Science.gov

Sample records for acetaldehyde acetone methanol

  1. Acetone and Acetaldehyde Exchange Above a Managed Temperate Mountain Grassland

    NASA Astrophysics Data System (ADS)

    Hörtnagl, L. J.; Bamberger, I.; Graus, M.; Ruuskanen, T.; Schnitzhofer, R.; Hansel, A.; Wohlfahrt, G.

    2011-12-01

    The exchange of acetone and acetaldehyde was measured above an intensively managed hay meadow in the Stubai Valley (Tyrol, Austria) during the growing seasons in 2008 and 2009. Half-hourly fluxes of both compounds were calculated by means of the virtual disjunct eddy covariance (vDEC) method by combining the 3-dimensional wind data from a sonic anemometer with the compound specific volume mixing ratios quantified with a proton-transfer-reaction mass spectrometer (PTR-MS). The cutting of the meadow resulted in the largest perturbation of the VOC exchange rates. Peak emissions for both VOC species were observed during and right after the cutting of the meadow, with rates of up to 12.1 and 10.1 nmol m-2 s-1 for acetaldehyde and acetone, respectively, reflecting the drying of the wounded plant material. During certain time periods, undisturbed by management events, both compounds exhibited a clear diurnal cycle. Emission rates of up to 3.7 nmol m-2 s-1 for acetaldehyde and 3.2 nmol m-2 s-1 for acetone were measured in October 2008, while a uptake of both compounds with rates of up to 1.8 and 2.1 nmol m-2 s-1, respectively, could be observed in May 2009, when also clear compensation points of 0.3 ppb for acetaldehyde and 1.0 ppb for acetone were observed. In an effort to explore the controls on observed exchange patterns, a simple and multiple linear regression analysis was conducted. A clear interconnection between VOC concentrations and VOC exchange could be seen only in May 2009, when concentration values alone explained 30.6% and 11.7% of the acetaldehyde and acetone flux variance, respectively. However, when trying to predict the observed exchange patterns of both VOC species in a multiple linear regression based on supporting environmental measurements - including air and soil temperature, soil water content and PAR among others - the analysis yielded unsatisfactory results, accounting for 10% and 4% of the observed acetaldehyde and acetone flux variance over both

  2. Proton transfer reactions between nitric acid and acetone, hydroxyacetone, acetaldehyde and benzaldehyde in the solid phase.

    PubMed

    Lasne, Jérôme; Laffon, Carine; Parent, Philippe

    2012-12-01

    The heterogeneous and homogeneous reactions of acetone, hydroxyacetone, acetaldehyde and benzaldehyde with solid nitric acid (HNO(3)) films have been studied with Reflection-Absorption Infrared Spectroscopy (RAIRS) under Ultra-High Vacuum (UHV) conditions in the 90-170 K temperature range. In the bulk or at the surface of the films, nitric acid transfers its proton to the carbonyl function of the organic molecules, producing protonated acetone-H(+), hydroxyacetone-H(+), acetaldehyde-H(+) and benzaldehyde-H(+), and nitrate anions NO(3)(-), a reaction not observed when nitric acid is previously hydrated [J. Lasne, C. Laffon and Ph. Parent, Phys. Chem. Chem. Phys., 2012, 14, 697]. This provides a molecular-scale description of the carbonyl protonation reaction in an acid medium, the first step of the acid-catalyzed condensation of carbonyl compounds, fuelling the growth of secondary organic aerosols (SOA) in the atmosphere. PMID:23090634

  3. Sensitive gas chromatographic detection of acetaldehyde and acetone using a reduction gas detector

    NASA Technical Reports Server (NTRS)

    O'Hara, Dean; Singh, Hanwant B.

    1988-01-01

    The response of a newly available mercuric oxide Reduction Gas Detector (RGD-2) to subpicomole and larger quantities of acetaldehyde and acetone is tested. The RGD-2 is found to be capable of subpicomole detection for these carbonyls and is more sensitive than an FID (Flame Ionization Detector) by an order of magnitude. Operating parameters can be further optimized to make the RGD-2 some 20-40 times more sensitive than an FID. The detector is linear over a wide range and is easily adapted to a conventional gas chromatograph (GC). Such a GC-RGD-2 system should be suitable for atmospheric carbonyl measurements in clean as well as polluted environments.

  4. Direct measurement of Criegee intermediate (CH2OO) reactions with acetone, acetaldehyde, and hexafluoroacetone.

    PubMed

    Taatjes, Craig A; Welz, Oliver; Eskola, Arkke J; Savee, John D; Osborn, David L; Lee, Edmond P F; Dyke, John M; Mok, Daniel W K; Shallcross, Dudley E; Percival, Carl J

    2012-08-14

    Criegee biradicals, i.e., carbonyl oxides, are critical intermediates in ozonolysis and have been implicated in autoignition chemistry and other hydrocarbon oxidation systems, but until recently the direct measurement of their gas-phase kinetics has not been feasible. Indirect determinations of Criegee intermediate kinetics often rely on the introduction of a scavenger molecule into an ozonolysis system and analysis of the effects of the scavenger on yields of products associated with Criegee intermediate reactions. Carbonyl species, in particular hexafluoroacetone (CF(3)COCF(3)), have often been used as scavengers. In this work, the reactions of the simplest Criegee intermediate, CH(2)OO (formaldehyde oxide), with three carbonyl species have been measured by laser photolysis/tunable synchrotron photoionization mass spectrometry. Diiodomethane photolysis produces CH(2)I radicals, which react with O(2) to yield CH(2)OO + I. The formaldehyde oxide is reacted with a large excess of a carbonyl reactant and both the disappearance of CH(2)OO and the formation of reaction products are monitored. The rate coefficient for CH(2)OO + hexafluoroacetone is k(1) = (3.0 ± 0.3) × 10(-11) cm(3) molecule(-1) s(-1), supporting the use of hexafluoroacetone as a Criegee-intermediate scavenger. The reactions with acetaldehyde, k(2) = (9.5 ± 0.7) × 10(-13) cm(3) molecule(-1) s(-1), and with acetone, k(3) = (2.3 ± 0.3) × 10(-13) cm(3) molecule(-1) s(-1), are substantially slower. Secondary ozonides and products of ozonide isomerization are observed from the reactions of CH(2)OO with acetone and hexafluoroacetone. Their photoionization spectra are interpreted with the aid of quantum-chemical and Franck-Condon-factor calculations. No secondary ozonide was observable in the reaction of CH(2)OO with acetaldehyde, but acetic acid was identified as a product under the conditions used (4 Torr and 293 K). PMID:22481381

  5. Acetaldehyde

    Integrated Risk Information System (IRIS)

    Acetaldehyde ; CASRN 75 - 07 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  6. Uptake and Reactions of Formaldehyde, Acetaldehyde, Acetone, Propanal and Ethanol in Sulfuric Acid solutions at 200-240 K: Implications for upper tropospheric aerosol composition

    NASA Astrophysics Data System (ADS)

    Iraci, L. T.; Williams, M. B.; Axson, J.; Michelsen, R.

    2007-12-01

    The production of light absorbing, organic material in aerosol that is normally considered to be transparent in the UV and visible wavelength regions has significant implications for biogeochemical cycling and climate modelling. Production mechanisms likely involve carbonyl compounds such as formaldehyde, acetone, acetaldehyde and propanal that are present in significant quantities in the upper troposphere (UT). In this study, we have performed experiments focusing on a class of acid catalyzed carbonyl reactions, the formation of acetals. R2C=O + 2R'OH --> R2C(OR')2 + H2O Using a Knudsen cell apparatus, we have measured the rate of uptake of formaldehyde, acetaldehyde, acetone, propanal, and ethanol into sulfuric acid solutions ranging between 40-70 wt% of acid, containing 0-0.1 M of ethanol, acetone or formaldehyde at temperatures of 220-250 K. For all reactant pairs, the aldol condensation path, including self reaction, should be insignificant at the acidities studied. Evidence for reaction between organics was observed for all pairs, except those involving propanal which were likely limited by the very low solubility. We attribute enhanced uptake to the formation of acetals, such as 1,1-diethoxyethane and 2,2- diethoxypropane, among others. Enhanced uptake was observed to proceed on timescales > 1 hour and sometimes shows complex dependence on acidity that is likely related to speciation of the individual carbonyls in acidic solution. The acetal products do not absorb in the visible but are less volatile than parent molecules, allowing for accumulation in sulfuric acid particles, and enhanced uptake. Cross reactions of carbonyls with alcohols in sulfuric acid medium have not been previously measured, yet methanol and ethanol show high solubility and are present at significant concentrations in the UT. Thus even at slow reaction rates, the acetal reaction has ample starting material and proceeds under conditions common to the UT. We will present results for the

  7. Extraction of certain elements from aqueous methanol, ethanol and acetone by tridodecylamine and tributyl phosphate.

    PubMed

    Alian, A; Sanad, W; Khalifa, H

    1968-02-01

    The extraction of silver, mercury, selenium, zinc, cobalt and iron with tridodecylamine (TDA) and tributyl phosphate (TBP) from hydrochloric acid solutions in aqueous methanol, ethanol and acetone is reported. The presence of these additives increases extraction for some elements and decreases it for others. The effect is generally greater with TDA than with TBP. PMID:18960287

  8. Excretion of malondialdehyde, formaldehyde, acetaldehyde and acetone in the urine of rats following acute and chronic administration of ethanol.

    PubMed

    Moser, J; Bagchi, D; Akubue, P I; Stohs, S J

    1993-05-01

    Recent studies have shown that xenobiotics which induce oxidative stress result in an increased production and excretion of acetaldehyde (ACT), formaldehyde (FA), acetone (ACON) and malondialdehyde (MDA) in the urine of rats. We have therefore examined the effect of acute and chronic ethanol administration on the excretion of these four lipid metabolites in female Sprague-Dawley rats. Urine samples were collected over dry ice for 6 hr time periods. Aliquots of urine were derivatized with 2,4-dinitrophenylhydrazine HCl, and extracted with n-pentane. High pressure lipid chromatogrpahy (HPLC) was used to quantitate and the hydrazones of the four lipid metabolite products. Following a single, oral, acute dose of 5 g ethanol/kg, urinary excretion of ACT increased approximately 5.8-fold from 6 to 12 hr posttreatment, and decreased thereafter. FA excretion decreased by approximately 50% from 0 to 12 hr, returned to control values in the 18-24 hr urine samples, and was 1.3-fold greater than control values at 42-48 hr. ACON increased 3.1-fold over control values from 0 to 30 hr and remained elevated throughout the remaining 18 hr of the study. The excretion of MDA increased approximately 1.5-fold from 18 to 36 hr, then remained constant through the 48 hr time point. In a separate series of experiments, a chronic oral dose of 0.5 g ethanol/kg was administered to rats for 10 consecutive days and the urinary excretion of the lipid metabolites MDA, FA, ACT and ACON was examined for 11 days, beginning with the first day of ethanol administration.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8352840

  9. Acetone

    Integrated Risk Information System (IRIS)

    Acetone ; CASRN 67 - 64 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )

  10. A Theoretical Investigation of the Plausibility of Reactions Between Ammonia and Carbonyl Species (Formaldehyde, Acetaldehyde, and Acetone) in Interstellar Ice Analogs at Ultracold Temperatures

    NASA Technical Reports Server (NTRS)

    Chen, Lina; Woon, David E.

    2011-01-01

    We have reexamined the reaction between formaldehyde and ammonia, which was previously studied by us and other workers in modestly sized cluster calculations. Larger model systems with up to 12H2O were employed, and reactions of two more carbonyl species, acetaldehyde and acetone, were also carried out. Calculations were performed at the B3LYP/6-31+G** level with bulk solvent effects treated with a polarizable continuum model; limited MP2/6-31+G** calculations were also performed. We found that while the barrier for the concerted proton relay mechanism described in previous work remains modest, it is still prohibitively high for the reaction to occur under the ultracold conditions that prevail in dense interstellar clouds. However, a new pathway emerged in more realistic clusters that involves at least one barrierless step for two of the carbonyl species considered here: ammonia reacts with formaldehyde and acetaldehyde to form a partial charge transfer species in small clusters (4H2O) and a protonated hydroxyamino intermediate species in large clusters (9H2O, 12H2O); modest barriers that decrease sharply with cluster size are found for the analogous processes for the acetone-NH3 reaction. Furthermore, if a second ammonia replaces one of the water molecules in calculations in the 9H2O clusters, deprotonation can occur to yield the same neutral hydroxyamino species that is formed via the original concerted proton relay mechanism. In at least one position, deprotonation is barrierless when zero-point energy is included. In addition to describing the structures and energetics of the reactions between formaldehyde, acetaldehyde, and acetone with ammonia, we report spectroscopic predictions of the observable vibrational features that are expected to be present in ice mixtures of different composition.

  11. A {sup 13}C NMR study of the condensation chemistry of acetone and acetaldehyde adsorbed at the Bronsted acid sites in H-ZSM-5

    SciTech Connect

    Biaglow, A.I.; Sepa, J.; Gorte, R.J.

    1995-02-01

    Several bimolecular, acid-catalyzed condensation reactions of acetone and acetaldehyde have been examined in H-ZSM-5, along with the adsorption complexes formed by the products, using {sup 13}C NMR. For acetone, the hydrogen-bonded adsorption complex is stable at room temperature and coverages below one molecule per Broensted acid site. Reaction to mesityl oxide occurs only at higher coverages or temperatures, which are necessary to induce site exchange. The adsorption complex exhibits reaction chemistry analogous to that observed in solution phase, forming adsorption complexes of chloroacetone upon exposure to Cl{sub 2} and of imines upon exposure to NH{sub 3} or dimethylamine. The reactions of acetaldehyde to crotonaldehyde and imines are similar, although they occur at a faster rate due to the higher mobility of this molecule. The adsorption complexes formed by acetone, acetaldehyde, and their condensation products can all be described as rigid, hydrogen-bonded complexes at low coverages. Complexes formed from imines and enamines exhibit isotropic chemical shifts nearly identical to those observed in magic acids, indicating that proton transfer is nearly complete for these molecules. The extent of proton transfer for the remaining molecules varies with the proton affinity of the molecule, ranging from close to complete proton transfer for mesityl oxide and crotonaldehyde to almost complete absence of proton transfer for the chloroacetones. The differences and similarities between these reactions in the zeolite and in solution phase are discussed, along with the implications for understanding the primary processes responsible for these reactions in zeolites. 34 refs., 16 figs., 1 tab.

  12. Quality Characteristics and Quantification of Acetaldehyde and Methanol in Apple Wine Fermentation by Various Pre-Treatments of Mash.

    PubMed

    Won, Seon Yi; Seo, Jae Soon; Kwak, Han Sub; Lee, Youngseung; Kim, Misook; Shim, Hyoung-Seok; Jeong, Yoonhwa

    2015-12-01

    The objective of this study was to compare the effects of adding lactic acid and pectinase, and chaptalization for the quality of apple wine and the production of hazardous compounds (methanol and acetaldehyde). The pH of all of the samples was below 4; therefore, mash seemed to be fermented without any issue. Total acidity was the highest in sample A due to lactic acid addition. Pre-treated groups (samples B, C, and D) showed higher total acidities than that of the control (P<0.05). Pre-treatments might influence the production of organic acids in apple wines. The control and pectinase added sample (sample B) had the lowest alcohol contents. Adding lactic acid produced more alcohol, and chaptalized samples produced more alcohol due to the addition of sugar. Adding pectinase with and without chaptalization was not effective for producing more alcohol. The control sample had significantly higher acetaldehyde content (2.39 mg/L) than the other samples (1.00~2.07 mg/L); therefore, pre-treatments for apple wine fermentation produced a lower amount of acetaldehyde. Among the pre-treated samples, samples C and D showed the lowest acetaldehyde content of 1.00 mg/L and 1.16 mg/L, respectively. On the other hand, a significantly higher amount of methanol was generated for sample A (1.03 mg/L) and sample D (1.22 mg/L) than that of the control (0.82 mg/L) (P<0.05). Adding lactic acid or chaptalization was effective in reducing methanol and acetaldehyde in apple wines. PMID:26770917

  13. Quality Characteristics and Quantification of Acetaldehyde and Methanol in Apple Wine Fermentation by Various Pre-Treatments of Mash

    PubMed Central

    Won, Seon Yi; Seo, Jae Soon; Kwak, Han Sub; Lee, Youngseung; Kim, Misook; Shim, Hyoung-Seok; Jeong, Yoonhwa

    2015-01-01

    The objective of this study was to compare the effects of adding lactic acid and pectinase, and chaptalization for the quality of apple wine and the production of hazardous compounds (methanol and acetaldehyde). The pH of all of the samples was below 4; therefore, mash seemed to be fermented without any issue. Total acidity was the highest in sample A due to lactic acid addition. Pre-treated groups (samples B, C, and D) showed higher total acidities than that of the control (P<0.05). Pre-treatments might influence the production of organic acids in apple wines. The control and pectinase added sample (sample B) had the lowest alcohol contents. Adding lactic acid produced more alcohol, and chaptalized samples produced more alcohol due to the addition of sugar. Adding pectinase with and without chaptalization was not effective for producing more alcohol. The control sample had significantly higher acetaldehyde content (2.39 mg/L) than the other samples (1.00~2.07 mg/L); therefore, pre-treatments for apple wine fermentation produced a lower amount of acetaldehyde. Among the pre-treated samples, samples C and D showed the lowest acetaldehyde content of 1.00 mg/L and 1.16 mg/L, respectively. On the other hand, a significantly higher amount of methanol was generated for sample A (1.03 mg/L) and sample D (1.22 mg/L) than that of the control (0.82 mg/L) (P<0.05). Adding lactic acid or chaptalization was effective in reducing methanol and acetaldehyde in apple wines. PMID:26770917

  14. Determination of induction period and crystal growth mechanism of dexamethasone sodium phosphate in methanol-acetone system

    NASA Astrophysics Data System (ADS)

    Hao, Hongxun; Wang, Jingkang; Wang, Yongli

    2005-02-01

    The induction period of dexamethasone sodium phosphate at different supersaturation was experimentally determined in a methanol-acetone system. The laser monitoring observation technique was used to determine the appearance of the first nucleus in solution. The effect of solution composition on induction period was discussed. Based on classical homogeneous nucleation theory, the solid-liquid interfacial tension and surface entropy factor were calculated from the induction period data. The experimentally determined values of interfacial tension are in agreement with the theoretical values predicted by the Mersmann equation. It was found that the nucleus of dexamethasone sodium phosphate grows continuously in pure methanol and turns from continuous growth to birth and spread growth with increasing acetone content in a methanol-acetone mixture.

  15. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents.

    PubMed

    Ritchie, Raymond J

    2006-07-01

    A set of equations for determining chlorophyll a (Chl a) and accessory chlorophylls b, c2, c1 + c2 and the special case of Acaryochloris marina, which uses Chl d as its primary photosynthetic pigment and also has Chl a, have been developed for 90% acetone, methanol and ethanol solvents. These equations for different solvents give chlorophyll assays that are consistent with each other. No algorithms for Chl c compounds (c2, c1 + c2) in the presence of Chl a have previously been published for methanol or ethanol. The limits of detection (and inherent error, +/- 95% confidence limit), for chlorophylls in all organisms tested, was generally less than 0.1 microg/ml. The Chl a and b algorithms for green algae and land plants have very small inherent errors (< 0.01 microg/ml). Chl a and d algorithms for Acaryochloris marina are consistent with each other, giving estimates of Chl d/a ratios which are consistent with previously published estimates using HPLC and a rarely used algorithm originally published for diethyl ether in 1955. The statistical error structure of chlorophyll algorithms is discussed. The relative error of measurements of chlorophylls increases hyperbolically in diluted chlorophyll extracts because the inherent errors of the chlorophyll algorithms are constants independent of the magnitude of absorbance readings. For safety reasons, efficient extraction of chlorophylls and the convenience of being able to use polystyrene cuvettes, the algorithms for ethanol are recommended for routine assays of chlorophylls. The methanol algorithms would be convenient for assays associated with HPLC work. PMID:16763878

  16. Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride.

    PubMed

    Guevara-Carrion, Gabriela; Janzen, Tatjana; Muñoz-Muñoz, Y Mauricio; Vrabec, Jadran

    2016-03-28

    Mutual diffusion coefficients of all 20 binary liquid mixtures that can be formed out of methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride without a miscibility gap are studied at ambient conditions of temperature and pressure in the entire composition range. The considered mixtures show a varying mixing behavior from almost ideal to strongly non-ideal. Predictive molecular dynamics simulations employing the Green-Kubo formalism are carried out. Radial distribution functions are analyzed to gain an understanding of the liquid structure influencing the diffusion processes. It is shown that cluster formation in mixtures containing one alcoholic component has a significant impact on the diffusion process. The estimation of the thermodynamic factor from experimental vapor-liquid equilibrium data is investigated, considering three excess Gibbs energy models, i.e., Wilson, NRTL, and UNIQUAC. It is found that the Wilson model yields the thermodynamic factor that best suits the simulation results for the prediction of the Fick diffusion coefficient. Four semi-empirical methods for the prediction of the self-diffusion coefficients and nine predictive equations for the Fick diffusion coefficient are assessed and it is found that methods based on local composition models are more reliable. Finally, the shear viscosity and thermal conductivity are predicted and in most cases favorably compared with experimental literature values. PMID:27036455

  17. Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride

    NASA Astrophysics Data System (ADS)

    Guevara-Carrion, Gabriela; Janzen, Tatjana; Muñoz-Muñoz, Y. Mauricio; Vrabec, Jadran

    2016-03-01

    Mutual diffusion coefficients of all 20 binary liquid mixtures that can be formed out of methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride without a miscibility gap are studied at ambient conditions of temperature and pressure in the entire composition range. The considered mixtures show a varying mixing behavior from almost ideal to strongly non-ideal. Predictive molecular dynamics simulations employing the Green-Kubo formalism are carried out. Radial distribution functions are analyzed to gain an understanding of the liquid structure influencing the diffusion processes. It is shown that cluster formation in mixtures containing one alcoholic component has a significant impact on the diffusion process. The estimation of the thermodynamic factor from experimental vapor-liquid equilibrium data is investigated, considering three excess Gibbs energy models, i.e., Wilson, NRTL, and UNIQUAC. It is found that the Wilson model yields the thermodynamic factor that best suits the simulation results for the prediction of the Fick diffusion coefficient. Four semi-empirical methods for the prediction of the self-diffusion coefficients and nine predictive equations for the Fick diffusion coefficient are assessed and it is found that methods based on local composition models are more reliable. Finally, the shear viscosity and thermal conductivity are predicted and in most cases favorably compared with experimental literature values.

  18. Kinetics of the unimolecular reaction of CH2OO and the bimolecular reactions with the water monomer, acetaldehyde and acetone under atmospheric conditions.

    PubMed

    Berndt, Torsten; Kaethner, Ralf; Voigtländer, Jens; Stratmann, Frank; Pfeifle, Mark; Reichle, Patrick; Sipilä, Mikko; Kulmala, Markku; Olzmann, Matthias

    2015-08-14

    Stabilized Criegee Intermediates (sCIs) have been identified as oxidants of atmospheric trace gases such as SO2, NO2, carboxylic acids or carbonyls. The atmospheric sCI concentrations, and accordingly their importance for trace gas oxidation, are controlled by the rate of the most important loss processes, very likely the unimolecular reactions and the reaction with water vapour (monomer and dimer) ubiquitously present at high concentrations in the troposphere. In this study, the rate coefficients of the unimolecular reaction of the simplest sCI, formaldehyde oxide, CH2OO, and its bimolecular reaction with the water monomer have been experimentally determined at T = (297 ± 1) K and at atmospheric pressure by using a free-jet flow system. CH2OO was produced by the reaction of ozone with C2H4, and CH2OO concentrations were probed indirectly by detecting H2SO4 after titration with SO2. Time-resolved experiments yield a rate coefficient of the unimolecular reaction of k(uni) = (0.19 ± 0.07) s(-1), a value that is supported by quantum-chemical and statistical rate theory calculations as well as by additional measurements performed under CH2OO steady-state conditions. A rate coefficient of k(CH2OO+H2O) = (3.2 ± 1.2) × 10(-16) cm(3) molecule(-1) s(-1) has been determined for sufficiently low H2O concentrations (<10(15) molecule cm(-3)) that allow separation from the CH2OO reaction with the water dimer. In order to evaluate the accuracy of the experimental approach, the rate coefficients of the reactions with acetaldehyde and acetone were reinvestigated. The obtained rate coefficients k(CH2OO+acetald) = (1.7 ± 0.5) × 10(-12) and k(CH2OO+acetone) = (3.4 ± 0.9) × 10(-13) cm(3) molecule(-1) s(-1) are in good agreement with literature data. PMID:26159709

  19. Crystallization of thin water films on graphite: Effects of n-hexane, formaldehyde, acetone, and methanol additives

    NASA Astrophysics Data System (ADS)

    Souda, Ryutaro

    2015-12-01

    Interactions of molecular additives with amorphous solid water have been investigated using time-of-flight secondary ion mass spectrometry and temperature programmed desorption. The crystallization temperature of water on a clean graphite substrate decreases from the bulk value of 160 K to 150 K when water deposition temperature increases from 20 K to 100 K. This phenomenon is induced by the formation of a specifically oriented water layer at the interface, as evidenced by that a submonolayer of n-hexane adspecies on graphite quenches this behavior. Thermal desorption spectra of additives reflect their hydration forms. The n-hexane molecules are trapped in the interior of a porous water film via hydrophobic hydration and released explosively during crystallization. The thermal desorption spectra of methanol resemble those of water from multilayer films because methanol can enter the hydrogen-bond network of water via hydrophilic hydration. The hydration of formaldehyde is hydrophobic in nature despite the presence of the polar carbonyl group. Features of both hydrophilic and hydrophobic hydrations are identifiable in acetone-water interactions; the branching ratio depends on the water preparation method and substrate.

  20. Acetonic and Methanolic Extracts of Heterotheca inuloides, and Quercetin, Decrease CCl4-Oxidative Stress in Several Rat Tissues

    PubMed Central

    Coballase-Urrutia, Elvia; Pedraza-Chaverri, José; Cárdenas-Rodríguez, Noemí; Huerta-Gertrudis, Bernardino; García-Cruz, Mercedes Edna; Montesinos-Correa, Hortencia; Sánchez-González, Dolores Javier; Camacho-Carranza, Rafael; Espinosa-Aguirre, Jesús Javier

    2013-01-01

    The present study was designed to test the hypothesis that the acetonic and methanolic extracts of H. inuloides prevent carbon tetrachloride-(CCl4) induced oxidative stress in vital tissues. Pretreatment with both H. inuloides extracts or quercetin attenuated the increase in serum activity of alkaline phosphatase (ALP), total bilirubin (BB), creatinine (CRE), and creatine kinase (CK), and impeded the decrease of γ-globulin (γ-GLOB) and albumin (ALB) observed in CCl4-induced tissue injury. The protective effect was confirmed by histological analysis with hematoxylin-eosin and periodic acid/Schiff's reagent. Level of lipid peroxidation was higher in the organs of rats exposed to CCl4 than in those of the animals treated with Heterohteca extracts or quercetin, and these showed levels similar to the untreated group. Pretreatment of animals with either of the extracts or quercetin also prevented the increase of 4-hydroxynonenal and 3-nitrotyrosine. Pretreatment with the plant extracts or quercetin attenuated CCl4 toxic effects on the activity of several antioxidant enzymes. The present results strongly suggest that the chemopreventive effect of the extracts used and quercetin, against CCl4 toxicity, is associated with their antioxidant properties and corroborated previous results obtained in liver tissue. PMID:23365610

  1. The enthalpies and entropies of pefloxacin dissolution in methanol, ethanol, 1-Propanol, 2-Propanol, acetone, and chloroform at 293.15-323.15 K

    NASA Astrophysics Data System (ADS)

    Zhang, C.-L.; Cui, S.-J.; Wang, Y.

    2012-12-01

    The solubilities of pefloxacin in methanol, ethanol, 1-propanol, 2-propanol, acetone, and chloroform have been determined from 293.15 to 323.15 K by a static equilibrium method. The experimental data were correlated with the modified Apelblat equation. The positive Δsol H and Δsol S for each system revealed that pefloxacin dissolution in each solvent is an entropy-driven process.

  2. Excretion of formaldehyde, malondialdehyde, acetaldehyde and acetone in the urine of rats in response to 2,3,7,8-tetrachlorodibenzo-p-dioxin, paraquat, endrin and carbon tetrachloride.

    PubMed

    Shara, M A; Dickson, P H; Bagchi, D; Stohs, S J

    1992-05-01

    Formaldehyde (FA), acetaldehyde (ACT), malondialdehyde (MDA) and acetone (ACON) were simultaneously identified in urine, and their excretion quantitated in response to chemically induced oxidative stress. Urine samples of female Sprague-Dawley rats were collected over dry ice and derivatized with 2,4-dinitrophenylhydrazine. The hydrazones of the four lipid metabolic products were quantitated by high-performance liquid chromatography on a Waters 10-microns mu-Bondapak C18 column. The identities of FA, ACT, MDA and ACON in urine were confirmed by gas chromatography-mass spectrometry. An oxidative stress was induced by orally administering 100 micrograms/kg 2,3,7,8-tetrachlorodibenzo-p-dioxin, 75 mg/kg paraquat, 6 mg/kg endrin or 2.5 ml/kg carbon tetrachloride to rats. Urinary excretion of FA, ACT, MDA and ACON increased relative to control animals 24 h after treatment with all xenobiotics. The system has wide-spread applicability to the investigation of altered lipid metabolism in disease states and exposure to environmental pollutants. PMID:1400710

  3. Adsorptive Separation of Methanol-Acetone on Isostructural Series of Metal-Organic Frameworks M-BTC (M = Ti, Fe, Cu, Co, Ru, Mo): A Computational Study of Adsorption Mechanisms and Metal-Substitution Impacts.

    PubMed

    Wu, Ying; Chen, Huiyong; Xiao, Jing; Liu, Defei; Liu, Zewei; Qian, Yu; Xi, Hongxia

    2015-12-01

    The adsorptive separation properties of M-BTC isostructural series (M = Ti, Fe, Cu, Co, Ru, Mo) for methanol-acetone mixtures were investigated by using various computational procedures of grand canonical Monte Carlo simulations (GCMC), density functional theory (DFT), and ideal adsorbed solution theory (IAST), following with comprehensive understanding of adsorbate-metal interactions on the adsorptive separation behaviors. The obtained results showed that the single component adsorptions were driven by adsorbate-framework interactions at low pressures and by framework structures at high pressures, among which the mass effects, electrostatics, and geometric accessibility of the metal sites also played roles. In the case of methanol-acetone separation, the selectivity of methanol on M-BTCs decreased with rising pressures due to the pressure-dependent separation mechanisms: the cooperative effects between methanol and acetone hindered the separation at low pressures, whereas the competitive effects of acetone further resulted in the lower selectivity at high pressures. Among these M-BTCs, Ti and Fe analogues exhibited the highest thermodynamic methanol/acetone selectivity, making them promising for adsorptive methanol/acetone separation processes. The investigation provides mechanistic insights on how the nature of metal centers affects the adsorption properties of MOFs, and will further promote the rational design of new MOF materials for effective gas mixture separation. PMID:26581027

  4. Separation of benzene from mixtures with water, methanol, ethanol, and acetone: highlighting hydrogen bonding and molecular clustering influences in CuBTC.

    PubMed

    Gutiérrez-Sevillano, Juan José; Calero, Sofia; Krishna, Rajamani

    2015-08-21

    Configurational-bias Monte Carlo (CBMC) simulations are used to establish the potential of CuBTC for separation of water/benzene, methanol/benzene, ethanol/benzene, and acetone/benzene mixtures. For operations under pore saturation conditions, the separations are in favor of molecules that partner benzene; this is due to molecular packing effects that disfavor benzene. CBMC simulations for adsorption of quaternary water/methanol/ethanol/benzene mixtures show that water can be selectively adsorbed at pore saturation, making CuBTC effective in drying applications. Ideal Adsorbed Solution Theory (IAST) calculations anticipate the right hierarchy of component loadings but the quantitative agreement with CBMC mixture simulations is poor for all investigated mixtures. The failure of the IAST to provide reasonable quantitative predictions of mixture adsorption is attributable to molecular clustering effects that are induced by hydrogen bonding between water-water, methanol-methanol, and ethanol-ethanol molecule pairs. There is, however, no detectable hydrogen bonding between benzene and partner molecules in the investigated mixtures. As a consequence of molecular clustering, the activity coefficients of benzene in the mixtures is lowered below unity by one to three orders of magnitude at pore saturation; such drastic reductions cannot be adequately captured by the Wilson model, that does not explicitly account for molecular clustering. Molecular clustering effects are also shown to influence the loading dependence of the diffusivities of guest molecules. PMID:26165859

  5. Three-dimensionally ordered and wormhole-like mesoporous iron oxide catalysts highly active for the oxidation of acetone and methanol.

    PubMed

    Xia, Yunsheng; Dai, Hongxing; Jiang, Haiyan; Zhang, Lei; Deng, Jiguang; Liu, Yuxi

    2011-02-15

    Three-dimensionally (3D) ordered and wormhole-like mesoporous iron oxides (denoted as Fe-KIT6 and Fe-CA) were respectively prepared by adopting the 3D ordered mesoporous silica KIT-6-templating and modified citric acid-complexing strategies, and characterized by a number of analytical techniques. It is shown that the Fe-KIT6-400 and Fe-CA-400 catalysts derived after 400°C-calcination possessed high surface areas (113-165 m(2)/g), high surface adsorbed oxygen concentrations, and good low-temperature reducibility, giving 90% conversion below 189 and 208°C for acetone and methanol oxidation at 20,000 mL/(g h), respectively. It is believed that the good catalytic performance of Fe-CA-400 and Fe-KIT6-400 was related to factors such as higher surface area and oxygen adspecies concentration, better low-temperature reducibility, and 3D mesoporous architecture. PMID:21131127

  6. Comparison of the nutritive value and biological activities of the acetone, methanol and water extracts of the leaves of Bidens pilosa and Chenopodium album.

    PubMed

    Adedapo, Adeolu; Jimoh, Florence; Afolayan, Anthony

    2011-01-01

    A resurgence of interest has developed in wild vegetables for their possible medicinal values in diets. Wild plant species provide minerals, fibre, vitamins and essential fatty acids and enhance taste and color in diets. For this reason, the nutritional, phytochemical, antioxidant and antibacterial activities of the acetone, methanol and water extracts of the leaves of Bidens pilosa and Chenopodium album were investigated. The proximate analysis showed that the leaves of the plants contained appreciable percentage of moisture content, ash content, crude protein, crude lipid, crude fibre and carbohydrate. Elemental analysis in mg/100 g dry weight (d.w.) indicated that the leaves contained sodium, potassium, calcium, magnesium, iron, zinc, phosphorus, copper, manganese, and nitrogen. The chemical composition in mg/100 g d.w. showed the presence of alkaloid, saponins, and phytate. The extracts also caused DPPH radical scavenging activities which were comparable to those of ascorbic acid. This was also the same for BHT scavenging activity. With respect to the polyphenols, the extracts of these two plants also contained appreciable levels of these phytochemicals. The extracts of these plants also caused varied inhibition of the bacterial strains used in this study. PMID:21485705

  7. Acetaldehyde and gastric cancer.

    PubMed

    Salaspuro, Mikko

    2011-04-01

    Aldehyde dehydrogenase (ALDH2) and alcohol dehydrogenase (ADH) gene polymorphisms associating with enhanced acetaldehyde exposure and markedly increased cancer risk in alcohol drinkers provide undisputable evidence for acetaldehyde being a local carcinogen not only in esophageal but also in gastric cancer. Accordingly, acetaldehyde associated with alcoholic beverages has recently been classified as a Group 1 carcinogen to humans. Microbes are responsible for the bulk of acetaldehyde production from ethanol both in saliva and Helicobacter pylori-infected and achlorhydric stomach. Acetaldehyde is the most abundant carcinogen in tobacco smoke and it readily dissolves into saliva during smoking. Many foodstuffs and 'non-alcoholic' beverages are important but unrecognized sources of local acetaldehyde exposure. The cumulative cancer risk associated with increasing acetaldehyde exposure suggests the need for worldwide screening of the acetaldehyde levels of alcoholic beverages and as well of the ethanol and acetaldehyde of food produced by fermentation. The generally regarded as safe status of acetaldehyde should be re-evaluated. The as low as reasonably achievable principle should be applied to the acetaldehyde of alcoholic and non-alcoholic beverages and food. Risk groups with ADH-and ALDH2 gene polymorphisms, H. pylori infection or achlorhydric atrophic gastritis, or both, should be screened and educated in this health issue. L-cysteine formulations binding carcinogenic acetaldehyde locally in the stomach provide new means for intervention studies. PMID:21401890

  8. Acetone poisoning

    MedlinePlus

    ... JavaScript. Acetone is a chemical used in many household products. This article discusses poisoning from swallowing acetone-based ... A.M. Editorial team. Related MedlinePlus Health Topics Household Products Browse the Encyclopedia A.D.A.M., Inc. ...

  9. Methanol

    Integrated Risk Information System (IRIS)

    Methanol ; CASRN 67 - 56 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )

  10. MUTAGENICITY ASSESSMENT OF ACETALDEHYDE

    EPA Science Inventory

    Acetaldehyde has been shown in studies by several different laboratories to be a clastogen and inducer of sister chromatid exchanges in cultured mammalian cells. Although there have been very few studies in intact mammals, the available evidence suggests that acetaldehyde produce...

  11. Acetone in theGlobal Troposphere: Its Possible Role as a Global Source of PAN

    NASA Technical Reports Server (NTRS)

    Singh, H. B.; Kanakidou, M.

    1994-01-01

    Oxygenated hydrocarbons are thought to be important components of the atmosphere but, with the exception of formaldehyde, very little about their distribution and fate is known. Aircraft measurements of acetone (CH3COCH3), PAN (CH3CO3NO2) and other organic species (e. g. acetaldehyde, methanol and ethanol) have been performed over the Pacific, the southern Atlantic, and the subarctic atmospheres. Sampled areas extended from 0 to 12 km altitude over latitudes of 70 deg N to 40 deg S. All measurements are based on real time in-situ analysis of cryogenically preconcentrated air samples. Substantial concentrations of these oxygenated species (10-2000 ppt) have been observed at all altitudes and geographical locations in the troposphere. Important sources include, emissions from biomass burning, plant and vegetation, secondary oxidation of primary non-methane hydrocarbons, and man-made emissions. Direct measurements within smoke plumes have been used to estimate the biomass burning source. Photochemistry studies are used to suggest that acetone could provide a major source of peroxyacetyl radicals in the atmosphere and play an important role in sequestering reactive nitrogen. Model calculations show that acetone photolysis contributes significantly to PAN formation in the middle and upper troposphere.

  12. Purity Determination of Acetaldehyde in an Acetaldehyde Certified Reference Material.

    PubMed

    Yamazaki, Taichi; Watanabe, Takuro; Nakamura, Satoe; Kato, Kenji

    2015-01-01

    Acetaldehyde is regulated as a toxic substance in various fields, and the method for monitoring or analysis of acetaldehyde is important. However, handling is difficult because of the high reactivity and low boiling point of acetaldehyde. Therefore, a reference material for high purity acetaldehyde with high accuracy was not available. Although the measuring method of acetaldehyde as a reagent is published in the Japanese Industrial Standard (JIS) where the specification of acetaldehyde purity is more than 80%, the analytical method described in JIS is not enough for an accuracy purity determination method. In this research, the high precision purity determination method for development of a certified reference material (CRM) of acetaldehyde was examined. By controlling the volatility and reactivity of acetaldehyde, we established the purity determination method of acetaldehyde with a relative standard uncertainty of less than 0.3%. Furthermore, this method was applied to develop a high purity acetaldehyde CRM with an expanded uncertainty of 0.005 kg kg(-1) (k = 2). PMID:26063006

  13. Acetaldehyde: A Chemical Whose Fortunes Have Changed.

    ERIC Educational Resources Information Center

    Wittcoff, Harold A.

    1983-01-01

    Describes industrial acetaldehyde synthesis/uses, explaining why acetaldehyde usage is declining in industry. Includes a discussion of the reaction chemistry, equations, and molecular structure diagrams. (JM)

  14. Isobutanol-methanol mixtures from synthesis gas. Quarterly technical progress report, 1 January--31 March 1996

    SciTech Connect

    1996-04-20

    A series of CuMgCeO{sub x} catalysts have been prepared. Range of Cu dispersion, determined by N{sub 2}O titration, was 19-48% and are among the highest reported in the literature for Cu-based methanol and higher alcohol synthesis catalysts. Kinetics of MeOH and EtOH coupling reactions on Cu/ZnO and K-Cu/MgO/CeO{sub 2} catalysts indicate that Cu promotes alcohol dehydrogenation. Acetaldehyde is a reactive intermediate. High-pressure isobutanol synthesis studies have been carried out on K- and Cs-promoted Cu/MgO/CeO{sub 2} catalysts. The K promoter is more active than Cs for CO conversion, but the Cs promoter activates the C{sub 1} to C{sub 2} step more effectively. Catalysts with high alkali loading resulted in low conversions. Temperature programmed surface reaction studies of MeOH, EtOH, and acetaldehyde on MgO/CeO{sub 2}-based Cu catalysts show evolution of acetone, crotonaldehyde, methyl ethyl ketone, H2, carbon oxides. Neither EtOH nor acetaldehyde produces propionaldehyde or 1- propanol, suggesting that these C{sub 3} species can only form via reactions involving C{sub 1} and C{sub 2} oxygenate species.

  15. 27 CFR 21.93 - Acetaldehyde.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Acetaldehyde. 21.93 Section 21.93 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Acetaldehyde. (a) Aldehyde content (as acetaldehyde). Not less than 95.0 percent by weight. (b)...

  16. 27 CFR 21.93 - Acetaldehyde.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Acetaldehyde. 21.93 Section 21.93 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Acetaldehyde. (a) Aldehyde content (as acetaldehyde). Not less than 95.0 percent by weight. (b)...

  17. 27 CFR 21.93 - Acetaldehyde.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Acetaldehyde. 21.93 Section 21.93 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Acetaldehyde. (a) Aldehyde content (as acetaldehyde). Not less than 95.0 percent by weight. (b)...

  18. [Biological actions of acetaldehyde].

    PubMed

    Ijiri, I

    1999-11-01

    Acetaldehyde (AcH), the first metabolite of ethanol (EtOH), is a chemically reactive and pharmacologically active compound. The author has been engaged in the study of AcH in cooperation with many researchers for three decades. We have found many biological actions of AcH which cause cardiovascular symptoms after drinking and also inhibited EtOH absorption via the canine and rat intestinal tract. This report covers the following five points. 1. The subjects were classified into a non-flushing group and a flushing group, according to the degree of facial flushing after drinking 200 ml of Sake (Japanese rice wire) at a rate of 100 ml per 5 min. Blood EtOH profile was much the same in both groups, yet peak blood AcH concentration in the flushing group was significantly higher than that in the non-flushing group. All subjects in the flushing group showed marked flushing and an increase in pulse rate after drinking, but these symptoms were not apparent in the non-flushing group. These results suggested that cardiovascular symptoms were caused by AcH itself. 2. Urinary excretions of both norepinephrine and epinephrine increased in the flushing cases after drinking Sake in comparison with those who drank the same volume of water. However, these catecholamines did not change in the non-flushing group. These results suggested that it is catecholamines released from the sympathetic nerve end or the adrenal medulla by AcH which caused an increase in pulse rate. 3. Bradykinin is released from high molecular kininogen by activated kallikrein and acts to dilate distal blood vessels and raise permeability in tissues. On the other hand, kallidin is released from low molecular kininogen by activated glandular kallikrein and its action is weaker than that of bradykinin. Blood low molecular kininogen levels in the flushing group decreased gradually after drinking and were mutually related to the blood AcH concentrations. But levels in the non-flushing group showed no difference

  19. Production of acetaldehyde by Zymomonas mobilis

    SciTech Connect

    Wecker, M.S.A.; Zall, R.R.

    1987-12-01

    Mutants of Zymomonas mobilis were selected for decreased alcohol dehydrogenase activity by using consecutively higher concentration of allyl alcohol. A mutant selected by using 100 mM allyl alcohol produced acetaldehyde at a level of 4.08 g/liter when the organism was grown in aerated batch cultures on a medium containing 4.0% (wt/wt) glucose. On the basis of the amount of glucose utilized, this level of acetaldehyde production represents nearly 40% of the maximum theoretical yield. Acetaldehyde produced during growth was continuously air stripped from the reactor. Acetaldehyde present in the exhaust stream was then trapped as the acetaldehyde-bisulfite addition product in an aqueous solution of sodium bisulfite and released by treatment with base. Acetaldehyde was found to inhibit growth of Z. mobilis at concentrations as low as 0.05% (wt/wt) acetaldehyde. An acetaldehyde-tolerant mutant of Z. mobilis was isolated after both mutagenesis with nitrosoguanidine and selection in the presence of vapor-phase acetaldehyde. The production of acetaldehyde has potential advantages over that of ethanol: lower energy requirements for production separation, efficient separation of product from dilute feed streams, continuous separation of product from the reactor, and a higher marketplace value.

  20. Production of Acetaldehyde by Zymomonas mobilis

    PubMed Central

    Wecker, Matt S. A.; Zall, Robert R.

    1987-01-01

    Mutants of Zymomonas mobilis were selected for decreased alcohol dehydrogenase activity by using consecutively higher concentrations of allyl alcohol. A mutant selected by using 100 mM allyl alcohol produced acetaldehyde at a level of 4.08 g/liter when the organism was grown in aerated batch cultures on a medium containing 4.0% (wt/wt) glucose. On the basis of the amount of glucose utilized, this level of acetaldehyde production represents nearly 40% of the maximum theoretical yield. Acetaldehyde produced during growth was continuously air stripped from the reactor. Acetaldehyde present in the exhaust stream was then trapped as the acetaldehyde-bisulfite addition product in an aqueous solution of sodium bisulfite and released by treatment with base. Acetaldehyde was found to inhibit growth of Z. mobilis at concentrations as low as 0.05% (wt/wt) acetaldehyde. An acetaldehyde-tolerant mutant of Z. mobilis was isolated after both mutagenesis with nitrosoguanidine and selection in the presence of vapor-phase acetaldehyde. The production of acetaldehyde has potential advantages over that of ethanol: lower energy requirements for product separation, efficient separation of product from dilute feed streams, continuous separation of product from the reactor, and a higher marketplace value. PMID:16347497

  1. Blood and liver acetaldehyde concentration in rats following acetaldehyde inhalation and intravenous and intragastric ethanol administration

    SciTech Connect

    Watanabe, A.; Hobara, N.; Nagashima, H.

    1986-10-01

    Ethanol is metabolized to acetaldehyde, a highly reactive product of ethanol oxidation. Ethanol might be blended with gasoline and used as a fuel in the future; biohazard of acetaldehyde inhalation must be discussed. Recent improvements in our ability to measure acetaldehyde levels in blood and various tissues have made the assessment of acetaldehyde's role in alcoholic organ intoxication possible. Blood and liver acetaldehyde concentrations in rats were reported as being linearly correlated following intragastric ethanol administration. Acetaldehyde was administered by inhalation to study its toxicity. However, liver concentrations following the inhalation was not investigated. The present communication describes the relationship between blood and liver acetaldehyde concentrations in rats following acetaldehyde inhalation and different routes of ethanol administration.

  2. Methanol in dark clouds

    NASA Technical Reports Server (NTRS)

    Friberg, P.; Hjalmarson, A.; Madden, S. C.; Irvine, W. M.

    1988-01-01

    The first observation of methanol in cold dark clouds TMC 1, L 134 N, and B 335 is reported. In all three clouds, the relative abundance of methanol was found to be in the range of 10 to the -9th (i.e., almost an order of magnitude more abundant than acetaldehyde), with no observable variation between the clouds. Methanol emission showed a complex velocity structure; in TMC 1, clear indications of non-LTE were observed. Dimethyl ether was searched for in L 134 N; the upper limit of the column density of dimethyl ether in L 134 N was estimated to be 4 x 10 to the 12th/sq cm, assuming 5 K rotation temperature and LTE. This limit makes the abundance ratio (CH3)2O/CH3OH not higher than 1/5, indicating that dimethyl ether is not overabundant in this dark cloud.

  3. Terahertz Spectroscopy of Deuterated Acetaldehyde: CH_2DCHO

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Motiyenko, R. A.; Coudert, L. H.; Guillemin, J.-C.

    2014-06-01

    This study follows our recent investigations about deuterated methyl-top species of complex organic molecules: methanol, methyl formate, In particular these works led the first ISM detection of HCOOCH_2D and CH_2DOCH_3. Acetaldehyde is not very abundant in the ISM, but this is a very interesting case from the spectroscopic point of view as it is an intermediate case between methyl formate and methanol. In the normal species of acetaldehyde, the barrier to internal rotation which is close to the value in methyl formate: 373 cm-1. However, the value of the Coriolis coupling constant ρ is 0.33 in acetaldehyde which is a much larger value than in methyl formate, 0.08, meaning that the coupling between the torsion and the overall rotation is more important. The sample was not a commercial one and half of its amount is the normal species which leads to a more difficult line assignment. The spectra were recorded in Lille between 75 and 950 GHz with a solid-state submillimeter-wave spectrometer. The starting point of the analysis was the centimeter-wave measurements carried out for the sym and asym- conformers. A comparison between the approach developed for deuterated methyl formate (HCOOCH_2D), based on the water dimer formalism, and that designed recently for deuterated methanola (CH_2DOH) will be presented. This work is supported by the CNES and the Action sur Projets de l'INSU, PCMI. Coudert, L. H.; et al. J. Chem. Phys., 140, (2014) 64307 Coudert, L. H.; et al. ApJ, 779, (2013) 119 Richard, C.; et al. A&A, 552, (2013) A117 Smirnov, I. A.; et al. J. Mol. Spectrosc., 295 (2014) 44 Ilyushin, V.; et al. J. Mol. Spectrosc., 255 (2009) 32 Turner, P. H.; and Cox, A. P. Chem. Phys. Lett., 42, (1976) 84 Turner, P. H.; Cox, A. P.; and Hardy, J. A. J.C.S. Farady Trans., 2, (1981) 1217

  4. Proton transfer in acetaldehyde and acetaldehyde-water clusters: Vacuum ultraviolet photoionization experiment and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Kostko, Oleg; Troy, Tyler P.; Bandyopadhyay, Biswajit; Ahmed, Musahid

    2015-03-01

    Acetaldehyde, a probable human carcinogen and of environmental importance, upon solvation provides a test bed for understanding proton transfer pathways and catalytic mechanisms. In this study, we report on single photon vacuum ultraviolet photoionization of small acetaldehyde and acetaldehyde-water clusters. Appearance energies of protonated clusters are extracted from the experimental photoionization efficiency curves and compared to electronic structure calculations. The comparison of experimental data to computational results provides mechanistic insight into the fragmentation mechanisms of the observed mass spectra. Using deuterated water for isotopic tagging, we observe that proton transfer is mediated via acetaldehyde and not water in protonated acetaldehyde-water clusters.

  5. 27 CFR 21.93 - Acetaldehyde.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Acetaldehyde. 21.93 Section 21.93 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.93 Acetaldehyde. (a) Aldehyde content...

  6. 27 CFR 21.93 - Acetaldehyde.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Acetaldehyde. 21.93 Section 21.93 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.93 Acetaldehyde. (a) Aldehyde content...

  7. Production of methanol from heat-stressed pepper and corn leaf disks

    SciTech Connect

    Anderson, J.A. . Dept. of Horticulture and Landscape Architecture)

    1994-05-01

    Early Calwonder'' pepper (Capsicum annuum L.) and Jubilee'' corn (Zea mays L.) leaf disks exposed to high temperature stress produced ethylene, ethane, methanol, acetaldehyde, and ethanol based on comparison of retention times during gas chromatography to authentic standards. Methanol, ethanol, and acetaldehyde were also identified by mass spectroscopy. Corn leaf disks produced lower levels of ethylene, ethane, and methanol, but more acetaldehyde and ethanol than pepper. Production of ethane, a by-product of lipid peroxidation, coincided with an increase in electrolyte leakage (EL) in pepper but not in corn. Compared with controls, pepper leaf disks infiltrated with linolenic acid evolved significantly greater amounts of ethane, acetaldehyde, and methanol and similar levels of ethanol. EL and volatile hydrocarbon production were not affected by fatty acid infiltration in corn. Infiltration of pepper leaves with buffers increasing in pH from 5.5 to 9.5 increased methanol production.

  8. [Determination methods for human blood acetaldehyde].

    PubMed

    Fukunaga, T; Yamamoto, H; Tanegashima, A

    1998-06-01

    Although a number of reports on human blood acetaldehyde have been published, most of them during alcohol intoxication are still various in each researcher. The difficult problems are summarized as follows; 1) low boiling point of acetaldehyde, 2) low level in blood, 3) rapid disappearance in blood, and 4) artefactual formation during the procedures. The most crucial problem is the artefactual formation from ethanol or other sources during the procedures. Hemolysation, heating and/or other analytical procedures cause the artefacts. In this report, several methods for the determination and the evaluation of the acetaldehyde levels are reviewed. PMID:9701996

  9. Methanol in dark clouds

    NASA Astrophysics Data System (ADS)

    Friberg, P.; Hjalmarson, A.; Madden, S. C.; Irvine, W. M.

    1988-04-01

    The authors report observations, for the first time, of the 20 - 10A+ and E, 2-1 - 1-1 E, and 10 - 00A+ lines of methanol (CH3OH) in three dark cold clouds, TMC 1, L 134N, and B 335. The CH3OH emission is extended in these clouds and shows a complex velocity structure. Clear indications of non LTE excitation are observed in TMC 1. Estimated column densities are a few×1013cm-2. Although less abundant than formaldehyde (H2CO), methanol is almost an order of magnitude more abundant than acetaldehyde (CH3CHO), in these clouds. Dimethyl ether was searched for in L 134N, to an upper limit of 4×1012cm-2 (3σ). Implications for dark cloud excitation and chemistry are discussed.

  10. Acetaldehyde production from ethanol by oral streptococci.

    PubMed

    Kurkivuori, Johanna; Salaspuro, Ville; Kaihovaara, Pertti; Kari, Kirsti; Rautemaa, Riina; Grönroos, Lisa; Meurman, Jukka H; Salaspuro, Mikko

    2007-02-01

    Alcohol is a well documented risk factor for upper digestive tract cancers. It has been shown that acetaldehyde, the first metabolite of ethanol is carcinogenic. The role of microbes in the production of acetaldehyde to the oral cavity has previously been described in several studies. In the present study, the aim was to investigate the capability of viridans group streptococci of normal oral flora to produce acetaldehyde in vitro during ethanol incubation. Furthermore, the aim was to measure the alcohol dehydrogenase (ADH) activity of the bacteria. Eight clinical strains and eight American Type Culture Collection (ATCC) strains of viridans group streptococci were selected for the study. Bacterial suspensions were incubated in two different ethanol concentrations, 11 mM and 1100 mM and the acetaldehyde was measured by gas chromatography. ADH-activity was measured by using a sensitive spectroscopy. The results show significant differences between the bacterial strains regarding acetaldehyde production capability and the detected ADH-activity. In particular, clinical strain of Streptococcus salivarius, both clinical and culture collection strains of Streptococcus intermedius and culture collection strain of Streptococcus mitis produced high amounts of acetaldehyde in 11 mM and 1100 mM ethanol incubation. All these four bacterial strains also showed significant ADH-enzyme activity. Twelve other strains were found to be low acetaldehyde producers. Consequently, our study shows that viridans group streptococci may play a role in metabolizing ethanol to carcinogenic acetaldehyde in the mouth. The observation supports the concept of a novel mechanism in the pathogenesis of oral cancer. PMID:16859955

  11. Quantitative Clinical Diagnostic Analysis of Acetone in Human Blood by HPLC: A Metabolomic Search for Acetone as Indicator

    PubMed Central

    Akgul Kalkan, Esin; Sahiner, Mehtap; Ulker Cakir, Dilek; Alpaslan, Duygu; Yilmaz, Selehattin

    2016-01-01

    Using high-performance liquid chromatography (HPLC) and 2,4-dinitrophenylhydrazine (2,4-DNPH) as a derivatizing reagent, an analytical method was developed for the quantitative determination of acetone in human blood. The determination was carried out at 365 nm using an ultraviolet-visible (UV-Vis) diode array detector (DAD). For acetone as its 2,4-dinitrophenylhydrazone derivative, a good separation was achieved with a ThermoAcclaim C18 column (15 cm × 4.6 mm × 3 μm) at retention time (tR) 12.10 min and flowrate of 1 mL min−1 using a (methanol/acetonitrile) water elution gradient. The methodology is simple, rapid, sensitive, and of low cost, exhibits good reproducibility, and allows the analysis of acetone in biological fluids. A calibration curve was obtained for acetone using its standard solutions in acetonitrile. Quantitative analysis of acetone in human blood was successfully carried out using this calibration graph. The applied method was validated in parameters of linearity, limit of detection and quantification, accuracy, and precision. We also present acetone as a useful tool for the HPLC-based metabolomic investigation of endogenous metabolism and quantitative clinical diagnostic analysis. PMID:27298750

  12. Artisanal alcohol production in Mayan Guatemala: chemical safety evaluation with special regard to acetaldehyde contamination.

    PubMed

    Kanteres, Fotis; Rehm, Jürgen; Lachenmeier, Dirk W

    2009-11-01

    There is a lack of knowledge regarding the composition, production, distribution, and consumption of artisanal alcohol, particularly in the developing world. In Nahualá, an indigenous Mayan municipality located in highland Guatemala, heavy alcohol consumption appears to have had a significant negative impact on health, a major role in cases of violence and domestic abuse, and a link to street habitation. Cuxa, an artisanally, as well as commercially produced sugarcane alcohol, is widely consumed by heavy drinkers in this community. Cuxa samples from all distribution points in the community were obtained and chemically analyzed for health-relevant constituents and contaminants including methanol, acetaldehyde, higher alcohols, and metals. From those, only acetaldehyde was confirmed to be present in unusually high levels (up to 126 g/hl of pure alcohol), particularly in samples that were produced clandestinely. Acetaldehyde has been evaluated as "possibly carcinogenic" and has also been identified as having significant human exposure in a recent risk assessment. This study explores the reasons for the elevated levels of acetaldehyde, through both sampling and analyses of raw and intermediary products of cuxa production, as well as interviews from producers of the clandestine alcohol. For further insight, we experimentally produced this alcohol in our laboratory, based on the directions provided by the producers, as well as materials from the town itself. Based on these data, the origin of the acetaldehyde contamination appears to be due to chemical changes induced during processing, with the major causative factors consisting of poor hygiene, aerobic working conditions, and inadequate yeast strains, compounded by flawed distillation methodology that neglects separation of the first fractions of the distillate. These results indicate a preventable public health concern for consumers, which can be overcome through education about good manufacturing practices, as well

  13. Heterogeneous Interactions of Acetaldehyde and Sulfuric Acid

    NASA Technical Reports Server (NTRS)

    Michelsen, R. R.; Ashbourn, S. F. M.; Iraci, L. T.

    2004-01-01

    The uptake of acetaldehyde [CH3CHO] by aqueous sulfuric acid has been studied via Knudsen cell experiments over ranges of temperature (210-250 K) and acid concentration (40-80 wt. %) representative of the upper troposphere. The Henry's law constants for acetaldehyde calculated from these data range from 6 x 10(exp 2) M/atm for 40 wt. % H2SO4 at 228 K to 2 x 10(exp 5) M/atm for 80 wt. % H2SO4 at 212 K. In some instances, acetaldehyde uptake exhibits apparent steady-state loss. The possible sources of this behavior, including polymerization, will be explored. Furthermore, the implications for heterogeneous reactions of aldehydes in sulfate aerosols in the upper troposphere will be discussed.

  14. Decomposition of acetaldehyde : experiment and detailed theory.

    SciTech Connect

    Gupte, K. S.; Kiefer, J. H.; Tranter, R. S.; Klippenstein, S. J.; Harding, L. B.; Chemistry; Univ. of Illinois at Chicago

    2007-01-01

    The classic pyrolytic decomposition of acetaldehyde has been examined to the higher temperatures used in combustion and also lower pressures with 85 laser-schlieren, shock-tube measurements of density gradient covering 40-500 torr and 1550-2400 K. This work is supplemented and modeled with a CASPT2 based variable reaction coordinate RRKM prediction of the dissociation kinetics. These RRKM predictions are then incorporated in good two-dimensional master equation fits of the strong falloff seen in the laser-schlieren experiments, and also that shown in some previous shock-tube results using UV absorption of the acetaldehyde as diagnostic. The laser-schlieren data provide not only unambiguous dissociation rates but also solid indications of the secondary chemistry. Modeling of the full density gradient profiles offers good estimates of rates for H-atom abstraction from both the acetaldehyde and the HCO radical, again at high temperatures.

  15. Ethylene oxide and acetaldehyde in hot cores

    NASA Astrophysics Data System (ADS)

    Occhiogrosso, A.; Vasyunin, A.; Herbst, E.; Viti, S.; Ward, M. D.; Price, S. D.; Brown, W. A.

    2014-04-01

    Context. Ethylene oxide (c-C2H4O), and its isomer acetaldehyde (CH3CHO), are important complex organic molecules because of their potential role in the formation of amino acids. The discovery of ethylene oxide in hot cores suggests the presence of ring-shaped molecules with more than 3 carbon atoms such as furan (c-C4H4O), to which ribose, the sugar found in DNA, is closely related. Aims: Despite the fact that acetaldehyde is ubiquitous in the interstellar medium, ethylene oxide has not yet been detected in cold sources. We aim to understand the chemistry of the formation and loss of ethylene oxide in hot and cold interstellar objects (i) by including in a revised gas-grain network some recent experimental results on grain surfaces and (ii) by comparison with the chemical behaviour of its isomer, acetaldehyde. Methods: We introduce a complete chemical network for ethylene oxide using a revised gas-grain chemical model. We test the code for the case of a hot core. The model allows us to predict the gaseous and solid ethylene oxide abundances during a cooling-down phase prior to star formation and during the subsequent warm-up phase. We can therefore predict at what temperatures ethylene oxide forms on grain surfaces and at what temperature it starts to desorb into the gas phase. Results: The model reproduces the observed gaseous abundances of ethylene oxide and acetaldehyde towards high-mass star-forming regions. In addition, our results show that ethylene oxide may be present in outer and cooler regions of hot cores where its isomer has already been detected. Our new results are compared with previous results, which focused on the formation of ethylene oxide only. Conclusions: Despite their different chemical structures, the chemistry of ethylene oxide is coupled to that of acetaldehyde, suggesting that acetaldehyde may be used as a tracer for ethylene oxide towards cold cores.

  16. A study of global atmospheric budget and distribution of acetone using global atmospheric model STOCHEM-CRI

    NASA Astrophysics Data System (ADS)

    Khan, M. A. H.; Cooke, M. C.; Utembe, S. R.; Archibald, A. T.; Maxwell, P.; Morris, W. C.; Xiao, P.; Derwent, R. G.; Jenkin, M. E.; Percival, C. J.; Walsh, R. C.; Young, T. D. S.; Simmonds, P. G.; Nickless, G.; O'Doherty, S.; Shallcross, D. E.

    2015-07-01

    The impact of including a more detailed VOC oxidation scheme (CRI v2-R5) with a multi-generational approach for simulating tropospheric acetone is investigated using a 3-D global model, STOCHEM-CRI. The CRI v2-R5 mechanism contains photochemical production of acetone from monoterpenes which account for 64% (46.8 Tg/yr) of the global acetone sources in STOCHEM-CRI. Both photolysis and oxidation by OH in the troposphere contributes equally (42%, each) and dry deposition contributes 16% of the atmospheric sinks of acetone. The tropospheric life-time and the global burden of acetone are found to be 18 days and 3.5 Tg, respectively, these values being close to those reported in the study of Jacob et al. (2002). A dataset of aircraft campaign measurements are used to evaluate the inclusion of acetone formation from monoterpenes in the CRI v2-R5 mechanism used in STOCHEM-CRI. The overall comparison between measurements and models show that the parameterised approach in STOCHEM-NAM (no acetone formation from monoterpenes) underpredicts the mixing ratios of acetone in the atmosphere. However, using a detailed monoterpene oxidation mechanism forming acetone has brought the STOCHEM-CRI into closer agreement with measurements with an improvement in the vertical simulation of acetone. The annual mean surface distribution of acetone simulated by the STOCHEM-CRI shows a peak over forested regions where there are large biogenic emissions and high levels of photochemical activity. Year-long observations of acetone and methanol at the Mace Head research station in Ireland are compared with the simulated acetone and methanol produced by the STOCHEM-CRI and found to produce good overall agreement between model and measurements. The seasonal variation of model and measured acetone levels at Mace Head, California, New Hampshire and Minnesota show peaks in summer and dips in winter, suggesting that photochemical production may have the strongest effect on its seasonal trend.

  17. Pharmacological treatments and strategies for reducing oral and intestinal acetaldehyde.

    PubMed

    Salaspuro, Ville

    2007-01-01

    Strong epidemiological, genetic and biochemical evidence indicates that local acetaldehyde exposure is a major factor behind gastrointestinal cancers especially associated with alcohol drinking and smoking. Thus, reducing the exposure to carcinogenic acetaldehyde either by decreasing the production or by eliminating acetaldehyde locally might offer a preventive strategy against acetaldehyde-induced gastrointestinal cancers. Thiol products, such as the amino acid cysteine, are known to be able to protect against acetaldehyde toxicity. Cysteine is able to bind acetaldehyde efficiently by forming a stable thiazolidine-carboxylic acid compound. Special cysteine preparations (such as lozenge and chewing gum) have already been developed to bind smoking and alcohol drinking derived acetaldehyde from the oral cavity. Most importantly, these type of drug formulations offer a novel method for intervention studies aimed to resolve the eventual role of acetaldehyde in the pathogenesis of upper digestive tract cancers. Acetaldehyde exposure could also be influenced by modifying the acetaldehyde producing microbiota. With regard to the upper digestive tract, acetaldehyde production from ingested ethanol could be significantly reduced by using an antiseptic mouthwash, chlorhexidine. In the large intestine acetaldehyde production could be markedly decreased either by reducing the Gram-negative microbes by ciprofloxacin antibiotic or by lowering the intraluminal pH by lactulose. PMID:17590993

  18. Deployment of a Fast-GCMS System to Measure C2 to C5 Carbonyls, Methanol and Ethanol Aboard Aircraft

    NASA Technical Reports Server (NTRS)

    Apel, Eric C.

    2004-01-01

    Through funding of this proposal, a fast response gas chromatograph/mass spectrometer (FGCMS) instrument to measure less than or equal to C4 carbonyl compounds and methanol was developed for the NASA GTE TRACE-P (Global Tropospheric Experiment, Transport And Chemical Evolution Over The Pacific) mission. The system consists of four major components: sample inlet, preconcentration system, gas chromatograph (GC), and detector. The preconcentration system is a custom-built cryogen-conservative system. The GC is a compact, custom-built unit that can be temperature programmed and rapidly cooled. Detection is accomplished with an Agilent Technologies 5973 mass spectrometer. The FGCMS instrument provides positive identification because the compounds are chromatographically separated and mass selected. During TRACE-P, a sample was analyzed every 5 minutes. The FGCMS limit of detection was between 5 and 75 pptv, depending on the compound. The entire instrument package is contained in a standard NASA instrument rack (106 cm x 61 cm x 135 cm), consumes less than 1200 watts and is fully automated with LabViEW 6i. Methods were developed or producing highly accurate gas phase standards for the target compounds and for testing the system in the presence of potential interferents. This report presents data on these tests and on the general overall performance of the system in the laboratory and aboard the DC-8 aircraft during the mission. Vertical profiles for acetaldehyde, methanol, acetone, propanal, methyl ethyl ketone, and butanal from FGCMS data collected over the entire mission are also presented.

  19. Transport and intracellular accumulation of acetaldehyde in Saccharomyces cerevisiae

    SciTech Connect

    Stanley, G.A.; Pamment, N.B. )

    1993-06-05

    The rate of acetaldehyde efflux from yeast cells and its intracellular concentration were studied in the light of recent suggestions that acetaldehyde inhibition may be an important factor in yeast ethanol fermentations. When the medium surrounding cells containing ethanol and acetaldehyde was suddenly diluted, the rate of efflux of acetaldehyde was slow relative to the rate of ethanol efflux, suggesting that acetaldehyde, unlike ethanol, may accumulate intracellularly. Intracellular acetaldehyde concentrations were measured during high cell density fermentations, using direct injection gas chromatography to avoid the need to concentrate or disrupt the cells. Intracellular acetaldehyde concentrations substantially exceeded the extracellular concentrations throughout fermentation and were generally much higher than the acetaldehyde concentrations normally recorded in the culture broth in ethanol fermentations. The technique used was sensitive to the time taken to cool and freeze the samples. Measured intracellular acetaldehyde concentrations fell rapidly as the time taken to freeze the suspensions was extended beyond 2 s. The results add weight to recent claims that acetaldehyde toxicity is responsible for some of the effects previously ascribed to ethanol in alcohol fermentations, especially Zymomonas fermentations. Further work is required to confirm the importance of acetaldehyde toxicity under other culture conditions.

  20. The Reactions of Acetone with the Surfaces of Uranium Dioxide Single Crystal and Thin Film

    SciTech Connect

    King,R.; Senanayake, S.; Chong, S.; Idriss, H.

    2007-01-01

    The reaction of acetone, as an example of a carbonyl compound, is studied over UO2 (1 1 1) single crystal and thin film surfaces. Over the stoichiometric single crystal surface, acetone is molecularly and weakly adsorbed with a computed activation energy for desorption in the range of 95-65 kJ/mol with pre-exponential factors between 1011 and 1013 s-1. On the contrary, acetone reacts very strongly on the O-defected single crystal and thin film surfaces. In addition to total decomposition evidence of aldolization and cyclization reactions were seen. The thin film of UO2 was studied by synchrotron light, providing high resolution photoelectron spectroscopy in the core level, and high sensitivity in the both the core and valence band regions. The U5f line was considerably enhanced at grazing angle when compared to that obtained at normal angle for the O-defected surface, showing that the surface is more reduced than the next layers. The U 4f lines indicated the presence of U cations in lower oxidation states than +4 for the O-defected surface. These lines were considerably attenuated upon adsorption of acetone, due to surface oxidation by C{double_bond}O bond dissociation. The reaction pathway for acetone on the O-defected surface is presented, and compared to that of the previously studied acetaldehyde molecule.

  1. Methanol production from fermentor off-gases

    NASA Astrophysics Data System (ADS)

    Dale, B. E.; Moreira, A. R.

    The off gases from an acetone butanol fermentation facility are composed mainly of CO2 and H2. Such a gas stream is an ideal candidate as a feed to a methanol synthesis plant utilizing modern technology recently developed and known as the CDH-methanol process. A detailed economic analysis for the incremental cost of a methanol synthesis plant utilizing the off gases from an acetone butanol fermentation indicates a profitable rate of return of 25 to 30% under the most likely production conditions. Bench scale studies at different fermentor mixing rates indicate that the volume of gases released during the fermentation is a strong function of the agitation rate and point to a potential interaction between the volume of H2 evolved and the levels of butanol present in the final fermented broth. Such interaction may require establishing optimum operating conditions for an integrated butanol fermentation methanol synthesis plant.

  2. 21 CFR 173.210 - Acetone.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acetone. 173.210 Section 173.210 Food and Drugs..., Lubricants, Release Agents and Related Substances § 173.210 Acetone. A tolerance of 30 parts per million is established for acetone in spice oleoresins when present therein as a residue from the extraction of spice....

  3. 21 CFR 173.210 - Acetone.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acetone. 173.210 Section 173.210 Food and Drugs..., Lubricants, Release Agents and Related Substances § 173.210 Acetone. A tolerance of 30 parts per million is established for acetone in spice oleoresins when present therein as a residue from the extraction of spice....

  4. Acetaldehyde inhibition of protein synthesis in isolated rat pancreatic acini

    SciTech Connect

    Majumdar, A.P.; Haiman, M.J.; Zylbert, B.A.; Billy, H.T.; Vesenka, G.D.; Geokas, M.C.

