter characterization proved to be a valuable tool for explaining the results. Different organic matter properties and sorption mechanisms were observed for each soil subsample. Samples containing coal particles presented high Koc values. Samples with organic matter dominated by organic coatings on quartz grains presented low Koc values and contained a high percentage of fast sorption sites. The numerical solution of Fick's 2ndlaw requires the addition of two terms (fast and slow) in order to fit the kinetics of these heterogeneous samples properly. These results thus demonstrate the need for soil organic matter characterization in order to predict and explain the sorption properties of a soil sample containing heterogeneous organic matter and also the difficulty and complexity of modeling sorption in such samples.

  5. Chronic toxicity of phenanthrene to the marine polychaete worm, Nereis (Neanthes) arenaceodentata

    SciTech Connect

    Emery, V.L. Jr.; Dillon, T.M.

    1996-02-01

    Polycyclic aromatic hydrocarbons (PAHs) are widely distributed in the environment. While environmental concentrations are generally below acutely, lethal levels, chronic, low level exposures may result in subtle sublethal effects. PAHs accumulate in bottom sediments and may represent a hazard to the benthos. Polychaetes are important members of this community. The objective of this study is to evaluate the chronic sublethal effects of one PAH, phenanthrene (PHN), on the polychaete worm, Nereis arenaceodentata. PHN was selected because of its high toxicity to marine invertebrates relative to other PAHs. The response of bivalves to heavy metals and other toxins has usually been determined by observing valve position. Since mussels close their valves to avoid noxious stimuli, experimental delivery of chemicals is uncertain. To obtain constant results. Preston employed plastic spacers to hold the valves apart. This obviates the observation of valve position as an index of response, and some other method is required. Electromyography of intact mussels is one such index, and is shown to be a simple, effective and quantitative measurement of activity. Experiments are reported on the effects of added mercury on salt water and fresh water species. Parts of this Nvork have appeared in brief form.

  6. Quantitative high-resolution mapping of phenanthrene sorption to black carbon particles.

    PubMed

    Obst, Martin; Grathwohl, Peter; Kappler, Andreas; Eibl, Oliver; Peranio, Nicola; Gocht, Tilman

    2011-09-01

    Sorption of hydrophobic organic contaminants such as polycyclic aromatic hydrocarbons (PAHs) to black carbon (BC) particles has been the focus of numerous studies. Conclusions on sorption mechanisms of PAH on BC were mostly derived from studies of sorption isotherms and sorption kinetics, which are based on batch experiments. However, mechanistic modeling approaches consider processes at the subparticle scale, some including transport within the pore-space or different spatial pore-domains. Direct evidence based on analytical techniques operating at the submicrometer scale for the location of sorption sites and the adsorbed species is lacking. In this work, we identified, quantified, and mapped the sorption of PAHs on different BC particles (activated carbon, charcoal and diesel soot) on a 25-100 nm scale using scanning transmission X-ray microscopy (STXM). In addition, we visualized the pore structure of the particles by transmission electron microscopy (TEM) on the 1-10 nm-scale. The combination of the chemical information from STXM with the physical information from TEM revealed that phenanthrene accumulates in the interconnected pore-system along primary "cracks" in the particles, confirming an adsorption mechanism.

  7. Mechanisms regulating bioavailability of phenanthrene sorbed on a peat soil-origin humic substance.

    PubMed

    Yang, Yu; Shu, Liang; Wang, Xilong; Xing, Baoshan; Tao, Shu

    2012-07-01

    The organic matter-mineral complex plays an important role in regulating the fate of hydrophobic organic compounds (HOCs) in the environment. In the present study, the authors investigated the microbial bioavailability of phenanthrene (PHE) sorbed on the original and demineralized humic acids (HAs) and humin (HM) that were sequentially extracted from a peat soil. Demineralization treatment dramatically decreased the 720-h mineralized percentage of HM-sorbed PHE from 42.5 ± 2.6% to 3.4 ± 1.3%, whereas the influence of this treatment on the biodegradability of HA-associated PHE was much lower. Degradation kinetics of HA- and HM-sorbed PHE showed that its initial degradation rate was negatively correlated with the aromatic carbon content of humic substances (p<0.05). This was attributed to the strong interactions between PHE and the aromatic components of humic substances, which hampered its release and subsequent biodegradation. The 720-h mineralized percentage of PHE was inversely correlated with the estimated thickness of the organic matter layer at the surfaces of HAs and HMs. Therefore, in a relatively long term, diffusion of PHE within the organic matter layer could be an important factor that may limit the bioavailability of PHE to bacteria. Results of the present study highlight the molecular-scaled mechanisms governing bioavailability of PHE sorbed on humic substances.

  8. Removal of low concentrations of phenanthrene, fluoranthene and pyrene from urban wastewater by membrane bioreactors technology.

    PubMed

    González-Pérez, Daniel M; Garralón, Gloria; Plaza, Fidel; Pérez, Jorge I; Moreno, Begoña; Gómez, Miguel A

    2012-01-01

    The fate and removal of phenanthrene (Phen), fluoranthene (F) and pyrene (Py) in urban wastewater treatment by membrane bioreactor (MBR) with low influent polycyclic aromatic hydrocarbons (PAHs) concentration were studied. A full experimental ultrafiltration MBR with a pre-denitrification configuration and capacity to treat 20 m(3)/d was employed. The system was operated with real urban wastewater, to which a concentration of PAHs was added. A constant purge was achieved in order to obtain 12 d of sludge retention time and the hydraulic retention time was 34 h. Concentration of PAHs was determined by Gas Chromatography and Mass Spectrometry with Twister, and mass balance on the MBR system were calculated. Data were supplemented by respirometric analyses, isolation of PAHs degrading microorganisms and bench-scale experiments. All effluent samples presented concentrations of PAHs, with removal levels of 91% and 92% for F and Py respectively, while for Phen performance did not surpass 82%. In spite of the high hydrophobicity of the tested compounds, their accumulation in the biomass was scarce and the sludge presented a low PAH concentration. The experiments reveal that PAHs removal is mainly due to air stripping, with biodegradation and adsorption making an insignificant contribution.

  9. Vibrationally resolved high-resolution NEXAFS and XPS spectra of phenanthrene and coronene

    SciTech Connect

    Fronzoni, Giovanna; Baseggio, Oscar; Stener, Mauro; Hua, Weijie; Tian, Guangjun; Luo, Yi; Apicella, Barbara; Alfé, Michela; Simone, Monica de; Kivimäki, Antti; Coreno, Marcello

    2014-07-28

    We performed a combined experimental and theoretical study of the C1s Near-Edge X-ray Absorption Fine-Structure (NEXAFS) spectroscopy and X-ray Photoelectron Spectroscopy in the gas phase of two polycyclic aromatic hydrocarbons (phenanthrene and coronene), typically formed in combustion reactions. In the NEXAFS of both molecules, a double-peak structure appears in the C1s → LUMO region, which differ by less than 1 eV in transition energies. The vibronic coupling is found to play an important role in such systems. It leads to weakening of the lower-energy peak and strengthening of the higher-energy one because the 0 − n (n > 0) vibrational progressions of the lower-energy peak appear in nearly the same region of the higher-energy peak. Vibrationally resolved theoretical spectra computed within the Frank-Condon (FC) approximation and linear coupling model agree well with the high-resolution experimental results. We find that FC-active normal modes all correspond to in-plane vibrations.

  10. Optical properties of phenanthrene: A DFT study for comparison between linear and nonlinear regimes

    NASA Astrophysics Data System (ADS)

    Omidi, A. R.; Dadsetani, M.

    2016-05-01

    The present study tries to determine the optical characteristics as well as the electronic structure of phenanthrene as an important nonlinear organic crystal. We have performed our calculations within the frame work of DFT. Also, we have used bootstrap exchange-correlation kernel (within the framework of TDDFT) to estimate the excitonic effects. According to the results of our study, the investigated crystal has a band structure with low dispersions which is a sign of low intermolecular interactions. In addition to the high values of linear and nonlinear susceptibilities, the crystal in question has a wide range of transparency as well as sufficient anisotropy which make it promising crystal for nonlinear optical applications. Our TDDFT calculations show that the influence of excitonic effects on optical properties can be very dramatic, particularly near the band edge. In addition, the crystal in question shows extremely small wavelengths of plasmon peaks. Furthermore, this study also covers the 2ω/ω intra- and inter-band contributions to the dominant nonlinear susceptibilities. Findings indicate that these contributions have opposite signs at higher energies and nullify each other. Our calculations show that χxxz, χxzx and χzxx have largest values of nonlinear response but χxxz is the dominant component at IR-VIS region. Moreover, the current study shows significant similarities between linear and nonlinear spectra, when we draw linear one as a function of both ω and 2ω. Finally, our simulation reproduces the experimental results very well.

  11. Effect of activated carbon on microbial bioavailability of phenanthrene in soils

    SciTech Connect

    Yang, Y.; Hunter, W.; Tao, S.; Crowley, D.; Gan, J.

    2009-11-15

    Bioavailability is a governing factor that controls the rate of biological degradation of hydrophobic organic contaminants in soil. Among the solid phases that can adsorb hydrophobic organic contaminants in soil, black carbon (BC) exerts a particularly significant effect on phase distribution. However, knowledge on the effect of BC on the microbial availability of polycyclic aromatic hydrocarbons in soil is still limited. In the present study, the effect of a coal-derived activated carbon on the bioavailability of phenanthrene (PHE) during its degradation by Mycobacterium vanbaalenii PYR-1 was measured in three soils. The freely dissolved concentration of PHE was concurrently determined in soil solutions using disposable polydimethylsiloxane fibers. The results showed that PHE mineralization was significantly inhibited after addition of activated carbon in all test soils. After 216 h, only 5.20, 5.83, and 6.85% of PHE was degraded in the 0.5% BC-amended soils initially containing organic carbon at 0.23, 2.1, and 7.1%, respectively. Significant correlation was found between PHE degradability and freely dissolved concentration, suggesting that BC affected PHE bioavailability by decreasing chemical activity. The effect of activated carbon in the amended soils was attributed to its enhancement of soil surface areas and pore volumes. Results from the present study clearly highlighted the importance of BC for influencing the microbial availability of polycyclic aromatic hydrocarbons in soils.

  12. Titanium dioxide nanoparticles as carrier facilitate bioaccumulation of phenanthrene in marine bivalve, ark shell (Scapharca subcrenata).

    PubMed

    Tian, Shengyan; Zhang, Yaodan; Song, Chunzheng; Zhu, Xiaoshan; Xing, Baoshan

    2014-09-01

    To evaluate the impact of titanium dioxide nanoparticles (nTiO2) on the uptake of hydrophobic organic chemicals by marine bivalves, we conducted a comparative bioaccumulation study by exposing clam, Scapharca subcrenata, to phenanthrene (Phe) in the presence and absence of nTiO2. The large surface area of nTiO2 resulted in adsorption of co-existing Phe in aqueous solution to form nTiO2-Phe complexes. Accumulation of nTiO2 was not observed in clams at exposed concentration (500 μg/L) in this study. However, enhanced uptake of Phe by clams was observed in the presence of nTiO2, with ku and BAFs values being 2 and 1.7 times higher than that of Phe alone, respectively. The enhanced uptake can be explained by ingestion of nTiO2-Phe complexes into the gut and subsequent desorption of Phe there. Therefore, nTiO2 as a carrier facilitated the uptake of Phe by marine bivalves.

