Science.gov

Sample records for acenaphthene fluorene phenanthrene

  1. Acenaphthene

    Integrated Risk Information System (IRIS)

    Acenaphthene ; CASRN 83 - 32 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  2. Fluorene and phenanthrene uptake by Pseudomonas putida ATCC 17514: kinetics and physiological aspects.

    PubMed

    Rodrigues, Ana C; Wuertz, Stefan; Brito, António G; Melo, Luís F

    2005-05-01

    Pseudomonas putida ATCC 17514 was used as a model strain to investigate the characteristics of bacterial growth in the presence of solid fluorene and phenanthrene. Despite the lower water-solubility of phenanthrene, P. putida degraded this polycyclic aromatic hydrocarbon (PAH) at a maximum observed rate of 1.4 +/- 0.1 mg L(-1) h(-1), higher than the apparent degradation rate of fluorene, 0.8 +/- 0.07 mg L(-1) h(-1). The role of physiological processes on the biodegradation of these PAHs was analyzed and two different uptake strategies were identified. Zeta potential measurements revealed that phenanthrene-grown cells were slightly more negatively charged (-57.5 +/- 4.7 mV) than fluorene-grown cells (-51.6 +/- 4.9 mV), but much more negatively charged than glucose-grown cells (-26.8 +/- 3.3 mV), suggesting that the PAH substrate induced modifications on the physical properties of bacterial surfaces. Furthermore, protein-to-exopolysaccharide ratios detected during bacterial growth on phenanthrene were typical of biofilms developed under physicochemical stress conditions, caused by the presence of sparingly water-soluble chemicals as the sole carbon and energy source for growth, the maximum value for TP/EPS during growth on phenanthrene (1.9) being lower than the one obtained with fluorene (5.5). Finally, confocal laser microscopy observations using a gfp-labeled derivative strain revealed that, in the presence of phenanthrene, P. putida::gfp cells formed a biofilm on accessible crystal surfaces, whereas in the presence of fluorene the strain grew randomly between the crystal clusters. The results showed that P. putida was able to overcome the lower aqueous solubility of phenanthrene by adhering to the solid PAH throughout the production of extracellular polymeric substances, thus promoting the availability and uptake of such a hydrophobic compound. PMID:15800860

  3. Fluorene and Phenanthrene Uptake and Accumulation by Wheat, Alfalfa and Sunflower from the Contaminated Soil.

    PubMed

    Salehi-Lisar, Seyed Yahya; Deljoo, Somaye; Harzandi, Ahmad Mosen

    2015-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are diverse organic contaminants released into the environment by both natural and anthropogenic activities. These compounds have negative impacts on plants growth and development. Although there are many reports on their existence in different parts of plant, their uptake and translocation pathways and mechanisms are not well understood yet. This paper highlights the uptake, translocation and accumulation of PAHs by wheat, sunflower and alfalfa through an experimental study under controlled conditions. Seeds were cultivated in a soil containing 50 mg/kg of phenanthrene and fluorene and their concentrations in plants roots and shoots were determined using a gas chromatograph after 7 and 14 days. The results showed that phenanthrene and fluorene concentrations in the treated plants were increased over the time. PAHs bioavailability was time and species dependent and generally, phenanthrene uptake and translocation was faster than that of fluorene, probably due to their higher Kow. Fluorene tended to accumulate in roots, but phenanthrene was transported to aerial parts of plants. PMID:25950194

  4. Mechanistic Studies on the Dibenzofuran Formation from Phenanthrene, Fluorene and 9–Fluorenone

    PubMed Central

    Li, Shanqing; Zhang, Qingzhu

    2015-01-01

    We carried out molecular orbital theory calculations for the homogeneous gas‑phase formation of dibenzofuran from phenanthrene, fluorene, 9-methylfluorene and 9-fluorenone. Dibenzofuran will be formed if ∙OH adds to C8a, and the order of reactivity follows as 9-fluorenone > 9-methylfluorene > fluorene > phenanthrene. The oxidations initiated by ClO∙ are more favorable processes, considering that the standard reaction Gibbs energies are at least 21.63 kcal/mol lower than those of the equivalent reactions initiated by ∙OH. The adding of ∙OH and then O2 to phenanthrene is a more favorable route than adding ∙OH to C8a of phenanthrene, when considering the greater reaction extent. The reaction channel from fluorene and O2 to 9-fluorenone and H2O seems very important, not only because it contains only three elementary reactions, but because the standard reaction Gibbs energies are lower than −80.07 kcal/mol. PMID:25756381

  5. Competitive metabolism of naphthalene, methylnaphthalenes, and fluorene by phenanthrene-degrading pseudomonads.

    PubMed Central

    Stringfellow, W T; Aitken, M D

    1995-01-01

    Polynuclear aromatic hydrocarbons (PAHs) typically exist as complex mixtures in contaminated soils, yet little is known about the biodegradation of PAHs in mixtures. We have isolated two physiologically diverse bacteria, Pseudomonas stutzeri P-16 and P. saccharophila P-15, from a creosote-contaminated soil by enrichment on phenanthrene as the sole carbon source and studied their ability to metabolize several other two- and three-ring PAHs. Naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene served as growth substrates for both organisms, while fluorene was only cometabolized. We also studied the effects of these compounds on initial rates of phenanthrene uptake in binary mixtures. Lineweaver-Burk analysis of kinetic measurements was used to demonstrate competitive inhibition of phenanthrene uptake by all four compounds, suggesting that multiple PAHs are being transformed by a common enzyme pathway in whole cells. Estimates of the inhibition coefficient, Ki, are reported for each compound. The occurrence of competitive metabolic processes in physiologically diverse organisms suggests that competitive metabolism may be a common phenomenon among PAH-degrading organisms. PMID:7887615

  6. Fluorene

    Integrated Risk Information System (IRIS)

    Fluorene ; CASRN 86 - 73 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )

  7. Phenanthrene

    Integrated Risk Information System (IRIS)

    Phenanthrene ; CASRN 85 - 01 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  8. Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds.

    PubMed Central

    Grifoll, M; Selifonov, S A; Gatlin, C V; Chapman, P J

    1995-01-01

    Pseudomonas cepacia F297 grew with fluorene as a sole source of carbon and energy; its growth yield corresponded to an assimilation of about 40% of fluorene carbon. The accumulation of a ring meta-cleavage product during growth and the identification of 1-indanone in growth media and washed-cell suspensions suggest that strain F297 metabolizes fluorene by mechanisms analogous to those of naphthalene degradation. In addition to fluorene, strain F297 utilized for growth a wide variety of polycyclic aromatic compounds (PACs), including naphthalene, 2,3-dimethylnaphthalene, phenanthrene, anthracene, and dibenzothiophene. Fluorene-induced cells of the strain also transformed 2,6-dimethylnaphthalene, biphenyl, dibenzofuran, acenaphthene, and acenaphthylene. The identification of products formed from those substrates (by gas chromatography-mass spectrometry) in washed-cell suspensions indicates that P. cepacia F297 carries out the following reactions: (i) aromatic ring oxidation and cleavage, apparently using the pyruvate released for growth, (ii) methyl group oxidations, (iii) methylenic oxidations, and (iv) S oxidations of aromatic sulfur heterocycles. Strain F297 grew with a creosote-PAC mixture, producing an almost complete removal of all aromatic compounds containing 2 to 3 rings in 14 days, as demonstrated by gas chromatography analysis of the remaining PACs recovered from cultures. The identification of key chemicals confirmed that not only are certain compounds depleted but also the anticipated reaction products are found. PMID:7487007

  9. Domino Cyclization of 1,n-Enynes (n = 7, 8, 9) Giving Derivatives of Pyrane, Chromene, Fluorene, Phenanthrene and Dibenzo[7]annulene by Ruthenium Complexes.

    PubMed

    Ma, Hao-Wei; Chen, Pei-Min; Lo, Ji-Xian; Lin, Ying-Chih; Huang, Shou-Ling; Chen, Chi-Ren; Chia, Pi-Yeh

    2016-06-01

    Cyclization of the ether enyne 1 catalyzed by [Ru]NCCH3(+) ([Ru] = Cp(PPh3)2Ru) in CHCl3 generates a diastereomeric mixture of the substituted tetrahydropyran 11. Presumably, formation of an allenylidene complex is followed by a cyclization by nucleophilic addition of the olefinic group to Cγ of the ligand giving a boat-like six-membered ring. The diastereoselectivity is controlled by the 1,3-diaxial interaction. The vinylidene complex 7, a precursor of 11, is obtained from 1 and [Ru]Cl. In a mixture of MeOH/CHCl3, the domino cyclization of 1 further affords 14a, a chromene product catalytically. The second cyclization proceeds via nucleophilic addition of the resulting olefinic unit to Cα of 7. But the ether enyne 3 with a cyclopentyl ring on the olefinic unit undergoes only single cyclization due to steric effect. The propargyl alcohol and the two terminal methyl groups on the olefinic unit shape the cyclization. Thus, similar all-carbon 1,n-enynes (n = 7, 8, 9) 4-6 each with an aromatic linker undergo direct domino cyclization catalyzed by [Ru]NCCH3(+), to give derivatives of tricyclic fluorene, phenanthrene and dibenzo[7]annulene, respectively, with no intermediate observed. PMID:27132939

  10. Use of 13C Nuclear Magnetic Resonance To Assess Fossil Fuel Biodegradation: Fate of [1-13C]Acenaphthene in Creosote Polycyclic Aromatic Compound Mixtures Degraded by Bacteria†

    PubMed Central

    Selifonov, Sergey A.; Chapman, Peter J.; Akkerman, Simon B.; Gurst, Jerome E.; Bortiatynski, Jacqueline M.; Nanny, Mark A.; Hatcher, Patrick G.

    1998-01-01

    [1-13C]acenaphthene, a tracer compound with a nuclear magnetic resonance (NMR)-active nucleus at the C-1 position, has been employed in conjunction with a standard broad-band-decoupled 13C-NMR spectroscopy technique to study the biodegradation of acenaphthene by various bacterial cultures degrading aromatic hydrocarbons of creosote. Site-specific labeling at the benzylic position of acenaphthene allows 13C-NMR detection of chemical changes due to initial oxidations catalyzed by bacterial enzymes of aromatic hydrocarbon catabolism. Biodegradation of [1-13C]acenaphthene in the presence of naphthalene or creosote polycyclic aromatic compounds (PACs) was examined with an undefined mixed bacterial culture (established by enrichment on creosote PACs) and with isolates of individual naphthalene- and phenanthrene-degrading strains from this culture. From 13C-NMR spectra of extractable materials obtained in time course biodegradation experiments under optimized conditions, a number of signals were assigned to accumulated products such as 1-acenaphthenol, 1-acenaphthenone, acenaphthene-1,2-diol and naphthalene 1,8-dicarboxylic acid, formed by benzylic oxidation of acenaphthene and subsequent reactions. Limited degradation of acenaphthene could be attributed to its oxidation by naphthalene 1,2-dioxygenase or related dioxygenases, indicative of certain limitations of the undefined mixed culture with respect to acenaphthene catabolism. Coinoculation of the mixed culture with cells of acenaphthene-grown strain Pseudomonas sp. strain A2279 mitigated the accumulation of partial transformation products and resulted in more complete degradation of acenaphthene. This study demonstrates the value of the stable isotope labeling approach and its ability to reveal incomplete mineralization even when as little as 2 to 3% of the substrate is incompletely oxidized, yielding products of partial transformation. The approach outlined may prove useful in assessing bioremediation performance

  11. Fluoren-9-one oxime

    PubMed Central

    Bugenhagen, Bernhard; Al Jasem, Yosef; Al-Azani, Mariam; Thiemann, Thies

    2014-01-01

    In the title mol­ecule, C13H9NO, the fluorene system and the oxime group non-H atoms are essentially coplanar, with a maximum deviation from the fluorene mean plane of 0.079 (2) Å for the oxime O atom. A short intra­molecular C—H⋯O generates an S(6) ring. In the crystal, mol­ecules related by a twofold screw axis are connected by O—H⋯N hydrogen bonds, forming [100] chains Within these chains, mol­ecules related by a unit translation along [100] show π–π stacking inter­actions between their fluorene ring systems with an inter­planar distance of 3.347 (2) Å. The dihedral angle between the fluorene units of adjacent mol­ecules along the helix is 88.40 (2)°. There is a short C—H⋯π contact between the fluorene groups belonging to neighbouring chains. PMID:24764980

  12. Adsorption of acenaphthene on porous organic polymers

    SciTech Connect

    Eichenmueller, B.; Bunke, G.; Buchholz, R.; Goetz, P.; Behrend, K.

    1997-09-01

    Adsorption behavior of the three-ring polynuclear aromatic hydrocarbon (PAH) acenaphthene from aqueous solutions on the adsorber polymers Wofatit EP 61 and EP 63 was examined. Using dimethylsulfoxide as a solubilizer, equilibrium, kinetic, and fixed-bed dynamic experiments could be carried out. Freundlich parameters for equilibrium data were obtained, exhibiting high capacities at low liquid concentrations: K{sub F} = 0.14 mg{sup 1{minus}n} {center_dot} L{sup n}/mg{sub A} and n = 0.5 for EP 61; and K{sub F} = 0.22 mg{sup 1{minus}n} {center_dot} L/mg{sub A} and n = 0.39 for EP 63. By fitting the numerical solution of a mathematical model to experimental data from kinetic experiments in a differential bed adsorber operated at high circulation velocity, effective intraparticle diffusivity could be estimated to be D{sub eff} = 2.5 {center_dot} 10{sup {minus}10} cm{sup 2}/s. According to these data and parameters from empirical equations, breakthrough curves were predicted analytically and numerically and compared to experimental data. A good agreement with the numerical solution was observed. The presence of dimethylsulfoxide influenced neither equilibrium nor kinetic data.

  13. Characterization of a Novel Angular Dioxygenase from Fluorene-Degrading Sphingomonas sp. Strain LB126▿

    PubMed Central

    Schuler, Luc; Ní Chadhain, Sinéad M.; Jouanneau, Yves; Meyer, Christine; Zylstra, Gerben J.; Hols, Pascal; Agathos, Spiros N.

    2008-01-01

    In this study, the genes involved in the initial attack on fluorene by Sphingomonas sp. strain LB126 were investigated. The α and β subunits of a dioxygenase complex (FlnA1-FlnA2), showing 63 and 51% sequence identity, respectively, to the subunits of an angular dioxygenase from the gram-positive dibenzofuran degrader Terrabacter sp. strain DBF63, were identified. When overexpressed in Escherichia coli, FlnA1-FlnA2 was responsible for the angular oxidation of fluorene, 9-hydroxyfluorene, 9-fluorenone, dibenzofuran, and dibenzo-p-dioxin. Moreover, FlnA1-FlnA2 was able to oxidize polycyclic aromatic hydrocarbons and heteroaromatics, some of which were not oxidized by the dioxygenase from Terrabacter sp. strain DBF63. The quantification of resulting oxidation products showed that fluorene and phenanthrene were the preferred substrates of FlnA1-FlnA2. PMID:18156320

  14. Colonization on Root Surface by a Phenanthrene-Degrading Endophytic Bacterium and Its Application for Reducing Plant Phenanthrene Contamination

    PubMed Central

    Liu, Juan; Liu, Shuang; Sun, Kai; Sheng, Yuehui; Gu, Yujun; Gao, Yanzheng

    2014-01-01

    A phenanthrene-degrading endophytic bacterium, Pn2, was isolated from Alopecurus aequalis Sobol grown in soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Based on morphology, physiological characteristics and the 16S rRNA gene sequence, it was identified as Massilia sp. Strain Pn2 could degrade more than 95% of the phenanthrene (150 mg·L−1) in a minimal salts medium (MSM) within 48 hours at an initial pH of 7.0 and a temperature of 30°C. Pn2 could grow well on the MSM plates with a series of other PAHs, including naphthalene, acenaphthene, anthracene and pyrene, and degrade them to different degrees. Pn2 could also colonize the root surface of ryegrass (Lolium multiflorum Lam), invade its internal root tissues and translocate into the plant shoot. When treated with the endophyte Pn2 under hydroponic growth conditions with 2 mg·L−1 of phenanthrene in the Hoagland solution, the phenanthrene concentrations in ryegrass roots and shoots were reduced by 54% and 57%, respectively, compared with the endophyte-free treatment. Strain Pn2 could be a novel and useful bacterial resource for eliminating plant PAH contamination in polluted environments by degrading the PAHs inside plants. Furthermore, we provide new perspectives on the control of the plant uptake of PAHs via endophytic bacteria. PMID:25247301

  15. Sterically encumbered tin and phosphorus peri-substituted acenaphthenes.

    PubMed

    Chalmers, Brian A; Athukorala Arachchige, Kasun S; Prentis, Joanna K D; Knight, Fergus R; Kilian, Petr; Slawin, Alexandra M Z; Woollins, J Derek

    2014-08-18

    A group of sterically encumbered peri-substituted acenaphthenes have been prepared, containing tin moieties at the 5,6-positions in 1-3 ([Acenap(SnR3)2], Acenap = acenaphthene-5,6-diyl; R3 = Ph3 (1), Me3 (2); [(Acenap)2(SnMe2)2] (3)) and phosphorus functional groups at the proximal peri-positions in 4 and 5 ([Acenap(PR2)(P(i)Pr2)] R2 = Ph2 (4), Ph((i)Pr) (5)). Bis(stannane) structures 1-3 are dominated by repulsive interactions between the bulky tin groups, leading to peri-distances approaching the sum of van der Waals radii. Conversely, the quasi-linear CPh-P···P three-body fragments found in bis(phosphine) 4 suggest the presence of a lp(P)-σ*(P-C) donor-acceptor 3c-4e type interaction, supported by a notably short intramolecular P···P distance and notably large JPP through-space coupling (180 Hz). Severely strained bis(sulfides) 4-S and 5-S, experiencing pronounced in-plane and out-of-plane displacements of the exocyclic peri-bonds, have also been isolated following treatment of 4 and 5 with sulfur. The resulting nonbonded intramolecular P···P distances, ∼4.05 Å and ∼12% longer than twice the van der Waals radii of P (3.60 Å), are among the largest ever reported peri-separations, independent of the heteroatoms involved, and comparable to the distance found in 1 containing the larger Sn atoms (4.07 Å). In addition we report two metal complexes with square planar [(4)PtCl2] (4-Pt) and octahedral cis-[(4)Mo(CO)4] (4-Mo) geometries. In both complexes the bis(phosphine) backbone is distorted, but notably less so than in bis(sulfide) 4-S. All compounds were fully characterized, and except for bis(phosphine) 5, crystal structures were determined. PMID:25080308

  16. Oxidation of polynuclear aromatic hydrocarbons in water. 2: UV radiation and ozonation in the presence of UV radiation

    SciTech Connect

    Beltran, F.J.; Garcia-Araya, J.F.; Rivas, J.; Ovejero, G.

    1995-05-01

    Direct photolysis with UV radiation (254 nm) and oxidation with ozone combined with UV radiation of three polynuclear aromatic hydrocarbons, fluorene, phenanthrene, and acenaphthene, has been studied. Quantum yields of the direct photolysis of the PAHs determined were 7.5 {times} 10{sup {minus}3}, 6.9 {times} 10{sup {minus}3}, and 52 {times} 10{sup {minus}3} mol(photon){sup {minus}1} for fluorene, phenanthrene, and acenaphthene, respectively. Contributions of direct ozonation, direct photolysis, and radical oxidation have also been estimated for the oxidation with ozone combined with UV radiation. Fluorene is oxidized by direct photolysis and radical reactions, phenanthrene through direct mechanisms, ozonation, and photolysis, and acenaphthene mainly by direct ozonation.

  17. Phenanthrene Biodegradation in Freshwater Environments

    PubMed Central

    Sherrill, T. W.; Sayler, G. S.

    1980-01-01

    Phenanthrene, a low-molecular-weight polycyclic aromatic hydrocarbon, was incubated with water samples from various reservoir systems in Tennessee to evaluate the potential for significant polycyclic aromatic hydrocarbon degradation by the indigenous microbial populations. Biodegradation was assessed by comparison of total polycyclic aromatic hydrocarbon substrate recovery in degradation flasks relative to sterile control flasks. During 1977 field studies, the mean phenanthrene biodegradation was approximately 80% after a 4-week incubation. Within a given habitat, 45% of the total variability in phenanthrene biodegradation was attributable to the physical, chemical, and microbiological site characteristics examined. Polycyclic aromatic hydrocarbon degradation was directly related to the historical environmental pollution of the sampling sites examined, the length of biodegradation assessment, temperature, and the molecular size of the polycyclic aromatic hydrocarbon substrate. PMID:16345487

  18. Thermal kinetic and dielectric parameters of acenaphthene crystal grown by vertical Bridgman technique

    NASA Astrophysics Data System (ADS)

    Karuppusamy, S.; Dinesh Babu, K.; Nirmal Kumar, V.; Gopalakrishnan, R.

    2016-05-01

    The bulk acenaphthene crystal was grown in a single-wall ampoule by vertical Bridgman technique. X-ray diffraction analysis confirmed the orthorhombic crystal system of title compound with space group Pcm21. Thermal behavior of compound was studied using thermogravimetry—differential scanning calorimetry analysis. Thermal kinetic parameters like activation energy, frequency factor, Avrami exponent, reaction rate and degree of conversion were calculated using Kissingers and Ozawa methods under non-isothermal condition for acenaphthene crystal and reported for the first time. The calculated thermal kinetic parameters are presented. Dielectric studies were performed to calculate the dielectric parameters such as dielectric constant, dielectric loss, AC conductivity, and activation energy from Arrhenius plot.

  19. Ba{sub 2}phenanthrene is the main component in the Ba-doped phenanthrene superconductor

    SciTech Connect

    Yan, Xun-Wang; Huang, Zhongbing; Lin, Hai-Qing

    2014-12-14

    We have systematically investigated the crystal structure of Ba-doped phenanthrene with various Ba doping levels by the first-principles calculations combined with the X-ray diffraction (XRD) spectra simulations. Although the experimental stoichiometry ratio of Ba atom and phenanthrene molecule is 1.5:1, the simulated XRD spectra, space group symmetry and optimized lattice parameters of Ba{sub 1.5}phenanthrene are not consistent with the experimental ones, while the results for Ba{sub 2}phenanthrene are in good agreement with the measurements. The strength difference of a few XRD peaks can be explained by the existence of pristine phenanthrene. Our findings suggest that instead of uniform Ba{sub 1.5}phenanthrene, there coexist Ba{sub 2}phenanthrene and undoped phenanthrene in the superconducting sample. The electronic calculations indicate that Ba{sub 2}phenanthrene is a semiconductor with a small energy gap less than 0.05 eV.

  20. Biotransformation of fluorene by the fungus Cunninghamella elegans

    SciTech Connect

    Pothuluri, J.V.; Freeman, J.P.; Evans, F.E.; Cerniglia, C.E. )

    1993-06-01

    Fluorene, a tricyclic aromatic hydrocarbon, is formed during the combustion of fossil fuels and is an important pollutant of aquatic ecosystems where it is highly toxic to fish and algae. Few studies on microbial biodegradation of fluorene have been reported. This investigation describes the metabolism of fluorene by the fungus Cunninghamella elegans ATCC 36112 and the identification of major metabolites. 26 refs., 2 figs., 1 tab.

  1. Oxidation of Acenaphthene and Acenaphthylene by Human Cytochrome P450 Enzymes

    PubMed Central

    Shimada, Tsutomu; Takenaka, Shigeo; Murayama, Norie; Yamazaki, Hiroshi; Kim, Joo-Hwan; Kim, Donghak; Yoshimoto, Francis K.; Guengerich, F. Peter; Komori, Masayuki

    2016-01-01

    Acenaphthene and acenaphthylene, two known environmental polycyclic aromatic hydrocarbon (PAH) pollutants, were incubated at 50 µM concentrations in a standard reaction mixture with human P450s 2A6, 2A13, 1B1, 1A2, 2C9, and 3A4 and the oxidation products were determined using HPLC and LC-MS. HPLC analysis showed that P450 2A6 converted acenaphthene and acenaphthylene to several mono- and di-oxygenated products. LC-MS analysis of acenaphthene oxidation by P450s indicated the formation of 1-acenaphthenol as a major product, with turnover rates of 6.7, 4.5, and 3.6 nmol product formed/min/nmol P450 for P450 2A6, 2A13, and 1B1, respectively. Acenaphthylene oxidation by P450 2A6 showed the formation of 1,2-epoxyacenaphthene as a major product (4.4 nmol epoxide formed/min/nmol P450) and also several mono- and di-oxygenated products. P450 2A13, 1B1, 1A2, 2C9, and 3A4 formed 1,2-epoxyacenaphthene at rates of 0.18, 5.3 2.4, 0.16, and 3.8 nmol/min nmol P450, respectively. 1-Acenaphthenol, which induced Type I binding spectra with P450 2A13, was further oxidized by P450 2A13 but not P450 2A6. 1,2-Epoxyacenaphthene induced Type I binding spectra with P450 2A6 and 2A13 (Ks 1.8 and 0.16 µM, respectively) and was also oxidized to several oxidation products by these P450s. Molecular docking analysis suggested different orientations of acenaphthene, acenaphthylene, 1-acenaphthenol, and 1,2-epoxyacenaphthene in their interactions with P450 2A6 and 2A13. Neither these four PAHs induced umu gene expression in a Salmonella typhimurium NM tester strain. These results suggest, for the first time, that acenaphthene and acenaphthylene are oxidized by human P450s 2A6 and 2A13 and other P450s to form several mono- and di-oxygenated products. The results are of use in considering the biological and toxicological significance of these environmental PAHs in humans. PMID:25642975

  2. ap-9-(meta-tert-butylphenyl)fluorene.

    PubMed

    Robinson, Paul D; McLean, Aaron W; Meyers, Cal Y

    2003-10-01

    The title compound, C(23)H(22), (I), crystallizes in an ap conformationThe designations sp (synperiplanar) and ap (antiperiplanar) for these fluorene rotamers are in accordance with Rule E-6.6, IUPAC Tentative Rules, Section E, Fundamental Stereochemistry [J. Org. Chem. (1970), 35, 2861]. and its melt readily recrystallizes on cooling, in contrast to the corresponding 9-fluorenol compound, (II), which is sp and which melts without decomposition and fails to recrystallize over a long period. Both of these differences are ascribed to the intermolecular hydrogen bonding in (II), which is absent in (I) and which leads to distinctly different molecular packing in the two compounds. PMID:14532663

  3. Interactions among buffelgrass, phenanthrene and phenanthrene-degrading bacteria in gnotobiotic microcosms.

    PubMed

    Robert, Francoise M; Sun, Wenhao H; Toma, Marisa; Jones, Ryan K; Tang, Chung-Shih

    2008-07-15

    An experiment was undertaken in gnotobiotic microcosms to determine the role of buffelgrass (Cenchrus ciliaris) and a phenanthrene-degrading bacterium (strain PM600) in the degradation of phenanthrene. The Gram-negative bacterium was identified as a Sphingomonas sp. by 16S rRNA gene sequence analysis and as S. paucimobilis by biochemical tests (API 20 NE strips). Its yellow pigment corresponded to nostoxanthin and its cellular fatty acids were typical of the genus Sphingomonas. Moreover, it was devoid of lipopolysaccharides. Strain PM600 was tested for growth on mineral medium supplemented with No. 2 diesel, hexadecane, mineral oil, pristane, phenanthrene, and pyrene as single carbon sources. It was capable of utilizing phenanthrene only. In the gnotobiotic microcosms silica sand was either or not supplemented with 150 mg of phenanthrene kg(-1) sand, inoculated with strain PM600, and planted to sterile young seedlings of buffelgrass. After 28 days, 67% of the reduction of the phenanthrene concentration was assigned to degradation by the bacterium and ca. 20% to abiotic factors. No statistically significant effect of the young buffelgrass was found. In the absence of phenanthrene, the bacterial population significantly increased in the rhizosphere of buffelgrass. However, in the presence of buffelgrass and phenanthrene, the bacterial population preferentially responded to phenanthrene. The growth of buffelgrass was severely curtailed by phenanthrene in the absence of the bacterium. However, strain PM600 effectively protected buffelgrass against the phytotoxicity of phenanthrene. PMID:18569317

  4. Natural phenanthrenes and their biological activity.

    PubMed

    Kovács, Adriána; Vasas, Andrea; Hohmann, Judit

    2008-03-01

    The aim of this review is to survey the various naturally occurring phenanthrene compounds that have been isolated from different plants. Only one review has previously been published on this topic. Gorham (1989) reviewed the structures, biosynthesis, separations and spectroscopy of stilbenes and phenanthrenes. The present study furnishes an overview of the hydroxy or/and methoxy-substituted 9,10-dihydro/phenanthrenes, methylated, prenylated and other monomeric derivatives, dimeric and trimeric phenanthrenes and their biological activities. A fairly large number of phenanthrenes have been reported from higher plants, mainly in the Orchidaceae family, in the species Dendrobium, Bulbophyllum, Eria, Maxillaria, Bletilla, Coelogyna, Cymbidium, Ephemerantha and Epidendrum. A few phenanthrenes have been found in the Hepaticae class and Dioscoreaceae, Combretaceae and Betulaceae families. Their distribution correlates strongly with the taxonomic divisions. These plants have often been used in traditional medicine, and phenanthrenes have therefore been studied for their cytotoxicity, antimicrobial, spasmolytic, anti-inflammatory, antiplatelet aggregation, antiallergic activities and phytotoxicity. On the basis of 120 references, this review covers the phytochemistry and pharmacology of phenanthrenes, describing 252 compounds. This contribution stems from our work on the medicinal plant Tamus communis. PMID:18243254

  5. Study on the volatility of halogenated fluorenes.

    PubMed

    Oliveira, Juliana A S A; Oliveira, Tânia S M; Gaspar, Alexandra; Borges, Fernanda; Ribeiro da Silva, Maria D M C; Monte, Manuel J S

    2016-08-01

    This work reports the experimental determination of relevant thermophysical properties of five halogenated fluorenes. The vapor pressures of the compounds studied were measured at different temperatures using two different experimental techniques. The static method was used for studying 2-fluorofluorene (liquid and crystal vapor pressures between 321.04 K and 411.88 K), 2-iodofluorene (liquid and crystal vapor pressures between 362.63 K and 413.86 K), and 2,7-dichlorofluorene (crystal vapor pressures between 364.64 K and 394.22 K). The Knudsen effusion method was employed to determine the vapor pressures of 2,7-difluorofluorene (crystal vapor pressures between 299.17 K and 321.19 K), 2,7-diiodofluorene (crystal vapor pressures between 393.19 K and 415.14 K), and (again) 2-iodofluorene (crystal vapor pressures between 341.16 K and 361.12 K). The temperatures and the molar enthalpies of fusion of the five compounds were determined using differential scanning calorimetry. The application to halogenated fluorenes of recently developed methods for predicting vapor pressures and enthalpies of sublimation and vaporization of substituted benzenes is also discussed. PMID:27206270

  6. Estuarine ecology of phenanthrene-degrading bacteria

    NASA Astrophysics Data System (ADS)

    Guerin, William F.; Jones, Galen E.

    1989-08-01

    Phenanthrene degrading bacteria were ubiquitously distributed in waters and sediments of the Great Bay Estuary, NH, as determined using a 14C-phenanthrene mineralization assay. Similar activities were observed in water samples collected in March and June when these were incubated at 18 °C even though ambient water temperatures were 1-4 °C and 10-22 °C, respectively. This observation indicated the constant presence of a mesophilic phenanthrene-degrading bacterial population in the estuary. Among water samples, the highest biodegradation activities were associated with samples collected downstream from a dredging operation which introduced high concentrations of coal tar PAH (polycyclic aromatic hydrocarbons) into the Cocheco River, and in areas receiving PAH from pleasure and commercial boating activities. Mid-estuarine maxima in biodegradation activity during both sampling trips suggested adaptation of the microbial flora to the salinities prevailing in the low turnover, high residence time portion of the Estuary at the time of sampling. Despite the hydrophobicity of phenanthrene, no correlation between biodegradation rates and particulate matter concentrations were observed. Similarly, concentrations of nutrients and dissolved and particulate organic matter correlated poorly with biodegradation rates. Better agreements between 14C-phenanthrene mineralization potentials and plate counts on a phenanthrene/toluene agar (PTA) medium were observed. Phenanthrene biodegradative activities and numbers of culturable bacteria growing on PTA were governed by the degree of previous exposure to PAH.

  7. Oxidation of polynuclear aromatic hydrocarbons in water. 1: Ozonation

    SciTech Connect

    Beltran, F.J.; Encinar, J.M.; Rivas, J.; Ovejero, G.

    1995-05-01

    The oxidation of three polynuclear aromatic hydrocarbons (PAHs), fluorene, phenanthrene, and acenaphthene, in aqueous solution with ozone has been studied. The influence of hydroxyl radical inhibitors, pH, ozone partial pressure, and temperature was investigated. All the PAHs studied show high oxidation rates with ozone. The ozonation of fluorene seems to be due to both direct and hydroxyl radical reactions while for the rest of the PAHs the ozonation develops only through direct reactions with ozone. Rate constants for the direct reaction between these PAHs and ozone have also been calculated. The reactivity with ozone goes in the following order: fluorene < phenanthrene < acenaphthene. The contribution of radical reactions represents more than 90% in the ozonation of fluorene in most cases except in the presence of hydroxyl radical inhibitors. In a standard agitated reactor the kinetic regime of the absorption of ozone corresponds to a slow reaction in the case of fluorene and phenanthrene and to a fast reaction in the case of acenaphthene.

  8. Adsorption of phenanthrene on natural snow.

    PubMed

    Domine, Florent; Cincinelli, Alessandra; Bonnaud, Elodie; Martellini, Tania; Picaud, Sylvain

    2007-09-01

    The snowpack is a reservoir for semivolatile organic compounds (SVOCs) and, in particular, for persistent organic pollutants (POPs), which are sequestered in winter and released to the atmosphere or hydrosphere in the spring. Modeling these processes usually assumes that SVOCs are incorporated into the snowpack by adsorption to snow surfaces, but this has never been proven because the specific surface area (SSA) of snow has never been measured together with snow composition. Here we expose natural snow to phenanthrene vapors (one of the more volatile POPs) and measure for the first time both the SSA and the chemical composition of the snow. The results are consistent with an adsorption equilibrium. The measured Henry's law constant is H(Phen)(T) = 2.88 x 10(22) exp(-10660/7) Pa m2 mol(-1), with Tin Kelvin. The adsorption enthalpy is delta H(ads) = -89 +/- 18 kJ mol(-1). We also perform molecular dynamics calculations of phenanthrene adsorption to ice and obtain AHads = -85 +/- 8 kJ mol(-1), close to the experimental value. Results are applied to the adsorption of phenanthrene to the Arctic and subarctic snowpacks. The subarctic snowpack, with a low snow area index (SAI = 1000), is a negligible reservoir of phenanthrene, butthe colder Arctic snowpack, with SAI = 2500, sequesters most of the phenanthrene present in the (snow + boundary layer) system. PMID:17937278

  9. Recent developments in the coordination chemistry of bis(imino)acenaphthene (BIAN) ligands with s- and p-block elements.

    PubMed

    Hill, Nicholas J; Vargas-Baca, Ignacio; Cowley, Alan H

    2009-01-14

    Bis(imino)acenaphthenes (BIAN) have been known for many years. However, it is only since the 1990s that such compounds have been recognized as robust ligands for the support of catalytically active transition metal centers. More recently, the unique stereoelectronic properties of the BIAN ligand class are beginning to be appreciated and exploited for some fascinating new developments in synthetic, structural and catalytic s- and p-block chemistry. PMID:19089002

  10. Quenching of fluorene fluorescence by single-walled carbon nanotube dispersions with surfactants: application for fluorene quantification in wastewater.

    PubMed

    Palencia, Sergio; Vera, Soledad; Díez-Pascual, Ana María; San Andrés, María Paz

    2015-06-01

    The fluorescence of fluorene in aqueous solutions of surfactants of different natures, anionic sodium dodecylsulphate (SDS), cationic cetyltrimethyl ammonium chloride (CTAC) and non-ionic polyoxyethylene-23-lauryl ether (Brij 35), as well as in single-walled carbon nanotube (SWCNT) dispersions in these surfactants, has been studied and compared. A fluorescence quenching phenomenon has been observed in the presence of SWCNT, the effect being stronger for dispersions in CTAC, related to the improved dispersion capability of this surfactant as revealed by microscopic observations and its stronger adsorption onto the SWCNT surfaces as inferred from the Raman spectra. SWCNT interact with fluorene causing a fluorescence quenching. The fluorescence intensity ratio, calculated in the absence and in the presence of SWCNT, follows the Stern-Volmer equation. For the CTAC concentration that provides the highest quenching effect, the analytical characteristics of the fluorimetric method like sensitivity, detection and quantification limits, repeatability, reproducibility and robustness have been calculated. Results demonstrate that it is possible to determine fluorene in a fortified wastewater sample in aqueous solutions of CTAC and SWCNT/CTAC dispersions, showing recoveries close to 100 %. The quenching effect found in this work could be useful for the development of an optical device that uses SWCNT-based receptors for fluorene detection and quantification in aqueous surfactant solutions. Graphical abstract Distribution of fluorene between single-walled carbon nanotubes and micelles. PMID:25893803

  11. NONPHOTOCHEMICAL DECOMPOSITION OF FLUORENE VAPOR-ADSORBED ON COAL FLY ASH

    EPA Science Inventory

    Fluorene is representative of a group of polycyclic aromatic hydrocarbons that have been shown to exhibit oxidation in the absence of light when adsorbed on fly ash. The present study examines this process for fluorene in detail. Fluorene has been adsorbed on several different fl...

  12. Synthesis and Characterization of New Poly(silole-fluorene) Copolymers.

    PubMed

    Lee, Yun-Ji; Park, Jeong Cheol; Yun, Hui-Jun; Park, Jong-Man; Kim, Yun-Hi

    2015-02-01

    New poly(silole-fluorene) copolymers were designed and synthesized. Copolymers were obtained by Suzuki coupling reaction with different ratio of fluorene and silole. The obtained copolymers were characterized by the spectroscopic methods such as FT-IR and 1H-NMR spectroscopies. The resulting copolymers were soluble in common organic solvents such as toluene, tetrahydrofurane, chloroform, chlorobenzene, etc. The obtained copolymers showed thermal stabilities, which were characterized by TGA and DSC. PLEDs with device configurations of ITO/PEDOT:PSS/Copolymer I~VI/LiF/AI. The best device performances, with maximum brightness of 231.5 cd/m2 at a current density (J) of 408.3 mA/cm2, and a maximum luminance efficiency of 0.115 cd/A, were achieved in the composition of fluorene and silole moiety (0.9:0.1). PMID:26353724

  13. Comparing anthracene and fluorene degradation in anthracene and fluorene-contaminated soil by single and mixed plant cultivation.

    PubMed

    Somtrakoon, Khanitta; Chouychai, Waraporn; Lee, Hung

    2014-01-01

    The ability of three plant species (sweet corn, cucumber, and winged bean) to remediate soil spiked with 138.9 and 95.9 mg of anthracene and fluorene per kg of dry soil, respectively, by single and double plant co-cultivation was investigated. After 15 and 30 days of transplantation, plant elongation, plant weight, chlorophyll content, and the content of each PAH in soil and plant tissues were determined. Based on PAH removal and plant health, winged bean was the most effective plant for phytoremediation when grown alone; percentage of fluorene and anthracene remaining in the rhizospheric soil after 30 days were 7.8% and 24.2%, respectively. The most effective combination of plants for phytoremediation was corn and winged bean; on day 30, amounts of fluorene and anthracene remaining in the winged bean rhizospheric soil were 3.4% and 14.3%, respectively; amounts of fluorene and anthracene remaining in the sweet corn rhizospheric soil were 4.1% and 8.8%, respectively. Co-cultivation of sweet corn and cucumber could remove fluorene to a higher extent than anthracene from soil within 15 days, but these plants did not survive and died before day 30. The amounts of fluorene remaining in the rhizospheric soil of corn and cucumber were only 14% and 17.3%, respectively, on day 15. No PAHs were detected in plant tissues. This suggests that phytostimulation of microbial degradation in the rhizosphere was most likely the mechanism by which the PAHs were removed from the spiked soil. The results show that co-cultivation of plants has merit in the phytoremediation of PAH-spiked soil. PMID:24912240

  14. Optically enhanced nuclear cross polarization in acridine-doped fluorene

    SciTech Connect

    Oshiro, C.M.

    1982-06-01

    The objective of this work has been to create large polarizations of the dilute /sup 13/C nuclei in the solid state. The idea was to create /sup 1/H polarizations larger than Boltzmann and to use the proton enhanced nuclear induction spectroscopy cross polarization technique to then transfer this large polarization to the /sup 13/C spin system. Optical Nuclear Polarization (ONP) of acridine-doped fluorene single crystals was studied. In addition, ONP of powdered samples of the acridine-doped fluorene was studied. In general, many compounds do not crystallize easily or do not form large crystals suitable for NMR experiments. Powdered, amorphous and randomly dispersed samples are generally far more readily available than single crystals. One objective of this work has been to (first) create large /sup 1/H polarizations. Although large optical proton polarizations in single crystals have been reported previously, optically generated polarizations in powdered samples have not been reported. For these reasons, ONP studies of powdered samples of the acridine-doped fluorene were also undertaken. Using ONP in combination with the proton enhanced nuclear induction spectroscopy experiment, large /sup 13/C polarizations have been created in fluorene single crystals. These large /sup 13/C polarizations have permitted the determination of the seven incongruent chemical shielding tensors of the fluorene molecule. Part 2 of this thesis describes the proton enhanced nuclear induction spectroscopy experiment. Part 3 describes the ONP experiment. Part 4 is a description of the experimental set-up. Part 5 describes the data analysis for the determination of the chemical shielding tensors. Part 6 presents the results of the ONP experiments performed in this work and the chemical shielding tensors determined.

  15. Oxidation of polynuclear aromatic hydrocarbons in water. 4: Ozone combined with hydrogen peroxide

    SciTech Connect

    Beltran, F.J.; Rivas, J.; Ovejero, G.

    1996-03-01

    Three polynuclear aromatic hydrocarbons, fluorene, phenanthrene, and acenaphthene, have been treated in water with ozone combined with hydrogen peroxide. The effect of hydrogen peroxide concentration, pH, and bicarbonate ions has been investigated. The process goes through direct and radical reactions in the case of fluorene and phenanthrene oxidation, while acenaphthene is removed exclusively by direct ozonation. At concentrations of hydrogen peroxide higher than 10{sup {minus}5} M, ozone mass transfer controls the process rate, regardless of pH. In any case, however, the presence of hydrogen peroxide does not improve the oxidation rate compared to ozonation alone due to the importance of the direct reactions. Intermediate compounds identified during oxidation with ozone alone and combined with UV radiation or hydrogen peroxide are similar and justify the high consumption of ozone in these processes.

  16. Two-Electron Carbon Dioxide Reduction Catalyzed by Rhenium(I) Bis(imino)acenaphthene Carbonyl Complexes

    PubMed Central

    Portenkirchner, Engelbert; Kianfar, Elham; Sariciftci, Niyazi Serdar; Knör, Günther

    2014-01-01

    Rhenium(I) carbonyl complexes carrying substituted bis(arylimino)acenaphthene ligands (BIAN-R) have been tested as potential catalysts for the two-electron reduction of carbon dioxide. Cyclic voltammetric studies as well as controlled potential electrolysis experiments were performed using CO2-saturated solutions of the complexes in acetonitrile and acetonitrile–water mixtures. Faradaic efficiencies of more than 30 % have been determined for the electrocatalytic production of CO. The effects of ligand substitution patterns and water content of the reaction medium on the catalytic performance of the new catalysts are discussed. PMID:24737649

  17. New phenanthrene derivatives from maxillaria densa(1)

    PubMed

    Estrada; Toscano; Mata

    1999-08-01

    Two new phenanthrene derivatives, 2,5-dihydroxy-3, 4-dimethoxyphenanthrene (1) and 9,10-dihydro-2,5-dihydroxy-3, 4-dimethoxyphenanthrene (2), were isolated from an extract prepared from the whole plant of the orchid Maxillaria densa with spasmolytic activity. In addition, four known compounds, namely 2,7-dihydroxy-3, 4-dimethoxyphenanthrene, 9,10-dihydro-2,7-dihydroxy-3, 4-dimethoxyphenanthrene (3), 2,5-dihydroxy-3,4, 9-trimethoxyphe-nanthrene, and 2,7-dihydroxy-3,4, 9-trimethoxyphenanthrene, were obtained. The structures of the isolated compounds were elucidated by spectroscopic methods. In the case of phenanthrene derivatives 1 and 3, the structures were unambiguously assigned by X-ray analysis. PMID:10479332

  18. Homogeneous and heterogeneous reactions of phenanthrene with ozone

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Yang, Bo; Meng, Junwang; Gao, Shaokai; Dong, Xinyu; Shu, Jinian

    2010-02-01

    The reactions of gas-phase phenanthrene and suspended phenanthrene particles with ozone were conducted in a 200l chamber. The secondary organic aerosol formation was observed in the reaction of gas-phase phenanthrene with ozone and simultaneously the size distribution of the secondary organic aerosol was monitored with a scanning mobility particle sizer during the formation process. The particulate ozonation products from both reactions were analyzed with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer. 2,2'-Diformylbiphenyl was identified as the dominant product in both homogeneous and heterogeneous reactions of phenanthrene with ozone. GC/MS analysis of ozonation products of phenanthrene in glacial acetic acid was carried out for assigning time-of-flight mass spectra of reaction products formed in the homogeneous and heterogeneous reactions of phenanthrene with ozone.

  19. Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus.

    PubMed Central

    Bezalel, L; Hadar, Y; Fu, P P; Freeman, J P; Cerniglia, C E

    1996-01-01

    The white rot fungus Pleurotus ostreatus, grown for 11 days in basidiomycetes rich medium containing [14C] phenanthrene, metabolized 94% of the phenanthrene added. Of the total radioactivity, 3% was oxidized to CO2. Approximately 52% of phenanthrene was metabolized to trans-9,10-dihydroxy-9,10-dihydrophenanthrene (phenanthrene trans-9,10-dihydrodiol) (28%), 2,2'-diphenic acid (17%), and unidentified metabolites (7%). Nonextractable metabolites accounted for 35% of the total radioactivity. The metabolites were extracted with ethyl acetate, separated by reversed-phase high-performance liquid chromatography, and characterized by 1H nuclear magnetic resonance, mass spectrometry, and UV spectroscopy analyses. 18O2-labeling experiments indicated that one atom of oxygen was incorporated into the phenanthrene trans-9,10-dihydrodiol. Circular dichroism spectra of the phenanthrene trans-9,10-dihydrodiol indicated that the absolute configuration of the predominant enantiomer was 9R,10R, which is different from that of the principal enantiomer produced by Phanerochaete chrysosporium. Significantly less phenanthrene trans-9,10-dihydrodiol was observed in incubations with the cytochrome P-450 inhibitor SKF 525-A (77% decrease), 1-aminobenzotriazole (83% decrease), or fluoxetine (63% decrease). These experiments with cytochrome P-450 inhibitors and 18O2 labeling and the formation of phenanthrene trans-9R,10R-dihydrodiol as the predominant metabolite suggest that P. ostreatus initially oxidizes phenanthrene stereoselectively by a cytochrome P-450 monoxygenase and that this is followed by epoxide hydrolase-catalyzed hydration reactions. PMID:8779594

  20. Ambient aquatic life water quality criteria for phenanthrene. Draft report

    SciTech Connect

    Not Available

    1988-08-16

    The document is a draft for aquatic life criteria for phenanthrene. Data concerning the acute toxicity of phenanthrene to freshwater animals are available for 9 species. Mean acute values for ten species of saltwater animals are specified as well. The document is for public review and comment to assist in producing the criteria document in final form.

  1. OXIDATIVE DEGRADATION OF PHENANTHRENE BY THE LIGNINOLYTIC FUNGUS PHANEROCHAETE CHRYSOSPORIUM

    EPA Science Inventory

    The ligninolytic fungus Phanerochaete chrysosporium oxidized phenanthrene and phenanthrene-9,10-quinone (PQ) at their C-9 and C-10 positions to give a ring-fission product, 2,2'-diphenic acid (DPA), which was identified in chromatographic and isotope dilution experiments. PA form...

  2. Evaluating phenanthrene sorption on various wood chars

    USGS Publications Warehouse

    James, G.; Sabatini, D.A.; Chiou, C.T.; Rutherford, D.; Scott, A.C.; Karapanagioti, H.K.

    2005-01-01

    A certain amount of wood char or soot in a soil or sediment sample may cause the sorption of organic compounds to deviate significantly from the linear partitioning commonly observed with soil organic matter (SOM). Laboratory produced and field wood chars have been obtained and analyzed for their sorption isotherms of a model solute (phenanthrene) from water solution. The uptake capacities and nonlinear sorption effects with the laboratory wood chars are similar to those with the field wood chars. For phenanthrene aqueous concentrations of 1 ??gl-1, the organic carbon-normalized sorption coefficients (log Koc) ranging from 5.0 to 6.4 for field chars and 5.4-7.3 for laboratory wood chars, which is consistent with literature values (5.6-7.1). Data with artificial chars suggest that the variation in sorption potential can be attributed to heating temperature and starting material, and both the quantity and heterogeneity of surface-area impacts the sorption capacity. These results thus help to corroborate and explain the range of log Koc values reported in previous research for aquifer materials containing wood chars. ?? 2004 Elsevier Ltd. All rights reserved.

  3. H- and J-aggregation of fluorene-based chromophores.

    PubMed

    Deng, Yonghong; Yuan, Wen; Jia, Zhe; Liu, Gao

    2014-12-11

    Understanding of H- and J-aggregation behaviors in fluorene-based polymers is significant both for determining the origin of various red-shifted emissions occurring in blue-emitting polyfluorenes and for developing polyfluorene-based device performance. In this contribution, we demonstrate a new theory of the H- and J-aggregation of polyfluorenes and oligofluorenes, and understand the influence of chromosphere aggregation on their photoluminescent properties. H- and J-aggregates are induced by a continuous increasing concentration of the oligofluorene or polyfluorene solution. A relaxed molecular configuration is simulated to illustrate the spatial arrangement of the bonding of fluorenes. It is indicated that the relaxed state adopts a 21 helical backbone conformation with a torsion angle of 18° between two connected repeat units. This configuration makes the formation of H- and J-aggregates through the strong π-π interaction between the backbone rings. A critical aggregation concentration is observed to form H- and J-aggregates for both polyfluorenes and oligofluorenes. These aggregates show large spectral shifts and distinct shape changes in photoluminescent excitation (PLE) and emission (PL) spectroscopy. Compared with "isolated" chromophores, H-aggregates induce absorption spectral blue-shift and fluorescence spectral red-shift but largely reduce fluorescence efficiency. "Isolated" chromophores not only refer to "isolated molecules" but also include those associated molecules if their conjugated backbones are not compact enough to exhibit perturbed absorption and emission. J-aggregates induce absorption spectral red-shift and fluorescence spectral red-shift but largely enhance fluorescence efficiency. The PLE and PL spectra also show that J-aggregates dominate in concentrated solutions. Different from the excimers, the H- and J-aggregate formation changes the ground-state absorption of fluorene-based chromophores. H- and J-aggregates show changeable

  4. Light-Emitting Properties of Fluorene-Based Copolymers

    NASA Astrophysics Data System (ADS)

    Hwang, Do-Hoon; Lee, Jong-Don; Park, Moo-Jin; Lee, Ji-Hoon; Lee, Chang-Hee

    A series of random copolymers of 2,7-dibromo-9,9-bis(4‧-n-octyloxyphenyl) fluorene (BOPF) and 2,7-dibromo-N-(2‧-ethylhexyl)carbazole (EHC) were synthesized through Ni(0)-mediated polymerization. Carbazole comonomer was introduced to improve the hole-transporting properties of PBOPF. The synthesized poly(BOPF-co-EHC)s showed similar UV-visible absorption and PL emission to PBOPF. EL devices were fabricated in an ITO/PEDOT/polymer/Ca/Al configuration. EL devices which used copolymers showed improved device performance over devices which used PBOPF homopolymers due to a more balanced charge transport.

  5. Evidence for a novel pathway in the degradation of fluorene by Pseudomonas sp. strain F274.

    PubMed Central

    Grifoll, M; Selifonov, S A; Chapman, P J

    1994-01-01

    A fluorene-utilizing microorganism, identified as a species of Pseudomonas, was isolated from soil severely contaminated from creosote use and was shown to accumulate six major metabolites from fluorene in washed-cell incubations. Five of these products were identified as 9-fluorenol, 9-fluorenone, (+)-1,1a-dihydroxy-1-hydro-9-fluorenone, 8-hydroxy-3,4-benzocoumarin, and phthalic acid. This last compound was also identified in growing cultures supported by fluorene. Fluorene assimilation into cell biomass was estimated to be approximately 50%. The structures of accumulated products indicate that a previously undescribed pathway of fluorene catabolism is employed by Pseudomonas sp. strain F274. This pathway involves oxygenation of fluorene at C-9 to give 9-fluorenol, which is then dehydrogenated to the corresponding ketone, 9-fluorenone. Dioxygenase attack on 9-fluorenone adjacent to the carbonyl group gives an angular diol, 1,1a-dihydroxy-1-hydro-9-fluorenone. Identification of 8-hydroxy-3,4-benzocoumarin and phthalic acid suggests that the five-membered ring of the angular diol is opened first and that the resulting 2'-carboxy derivative of 2,3-dihydroxy-biphenyl is catabolized by reactions analogous to those of biphenyl degradation, leading to the formation of phthalic acid. Cell extracts of fluorene-grown cells possessed high levels of an enzyme characteristic of phthalate catabolism, 4,5-dihydroxyphthalate decarboxylase, together with protocatechuate 4,5-dioxygenase. On the basis of these findings, a pathway of fluorene degradation is proposed to account for its conversion to intermediary metabolites. A range of compounds with structures similar to that of fluorene was acted on by fluorene-grown cells to give products consistent with the initial reactions proposed. PMID:8074523

  6. Factors affecting sequestration and bioavailability of phenanthrene in soils

    SciTech Connect

    White, J.C.; Kelsey, J.W.; Hatzinger, P.B.; Alexander, M.

    1997-10-01

    A study was conducted to determine factors affecting the sequestration and changes in bioavailability as phenanthrene persists in soils. Phenanthrene became sequestered in seven soils differing appreciably in organic matter and clay content as measured by earthworm uptake, bacterial mineralization, or extractability. Phenanthrene also became sequestered as it aged in soil aggregates of various sizes as measured by decline in availability to a bacterium, a mild extractant, or both. Wetting and drying a soil during aging reduced the amount of phenanthrene recovered by a mild extractant and the rate and extent of bacterial mineralization of the hydrocarbon. After biodegradation of phenanthrene added to the soil, more of the compound remained if it had been aged than if it had not been aged. Wetting and drying the soil during aging further increased the amount of phenanthrene remaining after biodegradation. The rate and extent of bacterial mineralization of phenanthrene were less in leached than in unleached soil. Aging/sequestration is thus markedly affected by soil properties and environmental factors.

  7. Tuning the Electronic Properties of Acetylenic Fluorenes by Phosphaalkene Incorporation.

    PubMed

    Svyaschenko, Yurii V; Orthaber, Andreas; Ott, Sascha

    2016-03-14

    Versatile synthetic protocols for 2,7- and 3,6-diacetylenic fluorene-9-ylidene phosphanes (F9Ps) were developed. Protodesilylation of trimethylsilyl-protected acetylenic F9Ps affords terminal acetylenes that can be employed in Sonogashira and Glaser-type C-C coupling reactions to give thienyl-decorated and butadiyne-bridged fluorene-9-ylidene phosphanes, respectively. As evidenced by UV/Vis spectroscopy and cyclic voltammetry and corroborated by ab initio calculations, the presence of the P center in the F9Ps induces a significantly reduced HOMO-LUMO splitting that originates from stabilization of the LUMO levels. Variation of the acetylene substitution pattern is an additional tool to influence the optical and electronic properties. Whereas 3,6-disubstituted F9Ps have strong absorptions around 400 nm, mainly due to π-π* transitions, 2,7-diacetylenic F9Ps exhibit longest-wavelength absorptions that have significant charge-transfer character with an onset around 520 nm. PMID:26833389

  8. Charge injection and transport in fluorene-based copolymers.

    NASA Astrophysics Data System (ADS)

    Fong, Hon Hang; Malliaras, George G.; Lu, Tianjian; Dunlap, David

    2007-03-01

    Fluorene-based copolymer is considered to be one of the most promising hole transporting and blue light-emitting conjugated polymers used in polymeric light-emitting diodes (PLEDs). Time-of-flight (TOF) technique has been employed to evaluate the charge drift mobility under a temperature range between 200 - 400 K at the thick film regime (1-10 micron). Meanwhile, contact ohmicity is studied by Dark Current Space Charge Limited Conduction (DISCLC) technique. Charge injection efficiencies from different electrical contacts are also studied and the corresponding injection barriers are independently investigated by photoemission and electroabsorption spectroscopies. Results show that the copolymers exhibit non-dispersive charge transport behavior and possess superior mobilities of up to 0.01cm^2V-1s-1 while single-carrier devices from various electrical contacts such as PEDOT:PSS are varied, depending on the chemical structure of amine component in the fluorene-triarylamine copolymers. Results will shed light on the enhancement of device efficiency and stability in the future polymer electronic devices.

  9. Spirobifluorene and biphenylaminophenyl fluorene with dimesitylboron as multifunctional electroluminescent materials

    NASA Astrophysics Data System (ADS)

    Zhang, Wenguan; He, Zhiqun; Pang, Hui; Wang, Yongsheng; Zhao, Shengmin

    2015-12-01

    By introducing triarylamino and dimesitylboron groups into fluorene derivatives, two symmetric compounds 2,7-bis(dimesitylboryl)-9,9-spirobifluorene (SFMB) and 2,7-bis(dimesitylboryl)-9,9-bis(4-diphenylaminophenyl)fluorene (PAFMB) were prepared. SFMB and PAFMB exhibited solvatochromism in the different polarities of solvents. Devices A1, A2, A3 and A4 based on SFMB displayed emissions at 444, 448, 528, and 444 nm with current efficiencies of 1.06, 1.41, 0.84, and 1.52 cd/A, respectively. The blue light was close to the National Television Standards Committee standard blue color (x = 0.14, y = 0.08). Devices B1, B2, B3 and B4 based on PAFMB emitted lights centered at 484, 472, 513 and 472 nm, their current efficiencies were 1.80, 0.1, 1.23 and 1.93 cd/A, respectively. The results demonstrated that SFMB and PAFMB were multifunctional materials acted as emitters, and hole- and electron-transporting materials.

  10. Phenanthrene derivatives from the orchid Coelogyne cristata.

    PubMed

    Majumder, P L; Sen, S; Majumder, S

    2001-10-01

    Coeloginanthridin, a 9,10-dihydrophenanthrene derivative, and coeloginanthrin, the corresponding phenanthrene analogue, were isolated from the orchid Coelogyne cristata which earlier afforded coelogin (1a) and coeloginin (1b). The structures of coeloginanthridin and coeloginanthrin were established as 3,5,7-trihydroxy-1,2-dimethoxy-9,10-dihydrophenanthrene (2a) and 3,5,7-trihydroxy-1,2-dimethoxyphenanthrene (2c), respectively, from spectral and chemical evidence including the conversion of coeloginanthridin triacetate (2b) to coeloginanthrin triacetate (2d) by dehydrogenation with DDQ. In the light of earlier reports on structurally similar compounds, 2a and 2c may have biological activities of phytoalexins and endogenous plant growth regulators. PMID:11576602

  11. Complete Genome Sequence of a Phenanthrene Degrader, Mycobacterium sp. Strain EPa45 (NBRC 110737), Isolated from a Phenanthrene-Degrading Consortium

    PubMed Central

    Kato, Hiromi; Ogawa, Natsumi; Ohtsubo, Yoshiyuki; Oshima, Kenshiro; Toyoda, Atsushi; Mori, Hiroshi; Nagata, Yuji; Kurokawa, Ken; Hattori, Masahira; Fujiyama, Asao

    2015-01-01

    A phenanthrene degrader, Mycobacterium sp. EPa45, was isolated from a phenanthrene-degrading consortium. Here, we report the complete genome sequence of EPa45, which has a 6.2-Mb single circular chromosome. We propose a phenanthrene degradation pathway in EPa45 based on the complete genome sequence. PMID:26184940

  12. Toxic photoproducts of phenanthrene and anthracene in sunlight

    SciTech Connect

    Duxbury, C.L.; McConkey, B.J.; Mallakin, A.; Dixon, D.G.; Greenberg, B.M.

    1995-12-31

    Phenanthrene and anthracene, two of the most prevalent PAHs, undergo significant increases in toxicity on exposure to sunlight. Over a period of several days exposure to light, the toxicity of an aqueous solution of phenanthrene or anthracene increased dramatically. This increase in toxicity is largely due to the primary products formed by these two PAHs due to light exposure. These compounds are more toxic than the parent compounds at equimolar concentrations. Although anthracene is a potent photosensitizer, phenanthrene did not exhibit a significant increase in toxicity due to photosensitization. Photo-oxidation was the principal cause of photoinduced toxicity, with 9,10-phenanthrenequinone being the primary product. This compound is more water soluble than phenanthrene increasing its bioavailability. In addition, mixtures of phenanthrene and 9,10-phenanthrenequinone exhibited toxicity similar to the quinone added alone. This was shown by joint toxicity testing using Lemna gibba and Daphnia magna. These two organisms are currently being used in the lab to further test individual oxidized products of anthracene and phenanthrene that occur as a result of exposure to sunlight.

  13. Synthesis of polyamides from diamines of the fluorene series

    NASA Technical Reports Server (NTRS)

    Fedotova, O. Y.; Korshak, V. V.; Nesterova, Y. I.

    1984-01-01

    Aromatic polyamides were prepared by polycondensation of isophthaloyl chloride and 2,7-diaminofluorene, 2,7-dimainofluorenone, or 2,5-diaminofluorenone in AcNMe2 or N-methyl-2-pyrrolidinone at 20 deg - 30 deg for 1.5-2 hr. Isophthaloyl chloride-2,5-diaminofluorenone copolymer 39609-29-51 was sol. in AcNMe2, N-methyl-2-pyrrolidinone, DMF, and hexamethylphosphoramide, whereas isophthaloyl chloride-2,7-diamino-fluorene copolymer 39609-30-3 and isophthaloyl chloride-2,7-diamino-fluorenone copolymer 39609-31-0 were not sol. in the solvents cited. The aromatic polyamides revealed thixotropic properties in 0.5% solutions in H2SO4.

  14. Fluorene-Perylene Diimide Arrays onto Graphene Sheets for Photocatalysis.

    PubMed

    Stergiou, Anastasios; Tagmatarchis, Nikos

    2016-08-24

    A facile approach for introducing photoactive poly(fluorene-perylene diimide) arrays (PFPDI) onto graphene sheets was accomplished. Noncovalent PFPDI/graphene ensembles formed via π-π stacking interactions between the two components and covalent PFPDI-graphene hybrids realized upon a Stille polycondensation reaction between an iodobenzyl-functionalized graphene, a 9,9-dialkyl substituted fluorene diboronic acid, and a 1,7-dibromo-PDI derivative were prepared. The morphology of PFPDI/graphene and PFPDI-graphene was evaluated by high-resolution transmission electron microscopy (HR-TEM), revealing the presence of even monolayered graphene sheets. Moreover, their photophysical and redox properties as assessed by electronic absorption spectroscopy and steady-state as well as time-resolved photoluminescence assays and electrochemistry, respectively, disclosed charge-transfer characteristics owing to the high photoluminescence quenching of PFPDI in the presence of graphene and the fast component attributed to the decay of the emission intensity of the singlet excited state of PFPDI in both PFPDI/graphene and PFPDI-graphene. Next, testing their ability to operate in energy conversion schemes, the PFPDI-graphene was successfully employed as catalyst for the reduction of 4-nitrophenol to 4-aminophenol. Notably, the kinetics for the reduction were enhanced by visible light photoirradiation as compared to dark conditions as well as the presence of PFPDI-graphene, contrasting the case where only PFPDI, in the absence of graphene, was employed. Finally, recycling of the catalyst PFPDI-graphene was achieved and reutilization in successive reduction reactions of 4-nitrophenol was found to proceed with the same efficiency. PMID:27483330

  15. Use of bromodeoxyuridine immunocapture to identify psychrotolerant phenanthrene-degrading bacteria in phenanthrene-enriched polluted Baltic Sea sediments

    SciTech Connect

    Edlund, A.; Jansson, J.

    2008-05-01

    The aim of this study was to enrich and identify psychrotolerant phenanthrenedegrading bacteria from polluted Baltic Sea sediments. Polyaromatic hydrocarbon (PAH)-contaminated sediments were spiked with phenanthrene and incubated for 2 months in the presence of bromodeoxyuridine that is incorporated into the DNA of replicating cells. The bromodeoxyuridine-incorporated DNA was extracted by immunocapture and analyzed by terminal-restriction fragment length polymorphism and 16S rRNA gene cloning and sequencing to identify bacterial populations that were growing. In addition, degradation genes were quantified in the bromodeoxyuridine-incorporated DNA by real-time PCR. Phenanthrene concentrations decreased after 2 months of incubation in the phenanthrene-enriched sediments and this reduction correlated to increases in copy numbers of xylE and phnAc dioxygenase genes. Representatives of Exiguobacterium, Schewanella,Methylomonas, Pseudomonas, Bacteroides and an uncultured Deltaproteobacterium and a Gammaproteobacterium dominated the growing community in the phenanthrene spiked sediments. Isolates that were closely related to three of these bacteria (two pseudomonads and an Exiguobacterium sp.) could reduce phenanthrene concentrations in pure cultures and they all harbored phnAc dioxygenase genes. These results confirm that this combination of culture-based and molecular approaches was useful for identification of actively growing bacterial species with a high potential for phenanthrene degradation.

  16. Relative role of eukaryotic and prokaryotic microorganisms in phenanthrene transformation in coastal sediments

    SciTech Connect

    MacGillivray, A.R.; Shiaris, M.P. )

    1994-04-01

    The relative role of eukaryotic versus prokaryotic microorganisms in phenanthrene transformation was measured in slurries of coastal sediment by two different approaches: detection of marker metabolites and use of selective inhibitors on phenanthrene biotransformation. Phenanthrene biotransformation was measured by polar metabolite formation and CO[sub 2] evolution from [9-[sup 14]C]phenanthrene. Both yeasts and bacteria transformed phenanthrene in slurries of coastal sediment. Two products of phenanthrene oxidation by fungi, phenanthrene trans-3,4-dihydrodiol and 3-phenanthrol, were produced in yeast-inoculated sterile sediment. However, only products of phenanthrene oxidation typical of bacterial transformation, 1-hydroxy-2-naphthoic acid and phenanthrene cis-3,4-dihydrodiol, were isolated from slurries of coastal sediment with natural microbial populations. Phenanthrene trans-dihydrodiols or other products of fungal oxidation of phenanthrene were not detected in the slurry containing a natural microbial population. A predominant role for bacterial transformation of phenanthrene was also suggested from selective inhibitor experiments. Addition of streptomycin to slurries, at a concentration which suppressed bacterial viable counts and rates of [methyl-[sup 3]H]thymidine uptake, completely inhibited phenanthrene transformation. Treatment with colchicine, at a concentration which suppressed yeast viable counts, depressed phenanthrene transformation by 40%, and this was likely due to nontarget inhibition of bacterial activity. The relative contribution of eukaryotic microorganisms to phenanthrene transformation in inoculated sterile sediment was estimated to be less than 3% of the total activity. We conclude that the predominant degraders of phenanthrene in muddy coastal sediments are bacteria and not eukaryotic microorganisms. 35 refs., 2 figs., 1 tab.

  17. Fluorene-fluorenone copolymer: Stable and efficient yellow-emitting material for electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Panozzo, S.; Vial, J.-C.; Kervella, Y.; Stéphan, O.

    2002-10-01

    We have synthesized and characterized a new fluorene copolymer exhibiting bright yellow luminescence. In order to ensure a complete π-stacking of the active layer, a 9-fluorenone monomeric unit (FOne) has been used as comonomer in conjunction with the more classical 9,9-di-n-nonylfluorene unit. As expected with fluorene-based materials, when excited at 370 nm, the corresponding dilute copolymer solution photoluminescence spectra exhibit a main peak centered at 450 nm in the blue part of the visible spectrum. However, in the solid state, immediate structural reorganization of the layer occurs, leading to a red-shifted emission (bright yellow emission) centered at 550 nm. The origin of the emitted light has been attributed to excimers and/or aggregates based on short FOne segments and involves mainly exciton transfer between nonaggregated fluorene segments and aggregated ones. It is noteworthy that organic light-emitting devices based on these new materials exhibit no spectral evolution upon device operation. However, although stacking leads generally to a detrimental quenching of the luminescence in the solid state, as for regular poly(alkyl-fluorene), the luminescence efficiency of the fluorene-fluorenone copolymer remains suitable for device preparation. High material stability is attributed to an efficient and fast structural reorganization of the active layer, triggered by the small proportion of fluorenone. High electroluminescence efficiency, when compared to aggregated regular poly(alkyl-fluorene), results from an improved electron injection, a better carrier transport, and the conjunction of an efficient energy transfer from fluorene segments to excimers and/or aggregates with the implication of spin triplet, which is often lacking when using regular semiconducting polymers.

  18. Triplet exciton transport in the benzophenone-fluorene-naphthalene molecule

    NASA Astrophysics Data System (ADS)

    McElfresh, Duncan C.

    Incoherent triplet-triplet energy transfer through the benzophenone-fluorene-naphthalene system is computationally investigated to determine triplet hopping rates. These rates have been previously measured experimentally and have also been estimated computationally. There are many complex steps associated with such a computational analysis, though, and earlier efforts resorted to a variety of semi-empirical modifications to the methods used in order to obtain results consistent with the experimental data. This has motivated an investigation in which best practice methods are applied to the system without any empirical adjustments. The calculation of triplet excitation energy and triplet-triplet electronic coupling are examined in detail using a range of computational methods from simple Density Functional Theory to the many-body Green function approach embodied in the Bethe-Salpeter Equation. This analysis includes an evaluation of the robustness of each method considered. Significantly, the investigation identifies the excited states of benzophenone as being extremely difficult to calculate using even the most advanced excitation methods, and a theory is presented as to why the molecule is both interesting and troublesome. The final rate estimates, without any empirical adjustments, are one to two orders of magnitude greater than those measured experimentally. This data, and the detailed methodological study supporting it, is expected to be helpful in future efforts to computationally scrutinize triplet exciton hopping.

  19. Photodegradation of fluorene in aqueous solution: Identification and biological activity testing of degradation products.

    PubMed

    Kinani, Said; Souissi, Yasmine; Kinani, Aziz; Vujović, Svetlana; Aït-Aïssa, Sélim; Bouchonnet, Stéphane

    2016-04-15

    Degradation of fluorene under UV-vis irradiation in water was investigated and structural elucidation of the main photoproducts was achieved using gas chromatography coupled with mass spectrometry. Twenty-six photoproducts were structurally identified, mainly on the basis of electron ionization mass spectra interpretation. The main generated transformation products are hydroxy derivatives. Some secondary photoproducts including fluorenone, hydroxy fluorenone, 2-biphenyl carboxylic acid, biphenylene, methanol fluorene congeners and hydroxy fluorene dimers were also observed. A photodegradation pathway was suggested on the basis of the chemical structures of photoproducts. Fluorene as well as its main photoproducts for which chemical standards were commercially available were tested for their ability to elicit cytotoxic, estrogenic and dioxin-like activity by using in vitro cell-based bioassays. None of the tested compounds was cytotoxic at concentrations up to 100μM. However, 2-hydroxyfluorene and 3-hydroxyfluorene exerted significant estrogenic and dioxin-like activity on a concentration range of 3-30μM, while fluorene and 9-hydroxyfluorene were weakly or not active, respectively, in our assays. This supports the view that photodegradation processes can generate by-products of higher toxicological concern than the parent compound and strengthens the need to further identify transformation products in the aquatic environment. PMID:26987414

  20. Electronic Structure and Multicatalytic Features of Redox-Active Bis(arylimino)acenaphthene (BIAN)-Derived Ruthenium Complexes.

    PubMed

    Singha Hazari, Arijit; Ray, Ritwika; Hoque, Md Asmaul; Lahiri, Goutam Kumar

    2016-08-15

    The article examines the newly designed and structurally characterized redox-active BIAN-derived [Ru(trpy)(R-BIAN)Cl]ClO4 ([1a]ClO4-[1c]ClO4), [Ru(trpy)(R-BIAN)(H2O)](ClO4)2 ([3a](ClO4)2-[3c](ClO4)2), and BIAO-derived [Ru(trpy)(BIAO)Cl]ClO4 ([2a]ClO4) (trpy = 2,2':6',2''-terpyridine, R-BIAN = bis(arylimino)acenaphthene (R = H (1a(+), 3a(2+)), 4-OMe (1b(+), 3b(2+)), 4-NO2 (1c(+), 3c(2+)), BIAO = [N-(phenyl)imino]acenapthenone). The experimental (X-ray, (1)H NMR, spectroelectrochemistry, EPR) and DFT/TD-DFT calculations of 1a(n)-1c(n) or 2a(n) collectively establish {Ru(II)-BIAN(0)} or {Ru(II)-BIAO(0)} configuration in the native state, metal-based oxidation to {Ru(III)-BIAN(0)} or {Ru(III)-BIAO(0)}, and successive electron uptake processes by the α-diimine fragment, followed by trpy and naphthalene π-system of BIAN or BIAO, respectively. The impact of the electron-withdrawing NO2 function in the BIAN moiety in 1c(+) has been reflected in the five nearby reduction steps within the accessible potential limit of -2 V versus SCE, leading to a fully reduced BIAN(4-) state in [1c](4-). The aqua derivatives ({Ru(II)-OH2}, 3a(2+)-3c(2+)) undergo simultaneous 2e(-)/2H(+) transfer to the corresponding {Ru(IV)═O} state and the catalytic current associated with the Ru(IV)/Ru(V) response probably implies its involvement in the electrocatalytic water oxidation. The aqua derivatives (3a(2+)-3c(2+)) are efficient and selective precatalysts in transforming a wide variety of alkenes to corresponding epoxides in the presence of PhI(OAc)2 as an oxidant in CH2Cl2 at 298 K as well as oxidation of primary, secondary, and heterocyclic alcohols with a large substrate scope with H2O2 as the stoichiometric oxidant in CH3CN at 343 K. The involvement of the {Ru(IV)═O} intermediate as the active catalyst in both the oxidation processes has been ascertained via a sequence of experimental evidence. PMID:27482834

  1. Effect of Cosolutes on the Sorption of Phenanthrene onto Mineral Surface of River Sediments and Kaolinite

    PubMed Central

    2014-01-01

    Sorption of phenanthrene onto the natural sediment with low organic carbon content (OC%), organic-free sediment, and kaolinite was investigated through isotherm experiments. Effects of cosolutes (pyrene, 4-n-nonyphenol (NP), and humic acid (HA)) on phenanthrene sorption were also studied by comparing apparent solid-water distribution coefficients (Kdapp) of phenanthrene. Two addition sequences, including “cosolute added prior to phenanthrene” and “cosolute and phenanthrene added simultaneously,” were adopted. The Freundlich model fits phenanthrene sorption on all 3 sorbents well. The sorption coefficients on these sorbents were similar, suggesting that mineral surface plays an important role in the sorption of hydrophobic organic contaminants on low OC% sediments. Cosolutes could affect phenanthrene sorption on the sorbents, which depended on their properties, concentrations, and addition sequences. Pyrene inhibited phenanthrene sorption. Sorbed NP inhibited phenanthrene sorption at low levels and promoted sorption at high levels. Similar to NP, effect of HA on phenanthrene sorption onto the natural sediment depended on its concentrations, whereas, for the organic-free sediment and kaolinite, preloading of HA at high levels led to an enhancement in phenanthrene Kdapp while no obvious effect was observed at low HA levels; dissolved HA could inhibit phenanthrene sorption on the two sorbents. PMID:25147865

  2. Multiple degradation pathways of phenanthrene by Stenotrophomonas maltophilia C6

    PubMed Central

    Gao, Shumei; Seo, Jong-Su; Wang, Jun; Keum, Young-Soo; Li, Jianqiang; Li, Qing X.

    2013-01-01

    Stenotrophomonas maltophilia strain C6, capable of utilizing phenanthrene as a sole source of carbon and energy, was isolated from creosote-contaminated sites at Hilo, Hawaii. Twenty-two metabolites of phenanthrene, covering from dihydrodiol to protocatechuic acid, were isolated and characterized. Phenanthrene was degraded via an initial dioxygenation on 1,2-, 3,4-, and 9,10-C, where the 3,4-dioxygenation and subsequent metabolisms were most dominant. The metabolic pathways were further branched by ortho- and meta-cleavage of phenanthrenediols to produce 1-hydroxy-2-naphthoic acid, 2-hydroxy-1-naphthoic acid, and naphthalene-1,2-dicarboxylic acid. These intermediates were then transformed to naphthalene-1,2-diol. 1-Hydroxy-2-naphthoic acid was also degraded via a direct ring cleavage. Naphthalene-1,2-diol underwent primarily ortho-cleavage to produce trans-2-carboxycinnamic acid and then to form phthalic acid, 4,5-dihydroxyphthalic acid and protocatechuic acid. Accumulation of salicylic acid in prolonged incubation indicated that a limited extent of meta-cleavage of naphthalene-1, 2-diol also occurred. This is the first study of detailed phenanthrene metabolic pathways by Stenotrophomonas maltophilia. PMID:23539472

  3. Cross-Linkable Fluorene-Diphenylamine Derivatives for Electrochromic Applications.

    PubMed

    Abraham, Silja; Ganesh, Gayathri Prabhu T; Varughese, Sunil; Deb, Biswapriya; Joseph, Joshy

    2015-11-18

    Multicolor electrochromic systems based on heat cross-linkable arylamine-substituted fluorene derivatives, FD and FDOMe, are reported. These derivatives with pendant vinyl groups have been synthesized by the Buchwald-Hartwig amination reaction and were well-characterized using various analytical and spectroscopic techniques such as NMR, ESI-MS, and single-crystal X-ray diffraction analysis. FD and FDOMe exhibited thermally activated cross-linking above their melting temperatures, which was confirmed through absorption, differential scanning calorimetry (DSC), FT-IR, and wide-angle X-ray diffraction (WAXD) techniques. Cross-linked FD films (FD-X) on ITO showed two reversible redox peaks at 0.74 and 0.91 V (versus Ag/AgCl) that correspond to the formation of radical cations and dications, respectively. The corresponding redox peaks were observed at 0.6 and 0.8 V for cross-linked FDOMe films (FDOMe-X). Spectroelectrochemical studies of the electrochromic films on ITO revealed multicolor electrochromism of FD-X (colorless-yellow-dark cyan) and FDOMe-X (colorless-brick red-blue) with a color contrast of ∼44% at 485 nm for FD-X and ∼63% at 500 nm for FDOMe-X and good switching stability between the neutral and oxidized states (>300 cycles) with low switching voltages (<0.9 V for the first oxidation and <1.3 V for the second oxidation). Furthermore, fabrication of electrochromic devices using FD-X and FDOMe-X on FTO substrate with PMMA-based solid electrolyte was demonstrated, where the devices exhibited reasonably low switching time between the redox states (<30 s) with good optical contrast. PMID:26496020

  4. Evaluation of fluoren-NU as a novel antitumor agent.

    PubMed

    Mukherjee, Asama; Dutta, Sushanta; Chashoo, Gousia; Bhagat, Madhulika; Saxena, Ajit Kumar; Sanyal, Utpal

    2009-01-01

    A new nitrososourea derivative, namely fluoren-NU, 3-[2-(3-(2-chloroethyl)-3-nitrosouriedo}ethyl]-spiro[5,9'-fluorenyl]imidazolidine-2,4-dione (compound 2e), was synthesized from 3-(2-bromoethyl)-spiro [5,9'-fluorenyl]imidazolidine-2,4-dione via a four-step synthetic procedure. Its chemical alkylating activity was assessed by coupling with 4-(4-nitrobenzyl)pyridine. In vitro screening in six human tumor cell lines, namely SK-N-SH CNS, IMR-32 neuroblastoma, A549 lung, DU-145 prostate, HL-60 leukemia, and U-937 lymphoma, revealed its significant cytotoxicity in SK-N-SH. Its in vivo antitumoral potency was assessed in murine ascites tumors Ehrlich ascites carcinoma (EAC) and Sarcoma-180 (S-180) by measuring the increase in median survival times (MST) of drug-treated (T) over untreated control (C) mice. Results revealed significant tumor regression effects in both of these tumors. Life span of mice bearing advanced tumor for 5 days before the drug challenge was also considerably increased. In vivo toxicological assay at its optimum dose of 40 mg/kg for days 1-7 treatment schedule was conducted sequentially on day 9, 14, and 19 in normal and EAC-bearing mice. Results revealed that it did not adversely affect hematopoiesis or exhibit drug-induced hepatotoxicity and nephrotoxicity. It has shown minimal cytotoxic effect on human peripheral blood mononuclear cells (PBMC) having a high IC50 value of 792 microM. Compared to Mitonafide and CCNU used as standards it also significantly inhibited DNA and RNA synthesis in EAC tumor cells in vitro at 8 microM concentration. PMID:19718945

  5. Poly(styrene)/oligo(fluorene)-intercalated fluoromica hybrids: synthesis, characterization and self-assembly

    PubMed Central

    Porzio, William; Scavia, Guido; Barba, Luisa; Arrighetti, Gianmichele; Ricci, Giovanni; Botta, Chiara

    2014-01-01

    Summary We report on the intercalation of a cationic fluorescent oligo(fluorene) in between the 2D interlayer region of a fluoromica type silicate. The formation of intercalated structures with different fluorophore contents is observed in powders by synchrotron radiation XRD. Successively, the hybrids are dispersed in poly(styrene) through in situ polymerization. Such a procedure allows us to synthesize the materials from solution, to achieve solid films, and to characterize them by optical and morphologic techniques. The polymeric films with homogeneous distribution of the hybrids exhibit ultraviolet–blue photoluminescence with a significantly enhanced photostability compared to the bare oligo(fluorene)s. Finally, under specific conditions, the polymer hybrid with higher oligo(fluorene) content spontaneously assembles into highly ordered microporous films. PMID:25671140

  6. Influence of substituent position on thermal properties, photoluminescence and morphology of pyrene-fluorene derivatives

    NASA Astrophysics Data System (ADS)

    Feng, Xing; Hu, Jian-Yong; Wei, Xian-Fu; Redshaw, Carl; Yamato, Takehiko

    2015-04-01

    New position-dependent conjugated hydrocarbon dyes containing a pyrene core and multi-fluorene moieties 3 have been synthesized and characterized by 1H/13C NMR spectroscopy, as well as by optical and theoretical studies. The solubility of mono-, bis- and tetra-fluorenyl-pyrene 3 tends to decrease and leads to varied thermal properties. The results of the optical studies and DFT calculations revealed that the energy gap can be easily modified or fine-tuned by either varying the substituent number or position. Remarkably, such pyrene-fluorene materials exhibited deep blue fluorescence (λmax = 400-458 nm in CH2Cl2) with excellent quantum yields (≈78%). These results suggest that these new pyrene-fluorene derivatives have potential application in OLED technology as blue host materials.