    1986-03-30

    Exposure of isolated dispersed pancreatic acini to increasing concentrations of ethanol (5 to 500 mM) or acetaldehyde (0.5 to 100 mM) produced a progressive inhibition of (3H)leucine incorporation into both cellular (those remaining in the cell) and secretory (those released into the medium) proteins. Whereas 500 mM ethanol caused 90-95% inhibition in the synthesis of cellular and secretory proteins, the concentration of acetaldehyde needed to produce a similar inhibition was found to be 50 mM. All subsequent experiments were performed with 12.5 mM acetaldehyde, a concentration that consistently inhibited acinar protein synthesis by about 50%. The acetaldehyde-mediated inhibition of acinar protein synthesis was partially normalized when this metabolite was removed after 30 min during a 90-min incubation period. In the presence of acetaldehyde, the secretion of 3H-pulse-labeled proteins, but not amylase, trypsinogen, or chymotrypsinogen, was greatly depressed. Acetaldehyde also caused a marked reduction in (3H)uridine incorporation into acinar RNA. The entry of (3H)uridine, (3H)leucine, and (3H)aminoisobutyric acid into isolated acini was found to be slightly (15-25%) decreased by acetaldehyde. It is concluded that acetaldehyde exerts a direct toxic effect on isolated dispersed pancreatic acini as evidenced by diminution of both protein and RNA synthesis and decreased secretion of the newly synthesized proteins. This inhibitory effect of acetaldehyde could be partially reversed.

  5. Prebiotic synthesis of imidazole-4-acetaldehyde and histidine

    NASA Technical Reports Server (NTRS)

    Shen, Chun; Oro, J.; Yang, Lily; Miller, Stanley L.

    1987-01-01

    The prebiotic synthesis of imidazole-4-acetaldehyde and imidazole-4-glycol from erythrose and formamidine has been demonstrated as well as the prebiotic synthesis of imidazole-4-ethanol and imidazole-4-glycol from erythrose, formaldehyde, and ammonia. The maximum yields of imidazole-4-acetaldehyde, imidazole-4-ethanol, and imidazole-4-glycol obtained in these reactions are 1.6, 5.4, and 6.8 percent respectively, based on the erythrose. Imidazole-4-acetaldehyde would have been converted to histidine on the primitive earth by a Strecker synthesis, and several prebiotic reactions would convert imidazole-4-glycol and imidazole-4-ethanol to imidazole-4-acetaldehyde.

  6. Experimental and modeling study of the oxidation of acetaldehyde in an atmospheric-pressure pulsed corona discharge

    NASA Astrophysics Data System (ADS)

    Klett, C.; Touchard, S.; Vega-Gonzalez, A.; Redolfi, M.; Bonnin, X.; Hassouni, K.; Duten, X.

    2012-08-01

    This paper reports the results obtained for the degradation of acetaldehyde by an atmospheric plasma corona discharge working in a pulsed regime. It was shown that a few hundred ppm of acetaldehyde diluted in a pure N2 gas flow can be removed up to 80% by a discharge fed with an electric power lower than 1 W. Under the same conditions, adding up to 5% of O2 allowed the removal of up to 95% of the initial acetaldehyde. The main identified end products were CO2, CO and methanol. A quasi-homogeneous zero-dimensional chemical model was developed to investigate the respective efficiency of the discharge and post-discharge periods in the global removal of the pollutant. The identified main pathways of acetaldehyde degradation were quenching of N2 metastable states during plasma pulses and oxidation by O and OH radicals during the post-discharge. This latter contribution increased with input power because of ozone accumulation in the gas mixture acting as an additional oxygen reservoir.

  7. Acetaldehyde and hexanaldehyde from cultured white cells

    PubMed Central

    Shin, Hye-Won; Umber, Brandon J; Meinardi, Simone; Leu, Szu-Yun; Zaldivar, Frank; Blake, Donald R; Cooper, Dan M

    2009-01-01

    Background Noninvasive detection of innate immune function such as the accumulation of neutrophils remains a challenge in many areas of clinical medicine. We hypothesized that granulocytes could generate volatile organic compounds. Methods To begin to test this, we developed a bioreactor and analytical GC-MS system to accurately identify and quantify gases in trace concentrations (parts per billion) emitted solely from cell/media culture. A human promyelocytic leukemia cell line, HL60, frequently used to assess neutrophil function, was grown in serum-free medium. Results HL60 cells released acetaldehyde and hexanaldehyde in a time-dependent manner. The mean ± SD concentration of acetaldehyde in the headspace above the cultured cells following 4-, 24- and 48-h incubation was 157 ± 13 ppbv, 490 ± 99 ppbv, 698 ± 87 ppbv. For hexanaldehyde these values were 1 ± 0.3 ppbv, 8 ± 2 ppbv, and 11 ± 2 ppbv. In addition, our experimental system permitted us to identify confounding trace gas contaminants such as styrene. Conclusion This study demonstrates that human immune cells known to mimic the function of innate immune cells, like neutrophils, produce volatile gases that can be measured in vitro in trace amounts. PMID:19402909

  8. Investigations into the chemistry of thermodynamically unstable species. The direct polymerization of vinyl alcohol, the enolic tautomer of acetaldehyde

    SciTech Connect

    Cederstav, A.K.; Novak, B.M. )

    1994-05-04

    Vinyl alcohol was generated through the hydrolysis of ketene methyl vinyl acetal I. In general, we have observed that room temperature addition of 0.9 mol equiv of I to a 1% (v/v) D[sub 2]O solution in acetone-d[sub 6], made such that the concentration of the overall solution is 10[sup [minus]4]M in DCl, yields 90% O-D vinyl alcohol which tautomerizes to acetaldehyde only very slowly at ambient temperature (k[sub t] [approx] 10[sup [minus]6] M/s, vide infra). The remaining 10% of I is converted into vinyl acetate, a side product in the hydrolysis, as well as to a small amount of acetaldehyde from tautomerization. Spectroscopic data for the vinyl alcohol were identical to previously reported data. Our observations suggest that the key to generating persistent vinyl alcohol solutions is to drive the system toward an anhydrous state through use of nearly stoichiometric amounts of water in the rapid hydrolysis step. By taking advantage of stabilizing electron donor-acceptor interactions, the free radical copolymerization of O-D vinyl alcohol and maleic anhydride proved successful. The polymerization was determined to be first order in both maleic anhydride and vinyl alcohol. Since the rate of polymerization is far greater than that of tautomerization under the conditions (ca. 30 times faster at [minus]10[degree]C), there is no significant increase in acetaldehyde concentration during polymerization. 20 refs., 1 fig.

  9. Biochemical basis of mitochondrial acetaldehyde dismutation in Saccharomyces cerevisiae.

    PubMed Central

    Thielen, J; Ciriacy, M

    1991-01-01

    As reported previously, Saccharomyces cerevisiae cells deficient in all four known genes coding for alcohol dehydrogenases (ADH1 through ADH4) produce considerable amounts of ethanol during aerobic growth on glucose. It has been suggested that ethanol production in such adh0 cells is a corollary of acetaldehyde dismutation in mitochondria. This could be substantiated further by showing that mitochondrial ethanol formation requires functional electron transport, while the proton gradient or oxidative phosphorylation does not interfere with reduction of acetaldehyde in isolated mitochondria. This acetaldehyde-reducing activity is different from classical alcohol dehydrogenases in that it is associated with the inner mitochondrial membrane and also is unable to carry out ethanol oxidation. The putative cofactor is NADH + H+ generated by a soluble, matrix-located aldehyde dehydrogenase upon acetaldehyde oxidation to acetate. This enzyme has been purified from mitochondria of glucose-grown cells. It is clearly different from the known mitochondrial aldehyde dehydrogenase, which is absent in glucose-grown cells. Both acetaldehyde-reducing and acetaldehyde-oxidizing activities are also present in the mitochondrial fraction of fermentation-proficient (ADH+) cells. Mitochondrial acetaldehyde dismutation may have some significance in the removal of surplus acetaldehyde and in the formation of acetate in mitochondria during aerobic glucose fermentation. Images FIG. 4 PMID:1938903

  10. 40 CFR 721.10036 - Acetaldehyde based polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acetaldehyde based polymer (generic... Specific Chemical Substances § 721.10036 Acetaldehyde based polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as...

  11. 40 CFR 721.10036 - Acetaldehyde based polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acetaldehyde based polymer (generic... Specific Chemical Substances § 721.10036 Acetaldehyde based polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as...

  12. 40 CFR 721.10036 - Acetaldehyde based polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acetaldehyde based polymer (generic... Specific Chemical Substances § 721.10036 Acetaldehyde based polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as...

  13. Catalytic oxidation of ethanol and acetaldehyde in supercritical carbon dioxide

    SciTech Connect

    Zhou, L.; Akgerman, A.

    1995-05-01

    Supercritical fluid (SCF) extraction has been receiving increasing attention for the remediation of environmental matrices contaminated with organic compounds. Catalytic oxidation of ethanol and acetaldehyde over a 4.45% Pt/TiO{sub 2} catalyst in supercritical carbon dioxide was studied in a 1/2 in. fixed bed reactor. Experiments for ethanol oxidation were performed at temperatures from 423 to 573 K and at a pressure of 8.96 MPa with a 5:1 molar ratio of oxygen to ethanol in the feed. Acetaldehyde oxidation was performed at temperatures from 423 to 548 K and at 8.96 MPa with an approximate 4.7:1 molar ratio of oxygen to acetaldehyde in the feed. In addition to CO{sub 2}, the complete oxidation product, acetaldehyde and trace amounts of CO were generated during ethanol oxidation, while a trace amount of CO was the only partial oxidation product during acetaldehyde oxidation. A parallel and consecutive reaction mechanism was postulated for ethanol oxidation, whereas dissociative adsorption of acetaldehyde on the catalyst surface and surface reaction rate control were postulated for acetaldehyde oxidation. The kinetic parameters in the rate expressions based on the mechanisms were obtained by fitting the experimental data with the results of the model calculation. The models were used to predict the conversion and yield for ethanol oxidation and acetaldehyde oxidation.

  14. 40 CFR 721.10036 - Acetaldehyde based polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acetaldehyde based polymer (generic... Specific Chemical Substances § 721.10036 Acetaldehyde based polymer (generic). (a) Chemical substance and... based polymer (PMN P-02-406) is subject to reporting under this section for the significant new...

  15. 40 CFR 721.10036 - Acetaldehyde based polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acetaldehyde based polymer (generic... Specific Chemical Substances § 721.10036 Acetaldehyde based polymer (generic). (a) Chemical substance and... based polymer (PMN P-02-406) is subject to reporting under this section for the significant new...

  16. Acetaldehyde photochemistry on TiO2(110)

    SciTech Connect

    Zehr, Robert T.; Henderson, Michael A.

    2008-07-01

    The ultraviolet (UV) photon induced decomposition of acetaldehyde absorbed on the oxidized retile TIO2(110) surface was studied with photon stimulated desorption (PSD) and theral programmed desorption (TPD). Acetaldehyde desorbs molecularly from TiO2(110) with minor decomposition channels yielding butene on the reduced TiO2 surface and acetate on the oxidized TiO2 surface. Acetaldehyde absorbed on oxidized TiO2(110) undergoes a facile thermal reaction to form a photoactive acetaldehyde-oxygen complex. UV irradiation of the acetaldehyde-oxygen complex resulting in the ejection of methyl radical into gas phase and conversion of the surface bound fragment to formate.

  17. Acetaldehyde Photochemistry on TiO2(110)

    SciTech Connect

    Zehr, Robert T.; Henderson, Michael A.

    2008-07-01

    The ultraviolet (UV) photon induced decomposition of acetaldehyde adsorbed on the oxidized rutile TiO2(110) surface was studied with photon stimulated desorption (PSD) and thermal programmed desorption (TPD). Acetaldehyde desorbs molecularly from TiO2(110) with minor decomposition channels yielding butene on the reduced TiO2 surface and acetate on the oxidized TiO2 surface. Acetaldehyde adsorbed on oxidized TiO2(110) undergoes a facile thermal reaction to form a photoactive acetaldehyde-oxygen complex. UV irradiation of the acetaldehyde-oxygen complex initiated photofragmentation of the complex resulting in the ejection of methyl radical into gas phase and conversion of the surface bound fragment to formate.

  18. Mechanism of acetaldehyde-induced deactivation of microbial lipases

    PubMed Central

    2011-01-01

    Background Microbial lipases represent the most important class of biocatalysts used for a wealth of applications in organic synthesis. An often applied reaction is the lipase-catalyzed transesterification of vinyl esters and alcohols resulting in the formation of acetaldehyde which is known to deactivate microbial lipases, presumably by structural changes caused by initial Schiff-base formation at solvent accessible lysine residues. Previous studies showed that several lipases were sensitive toward acetaldehyde deactivation whereas others were insensitive; however, a general explanation of the acetaldehyde-induced inactivation mechanism is missing. Results Based on five microbial lipases from Candida rugosa, Rhizopus oryzae, Pseudomonas fluorescens and Bacillus subtilis we demonstrate that the protonation state of lysine ε-amino groups is decisive for their sensitivity toward acetaldehyde. Analysis of the diverse modification products of Bacillus subtilis lipases in the presence of acetaldehyde revealed several stable products such as α,β-unsaturated polyenals, which result from base and/or amino acid catalyzed aldol condensation of acetaldehyde. Our studies indicate that these products induce the formation of stable Michael-adducts at solvent-accessible amino acids and thus lead to enzyme deactivation. Further, our results indicate Schiff-base formation with acetaldehyde to be involved in crosslinking of lipase molecules. Conclusions Differences in stability observed with various commercially available microbial lipases most probably result from different purification procedures carried out by the respective manufacturers. We observed that the pH of the buffer used prior to lyophilization of the enzyme sample is of utmost importance. The mechanism of acetaldehyde-induced deactivation of microbial lipases involves the generation of α,β-unsaturated polyenals from acetaldehyde which subsequently form stable Michael-adducts with the enzymes. Lyophilization of

  19. New insights in understanding plasma-catalysis reaction pathways: study of the catalytic ozonation of an acetaldehyde saturated Ag/TiO2/SiO2 catalyst

    NASA Astrophysics Data System (ADS)

    Sauce, Sonia; Vega-González, Arlette; Jia, Zixian; Touchard, Sylvain; Hassouni, Khaled; Kanaev, Andrei; Duten, Xavier

    2015-07-01

    This paper is a preliminary study intended to straighten out the role of reactive oxygen species in the activation mechanisms occurring in a plasma driven catalysis process for acetaldehyde decomposition. For this purpose, the interaction between the surface, the pollutant and one of the main oxidative species generated by non-thermal plasma, namely ozone, was studied. Acetaldehyde catalytic ozonation over a nanostructured Ag/TiO2/SiO2 catalyst is carried out at room temperature and atmospheric pressure, and followed by diffuse reflectance infrared fourier transform spectroscopy (DRIFTS). For this, the catalyst is firstly saturated with acetaldehyde. At the end of the saturation, acetaldehyde and crotonaldehyde, its condensation product, are identified as the major adsorbed species. In a second step, the surface ozonation is carried out and three additional intermediates are identified, namely, acetone, formic acid and acetic acid. Gaseous CO, CO2, methyl formate and methyl acetate are detected at the DRIFTS outlet, evidencing the partial mineralization of the adsorbed species. A global reaction scheme is proposed for explaining the formation of those adsorbed intermediates and gaseous products. This proposed heterogeneous ozone induced chemistry has to be taken into account when associating non-thermal plasma in air to a catalyst. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  20. Student Preparation of Acetone from 2-Propanol.

    ERIC Educational Resources Information Center

    Kauffman, J. M.; McKee, J. R.

    1982-01-01

    Background information, procedures, and materials needed are provided for an experiment in which acetone is produced from 2-propanol. The experiment does not use magnetic stirring, avoids the necessity for exhaustive extractions with ether, and produces a 60-percent yield of redistilled acetone within a two-and-one-half-hour laboratory period.…

  1. 40 CFR 80.56 - Measurement methods for formaldehyde and acetaldehyde.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and acetaldehyde. 80.56 Section 80.56 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Measurement methods for formaldehyde and acetaldehyde. (a) Formaldehyde and acetaldehyde will be measured by... acetaldehyde are used to determine the response, repeatability, and limit of quantitation of the HPLC...

  2. Lack of evidence for sustained blood acetaldehyde concentrations during alcohol detoxification.

    PubMed

    Nijm, W P; Borge, G F; Origitano, T; Teas, G; Goldfarb, C; Collins, M A

    1978-04-01

    Contrary to a published report, blood acetaldehyde concentrations become undetectable in patients 1--2 days following admission for alcohol detoxification. The persistently elevated blood acetaldehydes reported by others probably were due to artifactual formation during analysis. Nevertheless, our admission blood acetaldehyde concentrations are significant enough to support the contention that acetaldehyde has a cytotoxic role in alcoholic disease. PMID:663401

  3. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci

    PubMed Central

    Pavlova, Sylvia I.; Jin, Ling; Gasparovich, Stephen R.

    2013-01-01

    Ethanol consumption and poor oral hygiene are risk factors for oral and oesophageal cancers. Although oral streptococci have been found to produce excessive acetaldehyde from ethanol, little is known about the mechanism by which this carcinogen is produced. By screening 52 strains of diverse oral streptococcal species, we identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol. We then constructed gene deletion mutants in this strain and analysed them for alcohol and acetaldehyde dehydrogenases by zymograms. The results showed that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol and ethanol, respectively. Two additional dehydrogenases, S-AdhA and TdhA, were identified with specificities to the secondary alcohol 2-propanol and threonine, respectively, but not to ethanol. S. gordonii V2016 did not show a detectable acetaldehyde dehydrogenase even though its adhE gene encodes a putative bifunctional acetaldehyde/alcohol dehydrogenase. Mutants with adhE deletion showed greater tolerance to ethanol in comparison with the wild-type and mutant with adhA or adhB deletion, indicating that AdhE is the major alcohol dehydrogenase in S. gordonii. Analysis of 19 additional strains of S. gordonii, S. mitis, S. oralis, S. salivarius and S. sanguinis showed expressions of up to three alcohol dehydrogenases, but none showed detectable acetaldehyde dehydrogenase, except one strain that showed a novel ALDH. Therefore, expression of multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase may contribute to excessive production of acetaldehyde from ethanol by certain oral streptococci. PMID:23637459

  4. Acetaldehyde-induced cytotoxicity involves induction of spermine oxidase at the transcriptional level.

    PubMed

    Uemura, Takeshi; Tanaka, Yuka; Higashi, Kyohei; Miyamori, Daisuke; Takasaka, Tomokazu; Nagano, Tatsuo; Toida, Toshihiko; Yoshimoto, Kanji; Igarashi, Kazuei; Ikegaya, Hiroshi

    2013-08-01

    Ethanol consumption causes serious liver injury including cirrhosis and hepatocellular carcinoma. Ethanol is metabolized mainly in the liver to acetic acid through acetaldehyde. We investigated the effect of ethanol and acetaldehyde on polyamine metabolism since polyamines are essential factors for normal cellular functions. We found that acetaldehyde induced spermine oxidase (SMO) at the transcriptional level in HepG2 cells. The levels and activities of ornithine decarboxylase (ODC) and spermidine/spermine acetyltransferase (SSAT) were not affected by acetaldehyde. Spermidine content was increased and spermine content was decreased by acetaldehyde treatment. Knockdown of SMO expression using siRNA reduced acetaldehyde toxicity. Acetaldehyde exposure increased free acrolein levels. An increase of acrolein by acetaldehyde was SMO dependent. Our results indicate that cytotoxicity of acetaldehyde involves, at least in part, oxidation of spermine to spermidine by SMO, which is induced by acetaldehyde. PMID:23707493

  5. Direct solid-support sample loading for fast cataluminescence determination of acetone in human plasma.

    PubMed

    Yang, Ping; Lau, Choiwan; Liu, Xia; Lu, Jianzhong

    2007-11-15

    In the current manuscript we describe the development of a novel cataluminescence (CTL) sensor coupled with ionic liquids (ILs)-based headspace solid-phase microextraction (HS-SPME) technologies for the quantification of human plasma acetone levels associated with diabetic disease ex vivo. The unique properties of ILs, such as their nonvolatile and nonflammable nature, coupled with their high thermal stability allow ILs to be conveniently adopted as pseudosolid carriers for direct loading of acetone into a CTL sensor without matrix interference. Acetone from diabetic patient plasma and plasma samples spiked with acetone along with methanol, ethanol, and formaldehyde was conveniently and rapidly extracted and enriched in 3 microL of IL and then rapidly quantified by our CTL sensor. The presence of plasma alone or spiked plasma containing methanol, ethanol, or formaldehyde did not interfere with acetone measurements. HS-SPME-CTL provides higher enrichment efficiency than headspace single-drop microextraction-based CTL (HS-SDME-CTL) methods, possibly due to that the thin film formed in HS-SPME instead of the single IL drop in HS-SDME increases the exchange area for extracted acetone. The enrichment efficiency by HS-SPME-CTL was almost 80-fold higher than that with direct injection using the same volume of aqueous samples and more than 6-fold higher than that using HS-SDME-CTL. Considering that ILs can be easily prepared from inexpensive materials and tuned by the combination of different anions and cations for the extraction of specific analytes from various solvent media, this proposed technology raises an exciting possibility by employing HS-SPME-CTL for the fast determination of specific targets in many fields. PMID:17939643

  6. Selecting ethanol as a model organic solvent in radiation chemistry—I. Radiolysis of acetone-ethanol system

    NASA Astrophysics Data System (ADS)

    Haofang, Jin; Jilan, Wu; Xianming, Pan; Xujia, Zhang

    1996-04-01

    Radiolysis of acetone-ethanol solution [Zhang, Wu and Zhou (1994) Radiat. Phys. Chem.43, 335] has been further studied in this work. The dependences of G values of the final γ radiolytic products such as H 2, 2,3-butanediol and acetaldehyde on acetone concentrations in liquid ethanol were obtained. New information was provided that except the detected new product 2-methyl-2,3-butanedio (Zhang et al., 1994), another new final product isopropanol was also found and material balance between intermediates and major final products was obtained. In addition, a ratio of rate constants k(e s- + CH 3CHO)/ k(e s- + CH 3COCH 3) = 0.96 was calculated by computer simulation, which is in good agreement with the result obtained from pulse radiolysis experiments [Milinchuk and Tupikov (1989) Organic Radiation Chemistry Handbook].

  7. Atmospheric Vinyl Alcohol to Acetaldehyde Tautomerization Revisited.

    PubMed

    Peeters, Jozef; Nguyen, Vinh Son; Müller, Jean-François

    2015-10-15

    The atmospheric oxidation of vinyl alcohol (VA) produced by photoisomerization of acetaldehyde (AA) is thought to be a source of formic acid (FA). Nevertheless, a recent theoretical study predicted a high rate coefficient k1(298 K) of ≈10(-14) cm(3) molecule(-1) s(-1) for the FA-catalyzed tautomerization reaction 1 of VA back into AA, which suggests that FA buffers its own production from VA. However, the unusually high frequency factor implied by that study prompted us to reinvestigate reaction 1 . On the basis of a high-level ab initio potential energy profile, we first established that transition state theory is applicable, and derived a k1(298 K) of only ≈2 × 10(-20) cm(3) molecule(-1) s(-1), concluding that the reaction is negligible. Instead, we propose and rationalize another important VA sink: its uptake by aqueous aerosol and cloud droplets followed by fast liquid-phase tautomerization to AA; global modeling puts the average lifetime by this sink at a few hours, similar to oxidation by OH. PMID:26722769

  8. The combined oxidation of methanol and ethanol on silver catalysts

    SciTech Connect

    Kurina, L.N.; Gryaznov, V.M.; Gul yanova, S.G.; Plakidkin, A.A.; Vedernikov, V.I.

    1985-10-01

    The authors study the oxidation of methanol, ethanol, and mixtures of these alcohols on industrial silver-pumice and silver membrane catalysts as well as the adsorption of these alcohols on silver. The oxidation of the alcohol mixture on the industrial silver-pumice catalyst gives higher yields of both formaldehyde and acetaldehyde than in the oxidation of the alcohols taken individually. It is also shown that an increase in the rates of formaldehyde formation in the combined oxidation of methanol and ethanol was observed on the silver membrane catalyst.

  9. Photocatalyzed oxidation of ethanol and acetaldehyde in humidified air

    SciTech Connect

    Sauer, M.L.; Ollis, D.F.

    1996-02-01

    Photocatalysis is considered as a potential air treatment and purification technology. Photocatalyzed oxidation of ethanol and acetaldehyde in humidified air was carried out to establish a first complete kinetic model for a photocatalyzed multispecies network. Two photocatalysts were examined in a batch, recirculation reactor, near-UV illuminated TiO{sub 2} (anatase) coated (i) on the surface of a nonporous quartz glass plate and (ii) on a porous ceramic honeycomb monolith. The former contained only illuminated (active) surfaces, the latter consisted of substantial {open_quotes}dark{close_quotes} surfaces coated with a thin layer of illuminated (active) catalyst. Ethanol was photooxidized to acetaldehyde and formaldehyde intermediates, and eventually to carbon dioxide and water products. The catalyst and monolith surfaces adsorbed appreciable fractions of the trace ethanol, acetaldehyde, formaldehyde, carbon dioxide and water present. Ethanol, acetaldehyde, and carbon dioxide adsorption isotherms were measured on both catalysts; the formaldehyde adsorption isotherms were assumed identical to those of acetaldehyde. On the fully illuminated glass plate reactor, all four species were accounted for, and closure of a transient carbon mass balance was demonstrated. Completion of a transient carbon mass balance on the monolith reactor required inclusion of additional reaction intermediates (acetic and formic acids), which appear to reversibly accumulate on only the dark surfaces. The ethanol and acetaldehyde photocatalyzed oxidation kinetic networks were modeled using Langmuir-Hinshelwood rate forms combined with adsorption isotherms for reactant, intermediates, and product CO{sub 2}. For both the quartz plate and monolith catalysts, satisfactory kinetic models were developed to predict the entire time course of ethanol and acetaldehyde multicomponent batch conversions. 43 refs., 16 figs.

  10. Variability of ethanol and acetaldehyde concentrations in rainwater

    NASA Astrophysics Data System (ADS)

    Kieber, R. J.; Tatum, S.; Willey, J. D.; Avery, G. B.; Mead, R. N.

    2014-02-01

    Ethanol and acetaldehyde concentrations were measured in 52 rain events collected between January 25, 2011 and March 4, 2012 in Wilmington, North Carolina, USA. Ethanol concentrations ranged from 23 nM to 908 nM with a volume weighted average concentration of 192 ± 20 nM while acetaldehyde ranged from 23 nM to 909 nM with a volume weighted average concentration of 193 ± 25 nM. There was a great deal of variability in the abundance of ethanol and acetaldehyde between rain events driven primarily by temporal and air mass back trajectory influences. The ratio of ethanol to acetaldehyde was at a minimum during periods of peak solar intensity underscoring the importance of alcohol oxidation by a photochemically generated oxidant such as hydroxyl radical in the gas and/or aqueous phase. Ethanol and acetaldehyde concentrations were not strongly correlated with rain amount suggesting that gas-phase concentrations were not significantly depleted during the storm or that they were resupplied during the course of the rain event. The concentration of ethanol and acetaldehyde were correlated with nitrate and non-sea salt sulfate suggesting the importance of terrestrial and anthropogenic inputs at this location. Comparison of future ethanol and acetaldehyde concentrations in rainwater to the data presented in this study will help delineate potential consequences of these labile oxygenated volatile organic compounds (OVOCs) on the chemistry of the troposphere as the United States transitions to more ethanol blended fuels. Aqueous phase impacts of increasing ethanol concentrations will be particularly significant to the oxidizing capacity of atmospheric waters because of its reactivity with OH and HO2 radicals in solution. Increased rainwater concentrations could also have significant ramifications on receiving watersheds because of the biogeochemical lability of the alcohol.

  11. Biotransformation of ethanol to acetaldehyde by wild and mutant strains of methylotrophic yeast

    SciTech Connect

    Moroz, O.M.; Sibirnyi, A.A.; Ksheminskaya, G.P. |

    1995-05-01

    The conversion of ethanol to acetaldehyde by intact cells of wild and mutant strains of methylotrophic yeast Hansenula polymorpha was studied. It was established that mutations that lower the activity of aldehyde reductase and acetaldehyde dehydrogenase stimulate acetaldehyde accumulation. The highest accumulation of acetaldehyde was found in a mutant that possessed increased alcohol oxidase activity in growth on a medium with glucose. A decrease in formaldehyde dehydrogenase did not stimulate acetaldehyde accumulation. Bioconversion of ethanol to acetaldehyde was most effective at lowered temperatures due to marked suppression of catabolic alcohol oxidase inactivation, but not to the activity of this enzyme under indicated conditions. 27 refs., 4 figs., 3 tabs.

  12. Decarboxylation of Pyruvate to Acetaldehyde for Ethanol Production by Hyperthermophiles

    PubMed Central

    Eram, Mohammad S.; Ma, Kesen

    2013-01-01

    Pyruvate decarboxylase (PDC encoded by pdc) is a thiamine pyrophosphate (TPP)-containing enzyme responsible for the conversion of pyruvate to acetaldehyde in many mesophilic organisms. However, no pdc/PDC homolog has yet been found in fully sequenced genomes and proteomes of hyper/thermophiles. The only PDC activity reported in hyperthermophiles was a bifunctional, TPP- and CoA-dependent pyruvate ferredoxin oxidoreductase (POR)/PDC enzyme from the hyperthermophilic archaeon Pyrococcus furiosus. Another enzyme known to be involved in catalysis of acetaldehyde production from pyruvate is CoA-acetylating acetaldehyde dehydrogenase (AcDH encoded by mhpF and adhE). Pyruvate is oxidized into acetyl-CoA by either POR or pyruvate formate lyase (PFL), and AcDH catalyzes the reduction of acetyl-CoA to acetaldehyde in mesophilic organisms. AcDH is present in some mesophilic (such as clostridia) and thermophilic bacteria (e.g., Geobacillus and Thermoanaerobacter). However, no AcDH gene or protein homologs could be found in the released genomes and proteomes of hyperthermophiles. Moreover, no such activity was detectable from the cell-free extracts of different hyperthermophiles under different assay conditions. In conclusion, no commonly-known PDCs was found in hyperthermophiles. Instead of the commonly-known PDC, it appears that at least one multifunctional enzyme is responsible for catalyzing the non-oxidative decarboxylation of pyruvate to acetaldehyde in hyperthermophiles. PMID:24970182

  13. Kinetics of hydroperoxy radical reactions with acetone/HO2 adduct and with acetonylperoxy radical

    NASA Astrophysics Data System (ADS)

    Grieman, F. J.; VanDerGeest, K.; Newenhouse, E.; Watkins, K.; Noell, A. C.; Hui, A.; Sander, S. P.; Okumura, M.

    2013-12-01

    Reactions of hydroperoxy radical, HO2, with acetone and with acetonylperoxy radical, CH3C(O)CH2OO, may play an important role in the oxidation chemistry of the troposphere. Using a temperature-controlled slow-flow tube cell and laser flash photolysis of Cl2 to produce HO2 and CH3C(O)CH2OO from methanol and acetone, respectively, we studied the chemical kinetics involved over the temperature range of 215 to 298 K at 100 Torr. Rates of chemical reactions were determined by monitoring the HO2 concentration as a function of time by near-IR diode laser wavelength modulation spectroscopy. (See Fig.1.) The primary reactions are rapid (<100 μsec) reactions to form the adducts HO2-CH3OH and HO2-CH3C(O)CH3 followed by HO2 reactions with itself, the adducts (chaperone mechanisms), and acetonylperoxy radical. The equilibrium constants for adduct formation were determined in previous work.1,2 In this work, rate coefficients were determined for the acetone chaperone mechanism over the entire temperature range. (E.g., see Fig. 2.) The rate coefficients and energies obtained are very similar to those found for the methanol case.1 Rate coefficients for the CH3C(O)CH2OO/HO2 reaction were also determined over a smaller temperature range, extending the measured value beyond room temperature, and yielding an activation energy. 1. Christensen et al. J. Phys. Chem. A 2006, 110, 6948-6959. 2. Grieman et al. J. Phys. Chem. A 2011, 115, 10527-10538. Fig.1. HO2 decay for HO2/Acetone chemistry at T = 298 K. Fig.2. Determining rate coefficient (k") for HO2/acetone chaperone effect at T = 222.5 K.

  14. Inorganic acid-catalyzed tautomerization of vinyl alcohol to acetaldehyde

    NASA Astrophysics Data System (ADS)

    Karton, Amir

    2014-01-01

    The vinyl alcohol-acetaldehyde tautomerization reaction has recently received considerable attention as a potential route for the formation of organic acids in the troposphere (Andrews et al., 2012 [7]). We examine the catalytic effect of inorganic acids in the troposphere (e.g. HNO3, H2SO4 and HClO4) on the vinyl alcohol-acetaldehyde tautomerization reaction, by means high-level thermochemical procedures. We show that H2SO4 and HClO4 catalysts lead to near-zero reaction barrier heights for the vinyl alcohol → acetaldehyde reaction, and to low reaction barrier heights in the reverse direction (ΔH298‡=40.6 and 39.5 kJ mol, respectively).

  15. Gas phase acetaldehyde production in a continuous bioreactor

    SciTech Connect

    Hwang, Soon Ook . Dept. of Chemical Engineering); Trantolo, D.J. . Center for Biotechnology Engineering); Wise, D.L. . Dept. of Chemical Engineering Northeastern Univ., Boston, MA . Center for Biotechnology Engineering)

    1993-08-20

    The gas phase continuous production of acetaldehyde was studied with particular emphasis on the development of biocatalyst (alcohol oxidase on solid phase support materials) for a fixed bed reactor. Based on the experimental results in a batch bioreactor, the biocatalysts were prepared by immobilization of alcohol oxidase on Amberlite IRA-400, packed into a column, and the continuous acetaldehyde production in the gas phase by alcohol oxidase was performed. The effects of the reaction temperature, flow rates of gaseous stream, and ethanol vapor concentration on the performance of the continuous bioreactor were investigated.

  16. Overview of VOC emissions and chemistry from PTR-TOF-MS measurements during the SusKat-ABC campaign: high acetaldehyde, isoprene and isocyanic acid in wintertime air of the Kathmandu Valley

    NASA Astrophysics Data System (ADS)

    Sarkar, Chinmoy; Sinha, Vinayak; Kumar, Vinod; Rupakheti, Maheswar; Panday, Arnico; Mahata, Khadak S.; Rupakheti, Dipesh; Kathayat, Bhogendra; Lawrence, Mark G.

    2016-03-01

    The Kathmandu Valley in Nepal suffers from severe wintertime air pollution. Volatile organic compounds (VOCs) are key constituents of air pollution, though their specific role in the valley is poorly understood due to insufficient data. During the SusKat-ABC (Sustainable Atmosphere for the Kathmandu Valley-Atmospheric Brown Clouds) field campaign conducted in Nepal in the winter of 2012-2013, a comprehensive study was carried out to characterise the chemical composition of ambient Kathmandu air, including the determination of speciated VOCs, by deploying a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) - the first such deployment in South Asia. In the study, 71 ion peaks (for which measured ambient concentrations exceeded the 2σ detection limit) were detected in the PTR-TOF-MS mass scan data, highlighting the chemical complexity of ambient air in the valley. Of the 71 species, 37 were found to have campaign average concentrations greater than 200 ppt and were identified based on their spectral characteristics, ambient diel profiles and correlation with specific emission tracers as a result of the high mass resolution (m / Δm > 4200) and temporal resolution (1 min) of the PTR-TOF-MS. The concentration ranking in the average VOC mixing ratios during our wintertime deployment was acetaldehyde (8.8 ppb) > methanol (7.4 ppb) > acetone + propanal (4.2 ppb) > benzene (2.7 ppb) > toluene (1.5 ppb) > isoprene (1.1 ppb) > acetonitrile (1.1 ppb) > C8-aromatics ( ˜ 1 ppb) > furan ( ˜ 0.5 ppb) > C9-aromatics (0.4 ppb). Distinct diel profiles were observed for the nominal isobaric compounds isoprene (m / z = 69.070) and furan (m / z = 69.033). Comparison with wintertime measurements from several locations elsewhere in the world showed mixing ratios of acetaldehyde ( ˜ 9 ppb), acetonitrile ( ˜ 1 ppb) and isoprene ( ˜ 1 ppb) to be among the highest reported to date. Two "new" ambient compounds, namely formamide (m / z = 46.029) and acetamide (m / z

  17. Overview of VOC emissions and chemistry from PTR-TOF-MS measurements during the SusKat-ABC campaign: high acetaldehyde, isoprene and isocyanic acid in wintertime air of the Kathmandu Valley

    NASA Astrophysics Data System (ADS)

    Sarkar, C.; Sinha, V.; Kumar, V.; Rupakheti, M.; Panday, A.; Mahata, K. S.; Rupakheti, D.; Kathayat, B.; Lawrence, M. G.

    2015-09-01

    The Kathmandu Valley in Nepal suffers from severe wintertime air pollution. Volatile organic compounds (VOCs) are key constituents of air pollution, though their specific role in the Valley is poorly understood due to insufficient data. During the SusKat-ABC (Sustainable Atmosphere for the Kathmandu Valley-Atmospheric Brown Clouds) field campaign conducted in Nepal in the winter of 2012-2013, a comprehensive study was carried out to characterize the chemical composition of ambient Kathmandu air, including the determination of speciated VOCs by deploying a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-TOF-MS)-the first such deployment in South Asia. 71 ion peaks (for which measured ambient concentrations exceeded the 2 σ detection limit) were detected in the PTR-TOF-MS mass scan data, highlighting the chemical complexity of ambient air in the Valley. Of the 71 species, 37 were found to have campaign average concentrations greater than 200 ppt and were identified based on their spectral characteristics, ambient diel profiles and correlation with specific emission tracers as a result of the high mass resolution (m/Δm > 4200) and temporal resolution (1 min) of the PTR-TOF-MS. The highest average VOC mixing ratios during the measurement period were (in rank order): acetaldehyde (8.8 ppb), methanol (7.4 ppb), acetone (4.2 ppb), benzene (2.7 ppb), toluene (1.5 ppb), isoprene (1.1 ppb), acetonitrile (1.1 ppb), C8-aromatics (~ 1 ppb), furan (~ 0.5 ppb), and C9-aromatics (0.4 ppb). Distinct diel profiles were observed for the nominal isobaric compounds isoprene (m/z = 69.070) and furan (m/z = 69.033). Comparison with wintertime measurements from several locations elsewhere in the world showed mixing ratios of acetaldehyde (~ 9 ppb), acetonitrile (~ 1 ppb) and isoprene (~ 1 ppb) to be among the highest reported till date. Two "new" ambient compounds namely, formamide (m/z = 46.029) and acetamide (m/z = 60.051), which can photochemically produce isocyanic

  18. Bacterial degradation of acetone in an outdoor model stream

    USGS Publications Warehouse

    Rathbun, R.E.; Stephens, D.W.; Tai, D.Y.

    1993-01-01

    Diurnal variations of the acetone concentration in an outdoor model stream were measured with and without a nitrate supplement to determine if the nitrate supplement would stimulate bacterial degradation of the acetone. Acetone loss coefficients were computed from the diurnal data using a fitting procedure based on a Lagrangian particle model. The coefficients indicated that bacterial degradation of the acetone was occurring in the downstream part of the stream during the nitrate addition. However, the acetone concentrations stabilized at values considerably above the limit of detection for acetone determination, in contrast to laboratory respirometer studies where the acetone concentration decreased rapidly to less than the detection limit, once bacterial acclimation to the acetone had occurred. One possible explanation for the difference in behavior was the limited 6-hour residence time of the acetone in the model stream.

  19. [A gas chromatographic method for determining acetaldehyde in cadaver blood].

    PubMed

    Savich, V I; Valladares, Kh A; Gusakov, Iu A; Skachko, Z M

    1990-01-01

    Gas-chromatographic method of acetaldehyde detection in blood of subjects who died of alcoholic intoxication is suggested. Method is simple, does not require additional expenses, can be readily used in medicolegal practice and in difficult cases it may help the expert to make an objective conclusion on the cause of death. PMID:2087747

  20. BIOGENIC SOURCES FOR FORMALDEHYDE AND ACETALDEHYDE DURING SUMMER MONTHS

    EPA Science Inventory

    Photochemical modeling estimated contributions to ambient concentrations of formaldehyde and acetaldehyde from biogenic emissions over the continental United States during January 2001 (Eos Trans. AGU, 83(47), Fall Meet. Suppl., Abstract A52B-0117). Results showed that maximum co...

  1. 21 CFR 173.210 - Acetone.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acetone. 173.210 Section 173.210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Solvents, Lubricants, Release Agents and...

  2. 21 CFR 172.802 - Acetone peroxides.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... proportions of higher polymers, manufactured by reaction of hydrogen peroxide and acetone. (b) The additive may be mixed with an edible carrier to give a concentration of: (1) 3 grams to 10 grams of hydrogen...; or (2) approximately 0.75 gram of hydrogen peroxide equivalent per 100 grams of the additive,...

  3. 21 CFR 172.802 - Acetone peroxides.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... acetone peroxide, with minor proportions of higher polymers, manufactured by reaction of hydrogen peroxide... grams to 10 grams of hydrogen peroxide equivalent per 100 grams of the additive, plus carrier, for use in flour maturing and bleaching; or (2) approximately 0.75 gram of hydrogen peroxide equivalent...

  4. 21 CFR 172.802 - Acetone peroxides.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... acetone peroxide, with minor proportions of higher polymers, manufactured by reaction of hydrogen peroxide... grams to 10 grams of hydrogen peroxide equivalent per 100 grams of the additive, plus carrier, for use in flour maturing and bleaching; or (2) approximately 0.75 gram of hydrogen peroxide equivalent...

  5. 21 CFR 172.802 - Acetone peroxides.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... acetone peroxide, with minor proportions of higher polymers, manufactured by reaction of hydrogen peroxide... grams to 10 grams of hydrogen peroxide equivalent per 100 grams of the additive, plus carrier, for use in flour maturing and bleaching; or (2) approximately 0.75 gram of hydrogen peroxide equivalent...

  6. 21 CFR 172.802 - Acetone peroxides.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... acetone peroxide, with minor proportions of higher polymers, manufactured by reaction of hydrogen peroxide... grams to 10 grams of hydrogen peroxide equivalent per 100 grams of the additive, plus carrier, for use in flour maturing and bleaching; or (2) approximately 0.75 gram of hydrogen peroxide equivalent...

  7. Aromatic Amines Exert Contrasting Effects on the Anticoagulant Effect of Acetaldehyde upon APTT

    PubMed Central

    Hall, La'Teese; Murrey, Sarah J.; Brecher, Arthur S.

    2014-01-01

    The pharmacological effects of amphetamine, procaine, procainamide, DOPA, isoproterenol, and atenolol upon activated partial thromboplastin time in the absence and presence of acetaldehyde have been investigated. In the absence of acetaldehyde, amphetamine and isoproterenol exhibit a procoagulant effect upon activated partial thromboplastin time, whereas atenolol and procaine display anticoagulant effects upon activated partial thromboplastin time. DOPA and procainamide do not alter activated partial thromboplastin time. Premixtures of procaine with acetaldehyde produce an additive anticoagulant effect on activated partial thromboplastin time, suggesting independent action of these compounds upon clotting factors. Premixtures of amphetamine with acetaldehyde, as well as atenolol with acetaldehyde, generate a detoxication of the anticoagulant effect of acetaldehyde upon activated partial thromboplastin time. A similar statistically significant decrease in activated partial thromboplastin time is seen when procainamide is premixed with acetaldehyde for 20 minutes at room temperature. Premixtures of DOPA and isoproterenol with acetaldehyde do not affect an alteration in activated partial thromboplastin time relative to acetaldehyde alone. Hence, a selective interaction of atenolol, procaine, and amphetamine with acetaldehyde to produce detoxication of the acetaldehyde is suggested, undoubtedly due to the presence of amino, hydroxyl, or amide groups in these drugs. PMID:25548568

  8. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is...

  9. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is...

  10. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is...

  11. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is...

  12. 46 CFR 153.1035 - Acetone cyanohydrin or lactonitrile solutions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Acetone cyanohydrin or lactonitrile solutions. 153.1035... Special Cargo Procedures § 153.1035 Acetone cyanohydrin or lactonitrile solutions. No person may operate a tankship carrying a cargo of acetone cyanohydrin or lactonitrile solutions, unless that cargo is...

  13. [Abilities of acetaldehyde removal in different water-treating techniques].

    PubMed

    Zhang, Chun-Lei; Wang, Dan; Wang, Dong-Sheng; Chen, Chao; Fan, Kang-Ping

    2011-03-01

    The effect of acetaldehyde removal by several kinds of water-treating technologies is experienced in laboratory and the results reveal that traditional water-treating processes have hardly any useful results and the absorption of GAC does no better either for its efficiency depending on the GAC service time greatly and with a very short leakage time. However, the micro-biological degradation process in the BAC filter can consume more than 95% acetaldehyde in 13 minutes when the biomass has been fully acclimatized. The acclimation process usually lasts 4-30 h under field conditions depending on the stabilization and maturity of the original biomass on the carbon, but can be shortened remarkably by means of inhibiting the activity of existing biomass or artificially inoculating acclimatized microbe. PMID:21634164

  14. Mesoporous Silica Nanoparticle-Stabilized and Manganese-Modified Rhodium Nanoparticles as Catalysts for Highly Selective Synthesis of Ethanol and Acetaldehyde from Syngas

    SciTech Connect

    Huang, Yulin; Deng, Weihua; Guo, Enruo; Chung, Po-Wen; Chen, Senniang; Trewyn, Brian; Brown, Robert; Lin, Victor

    2012-03-30

    Well-defined and monodispersed rhodium nanoparticles as small as approximately 2 nm were encapsulated in situ and stabilized in a mesoporous silica nanoparticle (MSN) framework during the synthesis of the mesoporous material. Although both the activity and selectivity of MSN-encapsulated rhodium nanoparticles in CO hydrogenation could be improved by the addition of manganese oxide as expected, the carbon selectivity for C2 oxygenates (including ethanol and acetaldehyde) was unprecedentedly high at 74.5 % with a very small amount of methanol produced if rhodium nanoparticles were modified by manganese oxide with very close interaction.

  15. Formaldehyde and acetaldehyde emissions from residential wood combustion in Portugal

    NASA Astrophysics Data System (ADS)

    Cerqueira, Mário; Gomes, Luís; Tarelho, Luís; Pio, Casimiro

    2013-06-01

    A series of experiments were conducted to characterize formaldehyde and acetaldehyde emissions from residential combustion of common wood species growing in Portugal. Five types of wood were investigated: maritime pine (Pinus pinaster), eucalyptus (Eucalyptus globulus), cork oak (Quercus suber), holm oak (Quercus rotundifolia) and pyrenean oak (Quercus pyrenaica). Laboratory experiments were performed with a typical wood stove used for domestic heating in Portugal and operating under realistic home conditions. Aldehydes were sampled from diluted combustion flue gas using silica cartridges coated with 2,4-dinitrophenylhydrazine and analyzed by high performance liquid chromatography with diode array detection. The average formaldehyde to acetaldehyde concentration ratio (molar basis) in the stove flue gas was in the range of 2.1-2.9. Among the tested wood types, pyrenean oak produced the highest emissions for both formaldehyde and acetaldehyde: 1772 ± 649 and 1110 ± 454 mg kg-1 biomass burned (dry basis), respectively. By contrast, maritime pine produced the lowest emissions: 653 ± 151 and 371 ± 162 mg kg-1 biomass (dry basis) burned, respectively. Aldehydes were sampled separately during distinct periods of the holm oak wood combustion cycles. Significant variations in the flue gas concentrations were found, with higher values measured during the devolatilization stage than in the flaming and smoldering stages.

  16. Marine Vibrio Species Produce the Volatile Organic Compound Acetone

    PubMed Central

    Nemecek-Marshall, M.; Wojciechowski, C.; Kuzma, J.; Silver, G. M.; Fall, R.

    1995-01-01

    While screening aerobic, heterotrophic marine bacteria for production of volatile organic compounds, we found that a group of isolates produced substantial amounts of acetone. Acetone production was confirmed by gas chromatography, gas chromatography-mass spectrometry, and high-performance liquid chromatography. The major acetone producers were identified as nonclinical Vibrio species. Acetone production was maximal in the stationary phase of growth and was stimulated by addition of l-leucine but not the other common amino acids, suggesting that leucine degradation leads to acetone formation. Acetone production by marine vibrios may contribute to the dissolved organic carbon associated with phytoplankton, and some of the acetone produced may be volatilized to the atmosphere. PMID:16534920

  17. Interaction of Trace gas Species of Atmospheric Interest With ice: Measurement of the Adsorption Enthalpy of Acetone on ice

    NASA Astrophysics Data System (ADS)

    Bartels-Rausch, T.; Guimbaud, C.; Gaggeler, H.; Ammann, M.

    2002-12-01

    adsorption of nitrogen oxides on crystalline ice, Atmos. Chem. Phys. Discuss., 2, 431-468, 2002. Domine, F., L. Hanot, Adsorption isotherms of acetone on ice between 193 and 213K, Geophys. Res. Lett., in press, 2002. Jaegle, L., D.J. Jacob, W.H. Brune, and P.O. Wennberg, Chemistry of HOX radicals in the upper troposphere, Atmos. Environ., 35, 469-489, 2001. Winkler, A.K., N.S. Holmes, J.N. Crowley, Interaction of methanol, acetone, and formaldehyde with ice surfaces between 198 and 223 K, Submission to Phys. Chem. Chem. Phys., 2002.

  18. On the Reaction Mechanism of Acetaldehyde Decomposition on Mo(110)

    SciTech Connect

    Mei, Donghai; Karim, Ayman M.; Wang, Yong

    2012-02-16

    The strong Mo-O bond strength provides promising reactivity of Mo-based catalysts for the deoxygenation of biomass-derived oxygenates. Combining the novel dimer saddle point searching method with periodic spin-polarized density functional theory calculations, we investigated the reaction pathways of a acetaldehyde decomposition on the clean Mo(110) surface. Two reaction pathways were identified, a selective deoxygenation and a nonselective fragmentation pathways. We found that acetaldehyde preferentially adsorbs at the pseudo 3-fold hollow site in the η2(C,O) configuration on Mo(110). Among four possible bond (β-C-H, γ-C-H, C-O and C-C) cleavages, the initial decomposition of the adsorbed acetaldehyde produces either ethylidene via the C-O bond scission or acetyl via the β-C-H bond scission while the C-C and the γ-C-H bond cleavages of acetaldehyde leading to the formation of methyl (and formyl) and formylmethyl are unlikely. Further dehydrogenations of ethylidene into either ethylidyne or vinyl are competing and very facile with low activation barriers of 0.24 and 0.31 eV, respectively. Concurrently, the formed acetyl would deoxygenate into ethylidyne via the C-O cleavage rather than breaking the C-C or the C-H bonds. The selective deoxygenation of acetaldehyde forming ethylene is inhibited by relatively weaker hydrogenation capability of the Mo(110) surface. Instead, the nonselective pathway via vinyl and vinylidene dehydrogenations to ethynyl as the final hydrocarbon fragment is kinetically favorable. On the other hand, the strong interaction between ethylene and the Mo(110) surface also leads to ethylene decomposition instead of desorption into the gas phase. This work was financially supported by the National Advanced Biofuels Consortium (NABC). Computing time was granted by a user project (emsl42292) at the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). This work was financially supported

  19. Effect of acetaldehyde on Saccharomyces cerevisiae and Zymomonas mobilis subjected to environmental shocks

    SciTech Connect

    Stanley, G.A.; Hobley, T.J.; Pamment, N.B.

    1997-01-05

    The lag phase of Saccharomyces cerevisiae subjected to a step increase in temperature or ethanol concentration was reduced by as much as 60% when acetaldehyde was added to the medium at concentrations less than 0.1 g/L. Maximum specific growth rates were also substantially increased. Even greater proportional reductions in lag time due to acetaldehyde addition were observed for ethanol-shocked cultures of Zymomonas mobilis. Acetaldehyde had no effect on S. cerevisiae cultures started from stationary phase inocula in the absence of environmental shock and its lag-reducing effects were greater in complex medium than in a defined synthetic medium. Acetaldehyde reacted strongly with the ingredients of complex culture media. It is proposed that the effect of added acetaldehyde may be to compensate for the inability of cells to maintain transmembrane acetaldehyde gradients following an environmental shock.

  20. Adsorption and Reaction of Acetaldehyde over CeO(X)(111) Thin Films

    SciTech Connect

    Chen, Tsung-Liang; Mahurin, Shannon Mark

    2011-01-01

    This study reports the interaction of acetaldehyde with well-ordered CeO{sub X}(111) thin film surfaces. The fully oxidized CeO{sub 2}(111) surface shows a weak interaction with acetaldehyde with the sole desorption product (TPD) being the parent molecule at 210 K. The chemisorbed molecule binds to the surface as the {eta}{sub 1}-acetaldehyde species rather than through a bridge-bonded dioxy configuration. Acetaldehyde chemisorbs strongly on reduced CeO{sub 2-X}(111) with nonrecombinative and recombinative acetaldehyde desorbing at 405 and 550-600 K, respectively. Deoxygenation and dehydration also occur, producing ethylene and acetylene at 580 and 620 K, respectively. Acetaldehyde initially adsorbs in the {eta}{sub 1} configuration and then converts to a carbanion species with both C=C and C=O bond character above 300 K.

  1. Adsorption and Reaction of Acetaldehyde over CeOx(111) Thin Films

    SciTech Connect

    T Chen; D Mullins

    2011-12-31

    This study reports the interaction of acetaldehyde with well-ordered CeO{sub X}(111) thin film surfaces. The fully oxidized CeO{sub 2}(111) surface shows a weak interaction with acetaldehyde with the sole desorption product (TPD) being the parent molecule at 210 K. The chemisorbed molecule binds to the surface as the {eta}{sub 1}-acetaldehyde species rather than through a bridge-bonded dioxy configuration. Acetaldehyde chemisorbs strongly on reduced CeO{sub 2-X}(111) with nonrecombinative and recombinative acetaldehyde desorbing at 405 and 550-600 K, respectively. Deoxygenation and dehydration also occur, producing ethylene and acetylene at 580 and 620 K, respectively. Acetaldehyde initially adsorbs in the {eta}{sub 1} configuration and then converts to a carbanion species with both C {double_bond} C and C {double_bond} O bond character above 300 K.

  2. Divergent pathways of acetaldehyde and ethanol decarbonylation on the Rh(111) surface

    SciTech Connect

    Houtman, C.J.; Barteau, M.A. )

    1991-08-01

    The decomposition reactions of acetaldehyde and ethanol on the Rh(111) surface were compared in temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) experiments. The decarbonylation of acetaldehyde produced methane at 267 K in TPD. For acetaldehyde coverages less than 0.05 monolayer, no methane was desorbed, but for a coverage that saturated the first layer, methane was produced with 50% selectivity. Coadsorbing deuterium with a low coverage of acetaldehyde resulted in the enhancement of methane production. This result indicates that the selectivity to methane was partially controlled by the availability of hydrogen atoms on the surface required to hydrogenate the hydrocarbon species produced by acetaldehyde decarbonylation. Monodeuterated methane was the primary methane product observed after these coadsorption experiments. Thus it was concluded that acetaldehyde decarbonylates via a methyl migration mechanism on the Rh(111) surface. Decarbonylation of ethanol did not produce methane. The absence of methane production indicated that the decomposition of ethanol on the Rh(111) surface did not proceed via dehydrogenation to adsorbed acetaldehyde, but instead, ethanol appeared to dehydrogenate by methyl hydrogen abstraction resulting in the formation of an oxametallacycle. Since this proposed intermediate rapidly dehydrogenated to carbon monoxide and surface carbon, it was difficult to characterize spectroscopically. The existence of an ethanol decomposition pathway that does not include acetaldehyde intermediates indicates that ethanol formation on supported Rh catalysts may not be the result of acetaldehyde hydrogenation.

  3. Acetone-butanol Fermentation of Marine Macroalgae

    SciTech Connect

    Huesemann, Michael H.; Kuo, Li-Jung; Urquhart, Lindsay A.; Gill, Gary A.; Roesijadi, Guritno

    2012-03-01

    Mannitol and laminarin, which are present at high concentrations in the brown macroalga Saccharina spp., a type of kelp, are potential biochemical feedstocks for butanol production. To test their bioconversion potential, aqueous extracts of the kelp Saccharina spp., mannitol, and glucose (a product of laminarin hydrolysis) were subjected to acetone-butanol fermentation by Clostridium acetobutylicum (ATCC 824). Both mannitol and glucose were readily fermented. Mixed substrate fermentations with glucose and mannitol resulted in diauxic growth of C. acetobutylicum with glucose depletion preceding mannitol utilization. Fermentation of kelp extract exhibited triauxic growth, with an order of utilization of free glucose, mannitol, and bound glucose, presumably laminarin. The lag in laminarin utilization reflected the need for enzymatic hydrolysis of this polysaccharide into fermentable sugars. The butanol and total solvent yields were 0.12 g/g and 0.16 g/g, respectively, indicating that significant improvements are still needed to make industrial-scale acetone-butanol fermentations of seaweed economically feasible.

  4. Economic evaluation of the acetone - butanol fermentation

    SciTech Connect

    Lenz, T.G.; Morevra, A.R.

    1980-12-01

    The economics of producing acetone and 1-butanol via fermentation have been examined for a 45 X 10 to the power of 6 kg of solvents/year plant. For a molasses substrate, the total annual production costs were about $24.4 million vs. a total annual income of $36 million, with about $20 million total required capital. Molasses cost of about $24.4 million/year was critical to these economics. Liquid whey was next evaluated as an alternative feed. Whey feed saved about $11 million annually in feed costs and yielded about $7 million net additional annual revenues from protein sale. These primary differences gave an annual gross profit of about $15 million for the whey case and resulted in a discounted cash flow rate of return of 29%. It is concluded that waste based acetone-butanol production via fermentation deserves further attention in view of the attractive whey-based economics and the excellent potential of butanol as a fuel extender, especially for diesohol blending.

  5. Enzymology of acetone-butanol-isopropanol formation

    SciTech Connect

    Chen, Jiann-Shin.

    1992-01-01

    The long-term goal of the project is to understand the fundamental properties of biological solvent production. Our approach is to elucidate first the molecular properties of solvent-producing enzymes and then to apply to information gained from the enzymological study to investigate control mechanisms for the solvent-producing pathways and the expression of solvent-production genes. Our research primarily involves two strains of Clostridium beijerinckii: C. Beijerinckii NRRL B593 which produces isopropanol in addition to acetone, butanol, and ethanol, and C. beijerinckii NRRL B592 which produces acetone, butanol and ethanol, but not isopropanol. In more recent studies, we also included another solvent-producing organism, Bacillus macerans. Objectives for the reporting period were: to characterize the distinct types of alcohol dehydrogenase; to purify and characterize acetoacetyl-CoA-reacting enzymes; and to clone and sequence the gene encoding the primary/secondary alcohol dehydrogenase of C beijerinckii NRRL B593 and to search for the promoter region for solvent-production genes.

  6. Excellent acetone sensing properties of porous ZnO

    NASA Astrophysics Data System (ADS)

    Liu, Chang-Bai; Liu, Xing-Yi; Wang, Sheng-Lei

    2015-01-01

    Porous ZnO was obtained by hydrothermal method. The results of scanning electron microscope revealed the porous structure in the as-prepared materials. The acetone sensing test results of porous ZnO show that porous ZnO possesses excellent acetone gas sensing properties. The response is 35.5 at the optimum operating temperature of 320 °C to 100 ppm acetone. The response and recovery times to 50 ppm acetone are 2 s and 8 s, respectively. The lowest detecting limit to acetone is 0.25 ppm, and the response value is 3.8. Moreover, the sensors also exhibit excellent selectivity and long-time stability to acetone. Projected supported by the Project of Challenge Cup for College Students, China (Grant No. 450060497053).

  7. Apparatus and method for monitoring breath acetone and diabetic diagnostics

    DOEpatents

    Duan, Yixiang; Cao, Wenqing

    2008-08-26

    An apparatus and method for monitoring diabetes through breath acetone detection and quantitation employs a microplasma source in combination with a spectrometer. The microplasma source provides sufficient energy to produce excited acetone fragments from the breath gas that emit light. The emitted light is sent to the spectrometer, which generates an emission spectrum that is used to detect and quantify acetone in the breath gas.

  8. Acetaldehyde stimulates monocyte adhesion in a P-selectin- and TNFα-dependent manner

    PubMed Central

    Redmond, Eileen M.; Morrow, David; Kundimi, Sreenath; Miller-Graziano, Carol L.; Cullen, John P.

    2016-01-01

    Objective The aim of this study was to determine the effects of acetaldehyde on various steps of the monocyte recruitment cascade. Methods Human umbilical venous endothelial cells (HUVEC), primary blood monocytes (PBM) and THP-1 monocytes, were treated with acetaldehyde (0.1–0 μM) for 6 h. Monocyte adherence experiments were performed using 2′,7′-bis(2-carboxyethyl)-5,6-carboxyfluorescein-acetoxymethylester labeled PBM or 3H-thymidine labeled THP-1 cells. HUVEC TNFα mRNA and protein levels were determined by quantitative real-time PCR and immunoassay, respectively, and HUVEC P-selectin and monocyte CCR2 expression were determined by FACS analysis. Results Acetaldehyde dose-dependently increased the number of CCR2 positive THP-1 monocytes, with a maximal increase of ~50% observed in the presence of 10 μM acetaldehyde. There was a significant increase in both the number of P-selectin positive cells and P-selectin receptor density when HUVEC were incubated with acetaldehyde. HUVEC TNFα mRNA expression and secretion were enhanced by acetaldehyde. Moreover, acetaldehyde increased THP-1 and PBM adhesion to HUVEC. Inhibition of P-selectin or TNFα, using antibodies or siRNA-directed gene knockdown, attenuated acetaldehyde-induced monocyte adhesion. In conclusion, acetaldehyde increased the number of CCR2 positive monocytes and stimulated endothelial cell P-selectin and TNFα expression. Moreover, acetaldehyde increased monocyte adhesion to endothelial cells, an effect that was both P-selectin- and TNFα-dependent. Conclusion These effects of acetaldehyde may contribute, in part, to the increase in coronary heart disease that is associated with binge patterns of alcohol consumption. PMID:19036374

  9. The detection of acetaldehyde in cold dust clouds

    NASA Technical Reports Server (NTRS)

    Matthews, H. E.; Friber, P.; Irvine, W. M.

    1985-01-01

    Observations of the 1(01)-0(00) rotational transitions of A and E state acetaldehyde are reported. The transitions were detected, for the first time in interstellar space, in the cold dust clouds TMC-1 and L134N, and in Sgr B2. This is also the first time acetaldehyde has been found in a dust cloud and is the most complex oxygen-bearing molecule yet known in this environment. A column density of 6 x 10 to the 12th/sq cm in TMC-1, comparable to many other species detected there, and an approximately equal column density in L134N are formed. In the direction of Sgr B2, the CH3CHO profile appears to consist of broad emission features from the hot molecular cloud core, together with absorption features resulting from intervening colder material. The possible detection of HC9N toward IRC + 10 deg 216 through its J = 33-32 transition is also reported. Implications for cold dust cloud chemistry and excitation are discussed.

  10. Roaming radical kinetics in the decomposition of acetaldehyde.

    SciTech Connect

    Harding, L. B.; Georgievskii, Y.; Klippenstein, S. J.; Chemical Sciences and Engineering Division

    2010-01-01

    A novel theoretical framework for predicting the branching between roaming and bond fission channels in molecular dissociations is described and applied to the decomposition of acetaldehyde. This reduced dimensional trajectory (RDT) approach, which is motivated by the long-range nature of the roaming, bond fission, and abstraction dynamical bottlenecks, involves the propagation of rigid-body trajectories on an analytic potential energy surface. The analytic potential is obtained from fits to large-scale multireference ab initio electronic structure calculations. The final potential includes one-dimensional corrections from higher-level electronic structure calculations and for the effect of conserved mode variations along both the addition and abstraction paths. The corrections along the abstraction path play a significant role in the predicted branching. Master equation simulations are used to transform the microcanonical branching ratios obtained from the RDT simulations to the temperature- and pressure-dependent branching ratios observed in thermal decomposition experiments. For completeness, a transition-state theory treatment of the contributions of the tight transition states for the molecular channels is included in the theoretical analyses. The theoretically predicted branching between molecules and radicals in the thermal decomposition of acetaldehyde is in reasonable agreement with the corresponding shock tube measurement described in the companion paper. The prediction for the ratio of the tight to roaming contributions to the molecular channel also agrees well with results extracted from recent experimental and experimental/theoretical photodissociation studies.

  11. Methanol Uptake by Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, L. T.; Essin, A. M.; Golden, D. M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    The global methanol budget is currently unbalanced, with source terms significantly larger than the sinks terms. To evaluate possible losses of gaseous methanol to sulfate aerosols, the solubility and reactivity of methanol in aqueous sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosols is under investigation. Methanol will partition into sulfate aerosols according to its Henry's law solubility. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H*, for cold (196 - 220 K) solutions ranging between 45 and 70 wt % H2SO4. We have found that methanol solubility ranges from approx. 10(exp 5) - 10(exp 7) M/atm for UT/LS conditions. Solubility increases with decreasing temperature and with increasing sulfuric acid content. Although methanol is slightly more soluble than are acetone and formaldehyde, current data indicate that uptake by clean aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These solubility measurements include uptake due to physical solvation and any rapid equilibria which are established in solution. Reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H is not significant over our experimental time scale for solutions below 80 wt % H2SO4. To confirm this directly, results obtained using a complementary equilibrium measurement technique will also be presented.

  12. Vapour-phase gold-surface-mediated coupling of aldehydes with methanol

    NASA Astrophysics Data System (ADS)

    Xu, Bingjun; Liu, Xiaoying; Haubrich, Jan; Friend, Cynthia M.

    2010-01-01

    Selective coupling of oxygenates is critical to many synthetic processes, including those necessary for the development of alternative fuels. We report a general process for selective coupling of aldehydes and methanol as a route to ester synthesis. All steps are mediated by oxygen-covered metallic gold nanoparticles on Au(111). Remarkably, cross-coupling of methanol with formaldehyde, acetaldehyde, benzaldehyde and benzeneacetaldehyde to methyl esters is promoted by oxygen-covered Au(111) below room temperature with high selectivity. The high selectivity is attributed to the ease of nucleophilic attack of the aldehydes by the methoxy intermediate-formed from methanol on the surface-which yields the methyl esters. The competing combustion occurs via attack of both methanol and the aldehydes by oxygen. The mechanistic model constructed in this study provides insight into factors that control selectivity and clearly elucidates the crucial role of Au nanoparticles as active species in the catalytic oxidation of alcohols, even in solution.

  13. Dissociative electron attachment studies on acetone

    SciTech Connect

    Prabhudesai, Vaibhav S. Tadsare, Vishvesh; Ghosh, Sanat; Gope, Krishnendu; Davis, Daly; Krishnakumar, E.

    2014-10-28

    Dissociative electron attachment (DEA) to acetone is studied in terms of the absolute cross section for various fragment channels in the electron energy range of 0–20 eV. H{sup −} is found to be the most dominant fragment followed by O{sup −} and OH{sup −} with only one resonance peak between 8 and 9 eV. The DEA dynamics is studied by measuring the angular distribution and kinetic energy distribution of fragment anions using Velocity Slice Imaging technique. The kinetic energy and angular distribution of H{sup −} and O{sup −} fragments suggest a many body break-up for the lone resonance observed. The ab initio calculations show that electron is captured in the multi-centered anti-bonding molecular orbital which would lead to a many body break-up of the resonance.

  14. Studies on the mechanism of acetaldehyde-mediated inhibition of rat liver transaminases.

    PubMed

    Solomon, L R

    1987-09-30

    Incubation of mitochondria-depleted rat liver homogenates with 5 mmol/l acetaldehyde at 37 degrees C for 1 h inhibited both aspartate and alanine aminotransferases by 30%. Inhibition was prevented by decreasing temperature to 4 degrees C or by preincubating homogenates with cyanate but was unaffected by cyanamide and methylpyrazole which block acetaldehyde oxidation and reduction respectively. Cyanate-sensitive acetaldehyde-mediated inhibition of purified porcine heart transaminases was also demonstrated in the presence of rat liver homogenate but not in Tris/sucrose medium. Moreover, porcine transaminases were inhibited by trichloroacetic acid extracts of rat liver homogenates previously incubated with acetaldehyde but not by extracts of homogenates incubated with both acetaldehyde and cyanate. These findings suggest that acetaldehyde-mediated transaminase inhibition requires further non-oxidative metabolism of acetaldehyde. Since transaminase activities were not restored by addition of pyridoxal 5'-phosphate to the assay systems, acetaldehyde-induced transaminase inhibition does not appear to be mediated by displacement or depletion of this B6 coenzyme. PMID:3677417

  15. Acetaldehyde alters MAP kinase signalling and epigenetic histone modifications in hepatocytes.

    PubMed

    Shukla, Shivendra D; Lee, Youn Ju; Park, Pil-hoon; Aroor, Annayya R

    2007-01-01

    Although both oxidative and non-oxidative metabolites of ethanol are involved in generating ethanol matabolic stress (Emess), the oxidative metabolite acetaldehyde plays a critical role in the cellular actions of ethanol. We have investigated the effects of acetaldehyde on p42/44 MAP kinase, p46/p54 c-jun N-terminal kinase (JNK1/JNK2) and p38 MAP kinase in hepatocytes. Acetaldehyde caused temporal activation of p42/44 MAPK followed by JNK, but the activation of the p42/44 MAPK was not a prerequisite for the JNK activation. Activation ofJNK1 by acetaldehyde was greater than JNK2. Ethanol and acetaldehyde activatedJNK have opposing roles; ethanol-induced JNK activation increased apoptosis whereas that by acetaldehyde decreased apoptosis. Acetaldehyde also caused histone H3 acetylation at Lys9 and phosphorylation of histone H3 at Serl0 and 28, the latter being dependent on p38 MAP kinase. Phosphorylation at Ser28 was higher than at Serl0. Thus acetaldehyde distinctively alters MAP kinase signalling and histone modifications, processes involved in transcriptional activation. PMID:17590997

  16. The hydrogen-storing microporous silica 'Microcluster' reduces acetaldehyde contained in a distilled spirit.

    PubMed

    Kato, Shinya; Miwa, Nobuhiko

    2016-12-01

    Acetaldehyde is a detrimental substance produced in alcoholic liquor aging. We assessed an ability of hydrogen-storing microporous silica 'Microcluster' (MC+) to reduce acetaldehyde, as compared with autoclave-dehydrogenated MC+ (MC-). Acetaldehyde was quantified spectrophotometrically by an enzymatic method. Authentic acetaldehyde was treated by MC+ for 20min, and decreased from 43.4ppm to 10.9ppm, but maintained at 49.3ppm by MC-. On the other hand, acetaldehyde contained in a distilled spirit was decreased from 29.5ppm to 3.1ppm at 20min by MC+, but not decreased by MC-. Addition of MC+ or MC- to distilled water without acetaldehyde showed no seeming effect on the quantification used. Accordingly acetaldehyde in a distilled spirit is reduced to ethanol by hydrogen contained in MC+, but not by the silica moiety of MC+. Hydrogen gas of 1.2mL was released for 20min from MC+ of 0.59g in water, resulting in dissolved hydrogen of 1.09ppm and an oxidation- reduction potential of -687.0mV indicative of a marked reducing ability. Thus, MC+ has an ability to reduce acetaldehyde in a distilled spirit due to dissolved hydrogen released from MC+. PMID:27612695

  17. Oxygen vacancy-assisted coupling and enolization of acetaldehyde on CeO2(111).

    PubMed

    Calaza, Florencia C; Xu, Ye; Mullins, David R; Overbury, Steven H

    2012-10-31

    The temperature-dependent adsorption and reaction of acetaldehyde (CH(3)CHO) on a fully oxidized and a highly reduced thin-film CeO(2)(111) surface have been investigated using a combination of reflection-absorption infrared spectroscopy (RAIRS) and periodic density functional theory (DFT+U) calculations. On the fully oxidized surface, acetaldehyde adsorbs weakly through its carbonyl O interacting with a lattice Ce(4+) cation in the η(1)-O configuration. This state desorbs at 210 K without reaction. On the highly reduced surface, new vibrational signatures appear below 220 K. They are identified by RAIRS and DFT as a dimer state formed from the coupling of the carbonyl O and the acyl C of two acetaldehyde molecules. This dimer state remains up to 400 K before decomposing to produce another distinct set of vibrational signatures, which are identified as the enolate form of acetaldehyde (CH(2)CHO¯). Furthermore, the calculated activation barriers for the coupling of acetaldehyde, the decomposition of the dimer state, and the recombinative desorption of enolate and H as acetaldehyde are in good agreement with previously reported TPD results for acetaldehyde adsorbed on reduced CeO(2)(111) [Chen et al. J. Phys. Chem. C 2011, 115, 3385]. The present findings demonstrate that surface oxygen vacancies alter the reactivity of the CeO(2)(111) surface and play a crucial role in stabilizing and activating acetaldehyde for coupling reactions. PMID:23020248

  18. Removal of acetaldehyde and skatole in gas by a corona-discharge reactor

    SciTech Connect

    Sano, Noriaki; Nagamoto, Toshiki; Hamon, Hajime; Suzuki, Tetsuo; Okazaki, Morio

    1997-09-01

    Recently, ultrahigh gas purification has been important in many cases, such as, for example, (1) removal of dioxin from incineration plants, (2) complete removal of radioactive iodine compounds from nuclear fuel recycling, (3) simultaneous removal of NO{sub x} and SO{sub x} in exhaust gases from cogeneration plants, (4) removal or decomposition of chlorofluorocarbons, and (5) supply of purified gas for semiconductor industries. A corona-discharge reactor, called a deposition-type reactor, was applied to remove acetaldehyde and skatole from nitrogen and an oxygen-nitrogen mixture. In the removal from nitrogen, acetaldehyde and skatole are negatively ionized and removed by depositing at the anode surface. In simultaneous removals of acetaldehyde and skatole, it is found that skatole has a higher reactivity of electron attachment than acetaldehyde. In the removal of acetaldehyde from an oxygen-nitrogen mixture, 40 molecules of acetaldehyde were removed by one electron. The reason for the extremely high removal efficiency is considered to be based on the ozone reaction and the formation of negative-ion clusters. Stabilization energies of the negative-ion clusters were estimated by ab initio molecular orbital calculation. Skatole was removed from a nitrogen-oxygen mixture perfectly with extremely low discharge current by the ozone reaction. Simultaneous removals of acetaldehyde and skatole from a nitrogen-oxygen mixture suggest that coexisting skatole inhibits the removal of acetaldehyde.