  13. Characterization and Phenanthrene Sorption of Natural and Pyrogenic Organic Matter Fractions.

    PubMed

    Jin, Jie; Sun, Ke; Wang, Ziying; Yang, Yan; Han, Lanfang; Xing, Baoshan

    2017-03-07

    Pyrogenic humic acid (HA) is released into the environment during the large-scale application of biochar. However, the biogeochemistry of pyrogenic organic matter (PyOM) fractions and their sorption of hydrophobic organic compounds (HOCs) are poorly understood in comparison with natural organic matter (NOM) fractions. HA and humin (HM) fractions isolated from soils and the oxidized biochars were characterized. Sorption of phenanthrene (PHE) by these fractions was also examined. The characterization results demonstrate that pyrogenic HAs are different from natural HAs, with the former having lower atomic H/C ratios, more abundant aromatic C, and higher concentrations of surface carboxylic groups. Compared with the fresh biochars, the Koc of PHE on their oxidized biochars, pyrogenic HA, and HM fractions were undiminished, which is encouraging for the use of biochar in soil remediation. The PyOM fractions exhibited stronger nonlinear sorption than the NOM fractions. In addition, the PyOM fractions had higher sorption capacity than the NOM fractions due to their low polar C content and high aryl C content. The results obtained from this work will shed new light on the impact of the addition of biochar on the biogeochemistry of soil organic matter and on the fate of HOCs in biochar-amended soil.

  14. Effect of wetland plants and bacterial inoculation on dissipation of phenanthrene.

    PubMed

    Pan, Weisong; Wu, Chuan; Wang, Qiming; Su, Zhaohong; Zhou, Hui; Chung, Anna King Chuen; Hartley, William; Ge, Long

    2017-03-21

    This study attempts to evaluate the capacity of wetland plants' ability to dissipate phenanthrene (PHE) under waterlogged conditions. The results indicate that Typha latifolia and Vertiveria zizanioides may efficiently degrade PHE, and were much more effective when under combined plant cultivation with the inoculation of Pseudomonas frederiksbergensis (ATCC BAA-257). Concentrations of PHE declined from 200 mg kg(-1) to less than 52 mg kg(-1) in all treatments with plant cultivation. At the end of the experimental period, PHE was undetectable in combined plant cultivation in the presence of bacteria inoculation. Microbial biomass (carbon) C, N and P were significantly different (p<0.05) in the presence and absence of bacteria inoculation, with bacteria inoculation significantly (p<0.05) increased microbial biomass P. The presence of bacteria inoculation and different plant species significantly (p<0.05) decreased the PHE concentrations in the microcosms. The inoculation of bacteria and release of exudates from plant roots further enhanced the dissipation of PHE in sand. Concentrations of citric and malic acids were decreased up to 69% in bacteria inoculated treatments compared the absence bacteria inoculation treatments, showing large citric and malic acids serving as a food source and growth substrate for bacteria.

  15. The carcinogenicity of 15,16-dihydro-11-methyl-cyclopenta[a]phenanthren-17-one.

    PubMed Central

    Coombs, M. M.; Bhatt, T. S.; Young, S.

    1979-01-01

    Direct comparison of skin-tumour induction by 15,16-dihydro-11-methylcyclopenta[a]phenanthren-17-one (I) and by benzo[a]pyrene on mouse skin, both by repeated application or by initiation with a single dose followed by promotion with croton oil, demonstrated that these two carcinogens have similar potency. After repeated application of (I) the mean latent period for skin-tumour induction was linearly related to the logarithm of the dose over a 10-fold dose range. Under these conditions, application of the aryl-hydrocarbon-hydroxylase inhibitor 7,8-benzoflavone together with (I) inhibited tumour induction by about 40%. By contrast, in the 2-stage experiment, little effect on tumour incidence or latent period was observed when this inhibitor was applied with the single initiating dose of (I). Co-administration of the epoxide-hydratase inhibitor 1,1,1-trichloropropene oxide caused enhancement by shortening the latent period. After s.c. injection of (I) into mice, a similar number of tumours was induced on skin remote from the site of injection by promotion with corton oil begun either one week or 6 months after initiation. Gastric instillation of (I) into female rats induced mammary adenocarcinomas. PMID:526432

  16. Natural soil mineral nanoparticles are novel sorbents for pentachlorophenol and phenanthrene removal.

    PubMed

    He, Yan; Zeng, Fanfeng; Lian, Zhenghua; Xu, Jianming; Brookes, Philip C

    2015-10-01

    Natural soil montmorillonite and kaolinite nanoparticles (NPs) were tested as efficient sorbents for organic contaminant (OC) removal through mimicking their natural environmental dispersive states. Sorption of both mineral NPs decreased with increasing pH with ionizable pentachlorophenol (PCP), but increased with pH with non-ionizable phenanthrene (PHE), within the pH range of 4-10. In contrast, sorption decreased consistently for both PCP and PHE, as a function of increasing ion concentration (0.001-0.1 mol L(-1)). Sorption differences were likely caused by the electrolytic conditions dependent upon surface chemistry of OCs and mineral NPs. The results confirmed that the highly dispersive soil mineral NPs would prevail over both engineered NPs and their regular μm-sized colloids for OC removal, due to their ecological advantages and higher sorption properties. This finding provided a realistic assessment of the environmental function of soil natural minerals in water once they are released from soil into OC polluted aqueous systems.

  17. Heterogeneous photocatalytic degradation of phenanthrene in surfactant solution containing TiO2 particles.

    PubMed

    Zhang, Yanlin; Wong, J W C; Liu, Peihong; Yuan, Min

    2011-07-15

    Photocatalytic degradation of phenanthrene (PHE) over TiO(2) in aqueous solution containing nonionic surfactant micelles was investigated. All photocatalytic experiments were conducted using a 253.7 nm mercury monochromatic ultraviolet lamp in a photocatalytic reactor. The surfactant micelles could provide a nonaqueous "cage" to result in a higher degradation rate of PHE than in an aqueous solution, but the higher Triton X-100 concentration (more than 2 g/L) lowered the degradation ratio of PHE because the additional surfactant micelles hindered the movement of micelles containing PHE so as to reduce their adsorption onto titania. Pseudo-second-order kinetics was observed for the photocatalytic degradation of PHE. Alkaline solution environment was beneficial to the photocatalytic degradation of PHE. PHE degradation could mainly be attributed to the formation of hydroxyl radicals as evident from the comparison of degradation efficiencies when O(2), H(2)O(2) and tert-butyl alcohol (TBA) were applied as oxidants or hydroxyl radical scavenger. Based on the GC/MS analysis of the intermediates, the possible pathways of the photocatalytic degradation of PHE were proposed.

  18. Temperature-dependent sorption of naphthalene, phenanthrene, and pyrene to low organic carbon aquifer sediments

    USGS Publications Warehouse

    Piatt, J.J.; Backhus, D.A.; Capel, P.D.; Eisenreich, Steven J.

    1996-01-01

    Sorption experiments were conducted with naphthalene, phenanthrene, and pyrene on low organic carbon sediments at 4 and 26 ??C using batch and column techniques. Experimental controls ensured the absence of biologic and photolytic activity and colloid-free solution supernatants. Equilibrium distribution coefficients (K(d)) increased 1.1-1.6 times with a decrease in temperature of 22 ??C. Fraction instantaneous sorption (F) values did not change significantly with a decrease in temperature of 22 ??C. Desorption rate constants (k2) decreased 1.2-2.6 times with a decrease in temperature of 22 ??C. Times to equilibrium were at least 40 h. The magnitude of observed K(d) and k2 values and the effect of temperature on K(d) (e.g., low enthalpy of sorption) are consistent with sorbate partitioning between the aqueous phase and small amounts of organic matter (f(oc) = 0.02%) on the sediments. The temperature dependence of K(d) and k2 may be small as compared to the effects of heterogeneities in field-scale aquifer systems. Thus, thermal gradients may not be of major importance in most saturated subsurface regimes when predicting solute transport. However, aquifer remediation pump-and- treat times could be decreased because increased temperature decreases both retardation and tailing.

  19. Morphological and physiological responses of maize (Zea mays) exposed to sand contaminated by phenanthrene.

    PubMed

    Dupuy, Joan; Ouvrard, Stéphanie; Leglize, Pierre; Sterckeman, Thibault

    2015-04-01

    Phytoremediation is promising, but depends on clearly understanding contaminants' impact on plant functioning. We therefore focused on the impact of polycyclic aromatic hydrocarbons (PAH) on cultivated plants and understanding the impact of phenanthrene (PHE) on maize functioning (Zea mays). Cultivation was conducted under controlled conditions on artificially contaminated sand with PHE levels increasing from 50 to 750 mg PHE kg(-1). After four weeks, plants exposed to levels above 50 mg PHE kg(-1) presented decreased biomasses and reduced photosynthetic activity. These modifications were associated with higher biomass allocations to roots and lower ones to stems. The leaf biomass proportion was similar, with thinner blades than controls. PHE-exposed plant showed modified root architecture, with fewer roots of 0.2 and 0.4 mm in diameter. Leaves were potassium-deplete, but calcium, phosphorus, magnesium and zinc-enriched. Their content in nitrogen, iron, sulfur and manganese was unaffected. These responses resembled those of water-stress, although water contents in plant organs were not affected by PHE and water supply was not limited. They also indicated a possible perturbation of both nutritional functioning and photosynthesis.

  20. Electrochemical Interrogation of G3-Poly(propylene thiophenoimine) Dendritic Star Polymer in Phenanthrene Sensing

    PubMed Central

    Makelane, Hlamulo R.; Tovide, Oluwakemi; Sunday, Christopher E.; Waryo, Tesfaye; Iwuoha, Emmanuel I.

    2015-01-01

    A novel dendritic star-copolymer, generation 3 poly(propylene thiophenoimine) (G3PPT)-co-poly(3-hexylthiophene) (P3HT) star co-polymer on gold electrode (i.e., Au|G3PPT-co-P3HT) was used as a sensor system for the determination of phenanthrene (PHE). The G3PPT-co-P3HT star co-polymer was synthesized via in situ electrochemical co-polymerization of generation 3 poly (propylene thiophenoimine) and poly (3-hexylthiophene) on gold electrode. 1HNMR spectroscopy was used to determine the regioregularity of the polymer composites, whereas Fourier transform infrared spectroscopy and scanning electron microscopy were used to study their structural and morphological properties. Au|G3PPT-co-P3HT in the absence of PHE, exhibited reversible electrochemistry attributable to the oligo (thiophene) ‘pendants’ of the dendrimer. PHE produced an increase in the voltammetric signals (anodic currents) due to its oxidation on the dendritic material to produce catalytic current, thereby suggesting the suitability of the Au|G3PPT-co-P3HT electrode as a PHE sensor. The electrocatalysis of PHE was made possible by the rigid and planar oligo-P3HT species (formed upon the oxidation of the oligo (thiophene) pendants of the star-copolymer), which allowed the efficient capture (binding) and detection (electrocatalytic oxidation) of PHE molecules. PMID:26404296

  1. Role of structure and microporosity in phenanthrene sorption by natural and engineered organic matter.

    PubMed

    Han, Lanfang; Sun, Ke; Jin, Jie; Wei, Xin; Xia, Xinghui; Wu, Fengchang; Gao, Bo; Xing, Baoshan

    2014-10-07

    Natural sorbents including one humic acid (HA), humins (HMs), nonhydrolyzable carbons (NHCs), and engineered sorbents (biochars) were subject to bleaching to selectively remove a fraction of aromatic C. The structural properties and sorption isotherm data of phenanthrene (Phen) by original and bleached sorbents were obtained. Significant correlations between Phen Koc values by all sorbents and their organic carbon (OC)-normalized CO2 cumulative surface area (CO2-SA/OC) suggested that nanopore-filling mechanism could dominate Phen sorption. After bleaching, natural sorbents still contained large amounts of aromatic C, which are resistant to bleaching, suggesting that they are derived from condensed or nonbiodegradable organic matter (OM). After eliminating the effect of aromatic C remaining in the bleached samples, a general trend of increasing CO2-SA/OC of natural sorbents with increasing aliphaticity was observed, suggesting that nanopores of natural sorbents are partially derived from their aliphatic moieties. Conversely, positive relationships between CO2-SA/OC or Phen logKoc of engineered sorbents and their aromaticity indicated the aromatic structures of engineered sorbents primarily contribute to their nanopores and dominate their sorption of HOCs. Therefore, this study clearly demonstrated that the role of structure and microporosity in Phen sorption is dependent on the sources of sorbents.

