Science.gov

Sample records for acetaldehyde ethyl acetate

  1. Ethyl acetate

    Integrated Risk Information System (IRIS)

    Ethyl acetate ; CASRN 141 - 78 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  2. 21 CFR 584.200 - Ethyl alcohol containing ethyl acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ethyl alcohol containing ethyl acetate. 584.200... Ethyl alcohol containing ethyl acetate. The feed additive ethyl alcohol containing ethyl acetate meets the requirement of 27 CFR 21.62, being not less than 92.5 percent ethyl alcohol, each 100...

  3. 21 CFR 584.200 - Ethyl alcohol containing ethyl acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ethyl alcohol containing ethyl acetate. 584.200... Ethyl alcohol containing ethyl acetate. The feed additive ethyl alcohol containing ethyl acetate meets the requirement of 27 CFR 21.62, being not less than 92.5 percent ethyl alcohol, each 100...

  4. 21 CFR 584.200 - Ethyl alcohol containing ethyl acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ethyl alcohol containing ethyl acetate. 584.200... Ethyl alcohol containing ethyl acetate. The feed additive ethyl alcohol containing ethyl acetate meets the requirement of 27 CFR 21.62, being not less than 92.5 percent ethyl alcohol, each 100...

  5. 21 CFR 584.200 - Ethyl alcohol containing ethyl acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ethyl alcohol containing ethyl acetate. 584.200... Ethyl alcohol containing ethyl acetate. The feed additive ethyl alcohol containing ethyl acetate meets the requirement of 27 CFR 21.62, being not less than 92.5 percent ethyl alcohol, each 100...

  6. 21 CFR 584.200 - Ethyl alcohol containing ethyl acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ethyl alcohol containing ethyl acetate. 584.200... Ethyl alcohol containing ethyl acetate. The feed additive ethyl alcohol containing ethyl acetate meets the requirement of 27 CFR 21.62, being not less than 92.5 percent ethyl alcohol, each 100...

  7. Manufacturing Ethyl Acetate From Fermentation Ethanol

    NASA Technical Reports Server (NTRS)

    Rohatgi, Naresh K.; Ingham, John D.

    1991-01-01

    Conceptual process uses dilute product of fermentation instead of concentrated ethanol. Low-concentration ethanol, extracted by vacuum from fermentation tank, and acetic acid constitutes feedstock for catalytic reaction. Product of reaction goes through steps that increases ethyl acetate content to 93 percent by weight. To conserve energy, heat exchangers recycle waste heat to preheat process streams at various points.

  8. 21 CFR 173.228 - Ethyl acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethyl acetate. 173.228 Section 173.228 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Solvents, Lubricants, Release Agents and...

  9. Pallidol hexa­acetate ethyl acetate monosolvate

    PubMed Central

    Mao, Qinyong; Taylor, Dennis K.; Ng, Seik Weng; Tiekink, Edward R. T.

    2013-01-01

    The entire mol­ecule of pallidol hexa­acetate {systematic name: (±)-(4bR,5R,9bR,10R)-5,10-bis­[4-(acet­yloxy)phen­yl]-4b,5,9b,10-tetra­hydro­indeno­[2,1-a]indene-1,3,6,8-tetrayl tetra­acetate} is completed by the application of twofold rotational symmetry in the title ethyl acetate solvate, C40H34O12·C4H8O2. The ethyl acetate mol­ecule was highly disordered and was treated with the SQUEEZE routine [Spek (2009 ▶). Acta Cryst. D65, 148–155]; the crystallographic data take into account the presence of the solvent. In pallidol hexa­acetate, the dihedral angle between the fused five-membered rings (r.m.s. deviation = 0.100 Å) is 54.73 (6)°, indicating a significant fold in the mol­ecule. Significant twists between residues are also evident as seen in the dihedral angle of 80.70 (5)° between the five-membered ring and the pendent benzene ring to which it is attached. Similarly, the acetate residues are twisted with respect to the benzene ring to which they are attached [C—O(carb­oxy)—C—C torsion angles = −70.24 (14), −114.43 (10) and −72.54 (13)°]. In the crystal, a three-dimensional architecture is sustained by C—H⋯O inter­actions which encompass channels in which the disordered ethyl acetate mol­ecules reside. PMID:24046702

  10. A PBPK MODEL FOR EVALUATING THE IMPACT OF ALDEHYDE DEHYDROGENASE POLYMORPHISMS ON COMPARATIVE RAT AND HUMAN NASAL TISSUE ACETALDEHYDE DOSIMETRY

    EPA Science Inventory

    ABSTRACT: Acetaldehyde is an important intermediate in chemical synthesis and a byproduct of normal oxidative metabolism of several industrially important compounds including ethanol, ethyl acetate and vinyl acetate. Chronic inhalation of acetaldehyde leads to degeneratio...

  11. A PBPK model for evaluating the impact of aldehyde dehydrogenase polymorphisms on comparative rat and human nasal tissue acetaldehyde dosimetry*

    EPA Science Inventory

    Acetaldehyde is an important intermediate in the chemical synthesis and normal oxidative metabolism of several industrially important compounds, including ethanol, ethyl acetate, and vinyl acetate. Chronic inhalation of acetaldehyde leads to degeneration of the olfactory and resp...

  12. Acetaldehyde

    Integrated Risk Information System (IRIS)

    Acetaldehyde ; CASRN 75 - 07 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  13. Kinetics of Ethyl Acetate Synthesis Catalyzed by Acidic Resins

    ERIC Educational Resources Information Center

    Antunes, Bruno M.; Cardoso, Simao P.; Silva, Carlos M.; Portugal, Ines

    2011-01-01

    A low-cost experiment to carry out the second-order reversible reaction of acetic acid esterification with ethanol to produce ethyl acetate is presented to illustrate concepts of kinetics and reactor modeling. The reaction is performed in a batch reactor, and the acetic acid concentration is measured by acid-base titration versus time. The…

  14. Determinations of ethanol, acetaldehyde and acetate in blood and urine during alcohol oxidation in man.

    PubMed

    Tsukamoto, S; Muto, T; Nagoya, T; Shimamura, M; Saito, M; Tainaka, H

    1989-01-01

    Blood and urine samples were analyzed for ethanol, acetaldehyde and acetate during alcohol oxidation in Japanese men by head space gas chromatography, following the consumption of 16 ml/kg of beer during a 20 min period. The maximum level of blood/urine ethanol was found to be 15-17 mM (20-22 mM), while that of acetaldehyde in a flusher and in non-flushers was 20 microM (52 microM) and 2-5 microM (10-13 microM), respectively. Acetate levels in these groups ranged from 0.2 mM (0.1 mM) to 0.8 mM (1.0 mM). Blood ethanol levels were dose dependent, whereas acetaldehyde and acetate levels reflected individual metabolic rates. The relative concentrations of ethanol and acetaldehyde in blood and that of acetate in alcohol metabolism could be summarized as follows: 7500 (15 mM): 1-3 (2-5 microM); 250-400 (0.5-0.8 mM) for non-flushers; and 7500 (15 mM): 5-10 (10-20 microM): 250-400 (0.5-0.8 mM) for a flusher.

  15. Fragrance material review on ethyl phenyl carbinyl acetate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of ethyl phenyl carbinyl acetate when used as a fragrance ingredient is presented. Ethyl phenyl carbinyl acetate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for ethyl phenyl carbinyl acetate were evaluated, then summarized, and includes: physical properties; acute toxicity; skin irritation; and skin sensitization data. A safety assessment of the entire AAASAE will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  16. Fragrance material review on 2-(p-tolyloxy)ethyl acetate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 2-(p-tolyloxy)ethyl acetate when used as a fragrance ingredient is presented. 2-(p-tolyloxy)ethyl acetate is a member of the fragrance structural group aryl alkyl alcohol simple acid esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2-(p-tolyloxy)ethyl acetate were evaluated, then summarized, and includes physical properties data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  17. Nitrosation of glycine ethyl ester and ethyl diazoacetate to give the alkylating agent and mutagen ethyl chloro(hydroximino)acetate.

    PubMed

    Zhou, Lin; Haorah, James; Chen, Sheng C; Wang, Xiaojie; Kolar, Carol; Lawson, Terence A; Mirvish, Sidney S

    2004-03-01

    Whereas nitrosation of secondary amines produces nitrosamines, amino acids with primary amino groups and glycine ethyl ester were reported to react with nitrite to give unidentified agents that alkylated 4-(p-nitrobenzyl)pyridine to produce purple dyes and be direct mutagens in the Ames test. We report here that treatment of glycine ethyl ester at 37 degrees C with excess nitrite acidified with HCl, followed by ether extraction, gave 30-40% yields of a product identified as ethyl chloro(hydroximino)acetate [ClC(=NOH)COOEt, ECHA] and a 9% yield of ethyl chloroacetate. The ECHA was identical to that synthesized by a known method from ethyl acetoacetate, strongly alkylated nitrobenzylpyridine, and may have arisen by N-nitrosation of glycine ethyl ester to give ethyl diazoacetate, which was C-nitrosated and reacted with chloride to give ECHA. Nitrosation of ethyl diazoacetate also yielded ECHA. Ethyl nitroacetate was not an intermediate as its nitrosation did not produce ECHA. ECHA reacted with aniline to give ethyl (hydroxamino)(phenylimino)acetate [PhN=C(NHOH)CO2Et]. This product was different from ethyl [(phenylamino)carbonyl]carbamate [PhNHC(=O)NHCO2Et], which was synthesized by reacting ethyl isocyanatoformate (OCN.CO2Et) with aniline. ECHA reacted with guanosine to give a derivative, which may have been a guanine-C(=NOH)CO2Et derivative. ECHA showed moderate toxicity and weak but significant mutagenicity without activation in Salmonella typhimurium TA-100 (mean, 1.31 x control value for 12-18 microg/plats) and for V79 mammalian cells (1.5-1.7 x control value for 60-100 microM). In conclusion, gastric nitrosation of glycine derivatives such as peptides with a N-terminal glycine might produce ECHA analogues that alkylate bases of gastric mucosal DNA and thereby initiate gastric cancer.

  18. Cytotoxic constituents of ethyl acetate fraction from Dianthus superbus.

    PubMed

    Ding, Chengli; Zhang, Wu; Li, Jie; Lei, Jiachuan; Yu, Jianqing

    2013-01-01

    The ethyl acetate fraction (EE-DS) from Dianthus superbus was found to possess the cytotoxic activity against cancer cells in previous study. To investigate cytotoxic constituents, the bioassay-guided isolation of compounds from EE-DS was performed. Two dianthramides (1 and 2), three flavonoids (3-5), two coumarins (6 and 7) and three other compounds (8-10) were obtained. Structures of isolated compounds were identified by spectroscopic analysis. Cytotoxicity of the compounds against HepG2 cells was evaluated. Compound 1 showed the strongest cytotoxicity, compounds 10, 4, 3 and 5 had moderate cytotoxicity.

  19. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.

    PubMed

    Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S

    2016-07-08

    Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016.

  20. Hydroxide as general base in the saponification of ethyl acetate.

    PubMed

    Mata-Segreda, Julio F

    2002-03-13

    The second-order rate constant for the saponification of ethyl acetate at 30.0 degrees C in H(2)O/D(2)O mixtures of deuterium atom fraction n (a proton inventory experiment) obeys the relation k(2)(n) = 0.122 s(-1) M(-1) (1 - n + 1.2n) (1 - n + 0.48n)/(1 - n + 1.4n) (1 - n + 0.68n)(3). This result is interpreted as a process where formation of the tetrahedral intermediate is the rate-determining step and the transition-state complex is formed via nucleophilic interaction of a water molecule with general-base assistance from hydroxide ion, opposite to the direct nucleophilic collision commonly accepted. This mechanistic picture agrees with previous heavy-atom kinetic isotope effect data of Marlier on the alkaline hydrolysis of methyl formate.

  1. Stability and interface properties of thin cellulose ester films adsorbed from acetone and ethyl acetate solutions.

    PubMed

    Amim, Jorge; Kosaka, Priscila M; Petri, Denise F S; Maia, Francisco C B; Miranda, Paulo B

    2009-04-15

    Stability and interface properties of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) films adsorbed from acetone or ethyl acetate onto Si wafers have been investigated by means of contact angle measurements and atomic force microscopy (AFM). Surface energy (gamma(S)(total)) values determined for CAP adsorbed from acetone are larger than those from ethyl acetate. In the case of CAB films adsorbed from ethyl acetate and acetone were similar. Dewetting was observed by AFM only for CAP films prepared from ethyl acetate. Positive values of effective Hamaker constant (A(eff)) were found only for CAP prepared from ethyl acetate, corroborating with dewetting phenomena observed by AFM. On the contrary, negative values of A(eff) were determined for CAP and CAB prepared from acetone and for CAB prepared from ethyl acetate, corroborating with experimental observations. Sum frequency generation (SFG) vibrational spectra indicated that CAP and CAB films prepared from ethyl acetate present more alkyl groups oriented perpendicularly to the polymer-air interface than those films prepared from acetone. Such preferential orientation corroborates with macroscopic contact angle measurements. Moreover, SFG spectra showed that acetone binds strongly to Si wafers, creating a new surface for CAP and CAB films.

  2. Atmospheric Oxidation Mechanisms for Diethyl Ether and its Oxidation Products, Ethyl Formate and Ethyl Acetate.

    NASA Astrophysics Data System (ADS)

    Orlando, J. J.; Tyndall, G. S.

    2006-12-01

    Carbon-containing compounds are present in the earth's atmosphere as the result of emissions from natural and anthropogenic sources. Their oxidation in the atmosphere, initiated by such oxidants as OH, ozone, and nitrate radicals, leads to potentially harmful secondary pollutants such as ozone, carbonyl species, organic acids and aerosols. Ethers and esters are two classes of compounds that contribute to the complex array of organic compounds found in anthropogenically-influenced air. Additional ester is present as a result of the oxidation of the ethers. In this paper, the oxidation of diethyl ether and its two main oxidation products, ethyl formate and ethyl acetate, are studied over ranges of temperature, oxygen partial pressure, and NOx concentration, using an environmental chamber / FTIR absorption technique. Major end-products (the esters from diethyl ether; organic acids and anhydrides from the esters) are quantified, and these data are interpreted in terms of the chemistry of the various alkoxy and peroxy radicals generated. Emphasis is placed on the effects of chemical activation on the behavior of the alkoxy radicals, as well as on a novel peroxy radical rearrangement that may contribute to the observed products of ether oxidation under some conditions. Finally, the data are used, in conjunction with data on similar species, to provide a general representation of ether and ester oxidation in the atmosphere.

  3. Effect of ethanol, acetaldehyde, acetic Acid, and ethylene on changes in respiration and respiratory metabolites in potato tubers.

    PubMed

    Rychter, A; Janes, H W; Chin, C K; Frenkel, C

    1979-07-01

    Ethanol, acetaldehyde, and acetic acid, when applied in a volatile state in air to potato tubers, led to a climacteric-like upsurge in respiration. The respiratory upsurge was markedly enhanced when the volatiles were applied in 100% O(2).Ethanol induced a decline in the level of 2-phosphoglyceric acid and phosphoenolpyruvate while leading to the accumulation of tricarboxylic acid cycle intermediates including isocitrate and alpha-ketoglutarate. The action of these compounds was similar to, but independent of, the action of ethylene.

  4. Wet in situ transesterification of microalgae using ethyl acetate as a co-solvent and reactant.

    PubMed

    Park, Jeongseok; Kim, Bora; Chang, Yong Keun; Lee, Jae W

    2017-04-01

    This study addresses wet in situ transesterification of microalgae for the production of biodiesel by introducing ethyl acetate as both reactant and co-solvent. Ethyl acetate and acid catalyst are mixed with wet microalgae in one pot and the mixture is heated for simultaneous lipid extraction and transesterification. As a single reactant and co-solvent, ethyl acetate can provide higher FAEE yield and more saccharification of carbohydrates than the case of binary ethanol and chloroform as a reactant and a co-solvent. The optimal yield was 97.8wt% at 114°C and 4.06M catalyst with 6.67mlEtOAC/g dried algae based on experimental results and response surface methodology (RSM). This wet in situ transesterification of microalgae using ethyl acetate doesn't require an additional co-solvent and it also promises more economic benefit as combining extraction and transesterification in a single process.