  19. A PBPK MODEL FOR EVALUATING THE IMPACT OF ALDEHYDE DEHYDROGENASE POLYMORPHISMS ON COMPARATIVE RAT AND HUMAN NASAL TISSUE ACETALDEHYDE DOSIMETRY

    EPA Science Inventory

    ABSTRACT: Acetaldehyde is an important intermediate in chemical synthesis and a byproduct of normal oxidative metabolism of several industrially important compounds including ethanol, ethyl acetate and vinyl acetate. Chronic inhalation of acetaldehyde leads to degeneratio...

  20. A PBPK model for evaluating the impact of aldehyde dehydrogenase polymorphisms on comparative rat and human nasal tissue acetaldehyde dosimetry*

    EPA Science Inventory

    Acetaldehyde is an important intermediate in the chemical synthesis and normal oxidative metabolism of several industrially important compounds, including ethanol, ethyl acetate, and vinyl acetate. Chronic inhalation of acetaldehyde leads to degeneration of the olfactory and resp...

  1. Reduction of acetone to isopropanol using producer gas fermenting microbes.

    PubMed

    Ramachandriya, Karthikeyan D; Wilkins, Mark R; Delorme, Marthah J M; Zhu, Xiaoguang; Kundiyana, Dimple K; Atiyeh, Hasan K; Huhnke, Raymond L

    2011-10-01

    Gasification-fermentation is an emerging technology for the conversion of lignocellulosic materials into biofuels and specialty chemicals. For effective utilization of producer gas by fermenting bacteria, tar compounds produced in the gasification process are often removed by wet scrubbing techniques using acetone. In a preliminary study using biomass generated producer gas scrubbed with acetone, an accumulation of acetone and subsequent isopropanol production was observed. The effect of 2 g/L acetone concentrations in the fermentation media on growth and product distributions was studied with "Clostridium ragsdalei," also known as Clostridium strain P11 or P11, and Clostridium carboxidivorans P7 or P7. The reduction of acetone to isopropanol was possible with "C. ragsdalei," but not with P7. In P11 this reaction occurred rapidly when acetone was added in the acidogenic phase, but was 2.5 times slower when added in the solventogenic phase. Acetone at concentrations of 2 g/L did not affect the growth of P7, but ethanol increased by 41% and acetic acid concentrations decreased by 79%. In the fermentations using P11, growth was unaffected and ethanol concentrations increased by 55% when acetone was added in the acidogenic phase. Acetic acid concentrations increased by 19% in both the treatments where acetone was added. Our observations indicate that P11 has a secondary alcohol dehydrogenase that enables it to reduce acetone to isopropanol, while P7 lacks this enzyme. P11 offers an opportunity for biological production of isopropanol from acetone reduction in the presence of gaseous substrates (CO, CO₂, and H₂). PMID:21557204

  2. Dissociative electron attachments to ethanol and acetaldehyde: A combined experimental and simulation study

    NASA Astrophysics Data System (ADS)

    Wang, Xu-Dong; Xuan, Chuan-Jin; Feng, Wen-Ling; Tian, Shan Xi

    2015-02-01

    Dissociation dynamics of the temporary negative ions of ethanol and acetaldehyde formed by the low-energy electron attachments is investigated by using the anion velocity map imaging technique and ab initio molecular dynamics simulations. The momentum images of the dominant fragments O-/OH- and CH3- are recorded, indicating the low kinetic energies of O-/OH- for ethanol while the low and high kinetic energy distributions of O- ions for acetaldehyde. The CH3- image for acetaldehyde also shows the low kinetic energy. With help of the dynamics simulations, the fragmentation processes are qualitatively clarified. A new cascade dissociation pathway to produce the slow O- ion via the dehydrogenated intermediate, CH3CHO- (acetaldehyde anion), is proposed for the dissociative electron attachment to ethanol. After the electron attachment to acetaldehyde molecule, the slow CH3- is produced quickly in the two-body dissociation with the internal energy redistributions in different aspects before bond cleavages.

  3. Impairment of histone H1 DNA binding by adduct formation with acetaldehyde

    SciTech Connect

    Niemela, O.; Mannermaa, R.; Oikarinen, J. )

    1990-01-01

    Incubation of histone H1 with pharmacologically relevant concentrations of acetaldehyde resulted in the formation of spontaneously stable acetaldehyde-protein linkages. The reaction of acetaldehyde and H1 purified from rat liver either by a DNA recognition site affinity chromatography or by perchloric acid extraction occurred primarily at the lysine residues in the carboxyterminal tail of H1, which is crucial for its function as a eukaryotic repressor. It was further shown using an H1-lacZ fusion protein produced in E. coli and the protein isolated from rat liver that the formation of acetaldehyde adducts with H1 impair its DNA binding properties. They propose that such a reaction may occur in vivo and lead to an inability to repress genes in the liver upon excessive alcohol consumption. This mechanism may play a role in acetaldehyde-induced collagen synthesis in alcoholics.

  4. Effect of Cobalt Particle Size on Acetone Steam Reforming

    SciTech Connect

    Sun, Junming; Zhang, He; Yu, Ning; Davidson, Stephen D.; Wang, Yong

    2015-06-11

    Carbon-supported cobalt nanoparticles with different particle sizes were synthesized and characterized by complementary characterization techniques such as X-ray diffraction, N-2 sorption, acetone temperature-programmed desorption, transmission electron microscopy, and CO chemisorption. Using acetone steam reforming reaction as a probe reaction, we revealed a volcano-shape curve of the intrinsic activity (turnover frequency of acetone) and the CO2 selectivity as a function of the cobalt particle size with the highest activity and selectivity observed at a particle size of approximately 12.8nm. Our results indicate that the overall performance of acetone steam reforming is related to a combination of particle-size-dependent acetone decomposition, water dissociation, and the oxidation state of the cobalt nanoparticles.

  5. Resolving Some Paradoxes in the Thermal Decomposition Mechanism of Acetaldehyde.

    PubMed

    Sivaramakrishnan, Raghu; Michael, Joe V; Harding, Lawrence B; Klippenstein, Stephen J

    2015-07-16

    The mechanism for the thermal decomposition of acetaldehyde has been revisited with an analysis of literature kinetics experiments using theoretical kinetics. The present modeling study was motivated by recent observations, with very sensitive diagnostics, of some unexpected products in high temperature microtubular reactor experiments on the thermal decomposition of CH3CHO and its deuterated analogs, CH3CDO, CD3CHO, and CD3CDO. The observations of these products prompted the authors of these studies to suggest that the enol tautomer, CH2CHOH (vinyl alcohol), is a primary intermediate in the thermal decomposition of acetaldehyde. The present modeling efforts on acetaldehyde decomposition incorporate a master equation reanalysis of the CH3CHO potential energy surface (PES). The lowest-energy process on this PES is an isomerization of CH3CHO to CH2CHOH. However, the subsequent product channels for CH2CHOH are substantially higher in energy, and the only unimolecular process that can be thermally accessed is a reisomerization to CH3CHO. The incorporation of these new theoretical kinetics predictions into models for selected literature experiments on CH3CHO thermal decomposition confirms our earlier experiment and theory-based conclusions that the dominant decomposition process in CH3CHO at high temperatures is C-C bond fission with a minor contribution (∼10-20%) from the roaming mechanism to form CH4 and CO. The present modeling efforts also incorporate a master-equation analysis of the H + CH2CHOH potential energy surface. This bimolecular reaction is the primary mechanism for removal of CH2CHOH, which can accumulate to minor amounts at high temperatures, T > 1000 K, in most lab-scale experiments that use large initial concentrations of CH3CHO. Our modeling efforts indicate that the observation of ketene, water, and acetylene in the recent microtubular experiments are primarily due to bimolecular reactions of CH3CHO and CH2CHOH with H-atoms and have no bearing on

  6. Different role of filled and empty surface states in a polyfunctional molecule adsorption: Geranyl acetone on Si(111)7 x7

    NASA Astrophysics Data System (ADS)

    Carbone, M.; Comtet, G.; Dujardin, G.; Hellner, L.; Mayne, A. J.

    2002-09-01

    New perspectives in molecular electronics are opening up through controlled surface molecular synthesis. The first step of such a synthesis implies the adsorption of a polyfunctional molecule, which might use one functional group for the surface adsorption, and the other one(s) for further reactions. Here we present an adsorption study of Si(111)7 x7 of geranyl-acetone (C13H22O, E-5,9 undecadien-one) characterized by a ketone and two unconjugated double bonds. The study has been performed by temperature and coverage dependent valence band photoemission and room temperature scanning tunneling microscopy. The use of these combined techniques allows us to infer that the interaction between the geranyl acetone and the silicon surface occurs selectively through the rest atom and the carbonyl group, most likely through the oxygen atom. The geranyl acetone does not undergo any fragmentation upon adsorption Si(111)7 x7, as has been observed for smaller molecules on the same surface {acetaldehyde [Y. Bu, J. Breslin, M. C. Lin, J. Phys. Chem. B 101, 1872 (1997)] for instance}. The interaction of the chain with the surface is weak and is characterized in the STM images as a darkening of one adatom in positive bias, around the reacted rest atom.

  7. Computer modeling of cool flames and ignition of acetaldehyde

    SciTech Connect

    Cavanagh, J.; Cox, R.A. ); Olson, G. )

    1990-10-01

    A detailed mechanism for the oxidation of acetaldehyde at temperatures between 500-1000 K has been assembled using 77 elementary reactions involving 32 reactant, product, and intermediate species. Rate coefficients were taken from recent critical evaluations of experimental data. Where experimental measurements were not available, the rate parameters were estimated from the body of currently available kinetics information. The mechanism was shown to predict correctly the rates and products observed in CH{sub 3}CHO oxidation studies in a low-pressure in a stirred flow reactor and at high pressure in a rapid compression machine. The oscillatory phenomena in the flow system and the two-stage ignition observed at high pressure were satisfactorily described by the mechanism. It is shown that cool flames are caused by degenerate branching mainly by peracetic acid and that hydrogen peroxide promotes hot ignition.

  8. Pyrolysis of Acetaldehyde: a Fleeting Glimpse of Vinylidene

    NASA Astrophysics Data System (ADS)

    Vasilou, A. J.; Piech, K. M.; Ellison, G. B.; Golan, A.; Kostko, O.; Ahmed, M.; Osborn, D. L.; Daily, J. W.; Nimlos, M. R.; Stanton, J. F.

    2011-06-01

    The thermal decomposition of acetaldehyde has been studied in a heated silicon carbide ``microtubular reactor", with products monitored by both photoionization mass spectrometry and matrix-isolation Fourier transform infrared spectroscopy. A well-known, and observed, route of decomposition occurs when the weakest C-C bond is broken; this process leads to methyl and formyl radicals. In addition to this, we find evidence for two additional channels: CH_3CHO + Δ → H_2CCO (ketene) and CH_3CHO + Δ → C_2H_2 (acetylene), reactions that also generate molecular hydrogen and water, respectively. This talk focuses on the last pathway, which proceeds via vinyl alcohol. Evidence is presented that the high temperature unimolecular dehydration of vinyl alcohol proceeds by two mechanisms; one of these is a (1,2) elimination that directly yields acetylene, and the other is a (1,1) elimination that necessarily accesses the vinylidene isomer of C_2H_2 as an intermediate.

  9. Velocity-map imaging study of the photodissociation of acetaldehyde

    SciTech Connect

    Cruse, H.A.; Softley, T.P.

    2005-03-22

    Velocity-map imaging studies are reported for the photodissociation of acetaldehyde over a range of photolysis wavelengths (317.5-282.5 nm). Images are obtained for both the HCO and CH{sub 3} fragments. The mean rotational energy of both fragments increases with photodissociation energy, with a lesser degree of excitation in the CH{sub 3} fragment. The CH{sub 3} images demonstrate that the CH{sub 3} fragments are rotationally aligned with respect to the recoil direction and this is interpreted, and well modeled, on the basis of a propensity for forming CH{sub 3} fragments with M{approx}K, where M is the projection of the rotational angular momentum along the recoil direction. The origin of the CH{sub 3} rotation is conserved motion from the torsional and methyl-rocking modes of the parent molecule. Nonstatistical vibrational distributions for the CH{sub 3} fragment are obtained at higher energies.

  10. Role of apoptotic hepatocytes in HCV dissemination: regulation by acetaldehyde.

    PubMed

    Ganesan, Murali; Natarajan, Sathish Kumar; Zhang, Jinjin; Mott, Justin L; Poluektova, Larisa I; McVicker, Benita L; Kharbanda, Kusum K; Tuma, Dean J; Osna, Natalia A

    2016-06-01

    Alcohol consumption exacerbates hepatitis C virus (HCV) pathogenesis and promotes disease progression, although the mechanisms are not quite clear. We have previously observed that acetaldehyde (Ach) continuously produced by the acetaldehyde-generating system (AGS), temporarily enhanced HCV RNA levels, followed by a decrease to normal or lower levels, which corresponded to apoptosis induction. Here, we studied whether Ach-induced apoptosis caused depletion of HCV-infected cells and what role apoptotic bodies (AB) play in HCV-alcohol crosstalk. In liver cells exposed to AGS, we observed the induction of miR-122 and miR-34a. As miR-34a has been associated with apoptotic signaling and miR-122 with HCV replication, these findings may suggest that cells with intensive viral replication undergo apoptosis. Furthermore, when AGS-induced apoptosis was blocked by a pan-caspase inhibitor, the expression of HCV RNA was not changed. AB from HCV-infected cells contained HCV core protein and the assembled HCV particle that infect intact hepatocytes, thereby promoting the spread of infection. In addition, AB are captured by macrophages to switch their cytokine profile to the proinflammatory one. Macrophages exposed to HCV(+) AB expressed more IL-1β, IL-18, IL-6, and IL-10 mRNAs compared with those exposed to HCV(-) AB. The generation of AB from AGS-treated HCV-infected cells even enhanced the induction of aforementioned cytokines. We conclude that HCV and alcohol metabolites trigger the formation of AB containing HCV particles. The consequent spread of HCV to neighboring hepatocytes via infected AB, as well as the induction of liver inflammation by AB-mediated macrophage activation potentially exacerbate the HCV infection course by alcohol and worsen disease progression. PMID:27056722

  11. Effects of acetaldehyde on brush border enzyme activities in human colon adenocarcinoma cell line Caco-2.

    PubMed

    Koivisto, T; Salaspuro, M

    1997-12-01

    The treatment of Caco-2 cells, a human colon adenocarcinoma cell line that closely resembles normal human small intestinal epithelial cells, with acetaldehyde resulted in significantly decreased activities of brush border enzymes sucrase, maltase, lactase, and gamma-glutamyltransferase; alkaline phosphatase activity was not affected. In the case of sucrase and maltase, the activities were also decreased by a combination of acetaldehyde and ethanol, although ethanol alone markedly increased them. The possibility that intraintestinal acetaldehyde, formed by intestinal microbes, might play a role in some small intestinal enzyme deficiencies observed earlier in alcoholics should therefore be considered. The mechanism by which acetaldehyde alters these enzyme activities remains unclear. The observation that acetaldehyde also disturbed cell polarization, an initial step in the process of differentiation in Caco-2 cells, indicates that acetaldehyde might decrease these enzyme activities by interfering with cell differentiation. Because ethanol and acetaldehyde metabolizing enzymes have not been previously studied from Caco-2 cells, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activities were also measured from these cells, and their ALDH isoenzyme pattern was characterized. Like many cancerous cell lines, Caco-2 cells were found to express no ADH. They, however, possessed ALDH activity that was comparable with normal colonic mucosal activity and also expressed the same ALDH classes (ALDHs 1 to 3) than normal human colonic mucosa. PMID:9438518

  12. Daidzin suppresses ethanol consumption by Syrian golden hamsters without blocking acetaldehyde metabolism.

    PubMed Central

    Keung, W M; Lazo, O; Kunze, L; Vallee, B L

    1995-01-01

    Daidzin is a potent, selective, and reversible inhibitor of human mitochondrial aldehyde dehydrogenase (ALDH) that suppresses free-choice ethanol intake by Syrian golden hamsters. Other ALDH inhibitors, such as disulfiram (Antabuse) and calcium citrate carbimide (Temposil), have also been shown to suppress ethanol intake of laboratory animals and are thought to act by inhibiting the metabolism of acetaldehyde produced from ingested ethanol. To determine whether or not daidzin inhibits acetaldehyde metabolism in vivo, plasma acetaldehyde in daidzin-treated hamsters was measured after the administration of a test dose of ethanol. Daidzin treatment (150 mg/kg per day i.p. for 6 days) significantly suppresses (> 70%) hamster ethanol intake but does not affect overall acetaldehyde metabolism. In contrast, after administration of the same ethanol dose, plasma acetaldehyde concentration in disulfiram-treated hamsters reaches 0.9 mM, 70 times higher than that of the control. In vitro, daidzin suppresses hamster liver mitochondria-catalyzed acetaldehyde oxidation very potently with an IC50 value of 0.4 microM, which is substantially lower than the daidzin concentration (70 microM) found in the liver mitochondria of daidzin-treated hamsters. These results indicate that (i) the action of daidzin differs from that proposed for the classic, broad-acting ALDH inhibitors (e.g., disulfiram), and (ii) the daidzin-sensitive mitochondrial ALDH is not the one and only enzyme that is essential for acetaldehyde metabolism in golden hamsters. PMID:7568058

  13. ALDH2 modulates autophagy flux to regulate acetaldehyde-mediated toxicity thresholds

    PubMed Central

    Tanaka, Koji; Whelan, Kelly A; Chandramouleeswaran, Prasanna M; Kagawa, Shingo; Rustgi, Sabrina L; Noguchi, Chiaki; Guha, Manti; Srinivasan, Satish; Amanuma, Yusuke; Ohashi, Shinya; Muto, Manabu; Klein-Szanto, Andres J; Noguchi, Eishi; Avadhani, Narayan G; Nakagawa, Hiroshi

    2016-01-01

    A polymorphic mutation in the acetaldehyde dehydrogenase 2 (ALDH2) gene has been epidemiologically linked to the high susceptibility to esophageal carcinogenesis for individuals with alcohol use disorders. Mice subjected to alcohol drinking show increased oxidative stress and DNA adduct formation in esophageal epithelia where Aldh2 loss augments alcohol-induced genotoxic effects; however, it remains elusive as to how esophageal epithelial cells with dysfunctional Aldh2 cope with oxidative stress related to alcohol metabolism. Here, we investigated the role of autophagy in murine esophageal epithelial cells (keratinocytes) exposed to ethanol and acetaldehyde. We find that ethanol and acetaldehyde trigger oxidative stress via mitochondrial superoxide in esophageal keratinocytes. Aldh2-deficient cells appeared to be highly susceptible to ethanol- or acetaldehyde-mediated toxicity. Alcohol dehydrogenase-mediated acetaldehyde production was implicated in ethanol-induced cell injury in Aldh2 deficient cells as ethanol-induced oxidative stress and cell death was partially inhibited by 4-methylpyrazole. Acetaldehyde activated autophagy flux in esophageal keratinocytes where Aldh2 deficiency increased dependence on autophagy to cope with ethanol-induced acetaldehyde-mediated oxidative stress. Pharmacological inhibition of autophagy flux by chloroquine stabilized p62/SQSTM1, and increased basal and acetaldehyde-mediate oxidative stress in Aldh2 deficient cells as documented in monolayer culture as well as single-cell derived three-dimensional esophageal organoids, recapitulating a physiological esophageal epithelial proliferation-differentiation gradient. Our innovative approach indicates, for the first time, that autophagy may provide cytoprotection to esophageal epithelial cells responding to oxidative stress that is induced by ethanol and its major metabolite acetaldehyde. Defining autophagymediated cytoprotection against alcohol-induced genotoxicity in the context of

  14. ALDH2 modulates autophagy flux to regulate acetaldehyde-mediated toxicity thresholds.

    PubMed

    Tanaka, Koji; Whelan, Kelly A; Chandramouleeswaran, Prasanna M; Kagawa, Shingo; Rustgi, Sabrina L; Noguchi, Chiaki; Guha, Manti; Srinivasan, Satish; Amanuma, Yusuke; Ohashi, Shinya; Muto, Manabu; Klein-Szanto, Andres J; Noguchi, Eishi; Avadhani, Narayan G; Nakagawa, Hiroshi

    2016-01-01

    A polymorphic mutation in the acetaldehyde dehydrogenase 2 (ALDH2) gene has been epidemiologically linked to the high susceptibility to esophageal carcinogenesis for individuals with alcohol use disorders. Mice subjected to alcohol drinking show increased oxidative stress and DNA adduct formation in esophageal epithelia where Aldh2 loss augments alcohol-induced genotoxic effects; however, it remains elusive as to how esophageal epithelial cells with dysfunctional Aldh2 cope with oxidative stress related to alcohol metabolism. Here, we investigated the role of autophagy in murine esophageal epithelial cells (keratinocytes) exposed to ethanol and acetaldehyde. We find that ethanol and acetaldehyde trigger oxidative stress via mitochondrial superoxide in esophageal keratinocytes. Aldh2-deficient cells appeared to be highly susceptible to ethanol- or acetaldehyde-mediated toxicity. Alcohol dehydrogenase-mediated acetaldehyde production was implicated in ethanol-induced cell injury in Aldh2 deficient cells as ethanol-induced oxidative stress and cell death was partially inhibited by 4-methylpyrazole. Acetaldehyde activated autophagy flux in esophageal keratinocytes where Aldh2 deficiency increased dependence on autophagy to cope with ethanol-induced acetaldehyde-mediated oxidative stress. Pharmacological inhibition of autophagy flux by chloroquine stabilized p62/SQSTM1, and increased basal and acetaldehyde-mediate oxidative stress in Aldh2 deficient cells as documented in monolayer culture as well as single-cell derived three-dimensional esophageal organoids, recapitulating a physiological esophageal epithelial proliferation-differentiation gradient. Our innovative approach indicates, for the first time, that autophagy may provide cytoprotection to esophageal epithelial cells responding to oxidative stress that is induced by ethanol and its major metabolite acetaldehyde. Defining autophagymediated cytoprotection against alcohol-induced genotoxicity in the context of

  15. The Methanol Economy Project

    SciTech Connect

    Olah, George; Prakash, G. K.

    2014-02-01

    The Methanol Economy Project is based on the concept of replacing fossil fuels with methanol generated either from renewable resources or abundant natural (shale) gas. The full methanol cycle was investigated in this project, from production of methanol through bromination of methane, bireforming of methane to syngas, CO2 capture using supported amines, co-electrolysis of CO2 and water to formate and syngas, decomposition of formate to CO2 and H2, and use of formic acid in a direct formic acid fuel cell. Each of these projects achieved milestones and provided new insights into their respective fields.

  16. Measuring breath acetone for monitoring fat loss: Review

    PubMed Central

    2015-01-01

    Objective Endogenous acetone production is a by‐product of the fat metabolism process. Because of its small size, acetone appears in exhaled breath. Historically, endogenous acetone has been measured in exhaled breath to monitor ketosis in healthy and diabetic subjects. Recently, breath acetone concentration (BrAce) has been shown to correlate with the rate of fat loss in healthy individuals. In this review, the measurement of breath acetone in healthy subjects is evaluated for its utility in predicting fat loss and its sensitivity to changes in physiologic parameters. Results BrAce can range from 1 ppm in healthy non‐dieting subjects to 1,250 ppm in diabetic ketoacidosis. A strong correlation exists between increased BrAce and the rate of fat loss. Multiple metabolic and respiratory factors affect the measurement of BrAce. BrAce is most affected by changes in the following factors (in descending order): dietary macronutrient composition, caloric restriction, exercise, pulmonary factors, and other assorted factors that increase fat metabolism or inhibit acetone metabolism. Pulmonary factors affecting acetone exchange in the lung should be controlled to optimize the breath sample for measurement. Conclusions When biologic factors are controlled, BrAce measurement provides a non‐invasive tool for monitoring the rate of fat loss in healthy subjects. PMID:26524104

  17. A single sip of a strong alcoholic beverage causes exposure to carcinogenic concentrations of acetaldehyde in the oral cavity.

    PubMed

    Linderborg, Klas; Salaspuro, Mikko; Väkeväinen, Satu

    2011-09-01

    The aim of this study was to explore oral exposure to carcinogenic (group 1) acetaldehyde after single sips of strong alcoholic beverages containing no or high concentrations of acetaldehyde. Eight volunteers tasted 5 ml of ethanol diluted to 40 vol.% with no acetaldehyde and 40 vol.% calvados containing 2400 μM acetaldehyde. Salivary acetaldehyde and ethanol concentrations were measured by gas chromatography. The protocol was repeated after ingestion of ethanol (0.5 g/kg body weight). Salivary acetaldehyde concentration was significantly higher after sipping calvados than after sipping ethanol at 30s both with (215 vs. 128 μmol/l, p<0.05) and without (258 vs. 89 μmol/l, p<0.05) alcohol ingestion. From 2 min onwards there were no significant differences in the decreasing salivary acetaldehyde concentration, which remained above the level of carcinogenicity still at 10 min. The systemic alcohol distribution from blood to saliva had no additional effect on salivary acetaldehyde after sipping of the alcoholic beverages. Carcinogenic concentrations of acetaldehyde are produced from ethanol in the oral cavity instantly after a small sip of strong alcoholic beverage, and the exposure continues for at least 10 min. Acetaldehyde present in the beverage has a short-term effect on total acetaldehyde exposure. PMID:21641957

  18. An Acetone Nanosensor For Non-invasive Diabetes Detection

    NASA Astrophysics Data System (ADS)

    Wang, L.; Yun, X.; Stanacevic, M.; Gouma, P. I.

    2009-05-01

    Diabetes is a most common disease worldwide. Acetone in exhaled breath is a known biomarker of Type- 1 diabetes. An exhaled breath analyzer has been developed with the potential to diagnose diabetes as a non-invasive alternative of the currently used blood-based diagnostics. This device utilizes a chemiresistor based on ferroelectric tungsten oxide nanoparticles and detects acetone selectively in breath-simulated media. Real-time monitoring of the acetone concentration is feasible, potentially making this detector a revolutionary, non- invasive, diabetes diagnostic tool.

  19. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-17

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  20. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    1999-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  1. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    2001-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  2. Methanol partial oxidation reformer

    DOEpatents

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-24

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  3. HEALTH AND ENVIRONMENTAL EFFECTS PROFILE FOR ACETONE CYANOHYDRIN

    EPA Science Inventory

    The Health and Environmental Effects Profile for acetone cyanohydrin was prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response to support listings of hazardo...

  4. Toward Portable Breath Acetone Analysis for Diabetes Detection

    PubMed Central

    Righettoni, Marco; Tricoli, Antonio

    2013-01-01

    Diabetes is a lifelong condition that may cause death and seriously affects the quality of life of a rapidly growing number of individuals. Acetone is a selective breath marker for diabetes that may contribute to the monitoring of related metabolic disorder and thus simplify the management of this illness. Here, the overall performance of Si-doped WO3 nanoparticles made by flame spray pyrolysis as portable acetone detectors is critically reviewed focusing on the requirements for medical diagnostic. The effect of flow rate, chamber volume and acetone dissociation within the measuring chamber are discussed with respect to the calibration of the sensor response. The challenges for the fabrication of portable breath acetone sensors based on chemo-resistive detectors are underlined indicating possible solutions and novel research directions. PMID:21828897

  5. Rosiglitazone protects human neuroblastoma SH-SY5Y cells against acetaldehyde-induced cytotoxicity

    SciTech Connect

    Jung, Tae Woo; Lee, Ji Young; Shim, Wan Sub; Kang, Eun Seok; Kim, Soo Kyung; Ahn, Chul Woo; Lee, Hyun Chul; Cha, Bong Soo . E-mail: bscha@yumc.yonsei.ac.kr

    2006-02-03

    Acetaldehyde, an inhibitor of mitochondrial function, has been widely used as a neurotoxin because it elicits a severe Parkinson's disease-like syndrome with elevation of the intracellular reactive oxygen species level and apoptosis. Rosiglitazone, a peroxisome proliferator-activated receptor-{gamma} agonist, has been known to show various non-hypoglycemic effects, including anti-inflammatory, anti-atherogenic, and anti-apoptotic. In this study, we investigated the protective effects of rosiglitazone on acetaldehyde-induced apoptosis in human neuroblastoma SH-SY5Y cells and attempted to examine its mechanism. Acetaldehyde-induced apoptosis was moderately reversed by rosiglitazone treatment. Our results suggest that the protective effects of rosiglitazone on acetaldehyde-induced apoptosis may be ascribed to ability to induce the expression of anti-oxidant enzymes and to regulate Bcl-2 and Bax expression. These data indicate that rosiglitazone may provide a useful therapeutic strategy for the prevention of progressive neurodegenerative disease such as Parkinson's disease.

  6. Acetaldehyde Adsorption and Reaction onCeO2(100) Thin Films

    SciTech Connect

    Mullins, David R; Albrecht, Peter M

    2013-01-01

    This study reports and compares the adsorption and dissociation of acetaldehyde on oxidized and reduced CeOX(100) thin films. Acetaldehyde reacts and decomposes on fully oxidized CeO2(100) whereas it desorbs molecularly at low temperature on CeO2(111). The primary products are CO, CO2 and water along with trace amounts of crotonaldehyde and acetylene. The acetaldehyde adsorbs as the 2-acetaldehyde species, dioxyethylene. Decomposition proceeds by dehydrogenation through acetate and enolate intermediates. The reaction pathway is similar on the reduced CeO2-X(100) surface however the inability to react with surface O on the reduced surface results in H2 rather than H2O desorption and C is left on the surface rather than producing CO and CO2. C-O bond cleavage in the enolate intermediate followed by reaction with surface H results in ethylene desorption.

  7. Acetone sensor based on zinc oxide hexagonal tubes

    SciTech Connect

    Hastir, Anita Singh, Onkar Anand, Kanika Singh, Ravi Chand

    2014-04-24

    In this work hexagonal tubes of zinc oxide have been synthesized by co-precipitation method. For structural, morphological, elemental and optical analysis synthesized powders were characterized by using x-ray diffraction, field emission scanning microscope, EDX, UV-visible and FTIR techniques. For acetone sensing thick films of zinc oxide have been deposited on alumina substrate. The fabricated sensors exhibited maximum sensing response towards acetone vapour at an optimum operating temperature of 400°C.

  8. Coproduction of Acetaldehyde and Hydrogen during Glucose Fermentation by Escherichia coli ▿ †

    PubMed Central

    Zhu, Huilin; Gonzalez, Ramon; Bobik, Thomas A.

    2011-01-01

    Escherichia coli K-12 strain MG1655 was engineered to coproduce acetaldehyde and hydrogen during glucose fermentation by the use of exogenous acetyl-coenzyme A (acetyl-CoA) reductase (for the conversion of acetyl-CoA to acetaldehyde) and the native formate hydrogen lyase. A putative acetaldehyde dehydrogenase/acetyl-CoA reductase from Salmonella enterica (SeEutE) was cloned, produced at high levels, and purified by nickel affinity chromatography. In vitro assays showed that this enzyme had both acetaldehyde dehydrogenase activity (68.07 ± 1.63 μmol min−1 mg−1) and the desired acetyl-CoA reductase activity (49.23 ± 2.88 μmol min−1 mg−1). The eutE gene was engineered into an E. coli mutant lacking native glucose fermentation pathways (ΔadhE, ΔackA-pta, ΔldhA, and ΔfrdC). The engineered strain (ZH88) produced 4.91 ± 0.29 mM acetaldehyde while consuming 11.05 mM glucose but also produced 6.44 ± 0.26 mM ethanol. Studies showed that ethanol was produced by an unknown alcohol dehydrogenase(s) that converted the acetaldehyde produced by SeEutE to ethanol. Allyl alcohol was used to select for mutants with reduced alcohol dehydrogenase activity. Three allyl alcohol-resistant mutants were isolated; all produced more acetaldehyde and less ethanol than ZH88. It was also found that modifying the growth medium by adding 1 g of yeast extract/liter and lowering the pH to 6.0 further increased the coproduction of acetaldehyde and hydrogen. Under optimal conditions, strain ZH136 converted glucose to acetaldehyde and hydrogen in a 1:1 ratio with a specific acetaldehyde production rate of 0.68 ± 0.20 g h−1 g−1 dry cell weight and at 86% of the maximum theoretical yield. This specific production rate is the highest reported thus far and is promising for industrial application. The possibility of a more efficient “no-distill” ethanol fermentation procedure based on the coproduction of acetaldehyde and hydrogen is discussed. PMID:21803884

  9. Biological production of acetaldehyde from ethanol using non-growing Pichia pastoris whole cells

    SciTech Connect

    Chiang, Heien-Kun; Foutch, G.L.; Fish, W.W.

    1991-12-31

    Acetaldehyde has been produced biologically using whole-cell Pichia Pass in a semibatch fermentor. Ethanol and air were fed continuously, and the product, acetaldehyde, was removed by the air stream. Operation of the reactor exceeded 100 h, maintaining high alcohol oxidase activity. Low cell-mass concentration (9.9 g/L) minimized product inhibition. Ethanol concentration in the broth, oxygen concentration in the air, and pH were evaluated for their effects on the fermentation process.

  10. Effects of acetaldehyde on hepatocyte glycerol uptake and cell size: implication of Aquaporin 9

    PubMed Central

    Potter, James J.; Koteish, Ayman; Hamilton, James; Liu, Xiaopu; Liu, Kun; Agre, Peter; Mezey, Esteban

    2010-01-01

    Background The effects of ethanol and acetaldehyde on uptake of glycerol and on cell size of hepatocytes and a role Aquaporin 9 (AQP9), a glycerol transport channel, were evaluated. Methods The studies were done in primary rat and mouse hepatocytes. The uptake of [14C] glycerol was determined with hepatocytes in suspension. For determination of cell size, rat hepatocytes on coated dishes were incubated with a lipophilic fluorochrome that is incorporated into the cell membrane and examined by confocal microscopy. A three dimensional z scan of the cell was performed, and the middle slice of the z scan was used for area measurements. Results Acute exposure to acetaldehyde, but not to ethanol, causes a rapid increase in the uptake of glycerol and an increase in hepatocyte size, which was inhibited by HgCl2, an inhibitor of aquaporins. This was not observed in hepatocytes from AQP9 knockout mice, nor observed by direct application of acetaldehyde to AQP9 expressed in Xenopus Laevis oocytes. Prolonged 24 hours exposure to either acetaldehyde or ethanol did not result in an increase in glycerol uptake by rat hepatocytes. Acetaldehyde decreased AQP9 mRNA and AQP9 protein, while ethanol decreased AQP9 mRNA but not AQP9 protein. Ethanol, but not acetaldehyde, increased the activities of glycerol kinase and phosphoenolpyruvate carboxykinase. Conclusions The acute effects of acetaldehyde, while mediated by AQP9, are probably influenced by binding of acetaldehyde to hepatocyte membranes and changes in cell permeability. The effects of ethanol in enhancing glucose kinase, and phosphoenolpyruvate carboxykinase leading to increased formation of glycerol-3-phosphate most likely contribute to alcoholic fatty liver. PMID:21294757

  11. Extraction of defatted rice bran with subcritical aqueous acetone.

    PubMed

    Chiou, Tai-Ying; Neoh, Tze Loon; Kobayashi, Takashi; Adachi, Shuji

    2012-01-01

    Defatted rice bran extracts were obtained by subcritical treatment using aqueous acetone as extractant. Treatment with 40% (v/v) acetone at 230 °C for 5 min yielded an extract with the highest 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (0.274 mmol of ascorbic acid/g of bran), total carbohydrate (0.188 g/g of bran), protein (0.512 g/g of bran), and total phenolic contents (88.2 mg of gallic acid/g of bran). The effect of treatment temperature (70-230 °C) was investigated using 40% (v/v) acetone, and the extract under 230 °C treatment showed the highest levels of all the determinations described above. The extracts obtained with various concentrations of aqueous acetone were subjected to UV absorption spectra and HPLC analysis, and the results showed changes in composition and polarity. Antioxidative activity evaluated against oxidation of bulk linoleic acid of the extract obtained with 80% (v/v) acetone was higher than that not only of the extract from subcritical water treatment but also of that obtained 40% (v/v) acetone treatment. PMID:22878207

  12. Activation of Acetone and Other Simple Ketones in Anaerobic Bacteria.

    PubMed

    Heider, Johann; Schühle, Karola; Frey, Jasmin; Schink, Bernhard

    2016-01-01

    Acetone and other ketones are activated for subsequent degradation through carboxylation by many nitrate-reducing, phototrophic, and obligately aerobic bacteria. Acetone carboxylation leads to acetoacetate, which is subsequently activated to a thioester and degraded via thiolysis. Two different types of acetone carboxylases have been described, which require either 2 or 4 ATP equivalents as an energy supply for the carboxylation reaction. Both enzymes appear to combine acetone enolphosphate with carbonic phosphate to form acetoacetate. A similar but more complex enzyme is known to carboxylate the aromatic ketone acetophenone, a metabolic intermediate in anaerobic ethylbenzene metabolism in denitrifying bacteria, with simultaneous hydrolysis of 2 ATP to 2 ADP. Obligately anaerobic sulfate-reducing bacteria activate acetone to a four-carbon compound as well, but via a different process than bicarbonate- or CO2-dependent carboxylation. The present evidence indicates that either carbon monoxide or a formyl residue is used as a cosubstrate, and that the overall ATP expenditure of this pathway is substantially lower than in the known acetone carboxylase reactions. PMID:26958851

  13. The total margin of exposure of ethanol and acetaldehyde for heavy drinkers consuming cider or vodka.

    PubMed

    Lachenmeier, Dirk W; Gill, Jan S; Chick, Jonathan; Rehm, Jürgen

    2015-09-01

    Heavy drinkers in Scotland may consume 1600 g ethanol per week. Due to its low price, cider may be preferred over other beverages. Anecdotal evidence has linked cider to specific health hazards beyond other alcoholic beverages. To examine this hypothesis, nine apple and pear cider samples were chemically analysed for constituents and contaminants. None of the products exceeded regulatory or toxicological thresholds, but the regular occurrence of acetaldehyde in cider was detected. To provide a quantitative risk assessment, two collectives of exclusive drinkers of cider and vodka were compared and the intake of acetaldehyde was estimated using probabilistic Monte-Carlo type analysis. The cider consumers were found to ingest more than 200-times the amount of acetaldehyde consumed by vodka consumers. The margins of exposure (MOE) of acetaldehyde were 224 for the cider and over 220,000 for vodka consumers. However, if the effects of ethanol were considered in a cumulative assessment of the combined MOE, the effect of acetaldehyde was minor and the combined MOE for both groups was 0.3. We suggest that alcohol policy priority should be given on reducing ethanol intake by measures such as minimum pricing, rather than to focus on acetaldehyde. PMID:26116882

  14. Effect of rinsing with ethanol-containing mouthrinses on the production of salivary acetaldehyde.

    PubMed

    Moazzez, Rebecca; Thompson, Hayley; Palmer, Richard M; Wilson, Ron F; Proctor, Gordon B; Wade, William G

    2011-12-01

    It has been suggested that the use of alcohol-containing mouthrinses could lead to the presence of acetaldehyde in saliva. In this cross-over study, salivary acetaldehyde levels and microbial profiles were determined before and after rinsing with ethanol-containing mouthrinses with essential oils (EO) and cetyl pyridinium chloride (CPC) as the active ingredients, and with 21.6% ethanol and water controls. After rinsing with all ethanol-containing rinses, acetaldehyde was detected in saliva after 30 s but declined to low levels after 5 min. The highest peak levels were seen with the ethanol control (median = 82.9 μM at 2 min) and were significantly higher than those seen at the same time after rinsing with the EO rinse (43.1 μM). There was no correlation between microbial counts or plaque scores and acetaldehyde levels, although dividing the subjects on the basis of a peak acetaldehyde salivary concentration of > 90.8 μM after the ethanol rinse revealed that the high responders were highly significantly more likely to harbour salivary yeasts than were the low responders. Rinsing with ethanol-containing mouthrinses causes a rapid, but transient, increase in salivary acetaldehyde levels. PMID:22112029

  15. Atmospheric chemistry of toxic contaminants 2. Saturated aliphatics: Acetaldehyde, dioxane, ethylene glycol ethers, propylene oxide

    SciTech Connect

    Grosjean, D. )

    1990-11-01

    Detailed mechanisms are outlined for the chemical reactions that contribute to in-situ formation and atmospheric removal of the saturated aliphatic contaminants acetaldehyde, dioxane, ethylene glycol ethers (methyl, ethyl, n-butyl) and propylene oxide. In-situ formation is of major importance for acetaldehyde. In-situ removal involves reaction with OH (all compounds) and, for acetaldehyde, photolysis and reaction with NO{sub 3}. Acetaldehyde, dioxane, and the ethers are rapidly removed (half-lives of less than one day), leading to PAN (acetaldehyde) and to 2-oxodioxane and formaldehyde (dioxane). Reaction products of the glycol ethers include a large number of hydroxyesters, hydroxyacids, and hydroxycarbonyls. Propylene oxide reacts only slowly with OH, with an atmospheric half-life of 3 - 10 days, to yeild formaldehyde, acetaldehyde, and PAN. Uncertainties in the reaction mechanisms for dioxane, the glycol ethers, and propylene oxide are discussed and include C-C vs C-O bond scission in alkoxy radicals as well as alkoxy radical unimolecular decomposition vs reaction with oxygen.

  16. Biofiltration of methanol vapor

    SciTech Connect

    Shareefdeen, Z.; Baltzis, B.C. ); Oh, Youngsook; Bartha, R. )

    1993-03-05

    Biofiltration of solvent and fuel vapors may offer a cost-effective way to comply with increasingly strict air emission standards. An important step in the development of this technology is to derive and validate mathematical models of the biofiltration process for predictive and scaleup calculations. For the study of methanol vapor biofiltration, an 8-membered bacterial consortium was obtained from methanol-exposed soil. The bacteria were immobilized on solid support and packed into a 5-cm diameter, 60-cm-high column provided with appropriate flowmeters and sampling ports. The solid support was prepared by mixing two volumes of peat with three volumes of perlite particles. Two series of experiments were performed. In the first, the inlet methanol concentration was kept constant while the superficial air velocity was varied from run to run. In the second series, the air flow rate (velocity) was kept constant while the inlet methanol concentration was varied. The unit proved effective in removing methanol at rates up to 112.8 g h[sup [minus]1] m[sup [minus]3] packing. A mathematical model has been derived and validated. The model described and predicted experimental results closely. Both experimental data and model predictions suggest that the methanol biofiltration process was limited by oxygen diffusion and methanol degradation kinetics.

  17. Theoretical survey of the reaction between osmium and acetaldehyde

    NASA Astrophysics Data System (ADS)

    Dai, Guo-Liang; Wang, Chuan-Feng

    2012-05-01

    The mechanism of the reaction of osmium atom with acetaldehyde has been investigated with a DFT approach. All the stationary points are determined at the UB3LYP/ sdd/6-311++G** level of the theory. Both ground and excited state potential energy surfaces are investigated in detail. The present results show that the title reaction start with the formation of a CH3CHO-metal complex followed by C-C, aldehyde C-H, C-O, and methyl C-H activation. These reactions can lead to four different products (HOsCH3 + CO, OsCO + CH4, OsCOCH3 + H, and OsO + C2H4). The minimum energy reaction path is found to involve the spin inversion in the initial reaction step. This potential energy curve-crossing dramatically affects reaction exothermic. The present results may be helpful in understanding the mechanism of the title reaction and further experimental investigation of the reaction.

  18. Acetaldehyde involvement in ethanol's postabsortive effects during early ontogeny.

    PubMed

    March, Samanta M; Abate, P; Molina, Juan C

    2013-01-01

    Clinical and biomedical studies sustains the notion that early ontogeny is a vulnerable window to the impact of alcohol. Experiences with the drug during these stages increase latter disposition to prefer, use or abuse ethanol. This period of enhanced sensitivity to ethanol is accompanied by a high rate of activity in the central catalase system, which metabolizes ethanol in the brain. Acetaldehyde (ACD), the first oxidation product of ethanol, has been found to share many neurobehavioral effects with the drug. Cumulative evidence supports this notion in models employing adults. Nevertheless very few studies have been conducted to analyze the role of ACD in ethanol postabsorptive effects, in newborns or infant rats. In this work we review recent experimental literature that syndicates ACD as a mediator agent of reinforcing aspects of ethanol, during early ontogenetic stages. We also show a meta-analytical correlational approach that proposes how differences in the activity of brain catalase across ontogeny, could be modulating patterns of ethanol consumption. PMID:23801947

  19. Acetaldehyde involvement in ethanol's postabsortive effects during early ontogeny

    PubMed Central

    March, Samanta M.; Abate, P.; Molina, Juan C.

    2013-01-01

    Clinical and biomedical studies sustains the notion that early ontogeny is a vulnerable window to the impact of alcohol. Experiences with the drug during these stages increase latter disposition to prefer, use or abuse ethanol. This period of enhanced sensitivity to ethanol is accompanied by a high rate of activity in the central catalase system, which metabolizes ethanol in the brain. Acetaldehyde (ACD), the first oxidation product of ethanol, has been found to share many neurobehavioral effects with the drug. Cumulative evidence supports this notion in models employing adults. Nevertheless very few studies have been conducted to analyze the role of ACD in ethanol postabsorptive effects, in newborns or infant rats. In this work we review recent experimental literature that syndicates ACD as a mediator agent of reinforcing aspects of ethanol, during early ontogenetic stages. We also show a meta-analytical correlational approach that proposes how differences in the activity of brain catalase across ontogeny, could be modulating patterns of ethanol consumption. PMID:23801947

  20. Isobutanol-methanol mixtures from synthesis gas. Quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Iglesia, E.

    1995-07-24

    Three types of catalytic materials for alcohol coupling and isobutanol synthesis reactions have been prepared and characterized by BET surface area and x-ray diffraction methods. The materials consist of (1) modified low-temperature methanol synthesis catalysts and their constitutive components, (2) high temperature isobutanol synthesis catalysts consisting of Nb-Zn-Zr mixed oxides promoted with Cu, and (3) high surface area basic oxides prepared from hydrotalcite precursors and active in alcohol coupling reactions. Mechanistic and kinetic studies of methanol and ethanol coupling reactions using labeled compounds have shown that the reaction proceeds via an intermediate dehydrogenation reaction that form aldehydic intermediates. Ethanol is much more reactive than methanol because it forms a more thermodynamically stable acetaldehyde intermediate with kinetically available aldol condensation pathways for the formation of higher oxygenates. The presence of Cs in this catalysts decreases dehydrogenation rates but prevents the decomposition of methanol and ethanol to CO and H{sub 2}.

  1. Acetone production with metabolically engineered strains of Acetobacterium woodii.

    PubMed

    Hoffmeister, Sabrina; Gerdom, Marzena; Bengelsdorf, Frank R; Linder, Sonja; Flüchter, Sebastian; Öztürk, Hatice; Blümke, Wilfried; May, Antje; Fischer, Ralf-Jörg; Bahl, Hubert; Dürre, Peter

    2016-07-01

    Expected depletion of oil and fossil resources urges the development of new alternative routes for the production of bulk chemicals and fuels beyond petroleum resources. In this study, the clostridial acetone pathway was used for the formation of acetone in the acetogenic bacterium Acetobacterium woodii. The acetone production operon (APO) containing the genes thlA (encoding thiolase A), ctfA/ctfB (encoding CoA transferase), and adc (encoding acetoacetate decarboxylase) from Clostridium acetobutylicum were cloned under the control of the thlA promoter into four vectors having different replicons for Gram-positives (pIP404, pBP1, pCB102, and pCD6). Stable replication was observed for all constructs. A. woodii [pJIR_actthlA] achieved the maximal acetone concentration under autotrophic conditions (15.2±3.4mM). Promoter sequences of the genes ackA from A. woodii and pta-ack from C. ljungdahlii were determined by primer extension (PEX) and cloned upstream of the APO. The highest acetone production in recombinant A. woodii cells was achieved using the promoters PthlA and Ppta-ack. Batch fermentations using A. woodii [pMTL84151_actthlA] in a bioreactor revealed that acetate concentration had an effect on the acetone production, due to the high Km value of the CoA transferase. In order to establish consistent acetate concentration within the bioreactor and to increase biomass, a continuous fermentation process for A. woodii was developed. Thus, acetone productivity of the strain A. woodii [pMTL84151_actthlA] was increased from 1.2mgL(-1)h(-1) in bottle fermentation to 26.4mgL(-1)h(-1) in continuous gas fermentation. PMID:26971669

  2. Acetone in the atmosphere: Distribution, sources, and sinks

    NASA Technical Reports Server (NTRS)

    Singh, H. B.; O'Hara, D.; Herlth, D.; Sachse, W.; Blake, D. R.; Bradshaw, J. D.; Kanakidou, M.; Crutzen, P. J.

    1994-01-01

    Acetone (CH3COCH3) was found to be the dominant nonmethane organic species present in the atmosphere sampled primarily over eastern Canada (0-6 km, 35 deg-65 deg N) during ABLE3B (July to August 1990). A concentration range of 357 to 2310 ppt (= 10(exp -12) v/v) with a mean value of 1140 +/- 413 ppt was measured. Under extremely clean conditions, generally involving Arctic flows, lowest (background) mixing ratios of 550 +/- 100 ppt were present in much of the troposphere studied. Correlations between atmospheric mixing ratios of acetone and select species such as C2H2, CO, C3H8, C2Cl4 and isoprene provided important clues to its possible sources and to the causes of its atmospheric variability. Biomass burning as a source of acetone has been identified for the first time. By using atmospheric data and three-dimensional photochemical models, a global acetone source of 40-60 Tg (= 10(exp 12) g)/yr is estimated to be present. Secondary formation from the atmospheric oxidation of precursor hydrocarbons (principally propane, isobutane, and isobutene) provides the single largest source (51%). The remainder is attributable to biomass burning (26%), direct biogenic emissions (21%), and primary anthropogenic emissions (3%). Atmospheric removal of acetone is estimated to be due to photolysis (64%), reaction with OH radicals (24%), and deposition (12%). Model calculations also suggest that acetone photolysis contributed significantly to PAN formation (100-200 ppt) in the middle and upper troposphere of the sampled region and may be important globally. While the source-sink equation appears to be roughly balanced, much more atmospheric and source data, especially from the southern hemisphere, are needed to reliably quantify the atmospheric budget of acetone.

  3. The Methanol Multibeam Survey

    NASA Astrophysics Data System (ADS)

    Green, James A.; Cohen, R. J.; Caswell, J. L.; Fuller, G. A.; Brooks, K.; Burton, M. G.; Chrysostomou, A.; Diamond, P. J.; Ellingsen, S. P.; Gray, M. D.; Hoare, M. G.; Masheder, M. R. W.; McClure-Griffiths, N.; Pestalozzi, M.; Phillips, C.; Quinn, L.; Thompson, M. A.; Voronkov, M.; Walsh, A.; Ward-Thompson, D.; Wong-McSweeney, D.; Yates, J. A.; Cox, J.

    2007-03-01

    A new 7-beam methanol multibeam receiver is being used to survey the Galaxy for newly forming massive stars, that are pinpointed by strong methanol maser emission at 6.668 GHz. The receiver, jointly constructed by Jodrell Bank Observatory (JBO) and the Australia Telescope National Facility (ATNF), was successfully commissioned at Parkes in January 2006. The Parkes-Jodrell survey of the Milky Way for methanol masers is two orders of magnitude faster than previous systematic surveys using 30-m class dishes, and is the first systematic survey of the entire Galactic plane. The first 53 days of observations with the Parkes telescope have yielded 518 methanol sources, of which 218 are new discoveries. We present the survey methodology as well as preliminary results and analysis.

  4. Methanol Cannon Demonstrations Revisited.

    ERIC Educational Resources Information Center

    Dolson, David A.; And Others

    1995-01-01

    Describes two variations on the traditional methanol cannon demonstration. The first variation is a chain reaction using real metal chains. The second example involves using easily available components to produce sequential explosions that can be musical in nature. (AIM)

  5. The Asian methanol market

    SciTech Connect

    Nagase, Hideki

    1995-12-31

    For the purpose of this presentation, Asia has been broadly defined as a total of 15 countries, namely Japan, Korea, Taiwan, China, Hong Kong, the Philippines, Thailand, Malaysia, Singapore, Indonesia, Myanmar, India, Vietnam, Australia and New Zealand. In 1994 and the first half of 1995, the methanol industry and its derivative industries experienced hard time, because of extraordinarily high methanol prices. In spite of this circumstance, methanol demand in Asian countries has been growing steadily and remarkably, following Asian high economic growth. Most of this growth in demand has been and will continue to be met by outside supply. However, even with increased import of methanol from outside of Asia, as a result of this growth, Asian trade volume will be much larger in the coming years. Asian countries must turn their collective attention to making logistics and transportation for methanol and its derivatives more efficient in the Asian region to make better use of existing supply resources. The author reviews current economic growth as his main topic, and explains the forecast of the growth of methanol demand and supply in Asian countries in the near future.

  6. Sensor gas analyzer for acetone determination in expired air

    NASA Astrophysics Data System (ADS)

    Baranov, Vitaly V.

    2001-05-01

    Diseases and changes in the way of life change the concentration and composition of the expired air. Our adaptable gas analyzer is intended for the selective analysis of expired air and can be adapted for the solution of current diagnostic and analytical tasks by the user (a physician or a patient). Having analyzed the existing trends in the development of noninvasive diagnostics we have chosen the method of noninvasive acetone detection in expired air, where the acetone concentration correlates with blood and urine glucose concentrations. The appearance of acetone in expired air is indicative of disorders that may be caused not only by diabetes but also be wrong diet, incorrect sportsmen training etc. To control the disorders one should know the acetone concentration in the human body. This knowledge allows one to judge upon the state of the patient, choose a correct diet that will not cause damage to the patient's health, determine sportsmen training efficiency and results and solve the artificial pancreas problem. Our device provide highly accurate analysis, rapid diagnostics and authentic acetone quantification in the patient's body at any time aimed at prediction of the patient's state and assessing the efficiency of the therapy used. Clinical implementation of the device will improve the health and save lives of many thousands of diabetes sufferers.

  7. Nitrate-Dependent Degradation of Acetone by Alicycliphilus and Paracoccus Strains and Comparison of Acetone Carboxylase Enzymes ▿

    PubMed Central

    Dullius, Carlos Henrique; Chen, Ching-Yuan; Schink, Bernhard

    2011-01-01

    A novel acetone-degrading, nitrate-reducing bacterium, strain KN Bun08, was isolated from an enrichment culture with butanone and nitrate as the sole sources of carbon and energy. The cells were motile short rods, 0.5 to 1 by 1 to 2 μm in size, which gave Gram-positive staining results in the exponential growth phase and Gram-negative staining results in the stationary-growth phase. Based on 16S rRNA gene sequence analysis, the isolate was assigned to the genus Alicycliphilus. Besides butanone and acetone, the strain used numerous fatty acids as substrates. An ATP-dependent acetone-carboxylating enzyme was enriched from cell extracts of this bacterium and of Alicycliphilus denitrificans K601T by two subsequent DEAE Sepharose column procedures. For comparison, acetone carboxylases were enriched from two additional nitrate-reducing bacterial species, Paracoccus denitrificans and P. pantotrophus. The products of the carboxylase reaction were acetoacetate and AMP rather than ADP. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of cell extracts and of the various enzyme preparations revealed bands corresponding to molecular masses of 85, 78, and 20 kDa, suggesting similarities to the acetone carboxylase enzymes described in detail for the aerobic bacterium Xanthobacter autotrophicus strain Py2 (85.3, 78.3, and 19.6 kDa) and the phototrophic bacterium Rhodobacter capsulatus. Protein bands were excised and compared by mass spectrometry with those of acetone carboxylases of aerobic bacteria. The results document the finding that the nitrate-reducing bacteria studied here use acetone-carboxylating enzymes similar to those of aerobic and phototrophic bacteria. PMID:21841031

  8. Effect of (L)-cysteine on acetaldehyde self-administration.

    PubMed

    Peana, Alessandra T; Muggironi, Giulia; Fois, Giulia R; Zinellu, Manuel; Sirca, Donatella; Diana, Marco

    2012-08-01

    Acetaldehyde (ACD), the first metabolite of ethanol, has been implicated in several behavioural actions of alcohol, including its reinforcing effects. Recently, we reported that l-cysteine, a sequestrating agent of ACD, reduced oral ethanol self-administration and that ACD was orally self-administered. This study examined the effects of l-cysteine pre-treatment during the acquisition and maintenance phases of ACD (0.2%) self-administration as well as on the deprivation effect after ACD extinction and on a progressive ratio (PR) schedule of reinforcement. In a separate PR schedule of reinforcement, the effect of l-cysteine was assessed on the break-point produced by ethanol (10%). Furthermore, we tested the effect of l-cysteine on saccharin (0.2%) reinforcement. Wistar rats were trained to self-administer ACD by nose poking on a fixed ratio (FR1) schedule in 30-min daily sessions. Responses on an active nose-poke caused delivery of ACD solution, whereas responses on an inactive nose-poke had no consequences. l-cysteine reduced the acquisition (40 mg/kg), the maintenance and the deprivation effect (100 mg/kg) of ACD self-administration. Furthermore, at the same dose, l-cysteine (120 mg/kg) decreased both ACD and ethanol break point. In addition, l-cysteine was unable to suppress the different responses for saccharin, suggesting that its effect did not relate to an unspecific decrease in a general motivational state. Compared to saline, l-cysteine did not modify responses on inactive nose-pokes, suggesting an absence of a non-specific behavioural activation. Taken together, these results could support the hypotheses that ACD possesses reinforcing properties and l-cysteine reduces motivation to self-administer ACD. PMID:22440691

  9. Isopropanol and acetone induces vinyl chloride degradation in Rhodococcus rhodochrous.

    PubMed

    Kuntz, Robin L; Brown, Lewis R; Zappi, Mark E; French, W Todd

    2003-11-01

    In situ bioremediation of vinyl chloride (VC)-contaminated waste sites requires a microorganism capable of degrading VC. While propane will induce an oxygenase to accomplish this goal, its use as a primary substrate in bioremediation is complicated by its flammability and low water solubility. This study demonstrates that two degradation products of propane, isoproponal and acetone, can induce the enzymes in Rhodococcus rhodochrous that degrade VC. Additionally, a reasonable number of cells for bioremediation can be grown on conventional solid bacteriological media (nutrient agar, tryptic soy agar, plate count agar) in an average microbiological laboratory and then induced to produce the necessary enzymes by incubation of a resting cell suspension with isopropanol or acetone. Since acetone is more volatile than isopropanol and has other undesirable characteristics, isopropanol is the inducer of choice. It offers a non-toxic, water-soluble, relatively inexpensive alternative to propane for in situ bioremediation of waste sites contaminated with VC. PMID:14605909

  10. Is interstellar acetone produced by ion-molecule chemistry?

    NASA Astrophysics Data System (ADS)

    Herbst, Eric; Giles, Kevin; Smith, David

    1990-08-01

    The rate coefficient for the ion-molecule radiative association reaction CH3(+) + CH3CHO - (CH3)2CHO(+) has bee calculated in the range 10-300 K with the phase-space techique and the aid of a laboratory measurement of the analogous three-body association at room temperature. It has been suggested by Combes et al. (1987) that this reaction followed by dissociative recombination is responsible for the observed abundance of acetone (CH3COCH3) in Sgr B2. However, it is shown here that the radiative association reaction is probably too slow even at 10 K to lead to the observed abundance of acetone in this source. The question of how acetone is produced in Sgr B2 is thus still unanswered.

  11. Acetone Powder From Dormant Seeds of Ricinus communis L

    NASA Astrophysics Data System (ADS)

    Cavalcanti, Elisa D. C.; Maciel, Fábio M.; Villeneuve, Pierre; Lago, Regina C. A.; Machado, Olga L. T.; Freire, Denise M. G.

    The influence of several factors on the hydrolytic activity of lipase, present in the acetone powder from dormant castor seeds (Ricinus communis) was evaluated. The enzyme showed a marked specificity for short-chain substrates. The best reaction conditions were an acid medium, Triton X-100 as the emulsifying agent and a temperature of 30°C. The lipase activity of the acetone powder of different castor oil genotypes showed great variability and storage stability of up to 90%. The toxicology analysis of the acetone powder from genotype Nordestina BRS 149 showed a higher ricin (toxic component) content, a lower 2S albumin (allergenic compound) content, and similar allergenic potential compared with untreated seeds.

  12. Mechanistic understanding of hydrogenation of acetaldehyde on Au(111): A DFT investigation

    NASA Astrophysics Data System (ADS)

    Meng, Qingsen; Shen, Yongli; Xu, Jing; Ma, Xinbin; Gong, Jinlong

    2012-11-01

    This paper describes the reaction pathways for hydrogenation of acetaldehyde on atomic hydrogen pre-adsorbed Au(111) employing density functional theory (DFT) calculations. All the surface species involved in the reaction scheme have low diffusion barriers, suggesting that the rearrangement and movement of these species on the surface are facile under reaction condition. The hydroxyethyl is proposed to be the intermediate for the hydrogenation of acetaldehyde, and the activation energy for its formation is 0.37 eV. Additionally, the coupling reaction of hydroxyethyl and acetaldehyde - resulting in the formation of the ethylidene ethylene glycol (CH3C*HOCH(CH3)OH) species - also readily occurs at the reaction condition. Two-dimensional (2-D) polyacetaldehyde ((CH3CHO)2) can be easily hydrogenated to ethylidene ethylene glycol or ethoxy hemiacetal (CH3CH2OCH(CH3)O*); the latter can be converted to ethanol and acetaldehyde via further hydrogenation. As the hydrogenation products of ethylidene ethylene glycol and ethoxy hemiacetal, ethoxyethanol (CH3CH2OCH(CH3)OH) can be deeply hydrogenated to hydroxyethyl and ethanol. Our calculations also suggest that the formation of an ethoxyl intermediate is not likely, which agrees with the experimental observation that no deuterated acetaldehydes have been detected in isotopic measurements.

  13. Adsorption and Reaction of Acetaldehyde on Stoichiometric and Defective SrTiO₃(100) Surfaces

    SciTech Connect

    Wang, Li Q.; Ferris, Kim F.; Azad, Samina; Engelhard, Mark H.; Peden, Charles HF.

    2004-02-05

    The adsorption and reaction of acetaldehyde (CH{sub 3}CHO), on stoichiometric (TiO{sub 2}-terminated) and reduced SrTiO{sub 3}(100) surfaces, have been investigated using temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). Acetaldehyde adsorbs molecularly on the stoichiometric SrTiO{sub 3}(100) surface that contains predominantly Ti{sup 4+} cations. The Ti{sup 4+} sites on the stoichiometric SrTiO{sub 3}(100) surface are not sufficiently active for surface reactions such as aldol condensation, as opposed to the Ti{sup 4+} ions on the TiO{sub 2}(001) surface. However, decomposition and redox reactions of acetaldehyde occur in the presence of surface defects created by Ar{sup +} sputtering. The decomposition products following reactions of acetaldehyde on the defective surface include H{sub 2}, C{sub 2}H{sub 4}, CO, C{sub 4}H{sub 6}, and C{sub 4}H{sub 8}. Reductive coupling, to produce C{sub 2}H{sub 4} and C{sub 4}H{sub 8} is the main reaction pathway for decomposition of acetaldehyde on the sputter reduced SrTiO{sub 3}(100) surface.

  14. Dissociative electron attachments to ethanol and acetaldehyde: A combined experimental and simulation study

    SciTech Connect

    Wang, Xu-Dong; Xuan, Chuan-Jin; Feng, Wen-Ling; Tian, Shan Xi

    2015-02-14

    Dissociation dynamics of the temporary negative ions of ethanol and acetaldehyde formed by the low-energy electron attachments is investigated by using the anion velocity map imaging technique and ab initio molecular dynamics simulations. The momentum images of the dominant fragments O{sup −}/OH{sup −} and CH{sub 3}{sup −} are recorded, indicating the low kinetic energies of O{sup −}/OH{sup −} for ethanol while the low and high kinetic energy distributions of O{sup −} ions for acetaldehyde. The CH{sub 3}{sup −} image for acetaldehyde also shows the low kinetic energy. With help of the dynamics simulations, the fragmentation processes are qualitatively clarified. A new cascade dissociation pathway to produce the slow O{sup −} ion via the dehydrogenated intermediate, CH{sub 3}CHO{sup −} (acetaldehyde anion), is proposed for the dissociative electron attachment to ethanol. After the electron attachment to acetaldehyde molecule, the slow CH{sub 3}{sup −} is produced quickly in the two-body dissociation with the internal energy redistributions in different aspects before bond cleavages.

  15. Correlations between serum proteins modified by acetaldehyde and biochemical variables in heavy drinkers.

    PubMed Central

    Wickramasinghe, S N; Marjot, D H; Rosalki, S B; Fink, R S

    1989-01-01

    A strong and highly significant correlation was observed between serum aspartate transaminase (AST) activity and an index of the cytotoxic activity associated with serum proteins modified by acetaldehyde in a group of 24 heavy drinkers. A weaker but significant correlation (R = 0.564, p = 0.008) was found between total serum creatine kinase activity and this index of serum cytotoxicity. As it is likely that the concentration of circulating modified protein was largely determined by the quantity of free acetaldehyde generated in the liver and that the AST activity was mainly derived from damaged hepatocytes, the data indicate a correlation between hepatic acetaldehyde generation and hepatocyte damage. This correlation may indicate either that increased quantities of acetaldehyde are released by damaged hepatocytes or that acetaldehyde is hepatotoxic in vivo. As only the creatine kinase isoenzyme present in skeletal muscle (CK-MM) was demonstrable in the serum in all but one of our patients, the data also suggest that circulating modified serum proteins may be toxic towards skeletal muscle cells. PMID:2703546

  16. Synergistic Interaction of Methanol Extract from Canarium odontophyllum Miq. Leaf in Combination with Oxacillin against Methicillin-Resistant Staphylococcus aureus (MRSA) ATCC 33591

    PubMed Central

    Sandra, Vimashiinee

    2016-01-01

    Canarium odontophyllum (CO) Miq. has been considered as one of the most sought-after plant species in Sarawak, Malaysia, due to its nutritional and pharmacological benefits. This study aimed to evaluate the pharmacodynamic interaction of crude methanol and acetone extracts from CO leaves in combination with oxacillin, vancomycin, and linezolid, respectively, against MRSA ATCC 33591 as preliminary study has reported its potential antistaphylococcal activity. The broth microdilution assay revealed that both methanol and acetone extracts were bactericidal with Minimum Inhibitory Concentration (MIC) of 312.5 μg/mL and 156.25 μg/mL and Minimum Bactericidal Concentration (MBC) of 625 μg/mL and 312.5 μg/mL, respectively. Fractional Inhibitory Concentration (FIC) indices were obtained via the chequerboard dilution assay where methanol extract-oxacillin, acetone extract-oxacillin, methanol extract-linezolid, and acetone extract-linezolid combinations exhibited synergism (FIC index ≤ 0.5). The synergistic action of the methanol extract-oxacillin combination was verified by time-kill analysis where bactericidal effect was observed at concentration of 1/8 × MIC of both compounds at 9.6 h compared to oxacillin alone. As such, these findings postulated that both extracts exert their anti-MRSA mechanism of action similar to that of vancomycin and provide evidence that the leaves of C. odontophyllum have the potential to be developed into antistaphylococcal agents. PMID:27006659

  17. Synergistic Interaction of Methanol Extract from Canarium odontophyllum Miq. Leaf in Combination with Oxacillin against Methicillin-Resistant Staphylococcus aureus (MRSA) ATCC 33591.

    PubMed

    Basri, Dayang Fredalina; Sandra, Vimashiinee

    2016-01-01

    Canarium odontophyllum (CO) Miq. has been considered as one of the most sought-after plant species in Sarawak, Malaysia, due to its nutritional and pharmacological benefits. This study aimed to evaluate the pharmacodynamic interaction of crude methanol and acetone extracts from CO leaves in combination with oxacillin, vancomycin, and linezolid, respectively, against MRSA ATCC 33591 as preliminary study has reported its potential antistaphylococcal activity. The broth microdilution assay revealed that both methanol and acetone extracts were bactericidal with Minimum Inhibitory Concentration (MIC) of 312.5 μg/mL and 156.25 μg/mL and Minimum Bactericidal Concentration (MBC) of 625 μg/mL and 312.5 μg/mL, respectively. Fractional Inhibitory Concentration (FIC) indices were obtained via the chequerboard dilution assay where methanol extract-oxacillin, acetone extract-oxacillin, methanol extract-linezolid, and acetone extract-linezolid combinations exhibited synergism (FIC index ≤ 0.5). The synergistic action of the methanol extract-oxacillin combination was verified by time-kill analysis where bactericidal effect was observed at concentration of 1/8 × MIC of both compounds at 9.6 h compared to oxacillin alone. As such, these findings postulated that both extracts exert their anti-MRSA mechanism of action similar to that of vancomycin and provide evidence that the leaves of C. odontophyllum have the potential to be developed into antistaphylococcal agents. PMID:27006659

  18. Specific Anion Effects on the Kinetics of Iodination of Acetone.

    PubMed

    Lo Nostro, Pierandrea; Mazzini, Virginia; Ninham, Barry W; Ambrosi, Moira; Dei, Luigi; Baglioni, Piero

    2016-08-18

    Specific ion effects on the kinetics of iodination of acetone in an acidic medium are investigated by UV/Vis spectrophotometry as a function of nature of the acid and temperature. The results indicate that the order of the reaction with respect to acetone is practically unaffected by the composition of the acid while the value of the mixed constant k1 K increases according to the sequence HBr

  19. Comparative study of the damage produced by acute ethanol and acetaldehyde treatment in a human fetal hepatic cell line.