  2. Biosurfactants from Acinetobacter calcoaceticus BU03 enhance the solubility and biodegradation of phenanthrene.

    PubMed

    Zhao, Zhenyong; Wong, Jonathan W C

    2009-03-01

    A thermophilic bacterial strain, Acinetobacter calcoaceticus BU03, with a biosurfactant-producing capability, was isolated from petroleum-contaminated soil with an improved procedure which employed the solubilization of polycyclic aromatic hydrocarbons (PAHs), i.e. naphthalene in agar plate, as a selection criterion. Crude biosurfactant was recovered from the culture of BU03 by extraction with n-hexane, and its properties were investigated. Biosurfactants from A. calcoaceticus BU03 constitute a thermo-stable mixture, composed of different agents with surface activities. At their critical micelle concentration (CMC) of 152.4 mg L(-1), the crude biosurfactants produced from A. calcoaceticus BU03 decreased the air-water surface tension to 38.4 mN m(-1). In thermophilic conditions, the emulsifying activity is 2.8 times that of Tween 80. The effects of the biosurfactants produced by A. calcoaceticus on the solubility and biodegradation of PAHs were investigated in batch systems. Biosurfactants produced by A. calcoaceticus BU03 at 25 times their CMC significantly increased the apparent aqueous solubility of phenanthrene (PHE), pyrene (PYR) and benzo(a)pyrene (B[a]P) to 54.3, 6.33 and 2.08 mg L(-1), respectively. In aqueous system, the biosurfactants at concentrations of 0.5 CMC and 1 CMC slightly enhanced the biodegradation of PHE by a consortium of PAH-degrading microrganisms. Results indicate that biosurfactants from A. calcoaceticus BU03 have potential to enhance the removal of PAHs from contaminated sites.

  3. Effects of cowpea (Vigna unguiculata) root mucilage on microbial community response and capacity for phenanthrene remediation.

    PubMed

    Sun, Ran; Belcher, Richard W; Liang, Jianqiang; Wang, Li; Thater, Brian; Crowley, David E; Wei, Gehong

    2015-07-01

    Biodegradation of polycyclic aromatic hydrocarbons (PAHs) is normally limited by their low solubility and poor bioavailability. Prior research suggests that biosurfactants are synthesized as intermediates during the production of mucilage at the root tip. To date the effects of mucilage on PAH degradation and microbial community response have not been directly examined. To address this question, our research compared 3 cowpea breeding lines (Vigna unguiculata) that differed in mucilage production for their effects on phenanthrene (PHE) degradation in soil. The High Performance Liquid Chromatography results indicated that the highest PHE degradation rate was achieved in soils planted with mucilage producing cowpea line C1, inoculated with Bradyrhizobium, leading to 91.6% PHE disappearance in 5 weeks. In root printing tests, strings treated with mucilage and bacteria produced larger clearing zones than those produced on mucilage treated strings with no bacteria or bacteria inoculated strings. Experiments with 14C-PHE and purified mucilage in soil slurry confirmed that the root mucilage significantly enhanced PHE mineralization (82.7%), which is 12% more than the control treatment without mucilage. The profiles of the PHE degraders generated by Denaturing gradient gel electrophoresis suggested that cowpea C1, producing a high amount of root mucilage, selectively enriched the PHE degrading bacteria population in rhizosphere. These findings indicate that root mucilage may play a significant role in enhancing PHE degradation and suggests that differences in mucilage production may be an important criterion for selection of the best plant species for use in phytoremediation of PAH contaminated soils.

  4. Study of phenanthrene utilizing bacterial consortia associated with cowpea (Vigna unguiculata) root nodules.

    PubMed

    Sun, Ran; Crowley, David E; Wei, Gehong

    2015-02-01

    Many legumes have been selected as model plants to degrade organic contaminants with their special associated rhizosphere microbes in soil. However, the function of root nodules during microbe-assisted phytoremediation is not clear. A pot study was conducted to examine phenanthrene (PHE) utilizing bacteria associated with root nodules and the effects of cowpea root nodules on phytoremediation in two different types of soils (freshly contaminated soil and aged contaminated soil). Cowpea nodules in freshly-contaminated soil showed less damage in comparison to the aged-contaminated soil, both morphologically and ultra-structurally by scanning electron microscopy. The study of polycyclic aromatic hydrocarbon (PAH) attenuation conducted by high performance liquid chromatography revealed that more PAH was eliminated from liquid culture around nodulated roots than nodule-free roots. PAH sublimation and denaturation gradient gel electrophoresis were applied to analyze the capability and diversity of PAH degrading bacteria from the following four parts of rhizo-microzone: bulk soil, root surface, nodule surface and nodule inside. The results indicated that the surface and inside of cowpea root nodules were colonized with bacterial consortia that utilized PHE. Our results demonstrated that root nodules not only fixed nitrogen, but also enriched PAH-utilizing microorganisms both inside and outside of the nodules. Legume nodules may have biotechnological values for PAH degradation.

  5. Biodegradation of pyrene and phenanthrene by bacterial consortium and evaluation of role of surfactant.

    PubMed

    Kumari, B; Rajput, S; Gaur, P; Singh, S N; Singh, D P

    2014-12-24

    High molecular weight poly aromatic hydrocarbons (HMW PAHs) are well known for their hydrophobicity and they get strongly adsorbed onto the soil particles. Generally, surfactants facilitate the biodegradation of PAH by enhancing their solubility and desorption of hydrophobic compounds from soil particles. To investigate the role of synthetic surfactant in biodegradation of PAHs, two bacterial strains BP10 and P2 were incubated in soil spiked with pyrene and phenantherene (100 μg g-1of soil each) in isolation and in combination with/without Tween 80. After 14 days of incubation, pyrene and phenantherene were degraded by a combination of BP10 and P2 to the extent of 98% and 99%, respectively. Addition of tween 80 reduced the degradation of pyrene and phenantherene by 35 and 10%, respectively. Biosurfactant produced by selected strains i.e. BP10 and P2 could enhance desorption of pyrene (100 μg g-1of soil) by about 27% and 12%, respectively. However, desorption activity was relatively higher (32 and 29%, respectively) in case of phenanthrene (100 μg g-1of soil) from the spiked soil. Present study showed that in spite of additional chemical surfactant, bioaugmentation of highly petroleum hydrocarbon degrading bacterial combination was very effective in boosting the bioremediation of PAHs- contaminated sites.

  6. Enhanced transport of phenanthrene and 1-naphthol by colloidal graphene oxide nanoparticles in saturated soil.

    PubMed

    Qi, Zhichong; Hou, Lei; Zhu, Dongqiang; Ji, Rong; Chen, Wei

    2014-09-02

    With the increasing production and use of graphene oxide, the environmental implications of this new carbonaceous nanomaterial have received much attention. In this study, we found that the presence of low concentrations of graphene oxide nanoparticles (GONPs) significantly enhanced the transport of 1-naphthol in a saturated soil, but affected the transport of phenanthrene to a much smaller extent. The much stronger transport-enhancement effect on 1-naphthol was due to the significant desorption hysteresis (both thermodynamically irreversible adsorption and slow desorption kinetics) of GONP-adsorbed 1-naphthol, likely stemmed from the specific polar interactions (e.g., H-bonding) between 1-naphthol and GONPs. Increasing ionic strength or the presence of Cu(II) ion (a complexing cation) generally increased the transport-enhancement capability of GONPs, mainly by increasing the aggregation of GONPs and thus, sequestering adsorbed contaminant molecules. Interestingly, modifying GONPs with Suwannee River humic acid or sodium dodecyl sulfate had little or essentially no effect on the transport-enhancement capability of GONPs, in contrast with the previously reported profound effects of humic acids and surfactants on the transport-enhancement capability of C60 nanoparticles. Overall, the findings indicate that GONPs in the aquatic environment may serve as an effective carrier for certain organic compounds that can interact with GONPs through strong polar interactions.

  7. Surface solubilization of phenanthrene by surfactant sorbed on soils with different organic matter contents.

    PubMed

    Ahn, Chi Kyu; Woo, Seung Han; Park, Jong Moon

    2010-05-15

    The effect of sorbed surfactant on the distribution of hydrophobic organic compounds (HOCs) during soil washing was investigated using a mathematical model. Phenanthrene (PHE) as an HOC and Triton X-100 (TX100) as a nonionic surfactant were used with two soils with low (SS) and high (BS) organic matter contents. The available carbon fraction (f(A,soil)(*)) after surfactant sorption was determined from surfactant coverage by measuring soil surface area using a methylene blue method. The sorbed surfactant was greatly effective as a sorbent for PHE, with an effectiveness factor (epsilon(soil)) in the range of 10.9-117.2 for SS and 39.7-121.3 for BS. Surface molar solubilization ratio (MSR(s)) and epsilon(soil) decreased with increasing TX100 dose. The MSR(s) decrement was lower for BS than for SS probably due to stronger affinity of PHE on organic matter in BS than in SS, which cause lower efficiency of soil washing than estimated by intrinsic sorption of PHE. These results suggest that soil washing in the field using surfactant for soils with high organic matter contents may give much lower efficiency than expected due to additional adsorption of HOC onto sorbed surfactant.

  8. Sorption of phenanthrene on to soil fractions in the presence of Triton X-100.

    PubMed

    Zhang, Guangzhi; Sun, Weiling; Hu, Hao; Lu, Xuemei; Ni, Jinren

    2012-01-01

    The objective of this study was to evaluate the effect of soil fractions on surfactant-enhanced soil remediation. A soil sample was separated into humic acid (HA), humin (HM), base-extracted soil (BE) and mineral fraction through solution extraction. The sorption of phenanthrene (PHE) on to individual soil fractions in the presence of a nonionic surfactant, Triton X-100 (TX100) at two concentrations, was studied. The results showed that HA had the highest affinity for both PHE and TX100. The HM and BE presented a high sorption capacity for PHE but a low capacity for TX100, while mineral presented a low sorption capacity for PHE and a high sorption capacity for TX100. The sorption of PHE on different soil fractions was greatly influenced by the presence of TX100. With TX100 present in solution, the distribution parameters K(f) and K(d) of all the sorbents decreased, with the exception of the mineral fraction at the lower TX100 initial concentration. The sorption of PHE on to HA and the mineral fraction was particularly influenced by TX100, which is because of the corresponding high TX100 sorption capacity of HA and the mineral fraction.