  5. Screening of Methanol Extract and Ethyl Acetate Fraction of Abies webbiana Lindl. for Neuropharmacological Activities

    PubMed Central

    Parkash, O.; Kumar, D.; Kumar, S.

    2015-01-01

    Despite a long traditional of use of Abies webbiana Lindl. (Talispatra; family-Pinaceae) in the treatment of mental disorders, the plant has not been investigated systematically to validate its traditional claims. Thus, the present investigation was undertaken with an objective to investigate neuropharmacological activities of methanol extract of Abies webbiana aerial parts and its ethyl acetate fraction. Properly identified aerial parts were defatted with petroleum ether and then extracted with methanol in a Soxhlet apparatus. Ethyl acetate fraction was prepared by partitioning methanol extract with ethyl acetate using standard procedure. In acute toxicity study, no mortality was observed in animals after oral administration of 2 g/kg dose of methanol extract. The methanol extract (200 or 400 mg/kg, p.o.) and ethyl acetate fraction (25 or 50 mg/kg, p.o.) were evaluated for antianxiety, anticonvulsant, antidepressant, sedative, antistress and analgesic activities using well established models. The methanol extract and ethyl acetate fraction of Abies webbiana aerial parts exhibited significant antianxiety, anticonvulsant, antidepressant, sedative, antistress and analgesic activities with respect to control. Preliminary phytochemical screening showed presence of flavonoids in bioactive ethyl acetate fraction of Abies webbiana aerial parts. It is finally concluded that flavonoids are the bioactive constituents responsible for most of neuropharmacological activities of Abies webbiana. PMID:26798167

  6. Screening of Methanol Extract and Ethyl Acetate Fraction of Abies webbiana Lindl. for Neuropharmacological Activities.

    PubMed

    Parkash, O; Kumar, D; Kumar, S

    2015-01-01

    Despite a long traditional of use of Abies webbiana Lindl. (Talispatra; family-Pinaceae) in the treatment of mental disorders, the plant has not been investigated systematically to validate its traditional claims. Thus, the present investigation was undertaken with an objective to investigate neuropharmacological activities of methanol extract of Abies webbiana aerial parts and its ethyl acetate fraction. Properly identified aerial parts were defatted with petroleum ether and then extracted with methanol in a Soxhlet apparatus. Ethyl acetate fraction was prepared by partitioning methanol extract with ethyl acetate using standard procedure. In acute toxicity study, no mortality was observed in animals after oral administration of 2 g/kg dose of methanol extract. The methanol extract (200 or 400 mg/kg, p.o.) and ethyl acetate fraction (25 or 50 mg/kg, p.o.) were evaluated for antianxiety, anticonvulsant, antidepressant, sedative, antistress and analgesic activities using well established models. The methanol extract and ethyl acetate fraction of Abies webbiana aerial parts exhibited significant antianxiety, anticonvulsant, antidepressant, sedative, antistress and analgesic activities with respect to control. Preliminary phytochemical screening showed presence of flavonoids in bioactive ethyl acetate fraction of Abies webbiana aerial parts. It is finally concluded that flavonoids are the bioactive constituents responsible for most of neuropharmacological activities of Abies webbiana.

  7. 40 CFR 721.10074 - Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-dimethylcyclohexyl)ethyl ester. 721.10074 Section 721.10074 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10074 Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester. (a... acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester (PMN P-05-568; CAS No. 477218-59-0)...

  8. 40 CFR 721.10074 - Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-dimethylcyclohexyl)ethyl ester. 721.10074 Section 721.10074 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10074 Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester. (a... acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester (PMN P-05-568; CAS No. 477218-59-0)...

  9. 40 CFR 721.10074 - Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-dimethylcyclohexyl)ethyl ester. 721.10074 Section 721.10074 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10074 Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester. (a... acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester (PMN P-05-568; CAS No. 477218-59-0)...

  10. 40 CFR 721.10074 - Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-dimethylcyclohexyl)ethyl ester. 721.10074 Section 721.10074 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10074 Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester. (a... acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester (PMN P-05-568; CAS No. 477218-59-0)...

  11. 40 CFR 721.10074 - Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-dimethylcyclohexyl)ethyl ester. 721.10074 Section 721.10074 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10074 Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester. (a... acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester (PMN P-05-568; CAS No. 477218-59-0)...

  12. Ethyl acetate-n-butanol gradient solvent system for high-speed countercurrent chromatography to screen bioactive substances in okra.

    PubMed

    Ying, Hao; Jiang, Heyuan; Liu, Huan; Chen, Fangjuan; Du, Qizhen

    2014-09-12

    High-speed countercurrent chromatographic separation (HSCCC) possesses the property of zero-loss of sample, which is very useful for the screening of bioactive components. In the present study, the ethyl acetate-n-butanol gradient HSCCC solvent system composed of n-hexane-ethyl acetate-n-butanol-water was investigated for the screening of bioactive substances. To screen the antiproliferative compounds in okra extract, we used the stationary phase ethyl acetate-n-butanol-water (1:1:10) as the stationary phase, and eluted the antiproliferative components by 6-steps of gradient using mobile phases n-hexane-ethyl acetate (1:2), n-hexane-ethyl acetate (1:4), n-hexane-ethyl acetate (0:4), n-butanol-ethyl acetate (1:4) n-butanol-ethyl acetate (1:2), n-butanol-ethyl acetate (2:2), and n-butanol-ethyl acetate (2:1). The fractions collected from HSCCC separation with the gradient solvent system were assayed for antiproliferative activity against cancer cells. Bioactive components were identified: a major anti-cancer compound, 4'-hydroxy phenethyl trans-ferulate, with middle activity, and a minor anti-cancer compound, carolignan, with strong activity. The result shows that the gradient solvent system is potential for the screening of bioactive compounds from natural products.

  13. The effect of flooding on the exchange of the volatile C2-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphere

    NASA Astrophysics Data System (ADS)

    Rottenberger, S.; Kleiss, B.; Kuhn, U.; Wolf, A.; Piedade, M. T. F.; Junk, W.; Kesselmeier, J.

    2008-02-01

    The effect of root inundation on the leaf emissions of ethanol, acetaldehyde and acetic acid was investigated with 2-3 years old tree seedlings of four Amazonian floodplain species by applying dynamic cuvette systems under greenhouse conditions. Emissions were monitored over a period of several days of inundation using a combination of Proton Transfer Reaction Mass Spectrometry (PTR-MS) and conventional techniques (HPLC, ion chromatography). Under non-flooded conditions, none of the species exhibited significant emissions of any of the compounds. A slight deposition of acetaldehyde and acetic acid was mainly observed, instead. Tree species specific variations in deposition velocities were largely due to variations in stomatal conductance. Flooding of the roots resulted in leaf emissions of ethanol and acetaldehyde by all species, while emissions of acetic acid occurred only by the species exhibiting the highest ethanol and acetaldehyde emission rates. All three compounds showed a similar diurnal emission profile, each displaying an emission burst in the morning, followed by a decline in the evening. This concurrent behavior supports the conclusion, that all three compounds emitted by the leaves are derived from ethanol produced in the roots by alcoholic fermentation, transported to the leaves with the transpiration stream and finally partly converted to acetaldehyde and acetic acid by enzymatic processes. Co-emissions and peaking in the early morning confirmed that root ethanol, after transportation with the transpiration stream to the leaves and enzymatic oxidation to acetaldehyde and acetate, is the metabolic precursor for all compounds emitted. Emission rates substantially varied among tree species, with maxima differing by up to two orders of magnitude (3-200 nmol m-2 min-1 for ethanol and 5-500 nmol m-2 min-1 for acetaldehyde). Acetic acid emissions reached 12 nmol m-2 min-1. The observed differences in emission rates between the tree species are discussed

  14. The effect of flooding on the exchange of the volatile C2-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphere

    NASA Astrophysics Data System (ADS)

    Rottenberger, S.; Kleiss, B.; Kuhn, U.; Wolf, A.; Piedade, M. T. F.; Junk, W.; Kesselmeier, J.

    2008-08-01

    The effect of root inundation on the leaf emissions of ethanol, acetaldehyde and acetic acid in relation to assimilation and transpiration was investigated with 2 3 years old tree seedlings of four Amazonian floodplain species by applying dynamic cuvette systems under greenhouse conditions. Emissions were monitored over a period of several days of inundation using a combination of Proton Transfer Reaction Mass Spectrometry (PTR-MS) and conventional techniques (HPLC, ion chromatography). Under non-flooded conditions, none of the species exhibited measurable emissions of any of the compounds, but rather low deposition of acetaldehyde and acetic acid was observed instead. Tree species specific variations in deposition velocities were largely due to variations in stomatal conductance. Flooding of the roots resulted in leaf emissions of ethanol and acetaldehyde by all species, while emissions of acetic acid were only observed from the species exhibiting the highest ethanol and acetaldehyde emission rates. All three compounds showed a similar diurnal emission profile, each displaying an emission burst in the morning, followed by a decline in the evening. This concurrent behavior supports the conclusion, that all three compounds emitted by the leaves are derived from ethanol produced in the roots by alcoholic fermentation, transported to the leaves with the transpiration stream and finally partly converted to acetaldehyde and acetic acid by enzymatic processes. Co-emissions and peaking in the early morning suggest that root ethanol, after transportation with the transpiration stream to the leaves and enzymatic oxidation to acetaldehyde and acetate, is the metabolic precursor for all compounds emitted, though we can not totally exclude other production pathways. Emission rates substantially varied among tree species, with maxima differing by up to two orders of magnitude (25 1700 nmol m-2 min-1 for ethanol and 5 500 nmol m-2 min-1 for acetaldehyde). Acetic acid emissions

  15. Formation of ethyl acetate from whey by Kluyveromyces marxianus on a pilot scale.

    PubMed

    Löser, Christian; Urit, Thanet; Stukert, Anton; Bley, Thomas

    2013-01-10

    Whey arising in huge amounts during milk processing is a valuable renewable resource in the field of White Biotechnology. Kluyveromyces marxianus is able to convert whey-borne lactose into ethyl acetate, an environmentally friendly solvent. Formation of ethyl acetate as a bulk product is triggered by iron (Fe). K. marxianus DSM 5422 was cultivated aerobically in whey-borne medium originally containing 40 μg/L Fe, supplemented with 1, 3 or 10 mg/L Fe in the pre-culture, using an 1 L or 70 L stirred reactor. The highest Fe content in the pre-culture promoted yeast growth in the main culture causing a high sugar consumption for growth and dissatisfactory formation of ethyl acetate, while the lowest Fe content limited yeast growth and promoted ester synthesis but slowed down the process. An intermediate Fe dose (ca. 0.5 μg Fe/g sugar) lastly represented a compromise between some yeast growth, a quite high yield of ethyl acetate and an acceptable duration of the process. The mass of ethyl acetate related to the sugar consumed amounted to 0.113, 0.265 and 0.239 g/g in the three processes corresponding to 21.9%, 51.4% and 46.3% of the theoretically maximum yield. The performance on a pilot scale was somewhat higher than on lab scale.

  16. Characterization and Antioxidant Properties of Six Algerian Propolis Extracts: Ethyl Acetate Extracts Inhibit Myeloperoxidase Activity

    PubMed Central

    Boufadi, Yasmina Mokhtaria; Soubhye, Jalal; Riazi, Ali; Rousseau, Alexandre; Vanhaeverbeek, Michel; Nève, Jean; Boudjeltia, Karim Zouaoui; Van Antwerpen, Pierre

    2014-01-01

    Because propolis contains many types of antioxidant compounds such as polyphenols and flavonoids, it can be useful in preventing oxidative damages. Ethyl acetate extracts of propolis from several Algerian regions show high activity by scavenging free radicals, preventing lipid peroxidation and inhibiting myeloperoxidase (MPO). By fractioning and assaying ethyl acetate extracts, it was observed that both polyphenols and flavonoids contribute to these activities. A correlation was observed between the polyphenol content and the MPO inhibition. However, it seems that kaempferol, a flavonoid, contributes mainly to the MPO inhibition. This molecule is in a high amount in the ethyl acetate extract and demonstrates the best efficiency towards the enzyme with an inhibiting concentration at 50% of 4 ± 2 μM. PMID:24514562

  17. Behavioral effects of intraventricular injections of low doses of ethanol, acetaldehyde, and acetate in rats: studies with low and high rate operant schedules.

    PubMed

    Arizzi, Maria N; Correa, Merce; Betz, Adrienne J; Wisniecki, Anna; Salamone, John D

    2003-12-17

    Although ethanol is typically classed as a sedative-hypnotic, low doses of ethanol have been shown to stimulate locomotor activity in mice. However, in rats the typical response to peripheral administration of ethanol is a dose-dependent suppression of motor activity and operant responding. The present study was undertaken to determine the effects of intraventricular (ICV) infusions of ethanol, acetaldehyde, and acetate on operant performance in rats. ICV injections of ethanol, acetaldehyde, or acetate were given to rats previously trained on either a differential-reinforcement-of-low-rates-of-responding (DRL) 30-s schedule, which generates low rates of responding, or a fixed ratio 5 (FR5) schedule, which generates relatively high rates. Ethanol, acetaldehyde, and acetate all produced a rate-increasing effect in rats on the DRL 30-s schedule at moderate doses (2.8 and 1.4 micromol, respectively). Acetate also produced a rate-decreasing effect on the DRL 30-s schedule at a larger dose (8.8 micromol). Performance on the FR5 schedule was unaltered by ethanol and acetaldehyde, even at doses as high as 17.6 micromol. However, acetate produced a rate-decreasing effect on the FR5 schedule at doses of 4.4, 5.6, and 8.8 micromol. Central administration of low doses of ethanol and its metabolites can increase operant responding on some schedules in rats. Acetate is the substance that is most potent for producing rate-suppressing effects. These results indicate that the major metabolites of ethanol are pharmacologically active when injected into the brain, and suggest that acetate may mediate some of the rate-suppressing effects of ethanol, such as sedation, ataxia or motor slowing.

  18. Evaluation of the DNA damaging potential of cannabis cigarette smoke by the determination of acetaldehyde derived N2-ethyl-2'-deoxyguanosine adducts.