  7. Rhizoremediation of phenanthrene and pyrene contaminated soil using wheat.

    PubMed

    Shahsavari, Esmaeil; Adetutu, Eric M; Taha, Mohamed; Ball, Andrew S

    2015-05-15

    Rhizoremediation, the use of the plant rhizosphere and associated microorganisms represents a promising method for the clean up of soils contaminated with polycyclic aromatic hydrocarbons (PAHs) including phenanthrene and pyrene, two model PAHs. Although numerous studies have been published reporting the degradation of phenanthrene and pyrene, very few evaluate the microbial basis of the rhizoremediation process through the application of molecular tools. The aim of this study was to investigate the effect of wheat on the degradation of two model PAHs (alone or in combination) and also on soil bacterial, fungal and nidA gene (i.e. a key gene in the degradation of pyrene) communities. The addition of wheat plants led to a significant enhancement in the degradation of both phenanthrene and pyrene. In pyrene-contaminated soils, the degradation rate increased from 15% (65 mg/kg) and 18% (90 mg/kg) in unplanted soils to 65% (280 mg/kg) and 70% (350 mg/kg) in planted treatments while phenanthrene reduction was enhanced from 97% (394 mg/kg) and 87% (392 mg/kg) for unplanted soils to 100% (406 mg/kg) and 98% (441 mg/kg) in the presence of wheat. PCR-DGGE results showed that the plant root let to some changes in the bacterial and fungal communities; these variations did not reflect any change in hydrocarbon-degrading communities. However, plate counting, traditional MPN and MPN-qPCR of nidA gene revealed that the wheat rhizosphere led to an increase in the total microbial abundance including PAH degrading organisms and these increased activities resulted in enhanced degradation of phenanthrene and pyrene. This clearer insight into the mechanisms underpinning PAH degradation will enable better application of this environmentally friendly technique. PMID:25819570

  8. The Effect of the Moisture Regime on the Interaction of Fluorene with Porous Media.

    PubMed

    Giat, Vered; Mingelgrin, Uri

    2015-07-01

    Movement and persistence of organic molecules in porous media is strongly influenced by their interactions with the solid phase. Understanding these interactions is important for the execution of reliable risk assessments and for proper handling and disposal of toxic organic chemicals. Transport and attenuation models often assume rapid adsorption-desorption equilibration and neglect the role of the ever-changing moisture regime at the top of the vadose zone. Adsorption of the polyaromatic hydrocarbon fluorene (CH), both from hexane and from water, on a cattle manure compost and on two soils-Dor (montmorillonitic, 1.9% organic matter [OM]) and Maagan-Michael (kaolinitic, 5.2% OM)-was studied. Adsorption from hexane mimics interactions with surfaces exposed to a gas phase or to an apolar liquid. Desorption was measured after loading the sorbents with fluorene dissolved in hexane, evaporating the solvent, and incubation in the wet state (above saturation of the porous medium), air-dried, or while undergoing wetting-drying cycles. Although good correlation was observed between the adsorption coefficient of fluorene from water and OM content, adsorption from hexane highly correlated with the surface charge density of the sorbent (its cation exchange capacity or its polarity). When added to the sorbents from hexane and then desorbed into water, less fluorene desorbed than predicted by its aqueous adsorption isotherms. Desorption from all sorbents decreased as the duration of incubation at air dryness increased. Thus, fluorene exhibited adsorption-desorption hysteresis, and a particularly strong adsorption-desorption hysteresis was exhibited by fluorene-loaded Maagan-Michael soil after undergoing wetting-drying cycles. PMID:26437097

  9. Neurobehavioral Toxicity of a Repeated Exposure (14 Days) to the Airborne Polycyclic Aromatic Hydrocarbon Fluorene in Adult Wistar Male Rats

    PubMed Central

    Peiffer, Julie; Cosnier, Frédéric; Grova, Nathalie; Nunge, Hervé; Salquèbre, Guillaume; Decret, Marie-Josèphe; Cossec, Benoît; Rychen, Guido; Appenzeller, Brice M. R.; Schroeder, Henri

    2013-01-01

    Fluorene is one of the most abundant polycyclic aromatic hydrocarbons in air and may contribute to the neurobehavioral alterations induced by the environmental exposure of humans to PAHs. Since no data are available on fluorene neurotoxicity, this study was conducted in adult rats to assess the behavioral toxicity of repeated fluorene inhalation exposure. Male rats (n = 18/group) were exposed nose-only to 1.5 or 150 ppb of fluorene 6 hours/day for 14 consecutive days, whereas the control animals were exposed to non-contaminated air. At the end of the exposure, animals were tested for activity and anxiety in an open-field and in an elevated-plus maze, for short-term memory in a Y-maze, and for spatial learning in an eight-arm maze. The results showed that the locomotor activity and the learning performances of the animals were unaffected by fluorene. In parallel, the fluorene-exposed rats showed a lower level of anxiety than controls in the open-field, but not in the elevated-plus maze, which is probably due to a possible difference in the aversive feature of the two mazes. In the same animals, increasing blood and brain levels of fluorene monohydroxylated metabolites (especially the 2-OH fluorene) were detected at both concentrations (1.5 and 150 ppb), demonstrating the exposure of the animals to the pollutant and showing the ability of this compound to be metabolized and to reach the cerebral compartment. The present study highlights the possibility for a 14-day fluorene exposure to induce some specific anxiety-related behavioral disturbances, and argues in favor of the susceptibility of the adult brain when exposed to volatile fluorene. PMID:23977039

  10. Enhanced desorption of humin-bound phenanthrene by attached phenanthrene-degrading bacteria.

    PubMed

    Zhang, Yinping; Wang, Fang; Bian, Yongrong; Kengara, Fredrick Orori; Gu, Chenggang; Zhao, Qiguo; Jiang, Xin

    2012-11-01

    The objective of the study was to test the hypothesis that the attachment of polycyclic aromatic hydrocarbons (PAHs)-degrading bacteria can promote desorption of PAHs from humin, thereby increasing their bioavailability. Biodegradation of humin-bound phenanthrene (PHE) - a model compound for PAHs - was investigated using two PHE-degrading bacteria, Sphingobium sp. PHE3 and Micrococcus sp. PHE9, respectively. Sorption data of PHE to humin fitted well into the modified Freundlich equation. Further, a new sorption band appeared at 1262cm(-1), demonstrating intermolecular interactions between PHE and humin. Interestingly, approximately 65.3% of humin-bound PHE was degraded by both strains, although only about 17.8% of PHE could be desorbed from humin by Tenax extraction. Furthermore, both strains grew well in mineral medium and also attached to humin surfaces for substrate uptake. It is proposed that the attached bacteria could possibly consume PHE on the humin via interactions between bacterial surfaces and humin, thereby overcoming the low PHE bioavailability and resulting in enhanced degradation. PMID:22940304

  11. [Impact of dissolved organic matter on plant uptake of phenanthrene and its mechanisms].

    PubMed

    Zhan, Xin-hua; Zhou, Li-xiang; Wan, Yin-jing; Jiang, Ting-hui

    2006-09-01

    Hydroponic assays were conducted to investigate the influence of dissolved organic matter on uptake of phenanthrene by wheat as well as its mechanisms. The results showed that, under hydroponic condition, phenanthrene impairment of plant growth occurred with wheat growth inhibited rate of 18.01%. The impairment would be greatly enhanced in the presence of dissolved organic matter (DOM) derived from pig manure, and the inhibited rate increased to 24.38%. Wheat could uptake and accumulate phenanthrene in the nutrient solution, which could be escalated by DOM, as indicated by wheat root bioconcentration factor being increased to 37.63 L x kg(-1) in the presence of DOM from 2.84 L x kg(-1) in the absence of DOM. At the same time, DOM could facilitate phenanthrene translocation from plant roots to the upper. As a result, the pH value of nutrient solution could increase by more than 1 unit when the co-existence of DOM and phenanthrene occurred in solution, suggesting that H+ -phenanthrene cotransport system is involved in the uptake of phenanthrene by plants. A synergism was also found between wheat uptakes of phenanthrene and inorganic nutrients, Moreover, DOM accelerated markedly the synergism. It is concluded that DOM affects the uptake of phenanthrene by plants and the environmental behaviors of phenanthrene. PMID:17117650

  12. Identification of metabolites from phenanthrene oxidation by phenoloxidases and dioxygenases of Polyporus sp. S133.

    PubMed

    Hadibarata, Tony; Tachibana, Sanro; Askari, Muhamad

    2011-03-01

    Phenanthrene degradation by Polyporus sp. S133, a new phenanthrene-degrading strain, was investigated in this work. The analysis of degradation was performed by calculation of the remaining phenanthrene by gas chromatography-mass spectrometry. When cells were grown in phenanthrene culture after 92 h, all but 200 and 250 mg/l of the phenanthrene had been degraded. New metabolic pathways of phenanthrene and a better understanding of the phenoloxidases and dioxygenase mechanism involved in degradation of phenanthrene were explored in this research. The mechanism of degradation was determined through identification of the several metabolites; 9,10-phenanthrenequinone, 2,2'-diphenic acid, salicylic acid, and catechol. 9,10-Oxidation and ring cleavage to give 9,10-phenanthrenequinone is the major fate of phenanthrene in ligninolytic Polyporus sp. S133. The identification of 2,2'-diphenic acid in culture extracts indicates that phenanthrene was initially attacked through dioxigenation at C9 and C10 to give cis-9,10-dihydrodiol. Dehydrogenation of phenanthrene-cis-9,10-dihydrodiol to produce the corresponding diol, followed by ortho-cleavage of the oxygenated ring, produced 2,2'-diphenic acid. Several enzymes (manganese peroxidase, lignin peroxidase, laccase, 1,2-dioxygenase, and 2,3-dioxygenase) produced by Polyporus sp. S133 was detected during the incubation. The highest level of activity was shown at 92 h of culture. PMID:21464602

  13. Donor/Acceptor Dihydroindeno[1,2-a]fluorene and Dihydroindeno[2,1-b]fluorene: Towards New Families of Organic Semiconductors.

    PubMed

    Romain, Maxime; Tondelier, Denis; Geffroy, Bernard; Jeannin, Olivier; Jacques, Emmanuel; Rault-Berthelot, Joëlle; Poriel, Cyril

    2015-06-22

    New families of donor/acceptor semiconductors based on dihydroindeno[1,2-a]fluorene and dihydroindeno[2,1-b]fluorene are reported. Due to the spiro bridges, this new generation of dihydroindenofluorenes allows a spatial separation of HOMO and LUMO, which retains the high ET value of the dihydroindenofluorene backbone and excellent physical properties. This control of the electronic and physical properties has allowed a second generation of dihydroindeno[1,2-a]fluorene to be obtained with strongly enhanced performance in green and sky-blue phosphorescent organic light-emitting diodes (PhOLEDs) relative to the first generation of materials. To date, this is the highest performance ever reported for a blue PhOLED by using a dihydroindenofluorene derivative. Through this structure-property relationship study, a remarkable difference of performance between syn and anti isomers has also been highlighted. This surprising behaviour has been attributed to the different symmetry of the two molecules, and highlights the importance of the geometry profiles in the design of host materials for PhOLEDs. PMID:26012479

  14. Low threshold amplified spontaneous emission and ambipolar charge transport in non-volatile liquid fluorene derivatives.

    PubMed

    Ribierre, Jean-Charles; Zhao, Li; Inoue, Munetomo; Schwartz, Pierre-Olivier; Kim, Ju-Hyung; Yoshida, Kou; Sandanayaka, Atula S D; Nakanotani, Hajime; Mager, Loic; Méry, Stéphane; Adachi, Chihaya

    2016-02-21

    Highly fluorescent non-volatile fluidic fluorene derivatives functionalized with siloxane chains were synthesized and used in monolithic solvent-free liquid organic semiconductor distributed feedback lasers. The photoluminescence quantum yield values, the amplified spontaneous emission thresholds and the ambipolar charge carrier mobilities demonstrate that this class of materials is extremely promising for organic fluidic light-emitting and lasing devices. PMID:26734693

  15. Synthesis and Properties of [7]Helicene-like Compounds Fused with a Fluorene Unit.

    PubMed

    Oyama, Hiromi; Akiyama, Midori; Nakano, Koji; Naito, Masanobu; Nobusawa, Kazuyuki; Nozaki, Kyoko

    2016-08-01

    [7]Helicene-like compounds with a fluorene unit were successfully synthesized using a platinum-catalyzed double cyclization reaction. Crystal structures and photophysical properties of these compounds were also studied. In particular, they were found to exhibit a high fluorescence quantum yield and a relatively large g value (dissymmetric factor) of circularly polarized luminescence (CPL) for small molecules. PMID:27400646

  16. New spiro[benzotetraphene-fluorene] derivatives: synthesis and application in sky-blue fluorescent host materials.

    PubMed

    Cha, Jae-Ryung; Lee, Chil-Won; Gong, Myoung-Seon

    2014-07-01

    Blue light-emitting spiro[benzotetraphene-fluorene] (SBTF)-based host materials, 3-(1-naphthyl)-10-naphthylspiro[benzo[ij]tetraphene-7,9'-fluorene] (1), 3-(2-naphthyl)-10-naphthylspiro[benzo[ij]tetraphene-7,9'-fluorene] (2), and 3-[2-(6-phenyl)naphthyl]-10-naphthylspiro[benzo[ij]tetraphene-7,9'-fluorene] (3) were designed and prepared via multi-step Suzuki coupling reactions. Introducing various aromatic groups into SBTF core lead to a reduction in band gap and a determination of the color purity and luminescence efficiency. Typical sky-blue fluorescent organic light emitting diodes with the configuration of ITO/N,N'-di(1-naphthyl)-N,N'-bis[(4-diphenylamino)phenyl]-biphenyl-4,4'-diamie (60 nm)/N,N,N',N'-tetra(1-biphenyl)-biphenyl-4,4'-diamine (30 nm)/host: dopant (30 nm, 5%)/LG201 (electron transporting layer, 20 nm)/LiF/Al were developed using SBTF derivatives as a host material and p-bis(p-N,N-diphenyl-aminostyryl)benzene (DSA-Ph) as a sky-blue dopant material. A device obtained from three materials doped with DSA-Ph showed color purity of 0.148 and 0.239, a luminance efficiency of 7.91 cd/A, and an external quantum efficiency >4.75% at 5 V. PMID:24859632

  17. Candidate anti-Aβ fluorene compounds selected from analogs of amyloid imaging agents

    PubMed Central

    Hong, Hyun-Seok; Maezawa, Izumi; Budamagunta, Madhu; Rana, Sandeep; Shi, Aibin; Vassar, Robert; Liu, Ruiwu; Lam, Kit S.; Cheng, R. Holland; Hua, Duy H.; Voss, John C.; Jin, Lee-Way

    2009-01-01

    Alzheimer’s disease (AD) is characterized by depositions of β-amyloid (Aβ) aggregates as amyloid in the brain. To facilitate diagnosis of AD by radioligand imaging, several highly specific small-molecule amyloid ligands have been developed. Because amyloid ligands display excellent pharmacokinetics properties and brain bioavailability, and because we have previously shown that some amyloid ligands bind the highly neurotoxic Aβ oligomers (AβO) with high affinities, they may also be valuable candidates for anti-Aβ therapies. Here we identified two fluorene compounds from libraries of amyloid ligands, initially based on their ability to block cell death secondary to intracellular AβO. We found that the lead fluorenes were able to reduce the amyloid burden including the levels of AβO in cultured neurons and in 5xFAD mice. To explain these in vitro and in vivo effects, we found that the lead fluorenes bind and destabilize AβO as shown by electron paramagnetic resonance spectroscopy studies, and block the harmful AβO-synapse interaction. These fluorenes and future derivatives, therefore, have a potential use in AD therapy and research. PMID:19022536

  18. Modular Approach to 9-Monosubstituted Fluorene Derivatives Using Mo(V) Reagents.

    PubMed

    Franzmann, Peter; Trosien, Simon; Schubert, Moritz; Waldvogel, Siegfried R

    2016-03-01

    Oxidative coupling using molybdenum(V) reagents provides fast access to highly functionalized 9-monosubstituted fluorenes. This synthetic approach is highly modular, is high yielding, and tolerates a variety of labile moieties, e.g. amides or iodo groups. The established protocol leads to promising precursors for pharmacologically important analogues of melatonin. PMID:26913835

  19. EFFECTS OF FLUORENE ON MICROCOSMS DEVELOPED FROM FOUR NATURAL COMMUNITIES (JOURNAL VERSION)

    EPA Science Inventory

    Ecosystem-level responses were examined in microcosms developed from four different natural plankton communities and exposed to nominal concentrations of 0.12, 0.50, 2.0, 5.0 and 10.0 mg/L fluorene. The lowest observed effect level (LOEL) for dark respiration was 0.12 mg/L fluore...

  20. Numerical taxonomy of phenanthrene-degrading bacteria isolated from the Chesapeake Bay.

    PubMed Central

    West, P A; Okpokwasili, G C; Brayton, P R; Grimes, D J; Colwell, R R

    1984-01-01

    Phenanthrene-degrading bacteria were isolated from Chesapeake Bay samples by the use of a solid medium which had been overlaid with an ethanol solution of phenanthrene before inoculation. Eighteen representative strains of phenanthrene-degrading bacteria with 21 type and reference bacteria were examined for 123 characteristics representing physiological, biochemical, and nutritional properties. Relationships between strains were computed with several similarity coefficients. The phenogram constructed by unweighted-pair-group arithmetic average linkage and use of the simple Jaccard (SJ) coefficient was used to identify seven phena. Phenanthrene-degrading bacteria were identified as Vibrio parahaemolyticus and Vibrio fluvialis by their clustering with type and reference strains. Several phenanthrene-degrading bacteria resembled Enterobacteriaceae family members, although some Vibrio-like phenanthrene degraders could not be identified. PMID:6508314

  1. Anti-inflammatory phenanthrene derivatives from stems of Dendrobium denneanum.

    PubMed

    Lin, Yuan; Wang, Fei; Yang, Li-Juan; Chun, Ze; Bao, Jin-Ku; Zhang, Guo-Lin

    2013-11-01

    Cultivated Dendrobium denneanum has been substituted for other endangered Dendrobium species in recent years, but there have been few studies regarding either its chemical constituents or pharmacological effects. In this study, three phenanthrene glycosides, three 9,10-dihydrophenanthrenes, two 9,10-dihydrophenanthrenes glycosides, and four known phenanthrene derivatives, were isolated from the stems of D. denneanum. Their structures were elucidated on the basis of MS and NMR spectroscopic data. Ten compounds were found to inhibit nitric oxide (NO) production in lipopolysaccharide (LPS)-activated mouse macrophage RAW264.7 cells with IC50 values of 0.7-41.5 μM, and exhibited no cytotoxicity in RAW264.7, HeLa, or HepG2 cells. Additionally, it was found that 2,5-dihydroxy-4-methoxy-phenanthrene 2-O-β-d-glucopyranoside, and 5-methoxy-2,4,7,9S-tetrahydroxy-9,10-dihydrophenanthrene suppressed LPS-induced expression of inducible NO synthase (iNOS) inhibited phosphorylation of p38, JNK as well as mitogen-activated protein kinase (MAPK), and inhibitory kappa B-α (IκBα). This indicated that both compounds exert anti-inflammatory effects by inhibiting MAPKs and nuclear factor κB (NF-κB) pathways. PMID:24042064

  2. Induction of PAH degradation in a phenanthrene-degrading pseudomonad

    SciTech Connect

    Stringfellow, W.T.; Chen, S.H.; Aitken, M.D.

    1995-12-31

    Recent evidence suggests that different polycyclic aromatic hydrocarbon (PAH) substrates are metabolized by common enzymes in PAH-degrading bacteria, implying that inducers for low-molecular-weight PAH degradation may coinduce for the metabolism of higher-molecular-weight compounds. The authors have tested this hypothesis with a well-characterized PAH-degrading bacterium, Pseudomonas saccharophila P-15. Growth of P-15 on salicylate, a metabolite of phenanthrene degradation, and a known inducer for naphthalene degradation, induced the metabolism of both substrates. Several potential inducers were then tested for their effects on metabolism of the four-ring compounds pyrene and fluoranthene, neither of which is a growth substrate for P-15, but both of which can be metabolized by this organism. Incubation of P-15 in the presence of phenanthrene or salicylate induced the metabolism of pyrene and fluoranthene in resting-cell assays. Catechol, another intermediate of naphthalene and phenanthrene degradation, did not induce the metabolism of either compound and interfered with the inducing effect of salicylate. These results have implications for strategies designed to maintain PAH degradation in contaminated environments, particularly for compounds that are degraded slowly or are degraded only by nongrowth metabolism.

  3. Sublethal effects of phenanthrene, nicotine, and pinane on Daphnia pulex

    SciTech Connect

    Savino, J.F.; Tanabe, L.L. )

    1989-05-01

    Nearly 500 compounds were detected in the tissues of Great Lakes fish as compared to 8 in tissues of hatchery-reared fish. Lethal concentrations for many representative compounds were determined by testing their acute toxicity (48-hr EC50) to Daphnia pulex. However, the population growth and survival of aquatic organisms over longer time intervals are usually affected at concentrations much lower than the EC50 for a specific chemical. To develop a general relationship between acute and chronic concentrations for representative compounds detected in Great Lakes fish, the authors initiated full-life-cycle testing on D. pulex with phenanthrene, nicotine, and pinane. Growth and fecundity of daphnids was measured in 16-d tests in the laboratory. Phenanthrene and nicotine were highly toxic and pinane was moderately toxic to D. pulex in acute studies. For phenanthrene, a compound of the polycyclic aromatic hydrocarbons (PAHs) that has been associated with incomplete combustion of organic matter. For nicotine, a compound in the heterocyclic nitrogen class of chemicals that has been used as an insecticide, the EC50 was 0.24 mg/L. Cyclic alkanes, many of which are constituents of crude oil were represented by pinane for which the EC50 was 3.35 mg/L.

  4. Biostimulation as an attractive technique to reduce phenanthrene toxicity for meiofauna and bacteria in lagoon sediment.

    PubMed

    Louati, Hela; Said, Olfa Ben; Soltani, Amel; Got, Patrice; Cravo-Laureau, Cristiana; Duran, Robert; Aissa, Patricia; Pringault, Olivier; Mahmoudi, Ezzeddine

    2014-03-01

    A microcosm experiment was setup to examine (1) the effect of phenanthrene contamination on meiofauna and bacteria communities and (2) the effects of different bioremediation strategies on phenanthrene degradation and on the community structure of free-living marine nematodes. Sediments from Bizerte lagoon were contaminated with (100 mg kg(-1)) phenanthrene and effects were examined after 20 days. Biostimulation (addition of nitrogen and phosphorus fertilizer or mineral salt medium) and bioaugmentation (inoculation of a hydrocarbonoclastic bacterium) were used as bioremediation treatments. Bacterial biomass was estimated using flow cytometry. Meiofauna was counted and identified at the higher taxon level using a stereomicroscope. Nematodes, comprising approximately two thirds of total meiofauna abundance, were identified to genus or species. Phenanthrene contamination had a severe impact on bacteria and meiofauna abundances with a strong decrease of nematodes with a complete disappearance of polychaetes and copepods. Bioremediation counter balanced the toxic effects of phenanthrene since meiofauna and bacteria abundances were significantly higher (p < 0.01) than those observed in phenanthrene contamination. Up to 98 % of phenanthrene removal was observed. In response to phenanthrene contamination, the nematode species had different behavior: Daptonema fallax was eliminated in contaminated microcosms, suggesting that it is an intolerant species to phenanthrene; Neochromadora peocilosoma, Spirinia parasitifera, and Odontophora n. sp., which significantly (p < 0.05) increased in contaminated microcosms, could be considered as "opportunistic" species to phenanthrene whereas Anticoma acuminata and Calomicrolaimus honestus increased in the treatment combining biostimulation and bioaugmentation. Phenanthrene had a significant effect on meiofaunal and bacterial abundances (p < 0.05), with a strong reduction of density and change in the nematode communities

  5. Environmental Aging of Polycyclic Aromatic Hydrocarbons on Soot and its Effect on Source Identification

    PubMed Central

    Kim, Daekyun; Kumfer, Benjamin M.; Anastasio, Cort; Kennedy, Ian M.; Young, Thomas M.

    2009-01-01

    Soot associated PAHs were exposed to simulated sunlight to investigate disappearance rates under environmental aging conditions and to examine the robustness of diagnostic ratios for PAH source apportionment. Naphthalene, acenaphthylene, acenaphthene, and fluorene showed an obvious two-phase disappearance in all experiments while phenanthrene and anthracene exhibited this behavior for all but the highest soot loading. The first phase loss is 5-40 times faster than the second phase loss and occurred within 3 h for naphthalene, acenaphthylene, acenaphthene, and fluorene and within 10 h for phenanthrene and anthracene. Two-phase disappearance was not observed for any of the higher molecular weight PAHs with 4-6 rings. Each PAH has a unique loss rate via photodegradation and volatilization and these rates of some PAHs were affected by soot loadings; phenanthrene and anthracene showed similar rates in the first phase and increased loss rates in the second phase as soot loading increased. In the absence of light, the loss of PAHs was related to both temperature and molecular characteristics. Due to differences in disappearance rates of individual PAHs under illumination over extended times, prolonged exposure to sunlight could change the interpretation of some diagnostic ratios used previously for PAH source identification. This result indicates that more consistent and accurate methods that take into consideration the longevity of particulate PAHs are needed for reliable source apportionment. PMID:19443013

  6. IUPAC-NIST Solubility Data Series. 98. Solubility of Polycyclic Aromatic Hydrocarbons in Pure and Organic Solvent Mixtures--Revised and Updated. Part 3. Neat Organic Solvents

    NASA Astrophysics Data System (ADS)

    Acree, William E.

    2013-03-01

    This work updates Vols. 54, 58, and 59 in the IUPAC Solubility Data Series and presents solubility data for polycyclic aromatic hydrocarbon solutes dissolved in neat organic solvents. Published solubility data for acenaphthene, anthracene, biphenyl, carbazole, dibenzofuran, dibenzothiophene, fluoranthene, fluorene, naphthalene, phenanthrene, phenothiazine, pyrene, thianthrene, and xanthene that appeared in the primary literature from 1995 to the end of 2011 are compiled and critically evaluated. Experimental solubility data for more than 550 different solute-organic solvent systems are included. Solubility data published prior to 1995 were contained in three earlier volumes (Vols. 54, 58, and 59) and are not repeated in this volume.

  7. Selection of nonionic surfactants in enhancing biodegradation of phenanthrene in soil

    SciTech Connect

    Jahan, K.; Ahmed, T.; Maier, W.J.

    1996-12-31

    This research addresses the influence of sub-cmc concentrations of selected commercial nonionic surfactants on the biodegradation of phenanthrene. Various types of nonionic surfactants were tested to determine their ability to enhance the availability of phenanthrene to microorganisms in soil systems. Nonionic surfactants were selected as they are known to have greater hydrocarbon solubilizing power, less toxicity to microbial populations and low foaming property. Surfactants were tested to measure their effectiveness for increasing solubility of phenanthrene, their sorption on the soil matrix, their biodegradability and also their effect on the sorption and biodegradation of phenanthrene. Batch and column studies were carried out for the biodegradation experiments. Batch isotherm experiments were conducted to characterize the sorption of surfactants and phenanthrene. Solubility enhancement of phenanthrene by the selected surfactants was mainly a micellar phenomena. Sorption of phenanthrene and the surfactants could be represented by the linear isotherm model. Sorption of phenanthrene was enhanced in the presence of surfactants. Batch and column biodegradation studies indicate that biodegradation of phenanthrene was enhanced in the presence of the surfactants. None of the surfactants were biodegraded during the timecourse of these experiments. This study indicates that surfactant selection for in-situ bioremediation of insoluble hydrocarbons will depend on a large number of factors with main emphasis on the hydrocarbon solubilizing power, low toxicity to Zn bacteria and the environment and low sorptive properties.

  8. Isolation of Soil Bacteria Adapted To Degrade Humic Acid-Sorbed Phenanthrene

    PubMed Central

    Vacca, D. J.; Bleam, W. F.; Hickey, W. J.

    2005-01-01

    The goal of these studies was to determine how sorption by humic acids affected the bioavailability of polynuclear aromatic hydrocarbons (PAHs) to PAH-degrading microbes. Micellar solutions of humic acid were used as sorbents, and phenanthrene was used as a model PAH. Enrichments from PAH-contaminated soils established with nonsorbed phenanthrene yielded a total of 25 different isolates representing a diversity of bacterial phylotypes. In contrast, only three strains of Burkholderia spp. and one strain each of Delftia sp. and Sphingomonas sp. were isolated from enrichments with humic acid-sorbed phenanthrene (HASP). Using [14C]phenanthrene as a radiotracer, we verified that only HASP isolates were capable of mineralizing HASP, a phenotype hence termed “competence.” Competence was an all-or-nothing phenotype: noncompetent strains showed no detectable phenanthrene mineralization in HASP cultures, but levels of phenanthrene mineralization effected by competent strains in HASP and NSP cultures were not significantly different. Levels and rates of phenanthrene mineralization exceeded those predicted to be supported solely by the metabolism of phenanthrene in the aqueous phase of HASP cultures. Thus, competent strains were able to directly access phenanthrene sorbed by the humic acids and did not rely on desorption for substrate uptake. To the best of our knowledge, this is the first report of (i) a selective interaction between aerobic bacteria and humic acid molecules and (ii) differential bioavailability to bacteria of PAHs sorbed to a natural biogeopolymer. PMID:16000791

  9. The Influence of Spin-Labeled Fluorene Compounds on the Assembly and Toxicity of the Aβ Peptide

    PubMed Central

    Petrlova, Jitka; Kálai, Tamás; Maezawa, Izumi; Altman, Robin; Harishchandra, Ghimire; Hong, Hyun-Seok; Bricarello, Daniel A.; Parikh, Atul N.; Lorigan, Gary A.; Jin, Lee-Way; Hideg, Kálmán; Voss, John C.

    2012-01-01

    Background The deposition and oligomerization of amyloid β (Aβ) peptide plays a key role in the pathogenesis of Alzheimer's disease (AD). Aβ peptide arises from cleavage of the membrane-associated domain of the amyloid precursor protein (APP) by β and γ secretases. Several lines of evidence point to the soluble Aβ oligomer (AβO) as the primary neurotoxic species in the etiology of AD. Recently, we have demonstrated that a class of fluorene molecules specifically disrupts the AβO species. Methodology/Principal Findings To achieve a better understanding of the mechanism of action of this disruptive ability, we extend the application of electron paramagnetic resonance (EPR) spectroscopy of site-directed spin labels in the Aβ peptide to investigate the binding and influence of fluorene compounds on AβO structure and dynamics. In addition, we have synthesized a spin-labeled fluorene (SLF) containing a pyrroline nitroxide group that provides both increased cell protection against AβO toxicity and a route to directly observe the binding of the fluorene to the AβO assembly. We also evaluate the ability of fluorenes to target multiple pathological processes involved in the neurodegenerative cascade, such as their ability to block AβO toxicity, scavenge free radicals and diminish the formation of intracellular AβO species. Conclusions Fluorene modified with pyrroline nitroxide may be especially useful in counteracting Aβ peptide toxicity, because they posses both antioxidant properties and the ability to disrupt AβO species. PMID:22558151

  10. Potential of a white-rot fungus Pleurotus eryngii F032 for degradation and transformation of fluorene.

    PubMed

    Hadibarata, Tony; Kristanti, Risky Ayu

    2014-02-01

    The white-rot fungus Pleurotus eryngii F032 showed the capability to degrade a three fused-ring aromatic hydrocarbons fluorene. The elimination of fluorene through sorption was also investigated. Enzyme production is accompanied by an increase in biomass of P. eryngii F032 during degradation process. The fungus totally degraded fluorine within 23 d at 10-mg l(-1) solution. Fluorene degradation was affected with initial fluorene concentrations. The highest enzyme activity was shown by laccase in the 10-mg l(-1) culture after 30 d of incubation (1620 U l(-1)). Few activities of enzymes were observed in the fungal cell at the varying concentration of fluorene. Three metabolic were detected and separated in ethylacetate extract, after isolated by column chromatography. The metabolites, 9-fluorenone, phthalic acid, and benzoic acid were identified using UV-vis spectrophotometer and gas chromatography-mass spectrometry (GC-MS). The results show the presence of a complex mechanism for the regulation of fluorene-degrading enzymes. PMID:24528643

  11. Evaluation of phenanthrene toxicity on earthworm (Eisenia fetida): an ecotoxicoproteomics approach.

    PubMed

    Wu, Shijin; Xu, Xian; Zhao, Shiliang; Shen, Feichao; Chen, Jianmeng

    2013-10-01

    The goal of this study was to identify promising new biomarkers of phenanthrene by identifying differentially expressed proteins in Eisenia fetida after exposure to phenanthrene. Extracts of earthworm epithelium collected at days 2, 7, 14, and 28 after phenanthrene exposure were analyzed by two dimensional electrophoresis (2-DE) and quantitative image analysis. Comparing the intensity of protein spots, 36 upregulated proteins and 45 downregulated proteins were found. Some of the downregulated and upregulated proteins were verified by MALDI-TOF/TOF-MS and database searching. Downregulated proteins in response to phenanthrene exposure were involved in glycolysis, energy metabolism, chaperones, proteolysis, protein folding and electron transport. In contrast, oxidation reduction, oxygen transport, defense systems response to pollutant, protein biosynthesis and fatty acid biosynthesis were upregulated in phenanthrene-treated E. fetida. In addition, ATP synthase b subunit, lysenin-related protein 2, lombricine kinase, glyceraldehyde 3-phosphate dehydrogenase, actinbinding protein, and extracellular globin-4 seem to be potential biomarkers since these biomarker were able to low levels (2.5 mg kg(-1)) of phenanthrene. Our study provides a functional profile of the phenanthrene-responsive proteins in earthworms. The variable levels and trends in these spots could play a potential role as novel biomarkers for monitoring the levels of phenanthrene contamination in soil ecosystems. PMID:23856470

  12. Degradation of phenanthrene by Phanerochaete chrysosporium occurs under ligninolytic as well as nonligninolytic conditions.

    PubMed Central

    Dhawale, S W; Dhawale, S S; Dean-Ross, D

    1992-01-01

    In order to delineate the roles of lignin and manganese peroxidases in the degradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium, the biodegradation of phenanthrene (chosen as a model for polycyclic aromatic hydrocarbons) was investigated. The disappearance of phenanthrene from the extracellular medium and mycelia was determined by using gas chromatography. The disappearance of phenanthrene from cultures of wild-type strains BKM-F1767 (ATCC 24725) and ME446 (ATCC 34541) under ligninolytic (low-nitrogen) as well as nonligninolytic (high-nitrogen) conditions was observed. The study was extended to two homokaryotic (basidiospore-derived) isolates of strain ME446. Both homokaryotic isolates, ME446-B19 (which produces lignin and manganese peroxidases only in low-nitrogen medium) and ME446-B5 (which totally lacks lignin and manganese peroxidase activities), caused the disappearance of phenanthrene when grown in low- as well as high-nitrogen media. Moreover, lignin and manganese peroxidase activities were not detected in any of the cultures incubated in the presence of phenanthrene. Additionally, the mineralization of phenanthrene was observed even under nonligninolytic conditions. The results collectively indicate that lignin and manganese peroxidases are not essential for the degradation of phenanthrene by P. chrysosporium. The observation that phenanthrene degradation occurs under nonligninolytic conditions suggests that the potential of P. chrysosporium for degradation of certain environmental pollutants is not limited to nutrient starvation conditions. PMID:1444413

  13. Extractive biodegradation and bioavailability assessment of phenanthrene in the cloud point system by Sphingomonas polyaromaticivorans.

    PubMed

    Pan, Tao; Deng, Tao; Zeng, Xinying; Dong, Wei; Yu, Shuijing

    2016-01-01

    The biological treatment of polycyclic aromatic hydrocarbons is an important issue. Most microbes have limited practical applications because of the poor bioavailability of polycyclic aromatic hydrocarbons. In this study, the extractive biodegradation of phenanthrene by Sphingomonas polyaromaticivorans was conducted by introducing the cloud point system. The cloud point system is composed of a mixture of (40 g/L) Brij 30 and Tergitol TMN-3, which are nonionic surfactants, in equal proportions. After phenanthrene degradation, a higher wet cell weight and lower phenanthrene residue were obtained in the cloud point system than that in the control system. According to the results of high-performance liquid chromatography, the residual phenanthrene preferred to partition from the dilute phase into the coacervate phase. The concentration of residual phenanthrene in the dilute phase (below 0.001 mg/L) is lower than its solubility in water (1.18 mg/L) after extractive biodegradation. Therefore, dilute phase detoxification was achieved, thus indicating that the dilute phase could be discharged without causing phenanthrene pollution. Bioavailability was assessed by introducing the apparent logP in the cloud point system. Apparent logP decreased significantly, thus indicating that the bioavailability of phenanthrene increased remarkably in the system. This study provides a potential application of biological treatment in water and soil contaminated by phenanthrene. PMID:26392138

  14. Two new anxiolytic phenanthrenes found in the medullae of Juncus effusus.

    PubMed

    Wang, Yang; Li, Gui-Yun; Fu, Qian; Hao, Tai-Sen; Huang, Jian-Mei; Zhai, Hai-Feng

    2014-08-01

    Six phenanthrenes, 2-methoxy-7-hydroxy-1-methyl-5-vinyl phenanthrene (1), juncusin (2), dehydroeffusol (3), juncusol (4), effusol (5), and dehydroeffusal (6), were isolated from the medullae of Juncus effusus L. Compounds 1 and 2 were identified as being new structures, and both of them showed anxiolytic activity at dosages of 10 and 2.5 mg/kg, respectively. PMID:25233602

  15. Physiological and molecular responses of springtails exposed to phenanthrene and drought.

    PubMed

    Holmstrup, Martin; Slotsbo, Stine; Schmidt, Stine N; Mayer, Philipp; Damgaard, Christian; Sørensen, Jesper G

    2014-01-01

    Interaction between effects of hazardous chemicals in the environment and adverse climatic conditions is a problem that receives increased attention in the light of climate change. We studied interactive effects of phenanthrene and drought using a test system in which springtails (Folsomia candida Willem) were concurrently exposed to a sublethal phenanthrene level via passive dosing from silicone (chemical activity of 0.010), and sublethal drought from aqueous NaCl solutions (water activity of 0.988). Previous studies have shown that the combined effects of high levels of phenanthrene and drought, respectively, interact synergistically when using lethality as an end-point. Here, we hypothesized that phenanthrene interferes with physiological mechanisms involved in drought tolerance, and that drought influences detoxification of phenanthrene. However, this hypothesis was not supported by data since phenanthrene had no effect on drought-protective accumulation of myo-inositol, and normal water conserving mechanisms of F. candida were functioning despite the near-lethal concentrations of the toxicant. Further, detoxifying induction of cytochrome P450 and glutathione-S-transferase was not impeded by drought. Both phenanthrene and drought induced transcription of heat shock protein (hsp70) and the combined effect of the two stressors on hsp70 transcription was additive, suggesting that the cellular stress and lethality imposed by these levels of phenanthrene and drought were also additive. PMID:24095812

  16. A new boronic acid fluorescent sensor based on fluorene for monosaccharides at physiological pH

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Rahman; Mohadjerani, Maryam; Pooryousef, Mona; Eslami, Abbas; Emami, Saeed

    2015-06-01

    Fluorescent boronic acids are very useful fluorescent sensor for detection of biologically important saccharides. Herein we synthesized a new fluorene-based fluorescent boronic acid that shows significant fluorescence changes upon addition of saccharides at physiological pH. Upon addition of fructose, sorbitol, glucose, galactose, ribose, and maltose at different concentration to the solution of 7-(dimethylamino)-9,9-dimethyl-9H-fluoren-2-yl-2-boronic acid (7-DMAFBA, 1), significant decreases in fluorescent intensity were observed. It was found that this boronic acid has high affinity (Ka = 3582.88 M-1) and selectivity for fructose over glucose at pH = 7.4. The sensor 1 showed a linear response toward D-fructose in the concentrations ranging from 2.5 × 10-5 to 4 × 10-4 mol L-1 with the detection limit of 1.3 × 10-5 mol L-1.

  17. Anaerobic degradation of phenanthrene and pyrene in mangrove sediment.

    PubMed

    Chang, Bea-Ven; Chang, I T; Yuan, S Y

    2008-02-01

    This study investigated the anaerobic degradation of the polycyclic aromatic hydrocarbons (PAHs) phenanthrene and pyrene in mangrove sediment from Taiwan. The anaerobic degradation of PAH was enhanced by the addition of acetate, lactate, pyruvate, sodium chloride, cellulose, or zero-valent iron. However, it was inhibited by the addition of humic acid, di-(2-ethylhexyl) phthalate (DEHP), nonylphenol, or heavy metals. Of the microorganism strains isolated from the sediment samples, we found that strain MSA3 (Clostridium pascui), expressed the best ability to biodegrade PAH. The inoculation of sediment with the strain MSA3 could enhance PAH degradation. PMID:18188486

  18. Effect of root exudates on sorption, desorption, and transport of phenanthrene in mangrove sediments.

    PubMed

    Jia, Hui; Lu, Haoliang; Dai, Minyue; Hong, Hualong; Liu, Jingchun; Yan, Chongling

    2016-08-15

    The effect of root exudates on the environmental behaviors of phenanthrene in mangrove sediments is poorly understood. In order to evaluate their influence, comprehensive laboratory experiments were performed using batch equilibrium and thin-layer chromatography (TLC) analyses. In the presence of root exudates, sorption of phenanthrene was inhibited, whereas desorption and mobility were promoted, and were elevated as root exudate concentrations increased. Among the three representative low molecular weight organic acids (LMWOAs) (citric, oxalic, and acetic acids), citric acid promoted desorption and mobility of phenanthrene more effectively than the other two. In addition, application of artificial root exudates (AREs) enhanced phenanthrene desorption, and mobility was always lower than that with the same concentration of LMWOAs, suggesting that LMWOAs predominantly affected the fate of phenanthrene in sediments. The results of this study could enhance our understanding of the mobility of persistent organic pollutants in sediment-water system. PMID:27293074

  19. Sublethal responses of the striped mullet (Mugil cephalus L. ) to fluorene analogs

    SciTech Connect

    Wofford, H.W.

    1981-01-01

    Juvenile striped mullet (Mugil cephalus) were exposed for up to 12 days to 10 to 10,000 ..mu..g/l fluorene and three fluorene analogs (dibenzofuran, carbazole, and dibenzothiophene). These constituents of oil and coal were all acutely toxic to mullet at concentrations below their maximum solubility in seawater. The relative toxicity of the four analogs was related to their lipophilic nature and chemical reactivity. These pollutants were capable of inducing the corticosteroid stress response and resulting secondary stress responses in mullet. Plasma cortisol concentrations were significantly elevated, followed by a rise in plasma glucose. Responses were mild compared to those elicited by physical stress. Liver glycogen content was initially depressed, and later was restored to levels higher than the controls. Minor changes were observed in plasma lipids, with plasma triglyceride concentrations showing a consistent elevation upon exposure to dibenzofuran. Plasma osmolality was not significantly altered. Components of the xenobiotic metabolizing system of mullet were also affected by exposure to the four compounds. Large increases in liver glutathione concentration were observed, along with slight elevations in liver ascorbic acid content and ..beta..-glucuronidase activity. The fluorene analogs caused profound behavioral changes, which appeared to be related to a pharmacological effect on brain biogenic amine levels.

  20. 2-(N-acetoxy-N-acetylamino)fluorene mutagenesis in mammalian cells: sequence-specific hot spot.

    PubMed Central

    Gentil, A; Margot, A; Sarasin, A

    1986-01-01

    Mutations induced by 2-(N-acetoxy-N-acetylamino)fluorene were studied using temperature-sensitive simian virus 40 (SV40) mutants as probe in monkey kidney cells. In vitro treatment of the SV40 virions with 2-(N-acetoxy-N-acetylamino)fluorene increased mutagenesis and decreased survival in the viral progeny. A lethal hit of approximately 85 acetylaminofluorene adducts per SV40 genome was calculated. UV irradiation of cells prior to infection did not modify the results. Molecular analysis of independent SV40 revertants showed that 2-(N-acetoxy-N-acetylamino)fluorene induces base substitutions that are located not opposite putative acetylaminofluorene adducts but next to them. Moreover, a hot spot of mutation restoring a true wild-type genotype was observed in 10 of the 16 revertants analyzed. This hot spot, not targeted opposite a major DNA lesion, was not observed using UV light as damaging agent in the same genetic assay. Two models involving the stabilization, by acetylaminofluorene adducts, of the secondary structure of a specific quasipalindromic SV40 sequence are proposed to explain this sequence-specific hot spot. PMID:3025845

  1. Fluorene- and benzofluorene-cored oligomers as low threshold and high gain amplifying media

    NASA Astrophysics Data System (ADS)

    Kazlauskas, Karolis; Kreiza, Gediminas; Bobrovas, Olegas; AdomÄ--nienÄ--, Ona; AdomÄ--nas, Povilas; Jankauskas, Vygintas; JuršÄ--nas, Saulius

    2015-07-01

    Deliberate control of intermolecular interactions in fluorene- and benzofluorene-cored oligomers was attempted via introduction of different-length alkyl moieties to attain high emission amplification and low amplified spontaneous emission (ASE) threshold at high oligomer concentrations. Containing fluorenyl peripheral groups decorated with different-length alkyl moieties, the oligomers were found to express weak concentration quenching of emission, yet excellent carrier drift mobilities (close to 10-2 cm2/V/s) in the amorphous films. Owing to the larger radiative decay rates (>1.0 × 109 s-1) and smaller concentration quenching, fluorene-cored oligomers exhibited down to one order of magnitude lower ASE thresholds at higher concentrations as compared to those of benzofluorene counterparts. The lowest threshold (300 W/cm2) obtained for the fluorene-cored oligomers at the concentration of 50 wt % in polymer matrix is among the lowest reported for solution-processed amorphous films in ambient conditions, what makes the oligomers promising for lasing application. Great potential in emission amplification was confirmed by high maximum net gain (77 cm-1) revealed for these compounds. Although the photostability of the oligomers was affected by photo-oxidation, it was found to be comparable to that of various organic lasing materials including some commercial laser dyes evaluated under similar excitation conditions.

  2. Fluorene- and benzofluorene-cored oligomers as low threshold and high gain amplifying media

    SciTech Connect

    Kazlauskas, Karolis Kreiza, Gediminas; Bobrovas, Olegas; Adomėnienė, Ona; Adomėnas, Povilas; Juršėnas, Saulius; Jankauskas, Vygintas

    2015-07-27

    Deliberate control of intermolecular interactions in fluorene- and benzofluorene-cored oligomers was attempted via introduction of different-length alkyl moieties to attain high emission amplification and low amplified spontaneous emission (ASE) threshold at high oligomer concentrations. Containing fluorenyl peripheral groups decorated with different-length alkyl moieties, the oligomers were found to express weak concentration quenching of emission, yet excellent carrier drift mobilities (close to 10{sup −2} cm{sup 2}/V/s) in the amorphous films. Owing to the larger radiative decay rates (>1.0 × 10{sup 9 }s{sup −1}) and smaller concentration quenching, fluorene-cored oligomers exhibited down to one order of magnitude lower ASE thresholds at higher concentrations as compared to those of benzofluorene counterparts. The lowest threshold (300 W/cm{sup 2}) obtained for the fluorene-cored oligomers at the concentration of 50 wt % in polymer matrix is among the lowest reported for solution-processed amorphous films in ambient conditions, what makes the oligomers promising for lasing application. Great potential in emission amplification was confirmed by high maximum net gain (77 cm{sup −1}) revealed for these compounds. Although the photostability of the oligomers was affected by photo-oxidation, it was found to be comparable to that of various organic lasing materials including some commercial laser dyes evaluated under similar excitation conditions.

  3. Adsorption and bioaccessibility of phenanthrene on carbon nanotubes in the in vitro gastrointestinal system.

    PubMed

    Li, Wei; Zhao, Jian; Zhao, Qing; Zheng, Hao; Du, Peng; Tao, Shu; Xing, Baoshan

    2016-10-01

    Adsorption and bioaccessibility of phenanthrene on graphite and multiwalled carbon nanotubes (CNTs) were investigated in simulated gastrointestinal fluid using a passive dosing system. The saturated adsorption capacity of phenanthrene on different adsorbents follows an order of hydroxylated CNTs (H-CNTs)>carboxylated CNTs (C-CNTs)>graphitized CNTs (G-CNTs)>graphite, consistent with the order of their surface area and micropore volume. The change of phenanthrene adsorption on the adsorbents is different with the presence of pepsin (800mg/L) and bile salts (500mg/L and 5000mg/L, abbreviated as BS500 and BS5000). Both solubilization of phenanthrene by pepsin and bile salts and their competition with phenanthrene for the adsorption sites play a role. In addition, the large increase of the maximum adsorption capacity in BS5000 solution indicates an enhanced dispersion of CNTs or an exfoliation of graphite by bile salts, which consequently increases the exposed surface area. The bioaccessibility increases in pepsin and BS500 solution with a growing free phenanthrene concentration. Although the bioaccessibility of phenanthrene stalls or slightly decreases in the middle range of free phenanthrene concentration in BS5000 solution, the bioaccessibility overall is much higher than that in pepsin and BS500 solution at the same phenanthrene level. It is impossible to separate the effect of competition from dispersion (or exfoliation) at this stage, but the relative contribution of solubilization to phenanthrene desorption in pepsin and BS500 solutions was quantified, which improves our understanding of the mechanisms on bioaccessibility of adsorbed pollutants on CNTs. PMID:27213670

  4. Thermodynamics and existing phase of Ba-phenanthrene

    NASA Astrophysics Data System (ADS)

    Heguri, Satoshi; Thi Nhu Phan, Quynh; Tanabe, Yoichi; Tanigaki, Katsumi

    2015-03-01

    The recent discovery of superconductivity in potassium doped picene suggested the possibility of a new class of superconductors. The problem is that no satisfactory guide to improve the superconducting shielding fraction had been provided until recently. However, a high superconducting shielding fraction of 65 % was reported for Ba1.5(phenanthrene). Considering this situation, phenanthrene (PHN) appears to be a key material for confirming the existence of metallicity and superconductivity in the aromatic hydrocarbon (AHC) family, and also for clarifying the physical properties and superconducting mechanism of AHC superconductors. In the present work, the thermodynamics for intercalation of PHN with Ba is studied in comparison with its isomer of anthracene (AN). Contrarily to previous reports by other authors, the important observation that Ba is intercalated into neither PHN nor AN without affecting their molecular structures is unambiguously made by differential scanning calorimetry measurements and annealing time dependences observed by powder x-ray diffraction measurements. The reactions of Ba and PHN at elevated temperatures lead this system to molecular decomposition instead of intercalation. The phenomena of metallicity and superconductivity in PHN intercalated with alkaline earth metals (Ba or Sr) should be reconsidered.

  5. Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation.

    PubMed

    Cheema, Sardar Alam; Imran Khan, Muhammad; Shen, Chaofeng; Tang, Xianjin; Farooq, Muhammad; Chen, Lei; Zhang, Congkai; Chen, Yingxu

    2010-05-15

    The present study was conducted to investigate the capability of four plant species (tall fescue, ryegrass, alfalfa, and rape seed) grown alone and in combination to the degradation of phenanthrene and pyrene (polycyclic aromatic hydrocarbons, PAHs) in spiked soil. After 65 days of plant growth, plant biomass, dehydrogenase activity, water-soluble phenolic (WSP) compounds, plant uptake and accumulation and residual concentrations of phenanthrene and pyrene were determined. Our results showed that presence of vegetation significantly enhanced the dissipation of phenanthrene and pyrene from contaminated soils. Higher degradation rates of PAHs were observed in the combined plant cultivation (98.3-99.2% phenanthrene and 88.1-95.7% pyrene) compared to the single plant cultivation (97.0-98.0% phenanthrene and 79.8-86.0% pyrene). Contribution of direct plant uptake and accumulation of phenanthrene and pyrene was very low compared to the plant enhanced dissipation. By contrast, plant-promoted biodegradation was the predominant contribution to the remediation enhancement. The correlation analysis indicates a negative relation between biological activities (dehydrogenase activity and WSP compounds) and residual concentrations of phenanthrene and pyrene in planted soils. Our results suggest that phytoremediation could be a feasible choice for PAHs contaminated soil. Moreover, the combined plant cultivation has potential to enhance the process. PMID:20079966

  6. H{sub 2} EJECTION FROM POLYCYCLIC AROMATIC HYDROCARBONS: INFRARED MULTIPHOTON DISSOCIATION STUDY OF PROTONATED ACENAPHTHENE AND 9,10-DIHYDROPHENANTHRENE

    SciTech Connect

    Szczepanski, Jan; Vala, Martin T.; Oomens, Jos; Steill, Jeffrey D.

    2011-01-20

    The infrared multiple-photon dissociation (IRMPD) spectra of protonated acenaphthene ([ACN+H]{sup +}) and 9,10-dihydrophenanthrene ([DHP+H]{sup +}) have been recorded using an infrared free electron laser after the compounds were protonated by electrospray ionization and trapped in a Fourier transform ion cyclotron mass spectrometer. In both compounds, the loss of two mass units is predominant. Density functional calculations (B3LYP/6-311++G(d,p)) of the infrared spectra of all possible protonated isomers of each species showed that the observed IRMPD spectra are best fit to the isomer with the largest proton affinity and lowest relative electronic energy. Potential energy surfaces of the most stable isomers of [ACN+H]{sup +} and [DHP+H]{sup +} have been calculated for H and H{sub 2} loss. The lowest energy barriers are for loss of H{sub 2}, with predicted energies 4.28 and 4.15 eV, respectively. After H{sub 2} ejection, the adjacent aliphatic hydrogens migrate to the bare ejection site and stabilize the remaining fragment. Single H loss may occur from [ACN+H]{sup +} but the energy required is higher. No single H loss is predicted from [DHP+H]{sup +}, only H migration around the carbon skeleton. The vibrational bands in the parent closed-shell protonated polycyclic aromatic hydrocarbons are compared to bands observed from the interstellar medium.

  7. A comparison of the accumulation of phenanthrene by marine amphipods in water versus sediment

    SciTech Connect

    Fusi, T.; Weber, L.J.

    1995-12-31

    The objective of this research is to compare the accumulation of the polycyclic aromatic hydrocarbon phenanthrene by marine amphipods from sediment and interstitial water versus from a water only exposure system. The equilibrium partitioning theory assumes that the exposure and response of benthic invertebrates are the same when exposed to the same contaminant concentration in water and interstitial water. In this series of experiments, three infaunal marine amphipod species; Eohaustorius estuarius (non tube-forming, burrowing amphipod), Leptocheirus plumulosus (burrow-building amphipod) and Grandidierella japonica (tube-building amphipod), were exposed to {sup 14}C-phenanthrene under three experimental conditions: (1) sediment spiked at a concentration resulting in an interstitial water concentration of 2.5 {micro}g/l phenanthrene; (2) sediment spiked at a concentration resulting in interstitial water concentration of 2.5 {micro}g/l and the overlying water spiked at 2.5 {micro}g/l phenanthrene; (3) a water only exposure with the water at a concentration of 2.5 {micro}g/l phenanthrene, The exposures were conducted in a static renewal system with the overlying and exposure water being replaced every 8 hours. The bioaccumulation of phenanthrene was followed over 72 hours. In all three species of amphipods, the accumulation of phenanthrene was significantly greater in the water only exposure than in the two sediment exposures. At 72 hours, the amphipod body burdens of phenanthrene in the water only exposures were, depending on the species, 7 to 24 times that of the sediment only exposures. The results suggest that water only exposures may overestimate sediment or interstitial exposure to phenanthrene and other nonionic, lipophilic compounds.

  8. Infrared Spectra of Perdeuterated Naphthalene, Phenanthrene, Chrysene, and Pyrene

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Sandford, Scott A.; Hudgins, Douglas M.; Arnold, James O. (Technical Monitor)

    1996-01-01

    Calculations are carried out using density functional theory (DFT) to determine the harmonic frequencies and intensities of perdeuterated naphthalene, phenanthrene, pyrene, and chrysene. We also report matrix- isolation spectra for these four species. The theoretical and experimental frequencies and relative intensities for the perdeuterated species are in generally good agreement. The effect of perdeuteration is to reduce the sum of the integrated intensities by a factor of about 1.75. This reduction occurs for all vibrational motions, except for the weak low frequency ring deformation modes. There is also a significant redistribution of the relative intensities between the out-of-plane C-D bands relative to those found for the out-of-plane C-H bands. The theoretical isotopic ratios provide an excellent diagnostic of the degree of C-H(C-D) involvement in the vibrational bands, allowing in most cases a clear distinction of the type of motion.

  9. Drift mobility of holes in phenanthrene single crystals

    NASA Technical Reports Server (NTRS)

    Sonnonstine, T. J.; Hermann, A. M.

    1974-01-01

    The temperature dependence of drift mobilities of holes in single crystals of phenanthrene was measured in the range from 203 to 353 K in three crystallographic directions. Below the anomaly temperature of 72 C, the mobility temperature dependences are consistent with the Munn and Siebrand slow-phonon hopping process in the b direction and the Munn and Siebrand slow-phonon coherent mode in the a and c prime directions. The drift mobility temperature dependences in crystals that have been cooled through the anomaly temperature in the presence of illumination and an electric field are consistent with the model of Spielberg et al. (1971), in which the hindered vibration of the 4,5 hydrogens introduces a new degree of freedom above 72 C.

  10. Enhanced Solubilisation of Six PAHs by Three Synthetic Cyclodextrins for Remediation Applications: Molecular Modelling of the Inclusion Complexes

    PubMed Central

    Morillo, Esmeralda; Sánchez-Trujillo, María Antonia; Moyano, José Ramón; Villaverde, Jaime; Gómez-Pantoja, María Eulalia; Pérez-Martínez, José Ignacio

    2012-01-01

    Solubilisation of six polycyclic aromatic hydrocarbons (PAHs) (acenaphthene, anthracene, fluoranthene, fluorene, phenanthrene and pyrene) by three synthetic cyclodextrins (CDs) (2-hydroxypropyl-β-CD, hydroxypropyl-γ-CD and ramdomly methylated-β-CD) was investigated in order to select the CD which presents the greatest increase in solubility and better complexation parameters for its use in contaminated scenarios. The presence of the three cyclodextrins greatly enhanced the apparent water solubility of all the PAHs through the formation of inclusion complexes of 1∶1 stoichiometry. Anthracene, fluoranthene, fluorene and phenanthrene clearly presented a higher solubility when β-CD derivatives were used, and especially the complexes with the ramdomly methylated-β-CD were favoured. On the contrary, pyrene presented its best solubility results when using 2-hydroxypropyl-γ-CD, but for acenaphthene the use of any of the three CDs gave the same results. Complementary to experimental phase-solubility studies, a more in-depth estimation of the inclusion process for the different complexes was carried out using molecular modelling in order to find a correlation between the degree of solubilisation and the fit of PAH molecules within the cavity of the different CDs and to know the predominant driving forces of the complexation. PMID:23028493

  11. Synthesis and Characterization of New Tercopolymer Containing Thienothiophene, Thiophene and Fluorene for Organic Thin-Film Transistors.

    PubMed

    Tan, Xiaofeng; Park, Jong Man; Ma, Jae Yeol; Kim, Yun-Hi

    2015-02-01

    We have designed and synthesized the novel p-type polymer containing thienothiophene, thiophene and fluorene with OTFT characteristics. The polymer was synthesized by the palladium catalyzed Suzuki coupling reaction with thienothiophene derivatives, thiophene derivatives and fluorene derivatives. The obtained PTT2BTF can dissolve in common organic solvents such as toluene, THF, chloroform, chlorobenzene and dichlorobenzene. PTT2BTF has a number average molecular weight (Mn) of 25,000 with a poly dispersity index (PDI) of 1.66. PTT2BTF showed good thermal stability with high Td of 407 °C. The OTFT characteristics of the polymer (PTT2BTF) were fabricated. Organic semiconductor was found to exhibit typical p-channel FET characteristics with a hole mobility of 6.3 x 10(-5) cm2/Vs and a threshold voltage of - 4 V. Keywords: OTFT, Thiophene, Fluorene, Solution Process. PMID:26353662

  12. Ultrafast spectroscopy, superluminescence and theoretical modeling of a two-photon absorbing fluorene derivative.

    PubMed

    Kurhuzenkau, S A; Woodward, A W; Yao, S; Belfield, K D; Shaydyuk, Y O; Sissa, C; Bondar, M V; Painelli, A

    2016-05-14

    A comprehensive study of photophysical and photochemical properties of an unsymmetrical fluorene derivative is presented, including linear absorption, fluorescence excitation anisotropy, photochemical stability, steady-state fluorescence, and fluorescence lifetimes in organic solvents of different polarities. Nonlinear optical properties were investigated using Z-scan measurements of degenerate two-photon absorption and femtosecond pump-probe spectroscopy. The strongly fluorescent compound exhibited good photostability, positioning it for use in a number of applications. A dramatic increase in fluorescence intensity along with spectral narrowing was observed under femtosecond pumping, demonstrating amplified spontaneous emission. An extensive set of experimental data is rationalized based on essential state models. PMID:27102624

  13. Synthesis, photophysical, and device properties of novel dendrimers based on a fluorene-hexabenzocoronene (FHBC) core.

    PubMed

    Wong, Wallace W H; Jones, David J; Yan, Chao; Watkins, Scott E; King, Simon; Haque, Saif A; Wen, Xiaoming; Ghiggino, Kenneth P; Holmes, Andrew B

    2009-02-19

    The synthesis of easily functionalized and highly soluble fluorene-containing hexabenzocoronenes (FHBC) has been achieved in high yield at a gram scale. Conjugated triarylamine oligomers were coupled to the FHBC cores via Buchwald-Hartwig coupling, and the photophysical properties of resulting dendritic materials were examined by ultrafast laser spectroscopic techniques. Efficient quenching of the triarylamine oligomer fluorescence was observed paving the way for the inclusion of these materials in bulk heterojunction solar cells. In preliminary studies, solar cell devices with external quantum efficiencies above 5% have been fabricated. PMID:19199779

  14. Measuring the toxicity of alkyl-phenanthrenes to early life stages of medaka (Oryzias latipes) using partition-controlled delivery.

    PubMed

    Turcotte, Dominique; Akhtar, Parveen; Bowerman, Michelle; Kiparissis, Yiannis; Brown, R Stephen; Hodson, Peter V

    2011-02-01

    Alkyl-phenanthrenes are a class of compounds present in crude oil and toxic to developing fish. Most research on alkyl-phenanthrenes has focused on retene (7-isopropyl-1-methyl-phenanthrene), but little is known about the chronic toxicity of related congeners to the early life stages of fish. This project is the first to describe the chronic toxicity of a series of alkyl-phenanthrenes to the embryos of Japanese medaka (Oryzias latipes) using the partition-controlled delivery (PCD) method of exposure and is the first to establish a relationship between toxicity of alkyl-phenanthrenes and log P. With PCD, test concentrations were maintained by equilibrium partitioning of test chemicals from polydimethylsiloxane (PDMS) films containing various concentrations of C1 to C4 phenanthrenes. Log film:solution partition constants (log K(fs)) and aqueous solubility limits were determined for each alkyl-phenanthrene. The prevalence of abnormalities in fish embryos increased in an exposure-dependent manner, with median effective concentration (EC50) values lower than experimental solubility limits of the compounds, and typical of environmental concentrations. Alkyl-phenanthrenes were more toxic to medaka embryos than unsubstituted phenanthrene, with effects resembling those of dioxin and indicating a specific receptor-based mechanism of toxicity. These results extend conclusions for the Exxon Valdez oil spill, suggest a specific mechanism of toxicity for alkyl-phenanthrenes, and provide a model for assessing the risks of mixture toxicity. PMID:21072839

  15. The impact of carbon nanomaterials on the development of phenanthrene catabolism in soil.

    PubMed

    Oyelami, Ayodeji O; Semple, Kirk T

    2015-07-01

    This study investigates the impact of different types of carbon nanomaterials (CNMs) namely C60, multi-walled carbon nanotubes (MWCNTs) and fullerene soot on the catabolism of (14)C-phenanthrene in soil by indigenous microorganisms. Different concentrations (0%, 0.01%, 0.1% and 1%) of the different CNMs were blended with soil spiked with 50 mg kg(-1) of (12)C-phenanthrene, and aged for 1, 25, 50 and 100 days. An increase in the concentration of MWCNT- and FS-amended soils showed a significant difference (P = 0.014) in the lag phase, maximum rates and overall extent of (14)C-phenanthrene mineralisation. Microbial cell numbers did not show an obvious trend, but it was observed that control soils had the highest population of heterotrophic and phenanthrene degrading bacteria at all time points. PMID:26067741

  16. Copper(II) complexes of bis(aryl-imino)acenaphthene ligands: synthesis, structure, DFT studies and evaluation in reverse ATRP of styrene.

    PubMed

    Fliedel, Christophe; Rosa, Vitor; Santos, Carla I M; Gonzalez, Pablo J; Almeida, Rui M; Gomes, Clara S B; Gomes, Pedro T; Lemos, M Amélia N D A; Aullón, Gabriel; Welter, Richard; Avilés, Teresa

    2014-09-14

    Two new Ar-BIAN Cu(II) complexes (where Ar-BIAN = bis(aryl-imino)acenaphthene) of formulations [CuCl2(Mes-BIAN)] (1) (Mes = 2,4,6-Me3C6H2) and [CuCl2(Dipp-BIAN)] (2) (Dipp = 2,6-iPr2C6H3) were synthesised by direct reaction of CuCl2 suspended in dichloromethane with the respective ligands Mes-BIAN (L1) and Dipp-BIAN (L2), dissolved in dichloromethane, under an argon atmosphere. Attempts to obtain these compounds by solubilising CuCl2 in methanol and adding a dichloromethane solution of the corresponding ligand, under aerobic conditions, gave also compound 1, but, in the case of L2, the Cu(I) dimer [CuCl(Dipp-BIAN)]2 (3) was obtained instead of compound 2. The compounds were fully characterised by elemental analyses, MALDI-TOF mass spectrometry, FT-IR, (1)H NMR and EPR spectroscopic techniques. The solid-state molecular structures of compounds 1-3 were determined by single crystal X-ray diffraction, showing the expected chelation of the Ar-BIAN ligands and two chloride ligands completing the coordination sphere of the Cu(II) centre. In the case of the complex 1, an intermediate coordination geometry around the Cu(II) centre, between square planar and tetrahedral, was revealed, while the complex 2 showed an almost square planar geometry. The structural differences and evaluation of energetic changes were rationalised by DFT calculations. Analysis of the electrochemical behaviour of complexes 1-3 was performed by cyclic voltammetry and the experimental redox potentials for Cu(II)/Cu(I) pairs have been compared with theoretical values calculated by DFT in the gas phase and in dichloromethane and methanol solutions. The complex 1 exhibited good activity in the reverse atom transfer radical polymerisation (ATRP) of styrene. PMID:25036889

  17. Effects of a nonionic surfactant on biodegradation of phenanthrene and hexadecane in soil

    SciTech Connect

    Macur, R.E.; Inskeep, W.P.

    1999-09-01

    The influence of a nonionic (alcohol ethoxylate) surfactant (Witconol SN70) on biodegradation of phenanthrene and hexadecane (nonaqueous-phase liquid) in soil was studied in batch and transport systems. Simultaneous enhancement of phenanthrene and hexadecane degradation was noted at surfactant doses resulting in aqueous-phase surfactant concentrations below the critical micelle concentration (CMC). Conversely, degradation rates of both compounds declined to essentially zero at supra-CMC doses, suggesting that distinct mechanisms of inhibition and enhancement were operating depending on the effective surfactant concentration. Surfactant doses resulting in enhanced degradation correlated with enhanced gross microbial activity as determined using total CO{sub 2} evolution rates. Supra-CMC does that resulted in inhibited degradation did not suppress gross microbial activity. Furthermore, measurements of phenanthrene solubilization and surface tension indicated that phenanthrene was solubilized at supra-CMC levels of surfactant. Mechanisms of inhibition of phenanthrene and hexadecane degradation at supra-CMC surfactant concentrations may include changes in interfacial chemistry and subsequent mass transfer processes due to sorbed surfactant, reduced bioavailability of micelle-bound phenanthrene and hexadecane, or inhibition of specific members of the microbial community responsible for hydrophobic organic compound degradation.

  18. [Screening of a phenanthrene-degrading bacterium and its degradation conditions].

    PubMed

    Zhou, Le; Sheng, Xiafang; Zhang, Shijin; Liu, Jing

    2005-12-01

    Several PAHs-degrading bacteria were isolated from the soil near a petrochemicals factory, and one strain Fl0a identified as B. sphaericus was chosen for use. The study on the phenanthrene-degradation potential of the strain and its affecting factors showed that at 28 degrees C, the degradation rate of phenanthrene (50 mg x L(-1)) was 98.12% after 27 hours rotary culture, and 98.47% after 84 hours static culture. F10a had a good phenanthrene-degradation capability when the pH was 4, 6 and 8, but its growth was inhibited when pH was 10. Cr2+ was toxic to the strain, Cu2+ could delay the degradation of phenanthrene, while Zn2+ and Pb2+ had no significant effects. The degradation rate of phenanthrene (200 mg x L(-1)) was 99.6% after 84 hours rotary culture. A significant positive relationship was found between bacterial growth and phenanthrene degradation. PMID:16515196

  19. A battery of bioassays for the evaluation of phenanthrene biotoxicity in soil.

    PubMed

    Khan, Muhammad Imran; Cheema, Sardar Alam; Tang, Xianjin; Hashmi, Muhammad Zaffar; Shen, Chaofeng; Park, Joonhong; Chen, Yingxu

    2013-07-01

    A battery of bioassays was used to assess the ecotoxicological risk of soil spiked with a range of phenanthrene levels (0.95, 6.29, 38.5, 58.7, 122, and 303 μg g(-1) dry soil) and aged for 69 days. Multiple species (viz. Brassica rapa, Eisenia feotida, Vibrio fischeri), representing different trophic levels, were used as bioindicator organisms. Among acute toxicity assays tested, the V. fischeri luminescence inhibition assay was the most sensitive indicator of phenanthrene biotoxicity. More than 15 % light inhibition was found at the lowest phenanthrene level (0.95 μg g(-1)). Furthermore, comet assay using E. fetida was applied to assess genotoxicity of phenanthrene. The strong correlation (r (2) ≥ 0.94) between phenanthrene concentration and DNA damage indicated that comet assay is appropriate for testing the genotoxic effects of phenanthrene-contaminated soil. In the light of these results, we conclude that the Microtox test and comet assay are robust and sensitive bioassays to be employed for the risk evaluation of polycyclic aromatic hydrocarbon-contaminated soil. PMID:23440446

  20. Investigation of intermolecular interactions between fluorene-based conjugated polymers using the dispersion-corrected DFT

    NASA Astrophysics Data System (ADS)

    Ayoub, Sarah; Lagowski, Jolanta B.

    2015-03-01

    Alternating triphenylamine-fluorene, TPAFn (n=1-3), and fluorene-oxadiazole OxFn (n=1-3) conjugated copolymers are important components of novel high-efficiency multi-layer organic light-emitting diodes (OLEDs). In this work, we investigate the intermolecular interactions between the various combinations of monomers of OxFn-TPAFn (n=1-3) copolymers using the dispersion-corrected density functional theory (B97D) method. The monomer combinations are taken with and without the presence of long alkyl chains in order to study the effect of side-chains on the polymer backbone intermolecular interactions. The dispersion effect is studied by comparing the structures of the interacting monomers with those in vacuum. In addition, we calculate intermolecular distances, energy gaps and binding energies of monomer dimers corresponding to different pairings of OxFn-TPAFn (n=1-3) monomers. Our results show that the combination of OxF3-TPAF2 monomers exhibites the highest binding energy, closest intermolecular distance, and the best matching of chain lengths amongst all of the combinations of OxFn-TPAFn (n=1-3) monomers. Experiments have shown that OxF3-TPAF2 combination gives the best performance for OLEDS made of OxF-TPAF polymer layers.

  1. DFT calculation of the electronic properties of fluorene-1,3,4-thiadiazole oligomers.

    PubMed

    Sánchez-Bojorge, Nora Aydeé; Rodríguez-Valdez, Luz María; Flores-Holguín, Norma

    2013-09-01

    Thiadiazole derivatives have been widely employed in the areas of pharmaceutical, agricultural, industrial, and polymer chemistry. The electronic and molecular structures of thiadiazoles are of interest because they have an equal number of valence electrons and similar molecular structures to thiophenes, which are currently used in the construction of organic solar cells due to their relatively high hole mobilities and good light-harvesting properties. For this reason, the electronic properties of fluorene-1,3,4-thiadiazole oligomers warrant investigation. In the present work, the structure of fluorene-1,3,4-thiadiazole with one thiadiazole unit in the structure was analyzed. This molecule was then expanded until there were 10 thiadiazole units in the structure. The band gap, HOMO and LUMO distributions, and absorption spectrum were analyzed for each molecule. All calculations were performed by applying the B3LYP/6-31G(d) chemical model in the Gaussian 03W and GaussView software packages. The electronic properties were observed to significantly enhance as the number of monomeric units increased, which also caused the gap energy to decrease from 3.51 eV in the oligomer with just one thiadiazole ring to 2.33 eV in the oligomer with 10 units. The HOMO and LUMO regions were well defined and separated for oligomers with at least 5 monomer units of thiadiazole. PMID:23722558

  2. Ligninolytic fungus Polyporus sp. S133 mediated metabolic degradation of fluorene.

    PubMed

    Lazim, Zainab Mat; Hadibarata, Tony

    2016-01-01

    This study aimed to investigate the impact of nonionic surfactants on the efficacy of fluorine degradation by Polyporus sp. S133 in a liquid culture. Fluorene was observed to be degraded in its entirety by Polyporus sp. S133 subsequent to a 23-day incubation period. The fastest cell growth rate was observed in the initial 7 days in the culture that was supplemented with Tween 80. The degradation process was primarily modulated by the activity of two ligninolytic enzymes, laccase and MnP. The highest laccase activity was stimulated by the addition of Tween 80 (2443U/L) followed by mixed surfactant (1766U/L) and Brij 35 (1655U/L). UV-vis spectroscopy, TLC analysis and mass spectrum analysis of samples subsequent to the degradation process in the culture medium confirmed the biotransformation of fluorene. Two metabolites, 9-fluorenol (λmax 270, tR 8.0min and m/z 254) and protocatechuic acid (λmax 260, tR 11.3min and m/z 370), were identified in the treated medium. PMID:27287336

  3. Cyclopenta[c]phenanthrenes--chemistry and biological activity.

    PubMed

    Brzuzan, Paweł; Góra, Maciej; Luczyński, Michał K; Woźny, Maciej

    2013-06-25

    Despite cyclopenta-fused polycyclic aromatic hydrocarbons (CP-PAHs) having been detected in the environment, the ability of these compounds to induce cellular and tissue responses remains poorly characterized. In this review, we look at the chemistry and biological activity of the cyclopenta[c]phenanthrenes (CP[c]Phs) as potential chemicals of concern in the process of risk assessment. The first part of the review deals with the environmental occurrence and chemistry of CP-PAHs, focusing on available methods of CP[c]Ph chemical synthesis. The most interesting structural feature of the CP[c]Ph is the presence of a pseudo fjord-region constructed by the cyclopentane ring. This compound can be treated either as a structurally similar one to B[c]Ph, or as a phenanthrene skeleton with an electrodonating alkyl substituent in the bay-region of the molecule. The second thread, providing available data on the adverse effects of CP[c]Ph compounds on cells and tissues of living organisms, mainly fish, improves our understanding of these possible environmental hazards. The data show that CP[c]Ph is less potent at inducing CYP1A gene expression in rainbow trout than benzo[a]pyrene (B[a]P), a well-known Ah-receptor agonist. Interestingly, the CP[c]Ph dependent up-regulation of CYP1A mRNA is positively correlated with the incidences of clastogenic changes in rainbow trout erythrocytes. CP[c]Ph has, comparably to B[a]P, a potential to repress expression of tumor suppressor p53, in the head kidney of rainbow trout. Furthermore, estrogen responsive genes in fish liver, ERα and VTG, are not induced by CP[c]Ph, suggesting that the compound has no endocrine disrupting potential. However, some CP[c]Phs show mutagenic activity when investigated in the Ames test, and exhibit genotoxic properties in in vitro micronucleus assay. The above characteristics suggest that CP-PAHs are chemicals of concern for which potential pathways of exposure should be further identified. PMID:23628509

  4. Natural attenuation of fluorene and pyrene in contaminated soils and assisted with hydroxypropyl-β-cyclodextrin. Effect of co-contamination.

    PubMed

    Madrid, F; Rubio-Bellido, M; Villaverde, J; Tejada, M; Morillo, E

    2016-11-15

    The objectives of this study were to investigate the mutual effect of the PAHs fluorene and pyrene on their respective biodegradation and dissipation processes in an agricultural soil, and to determine the effect of hydroxypropyl-β-cyclodextrin (HPBCD), used to increase the bioavailability of PAHs, on such processes. Fluorene dissipation was primarily due to abiotic processes, although a small contribution from biodegradation was also observed. Therefore, fluorene dissipation did not increase with HPBCD and its presence did not significantly alter the dehydrogenase activity. In contrast to fluorene, pyrene dissipation depended primarily on biotic factors, with endogenous soil microorganisms capable of degrading pyrene, with large increases in dehydrogenase activity. HPBCD increased biodegradation rate of pyrene. The co-contamination of soil with both PAHs did not affect fluorene evolution, but significantly inhibited pyrene biodegradation. The different abilities of soil bacterial consortia to catabolize these PAHs are discussed. Additionally, the possibility that the abiotic loss of fluorene through volatilization had a significant effect on the microbial community biodegradation of both fluorene and pyrene is examined. PMID:27454573

  5. Proteomic analysis of plasma membrane proteins in wheat roots exposed to phenanthrene.

    PubMed

    Shen, Yu; Du, Jiangxue; Yue, Le; Zhan, Xinhua

    2016-06-01

    Polycyclic aromatic hydrocarbons (PAHs) are potentially carcinogenic and toxic to humans through ingestion of contaminated food crops. PAHs can enter crop roots through proton/PAH symporters; however, to date, the symporter remains unclear. Here we reveal, for the first time, the plasma membrane proteome of Triticum aestivum seedling roots in response to phenanthrene (a model PAH) exposure. Two-dimensional gel electrophoresis (2-DE) coupled with MALDI-TOF/TOF-MS and protein database search engines were employed to analyze and identify phenanthrene-responsive proteins. Over 192 protein spots are reproducibly detected in each gel, while 8 spots are differentially expressed under phenanthrene treatment. Phenanthrene induces five up-regulated proteins distinguished as 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase 2, enolase, heat shock protein 80-2, probable mediator of RNA polymerase II transcription subunit 37e (heat shock 70-kDa protein 1), and lactoylglutathione lyase. Three proteins identified as adenosine kinase 2, 4-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl glucoside beta-D-glucosidase 1c, and glyceraldehyde-3-phosphate dehydrogenase 3 are down-regulated under exposure to phenanthrene. The up-regulated proteins are related to plant defense response, antioxidant system, and glycolysis. The down-regulated proteins involve the metabolism of high-energy compounds and plant growth. Magnesium, which is able to bind to enolase, can enhance the transport of phenanthrene into wheat roots. Therefore, it is concluded that phenanthrene can induce differential expression of proteins in relation to carbohydrate metabolism, self-defense, and plant growth on wheat root plasma membrane. This study not only provides novel insights into PAH uptake by plant roots and PAH stress responses, but is also a good starting point for further determination and analyses of their functions using genetic and other approaches. PMID:26897580

  6. Sublethal effects of phenanthrene, nicotine, and pinane on Daphnia pulex

    USGS Publications Warehouse

    Savino, Jacqueline F.; Tanabe, Lila L.

    1989-01-01

    Chronic studies of Daphnia Pulex exposed to different concentrations of phenanthrene, nicotine, and pinane produced consistent sublethal effects among replicates and concentrations. The LOEC's for growth and fecundity with each chemical tested were 3 to 30% of the 48-hr EC50's. Growth decreased as concentration increased for each chemical tested, and fecundity approached zero at 2 to 5 times the LOEC for each chemical. In this study chemicals representing PAHs, heterocyclic nitrogen compounds, and cyclic alkanes, produced detectable sublethal effects in daphnids at less than 0.1 ppm in water. These chronic studies, in conjuction with the more extensive acute toxicity testing (Passino and Smith 1987; Perry and Smith 1988; Smith et al. 1988), provided a relatively quick but thorough toxicological assessment of a large array of chemicals and demonstrated the relative importance of different classes of compounds in changing growth and survival trends in given populations of native organisms. Classic toxicity tests continue to provide a reliable backdrop of results with which the effects of new chemicals or mixtures can be compared.

  7. Removal of naphthalene and phenanthrene using aerobic membrane bioreactor.

    PubMed

    Mijaylova Nacheva, Petia; Esquivel Sotelo, Alberto

    2016-06-01

    The removal of polycyclic aromatic hydrocarbons by membrane bioreactor (MBR) under aerobic conditions had been studied using naphthalene (NAP) and phenanthrene (PHE) as model compounds. Three MBRs with submerged ultra-filtration hollow fiber membranes were operated applying different operational conditions during 6.5 months. Complete NAP and PHE removal was obtained applying loads of 7 gNAP kgTSS(-1) day(-1) and 0.5 gPHE kgTSS(-1) day(-1), while the organic loading rate was adjusted to 0.26 kgCOD kgTSS(-1) day(-1), with the biomass concentration being 6000 mgTSS L(-1), the hydraulic retention time (HRT) 8 h and the solids retention time (SRT) 30 days. Load increases, as well as HRT and SRT reductions, affected the NAP and PHE removals. Biodegradation was found to be the major NAP and PHE removal mechanism. There was no NAP accumulation in the biomass. Low PHE quantities remain sorbed in the biomass and the contribution of the sorption in the removal of this compound was estimated to be less than 0.01 %. The volatilization does not contribute to the PHE removal in MBRs, but the contribution of NAP volatilization can reach up to 0.6 % when HRT of 8 h is applied. PMID:26895256

  8. Novel Phenanthrene Sorption Mechanism by Two Pollens and Their Fractions.

    PubMed

    Zhang, Dainan; Duan, Dandan; Huang, Youda; Yang, Yu; Ran, Yong

    2016-07-19

    A pair of pollens (Nelumbo nucifera and Brassica campestris L.) and their fractions were characterized by elemental analysis and advanced solid-state (13)C NMR techniques and used as biosorbents for phenanthrene (Phen). Their constituents were largely aliphatic components (including sporopollenin), carbohydrates, protein, and lignin as estimated by (13)C NMR spectra of the investigated samples and the four listed biochemical classes. The structure of each nonhydrolyzable carbon (NHC) fraction is similar to that of sporopollenin. The sorption capacities are highly negatively related to polar groups largely derived from carbohydrates and protein but highly positively related to alkyl carbon, poly(methylene) carbon, and aromatic carbon largely derived from sporopollenin and lignin. The sorption capacities of the NHC fractions are much higher than previously reported values, suggesting that they are good sorbents for Phen. The Freundlich n values significantly decrease with increasing concentrations of poly(methylene) carbon, alkyl C, aromatic moieties, aliphatic components, and the lignin of the pollen sorbents, suggesting that aliphatic and aromatic structures and constituents jointly contribute to the increasing nonlinearity. To our knowledge, this is the first investigation of the combined roles of alkyl and aromatic moiety domains, composition, and accessibility on the sorption of Phen by pollen samples. PMID:27322011

  9. Impact of carbon nanotube morphology on phenanthrene adsorption.

    PubMed

    Apul, Onur Guven; Shao, Ting; Zhang, Shujuan; Karanfil, Tanju

    2012-01-01

    The present study examined the roles of the specific surface area (SSA), diameter, and length of carbon nanotubes (CNT) on the adsorption of phenanthrene (PNT) by analyzing the adsorption isotherms obtained with several single-walled carbon nanotubes (SWNT) and multiwalled carbon nanotubes (MWNT). At low equilibrium concentrations (e.g., 1 ppb), MWNTs with larger outer diameters exhibited higher PNT adsorption capacity on an SSA basis than those with smaller diameters. With increasing equilibrium concentration, adsorption on an SSA basis became independent of MWNT diameter, and the total surface area controlled maximum adsorption capacity. A similar analysis for the adsorption of naphthalene, a planar molecule with one less benzene ring but 20 times higher solubility than PNT, showed no correlation with respect to MWNT outer diameter. The results indicated that the surface curvature of MWNT was more important on the adsorption of PNT than on the adsorption of naphthalene. Specific surface area normalized isotherms did not show a correlation between PNT adsorption and lengths of SWNTs and MWNTs. Characterization results indicated that the morphology of CNTs plays an important role on the SSA and pore volume. Data from the manufacturer may not always represent the characteristics of CNTs in a particular batch. Therefore, accurate characterization of CNTs is critical to systematically examine the behavior of CNTs, such as adsorption and transport, in environmental systems. PMID:22002628

  10. Polyurethane foam (PUF) passive samplers for monitoring phenanthrene in stormwater.

    PubMed

    Dou, Yueqin; Zhang, Tian C; Zeng, Jing; Stansbury, John; Moussavi, Massoum; Richter-Egger, Dana L; Klein, Mitchell R

    2016-04-01

    Pollution from highway stormwater runoff has been an increasing area of concern. Many structural Best Management Practices (BMPs) have been implemented for stormwater treatment and management. One challenge for these BMPs is to sample stormwater and monitor BMP performance. The main objective of this study was to evaluate the feasibility of using polyurethane foam (PUF) passive samplers (PSs) for sampling phenanthrene (PHE) in highway stormwater runoff and BMPs. Tests were conducted using batch reactors, glass-tube columns, and laboratory-scale BMPs (bioretention cells). Results indicate that sorption for PHE by PUF is mainly linearly relative to time, and the high sorption capacity allows the PUF passive sampler to monitor stormwater events for months or years. The PUF passive samplers could be embedded in BMPs for monitoring influent and effluent PHE concentrations. Models developed to link the results of batch and column tests proved to be useful for determining removal or sorption parameters and performance of the PUF-PSs. The predicted removal efficiencies of BMPs were close to the real values obtained from the control columns with errors ranging between -8.46 and 1.52%. This research showed that it is possible to use PUF passive samplers for sampling stormwater and monitoring the performance of stormwater BMPs, which warrants the field-scale feasibility studies in the future. PMID:26942631

  11. Heavy metal effects on the biodegradation of fluorene by Sphingobacterium sp. KM-02 isolated from PAHs-contaminated mine soil

    NASA Astrophysics Data System (ADS)

    Nam, I.; Chon, C.; Jung, K.; Kim, J.