  9. Cyclodextrin-grafted electrospun cellulose acetate nanofibers via “Click” reaction for removal of phenanthrene

    NASA Astrophysics Data System (ADS)

    Celebioglu, Asli; Demirci, Serkan; Uyar, Tamer

    2014-06-01

    Beta-cyclodextrin (β-CD) functionalized cellulose acetate (CA) nanofibers have been successfully prepared by combining electrospinning and “click” reaction. Initially, β-CD and electrospun CA nanofibers were modified so as to be azide-β-CD and propargyl-terminated CA nanofibers, respectively. Then, “click” reaction was performed between modified CD molecules and CA nanofibers to obtain permanent grafting of CDs onto nanofibers surface. It was observed from the SEM image that, while CA nanofibers have smooth surface, there were some irregularities and roughness at nanofibers morphology after the modification. Yet, the fibrous structure was still protected. ATR-FTIR and XPS revealed that, CD molecules were successfully grafted onto surface of CA nanofibers. The adsorption capacity of β-CD-functionalized CA (CA-CD) nanofibers was also determined by removing phenanthrene (polycyclic aromatic hydrocarbons, PAH) from its aqueous solution. Our results indicate that CA-CD nanofibers have potential to be used as molecular filters for the purpose of water purification and waste water treatment by integrating the high surface area of nanofibers with inclusion complexation property of CD molecules.

  10. Biosorption and biodegradation of polycyclic aromatic hydrocarbons in aqueous solutions by a consortium of white-rot fungi.

    PubMed

    Chen, Baoliang; Wang, Yinshan; Hu, Dingfei

    2010-07-15

    Bioremediation is a popular approach used to abate polycyclic aromatic hydrocarbons (PAHs) in the environment. A consortium of white-rot fungi (CW-1) isolated from wood pieces was used for studying their potential of bioremediation of PAHs. Biosorption and biodegradation of PAHs by live and heat-killed white-rot fungi (CW-1) were investigated to elucidate the bio-dissipation mechanisms of PAHs. Sorption isotherms of naphthalene, acenaphthene, fluorene, phenanthrene and pyrene to heat-killed fungal biomass were linear and non-competitive, indicating the primary mechanism of biosorption to be by partition. The carbon-normalized partition coefficients (K(oc)) were linearly correlated with octanol-water partition coefficients (K(ow)), i.e., log K(oc)=1.13 log K(ow)-0.84 (n=5, r(2)=0.996). Biosorption and biodegradation of phenanthrene and pyrene by live white-rot fungi were quantified. In 1 week, the removal efficiency of phenanthrene (70-80%) and pyrene (90%) by live fungi from aqueous solution were comparable to those by heat-killed fungi. However, approximately 40-65% of phenanthrene and 60-85% of pyrene were still stored in organismal bodies. Biosorption might restrict biodegradation while nutrient limitation and presence of a PAH mixture might stimulate biodegradation. The apparent partition coefficients (K(d)(*)) in live fungal systems and the K(d) of heat-killed fungi without biodegradation were compared, and then the K(d)(*)/K(d) ratios were employed to illustrate the relative contributions of biosorption and biodegradation under different nutrient conditions.

  11. Effect of low-molecular-weight organic acids on photo-degradation of phenanthrene catalyzed by Fe(III)-smectite under visible light.

    PubMed

    Jia, Hanzhong; Chen, Hongxia; Nulaji, Gulimire; Li, Xiyou; Wang, Chuanyi

    2015-11-01

    The photolysis of polycyclic aromatic hydrocarbons (PAHs) is potentially an important process for its transformation and fate on contaminated soil surfaces. In this study, phenanthrene is employed as a model to explore PAH photodegradation with the assistance of Fe(III)-smectite under visible-light while focusing on roles played by five low-molecular-weight organic acids (LMWOAs), i.e., malic acid, oxalic acid, citric acid, ethylenediaminetetraacetic acid (EDTA), and nitrilotriacetic acid. Our results show that oxalic acid is most effective in promoting the photodegradation of phenanthrene, while only a slight increase in the rate of phenanthrene photodegradation is observed in the presence of malic acid. Electron paramagnetic resonance experiments confirm the formation of CO2(-) radicals in the presence of malic and oxalic acid, which provides strong evidence for generating OH and subsequent photoreaction pathways. The presence of EDTA or nitrilotriacetic acid significantly inhibits both Fe(II) formation and phenanthrene photodegradation because these organic anions tend to chelate with Fe(III), leading to decreases in the electron-accepting potential of Fe(III)-smectite and a weakened interaction between phenanthrene and Fe(III)-smectite. These observations provide valuable insights into the transformation and fate of PAHs in the natural soil environment and demonstrate the potential for using some LMWOAs as additives for the remediation of contaminated soil.

  12. The effects of carbon sources and micronutrients in whey and fermented whey on the kinetics of phenanthrene biodegradation in diesel contaminated soil.

    PubMed

    Jonsson, Anders P; Östberg, Tomas L

    2011-09-15

    This paper demonstrates significant effects on phenanthrene degradation in diesel contaminated soil by the addition of organic amendments such as whey and fermented whey. Both amount of amendment added and mode of administration was shown to be decisive. There was a strong positive effect on the (14)C-mineralization of phenanthrene by multiple (bi-weekly) additions of fermented whey 210 mg dw kg(-1) soil dw (FW multi) and also by single dose addition of 2100 mg dw sweet whey kg(-1) soil dw (SW high). The most prominent effects on phenanthrene degradation kinetics were a five to fifteen fold increase in the linear growth term (k(2)) and a 23-27% increase in bioavailability factor S(0) for SW high and FW multi respectively. Also, total mineralization at the end of the experiment increased from 46% in the control to 66 and 71% respectively and the lag time was reduced from 21 to 15 days by multiple addition of fermented whey. The most significant stimulating effects on phenanthrene degradation kinetics could be attributed to lactate and vitamins. This study demonstrates a more complex dependence of carbon sources and growth factors for an aromatic compound such as phenanthrene in comparison to hexadecane.

  13. Prediction of microbial accessibility of carbon-14-phenanthrene in soil in the presence of pyrene or benzo[a]pyrene using an aqueous cyclodextrin extraction technique.

    PubMed

    Papadopoulos, Apostolos; Reid, Brian J; Semple, Kirk T

    2007-01-01

    Traditionally, solvent extractions are routinely used in the assessment of contaminated land. However, vigorous solvent extractions only give total concentrations rather than that relating to the bioaccessible fraction. Recently, less harsh, aqueous-based extraction methods have been shown to be a better estimate of the microbial degradation of polycyclic aromatic hydrocarbons (PAHs). The aqueous-based hydroxypropyl-beta-cyclodextrin (HPCD) extraction technique was tested using 14C-PAHs in soils and compared against indigenous microbial mineralization (a measure of bioaccessibility) of 14C-phenanthrene in the presence of pyrene or benzo[a]pyrene (B[a]P) over a range of concentrations (0, 5, 10, or 50 mg kg(-1)) and aged for 0, 25, 50, and 100 d in four soils. At each time point, the total loss, extractability, and mineralization of 14C-phenanthrene was measured in each of the soils. The presence of the other PAHs had little effect on the behavior of 14C-phenanthrene in any of the soils. Comparisons between the amounts of 14C-phenanthrene extracted using HPCD and mineralized were made and showed that there was a correlation (1:1). This study demonstrates that HPCD extraction is able to predict the microbial accessibility fraction of 14C-phenanthrene in the presence of other PAHs in a range of soils, further supporting the applicability of this technique.

  14. Metal oxides, clay minerals and charcoal determine the composition of microbial communities in matured artificial soils and their response to phenanthrene.

    PubMed

    Babin, Doreen; Ding, Guo-Chun; Pronk, Geertje Johanna; Heister, Katja; Kögel-Knabner, Ingrid; Smalla, Kornelia

    2013-10-01

    Microbial communities in soil reside in a highly heterogeneous habitat where diverse mineral surfaces, complex organic matter and microorganisms interact with each other. This study aimed to elucidate the long-term effect of the soil mineral composition and charcoal on the microbial community composition established in matured artificial soils and their response to phenanthrene. One year after adding sterile manure to different artificial soils and inoculating microorganisms from a Cambisol, the matured soils were spiked with phenanthrene or not and incubated for another 70 days. 16S rRNA gene and internal transcribed spacer fragments amplified from total community DNA were analyzed by denaturing gradient gel electrophoresis. Metal oxides and clay minerals and to a lesser extent charcoal influenced the microbial community composition. Changes in the bacterial community composition in response to phenanthrene differed depending on the mineral composition and presence of charcoal, while no shifts in the fungal community composition were observed. The abundance of ring-hydroxylating dioxygenase genes was increased in phenanthrene-spiked soils except for charcoal-containing soils. Here we show that the formation of biogeochemical interfaces in soil is an ongoing process and that different properties present in artificial soils influenced the bacterial response to the phenanthrene spike.

  15. Synergistic effect of thermophilic temperature and biosurfactant produced by Acinetobacter calcoaceticus BU03 on the biodegradation of phenanthrene in bioslurry system.

    PubMed

    Zhao, Zhenyong; Selvam, Ammaiyappan; Wong, Jonathan Woon-Chung

    2011-06-15

    This study aimed at investigating the synergistic effect of temperature and biosurfactant on the biodegradation of phenanthrene in bioslurry. Bench-scale bioslurry experiments were conducted at 25 and 55°C. The desorption rate coefficients of phenanthrene (K(des)) obtained using the pseudo-first order model were 0.0026 and 0.0035 kg mg(-1)h(-1) at 25 and 55°C, respectively. Addition of 1500 mg L(-1) biosurfactant, produced by Acinetobacter calcoaceticus BU03, marginally increased the K(des) at 25°C since most of biosurfactant was sorbed onto soil; however, significantly increased the K(des) to 0.0087 kg mg(-1)h(-1) at 55°C as the thermophilic temperature reduced the adsorption of the biosurfactant onto soil and subsequently enhanced the desorption of phenanthrene. The biodegradation of phenanthrene well fitted pseudo-first order kinetics based on the assumption that biodegradation was limited by the desorption. About 78.7% of phenanthrene was degraded in 30 days at 25°C; and addition of biosurfactant did not affect the biodegradation. However, addition of the biosurfactant or inoculation of A. calcoaceticus BU03 at 55°C significantly enhanced the biodegradation by increasing the K(des). Results indicate that synergistic application of thermophilic temperature and biosurfactant or inoculation of biosurfactant producing microorganisms is an effective and innovative method to enhance the efficiency of PAH degradation in bioslurry system.

  16. Solar-energy production and energy-efficient lighting: photovoltaic devices and white-light-emitting diodes using poly(2,7-fluorene), poly(2,7-carbazole), and poly(2,7-dibenzosilole) derivatives.