    PubMed

    Singh, Rajinder; Sandhu, Jatinderpal; Kaur, Balvinder; Juren, Tina; Steward, William P; Segerbäck, Dan; Farmer, Peter B

    2009-06-01

    Acetaldehyde is an ubiquitous genotoxic compound that has been classified as a possible carcinogen to humans. It can react with DNA to form primarily a Schiff base N(2)-ethylidene-2'-deoxyguanosine (N(2)-ethylidene-dG) adduct. An online column-switching valve liquid chromatography tandem mass spectrometry (LC-MS/MS) selected reaction monitoring (SRM) method was developed for the determination of N(2)-ethylidene-dG adducts in DNA following reduction with sodium cyanoborohydride (NaBH(3)CN) to the chemically stable N(2)-ethyl-2'-deoxyguanosine (N(2)-ethyl-dG) adduct. Accurate quantitation of the adduct was obtained by the addition of the [(15)N(5)]N(2)-ethyl-dG stable isotope-labeled internal standard prior to enzymatic hydrolysis of the DNA samples to 2'-deoxynucleosides with the incorporation of NaBH(3)CN in the DNA hydrolysis buffer. The method required 50 microg of hydrolyzed DNA on column for the analysis, and the limit of detection for N(2)-ethyl-dG was 2.0 fmol. The analysis of calf thymus DNA treated in vitro with acetaldehyde (ranging from 0.5 to 100 mM) or with the smoke generated from 1, 5, and 10 cannabis cigarettes showed linear dose-dependent increases in the level of N(2)-ethyl-dG adducts (r = 0.954 and r = 0.999, respectively). Similar levels (332.8 +/- 21.9 vs 348.4 +/- 19.1 adducts per 10(8) 2'-deoxynucleosides) of N(2)-ethyl-dG adducts were detected following the exposure of calf thymus DNA to 10 tobacco or 10 cannabis cigarettes. No significant difference was found in the levels of N(2)-ethyl-dG adducts in human lung DNA obtained from nonsmokers (n = 4) and smokers (n = 4) with the average level observed as 13.3 +/- 0.7 adducts per 10(8) 2'-deoxynucleosides. No N(2)-ethyl-dG adducts were detected in any of the DNA samples following analysis with the omission of NaBH(3)CN from the DNA hydrolysis buffer. In conclusion, these results provide evidence for the DNA damaging potential of cannabis smoke, implying that the consumption of cannabis

  19. Antiplasmodial Properties and Bioassay-Guided Fractionation of Ethyl Acetate Extracts from Carica papaya Leaves.

    PubMed

    Melariri, Paula; Campbell, William; Etusim, Paschal; Smith, Peter

    2011-01-01

    We investigated the antiplasmodial properties of crude extracts from Carica papaya leaves to trace the activity through bioassay-guided fractionation. The greatest antiplasmodial activity was observed in the ethyl acetate crude extract. C. papaya showed a high selectivity for P. falciparum against CHO cells with a selectivity index of 249.25 and 185.37 in the chloroquine-sensitive D10 and chloroquine-resistant DD2 strains, respectively. Carica papaya ethyl acetate extract was subjected to bioassay-guided fractionation to ascertain the most active fraction, which was purified and identified using high-pressure liquid chromatography (HPLC) and GC-MS (Gas chromatography-Mass spectrometry) methods. Linoleic and linolenic acids identified from the ethyl acetate fraction showed IC(50) of 6.88 μg/ml and 3.58 μg/ml, respectively. The study demonstrated greater antiplasmodial activity of the crude ethyl acetate extract of Carica papaya leaves with an IC(50) of 2.96 ± 0.14 μg/ml when compared to the activity of the fractions and isolated compounds.

  20. Wound healing properties of ethyl acetate fraction of Moringa oleifera in normal human dermal fibroblasts

    PubMed Central

    Gothai, Sivapragasam; Arulselvan, Palanisamy; Tan, Woan Sean; Fakurazi, Sharida

    2016-01-01

    Background/Aim: Wounds are the outcome of injuries to the skin that interrupt the soft tissue. Healing of a wound is a complex and long-drawn-out process of tissue repair and remodeling in response to injury. A large number of plants are used by folklore traditions for the treatment of cuts, wounds and burns. Moringa oleifera (MO) is an herb used as a traditional folk medicine for the treatment of various skin wounds and associated diseases. The underlying mechanisms of wound healing activity of ethyl acetate fraction of MO leaves extract are completely unknown. Materials and Methods: In the current study, ethyl acetate fraction of MO leaves was investigated for its efficacy on cell viability, proliferation and migration (wound closure rate) in human normal dermal fibroblast cells. Results: Results revealed that lower concentration (12.5 µg/ml, 25 µg/ml, and 50 µg/ml) of ethyl acetate fraction of MO leaves showed remarkable proliferative and migratory effect on normal human dermal fibroblasts. Conclusion: This study suggested that ethyl acetate fraction of MO leaves might be a potential therapeutic agent for skin wound healing by promoting fibroblast proliferation and migration through increasing the wound closure rate corroborating its traditional use. PMID:27069722

  1. Two new cucurbitane-type triterpenoid saponins isolated from ethyl acetate extract of Citrullus colocynthis fruit.

    PubMed

    Song, Fei; Dai, Bin; Zhang, Hai-Yan; Xie, Jian-Wei; Gu, Cheng-Zhi; Zhang, Jie

    2015-01-01

    Two new cucurbitacins I (1 and 2), together with eight known compounds (3-10), were isolated from the ethyl acetate extract of the fruit of Citrullus colocynthis. Compounds 3, 5-9 were isolated from C. colocynthis for the first time. The structures of new compounds were determined primarily from IR, HR-MS, 1D-, and 2D-NMR analysis.

  2. Bioactivity of Diterpens from the Ethyl Acetate Extract of Kingiodendron pinnatum Rox. Hams

    PubMed Central

    Javarappa, Komal Kumar; Prasad, Attemode Girijanna Devi; Mahadesh Prasad, AJ; Mane, Chetana

    2016-01-01

    Background: Kingiodendron pinnatum Rox. Hams. is an endangered medicinal plant used in gonorrhoe, catarrhal conditions of genito-urinary and respiratory tracts. The scientific and pharmacological formulation of K. pinnatum has not been established so far though it is being traditionally used by tribes of the region. Objective: P hytochemical screening and identification of the bioactive compounds from the ethyl acetate extract of Kingiodendron pinnatum Rox. Hams. Materials and Methods: Chromatographic separation was carried out by thin layer chromatography and column chromatography. Bio-autography of the column fractioned extract and TLC chromatogram were evaluated in vitro for antibacterial activity. The PTLC, HP TLC were used for crude extract and HPLC, LCMS, FTIR, 1HNMR and 13CNMR were employed for the isolated compound in the ethyl acetate extract of K. pinnatum. Results: Evaluation of solvent system for chromatographic separation revealed that ethyl acetate: petroleum ether in the ratio of 7:2.5 ml was the most appropriate one for the separation of diterpene compounds. The antibacterial bio-autography screening of TLC separated compound showed positive activity with Staphylococcus aureus and negative activity with Escherichia coli. Spectroscopic analysis of the isolated compound from the ethyl acetate extract of K. pinnatum revealed the presence of diterpene compound. Conclusion: It is evident from the present study that the ethyl acetate extract of K. pinnatum is rich in diterpene compounds and having potential antibacterial activity. SUMMARY Novel extraction method for phytochemicls from Kingidendron pinnatum at RTAntibacterial property of diterpens extracted from Kingiodendron pinnatum Rox. Hams aganist S. aureus Abbreviations Used: TLC: Thin Layer Chromatography, PTLC: Preparatory Thin Layer Chromatography, HPTLC: High perormence Thin Layer chromatography, HPLC: High Performance Liquid Chromatography, LC-MS: Liquid chromatography Mass Spectra, FTIR

  3. Acetaldehyde partial oxidation on the Au(111) model catalyst surface: C-C bond activation and formation of methyl acetate as an oxidative coupling product

    NASA Astrophysics Data System (ADS)

    Karatok, Mustafa; Vovk, Evgeny I.; Shah, Asad A.; Turksoy, Abdurrahman; Ozensoy, Emrah

    2015-11-01

    Partial oxidation of acetaldehyde (CH3CHO) on the oxygen pre-covered Au(111) single crystal model catalyst was investigated via Temperature Programmed Desorption (TPD) and Temperature Programmed Reaction Spectroscopy (TPRS) techniques, where ozone (O3) was utilized as the oxygen delivery agent providing atomic oxygen to the reacting surface. We show that for low exposures of O3 and small surface oxygen coverages, two partial oxidation products namely, methyl acetate (CH3COOCH3) and acetic acid (CH3COOH) can be generated without the formation of significant quantities of carbon dioxide. The formation of methyl acetate as the oxidative coupling reaction product implies that oxygen pre-covered Au(111) single crystal model catalyst surface can activate C-C bonds. In addition to the generation of these products; indications of the polymerization of acetaldehyde on the gold surface were also observed as an additional reaction route competing with the partial and total oxidation pathways. The interplay between the partial oxidation, total oxidation and polymerization pathways reveals the complex catalytic chemistry associated with the interaction between the acetaldehyde and atomic oxygen on catalytic gold surfaces.

  4. Crystal structures of the solvates of diethylaminogossypol with ethyl acetate and pyridine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The crystal structures of diethylaminogossypol with ethyl acetate (DEAG-EA) and pyridine (DEAG-P) were studied by room-temperature X-ray diffraction. The host-to-guest molecule ratio in these complexes is 2:1 for DEAG-EA and 2:5 for DEAG-P. The crystal and cell parameters for DEAG-EA are C34H40N2O6...

  5. Location and Mapping of an Ethyl Acetate Plume in Mexico City

    NASA Astrophysics Data System (ADS)

    Rogers, T.; Grimsrud, E.; Knighton, W.; Velasco, E.; Lamb, B.; Westberg, H.; Jobson, T.; Alexander, M.; Prazeller, P.; Herndon, S.; Kolb, C.

    2004-12-01

    A major goal of the 2003 Mexico City Metropolitan Area (MCMA) field campaign was to gain a better understanding of the dispersion and transport of volatile organic compounds (VOCs) in this urban airshed. Continuous monitoring of VOCs in the atmosphere and identification and quantification of their emission sources is complicated by two factors: first, there are hundreds of different VOC species released daily in the MCMA atmosphere, and second, few real time (1-10 second) measurement techniques have been available to provide the high resolution spatial and/or temporal data usually required to locate VOC emission sources and measure their flux strength. A relatively new technique, Proton Transfer Reaction Mass Spectometery (PTR-MS) provides this capability and was used to locate and quantify a significant source of ethyl acetate in the Iztapalapa region of Mexico City. Two PTR-MS systems were deployed during the 2003 MCMA campaign, the MSU PTR-MS was operated on-board the Aerodyne Mobile Laboratory while the PNNL instrument located on the roof at the National Center for Environmental Research and Training (Centro Nacional de Investigacion y Capacitacion Ambiental or CENICA). The uniqueness of the ethyl acetate signature allowed the MSU PTR-MS on-board the mobile lab to track the ethyl acetate plume back to its source. A short movie documenting the plume mapping and location of the source of the ethyl acetate emission will be shown. Knowing of the plume source location and the local meteorological conditions, the time resolved responses from the PNNL PTR-MS at the CENCIA location have been applied to a simple plume model to estimate the plume's emission flux strength.

  6. Detoxification of biomass derived acetate via metabolic conversion to ethanol, acetone, isopropanol, or ethyl acetate

    DOEpatents

    Sillers, William Ryan; Van Dijken, Hans; Licht, Steve; Shaw, IV, Arthur J.; Gilbert, Alan Benjamin; Argyros, Aaron; Froehlich, Allan C.; McBride, John E.; Xu, Haowen; Hogsett, David A.; Rajgarhia, Vineet B.

    2017-03-28

    One aspect of the invention relates to a genetically modified thermophilic or mesophilic microorganism, wherein a first native gene is partially, substantially, or completely deleted, silenced, inactivated, or down-regulated, which first native gene encodes a first native enzyme involved in the metabolic production of an organic acid or a salt thereof, thereby increasing the native ability of said thermophilic or mesophilic microorganism to produce lactate or acetate as a fermentation product. In certain embodiments, the aforementioned microorganism further comprises a first non-native gene, which first non-native gene encodes a first non-native enzyme involved in the metabolic production of lactate or acetate. Another aspect of the invention relates to a process for converting lignocellulosic biomass to lactate or acetate, comprising contacting lignocellulosic biomass with a genetically modified thermophilic or mesophilic microorganism.

  7. Use of a Batch Reactive Distillation with Dynamic Optimization Strategy to Achieve Industrial Grade Ethyl Acetate

    NASA Astrophysics Data System (ADS)

    Konakom, Kwantip; Saengchan, Aritsara; Kittisupakorn, Paisan; Mujtaba, Iqbal M.

    2011-08-01

    Industrial grade ethyl acetate is available with minimum purity of 85.0%. It is mostly produced by an ethanol esterification in a distillation process on both batch and continuous modes. However, researches on high purity production with short operating time are rarely achieved. Therefore, the objective in this work is to study an approach to produce ethyl acetate of 90.0% by 8 hours using a batch reactive distillation column. Based on open-loop simulations, the distillation with constant reflux ratio cannot achieve the product specification. Thus, the dynamic optimization strategy is proposed to handle this problem. For the process safety—preventing the dried column and fractured, a minimum reflux ratio must be determined in advance and then an optimal reflux profile is calculated to achieve optimal product yield. Simulation results show that the industrial grade ethyl acetate can be produced by the dynamic optimization programming with two or more time intervals. Besides, the increasing of time intervals can produce more distillate product.

  8. Ethyl 2-(2-methyl-1H-benzimidazol-1-yl)acetate

    PubMed Central

    Xu, Guang-Hai; Wang, Wei

    2008-01-01

    A new benzimidazole compound, C12H14N2O2, has been synthesized by the reaction of 2-methyl-1H-benzimidazole and ethyl 2-bromo­acetate. In the crystal structure, weak inter­molecular C—H⋯N hydrogen bonds link the mol­ecules into chains. π⋯π Contacts (centroid⋯centroid distance = 3.713 Å) are observed. A C—H⋯π inter­action is also present. The N—C—C—O torsion angle is 178.4 (2)°. PMID:21201788

  9. Rapid detergent removal from peptide samples with ethyl acetate for mass spectrometry analysis.

    PubMed

    Yeung, Yee-Guide; Stanley, E Richard

    2010-02-01

    Detergents are required for the extraction of hydrophobic proteins and for the maintenance of their solubility in solution. However, the presence of detergents in the peptide samples severely suppresses ionization in mass spectrometry (MS) analysis and decreases chromatographic resolution in LC-MS. Thus, detergents must be removed for sensitive detection of peptides by MS. This unit describes a rapid protocol in which ethyl acetate extraction is used to remove octylglucoside from protease digests without loss of peptides. This procedure can also be used to reduce interference by sodium dodecyl sulfate, Nonidet P-40, or Triton X-100 in peptide samples for MS analysis.

  10. Understanding the hydrolysis mechanism of ethyl acetate catalyzed by an aqueous molybdocene: a computational chemistry investigation.

    PubMed

    Tílvez, Elkin; Cárdenas-Jirón, Gloria I; Menéndez, María I; López, Ramón

    2015-02-16

    A thoroughly mechanistic investigation on the [Cp2Mo(OH)(OH2)](+)-catalyzed hydrolysis of ethyl acetate has been performed using density functional theory methodology together with continuum and discrete-continuum solvation models. The use of explicit water molecules in the PCM-B3LYP/aug-cc-pVTZ (aug-cc-pVTZ-PP for Mo)//PCM-B3LYP/aug-cc-pVDZ (aug-cc-pVDZ-PP for Mo) computations is crucial to show that the intramolecular hydroxo ligand attack is the preferred mechanism in agreement with experimental suggestions. Besides, the most stable intermediate located along this mechanism is analogous to that experimentally reported for the norbornenyl acetate hydrolysis catalyzed by molybdocenes. The three most relevant steps are the formation and cleavage of the tetrahedral intermediate immediately formed after the hydroxo ligand attack and the acetic acid formation, with the second one being the rate-determining step with a Gibbs energy barrier of 36.7 kcal/mol. Among several functionals checked, B3LYP-D3 and M06 give the best agreement with experiment as the rate-determining Gibbs energy barrier obtained only differs 0.2 and 0.7 kcal/mol, respectively, from that derived from the experimental kinetic constant measured at 296.15 K. In both cases, the acetic acid elimination becomes now the rate-determining step of the overall process as it is 0.4 kcal/mol less stable than the tetrahedral intermediate cleavage. Apart from clarifying the identity of the cyclic intermediate and discarding the tetrahedral intermediate formation as the rate-determining step for the mechanism of the acetyl acetate hydrolysis catalyzed by molybdocenes, the small difference in the Gibbs energy barrier found between the acetic acid formation and the tetrahedral intermediate cleavage also uncovers that the rate-determining step could change when studying the reactivity of carboxylic esters other than ethyl acetate substrate specific toward molybdocenes or other transition metal complexes. Therefore

  11. Catalytic liquid-phase oxidation of acetaldehyde to acetic acid over a Pt/CeO2-ZrO2-SnO2/γ-alumina catalyst.

    PubMed

    Choi, Pil-Gyu; Ohno, Takanobu; Masui, Toshiyuki; Imanaka, Nobuhito

    2015-10-01

    Pt/CeO2-ZrO2-SnO2/γ-Al2O3 catalysts were prepared by co-precipitation and wet impregnation methods for catalytic oxidation of acetaldehyde to acetic acid in water. In the present catalysts, Pt and CeO2-ZrO2-SnO2 were successfully dispersed on the γ-Al2O3 support. Dependences of platinum content and reaction time on the selective oxidation of acetaldehyde to acetic acid were investigated to optimize the reaction conditions for obtaining both high acetaldehyde conversion and highest selectivity to acetic acid. Among the catalysts, a Pt(6.4wt.%)/Ce0.68Zr0.17Sn0.15O2.0(16wt.%)/γ-Al2O3 catalyst showed the highest acetaldehyde oxidation activity. On this catalyst, acetaldehyde was completely oxidized after the reaction at 0°C for 8hr, and the selectivity to acetic acid reached to 95% and higher after the reaction for 4hr and longer.