    PubMed

    Olivares, I P; Bucio, L; Souza, V; Cárabez, A; Gutiérrez-Ruiz, M C

    1997-06-27

    The effects of acute ethanol and acetaldehyde treatment on cell proliferation, cell adhesion capacity, neutral red incorporation into lysosomes, glutathione content, protein sulfhydryl compounds, lipid peroxidation, inner mitochondrial membrane integrity (MTT test), lactate dehydrogenase activity (LDH) and ultrastructural alterations were investigated in a human fetal hepatic cell line (WRL-68 cells). WRL-68 cells were used, due to the fact that, although this cell line expresses some hepatic characteristics, it does not express alcohol dehydrogenase or cytochrome P450 activity, so it could be a good model to study the effect of the toxic agents per se. Cells were exposed during 120 min with 200 mM ethanol or 10 mM acetaldehyde. Under these conditions, cells presented 100% viability and no morphological alteration was observed by light microscopy. Acetaldehyde-treated cells reduced their proliferative capacity drastically while the ethanol-treated ones presented no difference with control cells. Cell adhesion to substrate, measured as time required to adhere to the substrate and time required to detach from the substrate, was diminished in acetaldehyde WRL-68-treated cells. Cytotoxicity measures as neutral red and MTT test showed that acetaldehyde-treated cells presented more damage than ethanol-treated ones. Cellular respiratory capacity was compromised by acetaldehyde treatment due to 40% less oxygen consumption than control cells. Lipid peroxidation values, measured as malondialdehyde production, were higher in ethanol-treated WRL-68 cells (127%) than in acetaldehyde-treated ones (60%) to control cell values. Lactate dehydrogenase activity (LDH) in extracellular media of ethanol-treated cells presented the highest values. GSH content was reduced 95% and thiol protein content was diminished severely in acetaldehyde-treated cells. Transmission electron microscopy showed more ultrastructural alterations in cells treated with acetaldehyde. The results indicate that

  20. Acetaldehyde and parkinsonism: role of CYP450 2E1

    PubMed Central

    Vaglini, Francesca; Viaggi, Cristina; Piro, Valentina; Pardini, Carla; Gerace, Claudio; Scarselli, Marco; Corsini, Giovanni Umberto

    2013-01-01

    The present review update the relationship between acetaldehyde (ACE) and parkinsonism with a specific focus on the role of P450 system and CYP 2E1 isozyme particularly. We have indicated that ACE is able to enhance the parkinsonism induced in mice by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a neurotoxin able to damage the nigrostriatal dopaminergic pathway. Similarly diethyldithiocarbamate, the main metabolite of disulfiram, a drug widely used to control alcoholism, diallylsulfide (DAS) and phenylisothiocyanate also markedly enhance the toxin-related parkinsonism. All these compounds are substrate/inhibitors of CYP450 2E1 isozyme. The presence of CYP 2E1 has been detected in the dopamine (DA) neurons of rodent Substantia Nigra (SN), but a precise function of the enzyme has not been elucidated yet. By treating CYP 2E1 knockout (KO) mice with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, the SN induced lesion was significantly reduced when compared with the lesion observed in wild-type animals. Several in vivo and in vitro studies led to the conclusion that CYP 2E1 may enhance the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity in mice by increasing free radical production inside the dopaminergic neurons. ACE is a good substrate for CYP 2E1 enzyme as the other substrate-inhibitors and by this way may facilitate the susceptibility of dopaminergic neurons to toxic events. The literature suggests that ethanol and/or disulfiram may be responsible for toxic parkinsonism in human and it indicates that basal ganglia are the major targets of disulfiram toxicity. A very recent study reports that there are a decreased methylation of the CYP 2E1 gene and increased expression of CYP 2E1 mRNA in Parkinson's disease (PD) patient brains. This study suggests that epigenetic variants of this cytochrome contribute to the susceptibility, thus confirming multiples lines of evidence which indicate a link between environmental toxins and PD. PMID:23801948

  1. Impact of bioethanol fuel implementation in transport based on modelled acetaldehyde concentration in the urban environment.

    PubMed

    Sundvor, Ingrid; López-Aparicio, Susana

    2014-10-15

    This study shows the results obtained from emission and air dispersion modelling of acetaldehyde in the city of Oslo and associated with the circulation of bioethanol vehicles. Two scenarios of bioethanol implementation, both realistic and hypothetical, have been considered under winter conditions; 1) realistic baseline scenario, which corresponds to the current situation in Oslo where one bus line is running with bioethanol (E95; 95% ethanol-5% petrol) among petrol and diesel vehicles; and 2) a hypothetical scenario characterized by a full implementation of high-blend bioethanol (i.e. E85) as fuel for transportation, and thus an entire bioethanol fleet. The results indicate that a full implementation of bioethanol will have a certain impact on urban air quality due to direct emissions of acetaldehyde. Acetaldehyde emissions are estimated to increase by 233% and concentration levels increase up to 650% with regard to the baseline. PMID:25064718

  2. Redirection of the Reaction Specificity of a Thermophilic Acetolactate Synthase toward Acetaldehyde Formation

    PubMed Central

    Cheng, Maria; Yoshiyasu, Hayato; Okano, Kenji; Ohtake, Hisao; Honda, Kohsuke

    2016-01-01

    Acetolactate synthase and pyruvate decarboxylase are thiamine pyrophosphate-dependent enzymes that convert pyruvate into acetolactate and acetaldehyde, respectively. Although the former are encoded in the genomes of many thermophiles and hyperthermophiles, the latter has been found only in mesophilic organisms. In this study, the reaction specificity of acetolactate synthase from Thermus thermophilus was redirected to catalyze acetaldehyde formation to develop a thermophilic pyruvate decarboxylase. Error-prone PCR and mutant library screening led to the identification of a quadruple mutant with 3.1-fold higher acetaldehyde-forming activity than the wild-type. Site-directed mutagenesis experiments revealed that the increased activity of the mutant was due to H474R amino acid substitution, which likely generated two new hydrogen bonds near the thiamine pyrophosphate-binding site. These hydrogen bonds might result in the better accessibility of H+ to the substrate-cofactor-enzyme intermediate and a shift in the reaction specificity of the enzyme. PMID:26731734

  3. Feasibility studies of a fuel cell for cogeneration of homogeneously catalyzed acetaldehyde and electricity from ethanol

    SciTech Connect

    Malhotra, S.; Datta, R.

    1996-10-01

    The development and feasibility of a novel fuel cell for simultaneously generating electricity and homogeneously catalyzed acetaldehyde from ethanol are reported. The fuel cell is based on the supported molten-salt electrocatalysis technique that allows use of homogeneous (liquid-phase) catalysts in fuel cells for the first time. The electrocatalytic reaction combines the chemistry of the Wacker process conventionally used for acetaldehyde production from the partial oxidation of ethylene and that of the Veba-Chemie method. Nafion membranes impregnated with different electrolytic materials were used in the fuel cell as electrolytes to allow operation at reaction temperatures up to 165 C. Results obtained are comparable to those reported in the literature on partial oxidation of ethylene to acetaldehyde in a fuel cell based on conventional heterogeneous electrocatalysts.

  4. Optical properties of polyaniline-coated silica spheres: aging effect in acetone

    NASA Astrophysics Data System (ADS)

    Kim, Byoung-Wu; Kim, Sang-Jo; Kang, So-Yeon; Moon, Sang-Hyeon; Park, Eun-Hye; Kang, Kwang-Sun

    2015-10-01

    Polyaniline (PAn)-coated silica spheres have been synthesized by attaching various amounts of N-[3- (trimethoxysilyl)propyl]aniline (TMSPA) and polymerizing with ammonium persulfate. The ratios of tetraethoxy orthosilicate and TMSPA were 10:1 (PAn-A), 5:1 (PAn-B), and 3:1 (PAn-C). After polymerization of the aniline moieties the -OH absorption peak drastically reduced and the new sharp peaks appeared at 1398 cm-1 and 617 cm-1 representing C-N and C-S stretching vibrations, respectively. The polymerized spheres were soaked into the acetone for three months. New absorption peak at 1712 cm-1 representing C=O stretching vibration of an ester appears after three months storage in acetone and becomes stronger with the smaller amount of PAn. Although the sphere film color is gray when it is dried, the color turned to dark when it was wetted with methanol. Complicated solvatochromic behavior was observed for whole UV-visible range depending on the solvent. The solution color changed from clear to dark brown, brown, and yellow for the PAnA, PAnB and PAnC, respectively. The absorption peaks of the dried solution for PAn-A and PAn-B at 3230, 2972, 2926, 1712, 1434/1377, and 1051 cm-1 represent C-OH, R-CH3, R2-CH2, -C=O, C-H, and Si- O-Si absorption, respectively. Photoluminescence peak of the solution shifted toward longer wavelength with the decrease the amount of PAn. The sequence of the amount of new material formation is PAn-A > PAn-B > PAn-C.

  5. EPAC activation inhibits acetaldehyde-induced activation and proliferation of hepatic stellate cell via Rap1.

    PubMed

    Yang, Yan; Yang, Feng; Wu, Xiaojuan; Lv, Xiongwen; Li, Jun

    2016-05-01

    Hepatic stellate cells (HSCs) activation represents an essential event during alcoholic liver fibrosis (ALF). Previous studies have demonstrated that the rat HSCs could be significantly activated after exposure to 200 μmol/L acetaldehyde for 48 h, and the cAMP/PKA signaling pathways were also dramatically upregulated in activated HSCs isolated from alcoholic fibrotic rat liver. Exchange protein activated by cAMP (EPAC) is a family of guanine nucleotide exchange factors (GEFs) for the small Ras-like GTPases Rap, and is being considered as a vital mediator of cAMP signaling in parallel with the principal cAMP target protein kinase A (PKA). Our data showed that both cAMP/PKA and cAMP/EPAC signaling pathways were involved in acetaldehyde-induced HSCs. Acetaldehyde could reduce the expression of EPAC1 while enhancing the expression of EPAC2. The cAMP analog Me-cAMP, which stimulates the EPAC/Rap1 pathway, could significantly decrease the proliferation and collagen synthesis of acetaldehyde-induced HSCs. Furthermore, depletion of EPAC2, but not EPAC1, prevented the activation of HSC measured as the production of α-SMA and collagen type I and III, indicating that EPAC1 appears to have protective effects on acetaldehyde-induced HSCs. Curiously, activation of PKA or EPAC perhaps has opposite effects on the synthesis of collagen and α-SMA: EPAC activation by Me-cAMP increased the levels of GTP-bound (activated) Rap1 while PKA activation by Phe-cAMP had no significant effects on such binding. These results suggested that EPAC activation could inhibit the activation and proliferation of acetaldehyde-induced HSCs via Rap1. PMID:26854595

  6. NASOPHARYNGEAL CONCENTRATIONS IN THE HUMAN VOLUNTEER BREATHING ACETONE

    EPA Science Inventory

    In an effort to examine the absorption of a common chemical into the nasopharyngeal region in humans, a 57 year old male volunteer inhaled uniformly labeled 13C-acetone at 1.4 ppm for 30 min while performing different breathing maneuvers; nose inhale, nose exhale (NINE); mouth ...

  7. [Death after explosion of an "empty" acetone barrel].

    PubMed

    Preuss-Wössner, Johanna; Gerling, Ivana

    2013-01-01

    Inappropriate disposal of (hazardous) waste material led to an explosion of an acetone-air mixture in a metal barrel. The lid was blown off and caused blunt traumatization with fatal exsanguination. The case furnishes information relevant for the practical teaching of forensic knowledge and the indicated consultation of medico-legal experts already at scene. PMID:24358622

  8. [Detection and determination of acetone using semiconductor sensors].

    PubMed

    Reichel, J; Seyffarth, T; Guth, U; Möbius, H H; Göckeritz, D

    1989-10-01

    Investigations to examine not only the factors of influence on evaluation of acetone by self-prepared semiconductor gas sensors, but also to prove analytical properties, were carried out using different tools. A sensor temperature of 600 degrees C and a carrier gas flow-rate of 5 l/h were found to be suitable conditions for the measurement of flow-injection apparatus. The determination of 1 microliter-samples of aqueous solutions containing 1-700 g of acetone/l yielded deviations of 4 to 33%. Using a head space method, the working temperature of 370 degrees C led to a maximum sensor response, the detection limit ranged from 37.5 to 50 mg of acetone/l. After quantifying 5 microliters-sample solutions of 40-600 mg/l, results with an accuracy of 1 to 36% were obtained. The method showed the possibility of distinguishing concentrations of acetone below and above 40 mg/l according to physiological and pathological urinary values. The tests carried out on 100 human urine samples provide a good agreement with the Legal reference method for samples containing physiological or strong pathological amounts of ketone bodies, but not for those including traces and small amounts. False-positive results might be caused by a possible presence of ethanol in urine. PMID:2616614

  9. Quantification of DNA adducts in lungs, liver and brain of rats exposed to acetaldehyde.

    PubMed

    Garcia, Camila C M; Batista, Guilherme L; Freitas, Florêncio P; Lopes, Fernando S; Sanchez, Angélica B; Gutz, Ivano G R; Di Mascio, Paolo; Medeiros, Marisa H G

    2014-10-01

    Air pollution is a major risk for human health. Acetaldehyde is an environmental pollutant present in tobacco smoke, vehicle exhaust and several food products. Formation of DNA adducts has been regarded as a critical factor in the mechanisms of acetaldehyde mutagenicity and carcinogenesis. Acetaldehyde reacts with 2'-deoxyguanosine in DNA to primarily form N(2)-ethylidene-2'-deoxyguanosine (N(2)-ethylidene-dGuo). The subsequent reaction of N(2)-ethylidene-dGuo with another molecule of acetaldehyde gives rise to 1,N(2)-propano-2´-deoxyguanosine (1,N(2)-propanodGuo). In this study, on-line reverse-phase high-performance liquid chromatography (HPLC) separation with tandem mass spectrometry detection was utilized for the accurate quantification of 1,N(2)-propanodGuo and 1,N(2)-etheno-2'-deoxyguanosine (1,N(2)-edGuo) in tissues of rats exposed to 12 ppb, 33 ppb and 96 ppb acetaldehyde in atmospheric air for 50 days. A significant increase in the levels of 1,N(2)-propanodGuo was observed in lung tissues of rats exposed to 12 ppb (7.8/10(8) dGuo); 33 ppb (8.9/10(8) dGuo) and 96 ppb (11.6/10(8) dGuo) compared to controls (4.2/10(8) dGuo). For comparative purposes, the levels of 1,N(2)-etheno-2'-deoxyguanosine (1,N(2)-edGuo), which is produced from a,b-unsaturated aldehydes formed during the lipid peroxidation process were also measured. Elevated levels of 1,N(2)-edGuo were observed only in lung tissues of animals exposed to 96 ppb acetaldehyde. 1,N(2)-propanodGuo also differed quantitatively in liver but not in brain. The monitoring of 1,N(2)-propanodGuo levels in tissues provides important information on acetaldehyde genotoxicity and may contribute to the elucidation of the mechanisms associated with acetaldehyde exposure and cancer risk. Supported byFAPESP:2011/10048-5, CAPES, INCT Redoxoma:573530/2008-4,NAP Redoxoma: 2011.1.9352.1.8, CEPID Redoxoma:2013/07937-8. PMID:26461370

  10. Gene cloning, expression, and characterization of a novel acetaldehyde dehydrogenase from Issatchenkia terricola strain XJ-2.

    PubMed

    Yao, Zhengying; Zhang, Chong; Lu, Fengxia; Bie, Xiaomei; Lu, Zhaoxin

    2012-03-01

    Acetaldehyde is a known mutagen and carcinogen. Active aldehyde dehydrogenase (ALDH) represents an important mechanism for acetaldehyde detoxification. A yeast strain XJ-2 isolated from grape samples was found to produce acetaldehyde dehydrogenase with a high activity of 2.28 U/mg and identified as Issatchenkia terricola. The enzyme activity was validated by oxidizing acetaldehyde to acetate with NAD(+) as coenzyme based on the headspace gas chromatography analysis. A novel acetaldehyde dehydrogenase gene (ist-ALD) was cloned by combining SiteFinding-PCR and self-formed adaptor PCR. The ist-ALD gene comprised an open reading frame of 1,578 bp and encoded a protein of 525 amino acids. The predicted protein of ist-ALD showed the highest identity (73%) to ALDH from Pichia angusta. The ist-ALD gene was expressed in Escherichia coli, and the gene product (ist-ALDH) presented a productivity of 442.3 U/mL cells. The purified ist-ALDH was a homotetramer of 232 kDa consisting of 57 kDa-subunit according to the SDS-PAGE and native PAGE analysis. Ist-ALDH exhibited the optimal activity at pH 9.0 and 40°C, respectively. The activity of ist-ALDH was enhanced by K(+), NH4(+), dithiothreitol, and 2-mercaptoethanol but strongly inhibited by Ag(+), Hg(2+), Cu(2+), and phenylmethyl sulfonylfluoride. In the presence of NAD(+), ist-ALDH could oxidize many aliphatic, aromatic, and heterocyclic aldehydes, preferably acetaldehyde. Kinetic study revealed that ist-ALDH had a k (cat) value of 27.71/s and a k (cat)/K (m) value of 26.80 × 10(3)/(mol s) on acetaldehyde, demonstrating ist-ALDH, a catalytically active enzyme by comparing with other ALDHs. These studies indicated that ist-ALDH was a potential enzymatic product for acetaldehyde detoxification. PMID:21858493

  11. Acetaldehyde Induces Cytotoxicity of SH-SY5Y Cells via Inhibition of Akt Activation and Induction of Oxidative Stress

    PubMed Central

    Yan, Tingting; Zhao, Yan; Zhang, Xia

    2016-01-01

    Excessive alcohol consumption can lead to brain tissue damage and cognitive dysfunction. It has been shown that heavy drinking is associated with an earlier onset of neurodegenerative diseases such as Alzheimer's disease. Acetaldehyde, the most toxic metabolite of ethanol, is speculated to mediate the brain tissue damage and cognitive dysfunction induced by the chronic excessive consumption of alcohol. However, the exact mechanisms by which acetaldehyde induces neurotoxicity are not totally understood. In this study, we investigated the cytotoxic effects of acetaldehyde in SH-SY5Y cells and found that acetaldehyde induced apoptosis of SH-SY5Y cells by downregulating the expression of antiapoptotic Bcl-2 and Bcl-xL and upregulating the expression of proapoptotic Bax. Acetaldehyde treatment led to a significant decrease in the levels of activated Akt and cyclic AMP-responsive element binding protein (CREB). In addition, acetaldehyde induced the activation of p38 mitogen-activated protein kinase (MAPK) while inhibiting the activation of extracellular signal-regulated kinases (ERKs, p44/p42MAPK). Meanwhile, acetaldehyde treatment caused an increase in the production of reactive oxygen species and elevated the oxidative stress in SH-SY5Y cells. Therefore, acetaldehyde induces cytotoxicity of SH-SY5Y cells via promotion of apoptotic signaling, inhibition of cell survival pathway, and induction of oxidative stress. PMID:26649137

  12. A fully integrated standalone portable cavity ringdown breath acetone analyzer

    NASA Astrophysics Data System (ADS)

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  13. Methanol from coal

    NASA Technical Reports Server (NTRS)

    Miller, D. R.

    1978-01-01

    Economic feasibility of methanol or methyl fuel produced from coal using existing technology is discussed. Other factors considered include environmental, safety, toxicity, transportation, so storage, ease of burning, and retrofitting of present boilers. Demonstrations of its uses as a boiler fuel and as a turbine fuel are cited.

  14. Photo-catalytic oxidation of acetone on a TiO2 powder: An in situ FTIR investigation

    SciTech Connect

    Szanyi, Janos; Kwak, Ja Hun

    2015-09-01

    In situ transmission infrared spectroscopy was used to investigate the photo-oxidation of acetone on a commercial, oxidized TiO2 (P25) powder catalyst under UV irradiation at ambient temperature, in the absence and presence of gas phase O2. The photochemistry of a number of organic molecules (1-butanone, methanol and acetic acid,) under the same conditions was also studied in order to identify reaction intermediates and products formed in the photo-oxidation of acetone. Under anaerobic conditions (in the absence of gas phase oxygen) limited extent of photo-oxidation of acetone took place on the oxidized TiO2 sample. In the presence of O2 in the gas phase, however, acetone was completely converted to acetates and formates, and ultimately CO2. The initial step in the sequence of photo-induced reactions is the ejection of a methyl radical, resulting in the formation of surface acetates (from the acetyl group) and formates (from the methyl radicals). Acetate ions are also converted to formates, that, in turn, photo-oxidized to CO2. Under the experimental conditions applied the accumulation of carbonates and bicarbonates were observed on the TiO2 surface as the photo-oxidation of acetone proceeded (this was also observed during the course of photo-oxidation of all the other organics studied here). When the initial radical ejection step produced hydrocarbons containing more than one C atoms (as in the case in 2-butanone and mesytil oxide), the formation of aldehydes on the catalyst surface was also observed as a result of secondary reactions. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. JHK also acknowledges the support of this work by the 2014 Research Fund of UNIST (Ulsan National Institute of Science and Technology, Ulsan, Korea). The authors thank M

  15. Development of industrial brewing yeast with low acetaldehyde production and improved flavor stability.

    PubMed

    Wang, Jinjing; Shen, Nan; Yin, Hua; Liu, Chunfeng; Li, Yongxian; Li, Qi

    2013-02-01

    Higher acetaldehyde concentration in beer is one of the main concerns of current beer industry in China. Acetaldehyde is always synthesized during beer brewing by the metabolism of yeast. Here, using ethanol as the sole carbon source and 4-methylpyrazole as the selection marker, we constructed a new mutant strain with lower acetaldehyde production and improved ethanol tolerance via traditional mutagenesis strategy. European Brewery Convention tube fermentation tests comparing the fermentation broths of mutant strain and industrial brewing strain showed that the acetaldehyde concentration of mutant strain was 81.67 % lower, whereas its resistant staling value was 1.0-fold higher. Owing to the mutation, the alcohol dehydrogenase activity of the mutant strain decreased to about 30 % of the wild-type strain. In the meantime, the fermentation performance of the newly screened strain has little difference compared with the wild-type strain, and there are no safety problems regarding the industrial usage of the mutant strain. Therefore, we suggest that the newly screened strain could be directly applied to brewing industry. PMID:23296804

  16. 40 CFR 80.56 - Measurement methods for formaldehyde and acetaldehyde.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Measurement methods for formaldehyde and acetaldehyde. 80.56 Section 80.56 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.56 Measurement methods for formaldehyde...

  17. PRIMARY PROCESSES IN THE PHOTOLYSIS OF ACETALDEHYDE AT 3000 A AND 25 DEGREES C

    EPA Science Inventory

    The quantum yields of the gaseous products CH4, CO, and H2 have been determined in 3000-A photolyses of acetaldehyde and its mixtures with CO2, i-C4H8, and O2. The results help define the nature and the quantum yields of the primary processes.

  18. BIOGENIC SOURCES OF FORMALDEHYDE AND ACETALDEHYDE DURING SUMMER AND WINTER CONDITIONS

    EPA Science Inventory

    Photochemical modeling estimated contributions to ambient concentrations of formaldehyde and acetaldehyde from biogenic emissions over the continental United States during January 2001 (Eos Trans. AGU, 83(47), Fall Meet. Suppl., Abstract A52B-0117). Results showed that maximum co...

  19. Formaldehyde and acetaldehyde in a high traffic street of Rio de Janeiro, Brazil

    NASA Astrophysics Data System (ADS)

    Corrêa, Sérgio M.; Martins, Eduardo M.; Arbilla, Graciela

    The data for formaldehyde and acetaldehyde levels in ambient air of the city of Rio de Janeiro, obtained in the period from 4 December 1998 to 17 January 2001 is presented. A total of 28 samples were collected at a downtown area, where emissions may be mainly attributed to the vehicular fleet. Values between 1.52 and 54.31 ppb for formaldehyde and between 2.36 and 45.60 ppb for acetaldehyde were obtained. The high acetaldehyde/formaldehyde ratios (0.76 to 1.61) are a consequence of the use of oxygenated fuels. Brazilian cities are unique in that the vehicles use hydrated ethanol (over 4 million of light duty vehicles), gasohol (a mixture with gasoline and 24% v/v of ethanol) and diesel fuels. The analysis of vehicle exhaust and model simulations of the air quality in August and December 1999, confirmed that the high levels of acetaldehyde could be attributed to direct emissions of the vehicular fleet and to the photochemical initiated oxidation of organic compounds.

  20. Involvement of the endogenous opioid system in the psychopharmacological actions of ethanol: the role of acetaldehyde

    PubMed Central

    Font, Laura; Luján, Miguel Á.; Pastor, Raúl

    2013-01-01

    Significant evidence implicates the endogenous opioid system (EOS) (opioid peptides and receptors) in the mechanisms underlying the psychopharmacological effects of ethanol. Ethanol modulates opioidergic signaling and function at different levels, including biosynthesis, release, and degradation of opioid peptides, as well as binding of endogenous ligands to opioid receptors. The role of β-endorphin and µ-opioid receptors (OR) have been suggested to be of particular importance in mediating some of the behavioral effects of ethanol, including psychomotor stimulation and sensitization, consumption and conditioned place preference (CPP). Ethanol increases the release of β-endorphin from the hypothalamic arcuate nucleus (NArc), which can modulate activity of other neurotransmitter systems such as mesolimbic dopamine (DA). The precise mechanism by which ethanol induces a release of β-endorphin, thereby inducing behavioral responses, remains to be elucidated. The present review summarizes accumulative data suggesting that the first metabolite of ethanol, the psychoactive compound acetaldehyde, could participate in such mechanism. Two lines of research involving acetaldehyde are reviewed: (1) implications of the formation of acetaldehyde in brain areas such as the NArc, with high expression of ethanol metabolizing enzymes and presence of cell bodies of endorphinic neurons and (2) the formation of condensation products between DA and acetaldehyde such as salsolinol, which exerts its actions via OR. PMID:23914161

  1. 40 CFR 721.10662 - Acetaldehyde, substituted-, reaction products with 2-butyne-1, 4-diol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-, reaction products with 2-butyne-1, 4-diol (generic). (a) Chemical substance and significant new uses... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acetaldehyde, substituted-, reaction... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF...

  2. 40 CFR 721.10662 - Acetaldehyde, substituted-, reaction products with 2-butyne-1, 4-diol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-, reaction products with 2-butyne-1, 4-diol (generic). (a) Chemical substance and significant new uses... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acetaldehyde, substituted-, reaction... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF...

  3. Modeling the IR Spectra of Acetaldehyde from a New Vibrational Configuration Interaction Method

    SciTech Connect

    Begue, Didier; Pouchan, Claude

    2007-12-26

    In this paper we present a new vibrational configuration interaction method known as a parallel vibrational multiple window configuration interaction P lowbar VMWCI which generates several VCI matrices and enables the variational treatment of medium size molecular systems. Application to acetaldehyde gives a new interpretation of the MIR experimental data.

  4. Regional Sources of Atmospheric Formaldehyde and Acetaldehyde, and Implications for Atmospheric Modeling

    EPA Science Inventory

    Formaldehyde and acetaldehyde concentrations over the Eastern half of the United States are simulated with a 3-D air quality model to identify the most important chemical precursors under January and July conditions. We find that both aldehydes primarily result from photochemical...

  5. Measurement of the diffusion coefficient of acetone in succinonitrile at its melting point

    NASA Technical Reports Server (NTRS)

    Chopra, M. A.; Glicksman, M. E.; Singh, N. B.

    1988-01-01

    The diffusion coefficient of acetone in liquid succinonitrile at 331.1 K was determined using the method of McBain and Dawson (1935). Only dilute mixtures of SCN-acetone were studied. The interdiffusion constant was determined to be 0.0000127 sq cm/s and was essentially independent of the acetone concentration over the range investigated (0.5 to 18 mol pct acetone).

  6. Base catalysis by alkali modified zeolites. III. Alkylation with methanol

    SciTech Connect

    Hathaway, P.E.; Davis, M.E. )

    1989-10-01

    Ion exchanged CsNaX and CsNaY, cesium acetate impregnated CsNaX (CsAce/CsNaX) and CsNaY (CsAce/CsNaY), and MgO have been reacted with isopropanol at 425 C and atmospheric pressure to assess their acid/base properties at a temperature consistent with that used in the side chain alkylation of toluene with methanol. The results suggest that the ability of the catalysts tested here to promote a base mediated reaction follow the order of MgO > CsAce/CsNaY > CsAce/CsNaX {approx equal} CsNaY > CsNaX. Selectivities to acetone measured at 4.73% conversion follow this order as well, ranging from 95.7% and 93.9% for MgO and CsAce/CsNaY, respectively, to 17.6% for the CsNaX. Thus, these catalysts can be grouped into two categories: (i) catalysts which vary in acid/base properties yet possess identical topology (e.g., the zeolites) and (ii) catalysts which vary in topology yet have similar acid/base properties (e.g., MgO and CsAce/CsNaY). These catalysts were compared using the side chain alkylation of toluene, ethane, methane, and acetone with methanol. For the impregnated zeolites, similar toluene conversions were observed. No formaldehyde was observed in the product stream of the impregnated Y zeolite. Both MgO and CsAce/CsNaY had similar methanol decomposition products; i.e., no formaldehyde and high CO formation, yet unlike CsAce/CsNaY no toluene conversion was observed for MgO. No conversion of ethane or methane was observed for either impregnated zeolite at 425 C.

  7. California methanol assessment. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Otoole, R.; Dutzi, E.; Gershman, R.; Heft, R.; Kalema, W.; Maynard, D.

    1983-01-01

    Energy feedstock sources for methanol; methanol and other synfuels; transport, storage, and distribution; air quality impact of methanol use in vehicles, chemical methanol production and use; methanol utilization in vehicles; methanol utilization in stationary applications; and environmental and regulatory constraints are discussed.

  8. Eucomic acid methanol monosolvate

    PubMed Central

    Li, Guo-Qiang; Li, Yao-Lan; Wang, Guo-Cai; Liang, Zhi-Hong; Jiang, Ren-Wang

    2011-01-01

    In the crystal structure of the title compound [systematic name: 2-hy­droxy-2-(4-hy­droxy­benz­yl)butane­dioic acid methanol monosolvate], C11H12O6·CH3OH, the dihedral angles between the planes of the carboxyl groups and the benzene ring are 51.23 (9) and 87.97 (9)°. Inter­molecular O—H⋯O hydrogen-bonding inter­actions involving the hy­droxy and carb­oxy­lic acid groups and the methanol solvent mol­ecule give a three-dimensional structure. PMID:22091200

  9. Acetaldehyde stimulation of net gluconeogenic carbon movement from applied malic Acid in tomato fruit pericarp tissue.

    PubMed

    Halinska, A; Frenkel, C

    1991-03-01

    Applied acetaldehyde is known to lead to sugar accumulation in fruit including tomatoes (Lycopersicon esculentum) (O Paz, HW Janes, BA Prevost, C Frenkel [1982] J Food Sci 47: 270-274) presumably due to stimulation of gluconeogenesis. This conjecture was examined using tomato fruit pericarp discs as a test system and applied i-[U-(14)C]malic acid as the source for gluconeogenic carbon mobilization. The label from malate was recovered in respiratory CO(2), in other organic acids, in ethanol insoluble material, and an appreciable amount in the ethanol soluble sugar fraction. In Rutgers tomatoes, the label recovery in the sugar fraction and an attendant label reduction in the organic acids fraction intensified with fruit ripening. In both Rutgers and in the nonripening tomato rin, these processes were markedly stimulated by 4000 ppm acetaldehyde. The onset of label apportioning from malic acids to sugars coincided with decreased levels of fructose-2,6-biphosphate, the gluconeogenesis inhibitor. In acetaldehyde-treated tissues, with enhanced label mobilization, this decline reached one-half to one third of the initial fructose-2,6-biphosphate levels. Application of 30 micromolar fructose-2,6-biphosphate or 2,5-anhydro-d-mannitol in turn led to a precipitous reduction in the label flow to sugars presumably due to inhibition of fructose-1,6-biphosphatase by the compounds. We conclude that malic and perhaps other organic acids are carbon sources for gluconeogenesis occurring normally in ripening tomatoes. The process is stimulated by acetaldehyde apparently by attenuating the fructose-2,6-biphosphate levels. The mode of the acetaldehyde regulation of fructose-2,6-biphosphate metabolism awaits clarification. PMID:16668078

  10. Abundances of ethylene oxide and acetaldehyde in hot molecular cloud cores

    NASA Technical Reports Server (NTRS)

    Nummelin, A.; Dickens, J. E.; Bergman, P.; Hjalmarson, A.; Irvine, W. M.; Ikeda, M.; Ohishi, M.

    1998-01-01

    We have searched for millimetre-wave line emission from ethylene oxide (c-C2H4O) and its structural isomer acetaldehyde (CH3CHO) in 11 molecular clouds using SEST. Ethylene oxide and acetaldehyde were detected through multiple lines in the hot cores NGC 6334F, G327.3-0.6, G31.41+0.31, and G34.3+0.2. Acetaldehyde was also detected towards G10.47+0.03, G322.2+0.6, and Orion 3'N, and one ethylene oxide line was tentatively detected in G10.47+0.03. Column densities and rotational excitation temperatures were derived using a procedure which fits the observed line intensifies by finding the minimum chi 2-value. The resulting rotational excitation temperatures of ethylene oxide and acetaldehyde are in the range 16-38 K, indicating that these species are excited in the outer, cooler parts of the hot cores or that the excitation is significantly subthermal. For an assumed source size of 20", the deduced column densities are (0.6-1)x10(14) cm-2 for ethylene oxide and (2-5)x10(14) cm-2 for acetaldehyde. The fractional abundances with respect to H2 are X[c-C2H4O]=(2-6)xl0(-10), and X[CH3CHO]=(0.8-3)x10(-9). The ratio X[CH3CHO]/X[c-C2H4O] varies between 2.6 (NGC 6334F) and 8.5 (G327.3-0.6). We also detected and analysed multiple transitions of CH3OH, CH3OCH3, C2H5OH, and HCOOH. The chemical, and possibly evolutionary, states of NGC 6334F, G327.3-0.6, G31.41+0.31, and G34.3+0.2 seem to be very similar.

  11. Crystallization of paracetamol in acetone?water mixtures

    NASA Astrophysics Data System (ADS)

    Granberg, Roger A.; Bloch, Dan G.; Rasmuson, Åke C.

    1999-03-01

    The influence of solvent composition on the crystallization of paracetamol (4-hydroxyacetanilide) in acetone-water mixtures is investigated. Particle generation and crystal growth kinetics have been studied by batch isothermal desupersaturation experiments at constant solvent composition. The solubility exhibits a very pronounced maximum at approximately 20 wt% water. Nucleation and agglomeration increase with increasing initial supersaturation, but at a given initial supersaturation, the solvent composition has no clear influence on the product particle characteristics. The crystal growth rate is higher in pure acetone than in pure water, but the rate passes through a maximum in a mixture containing 20-25 wt% water. There is a good correlation between crystal growth rate and solubility, even though the growth rate is comparatively high at high water concentrations.

  12. Economic evaluation of the acetone-butane fermentation

    SciTech Connect

    Lenz, T.G.; Moreira, A.R.

    1980-01-01

    The economics of producing acetone as 1-butanol via fermentation have been examined for a 45 x 1 kg of solvents/year plant. For a molasses substrate the total annual production costs were approximately $39 million vs. a total annual income of $36 million, with approximatley $20 million total required capital. Molasses cost of approximately $24.4 million/year was critical to these economics. Liquid whey was next evaluated as an alternative feed. Whey feed saved approximately 11 million dollars annually in feed costs and yielded approximately 8 million net additional annual revenues from protein sale. The primary differences gave an annual gross profit of approximately $15 million for the whey case and resulted in a discounted cash flow rate return of 29%. Waste-based acetone-butanol production via fermentation deserves further attention in view of the attractive whey-based economics and the excellent potential of butanol as a fuel extender, especially for diesohol blending.

  13. Self-Associating Behavior of Acetone in Liquid Krypton.

    PubMed

    De Beuckeleer, Liene I; Herrebout, Wouter A

    2016-02-18

    Acetone molecules are inclined to self-associate through dipole-dipole interactions because of their large dipole moment. Infrared spectroscopy of compounds dissolved in liquid noble gases supported by high level ab initio calculations allows investigating the self-associating behavior and determining the thermodynamical properties. In this study, infrared spectra of various concentrations of acetone dissolved in liquid krypton are recorded at constant temperature. Overlapping monomer and dimer spectra are separated by analyzing the obtained data sets with numerical methods based on least-squares fitting. Although acetone is known to self-associate, only a few spectral features have been presented in literature before. In this study, the application of new numerical approaches succeeds in resolving overlapping spectra and allows observing isolated acetone dimer absorption bands for the complete mid infrared spectrum. By use of data sets of spectra recorded at temperatures between 134 and 142 K, the experimental standard dimerization enthalpy was determined to be -10.8 kJ mol(-1). MP2/aug-cc-pVDZ calculations predicted a stacked and planar dimer geometry of which the stacked geometry is more stable. Combining MP2 energies and single point corrections involving CCSD(T) calculations and complete basis set extrapolations based on the MP2/aug-cc-pVDZ equilibrium geometry lead to complexation energy of -28.4 kJ mol(-1) for the stacked geometry and -15.1 kJ mol(-1) for the planar geometry. The corresponding values for the complexation enthalpies in solution, obtained by combining these values with corrections for thermal and solvent influences are -13.7 and -5.8 kJ mol(-1). PMID:26805773

  14. The toxicity of methanol

    SciTech Connect

    Tephly, T.R. )

    1991-01-01

    Methanol toxicity in humans and monkeys is characterized by a latent period of many hours followed by a metabolic acidosis and ocular toxicity. This is not observed in most lower animals. The metabolic acidosis and blindness is apparently due to formic acid accumulation in humans and monkeys, a feature not seen in lower animals. The accumulation of formate is due to a deficiency in formate metabolism which is, in turn, related, in part, to low hepatic tetrahydrofolate (H{sub 4}folate). An excellent correlation between hepatic H{sub 4} folate and formate oxidation rates has been shown within and across species. Thus, humans and monkeys possess low hepatic H{sub 4}folate levels, low rates of formate oxidation and accumulation of formate after methanol. Formate, itself, produces blindness in monkeys in the absence of metabolic acidosis. In addition to low hepatic H{sub 4}folate concentrations, monkeys and humans also have low hepatic 10-formyl H{sub 4}folate dehydrogenase levels, the enzyme which is the ultimate catalyst for conversion of formate to carbon dioxide. This review presents the basis for the role of folic acid-dependent reactions in the regulation of methanol toxicity.

  15. Modeling of experimental treatment of acetaldehyde-laden air and phenol-containing water using corona discharge technique.

    PubMed

    Faungnawakij, Kajornsak; Sano, Noriaki; Charinpanitkul, Tawatchai; Tanthapanichakoon, Wiwut

    2006-03-01

    Acetaldehyde-laden air and phenol-contaminated water were experimentally treated using corona discharge reactions and gas absorption in a single water-film column. Mathematical modeling of the combined treatment was developed in this work. Efficient removal of the gaseous acetaldehyde was achieved while the corona discharge reactions produced short-lived species such as O and O- as well as ozone. Direct contact of the radicals and ions with water was known to produce aqueous OH radical, which contributes to the decomposition of organic contaminants: phenol, absorbed acetaldehyde, and intermediate byproducts in the water. The influence of initial phenol concentration ranging from 15 to 50 mg L(-1) and that of influent acetaldehyde ranging from 0 to 200 ppm were experimentally investigated and used to build the math model. The maximum energetic efficiency of TOC, phenol, and acetaldehyde were obtained at 25.6 x 10(-9) mol carbon J(-1), 25.0 x 10(-9) mol phenol J(-1), and 2.0 x 10(-9) mol acetaldehyde J(-1), respectively. The predictions for the decomposition of acetaldehyde, phenol, and their intermediates were found to be in good agreement with the experimental results. PMID:16568779

  16. Formation of 2-propanol in condensed molecular films of acetaldehyde following electron impact ionisation-induced proton transfer*

    NASA Astrophysics Data System (ADS)

    Borrmann, Tobias; Swiderek, Petra

    2016-06-01

    Experimental studies on thin condensed layers of acetaldehyde have previously revealed that electron exposure at an energy above the ionisation threshold leads to formation of 2-propanol. However, the mechanism of this reaction remained unclear. Therefore, a computational approach is used to explore the electron-induced reactions of acetaldehyde yielding 2-propanol. Starting from hydrogen-bonded dimers of acetaldehyde we show that the initial ionisation event triggers proton transfer between the two acetaldehyde moieties resulting in a hydrogen-bonded complex of a [OCCH3] radical and a protonated acetaldehyde cation. Given an excess energy of up to 0.75 eV and a favourable arrangement, a methyl radical released upon dissociation of the CC bond within the [OCCH3] radical can migrate to the carbonyl carbon of the protonated acetaldehyde cation. This produces a 2-propanol radical cation and CO. Neutral 2-propanol is then obtained by recombination with a second electron. A mechanism involving ionisation-driven proton transfer is thus proposed as pathway to the formation of 2-propanol during electron exposure of condensed layers of acetaldehyde.

  17. Seasonal variability of upper tropospheric acetone using ACE-FTS observations and LMDz-INCA model simulations

    NASA Astrophysics Data System (ADS)

    Dufour, Gaëlle; Harrison, Jeremy; Szopa, Sophie; Bernath, Peter

    2014-05-01

    The vertically-resolved distributions of oxygenated organic compounds (oVOCs) are mainly inferred from surface and airborne measurements with limited spatial and temporal coverage. This results in a limited understanding of the atmospheric budget of these compounds and of their impact on the upper tropospheric chemistry. In the last decade, satellite observations which complement in-situ measurements have become available, providing global distributions of several oVOCs. For example, Scisat-1, also known as the Atmospheric Chemistry Experiment (ACE) has measured several oVOCs including methanol and formaldehyde. ACE is a Canadian-led satellite mission for remote sensing of the Earth's atmosphere that has been in operation since 2004. The primary instrument on board is a Fourier transform spectrometer (FTS) featuring broad spectral coverage in the infrared (750-4400 cm-1) with high spectral resolution (0.02 cm-1). The FTS instrument can measure down to 5 km altitude with a high signal-to-noise ratio using solar occultation. The ACE-FTS has the ability to measure seasonal and height-resolved distributions of minor tropospheric constituents on a near-global scale and provides the opportunity to evaluate our understanding of important atmospheric oxygenated organic species. ACE-FTS acetone retrievals will be presented. The spatial distribution and seasonal variability of acetone will be described and compared to LMDz-INCA model simulations.

  18. Methanol as a reaction medium and reagent in substrate reactions of rhodium porphyrins.

    PubMed

    Li, Shan; Sarkar, Sounak; Wayland, Bradford B

    2009-09-01

    Methanol solutions of rhodium(III) tetra(p-sulfonatophenyl) porphyrin [(TSPP)Rh(III)] have a hydrogen ion dependent equilibrium between bis-methanol, monomethoxy monomethanol, and bis-methoxy complexes. Reactions of dihydrogen (D(2)) with solutions of [(TSPP)Rh(III)] complexes in methanol produce equilibrium distributions of a rhodium hydride [(TSPP)Rh(III)-D(CD(3)OD)](-4) and rhodium(I) complex [(TSPP)Rh(I)(CD(3)OD)](-5). The rhodium hydride complex in methanol functions as a weak acid with an acid dissociation constant of 1.1(0.1) x 10(-9) at 298 K. Patterns of rhodium hydride substrate reactions in methanol are illustrated by addition with ethene, acetaldehyde, and carbon monoxide to form rhodium alkyl, alpha-hydroxyethyl, and formyl complexes, respectively. The free energy change for the addition reaction of [(TSPP)Rh(III)-D(CD(3)OD)](-4) with CO in methanol to produce a formyl complex (DeltaG(o)(298K) = -4.7(0.1) kcal mol(-1)) is remarkably close to DeltaG(o)(298K) values for analogous reactions in water and benzene. Addition reactions of the rhodium hydride ([(TSPP)Rh(III)-D(CD(3)OD)](-4)) with vinyl olefins invariably yield the anti-Markovnikov product which places the rhodium porphyrin on the less hindered terminal primary carbon center. Addition of the rhodium-methoxide unit in [(TSPP)Rh(III)-OCD(3)(CD(3)OD)](-4) with olefins to form beta-methoxyalkyl complexes places rhodium on the terminal carbon for alkene hydrocarbons and vinyl acetate, but vinyl olefins that have pi-electron withdrawing substituents have a thermodynamic preference for placing rhodium on the interior carbon where negative charge is better accommodated. Equilibrium thermodynamic values for addition of the Rh-OCD(3) unit to olefins in methanol are evaluated and compared with values for Rh-OH addition to olefins in water. PMID:19642648

  19. Acetone formation in the Vibrio family: a new pathway for bacterial leucine catabolism.

    PubMed

    Nemecek-Marshall, M; Wojciechowski, C; Wagner, W P; Fall, R

    1999-12-01

    There is current interest in biological sources of acetone, a volatile organic compound that impacts atmospheric chemistry. Here, we determined that leucine-dependent acetone formation is widespread in the Vibrionaceae. Sixteen Vibrio isolates, two Listonella species, and two Photobacterium angustum isolates produced acetone in the presence of L-leucine. Shewanella isolates produced much less acetone. Growth of Vibrio splendidus and P. angustum in a fermentor with controlled aeration revealed that acetone was produced after a lag in late logarithmic or stationary phase of growth, depending on the medium, and was not derived from acetoacetate by nonenzymatic decarboxylation in the medium. L-Leucine, but not D-leucine, was converted to acetone with a stoichiometry of approximately 0.61 mol of acetone per mol of L-leucine. Testing various potential leucine catabolites as precursors of acetone showed that only alpha-ketoisocaproate was efficiently converted by whole cells to acetone. Acetone production was blocked by a nitrogen atmosphere but not by electron transport inhibitors, suggesting that an oxygen-dependent reaction is required for leucine catabolism. Metabolic labeling with deuterated (isopropyl-d(7))-L-leucine revealed that the isopropyl carbons give rise to acetone with full retention of deuterium in each methyl group. These results suggest the operation of a new catabolic pathway for leucine in vibrios that is distinct from the 3-hydroxy-3-methylglutaryl-coenzyme A pathway seen in pseudomonads. PMID:10601206

  20. A shock tube and theory study of the dissociation of acetone and subsequent recombination of methyl radicals.

    SciTech Connect

    Saxena, A.; Kiefer, J. H.; Klippenstein, S. J.; Chemical Sciences and Engineering Division; Univ. of llinois at Chicago

    2009-01-01

    The dissociation of acetone: CH{sub 3}C{double_bond}OCH{sub 3} {yields} CH{sub 3}C{double_bond}O + CH{sub 3}, quickly followed by CH{sub 3}CO {yields} CH{sub 3} + CO, has been examined with Laser-Schlieren measurements in incident shock waves over 32-717 Torr and 1429-1936 K using 5% acetone dilute in krypton. A few very low pressure experiments ({approx}10 Torr) were used in a marginal effort to resolve the extremely fast vibrational relaxation of this molecule. This effort was partly motivated as a test for molecular, 'roaming methyl' reactions, and also as a source of methyl radicals to test the application of a recent high-temperature mechanism for ethane decomposition [J.H. Kiefer, S. Santhanam, N.K. Srinivasan, R.S. Tranter, S.J. Klippenstein, M.A. Oehlschlaeger, Proc. Combust. Inst. 30 (2005) 1129-1135] on the reverse methyl combination. The gradient profiles show strong initial positive gradients and following negative values fully consistent with methyl radical formation and its following recombination. Thus C-C fission is certainly a large part of the process and molecular channels cannot be responsible for more than 30% of the dissociation. Rates obtained for the C-C fission show strong falloff well fit by variable reaction coordinate transition state theory when combined with a master equation. The calculated barrier is 82.8 kcal/mol, the fitted <{Delta}E>{sub down} = 400 (T/298) cm{sup -1}, similar to what was found in a recent study of C-C fission in acetaldehyde, and the extrapolated k{sub {infinity}} = 10{sup 25.86} T{sup -2.72} exp(?87.7 (kcal/mol)/RT), which agrees with the literature rate for CH{sub 3} + CH{sub 3}CO. Large negative (exothermic) gradients appearing late from methyl combination are accurately fit in both time of onset and magnitude by the earlier ethane dissociation mechanism. The measured dissociation rates are in close accord with one earlier shock-tube study [K. Sato, Y. Hidaka, Combust. Flame 122 (2000) 291-311], but show much

  1. Phytochemical composition, GC-MS analysis, in vitro antioxidant and antibacterial potential of clove flower bud (Eugenia caryophyllus) methanolic extract.

    PubMed

    Hemalatha, R; Nivetha, P; Mohanapriya, C; Sharmila, G; Muthukumaran, C; Gopinath, M

    2016-02-01

    Plant derived pharmacologically active compounds have gained importance in food and pharmaceutical industries. The aim of the present study is to identify and study the antioxidant, antimicrobial properties of the phytochemicals present in the crude extract of Eugenia caryophyllus flower buds. The antioxidant activity of the methanol, acetone and chloroform extract was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The methanol extract showed better radical scavenging activity than other selected solvents. Preliminary screening of phytochemicals was carried out in methanol extract and total phenol content was found high. Antibacterial activity was determined by well diffusion assay and methanol extract was found effective against Klebsiella pneumonia. FTIR and GC-MS results indicate the presence of aromatic compounds and major constituents were found to be eugenol and eugenyl acetate. Results of this study implied that Eugenia caryophyllus flower bud extract could be considered as health nutriments in food and pharmaceutical industries. PMID:27162398

  2. Insights into Acetone Photochemistry on Rutile TiO2(110). 1. Off-Normal CH3 Ejection from Acetone Diolate.

    SciTech Connect

    Petrik, Nikolay G.; Henderson, Michael A.; Kimmel, Gregory A.

    2015-06-04

    Thermal- and photon-stimulated reactions of acetone co-adsorbed with oxygen on rutile TiO2(110) surface are studied with infrared reflection-adsorption spectroscopy (IRAS) combined with temperature programmed desorption and angle-resolved photon stimulated desorption. IRAS results show that n2-acetone diolate ((CH3)2COO) is produced via thermally-activated reactions between the chemisorbed oxygen with co-adsorbed acetone. Formation of acetone diolate is also consistent with 18O / 16O isotopic exchange experiments. During UV irradiation at 30 K, CH3 radicals are ejected from the acetone diolate with a distribution that is peaked at .-. +- 66 degrees from the surface normal along the azimuth (i.e. perpendicular to the rows of bridging oxygen and Ti5c ions). This distribution is also consistent with the orientation of the C–CH3 bonds in the n2-acetone diolate on TiO2(110). The acetone diolate peaks disappear from the IRAS spectra after UV irradiation and new peaks are observed and associated with n2-acetate. The data presented here demonstrate direct signatures of the proposed earlier 2-step mechanism for acetone photooxidation on TiO2(110)

  3. Enhancing acetone biosynthesis and acetone-butanol-ethanol fermentation performance by co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae integrated with exogenous acetate addition.

    PubMed

    Luo, Hongzhen; Ge, Laibing; Zhang, Jingshu; Ding, Jian; Chen, Rui; Shi, Zhongping

    2016-01-01

    Acetone is the major by-product in ABE fermentations, most researches focused on increasing butanol/acetone ratio by decreasing acetone biosynthesis. However, economics of ABE fermentation industry strongly relies on evaluating acetone as a valuable platform chemical. Therefore, a novel ABE fermentation strategy focusing on bio-acetone production by co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae with exogenous acetate addition was proposed. Experimental and theoretical analysis revealed the strategy could, enhance C. acetobutylicum survival oriented amino acids assimilation in the cells; control NADH regeneration rate at moderately lower level to enhance acetone synthesis but without sacrificing butanol production; enhance the utilization ability of C. acetobutylicum on glucose and direct most of extra consumed glucose into acetone/butanol synthesis routes. By implementing the strategy using synthetic or acetate fermentative supernatant, acetone concentrations increased to 8.27-8.55g/L from 5.86g/L of the control, while butanol concentrations also elevated to the higher levels of 13.91-14.23g/L from 11.63g/L simultaneously. PMID:26476171

  4. Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on Oxide‐Derived Copper

    PubMed Central

    Bertheussen, Erlend; Verdaguer‐Casadevall, Arnau; Ravasio, Davide; Montoya, Joseph H.; Trimarco, Daniel B.; Roy, Claudie; Meier, Sebastian; Wendland, Jürgen; Nørskov, Jens K.

    2015-01-01

    Abstract Oxide‐derived copper (OD‐Cu) electrodes exhibit unprecedented CO reduction performance towards liquid fuels, producing ethanol and acetate with >50 % Faradaic efficiency at −0.3 V (vs. RHE). By using static headspace‐gas chromatography for liquid phase analysis, we identify acetaldehyde as a minor product and key intermediate in the electroreduction of CO to ethanol on OD‐Cu electrodes. Acetaldehyde is produced with a Faradaic efficiency of ≈5 % at −0.33 V (vs. RHE). We show that acetaldehyde forms at low steady‐state concentrations, and that free acetaldehyde is difficult to detect in alkaline solutions using NMR spectroscopy, requiring alternative methods for detection and quantification. Our results represent an important step towards understanding the CO reduction mechanism on OD‐Cu electrodes. PMID:26692282

  5. Acetaldehyde as an intermediate in the electroreduction of carbon monoxide to ethanol on oxide-derived copper

    DOE PAGESBeta

    Bertheussen, Erlend; Verdaguer-Casadevall, Arnau; Ravasio, Davide; Montoya, Joseph H.; Trimarco, Daniel B.; Roy, Claudie; Meier, Sebastian; Wendland, Jürgen; Nørskov, Jens K.; Stephens, Ifan E. L.; et al

    2015-12-21

    Oxide-derived copper (OD-Cu) electrodes exhibit unprecedented CO reduction performance towards liquid fuels, producing ethanol and acetate with >50 % Faradaic efficiency at -0.3 V (vs. RHE). By using static headspace-gas chromatography for liquid phase analysis, we identify acetaldehyde as a minor product and key intermediate in the electroreduction of CO to ethanol on OD-Cu electrodes. Acetaldehyde is produced with a Faradaic efficiency of ≈5 % at -0.33 V (vs. RHE). We show that acetaldehyde forms at low steady-state concentrations, and that free acetaldehyde is difficult to detect in alkaline solutions using NMR spectroscopy, requiring alternative methods for detection and quantification.more » Our results indicate an important step towards understanding the CO reduction mechanism on OD-Cu electrodes.« less

  6. Acetaldehyde as an intermediate in the electroreduction of carbon monoxide to ethanol on oxide-derived copper

    SciTech Connect

    Bertheussen, Erlend; Verdaguer-Casadevall, Arnau; Ravasio, Davide; Montoya, Joseph H.; Trimarco, Daniel B.; Roy, Claudie; Meier, Sebastian; Wendland, Jürgen; Nørskov, Jens K.; Stephens, Ifan E. L.; Chorkendorff, Ib

    2015-12-21

    Oxide-derived copper (OD-Cu) electrodes exhibit unprecedented CO reduction performance towards liquid fuels, producing ethanol and acetate with >50 % Faradaic efficiency at -0.3 V (vs. RHE). By using static headspace-gas chromatography for liquid phase analysis, we identify acetaldehyde as a minor product and key intermediate in the electroreduction of CO to ethanol on OD-Cu electrodes. Acetaldehyde is produced with a Faradaic efficiency of ≈5 % at -0.33 V (vs. RHE). We show that acetaldehyde forms at low steady-state concentrations, and that free acetaldehyde is difficult to detect in alkaline solutions using NMR spectroscopy, requiring alternative methods for detection and quantification. Our results indicate an important step towards understanding the CO reduction mechanism on OD-Cu electrodes.

  7. Methanol shutdowns cause anxiety

    SciTech Connect

    Thomas, N.

    1996-10-23

    European methanol players face an anxious few weeks as unscheduled outages combine with planned turnarounds to make an increasingly tight market. Global markets are also described as tightening, with production problems widely reported in North America. Several European producers were in the middle of shutdown periods when problems at Condea`s 400,000-m.t./year unit at Wesseling, Germany reportedly caused production to run at only 50% of capacity. In addition, the methanol plant at the Leuna refinery is said to be operating at only 60% of capacity, and one producer has had to extend a turnaround period. River levels in Germany are also low, putting pressure on shipments from Rotterdam. {open_quotes}This is a very difficult situation and we`re living hand to mouth,{close_quotes} says one producer. Producer sources report bids from consumers up to DM280/m.t. T2 fob Rotterdam, but they are unable to obtain extra product. Derivatives makers may also face problems: One methyl tert-butyl ether producer predicts prices {open_quotes}may hit the roof{close_quotes} once feedstock sourcing problems hit home.

  8. Methanol simplifies gas processing

    SciTech Connect

    Minkkinen, A.; Jonchere, J.P.

    1997-12-31

    Recent development of a simple single solvent technology goes far to meet the complete gas processing needs. The use of methanol, as practiced in the IPFEXOL process, where it is used not only as a hydrate inhibitor and antifreeze agent but as an acid gas extraction solvent makes the complete gas processing scheme simple and probably the most cost effective as well. This paper presents several gas processing applications where water, hydrocarbon liquids and acid gases are removed from natural wellhead production gases. Water and hydrocarbon liquids removal is achieved to the extent necessary to make a pipeline transportable gas or meet downstream cryogenic processing demands. These are illustrated with recent applications of the IFPEX-1 process successfully operating today in North America and the Far East. A recent North Sea offshore project is highlighted showing the particular advantages in offshore applications. For the removal of water and hydrocarbon liquids together with a substantial quantity of not only CO{sub 2} but H{sub 2}S, the most complete methanol use scheme is presented. This is illustrated with the development of an advanced version of the IFPEX-2 process containing some innovative but simple equipment concepts which yields high pressure dry acid gases for reinjection or a high quality acid gas destined to Claus type sulfur recovery.

  9. Ambient temperature operated acetaldehyde vapour detection of spray deposited cobalt doped zinc oxide thin film.

    PubMed

    Shalini, S; Balamurugan, D

    2016-03-15

    Undoped and Co-doped ZnO thin films were prepared by a home built spray pyrolysis method. X-ray diffraction results indicate that both undoped and Co-doped ZnO have a polycrystalline nature and a preferential orientation peak in the (002) plane. From a field-emission scanning electron micrographs of annealed films, a uniform distribution of nanoparticles along with nanorods was observed. UV-Visible measurement indicated that all the films are transparent in the visible region. The electrical resistance was also reported. The acetaldehyde sensing behaviour of the prepared undoped and Co-doped ZnO thin films was studied using the chemi-resistive method at ambient temperature (∼30 °C). In the presence of 10 ppm of acetaldehyde vapour, the Co-doped ZnO thin films showed good sensing response of 74% with fast response and recovery time of 3 s and 110 s respectively. PMID:26748067

  10. [Medichronal lowers blood ethanol and acetaldehyde and restores the concentration of catecholamines in rat tissues].

    PubMed

    Bozhko HKZh; Boĭko, T P; Kostiukovs'ka, L S

    1995-01-01

    Variation of ethanol and acetaldehyde concentrations in blood, catecholamines in hypothalamus, brain stem and hemispheres, heart and adrenal glands, serotonin in the same structures of the brain, thin intestine and blood in rats was studied. Isolated action of medichronal during 10 days against the background of prolonged administration of moderate doses of ethanol significantly lowered ethanol and acetaldehyde concentration in the animal blood. Medichronal increased the level of noradrenaline, lowered under the conditions of ethanol intoxication in the hypothalamus, and increased adrenalina level in the heart; noradrenaline level in adrenal glands is restored. The amount of serotonin in the blood and tissues increased under the conditions of ethanol intoxication did not vary under the action of medichronal. The obtained results indicate to pronounced detoxication influence of medichronal. One of the mechanisms of its action is normalizing the catecholamine changes caused by the ethanol intoxication in tissues. PMID:8592777

  11. Photocatalytic and thermal catalytic oxidation of acetaldehyde on Pt/TiO{sub 2}

    SciTech Connect

    Falconer, J.L.; Magrini-Bair, K.A.

    1998-10-01

    Low concentrations of acetaldehyde in air (60 ppm) were oxidized over TiO{sub 2} (Degussa P25) and 0.5% Pt/TiO{sub 2} catalysts from 24 to 200 C by photocatalytic and thermal catalytic reactions. On Pt/TiO{sub 2}, the contribution by photocatalytic oxidation (PCO) is a maximum at 140 C, where conversion is 2.8 times that at 24 C. Titania without Pt deactivates rapidly during PCO at elevated temperature due to a thermal catalytic reaction that takes place in parallel with PCO, but the addition of Pt dramatically slows deactivation. Apparently, Pt supplies spillover oxygen onto the TiO{sub 2}, and the oxygen oxidizes the acetaldehyde decomposition products in a dark reaction. Deactivated TiO{sub 2} without Pt was regenerated by PCO at room temperature. Seven distinct reactions (photocatalytic and thermal catalytic) are identified on Pt/TiO{sub 2}.

  12. Spectrophotometric study and potentiometric titration between sulfite and nitrite ions using acetaldehyde complex of nitroprusside as a carrier

    SciTech Connect

    Ahmed, Y.Z.; Abd-Elmottalb, M.

    1985-11-01

    A complex between sodium nitroprusside (NP) and acetaldehyde of 1:1 in aqueous solution of pH 10 has been prepared and used as an analytical reagent for the spectrophotometric determination of sulfite and nitrite ions. Nitrite ion can be titrated against sulfite ion and vise versa in equivalent amounts with high accuracy in the presence of the acetaldehyde complex of nitroprusside as a carrier using a potentiometric titration technique. 9 references, 3 figures, 2 tables.

  13. (3s←n) REMPI of jet-cooled acetaldehyde using two laser beams

    NASA Astrophysics Data System (ADS)

    Philis, J. G.; Kosmidis, C.

    2001-05-01

    The 3s←n Rydberg transition of acetaldehyde has been studied by a two-color experiment (545 and 272.5 nm light) by means of a TOF mass spectrometer. The recorded spectra are in close resemblance to the known one-color (2R+1) MPI spectra (364 nm). Nevertheless, the observed mass spectra are different. These differences are discussed in detail. Moreover, two-photon resonances of atomic carbon have been detected, indicating complete dissociation of some neutral fragments.

  14. Enzymic conversion of ethanol to acetaldehyde as a model recovery system

    SciTech Connect

    Kierstan, M.

    1982-10-01

    Ethanol is readily produced by use of traditional fermentation processes using yeasts, and more recently by use of immobilized cell systems. However, the product concentrations obtained in these systems are limited by the inhibitory effects on the microorganisms of the product, ethanol. Furthermore, the dilute product concentrations thus obtained combined with the relatively high boiling point of ethanol result in systems which require a high degree of energy input for product recovery. Recent advances in genetic engineering techniques offer opportunities for improving the characteristics of the yeasts used in ethanol production. These techniques also provide the potential for improving the production yields of microbial enzymes for specific applications. With this consideration in mind work was undertaken on an enzymic system for removal from a fermentation media of an ethanol product which also results in upgrading of the product. Conversion of ethanol to acetaldehyde can be achieved without the involvement of nicotinamide cofactors by use of the enzyme alcohol oxidase obtainable from Candida boidinii. The product acetaldehyde has a relatively low boiling point (21 degrees C) and, therefore, readily evaporates from systems operating above this temperature. This is compatible with normal operating temperatures for ethanol production. The acetaldehyde so produced can then be readily condensed and be utilized or chemically converted to other products. The production of acetaldehyde is accompanied by production of hydrogen peroxide. The effect of the removal of this product, by the use of catalase, on the primary process was also investigated. The system outlined has potential for development into an immobilized enzyme or cell system which may be made compatible with an immobilized Saccharomyces cerevisiae system for improved efficiency of glucose utilization.

  15. Uncertainties in Biogenic Sources and Sinks and Their Relevance for the Global Acetone Budget

    NASA Astrophysics Data System (ADS)

    Brewer, J.; Fischer, E. V.; Ravishankara, A. R.; Bishop, M.

    2015-12-01

    Acetone is one of the most abundant carbonyl compounds in the atmosphere, and a major source of HOx radicals in the upper troposphere. Thus, understanding the global budget of acetone is essential to understanding global oxidation capacity. Significant uncertainties remain regarding the flux of acetone out of and into the biosphere. Crucially unconstrained processes include dry deposition, fluxes of acetone into and out of the ocean, direct emissions of acetone from the terrestrial biosphere, and direct emissions of secondary sources of acetone such as the oxidation of monoterpenes from the terrestrial biosphere. We have performed an elementary effects sensitivity analysis of the GEOS-Chem global 3-D CTM (version 10-01, www.geos-chem.org) for the global atmospheric distribution of acetone using the Morris method. This method provides a ranking of both the comparative direct importance, as well as non-linear effects and interactions of the tested input factor uncertainties, at a relatively low computational cost. The sensitivity analysis was bounded using literature minima and maxima for five sources of uncertainty related to specific biogenic sources and sinks. Preliminary results suggest that the uncertainties with the largest impact on acetone concentration are the uncertainties in direct acetone emissions from the terrestrial biosphere and uncertainties in the concentration of acetone in the ocean mixed layer.

  16. Acetaldehyde Oxime, A Product Formed during the In Vivo Nitrate Reductase Assay of Soybean Leaves 1

    PubMed Central

    Mulvaney, Charlene S.; Hageman, Richard H.

    1984-01-01

    Evolution of nitrogen oxides (NO(x), primarily as nitric oxide) from soybean (Glycine max [L.] Merr.) leaves during purged in vivo nitrate reductase assays had been reported; however, these reports were based on a method that had been used for determination of NO(x) in air. This method also detects other N compounds. Preliminary work led us to doubt that the evolved N was nitric oxide. Studies were undertaken to identify the N compound evolved from the in vivo assay that had been reported as NO(x). Material for identification was obtained by cryogenic trapping and fractional distillation, and by chemical trapping procedures. Mass spectrometry, ultraviolet spectroscopy, and 15N-labeled nitrate were used to identify the compounds evolved and to determine whether these compounds were derived from nitrate. Acetaldehyde oxime was identified as the predominant N compound evolved and this compound is readily detected by the method for NO(x) determination. Substantial quantities of acetaldehyde oxime (16.2 micromoles per gram fresh weight per hour) were evolved during the in vivo assay. Small amounts of nitrous oxide (0.63 micrograms N per gram fresh weight per hour) were evolved, but this compound is not detected as NO(x). Acetaldehyde oxime and nitrous oxide were both produced as a result of nitrate (15NO3−) reduction during the assay. PMID:16663781

  17. Acetaldehyde Oxime, A Product Formed during the In Vivo Nitrate Reductase Assay of Soybean Leaves.

    PubMed

    Mulvaney, C S; Hageman, R H

    1984-09-01

    Evolution of nitrogen oxides (NO((x)), primarily as nitric oxide) from soybean (Glycine max [L.] Merr.) leaves during purged in vivo nitrate reductase assays had been reported; however, these reports were based on a method that had been used for determination of NO((x)) in air. This method also detects other N compounds. Preliminary work led us to doubt that the evolved N was nitric oxide. Studies were undertaken to identify the N compound evolved from the in vivo assay that had been reported as NO((x)). Material for identification was obtained by cryogenic trapping and fractional distillation, and by chemical trapping procedures. Mass spectrometry, ultraviolet spectroscopy, and (15)N-labeled nitrate were used to identify the compounds evolved and to determine whether these compounds were derived from nitrate. Acetaldehyde oxime was identified as the predominant N compound evolved and this compound is readily detected by the method for NO((x)) determination. Substantial quantities of acetaldehyde oxime (16.2 micromoles per gram fresh weight per hour) were evolved during the in vivo assay. Small amounts of nitrous oxide (0.63 micrograms N per gram fresh weight per hour) were evolved, but this compound is not detected as NO((x)). Acetaldehyde oxime and nitrous oxide were both produced as a result of nitrate ((15)NO(3) (-)) reduction during the assay. PMID:16663781

  18. Cholesterol Enhances the Toxic Effect of Ethanol and Acetaldehyde in Primary Mouse Hepatocytes

    PubMed Central

    López-Islas, Anayelly; Chagoya-Hazas, Victoria; Pérez-Aguilar, Benjamin; Palestino-Domínguez, Mayrel; Souza, Verónica; Miranda, Roxana U.; Bucio, Leticia; Gómez-Quiroz, Luis Enrique; Gutiérrez-Ruiz, María-Concepción

    2016-01-01

    Obesity and alcohol consumption are risk factors for hepatic steatosis, and both commonly coexist. Our objective was to evaluate the effect of ethanol and acetaldehyde on primary hepatocytes obtained from mice fed for two days with a high cholesterol (HC) diet. HC hepatocytes increased lipid and cholesterol content. HC diet sensitized hepatocytes to the toxic effect of ethanol and acetaldehyde. Cyp2E1 content increased with HC diet, as well as in those treated with ethanol or acetaldehyde, while the activity of this enzyme determined in microsomes increased in the HC and in all ethanol treated hepatocytes, HC and CW. Oxidized proteins were increased in the HC cultures treated or not with the toxins. Transmission electron microscopy showed endoplasmic reticulum (ER) stress and megamitochondria in hepatocytes treated with ethanol as in HC and the ethanol HC treated hepatocytes. ER stress determined by PERK content was increased in ethanol treated hepatocytes from HC mice and CW. Nuclear translocation of ATF6 was observed in HC hepatocytes treated with ethanol, results that indicate that lipids overload and ethanol treatment favor ER stress. Oxidative stress, ER stress, and mitochondrial damage underlie potential mechanisms for increased damage in steatotic hepatocyte treated with ethanol. PMID:26788255

  19. Risk assessment for the Italian population of acetaldehyde in alcoholic and non-alcoholic beverages.

    PubMed

    Paiano, Viviana; Bianchi, Giancarlo; Davoli, Enrico; Negri, Eva; Fanelli, Roberto; Fattore, Elena

    2014-07-01

    Acetaldehyde is a naturally-occurring carcinogenic compound, present in different food items, especially in alcoholic beverages. The aims of this study were to measure acetaldehyde concentration in different beverages consumed in Italy and to estimate the potential cancer risk. The analytical procedure was based on headspace solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS), using the isotopic dilution method. The margin of exposure (MOE) approach of the European Food Safety Authority (EFSA) was used for risk characterisation. The highest concentrations (median, min-max) were detected in grappa samples (499, 23.4-1850mg/l), followed by fruit-based liqueurs and spirits (62.0, 5.23-483mg/l) and wine (68.0, 18.1-477mg/l); the lowest were detected in gin (0.91, 0.78-1.90mg/l). The lowest MOE was estimated for high wine consumers (69). These results suggest that regulatory measures and consumer guidance may be necessary for acetaldehyde in beverages. PMID:24518311

  20. Effects of acetaldehyde and acrolein on blood pressure in guanethidine-pretreated hypertensive rats

    SciTech Connect

    Green, M.A.; Egle, J.L. Jr.

    1983-06-15

    These experiments were undertaken to study the effect of the interaction of the antihypertensive agent guanethidine and two aldehydes possessing sympathomimetic activity on the blood pressure of spontaneously hypertensive rats (SHR). Acetaldehyde, when administered iv to acutely guanethidine-pretreated (15 mg/kg) SHRs under urethane anesthesia, caused a potentiated pressor response in the dose range of 3 to 40 mg/kg. When administered iv to chronically guanethidine-pretreated SHRs, a pressor response was noted at low doses and a depressor response at high doses. Acrolein (0.05 to 0.5 mg/kg) produced a pressor response at low doses and a depressor response at high doses in both acutely and chronically guanethidine-pretreated SHRs. Pressor responses, particularly to acetaldehyde, may be due to an enlarged tyramine-releasable pool, hyperreactivity of alpha adrenergic receptors of SHRs, or guanethidine inhibition of norepinephrine reuptake. Depressor responses to high doses of aldehydes may be attributed to vagal stimulation or direct vasodilation. It is concluded that there is a significant interaction between the aldehydes and guanethidine which may have implications for someone undergoing treatment with guanethidine for hypertension while being exposed to acetaldehyde and related compounds from ethanol and tobacco smoke.

  1. Astrochemistry at work in the L1157-B1 shock: acetaldehyde formation

    NASA Astrophysics Data System (ADS)

    Codella, C.; Fontani, F.; Ceccarelli, C.; Podio, L.; Viti, S.; Bachiller, R.; Benedettini, M.; Lefloch, B.

    2015-04-01

    The formation of complex organic molecules (COMs) in protostellar environments is a hotly debated topic. In particular, the relative importance of the gas phase processes as compared to a direct formation of COMs on the dust grain surfaces is so far unknown. We report here the first high-resolution images of acetaldehyde (CH3CHO) emission towards the chemically rich protostellar shock L1157-B1, obtained at 2 mm with the IRAM Plateau de Bure interferometer. Six blueshifted CH3CHO lines with Eu = 26-35 K have been detected. The acetaldehyde spatial distribution follows the young (˜ 2000 yr) outflow cavity produced by the impact of the jet with the ambient medium, indicating that this COM is closely associated with the region enriched by iced species evaporated from dust mantles and released into the gas phase. A high CH3CHO relative abundance, 2-3 × 10-8, is inferred, similarly to what found in hot corinos. Astrochemical modelling indicates that gas phase reactions can produce the observed quantity of acetaldehyde only if a large fraction of carbon, of the order of 0.1 per cent, is locked into iced hydrocarbons.