    PubMed

    Beaupré, Serge; Boudreault, Pierre-Luc T; Leclerc, Mario

    2010-02-23

    World energy needs grow each year. To address global warming and climate changes the search for renewable energy sources with limited greenhouse gas emissions and the development of energy-efficient lighting devices are underway. This Review reports recent progress made in the synthesis and characterization of conjugated polymers based on bridged phenylenes, namely, poly(2,7-fluorene)s, poly(2,7-carbazole)s, and poly(2,7-dibenzosilole)s, for applications in solar cells and white-light-emitting diodes. The main strategies and remaining challenges in the development of reliable and low-cost renewable sources of energy and energy-saving lighting devices are discussed.

  17. Biosorption of phenanthrene by pure algae and field-collected planktons and their fractions.

    PubMed

    Zhang, Dainan; Ran, Chenyang; Yang, Yu; Ran, Yong

    2013-09-01

    The biosorption isotherms for phenanthrene (Phen) by cultured algae, field-collected plankton, and market algae samples (OSs) and their fractions (lipid-LP, lipid free carbon-LF, alkaline nonhydrolyzable carbon-ANHC, and acid nonhydrolyzable carbon-NHC) were established. All the biosorption isotherms are well fitted by the Freundlich model. The biosorption isotherms for the ANHC and NHC fractions are nonlinear and for the other fractions are linear. It was found that the NHC fractions are chemically and structurally different from other fractions by using elemental analysis and Fourier transformed infrared spectroscopy (FTIR), consisting mainly of aliphatic polymethylene carbon. The average KOC values for Phen at Ce=0.005Sw are 10706±2768mLg(-1) and 95843±55817mLg(-1) for the bulk market algal samples and their NHC isolates, respectively. As the NHC fraction for Porphyra contains higher polymethylene carbon than that for Seaweed or Spirulina, it exhibits higher biosorption capacity. Moreover, the logKOC values are significantly higher for the field-collected samples than for the market algae and cultured algae samples. The multivariate correlation shows that the logKOC values are positively related to the LP contents, and negatively to the C/N ratios for the original algal samples. Furthermore, the logKOC values are negatively related to the polarity indices (O/C and O+N/C) for the original samples and their fractions excluding LP fractions. These observations help to understand the role of polarity, LP and NHC fractions, and aliphatic structures in the biosorption of Phen, which requires more attention in the examination of sorption processes in the natural environment.

  18. Removal of naphthalene, phenanthrene, and pyrene by sorbents from hot gas.

    PubMed

    Mastral, A M; García, T; Callén, M S; Navarro, M V; Galbán, J

    2001-06-01

    It is the first time that the removal of polycyclic aromatic hydrocarbons (PAH) containing different aromatic rings number [naphthalene (Np), phenanthrene (Phe), and pyrene (Py)] from combustion hot gas has been carried out. The aim was to relate the sorbents textural characteristics with the adsorption capacity of these 2-4-ring PAH at the conditions emitted at energy generation. The sorbents textural parameters [total micropore volume (VN2), narrow micropore volume (VCO2), mesopore volume (VBJH), and the free active sites] were analyzed trying to correlate them with their Np, Phe, and Py adsorption capacities. To get this aim, single and multiple linear regressions (MLR) were applied to the three PAH. A principal component analysis was performed to generate new and uncorrelated variables. It enabled us to show that the relations between the textural parameters were analyzed using a principal components regression (PCR). The PCR analysis had a good statistical quality, but neither did it allow differentiating free active site types nor did VN2 and VCO2. The correlations were thus set up applying a MLR to the original variables. The regression statistical quality was similar to the PCR analysis, and it could give an easier explanation of the parameters that affected the adsorption. In Np adsorption, the 87% data variance was explained, and the adsorption was positively correlated to VCO2 and the micropore mean diameter (I.). In the Phe regression there was 98% variance explained, and its adsorption was positively correlated to the VN2 and the micropore distribution, n. Finally, in the Py adsorption, the 96% data variance was explained, and this adsorption was positively correlated to VN2 and VBJH. These dependencies were according to the molecular parameters of these compounds (molecular diameter and volatility) because the higher the number of aromatic rings of the PAH, the more favored the adsorbate-adsorbate interactions. Besides, the higher the mean diameter

  19. Enhancement of toxic effects of phenanthrene to Daphnia magna due to the presence of suspended sediment.

    PubMed

    Zhang, Xiaotian; Xia, Xinghui; Dong, Jianwei; Bao, Yimeng; Li, Husheng

    2014-06-01

    In the present work, the influences of suspended sediment (SPS) on the toxic effects of phenanthrene (PHE), one kind of polycyclic aromatic hydrocarbons, to Daphnia magna was studied using a dialysis bag simulation system, which equalized the freely dissolved concentration of PHE between outside the dialysis bag in the presence of SPS and inside the dialysis bag in the absence of SPS. The immobilization and total superoxide dismutase (T-SOD) activity of Daphnia magna caused by PHE (0-0.8 mg L(-1)) were investigated under the influence of different SPS concentrations (0, 1, 3, 5 g L(-1)) during a 96 h-exposure. The results showed that, compared to the absence of SPS, the presence of SPS (1-5 g L(-1)) increased the immobilization of Daphnia magna by 1.6-2.7 times when the freely dissolved concentration of PHE was identical in both systems. The inhibition of T-SOD activity of Daphnia magna by PHE was significantly greater in the presence of SPS than in the absence of SPS (p<0.01). This infers that the PHE sorbed on SPS might be bioavailable and enhanced the toxic effect of PHE to Daphnia magna. The bioavailable fraction of PHE sorbed on SPS ranged from 10.1% to 22.7%, and the contribution of PHE sorbed on SPS to the immobilization caused by total PHE in the exposure system increased with SPS concentration, with the contribution ratio increasing from 36.7% to 57.7% when SPS concentration increased from 1 to 5 g L(-1). This study suggests that only considering the concentrations of hydrophobic organic compounds in the water phase may underestimate their toxicity; and the hydrophobic organic compounds sorbed on SPS should not be ignored in assessment of water quality and the establishment of water quality standard in the future.

  20. Changes of biomarkers with oral exposure to benzo(a)pyrene, phenanthrene and pyrene in rats.

    PubMed

    Kang, Hwan Goo; Jeong, Sang Hee; Cho, Myung Haing; Cho, Joon Hyoung

    2007-12-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants present in air and food. Among PAHs, benzo(a)pyrene(BaP), phenanthrene (PH) and pyrene (PY) are considered to be important for their toxicity or abundance. To investigate the changes of biomarkers after PAH exposure, rats were treated with BaP (150 microg/kg) alone or with PH (4,300 microg/kg) and PY (2,700 microg/kg) (BPP group) by oral gavage once per day for 30 days. 7-ethoxyresorufin-O-deethylase activity in liver microsomal fraction was increased in only BaP groups. The highest concentration (34.5 ng/g) of BaP, was found in muscle of rats treated with BaP alone at 20 days of treatment; it was 23.6 ng/g in BPP treated rats at 30 days of treatment. The highest PH concentration was 47.1 ng/g in muscle and 118.8 ng/g in fat, and for PY it was 29.7 ng/g in muscle and 219.9 ng/g in fat, in BPP groups. In urine, 114-161 ng/ml 3-OH-PH was found, while PH was 41-69 ng/ml during treatment. 201-263 ng/ml 1-OH-PY was found, while PH was 9-17 ng/ml in urine. The level of PY, PH and their metabolites in urine was rapidly decreased after withdrawal of treatment. This study suggest that 1-OH-PY in urine is a sensitive biomarker for PAHs; it was the most highly detected marker among the three PAHs and their metabolites evaluated during the exposure period and for 14 days after withdrawal.

  1. Biochar characteristics produced from food-processing products and their sorptive capacity for mercury and phenanthrene

    NASA Astrophysics Data System (ADS)

    Fotopoulou, Kalliopi N.; Karapanagioti, Hrissi K.; Manariotis, Ioannis D.

    2015-04-01

    Various organic-rich wastes including wood chips, animal manure, and crop residues have been used for biochar production. Biochar is used as an additive to soils to sequester carbon and improve soil fertility but its use as a sorbent for environmental remediation processes is gaining increased attention. Surface properties such as point of zero charge, surface area and pore volume, surface topography, surface functional groups and acid-base behavior are important factors, which affect sorption efficiency. Understanding the surface alteration of biochars increases our understanding of the pollutant-sorbent interaction. The scope of the present work was to evaluate the effect of key characteristics of biochars on their sorptive properties. Raw materials for biochar production were evaluated including byproducts from brewering, coffee, wine, and olive oil industry. The charring process was performed at different temperatures under limited-oxygen conditions using specialized containers. The surface area, the pore volume, and the average pore size of the biochars were determined. Open surface area and micropore volume were determined using t-plot method and Harkins & Jura equation. Raw food-processing waste demonstrates low surface area that increases by 1 order of magnitude by thermal treatment up to 750oC. At temperatures from 750 up to 900oC, pyrolysis results to biochars with surface areas 210-700 m2/g. For the same temperature range, a high percentage (46 to73%) of the pore volume of the biochars is due to micropores. Positive results were obtained when high surface area biochars were tested for their ability to remove organic (i.e. phenanthrene) and inorganic (i.e. mercury) compounds from aqueous solutions. All these properties point to new materials that can effectively be used for environmental remediation.

  2. Mycoremediation of manganese and phenanthrene by Pleurotus eryngii mycelium enhanced by Tween 80 and saponin.

    PubMed

    Wu, Minghui; Xu, Yongan; Ding, Wenbo; Li, Yuanyuan; Xu, Heng

    2016-08-01

    Bioremediation of areas co-contaminated with metals and polycyclic aromatic hydrocarbons (PAHs) by mushrooms has attracted considerable attention in recent years. In this study, Pleurotus eryngii was introduced for the removal of Mn and phenanthrene (Phe) from potato liquid medium (PDL) simultaneously. Effects of Tween 80 and saponin on P. eryngii growth together with Mn uptake as well as Phe removal were investigated. Although pollutants had a negative effect on mycelial morphology and growth, P. eryngii could still tolerate and remove Mn and Phe. Tween 80 increased removal of Mn and Phe through increase of P. eryngii growth, Phe solubility, pollutants bioavailability, and specific surface area of mycelium pellets, moreover, the activities of manganese peroxidase (MnP) and laccase, which played an important role on PAHs biodegradation. The maximal removal of Mn and Phe was achieved (92.17 and 93.85 % after 15 days incubation, respectively) with 0.6 g L(-1) Tween 80. Treatments with saponin markedly inhibited P. eryngii growth (50.17-66.32 % lower relative to control) due to its fungistatic activity. Nevertheless, saponin could slightly enhance Phe removal through increasing solubility of Phe, and Phe removal rate varied from 80.53 to 87.06 % in saponin treatments. Joint stress of Mn and Phe induced a strong antioxidative response, and superoxide dismutase (SOD) activity decreased in surfactants-treated mycelium compared with control. Generally, Tween 80 was more suitable for strengthening mycoremediation by P. eryngii than saponin, and could be a promising alternative for the remediation of heavy metals and PAHs co-contaminated sites by mushrooms.

  3. Long-lived charge-separated configuration of a push-pull archetype of Disperse Red 1 end-capped poly[9,9-bis(4-diphenylaminophenyl)fluorene].