    2012-12-01

    Polycyclic aromatic hydrocarbon compounds (PAHs) are widely distributed in the environment and occur ubiquitously in fossil fuels as well as in products of incomplete combustion and are known to be strongly toxic, often with carcinogenic and mutagenic properties. Fluorene is one of the 16 PAHs included in the list of priority pollutants of the Environmental Protection Agency. The fluorene-degrading bacterial strain Sphingobacterium sp. KM-02 was isolated from PAHs-contaminated soil near an abandoned mine impacted area by selective enrichment techniques. Fluorene added to the Sphingobacterium sp. KM-02 culture as sole carbon and energy source was 78.4% removed within 120 h. A fluorene degradation pathway is tentatively proposed based on mass spectrometric identification of the metabolic intermediates 9-fluorenone, 4-hydroxy-9-fluorenone, and 8-hydroxy-3,4-benzocoumarin. Further the ability of Sphingobacterium sp. KM-02 to bioremediate 100 mg/kg fluorene in mine soil was examined by composting under laboratory conditions. Treatment of microcosm soil with the strain KM-02 for 20 days resulted in a 65.6% reduction in total amounts. These results demonstrate that Sphingobacterium sp. KM-02 could potentially be used in the bioremediation of fluorene from contaminated soil. Mine impacted area comprises considerable amounts of heavy metals such as cadmium, lead, mercury, arsenic, and copper. Although some of these metals are necessary for biological life, excessive quantities often result in the inhibition of essential biological reactions via numerous pathways. A number of reports collectively show that various metals, such as Al, Co, Ni, Cu, Zn, Pb, and Hg at a range of concentrations have adverse effects on the degradation of organic compounds. However, at present there is only limited information on the effect of individual heavy metals on the biological degradation of polyaromatic hydrocarbons (PAHs) including fluorene. Moreover, heavy metal effects were not

  12. The Structures of Fluorene-(H2O)(1,2) Determined by Rotational Coherence Spectroscopy

    SciTech Connect

    Laman, David M.; Joly, Alan G.; Ray, Douglas

    2003-07-22

    Rotational coherence spectroscopy (RCS), via time-correlated single photon counting, and two-color resonant two-photon ionization (R2PI) time-of-flight mass spectrometry, have been used to characterize fluorene-(water)1,2 (FL-(water)1,2) van der Waals clusters generated in supersonic jets. Rotational coherence traces have been obtained at excitation energies corresponding to several resonant features in the S1S0 R2PI spectra of FL-(H2O)1,2. RCS simulations and diagonalization of the moment of inertia tensor have been used to obtain the S1 excited state rotational constants and structures of FL-(H2O)1,2 that are consistent with the experimental rotational coherence traces. The RCS results indicate that: (i) the water molecule in FL-H2O bridges the central five-membered ring of fluorene and hydrogen bonds to both aromatic sites; (ii) the water molecules in FL-(H2O)2 form a water dimer that is oriented along the long axis of fluorene and is hydrogen-bonded to both aromatic sites. The S1S0 R2PI spectra of FL-(D2O)1,2 and FL-HDO have also been obtained. The transition is a doublet in the R2PI spectra of FL-H2O, FL-D2O, and a singlet in the R2PI spectrum of FL-HDO. The presence of this doublet in the FL-H2O/D2O spectra, and the absence of such a splitting in the FL-HDO spectrum, is an indication of nearly free internal rotation of the water molecule on a potential energy surface that changes upon electronic excitation. Lastly, the use of RCS and psec time-resolved fluorescence as a tool for assigning features in R2PI spectra that are of ambiguous origin due to fragmentation of higher mass clusters into lower mass channels is demonstrated.

  13. Packing of Large Two- and Three-Photon Activity Into Smallest Possible Unsymmetrical Fluorene Chromophores.

    PubMed

    Kundi, Varun; Thankachan, Pompozhi Protasis

    2016-05-01

    The quantum chemical study of one-, two-, and three-photon absorption (1PA, 2PA, and 3PA) properties for a set of compact fluorene derivatives (FD) with combination of different donor and acceptor moieties on both sides of fluorene ring system is presented. The main goal of the study is to pack large two-photon (2P) and three-photon (3P) activity into smallest possible chromophore. Linear, quadratic, and cubic response time-dependent density functional theory was used to calculate 1PA, 2PA, and 3PA properties, respectively. We used CAMB3LYP/cc-pVDZ level of theory for all the property calculations. The 2P and 3P transition probabilities were recalculated using two-state model approach and found to be in good agreement with the response theory results for first excited state. To include the contributions from higher states, the three-state model was also employed to recalculate the 2P transition probabilities and found to be in excellent agreement with response theory. The 2P/3P tensor elements were also analyzed to find reasons behind large 2P/3P activities. All the orbitals involved in transition processes were studied in detail by both molecular orbital pictures (qualitatively) and overlap diagnostic Λ-values (quantitatively). The study reveals that the novel fluorene derivatives FD-12 and FD-13 have shown large 2PA cross-section values of 1100 G.M. and 1030 G.M.; and 3PA transition probabilities of 6.10 × 10(10) a.u. and 4.85 × 10(10) a.u., respectively, for transition S0 → S1. The largest 3PA transition probability of 4.04 × 10(11) a.u. was found with FD-12 for S0 → S2 excitation. The linear relationship between Λ-values and 2PA cross-section values was also studied. PMID:27054876

  14. Hydroxypropyl-β-cyclodextrin extractability and bioavailability of phenanthrene in humin and humic acid fractions from different soils and sediments.

    PubMed

    Gao, Huipeng; Ma, Jing; Xu, Li; Jia, Lingyun

    2014-01-01

    Organic matter (OM) plays a vital role in controlling polycyclic aromatic hydrocarbon (PAH) bioavailability in soils and sediments. In this study, both a hydroxypropyl-β-cyclodextrin (HPCD) extraction test and a biodegradation test were performed to evaluate the bioavailability of phenanthrene in seven different bulk soil/sediment samples and two OM components (humin fractions and humic acid (HA) fractions) separated from these soils/sediments. Results showed that both the extent of HPCD-extractable phenanthrene and the extent of biodegradable phenanthrene in humin fraction were lower than those in the respective HA fraction and source soil/sediment, demonstrating the limited bioavailability of phenanthrene in the humin fraction. For the source soils/sediments and the humin fractions, significant inverse relationships were observed between the sorption capacities for phenanthrene and the amounts of HPCD-extractable or biodegradable phenanthrene (p < 0.05), suggesting the importance of the sorption capacity in affecting desorption and biodegradation of phenanthrene. Strong linear relationships were observed between the amount of HPCD-extractable phenanthrene and the amount degraded in both the bulk soils/sediments and the humin fractions, with both slopes close to 1. On the other hand, in the case of phenanthrene contained in HA, a poor relationship was observed between the amount of phenanthrene extracted by HPCD and the amount degraded, with the former being much less than the latter. The results revealed the importance of humin fraction in affecting the bioavailability of phenanthrene in the bulk soils/sediments, which would deepen our understanding of the organic matter fractions in affecting desorption and biodegradation of organic pollutants and provide theoretical support for remediation and risk assessment of contaminated soils and sediments. PMID:24705921

  15. Stereoselective metabolism of anthracene and phenanthrene by the fungus Cunninghamella elegans

    SciTech Connect

    Cerniglia, C.E.; Yang, S.K.

    1984-01-01

    The fungus Cunninghamella elegans oxidized anthracene and phenanthrene to form predominately transdihydrodiols. The metabolites were isolated by reversed-phase high-pressure liquid chromatography for structural and conformational analyses. Comparison of the circular dichroism spectrum of the fungal trans-1,2-dihydroxy-1,2-dihydroanthracene to that formed by rat liver microsomes indicated that the major enantiomer of the trans-1,2-dihydroxy-1,2-dihydroanthracene formed by C. elegans had an S,S absolute stereochemistry, which is opposite to the predominately 1R,2R dihydrodiol formed by rat liver microsomes. C. elegans oxidized phenanthrene primarily in the 1,2-positions to form trans-1,2-dihydroxy-1,2-dihydrophenanthrene. In addition, a minor amount of trans-3,4-dihydroxy-3,4-dihydrophenanthrene was detected. Metabolism at the K-region (9,10-positions) of phenanthrene was not detected. Comparison of the circular dichroism spectra of the phenanthrene trans-1,2- and trans-3,4-dihydrodiols formed by C. elegans to those formed by mammalian enzymes indicated that each of the dihydrodiols formed by C. elegans had an S,S absolute configuration. The results indicate that there are differences in both the regio- and stereoselective metabolism of anthracene and phenanthrene between the fungus C. elegans and rat liver microsomes. 26 references.

  16. Stereoselective metabolism of anthracene and phenanthrene by the fungus Cunninghamella elegans.

    PubMed Central

    Cerniglia, C E; Yang, S K

    1984-01-01

    The fungus Cunninghamella elegans oxidized anthracene and phenanthrene to form predominately trans-dihydrodiols. The metabolites were isolated by reversed-phase high-pressure liquid chromatography for structural and conformational analyses. Comparison of the circular dichroism spectrum of the fungal trans-1,2-dihydroxy-1,2-dihydroanthracene to that formed by rat liver microsomes indicated that the major enantiomer of the trans-1,2-dihydroxy-1,2-dihydroanthracene formed by C. elegans had an S,S absolute stereochemistry, which is opposite to the predominately 1R,2R dihydrodiol formed by rat liver microsomes. C. elegans oxidized phenanthrene primarily in the 1,2-positions to form trans-1,2-dihydroxy-1,2-dihydrophenanthrene. In addition, a minor amount of trans-3,4-dihydroxy-3,4-dihydrophenanthrene was detected. Metabolism at the K-region (9,10-positions) of phenanthrene was not detected. Comparison of the circular dichroism spectra of the phenanthrene trans-1,2- and trans-3,4-dihydrodiols formed by C. elegans to those formed by mammalian enzymes indicated that each of the dihydrodiols formed by C. elegans had an S,S absolute configuration. The results indicate that there are differences in both the regio- and stereoselective metabolism of anthracene and phenanthrene between the fungus C. elegans and rat liver microsomes. PMID:6696409

  17. Ethanol and phenanthrene increase the biomass of fungal assemblages and decrease plant litter decomposition in streams.

    PubMed

    Barros, Diana; Oliveira, Patrícia; Pascoal, Cláudia; Cássio, Fernanda

    2016-09-15

    Fungi, particularly aquatic hyphomycetes, have been recognized as playing a dominant role in microbial decomposition of plant litter in streams. In this study, we used a microcosm experiment with different levels of fungal diversity (species number and identity) using monocultures and combinations with up to five aquatic hyphomycete species (Articulospora tetracladia, Tricladium splendens, Heliscus submersus, Tetrachaetum elegans and Flagellospora curta) to assess the effects of ethanol and phenanthrene on three functional measures: plant litter decomposition, fungal biomass accrual and reproduction. Alder leaves were conditioned by fungi for 7days and then were exposed to phenanthrene (1mgL(-1)) dissolved in ethanol (0.1% final concentration) or ethanol (at the concentration used to solubilise phenanthrene) for further 24days. Exposure to ethanol alone or in combination with phenanthrene decreased leaf decomposition and fungal reproduction, but increased fungal biomass produced. All aspects of fungal activity varied with species number. Fungal activity in polycultures was generally higher than that expected from the sum of the weighted performances of participating species in monoculture, suggesting complementarity between species. However, the activity of fungi in polycultures did not exceed the activity of the most productive species either in the absence or presence of ethanol alone or with phenanthrene. PMID:27186876

  18. Liquid-phase oxidation of phenanthrene in presence of Co-Mn catalyst

    SciTech Connect

    Kamneva, A.I.; Koroleva, N.V.; Artemov, A.V.; Sinitsyna, I.M.; Ryuffer, L.I.

    1983-06-10

    Phenanthrene is one of the large-tonnage products of the coal-tar chemical industry. However, so far this hydrocarbon has no economically justified uses. The purpose of the present work was to study the liquid-phase oxidation of phenanthrene in presence of Co-Mn catalyst in o-dichlorobenzene (with additions of valeric acid). It is shown that oxidation of phenanthrene to phenanthrenequinone in presence of Co-Mn catalyst in o-dichlorobenzene and VA is possible in principle. The yield and formation rate of phenanthrenequinone are determined mainly by the composition of the solvent and the initial concentration of the hydrocarbon (phenanthrene). Study, by the method of active factorial experiments, of the influence of temperature, reaction time, and catalyst and phenanthrene concentrations on the principal process characteristics showed that the highest selectivity is reasched at (Cat) = 2x10/sup -2/ M and (RH) = 1.0 M. Under the chosen reaction conditions the reaction proceeds by a consecutive route, with phenanthrenequinone as the intermediate product. The reaction conditions for obtaining the maximum yield of phenanthrenequinone were found.

  19. Surfaces wettability and morphology modulation in a fluorene derivative self-assembly system

    NASA Astrophysics Data System (ADS)

    Cao, Xinhua; Gao, Aiping; Zhao, Na; Yuan, Fangyuan; Liu, Chenxi; Li, Ruru

    2016-04-01

    A new organogelator based on fluorene derivative (gelator 1) was designed and synthesized. Organogels could be obtained via the self-assembly of the derivative in acetone, toluene, ethyl acetate, hexane, DMSO and petroleum ether. The self-assembly process was thoroughly characterized using field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), UV-vis, FT-IR and the contact angle. Surfaces with different morphologies and wetting properties were formed via the self-assembly of gelator 1 in the six different solvents. Interestingly, a superhydrophobic surface with a contact angle of 150° was obtained from organogel 1 in DMSO and exhibited the lotus-effect. The sliding angle necessary for a water droplet to move on the glass was only 15°. Hydrogen bonding and van der Waals forces were attributed as the main driving forces for gel formation.

  20. A Phenanthrene Methanol (WR 33063) for Treatment of Acute Malaria

    PubMed Central

    Arnold, J. D.; Martin, D. C.; Carson, P. E.; Rieckmann, K. H.; Willerson, D.; Clyde, D. F.; Miller, R. M.

    1973-01-01

    WR 33063, a phenanthrene methanol, was studied in human volunteers for tolerance and toxicity. In normal volunteers, it was possible to give 4.6 g in four divided doses without adverse effect for 10 days. At this dose level, there was neither evidence of photosensitivity nor adverse renal or cardiac effect. At a dose level of 1.6 g in four divided doses for 6 days, WR 33063 cured 18 of 23 nonimmune volunteers infected with the Smith strain of Plasmodium falciparum from Vietnam. In addition, infections due to the Marks and Braithwaite Vietnam strains were also treated because these strains represent a major therapeutic challenge to chloroquine; six of six and two of three volunteers, respectively, were cured. With the Malayan Camp strain, 1.6 g in four divided doses for 6 days cured all of five volunteers. The African Uganda I strain of chloroquine-responsive malaria was even more responsive to WR 33063; all of six men who received 1.6 g in four divided doses for 6 days were cured, and all of three men who received this same dosage for 3 days were cured. One subject infected with a Haitian strain of P. falciparum was treated and cured. Blood-induced infections with the Chesson strain of P. vivax also responded well to WR 33063 with four of five men cured. In all, 52 men received WR 33063 in tolerance trials, and 59 men with experimental malaria and one man with clinical malaria were treated with WR 33063. PMID:4597714

  1. MEASURING GROWTH OF A PHENANTHRENE DEGRADING BACTERIAL INOCULUM IN SOIL WITH A QUANTITATIVE COMPETITIVE POLYMERASE CHAIN REACTION METHOD. (R825433)

    EPA Science Inventory

    We measured growth of a phenanthrene-degrading bacterium, Arthrobacter, strain RP17, in Forbes soil, amended with 500 small mu, Greekg g−1 phenanthrene using a quantitati...

  2. The influence of mechanochemical modification on prevention of toxic ability of humic acids towards phenanthrene in aquatic environment

    NASA Astrophysics Data System (ADS)

    Shekhovtsova, N. S.; Maltseva, E. V.; Glyzina, T. S.; Ovchinnikova, I. S.

    2015-11-01

    The aim of the research work is to quantify interaction between phenanthrene with modified humic acids in aquatic environment. The changes in the structure and properties of humic acids after modifications were studied with 1H NMR spectroscopy and potentiometric titration methods. Our research demonstrates that the application of thiourea as a modified agent increases the binding capacity of humic acids towards phenanthrene.

  3. [Phylogenetic analysis of the genes for naphthalene and phenanthrene degradation in Burkholderia sp. strains].

    PubMed

    Izmalkova, T Yu; Sazonova, O I; Kosheleva, I A; Boronin, A M

    2013-06-01

    The genetic systems responsible for naphthalene and phenanthrene catabolism have been analyzed in the five strains of Burkholderia sp. isolated from soil samples (West Siberia) contaminated by heavy residual fuel oil and in the strain Burkholderia sp. BS3702 from the laboratory collection isolated from soil samples of the coke gas works (Vidnoe, Moscow oblast). The results of this work demonstrate that naphthalene and phenanthrene degradation in the above strains is encoded by the sequences not homologous to the classical nah genes of pseudomonades. In the Burkholderia sp. BS3702 strain, the initial stages of phenanthrene degradation and the subsequent stages of salicylate degradation are controlled by the sequences of different evolutionary origins (phn and nag genes). PMID:24450193

  4. Comparative effects of Aroclor 1254 (polychlorinated biphenyls) and phenanthrene on glucose uptake by freshwater microbial populations.

    PubMed Central

    Sayler, G S; Lund, L C; Shiaris, M P; Sherrill, T W; Perkins, R E

    1979-01-01

    The effects of polychlorinated biphenyl (PCB) and phenanthrene stress on glucose uptake by natural microbial populations were examined by the heterotrophic potential technique. Temporal and spatial distributions in glucose uptake velocities were examined for natural samples as well as PCB- and phenanthrene-stressed samples. Statistical analysis indicated significant variability among the various samples. It was demonstrated that the environmental variables contributed significantly to the variability in uptake kinetics. Although general trends indicated a PCB-induced stimulation in uptake velocities, these trends were in part masked by sample variability. Data analysis indicated no statistically significant PCB or phenanthrene effect on either total glucose uptake velocities or the proportion of 14CO2 evolved, as compared to natural unstressed samples. PMID:114110

  5. Constraint on the potassium content for the superconductivity of potassium-intercalated phenanthrene.

    PubMed

    Huang, Qiao-Wei; Zhong, Guo-Hua; Zhang, Jiang; Zhao, Xiao-Miao; Zhang, Chao; Lin, Hai-Qing; Chen, Xiao-Jia

    2014-03-21

    Raman-scattering measurements were performed on K(x)phenanthrene (0 ⩽ x ⩽ 6.0) at room temperature. Three phases (x = 3.0, 3.5, and 4.0) are identified based on the obtained Raman spectra. Only the K3phenanthrene phase is found to exhibit the superconducting transition at 5 K. The C-C stretching modes are observed to broaden and become disordered in K(x)phenanthrene with x = 2.0, 2.5, 6.0, indicating some molecular disorder in the metal intercalation process. This disorder is expected to influence the nonmetallic nature of these materials. The absence of metallic character in these nonsuperconducting phases is found from the calculated electronic structures based on the local density approximation. PMID:24655174

  6. Constraint on the potassium content for the superconductivity of potassium-intercalated phenanthrene

    SciTech Connect

    Huang, Qiao-Wei; Zhao, Xiao-Miao; Zhong, Guo-Hua; Zhang, Jiang; Zhang, Chao; Lin, Hai-Qing; Chen, Xiao-Jia

    2014-03-21

    Raman-scattering measurements were performed on K{sub x}phenanthrene (0 ⩽ x ⩽ 6.0) at room temperature. Three phases (x = 3.0, 3.5, and 4.0) are identified based on the obtained Raman spectra. Only the K{sub 3}phenanthrene phase is found to exhibit the superconducting transition at 5 K. The C–C stretching modes are observed to broaden and become disordered in K{sub x}phenanthrene with x = 2.0, 2.5, 6.0, indicating some molecular disorder in the metal intercalation process. This disorder is expected to influence the nonmetallic nature of these materials. The absence of metallic character in these nonsuperconducting phases is found from the calculated electronic structures based on the local density approximation.

  7. Acoustic studies of ternary mixture phenanthrene toluene heptane as a model of natural flocculating system

    NASA Astrophysics Data System (ADS)

    Bucek, M.; Marczak, W.

    2008-02-01

    Complexity of natural systems causes that results of experimental studies are often ambiguous and extremely unrewarding in interpretation. To overcome this difficulty, relative simple model systems may be investigated in order to provide physical grounds for further discussion. This study deals with adiabatic compressibility of liquid ternary system consisting of phenanthrene, toluene and heptane. Increase of heptane concentration in the mixture changes considerably the partial compressibility of phenanthrene, from common positive value in pure toluene up to clearly negative ones. This is most probably because of self-association of phenanthrene due to strong London forces. Heptane seems to promote the self-association. These feature of the investigated system suggests its usefulness in studies of flocculation of asphaltenes from crude oils.

  8. Correlation between biological and physical availabilities of phenanthrene in soils and soil humin in aging experiments

    SciTech Connect

    White, J.C.; Hunter, M.; Nam, K.; Pignatello, J.J.; Alexander, M.

    1999-08-01

    The bioavailability of an organic compound in a soil or sediment commonly declines with the soil-chemical contact time (aging). A series of parallel desorption and bioavailability experiments was carried out on phenanthrene previously aged up to {approximately}100 d in Mount Pleasant silt loam (Mt. Pleasant, NY, USA) or Pahokee peat soil to determine as a function of the aging period the degree of correlation between the reduction in bioavailability and the rate and extent of desorption and the influence of soil organic matter composition on availability. The mineralization of phenanthrene by two bacteria and the uptake of phenanthrene by earthworms showed expected declines with aging. Likewise, the rate of phenanthrene desorption in the absence of organisms decreased with aging. The decline in initial rate of mineralization or desorption was nearly an order of magnitude after 50 to 60 d of aging. Plots of normalized rates of mineralization or desorption practically coincided. Similarly, plots of normalized fraction mineralized or fraction desorbed during an arbitrary period gave comparable slopes. The partial removal of organic matter from the peat by extraction with dilute NaOH to leave the humin fraction reduced the biodegradation of phenanthrene aged for 38 and 63 d as compared to the nonextracted peat, but the effect disappeared at longer incubation times. The rate of desorption from samples of peat previously extracted with NaOH or Na{sub 4}P{sub 2}O{sub 7} declined with aging and, for a given aging period, was significantly slower than from nonextracted peat. This work shows that the reduction in bioavailability of phenanthrene over time in soil is directly correlated with reduction of its physical availability due to desorption limitations. In addition, this study shows that removal of extractable humic substances leads to a decline in the rate of desorption and in the bioavailability of the substrate.

  9. Toxicity of sediment-associated pyrene and phenanthrene to Limnodrilus hoffmeisteri (Oligochaeta: Tubificidae)

    SciTech Connect

    Lotufo, G.R.; Fleeger, J.W.

    1996-09-01

    Acute and sublethal toxicities of sediment-spiked pyrene and phenanthrene to Limnodrilus hoffmeisteri Cleparede were investigated. Phenanthrene was acutely toxic at high sediment concentrations (10-d median lethal concentration of 297.5 {micro}g g{sup {minus}1}; 252.2--348.3, 95% confidence interval [Cl]). Pyrene was not acutely toxic, even at concentrations as high as 841 {micro}g g{sup {minus}1}. A significant impact of pyrene and phenanthrene on the feeding activity of L. hoffmeisteri was demonstrated through daily collection of egested fecal material during 5- and 10-d experiments. A short (5-d) exposure detected toxic effects more efficiently than a 10-d exposure, yielding IC25 values (estimated concentration causing a 25% reduction of measured endpoint in relation to the control[s]) of 58.9 {micro}g g{sup {minus}1} (32.1--89.4, 95% CI) for pyrene and 28.4 {micro}g g{sup {minus}1} (10.0--41.3, 95% CI) for phenanthrene. Effects on burrowing behavior and reproduction were assessed in a 28-d sediment exposure. Low burrowing avoidance (< 25%) was detected in high phenanthrene concentrations (143--612 {micro}g g{sup {minus}1}) but was not detected with pyrene. Offspring production was significantly reduced in dosed sediments yielding IC25 values of 59.1 {micro}g g{sup {minus}1} (38.3--112.5, 95% CI) for pyrene and 40.5 {micro}g g{sup {minus}1} (12.1--165.5, 955 CI) for phenanthrene. Decreases in egestion rates in the presence of nonpolar contaminants should be quantified when investigating the effects of bioturbation by deposit feeders on the flux of contaminants from sediment into the water column.

  10. A [2+2+2]-Cyclotrimerization Approach to Selectively Substituted Fluorenes and Fluorenols, and Their Conversion to 9,9'-Spirobifluorenes.

    PubMed

    Kaiser, Reinhard P; Hessler, Filip; Mosinger, Jiří; Císařová, Ivana; Kotora, Martin

    2015-09-21

    Synthesis of selectively substituted fluorenes and fluorenols was achieved by using catalytic [2+2+2]cyclotrimerization. Various starting diynes were reacted with different alkynes in the presence of a catalytic amount of Wilkinson's catalyst (RhCl(PPh3)3) providing the compounds possessing the fluorene scaffold in good isolated yields. A set of four regioselectively substituted fluorenols was converted to the corresponding 9,9'-spirobifluorenes and their spectral characteristics were measured. PMID:26252836

  11. Uptake and elimination of (9-/sup 14/C)phenanthrene in the turkey wing mussel (Arca zebra)

    SciTech Connect

    Solbakken, J.E.; Knap, A.H.; Searle, C.E.; Palmork, K.H.

    1983-04-01

    Turkey wing mussels of both sexes were collected from Harrington Sound, Bermuda and dosed after a week-long acclimation period with (9-/sup 14/C)phenanthrene (714 MBq/mmol). They were transferred into 8 liters of seawater containing 8 ..mu..g of labelled phenanthrene. Results show that the accumulation of labelled phenanthrene in the turkey wing mussel was very low compared to that found in other species. In the hepatopancreas, the uptake of phenanthrene based on the water concentration was only 4% of the corresponding value found in the calico clam (Macrocallista maculata) inhabiting the same area. In comparison, the uptake of phenanthrene in a temperate mollusc such as the horse mussel (Modiola modiolus) was also considerably higher than in the turkey wing (approx. 4 times). It therefore seems likely that these are due to species variations rather than environmental variations between subtropical and temperate areas. (JMT)

  12. Effects of root exudates on the leachability, distribution, and bioavailability of phenanthrene and pyrene from mangrove sediments.

    PubMed

    Jia, Hui; Lu, Haoliang; Liu, Jingchun; Li, Jian; Dai, Minyue; Yan, Chongling

    2016-03-01

    In this study, column leaching experiments were used to evaluate the leachability, distribution and bioavailability of phenanthrene and pyrene by root exudates from contaminated mangrove sediments. We observed that root exudates significantly promoted the release and enhanced the bioavailability of phenanthrene and pyrene from sediment columns. The concentration of phenanthrene and pyrene and cumulative content released from the analyzed sediment samples following root exudate rinsing decreased in the following order: citric acid > oxalic acid > malic acid. After elution, the total concentrations of phenanthrene and pyrene in sediment layers followed a descending order of bottom (9-12 cm) > middle (5-7 cm) > top (0-3 cm). Furthermore, a positive correlation between leachate pH values and PAH concentrations of the leachate was found. Consequently, the addition of root exudates can increase the leachability and bioavailability of phenanthrene and pyrene. PMID:26573317

  13. Van der Waals density functional study of the structural and electronic properties of La-doped phenanthrene

    SciTech Connect

    Yan, Xun-Wang; Faculty of Physics and Electronic Technology, Hubei University, Wuhan 430062; State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Science, Beijing 100190, China and School of Physics and Electrical Engineering, Anyang Normal University, Henan 455000 ; Huang, Zhongbing; Faculty of Physics and Electronic Technology, Hubei University, Wuhan 430062 ; Lin, Hai-Qing

    2013-11-28

    By the first principle calculations based on the van der Waals density functional theory, we study the crystal structures and electronic properties of La-doped phenanthrene. Two stable atomic geometries of La{sub 1}phenanthrene are obtained by relaxation of atomic positions from various initial structures. The structure-I is a metal with two energy bands crossing the Fermi level, while the structure-II displays a semiconducting state with an energy gap of 0.15 eV, which has an energy gain of 0.42 eV per unit cell compared to the structure-I. The most striking feature of La{sub 1}phenanthrene is that La 5d electrons make a significant contribution to the total density of state around the Fermi level, which is distinct from potassium doped phenanthrene and picene. Our findings provide an important foundation for the understanding of superconductivity in La-doped phenanthrene.

  14. Improving the simulation of vibrationally resolved electronic spectra of phenanthrene: A computational Investigation

    NASA Astrophysics Data System (ADS)

    Pang, Min; Yang, Pan; Shen, Wei; Li, Ming; He, Rongxing

    2015-05-01

    Based on the density functional theory and its time-dependent extension, the properties of the ground and the first excited states of phenanthrene were calculated. In harmonic and anharmonic approximations, the well-resolved absorption and emission spectra of phenanthrene were simulated using the Franck-Condon approximation combined with the Herzberg-Teller and Duschinsky effects, and the results reproduced the experimental spectra very well. The mirror symmetry breakdown between absorption and emission spectra is induced mainly from the Herzberg-Teller effect and Duschinsky mode mixing. Moreover, most of the vibrational modes were tentatively assigned and compared with the experiment.

  15. Synthesis and Luminescent Properties of Poly(9-(3-vinyl-phenyl)-phenanthrene).

    PubMed

    Yang, Garam; Lee, Hayoon; Lee, Suji; Jung, Hyocheol; Shin, Hwangyu; Lee, Jaehyun; Park, Jongwook

    2016-02-01

    Recently, interest of polymer light-emitting diode (PLED) fabricated from conjugated polymer has augmented because PLED has advantage property that is well-suited to flexible lighting and solution processed device. In this presentation, we suggest a new polymer host based on phenanthrene, poly(9-(3-Vinyl-phenyl)-phenanthrene) (PVPP). It can be easily synthesized through simple synthetic methods which are Suzuki and Wittig reactions. PVPP film can be obtained from spin coating with solution used by common solvent. It exhibited PL maximum value of 381 nm and broad PL spectrum. Energy transfer smoothly occurred when the three dopants for green, red and yellow were used in PVPP. PMID:27433663

  16. Reaction of phenanthrene with tert-butylating agents under Friedel-Craft conditions

    SciTech Connect

    Pozdnyakovich, Yu.V.

    1988-10-20

    The alkylation of phenanthrene with tert-butyl alcohol in the presence of trifluoroacetic acid or with tert-butyl chloride, catalyzed by the TiCl/sub 4/, FeCl/sub 3/-CH/sub 3/NO/sub 2/, and AlCl/sub 3/-CH/sub 3/NO/sub 2/, leads to formation of 2- and 3-tert-butylphenanthrene and also 2,6-, 2,7-, and 3,6-di-tert-butylphenanthrene. The exhaustive alkylation of phenanthrene leads to the formation of the above-mentioned isomeric di-tert-butylphenanthrenes, the ratios of which depend on the nature of the catalyst.

  17. Complete Genome Sequence of a Phenanthrene Degrader, Burkholderia sp. HB-1 (NBRC 110738)

    PubMed Central

    Moriya, Azusa; Kato, Hiromi; Ogawa, Natsumi; Nagata, Yuji; Tsuda, Masataka

    2015-01-01

    The phenanthrene-degrading Burkholderia sp. HB-1 was isolated from a phenanthrene-enrichment culture seeded with a pristine farm soil sample. We report the complete genome sequence of HB-1, which has been deposited to the stock culture (NBRC 110738) at Biological Resource Center, National Institute of Technology and Evaluation (NITE), Tokyo, Japan. The genome of strain HB-1 comprises two circular chromosomes of 4.1 Mb and 3.1 Mb. The finishing was facilitated by the computational tools GenoFinisher, AceFileViewer, and ShortReadManager. PMID:26543118

  18. A Novel Phenanthrene Dioxygenase from Nocardioides sp. Strain KP7: Expression in Escherichia coli

    PubMed Central

    Saito, Atsushi; Iwabuchi, Tokuro; Harayama, Shigeaki

    2000-01-01

    Nocardioides sp. strain KP7 grows on phenanthrene but not on naphthalene. This organism degrades phenanthrene via 1-hydroxy-2-naphthoate, o-phthalate, and protocatechuate. The genes responsible for the degradation of phenanthrene to o-phthalate (phd) were found by Southern hybridization to reside on the chromosome. A 10.6-kb DNA fragment containing eight phd genes was cloned and sequenced. The phdA, phdB, phdC, and phdD genes, which encode the α and β subunits of the oxygenase component, a ferredoxin, and a ferredoxin reductase, respectively, of phenanthrene dioxygenase were identified. The gene cluster, phdAB, was located 8.3 kb downstream of the previously characterized phdK gene, which encodes 2-carboxybenzaldehyde dehydrogenase. The phdCD gene cluster was located 2.9 kb downstream of the phdB gene. PhdA and PhdB exhibited moderate (less than 60%) sequence identity to the α and β subunits of other ring-hydroxylating dioxygenases. The PhdC sequence showed features of a [3Fe-4S] or [4Fe-4S] type of ferredoxin, not of the [2Fe-2S] type of ferredoxin that has been found in most of the reported ring-hydroxylating dioxygenases. PhdD also showed moderate (less than 40%) sequence identity to known reductases. The phdABCD genes were expressed poorly in Escherichia coli, even when placed under the control of strong promoters. The introduction of a Shine-Dalgarno sequence upstream of each initiation codon of the phdABCD genes improved their expression in E. coli. E. coli cells carrying phdBCD or phdACD exhibited no phenanthrene-degrading activity, and those carrying phdABD or phdABC exhibited phenanthrene-degrading activity which was significantly less than that in cells carrying the phdABCD genes. It was thus concluded that all of the phdABCD genes are necessary for the efficient expression of phenanthrene-degrading activity. The genetic organization of the phd genes, the phylogenetically diverged positions of these genes, and an unusual type of ferredoxin component

  19. Identification of a Novel Metabolite in the Degradation of Pyrene by Mycobacterium sp. Strain AP1: Actions of the Isolate on Two- and Three-Ring Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Vila, Joaquim; López, Zaira; Sabaté, Jordi; Minguillón, Cristina; Solanas, Anna M.; Grifoll, Magdalena

    2001-01-01

    Mycobacterium sp. strain AP1 grew with pyrene as a sole source of carbon and energy. The identification of metabolites accumulating during growth suggests that this strain initiates its attack on pyrene by either monooxygenation or dioxygenation at its C-4, C-5 positions to give trans- or cis-4,5-dihydroxy-4,5-dihydropyrene, respectively. Dehydrogenation of the latter, ortho cleavage of the resulting diol to form phenanthrene 4,5-dicarboxylic acid, and subsequent decarboxylation to phenanthrene 4-carboxylic acid lead to degradation of the phenanthrene 4-carboxylic acid via phthalate. A novel metabolite identified as 6,6′-dihydroxy-2,2′-biphenyl dicarboxylic acid demonstrates a new branch in the pathway that involves the cleavage of both central rings of pyrene. In addition to pyrene, strain AP1 utilized hexadecane, phenanthrene, and fluoranthene for growth. Pyrene-grown cells oxidized the methylenic groups of fluorene and acenaphthene and catalyzed the dihydroxylation and ortho cleavage of one of the rings of naphthalene and phenanthrene to give 2-carboxycinnamic and diphenic acids, respectively. The catabolic versatility of strain AP1 and its use of ortho cleavage mechanisms during the degradation of polycyclic aromatic hydrocarbons (PAHs) give new insight into the role that pyrene-degrading bacterial strains may play in the environmental fate of PAH mixtures. PMID:11722898

  20. Large three-photon absorption and intramolecular charge transfer of the bis-donor fluorene-based molecules

    NASA Astrophysics Data System (ADS)

    Ma, Wenbo; Wu, Yiqun; Han, Junhe; Gu, Donghong; Gan, Fuxi

    2005-10-01

    Three-photon absorption (3PA) of two fluorene-based molecules with D-π-D structural motifs (abbreviated as BPAF and BCZF) has been determined by using a Q-switched Nd: YAG laser pumped with 38 ps pulses at 1064 nm in DMF. The measured 3PA cross-sections are 222 and 140×10 -78 cm 6 s 2 for BPAF and BCZF, respectively. AM1 calculations show that attaching different donors changes the charge density distribution of the fluorene skeleton, and it is observed that the 3PA cross-section can be enhanced with increasing intramolecular charge transfer character, measured by the parameter Δ ρ1/Δ ρ2/Δ ρ1'.

  1. Theoretical study of 3,3‧ substitution of 9,9,9‧,9‧-tetramethyl-fluorene-dimers

    NASA Astrophysics Data System (ADS)

    Barboza, Cristina A.; Arratia-Pérez, Ramiro; Carey, Desmond MacLeod

    2012-06-01

    The effect of the 3,3' substitution in 9,9,9',9'-tetramethyl-fluorene-dimers with electron donor and withdrawing groups was analyzed. Ground state potential energy surfaces were obtained at DFT level using B3LYP/6-31+G(d,p). All studied dimers are nonplanar at their electronic ground states. The electronic transitions were investigated through the time-dependent-DFT method at their optimized ground states. The chemical potential (μ) as well as the HOMO and LUMO eigenvalues were plotted against the Hammet parameters, showing a good linear correlation, giving us insights about the modulation of the electronic properties, e.g. HOMO-LUMO gap, by means of the functionalization of fluorene dimers at strategical positions.

  2. Syntheses and Chemosensory of Anthracene and Phenanthrene Bisimide Derivatives

    NASA Technical Reports Server (NTRS)

    Bogusz, Zachary A.

    2004-01-01

    As the present technology of biochemical weapons advances, it is essential for science to attempt to prepare our nation for such an occurrence. Various areas of current research are devoted to precautionary measures and potential antidotes for national security. A practical application of these precautions would be the development of a chemical capable of detecting harmful gas. The benefits of being capable to synthesis a chemical compound that would warn and identify potentially deadly gases would ensure a higher level of safety. The chemicals in question can be generalized as bisimide anthracene derivatives. The idea behind these compounds is that in the presence of certain nerve gases, the compound will actually fluoresce, giving an indication that there is a strong likelihood of the presence of a nerve gas and ensure the proper precautionary measures are taken. The fluorescence is due to the quenching of an electric proton transfer within the structure of the molecule. The system proves to be very unique on account of the fact that the fluorescence can be "turned off" by reducing the system. By utilizing the synthesis designed by Dr. Faysal Ilhan, four distinct compounds can be synthesized through photochemical reactions involving para- and ortho- diketones. The photochemistry involved is very modem and much research is being devoted to fully understanding the possibilities and alternative applications of such materials. and meta-nitro anthracene bisimide (ABI-NO2), the amine of each (ABI-NH2), a para- and meta-nitro phenanthrene bisimjde (PBI-NO2), and the amine of each (PBI-NH2). Upon synthesizing these distinct compounds, I must then purify and analyze them in order to obtain any relevant trends, behaviors, and characteristics. The chemical composition analyses that will be conducted are the procedures taken by Dr. Daniel Tyson on previous experiments. The results generated from the data will point further research in the correct direction and hopefully

  3. Comparative impact of cadmium on two phenanthrene-degrading bacteria isolated from cadmium and phenanthrene co-contaminated soil in China.

    PubMed

    Xiao, Jiajun; Guo, Linjun; Wang, Shipeng; Lu, Yitong

    2010-02-15

    Alcaligenes faecalis strain J08 and Brevundimonas sp. strain X08 were isolated from soils co-contaminated by cadmium (Cd) and polycyclic aromatic hydrocarbons (PAHs) in Northeast China. The two strains of bacteria were identified by phenotypic tests and 16S rDNA. Different Cd treatments (0.01 mM, 0.1mM, 0.5mM) showed no significant influence (p>0.05) on the biodegradation of phenanthrene by A. faecalis strain J08. Brevundimonas sp. strain X08 also presented no significant differences in the biodegradation of phenanthrene in Cd treatments (0.01 mM, 0.1mM). The growth of Brevundimonas sp. strain X08 was prohibited significantly (p<0.05) by Cd in the concentration of 0.5mM, but the biodegradation of phenanthrene in this group was not impaired. The specific biodegradation rate of Brevundimonas sp. strain X08 in the 0.5mM Cd group was significantly (p<0.05) higher than rates in other Cd treatments (0mM, 0.01 mM, 0.1mM). PMID:19853994

  4. Rhodium- and iridium-catalyzed dehydrogenative cyclization through double C-H bond cleavages to produce fluorene derivatives.

    PubMed

    Itoh, Masaki; Hirano, Koji; Satoh, Tetsuya; Shibata, Yu; Tanaka, Ken; Miura, Masahiro

    2013-02-15

    The rhodium-catalyzed cyclization of a series of 2,2-diarylalkanoic acids in the presence of copper acetate as an oxidant smoothly proceeded through double C-H bond cleavages and subsequent decarboxylation to produce the corresponding fluorene derivatives. The direct cyclization of triarylmethanols also took place efficiently by using an iridium catalyst in place of the rhodium, while the hydroxy function was still intact. PMID:23360206

  5. (4,5-Diaza-fluoren-9-one-κN,N')bis-(thio-cyanato-κS)mercury(II).

    PubMed

    Notash, Behrouz; Safari, Nasser; Amani, Vahid

    2011-04-01

    In the title compound, [Hg(NCS)(2)(C(11)H(6)N(2)O)], the Hg(II) atom, lying on a twofold rotation axis, is four-coordinated in a distorted tetra-hedral geometry by an N,N'-bidentate diaza-fluoren-9-one ligand and two thio-cyanate anions. In the crystal, inter-molecular C-H⋯N and C-H⋯O hydrogen bonds are effective in the stabilization of the structure. PMID:21753948

  6. Effectiveness of biostimulation through nutrient content on the bioremediation of phenanthrene contaminated soil.

    PubMed

    Kalantary, Roshanak Rezaei; Mohseni-Bandpi, Anoushiravan; Esrafili, Ali; Nasseri, Simin; Ashmagh, Fatemeh Rashid; Jorfi, Sahand; Ja'fari, Mahsa

    2014-01-01

    Bioremediation has shown its applicability for removal of polycyclic aromatic hydrocarbons (PAHs) from soil and sediments. In the present study, the effect of biostimulation on phenanthrene removal from contaminated soil via adding macro and/or micronutrients and trace elements was investigated. For these purposes three macro nutrients (as N, P and K), eight micronutrients (as Mg, S, Fe, Cl, Zn, Mn, Cu and Na) and four trace elements (as B, Mo, Co and Ni) in 11 mineral salts (MS) as variables were used. Placket-Burman statistical design was used to evaluate significance of variables (MS) in two levels of high and low. A consortium of adapted microorganisms with PAHs was used for inoculation to the soil slurry which was spiked with phenanthrene in concentration of 500 mg/kg soil. The optimal reduction resulted when a high level of macro nutrient in the range of 67-87% and low level of micro nutrient in the range of 12-32% were used with the nitrogen as the dominant macronutrient. The Pareto chart showed that NH4NO3 was the most effective variable in this experiment. The effect of elements on phenanthrene biodegradation showed following sequence as N > K > P > Cl > Na > Mg. Effectiveness of the other elements in all runs was less than 1%. The type and concentration of nutrient can play an important role in biodegradation of phenanthrene. Biostimulation with suitable combination of nutrient can enhance bioremediation of PAHs contaminated soils. PMID:25610635

  7. Novel Phenanthrene-Degrading Bacteria Identified by DNA-Stable Isotope Probing

    PubMed Central

    Luo, Chunling; Zhang, Dayi; Zhang, Gan

    2015-01-01

    Microorganisms responsible for the degradation of phenanthrene in a clean forest soil sample were identified by DNA-based stable isotope probing (SIP). The soil was artificially amended with either 12C- or 13C-labeled phenanthrene, and soil DNA was extracted on days 3, 6 and 9. Terminal restriction fragment length polymorphism (TRFLP) results revealed that the fragments of 219- and 241-bp in HaeIII digests were distributed throughout the gradient profile at three different sampling time points, and both fragments were more dominant in the heavy fractions of the samples exposed to the 13C-labeled contaminant. 16S rRNA sequencing of the 13C-enriched fraction suggested that Acidobacterium spp. within the class Acidobacteria, and Collimonas spp. within the class Betaproteobacteria, were directly involved in the uptake and degradation of phenanthrene at different times. To our knowledge, this is the first report that the genus Collimonas has the ability to degrade PAHs. Two PAH-RHDα genes were identified in 13C-labeled DNA. However, isolation of pure cultures indicated that strains of Staphylococcus sp. PHE-3, Pseudomonas sp. PHE-1, and Pseudomonas sp. PHE-2 in the soil had high phenanthrene-degrading ability. This emphasizes the role of a culture-independent method in the functional understanding of microbial communities in situ. PMID:26098417

  8. Identification and quantification of ozonation products of anthracene and phenanthrene adsorbed on silica particles

    NASA Astrophysics Data System (ADS)

    Perraudin, Emilie; Budzinski, Hélène; Villenave, Eric

    Primary products of the reactions of gas-phase ozone with anthracene and phenanthrene adsorbed on silica model particles have been investigated. Silica was selected as proxy for mineral atmospheric particles. The particles, coated with anthracene or phenanthrene and placed on a filter, were exposed in a reaction cell to a gaseous ozone flow. Ozone concentration was constant ((6.0±0.6)×10 13 molecule cm -3) during the experiments. Anthracene, phenanthrene and their ozonation products were then extracted by focused microwave-assisted extraction or fluid pressurized extraction and analyzed by gas chromatography coupled to mass spectrometry. Anthraquinone and anthrone on the one hand, and 1,1'-biphenyl-2,2'-dicarboxaldehyde on the other hand were identified as the products of anthracene and phenanthrene, respectively and quantified versus time of ozone exposure. This kinetical approach allowed to show that anthraquinone, anthrone and 1,1'-biphenyl-2,2'-dicarboxaldehyde are the primary products of the studied reactions, and to determine their formation yields (respectively, 0.42±0.04, 0.056±0.005 and 1.0±0.4).

  9. COSOLVENT EFFECTS ON PHENANTHRENE SORPTION-DESORPTION ON A FRESH-WATER SEDIMENT

    EPA Science Inventory

    This study evaluated the effects of the water-miscible cosolvent methanol on the sorption-desorption of phenanthrene by the natural organic matter (NOM) of a fresh-water sediment. A biphasic pattern was observed in the relationship between the log of the carbon-normalized sorpti...

  10. Activated carbon from biochar: influence of its physicochemical properties on the sorption characteristics of phenanthrene.

    PubMed

    Park, Junyeong; Hung, Ivan; Gan, Zhehong; Rojas, Orlando J; Lim, Kwang Hun; Park, Sunkyu

    2013-12-01

    The relationship between physicochemical properties of biochar-based activated carbons and its adsorption was investigated using an aromatic model compound, phenanthrene. Solid-state (13)C NMR analysis indicated more condensed aromatic structures when pyrolysis temperature increased or after activation process induced. The increasing aromaticity and non-protonated carbon fraction of the activated biochar treated at 300°C amounted to 14.7% and 24.0%, respectively, compared to 7.4% and 4.4% for biochar treated at 700°C. The surface area and pore volume were reduced with the increase in pyrolysis temperature, but increased after activation. Surface characteristics correlated with the initial sorption rate and equilibrium concentration of phenanthrene, but not with the aromaticity. Solid-state (2)H NMR for phenanthrene-d10 saturated activated biochars, however, showed substantial difference in molecular mobility, which might be due to the high aromaticity of the activated biochars. Overall, these results provide an opportunity to manipulate the characteristics of biomass-based adsorbents based on the application needs. PMID:24128401

  11. Distribution of phenanthrene between soil and an aqueous phase in the presence of anionic micelle-like amphiphilic polyurethane particles.

    PubMed

    Lee, Kangtaek; Choi, Heon-Sik; Kim, Ju-Young; Ahn, Ik-Sung

    2003-12-12

    Sorption of micelle-like amphiphilic polyurethane (APU) particles to soil was studied and compared to that of a model anionic surfactant, sodium dodecyl sulfate (SDS). Three types of APU particles with different hydrophobicity were synthesized from urethane acrylate anionomers (UAA) and used in this study. Due to the chemically cross-linked structure, APU exhibited less sorption to the soil than SDS and a greater reduction in the sorption of phenanthrene, a model soil contaminant, to the soil was observed in the presence of APU than SDS even though the solubility of phenanthrene was higher in the presence of SDS than APU. A mathematical model was developed to describe the phenanthrene distribution between soil and an aqueous phase containing APU particles. The sorption of phenanthrene to the test soil could be well described by Linear isotherm. APU sorption to the soil was successfully described by Langmuir and Freundlich isotherms. The partition of phenanthrene between water and APU were successfully explained with a single partition coefficient. The model, which accounts for the limited solubilization of phenanthrene in sorbed APU particles, successfully described the experimental data for the distribution of phenanthrene between the soil and the aqueous phase in the presence of APU. PMID:14623427

  12. Water quality, organic chemistry of sediment, and biological conditions of streams near an abandoned wood-preserving plant site at Jackson, Tennessee

    USGS Publications Warehouse

    Bradfield, A.D.; Flexner, N.M.; Webster, D.A.

    1993-01-01

    An investigation of water quality, organic sediment chemistry, and biological conditions of streams near an abandoned wood-preserving plant site at Jackson, Tennessee, was conducted during December 1990. The study was designed to assess the extent of possible contamination of water and biota in the streams from creosote-related discharge originating at this Superfund site. Central Creek, adjacent to the plant, had degraded water quality and biological conditions. Water samples from the most downstream station on Central Creek contained 30 micrograms per liter of pentachlorophenol, which exceeds the State's criterion maximum concentrations of 9 micrograms per liter for fish and aquatic life. Bottom-sediment samples from stations on Central Creek contained concentrations of acenaphthene, napthalene, and phenanthrene ranging from 1,400 to 2,500 micrograms per kilogram. Chronic or acute toxicity resulted during laboratory experiments using test organisms exposed to creosote-related contaminants. Sediment elutriate samples from Central Creek caused slightly to highly toxic effects on Ceriodaphnia dubia. Pimephales promelas, and Photobacterium phosphoreum. Fish-tissue samples from this station contained concentrations of naphthalene. dibenzofuran, fluorene, and phenanthrene ranging from 1.5 to 3.9 micrograms per kilogram Blue-green algae at this station represented about 79 percent of the organisms counted, whereas diatoms accounted for only 11 percent. Benthic invertebrate and fish samples from Central Creek had low diversity and density. Sediment samples from a station on the South Fork Forked Deer River downstream from its confluence with Central Creek contained concentrations of acenaphthene, anthracene, chrysene, fluoranthene, fluorene, pyrere, and phenanthrene ranging from 2,800 to 69,000 micrograms per kilogram. Sediment elutriate samples using water as elutriate from this station contained concentrations of extractable organic compounds ranging from an estimated

  13. Effects of surfactant addition on the biomineralization and microbial toxicity of phenanthrene.

    PubMed

    Bramwell, D P; Laha, S

    2000-01-01

    Surfactants are known to increase the apparent aqueous solubility of polycyclic aromatic hydrocarbons and may thereby enhance their bioavailability. In this study the effects of four surfactants on the mineralization of phenanthrene by Pseudomonas aeruginosa in liquid culture and in soil-water suspensions was studied in batch reactors over a 15-week study period. In the absence of surfactant, liquid cultures mineralized approximately 50% of the phenanthrene added within seven weeks following a one-week lag period and an initial mineralization rate of 0.04 mg/d. Mineralization in soil-water suspensions proceeded without any measurable lag period. The initial mineralization rate was lower (0.006 mg/d), but mineralization continued to >70% over the fifteen week period. In general, the addition of very low concentrations of surfactant (<0.001%) to liquid cultures did not impact mineralization significantly. At higher surfactant concentrations (>CMC) all surfactants were seen to be inhibitory. In soil-water systems, the rate of phenanthrene mineralization was decreased even at surfactant doses that did not produce significant solubilization. In summary, none of the surfactants enhanced the mineralization of phenanthrene by P. aeruginosa in liquid culture or in soil-water suspensions. In order to rank surfactant toxicity, microbial toxicity tests were performed measuring the light output of bioluminescent bacteria as affected by the presence of surfactants. Additional toxicity testing indicated that the presence of solubilized phenanthrene increased the toxicity of the surfactant by a 100-fold suggesting that the toxicity of solubilized substrate needs also to be considered in the application of surfactant-amended remediation. PMID:11432584

  14. Coordination polymers assembled from semirigid fluorene-based ligand: A couple of enantiomers

    NASA Astrophysics Data System (ADS)

    Li, Liang; Wang, Zihao; Chen, Qiang; Zhou, Xinhui; yang, Tao; Zhao, Qiang; Huang, Wei

    2015-11-01

    A couple of Mg(II)-based coordination polymer enantiomers [MgL(DMF)(H2O)3]n (R-MgL and S-MgL), and a Zn(II)-based coordination polymer [ZnL(DMF)]n (ZnL) have been synthesized by the solvothermal reactions between the achiral ligand 4,4‧-(9,9-dimethyl-9H-fluorene-2,7-diyl)dibenzoic acid (H2L) and the corresponding metal salts. The MgL was obtained as the racemic conglomerate from the one pot reaction. The single crystal X-ray structural analyses reveal that MgL crystallize in the chiral space group P21 and possesses the right- or left-handed homochiral 1D Mg-O-C helical chain. The ZnL crystallize in the non-centrosymmetrical space group Aba2 and possesses the 2D network comprised of 1D Zn-O-C meso-helical chains and ligands. The MgL and ZnL complexes exhibit strong coordination-perturbed ligand-centered blue emissions when excited at 320 nm. Their second-order nonlinear optical effects and thermal properties have also been studied.

  15. Salicylyl Fluorene Derivatives as Fluorescent Sensors for Cu(II) Ions.

    PubMed

    Khaokeaw, Chenwit; Sukwattanasinitt, Mongkol; Rashatasakhon, Paitoon

    2016-03-01

    Two derivatives of fluorene containing salicylic acid groups are successfully synthesized by palladium-catalyzed coupling reactions and subsequent hydrolysis of salicylate esters. The compounds are characterized by various spectroscopic methods. In phosphate buffer (pH 8.0) solutions, these compounds are well soluble. They show maximum absorption wavelengths in the range of 304-330 nm and exhibit maximum emission wavelength around 420 and 430 nm with the quantum yields of 2.7 and 4.4 %, respectively. The compound with alkynyl salicylate groups (2) exhibits a selective fluorescence quenching towards Cu(II) and Fe(II) with a relatively similar sensitivity. The selectivity favoring Cu(II) over Fe(II) and other metal ions can be achieved upon the addition of 30 μM Triton X-100. The Cu(II) detection limit in solution phase is 1.47 ppb. The fluorescence signal recovery upon the addition of EDTA indicate a reversible complexation between 2 and Cu(II) ion. Fabrication of 2 on filter paper using a 50 μM solution in THF affords a naked-eye detection for Cu(II) and Fe(II) in aqueous media at picomole level. PMID:26753759

  16. Alcohol-soluble interfacial fluorenes for inverted polymer solar cells: sequence induced spatial conformation dipole moment.

    PubMed

    Chen, Lie; Liu, Xiangfu; Wei, Yingkai; Wu, Feiyan; Chen, Yiwang

    2016-01-21

    Three fluorene-based alcohol-soluble organic small molecule electrolytes (SMEs) with different conjugated backbones, namely, TFTN-Br, FTFN-Br and FTTFN-Br, were designed as cathode interfacial layers for inverted polymer solar cells (i-PSCs). The insertion of SMEs to the ITO/active layer interfaces effectively lowered the energy barrier for electron transport and improved the inherent compatibility between the hydrophilic ITO and hydrophobic active layers. Due to these advantages, the device based on poly(3-hexylthiophene) (P3HT):(6,6)-phenyl-C61 butyric acid methyl ester (PC61BM) with TFTN-Br as the cathode interfacial layer achieved an improved power conversion efficiency (PCE) of 3.8%, which is a 26% improvement when compared to the standard device comprising ZnO cathode interfacial layers (PCE = 3.0%). Devices with FTFN-Br and FTTFN-Br also showed an improved PCE of 3.1% and 3.5%, respectively. The variation in device performance enhancement was found to be primarily correlated with the different conformation of their assembly onto the electrode caused by the joint sequence of the polar group of the SMEs, consequently impacting the dipole moment and interface morphology. In addition, introducing SMEs as the cathode interfacial layer also produced devices with long-term stability. PMID:26694627

  17. High thermal stability fluorene-based hole-injecting material for organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Li, Lu; Jiao, Bo; Li, Sanfeng; Ma, Lin; Yu, Yue; Wu, Zhaoxin

    2016-03-01

    Novel N1,N3,N5-tris(9,9-diphenyl-9H-fluroen-2-yl)-N1,N3,N5-triphenylbenzene-1,3,5-triamine (TFADB) was synthesized and characterized as a hole-injecting material (HIM) for organic light-emitting devices (OLEDs). By incorporating fluorene group TFADB shows a high glass-transition temperature Tg > 168 °C, indicative of excellent thermal stability. TFADB-based devices exhibited the highest performance in terms of the maximum current efficiency (6.0 cd/A), maximum power efficiency (4.0 lm/W), which is improved than that of the standard device based on 4-4‧-4″Tris(N-(naphthalene-2-yl)-N-phenyl-amino)triphenylamine (2T-NATA) (5.2 cd/A, 3.6 lm/W). This material could be a promising hole-injecting material, especially for the high temperature applications of OLEDs and other organic electronic devices.

  18. (Fluoren-9-ylidene)methanedithiolato complexes of gold: synthesis, luminescence, and charge-transfer adducts.

    PubMed

    Vicente, José; González-Herrero, Pablo; García-Sánchez, Yolanda; Jones, Peter G; Bardají, Manuel

    2004-11-15

    Piperidinium 9H-fluorene-9-carbodithioate and its 2,7-di-tert-butyl-substituted analogue [(pipH)(S(2)CCH(C(12)H(6)R(2)-2,7)), R = H (1a), t-Bu (1b)] and 2,7-bis(octyloxy)-9H-fluorene-9-carbodithioic acid [HS(2)CCH(C(12)H(6)(OC(8)H(17))(2)-2,7), 2] and its tautomer [2,7-bis(octyloxy)fluoren-9-ylidene]methanedithiol [(HS)(2)C=C(C(12)H(6)(OC(8)H(17))(2)-2,7), 3] were employed for the preparation of gold complexes with the (fluoren-9-ylidene)methanedithiolato ligand and its substituted analogues. The gold(I) compounds Q(2)[Au(2)(mu-kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)], where Q(+) = PPN(+) or Pr(4)N(+) for R = H (Q(2)4a) or Q(+) = Pr(4)N(+) for R = OC(8)H(17) [(Pr(4)N)(2)4c], were synthesized by reacting Q[AuCl(2)] with 1a or 2 (1:1) and excess piperidine or diethylamine. Complexes of the type [(Au(PR'3))(2)(mu-kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)] with R = H and R' = Me (5a), Et (5b), Ph (5c), and Cy (5d) or R = t-Bu and R' = Me (5e), Et (5f), Ph (5g), and Cy (5h) were obtained by reacting [AuCl(PR'(3))] with 1a,b (1:2) and piperidine. The reactions of 1a,b or 2 with Q[AuCl(4)] (2:1) and piperidine or diethylamine gave Q[Au(kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)] with Q(+) = PPN(+) for R = H [(PPN)6a], Q(+) = PPN(+) or Bu(4)N(+) for R = t-Bu (Q6b), and Q(+) = Bu(4)N(+) for R = OC(8)H(17) [(Bu(4)N)6c]. Complexes Q6a-c reacted with excess triflic acid to give [Au(kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(kappa(2)-S,S-S(2)CCH(C(12)H(6)R(2)-2,7))] [R = H (7a), t-Bu (7b), OC(8)H(17) (7c)]. By reaction of (Bu(4)N)6b with PhICl(2) (1:1) the complex Bu(4)N[AuCl(2)(kappa(2)-S,S-S(2)C=C(C(12)H(6)(t-Bu)(2)-2,7))] [(Bu(4)N)8b] was obtained. The dithioato complexes [Au(SC(S)CH(C(12)H(8)))(PCy(3))] (9) and [Au(n)(S(2)CCH(C(12)H(8)))(n)] (10) were obtained from the reactions of 1a with [AuCl(PCy(3))] or [AuCl(SMe(2))], respectively (1:1), in the absence of a base. Charge-transfer adducts of general composition Q[Au(kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2

  19. Fluorescence Sensing of Zinc and Mercury Ions with Hydrophilic 1,2,3-Triazolyl Fluorene Probes

    PubMed Central

    Nguyen, Dao M.; Frazer, Andrew; Rodriguez, Luis

    2010-01-01

    The ability to rapidly detect biologically and environmentally significant metal ions such as zinc and mercury is important to study a number of important cellular and environmental processes. Hydrophilic bis(1,2,3-triazolyl)fluorene-based derivatives, containing a 1,2,3-triazole-based recognition moiety, were synthesized through Click chemistry and characterized by UV-vis absorption, fluorescence emission, and two-photon absorption as new fluorescence sensing probes, selective for Zn2+ and Hg2+ ions. The UV-vis absorption and fluorescence emission spectra of the complexes exhibited blue-shifted absorption and emission spectra upon chelation to Zn2+ and Hg2+ ions, resulting in ca. two-fold enhancement in fluorescence. Fluorometric titration revealed that 1:2 and 1:3 ligand to metal complexes formed with binding constants of 108 and 1016 for Zn2+ and Hg2+, respectively. The two-photon absorption cross sections for the probes and probe-metal ion complexes ranged from 200-350 GM at 800 nm. These novel fluorescent compounds may have potential as new metal ion sensors to probe cellular and biological environments. PMID:20577581

  20. Reduction in the earthworm metabolomic response after phenanthrene exposure in soils with high soil organic carbon content.

    PubMed

    McKelvie, Jennifer R; Whitfield Åslund, Melissa; Celejewski, Magda A; Simpson, André J; Simpson, Myrna J

    2013-04-01

    We evaluated the correlation between soil organic carbon (OC) content and metabolic responses of Eisenia fetida earthworms after exposure to phenanthrene (58 ± 3 mg/kg) spiked into seven artificial soils with OC contents ranging from 1 to 27% OC. Principal component analysis of (1)H nuclear magnetic resonance (NMR) spectra of aqueous extracts identified statistically significant differences in the metabolic profiles of control and phenanthrene-exposed E. fetida in the 1% OC soil only. Partial least squares analysis identified a metabolic response in the four soils with OC values ≤11% which was well correlated to estimated phenanthrene porewater concentrations. The results suggest that the higher sorption capability of high OC soils decreased the bioavailability of phenanthrene and the subsequent metabolic response of E. fetida. PMID:23337355

  1. Influences of humic acid on the bioavailability of phenanthrene and alkyl phenanthrenes to early life stages of marine medaka (Oryzias melastigma).

    PubMed

    Liu, Yangzhi; Yang, Chenghu; Cheng, Pakkin; He, Xiaojing; Zhu, Yaxian; Zhang, Yong

    2016-03-01

    The influences of humic acid (HA) on the environmental behavior and bioavailability of parent polycyclic aromatic hydrocarbons (PAHs) and alkyl PAHs were investigated and compared using the early life stages of marine medaka (Oryzias melastigma, O. melastigma). It was demonstrated that the binding affinity of parent phenanthrene (PHE) with HA was smaller than that of 3-methyl phenanthrene (3-MP) and 9-ethyl phenanthrene (9-EP). Furthermore, the bioaccumulation of the three PAHs and the levels of lipid peroxidation (LPO) were calculated to study the changes in bioavailability of PAHs in presence of HA. The results indicated that the addition of HA significantly decreased the bioaccumulation and toxicity of PAHs by decreasing free PAHs concentrations. The bioavailable fractions of HA-bound PAHs in bioaccumulation (α) and toxicity (β) were evaluated, indicating that the HA-bound 3-MP and 9-EP show higher bioavailability in bioaccumulation and lower bioavailability in toxicity relative to those of PHE. The β/α values were less than 1 for all PAH treatment groups containing HA, suggesting that the fraction of HA-bound PAHs contributing to bioaccumulation was higher than that of HA-bound PAHs inducing toxic effect. In addition, we proposed that the free PAHs generated by desorption from HA in the cell were toxic by showing that the β/α ratio values are correlated with the log KOW values (p = 0.007 and R(2) = 0.8355). Thus, oil spill risk assessments should consider both alkyl PAHs and the factors that influence the bioavailability and toxicity of PAHs in the natural aquatic environments. PMID:26735166

  2. Effect of bioaugmentation to enhance phytoremediation for removal of phenanthrene and pyrene from soil with Sorghum and Onobrychis sativa

    PubMed Central

    2014-01-01

    The use of plants to remove Poly-aromatic-hydrocarbons (PAHs) from soil (phytoremediation) is emerging as a cost-effective method. Phytoremediation of contaminated soils can be promoted by the use of adding microorganisms with the potential of pollution biodegradation (bioaugmentation). In the present work, the effect of bacterial consortium was studied on the capability of Sorghum and Onobrychis sativa for the phytoremediation of soils contaminated with phenanthrene and pyrene. 1.5 kg of the contaminated soil in the ratio of 100 and 300 mg phenanthrene and/or pyrene per kg of dry soil was then transferred into each pot (nine modes). The removal efficiency of natural, phytoremediation and bioaugmentation, separately and combined, were evaluated. The samples were kept under field conditions, and the remaining concentrations of pyrene and phenanthrene were determined after 120 days. The rhizosphere as well as the microbial population of the soil was also determined. Results indicated that both plants were able to significantly remove pyrene and phenanthrene from the contaminated soil samples. Phytoremediation alone had the removal efficiency of about 63% and 74.5% for pyrene and phenanthrene respectively. In the combined mode, the removal efficiency dramatically increased, leading to pyrene and phenanthrene removal efficiencies of 74.1% and 85.02% for Onobrychis sativa and 73.84% and 85.2% for sorghum, respectively. According to the results from the present work, it can be concluded that Onobrychis sativa and sorghum are both efficient in removing pyrene and phenanthrene from contamination and bioaugmentation can significantly enhance the phytoremediation of soils contaminated with pyrene and phenanthrene by 22% and 16% respectively. PMID:24406158

  3. Sorption of phenanthrene by humic acid-coated nanosized TiO2 and ZnO.

    PubMed

    Yang, Kun; Xing, Baoshan

    2009-03-15

    Phenanthrene sorption by nano-TiO2 and nano-ZnO particles was enhanced significantly by coated humic acids (HAs), implying that additional toxicity can be potentially given to these nanooxides by adsorbed HOCs once released to the environment. Phenanthrene isotherms of adsorbed HA on nano-TiO2 and nano-ZnO were more nonlinear than that of their respective bulk HA. Both HA conformation changes and fractionation were observed upon HA adsorption on nano-TiO2 and nano-ZnO, which further affected phenanthrene sorption. Nano-TiO2 and nano-ZnO interacted with differentfunctional groups of HA (i.e., phenolic OH with nano-TiO2, while COOH with nano-ZnO), leading to different conformations of adsorbed HA. Interaction of HA phenolic OH with nano-TiO2 increased the pi-polarity/polarizability of adsorbed HA and, consequently, its phenanthrene adsorption affinity and isotherm nonlinearity. Interactions of COOH groups on HA aromatic rings with nano-ZnO would also increase the pi-polarity/polarizability of adsorbed HA and its phenanthrene adsorption affinity, whereas interactions of COOH groups on HA aliphatic chains with nano-ZnO would make the adsorbed HA be in a more condensed state with lower partitioning affinity. Increase in adsorption and decrease in partitioning were responsible for the more nonlinear phenanthrene isotherms of adsorbed HA than bulk HA. PMID:19368181

  4. Novel 7-(dimethylamino)fluorene-based fluorescent probes and their binding to human serum albumin.

    PubMed

    Park, Kwanghee Koh; Park, Joon Woo; Hamilton, Andrew D

    2009-10-21

    A novel solvatochromic fluorescent molecule, 9,9-dibutyl-7-(dimethylamino)-2-fluorenesulfonate 2 was synthesized from 2-nitrofluorene in moderate yield. The fluorescence spectra of 2 and 7-(dimethylamino)-2-fluorenesulfonate 1 shift to shorter wavelengths as the polarity of the medium decreases. Both 1 and 2 bind to hydrophobic sites of human serum albumin (HSA). The apparent binding constants were determined by fluorescence titration to be 0.37 x 10(6) M(-1) for 1 and 2.2 x 10(6) M(-1) for 2. The energy of the Trp-214 fluorescence of HSA is transferred to the HSA-bound fluorophores with near 100% efficiency. The covalent bonding of acrylodan (AC) to Cys-34 has little effect on the binding affinity of 2 to HSA or fluorescent behavior of HSA-bound 2. Bound 2 also has little effect on the fluorescence of AC, but 2-->AC and Trp-214-->2-->AC resonance energy transfers were observed. Competitive binding between the fluorene compounds and other ligands such as 1-anilino-8-naphthalenesulfonate, aspirin, S-(+)-ibuprofen and phenylbutazone were also studied fluorometrically. The results indicated that the primary binding site of 2 to HSA is site II in domain IIIA, whereas 1 binds to site I in domain IIA, but a different region from the phenylbutazone binding site. Because of its large molar absorptivity, strong fluorescence, sensitivity to its environment, and high binding constant to HSA, 2 can be used successfully in the study of proteins and their binding properties. PMID:19795061

  5. Digestive determinants of benzo[a]pyrene and phenanthrene bioaccumulation by a deposit-feeding polychaete

    SciTech Connect

    Penry, D.L.; Weston, D.P.

    1998-11-01

    The uptake of hydrophobic contaminants from ingested sediment can contribute significantly to body burdens of deposit feeders, and feeding behavior and digestive physiology can play important roles in bioaccumulation. The authors examined the uptake of polycyclic aromatic hydrocarbons (PAHs) by the deposit-feeding polychaete Abarenicola pacifica in experiments in which worms were first acclimated to low or high organic carbon sediments with 0.08 or 0.45% total organic carbon, respectively and then transferred to low or high organic carbon test sediments contaminated with radiolabeled phenanthrene or benzo[a]pyrene. Ingestion rate was measurements are essential in many types of bioaccumulation studies because differences in ingestion rates between sediment types may confound some traditional measures of bioavailability. Physiological acclimation to the low or high organic carbon sediments did not appear to affect PAH uptake from the test sediments, but acclimation did affect biotransformation capabilities, particularly for phenanthrene.

  6. Bioactive Phenanthrene and Bibenzyl Derivatives from the Stems of Dendrobium nobile.

    PubMed

    Zhou, Xue-Ming; Zheng, Cai-Juan; Gan, Li-She; Chen, Guang-Ying; Zhang, Xiao-Peng; Song, Xiao-Ping; Li, Gao-Nan; Sun, Chong-Ge

    2016-07-22

    A new enantiomeric pair of spirodiketones, (+)- and (-)-denobilone A (1 and 2), three new phenanthrene derivatives (3-5), and three new biphenanthrenes (22-24), along with 11 known phenanthrene derivatives (6-16), five known bibenzyl derivatives (17-21), and four known biphenanthrenes (25-28), were isolated from Dendrobium nobile. The structures of 1-5 and 22-24 were elucidated using comprehensive spectroscopic methods. (+)-Denobilone and (-)-denobilone A (1 and 2) were isolated as a pair of enantiomers by chiral HPLC. The absolute configurations of (+)- and (-)-denobilone A (1 and 2) were determined by comparing their experimental and calculated electronic circular dichroism spectra. The absolute configuration of denobilone B (3) was determined by X-ray crystallographic analysis. The inhibitory activities of all compounds against nine phytopathogenic fungi and three cancer cell lines were evaluated. PMID:27310249

  7. Impact of activated carbon, biochar and compost on the desorption and mineralization of phenanthrene in soil.

    PubMed

    Marchal, Geoffrey; Smith, Kilian E C; Rein, Arno; Winding, Anne; Wollensen de Jonge, Lis; Trapp, Stefan; Karlson, Ulrich G

    2013-10-01

    Sorption of PAHs to carbonaceous soil amendments reduces their dissolved concentrations, limiting toxicity but also potentially biodegradation. Therefore, the maximum abiotic desorption of freshly sorbed phenanthrene (≤5 mg kg(-1)) was measured in three soils amended with activated carbon (AC), biochar or compost. Total amounts of phenanthrene desorbed were similar between the different soils, but the amendment type had a large influence. Complete desorption was observed in the unamended and compost amended soils, but this reduced for biochar (41% desorbed) and AC (8% desorbed). Cumulative amounts mineralized were 28% for the unamended control, 19% for compost, 13% for biochar and 4% for AC. Therefore, the effects of the amendments in soil in reducing desorption were also reflected in the extents of mineralization. Modeling was used to analyze key processes, indicating that for the AC and charcoal treatments bacterial activity did not limit mineralization, but rather desorption into the dissolved phase. PMID:23871817

  8. Efficient adsorption of phenanthrene by simply synthesized hydrophobic MCM-41 molecular sieves

    NASA Astrophysics Data System (ADS)

    Hu, Yun; He, Yinyun; Wang, Xiaowen; Wei, Chaohai

    2014-08-01

    Hydrophobic molecular sieve MCM-41 including surfactant template was synthesized by a simple method. The adsorption properties of this material toward phenanthrene were studied. The effects of adsorbent dose and pH value on the adsorption process as well as the adsorption mechanism and reuse performance were investigated. The template-containing MCM-41 showed a significant adsorption for phenanthrene, due to its hydrophobicity created by the surfactant template in MCM-41. The solution pH had little effect on the adsorption capacity. The adsorption kinetic could be fitted well with pseudo-second-order kinetic model. The adsorption equilibrium was fitted well by the linear model, and the adsorption process followed the liquid/solid phase distribution mechanism. The thermodynamic results indicated that the adsorption was a spontaneous and exothermic process.

  9. Cytotoxic and anti-inflammatory activities of phenanthrenes from the medullae of Juncus effusus L.

    PubMed

    Ma, Wei; Zhang, Yue; Ding, Yun-Yun; Liu, Feng; Li, Ning

    2016-02-01

    Bioactivity guided phytochemical investigation of the ethanol extract of the medullae of Juncus effusus resulted in the isolation of two new phenanthrenes, 8-hydroxymethyl-2-hydroxyl-1-methyl-5-vinyl-9,10-dihydrophenanthrene (1), and 5-(1-methoxyethyl)-1-methyl-phenanthren-2,7-diol (2) together with 15 known phenanthrenoids (3-17). The chemical structures of 1 and 2 were established by a combination of spectroscopic techniques. Compounds 1-15 and 17 were evaluated for their cytotoxic activities against five human cancer cell lines (SHSY-5Y, SMMC-7721, HepG-2, Hela and MCF-7) by CCK-8 assay, and their anti-inflammatory activities were also evaluated by inhibition on NO production in LPS-activated murine macrophage RAW 264.7 cells. PMID:26584913

  10. Degradation of Phenanthrene and Anthracene by Cell Suspensions of Mycobacterium sp. Strain PYR-1

    PubMed Central

    Moody, Joanna D.; Freeman, James P.; Doerge, Daniel R.; Cerniglia, Carl E.

    2001-01-01

    Cultures of Mycobacterium sp. strain PYR-1 were dosed with anthracene or phenanthrene and after 14 days of incubation had degraded 92 and 90% of the added anthracene and phenanthrene, respectively. The metabolites were extracted and identified by UV-visible light absorption, high-pressure liquid chromatography retention times, mass spectrometry, 1H and 13C nuclear magnetic resonance spectrometry, and comparison to authentic compounds and literature data. Neutral-pH ethyl acetate extracts from anthracene-incubated cells showed four metabolites, identified as cis-1,2-dihydroxy-1,2-dihydroanthracene, 6,7-benzocoumarin, 1-methoxy-2-hydroxyanthracene, and 9,10-anthraquinone. A novel anthracene ring fission product was isolated from acidified culture media and was identified as 3-(2-carboxyvinyl)naphthalene-2-carboxylic acid. 6,7-Benzocoumarin was also found in that extract. When Mycobacterium sp. strain PYR-1 was grown in the presence of phenanthrene, three neutral metabolites were identified as cis- and trans-9,10-dihydroxy-9,10-dihydrophenanthrene and cis-3,4-dihydroxy-3,4-dihydrophenanthrene. Phenanthrene ring fission products, isolated from acid extracts, were identified as 2,2′-diphenic acid, 1-hydroxynaphthoic acid, and phthalic acid. The data point to the existence, next to already known routes for both gram-negative and gram-positive bacteria, of alternative pathways that might be due to the presence of different dioxygenases or to a relaxed specificity of the same dioxygenase for initial attack on polycyclic aromatic hydrocarbons. PMID:11282593

  11. A novel solubilization of phenanthrene using Winsor I microemulsion-based sodium castor oil sulfate.

    PubMed

    Zhao, Baowei; Zhu, Lizhong; Gao, Yanzheng

    2005-03-17

    Problems associated with polycyclic aromatic hydrocarbons (PAHs) contaminated site in environmental media have received increasing attention. Ex situ soil washing is commonly used for treating contaminated soils by separating the most contaminated fraction of the soil for disposal. Surfactant-enhanced soil washing is being considered with increasing frequency to actually achieve soil-contaminant separation. In this research, a novel solubilization of phenanthrene and extraction of phenanthrene from spiked soil by sodium castor oil sulfate (SCOS) microemulsion was presented and compared with the conventional surfactants, Triton X-100 (TX100), Tween 80 (TW80), Brij35, sodium dodecylbenzene sulfonate (SDBS) and sodium dodecyl sulfate (SDS). Unlike conventional surfactants, SCOS forms stable microemulsion in water and thus behaves much like a separate bulk phase in concentrating organic solutes. The extent of solubility enhancement is linearly proportional to the concentration of SCOS microemulsion, in contrast with the effect of a conventional surfactant in which a sharp inflection occurs in the vicinity of the measured critical micelle concentration. SCOS microemulsion exhibits the largest mass solubilization ratio among the selected surface active agents (SAAs) in both soil-free system and soil-water system. The partitioning coefficients of phenanthrene between the emulsified phase and the aqueous phase, Kem, is slightly larger than those between the micellar pseudo phase and the aqueous phase, Kmc. The extraction experiments demonstrate high and fast desorption of phenanthrene from spiked soil by SCOS microemulsion perhaps due to its high solubilization capacity compared with the conventional surfactant solutions. The results show that SCOS could be an attractive alternative to synthetic surfactants in ex situ washing for PAH-contaminated soils. PMID:15752867

  12. trans-Chlorido(phenanthren-9-yl)bis­(triphenyl­phosphane)nickel(II)

    PubMed Central

    Lei, Xiangyang; Obregon, Karla A.

    2011-01-01

    The title compound, [Ni(C14H9)Cl(C18H15P)2], was synthesized from the reaction between 9-chloro­phenanthrene, NiCl2·6H2O and triphenyl­phosphane in ethanol. The bond angles around the NiII atom indicate that it exists in a slightly distorted square-planar geometry. PMID:22058872

  13. Surface tailored organobentonite enhances bacterial proliferation and phenanthrene biodegradation under cadmium co-contamination.

    PubMed

    Mandal, Asit; Biswas, Bhabananda; Sarkar, Binoy; Patra, Ashok K; Naidu, Ravi

    2016-04-15

    Co-contamination of soil and water with polycyclic aromatic hydrocarbon (PAH) and heavy metals makes biodegradation of the former extremely challenging. Modified clay-modulated microbial degradation provides a novel insight in addressing this issue. This study was conducted to evaluate the growth and phenanthrene degradation performance of Mycobacterium gilvum VF1 in the presence of a palmitic acid (PA)-grafted Arquad® 2HT-75-based organobentonite in cadmium (Cd)-phenanthrene co-contaminated water. The PA-grafted organobentonite (ABP) adsorbed a slightly greater quantity of Cd than bentonite at up to 30mgL(-1) metal concentration, but its highly negative surface charge imparted by carboxylic groups indicated the potential of being a significantly superior adsorbent of Cd at higher metal concentrations. In systems co-contained with Cd (5 and 10mgL(-1)), the Arquad® 2HT-75-modified bentonite (AB) and PA-grafted organobentonite (ABP) resulted in a significantly higher (72-78%) degradation of phenanthrene than bentonite (62%) by the bacterium. The growth and proliferation of bacteria were supported by ABP which not only eliminated Cd toxicity through adsorption but also created a congenial microenvironment for bacterial survival. The macromolecules produced during ABP-bacteria interaction could form a stable clay-bacterial cluster by overcoming the electrostatic repulsion among individual components. Findings of this study provide new insights for designing clay modulated PAH bioremediation technologies in mixed-contaminated water and soil. PMID:26849325

  14. Electroremediation of a natural soil polluted with phenanthrene in a pilot plant.

    PubMed

    López-Vizcaíno, R; Alonso, J; Cañizares, P; León, M J; Navarro, V; Rodrigo, M A; Sáez, C

    2014-01-30

    In this work, a pilot plant with two rows of three electrodes in semipermeable electrolyte wells was used to study the electrokinetic treatment of a natural soil polluted with phenanthrene (PHE). The electrokinetic pilot plant was an open system, i.e., there was direct contact between the soil and air. To increase the solubility of phenanthrene, thereby enhancing its transport through the soil, an aqueous solution of the anionic surfactant dodecyl sulfate was used as a flushing fluid. The results show that at the pilot scale considered, gravity and evaporation fluxes are more relevant than electrokinetic fluxes. Contrary to observations at the laboratory scale, desorption of PHE promoted by electric heating appears to be a significant removal mechanism at the pilot scale. In addition, PHE is dragged by the electroosmotic flow in the cathodic wells and by electrophoresis after interaction of the surfactant with phenanthrene in the anodic wells. In spite of the long treatment time (corresponding to an energy consumption over 500kWhm(-3)), the average removal attained was only 25%. PMID:24361491

  15. Rhizodegradation potential and tolerance of Avicennia marina (Forsk.) Vierh in phenanthrene and pyrene contaminated sediments.

    PubMed

    Jia, Hui; Wang, He; Lu, Haoliang; Jiang, Shan; Dai, Minyue; Liu, Jingchun; Yan, Chongling

    2016-09-15

    A pot experiment was conducted to investigate the dissipation of phenanthrene and pyrene in spiked sediments with presence of Avicennia marina (Forsk.) Vierh. The rhizosphere environment was set up using a self-design nylon rhizo-bag which divided the sediment into the rhizosphere and non-rhizosphere. Results showed that the dissipation of phenanthrene and pyrene were significantly enhanced in the rhizosphere compared with non-rhizosphere sediments. Plant roots promoted dissipation significantly greater than the contribution of direct plant uptake and accumulation of phenanthrene and pyrene. The activities of antioxidant and detoxification enzymes in roots and leaves significantly increased against oxidative stress with increasing PAH concentrations. Furthermore, a significant relationship (R(2)>0.91) between dissolved organic carbon (DOC) concentrations and the residual of PAHs in rhizosphere and non-rhizosphere sediments was observed after 120days planting. Results indicated that rhizome mediation with A. marina is a useful approach to promote the depletion of PAHs in contaminated mangrove sediments. PMID:27373941

  16. Behavioral toxicity and physiological changes from repeated exposure to fluorene administered orally or intraperitoneally to adult male Wistar rats: A dose-response study.

    PubMed

    Peiffer, Julie; Grova, Nathalie; Hidalgo, Sophie; Salquèbre, Guillaume; Rychen, Guido; Bisson, Jean-François; Appenzeller, Brice M R; Schroeder, Henri

    2016-03-01

    Fluorene is one of the most abundant polycyclic aromatic hydrocarbons (PAHs) in the environment by reason of its high volatility. Demonstrated to be a neurotoxicant through inhalation, it was also identified as a contributive PAH to food contamination. Since no data are available on its oral neurotoxicity, the purpose of the present study was to assess the behavioral and physiological toxicity of repeated oral administration of fluorene to adult Wistar male rats. Animals were daily treated with fluorene at 1, 10 or 100mg/kg/day for 28 consecutive days. Administration was intraperitoneal (i.p.) or oral (p.o.) to evaluate the influence of the route of exposure on fluorene toxicity. Following this period of treatment, animals in both groups were subjected to similar cognitive evaluations, namely anxiety (elevated-plus maze), locomotor activity (open-field) and learning and memory abilities (eight-arm maze and avoidance test of an aversive light stimulus), as well as physiological measurements. The behavioral testing occurred from the 28th to the 60th day of the experiment during which fluorene treatment continued uninterrupted. At the end of this period, the concentration levels of fluorene and of three of its monohydroxylated metabolites in blood and brain were determined using a GC-MS/MS method. The results demonstrated a reduction in rat anxiety level at the lowest doses administered (1 and 10mg/kg/day) regardless of the treatment route, whereas locomotor activity and learning abilities remained unchanged. Moreover, a less significant weight gain was noticed in animals i.p.- and p.o.-treated with 100mg/kg/day during the 28-day period of treatment, which, upon comparison with the three other groups, induced a body weight gap that was maintained throughout the experiment. Significant increases in relative liver weight were also observed in a dose-dependent manner in orally treated rats and only in animal treated i.p. with 100mg/kg/day. According to the dose, higher

  17. Role of microbial adhesion in phenanthrene biodegradation by Pseudomonas fluorescens LP6a

    NASA Astrophysics Data System (ADS)

    Abbasnezhad, Hassan

    Biodegradation of poorly water soluble hydrocarbons, such as n-alkanes and polycyclic aromatic hydrocarbons (PAHs) is often limited by the low availability of the pollutant to microbes. Adhesion of microorganisms to the oil-water interface can influence this availability. Our approach was to study a range of compounds and mechanisms to promote the adhesion of a hydrophilic PAH degrading bacterium, Pseudomonas fluorescens LP6a, to an oil-water interface and examine the effect on biodegradation of phenanthrene by the bacteria. The cationic surfactants cetylpyridinium chloride (CPC), poly-L-lysine and chlorhexidine gluconate (CHX) and the long chain alcohols 1-dodecanol, 2-dodecanol and farnesol increased the adhesion of P. fluorescens LP6a to n-hexadecane from ca. 30% to ca. 90% of suspended cells adhering. The alcohols also caused a dramatic change in the oil-water contact angle of the cell surface, increasing it from 24° to 104°, whereas the cationic compounds had little effect. In contrast, cationic compounds changed the electrophoretic mobility of the bacteria, reducing the mean zeta potential from --23 to --7 mV in 0.01M potassium phosphate buffer, but the alcohols had no effect on zeta potential. This results illustrate that alcohols acted through altering the cell surface hydrophobicity, whereas cationic surfactants changed the surface charge density. Phenanthrene was dissolved in heptamethylnonane and introduced to the aqueous growth medium, hence forming a two phase system. Introducing 1-dodecanol at concentrations of 217, 820 or 4100 mg/L resulted in comparable increases in phenanthrene biodegradation of about 30% after 120 h incubation with non-induced cultures. After 100 h of incubation with LP6a cultures induced with 2-aminobenzoate, 4.5% of the phenanthrene was mineralized by cultures versus more than 10% by the cultures containing initial 1-dodecanol or 2-dodecanol concentrations of 120 or 160 mg/L. The production and accumulation of metabolites in

  18. AIE-Active Fluorene Derivatives for Solution-Processable Nondoped Blue Organic Light-Emitting Devices (OLEDs).

    PubMed

    Feng, Xin Jiang; Peng, Jinghong; Xu, Zheng; Fang, Renren; Zhang, Hua-Rong; Xu, Xinjun; Li, Lidong; Gao, Jianhua; Wong, Man Shing

    2015-12-30

    A series of fluorene derivatives end-capped with diphenylamino and oxadiazolyl were synthesized, and their photophysical and electrochemical properties are reported. Aggregation-induced emission (AIE) effects were observed for the materials, and bipolar characteristics of the molecules are favored with measurement of carrier mobility and calculation of molecular orbitals using density functional theory (DFT). Using the fluorene derivatives as emitting-layer, nondoped organic light-emitting devices (OLEDs) have been fabricated by spin-coating in the configuration ITO/PEDOT:PSS(35 nm)/PVK(15 nm)/PhN-OF(n)-Oxa(80 nm)/SPPO13(30 nm)/Ca(8 nm)/Al(100 nm) (n = 2-4). The best device with PhN-OF(2)-Oxa exhibits a maximum luminance of 14 747 cd/m(2), a maximum current efficiency of 4.61 cd/A, and an external quantum efficiency (EQE) of 3.09% in the blue region. Investigation of the correlation between structures and properties indicates that there is no intramolecular charge transfer (ICT) increase in these molecules with the increase of conjugation length. The device using material of the shortest conjugation length as emitting-layer gives the best electroluminescent (EL) performances in this series of oligofluorenes. PMID:26647284

  19. A new selective fluorene-based fluorescent internal charge transfer (ICT) sensor for sugar alcohols in aqueous solution.