  2. Development of methanol evaporation plate to reduce methanol crossover in a direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiming

    This research focuses on methanol crossover reduction in direct methanol fuel cells (DMFC) through separating the methanol vapor from its liquid phase and feeding the vapor passively at low temperature range. Membrane electrode assemblies (MEAs) were fabricated by using commercial available membrane with different thickness at different anode catalyst loading levels, and tested under the operating conditions below 100°C in cell temperature and cathode exit open to ambient pressure. Liquid methanol transport from the anode through the membrane into cathode ("methanol crossover") is identified as one of the major efficiency losses in a DMFC. It is known that the methanol crossover rate in the vapor phase is much lower than in liquid phase. Vapor feed can be achieved by heating the liquid methanol to elevated temperatures (>100°C), but other issues limit the performance of the cell when operating above 100°C. High temperature membranes and much more active cathode catalyst structures are required, and a complex temperature control system must be employed. However, methanol vapor feed can also occur at a lower temperature range (<100°C) by separating its vapor from the liquid phase by evaporation through a porous body. The methanol crossover with this vapor feed mode is lower compared with the direct liquid methanol feed. A new method of using a methanol evaporation plate (MEP) to separate the vapor from its liquid phase to reduce the liquid methanol crossover at low temperature range is developed. A MEP plays the roles of liquid/vapor methanol phase separation and evaporation in a DMFC. The goal of this study is to develop a MEP with the proper properties to achieve high methanol phase separation efficiency and fast methanol evaporation rate over a wide range of temperature, i.e., from room temperature up to near boiling temperature (100°C). MEP materials were selected and characterized. MEPs made from three different types were tested extensively with different

  3. Photoinduced charge transfer and acetone sensitivity of single-walled carbon nanotube-titanium dioxide hybrids.

    PubMed

    Ding, Mengning; Sorescu, Dan C; Star, Alexander

    2013-06-19

    The unique physical and chemical properties of single-walled carbon nanotubes (SWNTs) make them ideal building blocks for the construction of hybrid nanostructures. In addition to increasing the material complexity and functionality, SWNTs can probe the interfacial processes in the hybrid system. In this work, SWNT-TiO2 core/shell hybrid nanostructures were found to exhibit unique electrical behavior in response to UV illumination and acetone vapors. By experimental and theoretical studies of UV and acetone sensitivities of different SWNT-TiO2 hybrid systems, we established a fundamental understanding on the interfacial charge transfer between photoexcited TiO2 and SWNTs as well as the mechanism of acetone sensing. We further demonstrated a practical application of photoinduced acetone sensitivity by fabricating a microsized room temperature acetone sensor that showed fast, linear, and reversible detection of acetone vapors with concentrations in few parts per million range. PMID:23734594

  4. Fate of acetone in an outdoor model stream in southern Mississippi, U.S.A.

    USGS Publications Warehouse

    Rathbun, R.E.; Stephens, D.W.; Shultz, D.J.; Tai, D.Y.

    1988-01-01

    The fate of acetone in water was investigated in an outdoor model stream located in southern Mississippi, U.S.A. Acetone was injected continuously for 32 days resulting in small milligram-perliter concentrations in the stream. Rhodamine-WT dye was injected at the beginning and at the end of the study to determine the time-of-travel and dispersion characteristics of the stream. A 12-h injection of t-butyl alcohol (TBA) was used to determine the volatilization characteristics of the stream. Volatilization controlled the acetone concentration in the stream. Significant bacterial degradation of acetone did not occur, contrary to expectations based on previous laboratory studies. Attempts to induce degradation of the acetone by injecting glucose and a nutrient solution containing bacteria acclimated to acetone were unsuccessful. Possible explanations for the lack of bacterial degradation included a nitrate limitation and a limited residence time in the stream system. ?? 1988.

  5. California methanol assessment. Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    Otoole, R.; Dutzi, E.; Gershman, R.; Heft, R.; Kalema, W.; Maynard, D.

    1983-01-01

    The near term methanol industry, the competitive environment, long term methanol market, the transition period, air quality impacts of methanol, roles of the public and private sectors are considered.

  6. Purification and Characterization of the Acetone Carboxylase of Cupriavidus metallidurans Strain CH34

    PubMed Central

    Rosier, Caroline; Leys, Natalie; Henoumont, Céline; Mergeay, Max

    2012-01-01

    Acetone carboxylase (Acx) is a key enzyme involved in the biodegradation of acetone by bacteria. Except for the Helicobacteraceae family, genome analyses revealed that bacteria that possess an Acx, such as Cupriavidus metallidurans strain CH34, are associated with soil. The Acx of CH34 forms the heterohexameric complex α2β2γ2 and can carboxylate only acetone and 2-butanone in an ATP-dependent reaction to acetoacetate and 3-keto-2-methylbutyrate, respectively. PMID:22492439

  7. Purification and characterization of the acetone carboxylase of Cupriavidus metallidurans strain CH34.

    PubMed

    Rosier, Caroline; Leys, Natalie; Henoumont, Céline; Mergeay, Max; Wattiez, Ruddy

    2012-06-01

    Acetone carboxylase (Acx) is a key enzyme involved in the biodegradation of acetone by bacteria. Except for the Helicobacteraceae family, genome analyses revealed that bacteria that possess an Acx, such as Cupriavidus metallidurans strain CH34, are associated with soil. The Acx of CH34 forms the heterohexameric complex α(2)β(2)γ(2) and can carboxylate only acetone and 2-butanone in an ATP-dependent reaction to acetoacetate and 3-keto-2-methylbutyrate, respectively. PMID:22492439

  8. Fabrication of a SnO2-Based Acetone Gas Sensor Enhanced by Molecular Imprinting

    PubMed Central

    Tan, Wenhu; Ruan, Xiaofan; Yu, Qiuxiang; Yu, Zetai; Huang, Xintang

    2015-01-01

    This work presents a new route to design a highly sensitive SnO2–based sensor for acetone gas enhanced by the molecular imprinting technique. Unassisted and acetone-assisted thermal synthesis methods are used to synthesis SnO2 nanomaterials. The prepared SnO2 nanomaterials have been characterized by X-ray powder diffraction, scanning electron microscopy and N2 adsorption−desorption. Four types of SnO2 films were obtained by mixing pure deionized water and liquid acetone with the two types of as-prepared powders, respectively. The acetone gas sensing properties of sensors coated by these films were evaluated. Testing results reveal that the sensor coated by the film fabricated by mixing liquid acetone with the SnO2 nanomaterial synthesized by the acetone-assisted thermal method exhibits the best acetone gas sensing performance. The sensor is optimized for the smooth adsorption and desorption of acetone gas thanks to the participation of acetone both in the procedure of synthesis of the SnO2 nanomaterial and the device fabrication, which results in a distinct response–recovery behavior. PMID:25549174

  9. System-level modeling of acetone-butanol-ethanol fermentation.

    PubMed

    Liao, Chen; Seo, Seung-Oh; Lu, Ting

    2016-05-01

    Acetone-butanol-ethanol (ABE) fermentation is a metabolic process of clostridia that produces bio-based solvents including butanol. It is enabled by an underlying metabolic reaction network and modulated by cellular gene regulation and environmental cues. Mathematical modeling has served as a valuable strategy to facilitate the understanding, characterization and optimization of this process. In this review, we highlight recent advances in system-level, quantitative modeling of ABE fermentation. We begin with an overview of integrative processes underlying the fermentation. Next we survey modeling efforts including early simple models, models with a systematic metabolic description, and those incorporating metabolism through simple gene regulation. Particular focus is given to a recent system-level model that integrates the metabolic reactions, gene regulation and environmental cues. We conclude by discussing the remaining challenges and future directions towards predictive understanding of ABE fermentation. PMID:27020410

  10. Methanol crossover in direct methanol fuel cell systems.

    SciTech Connect

    Pivovar, B. S.; Bender, G.; Davey, J. R.; Zelenay, P.

    2003-01-01

    Direct methanol fuel cells (DMFCs) are currently being investigated for a number of different applications from several milliwatts to near kilowatt size scales (cell phones, laptops, auxiliary power units, etc .). Because methanol has a very high energy density, over 6000 W hr/kg, a DMFC can possibly have greatly extended lifetimes compared to the batteries, doesn't present the storage problems associated with hydrogen fuel cells and can possibly operate more efficiently and cleanly than internal combustion engines.

  11. Evaluating the Potential Importance of Monoterpene Degradation for Global Acetone Production

    NASA Astrophysics Data System (ADS)

    Kelp, M. M.; Brewer, J.; Keller, C. A.; Fischer, E. V.

    2015-12-01

    Acetone is one of the most abundant volatile organic compounds (VOCs) in the atmosphere, but estimates of the global source of acetone vary widely. A better understanding of acetone sources is essential because acetone serves as a source of HOx in the upper troposphere and as a precursor to the NOx reservoir species peroxyacetyl nitrate (PAN). Although there are primary anthropogenic and pyrogenic sources of acetone, the dominant acetone sources are thought to be from direct biogenic emissions and photochemical production, particularly from the oxidation of iso-alkanes. Recent work suggests that the photochemical degradation of monoterpenes may also represent a significant contribution to global acetone production. We investigate that hypothesis using the GEOS-Chem chemical transport model. In this work, we calculate the emissions of eight terpene species (α-pinene, β-pinene, limonene, Δ3-carene, myrcene, sabinene, trans-β-ocimene, and an 'other monoterpenes' category which contains 34 other trace species) and couple these with upper and lower bound literature yields from species-specific chamber studies. We compare the simulated acetone distributions against in situ acetone measurements from a global suite of NASA aircraft campaigns. When simulating an upper bound on yields, the model-to-measurement comparison improves for North America at both the surface and in the upper troposphere. The inclusion of acetone production from monoterpene degradation also improves the ability of the model to reproduce observations of acetone in East Asian outflow. However, in general the addition of monoterpenes degrades the model comparison for the Southern Hemisphere.

  12. Expression of Clostridium acetobutylicum ATCC 824 Genes in Escherichia coli for Acetone Production and Acetate Detoxification

    PubMed Central

    Bermejo, Lourdes L.; Welker, Neil E.; Papoutsakis, Eleftherios T.

    1998-01-01

    A synthetic acetone operon (ace4) composed of four Clostridium acetobutylicum ATCC 824 genes (adc, ctfAB, and thl, coding for the acetoacetate decarboxylase, coenzyme A transferase, and thiolase, respectively) under the control of the thl promoter was constructed and was introduced into Escherichia coli on vector pACT. Acetone production demonstrated that ace4 is expressed in E. coli and resulted in the reduction of acetic acid levels in the fermentation broth. Since different E. coli strains vary significantly in their growth characteristics and acetate metabolism, ace4 was expressed in three E. coli strains: ER2275, ATCC 11303, and MC1060. Shake flask cultures of MC1060(pACT) produced ca. 2 mM acetone, while both strains ER2275(pACT) and ATCC 11303(pACT) produced ca. 40 mM acetone. Glucose-fed cultures of strain ATCC 11303(pACT) resulted in a 150% increase in acetone titers compared to those of batch shake flask cultures. External addition of sodium acetate to glucose-fed cultures of ATCC 11303(pACT) resulted in further increased acetone titers. In bioreactor studies, acidic conditions (pH 5.5 versus 6.5) improved acetone production. Despite the substantial acetone evaporation due to aeration and agitation in the bioreactor, 125 to 154 mM acetone accumulated in ATCC 11303(pACT) fermentations. These acetone titers are equal to or higher than those produced by wild-type C. acetobutylicum. This is the first study to demonstrate the ability to use clostridial genes in nonclostridial hosts for solvent production. In addition, acetone-producing E. coli strains may be useful hosts for recombinant protein production in that detrimental acetate accumulation can be avoided. PMID:9501448

  13. North American acetone sources determined from tall tower measurements and inverse modeling

    NASA Astrophysics Data System (ADS)

    Hu, L.; Millet, D. B.; Kim, S. Y.; Wells, K. C.; Griffis, T. J.; Fischer, E. V.; Helmig, D.; Hueber, J.; Curtis, A. J.

    2013-03-01

    We apply a full year of continuous atmospheric acetone measurements from the University of Minnesota tall tower Trace Gas Observatory (KCMP tall tower; 244 m a.g.l.), with a 0.5° × 0.667° GEOS-Chem nested grid simulation to develop quantitative new constraints on seasonal acetone sources over North America. Biogenic acetone emissions in the model are computed based on the MEGANv2.1 inventory. An inverse analysis of the tall tower observations implies a 37% underestimate of emissions from broadleaf trees, shrubs, and herbaceous plants, and an offsetting 40% overestimate of emissions from needleleaf trees plus secondary production from biogenic precursors. The overall result is a small (16%) model underestimate of the total primary + secondary biogenic acetone source in North America. Our analysis shows that North American primary + secondary anthropogenic acetone sources in the model (based on the EPA NEI 2005 inventory) are accurate to within approximately 20%. An optimized GEOS-Chem simulation incorporating the above findings captures 70% of the variance (R = 0.83) in the hourly measurements at the KCMP tall tower, with minimal bias. The resulting North American acetone source is 11 Tg a-1, including both primary emissions (5.5 Tg a-1) and secondary production (5.5 Tg a-1), and with roughly equal contributions from anthropogenic and biogenic sources. The North American acetone source alone is nearly as large as the total continental volatile organic compound (VOC) source from fossil fuel combustion. Using our optimized source estimates as a baseline, we evaluate the sensitivity of atmospheric acetone and peroxyacetyl nitrate (PAN) to shifts in natural and anthropogenic acetone sources over North America. Increased biogenic acetone emissions due to surface warming are likely to provide a significant offset to any future decrease in anthropogenic acetone emissions, particularly during summer.

  14. Kinetics of cytochrome P450 2E1-catalyzed oxidation of ethanol to acetic acid via acetaldehyde.

    PubMed

    Bell-Parikh, L C; Guengerich, F P

    1999-08-20

    The P450 2E1-catalyzed oxidation of ethanol to acetaldehyde is characterized by a kinetic deuterium isotope effect that increases K(m) with no effect on k(cat), and rate-limiting product release has been proposed to account for the lack of an isotope effect on k(cat) (Bell, L. C., and Guengerich, F. P. (1997) J. Biol. Chem. 272, 29643-29651). Acetaldehyde is also a substrate for P450 2E1 oxidation to acetic acid, and k(cat)/K(m) for this reaction is at least 1 order of magnitude greater than that for ethanol oxidation to acetaldehyde. Acetic acid accounts for 90% of the products generated from ethanol in a 10-min reaction, and the contribution of this second oxidation has been overlooked in many previous studies. The noncompetitive intermolecular kinetic hydrogen isotope effects on acetaldehyde oxidation to acetic acid ((H)(k(cat)/K(m))/(D)(k(cat)/K(m)) = 4.5, and (D)k(cat) = 1.5) are comparable with the isotope effects typically observed for ethanol oxidation to acetaldehyde, and k(cat) is similar for both reactions, suggesting a possible common catalytic mechanism. Rapid quench kinetic experiments indicate that acetic acid is formed rapidly from added acetaldehyde (approximately 450 min(-1)) with burst kinetics. Pulse-chase experiments reveal that, at a subsaturating concentration of ethanol, approximately 90% of the acetaldehyde intermediate is directly converted to acetic acid without dissociation from the enzyme active site. Competition experiments suggest that P450 2E1 binds acetic acid and acetaldehyde with relatively high K(d) values, which preclude simple tight binding as an explanation for rate-limiting product release. The existence of a rate-determining step between product formation and release is postulated. Also proposed is a conformational change in P450 2E1 occurring during the course of oxidation and the discrimination of P450 2E1 between acetaldehyde and its hydrated form, the gem-diol. This multistep P450 reaction is characterized by kinetic

  15. Ion/molecule reactions of 2-chloro- and 2-bromopropene radical cations with methanol and ethanol--FT-ICR spectrometry and DFT calculations

    NASA Astrophysics Data System (ADS)

    Grützmacher, Hans-Friedrich; Büchner, Michael; Zipse, Hendrik

    2005-02-01

    Continuing the studies of ion/molecule reactions of haloalkene radical cations with nucleophiles, the reactions of the radical cations of 2-chloropropene, 1+, and 2-bromopropene. 2+, with methanol and ethanol, respectively, have been investigated by FT-ICR spectrometry and by computational analysis using DFT calculation (BHLYP/6-311 + G(2d,p)//BHLYP/6-31 + G(d) level). Only slow reactions (reaction efficiency <1%) are observed for 1+/methanol and 2+/methanol. Slow proton transfer is the main process for 1+/methanol besides minor addition of methanol to 1+ followed by loss of HCl or Cl. Addition of methanol accompanied by loss of Br is the exclusive process observed for 2+/methanol. In contrast, both 1+ and 2+ react efficiently with ethanol yielding protonated acetaldehyde as the exclusive (1+) or by far dominant (2+) primary reaction product. The computational analysis of these ion/molecule reactions shows that in the case of 1+/methanol and 2+/methanol all processes are either endothermic or blocked by large activation energies. Nonetheless, addition of methanol to the ionized CC double bond of 1+ or 2+ is exothermic, yielding in each case a pair of isomeric [beta]-distonic methoxonium ions. A new reaction mechanism has been found for the HX (X = Cl, Br) elimination from the less stable isomer of the distonic intermediates. Further, an energetically favorable transition state has been detected for hydrogen atom transfer from the [alpha]-CH2 group of alcohol to the halogenoalkene radical cations. These findings lead to a revised mechanism of the oxidation process and provide a plausible explanation for the excessive H/D exchange between 1+ and CD3OH during their slow reaction.

  16. Methanol Oxidation on Pt3Sn(111) for Direct Methanol Fuel Cells: Methanol Decomposition.

    PubMed

    Lu, Xiaoqing; Deng, Zhigang; Guo, Chen; Wang, Weili; Wei, Shuxian; Ng, Siu-Pang; Chen, Xiangfeng; Ding, Ning; Guo, Wenyue; Wu, Chi-Man Lawrence

    2016-05-18

    PtSn alloy, which is a potential material for use in direct methanol fuel cells, can efficiently promote methanol oxidation and alleviate the CO poisoning problem. Herein, methanol decomposition on Pt3Sn(111) was systematically investigated using periodic density functional theory and microkinetic modeling. The geometries and energies of all of the involved species were analyzed, and the decomposition network was mapped out to elaborate the reaction mechanisms. Our results indicated that methanol and formaldehyde were weakly adsorbed, and the other derivatives (CHxOHy, x = 1-3, y = 0-1) were strongly adsorbed and preferred decomposition rather than desorption on Pt3Sn(111). The competitive methanol decomposition started with the initial O-H bond scission followed by successive C-H bond scissions, (i.e., CH3OH → CH3O → CH2O → CHO → CO). The Brønsted-Evans-Polanyi relations and energy barrier decomposition analyses identified the C-H and O-H bond scissions as being more competitive than the C-O bond scission. Microkinetic modeling confirmed that the vast majority of the intermediates and products from methanol decomposition would escape from the Pt3Sn(111) surface at a relatively low temperature, and the coverage of the CO residue decreased with an increase in the temperature and decrease in partial methanol pressure. PMID:27119198

  17. Acetaldehyde removal using an atmospheric non-thermal plasma combined with a packed bed: role of the adsorption process.

    PubMed

    Klett, C; Duten, X; Tieng, S; Touchard, S; Jestin, P; Hassouni, K; Vega-González, A

    2014-08-30

    This work is an attempt in order to help towards understanding the influence of the adsorption process on the removal of a VOC (acetaldehyde, CH3CHO) using cyclic non thermal plasma (NTP) combined with a packed-bed of a catalyst support, α-Al2O3. In the first part, the results obtained by placing the saturated alumina pellets inside the plasma discharge zone are discussed, in terms of acetaldehyde removal, CO and CO2 production. In the second part, adsorption of CH3CHO, CO, CO2 and O3 was carried out, from single and multicomponent mixtures of the different compounds. The results showed that (i) the adsorption capacities followed the order CH3CHO≫  CO2>CO; (ii) O3 was decomposed on the alumina surface; (iii) CO oxidation occurred on the surface when O3 was present. In the third part, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was used to follow the alumina surface during acetaldehyde adsorption. DRIFTS measurements demonstrated that besides the bands of molecularly adsorbed acetaldehyde, several absorptions appeared on the spectra showing the intermediate surface transformation of acetaldehyde already at 300K. Finally, the relationship between the adsorption results and the NTP combined with a packed-bed process is discussed. PMID:25072139

  18. Effect of acetaldehyde generated from ethanol by ADH-transfected CHO cells on their membrane fatty acid profiles.

    PubMed

    Meskar, A; Holownia, A; Bardou, L G; Menez, J F

    1996-01-01

    Ethanol has been previously shown to reduce the unsaturated fatty acid content of cell membranes. It is not known, however, if the observed deleterious effects are due to ethanol itself or its metabolite, acetaldehyde. The present study was undertaken to assess the effect of acetaldehyde produced from ethanol by alcohol-deyhdrogenase-transfected Chinese hamster ovary Cells on the membrane lipids and the lipid peroxidation measured by free and bound malondialdehyde (MDA). The effects of ethanol alone was assessed in the presence of 4-methylpyrazole (4-MP), an inhibitor of alcohol dehydrogenase. After 8 days of incubation, total cellular lipids were extracted, subjected to TLC, and analyzed by gas chromatography. MDA concentration were determined by thiobarbituric acid reaction followed by HPLC detection. The level of acetaldehyde in the culture medium increased with concentration of ethanol from 5 to 20 mM as did the lipid peroxidation. Total cholesterol, phospholipids, and triglycerids all increased with increasing concentration of acetaldehyde. These effects were due to acetaldehyde as they were blocked by 4-MP. Some changes in fatty acid profiles were observed by effect of ethanol itself. PMID:8949957

  19. Biochemical characterization of a bifunctional acetaldehyde-alcohol dehydrogenase purified from a facultative anaerobic bacterium Citrobacter sp. S-77.

    PubMed

    Tsuji, Kohsei; Yoon, Ki-Seok; Ogo, Seiji

    2016-03-01

    Acetaldehyde-alcohol dehydrogenase (ADHE) is a bifunctional enzyme consisting of two domains of an N-terminal acetaldehyde dehydrogenase (ALDH) and a C-terminal alcohol dehydrogenase (ADH). The enzyme is known to be important in the cellular alcohol metabolism. However, the role of coenzyme A-acylating ADHE responsible for ethanol production from acetyl-CoA remains uncertain. Here, we present the purification and biochemical characterization of an ADHE from Citrobacter sp. S-77 (ADHES77). Interestingly, the ADHES77 was unable to be solubilized from membrane with detergents either 1% Triton X-100 or 1% Sulfobetaine 3-12. However, the enzyme was easily dissociated from membrane by high-salt buffers containing either 1.0 M NaCl or (NH4)2SO4 without detergents. The molecular weight of a native protein was estimated as approximately 400 kDa, consisting of four identical subunits of 96.3 kDa. Based on the specific activity and kinetic analysis, the ADHES77 tended to have catalytic reaction towards acetaldehyde elimination rather than acetaldehyde formation. Our experimental observation suggests that the ADHES77 may play a pivotal role in modulating intracellular acetaldehyde concentration. PMID:26216639

  20. Adsorption and Reaction of Acetaldehyde on Shape-Controlled CeO2 Nanocrystals: Elucidation of Structure-function Relationships

    SciTech Connect

    Mann, Amanda K; Wu, Zili; Calaza, Florencia; Overbury, Steven {Steve} H

    2014-01-01

    CeO2 cubes with {100} facets, octahedra with {111} facets, and wires with highly defective structures were utilized to probe the structure-dependent reactivity of acetaldehyde. Using temperature-programmed desorption (TPD), temperature-programmed surface reactions (TPSR), and in situ infrared spectroscopy it was found that acetaldehyde desorbs unreacted or undergoes reduction, coupling, or C-C bond scission reactions depending on the surface structure of CeO2. Room temperature FTIR indicates that acetaldehyde binds primarily as 1-acetaldehyde on the octahedra, in a variety of conformations on the cubes, including coupling products and acetate and enolate species, and primarily as coupling products on the wires. The percent consumption of acetaldehyde follows the order of wires > cubes > octahedra. All the nanoshapes produce the coupling product crotonaldehyde; however, the selectivity to produce ethanol follows the order wires cubes >> octahedra. The selectivity and other differences can be attributed to the variation in the basicity of the surfaces, defects densities, coordination numbers of surface atoms, and the reducibility of the nanoshapes.

  1. Adsorption and Reaction of Acetaldehyde on Stoichiometric and Defective SrTiO{sub 3}(100) Surfaces

    SciTech Connect

    Wang, Li Q.; Ferris, Kim F.; Azad, Samina; Engelhard, Mark H.; Peden, Charles HF.

    2004-02-05

    The adsorption and reaction of acetaldehyde (CH{sub 3}CHO), on stoichiometric (TiO{sub 2}-terminated) and reduced SrTiO{sub 3}(100) surfaces, have been investigated using temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). Acetaldehyde adsorbs molecularly on the stoichiometric SrTiO{sub 3}(100) surface that contains predominantly Ti{sup 4+} cations. The Ti{sup 4+} sites on the stoichiometric SrTiO{sub 3}(100) surface are not sufficiently active for surface reactions such as aldol condensation, as opposed to the Ti{sup 4+} ions on the TiO{sub 2}(001) surface. However, decomposition and redox reactions of acetaldehyde occur in the presence of surface defects created by Ar{sup +} sputtering. The decomposition products following reactions of acetaldehyde on the defective surface include H{sub 2}, C{sub 2}H{sub 4}, CO, C{sub 4}H{sub 6} and C{sub 4}H{sub 8}. Reductive coupling, to produce C{sub 2}H{sub 4} and C{sub 4}H{sub 8}, is the main reaction pathway for decomposition of acetaldehyde on the sputter reduced SrTiO{sub 3}(100) surface.

  2. What’s in that Drink: The Biological Actions of Ethanol, Acetaldehyde, and Salsolinol

    PubMed Central

    Deehan, Gerald A.; Brodie, Mark S.; Rodd, Zachary A.

    2016-01-01

    Alcohol abuse and alcoholism represent substantial problems that affect a large portion of individuals throughout the world. Extensive research continues to be conducted in an effort to identify the biological basis of the reinforcing properties of alcohol in order to develop effective pharmacotherapeutic and behavioral interventions. One theory that has developed within the alcohol field over the past 4 decades postulates that the reinforcing properties of alcohol are due to the action of the metabolites/products of alcohol within the central nervous system (CNS). The most extreme version of this theory suggests that the biologically active metabolites/products of alcohol, created from the breakdown from alcohol, are the ultimate source of the reinforcing properties of alcohol. The contrary theory proposes that the reinforcing properties of alcohol are mediated completely through the interaction of the ethanol molecule with several neurochemical systems within the CNS. While there are scientific findings that offer support for both of these stances, the reinforcing properties of alcohol are most likely generated through a complex series of peripheral and central effects of both alcohol and its metabolites. Nonetheless, the development of a greater understanding for how the metabolites/products of alcohol contribute to the reinforcing properties of alcohol is an important factor in the development of efficacious pharmacotherapies for alcohol abuse and alcoholism. This chapter is intended to provide a historical perspective of the role of acetaldehyde (the first metabolite of alcohol) in alcohol reinforcement as well as review the basic research literature on the effects of acetaldehyde (and acetaldehyde metabolites/products) within the CNS and how these function with regard to alcohol reward. PMID:22351424

  3. Isobutanol-methanol mixtures from synthesis gas. Quarterly technical progress report, July 1--September 30, 1995

    SciTech Connect

    Eglesia, E.

    1995-10-24

    Mechanistic and kinetic studies of methanol and ethanol coupling reactions on Cs/Cu/ZnO and Cu/ZnO/MnO catalysts using isotopically-labeled compounds have confirmed that coupling reactions proceed via intermediate dehydrogenation of alcohols to aldehydes. Ethanol coupling reactions are much faster than those of methanol because ethanol forms a more thermodynamically favored intermediate (acetaldehyde), with aldol condensation pathways kinetically available for chain growth. Cs decreases the rate of formation of aldehydes in alcohol dehydrogenation reaction and inhibits the undesired conversion of methanol and ethanol to synthesis gas (CO/H{sub 2}). Construction and start-up of the Catalytic Microreactor Unit (CMRU) for high pressure isobutanol synthesis studies have been completed. Initial certification runs have reproduced catalytic CO conversion rates on a standard APCI material (Cs/Cu/ZnO/Al{sub 2}O{sub 3}). Condensation of higher alcohols in the transfer lines appears to be responsible for the observed low apparent selectivity to higher alcohols. The design and construction of the Temperature-Programmed Surface Reaction (TPSR) Unit for the study of the adsorption and reaction properties of alcohols and other oxygenates on isobutanol, synthesis catalysts and components is complete. The reduction of CuO powder and of a Cs/Cu/ZnO catalyst were used to certify the apparatus before proceeding with alcohol adsorption and reaction studies.

  4. Millimeter and submillimeter wave spectra of mono-13C-acetaldehydes

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Motiyenko, R. A.; Ilyushin, V. V.; Guillemin, J. C.

    2015-07-01

    Context. The acetaldehyde molecule is ubiquitous in the interstellar medium of our galaxy, and due to its dense and complex spectrum, large dipole moment, and several low-lying torsional states, acetaldehyde is considered to be a "weed" molecule for radio astronomy observations. Mono-13C acetaldehydes 13CH3CHO and CH313CHO are likely to be identified in astronomical surveys, such as those available with the very sensitive ALMA telescope. Laboratory measurements and analysis of the millimeter and submillimeter-wave spectra are the prerequisites for the successful radioastronomical search for the new interstellar molecular species, as well as for new isotopologs of already detected interstellar molecules. Aims: In this context, to provide reliable predictions of 13CH3CHO and CH313CHO spectra in millimeter and submillimeter wave ranges, we study rotational spectra of these species in the frequency range from 50 to 945 GHz. Methods: The spectra of mono-13C acetaldehydes were recorded using the spectrometer based on Schottky-diode frequencymultiplication chains in the Lille laboratory. The rotational spectra of 13CH3CHO and CH313CHO molecules were analyzed using the Rho axis method. Results: In the recorded spectra we have assigned 6884 for the 13CH3CHO species and 6458 for CH313CHO species new rotational transitions belonging to the ground, first, and second excited torsional states. These measurements were fitted together with previously published data to the Hamiltonian models that use 91 and 87 parameters to achieve overall weighted rms deviations 0.88 for the 13CH3CHO species and 0.95 for CH313CHO. On the basis of the new spectroscopic results, predictions of transition frequencies in the frequency range up to 1 THz with J ≤ 60 and Ka ≤ 20 are presented for both isotopologs. Full Tables 3-6 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/579/A46

  5. IRIS TOXICOLOGICAL REVIEW AND SUMMARY DOCUMENTS FOR ACETONE (EXTERNAL REVIEW DRAFT)

    EPA Science Inventory

    Acetone is produced endogenously in the human body, although usually under conditions of stress such as starvation or high levels of exertion. Acetone is also produced synthetically for a range of commercial processes, mostly as a solvent and intermediate in the synthesis of high...

  6. c-Fos immunoreactivity in prefrontal, basal ganglia and limbic areas of the rat brain after central and peripheral administration of ethanol and its metabolite acetaldehyde

    PubMed Central

    Segovia, Kristen N.; Vontell, Regina; López-Cruz, Laura; Salamone, John D.; Correa, Mercè

    2013-01-01

    Considerable evidence indicates that the metabolite of ethanol (EtOH), acetaldehyde, is biologically active. Acetaldehyde can be formed from EtOH peripherally mainly by alcohol dehydrogenase (ADH), and also centrally by catalase. EtOH and acetaldehyde show differences in their behavioral effects depending upon the route of administration. In terms of their effects on motor activity and motivated behaviors, when administered peripherally acetaldehyde tends to be more potent than EtOH but shows very similar potency administered centrally. Since dopamine (DA) rich areas have an important role in regulating both motor activity and motivation, the present studies were undertaken to compare the effects of central (intraventricular, ICV) and peripheral (intraperitoneal, IP) administration of EtOH and acetaldehyde on a cellular marker of brain activity, c-Fos immunoreactivity, in DA innervated areas. Male Sprague-Dawley rats received an IP injection of vehicle, EtOH (0.5 or 2.5 g/kg) or acetaldehyde (0.1 or 0.5 g/kg) or an ICV injection of vehicle, EtOH or acetaldehyde (2.8 or 14.0 μmoles). IP administration of EtOH minimally induced c-Fos in some regions of the prefrontal cortex and basal ganglia, mainly at the low dose (0.5 g/kg), while IP acetaldehyde induced c-Fos in virtually all the structures studied at both doses. Acetaldehyde administered centrally increased c-Fos in all areas studied, a pattern that was very similar to EtOH. Thus, IP administered acetaldehyde was more efficacious than EtOH at inducing c-Fos expression. However, the general pattern of c-Fos induction promoted by ICV EtOH and acetaldehyde was similar. These results are consistent with the pattern observed in behavioral studies in which both substances produced the same magnitude of effect when injected centrally, and produced differences in potency after peripheral administration. PMID:23745109

  7. Detection of acetone processing of castor bean mash for forensic investigation of ricin preparation methods.

    PubMed

    Kreuzer, Helen W; Wahl, Jon H; Metoyer, Candace N; Colburn, Heather A; Wahl, Karen L

    2010-07-01

    Samples containing the toxic castor bean protein ricin have been recently seized in connection with biocriminal activity. Analytical methods that enable investigators to determine how the samples were prepared and to match seized samples to potential source materials are needed. One commonly described crude ricin preparation method is acetone extraction of crushed castor beans. Here, we describe the use of solid-phase microextraction and headspace analysis to determine whether castor beans were processed by acetone extraction. We prepared acetone-extracted castor bean mash, along with controls of unextracted mash and mash extracted with nonacetone organic solvents. Samples of acetone-extracted mash and unextracted mash were stored in closed containers for up to 109 days at both room temperature and -20 degrees C, and in open containers at room temperature for up to 94 days. Acetone-extracted bean mash could consistently be statistically distinguished from controls, even after storage in open containers for 94 days. PMID:20345778

  8. Boron nitride nanotube based nanosensor for acetone adsorption: a DFT simulation.

    PubMed

    Ganji, Masoud Darvish; Rezvani, Mahyar

    2013-03-01

    We have investigated the adsorption properties of acetone on zigzag single-walled BNNTs using density functional theory (DFT) calculations. The results obtained show that acetone is strongly bound to the outer surface of a (5,0) BNNT on the top site directly above the boron atom, with a binding energy of -96.16 kJ mol(-1) and a B-O binding distance of 1.654 Å. Our first-principles calculations also predict that the ability of zigzag BNNTs to adsorb acetone is significantly stronger than the corresponding ability of zigzag CNTs. A comparative investigation of BNNTs with different diameters indicated that the ability of the side walls of the tubes to adsorb acetone decreases significantly for nanotubes with larger diameters. Furthermore, the stability of the most stable acetone/BNNT complex was tested using ab initio molecular dynamics simulation at room temperature. PMID:23179768

  9. Integration of stable isotope and trace contaminant concentration for enhanced forensic acetone discrimination

    SciTech Connect

    Moran, James J.; Ehrhardt, Christopher J.; Wahl, Jon H.; Kreuzer, Helen W.; Wahl, Karen L.

    2013-07-18

    We analyzed 21 neat acetone samples from 15 different suppliers to demonstrate the utility of a coupled stable isotope and trace contaminant strategy for distinguishing forensically-relevant samples. By combining these two pieces of orthogonal data we could discriminate all of the acetones that were produced by the 15 different suppliers. Using stable isotope ratios alone, we were able to distinguish 9 acetone samples, while the remaining 12 fell into four clusters with highly similar signatures. Adding trace chemical contaminant information enhanced discrimination to 13 individual acetones with three residual clusters. The acetones within each cluster shared a common manufacturer and might, therefore, not be expected to be resolved. The data presented here demonstrates the power of combining orthogonal data sets to enhance sample fingerprinting and highlights the role disparate data could play in future forensic investigations.

  10. Mineralization of gaseous acetaldehyde by electrochemically generated Co(III) in H2SO4 with wet scrubber combinatorial system.

    PubMed

    Govindan, Muthuraman; Chung, Sang-Joon; Moon, Il-Shik

    2012-06-11

    Electrochemically generated Co(III) mediated catalytic room temperature incineration of acetaldehyde, which is one of volatile organic compounds (VOCs), combined with wet scrubbing system was developed and investigated. Depending on the electrolyte's type, absorption come removal efficiency is varied. In presence of electrogenerated Co(III) in sulfuric acid, acetaldehyde was mineralized to CO2 and not like only absorption in pure sulfuric acid. The Co(III) mediated catalytic incineration led to oxidative absorption and elimination to CO2, which was evidenced with titration, CO2, and cyclic voltammetric analyses. Experimental conditions, such as current density, concentration of mediator, and gas molar flow rate were optimized. By the optimization of the experimental conditions, the complete mineralization of acetaldehyde was realized at a room temperature using electrochemically generated Co(III) with wet scrubber combinatorial system. PMID:22551057

  11. Multi-Walled Carbon Nanotubes as a Catalyst for Gas-Phase Oxidation of Ethanol to Acetaldehyde.

    PubMed

    Wang, Jia; Huang, Rui; Feng, Zhenbao; Liu, Hongyang; Su, Dangsheng

    2016-07-21

    Multi-walled carbon nanotubes (CNTs) were directly used as a sustainable and green catalyst to convert ethanol into acetaldehyde in the presence of molecular oxygen. The C=O groups generated on the nanocarbon surface were demonstrated as active sites for the selective oxidation of ethanol to acetaldehyde. The transformation of disordered carbon debris on the CNT surface to ordered graphitic structures induced by thermal-treatment significantly enhanced the stability of the active C=O groups, and thus the catalytic performance. A high reactivity with approximately 60 % ethanol conversion and 93 % acetaldehyde selectivity was obtained over the optimized CNT catalyst at 270 °C. More importantly, the catalytic performance was quite stable even after 500 h, which is comparable with a supported gold catalyst. The robust catalytic performance displayed the potential application of CNTs in the industrial catalysis field. PMID:27282126

  12. An acetone bio-sniffer (gas phase biosensor) enabling assessment of lipid metabolism from exhaled breath.

    PubMed

    Ye, Ming; Chien, Po-Jen; Toma, Koji; Arakawa, Takahiro; Mitsubayashi, Kohji

    2015-11-15

    Several volatile organic compounds (VOCs) are released from human breath or skin. Like chemical substances in blood or urine, some of these vapors can provide valuable information regarding the state of the human body. A highly sensitive acetone biochemical gas sensor (bio-sniffer) was developed and used to measure exhaled breath acetone concentration, and assess lipid metabolism based on breath acetone analysis. A fiber-optic biochemical gas sensing system was constructed by attaching a flow-cell with nicotinamide adenine dinucleotide (NADH)-dependent secondary alcohol dehydrogenase (S-ADH) immobilized membrane onto a fiber-optic NADH measurement system. The NADH measurement system utilizes an ultraviolet-light emitting diode with peak emission of 335 nm as an excitation light source. NADH is consumed by the enzymatic reaction of S-ADH, and the consumption is proportional to the concentration of acetone vapor. Phosphate buffer which contained NADH was circulated into the flow-cell to rinse products and the excessive substrates from the optode. The change of fluorescent emitted from NADH is analyzed by the PMT. Hence, fluorescence intensity decreased as the acetone concentration increased. The relationship between fluorescence intensity and acetone concentration was identified from 20 ppb to 5300 ppb. This interval included the concentration of acetone vapor in the breath of healthy people and those suffering from disorders of carbohydrate metabolism. Finally, the acetone bio-sniffer was used to measure breath acetone during an exercise stress test on an ergometer after a period of fasting. The concentration of acetone in breath was shown to significantly increase after exercise. This biosensor allows rapid, highly sensitive and selective measurement of lipid metabolism. PMID:26079672

  13. North American acetone sources determined from tall tower measurements and inverse modelling

    NASA Astrophysics Data System (ADS)

    Hu, L.; Millet, D. B.; Kim, S. Y.; Wells, K. C.; Griffis, T. J.; Fischer, E. V.; Helmig, D.; Hueber, J.; Curtis, A. J.

    2012-11-01

    We apply a full year of continuous atmospheric acetone measurements from the University of Minnesota tall tower Trace Gas Observatory (KCMP tall tower; 244 m a.g.l.), with a 0.5° × 0.667° GEOS-Chem nested grid simulation to develop quantitative new constraints on seasonal acetone sources over North America, and assess the corresponding impacts on atmospheric chemistry. Biogenic acetone emissions in the model are computed based on the MEGANv2.1 inventory. An inverse analysis of the tall tower observations implies a 37% underestimate of emissions from broadleaf trees, shrubs, and herbaceous plants, and an offsetting 40% overestimate of emissions from needleleaf trees plus secondary production from biogenic precursors. The overall result is a small (16%) model underestimate of the total primary + secondary biogenic acetone source in North America. Our analysis shows that North American primary + secondary anthropogenic acetone sources in the model (based on the EPA NEI 2005 inventory) are accurate to within approximately 20%. An optimized GEOS-Chem simulation incorporating the above findings captures 70% of the variance (R=0.83) in the hourly measurements at the KCMP tall tower, with minimal bias. The resulting North American acetone source is 10.9 Tg a-1, including both primary emissions (5.5 Tg a-1) and secondary production (5.5 Tg a-1), and with roughly equal contributions from anthropogenic and biogenic sources. The North American acetone source alone is nearly as large as the total continental volatile organic compound (VOC) source from fossil fuel combustion. Using our optimized source estimates as a baseline, we evaluate the atmospheric impact of some potential future shifts in acetone sources over North America. Increased biogenic acetone emissions due to surface warming are likely to provide a significant offset to any future decrease in anthropogenic acetone emissions, particularly during summer.

  14. The effects of acetaldehyde, glyoxal and acetic acid on the heterogeneous reaction of nitrogen dioxide on gamma-alumina.

    PubMed

    Sun, Zhenyu; Kong, Lingdong; Ding, Xiaoxiao; Du, Chengtian; Zhao, Xi; Chen, Jianmin; Fu, Hongbo; Yang, Xin; Cheng, Tiantao

    2016-04-14

    Heterogeneous reactions of nitrogen oxides on the surface of aluminium oxide result in the formation of adsorbed nitrite and nitrate. However, little is known about the effects of other species on these heterogeneous reactions and their products. In this study, diffuse reflectance infrared spectroscopy (DRIFTS) was used to analyze the process of the heterogeneous reaction of NO2 on the surface of aluminium oxide particles in the presence of pre-adsorbed organic species (acetaldehyde, glyoxal and acetic acid) at 298 K and reveal the influence of these organic species on the formation of adsorbed nitrite and nitrate. It was found that the pre-adsorption of organic species (acetaldehyde, glyoxal and acetic acid) on γ-Al2O3 could suppress the formation of nitrate to different extents. Under the same experimental conditions, the suppression of the formation of nitrate by the pre-adsorption of acetic acid is much stronger than that by pre-adsorption of acetaldehyde and glyoxal, indicating that the influence of acetic acid on the heterogeneous reaction of NO2 is different from that of acetaldehyde and glyoxal. Surface nitrite is formed and identified to be an intermediate product. For the heterogeneous reaction of NO2 on the surface of γ-Al2O3 with and without the pre-adsorption of acetaldehyde and glyoxal, it is firstly formed and then gradually disappears as the reaction proceeds, but for the reaction with the pre-adsorption of acetic acid, it is the final main product besides nitrate. This indicates that the pre-adsorption of acetic acid would promote the formation of nitrite, while the others would not change the trend of the formation of nitrite. The possible influence mechanisms of the pre-adsorption of acetaldehyde, glyoxal and acetic acid on the heterogeneous conversion of NO2 on γ-Al2O3 are proposed and atmospheric implications based on these results are discussed. PMID:26745767

  15. Formation of halogenated acetones in the lower troposphere

    NASA Astrophysics Data System (ADS)

    Sattler, Tobias; Wittmer, Julian; Krause, Torsten; Schöler, Heinz Friedrich; Kamilli, Katharina; Held, Andreas; Zetzsch, Cornelius; Ofner, Johannes; Atlas, Elliot

    2015-04-01

    Western Australia is a semi-/arid region that is heavily influenced by climate change and agricultural land use. The area is known for its saline lakes with a wide range of hydrogeochemical parameters and consists of ephemeral saline and saline groundwater fed lakes with a pH range from 2.5 to 7.1. In 2012 a novel PTFE-chamber was setup directly on the lakes. The 1.5 m³ cubic chamber was made of UV transparent PTFE foil to permit photochemistry while preventing dilution of the air due to lateral wind transport. This experimental setup allows linking measured data directly to the chemistry of and above the salt lakes. Air samples were taken using stainless steel canisters and measured by GC-MS/ECD. Sediment, crust and water samples were taken for investigation of potential VOC and VOX emissions in the laboratory using GC-MS. Several lakes were investigated and canister samples were taken over the day to see diurnal variations. The first samples were collected at 6 a.m. and from this time every 2 hours a canister was filled with chamber air. Concentrations of chloroacetone up to 15 ppb and of bromoacetone up to 40 ppb in the air samples were detected. The concentrations vary over the day and display their highest values around noon. Soil and water samples showed a variety of highly volatile and semi-volatile VOC/VOX but no halogenated acetones. An abiotic formation of these VOC/VOX seems conclusive due to iron-catalysed reactions below the salt crust [1]. The salt crust is the interface through which VOC/VOX pass from soil/groundwater to the atmosphere where they were photochemically altered. This explains the finding of halo acetones only in the air samples and not in water and soil samples measured in the laboratory. The main forming pathway for these haloacetones is the direct halogenation due to atomic chlorine and bromine above the salt lakes [2]. A minor pathway is the atmospheric degradation of chloropropane and bromopropane [3]. These halopropanes were found

  16. The (impossible?) formation of acetaldehyde on the grain surfaces: insights from quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Enrique-Romero, J.; Rimola, A.; Ceccarelli, C.; Balucani, N.

    2016-06-01

    Complex Organic Molecules (COMs) have been detected in the interstellar medium (ISM). However, it is not clear whether their synthesis occurs on the icy surfaces of interstellar grains or via a series of gas-phase reactions. As a test case of the COMs synthesis in the ISM, we present new quantum chemical calculations on the formation of acetaldehyde (CH3CHO) from the coupling of the HCO and CH3 radicals, both in gas phase and on water ice surfaces. The binding energies of HCO and CH3 on the amorphous water ice were also computed (2333 and 734 K, respectively). Results indicate that, in gas phase, the products could be either CH3CHO, CH4 + CO, or CH3OCH, depending on the relative orientation of the two radicals. However, on the amorphous water ice, only the CH4 + CO product is possible due to the geometrical constraints imposed by the water ice surface. Therefore, acetaldehyde cannot be synthesized by the CH3 + HCO coupling on the icy grains. We discuss the implications of these results and other cases, such as ethylene glycol and dimethyl ether, in which similar situations can occur, suggesting that formation of these molecules on the grain surfaces might be unlikely.

  17. Oxidation of Ethanol to Acetaldehyde over Na-promoted vanadium oxide catalysts

    SciTech Connect

    Chimentao, Ricardo J.; Herrera, Jose L.; Kwak, Ja Hun; Medina, Francesc; Wang, Yong; Peden, Charles HF

    2007-11-20

    Sodium-promoted vanadium oxide catalysts supported on MCM-41 and TiO2 (anatase) were investigated for the partial oxidation of ethanol to acetaldehyde. The catalysts were prepared by incipient wetness impregnation with a vanadium oxide content of 6 wt. %. The experimental characterization was performed by X-ray diffraction (XRD), N2 adsorption, temperature programmed reduction (TPR), and diffuse reflectance UV-Vis. Temperature programmed oxidation (TPO) was also used to identify carbon deposits on the spent catalysts. The presence of sodium plays a strong role in the dispersion and reducibility of the vanadium species as detected by TPR analysis and optical absorption spectroscopy. While sodium addition increases the dispersion of the VOx species, its presence also decreases their reducibility. Additionally, TPO of the spent catalysts revealed that an increase in the Na loading decreases the carbon deposition during reaction. In the case of the catalysts supported on MCM-41, these modifications were mirrored by a change in the activity and selectivity to acetaldehyde. Additionally, on the VOx/TiO2 catalysts the catalytic activity decreased with increasing sodium content in the catalyst. A model in which sodium affects dispersion, reducibility and also acidity of the supported-vanadia species is proposed to explain all these observations.

  18. Regional sources of atmospheric formaldehyde and acetaldehyde, and implications for atmospheric modeling

    NASA Astrophysics Data System (ADS)

    Luecken, D. J.; Hutzell, W. T.; Strum, M. L.; Pouliot, G. A.

    2012-02-01

    Formaldehyde and acetaldehyde concentrations over the Eastern half of the United States are simulated with a 3-D air quality model to identify the most important chemical precursors under January and July conditions. We find that both aldehydes primarily result from photochemical production, although 25% or more result from direct emissions in urban areas during winter. Isoprene is the major precursor of formaldehyde in most areas during summer, contributing 20-60% of total production, with the magnitude being spatially variable. Other alkenes from anthropogenic and/or biogenic emissions dominate formaldehyde production in winter, contributing 60-85% of total formation, and are prominent contributors in summer. Alkenes, including biogenic alkenes, dominate acetaldehyde production during both seasons. These conclusions are based on the degradation of emitted VOCs described by the SAPRC07TB chemical mechanism, but even this detailed model has difficulty reproducing observed values better than a factor of 2. The substantial role of isoprene and other alkenes in aldehyde formation emphasizes that we examine and improve emission estimates of these compounds. Until we can estimate the emissions and understand the chemistry of VOC precursors to aldehyde formation with greater certainty, it will be difficult to accurately predict atmospheric concentrations of aldehydes and develop strategies to reduce their concentrations.

  19. Unusual case of methanol poisoning

    SciTech Connect

    Shapiro, L.; Henderson, M. . Dept. of Chemical Pathology); Madi, S.; Mellor, L. . Dept. of Medicine, and Pharmacy)

    1993-01-09

    A 31-year-old man with a history of alcohol abuse presented to the accident and emergency department complaining of blurred vision. 4 h previously he had drunk 300 mL de-icer fluid. Electrolytes, urea, creatinine, glucose, and blood-gas analysis were normal. Measured osmolality, however, was 368 mosmol/kg with a calculated osmolality of 300 mosmol/kg, which indicated a greatly increased osmolar gap. He was therefore given 150 mL whisky and admitted. Methanol was later reported as 200 mg/dL. Ethylene glycol was not detected, but another glycol, propylene glycol, was present at 47 mg/dL. 10 h after ingestion an intravenous infusion of ethanol was started and he was hemodialysed for 7 h. After dialysis he was given a further 100 mL whisky and the rate of ethanol infusion was reduced to 11 g per h. Methanol and ethanol were measured twice daily until methanol was under 10/mg/dL: The recommendation is that blood ethanol be maintained between 100 and 200 mg/dL during treatment of methanol poisoning. This concentration was not achieved, presumably because of the high rate of ethanol metabolism often found in alcoholics. Antifreeze solutions commonly contain methanol and ethylene glycol. Sometimes propylene glycol is substituted because it has properties similar to those of ethylene glycol but is less toxic. The authors postulate that propylene glycol inhibited the metabolism of methanol in the patient, thus sparing him from the toxic effects of methanol.

  20. Conditioned Place Preference to Acetone Inhalation and the Effects on Locomotor Behavior and 18FDG Uptake

    SciTech Connect

    Pai, J.C.; Dewey, S.L.; Schiffer, W.; Lee, D.

    2006-01-01

    Acetone is a component in many inhalants that have been widely abused. While other solvents have addictive potential, such as toluene, it is unclear whether acetone alone contains addictive properties. The locomotor, relative glucose metabolism and abusive effects of acetone inhalation were studied in animals using the conditioned place preference (CPP) paradigm and [18F]2-fluorodeoxy-D-glucose (18FDG) imaging. The CPP apparatus contains two distinct conditioning chambers and a middle adaptation chamber, each lined with photocells to monitor locomotor activity. Adolescent Sprague-Dawley rats (n=16; 90-110 g) were paired with acetone in least preferred conditioning chamber, determined on the pretest day. The animals were exposed to a 10,000 ppm dose for an hour, alternating days with air. A CPP test was conducted after the 3rd, 6th and 12th pairing. In these same animals, the relative glucose metabolism effects were determined using positron emission tomography (PET) imaging with 18FDG. Following the 3rd pairing, there was a significant aversion to the acetone paired chamber (190.9 ± 13.7 sec and 241.7 ± 16.9 sec, acetone and air, respectively). After the 6th pairing, there was no significant preference observed with equal time spent in each chamber (222 ± 21 sec and 207 ± 20 sec, acetone and air-paired, respectively). A similar trend was observed after the 12th pairing (213 ± 21 sec and 221 ± 22 sec, acetone and air-paired, respectively). Locomotor analysis indicated a significant decrease (p<0.05) from air pairings to acetone pairings on the first and sixth pairings. The observed locomotor activity was characteristic of central nervous system (CNS) depressants, without showing clear abusive effects in this CPP model. In these studies, acetone vapors were not as reinforcing as other solvents, shown by overall lack of preference for the acetone paired side of the chamber. PET imaging indicated a regionally specific distribution of 18FDG uptake following

  1. A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management.

    PubMed

    Jiang, Chenyu; Sun, Meixiu; Wang, Zhennan; Chen, Zhuying; Zhao, Xiaomeng; Yuan, Yuan; Li, Yingxin; Wang, Chuji

    2016-01-01

    Breath analysis has been considered a suitable tool to evaluate diseases of the respiratory system and those that involve metabolic changes, such as diabetes. Breath acetone has long been known as a biomarker for diabetes. However, the results from published data by far have been inconclusive regarding whether breath acetone is a reliable index of diabetic screening. Large variations exist among the results of different studies because there has been no "best-practice method" for breath-acetone measurements as a result of technical problems of sampling and analysis. In this mini-review, we update the current status of our development of a laser-based breath acetone analyzer toward real-time, one-line diabetic screening and a point-of-care instrument for diabetic management. An integrated standalone breath acetone analyzer based on the cavity ringdown spectroscopy technique has been developed. The instrument was validated by using the certificated gas chromatography-mass spectrometry. The linear fittings suggest that the obtained acetone concentrations via both methods are consistent. Breath samples from each individual subject under various conditions in total, 1257 breath samples were taken from 22 Type 1 diabetic (T1D) patients, 312 Type 2 diabetic (T2D) patients, which is one of the largest numbers of T2D subjects ever used in a single study, and 52 non-diabetic healthy subjects. Simultaneous blood glucose (BG) levels were also tested using a standard diabetic management BG meter. The mean breath acetone concentrations were determined to be 4.9 ± 16 ppm (22 T1D), and 1.5 ± 1.3 ppm (312 T2D), which are about 4.5 and 1.4 times of the one in the 42 non-diabetic healthy subjects, 1.1 ± 0.5 ppm, respectively. A preliminary quantitative correlation (R = 0.56, p < 0.05) between the mean individual breath acetone concentration and the mean individual BG levels does exist in 20 T1D subjects with no ketoacidosis. No direct correlation is observed in T1D subjects, T2D

  2. Catalytic purification of wastewaters containing formaldehyde, methyl alcohol, and acetone

    SciTech Connect

    Rachkovskaya, L.N.; Anisiforov, G.I.; Levitskii, E.A.; Kundo, N.N.

    1982-01-10

    A catalytic method for purification of wastewaters containing alcohols, aldehydes, and ketones is described in the literature. A current of steam containing gaseous organic compounds is passed over a complete-oxidation catalyst at temperatures of 250-700/sup 0/C. The organic compounds are oxidized to carbon dioxide. The main drawback of this method is that the wastewater must be evaporated and the vapor heated to high temperatures, involving a high consumption of fuel. Methods of liquid-phase catalytic oxidation under pressure are free from this drawback. A patent describes liquid-phase oxidation of phenol, analine, nitrobenzene, glycol, and dimethylformamide at temperatures of 275-300/sup 0/C under air pressures up to 100 atm in presence of oxides of copper, chromium, and zinc; a metallic catalyst consisting of copper, chromium, and manganese; copper oxide deposited on magnesium silicate. In a contact time of 8-10 min the degree of oxidation is 90-99%. It is known that liquid-phase oxidation of formaldehyde without a catalyst at 200/sup 0/C and 120 atm with a contact time of 4 h results in 80% oxidation of formaldehyde to methyl formate undergoes 10% conversion into acetic acid, while methyl alcohol is not oxidized at all. In this communication we describe liquid-phase catalytic oxidation of model wastewater containing formaldehyde, methyl alcohol, and acetone at temperatures up to 250/sup 0/C and oxygen pressures up to 20 atm.

  3. Theoretical and experimental investigation of electron collisions with acetone

    NASA Astrophysics Data System (ADS)

    Homem, M. G. P.; Iga, I.; da Silva, L. A.; Ferraz, J. R.; Machado, L. E.; de Souza, G. L. C.; da Mata, V. A. S.; Brescansin, L. M.; Lucchese, R. R.; Lee, M.-T.

    2015-09-01

    We report a joint theoretical-experimental investigation on elastic electron scattering by acetone in the low- and intermediate-energy regions. More specifically, experimental differential, integral, and momentum-transfer cross sections are given in the 30-800 eV and 10∘-120∘ ranges. Theoretical cross sections are reported in the 1-500 eV interval. The experimental differential cross sections were determined using a crossed electron-beam-molecular-beam geometry, whereas the absolute values of the cross sections were obtained using the relative-flow technique. Theoretically, a complex optical potential derived from a Hartree-Fock molecular wave function was used to represent the collision dynamics, and a single-center expansion method combined with the Padé approximant technique was used to solve the scattering equations. Our experimental cross-section data are in generally good agreement with the present calculated data. Also, our calculated grand-total and total absorption cross sections are in good agreement with the experimental results reported in the literature. Nevertheless, our calculations have revealed a strong shape resonance in the 2B2 scattering channel not clearly seen in the experimental results. Possible reasons for this fact are also discussed.

  4. Rapid starting methanol reactor system

    DOEpatents

    Chludzinski, Paul J.; Dantowitz, Philip; McElroy, James F.

    1984-01-01

    The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

  5. CHARACTERIZATION OF EMISSIONS FROM VEHICLES USING METHANOL AND METHANOL-GASOLINE BLENDED FUELS

    EPA Science Inventory

    Exhaust and evaporative emissions were examined from vehicles fueled with methanol or a gasoline-methanol blend. Regulated automobile pollutants, as well as detailed hydrocarbons, methanol, and aldehydes were measured, and exhaust emission trends were obtained for vehicle operati...

  6. Derivatization reaction-based surface-enhanced Raman scattering (SERS) for detection of trace acetone.

    PubMed

    Zheng, Ying; Chen, Zhuo; Zheng, Chengbin; Lee, Yong-Ill; Hou, Xiandeng; Wu, Li; Tian, Yunfei

    2016-08-01

    A facile method was developed for determination of trace volatile acetone by coupling a derivatization reaction to surface-enhanced Raman scattering (SERS). With iodide modified Ag nanoparticles (Ag IMNPs) as the SERS substrate, acetone without obvious Raman signal could be converted to SERS-sensitive species via a chemical derivatization reaction with 2,4-dinitrophenylhydrazine (2,4-DNPH). In addition, acetone can be effectively separated from liquid phase with a purge-sampling device and then any serious interference from sample matrices can be significantly reduced. The optimal conditions for the derivatization reaction and the SERS analysis were investigated in detail, and the selectivity and reproducibility of this method were also evaluated. Under the optimal conditions, the limit of detection (LOD) for acetone was 5mgL(-1) or 0.09mM (3σ). The relative standard deviation (RSD) for 80mgL(-1) acetone (n=9) was 1.7%. This method was successfully used for the determination of acetone in artificial urine and human urine samples with spiked recoveries ranging from 92% to 110%. The present method is convenient, sensitive, selective, reliable and suitable for analysis of trace acetone, and it could have a promising clinical application in early diabetes diagnosis. PMID:27216660

  7. PPy/PMMA/PEG-based sensor for low-concentration acetone detection

    NASA Astrophysics Data System (ADS)

    Daneshkhah, A.; Shrestha, S.; Agarwal, M.; Varahramyan, K.

    2014-05-01

    A polymer pellet-based sensor device comprised of polypyrrole (PPy), polymethyl methacrylate (PMMA) and polyethylene glycol (PEG), its fabrication methods, and the experimental results for low-concentration acetone detection are presented. The design consists of a double layer pellet, where the top layer consists of PPy/PMMA and the bottom layer is composed of PPy/PMMA/PEG. Both sets of material compositions are synthesized by readily realizable chemical polymerization techniques. The mechanism of the sensor operation is based on the change in resistance of PPy and the swelling of PMMA when exposed to acetone, thereby changing the resistance of the layers. The resistances measured on the two layers, and across the pellet, are taken as the three output signals of the sensor. Because the PPy/PMMA and PPy/PMMA/PEG layers respond differently to acetone, as well as to other volatile organic compounds, it is demonstrated that the three output signals can allow the presented sensor to have a better sensitivity and selectivity than previously reported devices. Materials characterizations show formation of new composite with PPy/PMMA/PEG. Material response at various concentrations of acetone was conducted using quartz crystal microbalance (QCM). It was observed that the frequency decreased by 98 Hz for 290 ppm of acetone and by 411 Hz for 1160 ppm. Experimental results with a double layer pellet of PPy/PMMA and PPy/PMMA/PEG show an improved selectivity of acetone over ethanol. The reported acetone sensor is applicable for biomedical and other applications.

  8. Protein precipitation of diluted samples in SDS-containing buffer with acetone leads to higher protein recovery and reproducibility in comparison with TCA/acetone approach.

    PubMed

    Santa, Cátia; Anjo, Sandra I; Manadas, Bruno

    2016-07-01

    Proteomic approaches are extremely valuable in many fields of research, where mass spectrometry methods have gained an increasing interest, especially because of the ability to perform quantitative analysis. Nonetheless, sample preparation prior to mass spectrometry analysis is of the utmost importance. In this work, two protein precipitation approaches, widely used for cleaning and concentrating protein samples, were tested and compared in very diluted samples solubilized in a strong buffer (containing SDS). The amount of protein recovered after acetone and TCA/acetone precipitation was assessed, as well as the protein identification and relative quantification by SWATH-MS yields were compared with the results from the same sample without precipitation. From this study, it was possible to conclude that in the case of diluted samples in denaturing buffers, the use of cold acetone as precipitation protocol is more favourable than the use of TCA/acetone in terms of reproducibility in protein recovery and number of identified and quantified proteins. Furthermore, the reproducibility in relative quantification of the proteins is even higher in samples precipitated with acetone compared with the original sample. PMID:27094026

  9. Astaxanthin Inhibits Acetaldehyde-Induced Cytotoxicity in SH-SY5Y Cells by Modulating Akt/CREB and p38MAPK/ERK Signaling Pathways

    PubMed Central

    Yan, Tingting; Zhao, Yan; Zhang, Xia; Lin, Xiaotong

    2016-01-01

    Excessive alcohol consumption can lead to brain tissue damage and cognitive dysfunction. Acetaldehyde, the most toxic metabolite of ethanol, mediates the brain tissue damage and cognitive dysfunction induced by chronic excessive alcohol consumption. In this study, the effect of astaxanthin, a marine bioactive compound, on acetaldehyde-induced cytotoxicity was investigated in SH-SY5Y cells. It was found that astaxanthin protected cells from apoptosis by ameliorating the effect of acetaldehyde on the expression of Bcl-2 family proteins, preventing the reduction of anti-apoptotic protein Bcl-2 and the increase of pro-apoptotic protein Bak induced by acetaldehyde. Further analyses showed that astaxanthin treatment inhibited acetaldehyde-induced reduction of the levels of activated Akt and cyclic AMP-responsive element binding protein (CREB). Astaxanthin treatment also prevented acetaldehyde-induced increase of the level of activated p38 mitogen-activated protein kinase (MAPK) and decrease of the level of activated extracellular signal-regulated kinases (ERKs). Activation of Akt/CREB pathway promotes cell survival and is involved in the upregulation of Bcl-2 gene. P38MAPK plays a critical role in apoptotic events while ERKs mediates the inhibition of apoptosis. Thus, astaxanthin may inhibit acetaldehyde-induced apoptosis through promoting the activation of Akt/CREB and ERKs and blocking the activation of p38MAPK. In addition, astaxanthin treatment suppressed the oxidative stress induced by acetaldehyde and restored the antioxidative capacity of SH-SY5Y cells. Therefore, astaxanthin may protect cells against acetaldehyde-induced cytotoxicity through maintaining redox balance and modulating apoptotic and survival signals. The results suggest that astaxanthin treatment may be beneficial for preventing neurotoxicity associated with acetaldehyde and excessive alcohol consumption. PMID:26978376

  10. Astaxanthin Inhibits Acetaldehyde-Induced Cytotoxicity in SH-SY5Y Cells by Modulating Akt/CREB and p38MAPK/ERK Signaling Pathways.

    PubMed

    Yan, Tingting; Zhao, Yan; Zhang, Xia; Lin, Xiaotong

    2016-03-01

    Excessive alcohol consumption can lead to brain tissue damage and cognitive dysfunction. Acetaldehyde, the most toxic metabolite of ethanol, mediates the brain tissue damage and cognitive dysfunction induced by chronic excessive alcohol consumption. In this study, the effect of astaxanthin, a marine bioactive compound, on acetaldehyde-induced cytotoxicity was investigated in SH-SY5Y cells. It was found that astaxanthin protected cells from apoptosis by ameliorating the effect of acetaldehyde on the expression of Bcl-2 family proteins, preventing the reduction of anti-apoptotic protein Bcl-2 and the increase of pro-apoptotic protein Bak induced by acetaldehyde. Further analyses showed that astaxanthin treatment inhibited acetaldehyde-induced reduction of the levels of activated Akt and cyclic AMP-responsive element binding protein (CREB). Astaxanthin treatment also prevented acetaldehyde-induced increase of the level of activated p38 mitogen-activated protein kinase (MAPK) and decrease of the level of activated extracellular signal-regulated kinases (ERKs). Activation of Akt/CREB pathway promotes cell survival and is involved in the upregulation of Bcl-2 gene. P38MAPK plays a critical role in apoptotic events while ERKs mediates the inhibition of apoptosis. Thus, astaxanthin may inhibit acetaldehyde-induced apoptosis through promoting the activation of Akt/CREB and ERKs and blocking the activation of p38MAPK. In addition, astaxanthin treatment suppressed the oxidative stress induced by acetaldehyde and restored the antioxidative capacity of SH-SY5Y cells. Therefore, astaxanthin may protect cells against acetaldehyde-induced cytotoxicity through maintaining redox balance and modulating apoptotic and survival signals. The results suggest that astaxanthin treatment may be beneficial for preventing neurotoxicity associated with acetaldehyde and excessive alcohol consumption. PMID:26978376

  11. Isobutanol-methanol mixtures from synthesis gas. Quarterly technical progress report, October 1--December 31, 1995

    SciTech Connect

    Iglesia, E.

    1996-01-10

    A series of Cu{sub 0.5}CeMe(II)O{sub x} catalysts (Me refers to Group II alkali earth elements) have been prepared by coprecipitating the corresponding metal nitrates with potassium carbonate. The bulk composition of the catalyst has been determined by atomic absorption (AA) analysis. High-pressure isobutanol synthesis studies have been carried out over a standard BASF Cs-promoted Cu/ZnO/Al{sub 2}O{sub 3} catalyst. At a CO conversion level of 32%, the isobutanol carbon selectivity is about 5%; whereas that of methanol is 40.2%. A 100% selectivity sum has now been obtained as a result of using response factors measured by the laboratory. The reactions of ethanol and acetic acid over a number of catalysts have been investigated using a temperature programmed surface reaction (TPSR) technique. Ethanol and acetone are the only desorption products observed over Cs-promoted Cu/ZnO/Al{sub 2}O{sub 3} catalysts. Surface acetate ion is believed to be the precursor for acetone formation. Over calcined hydrotalcites, i.e., MgO/Al{sub 2}O{sub 3}, ethylene is formed instead of acetone. The amount of ethylene formed decreases as Mg/Al ratio increases, suggesting a role of aluminum ions in ethanol dehydration reactions.

  12. Comment on "Can existing models quantitatively describe the mixing behavior of acetone with water" [J. Chem. Phys. 130, 124516 (2009)].

    PubMed

    Kang, Myungshim; Perera, Aurelien; Smith, Paul E

    2009-10-21

    A recent publication indicated that simulations of acetone-water mixtures using the KBFF model for acetone indicate demixing at mole fractions less than 0.28 of acetone, in disagreement with experiment and two previously published studies. Here, we indicate some inconsistancies in the current study which could help to explain these differences. PMID:20568888

  13. Evaluation of Tribulus terrestris Linn (Zygophyllaceae) acetone extract for larvicidal and repellence activity against mosquito vectors.

    PubMed

    Singh, S P; Raghavendra, K; Singh, R K; Mohanty, S S; Dash, A P

    2008-12-01

    Acetone extracts of leaves and seeds from the Tribulus terrestris (Zygophyllaceae) were tested against mature and immature different mosquito vectors under laboratory condition. The extract showed strong larvicidal, properties 100 per cent mortality in the 3rd-instar larvae was observed in the bioassays with An. culicifacies Giles species A, An. stephensi Liston, Culex quinquefasciatus Say and Aedes aegypti Linn, against 200 ppm of the leaf acetone extract and 100 ppm seed acetone extract. The LC50 values of leaf acetone extract estimated for 3rd-instars An. culicifacies species A, An. stephensi, Cx. quinquefasciatus and Ae. aegypti after 24 hour of exposure were 117, 124, 168 and 185 ppm respectively. The LC50 values of seed acetone extract estimated for 3rd-instars An. culicifacies species A, An. stephensi, Cx. quinquefasciatus and Ae. aegypti after 24 hour of exposure were 100, 72, 91 and 91 ppm respectively. It is confirmed from the LC50 values that the seed acetone extract of T. terrestris is more effective compared to leaf extracts. A significant (P<0.004) higher concentration of acetone extract leaf was required to kill equal number of larvae i.e. against acetone extract of seed. The seed acetone extract showed strong repellent activity against adults mosquitoes. Per cent protection obtained against Anopheles culicifacies species A 100% repellency in 1 h, 6 h; Anopheles stephensi 100% repellency in 0 h, 4 h, 6 h; and Culex quinquefasciatus 100% repellency in 0 h, 2 h, 4 h, at 10% concentration respectively. Against Deet- 2.5% An. culicifacies Giles species A has shown 100% repellency in 1 h, 2 h, 6 h, An. stephensi Liston 99% repellency in 4 h, and Culex quinquefasciatus Say has shown 100% repellency in 1 h, 2 h. PMID:19579717

  14. North American acetone sources determined from tall tower measurements and inverse modelling

    NASA Astrophysics Data System (ADS)

    Hu, L.; Millet, D. B.; Kim, S.; Wells, K. C.; Griffis, T. J.; Helmig, D.; Fischer, E. V.

    2012-12-01

    Acetone ((CH3)2CO) plays an important role in the atmosphere as a source of peroxyacetylnitrate (PAN) and hydrogen oxide radicals (HOx). We apply a full year of continuous atmospheric acetone measurements from the University of Minnesota tall tower Trace Gas Observatory (KCMP tall tower; 244m a.g.l.), with a 0.5° × 0.667° GEOS-Chem nested grid simulation to develop quantitative new constraints on seasonal acetone sources over North America, and assess the corresponding impacts on atmospheric chemistry. Biogenic acetone emissions in the model are computed based on the MEGANv2.1 inventory, and an inverse analysis of the tall tower observations implies a 37% underestimate of emissions from broadleaf trees, shrubs, and herbaceous plants, and an offsetting 40% overestimate of emissions from needleleaf trees plus secondary production from biogenic precursors. The overall result is a small (15%) model underestimate of the total primary + secondary biogenic acetone source in North America. Our analysis shows that North American primary + secondary anthropogenic acetone sources in the model (based on EPA's NEI 2005 inventory) are accurate to within approximately 20%. An optimized GEOS-Chem simulation incorporating the above findings captures 70% of the variance (R = 0.83) in the hourly measurements at KCMP tall tower, with minimal bias. The resulting North American acetone source is 10.9 Tg/y, including both primary emissions and secondary production, with roughly equal contributions from anthropogenic and biogenic sources. The North American acetone source is nearly as large (75%) as the total continental VOC source from fossil fuel combustion. We find during winter that acetone in the US Upper Midwest arises mainly from sources outside North America (50%), with primary (15%) and secondary (29%) anthropogenic sources within North America also important. During summer, North American biogenic sources predominate (47% primary; 14% secondary), with anthropogenic sources

  15. Characteristics of acetone cluster ion beam for surface processing and modification

    NASA Astrophysics Data System (ADS)

    Ryuto, H.; Kakumoto, Y.; Takeuchi, M.; Takaoka, G. H.

    2014-02-01

    An acetone cluster ion beam was produced by the adiabatic expansion method without using helium as a support gas. The cluster source for the production of ethanol clusters was replaced with that sealed with metal gaskets. The Laval nozzle for the production of ethanol clusters was also replaced with a stainless steel conical nozzle. The cluster size distributions of the acetone cluster ion beams had mean values approximately at 2 × 103 molecules and increased with source pressure. The typical beam current density of the acetone cluster ion beam was approximately 0.5 μA/cm2.

  16. Photoionization of methanol and formaldehyde

    NASA Technical Reports Server (NTRS)

    Warneck, P.