    PubMed

    El-Khouly, Mohamed E; Chen, Yu; Zhuang, Xiaodong; Fukuzumi, Shunichi

    2009-05-13

    The photoinduced electron-transfer process in Disperse Red 1 end-capped poly[9,9-bis(4-diphenylaminophenyl)-2,7-fluorene], a promising material for electronic and optoelectronic devices, is reported here. The charge-separated configuration was found to be long-lived, with a lifetime of up to 2.2 ms in the polar benzonitrile, as inferred from time-resolved absorption measurements.

  4. The effects of CYP1A inhibition on alkyl-phenanthrene metabolism and embryotoxicity in marine medaka (Oryzias melastigma).

    PubMed

    Mu, Jingli; Jin, Fei; Wang, Juying; Wang, Ying; Cong, Yi

    2016-06-01

    Alkylated polycyclic aromatic hydrocarbons (alkyl-PAHs) are the predominant form of PAHs in crude oils, of which, 3-5 ring alkyl-PAH may cause dioxin-like toxicity to early life stages of fish. Retene (7-isopropyl-1-methylphenanthrene), a typical alkyl-phenanthrene compound, can be more toxic than phenanthrene, and the mechanism of retene toxicity is likely related to its rapid biotransformation by cytochrome P450 (CYP) enzymes to metabolites with a wide array of structures and potential toxicities. Here, we investigated how α-naphthoflavone (ANF), a cytochrome P450 1A (CYP1A) inhibitor, affected the embryotoxicity of retene and the role that CYP1A inhibition may play in the interactions. Marine medaka (Oryzias melastigma) embryos were exposed, separately or together, to 200 μg/L retene with 0, 5, 10, 100, and 200 μg/L ANF for 14 days. The results showed that ANF significantly inhibited the induction of CYP1A activity by retene; however, ANF interacted with retene to induce significant developmental toxicity and genotoxicity at 10, 100, and 200 μg/L (p < 0.01). Tissue concentrations of retene and its metabolites and lipid hydroperoxide (LPO) activity also increased, whereas the inhibition of the glutathione S-transferase (GST) activity and the alteration in metabolic profiles of retene were observed. The interactions of retene with ANF indicate that CYP1A inhibition was possibly act through different mechanisms to produce similar developmental effects and genotoxicity. Retene metabolites and altered metabolic profile were likely responsible for retene embryotoxicity to marine medaka. Therefore, elevated toxicity of alkyl-phenanthrene under CYP1A inhibitor suggested that the ecotoxicity of PAHs in coastal water may have underestimated the threat of PAHs to fish or ecosystem.

  5. Sorption-desorption behavior of phenanthrene elucidated by pyrolysis-gas chromatography-mass spectrometry studies of soil organic matter

    SciTech Connect

    Schultz, L.F.; Young, T.M.; Higashi, R.M.

    1999-08-01

    Commonly used partitioning models of hydrophobic organic contaminant sorption in soil, which treat all soil organic matter (SOM) as having identical structure, are unable to explain differences in organic carbon-normalized sorption coefficients (K{sub OC}) among sorbents, isotherm nonlinearity, and sorption-desorption hysteresis. This study relates one index of SOM composition, structural fragments quantified by pyrolysis-gas chromatography-mass spectrometry, to aqueous and supercritical carbon dioxide (SC CO{sub 2}) sorption-desorption parameters. Results show positive correlations between aqueous K{sub OC}s and hydrocarbon fragment peak areas and negative correlation to N- and O-containing peaks, which is consistent with hypotheses attributing sorption of phenanthrene to hydrophobic sorbent domains. Positive correlation between Freundlich n values in SC CO{sub 2} and hydrocarbon fragments with negative correlation to N- and O-containing fragments suggests that energetic heterogeneity of polar environments controls nonlinearity in this solvent of limited polarity. Aqueous sorption-desorption hysteresis appears to be suppressed by N- and O-containing moieties and correlates with decreased thermal desorption of phenanthrene at 800 C. The SC CO{sub 2} extraction efficiency and, to a lesser degree, the desorption response when methanol is added as a cosolvent indicate that polar functional groups play a role in retarding phenanthrene desorption during SC CO{sub 2} extraction. Organic matter pyrolysis under varying time and temperature conditions indicates that pyrolysis fragments that do not significantly correlated with functional trends likely evolve by a different pyrolytic mechanism and are generally poorly correlated with sorption-desorption properties. The level of structural detail utilized in structure-function correlations in this work exceeds previous efforts to relate sorption behavior to sorbent structure. However, the work reveals that certain sorption

  6. Electronic absorption spectroscopy of matrix-isolated polycyclic aromatic hydrocarbon cations. II. The phenanthrene cation (C14H10+) and its 1-methyl derivative

    NASA Technical Reports Server (NTRS)

    Salama, F.; Joblin, C.; Allamandola, L. J.

    1994-01-01

    The ultraviolet, visible, and near infrared absorption spectra of phenanthrene (C14H10), 1-methylphenanthrene [(CH3)C14H9], and their radical ions [C14H10+; (CH3)C14H9+], formed by vacuum-ultraviolet irradiation, were measured in neon matrices at 4.2 K. The associated vibronic band systems and their spectroscopic assignments are discussed. The oscillator strengths were calculated for the phenanthrene ion and found lower than the theoretical predictions. This study presents the first spectroscopic data for phenanthrene and its methyl derivative trapped in a neon matrix where the perturbation of the isolated species by its environment is minimum; a condition crucial to astrophysical applications.

  7. Synthetic, crystallographic, computational, and biological studies of 1,4-difluorobenzo[c]phenanthrene and its metabolites.

    PubMed

    Bae, Suyeal; Mah, Heduck; Chaturvedi, Surendrakumar; Jeknic, Tamara Musafia; Baird, William M; Katz, Amy K; Carrell, H L; Glusker, Jenny P; Okazaki, Takao; Laali, Kenneth K; Zajc, Barbara; Lakshman, Mahesh K

    2007-09-28

    1,4-Difluorobenzo[c]phenanthrene (1,4-DFBcPh) and its putative metabolites, the dihydrodiol and diol epoxides, have been synthesized and structurally characterized, and the extent of DNA binding by the metabolites has been assessed. 1,4-DFBcPh and 1,4-difluoro-10-methoxybenzo[c]phenanthrene were prepared by photochemical cyclization of appropriate naphthylphenylethylenes. The dihydrodiol was synthesized from 1,4-difluoro-10-methoxybenzo[c]phenanthrene, and the diol epoxides were diastereoselectively synthesized from the dihydrodiol. Interesting differences were noted in 1H NMR spectra of the series 1 (syn) diol epoxides of benzo[c]phenanthrene (BcPh) and 1,4-DFBcPh; the BcPh diol epoxide displays a quasi-diequatorial orientation of the hydroxyl groups, but in the 1,4-DFBcPh case these are diaxially disposed. This difference probably stems from the presence of the fjord-region fluorine atom in 1,4-DFBcPh. A through-space, fjord-region H-F coupling has also been observed for 1,4-DFBcPh and its derivatives. Comparative X-ray crystallographic analyses of BcPh and 1,4-DFBcPh and their dihydrodiols show that introduction of fluorine increases the molecular distortion by about 6-7 degrees . As a guide to estimating the molecular distortion and its effects, and for comparison with the X-ray structures in known cases, optimized structures of BcPh, 1,4-DFBcPh, and 1,4-DMBcPh (the dimethyl analogue) as well as their dihydrodiols and diol epoxides were computed. Relative aromaticities of these compounds were assessed by nucleus-independent chemical shift calculations, and 13C NMR chemical shifts were computed by gauge-inducing atomic orbital calculations. 1,4-DFBcPh and its dihydrodiol were subjected to metabolism, and the amount of DNA binding in human breast cancer MCF-7 cells was assessed. The extent of DNA binding was then compared with that for BcPh and its dihydrodiol and the potent carcinogen benzo[a]pyrene. The 1,4-DFBcPh series 2 (anti) diol epoxide-derived DNA

  8. Quantifying the biodegradation of phenanthrene by Pseudomonas stutzeri P16 in the presence of a nonionic surfactant

    SciTech Connect

    Grimberg, S.J.; Stringfellow, W.T.; Aitken, M.D.

    1996-07-01

    Many contaminants in soil and subsurface environments are poorly soluble in water and persist in nonaqueous phase liquids (NAPLs) or are partitioned into soil organic matter. Polycyclic aromatic hydrocarbons are an important hydrophobic contaminant. The use of surfactants has been proposed to enhance remedial efforts for hydrocarbon-contaminated soils. The focus of this work is to study and quantify the biodegradation of solid phenanthrene by unding a well-defined experimental system with known biodegradation parameters and known effects of surfactants on phenathrene dissolution. The organism chosen for the study was Pseudomonas stutzeri P16. 37 refs., 4 figs., 2 tabs.

  9. Bioremediation of BTEX, naphthalene, and phenanthrene in aquifer material using mixed oxygen/nitrate electron acceptor conditions

    SciTech Connect

    Wilson, L.P.; D`Adamo, P.C.; Bouwer, E.J.

    1997-10-01

    The primary goal of this research is to further present understanding of the effect of mixed oxygen/nitrate electron acceptor conditions on the biodegradation of benzene, toluene, ethylbenzene, m-xylene, naphthalene, and phenanthrene. Specific objectives include: (1) identify subsurface microbial cultures with the ability to biodegrade aromatic hydrocarbons under aerobic and anaerobic denitrifying conditions; (2) quantify the stoichiometry and kinetics of biodegradation of aromatic hydrocarbons under aerobic, anaerobic denitrifying and microaerophilic conditions; and (3) simulate various field bioremediation schemes using different nutrient/electron acceptor delivery schemes.

  10. Novel maturity parameters for mature to over-mature source rocks and oils based on the distribution of phenanthrene series compounds.

    PubMed

    Wang, Zixiang; Wang, Yongli; Wu, Baoxiang; Wang, Gen; Sun, Zepeng; Xu, Liang; Zhu, Shenzhen; Sun, Lina; Wei, Zhifu

    2016-03-01

    Pyrolysis experiments of a low-mature bitumen sample originated from Cambrian was conducted in gold capsules. Abundance and distribution of phenanthrene series compounds in pyrolysis products were measured by GC-MS to investigate their changes with thermal maturity. Several maturity parameters based on the distribution of phenanthrene series compounds have been discussed. The results indicate that the distribution changes of phenanthrene series compounds are complex, and cannot be explained by individual reaction process during thermal evolution. The dealkylation cannot explain the increase of phenanthrene within the EasyRo range of 0.9% ∼ 2.1%. Adding of phenanthrene into maturity parameters based on the methylphenanthrene isomerization is unreasonable, even though MPI 1 and MPI 2 could be used to some extent. Two additional novel and an optimized maturation parameters based on the distribution of phenanthrene series compounds are proposed and their relationships to EasyRo% (x) are established: log(MPs/P) = 0.19x + 0.08 (0.9% < EasyRo% < 2.1%); log(MPs/P) = 0.64x - 0.86 (2.1% < EasyRo% < 3.4%); log(DMPs/TMPs) = 0.71x - 0.55 (0.9% < EasyRo% < 3.4%); log(MTR) = 0.84x - 0.75 (0.9% < EasyRo% < 3.4%). These significant positive correlations are strong argument for using log(MPs/P), log(DMPs/TMPs) and log(MTR) as maturity parameters, especially for mature to over-mature source rocks.