    PubMed

    Hosseinzadeh, Rahman; Mohadjerani, Maryam; Pooryousef, Mona

    2016-03-01

    Sugar alcohols, such as sorbitol, are commonly used as a replacement for sucrose in the food industry, applied as starting material for vitamin C synthesis, and involved as one of the causative factors in diabetic complications. Therefore, their detection and quantification in aqueous solution are necessary. The reversible covalent interactions between boronic acids and diols are the basis of efficient methods for the detection of saccharides. Herein, we report a new internal charge transfer (ICT) fluorene-based fluorescent boronic acid sensor (1) 2-[(9,9-dimethyl-9H-fluoren-2-yl-amino)methyl] phenyl boronic acid that shows significant fluorescence changes upon addition of saccharides. The boronic acid has high affinity (K a = 1107.9 M(-1)) and selectivity for sorbitol at pH = 8.31. It showed a linear response toward sorbitol in the concentration range from 1.0 × 10(-5) to 6.0 × 10(-4) mol L(-1) with the detection limit of 7.04 × 10(-6) mol L(-1). Sensor 1 was used to detect sorbitol in real samples with good recovery. PMID:26758597

  20. Triplet exciton state and related phenomena in the β -phase of poly(9,9-dioctyl)fluorene

    NASA Astrophysics Data System (ADS)

    Rothe, C.; King, S. M.; Dias, F.; Monkman, A. P.

    2004-11-01

    Using both time-resolved emission and cw photoinduced absorption spectroscopy as a function of temperature, the aggregation phenomena ( β -phase formation) observed in poly(9,9-dioctyl)fluorene is studied. All spectra of the β phase, including absorption, prompt and delayed fluorescence, phosphorescence, and photoinduced triplet absorption feature very narrow linewidths, which are unique within the class of conjugated polymers. From the comparison of the latter data with amorphous polyfluorene, poly(9,9-diethylhexyl)fluorene, as well as with the fully planar ladder-type poly(paraphenylene), we conclude that the origin of the β phase cannot simply be an extended intrachain conjugation, but interchain interactions are involved. Furthermore, the β phase acts as an energetic trap for both singlet and triplet excitons initially created on amorphous chain segments. The delayed fluorescence kinetics of the β phase were measured at different temperatures. From the analysis of these decays within the framework of dispersive triplet migration in a Gaussian density of states distribution, further evidence is provided that the delayed fluorescence originates from triplet-triplet annihilation. At room temperature, it is clear that triplet excitons migrate over large distances, exceeding that of singlet excitons. Also, the segregation time between dispersive triplet migration and classical thermally activated hopping, is in the case of β -phase containing samples, dependent on the separation of the β -phase domains.

  1. Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost.

    PubMed

    Marchal, Geoffrey; Smith, Kilian E C; Rein, Arno; Winding, Anne; Trapp, Stefan; Karlson, Ulrich G

    2013-02-01

    Carbonaceous soil amendments are applied to contaminated soils and sediments to strongly sorb hydrophobic organic contaminants (HOCs) and reduce their freely dissolved concentrations. This limits biouptake and toxicity, but also biodegradation. To investigate whether HOCs sorbed to such amendments can be degraded at all, the desorption and biodegradation of low concentrations of (14)C-labelled phenanthrene (≤5 μg L(-1)) freshly sorbed to suspensions of the pure soil amendments activated carbon (AC), biochar (charcoal) and compost were compared. Firstly, the maximum abiotic desorption of phenanthrene from soil amendment suspensions in water, minimal salts medium (MSM) or tryptic soy broth (TSB) into a dominating silicone sink were measured. Highest fractions remained sorbed to AC (84±2.3%, 87±4.1%, and 53±1.2% for water, MSM and TSB, respectively), followed by charcoal (35±2.2%, 32±1.7%, and 12±0.3%, respectively) and compost (1.3±0.21%, similar for all media). Secondly, the mineralization of phenanthrene sorbed to AC, charcoal and compost by Sphingomonas sp. 10-1 (DSM 12247) was determined. In contrast to the amounts desorbed, phenanthrene mineralization was similar for all the soil amendments at about 56±11% of the initially applied radioactivity. Furthermore, HPLC analyses showed only minor amounts (<5%) of residual phenanthrene remaining in the suspensions, indicating almost complete biodegradation. Fitting the data to a coupled desorption and biodegradation model revealed that desorption did not limit biodegradation for any of the amendments, and that degradation could proceed due to the high numbers of bacteria and/or the production of biosurfactants or biofilms. Therefore, reduced desorption of phenanthrene from AC or charcoal did not inhibit its biodegradation, which implies that under the experimental conditions these amendments can reduce freely dissolved concentration without hindering biodegradation. In contrast, phenanthrene sorbed to compost

  2. Trinuclear nickel coordination complexes of phenanthrene-9,10-dione dioxime

    PubMed Central

    Williams, Owen M.; Cowley, Alan H.

    2016-01-01

    A trinuclear nickel complex of phenanthrene-9,10-dione dioxime (H2pqd), namely bis­[μ2-9,10-bis­(oxido­imino)­phenanthrene]­bis­[μ2-10-(oxido­imino)phenanthrene-9-one oxime](phenanthrene-9,10-dione dioxime)trinickel(II) toluene disolvate, [Ni3(C14H8N2O2)2(C14H9N2O2)2(C14H10N2O2)]·2C7H8, has been isolated and its crystal structure determined. This complex features three independent NiII atoms that are arranged in a triangular fashion along with five supporting ligands. There are two square-planar NiII atoms and a third pseudo-octa­hedral NiII atom. While the square-planar NiII atoms are stacked, there are no ligand bridges between them. Each square-planar NiII atom, however, bridges with the pseudo-octa­­hedral NiII atom through Ni—N—O—Ni and Ni—O—Ni bonds. A fluorido­bor­ation reaction of the proton-bridged species gave the analogous complex bis­(μ2-bis­{[10-(oxido­imino)-9,10-di­hydro­phenanthren-9-yl­idene]amino}di­fluorido­borato)(phenanthrene-9,10-dione dioxime)trinickel(II) dichloromethane trisolvate, [Ni3(C28H16BF2N4O2)4(C14H10N2O2)]·3CH2Cl2, which shows the same binding structure, but features a widened Ni—Ni inter­action between the square-planar NiII atoms. The proton-bridged complex completes the macrocyclic coordination around the square-planar NiII atoms by means of an O—H⋯O hydrogen bond. Both compounds feature O—H⋯N hydrogen bonds between the oxime and the N atoms attached to square-planar nickel atom. The nickel units show no direct inter­action with their nearest neighbors in the extended lattice. Two π-stacking inter­actions between adjacent mol­ecules are found: one with a centroid–centroid distance of 3.886 (2) Å and the other with a centroid–centroid distance of 4.256 (3) Å. In the latter case, although not aromatic, the distance to the centroid of the central phenanthrene ring is shorter, with a distance of 3.528 (3) Å. Toluene mol­ecules occupy the solvent channels that are

  3. Trinuclear nickel coordination complexes of phenanthrene-9,10-dione dioxime.

    PubMed

    Williams, Owen M; Cowley, Alan H

    2016-04-01

    A trinuclear nickel complex of phenanthrene-9,10-dione dioxime (H2pqd), namely bis-[μ2-9,10-bis-(oxido-imino)-phenanthrene]-bis-[μ2-10-(oxido-imino)phenanthrene-9-one oxime](phenanthrene-9,10-dione dioxime)trinickel(II) toluene disolvate, [Ni3(C14H8N2O2)2(C14H9N2O2)2(C14H10N2O2)]·2C7H8, has been isolated and its crystal structure determined. This complex features three independent Ni(II) atoms that are arranged in a triangular fashion along with five supporting ligands. There are two square-planar Ni(II) atoms and a third pseudo-octa-hedral Ni(II) atom. While the square-planar Ni(II) atoms are stacked, there are no ligand bridges between them. Each square-planar Ni(II) atom, however, bridges with the pseudo-octa--hedral Ni(II) atom through Ni-N-O-Ni and Ni-O-Ni bonds. A fluorido-bor-ation reaction of the proton-bridged species gave the analogous complex bis-(μ2-bis-{[10-(oxido-imino)-9,10-di-hydro-phenanthren-9-yl-idene]amino}di-fluorido-borato)(phenanthrene-9,10-dione dioxime)trinickel(II) dichloromethane trisolvate, [Ni3(C28H16BF2N4O2)4(C14H10N2O2)]·3CH2Cl2, which shows the same binding structure, but features a widened Ni-Ni inter-action between the square-planar Ni(II) atoms. The proton-bridged complex completes the macrocyclic coordination around the square-planar Ni(II) atoms by means of an O-H⋯O hydrogen bond. Both compounds feature O-H⋯N hydrogen bonds between the oxime and the N atoms attached to square-planar nickel atom. The nickel units show no direct inter-action with their nearest neighbors in the extended lattice. Two π-stacking inter-actions between adjacent mol-ecules are found: one with a centroid-centroid distance of 3.886 (2) Å and the other with a centroid-centroid distance of 4.256 (3) Å. In the latter case, although not aromatic, the distance to the centroid of the central phenanthrene ring is shorter, with a distance of 3.528 (3) Å. Toluene mol-ecules occupy the solvent channels that are oriented along the c axis. In

  4. Polycyclic aromatic hydrocarbon removal from water by natural fiber sorption.

    PubMed

    Khan, Eakalak; Khaodhir, Sutha; Rotwiron, Paritta

    2007-08-01

    The use of two natural sorbents, kapok and cattail fibers, were investigated for polycyclic aromatic hydrocarbon (PAH) removal from water. Naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, and fluoranthene were the PAHs studied. For comparative purposes, a commercial polyester fiber sorbent was included in the investigation. The PAH sorption and retention capabilities of the three fibers were determined through batch and continuous-flow experiments under non-competitive and competitive conditions. In the batch experiments, cattail fiber was the most effective sorbent. Kapok fiber provided the lowest PAH retention, while cattail fiber had slightly less PAH retention than polyester fiber. When two PAHs were present in the same system, a competitive effect on the much less hydrophobic PAH was observed. Similar results were obtained in the column experiments, except that polyester fiber performed much poorer on naphthalene. Cattail fiber is a promising sorbent for treating PAH-contaminated water, such as urban runoff. PMID:17824537

  5. Fluorene-based Cu(II)-MOF: a visual colorimetric anion sensor and separator based on an anion-exchange approach.

    PubMed

    Ma, Jian-Ping; Yu, Yang; Dong, Yu-Bin

    2012-03-21

    A new 2D Cu(II)-MOF generated from a fluorene-based ligand and Cu(NO(3))(2) was reported. It is an interesting visual colorimetric anion sensor. In addition, it can completely separate Cl(-)/Br(-), Br(-)/I(-) and SCN(-)/N(3)(-) anions under ambient conditions. PMID:22189967

  6. Low-valent niobium-mediated double activation of C-F/C-H bonds: fluorene synthesis from o-arylated alpha,alpha,alpha-trifluorotoluene derivatives.

    PubMed

    Fuchibe, Kohei; Akiyama, Takahiko

    2006-02-01

    By the treatment of 0.3 molar amount of NbCl5 and LiAlH4, o-arylated alpha,alpha,alpha-trifluorotoluenes afforded fluorene derivatives in good yields. C-F bonds of the CF3 group and the neighboring ortho C-H bond were doubly activated to give the coupling products. PMID:16448098

  7. Isolation, plant colonization potential, and phenanthrene degradation performance of the endophytic bacterium Pseudomonas sp. Ph6-gfp

    PubMed Central

    Sun, Kai; Liu, Juan; Gao, Yanzheng; Jin, Li; Gu, Yujun; Wang, Wanqing

    2014-01-01

    This investigation provides a novel method of endophyte-aided removal of polycyclic aromatic hydrocarbons (PAHs) from plant bodies. A phenanthrene-degrading endophytic bacterium Pseudomonas sp. Ph6 was isolated from clover (Trifolium pratense L.) grown in a PAH-contaminated site. After being marked with the GFP gene, the colonization and distribution of strain Ph6-gfp was directly visualized in plant roots, stems, and leaves for the first time. After ryegrass (Lolium multiflorum Lam.) roots inoculation, strain Ph6-gfp actively and internally colonized plant roots and transferred vertically to the shoots. Ph6-gfp had a natural capacity to cope with phenanthrene in vitro and in planta. Ph6-gfp degraded 81.1% of phenanthrene (50 mg·L−1) in a culture solution within 15 days. The inoculation of plants with Ph6-gfp reduced the risks associated with plant phenanthrene contamination based on observations of decreased concentration, accumulation, and translocation factors of phenanthrene in ryegrass. Our results will have important ramifications in the assessment of the environmental risks of PAHs and in finding ways to circumvent plant PAH contamination. PMID:24964867

  8. Quantifying the biodegradation of phenanthrene by Pseudomonas stutzeri P16 in the presence of a nonionic surfactant.

    PubMed Central

    Grimberg, S J; Stringfellow, W T; Aitken, M D

    1996-01-01

    The low water solubility of polycyclic aromatic hydrocarbons is believed to limit their availability to microorganisms, which is a potential problem for bioremediation of polycyclic aromatic hydrocarbon-contaminated sites. Surfactants have been suggested to enhance the bioavailability of hydrophobic compounds, but both negative and positive effects of surfactants on biodegradation have been reported in the literature. Earlier, we presented mechanistic models of the effects of surfactants on phenanthrene dissolution and on the biodegradation kinetics of phenanthrene solubilized in surfactant micelles. In this study, we combined the biodegradation and dissolution models to quantify the influence of the surfactant Tergitol NP-10 on biodegradation of solid-phase phenanthrene by Pseudomonas stutzeri P16. Although micellized phenanthrene does not appear to be available directly to the bacterium, the ability of the surfactant to increase the phenanthrene dissolution rate resulted in an overall increase in bacterial growth rate in the presence of the surfactant. Experimental observations could be predicted well by the derived model with measured biokinetic and dissolution parameters. The proposed model therefore can serve as a base case for understanding the physical-chemical effects of surfactants on nonaqueous hydrocarbon bioavailability. PMID:8779577

  9. Molecular topology tuning of bipolar host materials composed of fluorene-bridged benzimidazole and carbazole for highly efficient electrophosphorescence.

    PubMed

    Mondal, Ejabul; Hung, Wen-Yi; Chen, Yang-Huei; Cheng, Ming-Hung; Wong, Ken-Tsung

    2013-08-01

    Two new molecules, CzFCBI and CzFNBI, have been tailor-made to serve as bipolar host materials to realize high-efficiency electrophosphorescent devices. The molecular design is configured with carbazole as the hole-transporting block and N-phenylbenzimidazole as the electron-transporting block hybridized through the saturated bridge center (C9) and meta-conjugation site (C3) of fluorene, respectively. With structural topology tuning of the connecting manner between N-phenylbenzimidazole and the fluorene core, the resulting physical properties can be subtly modulated. Bipolar host CzFCBI with a C connectivity between phenylbenzimidazole and the fluorene bridge exhibited extended π conjugation; therefore, a low triplet energy of 2.52 eV was observed, which is insufficient to confine blue phosphorescence. However, the monochromatic devices indicate that the matched energy-level alignment allows CzFCBI to outperform its N-connected counterpart CzFNBI while employing other long-wavelength-emitting phosphorescent guests. In contrast, the high triplet energy (2.72 eV) of CzFNBI imparted by the N connectivity ensures its utilization as a universal bipolar host for blue-to-red phosphors. With a common device configuration, CzFNBI has been utilized to achieve highly efficient and low-roll-off devices with external quantum efficiency as high as 14 % blue, 17.8 % green, 16.6 % yellowish-green, 19.5 % yellow, and 18.6 % red. In addition, by combining yellowish-green with a sky-blue emitter and a red emitter, a CzFNBI-hosted single-emitting-layer all-phosphor three-color-based white electrophosphorescent device was successfully achieved with high efficiencies (18.4 %, 36.3 cd A(-1) , 28.3 lm W(-1) ) and highly stable chromaticity (CIE x=0.43-0.46 and CIE y=0.43) at an applied voltage of 8 to 12 V, and a high color-rendering index of 91.6. PMID:23788214

  10. Metabolism of a Representative Oxygenated Polycyclic Aromatic Hydrocarbon (PAH) Phenanthrene-9,10-quinone in Human Hepatoma (HepG2) Cells

    PubMed Central

    2014-01-01

    Exposure to polycyclic aromatic hydrocarbons (PAHs) in the food chain is the major human health hazard associated with the Deepwater Horizon oil spill. Phenanthrene is a representative PAH present in crude oil, and it undergoes biological transformation, photooxidation, and chemical oxidation to produce its signature oxygenated derivative, phenanthrene-9,10-quinone. We report the downstream metabolic fate of phenanthrene-9,10-quinone in HepG2 cells. The structures of the metabolites were identified by HPLC–UV–fluorescence detection and LC–MS/MS. O-mono-Glucuronosyl-phenanthrene-9,10-catechol was identified, as reported previously. A novel bis-conjugate, O-mono-methyl-O-mono-sulfonated-phenanthrene-9,10-catechol, was discovered for the first time, and evidence for both of its precursor mono conjugates was obtained. The identities of these four metabolites were unequivocally validated by comparison to authentic enzymatically synthesized standards. Evidence was also obtained for a minor metabolic pathway of phenanthrene-9,10-quinone involving bis-hydroxylation followed by O-mono-sulfonation. The identification of 9,10-catechol conjugates supports metabolic detoxification of phenanthrene-9,10-quinone through interception of redox cycling by UGT, COMT, and SULT isozymes and indicates the possible use of phenanthrene-9,10-catechol conjugates as biomarkers of human exposure to oxygenated PAH. PMID:24646012

  11. Complete genome sequence of Burkholderia caribensis Bcrs1W (NBRC110739), a strain co-residing with phenanthrene degrader Mycobacterium sp. EPa45.

    PubMed

    Ohtsubo, Yoshiyuki; Nonoyama, Shouta; Ogawa, Natsumi; Kato, Hiromi; Nagata, Yuji; Tsuda, Masataka

    2016-06-20

    Complete genome sequence of Burkholderia caribensis Bcrs1W, isolated from a phenanthrene-degrading mixed culture, was determined. The genomic information of Bcrs1W will be beneficial to elucidating the mechanisms of its positive effects on phenanthrene degradation by co-residing Mycobacterium sp. Epa45, and to exploiting their degradation potentials. PMID:27130496

  12. Synthesis of phenanthrenes through copper-catalyzed cross-coupling of N-tosylhydrazones with terminal alkynes.

    PubMed

    Hossain, Mohammad Lokman; Ye, Fei; Liu, Zhenxing; Xia, Ying; Shi, Yi; Zhou, Lei; Zhang, Yan; Wang, Jianbo

    2014-09-19

    A novel protocol for the synthesis of phenanthrenes through the copper-catalyzed reaction of aromatic tosylhydrazones with terminal alkynes is explored. The reaction proceeds via the formation of an allene intermediate and subsequent six-π-electron cyclization-isomerization, affording phenanthrene derivatives in good yields. The transformation can be performed in two ways: (1) with N-tosylhydrazones derived from [1,1'-biphenyl]-2-carbaldehydes and terminal alkynes as the starting materials and (2) with N-tosylhydrazones derived from aromatic aldehydes and 2-alkynyl biphenyls as the starting materials. This new phenanthrene synthesis uses readily available starting materials and a cheap copper catalyst and has a wide range of functional group compatibility. PMID:25153826

  13. Intramolecular Dehydrogenative Coupling of 2,3-Diaryl Acrylic Compounds: Access to Substituted Phenanthrenes.

    PubMed

    Gupta, Vijay; Rao, V U Bhaskara; Das, Tamal; Vanka, Kumar; Singh, Ravi P

    2016-07-01

    A simple, facile, and environmentally benign intramolecular dehydrogenative coupling of various 1,2-diarylethylenes for the synthesis of phenanthrenes in excellent yield has been described. This new methodology uses ceric ammonium nitrate (CAN) as a promoter at room temperature and has been extended to intermolecular synthesis of biaryl compounds. The electron transfer from methoxyarene to cerium leads to cationic radical formation, which further proceeds to intramolecular coupling. Preliminary mechanistic investigation by EPR spectroscopy and density functional theory calculation suggested a similar view. PMID:27232691

  14. Disposition of phenanthrene and octachlorostyrene in spiny lobsters, Panulirus argus, after intragastric administration

    SciTech Connect

    Solbakken, J.E.; Knap, A.H.

    1986-11-01

    Spiny lobster (Panulirus argus) is a commercial crustacean in Bermuda. It was therefore of interest to study the fate of xenobiotics in the species as very little attention has been paid to toxicological studies with spiny lobsters. Earlier it was found that the temperate crustacean, Nephrops norveqicus (Norway lobster) had the ability to accumulate and eliminate phenanthrene. The aim of this investigation was to gain a better understanding of the fate of xenobiotics in crustaceans under different environmental conditions, and to compare the polycyclic aromatic hydrocarbon, phenenthrene, with the more environmentally persistent chlorinated compound octachlorostyrene, a by-product of magnesium metal production.

  15. Accumulation and elimination of (9-/sup 14/C)phenanthrene in the calico clam (Macrocallista maculata)

    SciTech Connect

    Solbakken, J.E.; Jeffrey, F.M.H.; Knap, A.H.; Palmork, K.H.

    1982-05-01

    The accumulation and elimination of radoactivity is studied after exposure of (9-/sup 14/C) phenanthrene in various tissues in the calico clam (Macrocallista maculata). Results show that accumulation is highest in the lipid-rich hepatopancreas, and the elimination is very efficient compared to the horse mussel. The calico clam, which is a sand-dwelling organism, can easily come in contact with hydrocarbon contaminated sedments and might accumulate the hydrocarbons at different extents in various tissues. The efficient elimination, however, will prevent a lasting accumulation. (JMT)

  16. The origin of delayed fluorescence in charge-transfer crystals: pyromellitic dianhydride-phenanthrene crystal

    NASA Astrophysics Data System (ADS)

    Kozankiewicz, B.

    1987-03-01

    The temperature dependence of emission spectra and their decay parameters for pyromellitic dianhydride-phenanthrene chargetransfer crystals have been investigated between 1.7 and 300 K. It has been established that the delayed fluorescence originates from triplet-triplet annihilation at temperatures between 30 and 60 K. (activation energy 290 ± 20 cm -1) and from thermal activation of triplet excitons to the singlet excitonic band for temperatures higher than 60 K (activation energy 600 ± 30 cm -1). This mechanism may be considered as typical for charge-transfer crystals characterized by intermediate (50-80%) charge-transfer character of triplet excitons.

  17. (Fluoren-9-ylidene)methanedithiolato complexes of platinum: synthesis, reactivity, and luminescence.

    PubMed

    Vicente, José; González-Herrero, Pablo; Pérez-Cadenas, María; Jones, Peter G; Bautista, Delia

    2005-10-01

    Platinum(II) complexes with (fluoren-9-ylidene)methanedithiolato and its 2,7-di-tert-butyl- and 2,7-dimethoxy-substituted analogues were obtained by reacting different chloroplatinum(II) precursors with the piperidinium dithioates (pipH)[(2,7-R2C12H6)CHCS2] [R = H (1a), t-Bu (1b), or OMe (1c)] in the presence of piperidine. The anionic complexes Q2[Pt{S(2)C=C(C12H6R(2)-2,7)}2] [R = H, (Pr(4)N)(2)2a; R = t-Bu, (Pr4N)(2)2b, (Et4N)(2)2b; R = OMe, (Pr4N)(2)2c] were prepared from PtCl(2), piperidine, the corresponding QCl salt, and 1a-c in molar ratio 1:2:2:2. In the absence of QCl, the complexes (pipH)(2)2b and [Pt(pip)(4)]2b were isolated depending on the PtCl(2):pip molar ratio. The neutral complexes [Pt{S2C=C(C12H6R(2)-2,7)L(2)] [L = PPh(3), R = H (3a), t-Bu (3b), OMe (3c); L = PEt(3), R = H (4a), t-Bu (4b), OMe (4c); L(2) = dbbpy, R = H (5a), t-Bu (5b), OMe (5c) (dbbpy = 4,4'-di-tert-butyl-2,2'-bipyridyl)] were similarly prepared from the corresponding precursors [PtCl2L2] and 1a-c in the presence of piperidine. Oxidation of Q(2)2b with [FeCp2]PF6 afforded the mixed Pt(II)-Pt(IV) complex Q2[Pt2{S2C=C[C12H6(t-Bu)(2)-2,7]}4] (Q(2)6, Q = Et4N+, Pr4N+). The protonation of (Pr4N)(2)2b with 2 equiv of triflic acid gave the neutral dithioato complex [Pt2{S2CCH[C12H6(t-Bu)(2)-2,7]}4] (7). The same reaction in 1:1 molar ratio gave the mixed dithiolato/dithioato complex Pr4N[Pt{S2C=C[C12H6(t-Bu)(2)-2,7]}{S2CCH[C12H6(t-Bu)(2)-2,7]}] (Pr(4)N8) while the corresponding DMANH+ salt was obtained by treating 7 with 2 equiv of 1,8-bis(dimethylamino)naphthalene (DMAN). The crystal structures of 3b and 5c.CH2Cl2 have been solved by X-ray crystallography. All the platinum complexes are photoluminescent at 77 K in CH2Cl2 or KBr matrix, except for Q(2)6. Compounds 5a-c and Q8 show room-temperature luminescence in fluid solution. The electronic absorption and emission spectra of the dithiolato complexes reveal charge-transfer absorption and emission energies which are significantly lower

  18. Biodegradability of nonaqueous-phase liquids affects the mineralization of phenanthrene in soil because of microbial competition

    SciTech Connect

    Morrison, D.E.; Alexander, M.

    1997-08-01

    A study was conducted to determine the effects of biodegradability of nonaqueous-phase liquids (NAPLs) and microbial competition on the biodegradation in soil of a constituent of the NAPLs. The rates of mineralization of phenanthrene dissolved in 8 mg of 2,2,4,4,6,8,8-heptamethylnonane (HMN), di(2-ethylhexyl) phthalate (DEHP), or pristane per g of soil were faster than the rates when the compound was dissolved in hexadecane or dodecane. Addition of inorganic N and P to the soil increased the mineralization rate in the first two but not the last two NAPLs. N and P addition did not enhance mineralization of phenanthrene when added in 500 {micro}g of hexadecane, pristane, or HMN per g of soil. Hexadecane was rapidly degraded, pristane was slowly metabolized, DEHP was still slower, and HMN was not mineralized in the test period. Mixing the soil stimulated mineralization of phenanthrene dissolved in HMN but not in hexadecane. Mineralization of phenanthrene dissolved in HMN was the same if the gas phase contained 21%, 2.1%, or traces of O{sub 2}. In contrast, the biodegradation of phenanthrene dissolved in hexadecane, although the same at 21 and 2.1% O{sub 2}, was not observed if traces of O{sub 2} were present. The mineralization was slower in unshaken soil-water mixtures if phenanthrene was added in hexadecane than in HMN or pristane, but the rates with the 3 NAPLs were increased by shaking the suspensions. The authors suggest that the biodegradability of major components of NAPLs and microbial competition for N, P, or O{sub 2} will have a major impact on the rate of transformation of minor constituents of NAPLs.

  19. Self-trapping and excited state absorption in fluorene homo-polymer and copolymers with benzothiadiazole and tri-phenylamine.

    PubMed

    Denis, Jean-Christophe; Ruseckas, Arvydas; Hedley, Gordon J; Matheson, Andrew B; Paterson, Martin J; Turnbull, Graham A; Samuel, Ifor D W; Galbraith, Ian

    2016-08-01

    Excited state absorption (ESA) is studied using time-dependent density functional theory and compared with experiments performed in dilute solutions. The molecules investigated are a fluorene pentamer, polyfluorene F8, the alternating F8 copolymer with benzothiadiazole F8BT, and two blue-emitting random copolymers F8PFB and F8TFB. Calculated and measured spectra show qualitatively comparable results. The ESA cross-section of co-polymers at its maximum is about three times lower than that of F8. The ESA spectra are found to change little upon structural relaxation of the excited state, or change in the order of sub-units in a co-polymer, for all studied molecules. In all these molecules, the strongest ESA transition is found to arise from the same electronic process, exhibiting a reversal of the charge parity. In addition, F8PFB and F8TFB are found to possess almost identical electronic behaviour. PMID:27439750

  20. A solution processable fluorene-benzothiadiazole small molecule for n-type organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Mutkins, Karyn; Gui, Ke; Aljada, Muhsen; Schwenn, Paul E.; Namdas, Ebinazar B.; Burn, Paul L.; Meredith, Paul

    2011-04-01

    We report an n-type organic semiconductor [2-({7-(9,9-di-n-propyl-9H-fluoren-2-yl}benzo[c][1,2,5]thiadiazol-4-yl)methylene]malononitrile (herein referred to as K12) for use in organic field-effect transistors (OFETs). K12 can be processed by spin-coating from solution or by vacuum deposition, organizing into highly orientated microcrystalline structures at modest (75 °C) annealing temperatures. OFETs with n-octyltrichlorosilane or hexamethyldisilazane monolayers, or poly(propylene-co-1-butene) (PPCB) modified dielectric surfaces were prepared. The mobility, ON/OFF ratio, threshold voltage, and current hysteresis were found to be dependent on the thermal history of the film and surface onto which it was deposited. The highest OFET mobility achieved was 2.4×10-3 cm2/V s, for spin-coated films with a PPCB modified silicon dioxide dielectric.

  1. Amplified spontaneous emission from 2,7-bis(4-pyridyl)fluorene-doped DNA-cetyltrimethyl ammonium complex films

    NASA Astrophysics Data System (ADS)

    Zhao, Xiuhua; Li, Xing; Zhao, Yayun; Zhang, Jie; Pan, Jianguo; Zhou, Jun

    2013-10-01

    The 2,7-bis(4-pyridyl)fluorene (BPF) was synthesized via a Suzuki coupling reaction. The optical spectra properties of BPF and BPF-deoxyribonucleic acid (DNA)-cetyltrimethyl ammonium (CTMA) thin films composed of BPF, DNA, and CTMA were characterized by the measurements of UV/Vis absorption spectra and fluorescence spectra. The amplified spontaneous emission (ASE) of the BPF-DNA-CTMA films was researched experimentally by pumping of a pulse laser with a wavelength of 355 nm. The results show that the absorption peak and the fluorescence peak of BPF are located at 327 and 380 nm, respectively. The emission peak of BPF corresponds to the vibronic transitions from an excited state of S1 level to the ground state of S0 level. The ASE peak of the BPF-DNA-CTMA film is located at 384 nm, and the threshold of ASE excited energy density is 3.12 mJ.cm-2.

  2. Effect of humic fractions and clay on biodegradation of phenanthrene by a Pseudomonas fluorescens strain isolated from soil

    SciTech Connect

    Ortega-Calvo, J.J.; Saiz-Jimenez, C.

    1998-08-01

    The mineralization of phenanthrene in pure cultures of a Pseudomonas fluorescens strain, isolated from soil, was measured in the presence of soil humic fractions and montmorillonite. Humic acid and clay, either separately or in combination, shortened the acclimation phase. A higher mineralization rate was measured in treatments with humic acid at 100 {micro}g/ml. Humic acid at 10 {micro}g/ml stimulated the transformation only in the presence of 10 g of clay per liter. The authors suggest that sorption of phenanthrene to these soil components may result in a higher concentration of substrate in the vicinity of the bacterial cells and therefore may increase its bioavailability.

  3. Regio- and stereospecific oxidation of fluorene, dibenzofuran, and dibenzothiophene by naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4.

    PubMed Central

    Resnick, S M; Gibson, D T

    1996-01-01

    The regio- and stereospecific oxidation of fluorene, dibenzofuran, and dibenzothiophene was examined with mutant and recombinant strains expressing naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4. The initial oxidation products were isolated and identified by gas chromatography-mass spectrometry and nuclear magnetic resonance spectrometry. Salicylate-induced cells of Pseudomonas sp. strain 9816/11 and isopropyl-beta-D-thiogalactopyranoside-induced cells of Escherichia coli JM109(DE3)(pDTG141) oxidized fluorene to (+)-(3S,4R)-cis-3,4-dihydroxy-3,4-dihydrofluorene (80 to 90% relative yield; > 95% enantiomeric excess [ee]) and 9-fluorenol (< 10% yield). The same cells oxidized dibenzofuran to (1R,2S)-cis-1,2-dihydroxy-1, 2-dihydrodibenzofuran (60 to 70% yield; > 95% ee) and (3S,4R)-cis-3, 4-dihydroxy-3,4-dihydrodibenzofuran (30 to 40% yield; > 95% ee). Induced cells of both strains, as well as the purified dioxygenase, also oxidized dibenzothiophene to (+)-(1R,2S)-cis-1,2-dihydroxy-1, 2-dihydrodibenzothiophene (84 to 87% yield; > 95% ee) and dibenzothiophene sulfoxide (< 15% yield). The major reaction catalyzed by naphthalene dioxygenase with each substrate was stereospecific dihydroxylation in which the cis-dihydrodiols were of identical regiochemistry and of R configuration at the benzylic center adjacent to the bridgehead carbon atom. The regiospecific oxidation of dibenzofuran differed from that of the other substrates in that a significant amount of the minor cis-3,4-dihydrodiol regioisomer was formed. The results indicate that although the absolute stereochemistry of the cis-diene diols was the same, the nature of the bridging atom or heteroatom influenced the regiospecificity of the reactions catalyzed by naphthalene dioxygenase. PMID:8899998

  4. Properties of the low-lying electronic states of phenanthrene: Exact PPP results

    SciTech Connect

    Chakrabarti, A.; Ramasesha, S.

    1996-10-05

    The authors report properties of the exact low-lying states of phenanthrene, its anion and dianion within the Pariser-Parr-Pople (PPP) model. The experimentally known singlet states of the neutral molecule are well reproduced by the model. The intensities for one and two photon absorption to various single states are also in good agreement with experiment. From the bond orders of these states, the authors predict the equilibrium geometries. The relaxation energies of these states, computed from charge-charge correlations and bond orders, are presented. The authors also present results of ring current calculations in the singlet ground state of phenanthrene. The authors have also reported energies, spin densities, bond orders, and relaxation energies of several triplet states and compared then with experiments as well as with other calculations, where available. The fine structure constants D and E, computed in the lowest triplet state, compare well with those obtained from experiments. These properties are also presented for the anions and the dianions. The PPP model in these cases predicts a low-energy (< 1 eV) dipole excitation. 31 refs., 4 figs., 9 tabs.

  5. Crystal structure, electronic properties, and superconductivity mechanism of La-Phenanthrene

    NASA Astrophysics Data System (ADS)

    Naghavi, Shahab; Fabrizio, Michele; Qin, Tao; Tosatti, Erio

    2013-03-01

    Recently, polycyclic aromatic hydrocarbon (PAH) molecular solids: picene, coronene, dibenzopentacene, phenanthrene among them, have been reported to turn from insulating to metallic and superconducting upon intercalation of electron-donating atoms, such as K, Ba, La. Despite experimental uncertainties, understanding these novel light-element based superconductors is important since both electron phonon coupling and electron electron correlations seem important, as indicated by early theory work. Choosing La-Phenanthrene (La-PA) as our working case, we first search for the theoretical optimal crystal structure and electronic properties by first principles density functional calculations. We single out a stable insulating phase with P 1 symmetry and, slightly higher in energy, a metastable metallic P21 phase-the same (higher) symmetry of pristine PA, also proposed for La-PA. A tight binding model representing the metallic La-PA electronic structure, its dominant electron phonon coupling with an intermolecular dimerizing mode, and an intramolecular Coulomb U is formulated and discussed. In that model it can be argued that BCS pairing may be essentially unhindered by the Coulomb repulsion. Being symmetry-based, the mechanism could apply to other PAH superconductors as well. Supported by EU-Japan Project LEMSUPER

  6. Determination of phenanthrene by antibody-coated competitive real-time immuno-PCR assay.

    PubMed

    Zhou, Chun; Wang, Qiong-E; Zhuang, Hui-Sheng

    2008-08-01

    A reliable selective and sensitive antibody-coated competitive real-time immuno-PCR (RT-IPCR) assay for the determination of phenanthrene (PH) was developed. Phenanthrene butanoic acid (gamma-oxo-PHA) was synthesized as the hapten of PH. An active ester method was used to couple the PHA to bovine serum albumin to form an artificial immune antigen. Male New Zealand white rabbits were immunized with immune antigen to obtain polyclonal antibodies, with which a novel RT-IPCR assay for determination of PH was developed. Under the optimized assay conditions, PH can be determined in the concentration range from 10 fg/mL to 100 pg/mL with a detection limit of 5 fg/mL. The cross-reactivities of the anti-PH antibody to seven structurally related compounds were below 12.5%. Some environmental water samples were analyzed with satisfactory results, which showed good accuracy and suitability to analyze PH in environmental water. Compared with high-performance liquid chromatography, the recovery was lower or higher with agitation but would still be acceptable for use in an on-site field test to provide rapid, semiquantitative, and reliable test results for making environmental decisions. PMID:18587564

  7. The effect of solvent-conditioning on soil organic matter sorption affinity for diuron and phenanthrene.

    PubMed

    Ahangar, Ahmad Gholamalizadeh; Smernik, Ronald J; Kookana, Rai S; Chittleborough, David J

    2009-08-01

    The effect of solvent-conditioning on the sorption of diuron and phenanthrene was investigated. The organic carbon-normalized sorption coefficients (K(OC)) for diuron and phenanthrene (determined from single initial concentrations of 0.8mgL(-1) and 1.5mgL(-1), respectively) were consistently higher following solvent-conditioning of a whole soil with five organic solvents (acetonitrile, acetone, methanol, chloroform and dichloromethane). The relative increase in K(OC) was inversely related to the polarity of the conditioning solvent (i.e. greater increases in K(OC) were observed for the least polar solvents: chloroform and dichloromethane). The effect of solvent-conditioning on the sorption properties of the same soil that had been lipid-extracted using accelerated solvent extraction (ASE) was also investigated. Since lipid extraction involves treatment with a non-polar solvent (95:5 dichloromethane:methanol) one may have expected no further increase in K(OC) on solvent-conditioning. On the contrary, the lipid-extracted soil exhibited very similar increases in K(OC) as the whole soil. This demonstrated that lipid removal and solvent-conditioning, which both increased K(OC) for this soil, are quite separate phenomena. PMID:19435638

  8. Effects of Outer Membrane Vesicle Formation, Surface-Layer Production and Nanopod Development on the Metabolism of Phenanthrene by Delftia acidovorans Cs1-4

    PubMed Central

    Shetty, Ameesha; Hickey, William J.

    2014-01-01

    Nanopods are extracellular structures arising from the convergence of two widely distributed bacterial characteristics: production of outer membrane vesicles (OMV) and formation of surface layers (S-layers). Nanopod production is driven by OMV formation, and in Delftia acidovorans Cs1-4 growth on phenanthrene induces OMV/nanopod formation. While OMV production has been associated with many functions, particularly with pathogens, linkage to biodegradation has been limited to a membrane stress response to lipophilic compounds. The objectives of this study were to determine: 1.) Whether induction of nanopod formation was linked to phenanthrene metabolism or a non-specific membrane stress response, and 2.) The relative importance of OMV/nanopod formation vs. formation of the S-layer alone to phenanthrene utilization. Membrane stress response was investigated by quantifying nanopod formation following exposure to compounds that exceeded phenanthrene in membrane stress-inducing potential. Naphthalene did not induce nanopod formation, and toluene was a weak inducer compared to phenanthrene (two- vs. six-fold increase, respectively). Induction of nanopod formation by growth on phenanthrene was therefore linked to phenanthrene metabolism and not a membrane stress response. Impacts on phenanthrene biodegradation of OMV/nanopod production vs. S-layer formation were assessed with D. acidovorans Cs1-4 mutants deficient in S-layer formation or OMV/nanopod production. Both mutants had impaired growth on phenanthrene, but the loss of OMV/nanopod production was more significant than loss of the S-layer. The S-layer of D. acidovorans Cs1-4 did not affect phenanthrene uptake, and its primary role in phenanthrene biodegradation process appeared to be enabling nanopod development. Nanopods appeared to benefit phenanthrene biodegradation by enhancing cellular retention of metabolites. Collectively, these studies established that nanopod/OMV formation was an essential characteristic of

  9. Synthesis of phenanthrene derivatives through the net [5+5]-cycloaddition of prenylated carbene complexes with 2-alkynylbenzaldehyde derivatives

    PubMed Central

    Menon, Suneetha; Sinha-Mahapatra, Dilip

    2007-01-01

    The reaction of prenylated carbene complexes and 2-alkynylbenzoyl derivatives has been investigated. Phenanthrene derivatives are produced if iodine is added prior to product isolation. Under these conditions alkyl migration reactions occur to form the observed products. The product yields are considerably higher using bis(prenylated) species owing to an increase in the effective molarity of dienophilic entities. PMID:18769535

  10. CeO2 nanoparticles induce no changes in phenanthrene toxicity to the soil organisms Porcellionides pruinosus and Folsomia candida.

    PubMed

    Tourinho, Paula S; Waalewijn-Kool, Pauline L; Zantkuijl, Irene; Jurkschat, Kerstin; Svendsen, Claus; Soares, Amadeu M V M; Loureiro, Susana; van Gestel, Cornelis A M

    2015-03-01

    Cerium oxide nanoparticles (CeO2 NPs) are used as diesel fuel additives to catalyze oxidation. Phenanthrene is a major component of diesel exhaust particles and one of the most common pollutants in the environment. This study aimed at determining the effect of CeO2 NPs on the toxicity of phenanthrene in Lufa 2.2 standard soil for the isopod Porcellionides pruinosus and the springtail Folsomia candida. Toxicity tests were performed in the presence of CeO2 concentrations of 10, 100 or 1000mg Ce/kg dry soil and compared with results in the absence of CeO2 NPs. CeO2 NPs had no adverse effects on isopod survival and growth or springtail survival and reproduction. For the isopods, LC50s for the effect of phenanthrene ranged from 110 to 143mg/kg dry soil, and EC50s from 17.6 to 31.6mg/kg dry soil. For the springtails, LC50s ranged between 61.5 and 88.3mg/kg dry soil and EC50s from 52.2 to 76.7mg/kg dry soil. From this study it may be concluded that CeO2 NPs have a low toxicity and do not affect toxicity of phenanthrene to isopods and springtails. PMID:25499053

  11. UV light-mediated difunctionalization of alkenes with CF3SO2Na: synthesis of trifluoromethyl phenanthrene and anthrone derivatives.

    PubMed

    Li, Bing; Fan, Dan; Yang, Chao; Xia, Wujiong

    2016-06-21

    A metal-free and cost-effective protocol for UV light-mediated difunctionalization of alkenes with CF3SO2Na was developed. This strategy realized the direct formation of Csp(3)-CF3 and C-C bonds through a proposed tandem radical cyclization process, which produced a variety of phenanthrene and anthrone derivatives in moderate yields. PMID:27206267

  12. Accurate spectroscopy of polycyclic aromatic compounds: from the rotational spectrum of fluoren-9-one in the millimeter wave region to its infrared spectrum.

    PubMed

    Maris, Assimo; Calabrese, Camilla; Melandri, Sonia; Blanco, Susana

    2015-01-14

    The rotational spectrum of fluoren-9-one, a small oxygenated polycyclic aromatic hydrocarbon, has been recorded and assigned in the 52-74.4 GHz region. The determined small negative value of the inertia defect (-0.3 u Å(2)) has been explained in terms of vibrational-rotational coupling constants calculated at the B3LYP/cc-pVTZ level of theory. Vibrational anharmonic analysis together with second-order vibrational perturbation theory approximation was applied both to fluorenone and its reduced form, fluorene, to predict the mid- and near-infrared spectra. The data presented here give precise indication on the fluorenone ground state structure, allow for an accurate spectral characterization in the millimeter wave and infrared regions, and hopefully will facilitate extensive radio astronomical searches with large radio telescopes. PMID:25591363

  13. Use of humic acids derived from peat and lignite as phenanthrene sorbents

    NASA Astrophysics Data System (ADS)

    Sofikitis, Elias; Giannouli, Andriana; Kalaitzidis, Stavros; Christanis, Kimon; Karapanagioti, Hrissi K.; Papanicolaou, Cassiani

    2015-04-01

    A broad range of materials is being applied for environmental remediation of water, among them sorbents such as humic acids. Being natural substances, the extraction and purification of humic acids might be cheaper than the production of synthetic sorbents. Having higher absorbing capacity than most of the sorbents used to date, humic acids have a competitive advantage against commonly used sorbents such as active charcoals and biochar. Humic acids are "complex colloidal super-mixtures" that are characterized by their functional groups. Therefore, composition and molecular formula can vary depending on the properties of the parent material. The aim of this project was (a) to study the sorption capacity of humic acids derived from peat and lignite samples picked up from deposits spread throughout Greece and (b) to compare the results with these of the parent materials. This comparison provides an insight to which matrix samples are suitable for further chemical treatment for the isolation of humic acids to be used as sorbents. The selected model pollutant was phenanthrene, which is a PAH that consists of three fused benzene rings. Humic acids were extracted according to the methodology proposed by the IHSS, slightly modified, in order to fit better to the properties of organic sediments. Sorption experiments were conducted by mixing 0.004 g of the sorbent (peat or lignite or humic acid) with aqueous solutions of phenanthrene at different concentrations of 30, 50, 100, 300, and 500 μg/L. The results show that phenanthrene sorption is higher for the humic acid than for the original lignite and peat samples. The original samples display higher sorption at the lower phenanthere solutions (30 μg/L; Kd ranges from 15,000 to 47,000 L/kg) than at the higher one (500 μg/L; Kd ranges from 4,100 to 13,000 L/Kg) suggesting non-linear sorption. The humic acids display mainly linear isotherms with Kd ranges from 6,600 to 120,000 L/kg. Concerning the suitability of the studied

  14. Single-layer electroluminescent devices based on fluorene-1H-pyrazolo[3,4-b]quinoxaline co-polymers

    NASA Astrophysics Data System (ADS)

    Pokladko-Kowar, Monika; Danel, Andrzej; Chacaga, Łukasz

    2013-11-01

    A fluorene based copolymer was synthesized for electroluminescent application. To the main chain of polymer the nitrogen heterocyclic, 1H-pyrazolo[3,4-b]quinoxaline, unit was introduced. The incorporation of this derivative tuned the emission from the blue to yellow-green one. A simple, single layered device was fabricated with the configuration ITO/PEDOT/co-poly-FLU-PQX/Ca/Mg.

  15. An integrated experimental and quantum chemical study on the complexation properties of (9‧-fluorene)-spiro-5-hydantoin and its thioanalogue

    NASA Astrophysics Data System (ADS)

    Ahmedova, Anife; Marinova, Petja; Marinov, Marin; Stoyanov, Neyko

    2016-03-01

    The reactivities of (9‧-fluorene)-spiro-5-hydantoin and its thio-analogue with Cu(II) were studied in different reaction conditions and the formed products were characterized by spectroscopic methods (IR, NMR and/or EPR). It was found that unlike the 2,4-dithio- analogue, both the (9‧-fluorene)-spiro-5-hydantoin and its 2-thio derivative form Cu(II) complexes only in presence of a strong base. We identified the coordination mode of the ligands and the structure of the complexes through geometry optimization of different models and calculations of the corresponding spectroscopic parameters using ab initio quantum chemical methods. The comparison between the experimental and the theoretical data suggested monodentate coordination of the fluorene-hydantoin ligands after deprotonation of one amido group. Additional confirmations of this proposition were obtained from the experimental and DFT-calculated EPR parameters (g-factor and A-tensor), which allowed for determination of the most probable geometry of the complexes. We further employed the quantum chemical methods to explain the observed differences in the complexation abilities of variously spiro-5-substituted thio- and dithio-hydantoins, accounting for the structural effects on the electron density and acidity of the hydantoin ring.

  16. NAH plasmid-mediated catabolism of anthracene and phenanthrene to naphthoic acids.

    PubMed Central

    Menn, F M; Applegate, B M; Sayler, G S

    1993-01-01

    Pseudomonas fluorescens 5R contains an NAH7-like plasmid (pKA1), and P. fluorescens 5R mutant 5RL contains a bioluminescent reporter plasmid (pUTK21) which was constructed by transposon mutagenesis. Polymerase chain reaction mapping confirmed the localization of lux transposon Tn4431 300 bp downstream from the start of the nahG gene. Two degradation products, 2-hydroxy-3-naphthoic acid and 1-hydroxy-2-naphthoic acid, were recovered and identified from P. fluorescens 5RL as biochemical metabolites from the biotransformation of anthracene and phenanthrene, respectively. This is the first report which provides direct biochemical evidence that the naphthalene plasmid degradative enzyme system is involved in the degradation of higher-molecular-weight polycyclic aromatic hydrocarbons other than naphthalene. Images PMID:8328810

  17. Quantitative relationship between mutagenicity and structure of heterocyclic analogs of pyrene and phenanthrene

    SciTech Connect

    Baskin, I.I.; Lyubimova, I.K.; Abilev, S.K.

    1994-12-31

    In this work, the authors investigated quantitative relationships between mutagenicity and chemical structures of certain heterocyclic analogs of pyrene and phenanthrene that have yet to be examined. Compounds were synthesized using the methods described earlier. The compounds were tested for mutagenic activity by Ames` method. They used the strain Salmonella typhimurium TA1538 (his D3052, rfa, uvr), which registered the reading frame shift mutations. Analysis of the data suggests that the most considerable increases in mutagenicity occur with two nitro groups at positions 2 and 7. When nitro groups occur at other positions, the molecule displayed no mutagenicity, irrespective of the number of groups. Two amino groups at the same position, one amino and one carboxyl group, or chlorine atoms impart a weaker mutagenicity to the molecule. The mutagenic properties were lost on shifting the amino groups from positions 2,7 to 1,6.

  18. Fluorescence Characterization of Dissolved Organic Matter Isolates from Sediments and the Association with Phenanthrene Binding Affinity

    NASA Astrophysics Data System (ADS)

    Hur, Jin; Lee, Bo-Mi; Shin, Kyung-Hoon

    2014-05-01

    In this study, selected spectroscopic characteristics of sediment organic matter (SOM) were compared and discussed with respect to their different isolation methods, the source discrimination capabilities, and the association with the extent of phenanthrene binding. A total of 16 sediments were collected from three categorized locations including a costal lake, industrial areas, and the upper streams, each of which is likely influenced by the organic sources of algal production, industrial effluent, and terrestrial input, respectively. The spectroscopic properties related to aromatic structures and terrestrial humic acids were more pronounced for alkaline extractable organic matter (AEOM) isolates than for the SOM isolates based on water soluble extracts and porewater. The three categorized sampling locations were the most differentiated in the AEOM isolates, suggesting AEOM may be the most representative SOM isolates in describing the chemical properties and the organic sources of SOM. Parallel factor analysis (PARAFAC) based on fluorescence excitation-emission matrix (EEM) showed that a combination of four fluorescent groups could represent all the fluorescence features of SOM. The three categorized sampling locations were well discriminated by the percent distributions of terrestrial and microbial humic-like fluorescent groups of the AEOM isolates. The relative distribution of terrestrial humic-like fluorophores was highly correlated with the extent of phenanthrene binding (r=0.676; p<0.01), suggesting that the presence of terrestrial humic acids in SOM may contribute to the enhancement of binding with hydrophobic organic contaminants in sediments. Principal component analysis (PCA) further demonstrated that the extent of SOM's binding affinity might be affected by the degree of biological transformation in SOM as well as the abundance of aromatic carbon structures.

  19. Phenanthrene removal from aqueous solutions using well-characterized, raw, chemically treated, and charred malt spent rootlets, a food industry by-product.

    PubMed

    Valili, Styliani; Siavalas, George; Karapanagioti, Hrissi K; Manariotis, Ioannis D; Christanis, Kimon

    2013-10-15

    Malt spent rootlets (MSR) are biomaterials produced in big quantities by beer industry as by-products. A sustainable solution is required for their management. In the present study, MSR are examined as sorbents of a hydrophobic organic compound, phenanthrene, from aqueous solutions. Raw MSR sorb phenanthrene but their sorptive properties are not competitive with the respective properties of commercial sorbents (e.g., activated carbons). Organic petrography is used as a tool to characterize MSR after treatment in order to produce an effective sorbent for phenanthrene. Chemical and thermal (at low temperature under nitrogen atmosphere) treatments of MSR did not result in highly effective sorbents. Based on organic petrography characterization, the pores of the treated materials were filled with humic colloids. When pyrolysis at 800 °C was used to treat MSR, a sorbent with new and empty pores was produced. Phenanthrene sorption capacity was 2 orders of magnitude higher for the pyrolized MSR than for raw MSR. PMID:23764506

  20. [UV-spectrophotometry in drug control. 33. New drugs with benzene, pyridine, quinoline and phenanthrene chromophores in the molecule. 6. The effect of substitution and solvents].

    PubMed

    Krácmar, J; Krácmarová, J; Stejskal, Z

    1987-01-01

    UV-spectra of 14 new substances with benzene, pyridine, quinoline and phenanthrene chromophores as well as influences of substitutes and solvents on shifts of the bands E, K, B and R are discussed. PMID:2953035

  1. Protective spin-labeled fluorenes maintain amyloid beta peptide in small oligomers and limit transitions in secondary structure

    SciTech Connect

    Altman, Robin; Ly, Sonny; Hilt, Silvia; Petrlova, Jitka; Maezawa, Izumi; Kálai, Tamás; Hideg, Kálmán; Jin, Lee-Way; Laurence, Ted A.; Voss, John C.

    2015-12-01

    Alzheimer’s disease is characterized by the presence of extracellular plaques comprised of amyloid beta (Aβ) peptides. Soluble oligomers of the Aβ peptide underlie a cascade of neuronal loss and dysfunction associated with Alzheimer's disease. Single particle analyses of Aβ oligomers in solution by fluorescence correlation spectroscopy (FCS) were used to provide real-time descriptions of how spin-labeled fluorenes (SLFs; bi-functional small molecules that block the toxicity of Aβ) prevent and disrupt oligomeric assemblies of Aβ in solution. The FCS results, combined with electron paramagnetic resonance spectroscopy and circular dichroism spectroscopy, demonstrate SLFs can inhibit the growth of Aβ oligomers and disrupt existing oligomers while retaining Aβ in a largely disordered state. Furthermore, while the ability of SLF to block Aβ toxicity correlates with a reduction in oligomer size, our results suggest the conformation of Aβ within the oligomer determines the toxicity of the species. Attenuation of Aβ toxicity, which has been associated primarily with the soluble oligomeric form, can be achieved through redistribution of the peptides into smaller oligomers and arrest of the fractional increase in beta secondary structure.

  2. Protective spin-labeled fluorenes maintain amyloid beta peptide in small oligomers and limit transitions in secondary structure

    DOE PAGESBeta

    Altman, Robin; Ly, Sonny; Hilt, Silvia; Petrlova, Jitka; Maezawa, Izumi; Kálai, Tamás; Hideg, Kálmán; Jin, Lee-Way; Laurence, Ted A.; Voss, John C.

    2015-12-01

    Alzheimer’s disease is characterized by the presence of extracellular plaques comprised of amyloid beta (Aβ) peptides. Soluble oligomers of the Aβ peptide underlie a cascade of neuronal loss and dysfunction associated with Alzheimer's disease. Single particle analyses of Aβ oligomers in solution by fluorescence correlation spectroscopy (FCS) were used to provide real-time descriptions of how spin-labeled fluorenes (SLFs; bi-functional small molecules that block the toxicity of Aβ) prevent and disrupt oligomeric assemblies of Aβ in solution. The FCS results, combined with electron paramagnetic resonance spectroscopy and circular dichroism spectroscopy, demonstrate SLFs can inhibit the growth of Aβ oligomers and disruptmore » existing oligomers while retaining Aβ in a largely disordered state. Furthermore, while the ability of SLF to block Aβ toxicity correlates with a reduction in oligomer size, our results suggest the conformation of Aβ within the oligomer determines the toxicity of the species. Attenuation of Aβ toxicity, which has been associated primarily with the soluble oligomeric form, can be achieved through redistribution of the peptides into smaller oligomers and arrest of the fractional increase in beta secondary structure.« less

  3. A study on the photopolymerization of acrylic monomers having fluorene moiety for the application of holographic data storage system.

    PubMed

    Jeon, Mina; Yoon, Sung Cheol; Lee, Jaemin; Han, Mijeong; Lee, Changjin

    2009-12-01

    We have prepared photopolymer compositions for holographic data storage system from aromatic diacrylate having fluorine moiety, a hybrid sol-gel, and photoinitiator. The fluorenyl diacrylate monomer was synthesized via nucleophilic substitution reaction of fluorene diphenol with an excess of 2-chloroethoxyethanol, followed by the reaction with acryloyl chloride. The physical and holographic properties of photopolymer were controlled by the ratio of precursor triethoxysilylpropyl polyethyleneglycol carbamate (TSPEG) in a hybrid sol-gel binder and the content of monomer. Also, we measured the photopolymerization rate and conversion of monomer by photo-differential scanning calorimeter (photo-DSC). Holographic recording was attempted by photopolymerization of the monomers in the photopolymer film using a 532 nm laser light in the presence of Irgacure 784 and holographic gratings were recorded into the photopolymer films by interfering two collimated plane wave beams. Contents of monomer and TSPEG were changed in the range of 0.25-1.0 equiv. and the composition were optimized in terms of diffraction efficiency. Finally, we obtained that efficient photopolymer films showed diffraction efficiency of 78% when 0.5 equiv. of TESPEG in sol-gel binder and 40% of compound 4 were added. PMID:19908697

  4. Conjugated poly(fluorene-quinoxaline) for fluorescence imaging and chemical detection of nerve agents with its paper-based strip.

    PubMed

    Jo, Seonyoung; Kim, Daigeun; Son, Sang-Ho; Kim, Yongkyun; Lee, Taek Seung

    2014-01-22

    Conjugated polymer of poly(fluorene-co-quinoxaline) was synthesized via Suzuki coupling polymerization. The emission color of the polymer can be tuned depending on the concentration of the polymer in solution. A low-energy bandgap is observed both in the concentrated solution and in the solid state, caused by aggregation of the polymer chains, resulting in long wavelength emission from the quinoxaline moiety, while short wavelength emission can be seen in diluted, well-dissolved solution. The presence of quinoxaline units enables us to demonstrate fluorescence switching and imaging. Paper-based strips containing the polymer are prepared via simple immersion of filter paper in the polymer solution for practical use in the detection of nerve agents. The emission of the paper-based strip is quenched upon exposure to diethyl chlorophosphate (DCP), a nerve agent simulant, and the initial emission intensity can be almost restored by treatment with aqueous sodium hydroxide solution, making a possible reversible paper-based sensor. PMID:24372409

  5. Bismuth-catalyzed synthesis of polycyclic aromatic hydrocarbons (PAHs) with a phenanthrene backbone via cyclization and aromatization of 2-(2-arylphenyl)vinyl ethers.

    PubMed

    Murai, Masahito; Hosokawa, Naoki; Roy, David; Takai, Kazuhiko

    2014-08-15

    The reaction of 2-(2-arylphenyl)vinyl ethers in the presence of a catalytic amount of bismuth(III) triflate gave substituted phenanthrenes in excellent yields under mild reaction conditions. The reaction was also applied to the construction of other polycyclic aromatic hydrocarbons (PAHs), such as chrysene, helicene, and pyrene having a phenanthrene backbone, via regioselective cyclization. This method has the advantages of easy availability of the cyclization precursors, operational simplicity, and high reaction efficiency. PMID:25076204

  6. Photocatalytic degradation of phenanthrene on soil surfaces in the presence of nanometer anatase TiO2 under UV-light.

    PubMed

    Gu, Jiali; Dong, Dianbo; Kong, Lingxue; Zheng, Yong; Li, Xiaojun

    2012-01-01

    The effect of nanometer anatase TiO2 was investigated on the photocatalytic degradation of phenanthrene on soil surfaces under a variety of conditions. After being spiked with phenanthrene, soil samples loaded with different amounts of TiO2 (0 wt.%, 1 wt.%, 2 wt.%, 3 wt.%, and 4 wt.%) were exposed to UV-light irradiation for 25 hr. The results indicated that the photocatalytic degradation of phenanthrene followed the pseudo first-order kinetics. TiO2 significantly accelerated the degradation of phenanthrene with the half-life reduced from 45.90 to 31.36 hr for TiO2 loading of 0 wt.% and 4 wt.%, respectively. In addition, the effects of H2O2, light intensity and humic acid on the degradation of phenanthrene were investigated. The degradation of phenanthrene increased with the concentration of H2O2, light intensity and the concentration of humic acids. It has been demonstrated that the photocatalytic method in the presence of nanometer anatase TiO2 was a very promising technology for the treatments of soil polluted with organic substances in the future. PMID:23534208

  7. Combined remediation of Cd-phenanthrene co-contaminated soil by Pleurotus cornucopiae and Bacillus thuringiensis FQ1 and the antioxidant responses in Pleurotus cornucopiae.

    PubMed

    Jiang, Juan; Liu, Hongying; Li, Qiao; Gao, Ni; Yao, Yuan; Xu, Heng

    2015-10-01

    Remediation of soil co-contaminated with heavy metals and PAHs by mushroom and bacteria is a novel technique. In this study, the combined remediation effect of mushroom (Pleurotus cornucopiae) and bacteria (FQ1, Bacillus thuringiensis) on Cd and phenanthrene co-contaminated soil was investigated. The effect of bacteria (B. thuringiensis) on mushroom growth, Cd accumulation, phenanthrene degradation by P. cornucopiae and antioxidative responses of P. cornucopiae were studied. P. cornucopiae could adapt easily and grow well in Cd-phenanthrene co-contaminated soil. It was found that inoculation of FQ1 enhanced mushroom growth (biomass) and Cd accumulation with the increment of 26.68-43.58% and 14.29-97.67% respectively. Up to 100% and 95.07% of phenanthrene were removed in the bacteria-mushroom (B+M) treatment respectively spiked with 200mg/kg and 500mg/kg phenanthrene. In addition, bacterial inoculation alleviated oxidative stress caused by co-contamination with relative decreases in lipid peroxidation and enzyme activity, including malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). This study demonstrated that the integrated remediation strategy of bacteria and mushroom is an effective and promising method for Cd-phenanthrene co-contaminated soil bioremediation. PMID:26117363

  8. [Transportation and transformation of 14C-phenanthrene in closed chamber (nutrient solution-lava-plant-air) system].

    PubMed

    Jiang, X; Ou, Z; Ying, P; Yediler, A; Ketrrup, A

    2001-06-01

    The transportation and transformation of 14C-phenanthrene in a closed 'plant-lava-nutrient solution-air' chamber system was studied by using radioactivity technology. The results showed that in this closed chamber system, phenanthrene was degraded fast. The radioactivity of 14C left at 23d in the nutrient solution was only 25% of applied. At the end of experiment (46d), the distribution sequence of 14C activity in the components of closed chamber system was root (38.55%) > volatile organic compounds (VOCs, 17.68%) > lava (14.35%) > CO2 (11.42%) > stem (2%). 14C-activities in plant tissue were combined with the tissue, and existed in the forms of lava-bound(root 4.68%; stem and leaves 0.68%) and polar metabolites (root 23.14%; stem 0.78%). PMID:11758435

  9. Synthesis, docking, and biological studies of phenanthrene β-diketo acids as novel HIV-1 integrase inhibitors

    PubMed Central

    Sharma, Horrick; Sanchez, Tino W.; Neamati, Nouri; Detorio, Mervi; Schinazi, Raymond F.; Cheng, Xiaolin; Buolamwini, John K.

    2013-01-01

    In the present study we report the synthesis of halogen-substituted phenanthrene β-diketo acids as new HIV-1 integrase inhibitors. The target phenanthrenes were obtained using both standard thermal- and microwave-assisted synthesis. 4-(6-Chlorophenanthren-2-yl)-2,4-dioxobutanoic acid (18) was the most active compound of the series that inhibited both 3′-end processing (3′-P) and strand transfer (ST) with IC50 values of 5 and 1.3 μM, respectively. Docking studies revealed two predominant binding modes that were distinct from the binding modes of raltegravir and elvitegravir, and suggest a novel binding region in the IN active site. Moreover, these compounds do not interact significantly with some of the key amino acids (Q148 and N155) implicated in viral resistance. Therefore, this series of compounds can further be investigated for a possible chemotype to circumvent resistance to clinical HIV-1 IN inhibitors. PMID:24091080

  10. Adsorption of carbamazepine by carbon nanotubes: effects of DOM introduction and competition with phenanthrene and bisphenol A.

    PubMed

    Lerman, Ilya; Chen, Yona; Xing, Baoshan; Chefetz, Benny

    2013-11-01

    Carbon nanotubes, organic contaminants and dissolved organic matter (DOM) are co-introduced into the environment. Thus, the interactions between these components have to be evaluated to better understand their environmental behavior. In this study, single-walled carbon nanotubes (SWCNTs) were used as sorbent, carbamazepine was the primary adsorbate, and bisphenol A and phenanthrene were used as competitors. Strong competition with bisphenol A and no effect of phenanthrene on adsorption of carbamazepine was obtained. The hydrophobic neutral fraction of the DOM exhibited the strongest reductive effect on carbamazepine adsorption, most probably due to interactions in solution. In contrast, the hydrophobic acid fraction decreased carbamazepine adsorption mainly via direct competition. When DOM and bisphenol A were co-introduced, the adsorption of carbamazepine was significantly reduced. This study suggests that the chemical nature of DOM can significantly affect the sorptive behavior of polar organic pollutants with carbon nanotubes when all are introduced to the aquatic system. PMID:23916628

  11. New diagnostic ratios based on phenanthrenes and anthracenes for effective distinguishing heavy fuel oils from crude oils.

    PubMed

    Zhang, Haijiang; Wang, Chuanyuan; Zhao, Ruxiang; Yin, Xiaonan; Zhou, Hongyang; Tan, Liju; Wang, Jiangtao

    2016-05-15

    The heavy fuel oils (HFOs) and crude oils are the main oil types in the marine oil spill accidents in China. It is usually a challenge to distinguish the HFOs from crude oils due to the highly similar physicochemical characteristics. In this paper, the distributions of phenanthrene (Phe), anthracene (Ant), methyl-phenanthrene (MP) and methyl-anthracene (MA) in hundreds of HFOs and crude oils samples which were collected from all over the world were characterized. Nine new diagnostic indexes, such as Ant/(Ant+Phe) and other eight diagnostic ratios based on the MP isomers and MA, were developed for effective distinguishing HFOs from crude oils. The histogram with normal fit plots, the double ratio plots and Bayes discriminant analysis (BDA) method were employed to illustrate the effectiveness of the new diagnostic indexes. BDA model based on nine new diagnostic indexes demonstrated high precision with discriminant ratio which lay between 93.92% and 99.32%. PMID:27016330

  12. Oxidative cyclization reaction of 2-aryl-substituted cinnamates to form phenanthrene carboxylates by using MoCl5.

    PubMed

    Wehming, Kathrin; Schubert, Moritz; Schnakenburg, Gregor; Waldvogel, Siegfried R

    2014-09-22

    The oxidative cyclization reaction of 2-aryl cinnamates and derivatives thereof can be easily performed with MoCl5 as the oxidant. This powerful reagent allows oxidative coupling reactions for which other reagents fail. The best results are obtained when the 2-phenyl substituent of the cinnamate is equipped with two methoxy groups. Even iodo moieties in the bay region of phenanthrene are tolerated under the reaction conditions. If naphthalene moieties are involved, a rearrangement of the skeleton occurs, providing an elegant route to highly functionalized angular arenes. The cyclization is demonstrated for 15 example substrates with isolated yields of up to 99 % for the phenanthrene derivative. The broad scope of the reaction underlines the usefulness of MoCl5 and MoCl5 /TiCl4 in the oxidative coupling reaction. PMID:25043751

  13. Thermal-delayed fluorescence of pyromellitic dianhydride—anthracene trap in charge-transfer pyromellitic dianhyride—phenanthrene host crystal

    NASA Astrophysics Data System (ADS)

    Kozankiewicz, B.

    1990-10-01

    The fluorescence, phosphorescence and delayed fluorescence in an anthracene-doped pyromellitic dianhydride—phenanthrene crystal is studied within the temperature range 200-330 K. The dominating long-lived emission for temperatures above 250 K is thermal-delayed fluorescence, originating from the singlet trap created by thermal promotion of the triplet trap. The trap is formed on the pyromellitic dianhydride—anthracene complex unit. The activation energy of thermal promotions is ≈ 2500 cm -1.

  14. UV Light Induced Direct Synthesis of Phenanthrene Derivatives from a Linear 3-Aryl-N-(arylsulfonyl) Propiolamides.

    PubMed

    Chen, Ming; Yang, Chao; Wang, Yanpei; Li, Dazhi; Xia, Wujiong

    2016-05-01

    A novel photochemical approach for the synthesis of phenanthrene derivatives from linear 3-aryl-N-(arylsulfonyl) propiolamides via a tandem radical Smiles rearrangement/C-S bonding/Mallory reaction is disclosed. The control experiment results and isolation of the key intermediates give further insight into the reaction mechanism. Gram scale reaction using a flow reactor demonstrated the synthetic potential applications of our protocol. PMID:27115834

  15. [Influence of Three Low-Molecular-Weight Organic Acids on the Adsorption of Phenanthrene in Purple Soil].

    PubMed

    Xie, Li; Chen, Ben-shou; Zhang, Jin-zhong; Lu, Song; Jiang, Tao

    2016-03-15

    The effects of three low-molecular-weight organic acids (citric acid, malic acid and oxalic acid) on the adsorption of phenanthrene in purple soil were studied by static adsorption experiment. The results showed that the adsorption kinetic process of phenanthrene in purple soil could be described by the second-order kinetic model, and the adsorption rate constant would significantly decrease in the presence of the three low-molecular-weight organic acids ( LMWOAs). The adsorption thermodynamic process could be well described by linear adsorption model, which was dominated by distribution role. The three LMWOAs could promote the adsorption of phenantherene in purple soil when their concentrations were less than 5 mmol · L⁻¹, whereas inhibit the adsorption when their concentrations were more than 10 mmol · L⁻¹, and the inhibition would increase with increasing concentrations. Moreover, the inhibitory ability displayed a decreasing order of citric acid, oxalic acid, and malic acid when their concentrations were 20 mmol · L⁻¹, which is related to the molecular structure and acidity of the three LMWOAs. Compared with the control, the content of dissolved organic matter (DOM) released from purple soil showed a trend of first decrease and then increase with increasing LMWOAs concentration, and the adsorption capacity of phenanthrene in purple soil was negatively related to DOM content. PMID:27337897

  16. A laboratory feasibility study on a new electrokinetic nutrient injection pattern and bioremediation of phenanthrene in a clayey soil.

    PubMed

    Xu, Wei; Wang, Cuiping; Liu, Haibin; Zhang, Zhiyuan; Sun, Hongwen

    2010-12-15

    Electrokinetic (EK) injection has recently been proposed to supply nutrients and electron acceptors in bioremediation of low permeable soils. However, effective pH control and uniform injection of inorganic ions have yet to be developed. The present study investigated a new EK injection pattern, which combined electrolyte circulation and electrode polarity reversal on a clayey soil. Soil pH could be controlled ranging from 7.0 to 7.6 by circulating the mixed electrolyte at a suitable rate (800 mL/h in this study) without any buffer. Ammonium and nitrate ions were distributed more uniformly in soil by electrode polarity reversal. The developed electrokinetic injection technology was applied primarily in bioremediation of phenanthrene contaminated soil. Over 80% of the initial 200mg/kg phenanthrene in soil could be removed in 20 d, and greater phenanthrene removal was achieved using electrode polarity reversal. Hence, the present study provides a promising electrokinetic injection technology for bioremediation of contaminated soils. PMID:20870357

  17. Role of sol with iron oxyhydroxide/sodium dodecyl sulfate composites on Fenton oxidation of sorbed phenanthrene in sand.

    PubMed

    Park, Joo-Yang; Kim, Jung-Hwan

    2013-09-15

    In situ Fenton oxidation has been recently used to oxidize sorbed organic contaminants in soil. The objective of present contribution was to study the role of sodium dodecyl sulfate (SDS) as anionic surfactant and sol with iron oxyhydroxide/SDS for Fenton oxidation of sorbed phenanthrene in sand. The most effective experimental condition for phenanthrene oxidation was the Fenton-like reaction system with 0.35% H2O2, 30 mM SDS, and 4 mM FeCl2. The Fenton-like reactions under these experimental conditions resulted in the production and sustenance of a stable sol with iron oxyhydroxide/SDS composites over 24 h. The formation of iron oxyhydroxide/SDS composites resulted in stabilization of H2O2, and then the Fenton-like reactions were sustained over 24 h. Furthermore, the sol of iron oxyhydroxide/SDS composites gave suitable sites to sustain oxidations of dissolved phenanthrene over a prolonged reaction span, which is required for in situ chemical oxidation. PMID:23666072

  18. Dynamics of Bacterial Communities in Two Unpolluted Soils after Spiking with Phenanthrene: Soil Type Specific and Common Responders

    PubMed Central

    Ding, Guo-Chun; Heuer, Holger; Smalla, Kornelia

    2012-01-01

    Considering their key role for ecosystem processes, it is important to understand the response of microbial communities in unpolluted soils to pollution with polycyclic aromatic hydrocarbons (PAH). Phenanthrene, a model compound for PAH, was spiked to a Cambisol and a Luvisol soil. Total community DNA from phenanthrene-spiked and control soils collected on days 0, 21, and 63 were analyzed based on PCR-amplified 16S rRNA gene fragments. Denaturing gradient gel electrophoresis (DGGE) fingerprints of bacterial communities increasingly deviated with time between spiked and control soils. In taxon specific DGGE, significant responses of Alphaproteobacteria and Actinobacteria became only detectable after 63 days, while significant effects on Betaproteobacteria were detectable in both soils after 21 days. Comparison of the taxonomic distribution of bacteria in spiked and control soils on day 63 as revealed by pyrosequencing indicated soil type specific negative effects of phenanthrene on several taxa, many of them belonging to the Gamma-, Beta-, or Deltaproteobacteria. Bacterial richness and evenness decreased in spiked soils. Despite the significant differences in the bacterial community structure between both soils on day 0, similar genera increased in relative abundance after PAH spiking, especially Sphingomonas and Polaromonas. However, this did not result in an increased overall similarity of the bacterial communities in both soils. PMID:22934091

  19. Complete genome sequence of the phenanthrene-degrading soil bacterium Delftia acidovorans Cs1-4

    DOE PAGESBeta

    Shetty, Ameesha R.; de Gannes, Vidya; Obi, Chioma C.; Lucas, Susan; Lapidus, Alla; Cheng, Jan-Fang; Goodwin, Lynne A.; Pitluck, Samuel; Peters, Linda; Mikhailova, Natalia; et al

    2015-08-15

    Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental pollutants and microbial biodegradation is an important means of remediation of PAH-contaminated soil. Delftia acidovorans Cs1-4 (formerly Delftia sp. Cs1-4) was isolated by using phenanthrene as the sole carbon source from PAH contaminated soil in Wisconsin. Its full genome sequence was determined to gain insights into a mechanisms underlying biodegradation of PAH. Three genomic libraries were constructed and sequenced: an Illumina GAii shotgun library (916,416,493 reads), a 454 Titanium standard library (770,171 reads) and one paired-end 454 library (average insert size of 8 kb, 508,092 reads). The initial assembly contained 40 contigs inmore » two scaffolds. The 454 Titanium standard data and the 454 paired end data were assembled together and the consensus sequences were computationally shredded into 2 kb overlapping shreds. Illumina sequencing data was assembled, and the consensus sequence was computationally shredded into 1.5 kb overlapping shreds. Gaps between contigs were closed by editing in Consed, by PCR and by Bubble PCR primer walks. A total of 182 additional reactions were needed to close gaps and to raise the quality of the finished sequence. The final assembly is based on 253.3 Mb of 454 draft data (averaging 38.4 X coverage) and 590.2 Mb of Illumina draft data (averaging 89.4 X coverage). The genome of strain Cs1-4 consists of a single circular chromosome of 6,685,842 bp (66.7 %G+C) containing 6,028 predicted genes; 5,931 of these genes were protein-encoding and 4,425 gene products were assigned to a putative function. Genes encoding phenanthrene degradation were localized to a 232 kb genomic island (termed the phn island), which contained near its 3’ end a bacteriophage P4-like integrase, an enzyme often associated with chromosomal integration of mobile genetic elements. Other biodegradation pathways reconstructed from the genome sequence included: benzoate (by the acetyl

  20. Complete genome sequence of the phenanthrene-degrading soil bacterium Delftia acidovorans Cs1-4

    SciTech Connect

    Shetty, Ameesha R.; de Gannes, Vidya; Obi, Chioma C.; Lucas, Susan; Lapidus, Alla; Cheng, Jan-Fang; Goodwin, Lynne A.; Pitluck, Samuel; Peters, Linda; Mikhailova, Natalia; Teshima, Hazuki; Han, Cliff; Tapia, Roxanne; Land, Miriam; Hauser, Loren J.; Kyrpides, Nikos; Ivanova, Natalia; Pagani, Ioanna; Chain, Patrick S. G.; Denef, Vincent J.; Woyke, Tanya; Hickey, William J.

    2015-08-15

    Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental pollutants and microbial biodegradation is an important means of remediation of PAH-contaminated soil. Delftia acidovorans Cs1-4 (formerly Delftia sp. Cs1-4) was isolated by using phenanthrene as the sole carbon source from PAH contaminated soil in Wisconsin. Its full genome sequence was determined to gain insights into a mechanisms underlying biodegradation of PAH. Three genomic libraries were constructed and sequenced: an Illumina GAii shotgun library (916,416,493 reads), a 454 Titanium standard library (770,171 reads) and one paired-end 454 library (average insert size of 8 kb, 508,092 reads). The initial assembly contained 40 contigs in two scaffolds. The 454 Titanium standard data and the 454 paired end data were assembled together and the consensus sequences were computationally shredded into 2 kb overlapping shreds. Illumina sequencing data was assembled, and the consensus sequence was computationally shredded into 1.5 kb overlapping shreds. Gaps between contigs were closed by editing in Consed, by PCR and by Bubble PCR primer walks. A total of 182 additional reactions were needed to close gaps and to raise the quality of the finished sequence. The final assembly is based on 253.3 Mb of 454 draft data (averaging 38.4 X coverage) and 590.2 Mb of Illumina draft data (averaging 89.4 X coverage). The genome of strain Cs1-4 consists of a single circular chromosome of 6,685,842 bp (66.7 %G+C) containing 6,028 predicted genes; 5,931 of these genes were protein-encoding and 4,425 gene products were assigned to a putative function. Genes encoding phenanthrene degradation were localized to a 232 kb genomic island (termed the phn island), which contained near its 3’ end a bacteriophage P4-like integrase, an enzyme often associated with chromosomal integration of mobile genetic elements. Other biodegradation pathways reconstructed from the genome sequence included: benzoate (by the acetyl-CoA pathway

  1. Magnetic adsorbents for the removal of Hg (II) and phenanthrene from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Isari, Ekavi; Karapanagioti, Hrissi K.; Manariotis, Ioannis D.; Werner, David

    2015-04-01

    Activated carbon (AC) acts as a strong binding agent that lowers the pollutant concentration and, thus its toxicity. Another promising sorbent material in environmental applications is biochar (BC) which is obtained from the incomplete combustion of carbon-rich biomass under oxygen-limited conditions. Both of these materials could be used as soil or sediment amendments that would lower the toxicity in the aqueous phase. A draw back of this technique is that although the pollutant will remain non- bioavailable for many years being sorbed into these sorbents, it actually stays into the system. The objective of this study was (a) to synthesize a magnetic powdered activated carbon (AC/Fe) and magnetic powdered biochar (BC/Fe) produced from commercial AC1 and AC2 samples and biochar respectively and (b) to evaluate the potential use of AC/Fe and BIO/Fe to remove aqueous Hg (II) or phenanthrene while being magnetically recoverable. The BC was produced from olive pomace. The surface area, the pore volume, and the average pore size of each sorbent were determined using gas (N2) adsorption-desorption cycles and the Brunauer, Emmett, and Teller (BET) equation. Isotherms with 30 adsorption and 20 desorption points were conducted at liquid nitrogen temperature (77K). Open surface area and micropore volume were determined using t-plot method and Harkins & Jura equation. For both AC/Fe, surface area measurements resulted in 66% those of corresponding AC. For BC/Fe, the surface area was 82% that of BC. Batch experiments with all sorbent samples and mercury solutions were conducted at room temperature (25oC) and at pH 5 in order to compare the sorption properties of the materials. Similar tests were performed with phenanthrene solutions. Based on mercury isotherm data, AC/Fe and BC/Fe are effective sorbents but with lower sorption capacity compared to the initial materials (50-75% lower). All these properties point to promising materials that can effectively be used for in

  2. Complete genome sequence of the phenanthrene-degrading soil bacterium Delftia acidovorans Cs1-4.

    PubMed

    Shetty, Ameesha R; de Gannes, Vidya; Obi, Chioma C; Lucas, Susan; Lapidus, Alla; Cheng, Jan-Fang; Goodwin, Lynne A; Pitluck, Samuel; Peters, Linda; Mikhailova, Natalia; Teshima, Hazuki; Han, Cliff; Tapia, Roxanne; Land, Miriam; Hauser, Loren J; Kyrpides, Nikos; Ivanova, Natalia; Pagani, Ioanna; Chain, Patrick S G; Denef, Vincent J; Woyke, Tanya; Hickey, William J

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental pollutants and microbial biodegradation is an important means of remediation of PAH-contaminated soil. Delftia acidovorans Cs1-4 (formerly Delftia sp. Cs1-4) was isolated by using phenanthrene as the sole carbon source from PAH contaminated soil in Wisconsin. Its full genome sequence was determined to gain insights into a mechanisms underlying biodegradation of PAH. Three genomic libraries were constructed and sequenced: an Illumina GAii shotgun library (916,416,493 reads), a 454 Titanium standard library (770,171 reads) and one paired-end 454 library (average insert size of 8 kb, 508,092 reads). The initial assembly contained 40 contigs in two scaffolds. The 454 Titanium standard data and the 454 paired end data were assembled together and the consensus sequences were computationally shredded into 2 kb overlapping shreds. Illumina sequencing data was assembled, and the consensus sequence was computationally shredded into 1.5 kb overlapping shreds. Gaps between contigs were closed by editing in Consed, by PCR and by Bubble PCR primer walks. A total of 182 additional reactions were needed to close gaps and to raise the quality of the finished sequence. The final assembly is based on 253.3 Mb of 454 draft data (averaging 38.4 X coverage) and 590.2 Mb of Illumina draft data (averaging 89.4 X coverage). The genome of strain Cs1-4 consists of a single circular chromosome of 6,685,842 bp (66.7 %G+C) containing 6,028 predicted genes; 5,931 of these genes were protein-encoding and 4,425 gene products were assigned to a putative function. Genes encoding phenanthrene degradation were localized to a 232 kb genomic island (termed the phn island), which contained near its 3' end a bacteriophage P4-like integrase, an enzyme often associated with chromosomal integration of mobile genetic elements. Other biodegradation pathways reconstructed from the genome sequence included: benzoate (by the acetyl-CoA pathway

  3. PHOTOACTIVATION AND TOXICITY OF MIXTURES OF POLYCYCLIC AROMATIC HYDROCARBON COMPOUNDS IN MARINE SEDIMENT

    EPA Science Inventory

    The direct toxicity and photoinduced toxicity of sediment-associated acenaphthene, phenanthrene, fluoranthene, and pyrene were determined for the marine amphipod Rhepoxynius abronius. The four polycyclic aromatic hydrocarbons (PAHs) were spiked into sediment in a concentration se...