    1971-01-01

    Photoions produced in methanol and formaldehyde by radiation in the spectral region 450-1150 A were analyzed mass spectrometrically, and their relative yields were determined as a function of wavelength. First ionization potentials were determined, and the ion yield curves were interpreted in terms of ionization processes in conjunction with other data. Fragment ions were detected on mass numbers of 31, 30, 29, 15, and 14 for methanol, and 29, 2, and 1 for formaldehyde. The associated appearance potentials were determined and were used to calculate heats of formation of the ions CH2OH(+) and HCO(+), and the radicals CH3, CH2, and HCO.

  17. Thz Spectroscopy of 13C Isotopic Species of a "weed": Acetaldehyde

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Motiyenko, R. A.; Guillemin, J.-C.

    2011-06-01

    Our studies of the isotopic species of 13C and D isotopologues of methyl formate (HCOOCH_3), have allowed the detection of more than 600 lines in Orion. This confirms that many observed U-lines are coming from isotopic species of one of the most abundant molecules in space. Since its first detection in 1976 in SgrB2 and in Orion A, acetaldehyde (CH_3CHO) was detected in many other numerous objects. If its deuterated species (CD_3CHO and CH_3CDO) have been previously studied in the millimeterwave range, the data concerning the 13C species are limited to few lines measured in 1957 up to 40 GHz. In this context we decided to study the 13C species of acetaldehyde. Acetaldehyde molecule displays a large amplitude motion: the hindered rotation of the methyl group with respect to the rest of the molecule. The analysis is performed with the Rho Axis Method. Recent versions of the codes include high orders term in order to reproduce the observed frequencies for large quantum numbers values as J-values as high as 70a,b,. Measurements and analysis of the rotational spectra of 13C isotopic species are in progress in Lille with a solid-state submillimetre-wave spectrometer (50-950 GHz), the first results will be presented. This work is supported by the contract ANR-08-BLAN-0054 and by the Programme National de Physico-Chimie du Milieu Interstellaire (PCMI-CNRS). Carvajal, M.; Margulès, L.; Tercero, B.; et al.A&A 500, (2009) 1109 Margulès, L.; Huet, T. R.; Demaison J.; et al.,ApJ 714, (2010) 1120. Ikeda, M.; Ohishi, M.; Nummelin, A.; et al., ApJ, 560, (2001) 792 Kleiner, I.; Lopez, J.-C.; Blanco, S.; et al.J. Mol. Spectrosc. 197, (1999) 275 Elkeurti M.; Coudert, L. H.; Medvedev, I. R.; et al.J. Mol. Spectrosc. 263, (2010) 145 Kilb, R.W.; Lin, C.C.; and Wilson, E.B.J. Chem. Phys. 26, (1957) 1695 Kleiner, I. J. Mol. Spectrosc. 260, (2010) 1 Ilyushin, V.V.; Kryvda, A; and Alekseev, E;J. Mol. Spectrosc. 255, (2009) 32

  18. The Involvement of Acetaldehyde in Ethanol-Induced Cell Cycle Impairment

    PubMed Central

    Scheer, Marc A.; Schneider, Katrina J.; Finnigan, Rochelle L.; Maloney, Eamon P.; Wells, Mark A.; Clemens, Dahn L.

    2016-01-01

    Background: Hepatocytes metabolize the vast majority of ingested ethanol. This metabolic activity results in hepatic toxicity and impairs the ability of hepatocytes to replicate. Previous work by our group has shown that ethanol metabolism results in a G2/M cell cycle arrest. The intent of these studies was to discern the roles of acetaldehyde and reactive oxygen, two of the major by-products of ethanol metabolism, in the G2/M cell cycle arrest. Methods: To investigate the role of ethanol metabolites in the cell cycle arrest, VA-13 and VL-17A cells were used. These are recombinant Hep G2 cells that express alcohol dehydrogenase or alcohol dehydrogenase and cytochrome P450 2E1, respectively. Cells were cultured with or without ethanol, lacking or containing the antioxidants N-acetylcysteine (NAC) or trolox, for three days. Cellular accumulation was monitored by the DNA content of the cultures. The accumulation of the cyclin-dependent kinase, Cdc2 in the inactive phosphorylated form (p-Cdc2) and the cyclin-dependent kinase inhibitor p21 were determined by immunoblot analysis. Results: Cultures maintained in the presence of ethanol demonstrated a G2/M cell cycle arrest that was associated with a reduction in DNA content and increased levels of p-Cdc2 and p21, compared with cells cultured in its absence. Inclusion of antioxidants in the ethanol containing media was unable to rescue the cells from the cell cycle arrest or these ethanol metabolism-mediated effects. Additionally, culturing the cells in the presence of acetaldehyde alone resulted in increased levels of p-Cdc2 and p21. Conclusions: Acetaldehyde produced during ethanol oxidation has a major role in the ethanol metabolism-mediated G2/M cell cycle arrest, and the concurrent accumulation of p21 and p-Cdc2. Although reactive oxygen species are thought to have a significant role in ethanol-induced hepatocellular damage, they may have a less important role in the inability of hepatocytes to replace dead or damaged

  19. Amidic and acetonic cryoprotectants improve cryopreservation of volvocine green algae.

    PubMed

    Nakazawa, A; Nishii, I

    2012-01-01

    A number of volvocalean green algae species were subjected to a two-step cryopreservation protocol with various cryoprotectants. Potential cryoprotectants were methanol (DMSO), N,N-dimethylformamide (DMF), N,N-dimethylacetamide, N-methylformamide, and hydroxyacetone (HA). We confirmed prior reports that MeOH was effective for cryopreserving Chlamydomonas, but did not work well for larger volvocaleans such as Volvox. In contrast, DMF and HA were effective for both unicellular and multicellular representatives. When we used a cold-inducible transposon to probe Southern blots of Volvox DNA samples taken before and after storage for one month in LN, we could detect no differences, indicating that the genome had remained relatively stable and that the transposon had not been induced by the cryopreservation procedure. We believe these methods will facilitate long-term storage of several volvocine algal species, including Volvox strains harboring transposon-induced mutations of developmental interest. PMID:22825787

  20. Biomarkers of Exposure and Effect in Human Lymphoblastoid TK6 Cells Following [13C2]-Acetaldehyde Exposure

    PubMed Central

    Swenberg, James A.

    2013-01-01

    The dose-response relationship for biomarkers of exposure (N2-ethylidene-dG adducts) and effect (cell survival and micronucleus formation) was determined across 4.5 orders of magnitude (50nM–2mM) using [13C2]-acetaldehyde exposures to human lymphoblastoid TK6 cells for 12h. There was a clear increase in exogenous N 2-ethylidene-dG formation at exposure concentrations ≥ 1µM, whereas the endogenous adducts remained nearly constant across all exposure concentrations, with an average of 3.0 adducts/107 dG. Exogenous adducts were lower than endogenous adducts at concentrations ≤ 10µM and were greater than endogenous adducts at concentrations ≥ 250µM. When the endogenous and exogenous adducts were summed together, statistically significant increases in total adduct formation over the endogenous background occurred at 50µM. Cell survival and micronucleus formation were monitored across the exposure range and statistically significant decreases in cell survival and increases in micronucleus formation occurred at ≥ 1000µM. This research supports the hypothesis that endogenously produced reactive species, including acetaldehyde, are always present and constitute the majority of the observed biological effects following very low exposures to exogenous acetaldehyde. These data can replace default assumptions of linear extrapolation to very low doses of exogenous acetaldehyde for risk prediction. PMID:23425604

  1. Quantitative Determination of Acetaldehyde in Foods Using Automated Digestion with Simulated Gastric Fluid Followed by Headspace Gas Chromatography

    PubMed Central

    Uebelacker, Michael; Lachenmeier, Dirk W.

    2011-01-01

    Acetaldehyde (ethanal) is a genotoxic carcinogen, which may occur naturally or as an added flavour in foods. We have developed an efficient method to analyze the compound in a wide variety of food matrices. The analysis is conducted using headspace (HS) gas chromatography (GC) with flame ionization detector. Using a robot autosampler, the samples are digested in full automation with simulated gastric fluid (1 h at 37°C) under shaking, which frees acetaldehyde loosely bound to matrix compounds. Afterwards, an aliquot of the HS is injected into the GC system. Standard addition was applied for quantification to compensate for matrix effects. The precision of the method was sufficient (<3% coefficient of variation). The limit of detection was 0.01 mg/L and the limit of quantification was 0.04 mg/L. 140 authentic samples were analyzed. The acetaldehyde content in apples was 0.97 ± 0.80 mg/kg, orange juice contained 3.86 ± 2.88 mg/kg. The highest concentration was determined in a yoghurt (17 mg/kg). A first-exposure estimation resulted in a daily acetaldehyde intake of less than 0.1 mg/kg bodyweight from food, which is considerably lower than the exposures from alcohol consumption or tobacco smoking. PMID:21747735

  2. Effect of oxygen on the conversion of acetaldehyde in homogeneous plasmas of N2/O2/CH3CHO mixtures

    NASA Astrophysics Data System (ADS)

    Faider, W.; Pasquiers, S.; Blin-Simiand, N.; Magne, L.

    2013-12-01

    A photo-triggered discharge producing a homogeneous plasma was used to investigate, experimentally and with the help of a self-consistent 0D model, the decomposition processes of acetaldehyde (concentration up to 0.5%) in N2/O2/CH3CHO mixtures containing up to 20% oxygen, at a total pressure of 460 mbar. This work follows a previous one about N2/CH3CHO, having provided the necessary data about the quenching of the N2 metastable states by the acetaldehyde molecule. For the condition of the experiment, it was shown that oxygen has a weak influence on the acetaldehyde removal. Nevertheless, the kinetic reactions involved drastically change when the oxygen percentage is increased. Quenching reactions gradually give way to oxidation reactions by O(3P) and OH. Oxidation by OH dominates for a high acetaldehyde concentration or a high oxygen percentage. Moreover, CH3 is an important primary compound for the formation of CH4 and C2H6. Ethane is less populated than methane in the whole range of oxygen percentage values studied, and there are still hydrocarbon molecules in the gas mixture at 20% oxygen. This is well explained by the adopted kinetic scheme.

  3. Replacement of the initial steps of ethanol metabolism in Saccharomyces cerevisiae by ATP-independent acetylating acetaldehyde dehydrogenase.

    PubMed

    Kozak, Barbara U; van Rossum, Harmen M; Niemeijer, Matthijs S; van Dijk, Marlous; Benjamin, Kirsten; Wu, Liang; Daran, Jean-Marc G; Pronk, Jack T; van Maris, Antonius J A

    2016-03-01

    In Saccharomyces cerevisiae ethanol dissimilation is initiated by its oxidation and activation to cytosolic acetyl-CoA. The associated consumption of ATP strongly limits yields of biomass and acetyl-CoA-derived products. Here, we explore the implementation of an ATP-independent pathway for acetyl-CoA synthesis from ethanol that, in theory, enables biomass yield on ethanol that is up to 40% higher. To this end, all native yeast acetaldehyde dehydrogenases (ALDs) were replaced by heterologous acetylating acetaldehyde dehydrogenase (A-ALD). Engineered Ald(-) strains expressing different A-ALDs did not immediately grow on ethanol, but serial transfer in ethanol-grown batch cultures yielded growth rates of up to 70% of the wild-type value. Mutations in ACS1 were identified in all independently evolved strains and deletion of ACS1 enabled slow growth of non-evolved Ald(-) A-ALD strains on ethanol. Acquired mutations in A-ALD genes improved affinity-Vmax/Km for acetaldehyde. One of five evolved strains showed a significant 5% increase of its biomass yield in ethanol-limited chemostat cultures. Increased production of acetaldehyde and other by-products was identified as possible cause for lower than theoretically predicted biomass yields. This study proves that the native yeast pathway for conversion of ethanol to acetyl-CoA can be replaced by an engineered pathway with the potential to improve biomass and product yields. PMID:26818854

  4. Ozonolysis at vegetation surfaces. a source of acetone, 4-oxopentanal, 6-methyl-5-hepten-2-one, and geranyl acetone in the troposphere

    NASA Astrophysics Data System (ADS)

    Fruekilde, P.; Hjorth, J.; Jensen, N. R.; Kotzias, D.; Larsen, B.

    The present study gives a possible explanation for the ubiquitous occurrence of 6-methyl-5-hepten-2-one and acetone in ambient air and reports for the first time on a widespread occurrence of geranyl acetone and 4-oxopentanal. We have conducted a series of laboratory experiments in which it is demonstrated that significant amounts of geranyl acetone, 6-methyl-5-hepten-2-one (6-MHO), 4-oxopentanal (4-OPA), and acetone are formed by the reaction of ozone with foliage of common vegetation in the Mediterranean area ( Quercus ilex>Citrus sinensis>Quercus suber>Quercus freinetto>Pinus pinea). In order to rule out biological formation, epicuticular waxes were extracted from the leaves, dispersed on glass wool and allowed to react with a flow of artificial air. Significant amounts of 6-MHO and 4-OPA were formed at ozone concentrations of 50-100 ppbv, but not at zero ozone. A number of terpenoids common in vegetation contain the structural element necessary for ozonolytic formation of 6-MHO. Two sesquiterpenes (nerolidol; farnesol), and a triterpene (squalene) selected as representative test compounds were demonstrated to be strong precursors for acetone, 4-OPA, and 6-MHO. Squalene was also a strong precursor for geranyl acetone. The atmospheric lifetime of geranyl acetone and 6-MHO is less than 1 h under typical conditions. For the present study, we have synthesized 4-OPA and investigated the kinetics of its gas-phase reaction with OH, NO 3, and O 3. A tropospheric lifetime longer than 17 h under typical conditions was calculated from the measured reaction rate constants, which explains the tropospheric occurrence of 4-OPA. It is concluded that future atmospheric chemistry investigations should included geranyl acetone, 6-MHO, and 4-OPA. In a separate experiment it was demonstrated that human skin lipid which contains squalene as a major component is a strong precursor for the four above-mentioned compounds plus nonanal and decanal. The accidental touching of material

  5. Theoretical study on the mechanism and kinetics of acetaldehyde and hydroperoxyl radical: An important atmospheric reaction

    NASA Astrophysics Data System (ADS)

    Farnia, Solaleh; Vahedpour, Morteza; Abedi, Mostafa; Farrokhpour, Hossein

    2013-09-01

    A systematic theoretical study was performed on the mechanism and kinetics of the atmospheric reaction of acetaldehyde (CH3CHO) and hydroperoxyl radical (HO2) in the gas phase. The DFT-B3LYP/6-311++G(3df,3pd) and CCSD(T)/6-311++G(d,p) methods were employed for calculations. Based on the calculations, this reaction leads to four different products through radical addition and hydrogen abstraction mechanisms which are very important in atmospheric and combustion chemistry. The favorable reaction paths begin with α-hydroxyethylperoxy radical, CH3CH(OO)OH, in a exothermic process and finally leads to the product P1 (CH3COOH + OH). The overall rate constants for favorite reaction paths have been calculated at different temperatures (200-2500 K).

  6. Preparation and photocatalytic properties of TiO2/mica composite for acetaldehyde degradation

    NASA Astrophysics Data System (ADS)

    Ozawa, Masakuni; Matui, Hidetomo; Suzuki, Suguru

    2016-01-01

    TiO2/mica composite was prepared by mixing mica and acidic solution of hydrolyzed titanium tetraisopropoxide, and characterized by X-ray diffraction (XRD), thermogravimetry and differential thermal analysis (TG-DTA), and N2 adsorption measurement. The results of experiments showed that the material had a catalytic composite powder structure containing pillared fragments with TiO2 after calcination at 300-800 °C. The resulting TiO2/mica exhibited good thermal stability, as indicated by its porosity and surface area, and interlayer stability of powders after calcination at 800 °C. The photocatalytic performances of these porous mica/TiO2 composites were evaluated by gaseous acetaldehyde degradation. The superior photocatalyic property was demonstrated and the maximum removal efficiency was up to 99% within 90 min, and the reaction kinetics was discussed.

  7. The laboratory spectrum of acetaldehyde at 1 millimeter (230-325 GHz)

    NASA Technical Reports Server (NTRS)

    Barclay, W. L., Jr.; Anderson, M. A.; Ziurys, L. M.; Kleiner, I.; Hougen, J. T.

    1993-01-01

    The rotational spectrum of acetaldehyde (CH3CHO) in the frequency range 230-325 GHz has been measured in the laboratory using millimeter/submillimeter direct absorption spectroscopy. Over 250 transition frequencies are presented for this molecule for both A and E symmetry species in its ground (upsilon(sub t) = 0) and first excited (upsilon(sub t) = 1) torsional state, with experimental uncertainties of +/- 50 kHz. The data were fitted with a model involving an internal rotation potential function, which typically reproduces the measured frequencies to nu(sub obs) - nu(sub calc) less than or approximately 50 kHz for both ground and upsilon(sub t) = 1 state. These newly measured rest frequencies should aid in the identification of interstellar CH3CHO and in spectral line assignments for millimeter-band scans.

  8. Validation and Determination of the Contents of Acetaldehyde and Formaldehyde in Foods

    PubMed Central

    Jeong, Hye-Seung; Chung, Hyun; Song, Sang-Hoon; Kim, Cho-Il; Lee, Joon-Goo

    2015-01-01

    The aim of this study was to develop an efficient quantitative method for the determination of acetaldehyde (AA) and formaldehyde (FA) contents in solid and liquid food matrices. The determination of those compounds was validated and performed using gas chromatography-mass spectrometry combined by solid phase micro-extraction after derivatization with O-(2,3,4,5,6-pentafluoro-benzyl)-hydroxylamine hydrochloride. Validation was carried out in terms of limit of detection, limit of quantitation, linearity, precision, and recovery. Then their contents were analyzed in various food samples including 15 fruits, 22 milk products, 31 alcohol-free beverages, and 13 alcoholic beverages. The highest contents of AA and FA were determined in a white wine (40,607.02 ng/g) and an instant coffee (1,522.46 ng/g), respectively. PMID:26483886

  9. ACUTE METHANOL TOXICITY IN MINIPIGS

    EPA Science Inventory

    The pig hos been proposed as a potential animal model for methanol-induced neuro-ocular toxicosis in humans because of its reported low liver tetrahydro folate levels and therefore, slower formate metabolism as compared to humans. o determine the validity of the animal model, min...

  10. Polypyrrole nanoparticles fabricated via Triton X-100 micelles template approach and their acetone gas sensing property

    NASA Astrophysics Data System (ADS)

    Li, Fake; Li, Hang; Jiang, Hongmin; Zhang, Kejun; Chang, Kai; Jia, Shuangrong; Jiang, Wenbin; Shang, Ya; Lu, Weiping; Deng, Shaoli; Chen, Ming

    2013-09-01

    Nano-scaled polypyrrole (PPy) particles have been successfully synthesized with the help of Triton X-100 micelles via soft template approach. The polypyrrole nanoparticles have been spin-coated on surface acoustic wave (SAW) transducers to demonstrate their sensing capability toward acetone gas exposure. Field Emission Scanning Electron Microscopes (FE-SEM) and Fourier transform infrared (FT-IR) spectroscopy have been utilized to characterize these PPy nanoparticles. The PPy nanoparticles have an average diameter of 95 nm. The responses of the sensors are linearly associated with the acetone concentrations in the range from 5.5 ppm to 80 ppm. In response to 5.5 ppm acetone exposure, the response and recovery time are 9 s and 8.3 s, respectively. SAW sensors coated with PPy nanoparticles were potentially useful to detect acetone.

  11. Diffusion behaviour of the acetaldehyde scavenger 2-aminobenzamide in polyethylene terephthalate for beverage bottles.

    PubMed

    Franz, Roland; Gmeiner, Margit; Gruner, Anita; Kemmer, Diana; Welle, Frank

    2016-01-01

    Polyethylene terephthalate (PET) bottles are widely used as packaging material for natural mineral water. However, trace levels of acetaldehyde can migrate into natural mineral water during the shelf life and might influence the taste of the PET bottled water. 2-Aminobenzamide is widely used during PET bottle production as a scavenging agent for acetaldehyde. The aim of this study was the determination of the migration kinetics of 2-aminobenzamide into natural mineral water as well as into 20% ethanol. From the migration kinetics, the diffusion coefficients of 2-aminobenzamide in PET at 23 and 40°C were determined to be 4.2 × 10(-)(16) and 4.2 × 10(-)(15) cm(2) s(-1), respectively. The diffusion coefficient for 20% ethanol at 40°C was determined to be 7.7 × 10(-)(15) cm(2) s(-1), which indicates that 20% ethanol is causing swelling of the PET polymer. From a comparison of migration values between 23 and 40°C, acceleration factors of 9.7 when using water as contact medium and 18.1 for 20% ethanol as simulant can be derived for definition of appropriate accelerated test conditions at 40°C. The European Union regulatory acceleration test based on 80 kJ mol(-1) as conservative activation energy overestimates the experimentally determined acceleration rates by a factor of 1.6 and 3.1, respectively. PMID:26666986

  12. Diffusion behaviour of the acetaldehyde scavenger 2-aminobenzamide in polyethylene terephthalate for beverage bottles

    PubMed Central

    Franz, Roland; Gmeiner, Margit; Gruner, Anita; Kemmer, Diana; Welle, Frank

    2016-01-01

    ABSTRACT Polyethylene terephthalate (PET) bottles are widely used as packaging material for natural mineral water. However, trace levels of acetaldehyde can migrate into natural mineral water during the shelf life and might influence the taste of the PET bottled water. 2-Aminobenzamide is widely used during PET bottle production as a scavenging agent for acetaldehyde. The aim of this study was the determination of the migration kinetics of 2-aminobenzamide into natural mineral water as well as into 20% ethanol. From the migration kinetics, the diffusion coefficients of 2-aminobenzamide in PET at 23 and 40°C were determined to be 4.2 × 10− 16 and 4.2 × 10− 15 cm2 s–1, respectively. The diffusion coefficient for 20% ethanol at 40°C was determined to be 7.7 × 10− 15 cm2 s–1, which indicates that 20% ethanol is causing swelling of the PET polymer. From a comparison of migration values between 23 and 40°C, acceleration factors of 9.7 when using water as contact medium and 18.1 for 20% ethanol as simulant can be derived for definition of appropriate accelerated test conditions at 40°C. The European Union regulatory acceleration test based on 80 kJ mol–1 as conservative activation energy overestimates the experimentally determined acceleration rates by a factor of 1.6 and 3.1, respectively. PMID:26666986

  13. Acetaldehyde as an underestimated risk factor for cancer development: role of genetics in ethanol metabolism.

    PubMed

    Seitz, Helmut K; Stickel, Felix

    2010-06-01

    Chronic ethanol consumption is a strong risk factor for the development of certain types of cancer including those of the upper aerodigestive tract, the liver, the large intestine and the female breast. Multiple mechanisms are involved in alcohol-mediated carcinogenesis. Among those the action of acetaldehyde (AA), the first metabolite of ethanol oxidation is of particular interest. AA is toxic, mutagenic and carcinogenic in animal experiments. AA binds to DNA and forms carcinogenic adducts. Direct evidence of the role of AA in alcohol-associated carcinogenesis derived from genetic linkage studies in alcoholics. Polymorphisms or mutations of genes coding for AA generation or detoxifying enzymes resulting in elevated AA concentrations are associated with increased cancer risk. Approximately 40% of Japanese, Koreans or Chinese carry the AA dehydrogenase 2*2 (ALDH2*2) allele in its heterozygous form. This allele codes for an ALDH2 enzyme with little activity leading to high AA concentrations after the consumption of even small amounts of alcohol. When individuals with this allele consume ethanol chronically, a significant increased risk for upper alimentary tract and colorectal cancer is noted. In Caucasians, alcohol dehydrogenase 1C*1 (ADH1C*1) allele encodes for an ADH isoenzyme which produces 2.5 times more AA than the corresponding allele ADH1C*2. In studies with moderate to high alcohol intake, ADH1C*1 allele frequency and rate of homozygosity was found to be significantly associated with an increased risk for cancer of the upper aerodigestive tract, the liver, the colon and the female breast. These studies underline the important role of acetaldehyde in ethanol-mediated carcinogenesis. PMID:19847467

  14. Acetonitrile and N-Chloroacetamide Formation from the Reaction of Acetaldehyde and Monochloramine.

    PubMed

    Kimura, Susana Y; Vu, Trang Nha; Komaki, Yukako; Plewa, Michael J; Mariñas, Benito J

    2015-08-18

    Nitriles and amides are two classes of nitrogenous disinfection byproducts (DBPs) associated with chloramination that are more cytotoxic and genotoxic than regulated DBPs. Monochloramine reacts with acetaldehyde, a common ozone and free chlorine disinfection byproduct, to form 1-(chloroamino)ethanol. Equilibrium (K1) and forward and reverse rate (k1,k-1) constants for the reaction between initial reactants and 1-(chloroamino)ethanol were determined between 2 and 30 °C. Activation energies for k1 and k-1 were 3.04 and 45.2 kJ·mol(-1), respectively, and enthalpy change for K1 was -42.1 kJ·mol(-1). In parallel reactions, 1-(chloroamino)ethanol (1) slowly dehydrated (k2) to (chloroimino)ethane that further decomposed to acetonitrile and (2) was oxidized (k3) by monochloramine to produce N-chloroacetamide. Both reactions were acid/base catalyzed, and rate constants were characterized at 10, 18, and 25 °C. Modeling for drinking water distribution system conditions showed that N-chloroacetamide and acetonitrile concentrations were 5-9 times higher at pH 9.0 compared to 7.8. Furthermore, acetonitrile concentration was found to form 7-10 times higher than N-chloroacetamide under typical monochloramine and acetaldehyde concentrations. N-chloroacetamide cytotoxicity (LC50 = 1.78 × 10(-3) M) was comparable to dichloroacetamide and trichloroacetamide, but less potent than N,2-dichloroacetamide and chloroacetamide. While N-chloroacetamide was not found to be genotoxic, N,2-dichloroacetamide genotoxic potency (5.19 × 10(-3) M) was on the same order of magnitude as chloroacetamide and trichloroacetamide. PMID:26167888

  15. Detection of acetaldehyde derived N(2)-ethyl-2'-deoxyguanosine in human leukocyte DNA following alcohol consumption.

    PubMed

    Singh, Rajinder; Gromadzinska, Jolanta; Mistry, Yogita; Cordell, Rebecca; Juren, Tina; Segerbäck, Dan; Farmer, Peter B

    2012-09-01

    Epidemiological studies have shown an association between alcohol (ethanol) consumption and increased cancer risk. The effect of alcohol consumption on the levels and persistence of N(2)-ethylidene-2'-deoxyguanosine (N(2)-ethylidene-dG) formed by acetaldehyde, the oxidative metabolite of ethanol, in human leukocyte DNA was investigated. DNA was isolated from venous blood samples obtained from 30 male non-smoking individuals before consumption of alcohol (0h) and subsequently at 3-5h following the consumption of 150mL of vodka (containing 42% pure ethanol). Additional samples were collected 24h and 48h post-alcohol consumption. The levels of N(2)-ethyl-2'-deoxyguanosine (N(2)-ethyl-dG) in the DNA were determined following reduction of N(2)-ethylidene-dG with sodium cyanoborohydride using a liquid chromatography-tandem mass spectrometry selected reaction monitoring method. A slight time-dependent trend showing an increase and decrease in the levels of N(2)-ethyl-dG was observed following consumption of alcohol compared to time 0h, however, the differences were not statistically significant. The average levels of N(2)-ethyl-dG observed at 0h, 3-5h, 24h and 48h time points following ingestion of alcohol were 34.6±21.9, 35.1±21.0, 36.8±20.7 and 35.6±21.1 per 10(8) 2'-deoxynucleosides, respectively. In conclusion, alcohol consumption that could be encountered under social drinking conditions, does not significantly alter the levels of the acetaldehyde derived DNA adduct, N(2)-ethyl-dG in human leukocyte DNA from healthy individuals. PMID:22824164

  16. On apparent quantized transition-state thresholds in the photofragmentation of acetaldehyde

    NASA Astrophysics Data System (ADS)

    King, Rollin A.; Allen, Wesley D.; Schaefer, Henry F.

    2000-04-01

    Recent photofragmentation experiments have observed stepwise increases in the dissociation rate for CH3CHO (T1)→CH3 (X˜ 2A2″)+HCO (X˜ 2A') as a function of excitation energy. In accord with the Rice-Ramsperger-Kassel-Marcus (RRKM) form of transition-state theory, these steps were interpreted as corresponding to vibrational levels of the fragmentation transition state on the triplet surface. We have investigated this acetaldehyde dissociation using coupled cluster (CC) and density functional (DFT) methods with [C,O/H] atomic-orbital basis sets ranging in quality from [4s2p1d/2s1p] to [6s5p4d3f2g1h/5s4p3d2 f1g]. A high-level focal point analysis, along with harmonic force field computations, results in predictions of the dissociation energy, D0=1583 cm-1, and the association barrier height, V0*=3149 cm-1. With a basis set of triple-ζ plus double-polarization plus f(TZ2Pf ) quality, the DFT method UB3LYP and the CC method RCCSD predict barrier frequencies of 355i cm-1 and 516i cm-1, respectively, while the empirical value inferred from RRKM models is only 60i cm-1. The RRKM-derived frequencies for the degrees of freedom orthogonal to the reaction path are more reasonable but still not in convincing agreement with electronic structure theory. Thus, while the experimental steps in the dissociation rate of acetaldehyde (as well as ketene) have yet to be satisfactorily explained, proven ab initio methods provide strong evidence that simple RRKM fits to the k(E) profile provide misleading vibrational frequencies of the transition state on the corresponding triplet potential energy surface.

  17. Five years of formaldehyde and acetaldehyde monitoring in the Rio de Janeiro downtown area - Brazil

    NASA Astrophysics Data System (ADS)

    Corrêa, Sergio Machado; Arbilla, Graciela; Martins, Eduardo Monteiro; Quitério, Simone Lorena; de Souza Guimarães, Claudinei; Gatti, Luciana Vanni

    2010-06-01

    The fuel matrix used in Brazil is unique around the world. The intensive use of hydrated ethanol, gasohol (gasoline with 25% v/v of ethanol), compressed natural gas (CNG), and biodiesel leads to a peculiar composition of the urban atmosphere. From 1998 to 2002 an increase in formaldehyde levels was observed and since then, a reduction. This work presents a monitoring campaign that was executed from March 2004 to February 2009 by sampling at early morning on every sunny Wednesday for a total of 183 samples. The results indicate a strong reduction in formaldehyde levels from 2004 (average of 135.8 μg m -3 with SD 28.4 μg m -3) to 2009 (average of 49.3 μg m -3 with SD 27.4 μg m -3). The levels of acetaldehyde showed a slight reduction from 2004 (average of 34.9 μg m -3 with SD 8.0 μg m -3) to 2009 (average of 26.8 μg m -3 with SD 11.5 μg m -3). Comparing the results with the concurrent evolution of the fleet and of fuel composition indicates that the observed formaldehyde levels could be associated with the increase in ethanol use and in CNG use by engines with improved technology over the first converted CNG engines. Modelling studies using the OZIPR trajectory model and the SAPRC chemical mechanism indicate that formaldehyde is the main ozone precursor in Rio de Janeiro and acetaldehyde is the forth one.

  18. A Diode Laser Study of the Catalytic Oxidation Dynamics of Acetaldehyde on Polycrystalline Platinum

    NASA Astrophysics Data System (ADS)

    Edington, Sean Coleman

    The catalytic oxidation of acetaldehyde on platinum was studied using a flow reactor equipped with a tunable diode laser absorption spectrometer and a quadrupole mass spectrometer. Reaction mixtures containing this molecule in varying proportion with oxygen and with argon as a carrier gas were flowed over a polycrystalline platinum mesh, which was resistively heated to different temperatures between 700 and 1000 K. The products of these reactions were monitored using mass spectrometry and the state-resolved spectra of CO 2 produced were collected using high-resolution tunable diode laser absorption spectroscopy. These data were analyzed to yield information about the dynamics of the reaction. Results indicate that production of CO and CO2 by this reaction proceeds via two distinct pathways. Acetaldehyde adsorbed on the surface decomposes to acetyl, which in turn decomposes CO and CHx. The adsorbed CO so prepared desorbs to yield the bulk of CO generated across all reaction conditions and also yields CO2 with a relatively deactivated asymmetric stretching mode under conditions of high temperature and low oxygen coverage. The acetyl-derived CHx dehydrogenates to yield surface carbon and H adatoms. Total oxidation of this surface carbon is the primary source of CO2 produced under all reaction conditions except those mentioned previously and is found to yield products with a preferentially excited asymmetric stretch. Combination of the CHx-derived H adatoms with surface oxygen drives the production of water by this reaction. During the course of the work described here, two notable improvements were made to our experimental apparatus. The first of these was the modification of the data acquisition process to significantly improve the signal-to-noise ratio achievable by our laser spectrometer with no increase in data collection time. The second was the development of data analysis software which significantly improved the efficiency and thoroughness of the process by

  19. Air Breathing Direct Methanol Fuel Cell

    DOEpatents

    Ren; Xiaoming

    2003-07-22

    A method for activating a membrane electrode assembly for a direct methanol fuel cell is disclosed. The method comprises operating the fuel cell with humidified hydrogen as the fuel followed by running the fuel cell with methanol as the fuel.

  20. Preparation and properties of low boiling point of alcohol and acetone-based magnetic fluid

    NASA Astrophysics Data System (ADS)

    Fujita, T.; Miyazaki, T.; Nishiyama, H.; Jeyadevan, B.

    1999-07-01

    Ultra-fine magnetic particles are difficult to be dispersed in low boiling point solvents such as alcohol (C 1-C 4) and acetone. In this paper, we report the preparation methods of several alcohol and acetone-based magnetic fluids. The stability of magnetic fluid depended on the HLB (hydrophile-lipophile balance) of the solvent and alkyl chain lengths of organic layers. The fluid was most stable only when the HLB value of surfactant and the solvents are similar.

  1. The Marangoni convection induced by acetone desorption from the falling soap film

    NASA Astrophysics Data System (ADS)

    Sha, Yong; Li, Zhangyun; Wang, Yongyi; Huang, Jiali

    2012-05-01

    By means of the falling soap film tunnel and the Schlieren optical method, the Marangoni convection were observed directly in the immediate interfacial neighborhood during the desorption process of acetone from the falling soap film. Moreover, the hydraulic characteristics of the falling soap film tunnel, the acetone concentration, the surface tension of the soap liquid and the mass transfer has been investigated in details through the experimental or theoretical method.

  2. KI-catalyzed α-acyloxylation of acetone with carboxylic acids.

    PubMed

    Wu, Ya-Dong; Huang, Bei; Zhang, Yue-Xin; Wang, Xiao-Xu; Dai, Jian-Jun; Xu, Jun; Xu, Hua-Jian

    2016-07-01

    The KI-catalyzed reaction of acetone with aromatic carboxylic acids is achieved, leading to α-acyloxycarbonyl compounds in good to excellent yields under mild reaction conditions. The present method exhibits good functional-group compatibility. Notably, this reaction system is even suitable for cinnamic acid, 3-phenylpropiolic acid and 4-phenylbutanoic acid. A kinetic isotope effect (KIE) study indicates that C-H cleavage of the acetone is the rate-limiting step in the catalytic cycle. PMID:27251323

  3. Adsorption and plasma-catalytic oxidation of acetone over zeolite-supported silver catalyst

    NASA Astrophysics Data System (ADS)

    Trinh, Quang Hung; Sanjeeva Gandhi, M.; Mok, Young Sun

    2015-01-01

    The abatement of acetone using a combination of non-thermal plasma, catalysis and adsorption was investigated in a dielectric barrier discharge plasma reactor packed with silver-coated zeolite pellets serving as both adsorbent and catalyst. The removal of acetone in this reactor system was carried out by cyclic operation comprising two repetitive steps, namely, adsorption followed by plasma-catalytic oxidation. The effects of the zeolite-supported silver catalyst on the reduction of unwanted ozone emission and the behavior for the formation of gaseous byproducts were examined. The experimental results showed that the zeolite-supported catalyst had a high acetone adsorption capacity of 1.07 mmol g-1 at 25 °C. Acetone with a concentration of 300 ppm was removed from the gas stream and enriched on the zeolite surface during the adsorption step of the cyclic process (100 min). In the succeeding step, the adsorbed acetone was plasma-catalytically treated under oxygen-flowing atmosphere to recover the adsorption capability of the surface. The plasma-catalytic oxidation of the acetone adsorbed in the previous 100 min adsorption step was completed in 15 min. The abatement of acetone by the cyclic adsorption and plasma-catalytic oxidation process was able to increase the performance of the reactor with respect to the energy efficiency, compared to the case of continuous plasma-catalytic treatment. The use of the zeolite-supported silver catalyst largely decreased the emission of unreacted ozone and increased the amount of gaseous byproducts such as carbon oxides and aldehydes due to the enhanced oxidation of the adsorbed acetone and intermediates.

  4. Electrocatalytic reduction of acetone in a proton-exchange-membrane reactor: a model reaction for the electrocatalytic reduction of biomass.

    PubMed

    Green, Sara K; Tompsett, Geoffrey A; Kim, Hyung Ju; Bae Kim, Won; Huber, George W

    2012-12-01

    Acetone was electrocatalytically reduced to isopropanol in a proton-exchange-membrane (PEM) reactor on an unsupported platinum cathode. Protons needed for the reduction were produced on the unsupported Pt-Ru anode from either hydrogen gas or electrolysis of water. The current efficiency (the ratio of current contributing to the desired chemical reaction to the overall current) and reaction rate for acetone conversion increased with increasing temperature or applied voltage for the electrocatalytic acetone/water system. The reaction rate and current efficiency went through a maximum with respect to acetone concentration. The reaction rate for acetone conversion increased with increasing temperature for the electrocatalytic acetone/hydrogen system. Increasing the applied voltage for the electrocatalytic acetone/hydrogen system decreased the current efficiency due to production of hydrogen gas. Results from this study demonstrate the commercial feasibility of using PEM reactors to electrocatalytically reduce biomass-derived oxygenates into renewable fuels and chemicals. PMID:22961747

  5. Acetone and monoterpene emissions from the boreal forest in northern Europe

    NASA Astrophysics Data System (ADS)

    Janson, Robert; de Serves, Claes

    Acetone is a ubiquitous component of the atmosphere which, by its photolysis, can play an important role in photochemical reactions in the free troposphere. This paper investigates the biogenic source of acetone from Scots pine ( Pinus sylvestris) and Norway spruce ( Picea abies) in the Scandinavian boreal zone. Branch emission measurements of acetone, monoterpenes, and isoprene were made with an all-Teflon flow-through branch chamber from five specimens of Scots pine at three sites in Sweden and Finland, and from one specimen of Norway spruce at one site in Sweden. Acetone samples were taken with SepPak™ DNPH cartridges, monoterpenes with Tenax TA, and isoprene with 3 l electropolished canisters. Acetone was found to dominate the carbonyl emission of both Scots pine and Norway spruce, as large as the monoterpene emissions and for Norway spruce, as the isoprene emission. The average standard emission rate (30°C) and average β-coefficient for the temperature correlation for 5 specimens of Scots pine were 870 ng C gdw -1 h -1 (gdw=gram dry weight) and 0.12, respectively. For the monoterpenes the values were 900 ng C gdw -1 h -1 and 0.12, respectively. The standard emission rate (30°C) for acetone from Norway spruce was 265 ng C gdw -1 h -1, but the sparsity of data, along with the unusual weather conditions at the time of the measurements, precludes the establishment of a summertime best estimate emission factor.

  6. Home-made Detection Device for a Mixture of Ethanol and Acetone

    PubMed Central

    Reungchaiwat, Amnat; Wongchanapiboon, Teerapol; Liawruangrath, Saisunee; Phanichphant, Sukon

    2007-01-01

    A device for the detection and determination of ethanol and acetone was constructed, consisting of a packed column, a chamber with a sensor head, 2 dc power supplies, a multimeter and a computer. A commercially available TGS 822 detector head (Figaro Company Limited) was used as the sensor head. The TGS 822 detector consists of a SnO2 thick film deposited on the surface of an alumina ceramic tube which contains a heating element inside. An analytical column was coupled with the setup to enhance the separation of ethanol and acetone before they reached the sensor head. Optimum system conditions for detection of ethanol and acetone were achieved by varying the flow rate of the carrier gas, voltage of the heating coil (VH), voltage of the circuit sensor (VC), load resistance of the circuit sensor (RL) and the injector port temperature. The flow of the carrier gas was 15 mL/min; the circuit conditions were VH = 5.5 V, VC = 20 V, RL = 68 kΩ; and the injection port temperature was 150°C. Under these conditions the retention times (tR) for ethanol and acetone were 1.95 and 0.57 minutes, respectively. Calibration graphs were obtained for ethanol and acetone over the concentration range of 10 to 160 mg/L. The limits of detection (LOD) for ethanol and acetone were 9.25 mg/L and 4.41 mg/L respectively.

  7. Development of an LC-MS/MS method for studying migration characteristics of acetaldehyde in polyethylene terephthalate (PET)-packed mineral water.

    PubMed

    Baumjohann, Nina; Harms, Diedrich

    2015-01-01

    During storage, acetaldehyde migration from polyethylene terephthalate (PET) bottles can affect the quality of mineral water even in the low µg l(-1) range negatively, as it features a fruity or plastic-like off-flavour. For a sensitive and fast analysis of acetaldehyde in mineral water, a new analysis method of 2,4-dinitrophenylhydrazine (DNPH) derivatisation followed by HPLC-electrospray tandem mass spectrometry (ESI-MS/MS) was developed. Acetaldehyde was directly derivatised in the mineral water sample avoiding extraction and/or pre-concentration steps and then analysed by reversed-phase HPLC-ESI-MS/MS using multiple reaction monitoring mode (MRM). Along with method development, the optimum molar excess of DNPH in contrast to acetaldehyde was studied for the mineral water matrix, because no specific and robust data were yet available for this critical parameter. Best results were obtained by using a calibration via the derivatisation reaction. Without any analyte enrichment or extraction, an LOD of 0.5 µg l(-1) and an LOQ of 1.9 µg l(-1) were achieved. Using the developed method, mineral water samples packed in PET bottles from Germany were analysed and the correlation between the acetaldehyde concentration and other characteristics of the samples was evaluated illustrating the applicability of the method. Besides a relationship between bottle size and CO2 content of the mineral water and acetaldehyde migration, a correlation with acetaldehyde migration and the material composition of the bottle, e.g. recycled PET, was noted. Investigating the light influence on the acetaldehyde migration with a newly developed, reproducible light exposure setup, a significant increase of the acetaldehyde concentration in carbonated mineral water samples was observed. PMID:26258902

  8. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.

  9. Enhanced methanol utilization in direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2001-10-02

    The fuel utilization of a direct methanol fuel cell is enhanced for improved cell efficiency. Distribution plates at the anode and cathode of the fuel cell are configured to distribute reactants vertically and laterally uniformly over a catalyzed membrane surface of the fuel cell. A conductive sheet between the anode distribution plate and the anodic membrane surface forms a mass transport barrier to the methanol fuel that is large relative to a mass transport barrier for a gaseous hydrogen fuel cell. In a preferred embodiment, the distribution plate is a perforated corrugated sheet. The mass transport barrier may be conveniently increased by increasing the thickness of an anode conductive sheet adjacent the membrane surface of the fuel cell.

  10. MEASUREMENT OF VOLATILE CHEMICAL EMISSIONS FROM WASTEWATER BASINS

    EPA Science Inventory

    The objective of this project was to measure the rate at which selected volatile organic carbon (VOC) compounds are being emitted to air from waste-water treatment basins of the pulp and paper industry. The emission rates of methanol, acetone and acetaldehyde were measured and th...

  11. Heterogeneous Chemistry Involving Methanol in Tropospheric Clouds

    NASA Technical Reports Server (NTRS)

    Tabazadeh, A.; Yokelson, R. J.; Singh, H. B.; Hobbs, P. V.; Crawford, J. H.; Iraci, L. T.

    2004-01-01

    In this report we analyze airborne measurements to suggest that methanol in biomass burning smoke is lost heterogeneously in clouds. When a smoke plume intersected a cumulus cloud during the SAFARI 2000 field project, the observed methanol gas phase concentration rapidly declined. Current understanding of gas and aqueous phase chemistry cannot explain the loss of methanol documented by these measurements. Two plausible heterogeneous reactions are proposed to explain the observed simultaneous loss and production of methanol and formaldehyde, respectively. If the rapid heterogeneous processing of methanol, seen in a cloud impacted by smoke, occurs in more pristine clouds, it could affect the oxidizing capacity of the troposphere on a global scale.

  12. Dark- and photoreactions of ethanol and acetaldehyde over TiO{sub 2}/carbon molecular sieve fibers

    SciTech Connect

    Reztsova, T.; Chang, C.H.; Idriss, H.; Koresh, J.

    1999-07-01

    TiO{sub 2} has been synthesized within the pores of carbon molecular sieve fibers (CMSF) in order to grow particles of quantum size. TiO{sub 2}/CMSF characteristics were followed by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and UV-vis diffuse reflectance. XPS showed that all Ti cations are in a +4 oxidation state. The reduction profile of Ti cations (made by preferential O anion removal due to Ar{sup +} sputtering), as evidenced by Ti{sup +x}/Ti{sup +4} cations, is very similar to that already observed for well-defined TiO{sub 2} surfaces. The absence of XRD pattern indicated that TiO{sub 2} particles are in an amorphous form. UV-vis diffuse reflectance showed a considerably blue shift ({Delta}E = 0.6--0.7 eV) of the band gap of TiO{sub 2}/CMSF when compared to TiO{sub 2} (anatase). This shift translates an average particle radius of 15 {+-} 2 {angstrom}. Larger TiO{sub 2} particles, outside the CMSF nanopores, are, however, observed by TEM. Dark- and photoreactions of ethanol and acetaldehyde have been investigated over TiO{sub 2}/CMSF by steady state kinetics and temperature programmed desorption in UHV conditions, as well as in batch conditions at atmospheric pressure. UHV-steady state ethanol reactions have shown eightfold increase in the reaction rate at 573 K in the presence of UV when compared to dark reactions at the same temperatures. The rate constants ratio k{sub 2}K{sub 2}/k{sub 1}K{sub 1}, for the photoreactions of ethanol, is ca. 40 times higher for TiO{sub 2}/CMSF than for TiO{sub 2} (powder) indicating the high selectivity of the former toward total conversion of ethanol to CO{sub 2} with minor accumulation of acetaldehyde (k{sub 1}K{sub 1} and k{sub 2}K{sub 2} are the rate constants for ethanol to acetaldehyde and acetaldehyde to CO{sub 2}, respectively). Evidence of C-C bond dissociation is given by formaldehyde desorption during UV-acetaldehyde-TPD over TiO{sub 2}/CMSF under UHV conditions. Moreover, UV-acetaldehyde

  13. The direct methanol fuel cell

    SciTech Connect

    Halpert, G.; Narayanan, S.R.; Frank, H.

    1995-08-01

    This presentation describes the approach and progress in the ARPA-sponsored effort to develop a Direct Methanol, Liquid-Feed Fuel Cell (DMLFFC) with a solid Polymer Electrolyte Membrane (PEM) for battery replacement in small portable applications. Using Membrane Electrode Assemblies (MEAs) developed by JPL and Giner, significant voltage was demonstrated at relatively high current densities. The DMLFFC utilizes a 3 percent aqueous solution of methanol that is oxidized directly in the anode (fuel) chamber and oxygen (air) in the cathode chamber to produce water and significant power. The only products are water and CO{sub 2}. The ARPA effort is aimed at replacing the battery in the BA 5590 military radio.

  14. Stevioside methanol tetra-solvate.

    PubMed

    Wu, Yunshan; Rodenburg, Douglas L; Ibrahim, Mohamed A; McChesney, James D; Avery, Mitchell A

    2013-03-01

    Stevioside is a naturally occurring diterpenoid glycoside in Stevia rebaudiana Bertoni. The title compound, C38H60O18·4CH3OH, crystallized as its methanol tetrasolvate. Stevioside consists of an aglycone steviol (a tetra-cyclic diterpene in which the four-fused-ring system consists of three six-membered rings and one five-membered ring) and a sugar part (three glucose units). A weak intra-molecular O-H⋯O hydrogen bond occurs. In the crystal, the methanol mol-ecules participate in a two-dimensional hydrogen-bonded network parallel to b axis with the sugars and together they form a hydrophilic tunnel which encloses the lipophilic part of the molecule. PMID:23476589

  15. Methanol production method and system

    DOEpatents

    Chen, Michael J.; Rathke, Jerome W.

    1984-01-01

    Ethanol is selectively produced from the reaction of methanol with carbon monoxide and hydrogen in the presence of a transition metal carbonyl catalyst. Methanol serves as a solvent and may be accompanied by a less volatile co-solvent. The solution includes the transition metal carbonyl catalysts and a basic metal salt such as an alkali metal or alkaline earth metal formate, carbonate or bicarbonate. A gas containing a high carbon monoxide to hydrogen ratio, as is present in a typical gasifer product, is contacted with the solution for the preferential production of ethanol with minimal water as a byproduct. Fractionation of the reaction solution provides substantially pure ethanol product and allows return of the catalysts for reuse.

  16. Direct methanol fuel cell and system

    DOEpatents

    Wilson, Mahlon S.

    2004-10-26

    A fuel cell having an anode and a cathode and a polymer electrolyte membrane located between anode and cathode gas diffusion backings uses a methanol vapor fuel supply. A permeable polymer electrolyte membrane having a permeability effective to sustain a carbon dioxide flux equivalent to at least 10 mA/cm.sup.2 provides for removal of carbon dioxide produced at the anode by reaction of methanol with water. Another aspect of the present invention includes a superabsorpent polymer material placed in proximity to the anode gas diffusion backing to hold liquid methanol or liquid methanol solution without wetting the anode gas diffusion backing so that methanol vapor from the liquid methanol or liquid methanol-water solution is supplied to the membrane.

  17. The toxicity of inhaled methanol vapors

    SciTech Connect

    Kavet, R.; Nauss, K.M. )

    1990-01-01

    Methanol could become a major automotive fuel in the U.S., and its use may result in increased exposure of the public to methanol vapor. Nearly all of the available information on methanol toxicity in humans relates to the consequences of acute, rather than chronic, exposures. Acute methanol toxicity evolves in a well-understood pattern and consists of an uncompensated metabolic acidosis with superimposed toxicity to the visual system. The toxic properties of methanol are rooted in the factors that govern both the conversion of methanol to formic acid and the subsequent metabolism of formate to carbon dioxide in the folate pathway. In short, the toxic syndrome sets in if formate generation continues at a rate that exceeds its rate of metabolism. Current evidence indicates that formate accumulation will not challenge the metabolic capacity of the folate pathway at the anticipated levels of exposure to automotive methanol vapor.117 references.

  18. The toxicity of inhaled methanol vapors.

    PubMed

    Kavet, R; Nauss, K M

    1990-01-01

    Methanol could become a major automotive fuel in the U.S., and its use may result in increased exposure of the public to methanol vapor. Nearly all of the available information on methanol toxicity in humans relates to the consequences of acute, rather than chronic, exposures. Acute methanol toxicity evolves in a well-understood pattern and consists of an uncompensated metabolic acidosis with superimposed toxicity to the visual system. The toxic properties of methanol are rooted in the factors that govern both the conversion of methanol to formic acid and the subsequent metabolism of formate to carbon dioxide in the folate pathway. In short, the toxic syndrome sets in if formate generation continues at a rate that exceeds its rate of metabolism. Current evidence indicates that formate accumulation will not challenge the metabolic capacity of the folate pathway at the anticipated levels of exposure to automotive methanol vapor. PMID:2264926

  19. Selective clean-up applicable to aqueous acetone extracts for the determination of carbendazim and thiabendazole in fruits and vegetables by high-performance liquid chromatography with UV detection.

    PubMed

    Di Muccio, A; Girolimetti, S; Attard Barbini, D; Pelosi, P; Generali, T; Vergori, L; De Merulis, G; Leonelli, A; Stefanelli, P

    1999-02-12

    Fungicide residues in vegetables (benomyl, carbendazim, thiabendazole) are analyzed through a clean-up procedure that uses a portion of the aqueous acetone extract prepared for multiresidue methodology. A portion of the aqueous acetone extract (equivalent to 5 g of vegetables) is loaded onto an Extrelut-20 cartridge (the cartridge is filled with a coarse, large-pore diatomaceous material). Then, acetone is partially removed by an upward stream of nitrogen at 2l/min for 30 min. Benzimidazolic fungicides are recovered by percolating the cartridge with 100 ml of 0.1 M phosphoric acid solution, which also serves to convert benomyl to carbendazim. The percolating acid solution is drained on-line through a strong cation-exchange (SCX) solid-phase extraction cartridge with the aid of a slight vacuum. Benzimidazolic fungicides are retained on the SCX cartridge. The phosphoric acid solution is discarded together with the washings of the SCX cartridge, i.e., water followed by methanol-water (75:25), that remove unwanted coextractives. Finally, benzimidazolic fungicides are recovered by eluting the SCX cartridge with methanol-ammonium formate buffer (75:25). The final extract is then analyzed by reversed-phase HPLC with UV detection. Recoveries from crops such as apples, lettuce, strawberries and citrus fruits are generally greater than 80% and no interferences were observed. The clean-up is simple and straightforward, requires only disposable items, water solutions and a few milliliters of solvent and a minimum number of manipulations, and does not require concentration steps or electrical equipment. PMID:10074700

  20. Hydrogen Exchange Before Dissociation in the Photolysis of Acetaldehyde: a Non-Transition State Mechanism.

    NASA Astrophysics Data System (ADS)

    Heazlewood, B. R.; Andrews, D.; Maccarone, A. T.; Jordan, M. T. J.; Kable, S. H.

    2010-06-01

    Non-transition state (TS) reaction mechanisms continue to attract a great deal of attention, experimentally and theoretically, because they challenge the paradigms of kinetic theories. The ``roaming'' mechanism was first described 5 years ago in the photolysis of H2CO. It was originally described as a non-TS mechanism, although recent work has characterized a "roaming" TS, which is very flat, and without a well-defined structure. In addition, roaming reactions may re-cross this TS many times in an excursion from reactant to product and so conventional TS theories are still inadequate for predicting the rate of such reactions. Photolysis of the more complex acetaldehyde (CH3CHO) has proven to be a benchmark molecule for studies of roaming because the higher molecular complexity, and the near energetic equivalence of the TS to CH4 + CO and the C-C bond cleavage to CH3 + HCO produces a much higher flux of roaming reactions. In this seminar, we shall present experimental results on the photolysis of isotopically-labeled acetaldehyde, CD3CHO, and, hopefully, CH3CDO. Photolysis of CD3CHO is shown to produce almost 10% of the radical flux as DCO products. We have performed ab initio calculations of the critical points on the global C2, D3, H, O potential energy surface at energies below the experimental photolysis energy, revealing several pathways to DCO products. From these theoretical energies, vibrational frequencies and rotational constants we have calculated RRKM rates for each forward and reverse reaction on this surface. A master equation analysis of the product rates predicts that the yield of DCO, via these conventional TS pathways, should only be <0.1%, which is about two orders of magnitude less than observed experimentally. We have not included the known roaming pathway to CH4 + CO, but that would only reduce the DCO product. The mechanism for the observed DCO production is at the present time unknown, but we hypothesise that another roaming-type mechanism

  1. On apparent quantized transition-state thresholds in the photofragmentation of acetaldehyde

    SciTech Connect

    King, Rollin A.; Allen, Wesley D.; Schaefer, Henry F. III

    2000-04-01

    Recent photofragmentation experiments have observed stepwise increases in the dissociation rate for CH{sub 3}CHO (T{sub 1}){yields}CH{sub 3} (X(tilde sign) {sup 2}A{sub 2}{sup ''})+HCO (X(tilde sign) {sup 2}A{sup '}) as a function of excitation energy. In accord with the Rice-Ramsperger-Kassel-Marcus (RRKM) form of transition-state theory, these steps were interpreted as corresponding to vibrational levels of the fragmentation transition state on the triplet surface. We have investigated this acetaldehyde dissociation using coupled cluster (CC) and density functional (DFT) methods with [C,O/H] atomic-orbital basis sets ranging in quality from [4s2p1d/2s1p] to [6s5p4d3f2g1h/5s4p3d2 f1g]. A high-level focal point analysis, along with harmonic force field computations, results in predictions of the dissociation energy, D{sub 0}=1583 cm{sup -1}, and the association barrier height, V{sub 0}{sup *}=3149 cm{sup -1}. With a basis set of triple-{zeta} plus double-polarization plus f(TZ2Pf ) quality, the DFT method UB3LYP and the CC method RCCSD predict barrier frequencies of 355i cm{sup -1} and 516i cm{sup -1}, respectively, while the empirical value inferred from RRKM models is only 60i cm{sup -1}. The RRKM-derived frequencies for the degrees of freedom orthogonal to the reaction path are more reasonable but still not in convincing agreement with electronic structure theory. Thus, while the experimental steps in the dissociation rate of acetaldehyde (as well as ketene) have yet to be satisfactorily explained, proven ab initio methods provide strong evidence that simple RRKM fits to the k(E) profile provide misleading vibrational frequencies of the transition state on the corresponding triplet potential energy surface. (c) 2000 American Institute of Physics.

  2. The role of acetaldehyde in the pathogenesis of acute alcoholic pancreatitis.

    PubMed Central

    Nordback, I H; MacGowan, S; Potter, J J; Cameron, J L

    1991-01-01

    Acetaldehyde (AA), the first product of ethanol metabolism, has been suggested as an important mediator in alcoholic pancreatitis, but experimental evidence has not been convincing. Prior work using the isolated perfused canine pancreas preparation has suggested that toxic oxygen metabolites generated by xanthine oxidase (XO) may mediate the early injury in pancreatitis. Xanthine oxidase is capable of oxidizing AA, and during this oxidation free radicals are released. The hypothesis that acute alcoholic pancreatitis may be initiated by AA in the presence of active XO (converted from xanthine dehydrogenase [XD]) was tested in the authors' experimental preparation by converting XD to XO by a period of ischemia, and infusing AA. Control preparations remained normal throughout the 4-hour perfusion (weight gain, 7 +/- 4 g; amylase activity, 1162 +/- 202 U/dL). One hour of ischemia or infusion of AA at 25 mg/hr or at 50 mg/hr without ischemia did not induce changes in the preparation. Acetaldehyde at 250 mg/hr induced minimal edema and weight gain (16 +/- 4 g; p less than 0.05), but not significant hyperamylasemia. Changes also were not observed when 1-hour ischemia was followed by a bolus of ethanol (1.5 g) or sodium acetate (3.0 g), or by infusion of 25 mg/hr of AA. One hour of ischemia followed by infusion of AA at 50 mg/hr or at 250 mg/hr induced edema, hemorrhage, weight gain (22 +/- 7 g [p less than 0.05] and 26 +/- 17 g [p less than 0.05]) and hyperamylasemia (2249 +/- 1034 U/dL [p less than 0.05] and 2602 +/- 1412 U/dL [p less than 0.05]). Moreover infusion of AA at 250 mg/hr after 2 hours of ischemia potentiated the weight gain (62 +/- 20 g versus 30 +/- 14 g [p less than 0.05]), but not the hyperamylasemia (3404 +/- 589 U/dL versus 2862 +/- 1525 U/dL) as compared with 2 hours of ischemia alone. Pancreatitis induced by 1 hour of ischemia followed by AA at 50 mg/hr could be inhibited by pretreatment with the free radical scavengers superoxide dismutase and

  3. Synthesis and Characterisation of Porous Titania-Silica Composite Aerogel for NO(x) and Acetaldehyde Removal.

    PubMed

    Lee, Kwang Young; Park, Se Min; Kim, Jong Beom; El Saliby, Ibrahim; Shahid, Mohammad; Kim, Geon-Joong; Shon, Ho Kyong; Kim, Jong-Ho

    2016-05-01

    In this study, the synthesis of porous titania-silica (TiO2-SiO2) composite aerogel at ambient pressure by using non-hazardous chemicals as a source of silica was investigated. TiO2-SiO2 composite aerogels were characterised and their photocatalytic performances were investigated for the removal efficiency of acetaldehyde and NO(x) under UV light. Results showed that porous composite aerogel with aggregated morphology, high surface area and an increased mesoporosity were formed. TiO2-SiO2(1.8) composite, with high Ti/Si ratio, showed the best results in terms of photocatalytic removal of acetaldehyde and nitrogen oxide. PMID:27483782

  4. Breath acetone monitoring by portable Si:WO3 gas sensors

    PubMed Central

    Righettoni, Marco; Tricoli, Antonio; Gass, Samuel; Schmid, Alex; Amann, Anton; Pratsinis, Sotiris E.

    2013-01-01

    Breath analysis has the potential for early stage detection and monitoring of illnesses to drastically reduce the corresponding medical diagnostic costs and improve the quality of life of patients suffering from chronic illnesses. In particular, the detection of acetone in the human breath is promising for non-invasive diagnosis and painless monitoring of diabetes (no finger pricking). Here, a portable acetone sensor consisting of flame-deposited and in situ annealed, Si-doped epsilon-WO3 nanostructured films was developed. The chamber volume was miniaturized while reaction-limited and transport-limited gas flow rates were identified and sensing temperatures were optimized resulting in a low detection limit of acetone (~20 ppb) with short response (10–15 s) and recovery times (35–70 s). Furthermore, the sensor signal (response) was robust against variations of the exhaled breath flow rate facilitating application of these sensors at realistic relative humidities (80–90%) as in the human breath. The acetone content in the breath of test persons was monitored continuously and compared to that of state-of-the-art proton transfer reaction mass spectrometry (PTR-MS). Such portable devices can accurately track breath acetone concentration to become an alternative to more elaborate breath analysis techniques. PMID:22790702

  5. Vibrational Excitation of Both Products of the Reaction of CN Radicals with Acetone in Solution

    PubMed Central

    2015-01-01

    Transient electronic and vibrational absorption spectroscopy unravel the mechanisms and dynamics of bimolecular reactions of CN radicals with acetone in deuterated chloroform solutions. The CN radicals are produced by ultrafast ultraviolet photolysis of dissolved ICN. Two reactive forms of CN radicals are distinguished by their electronic absorption bands: “free” (uncomplexed) CN radicals, and “solvated” CN radicals that are complexed with solvent molecules. The lifetimes of the free CN radicals are limited to a few picoseconds following their photolytic production because of geminate recombination to ICN and INC, complexation with CDCl3 molecules, and reaction with acetone. The acetone reaction occurs with a rate coefficient of (8.0 ± 0.5) × 1010 M–1 s–1 and transient vibrational spectra in the C=N and C=O stretching regions reveal that both the nascent HCN and 2-oxopropyl (CH3C(O)CH2) radical products are vibrationally excited. The rate coefficient for the reaction of solvated CN with acetone is 40 times slower than for free CN, with a rate coefficient of (2.0 ± 0.9) × 109 M–1 s–1 obtained from the rise in the HCN product v1(C=N stretch) IR absorption band. Evidence is also presented for CN complexes with acetone that are more strongly bound than the CN–CDCl3 complexes because of CN interactions with the carbonyl group. The rates of reactions of these more strongly associated radicals are slower still. PMID:26192334

  6. Exploration of detection sensitivity of biomarker acetone in aqueous samples using cavity ringdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Mbi, Armstrong; Wang, Chuji

    2007-03-01

    Breath acetone is a biomarker for diabetes (Type 1). Currently, high sensitivity breath gas analysis is mainly performed by gas chromatography-mass spectrometry (GC-MC). We are developing a potable ringdown spectrometer for diabetes diagnostics using non-invasive breath gas analysis. The ringdown spectrometer consists of a compact Nd: YAG laser source operating at 266 nm, a atmospheric gas cell of 43 cm in length, a miniature detector, and a data processing section. In this work, the exploration of detection sensitivity of acetone in aqueous samples using cavity ringdown spectroscopy is presented. Pure acetone is diluted in distilled water in different concentrations ranging from 0.5 drop/liter to 8 drops/liter, or 730 ppbv - 12 ppmv in gas phase. The instrument performance using two sampling methods is evaluated. With the mirror reflectivity of 99.98%, the spectrometer demonstrates a detection limit of acetone of 450 ppbv (based on 1-σ), which is slightly lower than the threshold number of acetone concentration in normal human breath. Preliminary results from actual breath gases are also presented.

  7. Detection of Acetone Processing of Castor Bean Mash for Forensic Investigation of Ricin Preparation Methods

    SciTech Connect

    Kreuzer-Martin, Helen W.; Wahl, Jon H.; Metoyer, Candace N.; Colburn, Heather A.; Wahl, Karen L.

    2010-07-01

    The toxic protein ricin is of concern as a potential biological threat agent (BTA) Recently, several samples of ricin have been seized in connection with biocriminal activity. Analytical methods are needed that enable federal investigators to determine how the samples were prepared, to match seized samples to potential source materials, and to identify samples that may have been prepared by the same method using the same source materials. One commonly described crude ricin preparation method is acetone extraction of crushed castor beans. Here we describe the use of solid-phase microextraction and headspace analysis of crude ricin preparation samples to determine whether they were processed by acetone extraction. In all cases, acetone-extracted bean mash could be distinguished from un-extracted mash or mash extracted with other organic solvents. Statistical analysis showed that storage in closed containers for up to 109 days had no effect on acetone signal intensity. Signal intensity in acetone-extracted mash decreased during storage in open containers, but extracted mash could still be distinguished from un-extracted mash after 94 days.

  8. Destruction of acetone using a small-scale arcjet plasma torch

    SciTech Connect

    Snyder, H.R.; Fleddermann, C.B.; Gahl, J.M.

    1996-12-31

    A small-scale thermal plasma torch has been constructed to determine the feasibility of its use to dispose of hazardous solvent wastes. The system has been studied using acetone as a test compound. The plasma jet is generated using argon and a commercial AC/DC welding supply. The system is operated using torch currents ranging from 50 to 200 A and solvent flow rates in the range 0--200 ml/h. Oxygen is added to alter the chemistry occurring in the reaction chamber. The destruction of acetone and the relative amounts of the reaction by-products are monitored using a residual gas analyzer. The pyrolysis products consist primarily of CO, CH{sub 4}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and other C{sub x}H{sub y} radicals when no oxygen is added to the system. By adding oxygen to the system, thermal oxidation processes occur that increase the production of CO{sub 2} and significantly decrease the amount of acetone in the exhaust gases. This paper includes data on the destruction efficiency of acetone as a function of solvent flow rate, torch power, argon flow rate and oxygen injection rate. The results indicate that greater than 99% destruction efficiency of acetone can be achieved with addition of oxygen to the reaction mixture using an arcjet current of 75 A.

  9. Field Demonstration of Acetone Pretreatment and Composting of Particulate-TNT-Contaminated Soil

    SciTech Connect

    Radtke, Corey William; Smith, D.; Owen, S.; Roberto, Francisco Figueroa

    2002-02-01

    Solid fragments of explosives in soil are common in explosives testing and training areas. In this study we initially sieved the upper 6 in of contaminated soil through a 3-mm mesh, and found 2, 4, 6-trinitrotoluene (TNT) fragments. These contributed to an estimated concentration of 1.7 kg per cubic yard soil, or for 2000 ppm TNT in the soil. Most of the fragments ranged 4 mm to 10 mm diameter in size, but explosives particles weighing up to 56 g (about 4 cm diameter) were frequently observed. An acetone pretreatment/composting system was then demonstrated at field scale. The amount of acetone required for a TNT-dissolving slurry process was controlled by the viscosity of the soil/acetone mix rather than the TNT dissolution rate. The amount needed was estimated at about 55 gallons acetone per cubic yard soil. Smaller, 5- to 10-mm-diameter fragments went into solution in less than 15 min at a mixer speed of 36 rpm, with a minimum of 2 g TNT going into solution per 30 min for the larger chunks. The slurries were than mixed with compost starting materials and composted in a vented 1 yd3 container. After 34 days incubation time TNT was below the site-specific regulatory threshold of 44 ppm. TNT metabolites and acetone were also below their regulatory thresholds established for the site.

  10. Efficient acetone-butanol-ethanol production by Clostridium beijerinckii from sugar beet pulp.

    PubMed

    Bellido, Carolina; Infante, Celia; Coca, Mónica; González-Benito, Gerardo; Lucas, Susana; García-Cubero, María Teresa

    2015-08-01

    Sugar beet pulp (SBP) has been investigated as a promising feedstock for ABE fermentation by Clostridium beijerinckii. Although lignin content in SBP is low, a pretreatment is needed to enhance enzymatic hydrolysis and fermentation yields. Autohydrolysis at pH 4 has been selected as the best pretreatment for SBP in terms of sugars release and acetone and butanol production. The best overall sugars release yields from raw SBP ranged from 66.2% to 70.6% for this pretreatment. The highest ABE yield achieved was 0.4g/g (5.1g/L of acetone and 6.6g/L butanol) and 143.2g ABE/kg SBP (62.3g acetone and 80.9g butanol) were obtained when pretreated SBP was enzymatically hydrolyzed at 7.5% (w/w) solid loading. Higher solid loadings (10%) offered higher acetone and butanol titers (5.8g/L of acetone and 7.8g/L butanol). All the experiments were carried out under not-controlling pH conditions reaching about 5.3 in the final samples. PMID:25965949

  11. Vibrational Excitation of Both Products of the Reaction of CN Radicals with Acetone in Solution.

    PubMed

    Dunning, Greg T; Preston, Thomas J; Greaves, Stuart J; Greetham, Gregory M; Clark, Ian P; Orr-Ewing, Andrew J

    2015-12-17

    Transient electronic and vibrational absorption spectroscopy unravel the mechanisms and dynamics of bimolecular reactions of CN radicals with acetone in deuterated chloroform solutions. The CN radicals are produced by ultrafast ultraviolet photolysis of dissolved ICN. Two reactive forms of CN radicals are distinguished by their electronic absorption bands: "free" (uncomplexed) CN radicals, and "solvated" CN radicals that are complexed with solvent molecules. The lifetimes of the free CN radicals are limited to a few picoseconds following their photolytic production because of geminate recombination to ICN and INC, complexation with CDCl3 molecules, and reaction with acetone. The acetone reaction occurs with a rate coefficient of (8.0 ± 0.5) × 10(10) M(-1) s(-1) and transient vibrational spectra in the C═N and C═O stretching regions reveal that both the nascent HCN and 2-oxopropyl (CH3C(O)CH2) radical products are vibrationally excited. The rate coefficient for the reaction of solvated CN with acetone is 40 times slower than for free CN, with a rate coefficient of (2.0 ± 0.9) × 10(9) M(-1) s(-1) obtained from the rise in the HCN product v1(C═N stretch) IR absorption band. Evidence is also presented for CN complexes with acetone that are more strongly bound than the CN-CDCl3 complexes because of CN interactions with the carbonyl group. The rates of reactions of these more strongly associated radicals are slower still. PMID:26192334

  12. Metabolic methanol: molecular pathways and physiological roles.

    PubMed

    Dorokhov, Yuri L; Shindyapina, Anastasia V; Sheshukova, Ekaterina V; Komarova, Tatiana V

    2015-04-01

    Methanol has been historically considered an exogenous product that leads only to pathological changes in the human body when consumed. However, in normal, healthy individuals, methanol and its short-lived oxidized product, formaldehyde, are naturally occurring compounds whose functions and origins have received limited attention. There are several sources of human physiological methanol. Fruits, vegetables, and alcoholic beverages are likely the main sources of exogenous methanol in the healthy human body. Metabolic methanol may occur as a result of fermentation by gut bacteria and metabolic processes involving S-adenosyl methionine. Regardless of its source, low levels of methanol in the body are maintained by physiological and metabolic clearance mechanisms. Although human blood contains small amounts of methanol and formaldehyde, the content of these molecules increases sharply after receiving even methanol-free ethanol, indicating an endogenous source of the metabolic methanol present at low levels in the blood regulated by a cluster of genes. Recent studies of the pathogenesis of neurological disorders indicate metabolic formaldehyde as a putative causative agent. The detection of increased formaldehyde content in the blood of both neurological patients and the elderly indicates the important role of genetic and biochemical mechanisms of maintaining low levels of methanol and formaldehyde. PMID:25834233

  13. Pharmacological recruitment of aldehyde dehydrogenase 3A1 (ALDH3A1) to assist ALDH2 in acetaldehyde and ethanol metabolism in vivo

    PubMed Central

    Chen, Che-Hong; Cruz, Leslie A.; Mochly-Rosen, Daria

    2015-01-01

    Correcting a genetic mutation that leads to a loss of function has been a challenge. One such mutation is in aldehyde dehydrogenase 2 (ALDH2), denoted ALDH2*2. This mutation is present in ∼0.6 billion East Asians and results in accumulation of toxic acetaldehyde after consumption of ethanol. To temporarily increase metabolism of acetaldehyde in vivo, we describe an approach in which a pharmacologic agent recruited another ALDH to metabolize acetaldehyde. We focused on ALDH3A1, which is enriched in the upper aerodigestive track, and identified Alda-89 as a small molecule that enables ALDH3A1 to metabolize acetaldehyde. When given together with the ALDH2-specific activator, Alda-1, Alda-89 reduced acetaldehyde-induced behavioral impairment by causing a rapid reduction in blood ethanol and acetaldehyde levels after acute ethanol intoxication in both wild-type and ALDH2-deficient, ALDH2*1/*2, heterozygotic knock-in mice. The use of a pharmacologic agent to recruit an enzyme to metabolize a substrate that it usually does not metabolize may represent a novel means to temporarily increase elimination of toxic agents in vivo. PMID:25713355

  14. Endogenous Methanol Regulates Mammalian Gene Activity

    PubMed Central

    Komarova, Tatiana V.; Petrunia, Igor V.; Shindyapina, Anastasia V.; Silachev, Denis N.; Sheshukova, Ekaterina V.; Kiryanov, Gleb I.; Dorokhov, Yuri L.