  12. Formation of ethyl acetate by Kluyveromyces marxianus on whey during aerobic batch cultivation at specific trace element limitation.

    PubMed

    Urit, Thanet; Stukert, Anton; Bley, Thomas; Löser, Christian

    2012-12-01

    Kluyveromyces marxianus is able to transform lactose into ethyl acetate as a bulk product which offers a chance for an economical reuse of whey-borne sugar. Ethyl acetate is highly volatile and allows its process-integrated recovery by stripping from the aerated bioreactor. Extensive formation of ethyl acetate by K. marxianus DSM 5422 required restriction of yeast growth by a lack of trace elements. Several aerobic batch processes were done in a 1-L stirred reactor using whey-borne culture medium supplemented with an individual trace element solution excluding Mn, Mo, Fe, Cu, or Zn for identifying the trace element(s) crucial for the observed ester synthesis. Only a lack of Fe, Cu, or Zn restricted yeast growth while exclusion of Mn and Mo did not exhibit any effect due to a higher amount of the latter in the used whey. Limitation of growth by Fe or Cu caused significant production of ethyl acetate while limitation by Zn resulted in formation of ethanol. A lack of Fe or Cu obviously makes the respiratory chain inefficient resulting in an increased mitochondrial NADH level followed by a reduced metabolic flux of acetyl-SCoA into the citrate cycle. Synthesis of ethyl acetate from acetyl-SCoA and ethanol by alcoholysis is thus interpreted as an overflow metabolism.

  13. Antifungal and antioxidant activity of Crassocephalum bauchiense (Hutch.) Milne-Redh ethyl acetate extract and fractions (Asteraceae)

    PubMed Central

    2014-01-01

    Background Crassocephalum bauchiense is a flowering plant, found in the West Region of Cameroon. Previous studied has highlighted the antibacterial and the dermal toxicological safety as well as the immunomodulatory activities of the ethyl acetate extract of its dry leaves. As an extension of the previous researches, the current work has been undertaken to evaluate the in vitro antifungal and antioxidant activities of C. bauchiense dried leaves ethyl acetate extract and fractions. Methods The extract was obtained by maceration in ethyl acetate and further fractionated into six fractions labeled F1 to F6 by flash chromatography. The antifungal activity of the extract and fractions against yeasts and dermatophytes was evaluated using broth microdilution method. Antioxidant activity was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO) and β-carotene - linoleic acid assays. Results The extract (MIC = 0.125 - 4 mg/ml) was found to be more active on dermatophytes and yeasts compared to the fractions. The ethyl acetate extract and fractions exhibited strong scavenging activity on DPPH (CI50 = 28.57 - 389.38 μg/ml). The fractions F3 and F6 expressed best antioxidant activity on DPPH radicals compared to the crude extract. Conclusion The results of these findings clearly showed that C. bauchiense ethyl acetate extract has a significant antifungal and antioxidant activity. It is therefore a source of active compounds that might be used as antifungal and antioxidant agents. PMID:24742210

  14. Studies on the mechanism of synthesis of ethyl acetate in Kluyveromyces marxianus DSM 5422.

    PubMed

    Löser, Christian; Urit, Thanet; Keil, Peter; Bley, Thomas

    2015-02-01

    Kluyveromyces marxianus converts whey-borne sugar into ethyl acetate, an environmentally friendly solvent with many applications. K. marxianus DSM 5422 presumably synthesizes ethyl acetate from acetyl-SCoA. Iron limitation as a trigger for this synthesis is explained by a diminished aconitase and succinate dehydrogenase activity (both enzymes depend on iron) causing diversion of acetyl-SCoA from the tricarboxic acid cycle to ester synthesis. Copper limitation as another trigger for ester synthesis in this yeast refers to involvement of the electron transport chain (all ETC complexes depend on iron and complex IV requires copper). This hypothesis was checked by using several ETC inhibitors. Malonate was ineffective but carboxin partially inhibited complex II and initiated ester synthesis. Antimycin A and cyanide as complexes III and IV inhibitors initiated ester synthesis only at moderate levels while higher concentrations disrupted all respiration and caused ethanol formation. A restricted supply of oxygen (the terminal electron acceptor) also initiated some ester synthesis but primarily forced ethanol production. A switch from aerobic to anaerobic conditions nearly stopped ester synthesis and induced ethanol formation. Iron-limited ester formation was compared with anaerobic ethanol production; the ester yield was lower than the ethanol yield but a higher market price, a reduced number of process stages, a faster process, and decreased expenses for product recovery by stripping favor biotechnological ester production.

  15. Ethyl Acetate Extract of Artemisia anomala S. Moore Displays Potent Anti-Inflammatory Effect.

    PubMed

    Tan, Xi; Wang, Yuan-Lai; Yang, Xiao-Lu; Zhang, Dan-Dan

    2014-01-01

    Artemisia anomala S. Moore has been widely used in China to treat inflammatory diseases for hundreds of years. However, mechanisms associated with its anti-inflammatory effect are not clear. In this study, we prepared ethyl acetate, petroleum ether, n-BuOH, and aqueous extracts from ethanol extract of Artemisia anomala S. Moore. Comparing anti-inflammatory effects of these extracts, we found that ethyl acetate extract of this herb (EAFA) exhibited the strongest inhibitory effect on nitric oxide (NO) production in LPS/IFN γ -stimulated RAW264.7 cells. EAFA suppressed the production of NO in a time- and dose-dependent manner without eliciting cytotoxicity to RAW264.7 cells. To understand the molecular mechanism underlying EAFA's anti-inflammatory effect, we showed that EAFA increased total cellular anti-oxidant capacity while reducing the amount of inducible nitric oxide synthase (iNOS) in stimulated RAW264.7 cells. EAFA also suppressed the expression of IL-1 β and IL-6, whereas it elevates the level of heme oxygenase-1. These EAFA-induced events were apparently associated with NF- κ B and MAPK signaling pathways because the DNA binding activity of p50/p65 was impaired and the activities of both ERK and JNK were decreased in EFEA-treated cells comparing to untreated cells. Our findings suggest that EAFA exerts its anti-inflammatory effect by inhibiting the expression of iNOS.

  16. Nanofiltration of rhodium tris(triphenylphosphine) catalyst in ethyl acetate solution

    NASA Astrophysics Data System (ADS)

    Shaharun, Maizatul S.; Mustafa, Ahmad K.; Taha, Mohd F.

    2012-09-01

    Solvent resistant nanofiltration (SRNF) using polymer membranes has recently received enhanced attention due to the search for cleaner and more energy-efficient technologies. The large size of the rhodium tris(triphenylphosphine) [HRh(CO)(PPh3)3] catalyst (>400 Da) - relative to other components of the hydroformylation reaction provides the opportunity for a membrane separation based on retention of the catalyst species while permeating the solvent. The compatibility of the solvent-polyimide membrane (DuraMem{trade mark, serif} 200 and DuraMem{trade mark, serif} 500) combinations was assessed in terms of the membrane stability in solvent plus non-zero solvent flux at 2.0 MPa. Good HRh(CO)(PPh3)3 rejection (>0.95) and solvent fluxes of 9.9 L/m2ṡh1 at 2.0 MPa were obtained in the catalyst-ethyl acetate-DuraMem 500 system. The effect of pressure and catalyst concentration on the solvent flux and catalyst rejection was conducted on the catalyst-ethyl acetate-membrane systems. Increasing pressure substantially improved both solvent flux and catalyst rejection, while increasing catalyst concentration was found to be beneficial in terms of substantial increases in catalyst rejection without significantly affecting solvent flux.

  17. Enrichment, isolation and characterization of fungi tolerant to 1-ethyl-3-methylimidazolium acetate

    SciTech Connect

    Singer, S.W.; Reddy, A. P.; Gladden, J. M.; Guo, H.; Hazen, T.C.; Simmons, B. A.; VanderGheynst, J. S.

    2010-12-15

    This work aims to characterize microbial tolerance to 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), ionic liquid that has emerged as a novel biomass pretreatment for lignocellulosic biomass. Enrichment experiments performed using inocula treated with [C2mim][OAc] under solid and liquid cultivation yielded fungal populationsdominated by Aspergilli. Ionic liquid-tolerant Aspergillus isolates from these enrichments were capable of growing in a radial plate growth assay in the presence of 10% [C2mim][OAc]. When a [C2mim][OAc]-tolerant Aspergillus fumigatus strain was grown in the presence of switchgrass, endoglucanases and xylanases were secreted that retained residual enzymatic activity in the presence of 20% [C2mim][OAc]. The results of the study suggest tolerance to ionic liquids is a general property of Aspergilli. Tolerance to an industrially important ionic liquid was discovered in a fungal genera that is widely used in biotechnology, including biomass deconstruction.

  18. Insecticidal Activity of Ethyl Acetate Extracts from Culture Filtrates of Mangrove Fungal Endophytes

    PubMed Central

    Abraham, Silva; Basukriadi, Adi; Pawiroharsono, Suyanto

    2015-01-01

    In the search for novel potent fungi-derived bioactive compounds for bioinsecticide applications, crude ethyl acetate culture filtrate extracts from 110 mangrove fungal endophytes were screened for their toxicity. Toxicity tests of all extracts against brine shrimp (Artemia salina) larvae were performed. The extracts with the highest toxicity were further examined for insecticidal activity against Spodoptera litura larvae and acetylcholinesterase (AChE) inhibition activity. The results showed that the extracts of five isolates exhibited the highest toxicity to brine shrimp at 50% lethal concentration (LC50) values of 7.45 to 10.24 ppm. These five fungal isolates that obtained from Rhizophora mucronata were identified based on sequence data analysis of the internal transcribed spacer region of rDNA as Aspergillus oryzae (strain BPPTCC 6036), Emericella nidulans (strains BPPTCC 6035 and BPPTCC 6038), A. tamarii (strain BPPTCC 6037), and A. versicolor (strain BPPTCC 6039). The mean percentage of S. litura larval mortality following topical application of the five extracts ranged from 16.7% to 43.3%. In the AChE inhibition assay, the inhibition rates of the five extracts ranged from 40.7% to 48.9%, while eserine (positive control) had an inhibition rate of 96.8%, at a concentration of 100 ppm. The extracts used were crude extracts, so their potential as sources of AChE inhibition compounds makes them likely candidates as neurotoxins. The high-performance liquid chromatography profiles of the five extracts differed, indicating variations in their chemical constituents. This study highlights the potential of culture filtrate ethyl acetate extracts of mangrove fungal endophytes as a source of new potential bioactive compounds for bioinsecticide applications. PMID:26190921

  19. Insecticidal Activity of Ethyl Acetate Extracts from Culture Filtrates of Mangrove Fungal Endophytes.

    PubMed

    Abraham, Silva; Basukriadi, Adi; Pawiroharsono, Suyanto; Sjamsuridzal, Wellyzar

    2015-06-01

    In the search for novel potent fungi-derived bioactive compounds for bioinsecticide applications, crude ethyl acetate culture filtrate extracts from 110 mangrove fungal endophytes were screened for their toxicity. Toxicity tests of all extracts against brine shrimp (Artemia salina) larvae were performed. The extracts with the highest toxicity were further examined for insecticidal activity against Spodoptera litura larvae and acetylcholinesterase (AChE) inhibition activity. The results showed that the extracts of five isolates exhibited the highest toxicity to brine shrimp at 50% lethal concentration (LC50) values of 7.45 to 10.24 ppm. These five fungal isolates that obtained from Rhizophora mucronata were identified based on sequence data analysis of the internal transcribed spacer region of rDNA as Aspergillus oryzae (strain BPPTCC 6036), Emericella nidulans (strains BPPTCC 6035 and BPPTCC 6038), A. tamarii (strain BPPTCC 6037), and A. versicolor (strain BPPTCC 6039). The mean percentage of S. litura larval mortality following topical application of the five extracts ranged from 16.7% to 43.3%. In the AChE inhibition assay, the inhibition rates of the five extracts ranged from 40.7% to 48.9%, while eserine (positive control) had an inhibition rate of 96.8%, at a concentration of 100 ppm. The extracts used were crude extracts, so their potential as sources of AChE inhibition compounds makes them likely candidates as neurotoxins. The high-performance liquid chromatography profiles of the five extracts differed, indicating variations in their chemical constituents. This study highlights the potential of culture filtrate ethyl acetate extracts of mangrove fungal endophytes as a source of new potential bioactive compounds for bioinsecticide applications.

  20. Anti-hepatoma activities of ethyl acetate extract from Ampelopsis sinica root.

    PubMed

    Wang, Jia-Zhi; Huang, Bi-Sheng; Cao, Yan; Chen, Ke-Li; Li, Juan

    2017-03-13

    Ampelopsis sinica root (ASR) is a known hepatoprotective folk traditional Chinese medicine. The anti‑hepatoma activity of ethyl acetate extract from A. sinica root (ASRE) in vitro and in vivo and its possible mechanism were explored. This study was designed to investigate cytotoxicity by MTT assay, induction of apoptosis via Hoechst 33258 staining, scanning electron microscopy and bivariate flow cytometric analysis (Annexin V-FITC/PI), inflammation and apoptosis related genes expression by RT-PCR and p53 protein expression by immunofluorescence assay in HepG2 cells. Then, the antitumor activity in vivo was detected by hepatoma H22 xenograft tumor in mice. The results showed that ASRE had powerful anti‑hepatoma activity in vitro without obvious toxicity on normal cells and could induce HepG2 cell apoptosis. The mechanism may be associated with downregulation of inflammatory cytokines including cyclooxygenase-2, 5-lipoxygenase and FLAP, increase of the ratio of bax/bcl-2, activation caspase-3 and inhibition of survivin, and increased expression of p53 protein. Furthermore, the HPLC assay showed the main compounds of ASRE were gallic acid, catechin and gallic acid ethyl ester. In animal experiments, ASR ethanol extract decreased the tumor weights of hepatoma H22 tumor-bearing mice. Therefore, ASR may be a potential therapeutic agent in the treatment of hepatocellular carcinoma.

  1. Hormetic effect of ionic liquid 1-ethyl-3-methylimidazolium acetate on bacteria

    SciTech Connect

    Nancharaiah, Y. V.; Francis, A. J.

    2015-02-19

    The biological effect of ionic liquids (ILs) is one of the highly debated topics as they are being contemplated for various industrial applications. 1-ethyl-2-methylimidazolium acetate ([EMIM][Ac]) showed remarkable hormesis on anaerobic Clostridium sp. and aerobic Psueudomonas putida. Bacterial growth was stimulated at up to 2.5 g L-1 and inhibited at > 2.5 g L-1 of ([EMIM][Ac]). The growth of Clostridium sp. and P. putida were higher by 0.4 and 4-fold respectively, in the presense of 0.5 g L-1 of ([EMIM][Ac]). Assessment of the effect of [EMIM][Ac] under different growth conditions showed that the hormesis of [EMIM][Ac] was mediated via regulation of medium pH. Hormetic effect of [EMIM][Ac] was evident only in medium with poor buffering capacity and in the presence of a fermentable substrate as the carbon source. The hormetic effect of [EMIM][Ac] on bacterial growth is most likely associated with the buffering capacity of acetate anion. These observations have implications in ILs toxicity studies and ecological risk assessment.

  2. Hormetic effect of ionic liquid 1-ethyl-3-methylimidazolium acetate on bacteria

    DOE PAGES

    Nancharaiah, Y. V.; Francis, A. J.