  4. Synthesis and Application of Tetrahydro-2H-fluorenes by a Pd(0)-Catalyzed Benzylic C(sp(3) )-H Functionalization.

    PubMed

    Suetsugu, Satoshi; Muto, Nobusuke; Horinouchi, Misa; Tsukano, Chihiro; Takemoto, Yoshiji

    2016-06-01

    A new method has been developed for the synthesis of tetrahydro-2H-fluorenes based on a Pd(0)-catalyzed benzylic C(sp(3) )-H functionalization. Importantly, the success of the cyclization step was dependent on there being substituents at the two positions ortho to the benzylic group to avoid an undesired C(sp(2) )-H functionalization. This method was subsequently used to prepare the right-hand fragment of the hexacyclic triterpenoid benzohopanes, and therefore represents a powerful tool for the construction of the related compounds. PMID:27124498

  5. Gold-catalyzed cycloisomerization of 1,6-diyne carbonates and esters to 2,4a-dihydro-1H-fluorenes.

    PubMed

    Rao, Weidong; Koh, Ming Joo; Li, Dan; Hirao, Hajime; Chan, Philip Wai Hong

    2013-05-29

    A synthetic method to prepare 2,4a-dihydro-1H-fluorenes efficiently from gold(I)-catalyzed 1,2-acyloxy migration/cyclopropenation/Nazarov cyclization of 1,6-diyne carbonates and esters is described. The suggested reaction pathway provides rare examples of [2,3]-sigmatropic rearrangement in this class of compounds as well as the involvement of an in situ formed cyclopropene intermediate in gold catalysis. Experimental and ONIOM(QM:QM') [our own n-layered integrated molecular orbital and molecular mechanics(quantum mechanics:quantum mechanics')] computational studies based on the proposed Au carbenoid species provide insight into this unique selectivity. PMID:23627597

  6. Enhanced performance in fluorene-free organometal halide perovskite light-emitting diodes using tunable, low electron affinity oxide electron injectors.

    PubMed

    Hoye, Robert L Z; Chua, Matthew R; Musselman, Kevin P; Li, Guangru; Lai, May-Ling; Tan, Zhi-Kuang; Greenham, Neil C; MacManus-Driscoll, Judith L; Friend, Richard H; Credgington, Dan

    2015-02-25

    Fluorene-free perovskite light-emitting diodes (LEDs) with low turn-on voltages, higher luminance and sharp, color-pure electroluminescence are obtained by replacing the F8 electron injector with ZnO, which is directly deposited onto the CH3NH3PbBr3 perovskite using spatial atmospheric atomic layer deposition. The electron injection barrier can also be reduced by decreasing the ZnO electron affinity through Mg incorporation, leading to lower turn-on voltages. PMID:25573086

  7. Soil Mineral Composition Matters: Response of Microbial Communities to Phenanthrene and Plant Litter Addition in Long-Term Matured Artificial Soils

    PubMed Central

    Babin, Doreen; Vogel, Cordula; Zühlke, Sebastian; Schloter, Michael; Pronk, Geertje Johanna; Heister, Katja; Spiteller, Michael; Kögel-Knabner, Ingrid; Smalla, Kornelia

    2014-01-01

    The fate of polycyclic aromatic hydrocarbons (PAHs) in soil is determined by a suite of biotic and abiotic factors, and disentangling their role in the complex soil interaction network remains challenging. Here, we investigate the influence of soil composition on the microbial community structure and its response to the spiked model PAH compound phenanthrene and plant litter. We used long-term matured artificial soils differing in type of clay mineral (illite, montmorillonite) and presence of charcoal or ferrihydrite. The soils received an identical soil microbial fraction and were incubated for more than two years with two sterile manure additions. The matured artificial soils and a natural soil were subjected to the following spiking treatments: (I) phenanthrene, (II) litter, (III) litter + phenanthrene, (IV) unspiked control. Total community DNA was extracted from soil sampled on the day of spiking, 7, 21, and 63 days after spiking. Bacterial 16S rRNA gene and fungal internal transcribed spacer amplicons were quantified by qPCR and subjected to denaturing gradient gel electrophoresis (DGGE). DGGE analysis revealed that the bacterial community composition, which was strongly shaped by clay minerals after more than two years of incubation, changed in response to spiked phenanthrene and added litter. DGGE and qPCR showed that soil composition significantly influenced the microbial response to spiking. While fungal communities responded only in presence of litter to phenanthrene spiking, the response of the bacterial communities to phenanthrene was less pronounced when litter was present. Interestingly, microbial communities in all artificial soils were more strongly affected by spiking than in the natural soil, which might indicate the importance of higher microbial diversity to compensate perturbations. This study showed the influence of soil composition on the microbiota and their response to phenanthrene and litter, which may increase our understanding of

  8. Soil mineral composition matters: response of microbial communities to phenanthrene and plant litter addition in long-term matured artificial soils.

    PubMed

    Babin, Doreen; Vogel, Cordula; Zühlke, Sebastian; Schloter, Michael; Pronk, Geertje Johanna; Heister, Katja; Spiteller, Michael; Kögel-Knabner, Ingrid; Smalla, Kornelia

    2014-01-01

    The fate of polycyclic aromatic hydrocarbons (PAHs) in soil is determined by a suite of biotic and abiotic factors, and disentangling their role in the complex soil interaction network remains challenging. Here, we investigate the influence of soil composition on the microbial community structure and its response to the spiked model PAH compound phenanthrene and plant litter. We used long-term matured artificial soils differing in type of clay mineral (illite, montmorillonite) and presence of charcoal or ferrihydrite. The soils received an identical soil microbial fraction and were incubated for more than two years with two sterile manure additions. The matured artificial soils and a natural soil were subjected to the following spiking treatments: (I) phenanthrene, (II) litter, (III) litter + phenanthrene, (IV) unspiked control. Total community DNA was extracted from soil sampled on the day of spiking, 7, 21, and 63 days after spiking. Bacterial 16S rRNA gene and fungal internal transcribed spacer amplicons were quantified by qPCR and subjected to denaturing gradient gel electrophoresis (DGGE). DGGE analysis revealed that the bacterial community composition, which was strongly shaped by clay minerals after more than two years of incubation, changed in response to spiked phenanthrene and added litter. DGGE and qPCR showed that soil composition significantly influenced the microbial response to spiking. While fungal communities responded only in presence of litter to phenanthrene spiking, the response of the bacterial communities to phenanthrene was less pronounced when litter was present. Interestingly, microbial communities in all artificial soils were more strongly affected by spiking than in the natural soil, which might indicate the importance of higher microbial diversity to compensate perturbations. This study showed the influence of soil composition on the microbiota and their response to phenanthrene and litter, which may increase our understanding of

  9. Electrochemical Interrogation of G3-Poly(propylene thiophenoimine) Dendritic Star Polymer in Phenanthrene Sensing

    PubMed Central

    Makelane, Hlamulo R.; Tovide, Oluwakemi; Sunday, Christopher E.; Waryo, Tesfaye; Iwuoha, Emmanuel I.

    2015-01-01

    A novel dendritic star-copolymer, generation 3 poly(propylene thiophenoimine) (G3PPT)-co-poly(3-hexylthiophene) (P3HT) star co-polymer on gold electrode (i.e., Au|G3PPT-co-P3HT) was used as a sensor system for the determination of phenanthrene (PHE). The G3PPT-co-P3HT star co-polymer was synthesized via in situ electrochemical co-polymerization of generation 3 poly (propylene thiophenoimine) and poly (3-hexylthiophene) on gold electrode. 1HNMR spectroscopy was used to determine the regioregularity of the polymer composites, whereas Fourier transform infrared spectroscopy and scanning electron microscopy were used to study their structural and morphological properties. Au|G3PPT-co-P3HT in the absence of PHE, exhibited reversible electrochemistry attributable to the oligo (thiophene) ‘pendants’ of the dendrimer. PHE produced an increase in the voltammetric signals (anodic currents) due to its oxidation on the dendritic material to produce catalytic current, thereby suggesting the suitability of the Au|G3PPT-co-P3HT electrode as a PHE sensor. The electrocatalysis of PHE was made possible by the rigid and planar oligo-P3HT species (formed upon the oxidation of the oligo (thiophene) pendants of the star-copolymer), which allowed the efficient capture (binding) and detection (electrocatalytic oxidation) of PHE molecules. PMID:26404296

  10. Impact of deashing treatment on biochar structural properties and potential sorption mechanisms of phenanthrene.

    PubMed

    Sun, Ke; Kang, Mingjie; Zhang, Zheyun; Jin, Jie; Wang, Ziying; Pan, Zezhen; Xu, Dongyu; Wu, Fengchang; Xing, Baoshan

    2013-10-15

    Knowledge of the mineral effects of biochars on their sorption of hydrophobic organic contaminants (HOCs) is limited. Sorption of phenanthrene (PHE) by plant-residue derived biochars (PLABs) and animal waste-derived biochars (ANIBs) obtained at two heating treatment temperatures (HTTs) (450 and 600 °C) and their corresponding deashed biochars was investigated. The decreased surface polarity and increased bulk polarity of biochars after deashing treatment indicated that abundant minerals of biochars benefit external exposure of polar groups associated organic matter (OM). Organic carbon (OC)-normalized distribution coefficients (K(oc)) of PHE by biochars generally increased after deashing, likely due to enhancement of favorable and hydrophobic sorption sites caused by mineral removal. Positive correlation between PHE log K(oc) by PLABs and bulk polarity combined with negative correlation between PHE log K(oc) values by ANIBs and surface polarity suggested PLABs and ANIBs have different sorption mechanisms, probably attributed to their large variation of ash content because minerals influenced OM spatial arrangement within biochars. Results of this work could help us better understand the impact of minerals, bulk/surface polarity, and sorption domain arrangement of biochars on their HOCs sorption and predict the fate of HOCs in soils after biochar application. PMID:24025082

  11. Sorption of phenanthrene on to soil fractions in the presence of Triton X-100.

    PubMed

    Zhang, Guangzhi; Sun, Weiling; Hu, Hao; Lu, Xuemei; Ni, Jinren

    2012-01-01

    The objective of this study was to evaluate the effect of soil fractions on surfactant-enhanced soil remediation. A soil sample was separated into humic acid (HA), humin (HM), base-extracted soil (BE) and mineral fraction through solution extraction. The sorption of phenanthrene (PHE) on to individual soil fractions in the presence of a nonionic surfactant, Triton X-100 (TX100) at two concentrations, was studied. The results showed that HA had the highest affinity for both PHE and TX100. The HM and BE presented a high sorption capacity for PHE but a low capacity for TX100, while mineral presented a low sorption capacity for PHE and a high sorption capacity for TX100. The sorption of PHE on different soil fractions was greatly influenced by the presence of TX100. With TX100 present in solution, the distribution parameters K(f) and K(d) of all the sorbents decreased, with the exception of the mineral fraction at the lower TX100 initial concentration. The sorption of PHE on to HA and the mineral fraction was particularly influenced by TX100, which is because of the corresponding high TX100 sorption capacity of HA and the mineral fraction. PMID:22519118

  12. Effects of the Release of Soil Organic Matter on Phenanthrene Sorption by Sediments.

    PubMed

    Zhang, Xiaoyan; Wu, Yaoguo; Hu, Sihai; Li, Tao

    2016-04-01

    The release of soil organic matter (SOM) has been frequently studied, while its effects on sorption kinetics and on the capacity of phenanthrene (PHE) on sediments have seldom been studied. In this study, sodium chloride (NaCl, 0-0.1 mol/L) was introduced to adjust the release of SOM, and three sediments were prepared: a raw sediment (S1), an eluted sediment (S2), and an SOM-removed sediment (S3). The release of SOM , with dissolved organic matter (DOM) formed in solution, was confirmed in sediment 1. Sorption kinetics on sediment 1 showed atypical results as three stages: rapid sorption, pseudo sorption with partial desorption, and slow sorption. Also, a defined "sorption valley" occurred in the kinetic curve, which can be qualitatively determined by the characteristics of the release of SOM, including its amount, rate and sequence in each SOM fraction. Sorption capacity on sediments 1 and 2 was negatively correlated with aqueous DOM concentrations. By changing sediment characteristics and solution properties, the release of SOM significantly impacts polycyclic aromatic hydrocarbons (PAHs) sorption behaviors. These results help clarify the transport of PAHs in sediment-water systems. PMID:27131058

  13. Effect of activated carbon on microbial bioavailability of phenanthrene in soils

    SciTech Connect

    Yang, Y.; Hunter, W.; Tao, S.; Crowley, D.; Gan, J.

    2009-11-15

    Bioavailability is a governing factor that controls the rate of biological degradation of hydrophobic organic contaminants in soil. Among the solid phases that can adsorb hydrophobic organic contaminants in soil, black carbon (BC) exerts a particularly significant effect on phase distribution. However, knowledge on the effect of BC on the microbial availability of polycyclic aromatic hydrocarbons in soil is still limited. In the present study, the effect of a coal-derived activated carbon on the bioavailability of phenanthrene (PHE) during its degradation by Mycobacterium vanbaalenii PYR-1 was measured in three soils. The freely dissolved concentration of PHE was concurrently determined in soil solutions using disposable polydimethylsiloxane fibers. The results showed that PHE mineralization was significantly inhibited after addition of activated carbon in all test soils. After 216 h, only 5.20, 5.83, and 6.85% of PHE was degraded in the 0.5% BC-amended soils initially containing organic carbon at 0.23, 2.1, and 7.1%, respectively. Significant correlation was found between PHE degradability and freely dissolved concentration, suggesting that BC affected PHE bioavailability by decreasing chemical activity. The effect of activated carbon in the amended soils was attributed to its enhancement of soil surface areas and pore volumes. Results from the present study clearly highlighted the importance of BC for influencing the microbial availability of polycyclic aromatic hydrocarbons in soils.

  14. Predicting seasonal fate of phenanthrene in aquatic environment with a Markov chain.

    PubMed

    Sun, Caiyun; Ma, Qiyun; Zhang, Jiquan; Zhou, Mo; Chen, Yanan

    2016-08-01

    Phenanthrene (Phe) with carcinogenicity is ubiquitous in the environment, especially in aquatic environment; its toxicity is greater. To help determine toxicity risk and remediation strategies, this study predicted seasonal fate of Phe in aquatic environment. Candidate mechanisms including biodegradation, sorption, desorption, photodegradation, hydrolysis and volatility were studied; the results for experiments under simulated conditions for normal, wet and dry seasons in the Yinma River Basin indicated that biodegradation in sediment, sorption, desorption, and volatility were important pathways for elimination of Phe from aquatic environment and showed seasonal variations. A microcosm which was used to mimic sediment/water system was set up to illustrate seasonal distribution and transport of Phe. A Markov chain was applied to predict seasonal fate of Phe in air/water/sediment environment, the predicted results were perfectly agreed with results of microcosm experiments. Predicted results with a Markov chain suggested that volatility and biodegradation in sediment were main elimination pathways, and contributions of elimination pathways showed seasonal variations; Phe was eliminated from water and sediment to negligible levels over around 250 h in August and over 1000 h in May; in November, Phe was eliminated from water to a negligible level while about 31 % of Phe amount still remained in sediment over 1000 h. PMID:27180837

  15. Optical properties of phenanthrene: A DFT study for comparison between linear and nonlinear regimes

    NASA Astrophysics Data System (ADS)

    Omidi, A. R.; Dadsetani, M.

    2016-05-01

    The present study tries to determine the optical characteristics as well as the electronic structure of phenanthrene as an important nonlinear organic crystal. We have performed our calculations within the frame work of DFT. Also, we have used bootstrap exchange-correlation kernel (within the framework of TDDFT) to estimate the excitonic effects. According to the results of our study, the investigated crystal has a band structure with low dispersions which is a sign of low intermolecular interactions. In addition to the high values of linear and nonlinear susceptibilities, the crystal in question has a wide range of transparency as well as sufficient anisotropy which make it promising crystal for nonlinear optical applications. Our TDDFT calculations show that the influence of excitonic effects on optical properties can be very dramatic, particularly near the band edge. In addition, the crystal in question shows extremely small wavelengths of plasmon peaks. Furthermore, this study also covers the 2ω/ω intra- and inter-band contributions to the dominant nonlinear susceptibilities. Findings indicate that these contributions have opposite signs at higher energies and nullify each other. Our calculations show that χxxz, χxzx and χzxx have largest values of nonlinear response but χxxz is the dominant component at IR-VIS region. Moreover, the current study shows significant similarities between linear and nonlinear spectra, when we draw linear one as a function of both ω and 2ω. Finally, our simulation reproduces the experimental results very well.

  16. Interaction of phenanthrene and potassium uptake by wheat roots: a mechanistic model

    PubMed Central

    2013-01-01

    Background Polycyclic aromatic hydrocarbons (PAHs) are potentially carcinogenic, mutagenic and toxic to both human and non-human organisms. Dietary intake of PAHs is a dominant route of exposure for the general population where food crops are a major source of dietary PAHs. Over 20% of main food crops contain PAHs that exceed the control limits in China. However, the mechanisms on PAH accumulation in crops are not well understood. Results Here we report the physiological mechanism of potassium (K+)-stimulated uptake of phenanthrene (PHE, a model PAH) in wheat. PHE uptake is stimulated by the external K+. The addition of blockers (tetraethlyammonium and barium) for K+ channels does not suppress the process, suggesting that K+ channels are not involved. The introduction of PHE and K+ elicits a much greater depolarization in root cell membrane potential than that of either PHE or K+. K+ activates the plasma membrane proton (H+)-ATPase in a K+-dependent manner. The pattern is quite similar to that in PHE uptake in the presence of K+. The external medium pH treated with PHE and K+ is higher than that with K+, and lower than that with PHE, indicating that H+ pump involves in the interaction between PHE and K+ uptake. Conclusions Therefore, it is concluded that a K+ influx/H+ efflux reaction is coupled with the transport of PHE into wheat root cells. Our results provide a novel insight into the PHE uptake by crop roots. PMID:24160457

  17. Enhanced transport of phenanthrene and 1-naphthol by colloidal graphene oxide nanoparticles in saturated soil.

    PubMed

    Qi, Zhichong; Hou, Lei; Zhu, Dongqiang; Ji, Rong; Chen, Wei

    2014-09-01

    With the increasing production and use of graphene oxide, the environmental implications of this new carbonaceous nanomaterial have received much attention. In this study, we found that the presence of low concentrations of graphene oxide nanoparticles (GONPs) significantly enhanced the transport of 1-naphthol in a saturated soil, but affected the transport of phenanthrene to a much smaller extent. The much stronger transport-enhancement effect on 1-naphthol was due to the significant desorption hysteresis (both thermodynamically irreversible adsorption and slow desorption kinetics) of GONP-adsorbed 1-naphthol, likely stemmed from the specific polar interactions (e.g., H-bonding) between 1-naphthol and GONPs. Increasing ionic strength or the presence of Cu(II) ion (a complexing cation) generally increased the transport-enhancement capability of GONPs, mainly by increasing the aggregation of GONPs and thus, sequestering adsorbed contaminant molecules. Interestingly, modifying GONPs with Suwannee River humic acid or sodium dodecyl sulfate had little or essentially no effect on the transport-enhancement capability of GONPs, in contrast with the previously reported profound effects of humic acids and surfactants on the transport-enhancement capability of C60 nanoparticles. Overall, the findings indicate that GONPs in the aquatic environment may serve as an effective carrier for certain organic compounds that can interact with GONPs through strong polar interactions. PMID:25099876

  18. Cyclodextrin-grafted electrospun cellulose acetate nanofibers via “Click” reaction for removal of phenanthrene

    NASA Astrophysics Data System (ADS)

    Celebioglu, Asli; Demirci, Serkan; Uyar, Tamer

    2014-06-01

    Beta-cyclodextrin (β-CD) functionalized cellulose acetate (CA) nanofibers have been successfully prepared by combining electrospinning and “click” reaction. Initially, β-CD and electrospun CA nanofibers were modified so as to be azide-β-CD and propargyl-terminated CA nanofibers, respectively. Then, “click” reaction was performed between modified CD molecules and CA nanofibers to obtain permanent grafting of CDs onto nanofibers surface. It was observed from the SEM image that, while CA nanofibers have smooth surface, there were some irregularities and roughness at nanofibers morphology after the modification. Yet, the fibrous structure was still protected. ATR-FTIR and XPS revealed that, CD molecules were successfully grafted onto surface of CA nanofibers. The adsorption capacity of β-CD-functionalized CA (CA-CD) nanofibers was also determined by removing phenanthrene (polycyclic aromatic hydrocarbons, PAH) from its aqueous solution. Our results indicate that CA-CD nanofibers have potential to be used as molecular filters for the purpose of water purification and waste water treatment by integrating the high surface area of nanofibers with inclusion complexation property of CD molecules.

  19. Influence of a dispersant on the bioaccumulation of phenanthrene by topsmelt (Atherinops affinis).

    PubMed

    Mielbrecht, E E; Wolfe, M F; Tjeerdema, R S; Sowby, M L

    2005-05-01

    Chemical dispersants enhance oil spill dispersion by forming water-accommodated micelles with oil droplets. However, how dispersants alter bioavailability and subsequent bioaccumulation of hydrocarbons is not well understood. Thus, the goal was to investigate the influence of a chemical dispersant on the disposition (uptake, biotransformation, and depuration) of a model hydrocarbon, [14C]-phenanthrene ([14C]PHN), by larval topsmelt (Atherinops affinis). Exposure was via aqueous-only or combined dietary and aqueous routes from a water-accommodated fraction (WAF) of Prudhoe Bay Crude Oil (PBCO) or a WAF of Corexit 9527-dispersed PBCO (DO). Trophic transfer was measured by incorporating into exposure media both a rotifer (Brachionus plicatilis) as food for the fish and a phytoplankton (Isochrysis galbana) as food for the rotifers. Short-term (4 h) bioconcentration of PHN was significantly decreased in topsmelt when oil was treated with dispersant (P < 0.05), but differences diminished after 12 h. When trophic transfer was incorporated, PHN accumulation was initially delayed but after 12 h attained similar levels. Dispersant use also significantly decreased the proportion of biotransformed PHN (as 9-phenanthrylsulfate) produced by topsmelt (P < 0.05). However, overall PHN depuration was not affected by dispersant use. Thus, chemical dispersant use in oil spill response may reduce short-term uptake but not long-term accumulation of hydrocarbons such as PHN in pelagic fish. PMID:15814309

  20. Phenanthrene exposure induces cardiac hypertrophy via reducing miR-133a expression by DNA methylation

    PubMed Central

    Huang, Lixing; Xi, Zhihui; Wang, Chonggang; Zhang, Youyu; Yang, Zhibing; Zhang, Shiqi; Chen, Yixin; Zuo, Zhenghong

    2016-01-01

    Growing evidence indicates that there is an emerging link between environmental pollution and cardiac hypertrophy, while the mechanism is unclear. The objective of this study was to examine whether phenanthrene (Phe) could cause cardiac hypertrophy, and elucidate the molecular mechanisms involved. We found that: 1) Phe exposure increased the heart weight and cardiomyocyte size of rats; 2) Phe exposure led to enlarged cell size, and increased protein synthesis in H9C2 cells; 3) Phe exposure induced important markers of cardiac hypertrophy, such as atrial natriuretic peptide, B-type natriuretic peptide, and c-Myc in H9C2 cells and rat hearts; 4) Phe exposure perturbed miR-133a, CdC42 and RhoA, which were key regulators of cardiac hypertrophy, in H9C2 cells and rat hearts; 5) Phe exposure induced DNA methyltransferases (DNMTs) in H9C2 cells and rat hearts; 6) Phe exposure led to methylation of CpG sites within the miR-133a locus and reduced miR-133a expression in H9C2 cells; 7) DNMT inhibition and miR-133a overexpression could both alleviate the enlargement of cell size and perturbation of CdC42 and RhoA caused by Phe exposure. These results indicated that Phe could induce cardiomyocyte hypertrophy in the rat and H9C2 cells. The mechanism might involve reducing miR-133a expression by DNA methylation. PMID:26830171

  1. Synergistic effects of inorganic salt and surfactant on phenanthrene removal from aqueous solution by sediment.

    PubMed

    Zhang, Xiaoyan; Wu, Yaoguo; Hu, Sihai; Lu, Cong

    2014-01-01

    The economic and effective application of surfactant enhanced remediation (SER) technology in a sediment-freshwater/saline water system was investigated by batch method using the combined effects of inorganic salt (sodium chloride, NaCl) and anionic surfactant (sodium dodecylbenzene sulfonate (SDBS)) on phenanthrene (PHE) removal via sorption by sediment. In all cases, PHE sorption followed a linear equation and partition as the main mechanism for PHE removal from aqueous solution. Separate addition of SDBS (2 mmol L(-1)) and NaCl (2-100 mmol L(-1)) moderately enhanced PHE removal, while with their combined addition the enhancement was substantial, and the removal efficiency achieved a peak of 92.8%. The combined effect expressed a synergy, and the sorption enhancement increased by factors of 2.7, 3.2 and 3.4 when compared with the sum of the separate entities at elevated salinity. This was because the sorbed SDBS, with increasing amount and a high packing conformation at elevated salinity, outcompeted aqueous SDBS for PHE partition. Moreover, a combination of 2 mmol L(-1) SDBS and 2 mmol L(-1) NaCl was optimal for PHE removal. Therefore, SER technology appears more effective for PHE removal in saline water than in freshwater, and preliminary water quality monitoring is essential for economic and efficient SER application. PMID:25353936

  2. Natural soil mineral nanoparticles are novel sorbents for pentachlorophenol and phenanthrene removal.

    PubMed

    He, Yan; Zeng, Fanfeng; Lian, Zhenghua; Xu, Jianming; Brookes, Philip C

    2015-10-01

    Natural soil montmorillonite and kaolinite nanoparticles (NPs) were tested as efficient sorbents for organic contaminant (OC) removal through mimicking their natural environmental dispersive states. Sorption of both mineral NPs decreased with increasing pH with ionizable pentachlorophenol (PCP), but increased with pH with non-ionizable phenanthrene (PHE), within the pH range of 4-10. In contrast, sorption decreased consistently for both PCP and PHE, as a function of increasing ion concentration (0.001-0.1 mol L(-1)). Sorption differences were likely caused by the electrolytic conditions dependent upon surface chemistry of OCs and mineral NPs. The results confirmed that the highly dispersive soil mineral NPs would prevail over both engineered NPs and their regular μm-sized colloids for OC removal, due to their ecological advantages and higher sorption properties. This finding provided a realistic assessment of the environmental function of soil natural minerals in water once they are released from soil into OC polluted aqueous systems. PMID:26005862

  3. Morphological and physiological responses of maize (Zea mays) exposed to sand contaminated by phenanthrene.

    PubMed

    Dupuy, Joan; Ouvrard, Stéphanie; Leglize, Pierre; Sterckeman, Thibault

    2015-04-01

    Phytoremediation is promising, but depends on clearly understanding contaminants' impact on plant functioning. We therefore focused on the impact of polycyclic aromatic hydrocarbons (PAH) on cultivated plants and understanding the impact of phenanthrene (PHE) on maize functioning (Zea mays). Cultivation was conducted under controlled conditions on artificially contaminated sand with PHE levels increasing from 50 to 750 mg PHE kg(-1). After four weeks, plants exposed to levels above 50 mg PHE kg(-1) presented decreased biomasses and reduced photosynthetic activity. These modifications were associated with higher biomass allocations to roots and lower ones to stems. The leaf biomass proportion was similar, with thinner blades than controls. PHE-exposed plant showed modified root architecture, with fewer roots of 0.2 and 0.4 mm in diameter. Leaves were potassium-deplete, but calcium, phosphorus, magnesium and zinc-enriched. Their content in nitrogen, iron, sulfur and manganese was unaffected. These responses resembled those of water-stress, although water contents in plant organs were not affected by PHE and water supply was not limited. They also indicated a possible perturbation of both nutritional functioning and photosynthesis. PMID:25496734

  4. Study of phenanthrene utilizing bacterial consortia associated with cowpea (Vigna unguiculata) root nodules.

    PubMed

    Sun, Ran; Crowley, David E; Wei, Gehong

    2015-02-01

    Many legumes have been selected as model plants to degrade organic contaminants with their special associated rhizosphere microbes in soil. However, the function of root nodules during microbe-assisted phytoremediation is not clear. A pot study was conducted to examine phenanthrene (PHE) utilizing bacteria associated with root nodules and the effects of cowpea root nodules on phytoremediation in two different types of soils (freshly contaminated soil and aged contaminated soil). Cowpea nodules in freshly-contaminated soil showed less damage in comparison to the aged-contaminated soil, both morphologically and ultra-structurally by scanning electron microscopy. The study of polycyclic aromatic hydrocarbon (PAH) attenuation conducted by high performance liquid chromatography revealed that more PAH was eliminated from liquid culture around nodulated roots than nodule-free roots. PAH sublimation and denaturation gradient gel electrophoresis were applied to analyze the capability and diversity of PAH degrading bacteria from the following four parts of rhizo-microzone: bulk soil, root surface, nodule surface and nodule inside. The results indicated that the surface and inside of cowpea root nodules were colonized with bacterial consortia that utilized PHE. Our results demonstrated that root nodules not only fixed nitrogen, but also enriched PAH-utilizing microorganisms both inside and outside of the nodules. Legume nodules may have biotechnological values for PAH degradation. PMID:25601371

  5. Effects of cowpea (Vigna unguiculata) root mucilage on microbial community response and capacity for phenanthrene remediation.

    PubMed

    Sun, Ran; Belcher, Richard W; Liang, Jianqiang; Wang, Li; Thater, Brian; Crowley, David E; Wei, Gehong

    2015-07-01

    Biodegradation of polycyclic aromatic hydrocarbons (PAHs) is normally limited by their low solubility and poor bioavailability. Prior research suggests that biosurfactants are synthesized as intermediates during the production of mucilage at the root tip. To date the effects of mucilage on PAH degradation and microbial community response have not been directly examined. To address this question, our research compared 3 cowpea breeding lines (Vigna unguiculata) that differed in mucilage production for their effects on phenanthrene (PHE) degradation in soil. The High Performance Liquid Chromatography results indicated that the highest PHE degradation rate was achieved in soils planted with mucilage producing cowpea line C1, inoculated with Bradyrhizobium, leading to 91.6% PHE disappearance in 5 weeks. In root printing tests, strings treated with mucilage and bacteria produced larger clearing zones than those produced on mucilage treated strings with no bacteria or bacteria inoculated strings. Experiments with 14C-PHE and purified mucilage in soil slurry confirmed that the root mucilage significantly enhanced PHE mineralization (82.7%), which is 12% more than the control treatment without mucilage. The profiles of the PHE degraders generated by Denaturing gradient gel electrophoresis suggested that cowpea C1, producing a high amount of root mucilage, selectively enriched the PHE degrading bacteria population in rhizosphere. These findings indicate that root mucilage may play a significant role in enhancing PHE degradation and suggests that differences in mucilage production may be an important criterion for selection of the best plant species for use in phytoremediation of PAH contaminated soils. PMID:26141877

  6. Ex vivo study of the vasorelaxant activity induced by phenanthrene derivatives isolated from Maxillaria densa.

    PubMed

    Rendón-Vallejo, Priscila; Hernández-Abreu, Oswaldo; Vergara-Galicia, Jorge; Millán-Pacheco, César; Mejía, Armando; Ibarra-Barajas, Maximiliano; Estrada-Soto, Samuel

    2012-12-28

    The phenanthrenes gymnopusin (1), fimbriol A (2), and erianthridin (3) from Maxillaria densa were found to induce significant relaxant effects in a concentration-dependent and endothelium-independent manner on aortic rings precontracted with norepinephrine (NE, 0.1 μM) and KCl (80 mM). Compound 1 was the most active and also inhibited the cumulative concentration-response contraction of NE or CaCl(2). Contractions induced by FPL 64176, an agonist of L-type voltage-dependent calcium channels, were blocked by 1. The potassium channel blockers glibenclamide and TEA (tetraethylammonium) reduced the relaxations induced by 1. Nevertheless, the effect of 1 was not modified by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a specific soluble guanylate cyclase inhibitor. The functional results obtained suggest that 1 induces relaxation through an endothelium-independent pathway by the control of cationic channels (calcium channel blockade and potassium channel opening) in the myogenic response of rat aortic rings. PMID:23234371

  7. Importance of unburned coal carbon, black carbon, and amorphous organic carbon to phenanthrene sorption in sediments.

    PubMed

    Cornelissen, Gerard; Gustafsson, Orjan

    2005-02-01

    The aim of this paper was to estimate the contribution to total phenanthrene sorption from unburned coal and black carbon (BC; soot and charcoal) in sediment. We determined sorption isotherms for five Argonne Premium Coal standards over a wide concentration interval (0.01-10 000 ng/L). The coals showed strong and nonlinear sorption (carbon-normalized K(F) = 5.41-5.96; nF = 0.68-0.82). Coal sorption appeared to become more nonlinear with increasing coal maturity. The coal's specific surface area appeared to influence K(F). On the basis of the current coal sorption observations combined with earlier petrographic analyses and BC sorption experiments, we calculated for one particular sediment that coal, BC, and "other" OC were all important to PHE sorption in the environmentally relevant nanogram per liter range. This indicates that it is important to consider strong sorption to coal in the risk assessment of coal-impacted geosorbents (e.g., river beds) where coal is mined/shipped and manufactured gas plant sites. PMID:15757337

  8. Biodegradation of pyrene and phenanthrene by bacterial consortium and evaluation of role of surfactant.

    PubMed

    Kumari, B; Rajput, S; Gaur, P; Singh, S N; Singh, D P

    2014-01-01

    High molecular weight poly aromatic hydrocarbons (HMW PAHs) are well known for their hydrophobicity and they get strongly adsorbed onto the soil particles. Generally, surfactants facilitate the biodegradation of PAH by enhancing their solubility and desorption of hydrophobic compounds from soil particles. To investigate the role of synthetic surfactant in biodegradation of PAHs, two bacterial strains BP10 and P2 were incubated in soil spiked with pyrene and phenantherene (100 μg g-1of soil each) in isolation and in combination with/without Tween 80. After 14 days of incubation, pyrene and phenantherene were degraded by a combination of BP10 and P2 to the extent of 98% and 99%, respectively. Addition of tween 80 reduced the degradation of pyrene and phenantherene by 35 and 10%, respectively. Biosurfactant produced by selected strains i.e. BP10 and P2 could enhance desorption of pyrene (100 μg g-1of soil) by about 27% and 12%, respectively. However, desorption activity was relatively higher (32 and 29%, respectively) in case of phenanthrene (100 μg g-1of soil) from the spiked soil. Present study showed that in spite of additional chemical surfactant, bioaugmentation of highly petroleum hydrocarbon degrading bacterial combination was very effective in boosting the bioremediation of PAHs- contaminated sites. PMID:25535708

  9. Chronic toxicity of phenanthrene to the marine polychaete worm, Nereis (Neanthes) arenaceodentata

    SciTech Connect

    Emery, V.L. Jr.; Dillon, T.M.

    1996-02-01

    Polycyclic aromatic hydrocarbons (PAHs) are widely distributed in the environment. While environmental concentrations are generally below acutely, lethal levels, chronic, low level exposures may result in subtle sublethal effects. PAHs accumulate in bottom sediments and may represent a hazard to the benthos. Polychaetes are important members of this community. The objective of this study is to evaluate the chronic sublethal effects of one PAH, phenanthrene (PHN), on the polychaete worm, Nereis arenaceodentata. PHN was selected because of its high toxicity to marine invertebrates relative to other PAHs. The response of bivalves to heavy metals and other toxins has usually been determined by observing valve position. Since mussels close their valves to avoid noxious stimuli, experimental delivery of chemicals is uncertain. To obtain constant results. Preston employed plastic spacers to hold the valves apart. This obviates the observation of valve position as an index of response, and some other method is required. Electromyography of intact mussels is one such index, and is shown to be a simple, effective and quantitative measurement of activity. Experiments are reported on the effects of added mercury on salt water and fresh water species. Parts of this Nvork have appeared in brief form.

  10. Vibrationally resolved high-resolution NEXAFS and XPS spectra of phenanthrene and coronene

    SciTech Connect

    Fronzoni, Giovanna; Baseggio, Oscar; Stener, Mauro; Hua, Weijie; Tian, Guangjun; Luo, Yi; Apicella, Barbara; Alfé, Michela; Simone, Monica de; Kivimäki, Antti; Coreno, Marcello

    2014-07-28

    We performed a combined experimental and theoretical study of the C1s Near-Edge X-ray Absorption Fine-Structure (NEXAFS) spectroscopy and X-ray Photoelectron Spectroscopy in the gas phase of two polycyclic aromatic hydrocarbons (phenanthrene and coronene), typically formed in combustion reactions. In the NEXAFS of both molecules, a double-peak structure appears in the C1s → LUMO region, which differ by less than 1 eV in transition energies. The vibronic coupling is found to play an important role in such systems. It leads to weakening of the lower-energy peak and strengthening of the higher-energy one because the 0 − n (n > 0) vibrational progressions of the lower-energy peak appear in nearly the same region of the higher-energy peak. Vibrationally resolved theoretical spectra computed within the Frank-Condon (FC) approximation and linear coupling model agree well with the high-resolution experimental results. We find that FC-active normal modes all correspond to in-plane vibrations.

  11. Effect of low-molecular-weight organic acids on photo-degradation of phenanthrene catalyzed by Fe(III)-smectite under visible light.

    PubMed

    Jia, Hanzhong; Chen, Hongxia; Nulaji, Gulimire; Li, Xiyou; Wang, Chuanyi

    2015-11-01

    The photolysis of polycyclic aromatic hydrocarbons (PAHs) is potentially an important process for its transformation and fate on contaminated soil surfaces. In this study, phenanthrene is employed as a model to explore PAH photodegradation with the assistance of Fe(III)-smectite under visible-light while focusing on roles played by five low-molecular-weight organic acids (LMWOAs), i.e., malic acid, oxalic acid, citric acid, ethylenediaminetetraacetic acid (EDTA), and nitrilotriacetic acid. Our results show that oxalic acid is most effective in promoting the photodegradation of phenanthrene, while only a slight increase in the rate of phenanthrene photodegradation is observed in the presence of malic acid. Electron paramagnetic resonance experiments confirm the formation of CO2(-) radicals in the presence of malic and oxalic acid, which provides strong evidence for generating OH and subsequent photoreaction pathways. The presence of EDTA or nitrilotriacetic acid significantly inhibits both Fe(II) formation and phenanthrene photodegradation because these organic anions tend to chelate with Fe(III), leading to decreases in the electron-accepting potential of Fe(III)-smectite and a weakened interaction between phenanthrene and Fe(III)-smectite. These observations provide valuable insights into the transformation and fate of PAHs in the natural soil environment and demonstrate the potential for using some LMWOAs as additives for the remediation of contaminated soil. PMID:26091867

  12. A non-fullerene electron acceptor based on fluorene and diketopyrrolopyrrole building blocks for solution-processable organic solar cells with an impressive open-circuit voltage.

    PubMed

    Patil, Hemlata; Zu, Wang Xi; Gupta, Akhil; Chellappan, Vijila; Bilic, Ante; Sonar, Prashant; Rananaware, Anushri; Bhosale, Sidhanath V; Bhosale, Sheshanath V

    2014-11-21

    A novel solution-processable non-fullerene electron acceptor 6,6'-(5,5'-(9,9-dioctyl-9H-fluorene-2,7-diyl)bis(thiophene-5,2-diyl))bis(2,5-bis(2-ethylhexyl)-3-(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione) (DPP1) based on fluorene and diketopyrrolopyrrole conjugated moieties was designed, synthesized and fully characterized. DPP1 exhibited excellent solubility and high thermal stability which are essential for easy processing. Upon using DPP1 as an acceptor with the classical electron donor poly(3-hexylthiophene), solution processable bulk-heterojunction solar cells afforded a power conversion efficiency of 1.2% with a high open-circuit voltage (1.1 V). As per our knowledge, this value of open circuit voltage is one of the highest values reported so far for a bulk-heterojunction device using DPP1 as a non-fullerene acceptor. PMID:25274538

  13. Probing the Ordering of Semiconducting Fluorene-Thiophene Copolymer Surfaces on Rubbed Polyimide Substrates by Near-Edge X-ray Absorption Fine Structure

    SciTech Connect

    Pattison,L.; Hexemer, A.; Kramer, E.; Krishnan, S.; Petroff, P.; Fischer, D.

    2006-01-01

    The temperature-dependent alignment of semiconducting liquid crystalline fluorene-thiophene copolymer (F8T2) thin film surfaces was investigated using the near-edge X-ray absorption fine structure (NEXAFS) technique. Partial electron yield spectra were recorded over a range of temperatures in order to observe directly the surface orientation as the polymer is heated and cooled through glass, crystal, and liquid crystal phases. In addition, samples annealed under varying processing conditions and quenched to room temperature were analyzed. The NEXAFS data show that (a) in thin F8T2 films at all temperatures the polymer backbone lies in the plane of the substrate, (b) the fluorene and thiophene rings are rotated randomly about the molecular axis, (c) orientation of the polymer backbone can be controlled using a rubbed polyimide alignment layer as a template for liquid crystal orientation, and (d) under proper annealing conditions there is strong temperature-dependent alignment of the copolymer main-chain axis to the rubbing direction which extends from the polyimide/F8T2 interface all the way to the F8T2 surface. The surface alignment does not disappear after annealing at temperatures {approx}30 K above the bulk nematic to isotropic transition.

  14. trans/cis-Isomerization of fluorene-bridged azo chromophore with significant two-photon absorbability at near-infrared wavelength.

    PubMed

    Chu, Chih-Chien; Chang, Ya-Chi; Tsai, Bo-Kai; Lin, Tzu-Chau; Lin, Ja-Hon; Hsiao, Vincent K S

    2014-12-01

    Azo-containing materials have been proven to possess second-order nonlinear optical (NLO) properties, but their third-order NLO properties, which involves two-photon absorption (2PA), has rarely been reported. In this study, we demonstrate a significant 2PA behavior of the novel azo chromophore incorporated with bilateral diphenylaminofluorenes (DPAFs) as a π framework. The electron-donating DPAF moieties cause a redshifted π-π* absorption band centered at 470 nm, thus allowing efficient blue-light-induced trans-to-cis photoisomerization with a rate constant of 2.04 × 10(-1) min(-1) at the photostationary state (PSS). The open-aperture Z-scan technique that adopted a femtosecond (fs) pulse laser as excitation source shows an appreciably higher 2PA cross-section for the fluorene-derived azo chromophore than that for common azobenzene dyes at near-infrared wavelength (λex =800 nm). Furthermore, the fs 2PA response is quite uniform regardless of the molecular geometry. On the basis of the computational modeling, the intramolecular charge-transfer (ICT) process from peripheral diphenylamines to the central azo group through a fluorene π bridge is crucial to this remarkable 2PA behavior. PMID:25294108

  15. Growth of rhodococcus S1 on anthracene.

    PubMed

    Tongpim, S; Pickard, M A

    1996-03-01

    Three slow-growing bacteria were isolated from a mixed culture enriched for growth on anthracene, using creosote-contaminated soil as the inoculum. Organisms were shown to use anthracene by the production of a clear zone around the colony after a mineral salts agar plate was sprayed with anthracene. All three bacteria were nonmotile, nonsporulating, gram-positive rods and stained acid-fast. Physiological and biochemical tests, GC content, and cell wall lipid patterns of whole cell methanolysates indicated that they belonged to the Nocardia-Mycobacterium-Rhodococcus group. On the basis of these characteristics and pyrolysis gas chromatography, they were assigned to the genus Rhodococcus. Growth of the isolates was slow on crystalline anthracene, giving a doubling time of 1.5-3 days, and they grew mainly on the crystal surface. When anthracene was supplied by precipitation from a solvent, doubling time was reduced to 1 day. All three isolates mineralized anthracene but not phenanthrene or naphthalene, nor could they grow on naphthalene, phenanthrene, fluorene, fluoranthene, acenaphthene, pyrene, chrysene, or naphthacene as sole carbon source. One isolate, Rhodococcus S1, was able to use 2-methylanthracene or 2-chloroanthracene as carbon source but not 1- or 9-substituted analogs. These results suggest that the initial enzyme attacking anthracene in these isolates has a narrow substrate specificity. PMID:8868237

  16. Mycoremediation of manganese and phenanthrene by Pleurotus eryngii mycelium enhanced by Tween 80 and saponin.

    PubMed

    Wu, Minghui; Xu, Yongan; Ding, Wenbo; Li, Yuanyuan; Xu, Heng

    2016-08-01

    Bioremediation of areas co-contaminated with metals and polycyclic aromatic hydrocarbons (PAHs) by mushrooms has attracted considerable attention in recent years. In this study, Pleurotus eryngii was introduced for the removal of Mn and phenanthrene (Phe) from potato liquid medium (PDL) simultaneously. Effects of Tween 80 and saponin on P. eryngii growth together with Mn uptake as well as Phe removal were investigated. Although pollutants had a negative effect on mycelial morphology and growth, P. eryngii could still tolerate and remove Mn and Phe. Tween 80 increased removal of Mn and Phe through increase of P. eryngii growth, Phe solubility, pollutants bioavailability, and specific surface area of mycelium pellets, moreover, the activities of manganese peroxidase (MnP) and laccase, which played an important role on PAHs biodegradation. The maximal removal of Mn and Phe was achieved (92.17 and 93.85 % after 15 days incubation, respectively) with 0.6 g L(-1) Tween 80. Treatments with saponin markedly inhibited P. eryngii growth (50.17-66.32 % lower relative to control) due to its fungistatic activity. Nevertheless, saponin could slightly enhance Phe removal through increasing solubility of Phe, and Phe removal rate varied from 80.53 to 87.06 % in saponin treatments. Joint stress of Mn and Phe induced a strong antioxidative response, and superoxide dismutase (SOD) activity decreased in surfactants-treated mycelium compared with control. Generally, Tween 80 was more suitable for strengthening mycoremediation by P. eryngii than saponin, and could be a promising alternative for the remediation of heavy metals and PAHs co-contaminated sites by mushrooms. PMID:27102128

  17. Biosurfactants from Acinetobacter calcoaceticus BU03 enhance the solubility and biodegradation of phenanthrene.

    PubMed

    Zhao, Zhenyong; Wong, Jonathan W C

    2009-03-01

    A thermophilic bacterial strain, Acinetobacter calcoaceticus BU03, with a biosurfactant-producing capability, was isolated from petroleum-contaminated soil with an improved procedure which employed the solubilization of polycyclic aromatic hydrocarbons (PAHs), i.e. naphthalene in agar plate, as a selection criterion. Crude biosurfactant was recovered from the culture of BU03 by extraction with n-hexane, and its properties were investigated. Biosurfactants from A. calcoaceticus BU03 constitute a thermo-stable mixture, composed of different agents with surface activities. At their critical micelle concentration (CMC) of 152.4 mg L(-1), the crude biosurfactants produced from A. calcoaceticus BU03 decreased the air-water surface tension to 38.4 mN m(-1). In thermophilic conditions, the emulsifying activity is 2.8 times that of Tween 80. The effects of the biosurfactants produced by A. calcoaceticus on the solubility and biodegradation of PAHs were investigated in batch systems. Biosurfactants produced by A. calcoaceticus BU03 at 25 times their CMC significantly increased the apparent aqueous solubility of phenanthrene (PHE), pyrene (PYR) and benzo(a)pyrene (B[a]P) to 54.3, 6.33 and 2.08 mg L(-1), respectively. In aqueous system, the biosurfactants at concentrations of 0.5 CMC and 1 CMC slightly enhanced the biodegradation of PHE by a consortium of PAH-degrading microrganisms. Results indicate that biosurfactants from A. calcoaceticus BU03 have potential to enhance the removal of PAHs from contaminated sites. PMID:19438062

  18. Inoculating plants with the endophytic bacterium Pseudomonas sp. Ph6-gfp to reduce phenanthrene contamination.

    PubMed

    Sun, Kai; Liu, Juan; Gao, Yanzheng; Sheng, Yuehui; Kang, Fuxing; Waigi, Michael Gatheru

    2015-12-01

    Plant organic contamination poses a serious threat to the safety of agricultural products and human health worldwide, and the association of endophytic bacteria with host plants may decrease organic pollutants in planta. In this study, we firstly determined the growth response and biofilm formation of endophytic Pseudomonas sp. Ph6-gfp, and then systematically evaluated the performance of different plant colonization methods (seed soaking (SS), root soaking (RS), leaf painting (LP)) for circumventing the risk of plant phenanthrene (PHE) contamination. After inoculation for 48 h, strain Ph6-gfp grew efficiently with PHE, oxalic acid, or malic acid as the sole sources of carbon and energy. Moreover, strain Ph6-gfp could form robust biofilms in LB medium. In greenhouse hydroponic experiments, strain Ph6-gfp could actively colonize inoculated plants internally, and plants colonized with Ph6-gfp showed a higher capacity for PHE removal. Compared with the Ph6-gfp-free treatment, the accumulations of PHE in Ph6-gfp-colonized plants via SS, RS, and LP were 20.1, 33.1, and 7.1 %, respectively, lower. Our results indicate that inoculating plants with Ph6-gfp could lower the risk of plant PHE contamination. RS was most efficient for improving PHE removal in whole plant bodies by increasing the cell numbers of Ph6-gfp in plant roots. The findings in this study provide an optimized method to strain Ph6-gfp reduce plant PAH residues, which may be applied to agricultural production in PAH-contaminated soil. PMID:26263885

  19. Competition between photoisomerization and photocyclization of the cis isomers of n-styrylnaphthalenes and -phenanthrenes.

    PubMed

    Mazzucato, U; Spalletti, A

    2009-12-31

    The isomerization and cyclization photoreactions of the cis (Z) isomers of n-styrylnaphthalenes (n = 1 and 2), n-styrylphenanthrenes (n = 1, 2, 3, 4, and 9), and two related compounds, 3-styrylchrysene and 3-styrylbenzo[c]phenanthrene, were investigated by spectrophotometric and chromatographic techniques. The quantum yields of the two photoreactions were measured in aerated and deaerated nonpolar solvent at room temperature and compared with those reported in the literature for some of the molecules investigated and other related compounds. The combined use of high-performance liquid chromatographic and spectrophotometric techniques made easier the separation of the components of the photoreaction mixtures thus simplifying the study of the isomerization/cyclization competition and the measurement of the UV-vis absorption spectra and the thermal decay kinetics of the dihydrophenanthrene-type intermediates. The conformational equilibria in the ground state and the positional isomerism (n values) notably affect the prevalence of one or the other competitive photoreaction. Oxygen also plays an important role: practically it does not affect the quantum yield of the Z --> E process but has a drastic effect on the formation of the final oxidation product which can proceed even in the presence of traces of air. In three cases, non-negligible formation of a side colorless product was detected. It was assigned to an isomer of the normal photocyclization intermediate (4a,4b-dihydrophenanthrene-type), formed by shift of one or both hydrogen atom(s) to other positions of the rings. Parallel ab initio calculations of the potential energy of the possible conformers helped to explain the structure effects on the competitive photoreactive relaxation pathways. Some correlations between the computed reagent/product energy difference in the ground state and the photocyclization yield and thermal stability of the intermediates were also verified. PMID:20028165

  20. Competition between Photoisomerization and Photocyclization of the Cis Isomers of n-Styrylnaphthalenes and -Phenanthrenes

    NASA Astrophysics Data System (ADS)

    Mazzucato, U.; Spalletti, A.

    2009-09-01

    The isomerization and cyclization photoreactions of the cis (Z) isomers of n-styrylnaphthalenes (n = 1 and 2), n-styrylphenanthrenes (n = 1, 2, 3, 4, and 9), and two related compounds, 3-styrylchrysene and 3-styrylbenzo[c]phenanthrene, were investigated by spectrophotometric and chromatographic techniques. The quantum yields of the two photoreactions were measured in aerated and deaerated nonpolar solvent at room temperature and compared with those reported in the literature for some of the molecules investigated and other related compounds. The combined use of high-performance liquid chromatographic and spectrophotometric techniques made easier the separation of the components of the photoreaction mixtures thus simplifying the study of the isomerization/cyclization competition and the measurement of the UV-vis absorption spectra and the thermal decay kinetics of the dihydrophenanthrene-type intermediates. The conformational equilibria in the ground state and the positional isomerism (n values) notably affect the prevalence of one or the other competitive photoreaction. Oxygen also plays an important role: practically it does not affect the quantum yield of the Z → E process but has a drastic effect on the formation of the final oxidation product which can proceed even in the presence of traces of air. In three cases, non-negligible formation of a side colorless product was detected. It was assigned to an isomer of the normal photocyclization intermediate (4a,4b-dihydrophenanthrene-type), formed by shift of one or both hydrogen atom(s) to other positions of the rings. Parallel ab initio calculations of the potential energy of the possible conformers helped to explain the structure effects on the competitive photoreactive relaxation pathways. Some correlations between the computed reagent/product energy difference in the ground state and the photocyclization yield and thermal stability of the intermediates were also verified.

  1. Reproductive and transgenerational toxicities of phenanthrene on female marine medaka (Oryzias melastigma).

    PubMed

    Sun, Lingbin; Zuo, Zhenghong; Chen, Meng; Chen, Yixin; Wang, Chonggang

    2015-05-01

    Phenanthrene (PHE) is one of the most abundant polycyclic aromatic hydrocarbons in the aquatic environment and often results from oil spills. To assess the effects of PHE on fish, marine medaka (Oryzias melastigma) was exposed to PHE at 0.06, 0.6, 6 and 60 μg/L. The reproductive functions and transgenerational effects were investigated. After 80 days exposure, the percentage of previtellogenic and vitellogenic oocytes in the ovary showed a significant decrease in the 0.06 and 60 μg/L groups. The mRNA levels of salmon-type gonadotropin releasing hormone, the follicle-stimulating hormone FSHβ, and the luteinizing hormone LHβ in the brain; the cytochrome P450 aromatase gene CYP19A and the estrogen receptor α (ERα) in the ovary; and ERα and vitellogenin VTG1 and 2 in the liver all exhibited significant down-regulation in the 0.06 and 60 μg/L groups, but did not significantly change in the 6 μg/L group compared to the control, which was quite consistent with development of the oocytes. A significant elevation of PHE accumulation in the brain in the 0.06 and 60 μg/L groups gave a reasonable explanation for the nonmonotonic dose-response and also elucidated the action pathway via the brain-pituitary-gonadal axis. The reduction of the time to hatch and the increased cardiac rhythm of embryos were in accord with the PHE accumulative levels in the eggs. The results demonstrated that exposure to PHE at both low and high concentrations can inhibit ovary development. In addition, PHE can be maternally transferred to embryos and influence the health and sustainability of the next generation. PMID:25805703

  2. Biochar characteristics produced from food-processing products and their sorptive capacity for mercury and phenanthrene

    NASA Astrophysics Data System (ADS)

    Fotopoulou, Kalliopi N.; Karapanagioti, Hrissi K.; Manariotis, Ioannis D.

    2015-04-01

    Various organic-rich wastes including wood chips, animal manure, and crop residues have been used for biochar production. Biochar is used as an additive to soils to sequester carbon and improve soil fertility but its use as a sorbent for environmental remediation processes is gaining increased attention. Surface properties such as point of zero charge, surface area and pore volume, surface topography, surface functional groups and acid-base behavior are important factors, which affect sorption efficiency. Understanding the surface alteration of biochars increases our understanding of the pollutant-sorbent interaction. The scope of the present work was to evaluate the effect of key characteristics of biochars on their sorptive properties. Raw materials for biochar production were evaluated including byproducts from brewering, coffee, wine, and olive oil industry. The charring process was performed at different temperatures under limited-oxygen conditions using specialized containers. The surface area, the pore volume, and the average pore size of the biochars were determined. Open surface area and micropore volume were determined using t-plot method and Harkins & Jura equation. Raw food-processing waste demonstrates low surface area that increases by 1 order of magnitude by thermal treatment up to 750oC. At temperatures from 750 up to 900oC, pyrolysis results to biochars with surface areas 210-700 m2/g. For the same temperature range, a high percentage (46 to73%) of the pore volume of the biochars is due to micropores. Positive results were obtained when high surface area biochars were tested for their ability to remove organic (i.e. phenanthrene) and inorganic (i.e. mercury) compounds from aqueous solutions. All these properties point to new materials that can effectively be used for environmental remediation.

  3. Extracellular polymeric substances facilitate the biosorption of phenanthrene on cyanobacteria Microcystis aeruginosa.

    PubMed

    Bai, Leilei; Xu, Huacheng; Wang, Changhui; Deng, Jiancai; Jiang, Helong

    2016-11-01

    Phytoplankton-derived extracellular polymeric substances (EPS) are of vital importance for the biogeochemical cycles of hydrophobic organic pollutants in lake ecosystems. In this study, roles of loosely-bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) in biosorption of phenanthrene (PHE) on a typical cyanobacteria Microcystis aeruginosa were investigated. The results showed that the biosorption of PHE on M. aeruginosa cell varied lasted 24 h, while the binding of PHE to LB-EPS and TB-EPS reached equilibrium within less than 2 h. The equilibrium biosorption capacities of M. aeruginosa cell, LB-EPS and TB-EPS were 6.78, 12.31, and 9.47 μg mg(-1), respectively, indicating that the binding of PHE to EPS was a considerable process involved in biosorption. Fluorescence quenching titration revealed that increasing temperature induced more binding sites in EPS for PHE and the binding process was driven by electrostatic force and hydrophobic interactions. Interestingly, dynamic and static quenching processes occurred simultaneously for the binding of PHE to protein-like substances in EPS, whereas the binding of PHE to humic-like substances belonged to static quenching. The relatively higher contents of proteins in LB-EPS produced a stronger binding capacity of PHE. Overall, the interactions between hydrophobic organic pollutants and cyanobacterial EPS are favorable to the bioaccumulation of hydrophobic organic pollutants in cyanobacteria and facilitate the regulatory function of cyanobacterial biomass as a biological pump. PMID:27497347

  4. [Sorption Characteristics of Phenanthrene and 1, 1-Dichloroethene onto Reed Straw Biochar in Aquatic Solutions].

    PubMed

    Wu, Qing-wen; Meng, Liang; Zhang, Zhi-hao; Luo, Qi-shi; Yang, Jie

    2016-02-15

    The purpose of this study was to investigate the sorption characteristics of phenanthrene (PHE) and 1, 1-dichloroethene (1, 1-DCE) onto reed straw biochar at 500 degrees C in aquatic solutions. The sorption mechanisms and effects of solution pH and biochar mass on sorption intensity were discussed. The results showed that the time required to reach sorption equilibrium was 60 min and 480 min for PHE and 1, 1-DCE, respectively, with maximum removal rates of 81, 87% and 90.18%. The sorption kinetics of both PHE and 1, 1-DCE fitted the pseudo-second-order model well, but the pseudo-second-order reaction rate of PHE was higher than that of 1, 1-DCE. Furthermore, the sorption processes were controlled by both membrane diffusion and intra-particle diffusion, and the latter was found to be the rate-controlling step. Sorption isotherms of the two organic pollutants fitted well with the Freundlich equation, and the sorption affinity of 1, 1-DCE onto biochar was greater than that of PHE. The total sorption mechanism of biochar was the combination of partition and adsorption, and dominated by adsorption. The adsorption capacity of 1, 1-DCE was greater than that of PHE, but its partition capacity was much smaller, indicating that pollutants' molecular volume and relative polarity would mainly affect the total sorption. Analysis of Fourier transform infrared spectroscopy (FTIR) demonstrated that oxygen- and hydrogen-containing functional groups and pi--pi interaction were important for PHE and 1, 1-DCE sorption onto biochar. The solution pH value had no significant effect on the sorption intensity of PHE and 1, 1-DCE, however, with biochar mass increasing from 5 mg to 50 mg, the equilibrium sorption amount of PHE and 1, 1-DCE decreased by 6.78 times and 2.18 times, and the removal rate increased by 20.21% and 15.78%, respectively. PMID:27363160

  5. The effects of CYP1A inhibition on alkyl-phenanthrene metabolism and embryotoxicity in marine medaka (Oryzias melastigma).

    PubMed

    Mu, Jingli; Jin, Fei; Wang, Juying; Wang, Ying; Cong, Yi

    2016-06-01

    Alkylated polycyclic aromatic hydrocarbons (alkyl-PAHs) are the predominant form of PAHs in crude oils, of which, 3-5 ring alkyl-PAH may cause dioxin-like toxicity to early life stages of fish. Retene (7-isopropyl-1-methylphenanthrene), a typical alkyl-phenanthrene compound, can be more toxic than phenanthrene, and the mechanism of retene toxicity is likely related to its rapid biotransformation by cytochrome P450 (CYP) enzymes to metabolites with a wide array of structures and potential toxicities. Here, we investigated how α-naphthoflavone (ANF), a cytochrome P450 1A (CYP1A) inhibitor, affected the embryotoxicity of retene and the role that CYP1A inhibition may play in the interactions. Marine medaka (Oryzias melastigma) embryos were exposed, separately or together, to 200 μg/L retene with 0, 5, 10, 100, and 200 μg/L ANF for 14 days. The results showed that ANF significantly inhibited the induction of CYP1A activity by retene; however, ANF interacted with retene to induce significant developmental toxicity and genotoxicity at 10, 100, and 200 μg/L (p < 0.01). Tissue concentrations of retene and its metabolites and lipid hydroperoxide (LPO) activity also increased, whereas the inhibition of the glutathione S-transferase (GST) activity and the alteration in metabolic profiles of retene were observed. The interactions of retene with ANF indicate that CYP1A inhibition was possibly act through different mechanisms to produce similar developmental effects and genotoxicity. Retene metabolites and altered metabolic profile were likely responsible for retene embryotoxicity to marine medaka. Therefore, elevated toxicity of alkyl-phenanthrene under CYP1A inhibitor suggested that the ecotoxicity of PAHs in coastal water may have underestimated the threat of PAHs to fish or ecosystem. PMID:26924701

  6. DNA single strand breakage, DNA adducts, and sister chromatid exchange in lymphocytes and phenanthrene and pyrene metabolites in urine of coke oven workers.

    PubMed Central

    Popp, W; Vahrenholz, C; Schell, C; Grimmer, G; Dettbarn, G; Kraus, R; Brauksiepe, A; Schmeling, B; Gutzeit, T; von Bülow, J; Norpoth, K

    1997-01-01

    OBJECTIVES: To investigate the specificity of biological monitoring variables (excretion of phenanthrene and pyrene metabolites in urine) and the usefulness of some biomarkers of effect (alkaline filter elution, 32P postlabelling assay, measurement of sister chromatid exchange) in workers exposed to polycyclic aromatic hydrocarbons (PAHs). METHODS: 29 coke oven workers and a standardised control group were investigated for frequencies of DNA single strand breakage, DNA protein cross links (alkaline filter elution assay), sister chromatid exchange, and DNA adducts (32P postlabelling assay) in lymphocytes. Phenanthrene and pyrene metabolites were measured in 24 hour urine samples. 19 different PAHs (including benzo(a)pyrene, pyrene, and phenanthrene) were measured at the workplace by personal air monitoring. The GSTT1 activity in erythrocytes and lymphocyte subpopulations in blood was also measured. RESULTS: Concentrations of phenanthrene, pyrene, and benzo(a)pyrene in air correlated well with the concentration of total PAHs in air; they could be used for comparisons of different workplaces if the emission compositions were known. The measurement of phenanthrene metabolites in urine proved to be a better biological monitoring variable than the measurement of 1-hydroxypyrene. Significantly more DNA strand breaks in lymphocytes of coke oven workers were found (alkaline filter elution assay); the DNA adduct rate was not significantly increased in workers, but correlated with exposure to PAHs in a semiquantitative manner. The number of sister chromatid exchanges was lower in coke oven workers but this was not significant; thus counting sister chromatid exchanges was not a good variable for biomonitoring of coke oven workers. Also, indications for immunotoxic influences (changes in lymphocyte subpopulations) were found. CONCLUSIONS: The measurement of phenanthrene metabolites in urine seems to be a better biological monitoring variable for exposure to PAHs than

  7. Novel maturity parameters for mature to over-mature source rocks and oils based on the distribution of phenanthrene series compounds.

    PubMed

    Wang, Zixiang; Wang, Yongli; Wu, Baoxiang; Wang, Gen; Sun, Zepeng; Xu, Liang; Zhu, Shenzhen; Sun, Lina; Wei, Zhifu

    2016-03-01

    Pyrolysis experiments of a low-mature bitumen sample originated from Cambrian was conducted in gold capsules. Abundance and distribution of phenanthrene series compounds in pyrolysis products were measured by GC-MS to investigate their changes with thermal maturity. Several maturity parameters based on the distribution of phenanthrene series compounds have been discussed. The results indicate that the distribution changes of phenanthrene series compounds are complex, and cannot be explained by individual reaction process during thermal evolution. The dealkylation cannot explain the increase of phenanthrene within the EasyRo range of 0.9% ∼ 2.1%. Adding of phenanthrene into maturity parameters based on the methylphenanthrene isomerization is unreasonable, even though MPI 1 and MPI 2 could be used to some extent. Two additional novel and an optimized maturation parameters based on the distribution of phenanthrene series compounds are proposed and their relationships to EasyRo% (x) are established: log(MPs/P) = 0.19x + 0.08 (0.9% < EasyRo% < 2.1%); log(MPs/P) = 0.64x - 0.86 (2.1% < EasyRo% < 3.4%); log(DMPs/TMPs) = 0.71x - 0.55 (0.9% < EasyRo% < 3.4%); log(MTR) = 0.84x - 0.75 (0.9% < EasyRo% < 3.4%). These significant positive correlations are strong argument for using log(MPs/P), log(DMPs/TMPs) and log(MTR) as maturity parameters, especially for mature to over-mature source rocks. PMID:27441263

  8. Nitric oxide production inhibition and mechanism of phenanthrene analogs in lipopolysaccharide-stimulated RAW264.7 macrophages.

    PubMed

    Chen, Lian-Qi; Shen, Xiao-Fei; Hu, Bo-Yang; Lin, Yuan; Igbe, Ighodaro; Zhang, Cheng-Gang; Zhang, Guo-Lin; Yuan, Xiao-Hong; Wang, Fei

    2016-05-15

    Natural phenanthrene derivatives are considered to be important resource for the anti-inflammatory therapeutics, but their structure-activity relationship and mechanisms are still unknown. In this study we evaluated 20 synthesized phenanthrene analogs in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Compounds 10, 11 and 17 were found to inhibit the production of nitric oxide (NO) with IC50 values of 37.26μM, 5.05μM and 20.31μM, respectively. Compound 11 decreased LPS-induced expression of inducible NO synthase (iNOS), inhibited phosphorylation of p38 mitogen-activated protein kinase (MAPK) and serine/threonine kinase Akt. It also suppressed the phosphorylation and degradation of inhibitory kappa B-α (IκBα). Data obtained suggest that compound 11 exerts anti-inflammatory effects by inhibiting p38 MAPK and nuclear factor κB (NF-κB) pathways, which warrants further investigation as a new anti-inflammatory pharmaceutical tool. PMID:27038497

  9. Effect of model dissolved organic matter coating on sorption of phenanthrene by TiO2 nanoparticles.

    PubMed

    Wang, Xilong; Ma, Enxing; Shen, Xiaofang; Guo, Xiaoying; Zhang, Meng; Zhang, Haiyun; Liu, Ye; Cai, Fei; Tao, Shu; Xing, Baoshan

    2014-11-01

    Dissolved organic matter (DOM) may alter the sorption of hydrophobic organic contaminants (HOC) to metal oxide nanoparticles (NPs), but the role of DOM and NP types is poorly understood. Here, phenanthrene sorption was quantified on four types of nano-TiO2 (three rutile, one anatase), and a bulk, raw TiO2 powder. Prior to the sorption experiments, these nanoparticles were coated using four different organic materials: Lignin (LIG), tannic acid (TAN), Congo red (CON), and capsorubin (CAP). Lignin, tannic acid, congo red and capsorubin coating substantially enhanced phenanthrene sorption to various TiO2 particles. After coating with a specific DOM, Kd values by the DOM-coated TiO2 particles on percent organic carbon content and surface area (SA) basis (Koc/SA) generally followed the order: TiO2 NPs with hydrophobic surfaces > bulk TiO2 particles > other TiO2 NPs. Different Koc/SA values of various DOM-TiO2 complexes resulted from distinct conformation of the coated DOM and aggregation. PMID:25089890

  10. Acute phenanthrene toxicity to juvenile diploid and triploid African catfish (Clarias gariepinus): Molecular, biochemical, and histopathological alterations.

    PubMed

    Karami, Ali; Romano, Nicholas; Hamzah, Hazilawati; Simpson, Stuart L; Yap, Chee Kong

    2016-05-01

    Information on the biological responses of polyploid animals towards environmental contaminants is scarce. This study aimed to compare reproductive axis-related gene expressions in the brain, plasma biochemical responses, and the liver and gill histopathological alterations in diploid and triploid full-sibling juvenile African catfish (Clarias gariepinus). Fish were exposed for 96 h to one of the two waterborne phenanthrene (Phe) concentrations [mean measured (SD): 6.2 (2.4) and 76 (4.2) μg/L]. In triploids, exposure to 76 μg/L Phe increased mRNA level of fushi tarazu-factor 1 (ftz-f1). Expression of tryptophan hydroxylase2 (tph2) was also elevated in both ploidies following the exposure to 76 μg/L Phe compared to the solvent control. In triploids, 76 μg/L Phe increased plasma alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) levels compared to the other Phe-exposed group. It also elevated lactate and glucose contents relative to the other groups. In diploids, however, biochemical biomarkers did not change. Phenanthrene exposures elevated glycogen contents and the prevalence of histopathological lesions in the liver and gills of both ploidies. This study showed substantial differences between diploids and triploids on biochemical and molecular biomarker responses, but similar histopathological alterations following acute Phe exposures. PMID:26845363

  11. Atmospheric oxidation of phenanthrene initiated by OH radicals in the presence of O2 and NOx - A theoretical study.

    PubMed

    Zhao, Nan; Zhang, Qingzhu; Wang, Wenxing

    2016-09-01

    Phenanthrene (Phe) is one of the most abundant polycyclic aromatic hydrocarbons (PAHs) observed in polluted urban atmosphere. The most important atmospheric loss process of Phe is the reaction with OH radicals. The present work investigated OH radical-initiated atmospheric degradation of Phe in the presence of O2 and NOx. The possible reaction mechanism was elucidated by density functional theory (DFT) calculations. Calculations show that the main products are a series of ring-retaining and ring-opening oxygenated PAHs containing phenanthrol, phenanthones, phenanthrenequinone, and dialdehydes. Rice-Ramsperger-Kassel-Marcus (RRKM) theory was employed to evaluate the rate constants for the initial steps of Phe with OH. The atmospheric lifetime of Phe relative to gas-phase reactions with OH is estimated to be 4.6h, based on the calculated overall rate constant of 3.02×10(-11)cm(3) molecule(-1)s(-1) at 298K and 1atm. Combined with available experimental data, this work also provides a comprehensive investigation of the formation mechanism of oxygenated PAHs in the atmospheric oxidation process of phenanthrene and should help to clarify its potential health risk. PMID:27169729

  12. The effect of structural compositions on the biosorption of phenanthrene and pyrene by tea leaf residue fractions as model biosorbents.

    PubMed

    Xi, Zemin; Chen, Baoliang

    2014-03-01

    To enhance the removal efficiency of polycyclic aromatic hydrocarbons (PAHs) by natural biosorbent, sorption of phenanthrene and pyrene onto raw and modified tea leaves as a model biomass were investigated. Tea leaves were treated using Soxhlet extraction, saponification, and acid hydrolysis to yield six fractions. The structures of tea leaf fractions were characterized by elemental analysis, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). The amorphous cellulose components regulated the sorption kinetics, capacity, and mechanism of biomass fractions. The adsorption kinetics fit well to pseudo-second-order model and isotherms followed the Freundlich equation. By the consumption of the amorphous cellulose under acid hydrolysis, both the aliphatic moieties and aromatic domains contributed to total sorption, thus sorption capacities of the de-sugared fractions were dramatically increased (5–20-fold for phenanthrene and 8–36-fold for pyrene). All de-sugared fractions exhibited non-linear sorption due to strong specific interaction between PAHs and exposed aromatic domains of biosorbent, while presenting a relative slow rate because of the condensed domain in de-sugared samples. The availability of strong sorption phases (aromatic domains) in the biomass fractions were controlled by polar polysaccharide components, which were supported by the FTIR, CHN, and SEM data. PMID:24234757

  13. Nonionic surfactants induced changes in cell characteristics and phenanthrene degradation ability of Sphingomonas sp. GY2B.

    PubMed

    Liu, Shasha; Guo, Chuling; Liang, Xujun; Wu, Fengji; Dang, Zhi

    2016-07-01

    Surfactant-mediated bioremediation has been widely applied in decontaminating PAH-polluted sites. However, the impacts of surfactants on the biodegradation of PAHs have been controversial in the past years. To gain a clear insight into the influencing mechanisms, three nonionic surfactants (Tween80, TritonX-100 and Brij30) were selected to systematically investigate their effects on cell surface properties (membrane permeability, functional groups and elements), cell vitality as well as subsequent phenanthrene degradation ability of Sphingomonas sp. GY2B. Results showed that biodegradation of phenanthrene was stimulated by Tween80, slightly inhibited by TritonX-100 and severely inhibited by Brij30, respectively. Positive effect of Tween80 may arise from its role as the additional carbon source for GY2B to increase bacterial growth and activity, as demonstrated by the increasing viable cells in Tween80 amended degradation systems determined by flow cytometry. Although TritonX-100 could inhibit bacterial growth and disrupt cell membrane, its adverse impacts on microbial cells were weaker than Brij30, which may result in its weaker inhibitive extent. Results from this study can provide a rational basis on selecting surfactants for enhancing bioremediation of PAHs. PMID:27045921

  14. Accumulation of phenanthrene by roots of intact wheat (Triticum acstivnm L.) seedlings: passive or active uptake?

    PubMed Central

    2010-01-01

    Background Polycyclic aromatic hydrocarbons (PAHs) are of particular concern due to their hydrophobic, recalcitrant, persistent, potentially carcinogenic, mutagenic and toxic properties, and their ubiquitous occurrence in the environment. Most of the PAHs in the environment are present in surface soil. Plants grown in PAH-contaminated soils or water can become contaminated with PAHs because of their uptake. Therefore, they may threaten human and animal health. However, the mechanism for PAHs uptake by crop roots is little understood. It is important to understand exactly how PAHs are transported into the plant root system and into the human food chain, since it is beneficial in governing crop contamination by PAHs, remedying soils or waters polluted by PAHs with plants, and modeling potential uptake for risk assessment. Results The possibility that plant roots may take up phenanthrene (PHE), a representative of PAHs, via active process was investigated using intact wheat (Triticum acstivnm L.) seedlings in a series of hydroponic experiments. The time course for PHE uptake into wheat roots grown in Hoagland solution containing 5.62 μM PHE for 36 h could be separated into two periods: a fast uptake process during the initial 2 h and a slow uptake component thereafter. Concentration-dependent PHE uptake was characterized by a smooth, saturable curve with an apparent Km of 23.7 μM and a Vmax of 208 nmol g-1 fresh weight h-1, suggesting a carrier-mediated uptake system. Competition between PHE and naphthalene for their uptake by the roots further supported the carrier-mediated uptake system. Low temperature and 2,4-dinitrophenol (DNP) could inhibit PHE uptake equally, indicating that metabolism plays a role in PHE uptake. The inhibitions by low temperature and DNP were strengthened with increasing concentration of PHE in external solution within PHE water solubility (7.3 μM). The contribution of active uptake to total absorption was almost 40% within PHE water

  15. Bioavailability of phenanthrene in the presence of birnessite-mediated catechol polymers.

    PubMed

    Russo, Fabio; Rao, Maria A; Gianfreda, Liliana

    2005-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants and contribute to the pollution of aquatic and terrestrial environments. In soil, their fate may be affected by interactions with the soil biological community and soil colloids. This study was conducted to investigate the fate of phenanthrene (Phe), selected as a representative PAH, in simplified model systems, which simulate processes naturally occurring in soil. Phe was interacted with catechol (Cat), an orthodiphenol, and common intermediate in the microbial degradation of PAHs, and birnessite (Bir), an abiotic strong oxidative catalyst abundant in soil. Two experimental conditions were investigated: Cat (5 mM)+Bir (1 mg ml(-1))+Phe (0.05 mg ml(-1)) mixed at the same time and incubated for 24 h at 25 degrees C (Cat-Bir-Phe) and Cat+Bir incubated for 24 h at 25 degrees C before Phe addition and then incubated for a further 24 h (Cat-Bir+Phe). After incubation, the systems were analysed for residual Cat and Phe, supplied with a selected Phe-degrading mixed bacterial culture, and then the microbial degradation of Phe and the growth of cells were monitored. Complex phenomena simultaneously occurred. Cat was completely removed after a 24-h incubation with Bir, and no interference by Phe in the Bir-mediated transformation of Cat was observed. Elemental analysis and UV-Vis and Fourier transfer infrared spectra showed that Cat transformation by Bir produced soluble and insoluble polymeric aggregates involving Phe. The hydrocarbon also interacted with the surfaces of Bir either previously coated (Cat-Bir+Phe sample) or not by Cat polymers. When a Phe-degrading bacterial culture was added to the systems after Bir-mediated Cat polymerisation, a different behaviour was observed in terms of Phe consumption and bacterial growth, thus suggesting differentiated availability of Phe to the microbial cells. The hydrocarbon was completely transformed in the presence of Bir and/or Bir covered by Cat

  16. Rotationally resolved S1<--S0 electronic spectra of fluorene, carbazole, and dibenzofuran: Evidence for Herzberg-Teller coupling with the S2 state

    NASA Astrophysics Data System (ADS)

    Yi, John T.; Alvarez-Valtierra, Leonardo; Pratt, David W.

    2006-06-01

    Rotationally resolved fluorescence excitation spectra of the S1←S0 origin bands and higher vibronic bands of fluorene (FLU), carbazole (CAR), and dibenzofuran (DBF) have been observed and assigned. Analyses of these data show that replacement of the CH2 group in FLU with a NH group in CAR and an O atom in DBF produces only localized changes in structure, in the ground state. But the three molecules exhibit different changes in geometry when they are excited by light. The S1 states of the three molecules also are electronically very different. The S1←S0 transition moments of CAR and DBF are parallel to the C2 symmetry axis whereas the corresponding transition moment in FLU is perpendicular to this axis. Herzberg-Teller coupling involving the S2 state also has been observed in the spectra of higher vibronic bands of CAR and DBF. Possible reasons for these behaviors are discussed.

  17. Lewis acid catalysed methylation of N-(9H-fluoren-9-yl)methanesulfonyl (Fms) protected lipophilic α-amino acid methyl esters.

    PubMed

    Leggio, Antonella; Alò, Danila; Belsito, Emilia Lucia; Di Gioia, Maria Luisa; Romio, Emanuela; Siciliano, Carlo; Liguori, Angelo

    2015-08-01

    This work reports an efficient Lewis acid catalysed N-methylation procedure of lipophilic α-amino acid methyl esters in solution phase. The developed methodology involves the use of the reagent system AlCl3/diazomethane as methylating agent and α-amino acid methyl esters protected on the amino function with the (9H-fluoren-9-yl)methanesulfonyl (Fms) group. The removal of Fms protecting group is achieved under the same conditions to those used for Fmoc removal. Thus the Fms group can be interchangeable with the Fmoc group in the synthesis of N-methylated peptides using standard Fmoc-based strategies. Finally, the absence of racemization during the methylation reaction and the removal of Fms group were demonstrated by synthesising a pair of diastereomeric dipeptides. PMID:25921656

  18. N-(9,9-Dipropyl-9H-fluoren-2-yl)-7-(piperidin-1-yl)-2,1,3-benzothia­diazol-4-amine

    PubMed Central

    Bolisetty, M. N. K. Prasad; Thomas, K. R. Justin; Ng, Seik Weng; Tiekink, Edward R. T.

    2012-01-01

    In the title compound, C30H34N4S, each of the benzothia­diazole and fluorene fused ring systems is almost planar (r.m.s. deviations = 0.010 and 0.013 Å, respectively) and they are inclined to each other with a dihedral angle of 61.69 (3)°; the S atom is directed away from the rest of the mol­ecule. Each of the benzothiadiazole ring N atoms forms a significant intra­molecular contact, i.e. N—H⋯N or C—H⋯N. In the crystal, linear supra­molecular chains along the c axis are generated by C—H⋯N inter­actions involving the tertiary amine N atom. PMID:22412756

  19. Optical Studies of Poly(9,9-di-(2-ethylhexyl)-9H-fluorene-2,7-vinylene) and its Nanocomposites

    NASA Astrophysics Data System (ADS)

    Layek, S.; Ghosh, M.; Reddy, K. Siddarth; Senapati, S.; Maiti, P.; Sinha, S.

    2015-11-01

    Steady state and time-resolved spectroscopic measurements are carried out to understand the fluorescent optical properties of the conjugated polymer poly(9,9-di-(2-ethylhexyl)-9H-fluorene-2,7-vinylene) (PFV) in liquid phase and solid phase. Quite significant color tuning is observed in the fluorescence emission of PFV in the blue side of the spectra in the solid phase, especially in powder form, when the polymer is doped with 30B nanoclay (organically modified Montmorillonite) and graphene nanoparticles. Interestingly, the average fluorescence lifetime of PFVgraphene nanocomposite in thin film is found to be much higher (8.1 ns) compared to that for PFV only in thin film (3 ns). These novel nanocomposites may have potential applications in polymer optoelectronics industry.

  20. A 9,9'-spirobi[9H-fluorene]-cored perylenediimide derivative and its application in organic solar cells as a non-fullerene acceptor.

    PubMed

    Yi, Jinduo; Wang, Yiling; Luo, Qun; Lin, Yi; Tan, Hongwei; Wang, Hongyu; Ma, Chang-Qi

    2016-01-28

    A structurally non-planar molecule (SBF-PDI4) with a 9,9'-spirobi[9H-fluorene] (SBF) core and four perylenediimides (PDIs) at the periphery was designed, synthesized and characterized. This compound shows a low-lying LUMO energy level of -4.11 eV, which is similar to that of PCBM, but with intensive light absorption ability in the range 450-550 nm. A high power conversion efficiency (PCE) of 5.34% was obtained for a solution processed bulk heterojunction solar cell (BHJSC) using SBF-PDI4 as the electron acceptor and a low-band gap polymer poly[[4,8-bis[5-(2-ethylhexyl)thiophene-2-yl]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl

  1. Effect of solution chemistry on the extent of binding of phenanthrene by a soil humic acid: A comparison of dissolved and clay bound humic

    SciTech Connect

    Jones, K.D.; Tiller, C.L.

    1999-02-15

    The effect of pH, ionic strength, and cation in solution on the binding of phenanthrene by a soil humic acid in the aqueous phase was determined using fluorescence quenching. The phenanthrene binding coefficient with the dissolved soil humic, K{sub oc}, decreased with increasing ionic strength and solution cation valence. At low values of ionic strength, K{sub oc} values for this soil humic acid increased with increasing pH. For this humic sample, the experimental results were consistent with a conformational model of the humic substance in aqueous solution where, depending on solution conditions, some parts of the humic structure may be more open to allow increased PAH access to attachment sites. After sorption onto clays, supernatant solutions of the unadsorbed humic fraction yielded lower K{sub oc} values than the original bulk humic acid, suggesting that the humic substance was fractionating during its sorption onto the clays. Additionally, the extent of phenanthrene binding with the adsorbed humic fraction was lower than the results determined for the bulk humic acid prior to adsorption. The conformation of the humic substance when sorbed onto the inorganic surface appears to be affecting the level of phenanthrene binding by the humic acid.

  2. Expeditious synthesis of phenanthrenes via CuBr2-catalyzed coupling of terminal alkynes and N-tosylhydrazones derived from o-formyl biphenyls.

    PubMed

    Ye, Fei; Shi, Yi; Zhou, Lei; Xiao, Qing; Zhang, Yan; Wang, Jianbo

    2011-10-01

    A new method for the synthesis of phenanthrenes via ligand-free CuBr(2)-catalyzed coupling/cyclization of terminal alkynes with N-tosylhydrazones derived from o-formyl biphenyls has been developed. This new synthesis has wide range of functional group compatibility. PMID:21875127

  3. Moderate salinity reduced phenanthrene-induced stress in the halophyte plant model Thellungiella salsuginea compared to its glycophyte relative Arabidopsis thaliana: Cross talk and metabolite profiling.