  11. DNA single strand breakage, DNA adducts, and sister chromatid exchange in lymphocytes and phenanthrene and pyrene metabolites in urine of coke oven workers.

    PubMed Central

    Popp, W; Vahrenholz, C; Schell, C; Grimmer, G; Dettbarn, G; Kraus, R; Brauksiepe, A; Schmeling, B; Gutzeit, T; von Bülow, J; Norpoth, K

    1997-01-01

    OBJECTIVES: To investigate the specificity of biological monitoring variables (excretion of phenanthrene and pyrene metabolites in urine) and the usefulness of some biomarkers of effect (alkaline filter elution, 32P postlabelling assay, measurement of sister chromatid exchange) in workers exposed to polycyclic aromatic hydrocarbons (PAHs). METHODS: 29 coke oven workers and a standardised control group were investigated for frequencies of DNA single strand breakage, DNA protein cross links (alkaline filter elution assay), sister chromatid exchange, and DNA adducts (32P postlabelling assay) in lymphocytes. Phenanthrene and pyrene metabolites were measured in 24 hour urine samples. 19 different PAHs (including benzo(a)pyrene, pyrene, and phenanthrene) were measured at the workplace by personal air monitoring. The GSTT1 activity in erythrocytes and lymphocyte subpopulations in blood was also measured. RESULTS: Concentrations of phenanthrene, pyrene, and benzo(a)pyrene in air correlated well with the concentration of total PAHs in air; they could be used for comparisons of different workplaces if the emission compositions were known. The measurement of phenanthrene metabolites in urine proved to be a better biological monitoring variable than the measurement of 1-hydroxypyrene. Significantly more DNA strand breaks in lymphocytes of coke oven workers were found (alkaline filter elution assay); the DNA adduct rate was not significantly increased in workers, but correlated with exposure to PAHs in a semiquantitative manner. The number of sister chromatid exchanges was lower in coke oven workers but this was not significant; thus counting sister chromatid exchanges was not a good variable for biomonitoring of coke oven workers. Also, indications for immunotoxic influences (changes in lymphocyte subpopulations) were found. CONCLUSIONS: The measurement of phenanthrene metabolites in urine seems to be a better biological monitoring variable for exposure to PAHs than

  12. Theoretical and jet spectroscopic investigations of energetics and structures for the low-lying singlet states of fluorene and 9,9'-spirobifluorene

    NASA Astrophysics Data System (ADS)

    Boo, Bong Hyun; Choi, Young Sik; Kim, Taek-Soo; Kang, Sung Kwon; Kang, Yong Hee; Lee, Sang Yeon

    1996-03-01

    Ab initio, semiempirical and spectroscopic studies of fluorene (FR) and 9,9'-spirobifluorene (SBF) were performed to elucidate π-orbital interaction between two fluorenyl rings of SBF and to predict the energies of the low-lying singlet electronic states of the molecules. Energies and symmetries of π-orbitals of FR and SBF molecules were determined by 3-21G and 6-31G∗ calculations on the optimized structures. The INDO/S-CIS semiempirical method was applied to predict the excited state energies, the transition dipole moments and the oscillator strengths for the optical transitions. Laser-induced fluorescence (LIF) excitation spectra were measured for FR and SBF cooled in pulsed supersonic expansions of He in the ranges 283.7-296.7 nm and 289.1-305.6 nm, respectively. In the LIF excitation spectra of FR and SBF, highly resolved vibronic bands were observed having the band origins of 33791 and 33047 cm -1, respectively. The spectral shift of the 0-0 band of SBF to red by 744 cm -1 may be attributed to the spiroconjugation arising from the interaction of four p π orbitals in the different planes.

  13. Solution‐crystallization and related phenomena in 9,9‐dialkyl‐fluorene polymers. II. Influence of side‐chain structure

    PubMed Central

    Perevedentsev, Aleksandr; Stavrinou, Paul N.; Smith, Paul

    2015-01-01

    ABSTRACT Solution‐crystallization is studied for two polyfluorene polymers possessing different side‐chain structures. Thermal analysis and temperature‐dependent optical spectroscopy are used to clarify the nature of the crystallization process, while X‐ray diffraction and scanning electron microscopy reveal important differences in the resulting microstructures. It is shown that the planar‐zigzag chain conformation termed the β‐phase, which is observed for certain linear‐side‐chain polyfluorenes, is necessary for the formation of so‐called polymer‐solvent compounds for these polymers. Introduction of alternating fluorene repeat units with branched side‐chains prevents formation of the β‐phase conformation and results in non‐solvated, i.e. melt‐crystallization‐type, polymer crystals. Unlike non‐solvated polymer crystals, for which the chain conformation is stabilized by its incorporation into a crystalline lattice, the β‐phase conformation is stabilized by complexation with solvent molecules and, therefore, its formation does not require specific inter‐chain interactions. The presented results clarify the fundamental differences between the β‐phase and other conformational/crystalline forms of polyfluorenes. © 2015 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015, 53, 1492–1506 PMID:27546983

  14. Silicon-based material with spiro-annulated fluorene/triphenylamine as host and exciton-blocking layer for blue electrophosphorescent devices.

    PubMed

    Chen, Hua; Jiang, Zuo-Quan; Gao, Chun-Hong; Xu, Mei-Feng; Dong, Shou-Cheng; Cui, Lin-Song; Ji, Shun-Jun; Liao, Liang-Sheng

    2013-08-26

    A novel silicon-based compound, 10-phenyl-2'-(triphenylsilyl)-10H-spiro[acridine-9,9'-fluorene] (SSTF), with spiro structure has been designed, synthesized, and characterized. Its thermal, electronic absorption, and photoluminescence properties were studied. Its energy levels make it suitable as a host material or exciton-blocking material in blue phosphorescent organic light-emitting diodes (PhOLEDs). Accordingly, blue-emitting devices with iridium(III) bis[(4,6-difluorophenyl)-pyridinato-N,C(2)']picolinate (FIrpic) as phosphorescent dopant have been fabricated and show high efficiency with low roll-off. In particular, 44.0 cd A(-1) (41.3 lm W(-1)) at 100 cd m(-2) and 41.9 cd A(-1) (32.9 lm W(-1)) at 1000 cd m(-2) were achieved when SSTF was used as host material; 28.1 lm W(-1) at 100 cd m(-2) and 20.6 lm W(-1) at 1000 cd m(-2) were achieved when SSTF was used as exciton-blocking layer. All of the results are superior to those of the reference devices and show the potential applicability and versatility of SSTF in blue PhOLEDs.

  15. Atmospheric concentration and carcinogenic risk of polycyclic aromatic hydrocarbons including benzo[c]fluorene, cyclopenta[c,d]pyrene, and benzo[j]fluoranthene in Japan

    NASA Astrophysics Data System (ADS)

    Yagishita, Mayuko; Kageyama, Shiho; Ohshima, Shigeru; Matsumoto, Michi; Aoki, Yasunobu; Goto, Sumio; Nakajima, Daisuke

    2015-08-01

    The atmospheric concentrations of both gas-phase and particulate-phase polycyclic aromatic hydrocarbons (PAHs) including 16 US Environmental Protection Agency priority PAHs (16 PAHs) were measured in eleven cities across Japan. Using the measured average concentrations and toxic equivalency factors (TEF) of the 16 PAHs, the benzo[a]pyrene (BaP)-toxic equivalent for eight major PAHs was obtained: the ratio of BaP to the eight major PAH toxicities ranged from 0.23 to 0.47. Among the target PAHs, from the viewpoint of carcinogenicity, we focused on benzo[c]fluorene (BcFE), which was detected in both the gas and particulate phase in contrast to BaP. The relative potency factor (RPF) of BcFE was evaluated as 6.46 based on its cancer slope factor relative to that of BaP determined in the benchmark dose calculations for mice. The relative carcinogenic risk of BcFE to BaP was obtained by multiplying the averaged concentrations of BaP and BcFE by the RPF value: the risk of BcFE was 6.8 and 5.1 times higher than that of BaP in summer and winter, respectively. These results show that the collection of atmospheric samples including the gas phase is important when assessing the carcinogenic risk of atmospheric PAHs.

  16. Fluorene-based sensitizers with a phenothiazine donor: effect of mode of donor tethering on the performance of dye-sensitized solar cells.

    PubMed

    Baheti, Abhishek; Justin Thomas, K R; Li, Chun-Ting; Lee, Chuan-Pei; Ho, Kuo-Chuan

    2015-02-04

    Two types of fluorene-based organic dyes featuring T-shape/rod-shape molecular configuration with phenothiazine donor and cyanoacrylic acid acceptor have been synthesized and characterized as sensitizers for dye-sensitized solar cells. Phenothiazine is functionalized at either nitrogen (N10) or carbon (C3) to obtain T-shape and rod-like organic dyes, respectively. The effect of structural alternation on the optical, electrochemical, and the photovoltaic properties is investigated. The crystal structure determination of the dye containing phenyl linker revealed cofacial slip-stack columnar packing of the molecules. The trends in the optical properties of the dyes are interpreted using time-dependent density functional theory (TDDFT) computations. The rod-shaped dyes exhibited longer wavelength absorption and low oxidation potentials when compared to the corresponding T-shaped dyes attributable to the favorable electronic overlap between the phenothiazine unit and the rest of the molecule in the former dyes. However, the T-shaped dyes showed better photovoltaic properties due to the lowest unoccupied molecular orbital (LUMO) energy level favorable for electron injection into the conduction band of TiO2 and appropriate orientation of the phenothiazine unit rendering effective surface blocking to suppress the recombination of electrons between the electrolyte I3(-) and TiO2. The electrochemical impedance spectroscopy investigations provide further support for the variations in the electron injection and transfer kinetics due to the structural modifications.

  17. Experimental and theoretical study of crystal and molecular structure of 1,2-di(9H-fluoren-9-ylidene)hydrazine

    NASA Astrophysics Data System (ADS)

    Lasri, Jamal; Eltayeb, Naser Eltaher; Ismail, Ali I.

    2016-10-01

    The molecular structure and spectroscopic properties of 1,2-di(9H-fluoren-9-ylidene)hydrazine were studied experimentally by ESI-MS, FTIR, NMR and UV-Vis techniques and computationally by the density functional theory (DFT) method at B3LYP/6-31+G(d,p) level of theory. XRD single crystal showed that the molecule is crystalline as a monoclinic with space group P21/n, the crystal parameters are a, b, c (Å) 11.164(3), 5.9761(16) and 13.457(3), respectively. Also, β (°) and Z were found to be 103.822(12) and 2, respectively. The theoretical vibrational frequencies obtained by DFT calculations are in good agreement with the experimental values. TD-DFT calculations were carried out in both gas phase and in different solvent systems using polarizable continuum model (PCM) to calculate the electronic absorption spectra. GIAO method was used to calculate the NMR spectra in four different solvents CD3CN, CDCl3, DMSO-d6 and MeOD-d4. The correlation between the calculated and experimental chemical shifts was mostly in the range of 0.87-0.97 for 1H, whereas, the correlation for 13C in all solvents was 0.98.