    2015-02-19

    The biological effect of ionic liquids (ILs) is one of the highly debated topics as they are being contemplated for various industrial applications. 1-ethyl-2-methylimidazolium acetate ([EMIM][Ac]) showed remarkable hormesis on anaerobic Clostridium sp. and aerobic Psueudomonas putida. Bacterial growth was stimulated at up to 2.5 g L-1 and inhibited at > 2.5 g L-1 of ([EMIM][Ac]). The growth of Clostridium sp. and P. putida were higher by 0.4 and 4-fold respectively, in the presense of 0.5 g L-1 of ([EMIM][Ac]). Assessment of the effect of [EMIM][Ac] under different growth conditions showed that the hormesis of [EMIM][Ac] was mediated via regulationmore » of medium pH. Hormetic effect of [EMIM][Ac] was evident only in medium with poor buffering capacity and in the presence of a fermentable substrate as the carbon source. The hormetic effect of [EMIM][Ac] on bacterial growth is most likely associated with the buffering capacity of acetate anion. These observations have implications in ILs toxicity studies and ecological risk assessment.« less

  3. Validation of an Efficient Method for the Determination of Pesticide Residues in Fruits and Vegetables Using Ethyl Acetate for Extraction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, a version of the “quick, easy, cheap, effective, rugged, and safe” (QuEChERS) method was modified to use ethyl acetate (EtOAc) rather than acetonitrile (MeCN) for extraction in the determination of multiple pesticide residues in fruits and vegetables. EtOAc is better suited than MeCN...

  4. Antihyperlipidemic Activity of the Ethyl-acetate Fraction of Stereospermum Suaveolens in Streptozotocin-induced Diabetic Rats

    PubMed Central

    Thirumalaisamy, Balasubramanian; Prabhakaran, Senthilkumar Gnanavadevel; Marimuthu, Karthikeyan; Chatterjee, Tapan Kumar

    2013-01-01

    Objectives: Dyslipidemia in diabetes mellitus is a significant risk factor for the development of cardiovascular complications. The aim of this study was to evaluate the effect of the ethyl-acetate fraction of an ethanolic extract from Streospermum suaveolens on lipid metabolism in streptozotocin (STZ)-induced diabetic rats. Methods: Diabetes was induced by intraperitonial injection of STZ (50 mg/kg). Diabetic rats were treated with an ethyl-acetate fraction orally at doses of 200 and 400 mg/kg daily for 14 days. On the 15th day, serum lipid profiles, such as total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL), were estimated in experimental rats. The atherogenic (AI) and the coronary risk (CRI) indices were also evaluated. Results: The ethyl-acetate fraction at doses of 200 and 400 mg/kg significantly (P< 0.001) and dose-dependently reduced serum cholesterol, triglycerides and LDL, but increased HDL towards near normal levels as compared to diabetic control rats. The fraction also significantly (P< 0.001) lowered the atherogenic index (AI) and coronary risk index (CAI) in a dose-dependent manner. Conclusion: The present study demonstrated that the ethyl-acetate fraction of Stereospermum suaveolens exhibits a potent antihyperlipidemic activity in hyperglycemic rats and suggests that the plant may have therapeutic value in treating the diabetic complication of hyperlipidemia. PMID:25780672

  5. Potential biofuel additive from renewable sources--Kinetic study of formation of butyl acetate by heterogeneously catalyzed transesterification of ethyl acetate with butanol.

    PubMed

    Ali, Sami H; Al-Rashed, Osama; Azeez, Fadhel A; Merchant, Sabiha Q

    2011-11-01

    Butyl acetate holds great potential as a sustainable biofuel additive. Heterogeneously catalyzed transesterification of biobutanol and bioethylacetate can produce butyl acetate. This route is eco-friendly and offers several advantages over the commonly used Fischer Esterification. The Amberlite IR 120- and Amberlyst 15-catalyzed transesterification is studied in a batch reactor over a range of catalyst loading (6-12 wt.%), alcohol to ester feed ratio (1:3 to 3:1), and temperature (303.15-333.15K). A butanol mole fraction of 0.2 in the feed is found to be optimum. Amberlite IR 120 promotes faster kinetics under these conditions. The transesterifications studied are slightly exothermic. The moles of solvent sorbed per gram of catalyst decreases (ethanol>butanol>ethyl acetate>butyl acetate) with decrease in solubility parameter. The dual site models, the Langmuir Hinshelwood and Popken models, are the most successful in correlating the kinetics over Amberlite IR 120 and Amberlyst 15, respectively.

  6. Antidiarrhoeal activity of the ethyl acetate extract of Baphia nitida (Papilionaceae).

    PubMed

    Adeyemi, O O; Akindele, A J

    2008-03-28

    In our search for plants useful in the treatment of diarrhoea, we investigated the ethyl acetate extract of Baphia nitida (BN) using intestinal transit, enteropooling and gastric emptying tests in mice and rats. In the castor oil intestinal transit test, BN produced a significant (P<0.05) dose dependent decrease in propulsion with peristaltic index (PI) values of 56.85+/-6.76, 36.84+/-3.04 and 31.98+/-2.60%, respectively at doses of 100, 200 and 400mg/kg vs. 89.33+/-6.28% for control. The effect at 400mg/kg was significantly lower than that of morphine, 10mg/kg, s.c. (20.29+/-3.78%), and was antagonized by isosorbide dinitrate, IDN (150mg/kg, p.o.) but not by yohimbine (1mg/kg, s.c.). This effect was not potentiated by atropine (1mg/kg, s.c.). In the castor oil-induced diarrhoea test, BN produced a significant increase in onset of diarrhoea (103.40+/-8.74, 138.80+/-17.04 and 174.8+/-29.04min, 100 to 400mg/kg, vs. 47.60+/-8.76min for control and 226.10+/-12.57min for morphine). The severity of diarrhoea (diarrhoea score) was dose dependently reduced (19.00+/-2.26, 17.04+/-1.89, 15.00+/-2.05, 100 to 400mg/kg, vs. 31.40+/-2.11 for control and 7.7+/-2.2 for morphine). This effect was not antagonized by IDN or yohimbine. The effect on severity was, however, potentiated by atropine. BN also reduced the number and weight of wet stools but did not have any significant effect on intestinal fluid accumulation and gastric emptying. Results obtained suggest that the ethyl acetate extract of Baphia nitida is endowed with antidiarrhoeal activity possibly mediated by interference with the l-arginine nitric oxide pathway and synergistic with antagonistic action on muscarinic receptors.

  7. Physical insight into switchgrass dissolution in the ionic liquid 1-ethyl-3-methylimidazolium acetate

    SciTech Connect

    Wang, Hui; Gurau, Gabriela; Pingali, Sai Venkatesh; O'Neil, Hugh; Evans, Barbara R; Urban, Volker S; Heller, William T; Rogers, Robin D

    2014-01-01

    Small-angle neutron scattering was used to characterize solutions of switchgrass and the constituent biopolymers cellulose, hemicellulose, and lignin, as well as a physical mixture of them mimicking the composition of switchgrass, dissolved in the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate. The results demonstrate that the IL dissolves the cellulose fibrils of switchgrass, although a supramolecular biopolymer network remains that is not present in solutions of the individual biopolymers and that does not self-assemble in a solution containing the physical mixture of the individual biopolymers. The persistence of a network-like structure indicates that dissolving switchgrass in the IL does not disrupt all of the physical entanglements and covalent linkages between the biopolymers created during plant growth. Reconstitution of the IL-dissolved switchgrass yields carbohydrate-rich material containing cellulose with a low degree of crystallinity, as determined by powder X-ray diffraction, which impacts potential down-stream uses of the biopolymers produced by the process. The data suggests that the use of chemical additives which would break bonds that exist between the lignin and hemicellulose might improve the purity of the resulting product, but may not be able to disrupt the highly physically-entangled biopolymer network sufficiently to facilitate their separation.

  8. Impact of ionic liquid pretreatment conditions on cellulose crystalline structure using 1-ethyl-3-methylimidazolium acetate.

    PubMed

    Cheng, Gang; Varanasi, Patanjali; Arora, Rohit; Stavila, Vitalie; Simmons, Blake A; Kent, Michael S; Singh, Seema

    2012-08-23

    Ionic liquids (ILs) have been shown to affect cellulose crystalline structure in lignocellulosic biomass during pretreatment. A systematic investigation of the swelling and dissolution processes associated with IL pretreatment is needed to better understand cellulose structural transformation. In this work, 3-20 wt % microcrystalline cellulose (Avicel) solutions were treated with 1-ethyl-3-methylimidazolium acetate ([C(2)mim][OAc]) and a mixture of [C(2)mim][OAc] with the nonsolvent dimethyl sulfoxide (DMSO) at different temperatures. The dissolution process was slowed by decreasing the temperature and increasing cellulose loading, and was further retarded by addition of DMSO, enabling in-depth examination of the intermediate stages of dissolution. Results show that the cellulose I lattice expands and distorts prior to full dissolution in [C(2)mim][OAc] and that upon precipitation the former structure leads to a less ordered intermediate structure, whereas fully dissolved cellulose leads to a mixture of cellulose II and amorphous cellulose. Enzymatic hydrolysis was more rapid for the intermediate structure (crystallinity = 0.34) than for cellulose II (crystallinity = 0.54).

  9. PCL-gelatin composite nanofibers electrospun using diluted acetic acid-ethyl acetate solvent system for stem cell-based bone tissue engineering.

    PubMed

    Binulal, N S; Natarajan, Amrita; Menon, Deepthy; Bhaskaran, V K; Mony, Ullas; Nair, Shantikumar V

    2014-01-01

    Composite nanofibrous scaffolds with various poly(ε-caprolactone) (PCL)/gelatin ratios (90:10, 80:20, 70:30, 60:40, 50:50 wt.%) were successfully electrospun using diluted acetic and ethyl acetate mixture. The effects of this solvent system on the solution properties of the composites and its electrospinning properties were investigated. Viscosity and conductivity of the solutions, with the addition of gelatin, allowed for the electrospinning of uniform nanofibers with increasing hydrophilicity and degradation. Composite nanofibers containing 30 and 40 wt.% gelatin showed an optimum combination of hydrophilicity and degradability and also maintained the structural integrity of the scaffold. Human mesenchymal stem cells (hMSCs) showed favorable interaction with and proliferation on, the composite scaffolds. hMSC proliferation was highest in the 30 and 40 wt.% gelatin containing composites. Our experimental data suggested that PCL-gelatin composite nanofibers containing 30-40 wt.% of gelatin and electrospun in diluted acetic acid-ethyl acetate mixture produced nanofiber scaffolds with optimum hydrophilicity, degradability, and bio-functionality for stem cell-based bone tissue engineering.

  10. Experimental Determination of Densities and Isobaric Vapor-Liquid Equilibria of Methyl Acetate and Ethyl Acetate with Alcohols (C3 and C4) at 0.3 MPa

    NASA Astrophysics Data System (ADS)

    Susial, Pedro; Estupiñan, Esteban J.; Castillo, Victor D.; Rodríguez-Henríquez, José J.; Apolinario, José C.

    2013-10-01

    The densities and excess volumes were determined at 298.15 K for the methyl acetate + 1-propanol, methyl acetate + 1-butanol, and ethyl acetate + 1-butanol mixtures. The vapor-liquid equilibria data at 0.3 MPa for these binary systems were obtained using a stainless steel equilibrium still. The activity coefficients were obtained from the experimental data using the Hayden and O’Connell method and the Yen and Woods equation. The binary systems in this study showed positive deviations from ideality. The experimental VLE data were verified with the point-to-point test of van Ness using the Barker routine and the Fredenslund criterion. The different versions of the UNIFAC and the ASOG group contribution models were applied.

  11. Effects of ethyl acetate extract of Kaempferia parviflora on brown adipose tissue.

    PubMed

    Kobayashi, Hiroko; Horiguchi-Babamoto, Emi; Suzuki, Mio; Makihara, Hiroko; Tomozawa, Hiroshi; Tsubata, Masahito; Shimada, Tsutomu; Sugiyama, Kiyoshi; Aburada, Masaki

    2016-01-01

    We have previously reported the effects of Kaempferia parviflora (KP), including anti-obesity, preventing various metabolic diseases, and regulating differentiation of white adipose cells. In this study we used Tsumura, Suzuki, Obese Diabetes (TSOD) mice--an animal model of spontaneous obese type II diabetes--and primary brown preadipocytes to examine the effects of the ethyl acetate extract of KP (KPE) on brown adipose tissue, which is one of the energy expenditure organs. TSOD mice were fed with MF mixed with either KPE 0.3 or 1% for 8 weeks. Computed tomography images showed that whitening of brown adipocytes was suppressed in the interscapular tissue of the KPE group. We also examined mRNA expression of uncoupling protein 1 (UCP-1) and β3-adrenalin receptor (β3AR) in brown adipose tissue. As a result, mRNA expression of UCP-1 significantly increased in the KPE 1% treatment group, indicating that KPE activated brown adipose tissue. We then evaluated the direct effects of KPE on brown adipocytes using primary brown preadipocytes isolated from interscapular brown adipocytes in ICR mice. Triacylglycerol (TG) accumulation in primary brown preadipocytes was increased by KPE in a dose-dependent manner. Each mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ), UCP-1, and β3AR exhibited an upward trend compared with the control group. Moreover, some polymethoxyflavonoids (PMFs), the main compound in KP, also increased TG accumulation. This study therefore showed that KPE enhanced the thermogenesis effect of brown adipocytes as well as promoted the differentiation of brown adipocyte cells.

  12. The antihypertensive effect of ethyl acetate extract of radish leaves in spontaneously hypertensive rats

    PubMed Central

    Chung, Da-Hee; Kim, Sun-Hee; Myung, Nahye; Cho, Kang Jin

    2012-01-01

    Radish (Raphanus sativus L.) is a cruciferous vegetable, and its leaves have antioxidant and anticancer properties. This study was conducted to evaluate the effects of ethyl acetate extracts from radish leaves on hypertension in 11-week-old spontaneously hypertensive rats (SHRs). The SHRs were randomly divided into 3 groups of 6 rats each on the basis of initial systolic blood pressure (SBP) and were treated with oral administration of radish leaf extract (0, 30, or 90 mg/kg body weight [bw], respectively) for 5 weeks. Six Wistar rats were used as normotensive controls. The amount of the radish leaf extract had no effect on body weight. The SBP of the SHRs showed a decreasing trend with the consumption of the radish leaf extract. In the third week, the SBP of the group fed 90 mg extract/kg bw reduced from 214 mmHg to 166 mmHg and was significantly lower than that of the normotensive and hypertensive controls. The extract did not show a significant effect on the angiotensin-converting enzyme (ACE) activity in the serum, kidney, and lung. The extract increased the concentration of NO in serum and the activities of antioxidant enzymes such as glutathione peroxidase and catalase in red blood cells (RBCs). The serum concentrations of Na+ and K+ were not significantly different between all groups. However, the fecal concentrations of Na+ and K+ increased; the fecal concentrations of Na+ and K+ for the normotensive and hypertensive controls were not different. Urinary excretion of Na+ was higher in the normotensive Wistar rats than in the SHRs, while that of K+ was not significantly different. These findings indicate that consumption of radish leaves might have had antihypertensive effects in SHRs by increasing the serum concentration of NO and fecal concentration of Na+ and enhancing antioxidant activities. PMID:22977684

  13. Therapeutic effect of ethyl acetate extract from Asparagus cochinchinensis on phthalic anhydride-induced skin inflammation

    PubMed Central

    Sung, Ji-Eun; Lee, Hyun-Ah; Kim, Ji-Eun; Go, Jun; Seo, Eun-Ji; Yun, Woo-Bin; Kim, Dong-Seob; Son, Hong-Joo; Lee, Chung-Yeoul; Lee, Hee-Seob

    2016-01-01

    Asparagus cochinchinensis has been used to treat various diseases including fever, cough, kidney disease, breast cancer, inflammatory disease and brain disease, while IL-4 cytokine has been considered as key regulator on the skin homeostasis and the predisposition toward allergic skin inflammation. However, few studies have investigated its effects and IL-4 correlation on skin inflammation to date. To quantitatively evaluate the suppressive effects of ethyl acetate extracts of A. cochinchinensis (EaEAC) on phthalic anhydride (PA)-induced skin inflammation and investigate the role of IL-4 during their action mechanism, alterations in general phenotype biomarkers and luciferase-derived signals were measured in IL-4/Luc/CNS-1 transgenic (Tg) mice with PA-induced skin inflammation after treatment with EaEAC for 2 weeks. Key phenotype markers including lymph node weight, immunoglobulin E (IgE) concentration, epidermis thickness and number of infiltrated mast cells were significantly decreased in the PA+EaEAC treated group compared with the PA+Vehicle treated group. In addition, expression of IL-1β and TNF-α was also decreased in the PA+EaEAC cotreated group, compared to PA+Vehicle treated group. Furthermore, a significant decrease in the luciferase signal derived from IL-4 promoter was detected in the abdominal region, submandibular lymph node and mesenteric lymph node of the PA+EaEAC treated group, compared to PA+Vehicle treated group. Taken together, these results suggest that EaEAC treatment could successfully improve PA-induced skin inflammation of IL-4/Luc/CNS-1 Tg mice, and that IL-4 cytokine plays a key role in the therapeutic process of EaEAC. PMID:27051441

  14. Synthesis of Highly Polymerized Water-soluble Cellulose Acetate by the Side Reaction in Carboxylate Ionic Liquid 1-ethyl-3-methylimidazolium Acetate.