    PubMed

    Shiri, Moez; Rabhi, Mokded; Abdelly, Chedly; Bouchereau, Alain; El Amrani, Abdelhak

    2016-07-01

    It was shown that halophytes experience higher cross-tolerance to stresses than glycophytes, which was often associated with their more powerful antioxidant systems. Moreover, salinity was reported to enhance halophyte tolerance to several stresses. The aim of the present work was to investigate whether a moderate salinity enhances phenanthrene stress tolerance in the halophyte Thellungiella salsuginea. The model plant Arabidopsis thaliana, considered as its glycophyte relative, was used as reference. Our study was based on morpho-physiological, antioxidant, and metabolomic parameters. Results showed that T. salsuginea was more tolerant to phenanthrene stress as compared to A. thaliana. An improvement of phenanthrene-induced responses was recorded in the two plants in the presence of 25 mM NaCl, but the effect was significantly more obvious in the halophyte. This observation was particularly related to the higher antioxidant activities and the induction of more adapted metabolism in the halophyte. Gas Chromatography coupled with Mass Spectrometry (GC-MS) was used to quantify alcohols, ammonium, sugars, and organic acids. It showed the accumulation of several metabolites, many of them are known to be involved in signaling and abiotic stress tolerance. Moderate salinity and phenanthrene cross-tolerance involved in these two stresses was discussed. PMID:27139124

  4. Biodegradation of phenanthrene and analysis of degrading cultures in the presence of a model organo-mineral matrix and of a simulated NAPL phase.

    PubMed

    Cavalca, Lucia; Rao, Maria A; Bernasconi, Silvana; Colombo, Milena; Andreoni, Vincenza; Gianfreda, Liliana

    2008-02-01

    Two mixed bacterial cultures (C(B-BT) and C(I-AT)) degraded phenanthrene when it was: (i) in the presence of either hexadecane as a non aqueous phase liquid or a montmorillonite-Al(OH)x-humic acid complex as a model organo-mineral matrix; (ii) sorbed to the complex, either alone or in the presence of hexadecane. The cultures had different kinetic behaviours towards phenanthrene with or without hexadecane. The degradation of Phe alone as well as that of Phe in hexadecane ended in 8 and 15 days with C(B-BT) and C(I-AT) cultures, respectively. Hexadecane increased Phe bioavailability for C(I-AT) bacteria which degraded Phe according to first-order kinetics. The same effect was observed for C(B-BT) bacteria, but with an initial 2 days lag phase and in accordance with zero-order kinetics. The presence of hexadecane did not affect the degradation of phenanthrene sorbed and aged on the complex by C(I-AT )culture. This capability was exhibited also after experimental aging of 30 days. The dynamics of the bacterial community composition was investigated through PCR-DGGE (denaturing gradient gel electrophoresis) of 16S rRNA gene fragments. Individual bands changed their intensity during the incubation time, implying that particular microbe's relative abundance changed according to the culture conditions. Isolation of phenanthrene and/or hexadecane degraders was in accord with cultivation-independent data. Growth-dependent changes in the cell surface hydrophobicity of the two cultures and of the isolates suggested that modulation of cell surface hydrophobicity probably played an important role for an efficient phenanthrene assimilation/uptake. PMID:17372704

  5. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks

    NASA Astrophysics Data System (ADS)

    Hughes, William B.; Holba, Albert G.; Dzou, Leon I. P.

    1995-09-01

    The ratio of dibenzothiophene to phenanthrene and the ratio of pristane to phytane, when coupled together, provide a novel and convenient way to infer crude oil source rock depositional environments and lithologies. Such knowledge can significantly assist in identifying the source formation(s) in a basin thereby providing valuable guidance for further exploration. The ability to infer this information from analysis of a crude oil is especially valuable as frequently the earliest samples in a new area may be shows and/or drill stem test samples from exploratory wells which are characteristically drilled on structural highs stratigraphically remote from the source formation(s). A cross-plot of dibenzothiophene/phenanthrene versus the pristane/phytane ratios measured on seventy-five crude oils from forty-one known source rocks ranging in age from Ordovician to Miocene consistently classified the oils into the following environment/ lithology groups: marine carbonate; marine carbonate/ mixed and lacustrine sulfate-rich; lacustrine sulfate-poor; marine and lacustrine shale; and fluvial/deltaic carbonaceous shale and coal. The dibenzothiophene/phenanthrene ratio alone is an excellent indicator of source rock lithology with carbonates having ratios > 1 and shales having ratios < 1. The dibenzothiophene to phenanthrene and the pristane to phytane ratios can also be used to classify source rock paleodepositional environments. The classification scheme is based on the premise that these ratios reflect the different Eh-pH regimes resulting from the significant microbiological and chemical processes occurring during deposition and early diagenesis of sediments. The dibenzothiophene/phenanthrene ratio assesses the availability of reduced sulfur for incorporation into organic matter and the pristane/phytane ratio assesses the redox conditions within the depositional environment. Interpretation of these ratios has been aided by quantitative biomarker analysis and by carbon

  6. Kinetic characteristic of phenanthrene sorption in aged soil amended with biochar

    NASA Astrophysics Data System (ADS)

    Kim, Chanyang; Kim, Yong-Seong; Hyun, Seunghun

    2015-04-01

    Biochar has been recently highlighted as an amendment that affects yield of the crops by increasing pH, cation exchange capacity and water retention, and reduces the lability of contaminants by increasing sorption capacity in the soil system. Biochar's physico-chemical properties, high CEC, surfaces containing abundant micropores and macropores, and various types of functional groups, play important roles in enhancing sorption capacity of contaminants. Aging through a natural weathering process might change physico-chemical properties of biochar amended in soils, which can affect the sorption behavior of contaminants. Thus, in this study, the sorption characteristics of phenanthrene (PHE) on biochar-amended soils were studied with various types of chars depending on aging time. To do this, 1) soil was amended with sludge waste char (SWC), wood char (WC), and municipal waste char (MWC) during 0, 6, and 12 month. Chars were applied to soil at 1% and 2.5% (w/w) ratio. 2) Several batch kinetic and equilibrium studies were conducted. One-compartment first order and two-compartment first order model apportioning the fraction of fast and slow sorbing were selected for kinetic models. Where, qt is PHE concentration in biochar-amended soils at each time t, qeis PHE concentration in biochar-amended soils at equilibrium. ff is fastly sorbing fraction and (1-ff) is slowly sorbing fraction. k is sorption rate constant from one-compartment first order model, k1 and k2 are sorption rate constant from two-compartment first order model, t is time (hr). The equilibrium sorption data were fitted with Fruendlich and Langmuir equation. 3) Change in physico-chemical properties of biochar-amended soils was investigated with aging time. Batch equilibrium sorption results suggested that sorbed amount of PHE on WC was greater than SWC and MWC. The more char contents added to soil, the greater sorption capacity of PHE. Sorption equilibrium was reached after 4 hours and equilibrium pH ranged

  7. Variability of standard artificial soils: Physico-chemical properties and phenanthrene desorption measured by means of supercritical fluid extraction.

    PubMed

    Bielská, Lucie; Hovorková, Ivana; Komprdová, Klára; Hofman, Jakub

    2012-04-01

    The study is focused on artificial soil which is supposed to be a standardized "soil like" medium. We compared physico-chemical properties and extractability of Phenanthrene from 25 artificial soils prepared according to OECD standardized procedures at different laboratories. A substantial range of soil properties was found, also for parameters which should be standardized because they have an important influence on the bioavailability of pollutants (e.g. total organic carbon ranged from 1.4 to 6.1%). The extractability of Phe was measured by supercritical fluid extraction (SFE) at harsh and mild conditions. Highly variable Phe extractability from different soils (3-89%) was observed. The extractability was strongly related (R(2)=0.87) to total organic carbon content, 0.1-2mm particle size, and humic/fulvic acid ratio in the following multiple regression model: SFE (%)=1.35*sand (%)-0.77*TOC (%)2+0.27*HA/FA. PMID:22325424

  8. Insight into sorption mechanism of phenanthrene onto gemini modified palygorskite through a multi-level fuzzy-factorial inference approach.

    PubMed

    Zhao, Shan; Huang, Gordon; Wang, Shuo; Wang, Xiuquan; Huang, Wendy

    2016-07-28

    A multi-level fuzzy-factorial inference approach was proposed to examine the sorption behavior of phenanthrene on palygorskite modified with a gemini surfactant. Fuzzy set theory was used to determine five experimentally controlled environmental factors with triangular membership functions, including initial concentration, added humid acid dose, ionic strength, temperature, and pH. The statistical significance of factors and their interactions affecting the sorption process was revealed through a multi-level factorial experiment. Initial concentration, ionic strength, and pH were identified as the most significant factors based on the multi-way ANOVA results. Examination of curvature effects of factors revealed the nonlinear complexity inherent in the sorption process. The potential interactions among experimental factors were detected, which is meaningful for providing a deep insight into the sorption mechanisms under the influences of factors at different levels. PMID:27163726

  9. Distribution of radioactivity in the chondrichthyes Squalus acanthias and the osteichthyes salmo gairdneri following intragastric administration of (9-/sup 14/C)phenanthrene

    SciTech Connect

    Solbakken, J.E.; Palmork, K.H.

    1980-12-01

    The fate of polycyclic hydrocarbons (PAH) in marine animals has received increasing attention in the last decade. The present studies dealing with spiny dogfish (Squalus acanthias) and rainbow trout (Salmo gairdneri) are part of a series of experiments with different marine organisms. All the experiments were performed under the same laboratory conditions using intragastric administration of the PAH-component, /sup 14/C-labelled phenanthrene. Thus it is possible to compare species differences of disposition of PAH in various marine organisms. The most pronounced differences in the disposition of phenanthrene between bony fish and cartilaginous fish in our studies are that the maximum value of radioactivity in the liver of cartilaginous fish occurred several days later than the corresponding value in bony fish. Furthermore, the radioactivity in cartilaginous fish was retained at a high level beyond 672 h (28 days), a time at which the radioactivity in bony fish is near the background values.

  10. Phenanthrenes, 9,10-dihydrophenanthrenes, bibenzyls with their derivatives, and malate or tartrate benzyl ester glucosides from tubers of Cremastra appendiculata.

    PubMed

    Wang, Yang; Guan, Shu-Hong; Meng, Yu-Hui; Zhang, Yi-Bei; Cheng, Chun-Ru; Shi, Yang-Yang; Feng, Rui-Hong; Zeng, Feng; Wu, Zhi-Yuan; Zhang, Jing-Xian; Yang, Min; Liu, Xuan; Li, Qing; Chen, Xiao-Hui; Bi, Kai-Shun; Guo, De-An

    2013-10-01

    Eleven previously unknown compounds and 23 known compounds, including 20 phenanthrene or 9,10-dihydrophenanthrene derivatives, five bibenzyls, seven malate or tartrate benzyl ester glucosides, adenosine and gastrodin were isolated from tubers of Cremastra appendiculata. Among the obtained compounds, two are the first isolated dimers with one phenanthrene or bibenzyl unit connected to C-3 of 2,3,4,5-tetrahydro-phenanthro[2,1-b]furan moiety. In addition, 33 of these compounds were evaluated in vitro for their cytotoxic activity against two cancer cell lines. Among the compounds examined, one compound showed moderate cytotoxic activity, while five showed weak cytotoxic activity against the A549 cell line. PMID:23820314

  11. Synthesis of 9,10-Phenanthrenes via Palladium-Catalyzed Aryne Annulation by o-Halostyrenes and Formal Synthesis of (±)-Tylophorine.

    PubMed

    Yao, Tuanli; Zhang, Haiming; Zhao, Yanna

    2016-06-01

    A novel palladium-catalyzed annulation reaction of in situ generated arynes and o-halostyrenes has been developed. This methodology affords moderate to excellent yields of substituted phenanthrenes and is tolerant of a variety of functional groups such as nitrile, ester, amide, and ketone. This annulation chemistry has been successfully applied to the formal total synthesis of a biologically active alkaloid (±)-tylophorine. PMID:27188401

  12. Solution‐crystallization and related phenomena in 9,9‐dialkyl‐fluorene polymers. II. Influence of side‐chain structure

    PubMed Central

    Perevedentsev, Aleksandr; Stavrinou, Paul N.; Smith, Paul

    2015-01-01

    ABSTRACT Solution‐crystallization is studied for two polyfluorene polymers possessing different side‐chain structures. Thermal analysis and temperature‐dependent optical spectroscopy are used to clarify the nature of the crystallization process, while X‐ray diffraction and scanning electron microscopy reveal important differences in the resulting microstructures. It is shown that the planar‐zigzag chain conformation termed the β‐phase, which is observed for certain linear‐side‐chain polyfluorenes, is necessary for the formation of so‐called polymer‐solvent compounds for these polymers. Introduction of alternating fluorene repeat units with branched side‐chains prevents formation of the β‐phase conformation and results in non‐solvated, i.e. melt‐crystallization‐type, polymer crystals. Unlike non‐solvated polymer crystals, for which the chain conformation is stabilized by its incorporation into a crystalline lattice, the β‐phase conformation is stabilized by complexation with solvent molecules and, therefore, its formation does not require specific inter‐chain interactions. The presented results clarify the fundamental differences between the β‐phase and other conformational/crystalline forms of polyfluorenes. © 2015 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015, 53, 1492–1506

  13. Atmospheric concentration and carcinogenic risk of polycyclic aromatic hydrocarbons including benzo[c]fluorene, cyclopenta[c,d]pyrene, and benzo[j]fluoranthene in Japan

    NASA Astrophysics Data System (ADS)

    Yagishita, Mayuko; Kageyama, Shiho; Ohshima, Shigeru; Matsumoto, Michi; Aoki, Yasunobu; Goto, Sumio; Nakajima, Daisuke

    2015-08-01

    The atmospheric concentrations of both gas-phase and particulate-phase polycyclic aromatic hydrocarbons (PAHs) including 16 US Environmental Protection Agency priority PAHs (16 PAHs) were measured in eleven cities across Japan. Using the measured average concentrations and toxic equivalency factors (TEF) of the 16 PAHs, the benzo[a]pyrene (BaP)-toxic equivalent for eight major PAHs was obtained: the ratio of BaP to the eight major PAH toxicities ranged from 0.23 to 0.47. Among the target PAHs, from the viewpoint of carcinogenicity, we focused on benzo[c]fluorene (BcFE), which was detected in both the gas and particulate phase in contrast to BaP. The relative potency factor (RPF) of BcFE was evaluated as 6.46 based on its cancer slope factor relative to that of BaP determined in the benchmark dose calculations for mice. The relative carcinogenic risk of BcFE to BaP was obtained by multiplying the averaged concentrations of BaP and BcFE by the RPF value: the risk of BcFE was 6.8 and 5.1 times higher than that of BaP in summer and winter, respectively. These results show that the collection of atmospheric samples including the gas phase is important when assessing the carcinogenic risk of atmospheric PAHs.

  14. Fluorene-based sensitizers with a phenothiazine donor: effect of mode of donor tethering on the performance of dye-sensitized solar cells.

    PubMed

    Baheti, Abhishek; Justin Thomas, K R; Li, Chun-Ting; Lee, Chuan-Pei; Ho, Kuo-Chuan

    2015-02-01

    Two types of fluorene-based organic dyes featuring T-shape/rod-shape molecular configuration with phenothiazine donor and cyanoacrylic acid acceptor have been synthesized and characterized as sensitizers for dye-sensitized solar cells. Phenothiazine is functionalized at either nitrogen (N10) or carbon (C3) to obtain T-shape and rod-like organic dyes, respectively. The effect of structural alternation on the optical, electrochemical, and the photovoltaic properties is investigated. The crystal structure determination of the dye containing phenyl linker revealed cofacial slip-stack columnar packing of the molecules. The trends in the optical properties of the dyes are interpreted using time-dependent density functional theory (TDDFT) computations. The rod-shaped dyes exhibited longer wavelength absorption and low oxidation potentials when compared to the corresponding T-shaped dyes attributable to the favorable electronic overlap between the phenothiazine unit and the rest of the molecule in the former dyes. However, the T-shaped dyes showed better photovoltaic properties due to the lowest unoccupied molecular orbital (LUMO) energy level favorable for electron injection into the conduction band of TiO2 and appropriate orientation of the phenothiazine unit rendering effective surface blocking to suppress the recombination of electrons between the electrolyte I3(-) and TiO2. The electrochemical impedance spectroscopy investigations provide further support for the variations in the electron injection and transfer kinetics due to the structural modifications. PMID:25557120

  15. Bacteria capable of degrading anthracene, phenanthrene, and fluoranthene as revealed by DNA based stable-isotope probing in a forest soil.

    PubMed

    Song, Mengke; Jiang, Longfei; Zhang, Dayi; Luo, Chunling; Wang, Yan; Yu, Zhiqiang; Yin, Hua; Zhang, Gan

    2016-05-01

    Information on microorganisms possessing the ability to metabolize different polycyclic aromatic hydrocarbons (PAHs) in complex environments helps in understanding PAHs behavior in natural environment and developing bioremediation strategies. In the present study, stable-isotope probing (SIP) was applied to investigate degraders of PAHs in a forest soil with the addition of individually (13)C-labeled phenanthrene, anthracene, and fluoranthene. Three distinct phylotypes were identified as the active phenanthrene-, anthracene- and fluoranthene-degrading bacteria. The putative phenanthrene degraders were classified as belonging to the genus Sphingomona. For anthracene, bacteria of the genus Rhodanobacter were the putative degraders, and in the microcosm amended with fluoranthene, the putative degraders were identified as belonging to the phylum Acidobacteria. Our results from DNA-SIP are the first to directly link Rhodanobacter- and Acidobacteria-related bacteria with anthracene and fluoranthene degradation, respectively. The results also illustrate the specificity and diversity of three- and four-ring PAHs degraders in forest soil, contributes to our understanding on natural PAHs biodegradation processes, and also proves the feasibility and practicality of DNA-based SIP for linking functions with identity especially uncultured microorganisms in complex microbial biota. PMID:26808242

  16. Short-Term Rhizosphere Effect on Available Carbon Sources, Phenanthrene Degradation, and Active Microbiome in an Aged-Contaminated Industrial Soil

    PubMed Central

    Thomas, François; Cébron, Aurélie

    2016-01-01

    Over the last decades, understanding of the effects of plants on soil microbiomes has greatly advanced. However, knowledge on the assembly of rhizospheric communities in aged-contaminated industrial soils is still limited, especially with regard to transcriptionally active microbiomes and their link to the quality or quantity of carbon sources. We compared the short-term (2–10 days) dynamics of bacterial communities and potential PAH-degrading bacteria in bare or ryegrass-planted aged-contaminated soil spiked with phenanthrene, put in relation with dissolved organic carbon (DOC) sources and polycyclic aromatic hydrocarbon (PAH) pollution. Both resident and active bacterial communities (analyzed from DNA and RNA, respectively) showed higher species richness and smaller dispersion between replicates in planted soils. Root development strongly favored the activity of Pseudomonadales within the first 2 days, and of members of Actinobacteria, Caulobacterales, Rhizobiales, and Xanthomonadales within 6–10 days. Plants slowed down the dissipation of phenanthrene, while root exudation provided a cocktail of labile substrates that might preferentially fuel microbial growth. Although the abundance of PAH-degrading genes increased in planted soil, their transcription level stayed similar to bare soil. In addition, network analysis revealed that plants induced an early shift in the identity of potential phenanthrene degraders, which might influence PAH dissipation on the long-term. PMID:26903971

  17. Impact of phenanthrene on the properties of biogeochemical interfaces in soil: A two-layer column study

    NASA Astrophysics Data System (ADS)

    Reichel, Katharina; Totsche, Kai Uwe

    2013-04-01

    Biogeochemical interfaces in soils (Totsche et al. 2010) are the "hot spots" of microbial activity and the processing of organic compounds in soils. The production and relocation of mobile organic matter (MOM) and biocolloids like microorganisms are key processes for the formation and depth propagation of biogeochemical interfaces in soils (BGI). Phenanthrene (PHE) has been shown to affect microbial communities in soils (Ding et al. 2012) and may induce shifts in MOM quantity and quality (amount, type and properties of MOM). We hypothesize that the properties of BGI in soil change significantly due to the presence of PHE. The objectives of this study are (i) to evaluate the effect of PHE on soil microbial communities and on MOM quantity and quality under flow conditions with single- and two-layer column experiments and (ii) to assess the role of these processes for the physicochemical, mechanical and sorptive properties of BGI in soils. The soil columns were operated under water-unsaturated conditions. The top layer (source layer, SL, 2 cm) is made of sieved soil material (Luvisol, Scheyern, Germany) spiked with PHE (0.2 mg/g). The bottom layer (reception layer, RL, 10 cm) comprised the same soil without PHE. PHE-free columns were conducted in parallel as reference. Release and transport of MOM in mature soil of a single-layer column experiment was found to depend on the transport regime. The release of larger sized MOM (>0.45 µm) was restricted to an increased residence time during flow interruptions. Steady flow conditions favor the release of smaller MOM (<0.45 µm). Compared to the reference, in the two-layer column experiments higher OC concentrations were detected in the effluent from PHE spiked columns after enhanced flow interruptions (26d, 52d). That indicated the PHE influenced production or mobilization of MOM. Parallel factor analysis of fluorescence excitation and emission matrices revealed the presence of a constant DOM background and two new unknown

  18. Toxicity of combined chromium(VI) and phenanthrene pollution on the seed germination, stem lengths, and fresh weights of higher plants.

    PubMed

    Hu, Shuangqing; Gu, Hairong; Cui, Chunyan; Ji, Rong

    2016-08-01

    Studies of the interaction and toxicity of pollutant combinations such as heavy metals and PAHs are of practical importance in the remediation and monitoring of the industrial soil environment. This study investigated the single and combined toxicity of chromium(VI) and phenanthrene on three important higher plants: mung beans (Phaseolus aureus), pakchoi cabbage (Brassica chinensis), and rice (Oryza sativa). In experiments using artificial soil matrix, the EC10 and EC20 of the two pollutants, alone and in combination, were analyzed with respect to seed germination, stem length, and above-ground fresh weight of these higher plants. The additive index method was used to evaluate the combined biological toxicity of chromium(VI) and phenanthrene. The results showed that the EC20 of chromium(VI) on the stem lengths of mung beans, pakchoi cabbage, and rice was 289, 248, and 550 mg kg(-1), respectively. The corresponding EC20 values for the fresh weights of the three plants were 334, 307, and 551 mg kg(-1). The EC20 of phenanthrene on the stem lengths of mung beans, pakchoi cabbage, and rice was 528, 426, and 628 mg kg(-1), respectively. The corresponding EC20 values for the fresh weights of the three plants were 696, 585, and 768 mg kg(-1). The EC20 of a combination of chromium(VI) and phenanthrene on the stem lengths of mung beans, pakchoi cabbage, and rice was 192, 173, and 279 mg kg(-1), respectively, and 200, 205, and 271 mg kg(-1) for the fresh weights of the three plants. The single and combined exposure of soil to chromium(VI) and phenanthrene had deleterious effects on plants in the early stage of growth. Overall, pakchoi cabbage was more sensitive than mung beans and rice. The two pollutants exerted synergistic effects on the stem lengths and above-ground fresh weights of both mung beans and rice but antagonistic effects on pakchoi cabbage. The results of this study also suggested pakchoi cabbage as a sensitive indicator of soil pollution. PMID

  19. Properties of the plant- and manure-derived biochars and their sorption of dibutyl phthalate and phenanthrene.

    PubMed

    Qiu, Mengyi; Sun, Ke; Jin, Jie; Gao, Bo; Yan, Yu; Han, Lanfang; Wu, Fengchang; Xing, Baoshan

    2014-01-01

    The properties of plant residue-derived biochars (PLABs) and animal waste-derived biochars (ANIBs) obtained at low and high heating treatment temperatures (300 and 450°C) as well as their sorption of dibutyl phthalate (DBP) and phenanthrene (PHE) were investigated in this study. The higher C content of PLABs could explain that CO₂-surface area (CO₂-SA) of PLABs was remarkably high relative to ANIBs. OC and aromatic C were two key factors influencing the CO₂-SA of the biochars. Much higher surface C content of the ANIBs than bulk C likely explained that the ANIBs exhibited higher sorption of DBP and PHE compared to the PLABs. H-bonding should govern the adsorption of DBP by most of the tested biochars and π-π interaction play an important role in the adsorption of PHE by biochars. High CO₂-SA (>200 m(2) g(-1)) demonstrated that abundant nanopores of OC existed within the biochars obtained 450°C (HTBs), which likely result in high and nonlinear sorption of PHE by HTBs. PMID:24924925

  20. Selection and identification of fungi isolated from sugarcane bagasse and their application for phenanthrene removal from soil.

    PubMed

    Cortés-Espinosa, D V; Fernández-Perrino, F J; Arana-Cuenca, A; Esparza-García, F; Loera, O; Rodríguez-Vázquez, R

    2006-01-01

    This work investigated the identification and selection of fungi isolated from sugarcane bagasse and their application for phenanthrene (Phe) removal from soil. Fungi were identified by PCR amplification of ITS regions as Aspergillus terrus, Aspergillus fumigatus and Aspergillus niger, Penicillium glabrum and Cladosporium cladosporioides. A primary selection of fungi was accomplished in plate, considering Phe tolerance of every strain in two different media: potato dextrose agar (PDA) and mineral medium (MM). The radial extension rate (r(r)) in PDA exhibited significant differences (p<0.05) at 200 and 400 ppm of Phe. A secondary selection of A. niger, C. cladosporoides, and P. glabrum sp. was achieved based on their tolerance to 200, 400, 600 and 800 ppm of Phe, in solid culture at a sugarcane bagasse/contaminated soil ratio of 95:5, in Toyamas, Czapeck and Wunder media. Under these conditions, a maximum (70%) Phe removal by A. niger was obtained. In addition C. cladosporioides and A. niger were able to remove high (800 ppm) Phe concentrations. PMID:16484077

  1. Transportation and localization of phenanthrene and its interaction with different species of arsenic in Pteris vittata L.

    PubMed

    Liao, Xiaoyong; Ma, Xu; Yan, Xiulan; Lin, Longyong; Shi, Peili; Wu, Zeying

    2016-06-01

    The interaction between arsenic (As) and phenanthrene (PHE) in Pteris vittata L. was investigated in this study. The migration and occurrence of PHE in P. vittata were determined by two-photon laser scanning confocal microscopy. Data indicated that PHE supplementation lowers the As concentration in P. vittata, decreasing As levels by 16.8-39.9% in the pinnae, 30.0-49.0% in the rachis, and 45-51.5% in the roots, respectively. Different arsenic species inhibited P. vittata PHE absorption. The most significant effect was observed using dimethylarsenic acid (DMA), which decreased PHE accumulation by 20.73%. With the exception of elevated As(V) concentrations in As(III)-treated plants, PHE treatment significantly reduced inorganic As concentrations in P. vittata. However, PHE elevated root DMA concentrations by 9%. According to in situ visualization, PHE is primarily found in the upper and lower epidermis and stomatal cells, particularly the stomata guard cells. PMID:27023118

  2. Phytoremediation of soils contaminated with phenanthrene and cadmium by growing willow (Salix × aureo-pendula CL 'j1011').

    PubMed

    Sun, Y Y; Xu, H X; Li, J H; Shi, X Q; Wu, J C; Ji, R; Guo, H Y

    2016-01-01

    To assess the phytoremediation potential of an autochthonous willow (Salix × aureo-pendula CL 'J1011') for phenanthrene (PHE)-contaminated soils and PHE-cadmium (PHE-Cd) co-contaminated soils, we conducted field experiments in the lower reaches of the Yangtze River, China. Ethylenediaminetetraacetic acid (EDTA) and ethyl lactate were tested for individual and combined effects on the phytoremediation efficiency. For PHE-contaminated soils, willow plus ethyl lactate resulted in significant removal of PHE from soils after 45 days, and the PHE concentration in the shoots was significantly higher with than without ethyl lactate. For PHE-Cd co-contaminated soils, both willow plus EDTA and willow plus EDTA and ethyl lactate led to a significant decrease in the concentrations of PHE and Cd in the soils after 45 days, whereas willow alone did not. The PHE and Cd concentrations in the willow shoots were significantly enhanced in the presence of EDTA alone and with ethyl lactate, except for the PHE concentration in stems with EDTA alone. Under the same treatment, the presence of Cd had no significant influence on the PHE removal from soils. The results indicate the feasibility of using this willow together with both EDTA and ethyl lactate for the simultaneous removal of PHE and Cd from soils. PMID:26247604

  3. Distribution characteristics of phenanthrene in the water, suspended particles and sediments from Yangtze River under hydrodynamic conditions.

    PubMed

    Wang, Lili; Shen, Zhenyao; Wang, Hongyuan; Niu, Junfeng; Lian, Guoxi; Yang, Zhifeng

    2009-06-15

    The effects of aquatic sediment concentrations, grain size distribution and hydrodynamic conditions on sorption behavior of phenanthrene (PHE) on sediments collected from Yangtze River (Wuhan catchment) were investigated. The results showed that the sorption behavior of PHE was mainly affected by the organic carbon in different phases, i.e. organic carbon contents (f(oc)) (w/w, organic carbon/dry weight sediment) in the sediments and dissolved organic carbon (DOC) in liquid phase. In this study, sediments were subjected to artificial resuspension under turbulent diffusion coefficients being 24.6, 29.5 and 46.2 cm(2)s(-1) corresponded to 0.4, 0.3 and 0.2 s cycle(-1) of the perforated grids, respectively, which were driven by variable speed motor with 150, 180 and 280 rotation per minute (rpm). The suspended particle concentration increased from 1.01 to 6.70 g L(-1) as the hydrodynamic strength increased from 150 to 280 rpm, whereas PHE concentration in liquid phase decreased from 0.56 to 0.34 microg mL(-1). The amount of DOC was supposed to play an important role in the partition of PHE under hydrodynamic conditions. Moreover, a sorption dynamic model was developed based on the linear isotherm expression and law of conservation of mass. The model was validated by PHE sorption behavior acquired with three different hydrodynamic conditions and the predicted values displayed satisfying accordance with experimental data. PMID:19022579

  4. Efficient biodegradation of phenanthrene by a novel strain Massilia sp. WF1 isolated from a PAH-contaminated soil.

    PubMed

    Wang, Haizhen; Lou, Jun; Gu, Haiping; Luo, Xiaoyan; Yang, Li; Wu, Laosheng; Liu, Yong; Wu, Jianjun; Xu, Jianming

    2016-07-01

    A novel phenanthrene (PHE)-degrading strain Massilia sp. WF1, isolated from PAH-contaminated soil, was capable of degrading PHE by using it as the sole carbon source and energy in a range of pH (5.0-8.0), temperatures (20-35 °C), and PHE concentrations (25-400 mg L(-1)). Massilia sp. WF1 exhibited highly effective PHE-degrading ability that completely degraded 100 mg L(-1) of PHE over 2 days at optimal conditions (pH 6.0, 28 °C). The kinetics of PHE biodegradation by Massilia sp. WF1 was well represented by the Gompertz model. Results indicated that PHE biodegradation was inhibited by the supplied lactic acid but was promoted by the supplied carbon sources of glucose, citric acid, and succinic acid. Salicylic acid (SALA) and phthalic acid (PHTA) were not utilized by Massilia sp. WF1 and had no obvious effect on PHE biodegradation. Only two metabolites, 1-hydroxy-2-naphthoic acid (1H2N) and PHTA, were identified in PHE biodegradation process. Quantitatively, nearly 27.7 % of PHE was converted to 1H2N and 30.3 % of 1H2N was further metabolized to PHTA. However, the PHTA pathway was broken and the SALA pathway was ruled out in PHE biodegradation process by Massilia sp. WF1. PMID:27026540

  5. In silico understanding of the cyclodextrin-phenanthrene hybrid assemblies in both aqueous medium and bacterial membranes.

    PubMed

    Ren, Baiping; Gao, Huipeng; Cao, Yafeng; Jia, Lingyun

    2015-03-21

    The explicit-solvent molecular dynamic (MD) simulation and adaptive biased forces (ABF) methods were employed to systemically study the structural and thermodynamic nature of the β-cyclodextrin (βCD) monomer, phenanthrene (Phe) monomer, and their inclusion complexes in both the aqueous and membrane environments, aiming at clarifying the atomic-level mechanisms underlying in the CD-enhanced degradation of polycyclic aromatic hydrocarbons (PAHs) by bacteria. Simulations showed that βCD and Phe monomers could associate together to construct two distinctive assemblies, i.e, βCD1-Phe1 and βCD2-Phe1, respectively. The membrane-involved equilibrium simulations and the data of potential of mean forces (PMFs) further confirmed that Phe monomer was capable of penetrating through the membranes without confronting any large energy barrier, whereas, the single βCD and βCD-involved assemblies were unable to pass across the membranes. These observations clearly suggested that βCD only served as the carrier to enhance the bioavailability of Phe rather than the co-substrate in the Phe biodegradation process. The Phe-separation PMF profiles indicated that the maximum of the Phe uptake by bacteria would be achieved by the "optimal" βCD:Phe molar ratio, which facilitated the maximal formation of βCD1-Phe1 inclusion and the minimal construction of βCD2-Phe1 complex. PMID:25497028

  6. Partitioning of phenanthrene into surfactant hemi-micelles on the bacterial cell surface and implications for surfactant-enhanced biodegradation.

    PubMed

    Lanzon, Jacquelyn B; Brown, Derick G

    2013-09-01

    Recent studies have suggested that the ability of a surfactant to enhance the bioavailability of hydrophobic organic compounds (HOC) requires the formation of surfactant hemi-micelles on the bacterial cell surface and subsequent partitioning of HOC into the hemi-micelles. However, the studies did not provide direct evidence of HOC partitioning into surfactant hemi-micelles on the bacterial cell surface. In this study, direct evidence is provided to demonstrate that the nonionic surfactant Brij 30 forms hemi-micelles on the bacterial cell surface and that phenanthrene sorption at the bacterial surface is enhanced by the surfactant. These results are in agreement with the current theory describing surfactant-enhanced HOC bioavailability. This enhanced bioavailability is put into context with microbial kinetics and system partitioning processes, and it is demonstrated that the addition of surfactant can enhance, have no effect, or inhibit HOC biodegradation depending upon surfactant concentration and microbial growth rate. Understanding these non-linear relationships between surfactant-enhanced HOC bioavailability, biodegradation kinetics, and system partitioning will assist in the design and implementation of surfactant-enhanced bioremediation programs. PMID:23764610

  7. Electrokinetic-Enhanced Remediation of Phenanthrene-Contaminated Soil Combined with Sphingomonas sp. GY2B and Biosurfactant.

    PubMed

    Lin, Weijia; Guo, Chuling; Zhang, Hui; Liang, Xujun; Wei, Yanfu; Lu, Guining; Dang, Zhi

    2016-04-01

    Electrokinetic-microbial remediation (EMR) has emerged as a promising option for the removal of polycyclic aromatic hydrocarbons (PAHs) from contaminated soils. The aim of this study was to enhance degradation of phenanthrene (Phe)-contaminated soils using EMR combined with biosurfactants. The electrokinetic (EK) remediation, combined with Phe-degrading Sphingomonas sp. GY2B, and biosurfactant obtained by fermentation of Pseudomonas sp. MZ01, degraded Phe in the soil with an efficiency of up to 65.1 % at the anode, 49.9 % at the cathode after 5 days of the treatment. The presence of biosurfactants, electricity, and a neutral electrolyte stimulated the growth of the degrading bacteria as shown by a rapid increase in microbial biomass with time. The electrical conductivity and pH changed little during the course of the treatment, which benefitted the growth of microorganisms and the remediation of Phe-contaminated soil. The EMR system with the addition of biosurfactant had the highest Phe removal, demonstrating the biosurfactant may enhance the bioavailability of Phe and the interaction with the microorganism. This study suggests that the EMR combined with biosurfactants can be used to enhance in situ bioremediation of PAH-contaminated soils. PMID:26683200

  8. Highly Efficient Near-Infrared Delayed Fluorescence Organic Light Emitting Diodes Using a Phenanthrene-Based Charge-Transfer Compound.

    PubMed

    Wang, Shipan; Yan, Xianju; Cheng, Zong; Zhang, Hongyu; Liu, Yu; Wang, Yue

    2015-10-26

    Significant efforts have been made to develop high-efficiency organic light-emitting diodes (OLEDs) employing thermally activated delayed fluorescence (TADF) emitters with blue, green, yellow, and orange-red colors. However, efficient TADF materials with colors ranging from red, to deep-red, to near-infrared (NIR) have been rarely reported owing to the difficulty in molecular design. Herein, we report the first NIR TADF molecule TPA-DCPP (TPA=triphenylamine; DCPP=2,3-dicyanopyrazino phenanthrene) which has a small singlet-triplet splitting (ΔEST ) of 0.13 eV. Its nondoped OLED device exhibits a maximum external quantum efficiency (EQE) of 2.1 % with a Commission International de L'Éclairage (CIE) coordinate of (0.70, 0.29). Moreover, an extremely high EQE of nearly 10 % with an emission band at λ=668 nm has been achieved in the doped device, which is comparable to the most-efficient deep-red/NIR phosphorescent OLEDs with similar electroluminescent spectra. PMID:26480338

  9. Effects of ionic strength on the binding of phenanthrene and pyrene to humic substances: three-stage variation model.

    PubMed

    Lee, Chon-Lin; Kuo, Li-Jung; Wang, Huei-Ling; Hsieh, Ping-Chieh

    2003-10-01

    This study compared the effects of ionic strength on the binding constants (K(doc)) of selected polycyclic aromatic hydrocarbons (PAHs) (phenanthrene and pyrene) and a terrestrial humic acid (Leonardite Humic Acid) in different electrolyte solutions (KCl, KBr, MgCl(2) and MgSO(4)). Distinct trends were found in K(doc) variation depending upon the range of ionic strength resulting from added electrolytes. These trends demonstrated similar shapes for all the systems studied, while degree of variation increased with hydrophobicity of the PAHs. Furthermore, different types of electrolytes had different effects on the interactions between humic acid (HA) and the PAHs. These differences were primarily caused by types of cation, not anion. To describe the complicated effects of ionic strength on K(doc), we developed a three-stage variation model that encompasses increasing and decreasing trends and plateaus in K(doc) associated with ionic strength, as well as the mechanisms behind these trends, including the variation of HA structure configuration, HA aggregation and the salting-out effect. This model illustrated the importance of sufficient experimental data when interpreting the influence of ionic strength on the trends in K(doc) variation. PMID:12946908

  10. Properties of the plant- and manure-derived biochars and their sorption of dibutyl phthalate and phenanthrene

    PubMed Central

    Qiu, Mengyi; Sun, Ke; Jin, Jie; Gao, Bo; Yan, Yu; Han, Lanfang; Wu, Fengchang; Xing, Baoshan

    2014-01-01

    The properties of plant residue-derived biochars (PLABs) and animal waste-derived biochars (ANIBs) obtained at low and high heating treatment temperatures (300 and 450°C) as well as their sorption of dibutyl phthalate (DBP) and phenanthrene (PHE) were investigated in this study. The higher C content of PLABs could explain that CO2-surface area (CO2-SA) of PLABs was remarkably high relative to ANIBs. OC and aromatic C were two key factors influencing the CO2-SA of the biochars. Much higher surface C content of the ANIBs than bulk C likely explained that the ANIBs exhibited higher sorption of DBP and PHE compared to the PLABs. H-bonding should govern the adsorption of DBP by most of the tested biochars and π-π interaction play an important role in the adsorption of PHE by biochars. High CO2-SA (>200 m2 g−1) demonstrated that abundant nanopores of OC existed within the biochars obtained 450°C (HTBs), which likely result in high and nonlinear sorption of PHE by HTBs. PMID:24924925

  11. Single-solute and bi-solute sorption of phenanthrene and dibutyl phthalate by plant- and manure-derived biochars.

    PubMed

    Jin, Jie; Sun, Ke; Wu, Fengchang; Gao, Bo; Wang, Ziying; Kang, Mingjie; Bai, Yingcheng; Zhao, Ye; Liu, Xitao; Xing, Baoshan

    2014-03-01

    The spatial arrangement of biochar and the exact underlying interaction mechanisms of biochar and hydrophobic organic compounds both remain largely unknown. The sorption of dibutyl phthalate (DBP) and phenanthrene (PHE) to plant- and manure-derived biochars in both single- and bi-solute systems was investigated. The significant positive relation between surface polarity and ash content suggests that minerals benefit the external distribution of polar groups on particle surfaces. PHE and DBP sorption by the biochars was regulated by their surface polarity. The PHE generally displayed a pronounced enhancement of DBP sorption, likely resulting from the formation of biochar-PHE-DBP complexes, suggesting that DBP and PHE had different sorption sites on the biochars. The enhancement of Cd(2+) (a soft Lewis acid) on DBP sorption implied that π-π interactions should not dominate DBP sorption by biochars. The influence of Cd(2+) on PHE sorption by biochars would depend on the balance between suppressive sorption by Cd(2+)PHE bonding and enhanced sorption by Cd(2+)-complexed functionalities, and the amounts of Cd(2+) adsorbed by biochars determined the relative role of increased sorption by Cd(2+) in the overall PHE sorption. PMID:24374592

  12. Properties of the plant- and manure-derived biochars and their sorption of dibutyl phthalate and phenanthrene

    NASA Astrophysics Data System (ADS)

    Qiu, Mengyi; Sun, Ke; Jin, Jie; Gao, Bo; Yan, Yu; Han, Lanfang; Wu, Fengchang; Xing, Baoshan

    2014-06-01

    The properties of plant residue-derived biochars (PLABs) and animal waste-derived biochars (ANIBs) obtained at low and high heating treatment temperatures (300 and 450°C) as well as their sorption of dibutyl phthalate (DBP) and phenanthrene (PHE) were investigated in this study. The higher C content of PLABs could explain that CO2-surface area (CO2-SA) of PLABs was remarkably high relative to ANIBs. OC and aromatic C were two key factors influencing the CO2-SA of the biochars. Much higher surface C content of the ANIBs than bulk C likely explained that the ANIBs exhibited higher sorption of DBP and PHE compared to the PLABs. H-bonding should govern the adsorption of DBP by most of the tested biochars and π-π interaction play an important role in the adsorption of PHE by biochars. High CO2-SA (>200 m2 g-1) demonstrated that abundant nanopores of OC existed within the biochars obtained 450°C (HTBs), which likely result in high and nonlinear sorption of PHE by HTBs.

  13. Effects of polyethoxylate lauryl ether (Brij 35) addition on phenanthrene biodegradation in a soil/water system.

    PubMed

    Chang, Yi-T; Hung, Chun-H; Chou, Hsi-L

    2014-01-01

    Non-ionic surfactants usually are often selected for use in surfactant flushing technology, which is a process that can be used as part of PAH-contaminated soil bioremediation. Phenanthrene (PHE) biodegradation in the presence of polyethoxylate lauryl ether (Brij 35) was studied in two soil/water systems. The natural soil organic matter content (SOM) and the present of Brij 35, both above the critical micelle concentration (CMC) and below the CMC, changed the rate of PHE biodegradation in the presence of Brij 35. PHE biodegradation is different in the two different soil/water systems: PHE > PHE-Brij 35-Micelle > PHE-Brij 35-Monomer in the clay/water system; PHE-Brij 35-Micelle > PHE-Brij 35-Monomer > PHE in the natural soil/water system. Among the free-living species associated with PHE-Brij 35 biodegradation, Brevundimonas diminuta, Caulobacter spp., Mycoplana bullata, Acidovorax spp. and Pseudomonas aeruginosa accounted for 90.72% to 99.90% of the bacteria present. Specific hydrolytic enzymes, including esterases, glycosol-hydrolases and phosphatases, are expressed during PHE biodegradation. The information presented here will help the engineering design of more effective PAH bioremediation systems that use Brij 35 series flushing technology. In particular, micelles of Brij 35 can be used to accelerate the rate of remediation of PAH-contaminated soil in natural soil/water systems. PMID:25320854

  14. Variability in antioxidant/detoxification enzymes of Sinonovacula constricta exposed to benzo[a]pyrene and phenanthrene.

    PubMed

    Li, Lei; Jiang, Mei; Shen, Xinqiang

    2016-08-15

    The purpose of this study was to investigate the toxic effects induced by benzo[a]pyrene and phenanthrene. For this purpose, a study was performed on the clam exposed to 0.0, 0.5, 4.5μgL(-1) B(a)P and PHE for 15days using parameters of antioxidant defenses and oxidative stress. Antioxidant biomarkers including ethoxyresorufin-O-deethylase, glutathione S-transferase, superoxide dismutase, and glutathione and rylhydrocarbon hydroxylasein gills of Sinonovacula constricta, were analyzed after a 1-, 3-, 9- and 15-day exposure to seawater containing B(a)P and PHE. Integrated biomarker response was calculated by combining multiple biomarkers into a single value. The results showed that the activity of all antioxidant biomarkers was induced throughout the exposure period, and different patterns of variations were detected with exposure time. In addition, the study showed that the two concentrations used caused the activation of different general detoxification mechanisms, and the same concentration at different two PAH compounds induced different toxicity responses. PMID:27216044

  15. Structural and Functional Diversities of the Hexadecahydro-1H-cyclopenta[a]phenanthrene Framework, a Ubiquitous Scaffold in Steroidal Hormones.

    PubMed

    Choudhury, Chinmayee; Deva Priyakumar, U; Narahari Sastry, G

    2016-04-01

    Hexadecahydro-1H-cyclopenta[a]phenanthrene framework (HHCPF) has been considered as one of the privileged scaffolds due to its versatile presence in many biologically essential molecules. In our quest to unravel the privileged nature of this framework, we undertook a systematic analysis of target binding and Absorption, Distribution, Metabolism, Elimination, Toxicity (ADMET)/physicochemical properties of 110 drugs containing HHCPF reported in DrugBank. Effect of number and positions of double bonds in the framework and substitutions at each carbon position on the target selectivity as well as drug like properties of these drugs were studied. Fifteen different scaffolds based on the numbers and positions of double bonds in the HHCPF were identified among these drugs. The optimum number of double bonds present in the HHCPF scaffolds was observed to be one to three, and one particular positional isomer is predominant among many scaffolds with same numbers of double bonds. Docking studies reveal the role of substituents at different positions to make specific interactions with their respective targets. Based on the docking interactions, we proposed structure based e-Pharmacophore models for seven important targets of HHCPF drugs. Good correlations were observed between the substitutions carbon positions 3 and 17 of the scaffolds and ADMET properties of the HHCPF drugs. This work enables preliminary prediction of the target selectivity and ADMET properties of a new HHCPF molecule based on the scaffold, substituents and the pharmacophoric features. PMID:27491924

  16. Exposure to cadmium-phenanthrene mixtures elicits complex toxic responses in the freshwater tubificid oligochaete, Ilyodrilus templetoni.

    PubMed

    Gust, Kurt A; Fleeger, John W

    2006-07-01

    The joint toxicity of metal-hydrocarbon mixtures in sediments was investigated using cadmium (Cd) and phenanthrene (Phen) as model contaminants. Sediment bioassays were utilized to quantify effects of individual and combined contaminants in the bulk-deposit feeding oligochaete Ilyodrilus templetoni. Combined contaminants elicited antagonistic lethal effects and independent responses for feeding rate (measured as sediment ingestion). The 10-d LC(50) for Cd alone was 1375 mg kg(-1) (95% C.I. 1340-1412), whereas Phen elicited no mortality even when loaded to sediment saturation. The presence of Phen decreased Cd lethality, increasing the LC(50) of Cd by as much as 40%. Regression analyses indicated that Phen was nearly 10 times more potent than Cd in eliciting feeding rate reductions. Exposure to Cd-Phen mixtures resulted in feeding rate reductions equivalent to those caused by Phen alone. The marked reduction in sediment ingestion induced by the co-pollutant Phen reduced exposure to Cd via ingestion. We suggest that this Phen-induced reduction in Cd exposure decreased Cd bioaccumulation and subsequent lethality. More generally, we suggest that even if the toxicological effects among dissimilarly acting chemicals (including metals and hydrocarbons) are independent, contaminant mixtures may elicit unexpected interactive effects facilitated by modifying exposure. PMID:16465559

  17. Synthesis of novel fluorene-based two-photon absorbing molecules and their applications in optical data storage, microfabrication, and stimulated emission depletion

    NASA Astrophysics Data System (ADS)

    Yanez, Ciceron

    2009-12-01

    Two-photon absorption (2PA) has been used for a number of scientific and technological applications, exploiting the fact that the 2PA probability is directly proportional to the square of the incident light intensity (while one-photon absorption bears a linear relation to the incident light intensity). This intrinsic property of 2PA leads to 3D spatial localization, important in fields such as optical data storage, fluorescence microscopy, and 3D microfabrication. The spatial confinement that 2PA enables has been used to induce photochemical and photophysical events in increasingly smaller volumes and allowed nonlinear, 2PA-based, technologies to reach sub-diffraction limit resolutions. The primary focus of this dissertation is the development of novel, efficient 2PA, fluorene-based molecules to be used either as photoacid generators (PAGs) or fluorophores. A second aim is to develop more effective methods of synthesizing these compounds. As a third and final objective, the new molecules were used to develop a write-once-read many (WORM) optical data storage system, and stimulated emission depletion probes for bioimaging. In Chapter I, the microwave-assisted synthesis of triarylsulfonium salt photoacid generators (PAGs) from their diphenyliodonium counterparts is reported. The microwave-assisted synthesis of these novel sulfonium salts afforded reaction times 90 to 420 times faster than conventional thermal conditions, with photoacid quantum yields of new sulfonium PAGs ranging from 0.01 to 0.4. These PAGs were used to develop a fluorescence readout-based, nonlinear three-dimensional (3D) optical data storage system (Chapter II). In this system, writing was achieved by acid generation upon two-photon absorption (2PA) of a PAG (at 710 or 730 nm). Readout was then performed by interrogating two-photon absorbing dyes, after protonation, at 860 nm. Two-photon recording and readout of voxels was demonstrated in five and eight consecutive, crosstalk-free layers within a

  18. A brominated-fluorene insect neuropeptide analog exhibits pyrokinin/PBAN-specific toxicity for adult females of the tobacco budworm moth.

    PubMed

    Teal, Peter E A; Nachman, Ronald J

    2002-04-01

    An analog of the insect pyrokinin/PBAN class of neuropeptides, which features a 2-amino7-bromofluorene attached to the carboxy-terminal bioactive core of the insect pyrokinin/PBAN class of neuropeptides (Phe-Thr-Pro-Arg-Leu-NH(2)), via a succinnic acid linker, was tested in adult H. virescens moths. This analog was found to induce pheromone production when injected into or applied topically to moths. Topical application of as much as 1 nmol of the analog to moths induced production of significant amounts of pheromone for only 1-2 h, whereas injection of 500 pmol induced pheromone production for up to 20 h. All insects died within 24 h after injection of 500 pmol of the analog. Mortality studies indicated that the LD(50) for the analog was 0.7 pmol when injected. A non-pyrokinin/PBAN peptide analog formed by attachment of 2-amino-7-bromofluorene to Ala-Ala-Arg-Ala-Ala-NH(2) (via the succinnic acid linker) did not induce mortality when injected at 1 nmol. Similarly no mortality was found when up to 2 nmol of an analog containing a non-brominated fluorene ring, formed by attachment of 9-fluoreneacetic acid to Phe-Thr-Pro-Arg-Leu-NH(2,) was injected into moths. The data indicated that both the bromine and active core of the pyrokinin neuropeptides (Phe-Thr-Pro-Arg-Leu-NH(2)) were critical for a specific toxic action and suggested that the brominated analog poisoned the moths by interacting with pyrokinin receptors. PMID:11897401

  19. Comparison of polycyclic aromatic hydrocarbons level between suspended solid and sediment samples of Pengkalan Chepa River, Kelantan state, Malaysia

    NASA Astrophysics Data System (ADS)

    Muslim, Noor Zuhartini Md; Babaheidari, Seyedreza Hashemi; Zakaria, Mohamad Pauzi

    2015-09-01

    Sixteen type of common Polycyclic Aromatic Hydrocarbons (PAHs) which consist of naphthalene, acenaphthene, acenaphthylene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, benzo[ghi]-perylene, indeno[1,2,3-cd]-pyrene and dibenz[a,h]-anthracene in suspended solid and sediment samples of Pengkalan Chepa River, Kelantan state, Malaysia were investigated. The analysis samples were taken from six different sites of Pengkalan Chepa River during sunny day. The samples were subjected to a series of pre-treatment before the level of PAHs can be determined. A Gas Chromatography-Mass Spectrometry (GC-MS) was the prime method for the analysis of PAHs level. A total of 16 PAHs concentration in suspended solid of the whole Pengkalan Chepa River was found to be 2144.6 ng/g dry weights. This concentration was about eight times more than 16 PAHs concentration in sediment which found to be 266.5 ng/g dry weights.

  20. Polycyclic aromatic hydrocarbon reaction rates with peroxy-acid treatment: prediction of reactivity using local ionization potential.

    PubMed

    Shoulder, J M; Alderman, N S; Breneman, C M; Nyman, M C

    2013-08-01

    Property-Encoded Surface Translator (PEST) descriptors were found to be correlated with the degradation rates of polycyclic aromatic hydrocarbons (PAHs) by the peroxy-acid process. Reaction rate constants (k) in hr(-1) for nine PAHs (acenaphthene, anthracene, benzo[a]pyrene, benzo[k]fluoranthene, fluoranthene, fluorene, naphthalene, phenanthrene, and pyrene) were determined by a peroxy-acid treatment method that utilized acetic acid, hydrogen peroxide, and a sulphuric acid catalyst to degrade the polyaromatic structures. Molecular properties of the selected nine PAHs were derived from structures optimized at B3LYP/6-31G(d) and HF/6-31G(d) levels of theory. Properties of adiabatic and vertical ionization potential (IP), highest occupied molecular orbitals (HOMO), HOMO/lowest unoccupied molecular orbital (LUMO) gap energies and HOMO/singly occupied molecular orbital (SOMO) gap energies were not correlated with rates of peroxy-acid reaction. PEST descriptors were calculated from B3LYP/6-31G(d) optimized structures and found to have significant levels of correlation with k. PIP Min described the minimum local IP on the surface of the molecule and was found to be related to k. PEST technology appears to be an accurate method in predicting reactivity and could prove to be a valuable asset in building treatment models and in remediation design for PAHs and other organic contaminants in the environment. PMID:23734862

  1. Initial environmental impacts of the Obed Mountain coal mine process water spill into the Athabasca River (Alberta, Canada).

    PubMed

    Cooke, Colin A; Schwindt, Colin; Davies, Martin; Donahue, William F; Azim, Ekram

    2016-07-01

    On October 31, 2013, a catastrophic release of approximately 670,000m(3) of coal process water occurred as the result of the failure of the wall of a post-processing settling pond at the Obed Mountain Mine near Hinton, Alberta. A highly turbid plume entered the Athabasca River approximately 20km from the mine, markedly altering the chemical composition of the Athabasca River as it flowed downstream. The released plume traveled approximately 1100km downstream to the Peace-Athabasca Delta in approximately four weeks, and was tracked both visually and using real-time measures of river water turbidity within the Athabasca River. The plume initially contained high concentrations of nutrients (nitrogen and phosphorus), metals, and polycyclic aromatic hydrocarbons (PAHs); some Canadian Council of Ministers of the Environmental (CCME) Guidelines were exceeded in the initial days after the spill. Subsequent characterization of the source material revealed elevated concentrations of both metals (arsenic, lead, mercury, selenium, and zinc) and PAHs (acenaphthene, fluorene, naphthalene, phenanthrene, and pyrene). While toxicity testing using the released material indicated a relatively low or short-lived acute risk to the aquatic environment, some of the water quality and sediment quality variables are known carcinogens and have the potential to exert negative long-term impacts. PMID:27017080

  2. Sample preparation of sewage sludge and soil samples for the determination of polycyclic aromatic hydrocarbons based on one-pot microwave-assisted saponification and extraction.

    PubMed

    Pena, M Teresa; Pensado, Luis; Casais, M Carmen; Mejuto, M Carmen; Cela, Rafael

    2007-04-01

    A microwave-assisted sample preparation (MASP) procedure was developed for the analysis of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge and soil samples. The procedure involved the simultaneous microwave-assisted extraction of PAHs with n-hexane and the hydrolysis of samples with methanolic potassium hydroxide. Because of the complex nature of the samples, the extracts were submitted to further cleaning with silica and Florisil solid-phase extraction cartridges connected in series. Naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[e]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene, benzo[g,h,i]perylene, and indeno[1,2,3-cd]pyrene, were considered in the study. Quantification limits obtained for all of these compounds (between 0.4 and 14.8 microg kg(-1) dry mass) were well below of the limits recommended in the USA and EU. Overall recovery values ranged from 60 to 100%, with most losses being due to evaporation in the solvent exchange stages of the procedure, although excellent extraction recoveries were obtained. Validation of the accuracy was carried out with BCR-088 (sewage sludge) and BCR-524 (contaminated industrial soil) reference materials. PMID:17268774

  3. Assessment of hydrocarbons concentration in marine fauna due to Tasman Spirit oil spill along the Clifton beach at Karachi coast.

    PubMed

    Siddiqi, Hina A; Ansari, Fayyaz A; Munshi, Alia B

    2009-01-01

    On 27 July 2003, Tasman Spirit spilled 31,000 tonnes of crude oil into the sea at the Karachi coast. This disaster badly affected the marine life (Flora and Fauna.) Present research has been proposed to ascertain the level of Polycyclic Aromatic hydrocarbons (PAHs) contamination in different fisheries including Fishes, Crustaceans; Crabs and Shrimps, Mollusks and Echinoderms along with passing time. Heavier components of crude oil such as Polycyclic Aromatic Hydrocarbons (PAHs) appear to cause most damages as these are relatively unreactive and persist in water. High concentrations of toxic PAHs were observed in all the fisheries and shellfishes caught form oil-impacted area. In this study fishes were found most contaminated than shellfishes i.e. summation operator 16 PAH = 1821.24 microg/g and summation operator 1164.34 microg/g, respectively. Naphthalene was found in the range of 0.042-602.23 microg/g. Acenaphthylene, acenaphthene, fluorene, phenanthrene and anthracene were detected in the range 0.008-80.03 microg/g, fluoranthene, pyrene, benzo(a)anthracene and chrysene 0.0008-221.32 microg/g, benzo(b) fluoranthene, benzo(k)fluoranthene and benzo(a) pyrene 0.0005-7.71 microg/g, benzo(g,h,i)perylene and indeno(1,2,3-c,d)pyrene 0.02-503.7 microg/g. Dibenzo(a,h)anthracenre was not detected in any specie. PMID:18302003

  4. Polynuclear Aromatic Hydrocarbons Concentrations in Char-Broiled Meat Suya

    NASA Astrophysics Data System (ADS)

    Duke, Okoro; Albert, Ikolo O.

    Polynuclear aromatic hydrocarbons (PNAs) concentrations in char-broiled meat suya have been determined in samples obtained from four different selling points in Warri Metropolis of Nigeria. The sixteen EPA priority PNAs were detected using Gas Chromatography and Flame Ionization Detector. Concentrations of total PNAs determined in the four sampling points were: EF1 (134.82< ±8.53 μg kg-1), EF2 (113.83< ±7.93 μg kg-1), WR3 (115.14< ±7.77 μg kg-1), WR4 (81.95< ±6.76 μg kg-1). Benzo(a)pyrene, which is often used as a reference indicator for PNAs carcinogenicity, was determined at levels above 5 μg kg-1 recommended as maximum limit by Commission of European Communities for smoked meat and smoked meat products. It was however, observed that the 2-3 rings PNAs including naphthalene, fluorene, acenaphthylene, acenaphthene, phenanthrene and anthracene were more abundant owing to their high percentage composition in the matrix of the charbroiled meat. Although the levels observed for benzo(a)pyrene in the beef suya exceeded standard guidelines of European Commission, it may take the diet to consist of frequent consumption of barbecued meat before a significant contributions of PNAs contaminant to the human system can be thoroughly assessed.

  5. PAHs in leachates from thermal power plant wastes and ash-based construction materials.

    PubMed

    Irha, Natalya; Reinik, Janek; Jefimova, Jekaterina; Koroljova, Arina; Raado, Lembi-Merike; Hain, Tiina; Uibu, Mai; Kuusik, Rein

    2015-08-01

    The focus of the current study is to characterise the leaching behaviour of polycyclic aromatic hydrocarbons (PAHs) from oil shale ashes (OSAs) of pulverised firing (PF) and circulating fluidised-bed (CFB) boilers from Estonian Thermal Power Plant (Estonia) as well as from mortars and concrete based on OSAs. The target substances were 16 PAHs from the EPA priority pollutant list. OSA samples and OSA-based mortars were tested for leaching, according to European standard EN 12457-2 (2002). European standard CEN/TC 15862(2012) for monolithic matter was used for OSA-based concrete. Water extracts were analysed by GC-MS for the concentration of PAHs. Naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene and pyrene were detected. Still, the release of PAHs was below the threshold limit value for inert waste. The amount of the finest fraction (particle size <0.045 mm), the content of the Al-Si glass phase and the surface characteristics were the main factors, which could affect the accessibility of PAHs for leaching. The mobility of PAHs from OSA of CFB and PF boilers was 20.2 and 9.9%, respectively. Hardening of OSA-based materials did not lead to the immobilisation of soluble PAHs. Release of PAHs from the monolith samples did not exceed 0.5 μg/m(2). In terms of leaching of PAHs, OSA is safe to be used for construction purposes. PMID:25869435

  6. Focused ion beam and field-emission microscopy of metallic filaments in memory devices based on thin films of an ambipolar organic compound consisting of oxadiazole, carbazole, and fluorene units

    USGS Publications Warehouse

    Pearson, Christopher; Bowen, Leon; Lee, Myung Won; Fisher, Alison L.; Linton, Katherine E.; Bryce, Martin R.; Petty, Michael C.

    2013-01-01

    We report on the mechanism of operation of organic thin film resistive memory architectures based on an ambipolar compound consisting of oxadiazole, carbazole, and fluorene units. Cross-sections of the devices have been imaged by electron microscopy both before and after applying a voltage. The micrographs reveal the growth of filaments, with diameters of 50 nm–100 nm, on the metal cathode. We suggest that these are formed by the drift of aluminium ions from the anode and are responsible for the observed switching and negative differential resistance phenomena in the memory devices.

  7. 9,9-Dioctyl-2,7-bis­(4,4,5,5-tetra­methyl-1,3,2-dioxaborolan-2-yl)-9H-fluorene

    PubMed Central

    Gagnon, Eric; Laliberté, Dominic

    2008-01-01

    In the title mol­ecule, C41H64B2O4, the fluorene unit is essentially planar and the two octyl chains attached to the central C atom inhibit the mol­ecule from engaging in inter­molecular aromatic inter­actions. One of the octyl chains adopts a fully extended conformation, whereas the second incorporates a single gauche conformation. Of the two pinacolatoboronate groups attached at the 2,7-positions, one is partly disordered; one ring C atom and all four methyl groups are disordered equally over two positions. PMID:21203296

  8. Sorption of 17α-ethinyl estradiol, bisphenol A and phenanthrene to different size fractions of soil and sediment.

    PubMed

    Sun, Ke; Jin, Jie; Gao, Bo; Zhang, Zheyun; Wang, Ziying; Pan, Zezhen; Xu, Dongyu; Zhao, Ye

    2012-07-01

    The potential for negative effects caused by endocrine disrupting chemicals (EDCs) release into the environment is a prominent concern and numerous research projects have investigated possible environmental fate and toxicity. However, their sorption behavior by size fractions of soil and sediment has not been systematically represented. The sorption of bisphenol A (BPA), 17α-ethinyl estradiol (EE2) and phenanthrene (Phen) by different size fractions of soil and sediment were investigated. Sorption isotherms of EE2, BPA, and Phen by size fractions of soil (SL) and sediment (ST) were well fitted to the Freundlich model. The positive correlation between EE2, BPA and Phen sorption capacity (logK(d)) of size fractions and their organic carbon (OC) content suggests that OC of size fractions in SL and ST should regulate sorption, while the surface area (SA) of size fractions may not account for sorption of EE2, BPA and Phen. Each size fraction of ST had higher sorption capacity (K(d) or K(OC)) of EE2 and BPA than that of SL due to their difference in the polarity of organic matter (OM) between terrestrial and aquatic sources. Sorption capacity logK(d) for size fractions of SL and ST did not follow the order: clay>silt>sand due to the difference in OM abundance and composition between the size fractions. Large particle fractions of ST contributed about 80% to the overall sorption for any EE2, BPA, and Phen. This study was significant to evaluate size fractions of soil and sediment as well as their associated OM affecting EE2 and BPA sorption processes. PMID:22475149

  9. Biodegradation, Biosorption of Phenanthrene and Its Trans-Membrane Transport by Massilia sp. WF1 and Phanerochaete chrysosporium

    PubMed Central

    Gu, Haiping; Lou, Jun; Wang, Haizhen; Yang, Yu; Wu, Laosheng; Wu, Jianjun; Xu, Jianming

    2016-01-01

    Reducing phenanthrene (PHE) in the environment is critical to ecosystem and human health. Biodegradation, biosorption, and the trans-membrane transport mechanism of PHE by a novel strain, Massilia sp. WF1, and an extensively researched model fungus, Phanerochaete chrysosporium were investigated in aqueous solutions. Results showed that the PHE residual concentration decreased with incubation time and the data fitted well to a first-order kinetic equation, and the t1/2 of PHE degradation by WF1, spores, and mycelial pellets of P. chrysosporium were about 2 h, 87 days, and 87 days, respectively. The biosorbed PHE was higher in P. Chrysosporium than that in WF1, and it increased after microorganisms were inactivated and inhibited, especially in mycelial pellets. The detected intracellular auto-fluorescence of PHE by two-photon excitation microscopy also proved that PHE indeed entered into the cells. Based on regression, the intracellular (Kdin) and extracellular (Kdout) dissipation rate constants of PHE by WF1 were higher than those by spores and mycelial pellets. In addition, the transport rate constant of PHE from outside solution into cells (KinS/Vout) for WF1 were higher than the efflux rate constant of PHE from cells to outside solution (KoutS/Vin), while the opposite phenomena were observed for spores and mycelial pellets. The amount of PHE that transported from outside solution into cells was attributed to the rapid degradation and active PHE efflux in the cells of WF1 and P. Chrysosporium, respectively. Besides, the results under the inhibition treatments of 4°C, and the presence of sodium azide, colchicine, and cytochalasin B demonstrated that a passive trans-membrane transport mechanism was involved in PHE entering into the cells of WF1 and P. Chrysosporium. PMID:26858710

  10. [Sorption and desorption behaviors of phenanthrene on sediments from the rivers and estuaries flowing into sea around Bohai Bay].

    PubMed

    Jiao, Li-Xin; Meng, Wei; Zheng, Bing-Hui; Zhao, Xing-Ru; Zhang, Lei; Qin, Yan-Wen

    2010-10-01

    Batch experiments were employed to investigate the sorption and desorption procedures of phenanthrene (Phe) on the river and estuarine sediments. The relationships between sorption parameters and organic matter properties were also discussed. The results indicated that the data on Phe sorption and desorption by different river and estuarine sediments could be fitted well by the linear partitioning and Freundlich model. The linear distribution coefficients (KD) (v) aried from 58 to 743 L x kg(-1). The Freundlich parameters (K(F) and K(FOC)) varied from 75 microg(1-N) x kg(-1) x L(N) to 367 micro(1-N) x kg(-1) x L(N) and from 2253 microg(1-N) x kg(-1) x L(N) to 34743 microg(1-N) x kg(-1) x L(N), respectively. There were significantly positive correlations between K(D) and TOC, TN, DOC, Phe, C/N, DOC/TOC. However, a negative correlation occurred between K(F), K(FOC) values and DOC/TOC ratios. The data on Phe desorption could be better fitted by the Freundlich model than that by linear partitioning model. Except for S1, S8 and S9 samples, the others exhibited obvious sorption and desorption hysteresis. Contents and properties of organic matter were significant as the major factors controlling Phe sorption and desorption to and from the sediments. Considering the frequent impacts of anthropogenic sources on the river and estuarine sediments, the effects of dissolved organic matter on Phe sorption and desorption were perceived to be more important. PMID:21229739

  11. Exogenous IAA treatment enhances phytoremediation of soil contaminated with phenanthrene by promoting soil enzyme activity and increasing microbial biomass.

    PubMed

    Li, Weiming; Wang, Dongsheng; Hu, Feng; Li, Huixin; Ma, Lili; Xu, Li

    2016-06-01

    In this study, we aimed to confirm that indole-3-acetic acid promotes plant uptake of phenanthrene (PHE), stimulates the activity of soil enzymes or microflora, and thereby accelerates the dissipation of PHE in soil. Four treatments were evaluated: PHE-contaminated soil planted with (1) ryegrass (T0), (2) ryegrass and supplemented with 1 mg kg(-1) indole-3-acetic acid (IAA) (T1), (3) ryegrass and supplemented with 5 mg kg(-1) IAA (T5), and (4) ryegrass and supplemented with 10 mg kg(-1) IAA (T10). After 30 days, PHE concentrations were lower for all treatments and the removal rate was 70.19, 89.17, 91.26, and 97.07 % for T0, T1, T5, and T10, respectively. PHE was only detected in the roots and not in the shoots. IAA facilitated the accumulation of PHE in the roots, and plants subjected to the T10 treatment had the highest levels. Exogenous IAA stimulated soil peroxidase activity in a dose-dependent manner, whereas soil polyphenoloxidase activity was not significantly increased, except in T10. Soil microbial biomass also increased in response to IAA treatment, particularly in T10. Furthermore, phospholipid fatty acid analysis showed that IAA treatment increased microbial biomass and alleviated environmental stress. Gram-positive bacteria are largely responsible for polycyclic aromatic hydrocarbon degradation, and we found that the ratio of gram-positive to gram-negative bacteria in the soil significantly increased as the IAA concentrations increased (P < 0.05). Correlation analysis indicated that the increase in soil microbial biomass, enzyme activity, and plant uptake of PHE promotes removal of PHE from the soil. PMID:26884240

  12. Effect of two phenanthrene alkaloids on angiotensin II-induced leukocyte-endothelial cell interactions in vivo.

    PubMed

    Estellés, Rossana; López-Martín, Javier; Milian, Lara; O'Connor, José-Enrique; Martínez-Losa, Magdalena; Cerdá-Nicolás, Miguel; Anam, Edet M; Ivorra, María Dolores; Issekutz, Andrew C; Cortijo, Julio; Morcillo, Esteban J; Blázquez, Maria Amparo; Sanz, Maria-Jesús

    2003-11-01

    1. The present study has evaluated the effect of two phenanthrene alkaloids, uvariopsine and stephenanthrine, on angiotensin II (Ang-II)-induced leukocyte-endothelial cell interactions in vivo and the mechanisms involved in their activity. Intravital microscopy within the rat mesenteric microcirculation was used. 2. A 60 min superfusion with 1 nm Ang-II induced a significant increase in the leukocyte-endothelial cell interactions that were completely inhibited by 1 microm uvariopsine cosuperfusion. A lower dose of 0.1 microm significantly reduced Ang-II-induced leukocyte adhesion by 75%. 3. When Ang-II was cosuperfused with 1 and 0.1 microm stephenanthrine, Ang-II-induced leukocyte responses were significantly diminished. A lower dose of 0.01 microm only affected Ang-II-induced leukocyte adhesion. 4. Both alkaloids inhibited Ang-II-induced endothelial P-selectin upregulation and the generation of reactive oxygen species (ROS) in endothelial cells stimulated with Ang-II, in fMLP-stimulated human neutrophils (PMNs) and in the hypoxanthine-xanthine oxidase system. However, cyclic AMP levels in PMNs stimulated with fMLP were not affected. 5. Uvariopsine and stephenanthrine inhibited PAF-induced elevations in intracellular calcium levels in PMNs (IC50 values: 15.1 and 6.1 microm respectively) and blocked the binding of [3H]PAF to these leukocytes. They also reduced PAF-induced increases in intracellular levels of superoxide anion and hydrogen peroxide. 6. In conclusion, stephenanthrine and uvariopsine are potent inhibitors of Ang-II-induced leukocyte accumulation in vivo. This effect appears to be mediated through ROS scavenging activity and blockade of PAF receptor. Thus, they have potential therapeutic interest for the control of leukocyte recruitment that occurs in cardiovascular disease states in which Ang-II is involved. PMID:14559857

  13. Biodegradation, Biosorption of Phenanthrene and Its Trans-Membrane Transport by Massilia sp. WF1 and Phanerochaete chrysosporium.

    PubMed

    Gu, Haiping; Lou, Jun; Wang, Haizhen; Yang, Yu; Wu, Laosheng; Wu, Jianjun; Xu, Jianming

    2016-01-01

    Reducing phenanthrene (PHE) in the environment is critical to ecosystem and human health. Biodegradation, biosorption, and the trans-membrane transport mechanism of PHE by a novel strain, Massilia sp. WF1, and an extensively researched model fungus, Phanerochaete chrysosporium were investigated in aqueous solutions. Results showed that the PHE residual concentration decreased with incubation time and the data fitted well to a first-order kinetic equation, and the t 1/2 of PHE degradation by WF1, spores, and mycelial pellets of P. chrysosporium were about 2 h, 87 days, and 87 days, respectively. The biosorbed PHE was higher in P. Chrysosporium than that in WF1, and it increased after microorganisms were inactivated and inhibited, especially in mycelial pellets. The detected intracellular auto-fluorescence of PHE by two-photon excitation microscopy also proved that PHE indeed entered into the cells. Based on regression, the intracellular (K din) and extracellular (K dout) dissipation rate constants of PHE by WF1 were higher than those by spores and mycelial pellets. In addition, the transport rate constant of PHE from outside solution into cells (KinS/Vout ) for WF1 were higher than the efflux rate constant of PHE from cells to outside solution (KoutS/Vin ), while the opposite phenomena were observed for spores and mycelial pellets. The amount of PHE that transported from outside solution into cells was attributed to the rapid degradation and active PHE efflux in the cells of WF1 and P. Chrysosporium, respectively. Besides, the results under the inhibition treatments of 4°C, and the presence of sodium azide, colchicine, and cytochalasin B demonstrated that a passive trans-membrane transport mechanism was involved in PHE entering into the cells of WF1 and P. Chrysosporium. PMID:26858710

  14. Surface modification of electrospun polyester nanofibers with cyclodextrin polymer for the removal of phenanthrene from aqueous solution.

    PubMed

    Kayaci, Fatma; Aytac, Zeynep; Uyar, Tamer

    2013-10-15

    Surface modified electrospun polyester (PET) nanofibers with cyclodextrin polymer (CDP) were produced (PET/CDP). CDP formation onto electrospun PET nanofibers was achieved by polymerization between citric acid (CTR, crosslinking agent) and cyclodextrin (CD). Three different types of native CD (α-CD, β-CD and γ-CD) were used to form CDP. Water-insoluble crosslinked CDP coating was permanently adhered onto the PET nanofibers. SEM imaging indicated that the nanofibrous structure of PET mats was preserved after CDP surface modification process. PET/CDP nanofibers have shown rougher/irregular surface and larger fiber diameter when compared to untreated PET nanofibers. The surface analyses of PET/CDP nanofibers by XPS elucidated that CDP was present on the fiber surface. DMA analyses revealed the enhanced mechanical properties for PET/CDP where PET/CDP nanofibers have shown higher storage modulus and higher glass transition temperature compared to untreated PET nanofibers. The surface area of the PET/CDP nanofibers investigated by BET measurements showed slight decrease due to the presence of CDP coating compared to pristine PET nanofibers. Yet, it was observed that PET/CDP nanofibers were more efficient for the removal of phenanthrene as a model polycyclic aromatic hydrocarbon (PAH) from aqueous solution when compared to pristine PET nanofibers. Our findings suggested that PET/CDP nanofibers can be a very good candidate as a filter material for water purification and waste treatment owing to their very large surface area as well as inclusion complexation capability of surface associated CDP. PMID:23959248

  15. Structure-Function Studies of Naphthalene, Phenanthrene, Biphenyl, and Their Derivatives in Interaction with and Oxidation by Cytochromes P450 2A13 and 2A6.

    PubMed

    Shimada, Tsutomu; Takenaka, Shigeo; Kakimoto, Kensaku; Murayama, Norie; Lim, Young-Ran; Kim, Donghak; Foroozesh, Maryam K; Yamazaki, Hiroshi; Guengerich, F Peter; Komori, Masayuki

    2016-06-20

    Naphthalene, phenanthrene, biphenyl, and their derivatives having different ethynyl, propynyl, butynyl, and propargyl ether substitutions were examined for their interaction with and oxidation by cytochromes P450 (P450) 2A13 and 2A6. Spectral interaction studies suggested that most of these chemicals interacted with P450 2A13 to induce Type I binding spectra more readily than with P450 2A6. Among the various substituted derivatives examined, 2-ethynylnaphthalene, 2-naphthalene propargyl ether, 3-ethynylphenanthrene, and 4-biphenyl propargyl ether had larger ΔAmax/Ks values in inducing Type I binding spectra with P450 2A13 than their parent compounds. P450 2A13 was found to oxidize naphthalene, phenanthrene, and biphenyl to 1-naphthol, 9-hydroxyphenanthrene, and 2- and/or 4-hydroxybiphenyl, respectively, at much higher rates than P450 2A6. Other human P450 enzymes including P450s 1A1, 1A2, 1B1, 2C9, and 3A4 had lower rates of oxidation of naphthalene, phenanthrene, and biphenyl than P450s 2A13 and 2A6. Those alkynylated derivatives that strongly induced Type I binding spectra with P450s 2A13 and 2A6 were extensively oxidized by these enzymes upon analysis with HPLC. Molecular docking studies supported the hypothesis that ligand-interaction energies (U values) obtained with reported crystal structures of P450 2A13 and 2A6 bound to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, indole, pilocarpine, nicotine, and coumarin are of use in understanding the basis of possible molecular interactions of these xenobiotic chemicals with the active sites of P450 2A13 and 2A6 enzymes. In fact, the ligand-interaction energies with P450 2A13 4EJG bound to these chemicals were found to relate to their induction of Type I binding spectra. PMID:27137136

  16. Effects of the position and number of bromine substituents on the concentration-mediated 2D self-assembly of phenanthrene derivatives.

    PubMed

    Hu, Xingyu; Zha, Bao; Wu, Yican; Miao, Xinrui; Deng, Wenli

    2016-03-14

    The effects of the position and number of bromine substituents on the self-assembled patterns of phenanthrene derivatives by changing multiple weak intermolecular interactions were investigated at the 1-octanoic acid/graphite interface at different concentrations by scanning tunneling microscopy. Two Br substituted DBHP molecules (2,7-DBHP, 3,6-DBHP) and BHP without a Br group formed a linear lamellar pattern by the van der Waals interactions between the alkoxyl chains in each lamella at high concentrations, which forces the phenanthrene derivatives to self-organize in a π-π stacked edge-on conformation. On decreasing the solution concentration, owing to the molecule-molecule van der Waals force and BrBr halogen bonds or the molecule-solvent cooperative BrO (C[double bond, length as m-dash]O) hydrogen and BrHO-hydrogen bonds, 2,7-DBHP molecules were found to form two kinds of network structures, whereas 3,6-DBHP molecules formed only a zigzag pattern due to the intermolecular BrBr van der Waals type interactions. One bromine substituted phenanthrene derivative (3-DBHP) formed a dislocated linear pattern by two C-HBr hydrogen bonds in each dimer. These observations revealed that an important modification of the position and number of halogen substituents might dramatically change the self-assembly behaviors by different intermolecular interactions including BrBr and BrO halogen bonding, BrBr van der Waals type interactions, and HBr hydrogen bonding. DFT calculations were explored to unravel how slightly tuning the molecular structure defines the geometry of a 2D self-assembled nanoarchitecture through the different elementary structural units having BrBr and BrH interactions. PMID:26890677

  17. Synthesis of 9-Fluorenylidenes and 9,10-Phenanthrenes through Palladium-Catalyzed Aryne Annulation by ortho-Halostyrenes and ortho-Halo Allylic Benzenes

    PubMed Central

    Worlikar, Shilpa A.; Larock, Richard C.

    2009-01-01

    A number of functionally substituted 9-fluorenylidenes and 9,10-phenanthrenes have been synthesized from substituted ortho-halostyrenes and ortho-halo allylic benzenes respectively in good yields by the palladium-catalyzed annulation of arynes. The methodology tolerates a variety of functional groups, including cyano, ester, aldehyde and ketone groups, occurs under relatively mild reaction conditions, and involves the generation of two new carbon-carbon bonds, thus providing these important carbocyclic ring systems in a single synthetic step. PMID:19902957

  18. Facile synthesis of 4,5,6a,7-tetrahydrodibenzo[de,g]chromene heterocycles and their transformation to phenanthrene alkaloids

    PubMed Central

    Kapadia, Nirav; Harding, Wayne

    2013-01-01

    Oxa-Pictet-Spengler cyclization and microwave-assisted C-H arylation have been implemented as key steps in the synthesis of new isochroman heterocycles containing a 4,5,6a,7-tetrahydrodibenzo[de,g]chromene motif. These isochromans may be easily transformed to phenanthrene alkaloids via acidic cleavage of the isochroman ring and standard synthetic manipulations thereafter. The route described is attractive in that it provides access to two biologically interesting scaffolds in simple and high yielding synthetic steps. PMID:24187388

  19. On the molecular structure of (E)-3-(9H-fluoren-2-yl)-1-(pyridin-2-yl)prop-2-en-1-one, theoretical calculations and SXRD studies

    NASA Astrophysics Data System (ADS)

    Labra-Vázquez, Pablo; Lugo-Aranda, Alejandra Zaavik; Maldonado-Domínguez, Mauricio; Arcos-Ramos, Rafael; Carreon-Castro, María del Pilar; Santillan, Rosa; Farfán, Norberto

    2015-12-01

    The azachalcone, (E)-3-(9H-fluoren-2-yl)-1-(pyridin-2-yl)prop-2-en-1-one (C21H15NO) (3) was synthesized by classical Claisen-Schmidt condensation reaction. An E-configuration was confirmed through single-crystal X-Ray diffraction studies; crystallizing in monoclinic space group P 21/c, with unit cell parameters a = 16.115 Å (3), b = 12.277 Å (3), c = 7.6884 Å (15) and Z = 4. Our approach to correlate the experimental molecular structure with the NMR assignment of this azachalcone comprised DFT computations of magnetic shielding, coupled with 2D-NMR spectroscopy. With a correlation of R2 = 0.9965 between experimental and computed 13C-NMR chemical shifts, this strategy allowed the full 13C assignment of the azachalcone π-system. The molecular structure was topologically analyzed within the framework of the quantum theory of atoms in molecules; π-stacking and donor-acceptor π contacts are involved in the crystal packing of (E)-3-(9H-fluoren-2-yl)-1-(pyridin-2-yl)prop-2-en-1-one (3).

  20. Preferential Glutathione Conjugation of a Reverse Diol Epoxide Compared to a Bay Region Diol Epoxide of Phenanthrene in Human Hepatocytes: Relevance to Molecular Epidemiology Studies of Glutathione-S-Transferase Polymorphisms and Cancer

    PubMed Central

    Hecht, Stephen S.; Berg, Jeannette Zinggeler; Hochalter, J. Bradley

    2009-01-01

    Bay region diol epoxides are recognized ultimate carcinogens of polycyclic aromatic hydrocarbons (PAH), and in vitro studies have demonstrated that they can be detoxified by conjugation with glutathione, leading to the widely investigated hypothesis that individuals with low activity forms of glutathione-S-transferases are at higher risk of PAH induced cancer, a hypothesis that has found at most weak support in molecular epidemiology studies. A weakness in this hypothesis was that the mercapturic acids resulting from conjugation of PAH bay region diol epoxides had never been identified in human urine. We recently analyzed smokers’ urine for mercapturic acids derived from phenanthrene, the simplest PAH with a bay region. The only phenanthrene diol epoxide-derived mercapturic acid in smokers’ urine was produced from the reverse diol epoxide, anti-phenanthrene-3,4-diol-1,2-epoxide (11), not the bay region diol epoxide, anti-phenanthrene-1,2-diol-3,4-epoxide (10), which does not support the hypothesis noted above. In this study, we extended these results by examining the conjugation of phenanthrene metabolites with glutathione in human hepatocytes. We identified the mercapturic acid N-acetyl-S-(r-4,t-2,3-trihydroxy-1,2,3,4-tetrahydro-c-1-phenanthryl)-L-cysteine (14a), (0.33–35.9 pmol/mL at 10 µM 8, 24h incubation, N = 10) in all incubations with phenanthrene-3,4-diol (8) and the corresponding diol epoxide 11, but no mercapturic acids were detected in incubations with phenanthrene-1,2-diol (7) and only trace amounts were observed in incubations with the corresponding bay region diol epoxide 10. Taken together with our previous results, these studies clearly demonstrate that glutathione conjugation of a reverse diol epoxide of phenanthrene is favored over conjugation of a bay region diol epoxide. Since reverse diol epoxides of PAH are generally weakly or non-mutagenic/carcinogenic, these results, if generalizable to other PAH, do not support the widely held

  1. BIODEGRADATION OF POLYCYCLIC AROMATIC HYDROCARBONS (PAH) FROM CRUDE OIL IN SANDY-BEACH MICROCOSMS.

    EPA Science Inventory

    Though the lower n-alkanes are considered the most degradable components of crude oil, our experiments with microcosms simulating oiled beaches showed substantial depletion of fluorene, phenanthrene, dibenzothiophene, and other PAH in control treatments consisting of raw seawater...