    2014-01-01

    We recently showed that methanol emitted by wounded plants might function as a signaling molecule for plant-to-plant and plant-to-animal communications. In mammals, methanol is considered a poison because the enzyme alcohol dehydrogenase (ADH) converts methanol into toxic formaldehyde. However, the detection of methanol in the blood and exhaled air of healthy volunteers suggests that methanol may be a chemical with specific functions rather than a metabolic waste product. Using a genome-wide analysis of the mouse brain, we demonstrated that an increase in blood methanol concentration led to a change in the accumulation of mRNAs from genes primarily involved in detoxification processes and regulation of the alcohol/aldehyde dehydrogenases gene cluster. To test the role of ADH in the maintenance of low methanol concentration in the plasma, we used the specific ADH inhibitor 4-methylpyrazole (4-MP) and showed that intraperitoneal administration of 4-MP resulted in a significant increase in the plasma methanol, ethanol and formaldehyde concentrations. Removal of the intestine significantly decreased the rate of methanol addition to the plasma and suggested that the gut flora may be involved in the endogenous production of methanol. ADH in the liver was identified as the main enzyme for metabolizing methanol because an increase in the methanol and ethanol contents in the liver homogenate was observed after 4-MP administration into the portal vein. Liver mRNA quantification showed changes in the accumulation of mRNAs from genes involved in cell signalling and detoxification processes. We hypothesized that endogenous methanol acts as a regulator of homeostasis by controlling the mRNA synthesis. PMID:24587296

  15. Evaluating acetaldehyde synthesis from L-/sup 14/C(U)) threonine by Streptococcus thermophilus and Lactobacillus bulgaricus

    SciTech Connect

    Wilkins, D.W.; Schmidt, R.H.; Shireman, R.B.; Smith, K.L.; Jezeski, J.J.

    1986-05-01

    To evaluate the synthesis of acetaldehyde from threonine during growth of yogurt cultures, Streptococcus thermophilus MS1 and Lactobacillus bulgaricus MR1 were grown in defined medium in which 10% of the total threonine was composed of L-(carbon-14(U))threonine. Acetaldehyde production was monitored by formation of 2,4-dinitrophenylhydrazone followed by separation and analysis using high performance liquid chromatography. After growth for 8 h at 42/sup 0/C, approximately 2.0% of the total acetaldehyde (780.4 nmol) produced was from L-(carbon-14)threonine. Threonine aldolase activity was determined in cell-free extracts from S. thermophilus and L. bulgaricus grown in Elliker broth. Increasing incubation temperature from 30 to 42/sup 0/C decreased threonine aldolase activity in cells of the streptococcus harvested after 8 h of incubation. Effect of incubation temperature was more dramatic in cells harvested after 18 h where the activity of cells grown at 48/sup 0/C was 89% lower than that of cells grown at 30/sup 0/C. Cell extracts from S. thermophilus MS1 possessed higher threonine aldolase activity than did those from L. bulgaricus MR1. Increased assay temperature from 30 to 42/sup 0/C increased threonine aldolase activity in S. thermophilus MS1.

  16. Adsorption, Coadsorption and Reaction of Acetaldehyde and NO₂ on Na-Y,FAU: an in situ FTIR Investigation

    SciTech Connect

    Szanyi, Janos; Kwak, Ja Hun; Moline, Ryan A.; Peden, Charles HF

    2004-11-04

    The adsorption of acetaldehyde and its co-adsorption and reaction with NO₂ were investigated on a Na-Y, FAU zeolite using in situ FTIR spectroscopy. Acetaldehyde adsorbs strongly over Na-Y and desorbs molecularly at around 400K with very limited extent of condensation or polymerization. Reaction between CH₃CHO and NO₂ takes place in co-adsorption experiments even at 300K. In the initial step, acetaldehyde is oxidized to acetic acid accompanied by the formation of NO, which can be observed as N2O₃ formed via a further reaction between NO and NO₂. The key intermediates in the overall NOx reduction in this process are nitro- and nitrosomethane, which form in the next step. Their decomposition and further reaction with adsorbed NOx species lead to the formation of HCN, HNCO, N₂O, CO₂ and organic nitrile species identified by their characteristic IR vibrational signatures. At 473K, the reaction between adsorbed CH₃CHO and NO₂ is very fast. The results seem to suggest a mechanism in which N-N bond formation takes place among ionic nitrogen containing species (NO⁺ and CN⁻ or NCO⁻). No evidence has been found to suggest the participation of NHx⁺NOy⁻ type species in the N⁻N bond formation under the experimental conditions of this study.

  17. Ozone-assisted photocatalytic oxidation of gaseous acetaldehyde on TiO2/H-ZSM-5 catalysts.

    PubMed

    Huang, Xin; Yuan, Jian; Shi, Jianwei; Shangguan, Wenfeng

    2009-11-15

    TiO(2)/H-ZSM-5 catalysts were prepared by impregnation with different amount of TiO(2) loading and calcination at various temperatures. The catalysts were characterized by X-ray diffraction (XRD), ultraviolet and visible spectroscopy (UV-vis) and BET specific surface area. It was demonstrated that the anatase TiO(2) retained stable on H-ZSM-5 after heat treatment even at 700 degrees C. The activities of samples were investigated under the various conditions of UV, ozone and UV-ozone, respectively by the comparison of acetaldehyde degradation. It was found that the photocatalysis combined with ozonation promoted the acetaldehyde degradation. TiO(2)/H-ZSM-5 catalysts were superior to simple TiO(2) and H-ZSM-5 with respect to the ozone-assisted photocatalytic oxidation of gaseous acetaldehyde, and the activity of the catalyst TiO(2)/H-ZSM-5 (TiO(2):H-ZSM-5=2:10) is the highest one among all those prepared samples. The improvement was attributed to the synergetic effect among adsorption, ozonation and catalytic reaction. PMID:19604630

  18. Synergetic catalytic performance of TiO2/MCM-41 for ozone-assisted photocatalytic degradation of gaseous acetaldehyde.

    PubMed

    Huang, Xin; Shi, Wenjing; Yuan, Jian; Shi, Jianwei; Jiang, Zhi; Shangguan, Wenfeng

    2011-01-01

    This paper presents the preparation and characterization of TiO2/MCM-41 catalysts with different amounts of TiO2 loading or calcination at various temperatures. The activities of the samples were investigated under UV, ozone and UV-zone by the comparison of acetaldehyde degradation. The results showed that the application of photocatalytic ozonation (UV-ozone) produced the highest efficiency for acetaldehyde removal, indicating that a synergistic effect occurred when photocatalysis and ozonation are carried out simultaneously. The synergistic catalytic performance depended significantly on the composition of catalysts used. The TiO2/MCM-41 catalysts were superior to single TiO2 and MCM-41 with respect to the ozone-assisted photocatalytic oxidation of gaseous acetaldehyde, and the activity of the catalyst TiO2/MCM-41, with TiO2:MCM-41 = 5:10, is the highest one among these prepared catalysts. The improvement was attributed to the synergetic effect between adsorption, ozonation and catalytic reaction. PMID:21780699

  19. Recent Studies on Methanol Crossover in Liquid-Feed Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Narayanan, S. R.

    2000-01-01

    In this work, the effects of methanol crossover and airflow rates on the cathode potential of an operating direct methanol fuel cell are explored. Techniques for quantifying methanol crossover in a fuel cell and for separating the electrical performance of each electrode in a fuel cell are discussed. The effect of methanol concentration on cathode potential has been determined to be significant. The cathode is found to be mass transfer limited when operating on low flow rate air and high concentrations of methanol. Improvements in cathode structure and operation at low methanol concentration have been shown to result in improved cell performance.

  20. Spectroscopic analysis, AIM, NLO and VCD investigations of acetaldehyde thiosemicarbazone using quantum mechanical simulations

    NASA Astrophysics Data System (ADS)

    Moorthy, N.; Prabakar, P. C. Jobe; Ramalingam, S.; Govindarajan, M.; Gnanamuthu, S. Joshua; Pandian, G. V.

    2016-08-01

    The prepared Acetaldehyde thiosemicarbazone (ATSC) have been investigated by both the experimental and theoretical methods; through this work, the essentiality of elucidation of molecular fragments source linear and non-linear optical properties was explored. The stability of the structure and entire calculations have been performed on HF and B3LYP methods with 6-311++G(d,p) level of basis set. The Mulliken charge profile, electronic, optical and hyper polarizability analyses have been carried out in order to evaluate nonlinear optical (NLO) performance of the present compound. The exact optical location of the ATSC was determined by executing UV-Visible calculations on TDSCF method. The existence of the molecular group for the inducement and tuning of NLO properties were thoroughly investigated by performing fundamental vibrational investigation. The optical energy transformation among frontier molecular levels has been described in UV-Visible region. The Gibbs energy coefficient of thermodynamic functions was monitored in different temperature and it was found constant irrespective of temperatures. The appearance of different chemical environment of H and C was monitored from the 1H and 13C NMR spectra. The vibrational optical polarization characteristics with respect to molecular composition in the compound have been studied by VCD spectrum. The bond critical point, Laplacian of electron density, electron kinetic energy density and total electron energy density have calculated and analysed using AIM study.

  1. Dissociation of acetaldehyde in intense laser field: Coulomb explosion or field-assisted dissociation?

    NASA Astrophysics Data System (ADS)

    Elshakre, Mohamed E.; Gao, Lirong; Tang, Xiaoping; Wang, Sufan; Shu, Yafei; Kong, Fanao

    2003-09-01

    Dissociation of acetaldehyde in moderate strong laser field of 1013-1014W/cm2 was investigated. Singly charged parent ion CH3CHO+ and fragmental ions CH3+, CHO+, C2H4+, O+, CH2CHO+, and H+ were produced by 800 nm laser of 100 fs pulse duration and recorded by time-of-flight mass spectrometer. The CH3+ fragment further dissociated to CH2+, CH+, and C+ ions at higher intensity. Ab initio calculated results show that the singly-, doubly-, and triply charged parent ions are stable. So, the dissociation mechanism was not due to Coulomb explosion of multicharged ion. A field-assisted dissociation (FAD) theory, which assumes that only one bond undergoes dissociation while the rest of the molecular geometry stays unchanged, was employed to treat the dissociation dynamics. Accordingly, the dressed potential energy surfaces of the ground state for the parent and the fragment ions were calculated. Corresponding quasiclassical trajectory calculations show that the bond ruptures take place in the order of C-C, C-O, and C-H, agreeing with the observation. The observed angular dependence and charge distribution of the product ions can also be interpreted by the FAD theory.

  2. Detecting ethanol and acetaldehyde by simple and ultrasensitive fluorimetric methods in compound foods.

    PubMed

    Zachut, M; Shapiro, F; Silanikove, N

    2016-06-15

    There is a need for simple, accurate, and rapid analysis of ethanol (Eth) and acetaldehyde (AA) in a wide variety of beverages and foods. A novel enzymatic assay coupled to formation of fluorescent chromophore is presented. Eth detection was further improved by adding semicarbazide to the reaction mixture, which interacts with AA and prevents its inhibitory effect on Eth oxidation. The limits of detection of Eth (0.5 mg/L) and AA (0.9 mg/L) are comparable with the performance of modern gas chromatography techniques. The repeatability of Eth and AA detection in various foods (9% on average) was lower than that with commercial kits (23%). The high sensitivity of the developed method enables detection of AA in common foods [e.g., bio-yogurt (12.2 mg/L), and the existence of endogenous Eth (1.8 mg/L) and AA (2.0 mg/L) in bacteria-free non-fermented bovine milk], which could not measured so far by enzymatic methods. PMID:26868576

  3. A perspective on acetaldehyde concentrations and toxicity in man and animals.

    PubMed

    Brecher, A S; Hellman, K; Basista, M H

    1997-01-01

    Acetaldehyde (AcH) at a concentration of 593 mM lowers the natural fluorescence of commercial human serum by 12%. It also lowers the fluorescence of a beta-naphthylamine standard curve (recovery) in serum by 17%. These results contrast with earlier reports showing that 447 mM AcH had no effect upon fluorescence of serum or a beta-naphthylamine standard curve in serum. Because 447 mM AcH and 593 mM AcH represent 2.5% and 3.3% AcH, it is apparent that there is a narrow window between which AcH may affect fluorescence by adduct formation with blood components and exogenous fluorophores. Nonetheless, serum has the capacity to bind > 2.5% (> 447 mM) AcH without alteration in fluorescence, suggesting that serum has a great carrying capacity for AcH, undoubtedly in the form of adducts to nucleophiles. These results are discussed in the light of toxicity of AcH and ethanol, the probable significance of the approximately 30 microM free AcH that is reported in chronic alcoholics and the planning of in vitro and in vivo studies with AcH. PMID:9305465

  4. Thz Spectroscopy of Acetaldehyde and Search of 13C Species in Orion

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Motiyenko, R. A.; Ilyushin, V. V.; Tercero, B.; Cernicharo, J.; Guillemin, J.-C.

    2012-06-01

    Acetaldehyde (CH_3CHO) is one of the high priority complex organic molecules for the astrophysical community. There is a lack of data concerning the 13C species since the measurements are limited to 40 GHz up to date. This molecule displays a large amplitude motion: the hindered rotation of the methyl group with respect to the rest of the molecule. The analysis is performed with RAM36 code which used the Rho Axis Method. Last year we presented the analysis of the millimeterwave spectra of the 13CH_3CHO species. We extended the analysis to the THz range of the vibrational ground state for both species. We are also analyzing the first torsional state (≈140 cm-1) for two reasons: first, this permits to remove correlation between parameters. Second, this state contribute to the partition function even at ISM temperature (100--150 K) since there is an influence on the column density determined in case of detection. The searches of these isotopomers are in progress in ORION. This work was supported by the CNES and the Action sur Projets de l'INSU, PCMI. This work was also done under the ANR-08-BLAN-0054. Kilb, R.W.; Lin, C.C.; and Wilson, E.B. J. Chem. Phys. 26, (1957) 1695 Ilyushin, V.V. et al J. Mol. Spectrosc. 259, (2010) 26 Margules, L. et al. FA07, 66th International Symposium on Molecular Spectroscopy (2011)

  5. Behavioral and biochemical evidence of the role of acetaldehyde in the motivational effects of ethanol

    PubMed Central

    Peana, Alessandra T.; Acquas, Elio

    2013-01-01

    Since Chevens' report, in the early 50's that his patients under treatment with the aldehyde dehydrogenase inhibitor, antabuse, could experience beneficial effects when drinking small volumes of alcoholic beverages, the role of acetaldehyde (ACD) in the effects of ethanol has been thoroughly investigated on pre-clinical grounds. Thus, after more than 25 years of intense research, a large number of studies have been published on the motivational properties of ACD itself as well as on the role that ethanol-derived ACD plays in the effects of ethanol. Accordingly, in particular with respect to the motivational properties of ethanol, these studies were developed following two main strategies: on one hand, were aimed to challenge the suggestion that also ACD may exert motivational properties on its own, while, on the other, with the aid of enzymatic manipulations or ACD inactivation, were aimed to test the hypothesis that ethanol-derived ACD might have a role in ethanol motivational effects. Furthermore, recent evidence significantly contributed to highlight, as possible mechanisms of action of ACD, its ability to commit either dopaminergic and opioidergic transmission as well as to activate the Extracellular signal Regulated Kinase cascade transduction pathway in reward-related brain structures. In conclusion, and despite the observation that ACD seems also to have inherited the elusive nature of its parent compound, the behavioral and biochemical evidence reviewed points to ACD as a neuroactive molecule able, on its own and as ethanol metabolite, to exert motivational effects. PMID:23874276

  6. Ethanol-derived acetaldehyde: pleasure and pain of alcohol mechanism of action

    PubMed Central

    Muggironi, Giulia; Fois, Giulia R.; Diana, Marco

    2013-01-01

    Acetaldehyde (ACD), the first metabolite of ethanol (EtOH), has been implicated in several actions of alcohol, including its reinforcing effects. Previously considered an aversive compound, ACD was useful in alcoholic’s pharmacological treatment aimed at discouraging alcohol drinking. However, it has recently been shown that EtOH-derived ACD is necessary for EtOH-induced place preference and self-administration, thereby suggesting a possible involvement of ACD in EtOH motivational properties. In addition, EtOH-stimulating properties on DA neurons are prevented by pharmacological blockade of local catalase H2O2 system, the main metabolic step for biotransformation of EtOH into ACD within the central nervous system. It was further shown that pretreatment with thiol compounds, like L-Cysteine or D-Penicillamine, reduced EtOH and ACD-induced motivational effects, in fact preventing self-administration of both EtOH and ACD, thus suggesting a possible role for ACD as a biomarker useful in evaluating potential innovative treatments of alcohol abuse. These findings suggest a key role of ACD in the EtOH reinforcing effects. In the present paper we review the role of EtOH-derived ACD in the reinforcing effects of EtOH and the possibility that ACD may serve as a therapeutically targetable biomarker in the search for novel treatments in alcohol abuse and alcoholism. PMID:23882197

  7. Acetaldehyde sequestering prevents ethanol-induced stimulation of mesolimbic dopamine transmission.

    PubMed

    Enrico, Paolo; Sirca, Donatella; Mereu, Maddalena; Peana, Alessandra Tiziana; Lintas, Alessandra; Golosio, Angela; Diana, Marco

    2009-03-01

    Acetaldehyde (ACD) has been postulated to mediate some of the neurobehavioral effects of ethanol (EtOH). In this study we sought to evaluate whether the stimulatory effects of EtOH on mesolimbic dopamine (DA) transmission are affected by the administration of ACD-sequestering agent D-penicillamine (Dp). To this end we studied the effect of EtOH and ACD in the rat mesoaccumbens pathway by in vivo microdialysis in the nucleus accumbens shell (NAccs), and by single cell extracellular recordings from antidromically identified mesoaccumbens DA neurons in the ventral tegmental area (VTA). Both EtOH (1g/kg) and ACD (20mg/kg) administration increased DA levels in the NAccs and increased the activity of mesoaccumbens DA neurons. Pretreatment with Dp (50mg/kg i.p. 1h before drug challenge) prevented both EtOH- and ACD-induced stimulation of the DA mesolimbic system without affecting morphine stimulatory actions. These observations add further support to the notion that EtOH-derived ACD stimulates the mesolimbic DA system and is essential in EtOH-induced stimulation of the DA mesoaccumbens system. We conclude that modulation of ACD bioavailability may influence the addictive profile of EtOH by decreasing its psychotropic effects and possibly leading the way to new pharmacological treatments of alcoholism. PMID:19070441

  8. Crucial role of acetaldehyde in alcohol activation of the mesolimbic dopamine system.

    PubMed

    Diana, Marco; Peana, Alessandra Tiziana; Sirca, Donatella; Lintas, Alessandra; Melis, Miriam; Enrico, Paolo

    2008-10-01

    Ethyl alcohol (EtOH), the main psychoactive ingredient of alcoholic drinks, is widely considered responsible for alcohol abuse and alcoholism through its positive motivational properties, which depend, at least partially, on the activation of the mesolimbic dopaminergic system. On the other hand, acetaldehyde (ACD), EtOH's first metabolite, has been classically considered aversive and useful in the pharmacologic therapy of alcoholics. Here we show that EtOH-derived ACD is necessary for EtOH-induced place preference, a preclinical test with high predictive validity for reward liability. We also found that ACD is essential for EtOH-increased microdialysate dopamine (DA) levels in the nucleus accumbens (NAcc), and that this effect is mimicked by ACD administration to the intraventral tegmental area (VTA). Furthermore, in vitro, ACD enhances VTA DA neuronal firing. Coherently, EtOH-stimulating properties on DA neurons are prevented by pharmacologic blockade of local catalase: the main metabolic step for biotransformation of EtOH into ACD in the central nervous system. These results provide in vivo and in vitro evidence for a key role of ACD in EtOH motivational properties and its activation of the mesolimbic DA system. Additionally, these observations suggest that ACD, by increasing VTA DA neuronal activity, would oppose its well-known peripherally originating aversive properties. These findings could help in devising new effective pharmacologic therapies in alcoholism. PMID:18991876

  9. Insights into photodissociation dynamics of acetaldehyde from ab initio calculations and molecular dynamics simulations

    SciTech Connect

    Chen Shilu; Fang Weihai

    2009-08-07

    In the present paper we report a theoretical study on mechanistic photodissociation of acetaldehyde (CH{sub 3}CHO). Stationary structures for H{sub 2} and CO eliminations in the ground state (S{sub 0}) have been optimized with density functional theory method, which is followed by the intrinsic reaction coordinate and ab initio molecular dynamics calculations to confirm the elimination mechanism. Equilibrium geometries, transition states, and intersection structures for the C-C and C-H dissociations in excited states were determined by the complete-active-space self-consistent field (CASSCF) method. Based on the CASSCF optimized structures, the potential energy profiles for the dissociations were refined by performing the single-point calculations using the multireference configuration interaction method. Upon the low-energy irradiation of CH{sub 3}CHO (265 nm<{lambda}<318 nm), the T{sub 1} C-C bond fission following intersystem crossing from the S{sub 1} state is the predominant channel and the minor channel, the ground-state elimination to CH{sub 4}+CO after internal conversion (IC) from S{sub 1} to S{sub 0}, could not be excluded. With the photon energy increasing, another pathway of IC, achieved via an S{sub 1}/S{sub 0} intersection point resulting from the S{sub 1} C-C bond fission, becomes accessible and increases the yield of CH{sub 4}+CO.

  10. Photodissociation of acetaldehyde and the absolute photoionization cross section of HCO.

    SciTech Connect

    Shubert, V. A.; Pratt, S. T.

    2010-01-01

    Photodissociation of acetaldehyde (CH{sub 3}CHO) at 266 nm produced CH{sub 3} and HCO radicals, and single-photon vacuum ultraviolet ionization was used to record velocity map ion images of both CH{sub 3}{sup +} and HCO{sup +}. Comparison of the translational energy distributions from both species indicates that secondary fragmentation of HCO is negligible for 266 nm photodissociation. Thus, the relative photoion signals for CH{sub 3}{sup +} and HCO{sup +} in the mass spectrometer, combined with the recently measured absolute photoionization cross section of CH{sub 3}, allowed the determination of the absolute photoionization cross section of HCO ({sigma}(HCO) = 4.8 {+-} {sub 1.5}{sup 2.0}, 5.9 {+-} {sub 1.6}{sup 2.2}, and 3.7 {+-} {sub 1.2}{sup 1.6} Mb at 10.257, 10.304, and 10.379 eV, respectively). The observed values are quite small but consistent with the similarly small value at threshold for the isoelectronic species NO. This behavior is discussed in terms of the character of the HOMO in both molecules.

  11. Polymerization of Formaldehyde and Acetaldehyde on Ordered (WO3)3 Films on Pt(111)

    SciTech Connect

    Li, Zhenjun; Zhang, Zhenrong; Kay, Bruce D.; Dohnalek, Zdenek

    2011-05-19

    Polymerization of formaldehyde, H2CO, and acetaldehyde, CH3CHO, was studied under ultrahigh vacuum conditions on a model catalyst consisting of an ultra-thin WO3 film supported on Pt(111). The onset of polymerization is observed at very low temperatures of 70 and 80 K for H2CO and CH3CHO, respectively, as documented by the evolution of the IRAS spectra. The amount of polymer increases with increasing coverage and saturates at 5 and 8 monolayers (ML) for the H2CO and CH3CHO multilayer films that are thicker than 10 and 15 ML, respectively. Upon heating, the polymers decompose around 250 and 190 K for H2CO and CH3CHO, respectively, as evidenced mass spectrometrically by the desorption of their monomers and oligomers into the gas phase. The heats of H2CO and CH3CHO sublimation and polymerization determined based on our experiments are in good agreement with previously published values.

  12. Recombinant human diamine oxidase activity is not inhibited by ethanol, acetaldehyde, disulfiram, diethyldithiocarbamate or cyanamide.

    PubMed

    Bartko, Johann; Gludovacz, Elisabeth; Petroczi, Karin; Borth, Nicole; Jilma, Bernd; Boehm, Thomas

    2016-08-01

    Human diamine oxidase (hDAO, EC 1.4.3.22) is the key enzyme in the degradation of extracellular histamine. Consumption of alcohol is a known trigger of mast cell degranulation in patients with mast cell activation syndrome. Ethanol may also interfere with enzymatic histamine degradation, but reports on the effects on DAO activity are controversial. There are also conflicting reports whether disulfiram, an FDA-approved agent in the treatment of alcohol dependence, inhibits DAO. We therefore investigated the inhibitory potential of ethanol and disulfiram and their metabolites on recombinant human DAO (rhDAO) in three different assay systems. Relevant concentrations of ethanol, acetaldehyde, and acetate did not inhibit rhDAO activity in an in vitro assay system using horseradish peroxidase (HRP) -mediated luminol oxidation. The aldehyde dehydrogenase (ALDH; EC 1.2.1.3) inhibitors cyanamide and its dimer dicyanamide also had no effect on DAO activity. In one assay system, the irreversible ALDH inhibitor disulfiram and its main metabolite diethyldithiocarbamate seemed to inhibit DAO activity. However, the decreased product formation was not due to a direct block of DAO activity but resulted from inhibition of peroxidase employed in the coupled system. Our in vitro data do not support a direct blocking effect of ethanol, disulfiram, and their metabolites on DAO activity in vivo. PMID:27401969

  13. Acetaldehyde reinforcement and motor reactivity in newborns with or without a prenatal history of alcohol exposure

    PubMed Central

    March, Samanta M.; Culleré, Marcela E.; Abate, Paula; Hernández, José I.; Spear, Norman E.; Molina, Juan C.

    2013-01-01

    Animal models have shown that early ontogeny seems to be a period of enhanced affinity to ethanol. Interestingly, the catalase system that transforms ethanol (EtOH) into acetaldehyde (ACD) in the brain, is more active in the perinatal rat compared to adults. ACD has been found to share EtOH's behavioral effects. The general purpose of the present study was to assess ACD motivational and motor effects in newborn rats as a function of prenatal exposure to EtOH. Experiment 1 evaluated if ACD (0.35 μmol) or EtOH (0.02 μmol) supported appetitive conditioning in newborn pups prenatally exposed to EtOH. Experiment 2 tested if prenatal alcohol exposure modulated neonatal susceptibility to ACD's motor effects (ACD dose: 0, 0.35 and 0.52 μmol). Experiment 1 showed that EtOH and ACD supported appetitive conditioning independently of prenatal treatments. In Experiment 2, latency to display motor activity was altered only in neonates prenatally treated with water and challenged with the highest ACD dose. Prenatal EtOH experience results in tolerance to ACD's motor activity effects. These results show early susceptibility to ACD's appetitive effects and attenuation of motor effects as a function of prenatal history with EtOH, within a stage in development where brain ACD production seems higher than later in life. PMID:23785319

  14. Acetaldehyde reinforcement and motor reactivity in newborns with or without a prenatal history of alcohol exposure.

    PubMed

    March, Samanta M; Culleré, Marcela E; Abate, Paula; Hernández, José I; Spear, Norman E; Molina, Juan C

    2013-01-01

    Animal models have shown that early ontogeny seems to be a period of enhanced affinity to ethanol. Interestingly, the catalase system that transforms ethanol (EtOH) into acetaldehyde (ACD) in the brain, is more active in the perinatal rat compared to adults. ACD has been found to share EtOH's behavioral effects. The general purpose of the present study was to assess ACD motivational and motor effects in newborn rats as a function of prenatal exposure to EtOH. Experiment 1 evaluated if ACD (0.35 μmol) or EtOH (0.02 μmol) supported appetitive conditioning in newborn pups prenatally exposed to EtOH. Experiment 2 tested if prenatal alcohol exposure modulated neonatal susceptibility to ACD's motor effects (ACD dose: 0, 0.35 and 0.52 μmol). Experiment 1 showed that EtOH and ACD supported appetitive conditioning independently of prenatal treatments. In Experiment 2, latency to display motor activity was altered only in neonates prenatally treated with water and challenged with the highest ACD dose. Prenatal EtOH experience results in tolerance to ACD's motor activity effects. These results show early susceptibility to ACD's appetitive effects and attenuation of motor effects as a function of prenatal history with EtOH, within a stage in development where brain ACD production seems higher than later in life. PMID:23785319

  15. Characterization and acetone gas sensing properties of electrospun TiO2 nanorods

    NASA Astrophysics Data System (ADS)

    Bian, Haiqin; Ma, Shuyi; Sun, Aimin; Xu, Xiaoli; Yang, Guijin; Gao, Jiming; Zhang, Zhengmei; Zhu, Haibin

    2015-05-01

    In this work, random network structure of titanium dioxides (TiO2) nanorods was synthesized by calcining electrospun TiO2/PVP hybrid rods. Structural, optical and acetone gas sensing properties of the nanorods were investigated. The TiO2 nanorods are polycrystalline with a mixture of anatase and rutile structures. The diameter of TiO2 nanorods is about 500 nm. The photoluminescence (PL) spectra measurement at room temperature revealed that a broad emission band including the two emission peaks are about at 401 and 467 nm. The sensor shows the high response, good reproducibility and selectivity for acetone (CH3COCH) with a fast response and recovery time at 500 °C. In addition, the acetone sensing mechanism of the TiO2 nanorods sensors is discussed.

  16. Structural study of a zinc(II) complex with acetone 3-hexamethyleneiminylthiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Castiñeiras, Alfonso; West, Douglas X.

    2002-02-01

    The crystal structure of a zinc complex with acetone 3-hexamethyleneiminylthiosemicarbazone has been determined and contains two anionic thiosemicarbazone ligands prepared from acetone. Bis(acetone 3-hexamethyleneiminylthiosemicarbazone)zinc(II), [Zn(Acehexim) 2], crystallizes monoclinic, P2 1/ c, a=8.406(3), b=13.518(5), c=22.136(3) Å, β=100.61(3), V=2472.3(12) Å3, Z=4. The distortion from tetrahedral symmetry, while substantial, is less than found for other 4-coordinate zinc complexes with bulkier thiosemicarbazone ligands. The largest angle, S-Zn-S, is 126.44(14)° and the smallest angle, 87.1(3)°, is the average of the chelating N-Zn-S angles. The angle between the mean planes of the two chelate rings is 79.41(21)°. Disorder within the hexamethyleneiminyl rings, which is common for this function, causes a larger than desired R-value.

  17. Acetone Sensing Properties of a Gas Sensor Composed of Carbon Nanotubes Doped With Iron Oxide Nanopowder

    PubMed Central

    Tan, Qiulin; Fang, Jiahua; Liu, Wenyi; Xiong, Jijun; Zhang, Wendong

    2015-01-01

    Iron oxide (Fe2O3) nanopowder was prepared by a precipitation method and then mixed with different proportions of carbon nanotubes. The composite materials were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. A fabricated heater-type gas sensor was compared with a pure Fe2O3 gas sensor under the influence of acetone. The effects of the amount of doping, the sintering temperature, and the operating temperature on the response of the sensor and the response recovery time were analyzed. Experiments show that doping of carbon nanotubes with iron oxide effectively improves the response of the resulting gas sensors to acetone gas. It also reduces the operating temperature and shortens the response recovery time of the sensor. The response of the sensor in an acetone gas concentration of 80 ppm was enhanced, with good repeatability. PMID:26569253

  18. Development of UV-ionization based trace differential mobility sensor for acetone and hexane.

    PubMed

    Suresh, M; Vasa, Nilesh J; Agarwal, Vivek; Chandapillai, Jacob

    2014-01-01

    Clinical studies in recent times confirm feasibility of using trace concentrations of volatile organic compounds (VOC) in human exhale air as potential bio-markers for a variety of disease states. A Differential Mobility Sensor (DMS) with dual ultra-violet (UV) photo-ionization source is proposed and demonstrated for measurement of trace amounts of VOC gases in human exhale air. Experimental work performed with the DMS using high frequency asymmetrical waveform field for detection of trace concentrations of acetone and hexane with a few carrier gases including air, CO2 and O2 is discussed. The detection limit as estimated for Signal to Noise Ratio (SNR) of 3 is of the order of sub ppm levels for acetone and hexane. Experimental studies clearly demonstrate selective sensing of a gas in a mixture of gases by applying appropriate compensation field. Preliminary study on sensing of acetone in human breath shows good a correlation with blood glucose measurements. PMID:25570739

  19. Composition measurement of bicomponent droplets using laser-induced fluorescence of acetone

    NASA Astrophysics Data System (ADS)

    Maqua, C.; Depredurand, V.; Castanet, G.; Wolff, M.; Lemoine, F.

    2007-12-01

    Commercial fuels are complex mixtures, the evaporation of which remains particularly difficult to model. Experimental characterization of the differential vaporization of the components is a problem that is seldom addressed. In this paper, the evaporation of binary droplets made of ethyl-alcohol and acetone is investigated using a technique of measurement of the droplet composition developed in purpose. This technique exploits the laser induced fluorescence of acetone which acts as a fluorescent tracer as well as the more volatile component of the fuel associated with an accurate measurement of the droplet diameter by forward scattering interferometry. A model of the fluorescence intensity of the binary mixture, taking into account the absorption of the acetone molecules, is proposed and validated. The sensitivity of the technique is discussed. Finally, the reliability of the technique is demonstrated on binary combusting droplets in linear stream.

  20. High-sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone

    NASA Astrophysics Data System (ADS)

    Dunayevskiy, Ilya; Tsekoun, Alexei; Prasanna, Manu; Go, Rowel; Patel, C. Kumar N.

    2007-09-01

    Triacetone triperoxide (C9H18O6, molecular mass of 222.24 g/mol) (TATP) is a powerful explosive that is easy to synthesize using commonly available household chemicals, acetone, and hydrogen peroxide 1 2. Because of the simplicity of its synthesis, TATP is often the explosive of choice for terrorists, including suicide bombers. For providing safety to the population, early detection of TATP and isolation of such individuals are essential. We report unambiguous, high-sensitivity detection of TATP and its precursor, acetone, using room-temperature quantum cascade laser photoacoustic spectroscopy (QCL-PAS). The available sensitivity is such that TATP, carried on a person (at a nominal body temperature of 37 °C), should be detectable at some distance. The combination of demonstrated detection of TATP and acetone should be ideal for screening at airports and other public places for providing increased public safety.

  1. The chemistry of acetone at extreme conditions by density functional molecular dynamics simulations.

    PubMed

    Ferrante, Francesco; Lo Celso, Fabrizio; Triolo, Roberto; Taleyarkhan, Rusi P

    2011-02-14

    Density functional molecular dynamics simulations have been performed in the NVT ensemble (moles (N), volume (V) and temperature (T)) on a system formed by ten acetone molecules at a temperature of 2000 K and density ρ = 1.322 g cm(-3). These conditions resemble closely those realized at the interface of an acetone vapor bubble in the early stages of supercompression experiments and result in an average pressure of 5 GPa. Two relevant reactive events occur during the simulation: the condensation of two acetone molecules to give hexane-2,5-dione and dihydrogen and the isomerization to the enolic propen-2-ol form. The mechanisms of these events are discussed in detail. PMID:21322700

  2. Thermal Z,E-isomerization of imines. IV. Anils of acetone

    SciTech Connect

    Prosyanik, A.V.; Kol'tsov, N.Yu.; Romanchenko, V.A.

    1986-12-20

    It has been established by the correlation between the values of log k/sub 298/ and the sigma constants that the degenerate thermal Z,E-isomerization of anils of acetone takes place according to an inversion mechanism, with the exception of acetone p-dimethylaminophenylimine, which isomerizes predominantly according to a rotation mechanism. The increase in the steric stresses upon the introduction of ortho substituents into the aryl ring of anils of acetone results in significant lowering of the barriers to the inversion of the nitrogen atom. The raising of the barriers to inversion in phenylimines as the electron-acceptor properties of the substituents on the imino carbon atom are enhanced is due to the weakening of the n/sub ..pi../N-..pi../sub Ph/* interaction as a consequence of the increase in the energy gap between the interacting orbitals as a result of the lowering of the energy of the n/sub ..pi../N orbital.

  3. Designing and creating a modularized synthetic pathway in cyanobacterium Synechocystis enables production of acetone from carbon dioxide.

    PubMed

    Zhou, Jie; Zhang, Haifeng; Zhang, Yanping; Li, Yin; Ma, Yanhe

    2012-07-01

    Ketones are a class of important organic compounds. As the simplest ketone, acetone is widely used as solvents or precursors for industrial chemicals. Presently, million tonnes of acetone is produced worldwide annually, from petrochemical processes. Here we report a biotechnological process that can produce acetone from CO(2), by designing and creating a modularized synthetic pathway in engineered cyanobacterium Synechocystis sp. PCC 6803. The engineered Synechocystis cells are able to produce acetone (36.0 mgl(-1) culture medium) using CO(2) as the sole carbon source, thus opens the gateway for biosynthesis of ketones from CO(2). PMID:22475865

  4. Methods of conditioning direct methanol fuel cells

    DOEpatents

    Rice, Cynthia; Ren, Xiaoming; Gottesfeld, Shimshon

    2005-11-08

    Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. In a first method, an electrical current of polarity opposite to that used in a functioning direct methanol fuel cell is passed through the anode surface of the membrane electrode assembly. In a second method, methanol is supplied to an anode surface of the membrane electrode assembly, allowed to cross over the polymer electrolyte membrane of the membrane electrode assembly to a cathode surface of the membrane electrode assembly, and an electrical current of polarity opposite to that in a functioning direct methanol fuel cell is drawn through the membrane electrode assembly, wherein methanol is oxidized at the cathode surface of the membrane electrode assembly while the catalyst on the anode surface is reduced. Surface oxides on the direct methanol fuel cell anode catalyst of the membrane electrode assembly are thereby reduced.

  5. Propane Clathrate Hydrate Formation Accelerated by Methanol.

    PubMed

    Amtawong, Jaruwan; Guo, Jin; Hale, Jared S; Sengupta, Suvrajit; Fleischer, Everly B; Martin, Rachel W; Janda, Kenneth C

    2016-07-01

    The role of methanol as both an inhibitor and a catalyst for the formation of clathrate hydrates (CHs) has been a topic of intense study. We report a new quantitative study of the kinetics of propane CH formation at 253 K from the reaction of propane gas with <75 μm ice particles that have been doped with varying amounts of methanol. We find that methanol significantly accelerates the formation reaction with quite small doping quantities. Even for only 1 methanol molecule per 10 000 water molecules, the maximum uptake rate of propane into CHs is enhanced and the initiation pressure is reduced. These results enable more efficient production of CHs for gas storage. This remarkable acceleration of the CH formation reaction by small quantities of methanol may place constraints on the mechanism of the inhibition effect observed under other conditions, usually employing much larger quantities of methanol. PMID:27275862

  6. Acetone reactions over the surfaces of polycrystalline UO2: a kinetic and spectroscopic study.

    PubMed

    King, Richard; Idriss, Hicham

    2009-04-21

    The reaction of acetone is studied on the surfaces of polycrystalline UO2, prepared by hydrogen reduction of U3O8 at 770 K. The study is conducted by in situ Fourier transform infrared (FTIR) and temperature-programmed desorption (TPD). Acetone adsorption does not fit the simple Langmuir model, and adsorbate-adsorbate interactions are found to be significant. Acetone adsorbs molecularly on UO2 as evidenced by the nuCO of the eta1(O) mode at 1686 cm(-1). Part of acetone is reduced to the isopropoxide species ((CH3)2HC-O-U4+) upon heating (nu(CC), rho(CH3) at 1167 cm(-1) and nu(CO), rho(CH3) at 980 cm(-1)), and upon further heating, acetates (CH3COO(a), (a) for adsorbed) are observed. Detailed TPD studies indicated that the main reaction of acetone on UO2 is the deoxygenation to propene, driven by the oxophilic nature of UO2. Other reactions were also observed to a lesser extent, and these included reductive coupling to 2,3-dimethylbutene and condensation to mesityl oxide. An attempt to extract kinetic parameters from TPD data was conducted. Three models were studied: variation of heating rate, leading edge analysis (Habenschaden-Kuppers method), and complete analysis. The complete analysis provided the most plausible results, in particular, at low coverage. With this method, at nearly zero coverage the activation energy, Ed, for desorption was found to be close to 140 kJ/mol with a prefactor of 10(13) s(-1). Ed dropped sharply with increasing coverage, theta, to ca. 35 kJ/mol at theta=0.15 with a prefactor of 10(11) s(-1). The activation energy for the desorption of acetone on UO2(111) single crystals, at saturation coverage, was previously found to be equal to 65 kJ/mol using the leading edge analysis. PMID:19366223

  7. Measurement of natural carbon isotopic composition of acetone in human urine.

    PubMed

    Yamada, Keita; Ohishi, Kazuki; Gilbert, Alexis; Akasaka, Mai; Yoshida, Naohiro; Yoshimura, Ryoko

    2016-02-01

    The natural carbon isotopic composition of acetone in urine was measured in healthy subjects using gas chromatography-combustion-isotope ratio mass spectrometry combined with headspace solid-phase microextraction (HS-SPME-GC-C-IRMS). Before applying the technique to a urine sample, we optimized the measurement conditions of HS-SPME-GC-C-IRMS using aqueous solutions of commercial acetone reagents. The optimization enabled us to determine the carbon isotopic compositions within ±0.2 ‰ of precision and ±0.3‰ of error using 0.05 or 0.2 mL of aqueous solutions with acetone concentrations of 0.3-121 mg/L. For several days, we monitored the carbon isotopic compositions and concentrations of acetone in urine from three subjects who lived a daily life with no restrictions. We also monitored one subject for 3 days including a fasting period of 24 h. These results suggest that changes in the availability of glucose in the liver are reflected in changes in the carbon isotopic compositions of urine acetone. Results demonstrate that carbon isotopic measurement of metabolites in human biological samples at natural abundance levels has great potential as a tool for detecting metabolic changes caused by changes in physiological states and disease. Graphical abstract The natural carbon isotopic composition of acetone in urine can be determined using HS-SPME-GCC-IRMS and can provide information on changes in the availability of glucose in the liver. PMID:26718914

  8. Relationship of O2 Photodesorption in Photooxidation of Acetone on TiO2

    SciTech Connect

    Henderson, Michael A.

    2008-07-31

    Organic photooxidation on TiO2 invariably involves the coexistence of organic species with oxygen on the surface at the same time. In the case of acetone and oxygen, both species exhibit their own interesting photochemistry on TiO2, but interdependences between the two are not understood. In this study, a rutile TiO2(110) surface possessing 7% surface oxygen vacancy sites is used as a model surface to probe the relationship between O2 photodesorption and acetone photodecomposition. Temperature programmed desorption (TPD) and photon stimulated desorption (PSD) measurements indicate that coadsorbed oxygen is essential to acetone photodecomposition on this surface, however the form of oxygen (molecular and dissociative) is not known. The first steps in acetone photodecomposition on TiO2(110) involve thermal activation with oxygen to form an acetone diolate ((CH3)2COO) species followed by photochemical decomposition to adsorbed acetate (CH3COO) and an ejected CH3 radical that is detected in PSD. Depending on the surface conditions, O2 PSD is also observed during the latter process. However, the time scales for the two PSD events (CH3 and O2) are quite different, withthe former occurring at ~10 times faster than the latter. By varying the preheating conditions or performing pre-irradiation on an O2 exposed surface, it becomes clear that the two PSD events are uncorrelated. That is, the O2 species responsible for O2 PSD is not a significant participant in the photochemistry of acetone on TiO2(110) and likely originates from a minority form of O2 on the surface. The CH3 and O2 PSD events do not appear to be in competition with each other suggesting either that ample charge carriers exist under the experimental conditions employed or that different charge carriers or excitation mechanisms are involved.

  9. Binderless briquetting of coal powders by an acetone treatment process. [MS Thesis

    SciTech Connect

    Fields, G.L.

    1982-07-01

    The results of an experimental investigation of a binderless briquetting process are presented. The process involves the use of a solvent treatment step instead of using a conventional binder, and can produce water-resistant briquettes of high durability from high volatile C bituminous coals. The effectiveness of several types of solvents was determined as well as varying conditions of treatment and pressing. Treatment conditions of solvent to coal ratios, contact time, solvent temperature, and coal moisture were studied, as well as pressing conditions of temperature, pressure and coal moisture. The ketones were the most effective of the solvents studied and acetone was given the most attention due to its low cost, recoverability and fast solvent action. The optimum treatment conditions are to treat dry coal powders with acetone on a 1 to 1 weight basis for 60 sec. The acetone can be evaporated off the coal at room temperature or in an oven at 110/sup 0/C. The acetone may also be removed by leaching with water and recovered through distillation. Wet coal powders can also be treated if the moisture level is kept below 15 to 20%. The optimum pressing conditions were determined for acetone treated powders that were briquetted with a Buehler Specimen Mount laboratory press. The conditions are a pressure of 10,000 to 12,000 psi, a temperature of 150/sup 0/C, a pressing time of 5 min, and a coal moisture level of less than 5%. Briquettes made from acetone treated coal powders demonstrated superior resistance to water penetration and degradation. The process has potential for scale-up to an industrial size by using a roll-press briquetter.

  10. Method of steam reforming methanol to hydrogen

    DOEpatents

    Beshty, Bahjat S.

    1990-01-01

    The production of hydrogen by the catalyzed steam reforming of methanol is accomplished using a reformer of greatly reduced size and cost wherein a mixture of water and methanol is superheated to the gaseous state at temperatures of about 800.degree. to about 1,100.degree. F. and then fed to a reformer in direct contact with the catalyst bed contained therein, whereby the heat for the endothermic steam reforming reaction is derived directly from the superheated steam/methanol mixture.

  11. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Water loss from the cell is minimized by making the conductive cathode assembly hydrophobic and the conductive anode assembly hydrophilic.

  12. Methanol optic neuropathy: a histopathological study.

    PubMed

    Sharpe, J A; Hostovsky, M; Bilbao, J M; Rewcastle, N B

    1982-10-01

    The histopathologic effects of methanol on the optic nerve were studied in four patients. Circumscribed myelin damage occurred behind the lamina cribrosa in each nerve. Axons were preserved. Demyelination also occurred in cerebral hemispheric white matter in one patient. This selective myelinoclastic effect of methanol metabolism is probably caused by histotoxic anoxia in watershed areas of the cerebral and distal optic nerve circulations. Juxtabulbar demyelination may cause optic disk edema in methanol poisoning by compressive obstruction of orthograde axoplasmic flow. Visual loss may be due to disruption of saltatory conduction. Retrolaminar demyelinating optic neuropathy is an early morphologic correlate of visual loss in methanol intoxication. PMID:6889696

  13. The degree and effect of methanol crossover in the direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Cruickshank, John; Scott, Keith

    A simple model is presented to describe the permeation of methanol from the anode to the cathode in direct methanol fuel cell (DMFC). Measured permeation rates of water and methanol through Nafion ® 117 under varied pressure differentials across the membrane are used to determine key parameters in the model. This model is able to explain the effect of oxygen pressure at the cathode and methanol concentration at the anode on the measured cell voltage-current response of the DMFC.

  14. Biogeochemical Cycle of Methanol in Anoxic Deep-Sea Sediments

    PubMed Central

    Yanagawa, Katsunori; Tani, Atsushi; Yamamoto, Naoya; Hachikubo, Akihiro; Kano, Akihiro; Matsumoto, Ryo; Suzuki, Yohey

    2016-01-01

    The biological flux and lifetime of methanol in anoxic marine sediments are largely unknown. We herein reported, for the first time, quantitative methanol removal rates in subsurface sediments. Anaerobic incubation experiments with radiotracers showed high rates of microbial methanol consumption. Notably, methanol oxidation to CO2 surpassed methanol assimilation and methanogenesis from CO2/H2 and methanol. Nevertheless, a significant decrease in methanol was not observed after the incubation, and this was attributed to the microbial production of methanol in parallel with its consumption. These results suggest that microbial reactions play an important role in the sources and sinks of methanol in subseafloor sediments. PMID:27301420

  15. Application of acetone acetals as water scavengers and derivatization agents prior to the gas chromatographic analysis of polar residual solvents in aqueous samples.

    PubMed

    van Boxtel, Niels; Wolfs, Kris; Van Schepdael, Ann; Adams, Erwin

    2015-12-18

    The sensitivity of gas chromatography (GC) combined with the full evaporation technique (FET) for the analysis of aqueous samples is limited due to the maximum tolerable sample volume in a headspace vial. Using an acetone acetal as water scavenger prior to FET-GC analysis proved to be a useful and versatile tool for the analysis of high boiling analytes in aqueous samples. 2,2-Dimethoxypropane (DMP) was used in this case resulting in methanol and acetone as reaction products with water. These solvents are relatively volatile and were easily removed by evaporation enabling sample enrichment leading to 10-fold improvement in sensitivity compared to the standard 10μL FET sample volumes for a selection of typical high boiling polar residual solvents in water. This could be improved even further if more sample is used. The method was applied for the determination of residual NMP in an aqueous solution of a cefotaxime analogue and proved to be considerably better than conventional static headspace (sHS) and the standard FET approach. The methodology was also applied to determine trace amounts of ethylene glycol (EG) in aqueous samples like contact lens fluids, where scavenging of the water would avoid laborious extraction prior to derivatization. During this experiment it was revealed that DMP reacts quantitatively with EG to form 2,2-dimethyl-1,3-dioxolane (2,2-DD) under the proposed reaction conditions. The relatively high volatility (bp 93°C) of 2,2-DD makes it possible to perform analysis of EG using the sHS methodology making additional derivatization reactions superfluous. PMID:26614172

  16. NOX2 amplifies acetaldehyde-mediated cardiomyocyte mitochondrial dysfunction in alcoholic cardiomyopathy.

    PubMed

    Brandt, Moritz; Garlapati, Venkata; Oelze, Matthias; Sotiriou, Efthymios; Knorr, Maike; Kröller-Schön, Swenja; Kossmann, Sabine; Schönfelder, Tanja; Morawietz, Henning; Schulz, Eberhard; Schultheiss, Heinz-Peter; Daiber, Andreas; Münzel, Thomas; Wenzel, Philip

    2016-01-01

    Alcoholic cardiomyopathy (ACM) resulting from excess alcohol consumption is an important cause of heart failure (HF). Although it is assumed that the cardiotoxicity of the ethanol (EtOH)-metabolite acetaldehyde (ACA) is central for its development and progression, the exact mechanisms remain obscure. Murine cardiomyocytes (CMs) exposed to ACA or EtOH showed increased superoxide (O2(•-)) levels and decreased mitochondrial polarization, both being normalized by NADPH oxidase (NOX) inhibition. C57BL/6 mice and mice deficient for the ACA-degrading enzyme mitochondrial aldehyde dehydrogenase (ALDH-2(-/-)) were fed a 2% EtOH diet for 5 weeks creating an ACA-overload. 2% EtOH-fed ALDH-2(-/-) mice exhibited a decreased cardiac function, increased heart-to-body and lung-to-body weight ratios, increased cardiac levels of the lipid peroxidation product malondialdehyde (MDA) as well as increased NOX activity and NOX2/glycoprotein 91(phox) (NOX2/gp91(phox)) subunit expression compared to 2% EtOH-fed C57BL/6 mice. Echocardiography revealed that ALDH-2(-/-)/gp91(phox-/-) mice were protected from ACA-overload-induced HF after 5 weeks of 2% EtOH-diet, demonstrating that NOX2-derived O2(•-) contributes to the development of ACM. Translated to human pathophysiology, we found increased gp91(phox) expression in endomyocardial biopsies of ACM patients. In conclusion, ACM is promoted by ACA-driven mitochondrial dysfunction and can be improved by ablation of NOX2/gp91(phox). NOX2/gp91(phox) therefore might be a potential pharmacological target to treat ACM. PMID:27624556

  17. Density functional theory study of acetaldehyde hydrodeoxygenation on MoO3

    SciTech Connect

    Mei, Donghai; Karim, Ayman M.; Wang, Yong

    2011-04-06

    Periodic spin-polarized density functional theory calculations were performed to investigate acetaldehyde (CH3CHO) hydrodeoxygenation on the reduced molybdenum trioxide (MoO3) surface. The perfect O-terminated α-MoO3(010) surface is reduced to generate an oxygen defect site in the presence of H2. H2 dissociatively adsorbs at the surface oxygen sites forming two surface hydroxyls, which can recombine into a water molecule weakly bound at the Mo site. A terminal oxygen (Ot) defect site thus forms after water desorption. CH3CHO adsorbs at the O-deficient Mo site via either the sole O-Mo bond or the O-Mo and the C-O double bonds. The possible reaction pathways of the adsorbed CH3CHO with these two configurations were thoroughly examined using the dimer searching method. Our results show that the ideal deoxygenation of CH3CHO leading to ethylene (C2H4) on the reduced MoO3(010) surface is feasible. The adsorbed CH3CHO first dehydrogenate into CH2CHO by reacting with a neighboring terminal Ot. The hydroxyl (OtH) then hydrogenates CH2CHO into CH2CH2O to complete the hydrogen transfer cycle with an activation barrier of 1.39 eV. The direct hydrogen transfer from CH3CHO to CH2CH2O is unlikely due to the high barrier of 2.00 eV. The produced CH2CH2O readily decomposes into C2H4 that directly releases to the gas phase, and regenerates the Ot atom on the Mo site. As a result, the reduced MoO3(010) surface is reoxidized to the perfect MoO3(010) surface after CH3CHO deoxygenation. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  18. Assignment, Fit, and Theoretical Discussion of the v10 Band of Acetaldehyde Near 509 cm-1

    SciTech Connect

    Kleiner, Isabelle; Moazzen-Ahmadi, N.; McKellar, A.R. W.; Blake, Thomas A.; Sams, Robert L.; Sharpe, Steven W.; Moruzzi, Giovanni; Hougen, Jon T.

    2008-12-01

    The lowest small-amplitude vibration in acetaldehyde (CH3CHO) is the in-plane aldehyde scissors mode v10 at 509 cm-1. This mode lies about 175 cm-1 above the top of the barrier to internal rotation of the methyl group and is relatively well separated from other small-amplitude vibrational states (the next fundamental occurring more than 250 cm-1 higher). It thus provides an excellent example of an isolated small-amplitude fundamental (bright state) embedded in a bath of dark states. Since the bath states at these energies are not too dense, and since they arise purely from states of the large-amplitude torsional vibration of the methyl rotor, a detailed spectroscopic analysis of interactions between the bright state and the bath states should be possible. This paper represents the first step toward that goal. We have assigned several thousand transitions in the v10 band (J < 28, K< 12), and have carried out a simultaneous fit of 2400 of these transitions (J < 15, K< 9) with over 8100 transitions to the torsional bath state levels. Three vibration-torsion interactions, which give rise to rather global level shifts of the order of 1 cm-1 in the v10 levels, have been identified and quantitatively fit. A number of vibration-torsion-rotation interactions, which give rise to localized (avoided-crossing) shifts in v10 have also been determined. The present analysis indicates the need for reliable spectroscopic information on more of the torsional bath states in the immediate vicinity of the v10 levels. Possible ways of obtaining such information in future studies are considered.

  19. Direct observation of roaming radicals in the thermal decomposition of acetaldehyde.

    SciTech Connect

    Sivaramakrishnan, R.; Michael, J. V.; Klippenstein, S. J.; Chemical Sciences and Engineering Division

    2010-01-21

    The thermal dissociation of acetaldehyde has been studied with the reflected shock tube technique using H(D)-atom atomic resonance absorption spectrometry detection. The use of an unreversed light source yields extraordinarily sensitive H atom detection. As a result, we are able to measure both the total decomposition rate and the branching to radical versus molecular channels. This branching provides a direct measure of the contribution from the roaming radical mechanism since the contributions from the usual tight transition states are predicted by theory to be negligible. The experimental observations also provide a measure of the rate coefficient for H + CH{sub 3}CHO. Another set of experiments employing C{sub 2}H{sub 5}I as an H-atom source provides additional data for this rate coefficient that extends to lower temperature. An evaluation of the available experimental results for H + CH{sub 3}CHO can be expressed by a three-parameter Arrhenius expression as k = 7.66 x 10{sup -20}T{sup 2.75} exp((-486 K)/T) cm{sup 3} molecule{sup -1} s{sup -1} (298-1415 K). Analogous experiments employing C{sub 2}D{sub 5}I as a D-atom source allow for the study of the isotopically substituted reaction. The present experiments are the only direct measure for this reaction rate constant, and the results can be expressed by an Arrhenius expression as k = 5.20 x 10{sup -10} exp((-4430 K)/T) cm{sup 3} molecule{sup -1} s{sup -1} (1151-1354 K). The H/D + CH{sub 3}CHO reactions are also studied with ab initio transition-state theory, and the results are in remarkably good agreement with the current experimental data.

  20. Olanzapine-induced hyperglycemic ketoacidosis and corresponding acetone concentrations post-mortem: a forensic interpretation.

    PubMed

    House, Chris J

    2007-08-24

    Olanzapine has been shown to cause or have a contributory role in the development of hyperglycemia and diabetes mellitus. Without careful monitoring for the development of these conditions and control of the resulting adverse effects, patients receiving olanzapine may be at risk of developing fatal ketoacidosis. A review of post-mortem toxicological reports has revealed an increase in the incidence of post-mortem findings of acetone in decedents who were taking olanzapine over the past decade. A review of the current literature and a comprehensive review of case histories and toxicological findings were conducted at the Centre of Forensic Sciences (Toronto, Ontario). Olanzapine concentrations ranging from <62.5 to 858 ng/mL and acetone concentrations as high as 95 mg/dL were detected concurrently. Due to the unstable nature of olanzapine, in several instances quantitation was not possible despite elevated responses during qualitative screening procedures. Five cases suggesting olanzapine-induced ketoacidosis were identified based on the case history and toxicological findings. These data have been compiled and examined with respect to acetone concentrations following olanzapine use and the forensic relevance of post-mortem olanzapine and acetone concentrations are discussed. PMID:17084052

  1. Chemical-specific adjustment factors for intraspecies variability of acetone toxicokinetics using a probabilistic approach.

    PubMed

    Mörk, Anna-Karin; Johanson, Gunnar

    2010-07-01

    Human health risk assessment has begun to depart from the traditional methods by replacement of the default assessment factors by more reasonable, data-driven, so-called chemical-specific adjustment factors (CSAFs). This study illustrates a scheme for deriving CSAFs in the general and occupationally exposed populations by quantifying the intraspecies toxicokinetic variability in surrogate dose using probabilistic methods. Acetone was used as a model substance. The CSAFs were derived by Monte Carlo simulation, combining a physiologically based pharmacokinetic model for acetone, probability distributions of the model parameters from a Bayesian analysis of male volunteer experimental data, and published distributions of physiological and anatomical parameters for females and children. The simulations covered how factors such as age, gender, endogenous acetone production, and fluctuations in workplace air concentration and workload influence peak and average acetone levels in blood, used as surrogate doses. According to the simulations, CSAFs of 2.1, 2.9, and 3.8 are sufficient to cover the differences in surrogate dose at the upper 90th, 95th, and 97.5th percentile, respectively, of the general population. However, higher factors were needed to cover the same percentiles of children. The corresponding CSAFs for the occupationally exposed population were 1.6, 1.8, and 1.9. The methodology presented herein allows for derivation of CSAFs not only for populations as a whole but also for subpopulations of interest. Moreover, various types of experimental data can readily be incorporated in the model. PMID:20400482

  2. A simple procedure for preparing chitin oligomers through acetone precipitation after hydrolysis in concentrated hydrochloric acid.

    PubMed

    Kazami, Nao; Sakaguchi, Masayoshi; Mizutani, Daisuke; Masuda, Tatsuhiko; Wakita, Satoshi; Oyama, Fumitaka; Kawakita, Masao; Sugahara, Yasusato

    2015-11-01

    Chitin oligomers are of interest because of their numerous biologically relevant properties. To prepare chitin oligomers containing 4-6 GlcNAc units [(GlcNAc)4-6], α- and β-chitin were hydrolyzed with concentrated hydrochloric acid at 40 °C. The reactant was mixed with acetone to recover the acetone-insoluble material, and (GlcNAc)4-6 was efficiently recovered after subsequent water extraction. Composition analysis using gel permeation chromatography and MALDI-TOF mass spectrometry indicated that (GlcNAc)4-6 could be isolated from the acetone-insoluble material with recoveries of approximately 17% and 21% from the starting α-chitin and β-chitin, respectively. The acetone precipitation method is highly useful for recovering chitin oligomers from the acid hydrolysate of chitin. The changes in the molecular size and higher-order structure of chitin during the course of hydrolysis were also analyzed, and a model that explains the process of oligomer accumulation is proposed. PMID:26256353

  3. Carbon and proton Overhauser DNP from MD simulations and ab initio calculations: TEMPOL in acetone.

    PubMed

    Küçük, Sami Emre; Biktagirov, Timur; Sezer, Deniz

    2015-10-14

    A computational analysis of the Overhauser effect is reported for the proton, methyl carbon, and carbonyl carbon nuclei of liquid acetone doped with the nitroxide radical TEMPOL. A practical methodology for calculating the dynamic nuclear polarization (DNP) coupling factors by accounting for both dipole-dipole and Fermi-contact interactions is presented. The contribution to the dipolar spectral density function of nuclear spins that are not too far from TEMPOL is computed through classical molecular dynamics (MD) simulations, whereas the contribution of distant spins is included analytically. Fermi contacts are obtained by subjecting a few molecules from every MD snapshot to ab initio quantum mechanical calculations. Scalar interaction is found to be an essential part of the (13)C Overhauser DNP. While mostly detrimental to the carbonyl carbon of acetone it is predicted to result in large enhancements of the methyl carbon signal at magnetic fields of 9 T and beyond. In contrast, scalar coupling is shown to be negligible for the protons of acetone. The additional influence of proton polarization on the carbon DNP (three-spin effect) is also analyzed computationally. Its effect, however, is concluded to be practically insignificant for liquid acetone. PMID:26343351

  4. Photooxidation of Isopropanol and Acetone Using TiO(sub 2) Suspension and UV Light

    SciTech Connect

    El-Morsi, Taha; Nanny, Mark A.

    2004-03-31

    Small polar organic compounds such as alcohols, ketones and aldehydes are highly soluble and do not adsorb strongly to the TiO2 surface and, therefore, may be fairly resistant to photocatalytic degradation. Photodegradation of an aqueous solution of isopropanol and its resulting photodegradation product acetone was investigated as a function of TiO2 substrate concentrations and solution ionic strength and pH. In the presence of 2g/L TiO2, isopropanol completely disappeared within 3 hrs, resulting in the nearly complete transformation into acetone. Subsequent photodegradation of acetone occurred at a much slower rate and resulted in complete mineralization. Increasing the pH slightly decreased the photodegradation rate. Conversely, the degradation rate was enhanced slightly by increasing the ionic strength. The presence of tetranitromethane decreased the isopropanol degradation significantly. This result, combined with the minimal degree of adsorption of isopropanol and acetone onto the surface of the photocatalyst, suggests that the photodegradation pathway occurs via free OH radicals in bulk solution rather than on the catalyst surface.

  5. Assessment of in situ butanol recovery by vacuum during acetone butanol ethanol (ABE) fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butanol fermentation is product limiting due to butanol toxicity to microbial cells. Butanol (boiling point: 118 deg C) boils at a greater temperature than water (boiling point: 100 deg C) and application of vacuum technology to integrated acetone-butanol-ethanol (ABE) fermentation and recovery may ...

  6. Isobutanol-methanol mixtures from synthesis gas. Quarterly technical progress report, October 1, 1996--December 30, 1996

    SciTech Connect

    1997-03-01

    A series of MgO-based Cu catalysts have been prepared by coprecipitating the corresponding metal nitrates with a mixed solution of potassium carbonate and potassium hydroxide. The bulk composition of the catalyst has been measured by atomic absorption (AA) analysis and the Cu dispersion has been determined by N{sub 2}O titration at 363 K. Kinetic studies of ethanol coupling reactions on Cu{sub 0.5}Mg{sub 5}CeO{sub x} and 1.0 wt % K-Cu{sub 0.5}Mg{sub 5}CeO{sub x} catalyst indicates that at similar steady-state acetaldehyde concentrations, the presence of K increases the rates of base-catalyzed aldol coupling reactions to acetone and butyraldehyde. Aldol coupling chain growth reaction rates on 1.2 wt % K-Cu{sub 7.5}Mg{sub 5}CeO{sub x} are higher than on 1.0 wt % K-Cu{sub 0.5}Mg{sub 5}CeO{sub x} even though basic site densities are similar on both samples, suggesting that Cu metal sites are also involved in rate-determining steps required for condensation reactions. Cu appears to enhance the desorption of H{sub 2} via the migration of H species from basic to Cu sites and makes the basic sites available for subsequent C-H bond activation steps. Addition of CO{sub 2} decreases the rate of base-catalyzed chain growth reaction to acetone, but does not affect the rate of ethanol dehydrogenation reaction on Cu metal sites

  7. Methanol Steam Reforming for Hydrogen Production

    SciTech Connect

    Palo, Daniel R.; Dagle, Robert A.; Holladay, Jamie D.

    2007-09-11

    Review article covering developments in methanol steam reforming in the context of PEM fuel cell power systems. Subjects covered include methanol background, use, and production, comparison to other fuels, power system considerations, militrary requirements, competing technologies, catalyst development, and reactor and system development and demonstration.

  8. Alternative resources for the methanol economy

    NASA Astrophysics Data System (ADS)

    Reschetilowski, W.

    2013-07-01

    Generally, methanol produced for chemical applications is made predominantly via fossil resources. But it can also be obtained from any carbon-containing feedstock, including biomass, biogas, forest residues, and municipal or other waste products. Perspective viewing and critical assessment show the possibilities and constraints of such alternative resources for the realization of the methanol economy with high sustainability. The bibliography includes 57 references.

  9. Developmental and Reproductive Toxicology of Methanol

    EPA Science Inventory

    Methanol is a high production volume chemical used as a feedstock for chemical syntheses and as a solvent and fuel additive. Methanol is acutely toxic to humans, causing acidosis, blindness in death at high dosages, but its developmental and reproductive toxicity in humans is poo...

  10. The detection of extragalactic methanol

    NASA Astrophysics Data System (ADS)

    Henkel, C.; Jacq, T.; Mauersberger, R.; Menten, K. M.; Steppe, H.

    1987-12-01

    The detection of emission in the 96 GHz 2(kappa)-1(kappa) lines of methanol is reported toward the central regions of NGC253 and IC342. A possible detection is also obtained toward NGC6946, while no emission is seen toward M82. (CH3OH)/(H2) abundance ratios appear to be consistent with those determined for galactic sources. The strength of the CH3OH emission, however, is not found to be correlated with infrared or CO luminosities. Toward NGC253, two distinct clouds are identified. One of these appears to be directly associated with the nucleus and remains spatially unresolved. The recently detected H2O maser at 100-150 km/s does not originate from this centrally located cloud.

  11. Identification of interstellar methanol lines

    NASA Astrophysics Data System (ADS)

    Sutton, E. C.; Herbst, Eric

    1988-10-01

    The extended internal axis method Hamiltonian of Herbst et al. has been employed to study the rotational spectrum of methanol out to high values of the rotational quantum number J. For 12CH3OH the available laboratory data, consisting of 783 lines out to J = 22, have been fitted with a Hamiltonian containing 32 free parameters. For 13CH3OH a Hamiltonian with 23 free parameters is sufficient for fitting 455 lines, also out to J = 22. Frequency predictions based on these fits have permitted the identification of a number of previously unidentified interstellar lines from OMC-1. The majority of these are b-type R-branch transitions of 12CH3OH.

  12. An Acetone Microsensor with a Ring Oscillator Circuit Fabricated Using the Commercial 0.18 μm CMOS Process

    PubMed Central

    Yang, Ming-Zhi; Dai, Ching-Liang; Shih, Po-Jen

    2014-01-01

    This study investigates the fabrication and characterization of an acetone microsensor with a ring oscillator circuit using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The acetone microsensor contains a sensitive material, interdigitated electrodes and a polysilicon heater. The sensitive material is α-Fe2O3 synthesized by the hydrothermal method. The sensor requires a post-process to remove the sacrificial oxide layer between the interdigitated electrodes and to coat the α-Fe2O3 on the electrodes. When the sensitive material adsorbs acetone vapor, the sensor produces a change in capacitance. The ring oscillator circuit converts the capacitance of the sensor into the oscillation frequency output. The experimental results show that the output frequency of the acetone sensor changes from 128 to 100 MHz as the acetone concentration increases 1 to 70 ppm. PMID:25036331

  13. BaFe12O19 powder with high magnetization prepared by acetone-aided coprecipitation

    NASA Astrophysics Data System (ADS)

    Yu, Hsuan-Fu

    2013-09-01

    BaFe12O19 particles with high magnetization were produced using an acetone-aided coprecipitation process. An aqueous solution of iron and barium nitrates, in an Fe3+/Ba2+ molar ratio of 12, was added in a stirred precipitation liquid medium composed of H2O, CH3(CO)CH3 and NH4OH. After reacting metallic ions with ammonia, the precipitates were formed, centrifugally filtered, freeze dried and calcined. Effects of amount of the acetone in the precipitation liquid medium on the formation of crystalline BaFe12O19 were investigated. The presence of acetone in the precipitation liquid medium can greatly promote formation of the crystalline BaFe12O19 at temperature as low as 650 °C and can enhance magnetization of the derived particles. On the other hand, raising the calcination temperature can effectively accelerate development of crystallite morphology and magnetic characters of the barium hexaferrites. While the barium hexaferrite powder obtained without acetone additions and calcined at 1000 °C had magnetization (measured at 50 kOe; M(50 kOe)) of 63.5 emu/g, remanence magnetization (Mr) of 31.3 emu/g and coercivity (Hc) of 4.7 kOe, the single magnetic domain size BaFe12O19 powder with M(50 kOe) of 70.6 emu/g, Mr of 34.4 emu/g and Hc of 3.7 kOe was produced at 1000 °C, using a precipitation liquid medium of 64 vol% acetone.

  14. Profiling and relative quantification of phosphatidylethanolamine based on acetone stable isotope derivatization.

    PubMed

    Wang, Xiang; Wei, Fang; Xu, Ji-qu; Lv, Xin; Dong, Xu-yan; Han, Xianlin; Quek, Siew-young; Huang, Feng-hong; Chen, Hong

    2016-01-01

    Phosphatidylethanolamine (PE) is considered to be one of the pivotal lipids for normal cellular function as well as disease initiation and progression. In this study, a simple, efficient, reliable, and inexpensive method for the qualitative analysis and relative quantification of PE, based on acetone stable isotope derivatization combined with double neutral loss scan-shotgun electrospray ionization tandem-quadrupole mass spectrometry analysis (ASID-DNLS-Shotgun ESI-MS/MS), was developed. The ASID method led to alkylation of the primary amino groups of PE with an isopropyl moiety. The use of acetone (d0-acetone) and deuterium-labeled acetone (d6-acetone) introduced a 6 Da mass shift that was ideally suited for relative quantitative analysis, and enhanced sensitivity for mass analysis. The DNLS model was introduced to simultaneously analyze the differential derivatized PEs by shotgun ESI-MS/MS with high selectivity and accuracy. The reaction specificity, labeling efficiency, and linearity of the ASID method were thoroughly evaluated in this study. Its excellent applicability was validated by qualitative and relative quantitative analysis of PE species presented in liver samples from rats fed different diets. Using the ASID-DNLS-Shotgun ESI-MS/MS method, 45 PE species from rat livers have been identified and quantified in an efficient manner. The level of total PEs tended to decrease in the livers of rats on high fat diets compared with controls. The levels of PE 32:1, 34:3, 34:2, 36:3, 36:2, 42:10, plasmalogen PE 36:1 and lyso PE 22:6 were significantly reduced, while levels of PE 36:1 and lyso PE 16:0 increased. PMID:26703264

  15. Methanol Conversion for the Production of Hydrogen

    SciTech Connect

    Taylor, C.E.; Howard, B.H.; Myers, C.R.