    PubMed

    Pang, Jinhui; Liu, Xin; Yang, Jun; Lu, Fachuang; Wang, Bo; Xu, Feng; Ma, Mingguo; Zhang, Xueming

    2016-09-20

    In the present study, we describe a novel one-step method to prepare water-soluble cellulose acetate (WSCA) with higher degree of polymerization values (DP = 650-680) by in situ activation of carboxyl group in ionic liquid. First of all, cellulose was dissolved in 1-ethyl-3-methylimidazolium acetate (EmimAc) and reacted with dichloroacetyl chloride (Cl2AcCl) in order to make cellulose dichloroacetate. Under various conditions, a series of water soluble products were produced. Elemental analysis and NMR results confirmed that they were cellulose acetate with DS (degree of substitution) values in the range from 0.30 to 0.63. NMR studies demonstrated that Cl2AcCl reacted with acetate anion of EmimAc producing a mixed anhydride that acetylated cellulose. Other acylating reagents such as benzoyl chloride, chloroacetyl chloride can also work similarly. 2D NMR characterization suggested that 6-mono-O-acetyl moiety, 3,6-di-O-acetylcellulose and 2,6-di-O-acetyl cellulose were all synthesized and the reactivity of hydroxyl groups in anhydro-glucose units was in the order C-6>C-3>C-2. This work provides an alternative way to make WSCA, meanwhile, also services as a reminder that the activity of EmimAc toward carbohydrate as acylating reagents could be a problem, because the expected acylated products may not be resulted and recycling of this ionic liquid could also be difficult.

  15. Synthesis of Highly Polymerized Water-soluble Cellulose Acetate by the Side Reaction in Carboxylate Ionic Liquid 1-ethyl-3-methylimidazolium Acetate

    NASA Astrophysics Data System (ADS)

    Pang, Jinhui; Liu, Xin; Yang, Jun; Lu, Fachuang; Wang, Bo; Xu, Feng; Ma, Mingguo; Zhang, Xueming

    2016-09-01

    In the present study, we describe a novel one-step method to prepare water-soluble cellulose acetate (WSCA) with higher degree of polymerization values (DP = 650–680) by in situ activation of carboxyl group in ionic liquid. First of all, cellulose was dissolved in 1-ethyl-3-methylimidazolium acetate (EmimAc) and reacted with dichloroacetyl chloride (Cl2AcCl) in order to make cellulose dichloroacetate. Under various conditions, a series of water soluble products were produced. Elemental analysis and NMR results confirmed that they were cellulose acetate with DS (degree of substitution) values in the range from 0.30 to 0.63. NMR studies demonstrated that Cl2AcCl reacted with acetate anion of EmimAc producing a mixed anhydride that acetylated cellulose. Other acylating reagents such as benzoyl chloride, chloroacetyl chloride can also work similarly. 2D NMR characterization suggested that 6-mono-O-acetyl moiety, 3,6-di-O-acetylcellulose and 2,6-di-O-acetyl cellulose were all synthesized and the reactivity of hydroxyl groups in anhydro-glucose units was in the order C-6>C-3>C-2. This work provides an alternative way to make WSCA, meanwhile, also services as a reminder that the activity of EmimAc toward carbohydrate as acylating reagents could be a problem, because the expected acylated products may not be resulted and recycling of this ionic liquid could also be difficult.

  16. Synthesis of Highly Polymerized Water-soluble Cellulose Acetate by the Side Reaction in Carboxylate Ionic Liquid 1-ethyl-3-methylimidazolium Acetate

    PubMed Central

    Pang, Jinhui; Liu, Xin; Yang, Jun; Lu, Fachuang; Wang, Bo; Xu, Feng; Ma, Mingguo; Zhang, Xueming

    2016-01-01

    In the present study, we describe a novel one-step method to prepare water-soluble cellulose acetate (WSCA) with higher degree of polymerization values (DP = 650–680) by in situ activation of carboxyl group in ionic liquid. First of all, cellulose was dissolved in 1-ethyl-3-methylimidazolium acetate (EmimAc) and reacted with dichloroacetyl chloride (Cl2AcCl) in order to make cellulose dichloroacetate. Under various conditions, a series of water soluble products were produced. Elemental analysis and NMR results confirmed that they were cellulose acetate with DS (degree of substitution) values in the range from 0.30 to 0.63. NMR studies demonstrated that Cl2AcCl reacted with acetate anion of EmimAc producing a mixed anhydride that acetylated cellulose. Other acylating reagents such as benzoyl chloride, chloroacetyl chloride can also work similarly. 2D NMR characterization suggested that 6-mono-O-acetyl moiety, 3,6-di-O-acetylcellulose and 2,6-di-O-acetyl cellulose were all synthesized and the reactivity of hydroxyl groups in anhydro-glucose units was in the order C-6>C-3>C-2. This work provides an alternative way to make WSCA, meanwhile, also services as a reminder that the activity of EmimAc toward carbohydrate as acylating reagents could be a problem, because the expected acylated products may not be resulted and recycling of this ionic liquid could also be difficult. PMID:27644545

  17. Nonlinear responses for chromosome and gene level effects induced by vinyl acetate monomer and its metabolite, acetaldehyde in TK6 cells.

    PubMed

    Budinsky, Robert; Gollapudi, Bhaskar; Albertini, Richard J; Valentine, Rudolph; Stavanja, Mari; Teeguarden, Justin; Fensterheim, Robert; Rick, David; Lardie, Thomas; McFadden, Lisa; Green, Amanda; Recio, Leslie

    2013-12-01

    Vinyl acetate monomer (VAM) produced rat nasal tumors at concentrations in the hundreds of parts per million. However, VAM is weakly genotoxic in vitro and shows no genotoxicity in vivo. A European Union Risk Assessment concluded that VAM's hydrolysis to acetaldehyde (AA), via carboxylesterase, is a critical key event in VAM's carcinogenic potential. In the following study, we observed increases in micronuclei (MN) and thymidine kinase (Tk) mutants that were dependent on the ability of TK6 cell culture conditions to rapidly hydrolyze VAM to AA. Heat-inactivated horse serum demonstrated a high capacity to hydrolyze VAM to AA; this activity was highly correlated with a concomitant increase in MN. In contrast, heat-inactivated fetal bovine serum (FBS) did not hydrolyze VAM and no increase in MN was observed. AA's ability to induce MN was not impacted by either serum since it directly forms Schiff bases with DNA and proteins. Increased mutant frequency at the Tk locus was similarly mitigated when AA formation was not sufficiently rapid, such as incubating VAM in the presence of FBS for 4 hr. Interestingly, neither VAM nor AA induced mutations at the HPRT locus. Finally, cytotoxicity paralleled genotoxicity demonstrating that a small degree of cytotoxicity occurred prior to increases in MN. These results established 0.25 mM as a consistent concentration where genotoxicity first occurred for both VAM and AA provided VAM is hydrolyzed to AA. This information further informs significant key events related to the mode of action of VAM-induced nasal mucosal tumors in rats.

  18. Field study of the urinary excretion of ethoxyacetic acid during repeated daily exposure to the ethyl ether of ethylene glycol and the ethyl ether of ethylene glycol acetate.

    PubMed

    Veulemans, H; Groeseneken, D; Masschelein, R; Van Vlem, E

    1987-06-01

    The urinary excretion of ethoxyacetic acid (EAA) was studied in a group of five women daily exposed to the ethyl ether of ethylene glycol (EGEE) and the ethyl ether of ethylene glycol acetate (EGEE-Ac) during 5 d of normal production and 7 d after a 12-d production stop. The mean combined exposure concentration of EGEE and EGEE-Ac (expressed in equivalent weight of EGEE) was 14.0 mg/m3 with occasional slight excursions above the current Belgian occupational exposure limit. The daily combined exposure profiles for EGEE and EGEE-Ac were rather constant during the first observation period, but they tended to decrease during the last week. The urinary EAA excretion clearly increased during the work week. Over the weekends the elimination was far from complete, and even after a prolonged nonexposure period of 12 d traces of the metabolite were still detectable. Based on the observations from the first period, a good linear correlation (r = 0.92) was found between the average exposure over 5 d (14.4 mg/m3) and the EAA excretion at the end of the week (105.7 mg/g creatinine). An EAA estimate of 150 +/- 35 mg/g was found to correspond with repeated 5-d full-shift exposures to the respective occupational exposure limit of EGEE (19 mg/m3) or EGEE-Ac (27 mg/m3).

  19. 1-Ethyl-3-methylimidazolium acetate as a highly efficient organocatalyst for cyanosilylation of carbonyl compounds with trimethylsilyl cyanide

    PubMed Central

    Ullah, Bakhtar; Chen, Jingwen; Zhang, Zhiguo; Xing, Huabin; Yang, Qiwei; Bao, Zongbi; Ren, Qilong

    2017-01-01

    1-Ethyl-3-methylimidazolium acetate is introduced as a robust organocatalyst for solvent-free cyanosilylation of carbonyl compounds with trimethylsilyl cyanide (TMSCN). The catalyst loading can be reduced to as low as 0.1–0.0001 mol % under mild reaction conditions, giving considerably high TOF values from 10,843 h−1 to 10,602,410 h−1 in the field of organocatalyzed transformations. The present protocol not only tolerates with extensive carbonyl compounds but also provides somewhat insight into the mechanism of ionic liquids (ILs)-catalyzed reactions. PMID:28198462

  20. 1-Ethyl-3-methylimidazolium acetate as a highly efficient organocatalyst for cyanosilylation of carbonyl compounds with trimethylsilyl cyanide

    NASA Astrophysics Data System (ADS)

    Ullah, Bakhtar; Chen, Jingwen; Zhang, Zhiguo; Xing, Huabin; Yang, Qiwei; Bao, Zongbi; Ren, Qilong

    2017-02-01

    1-Ethyl-3-methylimidazolium acetate is introduced as a robust organocatalyst for solvent-free cyanosilylation of carbonyl compounds with trimethylsilyl cyanide (TMSCN). The catalyst loading can be reduced to as low as 0.1–0.0001 mol % under mild reaction conditions, giving considerably high TOF values from 10,843 h‑1 to 10,602,410 h‑1 in the field of organocatalyzed transformations. The present protocol not only tolerates with extensive carbonyl compounds but also provides somewhat insight into the mechanism of ionic liquids (ILs)-catalyzed reactions.

  1. High throughput, colorimetric screening of microbial ester biosynthesis reveals high ethyl acetate production from Kluyveromyces marxianus on C5, C6, and C12 carbon sources.

    PubMed

    Löbs, Ann-Kathrin; Lin, Jyun-Liang; Cook, Megan; Wheeldon, Ian

    2016-10-01

    Advances in genome and metabolic pathway engineering have enabled large combinatorial libraries of mutant microbial hosts for chemical biosynthesis. Despite these advances, strain development is often limited by the lack of high throughput functional assays for effective library screening. Recent synthetic biology efforts have engineered microbes that synthesize acetyl and acyl esters and many yeasts naturally produce esters to significant titers. Short and medium chain volatile esters have value as fragrance and flavor compounds, while long chain acyl esters are potential replacements for diesel fuel. Here, we developed a biotechnology method for the rapid screening of microbial ester biosynthesis. Using a colorimetric reaction scheme, esters extracted from fermentation broth were quantitatively converted to a ferric hydroxamate complex with strong absorbance at 520 nm. The assay was validated for ethyl acetate, ethyl butyrate, isoamyl acetate, ethyl hexanoate, and ethyl octanoate, and achieved a z-factor of 0.77. Screening of ethyl acetate production from a combinatorial library of four Kluyveromyces marxianus strains on seven carbon sources revealed ethyl acetate biosynthesis from C5, C6, and C12 sugars. This newly adapted method rapidly identified novel properties of K. marxianus metabolism and promises to advance high throughput microbial strain engineering for ester biosynthesis.

  2. Antiamnesic effects of ethyl acetate fraction from chestnut (Castanea crenata var. dulcis) inner skin on Aβ(25-35)-induced cognitive deficits in mice.

    PubMed

    Jeong, Hee-Rok; Jo, Yu Na; Jeong, Ji Hee; Jin, Dong Eun; Song, Byung Gi; Choi, Soo Jung; Shin, Dong-Hoon; Heo, Ho Jin

    2012-12-01

    To investigate neuronal cell protective effects of an ethyl acetate fraction from chestnut inner skin, in vitro assays, including 2',7'-dichlorofluorescein diacetate, 3-[4,5-dimethythiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT), and lactate dehydrogenase (LDH), were performed. Intracellular accumulation of reactive oxygen species resulting from hydrogen peroxide (H(2)O(2)) treatment of PC12 cells was significantly reduced when ethyl acetate fractions were present in the medium compared to PC12 cells treated with H(2)O(2) only. In a cell viability assay using MTT, the ethyl acetate fraction protected against H(2)O(2)-induced neurotoxicity, and inhibited LDH release into the medium. In addition, the ethyl acetate fraction improved in vivo cognitive ability against amyloid β-peptide (Aβ)-induced neuronal deficit. High-performance liquid chromatography analyses showed that gallic acid, catechin, and epicatechin were predominant phenolics in the ethyl acetate fraction. Consequently, the results suggest that chestnut inner skin, including above phenolics, could ameliorate Aβ-induced learning and memory deficiency, and be utilized as effective substances for neurodegenerative disorders, notably Alzheimer's disease.

  3. Ethyl Acetate Extracts of Semen Impatientis Inhibit Proliferation and Induce Apoptosis of Human Prostate Cancer Cell Lines through AKT/ERK Pathways.

    PubMed

    Wang, Tao; Cai, Yang; Song, Wen; Chen, Ruibao; Hu, Dunmei; Ye, Jianhan; Liu, Lu; Peng, Wei; Zhang, Junfeng; Wang, Shaogang; Yang, Weiming; Liu, Jihong; Ding, Yufeng

    2017-01-01

    Objective. To investigate the inhibitory effect of ethyl acetate extracts of Impatiens balsamina L. on prostate cancer cells. Methods. Impatiens balsamina L. was extracted to get water, ethanol, oil ether, ethyl acetate, and butanol extracts. CCK-8 assay was used to detect the inhibitory effect. Apoptosis rates and cell cycle distribution were detected by flow cytometry. Transwell assay was performed to test the ability of migration. The expressions of Bcl-2, Bax, cleaved-caspase-3, p-ERK, ERK, p-AKT, AKT, cyclin D1, cyclin E, and MMP2 were detected by Western blot. Results. Ethyl acetate extracts had the strongest inhibitory effect. After being treated with different concentrations of ethyl acetate extracts, the percentage of G0/G1 phase increased significantly, cyclin D1 and cyclin E expression decreased, apoptosis rate was significantly higher, and the ability of migration of PC-3 and RV1 was inhibited significantly. Western blot showed that the expressions of Bcl-2, p-ERK, and p-AKT were significantly decreased, but the expressions of Bax and caspase-3 cleavage were increased. Conclusions. Impatiens balsamina L. inhibited the proliferation of human prostate cancer cells; ethyl acetate extracts have the strongest effect. It could inhibit cell proliferation and migration, cause G1 phase arrest, and induce apoptosis probably through inhibition of the AKT and ERK pathways.