  18. Nonionic surfactants induced changes in cell characteristics and phenanthrene degradation ability of Sphingomonas sp. GY2B.

    PubMed

    Liu, Shasha; Guo, Chuling; Liang, Xujun; Wu, Fengji; Dang, Zhi

    2016-07-01

    Surfactant-mediated bioremediation has been widely applied in decontaminating PAH-polluted sites. However, the impacts of surfactants on the biodegradation of PAHs have been controversial in the past years. To gain a clear insight into the influencing mechanisms, three nonionic surfactants (Tween80, TritonX-100 and Brij30) were selected to systematically investigate their effects on cell surface properties (membrane permeability, functional groups and elements), cell vitality as well as subsequent phenanthrene degradation ability of Sphingomonas sp. GY2B. Results showed that biodegradation of phenanthrene was stimulated by Tween80, slightly inhibited by TritonX-100 and severely inhibited by Brij30, respectively. Positive effect of Tween80 may arise from its role as the additional carbon source for GY2B to increase bacterial growth and activity, as demonstrated by the increasing viable cells in Tween80 amended degradation systems determined by flow cytometry. Although TritonX-100 could inhibit bacterial growth and disrupt cell membrane, its adverse impacts on microbial cells were weaker than Brij30, which may result in its weaker inhibitive extent. Results from this study can provide a rational basis on selecting surfactants for enhancing bioremediation of PAHs.

  19. A kinetic model for advanced oxidation processes of aromatic hydrocarbons in water: Application to phenanthrene and nitrobenzene

    SciTech Connect

    Beltran, F.J.; Rivas, J.; Alvarez, P.M.; Alonso, M.A.; Acedo, B.

    1999-11-01

    A kinetic model for the advanced oxidation (ozonation alone, UV radiation alone, ozone plus hydrogen peroxide, ozone plus UV radiation, and UV radiation plus hydrogen peroxide) of aromatic hydrocarbons in water is proposed and tested with experimental results of the oxidation of nitrobenzene and phenanthrene, two aromatic hydrocarbons of different reactivity with ozone. The kinetic model leads to good results in the case that the compound treated reacts exclusively with ozone, that is, without the contribution of hydroxyl radical oxidation as in the case of phenanthrene oxidation. In this case, it is not necessary to account for intermediate reactions to have good predictions of experimental remaining concentrations of ozonation processes. On the contrary, when the aromatic hydrocarbon s mainly removed by hydroxyl radicals (case of nitrobenzene), mole balance equations of intermediates have to be included for the experimental concentrations to be reproduced. For so doing, the kinetic parameters, such as rate constants of reactions between ozone and hydroxyl radical with intermediates and their corresponding quantum yields at 254 nm, were also determined. The kinetic model, however, is unable to reproduce, with accuracy, the experimental results of the ozone-UV radiation oxidation system.

  20. Surfactant-modified fatty acid composition of Citrobacter sp. SA01 and its effect on phenanthrene transmembrane transport.

    PubMed

    Li, Feng; Zhu, Lizhong

    2014-07-01

    The effects of the surfactants, Tween 80 and sodium dodecyl benzene sulfonate (SDBS) on a membrane's fatty acid composition and the transmembrane transport of phenanthrene were investigated. The results indicated that both surfactants could modify the composition of fatty acids of Citrobacter sp. Strain SA01 cells, 50 mg L(-1) of both surfactants changed the composition of the fatty acids the most, increasing the amount of unsaturated fatty acids. The comparison of fatty acid profiles with diphenylhexatriene fluorescence anisotropy, a probe for plasma membrane fluidity, suggested that an increased amount of unsaturated fatty acids corresponded to greater membrane fluidity. In addition, increased unsaturated fatty acids promoted phenanthrene to partition from the extracellular matrix to cell debris, which increased reverse partitioning from the cell debris to the cytochylema. The results of this study were expected in that the addition of a surfactant is a simple and effective method for accelerating the rate-limiting step of transmembrane transport of hydrophobic organic compounds (HOCs) in bioremediation.

  1. Transcriptional changes in oysters Crassostrea brasiliana exposed to phenanthrene at different salinities.

    PubMed

    Zacchi, Flávia Lucena; de Lima, Daína; Flores-Nunes, Fabrício; Mattos, Jacó Joaquim; Lüchmann, Karim Hahn; de Miranda Gomes, Carlos Henrique Araújo; Bícego, Márcia Caruso; Taniguchi, Satie; Sasaki, Silvio Tarou; Dias Bainy, Afonso Celso

    2017-02-01

    Euryhaline animals from estuaries, such as the oyster Crassostrea brasiliana, show physiological mechanisms of adaptation to tolerate salinity changes. These ecosystems receive constant input of xenobiotics from urban areas, including polycyclic aromatic hydrocarbons (PAHs), such as phenanthrene (PHE). In order to understand the influence of salinity on the molecular responses of C. brasiliana exposed to PHE, oysters were acclimatized to different salinities (35, 25 and 10) for 15days and then exposed to 100μgL(-1) PHE for 24h and 96h. Control groups were kept at the same salinities without PHE. Oysters were sampled for chemical analysis and the gills were excised for mRNA quantification by qPCR. Transcript levels of different genes were measured, including some involved in oxidative stress pathways, phases I and II of the xenobiotic biotransformation systems, amino acid metabolism, fatty acid metabolism and aryl hydrocarbon receptor nuclear translocator putative gene. Higher transcript levels of Sulfotransferase-like gene (SULT-like) were observed in oysters exposed to PHE at salinity 10 compared to control (24h and 96h); cytochrome P450 isoforms (CYP2AU1, CYP2-like1) were more elevated in oysters exposed for 24h and CYP2-like2 after 96h of oysters exposed to PHE at salinity 10 compared to control. These results are probably associated to an enhanced Phase I biotransformation activity required for PHE detoxification under hyposmotic stress. Higher transcript levels of CAT-like, SOD-like, GSTm-like (96h) and GSTΩ-like (24h) in oysters kept at salinity 10 compared to organisms at salinities 25 and/or 35 are possibly related to enhaced ROS production. The transcription of these genes were not affected by PHE exposure. Amino acid metabolism-related genes (GAD-like (24h), GLYT-like, ARG-like (96h) and TAUT-like at 24h and 96h) also showed different transcription levels among organisms exposed to different salinities, suggesting their important role for oyster

  2. Effect of solution chemistry on the extent of binding of phenanthrene by a soil humic acid: A comparison of dissolved and clay bound humic

    SciTech Connect

    Jones, K.D.; Tiller, C.L.

    1999-02-15

    The effect of pH, ionic strength, and cation in solution on the binding of phenanthrene by a soil humic acid in the aqueous phase was determined using fluorescence quenching. The phenanthrene binding coefficient with the dissolved soil humic, K{sub oc}, decreased with increasing ionic strength and solution cation valence. At low values of ionic strength, K{sub oc} values for this soil humic acid increased with increasing pH. For this humic sample, the experimental results were consistent with a conformational model of the humic substance in aqueous solution where, depending on solution conditions, some parts of the humic structure may be more open to allow increased PAH access to attachment sites. After sorption onto clays, supernatant solutions of the unadsorbed humic fraction yielded lower K{sub oc} values than the original bulk humic acid, suggesting that the humic substance was fractionating during its sorption onto the clays. Additionally, the extent of phenanthrene binding with the adsorbed humic fraction was lower than the results determined for the bulk humic acid prior to adsorption. The conformation of the humic substance when sorbed onto the inorganic surface appears to be affecting the level of phenanthrene binding by the humic acid.

  3. Moderate salinity reduced phenanthrene-induced stress in the halophyte plant model Thellungiella salsuginea compared to its glycophyte relative Arabidopsis thaliana: Cross talk and metabolite profiling.

    PubMed

    Shiri, Moez; Rabhi, Mokded; Abdelly, Chedly; Bouchereau, Alain; El Amrani, Abdelhak

    2016-07-01

    It was shown that halophytes experience higher cross-tolerance to stresses than glycophytes, which was often associated with their more powerful antioxidant systems. Moreover, salinity was reported to enhance halophyte tolerance to several stresses. The aim of the present work was to investigate whether a moderate salinity enhances phenanthrene stress tolerance in the halophyte Thellungiella salsuginea. The model plant Arabidopsis thaliana, considered as its glycophyte relative, was used as reference. Our study was based on morpho-physiological, antioxidant, and metabolomic parameters. Results showed that T. salsuginea was more tolerant to phenanthrene stress as compared to A. thaliana. An improvement of phenanthrene-induced responses was recorded in the two plants in the presence of 25 mM NaCl, but the effect was significantly more obvious in the halophyte. This observation was particularly related to the higher antioxidant activities and the induction of more adapted metabolism in the halophyte. Gas Chromatography coupled with Mass Spectrometry (GC-MS) was used to quantify alcohols, ammonium, sugars, and organic acids. It showed the accumulation of several metabolites, many of them are known to be involved in signaling and abiotic stress tolerance. Moderate salinity and phenanthrene cross-tolerance involved in these two stresses was discussed.

  4. Biodegradation of phenanthrene and analysis of degrading cultures in the presence of a model organo-mineral matrix and of a simulated NAPL phase.

    PubMed

    Cavalca, Lucia; Rao, Maria A; Bernasconi, Silvana; Colombo, Milena; Andreoni, Vincenza; Gianfreda, Liliana

    2008-02-01

    Two mixed bacterial cultures (C(B-BT) and C(I-AT)) degraded phenanthrene when it was: (i) in the presence of either hexadecane as a non aqueous phase liquid or a montmorillonite-Al(OH)x-humic acid complex as a model organo-mineral matrix; (ii) sorbed to the complex, either alone or in the presence of hexadecane. The cultures had different kinetic behaviours towards phenanthrene with or without hexadecane. The degradation of Phe alone as well as that of Phe in hexadecane ended in 8 and 15 days with C(B-BT) and C(I-AT) cultures, respectively. Hexadecane increased Phe bioavailability for C(I-AT) bacteria which degraded Phe according to first-order kinetics. The same effect was observed for C(B-BT) bacteria, but with an initial 2 days lag phase and in accordance with zero-order kinetics. The presence of hexadecane did not affect the degradation of phenanthrene sorbed and aged on the complex by C(I-AT )culture. This capability was exhibited also after experimental aging of 30 days. The dynamics of the bacterial community composition was investigated through PCR-DGGE (denaturing gradient gel electrophoresis) of 16S rRNA gene fragments. Individual bands changed their intensity during the incubation time, implying that particular microbe's relative abundance changed according to the culture conditions. Isolation of phenanthrene and/or hexadecane degraders was in accord with cultivation-independent data. Growth-dependent changes in the cell surface hydrophobicity of the two cultures and of the isolates suggested that modulation of cell surface hydrophobicity probably played an important role for an efficient phenanthrene assimilation/uptake.

  5. Isolation of marine polycyclic aromatic hydrocarbon (PAH)-degrading Cycloclasticus strains from the Gulf of Mexico and comparison of their PAH degradation ability with that of Puget Sound Cycloclasticus strains

    SciTech Connect

    Geiselbrecht, A.D.; Hedlund, B.P.; Tichi, M.A.; Staley, J.T.

    1998-12-01

    Phenanthrene- and naphthalene-degrading bacteria were isolated from four offshore and nearshore locations in the Gulf of Mexico by using a modif