    2007-12-19

    The production of methanol from a variety of biomass sources is gaining favor. Several facilities exist or are under construction throughout the world to convert biogenerated methane from the decomposition of biomass into methanol using conventional steam reforming. Methanol is an excellent liquid-hydrogen-transport medium. When powered by hydrogen, fuel cells have the potential to be the cleanest and most efficient source of electricity for use by the automotive industry. On-board reforming of liquid hydrocarbon fuels is a viable alternative to the storage of compressed hydrogen. A problem in current reforming processes is the quantity of carbon monoxide (CO) produced. Our research is geared toward circumventing the production of carbon monoxide in methanol reforming through the development of novel reforming catalysts. By modifying a copper-based catalyst, we have produced several catalysts that retain their activity and high surface area after extended methanol reforming runs both with and without the addition of steam.

  16. Look what you can make from methanol

    SciTech Connect

    King, D.L.; Grate, J.H.

    1985-04-01

    In a synthetic gas based chemicals industry there are many advantages in using an indirect methanol-based route for producing two carbon or higher oxygenated chemicals. Because of poor product selectivity and low production rates, direct syngas mechanisms are not commercially viable. Specific examples of indirect methanol-based routes and also routes from formaldehyde are given. These include the production of ethanol by reductive carbonylation of methanol and the production of vinyl acetate, although more work needs to be done on the methanol-syngas route to vinyl acetate. The chemistry of ethylene glycol from formaldehyde is discussed. It is concluded that the success of syngas-based technologies will be linked to the economics of ethylene production and new methanol-based processes will contribute to this success. 35 references.

  17. Non-Saccharomyces and Saccharomyces strains co-fermentation increases acetaldehyde accumulation: effect on anthocyanin-derived pigments in Tannat red wines.

    PubMed

    Medina, Karina; Boido, Eduardo; Fariña, Laura; Dellacassa, Eduardo; Carrau, Francisco

    2016-07-01

    During fermentation, Saccharomyces cerevisiae releases into the medium secondary metabolic products, such as acetaldehyde, able to react with anthocyanins, producing more stable derived pigments. However, very limited reports are found about non-Saccharomyces effects on grape fermentation. In this study, six non-Saccharomyces yeast strains, belonging to the genera Metschnikowia and Hanseniaspora, were screened for their effect on red wine colour and wine-making capacity under pure culture conditions and mixed with Saccharomyces. An artificial red grape must was prepared, containing a phenolic extract of Tannat grapes that allows monitoring changes of key phenol parameters during fermentation, but without skin solids in the medium. When fermented in pure cultures, S. cerevisiae produced higher concentrations of acetaldehyde and vitisin B (acetaldehyde reaction-dependent) compared to M. pulcherrima M00/09G, Hanseniaspora guillermondii T06/09G, H. opuntiae T06/01G, H. vineae T02/05F and H. clermontiae (A10/82Fand C10/54F). However, co-fermentation of H. vineae and H. clermontiae with S. cerevisiae resulted in a significantly higher concentration of acetaldehyde compared with the pure S. cerevisiae control. HPLC-DAD-MS analysis confirmed an increased formation of vitisin B in co-fermentation treatments when compared to pure Saccharomyces fermentation, suggesting the key role of acetaldehyde. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26888345

  18. Selective photocatalytic reduction of CO2 to methanol in CuO-loaded NaTaO3 nanocubes in isopropanol

    PubMed Central

    Xiang, Tianyu; Chen, Jingshuai; Wang, Yuwen; Yin, Xiaohong; Shao, Xiao

    2016-01-01

    Summary A series of NaTaO3 photocatalysts were prepared with Ta2O5 and NaOH via a hydrothermal method. CuO was loaded onto the surface of NaTaO3 as a cocatalyst by successive impregnation and calcination. The obtained photocatalysts were characterized by XRD, SEM, UV–vis, EDS and XPS and used to photocatalytically reduce CO2 in isopropanol. This worked to both absorb CO2 and as a sacrificial reagent to harvest CO2 and donate electrons. Methanol and acetone were generated as the reduction product of CO2 and the oxidation product of isopropanol, respectively. NaTaO3 nanocubes loaded with 2 wt % CuO and synthesized in 2 mol/L NaOH solution showed the best activity. The methanol and acetone yields were 137.48 μmol/(g·h) and 335.93 μmol/(g·h), respectively, after 6 h of irradiation. Such high activity could be attributed to the good crystallinity, morphology and proper amount of CuO loading, which functioned as reductive sites for selective formation of methanol. The reaction mechanism was also proposed and explained by band theory. PMID:27335766

  19. A Novel Antifungal Is Active against Candida albicans Biofilms and Inhibits Mutagenic Acetaldehyde Production In Vitro

    PubMed Central

    Nieminen, Mikko T.; Novak-Frazer, Lily; Rautemaa, Vilma; Rajendran, Ranjith; Sorsa, Timo; Ramage, Gordon; Bowyer, Paul; Rautemaa, Riina

    2014-01-01

    The ability of C. albicans to form biofilms is a major virulence factor and a challenge for management. This is evident in biofilm-associated chronic oral-oesophageal candidosis, which has been shown to be potentially carcinogenic in vivo. We have previously shown that most Candida spp. can produce significant levels of mutagenic acetaldehyde (ACH). ACH is also an important mediator of candidal biofilm formation. We have also reported that D,L-2-hydroxyisocaproic acid (HICA) significantly inhibits planktonic growth of C. albicans. The aim of the present study was to investigate the effect of HICA on C. albicans biofilm formation and ACH production in vitro. Inhibition of biofilm formation by HICA, analogous control compounds or caspofungin was measured using XTT to measure biofilm metabolic activity and PicoGreen as a marker of biomass. Biofilms were visualised by scanning electron microscopy (SEM). ACH levels were measured by gas chromatography. Transcriptional changes in the genes involved in ACH metabolism were measured using RT-qPCR. The mean metabolic activity and biomass of all pre-grown (4, 24, 48 h) biofilms were significantly reduced after exposure to HICA (p<0.05) with the largest reductions seen at acidic pH. Caspofungin was mainly active against biofilms pre-grown for 4 h at neutral pH. Mutagenic levels (>40 µM) of ACH were detected in 24 and 48 h biofilms at both pHs. Interestingly, no ACH production was detected from D-glucose in the presence of HICA at acidic pH (p<0.05). Expression of genes responsible for ACH catabolism was up-regulated by HICA but down-regulated by caspofungin. SEM showed aberrant hyphae and collapsed hyphal structures during incubation with HICA at acidic pH. We conclude that HICA has potential as an antifungal agent with ability to inhibit C. albicans cell growth and biofilm formation. HICA also significantly reduces the mutagenic potential of C. albicans biofilms, which may be important when treating bacterial-fungal biofilm

  20. Determination of equilibrium constants for the reaction between acetone and HO2 using infrared kinetic spectroscopy.

    PubMed

    Grieman, Fred J; Noell, Aaron C; Davis-Van Atta, Casey; Okumura, Mitchio; Sander, Stanley P

    2011-09-29

    The reaction between the hydroperoxy radical, HO(2), and acetone may play an important role in acetone removal and the budget of HO(x) radicals in the upper troposphere. We measured the equilibrium constants of this reaction over the temperature range of 215-272 K at an overall pressure of 100 Torr using a flow tube apparatus and laser flash photolysis to produce HO(2). The HO(2) concentration was monitored as a function of time by near-IR diode laser wavelength modulation spectroscopy. The resulting [HO(2)] decay curves in the presence of acetone are characterized by an immediate decrease in initial [HO(2)] followed by subsequent decay. These curves are interpreted as a rapid (<100 μs) equilibrium reaction between acetone and the HO(2) radical that occurs on time scales faster than the time resolution of the apparatus, followed by subsequent reactions. This separation of time scales between the initial equilibrium and ensuing reactions enabled the determination of the equilibrium constant with values ranging from 4.0 × 10(-16) to 7.7 × 10(-18) cm(3) molecule(-1) for T = 215-272 K. Thermodynamic parameters for the reaction determined from a second-law fit of our van't Hoff plot were Δ(r)H°(245) = -35.4 ± 2.0 kJ mol(-1) and Δ(r)S°(245) = -88.2 ± 8.5 J mol(-1) K(-1). Recent ab initio calculations predict that the reaction proceeds through a prereactive hydrogen-bonded molecular complex (HO(2)-acetone) with subsequent isomerization to a hydroxy-peroxy radical, 2-hydroxyisopropylperoxy (2-HIPP). The calculations differ greatly in the energetics of the complex and the peroxy radical, as well as the transition state for isomerization, leading to significant differences in their predictions of the extent of this reaction at tropospheric temperatures. The current results are consistent with equilibrium formation of the hydrogen-bonded molecular complex on a short time scale (100 μs). Formation of the hydrogen-bonded complex will have a negligible impact on the

  1. Formation of the thioester, N,S-diacetylcysteine, from acetaldehyde and N,N'-diacetylcystine in aqueous solution with ultraviolet light

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1981-01-01

    The thioester, N,S-diacetylcysteine, is formed during the illumination of phosphate buffered (pH 7.0) aqueous solutions of acetaldehyde and N,N'-diacetylcystine with ultraviolet light. The yield of N,S-diacetylcysteine relative to N-acetylcysteine and unidentified products progressively increases as ultraviolet light below 239 nm, 253 nm and 281 nm is cut off with optical filters. When ultraviolet light below 320 nm is removed with an optical filter, there is no detectable reaction. Illumination of 0.025 M N,N'-diacetylcystine with 0.5 M and 1.0 M acetaldehyde with filtered ultraviolet light gives, respectively, 20% and 80% yields of N,S-diacetylcysteine. In the reaction with 1.0 M acetaldehyde, N-acetylcysteine forms early in the reaction and later decreases with its conversion to N,S-diacetylcysteine. The prebiotic significance of these reactions is discussed.

  2. Effects of acetone on electrooxidation of 2-propanol in alkaline medium on the Pd/Ni-foam electrode

    NASA Astrophysics Data System (ADS)

    Cheng, Yuanhui; Liu, Yao; Cao, Dianxue; Wang, Guiling; Gao, Yinyi

    2011-03-01

    Acetone is the main product of 2-propanol electrooxidation in both acid and alkaline electrolytes; it always co-exists with 2-propanol in the reaction solution due to its liquid nature. Whether acetone will affect the electrooxidation of 2-propanol has not been well documented, which is a key issue that needs to be addressed for the direct 2-propanol fuel cell. In this study, the influence of acetone on the electrooxidation of 2-propanol in alkaline medium is investigated, using state-of-the-art Pd electrode, by cyclic voltammetry and chronoamperometry. The electrode is prepared using a chemical replacement method, by dipping nickel foam into acidified PdCl2 solution, and characterized by scanning electron microscopy. We found that the presence of acetone adversely affects electrooxidation performance of 2-propanol and substantially reduces the oxidation current of 2-propanol on Pd in alkaline medium. The acetone poisoning effect is interpreted by a competitive adsorption mechanism, in which acetone adsorbs onto Pd surface and occupies the active sites for 2-propanol electrooxidation, leading to a significant decrease in the number of these sites for 2-propanol electrooxidation. The results of this study point out that efficient electrocatalysts for 2-propanol electrooxidation in alkaline electrolytes must be non-adsorptive to acetone besides being highly active to 2-propanol oxidation.

  3. 40 CFR 721.6660 - Polymer of alkanepolyol and poly-alkyl-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime-blocked (generic name). 721.6660 Section 721.6660... Polymer of alkanepolyol and poly-alkyl-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime-blocked..., acetone oxime-blocked (PMN P-88-1658) is subject to reporting under this section for the significant...

  4. Photooxidation of Acetone on TiO2(110): Conversion to Acetate via Methyl Radical Ejection

    SciTech Connect

    Henderson, Michael A.

    2005-06-23

    It is generally held that radicals form and participate in heterogeneous photocatalytic processes on oxide surfaces, although understanding the mechanistic origins and fates of such species is difficult. In this study, photodesorption and thermal desorption techniques show that acetone is converted into acetate on the surface of TiO(110) in a two step process that involves, first, a thermal reaction between acetone and coadsorbed oxygen to make a surface acetone-oxygen complex, followed second by a photochemical reaction that ejects a methyl radical from the surface and converts the acetone-oxygen complex into acetate. Designation of the photodesorption species to methyl radicals was confirmed using isotopically labeled acetone. The yield of photodesorbed methyl radicals correlates well with the amount depleted of acetone and with the yield of acetate left on the surface, both gauged using post-irradiation temperature programmed desorption (TPD). The thermal reaction between adsorbed acetone and oxygen to form the acetone-oxygen complex exhibits an approximate activation barrier of about 10 kJ/mol. A prerequisite to this reaction is the presence of surface Ti?? sites that enable O? adsorption. Creation of these sites by vacuum reduction of the surface prior to acetone and oxygen co-adsorption results in an initial spike in the photodecomposition rate, but replenishment of these sites by photolytic means (i.e., by trapping excited electrons at the surface) appears to be a slow step a sustained reaction. Evidence in this study for the ejection of organic radicals from the surface during photo-oxidation catalysis on TiO provides support for mechanistic pathways that involve both adsorbed and non-adsorbed species.

  5. Photo-Tautomerization of Acetaldehyde to Vinyl Alcohol: a New Mechanism for Organic Acid Formation in the Troposphere

    NASA Astrophysics Data System (ADS)

    Andrews, D. U.; Heazlewood, B. R.; Maccarone, A. T.; Conroy, T.; Payne, R. J.; Jordan, M. J. T.; Kable, S. H.

    2012-06-01

    We present a detailed kinetic master equation (ME) model of the photochemistry of acetaldehyde under conditions relevant to tropospheric chemistry. The dissociation and isomerization rate constants are benchmarked to collision-free experiments in a supersonic expansion, at wavelengths where reaction is only possible on S_0. Extensive photo-isomerization is observed when irradiated with actinic ultraviolet radiation (310-330 nm). The ME model quantitatively reproduces the experimental observations and shows unequivocally that keto-enol photo-tautomerization, forming vinyl alcohol, is the crucial first step. When collisions are included into the ME, the model quantitatively reproduces the previously reported quantum yields for photodissociation at all pressures (0 - 1 atm) and wavelengths (295 - 340 nm). Crucially, at 1 atm pressure, and averaged over the intensity distribution of the solar spectrum, our model predicts that 26% of the total CH_3CHO quantum yield is into the collisionally-relaxed vinyl alcohol photo-tautomerization product. The photochemistry and photophysics of many carbonyls are similar to that of acetaldehyde. Therefore, we expect that photo-tautomerization of carbonyls into their respective enols will be a general phenomenon under atmospheric conditions. Such photo-tautomerization mechanisms are not included in any current tropospheric model and might, given that an enol will react rapidly to form an acid, we propose that they may account for the production of organic acids in the troposphere.

  6. Photochemical fabrication of size-controllable gold nanoparticles on chitosan and their application on catalytic decomposition of acetaldehyde

    SciTech Connect

    Yu, Chung-Chin; Yang, Kuang-Hsuan; Liu, Yu-Chuan; Chen, Bo-Chuen

    2010-07-15

    In this work, we report a new pathway to prepare size-controllable gold nanoparticles (NPs) on chitosan (Ch) in aqueous solutions for improving catalytic decomposition of acetaldehyde by pure gold NPs at room temperature. First, Au substrates were cycled in deoxygenated aqueous solutions containing 0.1N NaCl and 1 g/L Ch from -0.28 to +1.22 V vs Ag/AgCl at 500 mV/s for 200 scans. Then the solutions were irradiated with UV lights of different wavelengths to prepare size-controllable Au NPs on Ch. Experimental results indicate that the particle sizes of prepared NPs are increased when UV lights with longer wavelengths were employed. The particle sizes of resulted Au NPs can be controlled from 10 to 50 nm. Moreover, the decomposition of acetaldehydes in wines can be significantly enhanced by ca. 190% of magnitude due to the contribution of the adsorption of Au NPs on Ch.

  7. Intensification of gas-phase photoxidative dehydrogenation of ethanol to acetaldehyde by using phosphors as light carriers.

    PubMed

    Ciambelli, P; Sannino, D; Palma, V; Vaiano, V; Mazzei, R S

    2011-03-01

    In this work a significant improvement of VO(x)/TiO(2) photocatalytic activity in the selective partial oxidation of ethanol to acetaldehyde was achieved by the simultaneous irradiation with light emitting phosphorescent particles and UVA-LEDs as external light source. Photocatalytic tests were carried out in a gas-solid photocatalytic fluidized bed reactor at high illumination efficiency, in which the bed is constituted by VO(x)/TiO(2) photocatalyst at nominal V(2)O(5) content of 5 wt% and suitable selected phosphors, diluted with glass spheres. In this way, phosphors were fluidized together with the catalyst, excited by external UVA-LEDs, emitting their stored energy in close proximity to the catalyst. In the absence of phosphors the ethanol consumption rate initially grows linearly with initial alcohol concentration, then bends towards an asymptotic value for initial ethanol concentration higher than 0.5 vol%. By contrast, when phosphors are present, the ethanol consumption rate increased linearly in the overall range. In all cases acetaldehyde was the main product detected in gas phase with a selectivity of about 97%, ethylene and carbon dioxide the by-products. The results evidenced that the presence of phosphors allowed improved photon transfer, increasing the apparent quantum yield from 2 to 30% together with a high photoreactivity. PMID:20953515

  8. Reactive processing of formaldehyde and acetaldehyde in aqueous aerosol mimics: surface tension depression and secondary organic products

    NASA Astrophysics Data System (ADS)

    Li, Z.; Schwier, A. N.; Sareen, N.; McNeill, V. F.

    2011-11-01

    The reactive uptake of carbonyl-containing volatile organic compounds (cVOCs) by aqueous atmospheric aerosols is a likely source of particulate organic material. The aqueous-phase secondary organic products of some cVOCs are surface-active. Therefore, cVOC uptake can lead to organic film formation at the gas-aerosol interface and changes in aerosol surface tension. We examined the chemical reactions of two abundant cVOCs, formaldehyde and acetaldehyde, in water and aqueous ammonium sulfate (AS) solutions mimicking tropospheric aerosols. Secondary organic products were identified using Aerosol Chemical Ionization Mass Spectrometry (Aerosol-CIMS), and changes in surface tension were monitored using pendant drop tensiometry. Hemiacetal oligomers and aldol condensation products were identified using Aerosol-CIMS. Acetaldehyde depresses surface tension to 65(±2) dyn cm-1 in pure water (a 10% surface tension reduction from that of pure water) and 62(±1) dyn cm-1 in AS solutions (a 20.6% reduction from that of a 3.1 M AS solution). Surface tension depression by formaldehyde in pure water is negligible; in AS solutions, a 9% reduction in surface tension is observed. Mixtures of these species were also studied in combination with methylglyoxal in order to evaluate the influence of cross-reactions on surface tension depression and product formation in these systems. We find that surface tension depression in the solutions containing mixed cVOCs exceeds that predicted by an additive model based on the single-species isotherms.

  9. Reactive processing of formaldehyde and acetaldehyde in aqueous aerosol mimics: surface tension depression and secondary organic products

    NASA Astrophysics Data System (ADS)

    Li, Z.; Schwier, A. N.; Sareen, N.; McNeill, V. F.

    2011-07-01

    The reactive uptake of carbonyl-containing volatile organic compounds (cVOCs) by aqueous atmospheric aerosols is a likely source of particulate organic material. The aqueous-phase secondary organic products of some cVOCs are surface-active. Therefore, cVOC uptake can lead to organic film formation at the gas-aerosol interface and changes in aerosol surface tension. We examined the chemical reactions of two abundant cVOCs, formaldehyde and acetaldehyde, in water and aqueous ammonium sulfate (AS) solutions mimicking tropospheric aerosols. Secondary organic products were identified using Aerosol Chemical Ionization Mass Spectrometry (Aerosol-CIMS), and changes in surface tension were monitored using pendant drop tensiometry. Hemiacetal oligomers and aldol condensation products were identified using Aerosol-CIMS. A hemiacetal sulfate ester was tentatively identified in the formaldehyde-AS system. Acetaldehyde depresses surface tension to 65(±2) dyn cm-1 in pure water and 62(±1) dyn cm-1 in AS solutions. Surface tension depression by formaldehyde in pure water is negligible; in AS solutions, a 9 % reduction in surface tension is observed. Mixtures of these species were also studied in combination with methylglyoxal in order to evaluate the influence of cross-reactions on surface tension depression and product formation in these systems. We find that surface tension depression in the solutions containing mixed cVOCs exceeds that predicted by an additive model based on the single-species isotherms.

  10. The effect of flooding on the exchange of the volatile C2-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphere

    NASA Astrophysics Data System (ADS)

    Rottenberger, S.; Kleiss, B.; Kuhn, U.; Wolf, A.; Piedade, M. T. F.; Junk, W.; Kesselmeier, J.

    2008-08-01

    The effect of root inundation on the leaf emissions of ethanol, acetaldehyde and acetic acid in relation to assimilation and transpiration was investigated with 2 3 years old tree seedlings of four Amazonian floodplain species by applying dynamic cuvette systems under greenhouse conditions. Emissions were monitored over a period of several days of inundation using a combination of Proton Transfer Reaction Mass Spectrometry (PTR-MS) and conventional techniques (HPLC, ion chromatography). Under non-flooded conditions, none of the species exhibited measurable emissions of any of the compounds, but rather low deposition of acetaldehyde and acetic acid was observed instead. Tree species specific variations in deposition velocities were largely due to variations in stomatal conductance. Flooding of the roots resulted in leaf emissions of ethanol and acetaldehyde by all species, while emissions of acetic acid were only observed from the species exhibiting the highest ethanol and acetaldehyde emission rates. All three compounds showed a similar diurnal emission profile, each displaying an emission burst in the morning, followed by a decline in the evening. This concurrent behavior supports the conclusion, that all three compounds emitted by the leaves are derived from ethanol produced in the roots by alcoholic fermentation, transported to the leaves with the transpiration stream and finally partly converted to acetaldehyde and acetic acid by enzymatic processes. Co-emissions and peaking in the early morning suggest that root ethanol, after transportation with the transpiration stream to the leaves and enzymatic oxidation to acetaldehyde and acetate, is the metabolic precursor for all compounds emitted, though we can not totally exclude other production pathways. Emission rates substantially varied among tree species, with maxima differing by up to two orders of magnitude (25 1700 nmol m-2 min-1 for ethanol and 5 500 nmol m-2 min-1 for acetaldehyde). Acetic acid emissions

  11. The effect of flooding on the exchange of the volatile C2-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphere

    NASA Astrophysics Data System (ADS)

    Rottenberger, S.; Kleiss, B.; Kuhn, U.; Wolf, A.; Piedade, M. T. F.; Junk, W.; Kesselmeier, J.

    2008-02-01

    The effect of root inundation on the leaf emissions of ethanol, acetaldehyde and acetic acid was investigated with 2-3 years old tree seedlings of four Amazonian floodplain species by applying dynamic cuvette systems under greenhouse conditions. Emissions were monitored over a period of several days of inundation using a combination of Proton Transfer Reaction Mass Spectrometry (PTR-MS) and conventional techniques (HPLC, ion chromatography). Under non-flooded conditions, none of the species exhibited significant emissions of any of the compounds. A slight deposition of acetaldehyde and acetic acid was mainly observed, instead. Tree species specific variations in deposition velocities were largely due to variations in stomatal conductance. Flooding of the roots resulted in leaf emissions of ethanol and acetaldehyde by all species, while emissions of acetic acid occurred only by the species exhibiting the highest ethanol and acetaldehyde emission rates. All three compounds showed a similar diurnal emission profile, each displaying an emission burst in the morning, followed by a decline in the evening. This concurrent behavior supports the conclusion, that all three compounds emitted by the leaves are derived from ethanol produced in the roots by alcoholic fermentation, transported to the leaves with the transpiration stream and finally partly converted to acetaldehyde and acetic acid by enzymatic processes. Co-emissions and peaking in the early morning confirmed that root ethanol, after transportation with the transpiration stream to the leaves and enzymatic oxidation to acetaldehyde and acetate, is the metabolic precursor for all compounds emitted. Emission rates substantially varied among tree species, with maxima differing by up to two orders of magnitude (3-200 nmol m-2 min-1 for ethanol and 5-500 nmol m-2 min-1 for acetaldehyde). Acetic acid emissions reached 12 nmol m-2 min-1. The observed differences in emission rates between the tree species are discussed

  12. Synthesis of renewable diesel with the 2-methylfuran, butanal and acetone derived from lignocellulose.

    PubMed

    Li, Guangyi; Li, Ning; Yang, Jinfan; Wang, Aiqin; Wang, Xiaodong; Cong, Yu; Zhang, Tao

    2013-04-01

    In this work, the hydroxyalkylation/alkylation of 2-methylfuran (2-MF) with acetone and butanal was investigated over a series of solid acid catalysts. Among the investigated candidates, Nafion-212 resin demonstrated the highest activity and stability for both reactions. Butanal is more reactive than acetone in hydroxyalkylation/alkylation, which can be rationalized by the steric and electronic effects of alkyl group. Finally, the hydroxyalkylation/alkylation products as prepared were directly hydrodeoxygenated over Pd/C, Pt/C and Ni-WxC/C catalysts. Evidently higher carbon yields to diesel were obtained when hydroxyalkylation/alkylation product of 2-MF with butanal was used as the feedstock. This can be considered as another advantage of 2-MF-butanal route. It is interesting that Ni-WxC/C catalyst exhibited excellent catalytic performance and good stability in the hydrodeoxygenation of hydroxyalkylation/alkylation products, which made it a promising substitute for the noble metal catalysts. PMID:23500561

  13. Roles of Acetone and Diacetone Alcohol in Coordination and Dissociation Reactions of Uranyl Complexes

    SciTech Connect

    Rios, Daniel; Schoendorff, George E.; Van Stipdonk, Michael J.; Gordon, Mark S.; Windus, Theresa L.; Gibson, John K.; De Jong, Wibe A.

    2012-12-03

    Combined collision-induced dissociation mass-spectrometry experiments and DFT calculations were employed to elucidate the molecular structure of "hypercoordinated" species and the energetics of water-elimination reactions of uranyl acetone complexes observed in earlier work (Rios, D.; Rutkowski, P. X.; Van Stipdonk, M. J.; Gibson, J. K. Inorg. Chem. 2011, 50, 4781). It is shown that the "hypercoordinated" species contain diacetone alcohol ligands bonded in either bidentate or monodentate fashion, which are indistinguishable from (acetone)2 in mass spectrometry. Calculations confirm that four diacetone ligands can form stable complexes, but that the effective number of atoms coordinating with uranium in the equatorial plane does not exceed five. Diacetone alcohol ligands are shown to form mesityl oxide ligands and alkoxide species through the elimination of water, providing an explanation for the observed water-elimination reactions.

  14. Graphene oxide foams and their excellent adsorption ability for acetone gas

    SciTech Connect

    He, Yongqiang; Zhang, Nana; Wu, Fei; Xu, Fangqiang; Liu, Yu; Gao, Jianping

    2013-09-01

    Graphical abstract: - Highlights: • GO and RGO foams were prepared using a simple and green method, unidirectional freeze-drying. • The porous structure of the foams can be adjusted by changing GO concentrations. • GO and RGO foams show good adsorption efficiency for acetone gas. - Abstract: Graphene oxide (GO) and reduced graphene oxide (RGO) foams were prepared using a unidirectional freeze-drying method. These porous carbon materials were characterized by thermal gravimetric analysis, differential scanning calorimetry, X-ray photoelectron spectroscopy and scanning electron microscopy. The adsorption behavior of the two kinds of foams for acetone was studied. The result showed that the saturated adsorption efficiency of the GO foams was over 100%, and was higher than that of RGO foams and other carbon materials.

  15. Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca.

    PubMed

    van der Wal, Hetty; Sperber, Bram L H M; Houweling-Tan, Bwee; Bakker, Robert R C; Brandenburg, Willem; López-Contreras, Ana M

    2013-01-01

    Green seaweed Ulva lactuca harvested from the North Sea near Zeeland (The Netherlands) was characterized as feedstock for acetone, ethanol and ethanol fermentation. Solubilization of over 90% of sugars was achieved by hot-water treatment followed by hydrolysis using commercial cellulases. A hydrolysate was used for the production of acetone, butanol and ethanol (ABE) by Clostridium acetobutylicum and Clostridium beijerinckii. Hydrolysate-based media were fermentable without nutrient supplementation. C. beijerinckii utilized all sugars in the hydrolysate and produced ABE at high yields (0.35 g ABE/g sugar consumed), while C. acetobutylicum produced mostly organic acids (acetic and butyric acids). These results demonstrate the great potential of U. lactuca as feedstock for fermentation. Interestingly, in control cultures of C. beijerinckii on rhamnose and glucose, 1,2 propanediol was the main fermentation product (9.7 g/L). PMID:23201525

  16. Technical and economic assessment of processes for the production of butanol and acetone

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This report represents a preliminary technical and economic evaluation of a process which produces mixed solvents (butaol/acetone/ethanol) via fermentation of sugars derived from renewable biomass resources. The objective is to assess the technology of producing butanol/acetone from biomass, and select a viable process capable of serving as a base case model for technical and economic analysis. It is anticipated that the base case process developed herein can then be used as the basis for subsequent studies concerning biomass conversion processes capable of producing a wide range of chemicals. The general criteria utilized in determining the design basis for the process are profit potential and non-renewable energy displacement potential. The feedstock chosen, aspen wood, was selected from a number of potential renewable biomass resources as the most readily available in the United States and for its relatively large potential for producing reducing sugars.

  17. Investigations on the structure of DMSO and acetone in aqueous solution

    SciTech Connect

    McLain, Sylvia E; Soper, Alan K

    2007-01-01

    Aqueous solutions of dimethyl sulfoxide (DMSO) and acetone have been investigated using neutron diffraction augmented with isotopic substitution and empirical potential structure refinement computer simulations. Each solute has been measured at two concentrations-1:20 and 1:2 solute:water mole ratios. At both concentrations for each solute, the tetrahedral hydrogen bonding network of water is largely unperturbed, though the total water molecule coordination number is reduced in the higher 1:2 concentrations. With higher concentrations of acetone, water tends to segregate into clusters, while in higher concentrations of DMSO the present study reconfirms that the structure of the liquid is dominated by DMSO-water interactions. This result may have implications for the highly nonideal behavior observed in the thermodynamic functions for 1:2 DMSO-water solutions.

  18. DSC and curing kinetics study of epoxy grouting diluted with furfural -acetone slurry

    NASA Astrophysics Data System (ADS)

    Yin, H.; Sun, D. W.; Li, B.; Liu, Y. T.; Ran, Q. P.; Liu, J. P.

    2016-07-01

    The use of furfural-acetone slurry as active diluents of Bisphenol-A epoxy resin (DGEBA) groutings has been studied by dynamic and non-isothermal DSC for the first time. Curing kinetics study was investigated by non-isothermal differential scanning calorimetries at different heating rates. Activation enery (Ea) was calculated based on Kissinger and Ozawa Methods, and the results showed that Ea increased from 58.87 to 71.13KJ/mol after the diluents were added. The furfural-acetone epoxy matrix could cure completely at the theoretical curing temperature of 365.8K and the curing time of 139mins, which were determined by the kinetic model parameters.

  19. Hydrothermal Synthesis of ZnO Structures Formed by High-Aspect-Ratio Nanowires for Acetone Detection

    NASA Astrophysics Data System (ADS)

    Cao, Zhen; Wang, Yong; Li, Zhanguo; Yu, Naisen

    2016-07-01

    Snowflake-like ZnO structures originating from self-assembled nanowires were prepared by a low-temperature aqueous solution method. The as-grown hierarchical ZnO structures were investigated by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). The results showed that the snowflake-like ZnO structures were composed of high-aspect-ratio nanowires. Furthermore, gas-sensing properties to various testing gases of 10 and 50 ppm were measured, which confirms that the ZnO structures were of good selectivity and response to acetone and could serve for acetone sensor to detect low-concentration acetone.

  20. Quantification of different water species in acetone using a NIR-triple-wavelength fiber laser.

    PubMed

    Andrews, Nicholas L P; MacLean, Amy G; Saunders, John E; Barnes, Jack A; Loock, Hans-Peter; Saad, Mohammed; Jia, Chenglai; Ramaswamy, Kishor; Chen, Lawrence R

    2014-08-11

    A fiber laser using a thulium-doped ZBLAN gain medium was used to generate laser radiation simultaneously at 1461, 1505 and 1874 nm, with > 5 mW output power at each of the wavelengths. The laser was used to quantify the near-infrared absorption of liquid water in acetone. Additionally, near-infrared spectra were recorded using a broad band source and were interpreted using parallel factor (PARAFAC) analysis to rationalize the concentration-dependent peak shifts. PMID:25321018

  1. The economics of acetone-butanol fermentation: theoretical and market considerations.

    PubMed

    Gapes, J R

    2000-01-01

    Acetone-butanol (AB) fermentation was once run commercially in many countries until these chemicals could be made more cheaply from fossil oil sources. Research into the revitalisation of the process has shown that the process could once again be run economically in niche markets if run in a relatively small industrial scale processing low-grade agricultural products. The following analysis is intended to help identify suitable niche markets. PMID:10937484

  2. Excess protons in water-acetone mixtures. II. A conductivity study.

    PubMed

    Semino, Rocío; Longinotti, M Paula

    2013-10-28

    In the present work we complement a previous simulation study [R. Semino and D. Laria, J. Chem. Phys. 136, 194503 (2012)] on the disruption of the proton transfer mechanism in water by the addition of an aprotic solvent, such as acetone. We provide experimental measurements of the mobility of protons in aqueous-acetone mixtures in a wide composition range, for water molar fractions, xw, between 0.05 and 1.00. Furthermore, new molecular dynamics simulation results are presented for rich acetone mixtures, which provide further insight into the proton transport mechanism in water-non-protic solvent mixtures. The proton mobility was analyzed between xw 0.05 and 1.00 and compared to molecular dynamics simulation data. Results show two qualitative changes in the proton transport composition dependence at xw ∼ 0.25 and 0.8. At xw < 0.25 the ratio of the infinite dilution molar conductivities of HCl and LiCl, Λ(0)(HCl).Λ(0)(LiCl)(-1), is approximately constant and equal to one, since the proton diffusion is vehicular and equal to that of Li(+). At xw ∼ 0.25, proton mobility starts to differ from that of Li(+) indicating that above this concentration the Grotthuss transport mechanism starts to be possible. Molecular dynamics simulation results showed that at this threshold concentration the probability of interconversion between two Eigen structures starts to be non-negligible. At xw ∼ 0.8, the infinite molar conductivity of HCl concentration dependence qualitatively changes. This result is in excellent agreement with the analysis presented in the previous simulation work and it has been ascribed to the interchange of water and acetone molecules in the second solvation shell of the hydronium ion. PMID:24182052

  3. Life tests of aluminium axial groove heat pipes with acetone as a working fluid

    NASA Astrophysics Data System (ADS)

    Lobanov, A. D.; Yatsenko, A. A.; Parfentiev, M. D.; Barkova, L. V.

    1991-12-01

    Functional acceleration and storage life test results of 70 low temperature aluminum Heat Pipes (HP) with acetone are presented. To provide long term tests at elevated temperature, thermostats on gas controlled HPs were developed ensuring that the required temperature was kept during the tests. Based on studies and test data and using the Arrhenius equation, the time was determined for which the HP can operate at specified temperature levels.

  4. Theoretical studies of mechanisms of cycloaddition reaction between difluoromethylene carbene and acetone

    NASA Astrophysics Data System (ADS)

    Lu, Xiu Hui; Yu, Hai Bin; Wu, Wei Rong; Xu, Yue Hua

    Mechanisms of the cycloaddition reaction between singlet difluoromethylene carbene and acetone have been investigated with the second-order Møller-Plesset (MP2)/6-31G* method, including geometry optimization and vibrational analysis. Energies for the involved stationary points on the potential energy surface (PES) are corrected by zero-point energy (ZPE) and CCSD(T)/6-31G* single-point calculations. From the PES obtained with the CCSD(T)//MP2/6-31G* method for the cycloaddition reaction between singlet difluoromethylene carbene and acetone, it can be predicted that path B of reactions 2 and 3 should be two competitive leading channels of the cycloaddition reaction between difluoromethylene carbene and acetone. The former consists of two steps: (i) the two reactants first form a four-membered ring intermediate, INT2, which is a barrier-free exothermic reaction of 97.8 kJ/mol; (ii) the intermediate INT2 isomerizes to a four-membered product P2b via a transition state TS2b with an energy barrier of 24.9 kJ/mol, which results from the methyl group transfer. The latter proceeds in three steps: (i) the two reactants first form an intermediate, INT1c, through a barrier-free exothermic reaction of 199.4 kJ/mol; (ii) the intermediate INT1c further reacts with acetone to form a polycyclic intermediate, INT3, which is also a barrier-free exothermic reaction of 27.4 kJ/mol; and (iii) INT3 isomerizes to a polycyclic product P3 via a transition state TS3 with an energy barrier of 25.8 kJ/mol.

  5. Advances in direct oxidation methanol fuel cells

    NASA Technical Reports Server (NTRS)

    Surampudi, S.; Narayanan, S. R.; Vamos, E.; Frank, H.; Halpert, G.; Laconti, Anthony B.; Kosek, J.; Prakash, G. K. Surya; Olah, G. A.

    1993-01-01

    Fuel cells that can operate directly on fuels such as methanol are attractive for low to medium power applications in view of their low weight and volume relative to other power sources. A liquid feed direct methanol fuel cell has been developed based on a proton exchange membrane electrolyte and Pt/Ru and Pt catalyzed fuel and air/O2 electrodes, respectively. The cell has been shown to deliver significant power outputs at temperatures of 60 to 90 C. The cell voltage is near 0.5 V at 300 mA/cm(exp 2) current density and an operating temperature of 90 C. A deterrent to performance appears to be methanol crossover through the membrane to the oxygen electrode. Further improvements in performance appear possible by minimizing the methanol crossover rate.

  6. Methanol: A Versatile Fuel for Immediate Use

    ERIC Educational Resources Information Center

    Reed, T. B.; Lerner, R. M.

    1973-01-01

    Advocates the large-scale production and use of methanol as a substitute for the diminishing reserves of low-cost petroleum resources. Describes the manufacturing process and advantages of the versatile fuel. (JR)

  7. BHP may scale up methanol production

    SciTech Connect

    Alperowicz, N.

    1993-06-23

    Broken Hill Pty. (BHP: Melbourne) says otherwise uneconomic gas reserves in the Timor Sea off northwest Australia could be developed if the company`s plans to commercialize a novel gas-to-methanol technology prove to be viable. BHP is building an A$70-million ($50 million) research unit in Victoria using ICI`s Leading Concept Methanol gas-to-methanol process. If this unit proves viable, it could be put on a vessel and taken to Timor Sea where BHP has oil exploration and production interests. Timor gas is not economically viable because of lack of nearby markets. The 54,000-m.t./year research plant, located at Werrbee near Melbourne, is scheduled to start production in the second half of 1994, according to BHP manager Joe Evon. The plant is being built by Davy/John Brown. Provided the economic climate is right, BHP is expected to build a world-scale methanol plant offshore.

  8. Homogeneous catalyst formulations for methanol production

    DOEpatents

    Mahajan, Devinder; Sapienza, Richard S.; Slegeir, William A.; O'Hare, Thomas E.

    1991-02-12

    There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.-), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

  9. Homogeneous catalyst formulations for methanol production

    DOEpatents

    Mahajan, Devinder; Sapienza, Richard S.; Slegeir, William A.; O'Hare, Thomas E.

    1990-01-01

    There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.13 ), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

  10. Inhalation developmental toxicology studies: Teratology study of acetone in mice and rats: Final report

    SciTech Connect

    Mast, T.J.; Evanoff, J.J.; Rommereim, R.L.; Stoney, K.H.; Weigel, R.J.; Westerberg, R.B.

    1988-11-01

    Acetone, an aliphatic ketone, is a ubiquitous industrial solvent and chemical intermediate; consequently, the opportunity for human exposure is high. The potential for acetone to cause developmental toxicity was assessed in Sprague-Dawley rats exposed to 0, 440, 2200, or 11000 ppm, and in Swiss (CD-1) mice exposed to 0, 440, 2200, and 6600 ppm acetone vapors, 6 h/day, 7 days/week. Each of the four treatment groups consisted of 10 virgin females (for comparison), and approx.32 positively mated rats or mice. Positively mated mice were exposed on days 6-17 of gestation (dg), and rats on 6-19 dg. The day of plug or sperm detection was designated as 0 dg. Body weights were obtained throughout the study period, and uterine and fetal body weights were obtained at sacrifice (rats, 20 dg; mice, 18 dg). Implants were enumerated and their status recorded. Live fetuses were sexed and examined for gross, visceral, skeletal, and soft-tissue craniofacial defects. 46 refs., 6 figs., 27 tabs.

  11. Multinuclear NMR spectroscopy for differentiation of molecular configurations and solvent properties between acetone and dimethyl sulfoxide

    NASA Astrophysics Data System (ADS)

    Wen, Yuan-Chun; Kuo, Hsiao-Ching; Jia, Hsi-Wei

    2016-04-01

    The differences in molecular configuration and solvent properties between acetone and dimethyl sulfoxide (DMSO) were investigated using the developed technique of 1H, 13C, 17O, and 1H self-diffusion liquid state nuclear magnetic resonance (NMR) spectroscopy. Acetone and DMSO samples in the forms of pure solution, ionic salt-added solution were used to deduce their active sites, relative dipole moments, dielectric constants, and charge separations. The NMR results suggest that acetone is a trigonal planar molecule with a polarized carbonyl double bond, whereas DMSO is a trigonal pyramidal-like molecule with a highly polarized S-O single bond. Both molecules use their oxygen atoms as the active sites to interact other molecules. These different molecular models explain the differences their physical and chemical properties between the two molecules and explain why DMSO is classified as an aprotic but highly dipolar solvent. The results are also in agreement with data obtained using X-ray diffraction, neutron diffraction, and theoretical calculations.

  12. Research into acetone removal from air by biofiltration using a biofilter with straight structure plates

    PubMed Central

    Baltrėnas, Pranas; Zagorskis, Alvydas; Misevičius, Antonas

    2015-01-01

    The biological air treatment method is based on the biological destruction of organic compounds using certain cultures of microorganisms. This method is simple and may be applied in many branches of industry. The main element of biological air treatment devices is a filter charge. Tests were carried out using a new-generation laboratory air purifier with a plate structure. This purifier is called biofilter. The biofilter has a special system for packing material humidification which does not require additional energy inputs. In order to extend the packing material's durability, it was composed of thermally treated birch fibre. Pollutant (acetone) biodegradation occurred on thermally treated wood fibre in this research. According to the performed tests and the received results, the process of biodestruction was highly efficient. When acetone was passed through biofilter's packing material at 0.08 m s−1 rate, the efficiency of the biofiltration process was from 70% up to 90%. The species of bacteria capable of removing acetone vapour from the air, i.e. Bacillus (B. cereus, B. subtilis), Pseudomonas (P. aeruginosa, P. putida), Stapylococcus (S. aureus) and Rhodococcus sp., was identified in this study during the process of biofiltration. Their amount in the biological packing material changed from 1.6 × 107 to 3.7 × 1011 CFU g−1. PMID:26019659

  13. Acetone as a greener alternative to acetonitrile in liquid chromatographic fingerprinting.

    PubMed

    Funari, Cristiano Soleo; Carneiro, Renato Lajarim; Khandagale, Manish M; Cavalheiro, Alberto José; Hilder, Emily F

    2015-05-01

    A considerable amount of chemical waste from liquid chromatography analysis is generated worldwide. Acetonitrile is the most employed solvent in liquid chromatography analyses since it exhibits favorable physicochemical properties for separation and detection, but it is an unwelcome solvent from an environmental point of view. Acetone might be a much greener alternative to replace acetonitrile in reversed-phase liquid chromatography, since both share similar physicochemical properties, but its applicability with ultraviolet absorbance-based detectors is limited. In this work, a reference method using acetonitrile and high-performance liquid chromatography coupled to an ultraviolet photodiode array detector coupled to a corona charged aerosol detector system was developed to fingerprint a complex sample. The possibility of effectively substituting acetonitrile with acetone was investigated. Design of experiments was adopted to maximize the number of peaks acquired in both fingerprint developments. The methods with acetonitrile or acetone were successfully optimized and proved to be statistically similar when only the number of peaks or peak capacity was taken into consideration. However, the superiority of the latter was evidenced when parameters of separation and those related to greenness were heuristically combined. A green, comprehensive, time- and resource-saving approach is presented here, which is generic and applicable to other complex matrices. Furthermore, it is in line with environmental legislation and analytical trends. PMID:25708832

  14. Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions

    PubMed Central

    Amiri, Hamid; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Shahzadeh Fazeli, Abolhassan; Tabatabaei, Meisam; Hosseini Salekdeh, Ghasem; Karimi, Keikhosro

    2016-01-01

    The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation. The cultivation of Nesterenkonia sp. strain F under anaerobic conditions with 50 g/l of glucose for 72 h resulted in the production of 105 mg/l of butanol, 122 mg/l of acetone, 0.2 g/l of acetic acid, and 2.5 g/l of butyric acid. Furthermore, the strain was cultivated on media with different glucose concentrations (20, 50, and 80 g/l) under aerobic and anaerobic conditions. Through fermentation with a 50 g/l initial glucose concentration under aerobic conditions, 66 mg/l of butanol, 125 mg/l of acetone, 291 mg/l of ethanol, 5.9 g/l of acetic acid, and 1.2 g/l of butyric acid were produced. The enzymes pertaining to the fermentation pathway in the strain were compared with the enzymes of Clostridium spp., and the metabolic pathway of fermentation used by Nesterenkonia sp. strain F was investigated. PMID:26725518

  15. Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions.

    PubMed

    Amiri, Hamid; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Shahzadeh Fazeli, Abolhassan; Tabatabaei, Meisam; Salekdeh, Ghasem Hosseini; Karimi, Keikhosro

    2016-01-01

    The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation. The cultivation of Nesterenkonia sp. strain F under anaerobic conditions with 50 g/l of glucose for 72 h resulted in the production of 105 mg/l of butanol, 122 mg/l of acetone, 0.2 g/l of acetic acid, and 2.5 g/l of butyric acid. Furthermore, the strain was cultivated on media with different glucose concentrations (20, 50, and 80 g/l) under aerobic and anaerobic conditions. Through fermentation with a 50 g/l initial glucose concentration under aerobic conditions, 66 mg/l of butanol, 125 mg/l of acetone, 291 mg/l of ethanol, 5.9 g/l of acetic acid, and 1.2 g/l of butyric acid were produced. The enzymes pertaining to the fermentation pathway in the strain were compared with the enzymes of Clostridium spp., and the metabolic pathway of fermentation used by Nesterenkonia sp. strain F was investigated. PMID:26725518

  16. Acetone Sensing by Modified SnO2 Nanocrystalline Sensor Materials

    NASA Astrophysics Data System (ADS)

    Krivetsky, V. V.; Petukhov, D. V.; Eliseev, A. A.; Smirnov, A. V.; Rumyantseva, M. N.; Gaskov, Aleksandre M.

    A complementary gas sensor and gas chromatography/mass spectrometry study was performed to investigate the chemical basis of acetone vapor sensing via semiconductor metal oxide gas sensors. The effect of additives to nanocrystalline SnO2-based sensor materials was analyzed. The main process that contributes to the electrical yield of this interaction and thus to the sensor response is a complete acetone oxidation to CO2and H2O. At the same time it is clearly shown that this sensor response is severely limited by the rate of desorption of the reaction products. The main contributors to this negative influence on the sensor response are heavy organic compounds with molar masses larger than that of acetone. It is also shown that their negative effect could be mitigated by the incorporation of catalytic clusters of gold on the surface of SnO2based sensor materials. This kind of catalyst acts either as a preventor of the formation of heavy and complex organic molecules on the sensor surface or as a combustion catalyst, which facilitates their decomposition.

  17. A Ringdown Breath Analyzer for Diabetes Monitoring: Breath Acetone in Diabetic Patients.

    NASA Astrophysics Data System (ADS)

    Wang, Chuji; Mbi, Armstrong; Shepherd, Mark

    2008-03-01

    It is highly desirable for millions of diabetic patients to have a non-blood, non-invasive, point-of-care device for monitoring daily blood glucose (BG) levels and the adequacy of diabetic treatment and control. Cavity ringdown spectroscopy, due to its unique capability of high sensitivity, fast-response, and relatively low cost for instrumentation, has the potential for medical application through non-invasive analysis of breath biomarkers. We report the first ringdown acetone breath analyzer for clinic testing with diabetic outpatients. The instrument was set in a clinic center and 34 outpatients (24 T1D and 10 T2D) were tested during a four-day period. 10 T1D subjects and 15 nondiabetic persons were tested in our laboratory. Three juvenile-onset T1D subjects were selected for a 24-hr monitoring on the variations of breath acetone and simultaneous BG level. In this talk, we present our research findings including the correlations of breath acetone with BG level and A1C.

  18. Transesterification of waste vegetable oil under pulse sonication using ethanol, methanol and ethanol–methanol mixtures

    SciTech Connect

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar

    2014-12-15

    Highlights: • Pulse sonication effect on transesterification of waste vegetable oil was studied. • Effects of ethanol, methanol, and alcohol mixtures on FAMEs yield were evaluated. • Effect of ultrasonic intensity, power density, and its output rates were evaluated. • Alcohol mixtures resulted in higher biodiesel yields due to better solubility. - Abstract: This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, and ethanol–methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol–methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1–2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol–methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions.

  19. Vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters

    SciTech Connect

    Ahmed, Musahid; Ahmed, Musahid; Wilson, Kevin R.; Belau, Leonid; Kostko, Oleg

    2008-05-12

    In this work we report on thevacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuumultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH + (n=1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH)n(H2O)H + (n=2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH +, (CH 3OH)2 +, (CH3OH)nH + (n=1-9), and (CH 3OH)n(H2O)H + (n=2-9 ) as a function of photon energy. With an increase in the water content in the molecular beam, there is an enhancement of photoionization intensity for methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations.

  20. Vacuum-Ultraviolet (VUV) Photoionization of Small Methanol and Methanol-Water Clusters

    SciTech Connect

    Kostko, Oleg; Belau, Leonid; Wilson, Kevin R.; Ahmed, Musahid

    2008-04-24

    In this work, we report on the vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuum-ultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH+(n = 1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH n(H2O)H+ (n = 2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH+, (CH3OH)2+, (CH3OH)nH+ (n = 1-9), and (CH3OH)n(H2O)H+ (n = 2-9) as a function of photon energy. With an increasein the water content in the molecular beam, there is an enhancement of photoionization intensity for the methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations.

  1. Microfluidic distillation chip for methanol concentration detection.

    PubMed

    Wang, Yao-Nan; Liu, Chan-Chiung; Yang, Ruey-Jen; Ju, Wei-Jhong; Fu, Lung-Ming

    2016-03-17

    An integrated microfluidic distillation system is proposed for separating a mixed ethanol-methanol-water solution into its constituent components. The microfluidic chip is fabricated using a CO2 laser system and comprises a serpentine channel, a boiling zone, a heating zone, and a cooled collection chamber filled with de-ionized (DI) water. In the proposed device, the ethanol-methanol-water solution is injected into the microfluidic chip and driven through the serpentine channel and into the collection chamber by means of a nitrogen carrier gas. Following the distillation process, the ethanol-methanol vapor flows into the collection chamber and condenses into the DI water. The resulting solution is removed from the collection tank and reacted with a mixed indicator. Finally, the methanol concentration is inversely derived from the absorbance measurements obtained using a spectrophotometer. The experimental results show the proposed microfluidic system achieves an average methanol distillation efficiency of 97%. The practicality of the proposed device is demonstrated by detecting the methanol concentrations of two commercial fruit wines. It is shown that the measured concentration values deviate by no more than 3% from those obtained using a conventional bench top system. PMID:26920777

  2. Acetone poisoning

    MedlinePlus

    ... unconscious, unresponsive) Drowsiness Stupor (confusion, decreased level of consciousness) Lack of coordination BREATHING (RESPIRATORY) SYSTEM Difficulty breathing Slowed breathing rate Shortness of breath ...

  3. First Discovery of Acetone Extract from Cottonseed Oil Sludge as a Novel Antiviral Agent against Plant Viruses

    PubMed Central

    Zhao, Lei; Feng, Chaohong; Hou, Caiting; Hu, Lingyun; Wang, Qiaochun; Wu, Yunfeng

    2015-01-01

    A novel acetone extract from cottonseed oil sludge was firstly discovered against plant viruses including Tobacco mosaic virus (TMV), Rice stripe virus (RSV) and Southern rice black streaked dwarf virus (SRBSDV). Gossypol and β-sitosterol separated from the acetone extract were tested for their effects on anti-TMV and analysed by nuclear magnetic resonance (NMR) assay. In vivo and field trials in different geographic distributions and different host varieties declared that this extract mixture was more efficient than the commercial agent Ningnanmycin with a broad spectrum of anti-plant-viruses activity. No phytotoxic activity was observed in the treated plants and environmental toxicology showed that this new acetone extract was environmentally friendly, indicating that this acetone extract has potential application in the control of plant virus in the future. PMID:25705894

  4. Triacetonamine formation in a bio-oil from fast pyrolysis of sewage sludge using acetone as the absorption solvent.

    PubMed

    Cao, Jing-Pei; Zhao, Xiao-Yan; Morishita, Kayoko; Li, Liu-Yun; Xiao, Xian-Bin; Obara, Ryoji; Wei, Xian-Yong; Takarada, Takayuki

    2010-06-01

    A sewage sludge sample was pyrolyzed in a drop tube furnace at 500 degrees C and sweeping gas flow rate of 300cm(3)/min. Triacetonamine (TAA) was detected with GC/MS as major component in the resulting bio-oil using acetone as the absorption solvent and proven to be a product from the reaction of NH(3) in the bio-oil with the absorption solvent acetone. TAA yield increased with storage time and reached a level about 28.4% (% sludge fed, daf) after 175h. Since the reaction of pure NH(3) with acetone does not proceed, some species in the bio-oil must catalyze the reaction of NH(3) with acetone. TAA was isolated in a high yield (27.9%, daf) and high purity (80.4%) by column chromatography with different solvents, including mixed solvents, as eluants. The study revealed the possibility of sewage sludge as potential resource of TAA. PMID:20137920

  5. Co-production of acetone and ethanol with molar ratio control enables production of improved gasoline or jet fuel blends.

    PubMed

    Baer, Zachary C; Bormann, Sebastian; Sreekumar, Sanil; Grippo, Adam; Toste, F Dean; Blanch, Harvey W; Clark, Douglas S

    2016-10-01

    The fermentation of simple sugars to ethanol has been the most successful biofuel process to displace fossil fuel consumption worldwide thus far. However, the physical properties of ethanol and automotive components limit its application in most cases to 10-15 vol% blends with conventional gasoline. Fermentative co-production of ethanol and acetone coupled with a catalytic alkylation reaction could enable the production of gasoline blendstocks enriched in higher-chain oxygenates. Here we demonstrate a synthetic pathway for the production of acetone through the mevalonate precursor hydroxymethylglutaryl-CoA. Expression of this pathway in various strains of Escherichia coli resulted in the co-production of acetone and ethanol. Metabolic engineering and control of the environmental conditions for microbial growth resulted in controllable acetone and ethanol production with ethanol:acetone molar ratios ranging from 0.7:1 to 10.0:1. Specifically, use of gluconic acid as a substrate increased production of acetone and balanced the redox state of the system, predictively reducing the molar ethanol:acetone ratio. Increases in ethanol production and the molar ethanol:acetone ratio were achieved by co-expression of the aldehyde/alcohol dehydrogenase (AdhE) from E. coli MG1655 and by co-expression of pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (AdhB) from Z. mobilis. Controlling the fermentation aeration rate and pH in a bioreactor raised the acetone titer to 5.1 g L(-1) , similar to that obtained with wild-type Clostridium acetobutylicum. Optimizing the metabolic pathway, the selection of host strain, and the physiological conditions employed for host growth together improved acetone titers over 35-fold (0.14-5.1 g/L). Finally, chemical catalysis was used to upgrade the co-produced ethanol and acetone at both low and high molar ratios to higher-chain oxygenates for gasoline and jet fuel applications. Biotechnol. Bioeng. 2016;113: 2079-2087. © 2016 Wiley

  6. A novel photoproduct of 2'-deoxyguanosine induced by acetone photosensitization: 8-(2,3,4-trihydroxybutyl)guanine.

    PubMed Central

    Sharma, N D; Davies, R J; Phillips, D R; McCloskey, J A

    1989-01-01

    Acetone photosensitisation of 2'-deoxyguanosine in deaerated aqueous solution gives 8-(2,3,4-trihydroxybutyl)guanine as a major photoproduct. Its structure and that of its tetraacetate have been determined primarily by high resolution 1H NMR and mass spectrometry; a di-isopropylidene derivative has also been prepared. Mechanistic aspects of this novel photochemical transformation are discussed, particularly in relation to the alkaline cleavage of acetone photosensitised DNA at the sites of guanine bases. PMID:2922279

  7. Solute-solvent complex switching dynamics of chloroform between acetone and dimethylsulfoxide-two-dimensional IR chemical exchange spectroscopy.

    PubMed

    Kwak, Kyungwon; Rosenfeld, Daniel E; Chung, Jean K; Fayer, Michael D

    2008-11-01

    Hydrogen bonds formed between C-H and various hydrogen bond acceptors play important roles in the structure of proteins and organic crystals, and the mechanisms of C-H bond cleavage reactions. Chloroform, a C-H hydrogen bond donor, can form weak hydrogen-bonded complexes with acetone and with dimethylsulfoxide (DMSO). When chloroform is dissolved in a mixed solvent consisting of acetone and DMSO, both types of hydrogen-bonded complexes exist. The two complexes, chloroform-acetone and chloroform-DMSO, are in equilibrium, and they rapidly interconvert by chloroform exchanging hydrogen bond acceptors. This fast hydrogen bond acceptor substitution reaction is probed using ultrafast two-dimensional infrared (2D-IR) vibrational echo chemical exchange spectroscopy. Deuterated chloroform is used in the experiments, and the 2D-IR spectrum of the C-D stretching mode is measured. The chemical exchange of the chloroform hydrogen bonding partners is tracked by observing the time-dependent growth of off-diagonal peaks in the 2D-IR spectra. The measured substitution rate is 1/30 ps for an acetone molecule to replace a DMSO molecule in a chloroform-DMSO complex and 1/45 ps for a DMSO molecule to replace an acetone molecule in a chloroform-acetone complex. Free chloroform exists in the mixed solvent, and it acts as a reactive intermediate in the substitution reaction, analogous to a SN1 type reaction. From the measured rates and the equilibrium concentrations of acetone and DMSO, the dissociation rates for the chloroform-DMSO and chloroform-acetone complexes are found to be 1/24 ps and 1/5.5 ps, respectively. The difference between the measured rate for the complete substitution reaction and the rate for complex dissociation corresponds to the diffusion limited rate. The estimated diffusion limited rate agrees well with the result from a Smoluchowski treatment of diffusive reactions. PMID:18855462

  8. Simultaneous quantitative Acetone-PLIF measurements for determination of temperature and gas composition fields in an IC-engine

    NASA Astrophysics Data System (ADS)

    Trost, Johannes; Löffler, Micha; Zigan, Lars; Leipertz, Alfred

    Acetone-PLIF is a preferable technique to measure temperature and exhaust gas distribution simultaneously in an optical accessible internal combustion engines with exhaust gas recirculation. In this work calibration data of the fluorescence signal intensity of acetone for excitation wavelengths of 248 nm and 308 nm is given for gasoline engine relevant conditions. An examplary application on a fired transparent Direct Injection Spark Ignition (DISI) engine is presented to clarify the accuracy of the calibration data.

  9. Biocatalytic Michael-type additions of acetaldehyde to nitroolefins with the proline-based enzyme 4-oxalocrotonate tautomerase yielding enantioenriched γ-nitroaldehydes.

    PubMed

    Geertsema, Edzard M; Miao, Yufeng; Tepper, Pieter G; de Haan, Pim; Zandvoort, Ellen; Poelarends, Gerrit J

    2013-10-18

    Call me Michaelase: The enzyme 4-oxalocrotonate tautomerase (4-OT) promiscuously catalyzes the Michael-type addition of acetaldehyde to a collection of aromatic and aliphatic nitroolefins with high stereoselectivity producing precursors of γ-aminobutyric acid (GABA) analogues. PMID:24115023

  10. One-Pot Synthesis of (S)-Baclofen via Aldol Condensation of Acetaldehyde with Diphenylprolinol Silyl Ether Mediated Asymmetric Michael Reaction as a Key Step.

    PubMed

    Hayashi, Yujiro; Sakamoto, Daisuke; Okamura, Daichi

    2016-01-01

    An efficient asymmetric total synthesis of (S)-baclofen was accomplished via a one-pot operation from commercially available materials using sequential reactions, such as aldol condensation of acetaldehyde, diphenylprolinol silyl ether mediated asymmetric Michael reaction of nitromethane, Kraus-Pinnick oxidation, and Raney Ni reduction. Highly enantioenriched baclofen was obtained in one pot with a good yield over four reactions. PMID:26636719

  11. Catalytic Upgrading of Biomass-Derived Compounds via C-C Coupling Reactions. Computational and Experimental Studies of Acetaldehyde and Furan Reactions in HZSM-5

    SciTech Connect

    Liu, Cong; Evans, Tabitha J.; Cheng, Lei; Nimlos, Mark R.; Mukarakate, Calvin; Robichaud, David J.; Assary, Rajeev S.; Curtiss, Larry A.

    2015-10-02

    These catalytic C–C coupling and deoxygenation reactions are essential for upgrading of biomass-derived oxygenates to fuel-range hydrocarbons. Detailed understanding of mechanistic and energetic aspects of these reactions is crucial to enabling and improving the catalytic upgrading of small oxygenates to useful chemicals and fuels. Using periodic density functional theory (DFT) calculations, we have investigated the reactions of furan and acetaldehyde in an HZSM-5 zeolite catalyst, a representative system associated with the catalytic upgrading of pyrolysis vapors. Comprehensive energy profiles were computed for self-reactions (i.e., acetaldehyde coupling and furan coupling) and cross-reactions (i.e., acetaldehyde + furan) of this representative mixture. Major products proposed from the computations are further confirmed using temperature controlled mass spectra measurements. Moreover, the computational results show that furan interacts with acetaldehyde in HZSM-5 via an alkylation mechanism, which is more favorable than the self-reactions, indicating that mixing furans with aldehydes could be a promising approach to maximize effective C–C coupling and dehydration while reducing the catalyst deactivation (e.g., coke formation) from aldehyde condensation.

  12. Preferential oxidation of methanol and carbon monoxide for gas cleanup during methanol fuel processing

    SciTech Connect

    Birdsell, S.A.; Vanderborgh, N.E.; Inbody, M.A.

    1993-07-01

    Methanol fuel processing generates hydrogen for low-temperature, PEM fuel cell systems now being considered for transportation and other applications. Although liquid methanol fuel is convenient for this application, existing fuel processing techniques generate contaminants that degrade fuel cell performance. Through mathematical models and laboratory experiments chemical processing is described that removes CO and other contaminants from the anode feed stream.

  13. Methanol as a gasoline extender: a critique.

    PubMed

    Wigg, E E

    1974-11-29

    The tests conducted with the three vehicles at different emission control levels suggest that, in the area of fuel economy and emissions, potential benefits with methanol blends are related to carburetion and are only significant in the case of the rich-operating cars built before emission control standards were imposed. Theoretical considerations related to methanol's leaning effect on carburetion support this conclusion. Potential advantages for methanol in these areas are therefore continuously diminishing as the older cars leave the roads. At present, these older cars use only about one-fourth of the totalc motor gasoline consumed and, before methanol could be used on a large scale, this fraction would be much smaller. The use of methanol in gasoline would almost certainly create severe product quality problems. Water contamination could lead to phase separation in the distribution system and possibly in the car tank as well, and this would require additional investment in fuel handling and blending equipment. Excess fuel volatility in hot weather may also have adverse effects on car performance if the methanol blends include typical concentrations of butanes and pentanes. Removal of these light hydrocarbon components would detract from methanol's role as a gasoline extender and if current fuel volatility specifications were maintained, its use could lead to a net loss in the total available energy for use in motor fuels. Car performance problems associated with excessively lean operation would also be expected in the case of a significant proportion of late-model cars which are adjusted to operate on lean fuel-air mixtures. If methanol does become available in large quantities, these factors suggest that it would be more practical to use it for purposes other than those related to the extending of motor gasoline, such as for gas turbines used for electric power generation. In this case, the "pure" methanol would act as a cleanburning fuel, having none of the

  14. Vitamin B1-catalyzed acetoin formation from acetaldehyde: a key step for upgrading bioethanol to bulk C₄ chemicals.

    PubMed

    Lu, Ting; Li, Xiukai; Gu, Liuqun; Zhang, Yugen

    2014-09-01

    The production of bulk chemicals and fuels from renewable biobased feedstocks is of significant importance for the sustainability of human society. The production of ethanol from biomass has dramatically increased and bioethanol also holds considerable potential as a versatile building block for the chemical industry. Herein, we report a highly selective process for the conversion of ethanol to C4 bulk chemicals, such as 2,3-butanediol and butene, via a vitamin B1 (thiamine)-derived N-heterocyclic carbene (NHC)-catalyzed acetoin condensation as the key step to assemble two C2 acetaldehydes into a C4 product. The environmentally benign and cheap natural catalyst vitamin B1 demonstrates high selectivity (99%), high efficiency (97% yield), and high tolerance toward ethanol and water impurities in the acetoin reaction. The results enable a novel and efficient process for ethanol upgrading. PMID:25044300

  15. Biotechnological production of methanol from waste biomass

    SciTech Connect

    Kozak, R.; Morris, D.

    1995-12-01

    The production of methanol (CH{sub 3}OH) from waste biomass is possible through the use of genetically modified bacteria. The biomass to methanol conversion process makes use of a naturally occurring, direct aerobic enzymatic system referred to as oxidative demethylation. Methoxy groups are stripped off of lignin and lignin like plant substances (approximately fifty percent of all plant biomass) and hydrolyzed to form methanol. Since the biotech process is stoichiometric, potentially every methoxy group in the lignin feedstock can be converted to methanol fuel. Approximately 30-35% of lignin is a methoxy compound that can be converted. Biotechnological conversion could produce up to 100 gallons/ton or 20 billion gallons a year of methanol from waste biomass. Current work has focused on the genetic modification of the enzymatic conversion process to reach commercial production. The goals of this research are; increase product yields, implement an operon {open_quotes}switch{close_quotes} mechanism to exploit multiple feedstocks, and produce environmentally safe by-products. Progress on these topics will be reported.

  16. Opportunities for coal to methanol conversion

    SciTech Connect

    Not Available

    1980-04-01

    The accumulations of mining residues in the anthracite coal regions of Pennsylvania offer a unique opportunity to convert the coal content into methanol that could be utilized in that area as an alternative to gasoline or to extend the supplies through blending. Additional demand may develop through the requirements of public utility gas turbines located in that region. The cost to run this refuse through coal preparation plants may result in a clean coal at about $17.00 per ton. After gasification and synthesis in a 5000 ton per day facility, a cost of methanol of approximately $3.84 per million Btu is obtained using utility financing. If the coal is to be brought in by truck or rail from a distance of approximately 60 miles, the cost of methanol would range between $4.64 and $5.50 per million Btu depending upon the mode of transportation. The distribution costs to move the methanol from the synthesis plant to the pump could add, at a minimum, $2.36 per million Btu to the cost. In total, the delivered cost at the pump for methanol produced from coal mining wastes could range between $6.20 and $7.86 per million Btu.

  17. Methanol Emission from Leaves (Enzymatic Detection of Gas-Phase Methanol and Relation of Methanol Fluxes to Stomatal Conductance and Leaf Development).

    PubMed Central

    Nemecek-Marshall, M.; MacDonald, R. C.; Franzen, J. J.; Wojciechowski, C. L.; Fall, R.

    1995-01-01

    We recently reported the detection of methanol emissions from leaves (R. MacDonald, R. Fall [1993] Atmos Environ 27A: 1709-1713). This could represent a substantial flux of methanol to the atmosphere. Leaf methanol production and emission have not been investigated in detail, in part because of difficulties in sampling and analyzing methanol. In this study we used an enzymatic method to convert methanol to a fluorescent product and verified that leaves from several species emit methanol. Methanol was emitted almost exclusively from the abaxial surfaces of hypostomatous leaves but from both surfaces of amphistomatous leaves, suggesting that methanol exits leaves via stomates. The role of stomatal conductance was verified in experiments in which stomates were induced to close, resulting in reduced methanol. Free methanol was detected in bean leaf extracts, ranging from 26.8 [mu]g g-1 fresh weight in young leaves to 10.0 [mu]g g-1 fresh weight in older leaves. Methanol emission was related to leaf development, generally declining with increasing leaf age after leaf expansion; this is consistent with volatilization from a cellular pool that declines in older leaves. It is possible that leaf emission could be a major source of methanol found in the atmosphere of forests. PMID:12228547

  18. Interpretation of PAN, acetone and acetylene measurements from the MIPAS-E

    NASA Astrophysics Data System (ADS)

    Moore, D. P.; Remedios, J. J.; Parker, R. J.

    2009-04-01

    Emissions of anthropogenic pollution, from biomass burning events in particular, result in the injection of a wide range of carbon compounds into the atmosphere. Carbon monoxide (CO), methane (CH4) and volatile organic compounds (VOCs) are released in significant amounts, affecting both the oxidation capacity of the troposphere and ozone production. Upper troposphere (UT) measurements of PAN, acetone and acetylene have, in the past, been generally limited to sporadic in situ sampling during specialised campaign periods. The recent rapid progress in both the detection and retrieval of many VOC species from spaceborne instrumentation has been large. It has recently been established that the observation of the global distribution of VOCs in the UT can be made by measurements provided by instruments such as the Michelson Interferometer for Passive Atmospheric Sounding onboard ENVISAT (MIPAS-E) or the Atmospheric Chemistry Experiment (ACE) onboard SCISAT-1. In this work, we discuss the ability of MIPAS-E to provide new global measurements of acetone in the UT. We also describe both the distribution and seasonality observed in UT PAN volume mixing ratios (vmrs). From the MIPAS-E acetylene measurements, we analyse the extent and magnitude of the chemical isolation observed over the Middle East during August 2003. We show that this enhancement is due to fast westward transport from Asia via the Easterly Jet associated with the Asian monsoon anticyclone. A full error analysis is carried out for each of the three gases we analyse. Previous work has shown that characteristic infrared signatures of PAN, acetone and acetylene can be detected in MIPAS-E thermal emission spectra, with the 787-790 cm-1, 1216-1218 cm-1 and 776.0-776.15 cm-1 spectral ranges respectively being particularly sensitive to changes in each of the gases. We invert the measured MIPAS-E spectra into vmrs using an independent offline-retrieval scheme based on the optimal estimation approach which was

  19. Methanol as an alternative automotive fuel: CMC's approach and experience

    SciTech Connect

    Ashton, P.M.; McCurdy, G.; Osler, C.F.

    1983-08-01

    This paper highlights experiences of Canadian Methanol Canadien (CMC) in demonstration of both methanol fuel and methanol-gasoline blends in Winnipeg since 1980 and describes CMC's commercial and technical approach to development of methanol as an alternative automotive fuel. CMC's marketing approach is to equip existing retail service station outlets with the capability to dispense a full slate of fuels (methanol, methanol containing gasolines, as well as conventional fuels) with fuel blending occurring at the service station location. In this way, the fuel distribution infrastructure can be put in place to service simultaneously both existing vehicles (with a range of methyl gasoline blends) and new methanol fuelled vehicles while assuming a high degree of blended fuel quality in a cost-effective manner. It is concluded that methanol and methanol containing gasolines are excellent transportation fuels for Canada and elsewhere, and can be readily integrated into existing transport fuel retail infrastructure.

  20. Methanol-use options study: Phase 1. Final report

    SciTech Connect

    Not Available

    1981-05-01

    This volume contains data on the transportation and distribution of methanol fuels and end uses of methanol. Appendix D describes the transportation and distribution of pure methanol and methanol-gasoline blend fuels from production facilities to bulk terminals. It includes both the technical and commercial aspects of the distribution system. It indicates that the particular properties of methanol require slightly different technology than petroleum products for bulk distribution. Likewise, the adaptation of pure methanol and blends into the present petroleum products distribution system will require slight changes, both technical and commercial. Appendix E examines the use of methanol fuels in the transportation sector in terms of: (1) impacts on engine performance and engine design as well as passenger safety and health; (2) the implications for methanol fuels of government regulations and policies in the area of transportation; and finally, (3) the costs of methanol utilization in transportation for both the consumer and the manufacturer.