  4. Ethyl Acetate Extracts of Semen Impatientis Inhibit Proliferation and Induce Apoptosis of Human Prostate Cancer Cell Lines through AKT/ERK Pathways

    PubMed Central

    Wang, Tao; Cai, Yang; Song, Wen; Chen, Ruibao; Hu, Dunmei; Ye, Jianhan; Liu, Lu; Peng, Wei; Zhang, Junfeng; Yang, Weiming; Liu, Jihong

    2017-01-01

    Objective. To investigate the inhibitory effect of ethyl acetate extracts of Impatiens balsamina L. on prostate cancer cells. Methods. Impatiens balsamina L. was extracted to get water, ethanol, oil ether, ethyl acetate, and butanol extracts. CCK-8 assay was used to detect the inhibitory effect. Apoptosis rates and cell cycle distribution were detected by flow cytometry. Transwell assay was performed to test the ability of migration. The expressions of Bcl-2, Bax, cleaved-caspase-3, p-ERK, ERK, p-AKT, AKT, cyclin D1, cyclin E, and MMP2 were detected by Western blot. Results. Ethyl acetate extracts had the strongest inhibitory effect. After being treated with different concentrations of ethyl acetate extracts, the percentage of G0/G1 phase increased significantly, cyclin D1 and cyclin E expression decreased, apoptosis rate was significantly higher, and the ability of migration of PC-3 and RV1 was inhibited significantly. Western blot showed that the expressions of Bcl-2, p-ERK, and p-AKT were significantly decreased, but the expressions of Bax and caspase-3 cleavage were increased. Conclusions. Impatiens balsamina L. inhibited the proliferation of human prostate cancer cells; ethyl acetate extracts have the strongest effect. It could inhibit cell proliferation and migration, cause G1 phase arrest, and induce apoptosis probably through inhibition of the AKT and ERK pathways. PMID:28386546

  5. Isolation of ethyl acetic based AGF bio-nutrient and its application on the growth of Capsicum annum L. plants

    NASA Astrophysics Data System (ADS)

    Hendrawan, Sonjaya, Yaya; Khoerunnisa, Fitri; Musthapa, Iqbal; Nurmala, Astri Rizki

    2015-12-01

    The study aimed to obtain the bionutrient derived from extraction of AGF leafs in ethyl acetic solvents and to explore its application on the plant growth of capsicum annum L. (curly red chili). Particularly, the fraction of secondary metabolites groups composed bionutrient was intensively elucidated by liquid vacuum chromatography technique. The characterization of secondary metabolites groups was conducted through several methods, i.e. thin layer chromatography, phytochemical screening, and FTIR spectroscopy. The AGF extracts based bionutrient then was applied on capsicum annum L. plants with dosage of 2 and 10 mL/L. The ethyl acetic solvent and commercial nutrient of Phonska and pesticide of curacron (EC 500) were selected as a blank and a positive control to evaluate the growth pattern of capsicum annum L., respectively. The result showed that the CF 1 dan CF2 of AGF extract contained alkaloid and terpenoid of secondary metabolite group, the CF 3, and CF 4 of AGF extracts were dominated by alkaloid, flavonoid, and terpenoid, while the CF 5 of AGF extract contained alkaloid, tannin and terpenoid groups. The CF 2 of AGF extract has the highest growth rate constant of 0.1702 week-1 with the number and heaviest mass of the yield of 82 pieces and 186.60, respectively. It was also showed the significant bio-pesticide activity that should be useful to support plant growth, indicating that AGF extract can be applied as both bio-nutrient and bio-pesticide.

  6. Antibacterial Activity of the Isolation Ethyl Acetate-Soluble Extract Noni Fruit (Morindra citrifolia L.) against Meat Bacterial Decay

    NASA Astrophysics Data System (ADS)

    Nugraheni, E. R.; Nurrakhman, M. B. E.; Munawaroh, H.; Saputri, L.

    2017-02-01

    Noni (Morindra citrifolia L.) is native to Indonesia which have medicinal properties. One of them as an antibacterial. This study aims to determine the antibacterial activity of isolates from the ethanol extract noni fruit to bacterial decay meat is Bacillus licheniformis, Klebsiella pneumonia, Bacillus alvei, Acinetobacter calcoaceticus, and Staphylococcus saprophyticus. The extraction process using the maceration method, and then made a partition by centrifugation ethyl acetate. Soluble part partition showed bacterial growth inhibition activity of the strong to very strong. Furthermore, the ethyl acetate soluble partition on preparative thin layer chromatography produced 5 isolates. Isolates obtained antibacterial activity test performed with a concentration of 20% and 30%. The results of antibacterial test against bacteria test isolates, showing isolates A can not inhibit the growth of bacteria, isolates B and C have medium activity and strong, isolates D and E isolates have activity against bacteria that were tested. MIC and MBC test results showed that the isolates B gives an inhibitory effect (bacteriostatic) against all bacteria. Content analysis of compounds by TLC using the reagents cerium (IV) sulfate indicates a phenol group. Isolates B contains a major compound which can be used as an antibacterial candidate in food preservation replace chemical preservatives.

  7. Determination of permeation parameters of experimental PET films coated with SiOx to ethyl acetate, oxygen and water vapour.

    PubMed

    Adamantiadi, A; Badeka, A; Kontominas, M G

    2001-11-01

    The permeation parameters of conventional PET films, films coated with SiOx and SiOx-coated films laminated to LDPE were determined for ethyl acetate using the permeation cell/gas chromatography method. Permeation to O2 and water vapour was also determined to monitor overall changes in the barrier properties of the experimental films. Coating of the PET film was achieved by a 'directed evaporation' method that increased the yield of the coating process from 30-35 to > 70%. It was shown that the SiOx coating increased the film barrier to ethyl acetate by approximately 20-30 times. Permeation values showed low reproducibility, indicating the need for further development and standardization of the 'directed evaporation' web-coating process. The barrier to oxygen and water vapour increased by 20-25 and 12-14 times respectively after coating. The web-coating speed did not seem to influence the barrier properties of the films. Permeation coefficients, diffusion coefficients and solubility coefficients were calculated for all samples.

  8. Ethyl 2-acetyl­hydrazono-2-phenyl­acetate

    PubMed Central

    Xu, Liang-Zhong; Yi, Xu; An, Guang-Wei; Zhang, Gong-Sheng; Li, Chun-Fang

    2008-01-01

    The title compound, C12H14N2O3, was synthesized as an inter­mediate for the synthesis of metamitron. The benzene ring forms dihedral angles of 86.3 (2) and 10.0 (3)° with the ethyl group and the acetyl­imino plane, respectively. The crystal structure involves inter­molecular C—H⋯O and N—H⋯O hydrogen bonds. PMID:21200890

  9. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae: role of the cytosolic Mg(2+) and mitochondrial K(+) acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation.

    PubMed

    Remize, F; Andrieu, E; Dequin, S

    2000-08-01

    Acetic acid plays a crucial role in the organoleptic balance of many fermented products. We have investigated the factors controlling the production of acetate by Saccharomyces cerevisiae during alcoholic fermentation by metabolic engineering of the enzymatic steps involved in its formation and its utilization. The impact of reduced pyruvate decarboxylase (PDC), limited acetaldehyde dehydrogenase (ACDH), or increased acetoacetyl coenzyme A synthetase (ACS) levels in a strain derived from a wine yeast strain was studied during alcoholic fermentation. In the strain with the PDC1 gene deleted exhibiting 25% of the PDC activity of the wild type, no significant differences were observed in the acetate yield or in the amounts of secondary metabolites formed. A strain overexpressing ACS2 and displaying a four- to sevenfold increase in ACS activity did not produce reduced acetate levels. In contrast, strains with one or two disrupted copies of ALD6, encoding the cytosolic Mg(2+)-activated NADP-dependent ACDH and exhibiting 60 and 30% of wild-type ACDH activity, showed a substantial decrease in acetate yield (the acetate production was 75 and 40% of wild-type production, respectively). This decrease was associated with a rerouting of carbon flux towards the formation of glycerol, succinate, and butanediol. The deletion of ALD4, encoding the mitochondrial K(+)-activated NAD(P)-linked ACDH, had no effect on the amount of acetate formed. In contrast, a strain lacking both Ald6p and Ald4p exhibited a long delay in growth and acetate production, suggesting that Ald4p can partially replace the Ald6p isoform. Moreover, the ald6 ald4 double mutant was still able to ferment large amounts of sugar and to produce acetate, suggesting the contribution of another member(s) of the ALD family.

  10. Breeding of a low pyruvate-producing sake yeast by isolation of a mutant resistant to ethyl alpha-transcyanocinnamate, an inhibitor of mitochondrial pyruvate transport.

    PubMed

    Horie, Kenta; Oba, Takahiro; Motomura, Saori; Isogai, Atsuko; Yoshimura, Takashi; Tsuge, Keisuke; Koganemaru, Kazuyoshi; Kobayashi, Genta; Kitagaki, Hiroshi

    2010-01-01

    Pyruvate is the key substance controlling the formation of diacetyl, acetaldehyde, and acetate during alcoholic fermentation. Here we report the breeding of a low pyruvate-producing sake yeast by isolation of a mutant resistant to ethyl alpha-transcyanocinnamate, an inhibitor of mitochondrial pyruvate transport. Mitochondrial function was involved in resistance to this substance and in the production of pyruvate by the mutants.

  11. Effect of the ionic liquid 1-ethyl-3-methylimidazolium acetate on the phase transition of starch: dissolution or gelatinization?

    PubMed

    Mateyawa, Sainimili; Xie, David Fengwei; Truss, Rowan W; Halley, Peter J; Nicholson, Timothy M; Shamshina, Julia L; Rogers, Robin D; Boehm, Michael W; McNally, Tony

    2013-04-15

    This work revealed that the interactions between starch, the ionic liquid 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]), and water might contribute to the phase transition (gelatinization, dissolution, or both) of native starch at reduced temperature. Using mixtures of water and [Emim][OAc] at certain ratios (7.2/1 and 10.8/1 mol/mol), both the gelatinization and dissolution of the starch occur competitively, but also in a synergistic manner. At lower [Emim][OAc] concentration (water/[Emim][OAc] molar ratio≥25.0/1), mainly gelatinization occurs which is slightly impeded by the strong interaction between water and [Emim][OAc]; while at higher [Emim][OAc] concentration (water/[Emim][OAc] molar ratio≤2.8/1), the dissolution of starch is the major form of phase transition, possibly restricted by the difficulty of [Emim][OAc] to interact with starch.

  12. Antibacterial activity of Pyrrosia petiolosa ethyl acetate extract against Staphylococcus aureus by decreasing hla and sea virulence genes.

    PubMed

    Song, Liju; Cao, Mei; Chen, Chong; Qi, Panpan; Li, Ningzhe; Wu, Daoyan; Peng, Jingshan; Wang, Xuege; Zhang, Mao; Hu, Guoku; Zhao, Jian

    2017-06-01

    The aim of this study was to explore the antibacterial activity of Pyrrosia petiolosa ethyl acetate extract (PPEAE) against Staphylococcus aureus in vitro and analyse its chemical components by gas chromatograph-mass spectrometry. The results of anti-microbial assay revealed that PPEAE had strong inhibitory activity against S .aureus, with MIC and MBC of 7.8 and 15.6 mg/mL, respectively. The transcriptional levels of hla and sea were reduced to 14.33 and 46.39% at the MIC compared to the control. Analysing test result exhibited that eugenol made a great contribution to antibacterial activity. This experiment indicated that PPEAE had prominent antibacterial activity against S. aureus.

  13. In-vivo Antioxidant Effects of Ethyl Acetate Fraction of Mentha spicata L. on 4-Nitroquinoline-1-Oxide Injected Mice.

    PubMed

    Arumugam, Ponnan; Ramesh, Arabandi

    2011-01-01

    Antioxidant effects of ethyl acetate fraction of Mentha spicata (L.) were evaluated against 4-nitroquinoline-1-oxide injected mice. For this study, experiment setup consisted of 36 albino mice of either sex divided into 6 groups: Control (25% DMSO in water), ethyl acetate fraction (EAF) alone group (80, 160 mg/Kg body weight-bwt), 4-NQO (7.5 mg/Kg bwt-IP) alone and 4-NQO + EAF. EAF and vehicles were administered orally for five consecutive days. 4-NQO (7.5 mg/Kg bwt) was injected intraperitoneally on the 6(th) day. After 24 h, the animals were killed; liver sample was extracted and used for bio-assay. 4-NQO alone treated group decreased (27-60%) the antioxidant activities and promoted lipid peroxidation (LPO-60%) over their respective control values. Pretreatment with EAF, at the maximum dose (160 mg/Kg bwt) brought down the LPO up to 87% enhanced by 4-NQO. Among the enzymatic antioxidants, glutathione S-transferase (GST) was the most affected enzyme with 4-NQO and the least was catalase (CAT). Pretreatment with EAF (160 mg/Kg bwt), the restoration of antioxidants like glutathione peroxidase, superoxide dismutase, and CAT were found equal or less than 1.2 fold higher than that of the respective control values whereas, GST was observed to be the most restored antioxidant. Be reduced glutathione (GSH) and the least vitamin C over their control values. EAF restored the GSH and Vitamin E levels were found to be 1.2 fold higher than the respective control values.

  14. Development of cellulose acetate propionate membrane for separation of ethanol and ethyl tert-butyl ether mixtures

    SciTech Connect

    Luo, G.S.; Niang, M.; Schaetzel, P.

    1997-04-01

    For pervaporation separation of ethanol and ethyl tert-butyl ether mixtures, a cellulose acetate propionate membrane was chosen as the experimental membrane because of its high selectivity and good mass fluxes. The properties of the membranes were evaluated by the pervaporation separation of mixtures of ethyl tert-butyl ether/ethanol and the sorption experiments. The experimental results showed that the selectivity and the permeates depend on the ethanol concentration in the feed and the experimental temperature. With increases of the ethanol weight fraction in the feed and the temperature, the total and partial mass fluxes increased. With respect to the temperature, ethanol mass flux obeys the Arrhenius equation. The selectivity of this membrane decreases as the temperature and the ethanol concentration in the feed increase. This membrane shows special characteristics at the azeotropic composition. In the vicinity of the azeotropic point, minimum values of ethanol concentration in the permeate and in sorption solution are obtained. The swelling ratios increase when temperature and the ethanol concentration in the feed are increasing. The ethanol concentration in the sorption solution is also influenced by the temperature and the mixture`s composition. When the temperature increases, the sorption selectivity of the membrane decreases.

  15. Hypoglycemic Effect of Ethanol and Ethyl Acetate Extract of Phellinus baumii Fruiting Body in Streptozotocin-Induced Diabetic Mice

    PubMed Central

    Wang, Wen-Han; Wu, Fei-Hua; Yang, Yan; Wu, Na; Zhang, Jing-Song; Feng, Na; Tang, Chuan-Hong

    2015-01-01

    We investigated hypoglycemic effect of ethanol (EtOH) and ethyl acetate extract acetate (AcOEt) extracts in streptozotocin- (STZ-) induced diabetic mice. Our data showed the maximum inhibitory effect on the fasting plasma glucose (FPG) level was detected in STZ-induced diabetic mice administered with 400 mg/kg AcOEt extract of P. baumii. A lower glycated albumin (GA) level and a higher insulin level were observed in 400 mg/kg AcOEt and EtOH extract groups. Moreover, 400 mg/kg AcOEt and EtOH extract exhibited a stronger effect on increasing size and cell number of islets. The insulin expression level of β-cells and integrated optical density (IOD) value were significantly increased by the administration of 400 mg/kg AcOEt and EtOH extracts. Taken together, AcOEt and EtOH extracts of P. baumii fruiting body exhibited considerable hypoglycemic effect on STZ-induced diabetic mice. PMID:26221177

  16. Mixtures of the 1-ethyl-3-methylimidazolium acetate ionic liquid with different inorganic salts: insights into their interactions.