  2. MULTISUBSTRATE BIODEGRADATION KINETICS FOR BINARY AND COMPLEX MIXTURES OF POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    Biodegradation kinetics were studied for binary and complex mixtures of nine polycyclic aromatic hydrocarbons (PAHs): naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 2-ethylnaphthalene, phenanthrene, anthracene, pyrene, fluorene and fluoranthene. Discrepancies between the ...

  3. Simultaneous determination of phenols (bibenzyl, phenanthrene, and fluorenone) in Dendrobium species by high-performance liquid chromatography with diode array detection.

    PubMed

    Yang, Li; Wang, Zhengtao; Xu, Luoshan

    2006-02-01

    A new method of analysis of 11 phenols, including five bibenzyls, three phenanthrenes, and three fluorenones, using high-performance liquid chromatography (HPLC)-diode array detection (DAD) was described. The separation of 11 phenols was effected by RP-HPLC (Beckman Coulter ODS column, 5 microm, 250 mm x 4.6 mm) using linear gradient elution systems of acetonitrile-1/1000 trifluoroacetic acid (TFA). Satisfactory separation of these compounds was obtained in less than 45 min. The method was validated for linearity, repeatability, limits of detection (LOD) and limits of quantification (LOQ). Good results were obtained with respect to repeatability (relative standard deviation (RSD)<3.5%) and recovery (85.77-104.92%). The developed method was applied to the simultaneous determination of 11 phenols from totally 31 Dendrobium species (mainly of medicinal plants) as well as other four samples from the similar genera as Pholidota, Flickingeria and Bulbophyllum. The range of the total amounts of bibenzyl, phenanthrene and fluorenone were found to from trace: 4.00, not detected (nd): 0.42 and nd: 0.24 microg mg(-1), respectively. PMID:16378617

  4. Sorption Characteristic of Phenanthrene on Biochar-Amended Soils: Effect of feedstock, pyrolysis temperature, and aging duration

    NASA Astrophysics Data System (ADS)

    Hyun, S.; Kim, C.; Kim, Y. S.; Kim, J.

    2015-12-01

    The high sorption capacity of biochar is widely known in environmental studies. Especially, biochar is effective for removal of hydrophobic organic compounds (HOCs) due to high surface area and porosity. In this study, the sorption characteristic of biochar-amended soil was evaluated by sorption kinetic experiment of phenanthrene (PHE). For PHE sorption test, the effect of biochar feedstock (sludge waste char (SWC), municipal waste char (MWC) and wood char (WC), Giant Miscanthus (GM)), pyrolysis temperature (400°C, 500°C and 700°C,), and duration of amending period (0, 3, 6, and 12 months) was assessed. Field Emission-Scanning Electron Microscopy (FE-SEM) and Fourier Transform-Infrared Spectroscopy (FT-IR) techniques were used to detect pore structure and the surface functional group of biochar amended soils. For all kinetic tests, apparent sorption equilibrium was attained in 24 hr. The result showed that sorption capacity of biochar amended soils was greatly influenced by biochar feedstock and pyrolysis temperature. For all samples, the sorption capacity of PHE by biochar amended soils decreased with aging period. This observation is due to the fact that the aromatic characters of biochar are different by feedstock and pyrolysis temperature and the amount of O-containing hydrophilic functional groups increased surfaces of biochar by natural oxidation (e.g. carboxyl groups) as confirmed by the result of FT-IR and FE-SEM. In addition, biochar pore blockage by inorganic minerals, which tended to increase with aging period, might attenuate the sorption capacity of samples. In conclusion, biochar derived from various feed stocks are all effective for PHE sorption. But the sorption capacity of biochar amended soils decreased with increasing aging duration most likely due to increasing hydrophilic functional groups of biochar surfaces and pore blockage by inorganic minerals in the weathering processes. Therefore, for the design of biochar amendment to attenuate

  5. Histological responses and localization of the cytochrome P450 (CYP2AU1) in Crassostrea brasiliana exposed to phenanthrene.

    PubMed

    dos Reis, Isis M M; Mattos, Jacó J; Garcez, Ricardo C; Zacchi, Flávia L; Miguelão, Talita; Flores-Nunes, Fabrício; Toledo-Silva, Guilherme; Sasaki, Sílvio T; Taniguchi, Satie; Bícego, Márcia C; Cargnin-Ferreira, Eduardo; Bainy, Afonso C D

    2015-12-01

    Phenanthrene (PHE) is an abundant polycyclic aromatic hydrocarbon (PAH), widely distributed in aquatic environment. The aim of this study was to evaluate the histological and molecular effects in the native oyster Crassostrea brasiliana(Lamarck, 1819) exposed to 100 and 1000 μg L(-1) PHE for 1, 5 and 10 days. Histological and chemical analyses were performed to evaluate, respectively, alterations in oyster tissues and bioaccumulation. In situ hybridization (ISH) was used to assess tissue distribution of CYP2AU1, a gene formerly identified as activated by PHE exposure in this species.Quantitative polymerase chain reaction (qPCR) in mantle was carried out to validate ISH data. Oysters bioaccumulated PHE increasingly along the exposure period in both exposure concentrations. Histologic changes, like tubular atrophy in digestive diverticula (digestive gland) and increased number of mucous cells in the mantle were observed in animals exposed to PHE for 10 days. ISH showed the presence of CYP2AU1transcripts in gills, digestive diverticula, mantle, intestine and gonads, but significant differences in transcript detection by ISH between treatments occurred only in gills, mantle and intestine. A positive and significant correlation between tubular atrophy and CYP2AU1hybridization signal was observed in digestive diverticula, suggesting that this gene product might be involved in energetic metabolism in C. brasiliana. Increased mucous cells and CYP2AU1transcript levels were observed in the mantle, where the inner and middle lobes showed higher intensity of hybridization signal. Mantle should be considered as a target organ for CYP2AU1 transcript evaluation and histological alterations in biomonitoring studies. CYP2AU1 signal in female gonads was observed in all follicular cells from different gonadic stages, while in male only the spermatic follicle cells of the wall in the pre-spawning stage showed this signal. ISH was an effective technique to evaluate the effects of PHE

  6. Exposure to phenanthrene and depuration: Changes on gene transcription, enzymatic activity and lipid peroxidation in gill of scallops Nodipecten nodosus.

    PubMed

    Piazza, Rômi S; Trevisan, Rafael; Flores-Nunes, Fabrício; Toledo-Silva, Guilherme; Wendt, Nestor; Mattos, Jacó J; Lima, Daína; Taniguchi, Satie; Sasaki, Silvio Tarou; Mello, Álvaro C P; Zacchi, Flávia L; Serrano, Miguel A S; Gomes, Carlos H A M; Bícego, Márcia C; Almeida, Eduardo A de; Bainy, Afonso C D

    2016-08-01

    Understanding the mechanism of phenanthrene (PHE) biotransformation and related cellular responses in bivalves can be an important tool to elucidate the risks of polycyclic aromatic hydrocarbons (PAHs) to aquatic organisms. In the present study it was analyzed the transcriptional levels of 13 biotransformation genes related to cytochrome P450 (CYP), glutathione S-transferase (GST), sulfotransferase (SULT), flavin-containing monooxygenase and fatty acid-binding proteins by qPCR in gill of scallops Nodipecten nodosus exposed for 24 or 96h to 50 or 200μgL(-1) PHE (equivalent to 0.28 and 1.12μM, respectively), followed by depuration in clean water for 96h (DEP). Likewise, it was quantified the activity of catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione reductase (GR), glucose 6-phosphate dehydrogenase (G6PDH), GST and levels of lipid peroxidation. Increased transcriptional levels of CYP2UI-like, CYP2D20-like, CYP3A11-like, GSTomega-like, SULT1B1-like genes were detected in organisms exposed to PHE for 24 or 96h. In parallel, GR and GPX activities increased after 96h exposure to 200μgL(-1) PHE and G6PDH activity increased after 24h exposure to 50μgL(-1) PHE. This enhancement of antioxidant and phase I and II biotransformation systems may be related to the 2.7 and 12.5 fold increases in PHE bioaccumulation after 96h exposure to 50 and 200μgL(-1) PHE, respectively. Interestingly, DEP caused reestablishment of GPX and GR activity, as well as to the transcript levels of all upregulated biotransformation genes (except for SULT1B1-like). Bioaccumulated PHE levels decreased 2.5-2.9 fold after depuration, although some biochemical and molecular modifications were still present. Lipid peroxidation levels remained lower in animals exposed to 200μgL(-1) PHE for 24h and DEP. These data indicate that N. nodosus is able to induce an antioxidant and biotransformation-related response to PHE exposure, counteracting its toxicity, and DEP can

  7. Study of ground state EDA complex formation between [70]fullerene and a series of polynuclear aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sumanta; Nayak, Sandip K.; Chattopadhyay, Subrata; Banerjee, Manas; Mukherjee, Asok K.

    2002-01-01

    [70]fullerene has been shown to form 1:1 EDA complex with anthracene, naphthalene, phenanthrene, pyrene and acenaphthene in CCl 4 medium. Charge transfer (CT) bands have been detected in all the cases. Isosbestic points have been observed in the cases of phenanthrene and acenaphthene complexes. Ionisation potentials of the donors and CT transition energies have been found to correlate in accordance with Mulliken equation and from this correlation the electron affinity of C 70 has been found to be 2.59 eV. Enthalpies and entropies of formation of the complexes have been estimated from the formation constants of the complexes determined spectrophotometrically at three different temperatures.

  8. Toxicity of polycyclic aromatic hydrocarbons. III. Effects of beta-naphthoflavone pretreatment on hepatotoxicity of compounds produced in the ozonation or NO/sub 2/-nitration of phenanthrene and pyrene in rats

    SciTech Connect

    Yoshikawa, T.; Ruhr, L.P.; Flory, W.; Banton, M.I.; Giamalva, D.; Church, D.F.; Pryor, W.A.

    1987-04-01

    Male Sprague-Dawley rats were treated ip with beta-naphthoflavone (BNF, 40 mg/kg/day) in dimethylsulfoxide (DMSO, 26.7 mg BNF/ml) for three days. At 24 hr after the pretreatment DMSO (3.0 ml/kg), phenanthrene (150 mg/kg), ozonized or nitrated products of phenanthrene (150 mg/kg), pyrene (150 mg/kg), or ozonized or nitrated products of pyrene (150 mg/kg) were injected ip. Phenanthrene, pyrene, and their ozonized or nitrated products were dissolved in DMSO (50 mg/ml). No increase in the level of aspartate aminotransferase (AST), alanine aminotransferase (ALT) or sorbitol dehydrogenase (SDH) was seen in the pretreated rats 48 hr after the treatment. This is in contrast to what was seen in previous work without the BNF pretreatment. BNF pretreatment induced a small but significant increase in gamma-glutamyl transpeptidase (GGTP) levels. No treatment group receiving BNF differed from another with respect to GGTP. A decrease in lactate dehydrogenase (LDH) levels was noted in the nitro-PAH treatment groups; the same phenomenon was observed earlier in rats treated with nitro-PAH without BNF treatment. These results suggest that the mixed-function oxidase systems specifically induced by BNF have a protective effect against the hepatotoxicity of the oxonized or nitrated products of phenanthrene and pyrene.

  9. Soil Type-Dependent Responses to Phenanthrene as Revealed by Determining the Diversity and Abundance of Polycyclic Aromatic Hydrocarbon Ring-Hydroxylating Dioxygenase Genes by Using a Novel PCR Detection System▿ †

    PubMed Central

    Ding, Guo-Chun; Heuer, Holger; Zühlke, Sebastian; Spiteller, Michael; Pronk, Geertje Johanna; Heister, Katja; Kögel-Knabner, Ingrid; Smalla, Kornelia

    2010-01-01

    A novel PCR primer system that targets a wide range of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHDα) genes of both Gram-positive and Gram-negative bacteria was developed and used to study their abundance and diversity in two different soils in response to phenanthrene spiking. The specificities and target ranges of the primers predicted in silico were confirmed experimentally by cloning and sequencing of PAH-RHDα gene amplicons from soil DNA. Cloning and sequencing showed the dominance of phnAc genes in the contaminated Luvisol. In contrast, high diversity of PAH-RHDα genes of Gram-positive and Gram-negative bacteria was observed in the phenanthrene-spiked Cambisol. Quantitative real-time PCR based on the same primers revealed that 63 days after phenanthrene spiking, PAH-RHDα genes were 1 order of magnitude more abundant in the Luvisol than in the Cambisol, while they were not detected in both control soils. In conclusion, sequence analysis of the amplicons obtained confirmed the specificity of the novel primer system and revealed a soil type-dependent response of PAH-RHDα gene-carrying soil bacteria to phenanthrene spiking. PMID:20495045

  10. Metabolites of the Polycyclic Aromatic Hydrocarbon Phenanthrene in the Urine of Cigarette Smokers from Five Ethnic Groups with Differing Risks for Lung Cancer

    PubMed Central

    Patel, Yesha M.; Park, Sungshim L.; Carmella, Steven G.; Paiano, Viviana; Olvera, Natalie; Stram, Daniel O.; Haiman, Christopher A.; Le Marchand, Loic

    2016-01-01

    Results from the Multiethnic Cohort Study demonstrated significant differences in lung cancer risk among cigarette smokers from five different ethnic/racial groups. For the same number of cigarettes smoked, and particularly among light smokers, African Americans and Native Hawaiians had the highest risk for lung cancer, Whites had intermediate risk, while Latinos and Japanese Americans had the lowest risk. We analyzed urine samples from 331–709 participants from each ethnic group in this study for metabolites of phenanthrene, a surrogate for carcinogenic polycyclic aromatic hydrocarbon exposure. Consistent with their lung cancer risk and our previous studies of several other carcinogens and toxicants of cigarette smoke, African Americans had significantly (p<0.0001) higher median levels of the two phenanthrene metabolites 3-hydroxyphenanthrene (3-PheOH, 0.931 pmol/ml) and phenanthrene tetraol (PheT, 1.13 pmol/ml) than Whites (3-PheOH, 0.697 pmol/ml; PheT, 0.853 pmol/ml) while Japanese-Americans had significantly (p = 0.002) lower levels of 3-PheOH (0.621 pmol/ml) than Whites. PheT levels (0.838 pmol/ml) in Japanese-Americans were not different from those of Whites. These results are mainly consistent with the lung cancer risk of these three groups, but the results for Native Hawaiians and Latinos were more complex. We also carried out a genome wide association study in search of factors that could influence PheT and 3-PheOH levels. Deletion of GSTT1 explained 2.2% of the variability in PheT, while the strongest association, rs5751777 (p = 1.8x10-62) in the GSTT2 gene, explained 7.7% of the variability in PheT. These GWAS results suggested a possible protective effect of lower GSTT1 copy number variants on the diol epoxide pathway, which was an unexpected result. Collectively, the results of this study provide further evidence that different patterns of cigarette smoking are responsible for the higher lung cancer risk of African Americans than of Whites and the

  11. Metabolites of the Polycyclic Aromatic Hydrocarbon Phenanthrene in the Urine of Cigarette Smokers from Five Ethnic Groups with Differing Risks for Lung Cancer.

    PubMed

    Patel, Yesha M; Park, Sungshim L; Carmella, Steven G; Paiano, Viviana; Olvera, Natalie; Stram, Daniel O; Haiman, Christopher A; Le Marchand, Loic; Hecht, Stephen S

    2016-01-01

    Results from the Multiethnic Cohort Study demonstrated significant differences in lung cancer risk among cigarette smokers from five different ethnic/racial groups. For the same number of cigarettes smoked, and particularly among light smokers, African Americans and Native Hawaiians had the highest risk for lung cancer, Whites had intermediate risk, while Latinos and Japanese Americans had the lowest risk. We analyzed urine samples from 331-709 participants from each ethnic group in this study for metabolites of phenanthrene, a surrogate for carcinogenic polycyclic aromatic hydrocarbon exposure. Consistent with their lung cancer risk and our previous studies of several other carcinogens and toxicants of cigarette smoke, African Americans had significantly (p<0.0001) higher median levels of the two phenanthrene metabolites 3-hydroxyphenanthrene (3-PheOH, 0.931 pmol/ml) and phenanthrene tetraol (PheT, 1.13 pmol/ml) than Whites (3-PheOH, 0.697 pmol/ml; PheT, 0.853 pmol/ml) while Japanese-Americans had significantly (p = 0.002) lower levels of 3-PheOH (0.621 pmol/ml) than Whites. PheT levels (0.838 pmol/ml) in Japanese-Americans were not different from those of Whites. These results are mainly consistent with the lung cancer risk of these three groups, but the results for Native Hawaiians and Latinos were more complex. We also carried out a genome wide association study in search of factors that could influence PheT and 3-PheOH levels. Deletion of GSTT1 explained 2.2% of the variability in PheT, while the strongest association, rs5751777 (p = 1.8x10-62) in the GSTT2 gene, explained 7.7% of the variability in PheT. These GWAS results suggested a possible protective effect of lower GSTT1 copy number variants on the diol epoxide pathway, which was an unexpected result. Collectively, the results of this study provide further evidence that different patterns of cigarette smoking are responsible for the higher lung cancer risk of African Americans than of Whites and the

  12. Evaluation of ultraviolet spectrophotometry for simultaneous analysis of alkylbenzenes, alkylnaphthalenes, alkylanthracenes/phenanthrenes and total aromatics in mid-distillate fuels

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Seng, G. T.

    1982-01-01

    A rapid ultraviolet spectrophotometric method for the simultaneous determination of aromatics in middistillate fuels was developed and evaluated. In this method, alkylbenzenes, alkylnaphthalenes, alkylanthracenes/phenanthracenes and total aromatics were determined from ultraviolet spectra of the fuels. The accuracy and precision were determined using simulated standard fuels with known compositions. The total aromatics fraction accuracy was 5% for a Jet A type fuel and 0.6% for a broadened properties jet turbine type fuel. Precision, expressed as relative standard deviations, ranged from 2.9% for the alkylanthracenes/phenanthrenes to 15.3% for the alkylbenzenes. The accuracy, however, was less for actual fuel samples when compared to the results obtained by a mass spectrometric method. In addition, the ASTM D-1840 method for naphthalenes by ultraviolet spectroscopy was evaluated.

  13. Structural insight into DNA-assembled oligochromophores: crystallographic analysis of pyrene- and phenanthrene-modified DNA in complex with BpuJI endonuclease

    PubMed Central

    Probst, Markus; Aeschimann, Walter; Chau, Thi T.H.; Langenegger, Simon M.; Stocker, Achim; Häner, Robert

    2016-01-01

    The use of the DNA duplex as a supramolecular scaffold is an established approach for the assembly of chromophore aggregates. In the absence of detailed structural insight, the characterization of thus assembled oligochromophores is, today, largely based on solution-phase spectroscopy. Here, we describe the crystal structures of three DNA-organized chromophore aggregates. DNA hybrids containing non-nucleosidic pyrene and phenanthrene building blocks were co-crystallized with the recently described binding domain of the restriction enzyme BpuJI. Crystal structures of these complexes were determined at 2.7, 1.9 and 1.6 Å resolutions. The structures reveal aromatic stacking interactions between pyrene and/or phenanthrene units within the framework of the B-DNA duplex. In hybrids containing a single modification in each DNA strand near the end of the duplex, the two polyaromatic hydrocarbons are engaged in a face-to-face stacking orientation. Due to crystal packing and steric effects, the terminal GC base pair is disrupted in all three crystal structures, which results in a non-perfect stacking arrangement of the aromatic chromophores in two of the structures. In a hybrid containing a total of three pyrenes, crystal lattice induced end-to-end stacking of individual DNA duplexes leads to the formation of an extended aromatic π-stack containing four co-axially arranged pyrenes. The aromatic planes of the stacked pyrenes are oriented in a parallel way. The study demonstrates the value of co-crystallization of chemically modified DNA with the recombinant binding domain of the restriction enzyme BpuJI for obtaining detailed structural insight into DNA-assembled oligochromophores. PMID:27422870

  14. FATE AND IMPACT OF WOOD PRESERVATIVES IN A TERRESTRIAL MICROCOSM

    EPA Science Inventory

    The transport and effects of 14C-labeled wood preservatives (creosote with labeled phenanthrene or acenaphthene, pentachlorophenol, and bis(tri-n-butyltin)oxide) impregnated in wood posts were examined in a terrestrial microcosm chamber (TMC-II) in comparison to a reference compo...

  15. Functional Categorization of Transcriptome in the Species Symphysodon aequifasciatus Pellegrin 1904 (Perciformes: Cichlidae) Exposed to Benzo[a]pyrene and Phenanthrene

    PubMed Central

    Lemgruber, Renato de Souza Pinto; Marshall, Nislanha Ana dos Anjos; Ghelfi, Andrea; Fagundes, Daniel Barros; Val, Adalberto Luis

    2013-01-01

    This study aims to evaluate the transcriptome alterations, through cDNA libraries, associated with the combined effects of two PAHs, benzo[a]pyrene (0.5 µg/L) and phenanthrene (50 µg/L), present in crude oil, on specimens of Symphysodon aequifasciatus (discus fish) after 48 h of exposure. The cDNA libraries were constructed according to the SOLiD™ SAGE™ protocol for sequencing in the SOLiD v.3 Plus sequencer. The results were analyzed by bioinformatics and differentially expressed genes were categorized using the gene ontology program. The functional categories (terms) found in the gene ontology and the gene network generated using STRING software were used to predict the adverse effects of benzo[a]pyrene and phenanthrene in the liver. In the present study, 27,127 genes (compared to Danio rerio database) were identified. Considering only those genes with a p-value less than or equal to 0.05 and greater than or equal to two-fold change in expression across libraries, we found 804 genes, 438 down-regulated (54%) and 366 up-regulated (46%), in the experimental group compared to the control. Out of this total, 327 genes were successfully categorized, 174 down-regulated and 153 up-regulated, using gene ontology. Using String, the gene network was composed by 199 nodes, 124 of them resulting in 274 interactions. The results showed that even an acute exposure of 48 h caused metabolic change in response to environmental contaminants, resulting in changes of cell integrity, in oxidation-reduction processes, in the immune response and disturbances of intracellular signaling of discus fish. Also the gene network has showed no central interplay cluster, exhibiting instead interconnected clusters interactions and connected sub-networks. These findings highlight that even an acute sublethal exposure of PAHs can cause metabolism changes that may affect survival of discus. Our findings using SOLiD coupled with SAGE-method resulted in a powerful and reliable means for gene

  16. Functional categorization of transcriptome in the species Symphysodon aequifasciatus Pellegrin 1904 (Perciformes: Cichlidae) exposed to benzo[a]pyrene and phenanthrene.

    PubMed

    Lemgruber, Renato de Souza Pinto; Marshall, Nislanha Ana dos Anjos; Ghelfi, Andrea; Fagundes, Daniel Barros; Val, Adalberto Luis

    2013-01-01

    This study aims to evaluate the transcriptome alterations, through cDNA libraries, associated with the combined effects of two PAHs, benzo[a]pyrene (0.5 µg/L) and phenanthrene (50 µg/L), present in crude oil, on specimens of Symphysodon aequifasciatus (discus fish) after 48 h of exposure. The cDNA libraries were constructed according to the SOLiD™ SAGE™ protocol for sequencing in the SOLiD v.3 Plus sequencer. The results were analyzed by bioinformatics and differentially expressed genes were categorized using the gene ontology program. The functional categories (terms) found in the gene ontology and the gene network generated using STRING software were used to predict the adverse effects of benzo[a]pyrene and phenanthrene in the liver. In the present study, 27,127 genes (compared to Danio rerio database) were identified. Considering only those genes with a p-value less than or equal to 0.05 and greater than or equal to two-fold change in expression across libraries, we found 804 genes, 438 down-regulated (54%) and 366 up-regulated (46%), in the experimental group compared to the control. Out of this total, 327 genes were successfully categorized, 174 down-regulated and 153 up-regulated, using gene ontology. Using String, the gene network was composed by 199 nodes, 124 of them resulting in 274 interactions. The results showed that even an acute exposure of 48 h caused metabolic change in response to environmental contaminants, resulting in changes of cell integrity, in oxidation-reduction processes, in the immune response and disturbances of intracellular signaling of discus fish. Also the gene network has showed no central interplay cluster, exhibiting instead interconnected clusters interactions and connected sub-networks. These findings highlight that even an acute sublethal exposure of PAHs can cause metabolism changes that may affect survival of discus. Our findings using SOLiD coupled with SAGE-method resulted in a powerful and reliable means for gene

  17. CYP1A expression in liver and gills of roach (Rutilus rutilus) after waterborne exposure to two phenanthrene derivatives, 1-methylphenanthrene and 4-methylphenanthrene.

    PubMed

    Wolińska, Lidia; Brzuzan, Paweł; Woźny, Maciej; Luczyński, Michał K; Góra, Maciej

    2013-07-01

    Phenanthrenes (Phs) substituted with alkyl groups are a class of compound present in the environment, and they appear to be toxic to developing fish. The present study aimed to investigate the effect of waterborne exposure to two monomethyl derivatives of phenanthrene, 1-methylphenanthrene (1M-Ph) and 4-methylphenanthrene (4M-Ph), on cytochrome P450 1A (CYP1A) gene expression in fish gills and liver. Juvenile common roaches (Rutilus rutilus) were exposed to water with dimethyl sulfoxide (DMSO) solutions of 1M-Ph, 4M-Ph, benzo[a]pyrene (BaP; positive control), each at a dose of 100 µg/L, or to water with DMSO alone (negative control group) for 2 d and 7 d. Significant CYP1A responses with regard to treatment and exposure duration were noted (2-way analysis of variance [ANOVA]) in gills (p = 0.013 and p = 0.003, respectively) and liver (p < 0.001). The 2 monomethyl Phs did not induce consistent gene expression changes, except for 4-MPh, which elevated the CYP1A messenger ribonucleic acid (mRNA) level in the liver at the end of the treatment (almost 4-fold; p < 0.05; 7 d). As was expected, exposure to BaP resulted in elevation of CYP1A mRNA expression in treated fish compared with the control group. Expressions after 2 d and 7 d were approximately 220- and 180-fold higher in liver and 8- and 6-fold higher in gills respectively. The CYP1A protein levels remained stable in both tissues, with one notable exception in roach liver treated for 2 d with BaP (∼ 6-fold increase; p < 0.05). The different effects of the 1- and 4-methylphenanthrenes on CYP1A gene expression in roach liver suggest a relationship between chemical or 3-D structure of the differentially substituted monomethyl Phs and their biological activity. PMID:23553963

  18. Structure/Reactivity Relationships in the Benzo[c]phenanthrene Skeleton: Stable Ion and Electrophilic Substitution (Nitration, Bromination) Study of Substituted Analogs; Novel Carbocations and Substituted Derivatives

    PubMed Central

    Brulé, Cédric; Laali, Kenneth K.; Okazaki, Takao; Lakshman, Mahesh K.

    2008-01-01

    A series of novel carbocations were generated by low temperature protonation of substituted benzo[c]phenanthrenes B[c]Phs and their charge delocalization pathways were elucidated by NMR based on the magnitude of Δδ13C values. It has been shown that the protonation regioselectivity is strongly controlled by methoxy and hydroxyl substituents, whose directive effects override methyl substitution effects. Regiocontrol by –OMe and –OH substituents, and its stronger influence relative to methyl groups, was also observed in the nitration and bromination reactions. Charge distribution modes in the regioisomeric protonated carbocations via parent B[c]Ph as well as in the benzylic carbocation formed via fjord-region epoxide ring opening were deduced by GIAO-DFT, and from the NPA-derived changes in charges over CHs. These patterns were compared with those derived from NMR experiments in the substituted derivatives. NMR-based charge delocalization mapping provided insight into structure/activity relationships in the methylated and fluorinated B[c]Phs. Regioselectivities observed in the nitration and bromination reactions in representative cases are the same as those via protonations. Among a group of novel nitro and bromo derivatives synthesized in this study are examples where nitro group is introduced into the fjord-region, for which X-ray structure could be obtained in one case. PMID:17394355

  19. The anharmonic quartic force field infrared spectra of five non-linear polycyclic aromatic hydrocarbons: Benz[a]anthracene, chrysene, phenanthrene, pyrene, and triphenylene.

    PubMed

    Mackie, Cameron J; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Mattioda, Andrew L; Buma, Wybren Jan; Lee, Timothy J; Tielens, Alexander G G M

    2016-08-28

    The study of interstellar polycyclic aromatic hydrocarbons (PAHs) relies heavily on theoretically predicted infrared spectra. Most earlier studies use scaled harmonic frequencies for band positions and the double harmonic approximation for intensities. However, recent high-resolution gas-phase experimental spectroscopic studies have shown that the harmonic approximation is not sufficient to reproduce experimental results. In our previous work, we presented the anharmonic theoretical spectra of three linear PAHs, showing the importance of including anharmonicities into the theoretical calculations. In this paper, we continue this work by extending the study to include five non-linear PAHs (benz[a]anthracene, chrysene, phenanthrene, pyrene, and triphenylene), thereby allowing us to make a full assessment of how edge structure, symmetry, and size influence the effects of anharmonicities. The theoretical anharmonic spectra are compared to spectra obtained under matrix isolation low-temperature conditions, low-resolution, high-temperature gas-phase conditions, and high-resolution, low-temperature gas-phase conditions. Overall, excellent agreement is observed between the theoretical and experimental spectra although the experimental spectra show subtle but significant differences. PMID:27586928

  20. Impact of bacterial activity on turnover of insoluble hydrophobic substrates (phenanthrene and pyrene)-Model simulations for prediction of bioremediation success.

    PubMed

    Rein, Arno; Adam, Iris K U; Miltner, Anja; Brumme, Katja; Kästner, Matthias; Trapp, Stefan

    2016-04-01

    Many attempts for bioremediation of polycyclic aromatic hydrocarbon (PAH) contaminated sites failed in the past, but the reasons for this failure are not well understood. Here we apply and improve a model for integrated assessment of mass transfer, biodegradation and residual concentrations for predicting the success of remediation actions. First, we provide growth parameters for Mycobacterium rutilum and Mycobacterium pallens growing on phenanthrene (PHE) or pyrene (PYR) degraded the PAH completely at all investigated concentrations. Maximum metabolic rates vmax and growth rates μ were similar for the substrates PHE and PYR and for both strains. The investigated Mycobacterium species were not superior in PHE degradation to strains investigated earlier with this method. Real-world degradation scenario simulations including diffusive flux to the microbial cells indicate: that (i) bioaugmentation only has a small, short-lived effect; (ii) Increasing sorption shifts the remaining PAH to the adsorbed/sequestered PAH pool; (iii) mobilizing by solvents or surfactants resulted in a significant decrease of the sequestered PAH, and (iv) co-metabolization e.g. by compost addition can contribute significantly to the reduction of PAH, because active biomass is maintained at a high level by the compost. The model therefore is a valuable contribution to the assessment of potential remediation action at PAH-polluted sites. PMID:26705887

  1. High concentrations of polycyclic aromatic hydrocarbons (naphthalene, phenanthrene and pyrene) failed to explain biochar's capacity to reduce soil nitrous oxide emissions.

    PubMed

    Alburquerque, J A; Sánchez-Monedero, M A; Roig, A; Cayuela, M L

    2015-01-01

    The presence of polycyclic aromatic hydrocarbons (PAHs) has been postulated as a mechanism by which biochar might mitigate N(2)O emissions. We studied whether and to what extent N(2)O emissions were influenced by the three most abundant PAHs in biochar: naphthalene, phenanthrene and pyrene. We hypothesised that biochars contaminated with PAHs would show a larger N(2)O mitigation capacity and that increasing PAH concentrations in biochar would lead to higher mitigation potentials. Our results demonstrate that the high-temperature biochar (550 °C) had a higher capacity to mitigate soil N(2)O emissions than the low-temperature biochar (350 °C). At low PAH concentrations, PAHs do not significantly contribute to the reductions in soil N(2)O emissions; while biochar stimulated soil N(2)O emissions when it was spiked with high concentrations of PAHs. This study suggests that the impact of biochar on soil N(2)O emissions is due to other compositional and/or structural properties of biochar rather than to PAH concentration. PMID:25305467

  2. Evaluation of in situ catalysed hydrogen peroxide propagation (CHP) for phenanthrene and fluoranthene removals from soil and its associated impacts on soil functionality.

    PubMed

    Venny; Gan, Suyin; Ng, Hoon Kiat

    2014-02-01

    Extensive contamination of soils by highly recalcitrant contaminants such as polycyclic aromatic hydrocarbons (PAHs) is an environmental problem arising from rapid industrialisation. This work focusses on the remediation of soil contaminated with 3- and 4-aromatic ring PAHs (phenanthrene (PHE) and fluoranthene (FLUT)) through catalysed hydrogen peroxide propagation (CHP). In the present work, the operating parameters of the CHP treatment in packed soil column was optimised with central composite design (H2O2/soil 0.081, Fe(3+)/soil 0.024, sodium pyrophosphate (SP)/soil 0.024, pH of SP solution 7.73). The effect of contaminant aging on PAH removals was also investigated. Remarkable oxidative PAH removals were observed for the short aging and extended aging period (up to 86.73 and 70.61 % for PHE and FLUT, respectively). The impacts of CHP on soil biological, chemical and physical properties were studied for both spiked and aged soils. Overall, the soil functionality analyses after the proposed operating condition demonstrated that the values for soil respiration, electrical conductivity, pH and iron precipitation fell within acceptable limits, indicating the compatibility of the CHP process with land restoration. PMID:24151025

  3. Polycyclic aromatic hydrocarbon levels in European catfish from the upper Po River basin.

    PubMed

    Squadrone, Stefania; Favaro, Livio; Abete, Maria Cesarina; Vivaldi, Barbara; Prearo, Marino

    2014-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are a major concern in environmental studies as many of them have been labeled as probable carcinogens by the International Agency for Research on Cancer (IARC 1983). Due to their lipophilic properties and resistance to degradation, PAHs can accumulate in organic tissue. As a consequence, alarming concentrations of these compounds have been found in many aquatic species. The European catfish (Silurus glanis) is a top food chain predator that is considered to be a reliable bio-indicator of environmental pollution. From 2009 to 2011, 54 specimens of S. glanis were captured from four different sites covering the area of the Po River basin (Northern Italy). Fish muscles were analyzed in the laboratory to determine the levels of nine PAHs, namely naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, pyrene, benz[a]anthracene, chrysene, and benz[a]pyrene (BaP), which were detected by high-performance liquid chromatography (HPLC). The total average concentration of PAHs was 26.90 ± 49.50 ng g(-1) (min 0.60, max 275.75 ng g(-1)). Analysis showed that 9.20% of the fish muscles exceeded the maximum levels of 2 ng g(-1) set for BaP by European regulations (Commission Regulation (EC), 2006). Values measured for benz[a]pyrene ranged from 0.05 to 8.20 ng g(-1) (mean 1.07 ± 1.58 ng g(-1)). Chrysene and benz[a]anthracene, both considered potential human carcinogens (PAH2), were found at levels of 4.40 and 0.05 ng g(-1) (mean values), respectively. The highest mean concentration was recorded for anthracene (12.92 ng g(-1)), which has been recently included in the list of substances of very high concern (SVHC) as reported by the European Chemicals Agency (ECHA 1-9, 2009). PMID:24306443

  4. Hard Cap Espresso Machines in Analytical Chemistry: What Else?

    PubMed

    Armenta, Sergio; de la Guardia, Miguel; Esteve-Turrillas, Francesc A

    2016-06-21

    A hard cap espresso machine has been used in combination with liquid chromatography with molecular fluorescence detection for the determination of polycyclic aromatic hydrocarbons (PAHs) from contaminated soils and sediments providing appropriate extraction efficiencies and quantitative results. Naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benz[b]fluoranthene, benz[k]fluoranthene, benz[a]pyrene, dibenz[a,h]anthracene, benz[ghi]perylene, and indeno[1,2,3-cd]pyrene were used as target compounds. It should be mentioned that the pairs benz[a]anthracene-chrysene and dibenz[a,h]anthracene-benz[ghi]perylene peaks coelute under the employed chromatographic conditions; thus, those compounds were determined together. PAHs were extracted from 5.0 g of soil, previously homogenized, freeze-dried, and sieved to 250 μm, with 50 mL of 40% (v/v) acetonitrile in water at a temperature of 72 ± 3 °C. The proposed procedure is really fast, with an extraction time of 11 s, and it reduces the required amount of organic solvent to do the sample preparation. The obtained limit of detection for the evaluated PAHs was from 1 to 38 μg kg(-1). Recoveries were calculated using clean soils spiked with 100, 500, 1000, and 2000 μg kg(-1) PAHs with values ranging from 81 to 121% and good precision with relative standard deviation values lower than 30%. The method was validated using soil and sediment certified reference materials and also using real samples by comparison with ultrasound-assisted extraction, as reference methodology, obtaining statistically comparable results. Thus, the use of hard cap espresso machines in the analytical laboratories offers tremendous possibilities as low cost extraction units for the extraction of solid samples. PMID:27224000

  5. Response of microbial activities and diversity to PAHs contamination at coal tar contaminated land

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaohui; Sun, Yujiao; Ding, Aizhong; Zhang, Dan; Zhang, Dayi

    2015-04-01

    Coal tar is one of the most hazardous and concerned organic pollutants and the main hazards are polycyclic aromatic hydrocarbons (PAHs). The indigenous microorganisms in soils are capable to degrade PAHs, with essential roles in biochemical process for PAHs natural attenuation. This study investigated 48 soil samples (from 8 depths of 6 boreholes) in Beijing coking and chemistry plant (China) and revealed the correlation between PAHs contamination, soil enzyme activities and microbial community structure, by 16S rRNA denaturing gradient gel electrophoresis (DGGE). At the site, the key contaminants were identified as naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene and anthracene, and the total PAHs concentration ranged from 0.1 to 923.9 mg/kg dry soil. The total PAHs contamination level was positively correlated (p<0.05) with the bacteria count (0.9×107-14.2×107 CFU/mL), catalase activities (0.554-6.230 mL 0.02 M KMnO4/g•h) and dehydrogenase activities (1.9-30.4 TF μg/g•h soil), showing the significant response of microbial population and degrading functions to the organic contamination in soils. The PAHs contamination stimulated the PAHs degrading microbes and promoted their biochemical roles in situ. The positive relationship between bacteria count and dehydrogenase activities (p<0.05) suggested the dominancy of PAHs degrading bacteria in the microbial community. More interestingly, the microbial community deterioration was uncovered via the decline of microbial biodiversity (richness from 16S rRNA DGGE) against total PAHs concentration (p<0.05). Our research described the spatial profiles of PAHs contamination and soil microbial functions at the PAHs heavily contaminated sites, offering deeper understanding on the roles of indigenous microbial community in natural attenuation process.

  6. Generation and distribution of PAHs in the process of medical waste incineration

    SciTech Connect

    Chen, Ying; Zhao, Rongzhi; Xue, Jun; Li, Jinhui

    2013-05-15

    Highlights: ► PAHs generation and distribution features of medical waste incineration are studied. ► More PAHs were found in fly ash than that in bottom ash. ► The highest proportion of PAHs consisted of the seven most carcinogenic ones. ► Increase of free oxygen molecule and burning temperature promote PAHs degradation. ► There is a moderate positive correlation between total PCDD/Fs and total PAHs. - Abstract: After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs) during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8 × 10{sup 3} times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between

  7. Generation and distribution of PAHs in the process of medical waste incineration.

    PubMed

    Chen, Ying; Zhao, Rongzhi; Xue, Jun; Li, Jinhui

    2013-05-01

    After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs) during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8×10(3) times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between total PCDD/Fs and total PAHs, although no such relationship has been found for TEQ. PMID:23462270

  8. Modeling of experimental data on trace elements and organic compounds content in industrial waste dumps.

    PubMed

    Smoliński, Adam; Drobek, Leszek; Dombek, Václav; Bąk, Andrzej

    2016-11-01

    The main objective of the study presented was to investigate the differences between 20 mine waste dumps located in the Silesian Region of Poland and Czech Republic, in terms of trace elements and polycyclic aromatic hydrocarbons contents. The Principal Component Analysis and Hierarchical Clustering Analysis were applied in exploration of the studied data. Since the data set was affected by outlying objects, the employment of a relevant analysis strategy was necessary. The final PCA model was constructed with the use of the Expectation-Maximization iterative approach preceded by a correct identification of outliers. The analysis of the experimental data indicated that three mine waste dumps located in Poland were characterized by the highest concentrations of dibenzo(g,h,i)anthracene and benzo(g,h,i)perylene, and six objects located in Czech Republic and three objects in Poland were distinguished by high concentrations of chrysene and indeno (1.2.3-cd) pyrene. Three of studied mine waste dumps, one located in Czech Republic and two in Poland, were characterized by low concentrations of Cr, Ni, V, naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthen, benzo(a)anthracene, chrysene, benzo (b) fluoranthene, benzo (k) fluoranthene, benzo(a)pyrene, dibenzo(g,h,i)anthracene, benzo(g,h,i)perylene and indeno (1.2.3-cd) pyrene in comparison with the remaining ones. The analysis contributes to the assessment and prognosis of ecological and health risks related to the emission of trace elements and organic compounds (PAHs) from the waste dumps examined. No previous research of similar scope and aims has been reported for the area concerned. PMID:27497349

  9. A comparison of physicochemical methods for the remediation of porous medium systems contaminated with tar

    NASA Astrophysics Data System (ADS)

    Hauswirth, Scott C.; Miller, Cass T.

    2014-10-01

    The remediation of former manufactured gas plant (FMGP) sites contaminated with tar DNAPLs (dense non-aqueous phase liquids) presents a significant challenge. The tars are viscous mixtures of thousands of individual compounds, including known and suspected carcinogens. This work investigates the use of combinations of mobilization, solubilization, and chemical oxidation approaches to remove and degrade tars and tar components in porous medium systems. Column experiments were conducted using several flushing solutions, including an alkaline-polymer (AP) solution containing NaOH and xanthan gum (XG), a surfactant-polymer (SP) solution containing Triton X-100 surfactant (TX100) and XG, an alkaline-surfactant-polymer (ASP) solution containing NaOH, TX100, and XG, and base-activated sodium persulfate both with and without added TX100. The effectiveness of the flushing solutions was assessed based on both removal of polycyclic aromatic hydrocarbon (PAH) mass and on the reduction of dissolved-phase PAH concentrations. SP flushes of 6.6 to 20.9 PV removed over 99% of residual PAH mass and reduced dissolved-phase concentrations by up to two orders of magnitude. ASP flushing efficiently removed 95-96% of residual PAH mass within about 2 PV, and significantly reduced dissolved-phase concentrations of several low molar mass compounds, including naphthalene, acenaphthene, fluorene, and phenanthrene. AP flushing removed a large portion of the residual tar (77%), but was considerably less effective than SP and ASP in terms of the effect on dissolved PAH concentrations. Persulfate was shown to oxidize tar components, primarily those with low molar mass, however, the overall degradation was relatively low (30-50% in columns with low initial tar saturations), and the impact on dissolved-phase concentrations was minimal.

  10. Pseudomonads Rule Degradation of Polyaromatic Hydrocarbons in Aerated Sediment

    PubMed Central

    Wald, Jiri; Hroudova, Miluse; Jansa, Jan; Vrchotova, Blanka; Macek, Tomas; Uhlik, Ondrej

    2015-01-01

    Given that the degradation of aromatic pollutants in anaerobic environments such as sediment is generally very slow, aeration could be an efficient bioremediation option. Using stable isotope probing (SIP) coupled with pyrosequencing analysis of 16S rRNA genes, we identified naphthalene-utilizing populations in aerated polyaromatic hydrocarbon (PAH)-polluted sediment. The results showed that naphthalene was metabolized at both 10 and 20°C following oxygen delivery, with increased degradation at 20°C as compared to 10°C—a temperature more similar to that found in situ. Naphthalene-derived 13C was primarily assimilated by pseudomonads. Additionally, Stenotrophomonas, Acidovorax, Comamonas, and other minor taxa were determined to incorporate 13C throughout the measured time course. The majority of SIP-detected bacteria were also isolated in pure cultures, which facilitated more reliable identification of naphthalene-utilizing populations as well as proper differentiation between primary consumers and cross-feeders. The pseudomonads acquiring the majority of carbon were identified as Pseudomonas veronii and Pseudomonas gessardii. Stenotrophomonads and Acidovorax defluvii, however, were identified as cross-feeders unable to directly utilize naphthalene as a growth substrate. PAH degradation assays with the isolated bacteria revealed that all pseudomonads as well as Comamonas testosteroni degraded acenaphthene, fluorene, and phenanthrene in addition to naphthalene. Furthermore, P. veronii and C. testosteroni were capable of transforming anthracene, fluoranthene, and pyrene. Screening of isolates for naphthalene dioxygenase genes using a set of in-house designed primers for Gram-negative bacteria revealed the presence of such genes in pseudomonads and C. testosteroni. Overall, our results indicated an apparent dominance of pseudomonads in the sequestration of carbon from naphthalene and potential degradation of other PAHs upon aeration of the sediment at both 20 and

  11. Fate of aromatic hydrocarbons in Italian municipal wastewater systems: an overview of wastewater treatment using conventional activated-sludge processes (CASP) and membrane bioreactors (MBRs).

    PubMed

    Fatone, Francesco; Di Fabio, Silvia; Bolzonella, David; Cecchi, Franco

    2011-01-01

    We studied the occurrence, removal, and fate of 16 polycyclic aromatic hydrocarbons (PAHs) and 23 volatile organic compounds (VOCs) in Italian municipal wastewater treatment systems in terms of their common contents and forms, and their apparent and actual removal in both conventional activated-sludge processes (CASP) and membrane bioreactors (MBRs). We studied five representative full-scale CASP treatment plants (design capacities of 12,000 to 700,000 population-equivalent), three of which included MBR systems (one full-scale and two pilot-scale) operating in parallel with the conventional systems. We studied the solid-liquid partitioning and fates of these substances using both conventional samples and a novel membrane-equipped automatic sampler. Among the VOCs, toluene, ethylbenzene, xylenes, styrene, 1,2,4-trimethylbenzene, and 4-chlorotoluene were ubiquitous, whereas naphthalene, acenaphthene, fluorene, and phenanthrene were the most common PAHs. Both PAHs and aromatic VOCs had removal efficiencies of 40-60% in the headworks, even in plants without primary sedimentation. Mainly due to volatilization, aromatic VOCs had comparable removal efficiencies in CASP and MBRs, even for different sludge ages. MBRs did not enhance the retention of PAHs sorbed to suspended particulates compared with CASPs. On the other hand, the specific daily accumulation of PAHs in the MBR's activated sludge decreased logarithmically with increasing sludge age, indicating enhanced biodegradation of PAHs. The PAH and aromatic VOC contents in the final effluent are not a major driver for widespread municipal adoption of MBRs, but MBRs may enhance the biodegradation of PAHs and their removal from the environment. PMID:20804998

  12. A Potential Impact on the Chemical Composition in the Marine Boundary Layer in the Arctic Ocean by Ship Emissions

    NASA Astrophysics Data System (ADS)

    Xie, Z.; Wang, X.; Blum, J. D.; Sun, L.

    2005-12-01

    Samples of aerosols in the marine boundary layer (MBL) of the Arctic Ocean were collected aboard R/V ()Xuelong during the summer on the Second Chinese Arctic Research Expedition (July-September, 2003). Chemical compositions including major and trace elements and polycyclic aromatic hydrocarbons (PAHs) in aerosol particles were analyzed. Results showed that significant amounts of S, Fe, V and Ni are emitted from ship diesel engines and contaminate the ambient air. The total amount of Fe, which plays a significant role in the ocean ()biological pump, emitted from ships in the Arctic is estimated at 4.33-A106 kg yr-1. Sulfur emitted into the atmosphere may be transformed to sulfur acid and result in a chlorine depletion in sea-salt. Because the global inventory of sulfur from ship exhausts is large and halogens may have important consequences in possible tropospheric ozone destruction, the role of ships in effecting halogen depression in sea-salt should be evaluated. For organic compounds, 17 PAHs including Fluoranthene, Phenanthrene, Chrysene, Indeno[123-cd]pyrene, Pyrene, Benzo[b]fluoranthene, Benzo[ghi]pyrene, Naphthalene, Benzo[a]anthracene, Benzo[k]fluoranthene, Coronene, Fluorene, Benzo[a]pyrene, Acenaphthene, Anthracene, Dibenzo[a,h]anthracene and Acenaphthylene were detected. The average levels of subspecies of PAHs in ambient air ranged from 0.003 to 0.089 ng/m3. Among the 17 PAHs, fluoranthene had a relative high level, while the level of acenaphthylene was relative low. The aerosols contaminated by the ship, which were commonly excluded in previous investigations, thus provide an opportunity to investigate and understand the role of ship emissions in the atmospheric chemistry of the marine boundary layer, especially in the Arctic Ocean.

  13. Toxicity of a PAH photooxidation product to the bacteria Photobacterium phosphoreum and the duckweed Lemna gibba: Effects of phenanthrene and its primary photoproduct, phenanthrenequinone

    SciTech Connect

    McConkey, B.J.; Duxbury, C.L.; Dixon, D.G.; Greenberg, B.M.

    1997-05-01

    Phenanthrene (PHE) undergoes a significant increase in toxicity after exposure to simulated or natural sunlight in aqueous media, coincident with the appearance of PHE photoproducts. To investigate whether the primary photoproduct of PHE, 9,10-phenanthrenequinone (PHEQ), contributes to the increased hazards of solutions containing photomodified PHE, toxicity assays were conducted using the marine bacteria Photobacterium phosphoreum and the aquatic plant Lemna gibba (duckweed). Photobacterium phosphoreum was exposed to PHE, PHEQ, a photomodified PHE mixture containing known amounts of PHE and PHEQ (pmPHE), and a mixture mimicking the amounts of PHE and PHEQ in the pmPHE mixture. The bacteria were found to be equally sensitive to PHE in simulated solar radiation or darkness, with an EC50 of 0.53 mg/L. In both darkness or SSR, solutions containing PHEQ (with or without PHE) all exhibited an EC50 of 0.06 to 0.10 mg/L based on PHEQ concentrations, indicating that PHEQ was the primary active component of the pmPHE mixture. Lemna gibba was tested in SSR and visible light with PHE, PHEQ, and the pmPHE mixture. The calculated EC50 for PHE was 3.5 mg/L in SSR and 10.8 mg/L in visible light, showing that the presence of UV radiation in the SSR source increased the phytotoxicity of PHE. Strikingly, PHEQ was much more toxic to L. gibba than PHE in a light-independent manner. Thus, for both P. phosphoreum and L. gibba the major photooxidation product of PHE in SSR, PHEQ, is the more toxic of the two chemicals.

  14. Organic pollutant clustered in the plant cuticular membranes: visualizing the distribution of phenanthrene in leaf cuticle using two-photon confocal scanning laser microscopy.

    PubMed

    Li, Qingqing; Chen, Baoliang

    2014-05-01

    Plants play a key role in the transport and fate of organic pollutants. Cuticles on plant surfaces represent the first resistance for the uptake of airborne toxicants. In this study, a confocal scanning microscope enhanced with a two-photon laser was applied as a direct and noninvasive probe to explore the in situ uptake of a model pollutant, phenanthrene (PHE), into the cuticular membrane of a hypostomatic plant, Photinia serrulata. On the leaf cuticle surfaces, PHE forms clusters instead of being evenly distributed. The PHE distribution was quantified by the PHE fluorescence intensity. When PHE concentrations in water varying over 5 orders of magnitude were applied to the isolated cuticle, the accumulated PHE level by the cuticle was not vastly different, whether PHE was applied to the outer or inner side of the cuticle. Notably, PHE was found to diffuse via a channel-like pathway into the middle layer of the cuticle matrix, where it was identified to be composed of polymeric lipids. The strong affinity of PHE for polymeric lipids is a major contributor of the fugacity gradient driving the diffusive uptake of PHE in the cuticular membrane. Membrane lipids constitute important domains for hydrophobic interaction with pollutants, determining significant differentials of fugacities within the membrane microsystem. These, under unsteady conditions, contribute to enhance net transport and clustering along the z dimension. Moreover, the liquid-like state of polymeric lipids may promote mobility by enhancing the diffusion rate. The proposed "diffusive uptake and storage" function of polymeric lipids within the membrane characterizes the modality of accumulation of the hydrophobic contaminant at the interface between the plant and the environment. Assessing the capacity of fugacity of these constituents in detail will bring about knowledge of contaminant fate in superior plants with a higher level of accuracy. PMID:24678956

  15. The effect of dietary lipid composition on the intestinal uptake and tissue distribution of benzo[a]pyrene and phenanthrene in Atlantic salmon (Salmo salar).

    PubMed

    de Gelder, Stefan; Bakke, Marit J; Vos, Joëlle; Rasinger, Josef D; Ingebrigtsen, Kristian; Grung, Merete; Ruus, Anders; Flik, Gert; Klaren, Peter H M; Berntssen, Marc H G

    2016-01-01

    Uptake of polycyclic aromatic hydrocarbons (PAHs) across the intestine is suggested to occur in association with dietary lipids. Partial replacement of fish ingredients by vegetable ingredients in aquafeeds has led to increased levels of PAHs in marine farmed fish. We therefore investigated, intestinal uptake, tissue distribution and PAH metabolism after a single dose of (14)C-benzo[a]pyrene (BaP) or (14)C-phenanthrene (PHE) given to Atlantic salmon (Salmo salar) acclimatized to a fish oil or vegetable oil based diet. Both BaP and PHE were absorbed along the intestine. Fish oil based feed increased BaP concentration in the pyloric caeca and that of PHE in the proximal intestine. In contrast, vegetable oil increased BaP concentrations in the distal intestine. Extraction of whole body autoradiograms removed PHE-associated radiolabeling almost completely from the intestinal mucosa, but not BaP-associated radiolabeling, indicating the presence of BaP metabolites bound to cellular macromolecules. This observation correlates with the increased cyp1a expression in the proximal intestine, distal intestine and liver in the BaP exposed group. Furthermore, BaP-induced cyp1a expression was higher in the distal intestine of salmon fed fish oil compared to the vegetable oil fed group. PHE had no significant effect on cyp1a expression in any of these tissues. We conclude that dietary lipid composition affects intestinal PAH uptake. Fish oil based feed increased intestinal PAH concentrations probably due to an enhanced solubility in micelles composed of fish oil fatty acids. Increased BaP accumulation in the distal intestine of vegetable oil fed fish seems to be associated with a reduced Cyp1a-mediated BaP metabolism. PMID:26972757

  16. Enhancement of soil retention for phenanthrene in binary cationic gemini and nonionic surfactant mixtures: characterizing two-step adsorption and partition processes through experimental and modeling approaches.

    PubMed

    Zhao, Shan; Huang, Gordon; An, Chunjiang; Wei, Jia; Yao, Yao

    2015-04-01

    The enhancement of soil retention for phenanthrene (PHE) through the addition of a binary mixture of cationic gemini (12-2-12) and nonionic surfactants (C12E10) was investigated. The maximum apparent sorption coefficient Kd(*) reached 4247.8 mL/g through the addition of mixed 12-2-12 gemini and C12E10 surfactants, which was markedly higher than the summed individual results in the presence of individual 12-2-12 gemini (1148.6 mL/g) or C12E10 (210.0 mL/g) surfactant. However, the sorption of 12-2-12 gemini was inhibited by the increasing C12E10 dose; and a higher initial 12-2-12 gemini dose showed a higher "desorption" rate. The present study also addressed the sorption behavior of the single 12-2-12 gemini surfactant at the soil/aqueous interface. The sorption isotherm was divided into two steps to elucidate the sorption process; and the sorption schematics were proposed to elaborate the growth of surfactant aggregates corresponding to the various steps of the sorption isotherm. Finally, a two-step adsorption and partition model (TAPM) was developed to simulate the sorption process. Analysis of the equilibrium data indicated that the sorption isotherms of 12-2-12 gemini fitted the TAPM model better. Thermodynamic calculations confirmed that the 12-2-12 gemini sorption at the soil/aqueous interface was spontaneous and exothermic from 288 to 308K. PMID:25576782

  17. Crystal structure of 7-isopropyl-1,4a,N-trimethyl-1,2,3,4,4a,4b,5,6,7,8,10,10a-dodeca-hydro-phenanthrene-1-carb-ox-amide.

    PubMed

    Liu, Li; Yan, Xin-Yan; Rao, Xiao-Ping

    2015-10-01

    In the title compound, C26H37NO, a new derivative of di-hydro-abietic acid, the two cyclo-hexene rings adopt half chair conformations, whereas the cyclo-hexane ring has a chair conformation. Each of the methyl groups is in an axial position with respect to the tricyclic hydro-phenanthrene residue. In the crystal packing, methyl-ene-C-H⋯π(phen-yl) inter-actions lead to supra-molecular helical chains along [010]; the amide-H atom does not form a significant inter-molecular inter-action owing to steric pressure. PMID:26594487

  18. Turbulent coagulation of particles smaller than the length scales of turbulence and equilibrium sorption of phenanthrene to clay: Implications for pollutant transport in the estuarine water column

    NASA Astrophysics Data System (ADS)

    Brunk, Brett Kenneth

    1997-11-01

    Pollutant and particle transport in estuaries is affected by a multitude of physical, chemical and biological processes. In this research the importance of equilibrium sorption and turbulent coagulation were studied. Sorption in estuaries was modeled using phenanthrene, bacterial extracellular polymer and kaolinite clay as surrogates for a hydrophobic organic pollutant, dissolved organic matter and inorganic suspended sediment, respectively. Experiments over a range of estuarine salinities showed that ionic strength had the largest effect on the extent of sorption, while the effect of extracellular polymer coatings on the mineral surfaces was insignificant. Further calculations using typical estuarine suspended sediment concentrations indicated that equilibrium sorption could not fully account for the solid/solution phase distribution of hydrophobic organic compounds in the estuarine water column. For particles that are small compared to the length scales of turbulence, the rate of coagulation is related to the dynamics of the smallest turbulent eddies since they have the highest shear rate. Experimental and theoretical effort focused on determining the coagulation rate of spherical particles in isotropic turbulence. A pair diffusion approximation valid for rapidly fluctuating flows was used to calculate the rate of coagulation in a randomly varying isotropic linear flow field. Dynamic simulations of particle coagulation in Gaussian turbulence were computed over a range of representative values of particle-particle interactions (i.e, hydrodynamic interactions and van der Waals attraction) and total strain (i.e., the product of the strain rate and its time scale). The computed coagulation rates for isotropic turbulence differed from analytical approximations valid at large and small total strain. As expected, particle interactions were found to be significant. Experimental measurements of coagulation in grid-generated turbulence were obtained by measuring the loss

  19. Analysis of phenanthrene diol epoxide mercapturic acid detoxification products in human urine: relevance to molecular epidemiology studies of glutathione S-transferase polymorphisms

    PubMed Central

    Hecht, Stephen S.; Villalta, Peter W.; Hochalter, J.Bradley

    2008-01-01

    Many studies have investigated the effects of glutathione S-transferase (GST) polymorphisms on cancer incidence in people exposed to carcinogenic polycyclic aromatic hydrocarbons (PAHs). The basis for this is that the carcinogenic bay region diol epoxide metabolites of several PAH are detoxified by GSTs in in vitro studies. However, there are no reports in the literature on the identification in urine of the mercapturic acid metabolites that would result from this process in humans. We addressed this by developing a method for quantitation in human urine of mercapturic acids which would be formed from angular ring diol epoxides of phenanthrene (Phe), the simplest PAH with a bay region, and a common environmental pollutant. We prepared standard mercapturic acids by reactions of syn- or anti-Phe-1,2-diol-3,4-epoxide and syn- or anti-Phe-3,4-diol-1,2-epoxide with N-acetylcysteine. Analysis of human urine conclusively demonstrated that the only detectable mercapturic acid of this type—N-acetyl-S-(r-4,t-2,3-trihydroxy-1,2,3,4-tetrahydro-c/t-1-phenanthryl)-L-cysteine (anti-PheDE-1-NAC)—was derived from the ‘reverse diol epoxide’, anti-Phe-3,4-diol-1,2-epoxide, and not from the bay region diol epoxides, syn- or anti-Phe-1,2-diol-3,4-epoxide. Levels of anti-PheDE-1-NAC in the urine of 36 smokers were (mean ± SD) 728 ± 859 fmol/ml urine. The results of this study provide the first evidence for a mercapturic acid of a PAH diol epoxide in human urine, but it was not derived from a bay region diol epoxide as molecular epidemiologic studies have presumed, but rather from a reverse diol epoxide, representative of metabolites with little if any carcinogenic activity. These results demonstrate the need for integration of genotyping and phenotyping information in molecular epidemiology studies. PMID:18477646

  20. Identifying Boundary-Layer Transitions on Aircraft Skin

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Croom, C. C.; Kelliher, W. C.; Obara, C. J.

    1984-01-01

    Sublimating chemicals offer accurate, low-cost way of indicating laminarto-turbulent flow transisions on surfaces of aircraft. Aerodynamic surfaces coated with thin film of such volatile chemical solids as naphthalene, diphenyl, acenaphthene, or fluorene. Film sublimes rapidly because of high local shear stress and heat transfer in boundary layer. Coating appears white in regions where chemical remained on surface indicating laminar flow; regions where chemical disappeared indicate turbulent flow.

  1. Solubilization of coals by non-reductive alkylation in liquid ammonia

    SciTech Connect

    Gawlak, M.; Cyr, N.; Carson, D.; Ignasiak, B.

    1980-01-01

    The results of in-depth studies on non-reductive alkylation of five cretaceous and two carboniferous coals are presented. To assist in understanding of the chemical aspects of the non-reductive alkylation, which has been only marginally explored in organic chemistry, a considerable amount of work was carried out on alkylation of various model compounds (adamantane, indan, dibenzyl, diphenylmethane, 9,10-dihydrophenanthrene, 9,10-dihydroanthracene, fluorene, and acenaphthene).

  2. Arbuscular mycorrhizal fungal hyphae contribute to the uptake of polycyclic aromatic hydrocarbons by plant roots.

    PubMed

    Gao, Yanzheng; Cheng, Zhaoxia; Ling, Wanting; Huang, Jing

    2010-09-01

    The arbuscular mycorrhizal (AM) hyphae-mediated uptake of polycyclic aromatic hydrocarbons (PAHs) by the roots of ryegrass (Lolium multiflorum Lam.) was investigated using three-compartment systems. Glomus mosseae and Glomus etunicatum were chosen, and fluorene and phenanthrene were used as representative PAHs. When roots were grown in un-spiked soils, AM hyphae extended into PAH-spiked soil and clearly absorbed and transported PAHs to roots, resulting in high concentrations of fluorene and phenanthrene in roots. This was further confirmed by the batch equilibration experiment, which revealed that the partition coefficients (K(d)) of tested PAHs by mycorrhizal hyphae were 270-356% greater than those by roots, suggesting the great potential of hyphae to absorb PAHs. Because of fluorene's lower molecular weight and higher water solubility, its translocation by hyphae was greater than that of phenanthrene. These results provide new perspectives on the AM hyphae-mediated uptake by plants of organic contaminants from soil. PMID:20403686

  3. Changes in the adsorption of bisphenol A, 17 α-ethinyl estradiol, and phenanthrene on marine sediment in Hong Kong in relation to the simulated sediment organic matter decomposition.

    PubMed

    Fei, Ying-heng; Xing, Baoshan; Li, Xiao-yan

    2014-09-01

    Marine sediment with an input of particulate organic matter was incubated to simulate the early aging process. On the sediment after various incubation periods, adsorption and desorption tests were conducted for three selected organic micropollutants: bisphenol A (BPA), 17α-ethinyl estradiol (EE2), and phenanthrene (Phe). The results showed significant sediment organic matter (SOM) decomposition during the incubation, and the SOM decay and transformation had a profound impact on the adsorption of organic compounds by the sediment. An increasing-delay-increasing pattern of change was observed for the SOM normalized partition coefficients of EE2 and Phe. This change was accordant to the transformation of SOM from labile organics into active biomass and its microbial products, and finally into more condensed and humic-like substances. Comparison between the 3 model micropollutants indicates that the chemical adsorption behaviors were mostly affected by their hydrophobic properties. PMID:24929636

  4. Crystal structure of catena-poly[[di­aqua(4,5-di­aza­fluoren-9-one-κ2 N,N′)cadmium]-μ-2-hydroxy-5-sulfonato­benzoato-κ3 O 1,O 1′:O 5

    PubMed Central

    Wang, Chun-Xiang; Li, Zhi-Feng

    2014-01-01

    In the polymeric title compound, [Cd(C7H4O6S)(C11H6N2O)(H2O)2]n, the Cd2+ atom is seven-coordinated by two water O atoms, by three O atoms from two 2-hy­droxy-5-sulfonato­benzoate (Hssal2−) ligands and by two N atoms from a 4,5-di­aza­fluoren-9-one (Dafo) ligand in a distorted penta­gonal–bipyramidal geometry. The Cd2+ atoms are monodentately coordinated by the sulfonate group of one Hssal2− ligand and bidentately coordinated by the carboxyl­ate group of another Hssal2− ligand, generating zigzag chains running parallel to [010]. The chains are linked by O—H⋯O hydrogen bonds into a three-dimensional architecture. PMID:25484789

  5. Microbial utilization of toxic chemicals in surface waters of Guayanilla Bay, Puerto Rico: Impact of seasonal variation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted on the industrial area waters of Guayanilla Bay to determine the potential for microbial utilization of toxic compounds such as fluorene, naphthalene, phenanthrene, phenol and pentachlorophenol (PCP) as a sole carbon source. Utilization of toxic substrates was determined by usi...

  6. Crystal structure of 2,2′′-bis­(2,7-di­chloro-9-hy­droxy-9H-fluoren-9-yl)-1,1′:4′,1′′-terphenyl tri­ethyl­amine trisolvate

    PubMed Central

    Klien, Henrik; Seichter, Wilhelm; Weber, Edwin

    2015-01-01

    In the title solvate, C44H26Cl4O2·3C6H15N, the asymmetric part of the unit cell comprises two halves of the diol mol­ecules, 2,2′′-bis­(2,7-di­chloro-9-hy­droxy-9H-fluoren-9-yl)-1,1′:4′,1′′-terphenyl, and three mol­ecules of tri­ethyl­amine, i. e. the diol mol­ecules are located on crystallographic symmetry centres. Two of the solvent mol­ecules are disordered over two positions [occupancy ratios of 0.567 (3):0.433 (3) and 0.503 (3):0.497 (3)]. In the diol mol­ecules, the outer rings of the 1,1′:4′,1′′-terphenyl elements are twisted with reference to their central arene ring and the mean planes of the fluorenyl moieties are inclined with respect to the terphenyl ring to which they are connected, the latter making dihedral angles of 82.05 (8) and 82.28 (8)°. The presence of two 9-fluoren-9-ol units attached at positions 2 and 2′′ of the terphenyl moiety induces a ‘folded’ geometry which is stabilized by intra­molecular C—H⋯O hydrogen bonds and π–π stacking inter­actions, the latter formed between the fluorenyl units and the central ring of the terphenyl unit [centroid–centroid distances = 3.559 (1) and 3.562 (1) Å]. The crystal is composed of 1:2 complex units, in which the solvent mol­ecules are associated with the diol mol­ecules via O—H⋯N hydrogen bonds, while the remaining solvent mol­ecule is linked to the host by a C—H⋯N hydrogen bond. The given pattern of inter­molecular inter­actions results in formation of chain structures extending along [010]. PMID:26870400

  7. Crystal structure of poly[aqua­[μ-1,1′-(9,9-dimethyl-9H-fluoren-2,7-di­yl)di-1H-imidazole](μ-naphthalene-1,4-di­carboxyl­ato)nickel(II)

    PubMed Central

    Zou, Hengye; Qi, Yanjuan

    2014-01-01

    In the title compound, [Ni(C12H6O4)(C21H18N4)(H2O)]n, the NiII cation is coordinated by three carboxyl­ate O atoms of two naphthalene-1,4-di­carboxyl­ate anions, one water mol­ecule and two N atoms of two 1,1′-(9,9-dimethyl-9H-fluoren-2,7-di­yl)di-1H-imidazole (DFDI) ligands, giving rise to a slightly distorted octa­hedral geometry. The NiII ions are linked by the DFDI ligands into chains, which are further connected by the carboxyl­ate anions into double chains that elongate in the the b-axis direction. These double chains are linked by centrosymmetric pairs of O—H⋯O hydrogen bonds into layers parallel to (10-1). The asymmetric unit consists of one crystallographically independent NiII cation, one carboxyl­ate and one DFDI ligand, as well as of one water mol­ecule, all of them located in general positions. PMID:25309182

  8. Enhanced Performance of Inverted Polymer Solar Cells by Combining ZnO Nanoparticles and Poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctyfluorene)] as Electron Transport Layer.

    PubMed

    Han, Changfeng; Cheng, Yuanyuan; Chen, Ling; Qian, Lei; Yang, Ziyan; Xue, Wei; Zhang, Ting; Yang, Yixing; Cao, Weiran

    2016-02-10

    A highly efficient inverted polymer solar cell (PSC) has been successfully demonstrated by using a ZnO nanoparticle (NP) and poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctyfluorene)] (PFN) bilayer structure as an effective electron collecting layer. This ZnO/PFN bilayer structure is designed to combine the advantages of both ZnO and PFN, based on the performance comparison of ZnO-only, PFN-only, and ZnO/PFN bilayer devices in our work. ZnO NPs can serve as an efficient electron transport and buffer layer for reduced series resistance, while the PFN interlayer can improve the energy level alignment of devices through the formation of an interfacial dipole. With the enhanced electron extraction induced by the ZnO/PFN bilayer structure and PTB7:ICBA:PC71BM ternary system, the corresponding inverted PSC device shows a high PCE of 9.3%, which is more than a 15% improvement compared to the ZnO- or PFN-only devices. PMID:26754052

  9. Characterization of Cu(II) and Cd(II) resistance mechanisms in Sphingobium sp. PHE-SPH and Ochrobactrum sp. PHE-OCH and their potential application in the bioremediation of heavy metal-phenanthrene co-contaminated sites.

    PubMed

    Chen, Chen; Lei, Wenrui; Lu, Min; Zhang, Jianan; Zhang, Zhou; Luo, Chunling; Chen, Yahua; Hong, Qing; Shen, Zhenguo

    2016-04-01

    Soil that is co-contaminated with heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) is difficult to bioremediate due to the ability of toxic metals to inhibit PAH degradation by bacteria. We demonstrated the resistance mechanisms to Cu(II) and Cd(II) of two newly isolated strains of Sphingobium sp. PHE-SPH and Ochrobactrum sp. PHE-OCH and further tested their potential application in the bioremediation of HM-phenanthrene (PhA) co-contaminated sites. The PHE-SPH and PHE-OCH strains tolerated 4.63 and 4.34 mM Cu(II) and also showed tolerance to 0.48 and 1.52 mM Cd(II), respectively. Diverse resistance patterns were detected between the two strains. In PHE-OCH cells, the maximum accumulation of Cu(II) occurred in the cell wall, while the maximum accumulation was in the cytoplasm of PHE-SPH cells. This resulted in a sudden suppression of growth in PHE-OCH and a gradual inhibition in PHE-SPH as the concentration of Cu(II) increased. Organic acid production was markedly higher in PHE-OCH than in PHE-SPH, which may also have a role in the resistance mechanisms, and contributes to the higher Cd(II) tolerance of PHE-OCH. The factors involved in the absorption of Cu(II) or Cd(II) in PHE-SPH and PHE-OCH were identified as proteins and carbohydrates by Fourier transform infrared (FT-IR) spectroscopy. Furthermore, both strains showed the ability to efficiently degrade PhA and maintained this high degradation efficiency under HM stress. The high tolerance to HMs and the PhA degradation capacity make Sphingobium sp. PHE-SPH and Ochrobactrum sp. PHE-OCH excellent candidate organisms for the bioremediation of HM-PhA co-contaminated sites. PMID:26670028

  10. Celeribacter indicus sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium from deep-sea sediment and reclassification of Huaishuia halophila as Celeribacter halophilus comb. nov.

    PubMed

    Lai, Qiliang; Cao, Junwei; Yuan, Jun; Li, Fuying; Shao, Zongze

    2014-12-01

    A taxonomic study was carried out on strain P73(T), which was isolated from deep-sea sediment of the Indian Ocean by enrichment of polycyclic aromatic hydrocarbons. The strain was able to degrade biphenyl, naphthalene, 2-methylnaphthalene, 2,6-dimethylnaphthalene, acenaphthene, anthracene, phenanthrene, dibenzothiophene, dibenzofuran, fluorene, 4-methyldibenzothiophene and fluoranthene, but not pyrene or chrysene. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain P73(T) formed a clade with the genera Celeribacter and Huaishuia within the family Rhodobacteraceae, with highest sequence similarity of 96.98 % to Celeribacter neptunius H 14(T), followed by Huaishuia halophila ZXM137(T) (96.42 %). The bacterium was Gram-stain-negative, oxidase- and catalase-positive, rod-shaped and non-motile. Growth was observed at salinities from 0.5 to 12 % and at temperatures from 10 to 41 °C. The principal fatty acids (>10 %) of strain P73(T) were summed feature 8 (C18 : 1ω7c/ω6c) and C19 : 0ω8c cyclo. The sole respiratory quinone was Q-10. The major lipids were phosphatidylglycerol, one unknown aminolipid, one unknown phospholipid and one unknown lipid; a second unknown phospholipid and one unknown glycolipid were present as minor components. The G+C content of the chromosomal DNA was 66.0 mol%. The combined genotypic and phenotypic data show that strain P73(T) represents a novel species of the genus Celeribacter, for which the name Celeribacter indicus sp. nov. is proposed. The type strain is P73(T) ( = MCCC 1A01112(T) = LMG 27600(T) = DSM 27257(T)). Phylogenetic study and existing phenotypic information also show that Huaishuia halophila should be transferred to the genus Celeribacter as Celeribacter halophilus comb. nov. (type strain ZXM137(T) = MCCC 1A06432(T) = CGMCC 1.8891(T) = LMG 24854(T)). PMID:25256706

  11. Gradient distribution of persistent organic contaminants along northern slope of central-Himalayas, China.

    PubMed

    Wang, Xiao-Ping; Yao, Tan-Dong; Cong, Zhi-Yuan; Yan, Xing-Liang; Kang, Shi-Chang; Zhang, Yong

    2006-12-15

    High mountains may serve as condenser for persistent organic pollutants (POPs) and the vegetation in remote areas has been used as a means to characterized atmospheric concentrations of air pollutants. In this study, organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) in Himalayan spruce needle samples from Zhangmu-Nyalam region (central-Himalayas) were analyzed and the altitudinal gradient of these pollutants was investigated. Total HCHs and DDTs concentration in needles were in the range of 1.3-2.9 ng g(-1) dry weight and 1.7-11 ng g(-1) dry weight, which were lower than concentrations reported in spruce needles from Alps, however higher than concentrations in conifer needles from mountain areas of Alberta. Total Himalayan spruce needle PAHs was below 600 ng g(-1) and fluorene, phenanthrene and acenaphthene were abundant individual compounds measured. The ratios of alpha-HCH/gamma-HCH in pine needles were similar with the usual values for technical HCH, implying technical HCHs might be used in this region. The high ratios of o-p'-DDT/p-p'-DDT and no p-p'-DDE measured in this study led to the suspicion that a new source of o-p'-DDT and/or p-p'-DDT existed in this region. In addition, higher ratios of low molecular weight-/high molecular weight-PAHs in this region indicated that petroleum combustion, vehicle emission and low-temperature combustion might be the major contributions of PAH source. To examine the POPs distillation, the analyte concentrations were correlated with altitude. The more volatile OCPs, alpha-HCH, gamma-HCH, aldrin and alpha-endosulfan positively correlated with altitude, however, less volatile OCPs (DDT and DDD) inversely related with elevation. Almost all PAHs detected in this area showed positive correlations with altitude. It is worthy to note that heavy PAHs (Benzo[k] fluoranthene and Benzo[a]anthracene) displayed positive correlation, which implied the sources of PAHs were near the sampling sites. The

  12. Analysis of Phenanthrene and Benzo[a]pyrene Tetraol Enantiomers in Human Urine: Relevance to the Bay Region Diol Epoxide Hypothesis of Benzo[a]pyrene Carcinogenesis and to Biomarker Studies

    PubMed Central

    Hecht, Stephen S.; Carmella, Steven G.; Villalta, Peter W.; Hochalter, J. Bradley

    2010-01-01

    One widely accepted metabolic activation pathway of the prototypic carcinogenic polycyclic aromatic hydrocarbon (PAH) benzo[a]pyrene (BaP) proceeds through the “bay region diol epoxide” BaP-(7R,8S)-diol-(9S,10R)-epoxide (2). However, few studies have addressed the analysis of human urinary metabolites of BaP which result from this pathway. Phenanthrene (Phe) is structurally related to BaP, but human exposure to Phe is far greater and its metabolites can be readily detected in urine. Thus, Phe metabolites have been proposed as biomarkers of PAH exposure and metabolic activation. Phe-tetraols in particular could be biomarkers of the diol epoxide pathway. While BaP-tetraols and Phe-tetraols have been previously quantified in human urine, no published studies have determined their enantiomeric composition. This is important because different enantiomers would result from the bay region diol epoxide and “reverse” diol epoxide pathways, the latter being associated with weak mutagenicity and carcinogenicity. We addressed this problem using chiral HPLC to separate the enantiomers of BaP-7,8,9,10-tetraol and Phe-1,2,3,4-tetraol. Urine samples from smokers were subjected to solid-phase extraction, chiral HPLC, and GC-NICI-MS/MS analysis for silylated Phe-1,2,2,4-tetraols. The results demonstrated that >96% of Phe-1,2,3,4-tetraol in smokers’ urine was Phe-(1S,2R,3S,4R)-tetraol (12), resulting from the “reverse” diol epoxide pathway, whereas less than 4% resulted from the “bay region diol epoxide” pathway of Phe metabolism. Urine from creosote workers was similarly analyzed for BaP-7,8,9,10-tetraol enantiomers. In contrast to the results of the Phe-tetraol analyses, 78% of BaP-7,8,9,10-tetraol in these human urine samples was BaP-(7R,8S,9R,10S)-tetraol (3) resulting from the “bay region diol epoxide” pathway of BaP metabolism. These results provide further support for the bay region diol epoxide pathway of BaP metabolism in humans and demonstrate

  13. Urinary Biomarkers of Polycyclic Aromatic Hydrocarbons Are Associated with Cardiometabolic Health Risk

    PubMed Central

    Ranjbar, Mahsa; Rotondi, Michael A.; Ardern, Chris I.; Kuk, Jennifer L.

    2015-01-01

    Background Polycyclic aromatic hydrocarbons (PAH) are both man-made and naturally occurring environmental pollutants that may be related to cardiometabolic health risk. Objective To determine whether PAH is associated with obesity in the adult population and to examine whether urinary concentrations of PAH metabolites are associated with differences in how obesity relates to 3 or more risk factors for the metabolic syndrome (3RFMetS), type 2 diabetes (T2D), hypertension, and dyslipidemia. Methods A total of 4765 adult participants from the 2001–2008 National Health and Nutrition Examination Survey were examined. The association between 8 urinary hydroxylated PAH metabolites, obesity, and health were examined using weighted logistic regressions adjusting for age, sex, ethnicity, PIR, smoking status, and urinary creatinine. Results There was a positive dose-dependent association between obesity and 2-phenanthrene quintiles (P trend <0.0001). Contrarily, higher quintiles of 1-naphthalene were associated with lower risk of obesity (P trend = 0.0004). For a given BMI, those in the highest quintile of 2-naphthalene, 2-fluorene, 3-fluorene and 2-phenanthrene had a 66–80% greater likelihood of 3RFMetS (P≤0.05) compared to low levels. Higher quintiles of 1-naphthalene, 2-naphthalene, 2-phenanthrene and 1-pyrene were associated with a 78–124% greater likelihood of T2D (P≤0.05) compared to low levels while high 1-naphthalene, 2-naphthalene, 2-fluorene, 3-fluorene and 2-phenanthrene were associated with a 38–68% greater likelihood of dyslipidemia (P≤0.05) compared to lower levels. Finally, 2-naphthalene and 2-phenanthrene were positively associated with hypertension (P trend = 0.008 and P trend = 0.02 respectively). Conclusions PAH is related to obesity and the expression of a number of obesity-related cardiometabolic health risk factors. Future research is needed to bring to light the mechanistic pathways related to these findings. PMID:26340343

  14. Polycyclic aromatic hydrocarbons (PAHs) in yogurt samples.

    PubMed

    Battisti, Chiara; Girelli, Anna Maria; Tarola, Anna Maria

    2015-01-01

    The concentrations and distributions of major polycyclic aromatic hydrocarbons (PAHs) were determined in 20 kinds of yogurt specimens collected from Italian supermarkets using reversed phase high-performance liquid chromatography equipped with fluorescence detection. The method was validated by determination of recovery percentages, precision (repeatability) and sensitivity (limits of detection) with yogurt samples fortified at 0.25, 0.5 and 1 µg/kg concentration levels. The recovery of 13 PAHs, with the exception of naphthalene and acenaphthene, ranged from 61% to 130% and from 60% to 97% at all the levels for yogurts with low (0.1%) and high (3.9%) fat content, respectively. The method is repeatable with relative standard deviation values <20% for all analytes. The results obtained demonstrate that acenaphthene, fluorantene, phenanthrene, anthracene, fluoranthene and pyrene were found in all samples with a similar distribution, but different content when yogurts with low and high fats were compared. PMID:25257517

  15. Effects of two novel D3-selective compounds, NGB 2904 [N-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)butyl)-9H-fluorene-2-carboxamide] and CJB 090 [N-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)butyl)-4-(pyridin-2-yl)benzamide], on the reinforcing and discriminative stimulus effects of cocaine in rhesus monkeys.

    PubMed

    Martelle, Jennifer L; Claytor, Renee; Ross, Jason T; Reboussin, Beth A; Newman, Amy Hauck; Nader, Michael A

    2007-05-01

    The present study examined the effects of two novel dopamine D3 receptor compounds, NGB 2904 [N-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)butyl)-9H-fluorene-2-carboxamide], an antagonist, and CJB 090 [N-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)butyl)-4-(pyridin-2-yl)benzamide], a partial agonist, in two models of cocaine abuse in rhesus monkeys. To establish a dose range and time course of effects, both compounds were shown to block quinpirole-induced yawning when administered i.m. 15, 30, or 120 min before quinpirole. Next, rhesus monkeys were trained to discriminate i.m. injections of saline (0.5 ml) and cocaine (0.3 mg/kg). Neither D3 compound (0.03-3.0 mg/kg; n=3) substituted for cocaine in any monkey. When given in combination with cocaine, CJB 090 but not NGB 2904 attenuated the discriminative stimulus effects of cocaine, shifting the cocaine dose-response curve to the right. In a separate group of monkeys, responding was maintained under a second-order schedule of either food (1.0-g pellets; n=3) or cocaine (0.1 mg/kg/injection; n=4) presentation. When responding was stable, a dose of NGB 2904 (1.0-5.6 mg/kg i.v.) or CJB 090 (0.3-3.0 mg/kg i.v.) was administered for 5 consecutive days, immediately before the session. CJB 090, but not NGB 2904, decreased cocaine- and food-maintained responding. These data indicate that compounds with relatively high affinity and selectivity for the D3 receptor can attenuate the discriminative and reinforcing stimulus effects of cocaine while not producing cocaine-like effects. The present findings support the continued examination of D3 compounds as pharmacological tools for better understanding the role of this receptor subtype in cocaine addiction and as potential lead compounds for novel therapeutic agents. PMID:17272677

  16. Degradation of some representative polycyclic aromatic hydrocarbons by the water-soluble protein extracts from Zea mays L. cv PR32-B10.

    PubMed

    Barone, Roberto; de Biasi, Margherita-Gabriella; Piccialli, Vincenzo; de Napoli, Lorenzo; Oliviero, Giorgia; Borbone, Nicola; Piccialli, Gennaro

    2016-10-01

    The ability of the water-soluble protein extracts from Zea mais L. cv. PR32-B10 to degrade some representative polycyclic aromatic hydrocarbons (PAHs), has been evaluated. Surface sterilized seeds of corn (Zea mais L. Pioneer cv. PR32-B10) were hydroponically cultivated in a growth chamber under no-stressful conditions. The water-soluble protein extracts isolated from maize tissues showed peroxidase, polyphenol oxidase and catalase activities. Incubation of the extracts with naphthalene, fluorene, phenanthrene and pyrene, led to formation of oxidized and/or degradation products. GC-MS and TLC monitoring of the processes showed that naphthalene, phenanthrene, fluorene and pyrene underwent 100%, 78%, 92% and 65% oxidative degradation, respectively, after 120 min. The chemical structure of the degradation products were determined by (1)H NMR and ESI-MS spectrometry. PMID:27391049

  17. Toxicity and photoactivation of PAH mixtures in marine sediment

    SciTech Connect

    Swartz, R.; Ferraro, S.; Lamberson, J.; Cole, F.; Ozretich, R.; Boese, B.; Schults, D.; Behrenfeld, M.; Ankley, G.

    1995-12-31

    The toxicity and toxicological photoactivation of mixtures of sediment-associated fluoranthene, phenanthrene, pyrene, and acenaphthene were determined using standard 10 d sediment toxicity tests with the marine amphipod, Rhepoxynius abronius. The four PAHs were spiked into sediment in a concentration series of either single compounds or an equitoxic mixture. Spiked sediment was stored at 4 C for 28 d before testing. Toxicity tests were conducted under fluorescent lighting. Survivors after 10 d in PAH-contaminated sediment were exposed for 1 h to UV light in the absence of sediment and then tested for their ability to bury in clean sediment. The 10 d LC50s for single PAHs were 3.3, 2.2, 2.8, and 2.3 mg/g oc for fluoranthene, phenanthrene, pyrene, and acenaphthene, respectively. These LC50s were used to calculate the sum of toxic units ({Sigma}TU) of the four PAHs in the equitoxic mixture treatments. The {Sigma}TU LC50 was then calculated for the mixture treatments. If the toxicological interaction of the four PAHs in the mixture was additive, the {Sigma}TU LC50 should equal 1.0. The observed {Sigma}TU LC50 in the mixture was 1.55, indicating the interaction was slightly less than additive. UV enhancement of toxic effects of individual PAHs was correctly predicted by photophysical properties, i.e. pyrene and fluoranthene were photoactivated and phenanthrene and acenaphthene were not. UV effects in the mixture of four PAHs can be explained by the photoactivation of pyrene and fluoranthene alone.

  18. Photoactivation and toxicity of mixtures of polycyclic aromatic hydrocarbon compounds in marine sediment

    SciTech Connect

    Swartz, R.C.; Ferraro, S.P.; Lamberson, J.O.; Cole, F.A.; Ozretich, R.J.; Boese, B.L.; Schults, D.W.; Behrenfeld, M.; Ankley, G.T.

    1997-10-01

    The direct toxicity and photoinduced toxicity of sediment-associated acenaphthene, phenanthrene, fluoranthene, and pyrene were determined for the marine amphipod Rhepoxynius abronius. The four polycyclic aromatic hydrocarbons (PAHs) were spiked into sediment in a concentration series of either single compounds or as approximately equitoxic mixtures of all four compounds. Standard 10-d sediment toxicity tests were conducted under fluorescent lighting. After 10 d, survivors were exposed for 1 h to ultraviolet (UV) radiation in the absence of sediment and then tested for their ability to bury in uncontaminated sediment. The 10-d median lethal concentrations (LC50s) were 2.31 mg acenaphthene/g organic carbon (OC), 2.22 mg phenanthrene/g OC, 3.31 mg fluoranthene/g OC, and 2.81 mg pyrene/g OC. These LC50s were used to calculate the sum of toxic units ({Sigma}TU) of the four PAHs in the approximately equitoxic mixtures. The {Sigma}TU LC50 was then calculated for the mixture treatments. If the toxicologic interaction of a mixture of contaminants is additive, {Sigma}TU LC50 = 1.0. The observed LC50 (1.55 {Sigma}TU) was slightly, but significantly, greater than unity, indicating that the interaction of PAHs in the mixture was less than additive. Exposure to UV radiation enhanced the toxic effects of fluoranthene and pyrene, but did not affect the toxicity of acenaphthene and phenanthrene. Effects of UV radiation on the toxicity of the mixture of four PAHs could be explained by the photoactivation of fluoranthene and pyrene alone. These results are consistent with predictions based on photophysical properties of PAH compounds.

  19. Determination of biomarkers for polycyclic aromatic hydrocarbons (PAHs) toxicity to earthworm (Eisenia fetida).

    PubMed

    Nam, Tae-Hoon; Jeon, Hwang-Ju; Mo, Hyung-ho; Cho, Kijong; Ok, Yong-Sik; Lee, Sung-Eun

    2015-12-01

    Polycyclic aromatic hydrocarbon (PAH) compounds are persistent, carcinogenic, and mutagenic. When PAHs enter agricultural soils through sewage sludge, they pose an environmental risk to soil organisms, including earthworms. Therefore, we aimed to determine the toxic effects of PAHs on earthworms. Five PAHs were used: fluorene, anthracene, phenanthrene, fluoranthene, and pyrene. Only fluorene and phenanthrene exhibited toxicity (LC50 values 394.09 and 114.02 g L(-1), respectively) against the earthworm Eisenia fetida. None of the other PAHs tested in this study enhanced the mortality of adult earthworm until the concentrations reached to 1000 g L(-1). After exposure to PAHs, acetylcholinesterase (AChE) activity in E. fetida decreased in a concentration-dependent manner, and phenanthrene exhibited the strongest inhibitory effect on AChE, followed by fluorene. Activity of a representative detoxifying enzyme, carboxylesterase, was dramatically reduced in E. fetida exposed to all tested PAHs in comparison with that observed in the control test. The remaining glutathione S-transferase activity significantly decreased in E. fetida after exposure to PAHs. To profile small proteins <20 kDa, SELDI-TOF MS with Q10 ProteinChips was used, and 54 proteins were identified as being significantly different from the control (p = 0.05). Among them, the expressions of three proteins at 4501.8, 4712.4, and 4747.9 m/z were only enhanced in E. fetida exposed to anthracene and pyrene. One protein with 16,174 m/z was selectively expressed in E. fetida exposed to fluorene, phenanthrene, and fluoranthene. These proteins may be potential biomarkers for the five PAHs tested in E. fetida. PMID:25920560

  20. The use of CNDO in spectroscopy. XV. Two photon absorption

    NASA Astrophysics Data System (ADS)

    Marchese, Francis T.; Seliskar, C. J.; Jaffé, H. H.

    1980-04-01

    Two-photon absorptivities have been calculated within the CNDO/S-CI molecular orbital framework of Del Bene and Jaffé utilizing the second order time dependent perturbation equations of Göppert-Mayer and polarization methods of McClain. Good agreement is found between this theory and experiment for transition energies, symmetries, and two-photon absorptivities for the following molecules: biphenyl, terphenyl, 2,2'-difluorobiphenyl, 2,2'-bipyridyl, phenanthrene, and the isoelectronic series: fluorene, carbazole, dibenzofuran.

  1. Predicting the switchable screw sense in fluorene-based polymers.

    PubMed

    Pietropaolo, Adriana; Wang, Yue; Nakano, Tamaki

    2015-02-23

    A chirality-switching free-energy landscape was reconstructed on a 43-mer of poly(9,9-dioctylfluoren-2,7-diyl) (PDOF). The simulations were conducted on amorphous silica surface as well as in the vacuum phase for a single chain or for a group of sixteen chains. The achiral-to-chiral transition occurs only on amorphous silica (activation free-energy 35 kcal mol(-1) ), where the enantiomeric (homochiral) basins are detected. This was supported by the experiments where effective chirality induction to PDOF using circularly polarized light (CPL) was attained only for a film deposited on a quartz glass and not for a solution or a suspension. These results indicate that interactions of PDOF with amorphous silica play a crucial role in chirality switching. Importance of chain assembling was also indicated. Theoretical ECD spectra of the enantiomeric basins containing a 51 helix reproduce the experimental spectra. PMID:25641571

  2. Interface energetics of polyfluorene and fluorene-arylamine copolymers

    NASA Astrophysics Data System (ADS)

    Hwang, Jaehyung; Kahn, Antoine

    2006-08-01

    The energy level alignment at interfaces between poly(9,9'-dioctylfluorene) (F8), poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-diphenylamine) (TFB) and poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-1,4-phenylenediamine) (PFB) and substrates with work function ranging from 4.3 eV to 5.1 eV is investigated via ultra-violet photoemission spectroscopy. Vacuum level alignment with flat bands away from the interface is found when the interface hole barrier is 0.6 eV or larger. Band bending that moves the filled states away from the Fermi level occurs when the hole barrier is smaller than 0.4 eV. This is presumably due to the accumulation of excess interface charges on the polymer side when the interfacial barrier is small. The resulting field shifts the polymer levels in a way that limits charge penetration in the bulk of the film. We also study metal-on-polymer interfaces. Different metals exhibit different growth modes. While Pt shows complete layer-by-layer type of growth, Al shows island type of growth. Current-voltage measurement shows the presence of hole traps in the Au-on top-contact device, suggesting diffusion of small Au clusters into the polymer film. Furthermore, metal-on-polymer interfaces frequently present different interface energetics than their polymer-on-metal counterpart. e.g. a 0.3 - 0.4 eV higher hole injection barrier for Pt-on-TFB than TFB on Pt.

  3. Platinum chloride complexes containing 6-[9,9-di(2-ethylhexyl)-7-R-9H-fluoren-2-yl]-2,2'-bipyridine ligand (R = NO2, CHO, benzothiazol-2-yl, n-Bu, carbazol-9-yl, NPh2): tunable photophysics and reverse saturable absorption.

    PubMed

    Li, Zhongjing; Badaeva, Ekaterina; Ugrinov, Angel; Kilina, Svetlana; Sun, Wenfang

    2013-07-01

    Six new platinum(II) chloride complexes 1-6 containing a 6-[9,9-di(2-ethylhexyl)-7-R-9H-fluoren-2-yl]-2,2'-bipyridine (R = NO2, CHO, benzothiazol-2-yl (BTZ), n-Bu, carbazol-9-yl (CBZ), NPh2) ligand were synthesized and characterized. The influence of the electron-donating or electron-withdrawing substituent at the 7-position of the fluorenyl component on the photophysics of these complexes was systematically investigated by spectroscopic methods and simulated by time-dependent density functional theory (TDDFT). Electron-withdrawing or -donating substituents exert distinct effects on the photophysics of the complexes. All complexes feature a low-energy, broad (1)MLCT (metal-to-ligand charge transfer)/(1)ILCT (intraligand charge transfer)/(1)π,π* absorption band (tail) above ca. 430 nm and a major absorption band(s) between 320 and 430 nm, which admix (1)MLCT, (1)π,π*, (1)ILCT, and/or (1)LLCT (ligand-to-ligand charge transfer) characters. The contributions of different configurations to the major absorption band(s) vary depending on the nature of the substituent. Strong electron-donating or -withdrawing substituents (NPh2 and NO2) and the aromatic substituent BTZ cause a pronounced red-shift of the absorption spectra of 1, 3, and 6. All complexes are emissive at room temperature and at 77 K. The emitting excited state is dominated by (3)π,π* character in 1-3, with some contributions from (3)MLCT in 1 and 2, while the emission is predominantly from the (3)MLCT state for 4 and 5 but with some (3)π,π* character. For 6, the emitting state is (3)ILCT in nature. With the increased electron-donating ability of the substituent, the (3)π,π* character diminishes while charge transfer character increases. All complexes exhibit broad and strong triplet excited-state absorption (TA) from the near-UV to the near-IR spectral region. The TA band maxima are red-shifted for complexes 1-3 (which possess the electron-withdrawing substituents) compared to those of 4-6 (which

  4. Gas-liquid solubilities of carbon monoxide, carbon dioxide, hydrogen, water, 1-alcohols (1 [<=] n [<=] 6), and n-paraffins (2 [<=] n [<=] 6) in hexadecane, octacosane, 1-hexadecanol, phenanthrene, and tetraethylene glycol at pressures up to 5. 5 MPa and temperatures from 293 to 553 K

    SciTech Connect

    Breman, B.B.; Beenackers, A.A.C.M.; Rietjens, E.W.J.; Stege, R.J.H. . Dept. of Chemical Engineering)

    1994-10-01

    At temperatures between 473 and 673 K and pressures between 2 and 10 MPa, synthesis gas can be converted toward methanol, fuel-methanol (a mixture of methanol and higher alcohols), or a mixture of hydrocarbons (Fischer-Tropsch synthesis), depending on the type of heterogeneous catalyst applied. The gas-liquid solubilities of the solutes carbon monoxide, carbon dioxide, hydrogen, water, ethane, propane, pentane, hexane, methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, and 1-hexanol in the solvents tetraethylene glycol, hexadecane, octacosane, 1-hexadecanol, and phenanthrene were measured as a function of temperature. The solutes are all reactants or products relevant for synthesis gas conversion into alcohols and/or hydrocarbons. The solvents are seen as potentially attractive for synthesis gas conversion via gas-slurry processes. Experimental conditions varied between 293 and 553 K and 0.06 and 5.5 MPa, covering typical process conditions for synthesis gas conversion. The total set of experimental results consists of 1,533 gas-liquid solubilities divided over 60 binary systems. As far as the authors know hardly any of the gas-liquid solubilities from this set have been reported previously in the literature. Where literature data are available, a comparison is made with their data. This comparison always shows an agreement within the calculated experimental errors with an average deviation of 7.6% and a maximal deviation of 15.0%.

  5. Reference range levels of polycyclic aromatic hydrocarbons in the US population by measurement of urinary monohydroxy metabolites

    SciTech Connect

    Grainger, James . E-mail: jag2@cdc.gov; Huang, Wenlin; Patterson, Donald G.; Turner, Wayman E.; Pirkle, James; Caudill, Samuel P.; Wang, Richard Y.; Needham, Larry L.; Sampson, Eric J.

    2006-03-15

    We developed a gas chromatography isotope-dilution high-resolution mass spectrometry (GC/Id-HRMS) method for measuring 14 polycyclic aromatic hydrocarbon (PAH) metabolites representing seven parent PAHs in 3 mL of urine at low parts-per-trillion levels. PAH levels were determined in urine samples collected in 1999 and 2000 from approximately 2400 participants in the National Health and Nutrition Examination Survey, and, for the first time, reference range values were calculated for these metabolites in the US population. Using this GC/ID-HRMS method, we found detectable concentrations for monohydroxy metabolite isomers of fluorene, phenanthrene, fluoranthene, pyrene, and chrysene, benzo[c]phenanthrene, and benz[a]anthracene. Some monohydroxy metabolite isomers of benzo[c]phenanthrene, chrysene, and benz[a]anthracene exhibited low detection frequencies that did not allow for geometric mean calculations. Our study results enabled us to establish a reference range for the targeted PAHs in the general US population.

  6. Passive dosing versus solvent spiking for controlling and maintaining hydrophobic organic compound exposure in the Microtox® assay.

    PubMed

    Smith, Kilian E C; Jeong, Yoonah; Kim, Jongwoon

    2015-11-01

    Microbial toxicity bioassays such as the Microtox® test are ubiquitously applied to measure the toxicity of chemicals and environmental samples. In many ways their operation is conducive to the testing of organic chemicals. They are of short duration, use glass cuvettes and take place at reduced temperatures in medium lacking sorbing components. All of these are expected to reduce sorptive and volatile losses, but particularly for hydrophobic organics the role of such losses in determining the bioassay response remains unclear. This study determined the response of the Microtox® test when using solvent spiking compared to passive dosing for introducing the model hydrophobic compounds acenaphthene, phenanthrene, fluoranthene and benzo(a)pyrene. Compared to solvent spiking, the apparent sensitivity of the Microtox® test with passive dosing was 3.4 and 12.4 times higher for acenaphthene and phenanthrene, respectively. Furthermore, fluoranthene only gave a consistent response with passive dosing. Benzo(a)pyrene did not result in a response with either spiking or passive dosing even at aqueous solubility. Such differences in the apparent sensitivity of the Microtox® test can be traced back to the precise definition of the dissolved exposure concentrations and the buffering of losses with passive dosing. This highlights the importance of exposure control even in simple and short-term microbial bioassays such as the Microtox® test. PMID:26117202

  7. Substrate interaction during aerobic biodegradation of creosote-related compounds in columns of sandy aquifer material

    NASA Astrophysics Data System (ADS)

    Millette, Denis; Butler, Barbara J.; Frind, E. O.; Comeau, Yves; Samon, Réjean

    1998-01-01

    A column study was initiated to study the effect of phenanthrene, fluorene, and p-cresol on the aerobic biodegradation of carbazole in columns of sandy aquifer material. Biodegradation of the contaminant mixture was sequential in space with p-cresol being preferentially degraded, followed by phenanthrene, then the other compounds. Both p-cresol and phenanthrene were completely biotransformed to non-detectable levels during passage through the 46 cm sand column but some carbazole and fluorene persisted throughout the approximately 3 month experiments. Influent p-cresol (10000ppb) was the only compound that affected adaptation of the microbial community to carbazole biodegradation, but its effect was of little practical importance, amounting to a 4.5 day difference in carbazole breakthrough. However, when influent p-cresol was at high levels (70 000 ppb), biotransformation of the other co-substrates in the mixture never ensued because p-cresol caused complete dissolved oxygen depletion. Conversely, influent p-cresol ultimately enhanced biotransformation of the other co-substrates in the mixture when present at a concentration (10000ppb) that did not deplete all available oxygen. The concentrations of the other, more recalcitrant compounds, ranging between 33 and 238 ppb, were probably too low to support bacterial growth so that slow, limited biotransformation resulted, although addition of an auxiliary substrate (i.e. the p-cresol) stimulated their biotransformation. Under quasi-steady-state conditions, the presence of phenanthrene in the influent inhibited fluorene biotransformation and possibly carbazole biotransformation. Results of the present study demonstrated also that interactions identified in static batch microcosms and in a hydrodynamic saturated column system can differ.

  8. Amelioration of soil PAH and heavy metals by combined application of fly ash and biochar

    NASA Astrophysics Data System (ADS)

    Masto, Reginald; George, Joshy; Ansari, Md; Ram, Lal

    2016-04-01

    Generation of electricity through coal combustion produces huge quantities of fly ash. Sustainable disposal and utilization of these fly ash is a major challenge. Fly ash along with other amendments like biochar could be used for amelioration of soil. In this study, fly ash and biochar were used together for amelioration of polycyclic aromatic hydrocarbon (PAH) contaminated soil. Field experiment was conducted to investigate the effects of fly ash and biochar on the amelioration of soil PAH, and the yield of Zea mays. The treatments were control, biochar (4 t/ha), fly ash (4 t/ha), ash + biochar ( 2 + 2 t/ha). Soil samples were collected after the harvest of maize crop and analysed for chemical and biological parameters. Thirteen PAHs were analysed in the postharvest soil samples. Soil PAHs were extracted in a microwave oven at 120 °C using hexane : acetone (1:1) mixture. The extracted solutions were concentrated, cleaned and the 13 PAHs [Acenaphthene (Ace), fluorene (Flr), phenanthrene (Phn), anthracene(Ant), pyrene(Pyr), benz(a)anthracene (BaA), chrysene (Chy), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (BkF), benzo(a)pyrene, benzo(g,h,i)perylene (BghiP), dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene)(Inp)] were analysed using GC-MS. The mean pH increased from 6.09 in control to 6.64 and 6.58 at biochar and fly ash treated soils, respectively. N content was not affected, whereas addition of biochar alone and in combination with fly ash, has significantly increased the soil organic carbon content. P content was almost double in combined (9.06 mg/kg) treatment as compared to control (4.32 mg/kg). The increase in K due to biochar was 118%, whereas char + ash increased soil K by 64%. Soil heavy metals were decreased: Zn (‑48.4%), Ni (‑41.4%), Co (‑36.9%), Cu (‑35.7%), Mn (‑34.3%), Cd (‑33.2%), and Pb (‑30.4%). Soil dehydrogenase activity was significantly increased by ash and biochar treatments and the maximum activity was observed for the

  9. Concentrations of polynuclear aromatic hydrocarbons and inorganic constituents in ambient surface soils, Chicago, Illinois, 2001-02

    USGS Publications Warehouse

    Kay, Robert T.; Arnold, Terri L.; Cannon, William F.; Graham, David; Morton, Eric; Bienert, Raymond

    2003-01-01

    Polynuclear aromatic hydrocarbon (PAH) compounds are ubiquitous in ambient surface soils in the city of Chicago, Illinois. PAH concentrations in samples collected in June 2001 and January 2002 were typically in the following order from highest to lowest: fluoranthene, pyrene, benzo(b)fluoranthene, phenanthrene, benzo(a)pyrene, chrysene, benzo(a)anthracene, benzo(k)fluoranthene, indeno(1,2,3-cd)pyrene, benzo(g,h,i)perylene, dibenzo(a,h)anthracene, and anthracene. Naphthalene, acenaphthene, acenaphthylene, and fluorene were consistently at the lowest concentrations in each sample. Concentrations of the PAH compounds showed variable correlation. Concentrations of PAH compounds with higher molecular weights typically show a higher degree of correlation with other PAH compounds of higher molecular weight, whereas PAH compounds with lower molecular weights tended to show a lower degree of correlation with all other PAH compounds. These differences indicate that high and low molecular-weight PAHs behave differentl y once released into the environment. Concentrations of individual PAH compounds in soils typically varied by at least three orders of magnitude across the city and varied by more than an order of magnitude over a distance of about 1,000 feet. Concentrations of a given PAH in ambient surface soils are affected by a variety of site-specific factors, and may be affected by proximity to industrial areas. Concentrations of a given PAH in ambient surface soils did not appear to be affected the organic carbon content of the soil, proximity to non-industrial land use, or proximity to a roadway. The concentration of the different PAH compounds in ambient surface soils appears to be affected by the propensity for the PAH compound to be in the vapor or particulate phase in the atmosphere. Lower molecular-weight PAH compounds, which are primarily in the vapor phase in the atmosphere, were detected in lower concentrations in the surface soils. Higher molecular-weight PAH

  10. Toxicity of eight polycyclic aromatic compounds to red clover (Trifolium pratense), ryegrass (Lolium perenne), and mustard (Sinapsis alba).

    PubMed

    Sverdrup, Line E; Krogh, Paul Henning; Nielsen, Torben; Kjaer, Christian; Stenersen, Jørgen

    2003-12-01

    The effect of eight polycyclic aromatic compounds (PACs) on the seed emergence and early life-stage growth of three terrestrial plants (Sinapsis alba, Trifolium pratense and Lolium perenne) were studied in a greenhouse, using a Danish agricultural soil with an organic carbon content of 1.6%. After three weeks of exposure, seed emergence and seedling weight (fresh weight and dry weight) were determined. Exposure concentrations were verified with chemical analysis. The substances tested were four polycyclic aromatic hydrocarbons (fluoranthene, pyrene, phenanthrene and fluorene), the N-, S-, and O-substituted analogues of fluorene (carbazole, dibenzothiophene and dibenzofuran, respectively), and the quinoline representative acridine. Seedling growth was a far more sensitive endpoint than seed emergence for all substances. Concentrations estimated to give a 20% reduction of seedling fresh weight (EC20-values) ranged from 36 to 290 mgkg(-1) for carbazole, 43 to 93 mgkg(-1) for dibenzofuran, 37 to 110 mgkg(-1) for dibenzothiophene, 140 to 650 mgkg(-1) for fluoranthene, 55 to 380 mgkg(-1) for fluorene, 37 to 300 mgkg(-1) for phenanthrene, and 49 to 1300 mgkg(-1) for pyrene. For acridine, no toxicity was observed within the concentration range tested (1-1000 mgkg(-1)). As illustrated by the EC20-values, there was a rather large difference in sensitivity between the species, and T. pratense was the most sensitive of the species tested. PMID:14505722

  11. Biomonitoring of polycyclic aromatic hydrocarbon exposure in pregnant women in Trujillo, Peru--comparison of different fuel types used for cooking.

    PubMed

    Adetona, Olorunfemi; Li, Zheng; Sjödin, Andreas; Romanoff, Lovisa C; Aguilar-Villalobos, Manuel; Needham, Larry L; Hall, Daniel B; Cassidy, Brandon E; Naeher, Luke P

    2013-03-01

    Women and children in developing countries are often exposed to high levels of air pollution including polycyclic aromatic hydrocarbons (PAHs), which may negatively impact their health, due to household combustion of biomass fuel for cooking and heating. We compared creatinine adjusted hydroxy-PAH (OH-PAH) concentrations in pregnant women in Trujillo, Peru who cook with wood to levels measured in those who cook with kerosene, liquefied petroleum gas or a combination of fuels. Seventy-nine women were recruited for the study between May and July 2004 in the first trimester of their pregnancy. Urine samples were collected from the subjects in the first, second and third trimesters for OH-PAH analyses. The concentrations of the OH-PAHs were compared across the type of fuel used for cooking and pregnancy trimesters. The relationships between OH-PAHs levels in the first trimester and concurrently measured personal exposures to PM₂.₅, carbon monoxide and nitrogen dioxide together with their indoor and outdoor air concentrations were also investigated. Women cooking with wood or kerosene had the highest creatinine adjusted OH-PAH concentrations compared with those using gas, coal briquette or a combination of fuels. Concentrations of creatinine adjusted 2-hydroxy-fluorene, 3-hydroxy-fluorene, 1-hydroxy-fluorene, 2-hydroxy-phenanthrene and 4-hydroxy-phenanthrene were significantly higher (p<0.05) in women who used wood or kerosene alone compared with women who used liquefied petroleum gas (LPG), coal briquette or a combination of fuels. An increase in the concentrations of creatinine adjusted 9-hydroxy-fluorene, 1-hydroxy-phenanthrene, 2-hydroxy-phenanthrene, 4-hydroxy-phenanthrene and 1-hydroxy-pyrene in the third trimesters was also observed. Weak positive correlation (Spearman correlation coefficient, ρ<0.4; p<0.05) was observed between all first trimester creatinine adjusted OH-PAHs and indoor (kitchen and living room), and personal 48-h TWA PM₂.₅. Women who

  12. Adsorption of endocrine disrupting chemicals and phenanthrene by biochars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochars have been shown to improve the physical and chemical characteristics of soils. Their high capacity to sorb nutrients and chemicals may also reduce leaching of organic contaminants. In this study, two thermally and two hydrothermally manufactured biochars were examined to determine the relat...

  13. DNA Oxidation Profiles of Copper Phenanthrene Chemical Nucleases

    NASA Astrophysics Data System (ADS)

    Molphy, Zara; Slator, Creina; Chatgilialoglu, Chryssostomos; Kellett, Andrew

    2015-04-01

    The deleterious effects of metal-catalyzed reactive oxygen species (ROS) in biological systems can be seen in a wide variety of pathological conditions including cancer, cardiovascular disease, ageing, and neurodegenerative disorder. On the other hand however, targeted ROS production in the vicinity of nucleic acids - as demonstrated by metal-activated bleomycin - has paved the way for ROS-active chemotherapeutic drug development. Herein we report mechanistic investigations into the oxidative nuclease activity and redox properties of copper(II) developmental therapeutics [Cu(DPQ)(phen)]2+ (Cu-DPQ-Phen), [Cu(DPPZ)(phen)]2+ (Cu-DPPZ-Phen), and [{Cu(phen)2}2(μ-terph)](terph) (Cu-Terph), with results being compared directly to Sigman’s reagent [Cu(phen)2]2+ throughout (phen = 1,10-phenanthroline; DPQ = dipyridoquinoxaline; DPPZ = dipyridophenazine). Oxidative DNA damage was identified at the minor groove through use of surface bound recognition elements of methyl green, netropsin, and [Co(NH3)6]Cl3 that functioned to control complex accessibility at selected regions. ROS-specific scavengers and stabilisers were employed to identify the cleavage process, the results of which infer hydrogen peroxide produced metal-hydroxo or free hydroxyl radicals (•OH) as the predominant species. The extent of DNA damage owing to these radicals was then quantified through 8-oxo-2'-deoxyguanosine (8-oxo-dG) lesion detection under ELISA protocol with the overall trend following Cu-DPQ-Phen > Cu-Terph > Cu-Phen > Cu-DPPZ. Finally, the effects of oxidative damage on DNA replication processes were investigated using the polymerase chain reaction (PCR) where amplification of 120 base pair DNA sequences of varying base content were inhibited - particularly along A-T rich chains - through oxidative damage of the template strands.

  14. Polycyclic aromatic hydrocarbons profiles of spent drilling fluids deposited at Emu-Uno, Delta State, Nigeria.

    PubMed

    Iwegbue, Chukwujindu M A

    2011-10-01

    The concentrations and profiles of polycyclic aromatic hydrocarbons were determined in spent drilling fluid deposited at Emu-Uno, Delta State of Nigeria. The total concentrations of polycyclic aromatic hydrocarbons in the spent drilling fluid deposits ranged between 40 and 770 μg kg(-1). The PAHs profile were predominantly 2- and 3-rings with acenaphthalene, phenanthrene, fluorene being the predominant PAHs. The prevalence of 2- and 3-rings PAHs in the spent drilling fluid deposits indicate contamination of the drilling fluids with crude oil during drilling. Incorporation of spent drilling fluids into the soil has serious implication for soil, surface water and groundwater quality. PMID:21809098

  15. Contamination of agricultural lands by polycyclic aromatic hydrocarbons (Tver region, Russia)

    NASA Astrophysics Data System (ADS)

    Zhidkin, Andrey; Koshovskii, Timur; Gennadiev, Alexander

    2016-04-01

    It is important to study sources and concentrations of polycyclic aromatic hydrocarbons (PAHs) in the agriculture soils within areas without intensive contaminations. Our studied object was soil and snow cover in the taiga zone (Tver region, Russia). A total of 52 surface (0-30 cm) and 31 subsurface (30-50 cm) soil samples, and 13 snow samples were collected in 35 soil pits, located in forest, crop and layland soils. Studied concentrations of the following 11 individual compounds: two-ring compounds (diphenyl and naphthalene homologues); three-ring compounds (fluorene, phenanthrene, anthracene); four-ring compounds (chrysene, pyrene, tetraphene); five-ring compounds (perylene, benzo[a]pyrene); and six-ring compounds (benzo[ghi]perylene). Analyses made by specrtofluorometry method at the temperature of liquid nitrogen. The total concentrations of all PAHs in soil samples ranged from 9 to 770 ng*g‑1 with a median of 96 ng*g‑1. The sum of high molecular weight PAHs was significantly lower than the sum of low molecular weight PAHs in the studied soils. The phenanthrene concentration was highest and ranged from 1.2 to 720 ng*g‑1 (medium 72 ng*g‑1). Compared PAHs reserves in snow cover (μg*m-2) with the reserves in topsoil layer (μg*m-2 in the upper 30 cm). Low molecular weight PAHs (fluorene, phenanthrene, diphenyl, naphthalene) reserves in snow was less than 20% from the reserves in the soil surface layer. High molecular weight PAHs (benzo[a]pyrene, chrysene, perylene, pyrene and tetraphene) reserves in snow was about 50-70% from the reserves in soil surface layer. High molecular weight PAHs (benzo[ghi]perylene and anthracene) reserves in snow was more than in topsoil. PAHs vertical distribution in soil profiles was statistically examined. The total concentration of all PAHs decreased with depth in all studied forest soils. In the arable soils was no significant trend in domination of PAHs total concentrations in the plowing and subsoil layers. The ratio of

  16. No. 2 fuel-oil compound retention and release by Mytilus edulis: 1983 Cape Cod Canal oil spill. Technical report

    SciTech Connect

    Farrington, J.W.; Jia, X.; Clifford, C.H.; Tripp, B.W.; Livramento, J.B.

    1986-03-01

    Retention and release of No. 2 fuel-oil compounds by Mytilus edulis contaminated by a small oil spill in the Cape Cod Canal in 1983 was studied for the population in situ and for a subsample transplanted to a clean laboratory seawater system. Compounds analyzed include C13 to C24 n-alkanes; pristane; phytane; C2-, C3-naphthalenes; fluorene; phenanthrene; C1-, C2-, C3-phenanthrenes; fluoranthene; pyrene and dibenzothiophene. Biological half-lives were determined for the compounds from Day-3 to Day-29 following the spill and ranged from 1.5 days for C2-naphthalenes to 9.9 days for C2-phenanthrenes. Gas chromatographic-mass spectrometer analyses of C2- and C3-phenanthrenes revealed changes in relative abundance of compounds within isomer groups from samples at Day-29 to the time when no further detection of fuel oil was noted. The study also demonstrated the feasibility of training an analyst unfamiliar with analyses of hydrocarbons in tissues to conduct high-resolution glass capillary GC analyses.

  17. PAH bioconcentration in Mytilus sp from Sinclair Inlet, WA

    SciTech Connect

    Frazier, J.; Young, D.; Ozretich, R.; Echols, S.

    1995-12-31

    Approximately 20 polynuclear aromatic hydrocarbons (PAH) were measured by GC/MS in seawater and whole soft tissues of the intertidal mussel Mytilus sp. collected in July 1991 within and around Puget Sound`s Sinclair Inlet. Low variability was observed in the water concentrations collected over three days at control sites, yielding reliable values for the exposure levels experienced by this bioindicator mollusk. Mean water concentrations of acenaphthene, phenanthrene, and fluoranthene in the control region were 2.7 {+-} 0.8, 2.8 {+-} 0.8, and 3.1 {+-} 0.7 ng/liter, respectively. Levels measured near sites of vessel activity were higher but much more variable; this reduced the reliability of the tissue/water bioconcentration factors (BCF) obtained from these samples. An empirical model relating values of Log BCF and Log Kow for the control zone samples supports the utility of this estuarine bioindicator for monitoring general levels of PAH in nearshore surface waters.

  18. Removal of polycyclic aromatic hydrocarbons from aqueous solution by raw and modified plant residue materials as biosorbents.

    PubMed

    Xi, Zemin; Chen, Baoliang

    2014-04-01

    Removal of polycyclic aromatic hydrocarbons (PAHs), e.g., naphthalene, acenaphthene, phenanthrene and pyrene, from aqueous solution by raw and modified plant residues was investigated to develop low cost biosorbents for organic pollutant abatement. Bamboo wood, pine wood, pine needles and pine bark were selected as plant residues, and acid hydrolysis was used as an easily modification method. The raw and modified biosorbents were characterized by elemental analysis, Fourier transform infrared spectroscopy and scanning electron microscopy. The sorption isotherms of PAHs to raw biosorbents were apparently linear, and were dominated by a partitioning process. In comparison, the isotherms of the hydrolyzed biosorbents displayed nonlinearity, which was controlled by partitioning and the specific interaction mechanism. The sorption kinetic curves of PAHs to the raw and modified plant residues fit well with the pseudo second-order kinetics model. The sorption rates were faster for the raw biosorbents than the corresponding hydrolyzed biosorbents, which was attributed to the latter having more condensed domains (i.e., exposed aromatic core). By the consumption of the amorphous cellulose component under acid hydrolysis, the sorption capability of the hydrolyzed biosorbents was notably enhanced, i.e., 6-18 fold for phenanthrene, 6-8 fold for naphthalene and pyrene and 5-8 fold for acenaphthene. The sorption coefficients (Kd) were negatively correlated with the polarity index [(O+N)/C], and positively correlated with the aromaticity of the biosorbents. For a given biosorbent, a positive linear correlation between logKoc and logKow for different PAHs was observed. Interestingly, the linear plots of logKoc-logKow were parallel for different biosorbents. These observations suggest that the raw and modified plant residues have great potential as biosorbents to remove PAHs from wastewater. PMID:25079403

  19. Adsorption of polycyclic aromatic hydrocarbons from water using petroleum coke-derived porous carbon.

    PubMed

    Yuan, Mingjiang; Tong, Shitang; Zhao, Suoqi; Jia, Charles Q

    2010-09-15

    Porous carbons were prepared from petroleum coke by KOH chemical activation, characterized and used as adsorbents for uptaking a mixture of polycyclic aromatic hydrocarbons (PAHs): naphthalene, fluorene, phenanthrene, pyrene and fluoranthene from aqueous solutions. The specific surface area (SSA) of these carbons ranges from 562 to 1904 m2/g, while their point of zero charge (pH(PZC)) varies from 2.6 to 8.8. The equilibrium adsorption of PAHs on all four carbons follows the non-linear Freundlich equation well. For any given PAH in the group, the adsorption capacity parameter K(f), increases with the SSA and pH(PZC) of the carbons, confirming the roles of dispersive interactions. For any given carbon, the value of K(f) follows the order of naphthalene > fluorene > phenanthrene > pyrene. This dependence of K(f) on molecular size suggests a certain degree of molecular sieving behavior of these carbons toward large PAHs. Under the condition studied, the uptake process is likely controlled by diffusive transport processes. And, it is unlikely that the competitive adsorption played any important roles in determining equilibrium adsorption of the mixed PAHs. Overall, the petroleum coke-derived porous carbon is very effective in adsorbing these PAHs. PMID:20638970

  20. Metabolism and Excretion Rates of Parent and Hydroxy-PAHs in Urine Collected after Consumption of Traditionally Smoked Salmon for Native American Volunteers

    PubMed Central

    Motorykin, Oleksii; Santiago-Delgado, Lisandra; Rohlman, Diana; Schrlau, Jill E.; Harper, Barbara; Harris, Stuart; Harding, Anna; Kile, Molly L.; Massey Simonich, Staci L.

    2015-01-01

    Few studies have been published on the excretion rates of parent polycyclic aromatic hydrocarbons (PAHs) and hydroxy-polycyclic aromatic hydrocarbons (OH-PAHs) following oral exposure. This study investigated metabolism and excretion rates of 4 parent PAHs and 10 OH-PAHs after the consumption of smoked salmon. Nine members of the Confederated Tribes of the Umatilla Indian Reservation consumed 50 g of traditionally smoked salmon with breakfast and five urine samples were collected during the following 24 hours. The concentrations of OH-PAHs increased from 43.9 μg/g creatinine for 2-OH-Nap to 349 ng/g creatinine for 1-OH-Pyr, 3 to 6 hr post-consumption. Despite volunteers following a restricted diet, there appeared to be a secondary source of naphthalene and fluorene, which led to excretion efficiencies greater than 100%. For the parent PAHs that were detected in urine, the excretion efficiencies ranged from 13% for phenanthrene (and its metabolite) to 240% for naphthalene (and its metabolites). The half-lives for PAHs ranged from 1.4 hr for retene to 3.3 hr for pyrene. The half-lives for OH-PAHs were higher and ranged from 1.7 hr for 9-OH-fluorene to 7.0 hr for 3-OH-fluorene. The concentrations of most parent PAHs, and their metabolites, returned to the background levels 24 hr post-consumption. PMID:25659315

  1. BIDEGRADATION FO SORBED FLUORENE IN SEDIMENT SLURRIES. (R825513C020)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  2. Synthesis and Self-Organization of Fluorene-Conjugated Bisimidazolylporphyrin and Its Optical Properties

    PubMed Central

    Ogawa, Kazuya; Makiuchi, Naoyuki; Kobuke, Yoshiaki

    2013-01-01

    A conjugated-bisimidazolylporphyrin bridged by bis(ethynylfluorene) was synthesized and organized into linear polymer through self-coordination having mean molecular weights, Mw and Mn, of ~2.1 × 105 Da and ~1.6 × 105 Da, respectively. A large two-photon absorption cross section value of 3.4 × 105 GM (per dimer unit) was observed. This value was comparable to that of the previously reported self-assembled linear polymer consisting of butadiyne-bridged imidazolylporphyrins. The two-photon absorption properties could be controlled by tuning the wavelength and absorption intensity of the one-photon absorption. PMID:23344036

  3. Microbial degradation of dibenzofuran, fluorene, and dibenzo-p-dioxin by staphylococcus auriculans DBF63

    SciTech Connect

    Monna, L.; Omori, Toshio; Kodama, Tohru )

    1993-01-01

    Polychlorinated derivatives of dibenzo-p-dioxin (DD) and dibezonfuran (DBF), well known for their toxicity and mutagenicity, have created serious environmental contamination problems. They are formed during combustion of dust or bleaching of pulp as well as production of halogen-containing aromatics such as herbicides. Information on the microbial degradation of these compounds is limited. This papers describes the isolation and characterization of Staphylococcus auriculans DBF63, which can be grown on either DBF or FN as the sole source of carbon and energy. The resting cell reaction of DD is also investigated, leading to proposed metabolic degradation pathways of DBF, FN, and DD. 15 refs., 3 figs.

  4. Synthesis, structures and properties of a series of manganese coordination complexes constructed from dicarboxylic fluorene derivatives

    SciTech Connect

    Li Xing; Zhao Xiuhua; Bing Yue; Zha Meiqin; Xie Hongzhen; Guo Zhiyong

    2013-01-15

    Assembly reactions of 9,9-diethylfluorene-2,7-dicarboxylic acid (H{sub 2}DFDC) and Mn(CH{sub 3}COO){sub 2}{center_dot}4H{sub 2}O or MnCl{sub 2}{center_dot}4H{sub 2}O by tuning of various secondary ligands such as 2,2 Prime -bipyridine (2,2 Prime -bpy), 4,4 Prime -bipyridine (4,4 Prime -bpy) or 1,3-bis(4-pyridyl)propane) (bpp), gave rise to four complexes {l_brace} [Mn{sub 2}(DFDC){sub 2}(DMF){sub 2}]{center_dot}H{sub 2}O{r_brace} {sub n} (1), [Mn(DFDC)(2,2 Prime -bpy)]{sub n} (2), {l_brace} [Mn{sub 2}(DFDC){sub 2}(4,4 Prime -bpy){sub 2}]{center_dot}2CH{sub 3}OH{r_brace} {sub n} (3), and {l_brace} [Mn{sub 4}(DFDC){sub 4}(bpp){sub 2}(CH{sub 3}OH){sub 3} (H{sub 2}O){sub 3}]{center_dot}3(CH{sub 3}OH){center_dot}3(H{sub 2}O){r_brace} {sub n} (4). Single crystal X-ray diffraction analysis reveal that complex 1 is three dimensional structure with rhombic channels filled by guest water molecules; 2 presents a close-packed structure with high thermal stability; 3 exhibits a three dimensional framework with micro-porous channels filled by guest methanol molecules and 4 is a two-dimensional structure. The photoluminescent properties of 1-4 have been studied, respectively, showing that the Mn(II) ions, accessorial organic ligands or crystal structures exert important influences on the photoluminescence emissions of H{sub 2}DFDC ligands. Thermogravimetric analysis show that the complexes have remarkably high thermal stability. Magnetic susceptibility measurements have been finished and discussed for the complexes. - Graphical abstract: Assembly of 9,9-diethylfluorene-2,7-dicarboxylic acid and Mn(II) salts by tuning of various accessorial ligands resulted in four manganese complexes with different topological frameworks. Highlights: Black-Right-Pointing-Pointer Four manganese complexes based on 9,9-diethylfluorene-2,7-dicarboxylic acid were obtained. Black-Right-Pointing-Pointer The complexes were structurally characterized by single-crystal X-ray diffraction. Black-Right-Pointing-Pointer The complexes 1-4 display different topological structures. Black-Right-Pointing-Pointer Thermogravimetric analysis show the complexes have remarkably high thermal stability.

  5. Red-green-blue light-emitting diodes containing fluorene-based copolymers

    NASA Astrophysics Data System (ADS)

    Drolet, Nicolas; Beaupré, Serge; Morin, Jean-François; Tao, Ye.; Leclerc, Mario

    2002-11-01

    This paper reports the fabrication and evaluation of light-emitting diodes using polyfluorene derivatives as emitter, which cover the entire visible spectral range. Depending on the composition of the copolymers, red (emission peak at 656 nm), green (488 nm) and blue (428 nm) emission was obtained without any excimer formation. The optimization of the device performances has been realized using a multilayered configuration which involves a spin-coated poly(ethylenedioxythiophene) doped with poly(styrene sulfonic acid) (PEDT-PSS) thin film on the ITO anode and an ultrathin lithium fluoride layer next to the Al cathode. These two layers improve the efficiency of the charge injection. Combining this device configuration with some additional charge-transporting molecules, luminances in the range of 50-300 cd m-2 have been obtained.

  6. Developing Investigation Skills in an Introductory Multistep Synthesis Using Fluorene Oxidation and Reduction

    ERIC Educational Resources Information Center

    Stocksdale, Mark G; Pointer, Roy D; Benson, Barret W.; Fletcher, Steven E. S.; Henry, Ian; Ogren, Paul J.; Berg, Michael A. G.

    2004-01-01

    A two-step oxidation-reduction sequence that incorporates several important aspects of synthesis into introductory organic chemistry laboratories is described. This experiment is an excellent vehicle for introducing elements of discovery and intermediate yield improvement strategies.

  7. 2-Azido-1-(3,6-dichloro-9H-fluoren-1-yl)ethanone

    PubMed Central

    Fun, Hoong-Kun; Chia, Tze Shyang; Kayarmar, Reshma; Dinesha; Nagaraja, G. K.

    2011-01-01

    In the title compound, C15H9Cl2N3O, an intra­molecular C—H⋯O inter­action generates an S(7) ring motif. The cyclo­penta-1,3-diene ring forms dihedral angles of 1.93 (6) and 2.78 (6)° with its attached benzene rings. In the crystal, mol­ecules are linked by C—H⋯N and C—H⋯O hydrogen bonds, thereby forming layers lying parallel to the ac plane. The crystal also features a π–π inter­action with a centroid–centroid distance of 3.5612 (6) Å. PMID:22058777

  8. Pleiotropic and Epistatic Behavior of a Ring-Hydroxylating Oxygenase System in the Polycyclic Aromatic Hydrocarbon Metabolic Network from Mycobacterium vanbaalenii PYR-1

    PubMed Central

    Kweon, Ohgew; Kim, Seong-Jae; Kim, Dae-Wi; Kim, Jeong Myeong; Kim, Hyun-lee; Ahn, Youngbeom; Sutherland, John B.

    2014-01-01

    Despite the considerable knowledge of bacterial high-molecular-weight (HMW) polycyclic aromatic hydrocarbon (PAH) metabolism, the key enzyme(s) and its pleiotropic and epistatic behavior(s) responsible for low-molecular-weight (LMW) PAHs in HMW PAH-metabolic networks remain poorly understood. In this study, a phenotype-based strategy, coupled with a spray plate method, selected a Mycobacterium vanbaalenii PYR-1 mutant (6G11) that degrades HMW PAHs but not LMW PAHs. Sequence analysis determined that the mutant was defective in pdoA2, encoding an aromatic ring-hydroxylating oxygenase (RHO). A series of metabolic comparisons using high-performance liquid chromatography (HPLC) analysis revealed that the mutant had a lower rate of degradation of fluorene, anthracene, and pyrene. Unlike the wild type, the mutant did not produce a color change in culture media containing fluorene, phenanthrene, and fluoranthene. An Escherichia coli expression experiment confirmed the ability of the Pdo system to oxidize biphenyl, the LMW PAHs naphthalene, phenanthrene, anthracene, and fluorene, and the HMW PAHs pyrene, fluoranthene, and benzo[a]pyrene, with the highest enzymatic activity directed toward three-ring PAHs. Structure analysis and PAH substrate docking simulations of the Pdo substrate-binding pocket rationalized the experimentally observed metabolic versatility on a molecular scale. Using information obtained in this study and from previous work, we constructed an RHO-centric functional map, allowing pleiotropic and epistatic enzymatic explanation of PAH metabolism. Taking the findings together, the Pdo system is an RHO system with the pleiotropic responsibility of LMW PAH-centric hydroxylation, and its epistatic functional contribution is also crucial for the metabolic quality and quantity of the PAH-MN. PMID:25070740

  9. Biodegradation of Various Aromatic Compounds by Enriched Bacterial Cultures: Part A-Monocyclic and Polycyclic Aromatic Hydrocarbons.

    PubMed

    Oberoi, Akashdeep Singh; Philip, Ligy; Bhallamudi, S Murty

    2015-08-01

    Present study focused on the screening of bacterial consortium for biodegradation of monocyclic aromatic hydrocarbon (MAH) and polycyclic aromatic hydrocarbons (PAHs). Target compounds in the present study were naphthalene, acenaphthene, phenanthrene (PAHs), and benzene (MAH). Microbial consortia enriched with the above target compounds were used in screening experiments. Naphthalene-enriched consortium was found to be the most efficient consortium, based on its substrate degradation rate and its ability to degrade other aromatic pollutants with significantly high efficiency. Substrate degradation rate with naphthalene-enriched culture followed the order benzene > naphthalene > acenaphthene > phenanthrene. Chryseobacterium and Rhodobacter were discerned as the predominant species in naphthalene-enriched culture. They are closely associated to the type strain Chryseobacterium arthrosphaerae and Rhodobacter maris, respectively. Single substrate biodegradation studies with naphthalene (PAH) and benzene (MAH) were carried out using naphthalene-enriched microbial consortium (NAPH). Phenol and 2-hydroxybenzaldehyde were identified as the predominant intermediates during benzene and naphthalene degradation, respectively. Biodegradation of toluene, ethyl benzene, xylene, phenol, and indole by NAPH was also investigated. Monod inhibition model was able to simulate biodegradation kinetics for benzene, whereas multiple substrate biodegradation model was able to simulate biodegradation kinetics for naphthalene. PMID:26054614

  10. Two-photon absorption and nonlinear polariton effects in organic crystals

    SciTech Connect

    Johnson, C.K.

    1981-10-01

    Two-photon excitation (TPE) and second harmonic generation (SHG) were studied in phenanthrene crystals at low temperatures (2 to 6/sup 0/K). Polarized TPE spectra of the 350 nm /sup 1/A/sub 1/ reverse arrow /sup 1/A/sub 1/ absorption system in phenanthrene crystals are supplemented using a nitrogen laser-pumped dye laser. Analysis of vibronic structure reveals that the dominant intermediate states for TPA are those of B/sub 2/ (L axis) symmetry. TPE spectra principally associated with intermediate states of A/sub 1/ (M) symmetry exhibit strong intramolecular vibronic coupling by totally symmetric vibrations. Polarized TPE spectra of mixed crystals of phenanthrene in fluorene confirm the predominance of the long-axis mechanism in TPA and the participation of states of A/sub 1/ symmetry by vibronic coupling. Position of the upper Davydov component of the origin depends on photon propagation direction and polarization in both TPE and SHG. The appearance of the dipole-forbidden lower Davydov component in these spectra is discussed in terms of misalignment and excitation of a longitudinal exciton. Similarity of TPE and SHG spectra indicates that both result from polariton fusion. The calculated polariton dispersion curve accounts for the energy shifts of the upper component in TPE and SHG. Phase matching on the a*b face leads to creation of a polariton on the upper polariton branch, above the one-photon absorption frequency, for a*- and b-polarized light.

  11. Monitoring of polycyclic aromatic hydrocarbons in bees (Apis mellifera) and honey in urban areas and wildlife reserves.

    PubMed

    Perugini, Monia; Di Serafino, Gabriella; Giacomelli, Alessandra; Medrzycki, Piotr; Sabatini, Anna Gloria; Persano Oddo, Livia; Marinelli, Enzo; Amorena, Michele

    2009-08-26

    The honeybee is a good biological indicator that quickly reflects chemical impairment of the environment by its high mortality and the presence of pollutants in its body or in beehive products. In this work the honeybee (Apis mellifera) and honey were used to detect the presence of polycyclic aromatic hydrocarbons (PAHs) in several areas with different degrees of environmental pollution. All sampling sites showed the presence of PAHs. Benzo(a)pyrene was never detected. Fluorene, phenanthrene, anthracene, fluoranthene, benz(a)anthracene, benzo(b)fluoranthene, and benzo(k)fluoranthene were the PAHs detected in bees, whereas the honey contained only phenanthrene, anthracene, and chrysene. Phenanthrene showed the highest mean values in honeybees and honey. Independent from the season and location the pattern of PAHs in honeybees and honey was dominated by the presence of the lowest molecular weight PAHs. Furthermore, the mean PAH concentrations in honey samples were lower than those reported in honeybees, and no positive correlation was found between the compounds detected in bees and those in honey. PMID:19627114

  12. Investigation of hydrophobic contaminants in an urban slough system using passive sampling - Insights from sampling rate calculations

    USGS Publications Warehouse

    McCarthy, K.

    2008-01-01

    Semipermeable membrane devices (SPMDs) were deployed in the Columbia Slough, near Portland, Oregon, on three separate occasions to measure the spatial and seasonal distribution of dissolved polycyclic aromatic hydrocarbons (PAHs) and organochlorine compounds (OCs) in the slough. Concentrations of PAHs and OCs in SPMDs showed spatial and seasonal differences among sites and indicated that unusually high flows in the spring of 2006 diluted the concentrations of many of the target contaminants. However, the same PAHs - pyrene, fluoranthene, and the alkylated homologues of phenanthrene, anthracene, and fluorene - and OCs - polychlorinated biphenyls, pentachloroanisole, chlorpyrifos, dieldrin, and the metabolites of dichlorodiphenyltrichloroethane (DDT) - predominated throughout the system during all three deployment periods. The data suggest that storm washoff may be a predominant source of PAHs in the slough but that OCs are ubiquitous, entering the slough by a variety of pathways. Comparison of SPMDs deployed on the stream bed with SPMDs deployed in the overlying water column suggests that even for the very hydrophobic compounds investigated, bed sediments may not be a predominant source in this system. Perdeuterated phenanthrene (phenanthrene-d10). spiked at a rate of 2 ??g per SPMD, was shown to be a reliable performance reference compound (PRC) under the conditions of these deployments. Post-deployment concentrations of the PRC revealed differences in sampling conditions among sites and between seasons, but indicate that for SPMDs deployed throughout the main slough channel, differences in sampling rates were small enough to make site-to-site comparisons of SPMD concentrations straightforward. ?? Springer Science+Business Media B.V. 2007.

  13. C15H10 and C15H12 Thermal Chemistry: Phenanthrylcarbene Isomers and Phenylindenes by Falling Solid Flash Vacuum Pyrolysis of Tetrazoles.

    PubMed

    Wentrup, Curt; Becker, Jürgen; Diehl, Manfred

    2015-07-17

    2-Phenyl-5-(phenylethynyl)tetrazole 44 provides a new entry to the C15H10 energy surface. Flash vacuum pyrolysis of 44 using the falling solid flash vacuum pyrolysis (FS-FVP) method afforded cyclopenta[def]phenanthrene 31 and cyclopenta[jk]fluorene 52 as the principal products. The products are explained in terms of the formation of N-phenyl-C-phenylethynylnitrile imine/(phenylazo)(phenylethynyl)carbene 45 and its cyclization to 3-(phenylethynyl)-3H-indazole 46b. Pyrolytic loss of N2 from 46b generates C15H10 intermediate 48. Cyclization of 48 to a dibenzocycloheptatetraene derivative and further rearrangements with analogies in the chemistry of phenylcarbene and the naphthylcarbenes leads to the final products. Similar pyrolysis of 2-phenyl-5-styryltetrazole 43 afforded 3-styrylindazole 58, which on further pyrolysis eliminated N2 to generate 3- and 2-phenylindenes 61 and 62 via C15H12 intermediates. PMID:26086716

  14. A novel silver-coated solid-phase microextraction metal fiber based on electroless plating technique.

    PubMed

    Feng, Juanjuan; Sun, Min; Li, Jubai; Liu, Xia; Jiang, Shengxiang

    2011-09-01

    A novel silver-coated solid-phase microextraction fiber was prepared based on electroless plating technique. Good extraction performance of the fiber for model compounds including phthalate esters (dibutyl phthalate, dioctyl phthalate, dicyclohexyl phthalate and diallyl phthalate) and polycyclic aromatic hydrocarbons (naphthalene, fluorene, phenanthrene, fluoranthene) in aqueous solution was obtained. Under the optimized conditions (extraction temperature, extraction time, ionic strength and desorption temperature), the proposed SPME-GC method showed wide linear ranges with correlation coefficients (R(2)) ranging from 0.9745 to 0.9984. The limits of detection were at the range of 0.02 to 0.1 μg L(-1). Single fiber repeatability and fiber-to-fiber reproducibility as well as stability to acid, alkali and high temperature were studied and the results were all satisfactory. The method was applied successfully to the aqueous extracts of disposable paper cup and instant noodle barrel. Several kinds of analytes were detected and quantified. PMID:21801885

  15. Bacterial Degradation of Aromatic Compounds

    PubMed Central

    Seo, Jong-Su; Keum, Young-Soo; Li, Qing X.

    2009-01-01

    Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms. PMID:19440284

  16. Identification and analysis of polyaromatic hydrocarbons (PAHs)--biodegrading bacterial strains from refinery soil of India.

    PubMed

    Chaudhary, Priyanka; Sahay, Harmesh; Sharma, Richa; Pandey, Alok Kumar; Singh, Shashi Bala; Saxena, A K; Nain, Lata

    2015-06-01

    Polyaromatic hydrocarbons (PAHs) utilizing bacteria were isolated from soils of seven sites of Mathura refinery, India. Twenty-six bacterial strains with different morphotypes were isolated. These strains were acclimatized to utilize a mixture of four polycyclic aromatic hydrocarbons, i.e., anthracene, fluorene, phenanthrene, and pyrene, each at 50 mg/L concentration as sole carbon source. Out of total isolates, 15 potent isolates were subjected to 16S rDNA sequencing and identified as a member of diverse genera, i.e., Bacillus, Acinetobacter, Stenotrophomonas, Alcaligenes, Lysinibacillus, Brevibacterium, Serratia, and Streptomyces. Consortium of four promising isolates (Acinetobacter, Brevibacterium, Serratia, and Streptomyces) were also investigated for bioremediation of PAH mixture. This consortium was proved to be efficient PAH degrader resulting in 40-70 % degradation of PAH within 7 days. Results of this study indicated that these genera may play an active role in bioremediation of PAHs. PMID:26026847

  17. PAHs in corn grains submitted to drying with firewood.

    PubMed

    de Lima, Rafael Friedrich; Dionello, Rafael Gomes; Peralba, Maria do Carmo Ruaro; Barrionuevo, Simone; Radunz, Lauri Lourenço; Reichert Júnior, Francisco Wilson

    2017-01-15

    Grain drying using firewood as fuel for air heating, with direct fire, is still widely used in Brazil. The combustion of organic material, such as wood, can generate polycyclic aromatic hydrocarbons (PAHs) which are known to have carcinogenic potential. In the present work corn grain drying was carried out at three drying air temperatures: 60°C, 60/80°C and 80°C. Following the drying process, the presence and quantification of PAH in the corn grains was investigated. After extracting the PAHs of the matrix, the material was subjected to analysis by gas chromatography with mass detector. he results showed the presence of seven compounds: fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene and chrysene. PMID:27542463

  18. Characterization of polycyclic aromatic hydrocarbons in fugitive PM10 emissions from an integrated iron and steel plant.

    PubMed

    Khaparde, V V; Bhanarkar, A D; Majumdar, Deepanjan; Rao, C V Chalapati

    2016-08-15

    Fugitive emissions of PM10 (particles <10μm in diameter) and associated polycyclic aromatic hydrocarbons (PAHs) were monitored in the vicinity of coking unit, sintering unit, blast furnace and steel manufacturing unit in an integrated iron and steel plant situated in India. Concentrations of PM10, PM10-bound total PAHs, benzo (a) pyrene, carcinogenic PAHs and combustion PAHs were found to be highest around the sintering unit. Concentrations of 3-ring and 4-ring PAHs were recorded to be highest in the coking unit whereas 5-and 6-ring PAHs were found to be highest in other units. The following indicatory PAHs were identified: indeno (1,2,3-cd) pyrene, dibenzo (a,h) anthracene, benzo (k) fluoranthene in blast furnace unit; indeno (1,2,3-cd) pyrene, dibenzo (a,h) anthracene, chrysene in sintering unit; Anthracene, fluoranthene, chrysene in coking unit and acenaphthene, fluoranthene, fluorene in steel making unit. Total-BaP-TEQ (Total BaP toxic equivalent quotient) and BaP-MEQ (Total BaP mutagenic equivalent quotient) concentration levels ranged from 2.4 to 231.7ng/m(3) and 1.9 to 175.8ng/m(3), respectively. BaP and DbA (dibenzo (a,h) anthracene) contribution to total-BaP-TEQ was found to be the highest. PMID:27099996

  19. Preliminary measurement-based estimates of PAH emissions from oil sands tailings ponds

    NASA Astrophysics Data System (ADS)

    Galarneau, Elisabeth; Hollebone, Bruce P.; Yang, Zeyu; Schuster, Jasmin

    2014-11-01

    Tailings ponds in the oil sands region (OSR) of western Canada are suspected sources of polycyclic aromatic hydrocarbons (PAHs) to the atmosphere. In the absence of detailed characterization or direct flux measurements, we present preliminary measurement-based estimates of the emissions of thirteen priority PAHs from the ponds. Using air concentrations measured under the Joint Canada-Alberta Oil Sands Monitoring Plan and water concentrations from a small sampling campaign in 2013, the total flux of 13 US EPA priority PAHs (fluorene to benzo[ghi]perylene) was estimated to be upward from water to air and to total 1069 kg y-1 for the region as a whole. By comparison, the most recent air emissions reported to Canada's National Pollutant Release Inventory (NPRI) from oil sands facilities totalled 231 kg y-1. Exchange fluxes for the three remaining priority PAHs (naphthalene, acenaphthylene and acenaphthene) could not be quantified but evidence suggests that they are also upward from water to air. These results indicate that tailings ponds may be an important PAH source to the atmosphere that is missing from current inventories in the OSR. Uncertainty and sensitivity analyses lend confidence to the estimated direction of air-water exchange being upward from water to air. However, more detailed characterization of ponds at other facilities and direct flux measurements are needed to confirm the quantitative results presented herein.

  20. Removal of polycyclic aromatic hydrocarbons from soil: a comparison between bioremoval and supercritical fluids extraction.

    PubMed

    Amezcua-Allieri, M A; Ávila-Chávez, M A; Trejo, A; Meléndez-Estrada, J

    2012-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic substances which are resistant to environmental degradation due to their highly hydrophobic nature. Soils contaminated with PAHs pose potential risks to human and ecological health, therefore concern over their adverse effects have resulted in extensive studies on their removal from contaminated soils. The main purpose of this study was to compare experimental results of PAHs removal, from a natural certified soil polluted with PAHs, by biological methods (using bioaugmentation and biostimulation in a solid-state culture) with those from supercritical fluid extraction (SFE), using supercritical ethane as solvent. The comparison of results between the two methods showed that maximal removal of naphthalene, acenaphthene, fluorene, and chrysene was performed using bioremediation; however, for the rest of the PAHs considered (fluoranthene, pyrene, and benz(a)anthracene) SFE resulted more efficient. Although bioremediation achieved higher removal ratios for certain hydrocarbons and takes advantage of the increased rate of natural biological processes, it takes longer time (i.e. 36 d vs. half an hour) than SFE and it is best for 2-3 PAHs rings. PMID:22197016

  1. Polycyclic aromatic hydrocarbons in Haliotis tuberculata (Linnaeus, 1758) (Mollusca, Gastropoda): Considerations on food safety and source investigation.

    PubMed

    Conte, Francesca; Copat, Chiara; Longo, Sabrina; Conti, Gea Oliveri; Grasso, Alfina; Arena, Giovanni; Dimartino, Angela; Brundo, Maria Violetta; Ferrante, Margherita

    2016-08-01

    Polycyclic aromatic hydrocarbons were analyzed in wild specimens of Haliotis tuberculata from three sites of the Sothern Ionian Sea. The species Ht is commonly found at these sites and has significant commercial value. Main results revealed mean values of benzo(a)pyrene higher than the threshold set by Regulation No. 835/2011/EU in all sampling sites and the sum of selected PAHs, expressed as ΣPAH4 by EC Regulation, were below the limit set by the same Regulation in ME and VSG. We found generally higher concentrations than literature finding, especially for low molecular weight PAHs, and results of diagnostic ratios highlighted both pyrolytic and petrogenic sources. The potential human health risks due consumption of Ht by local inhabitants have been assessed by exposure daily intake (EDI), target hazard quotient (THQ) and lifetime cancer risk (CR). EDI values were below the intake range reviewed by EFSA for each class of contaminant. BaP daily intake was below the value of 10 ng/Kg/day, suggested by JFCFA, and CRBaP was slightly higher than the acceptable risk level (ARL) of 1×10(-5). Conversely, target hazard quotient (THQ) resulted always below 1, thus the risk to develop chronic systemic effects due naphthalene, acenaphthene, fluorene, anthracene, fluoranthene and pyrene was low. PMID:27235950

  2. Hot foam for weed control-Do alkyl polyglucoside surfactants used as foaming agents affect the mobility of organic contaminants in soil?

    PubMed

    Cederlund, H; Börjesson, E

    2016-08-15

    Use of alkyl polyglucosides (APGs) as a foaming agent during hot water weed control may influence the environmental fate of organic contaminants in soil. We studied the effects of the APG-based foaming agent NCC Spuma (C8-C10) on leaching of diuron, glyphosate, and polycyclic aromatic hydrocarbons (PAHs) in sand columns. We also examined how APG concentration affected the apparent water solubility and adsorption of the herbicides and of the PAHs acenaphthene, acenaphthylene and fluorene. Application of APGs at the recommended concentration of 0.3% did not significantly affect leaching of any of the compounds studied. However, at a concentration of 1.5%, leaching of both diuron and glyphosate was significantly increased. The increased leaching corresponded to an increase in apparent water solubility of diuron and a decrease in glyphosate adsorption to the sand. However, APG addition did not significantly affect the mobility of PAHs even though their apparent water solubility was increased. These results suggest that application of APG-based foam during hot water weed control does not significantly affect the mobility of organic contaminants in soil if used according to recommendations. Moreover, they suggest that APGs could be useful for soil bioremediation purposes if higher concentrations are used. PMID:27149400

  3. Long-term toxicity of five polycyclic aromatic hydrocarbons for the terrestrial isopods Oniscus asellus and Porcellio scaber

    SciTech Connect

    Brummelen, T.C. van; Gestel, C.A.M. van; Verweij, R.A.

    1996-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are a common component of soil pollution, yet little is known of the ecotoxicological risks these compounds may pose to life in soil. This article reports the ecotoxicity of five PAHs for two terrestrial isopod species. Isopods were exposed to food contaminated with four different concentrations of either fluorene, phenanthrene, fluoranthene (up to 4 {micro}mol/g), benz[a]anthracene, or benzo[a]pyrene (up to 1.25 {micro}mol/.g). Exposure of Porcellio scaber lasted 16 weeks, and no adverse effects on survival, growth, or total protein (only females tested) were observed in any of the treatments. A small but significant reduction in growth of Oniscus asellus was observed at 47 weeks of exposure to 0.125 {micro}mol benz[a]anthracene-g{sup {minus}1} dry weight and higher concentrations. A significant stimulation of the reproduction of O. asellus was observed in some of the phenanthrene, fluoranthene, benz[a]anthracene, and benzo[a]pyrene treatments; a larger proportion of the females were gravid, which resulted in a higher number of juveniles per female. Exposure did not significantly affect brood size, weight of the mother after release of the juveniles, or the survival of the juveniles upon starvation. Total protein content of females was significantly reduced at 0.4 {micro}mol fluorene g{sup {minus}1} dry weight and higher concentrations. Growth and protein content of isopods is likely to be affected by PAH exposure only at highly contaminated sites. The ecological consequences of stimulated reproduction and possible DNA damage are poorly understood and require further attention because soil invertebrates may be exposed to PAHs over many generations.

  4. A liquid chromatography/tandem mass spectrometry (LC-MS/MS) method for the determination of phenolic polycyclic aromatic hydrocarbons (OH-PAH) in urine of non-smokers and smokers.

    PubMed

    Ramsauer, Bernhard; Sterz, Katharina; Hagedorn, Heinz-Werner; Engl, Johannes; Scherer, Gerhard; McEwan, Mike; Errington, Graham; Shepperd, Jim; Cheung, Francis

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAH) are products of the incomplete combustion of organic materials and, therefore, occur ubiquitously in the environment and also in tobacco smoke. Since some PAH have been classified as carcinogens, it is important to have access to suitable analytical methods for biomarkers of exposure to this class of compounds. Past experience has shown that measuring a profile of PAH metabolites is more informative than metabolites of a single PAH. Assessment of environmental and smoking-related exposure levels requires analytical methods with high sensitivity and specificity. In addition, these methods should be fast enough to allow high throughput. With these pre-conditions in mind, we developed and validated a high-performance liquid chromatographic method with tandem mass spectrometric detection (LC-MS/MS) for the determination of phenolic metabolites of naphthalene, fluorene, phenanthrene and pyrene in urine of smokers and non-smokers. Sample work-up comprised enzymatic hydrolysis of urinary conjugates and solid-phase extraction on C18 cartridges. The method showed good specificity, sensitivity, and accuracy for the intended purpose and was also sufficiently rapid with a sample throughput of about 350 per week. Application to urine samples of 100 smokers and 50 non-smokers showed significant differences between both groups for all measured PAH metabolites, and strong correlations with markers of daily smoke exposure in smoker urine. Urinary levels were in good agreement with previously reported data using different methodologies. In conclusion, the developed LC-MS/MS method is suitable for the quantification of phenolic PAH metabolites of naphthalene, fluorene, phenanthrene, and pyrene in smoker and non-smoker urine. PMID:21046075

  5. Biodegradation of polycyclic aromatic hydrocarbons by a bacterial consortium enriched from mangrove sediments.

    PubMed

    Shahriari Moghadam, Mohsen; Ebrahimipour, Gholamhossein; Abtahi, Behrooz; Ghassempour, Alireza; Hashtroudi, Mehri Seyed

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAHs) biodegradation in contaminated sediment is an attractive remediation technique and its success depends on the optimal condition for the PAH-degrading isolates. The aims of the current study was to isolate and identify PAHs-degrading bacteria from surface sediments of Nayband Bay and to evaluate the efficiency of statistically based experimental design for the optimization of phenanthrene (Phe) and Fluorene (Flu) biodegradation performed by enriched consortium. PAHs degrading bacteria were isolated from surface sediments. Purified strains were then identified by 16S rDNA gene sequence analysis. Taguchi L16 (4(5)) was employed to evaluate the optimum biodegradation of Phe and Flu by the enriched consortium. Total of six gram-negative bacterial strains including Marinobacter hydrocarbonoclasticus, Roseovarius pacificus, Pseudidiomarina sediminum and 3 unidentified strains were isolated from enrichment consortium, using Fluorene (Flu) and phenanthrene (Phe) as the sole carbon and energy source. The enriched consortium showed highest degradation abilities (64.0% Flu and 58.4% Phe degraded in 7 days) in comparison to a single strain cultures or mixtures. Maximum biodegradation efficiency was occur at temperature = 35°C; pH = 8; inoculum size = 0. 4 OD600nm; salinity = 40 ppt; C/N ratio = 100:10. In conclusion our results showed that, indigenous bacteria from mangrove surface sediments of Nayband Bay have high potential to degrade Flu and Phe with the best results achieved when enriched consortium was used. PMID:25436114

  6. Synthesis of fluorene-based polyelectrolytes tethering different counterions for single-component white light-emitting electrochemical cells

    NASA Astrophysics Data System (ADS)

    Yang, Sheng-Hsiung; Tsai, Chia-Sheng; Liu, Bo-Cun; Su, Hai-Ching

    2013-09-01

    A series of polyfluorene (PF) electrolytes bearing Br-, BF4 -, or PF6 - counterions were synthesized and characterized. 2,1,3-benzoselenadiazole moieties were incorporated into polymer main chains to produce single-component white lightemitting polymers. The thermal stability of Br-containing ionic PF was decreased because of the Hofmann elimination occurred at higher temperature. By replacing Br- with BF4 - or PF6 - counterions, the thermal stability of polymers was significantly improved. The emission intensity around 550 nm was decreased for ionic polyelectrolytes. The optimized spin-coated light-emitting electrochemical cell (LEC) with the configuration of ITO/PEDOT/polymer/Ag showed a maximum luminescence efficiency of 1.56 lm/W at a low operation bias of 3 V. The single-component LEC device exhibited pure white light emission with CIE'1931 coordinates approaching (0.33, 0.33) and high color rendering index (CRI < 85), referring to its potential use in solid-state-lighting application.

  7. Electronic structure disorder, vibronic coupling, and charge transfer excitons in poly(fluorene-alt-bithiophene):fullerene films

    SciTech Connect

    Riisness, I.; Gordon, M. J.

    2013-03-18

    Charge transfer processes in conjugated polymer:fullerene blends play an important role in the operation of organic solar cells and organic light emitting diodes. Herein, near-infrared emission from poly-(9,9-dioctylfluorene-alt-bithiophene) (F8T2) and [6,6]-phenyl-C{sub 61}-butyric acid methyl ester blends was studied and attributed to charge transfer exciton (CTX) recombination. Polymer and CTX emission were monitored via low-temperature/transient photoluminescence and absorbance to elucidate the effects of annealing and composition on donor-acceptor morphology. CTX emission decreased and F8T2 vibronic structure was partially restored due to lower fullerene dispersion and polymer realignment upon annealing. Differences in the temperature-dependent emissions of the polymer singlet vs. CTX were attributed to exciton diffusion in the polymer phase vs. enhanced quenching at the donor-acceptor interface, respectively.

  8. CYCLODEXTRIN-ENHANCED ELECTROKINETIC REMOVAL OF PHENANTHRENE FROM A MODEL CLAY SOIL. (R822721C635)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  9. CYCLODEXTRIN-ENHANCED ELECTROKINETIC REMOVAL OF PHENANTHRENE FROM A MODEL CLAY SOIL. (R826694C635)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  10. Incorporation of a Phenanthrene Subunit into a Sapphyrin Framework: Synthesis of Expanded Aceneporphyrinoids.

    PubMed

    Szyszko, Bartosz; Małecki, Marcin; Berlicka, Anna; Białek, Michał J; Białońska, Agata; Kupietz, Kamil; Pacholska-Dudziak, Ewa; Latos-Grażyński, Lechosław

    2016-05-23

    32-Hetero-5,6-dimethoxyphenanthrisapphyrins-macrocycles that link structural features of polycylic aromatic hydrocarbons and expanded porphyrins-were obtained in a straightforward [3+1] condensation reaction of dimethoxyphenanthritripyrrane and 2,5-bis(arylhydroxymethyl)heterocyclopentadienes. The highly folded conformation of formally 4 n π-electron macrocycles causes them to manifest only limited macrocyclic π conjugation as explored by means of NMR spectroscopic and X-ray structural analyses, and supported by DFT calculations. Although protonation does not change their π-conjugation characteristics, the cleavage of ether groups at the phenanthrenylene moiety yields nonaromatic 32-hetero-5,6-dioxophenanthrisapphyrins. PMID:27098207

  11. USING METHANOL-WATER SYSTEMS TO INVESTIGATE PHENANTHRENE SORPTION-DESORPTION ON SEDIMENT

    EPA Science Inventory

    Sorption isotherm nonlinearity, sorption-desorption hysteresis, slow desorption kinetics, and other nonideal phenomena have been attributed to the differing sorptive characteristics of the natural organic matter (NOM) polymers associated with soils and sediments. A conceptualizat...

  12. BIOREMEDIATION OF BTEX, NAPTHALENE, AND PHENANTHRENE IN AQUIFER MATERIAL USING MIXED OXYGEN/NITRATE ELECTRON

    EPA Science Inventory

    The goal of the research described herein was to examine the feasibility of biodegradation of mono and polycyclic aromatic hydrocarbons typically present in a manufactured gas processing (MGP) site groundwater and subsurface sediments under mixed oxygen/denitrifying conditions. ...

  13. Solubilization, solution equilibria, and biodegradation of PAH's under thermophilic conditions.

    PubMed

    Viamajala, Sridhar; Peyton, Brent M; Richards, Lee A; Petersen, James N

    2007-01-01

    Biodegradation rates of PAHs are typically low at mesophilic conditions and it is believed that the kinetics of degradation is controlled by PAH solubility and mass transfer rates. Solubility tests were performed on phenanthrene, fluorene and fluoranthene at 20 degrees C, 40 degrees C and 60 degrees C and, as expected, a significant increase in the equilibrium solubility concentration and of the rate of dissolution of these polycyclic aromatic hydrocarbons (PAHs) was observed with increasing temperature. A first-order model was used to describe the PAH dissolution kinetics and the thermodynamic property changes associated with the dissolution process (enthalpy, entropy and Gibb's free energy of solution) were evaluated. Further, other relevant thermodynamic properties for these PAHs, including the activity coefficients at infinite dilution, Henry's law constants and octanol-water partition coefficients, were calculated in the temperature range 20-60 degrees C. In parallel with the dissolution studies, three thermophilic Geobacilli were isolated from compost that grew on phenanthrene at 60 degrees C and degraded the PAH more rapidly than other reported mesophiles. Our results show that while solubilization rates of PAHs are significantly enhanced at elevated temperatures, the biodegradation of PAHs under thermophilic conditions is likely mass transfer limited due to enhanced degradation rates. PMID:16934313

  14. Solubilization, Solution Equilibria, and Biodegradation of PAH's under Thermophilic Conditions

    SciTech Connect

    Viamajala, S.; Peyton, B. M.; Richards, L. A.; Petersen, J. N.

    2007-01-01

    Biodegradation rates of PAHs are typically low at mesophilic conditions and it is believed that the kinetics of degradation is controlled by PAH solubility and mass transfer rates. Solubility tests were performed on phenanthrene, fluorene and fluoranthene at 20 C, 40 C and 60 C and, as expected, a significant increase in the equilibrium solubility concentration and of the rate of dissolution of these polycyclic aromatic hydrocarbons (PAHs) was observed with increasing temperature. A first-order model was used to describe the PAH dissolution kinetics and the thermodynamic property changes associated with the dissolution process (enthalpy, entropy and Gibb's free energy of solution) were evaluated. Further, other relevant thermodynamic properties for these PAHs, including the activity coefficients at infinite dilution, Henry's law constants and octanol-water partition coefficients, were calculated in the temperature range 20-60 C. In parallel with the dissolution studies, three thermophilic Geobacilli were isolated from compost that grew on phenanthrene at 60 C and degraded the PAH more rapidly than other reported mesophiles. Our results show that while solubilization rates of PAHs are significantly enhanced at elevated temperatures, the biodegradation of PAHs under thermophilic conditions is likely mass transfer limited due to enhanced degradation rates.

  15. A Survey of 42 Semi-Volatile Organic Contaminants in Groundwater along the Grand Canal from Hangzhou to Beijing, East China

    PubMed Central

    Li, Xiaojie; Rao, Zhu; Yang, Zhipeng; Guo, Xiaochen; Huang, Yi; Zhang, Jing; Guo, Feng; Liu, Chen

    2015-01-01

    The status of organic pollution in groundwater in eastern China along the Grand Canal from Hangzhou to Beijing was evaluated. Forty-two semi-volatile organic contaminants were analyzed, including 16 polycyclic aromatic hydrocarbons (PAHs), seven polychlorinated biphenyls (PCBs), 12 organochlorine pesticides (OCPs) and seven organophosphorus pesticides (OPPs). Among the detected contaminants, PAHs were the most widespread compounds. One PCB and six OCPs were detected in the groundwater samples, but none of the target OPPs was detected. The total concentration of the 16 PAHs ranged from 0.21 to 1006 ng/L, among which phenanthrene (271 ng/L) and fluoranthene (233 ng/L) were present at very high concentrations and naphthalene (32 positive detections in 50 samples) and fluorene (28 detections in 50 samples) were the most frequently detected. Benzo[a]pyrene equivalents indicated a high environmental risk related to PAHs in a few groundwater samples. To identify the possible sources of PAHs, three concentration ratios, low molecular weight PAHs/high molecular weight PAHs, anthracene/(anthracene + phenanthrene) and fluoranthene/(fluoranthene + pyrene), were determined, that indicated that the PAHs mainly originated from mixed sources: pyrolytic and petrogenic sources with different ratios at different sites. PMID:26694442

  16. Magnetic pollen grains as sorbents for facile removal of organic pollutants in aqueous media.

    PubMed

    Thio, Beng Joo Reginald; Clark, Kristin K; Keller, Arturo A

    2011-10-30

    Plant materials have long been demonstrated to sorb organic compounds. However, there are no known reports about pollen grains acting as sorbents to remove hydrophobic organic compounds (HOCs) such as pesticides, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) from contaminated waters. We report a facile and effective method to remove HOCs from water using magnetized short ragweed (Ambrosia artemisiifolia) pollen grains. We dispersed the magnetized pollen grains in two different water samples - deionized (DI) and natural storm water to mimic real environmental conditions likely to be encountered during treatment. The magnetized pollen grains were readily separated from the aqueous media via a magnetic field after adsorption of the HOCs. We measured the adsorption of five representative HOCs (acenaphthene, phenanthrene, atrazine, diuron, and lindane) onto magnetized ragweed pollen in different aqueous matrices. We demonstrate that the adsorption capacity of the magnetized ragweed pollen can be regenerated to a large extent for reuse as a sorbent. Our results also indicate that the magnetized pollen grains are as effective as activated carbon (AC) in removing HOCs from both types of contaminated waters. The high HOC sorption of the ragweed pollen allows it to have potential remediation application in the field under realistic conditions. PMID:21871731

  17. Gas/particle partitioning of polycyclic aromatic hydrocarbons in coastal atmosphere of the north Yellow Sea, China.

    PubMed

    Wang, Zhen; Ren, Peifang; Sun, Yan; Ma, Xindong; Liu, Xing; Na, Guangshui; Yao, Ziwei

    2013-08-01

    Samples of gas- and particle-phase polycyclic aromatic hydrocarbons (PAHs) were collected at three sampling stations (Xiaomai Island, Laohutan, and Zhangzi Island) in the north Yellow Sea, China during November 2008 and September 2009 to study their atmospheric transport potential and the gas/particle distributions. The composition of PAHs was dominated by gaseous compounds. The percentages of the particle-phase PAHs to the total concentrations were found to be higher during the heating period than the non-heating period. The ratios of naphthalene and acenaphthene to phenanthrene, chrysene and dibenzo(a,h)anthracene showed an increasing trend from Xiaomai Island to Zhangzi Island, which can be called as the local atmospheric distillation of PAHs. Gas/particle partitioning coefficients (K p) and their relationship with the sub-cooled liquid vapor pressures (pºL) of PAHs were investigated. The regressions of logK p versus logpºL gave significant correlations for all samples of the three sites with r (2) values in the range 0.56-0.66 (p<0.01). Both Junge-Pankow adsorption model and octanol-air partition coefficient absorption model tended to underestimate the sorption for most PAHs, but the absorption model appeared to be more suitable for predicting the particle fraction of PAHs than the Junge-Pankow model. PMID:23463281

  18. Thermochemolysis of the Murchison meteorite: identification of oxygen bound and occluded units in the organic macromolecule

    NASA Astrophysics Data System (ADS)

    Watson, Jonathan S.; Sephton, Mark A.; Gilmour, Iain

    2010-10-01

    An organic macromolecular residue, prepared from the Murchison meteorite by treatment with hydrofluoric and hydrochloric acids, was subjected to online thermochemolysis with tetramethylammonium hydroxide (TMAH). The most abundant compound released by thermochemolysis was benzoic acid. Other abundant compounds include methyl and dimethyl benzoic acids as well as methoxy benzoic acids. Short chain dicarboxylic acids (C4-8) were also released from the organic macromolecule. Within the C1 and C2 benzoic acids all possible structural isomers are present reflecting the abiotic origin of these units. The most abundant isomers include 3,4-dimethylbenzoic acid (DMBA), 3,5-DMBA, 2,6-DMBA and phenylacetic acid. Thermochemolysis also liberates hydrocarbons that are not observed during thermal desorption; these compounds include naphthalene, methylnaphthalenes, biphenyl, methylbiphenyls, acenaphthylene, acenaphthene, phenanthrene, anthracene, fluoranthene and pyrene. The lack of oxygen containing functional groups in these hydrocarbons indicates that they represent non-covalently bound, occluded molecules within the organic framework. This data provides a valuable insight into oxygen bound and physically occluded moieties in the Murchison organic macromolecule and implies a relative order of synthesis or agglomeration for the detected organic constituents.

  19. Characteristics of nano-/ultrafine particle-bound PAHs in ambient air at an international airport.

    PubMed

    Lai, Chia-Hsiang; Chuang, Kuen-Yuan; Chang, Jin-Wei

    2013-03-01

    Concentrations of 22 polycyclic aromatic hydrocarbons (PAHs) were estimated for individual particle-size distributions at the airport apron of the Taipei International Airport, Taiwan, on 48 days in July, September, October, and December of 2011. In total, 672 integrated air samples were collected using a micro-orifice uniform deposition impactor (MOUDI) and a nano-MOUDI. Particle-bound PAHs (P-PAHs) were analyzed by gas chromatography with mass selective detector (GC/MSD). The five most abundant species of P-PAHs on all sampling days were naphthalene (NaP), phenanthrene (PA), fluoranthene (FL), acenaphthene (AcP), and pyrene (Pyr). Total P-PAHs concentrations were 152.21, 184.83, and 188.94 ng/m(3) in summer, autumn, and winter, respectively. On average, the most abundant fractions of benzo[a]pyrene equivalent concentration (BaPeq) in different molecular weights were high-weight PAHs (79.29 %), followed by medium-weight PAHs (11.57 %) and low-weight PAHs (9.14 %). The mean BaPeq concentrations were 1.25 and 0.94 (ng/m(3)) in ultrafine particles (<0.1 μm) and nano-particles (<0.032 μm), respectively. The percentages of total BaPeq in nano- and ultrafine particulate size ranges were 52.4 % and 70.15 %, respectively. PMID:22821344

  20. Isotopic and molecular analyses of hydrocarbons and monocarboxylic acids of the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, R. V.; Epstein, S.; Cronin, John R.; Pizzarello, Sandra; Yuen, George U.

    1992-01-01

    The monocarboxylic acids and hydrocarbons of the Murchison meteorite (CM2) were isolated for isotropic analysis. The nonvolatile hydrocarbons were analyzed as crude methanol and benzene-methanol extracts and also after separation by silica gel chromatography into predominantly aliphatic, aromatic, and polar hydrocarbon fractions. The volatile hydrocarbons were obtained after progressive decomposition of the meteorite matrix by freeze-thaw, hot water, and acid treatment. Molecular analyses of the aromatic hydrocarbons showed them to comprise a complex suite of compounds in which pyrene, fluoranthene, phenanthrene, and acenaphthene were the most abundant components, a result similar to earlier analyses. The polar hydrocarbons also comprise a very complex mixture in which aromatic ketones, nitrogen, and sulfur heterocycles were identified. The monocarboxylic acids, aliphatic, aromatic, and polar hydrocarbons, and the indigenous volatile hydrocarbons were found to be D-rich. The deuterium enrichment observed in these compounds is suggestive. In two separate analyses, the delta-D values of the nonvolatile hydrocarbons were observed to increase in the following order: aliphatic-aromatic-polar. This finding is consistent with an early solar system or parent body conversion of aromatic to aliphatic compounds as well as the suggestion of pyrolytic formation of aromatic from aliphatic compounds.