    PubMed

    Oliveira, Filipe S; Cabrita, Eurico J; Todorovic, Smilja; Bernardes, Carlos E S; Lopes, José N Canongia; Hodgson, Jennifer L; MacFarlane, Douglas R; Rebelo, Luís P N; Marrucho, Isabel M

    2016-01-28

    In this work, we explore the interactions between the ionic liquid 1-ethyl-3-methylimidazolim acetate and different inorganic salts belonging to two different cation families, those based on ammonium and others based on sodium. NMR and Raman spectroscopy are used to screen for changes in the molecular environment of the ions in the ionic liquid + inorganic salt mixtures as compared to pure ionic liquid. The ion self-diffusion coefficients are determined from NMR data, allowing the discussion of the ionicity values of the ionic liquid + inorganic salt mixtures calculated using different methods. Our data reveal that preferential interactions are established between the ionic liquid and ammonium-based salts, as opposed to sodium-based salts. Computational calculations show the formation of aggregates between the ionic liquid and the inorganic salt, which is consistent with the spectroscopic data, and indicate that the acetate anion of the ionic liquid establishes preferential interactions with the ammonium cation of the inorganic salts, leaving the imidazolium cation less engaged in the media.

  17. Electrochemical Partial Reforming of Ethanol into Ethyl Acetate Using Ultrathin Co3O4 Nanosheets as a Highly Selective Anode Catalyst

    PubMed Central

    2016-01-01

    Electrochemical partial reforming of organics provides an alternative strategy to produce valuable organic compounds while generating H2 under mild conditions. In this work, highly selective electrochemical reforming of ethanol into ethyl acetate is successfully achieved by using ultrathin Co3O4 nanosheets with exposed (111) facets as an anode catalyst. Those nanosheets were synthesized by a one-pot, templateless hydrothermal method with the use of ammonia. NH3 was demonstrated critical to the overall formation of ultrathin Co3O4 nanosheets. With abundant active sites on Co3O4 (111), the as-synthesized ultrathin Co3O4 nanosheets exhibited enhanced electrocatalytic activities toward water and ethanol oxidations in alkaline media. More importantly, over the Co3O4 nanosheets, the electrooxidation from ethanol to ethyl acetate was so selective that no other oxidation products were yielded. With such a high selectivity, an electrolyzer cell using Co3O4 nanosheets as the anode electrocatalyst and Ni–Mo nanopowders as the cathode electrocatalyst has been successfully built for ethanol reforming. The electrolyzer cell was readily driven by a 1.5 V battery to achieve the effective production of both H2 and ethyl acetate. After the bulk electrolysis, about 95% of ethanol was electrochemically reformed into ethyl acetate. This work opens up new opportunities in designing a material system for building unique devices to generate both hydrogen and high-value organics at room temperature by utilizing electric energy from renewable sources. PMID:27610415

  18. Evaluation of Antibacterial, Antineoplastic, and Immunomodulatory Activity of Paullinia cupana Seeds Crude Extract and Ethyl-Acetate Fraction.

    PubMed

    Carvalho, Lidiane Vasconcelos do Nascimento; Cordeiro, Marina Ferraz; E Lins, Thiago Ubiratan Lins; Sampaio, Maria Clara Pinheiro Duarte; de Mello, Gabriela Souto Vieira; da Costa, Valécia de Cassia Mendonça; Marques, Leila Larisa Medeiros; Klein, Traudi; de Mello, João Carlos Palazzo; Cavalcanti, Isabella Macário Ferro; Pitta, Ivan da Rocha; Galdino da Rocha Pitta, Maira; Rêgo, Moacyr Jesus Barreto de Melo

    2016-01-01

    Paullinia cupana (Guarana) is a native plant of Amazon region that has very traditional importance. Its seeds are rich in bioactive compounds, including tannins, which exhibit relevant properties. Objective. This study aimed to evaluate antibacterial, antineoplastic, and immunomodulatory activity of P. cupana seeds crude extract (CE) and ethyl-acetate fraction (EAF). Methods. Antibacterial activity was evaluated by determination of minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). Antineoplastic activity was evaluated by MTT assays in hepatocellular carcinoma (HepG2), breast adenocarcinoma (MCF-7), ductal carcinoma (T47-D), non-Hodgkin's B cell lymphoma (Toledo), T cell leukemia (Jukart), and Acute Leukemia (HL-60) cell lines. BALB/c mice splenocytes were treated to assess IFN-γ, IL-6, IL-17, and IL-10 levels by sandwich ELISA. Results. CE and EAF were not toxic to peripheral blood cells and splenocytes. CE and EAF fractions showed a bacteriostatic activity (MIC = 250 μg/mL) and presented IC50 values of 70.25 μg/mL and 61.18 μg/mL in HL-60 leukemia cell line. All cytokines evaluated had their levels reduced after treatment, following dose-response model. Discussion and Conclusion. Different biological activities were observed for both CE and EAF, suggesting P. cupana as a source of bioactive substances, especially tannins that may be used for several diseases treatments.

  19. Antitumor Activities of Ethyl Acetate Extracts from Selaginella doederleinii Hieron In Vitro and In Vivo and Its Possible Mechanism

    PubMed Central

    Li, Juan; Zhao, Ping; Ma, Wen-tao; Feng, Xie-he; Chen, Ke-li

    2015-01-01

    The antitumor activities of ethyl acetate extracts from Selaginella doederleinii Hieron (SD extracts) in vitro and in vivo and its possible mechanism were investigated. HPLC method was developed for chemical analysis. SD extracts were submitted to 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay on different cells, flow cytometry, and RT-PCR analysis using HepG2 cell and antitumor activity in vivo using H-22 xenograft tumor mice. Six biflavonoids from SD extracts were submitted to molecular docking assay. The results showed that SD extracts had considerable antitumor activity in vitro and in vivo without obvious toxicity on normal cells and could induce cell apoptosis. The mechanisms of tumorigenesis and cell apoptosis induced by SD extracts may be associated with decreasing the ratio of bcl-2 and bax mRNA level, activating caspase-3, suppressing survivin, and decreasing the gene expression of COX-2, 5-LOX, FLAP, and 12-LOX mRNA. The main active component in SD extracts is biflavonoids and some exhibited strong interactions with COX-2, 5-LOX, 12-LOX, and 15-LOX. These results offering evidence of possible mechanisms of SD extracts suppress cell proliferation and promote apoptosis and provide the molecular theoretical basis of clinical application of S. doederleinii for cancer therapy. PMID:25866543

  20. Cellular Anti-Melanogenic Effects of a Euryale ferox Seed Extract Ethyl Acetate Fraction via the Lysosomal Degradation Machinery

    PubMed Central

    Baek, Seung-Hwa; Nam, In-Jeong; Kwak, Hyeong Seob; Kim, Ki-Chan; Lee, Sang-Han

    2015-01-01

    The aim of this study was to investigate the effect of ethyl acetate fraction of Euryale ferox seed extracts (Efse-EA) on melanogenesis in immortalized mouse melanocyte cell line, melan-a. Efse-EA showed strong dose-dependent mushroom tyrosinase inhibitory activity. Treatment of melan-a cells with 30 μg/mL Efse-EA produced strong inhibition of cellular tyrosinase and melanin synthesis. Efse-EA significantly reduced the levels of melanogenesis-related proteins, such as tyrosinase, tyrosinase-related proteins 1 and 2, and microphthalmia-associated transcription factor. Because Efse-EA treatment reduced tyrosinase protein levels without changing its mRNA expression, we investigated whether this decrease was related to proteasomal or lysosomal degradation of tyrosinase. We found that chloroquine, a lysosomal proteolysis inhibitor, almost completely abolished both the down-regulation of tyrosinase and the inhibition of melanin synthesis induced by Efse-EA. These results suggested that Efse-EA may contribute to the inhibition of melanogenesis by altering lysosomal degradation of tyrosinase, and that this extract may provide a new cosmetic skin-whitening agent. PMID:25915032

  1. Cellular Anti-Melanogenic Effects of a Euryale ferox Seed Extract Ethyl Acetate Fraction via the Lysosomal Degradation Machinery.

    PubMed

    Baek, Seung-Hwa; Nam, In-Jeong; Kwak, Hyeong Seob; Kim, Ki-Chan; Lee, Sang-Han

    2015-04-23

    The aim of this study was to investigate the effect of ethyl acetate fraction of Euryale ferox seed extracts (Efse-EA) on melanogenesis in immortalized mouse melanocyte cell line, melan-a. Efse-EA showed strong dose-dependent mushroom tyrosinase inhibitory activity. Treatment of melan-a cells with 30 μg/mL Efse-EA produced strong inhibition of cellular tyrosinase and melanin synthesis. Efse-EA significantly reduced the levels of melanogenesis-related proteins, such as tyrosinase, tyrosinase-related proteins 1 and 2, and microphthalmia-associated transcription factor. Because Efse-EA treatment reduced tyrosinase protein levels without changing its mRNA expression, we investigated whether this decrease was related to proteasomal or lysosomal degradation of tyrosinase. We found that chloroquine, a lysosomal proteolysis inhibitor, almost completely abolished both the down-regulation of tyrosinase and the inhibition of melanin synthesis induced by Efse-EA. These results suggested that Efse-EA may contribute to the inhibition of melanogenesis by altering lysosomal degradation of tyrosinase, and that this extract may provide a new cosmetic skin-whitening agent.

  2. Relative Study of Luminescent Properties with Judd-Ofelt Characterization in Trivalent Europium Complexes Comprising ethyl-(4-fluorobenzoyl) Acetate.

    PubMed

    Devi, Rekha; Chahar, Sangeeta; Khatkar, S P; Taxak, V B; Boora, Priti

    2017-03-13

    Five new europium(III) complexes Eu(p-EFBA)3.(H2O)2 (C1), Eu(p-EFBA)3.neo (C2), Eu(p-EFBA)3.batho (C3), Eu(p-EFBA)3.phen (C4), Eu(p-EFBA)3.bipy (C5) have been synthesized by using ethyl-(4-fluorobenzoyl) acetate (p-EFBA) as β-ketoester ligand and neocuproine (neo), bathophenanthroline (batho), 1,10-phenanthroline (phen) and 2,2-bipyridyl (bipy) as ancillary ligands. The synthesized complexes C1-C5 were characterized by elemental analysis, nuclear magnetic resonance spectroscopy ((1)H-NMR), infrared (IR) spectroscopy, thermogravimetric analysis (TG/DTG), UV-visible and photoluminescence (PL) spectroscopy. The relative study of luminescence spectra of complexes with the previously reported complexes of isomeric ligand (ortho and meta substituted ligand) indicate the higher luminescence properties of complexes as an effect of fluorine position on β-ketoester ligand. The para substituted ligand shows a remarkable effect on quantum efficiencies and Judd-Ofelt intensity parameters (Ω2, Ω4) of the complexes. The higher value of intensity parameter Ω2 associated with hypersensitive (5)D0 → (7)F2 transition of europium(III) ion revealing highly polarizable ligand field. The purposed energy transfer mechanism of complexes indicates the efficient energy transfer in complexes.

  3. [Comparison of protective effects of eight ethyl acetate extracts from Eclipta prostrate on NHBE cells based on component structure theory].

    PubMed

    Ding, Shu-Min; Liu, Dan; Feng, Liang; Zhu, Fen-Xia; Tan, Xiao-Bin; Jia, Xiao-Bin

    2014-08-01

    To analyze and compare the protective effects of active components in different ethyl acetate extracts (EAEEPs) from Eclipta prostrate, in order to study the comparison of materials bases protecting normal human bronchial epithelial (NHBE) cells. The MTT assay was taken to compare the protective effect of different EAEEPs on cigarette smoke extracts (CSE) -induced NHBE cells. The ultra-performance liquid chromatography (UPLC) was applied to analyze the content of phenolic acid, coumaric grass ether and flavonoid in EAEEPs. According to the results, all of the eight EAEEPs (0-200 mg x L(-1)) showed certain protective effect on NHBE cells, with statistical difference. Specifically, the total mass of EAEEP VII (89.15 mg x L(-1)) and EAEEP VIII (57.44 mg x L(-1)), which showed the strongest activity, was not the highest, while EAEEP III (132.25 mg x L(-1)) displayed the highest total mass. In the combination with the "component structure" theory, the analysis showed a significant difference in the mass structure among phenolic acid, coumaric grass ether and flavonoid in EAEEP VIII and EAEEP VIII, which were 1.0: 1. 0: 0.5 and 1.0: 1.9: 0.8, respectively. The results suggested a specific optimal "component structure" relationship may exist in EAEEP, which could provide reference for the material base study and quality control.

  4. Characteristics of starch-based films with different amylose contents plasticised by 1-ethyl-3-methylimidazolium acetate.

    PubMed

    Xie, Fengwei; Flanagan, Bernadine M; Li, Ming; Truss, Rowan W; Halley, Peter J; Gidley, Michael J; McNally, Tony; Shamshina, Julia L; Rogers, Robin D

    2015-05-20

    Starch-based films plasticised by an ionic liquid, 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]), were prepared by a simple compression moulding process, facilitated by the strong plasticisation effect of [Emim][OAc]. The effects of amylose content of starch (regular vs. high-amylose maize) and relative humidity (RH) during ageing of the samples on a range of structural and material characteristics were investigated. Surprisingly, plasticisation by [Emim][OAc] made the effect of amylose content insignificant, contrary to most previous studies when other plasticisers were used. In other words, [Emim][OAc] changed the underlying mechanism responsible for mechanical properties from the entanglement of starch macromolecules (mainly amylose), which has been reported as a main responsible factor previously. The crystallinity of the plasticised starch samples was low and thus was unlikely to have a major contribution to the material characteristics, although the amylose content impacted on the crystalline structure and the mobility of amorphous parts in the samples to some extent. Therefore, RH conditioning and thus the sample water content was the major factor influencing the mechanical properties, glass transition temperature, and electrical conductivity of the starch films. This suggests the potential application of ionic liquid-plasticised starch materials in areas where the control of properties by environmental RH is desired.

  5. Evaluation of Antibacterial, Antineoplastic, and Immunomodulatory Activity of Paullinia cupana Seeds Crude Extract and Ethyl-Acetate Fraction

    PubMed Central

    Carvalho, Lidiane Vasconcelos do Nascimento; Cordeiro, Marina Ferraz; e Lins, Thiago Ubiratan Lins; Sampaio, Maria Clara Pinheiro Duarte; de Mello, Gabriela Souto Vieira; da Costa, Valécia de Cassia Mendonça; Marques, Leila Larisa Medeiros; Klein, Traudi; de Mello, João Carlos Palazzo; Cavalcanti, Isabella Macário Ferro; Pitta, Ivan da Rocha

    2016-01-01

    Paullinia cupana (Guarana) is a native plant of Amazon region that has very traditional importance. Its seeds are rich in bioactive compounds, including tannins, which exhibit relevant properties. Objective. This study aimed to evaluate antibacterial, antineoplastic, and immunomodulatory activity of P. cupana seeds crude extract (CE) and ethyl-acetate fraction (EAF). Methods. Antibacterial activity was evaluated by determination of minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). Antineoplastic activity was evaluated by MTT assays in hepatocellular carcinoma (HepG2), breast adenocarcinoma (MCF-7), ductal carcinoma (T47-D), non-Hodgkin's B cell lymphoma (Toledo), T cell leukemia (Jukart), and Acute Leukemia (HL-60) cell lines. BALB/c mice splenocytes were treated to assess IFN-γ, IL-6, IL-17, and IL-10 levels by sandwich ELISA. Results. CE and EAF were not toxic to peripheral blood cells and splenocytes. CE and EAF fractions showed a bacteriostatic activity (MIC = 250 μg/mL) and presented IC50 values of 70.25 μg/mL and 61.18 μg/mL in HL-60 leukemia cell line. All cytokines evaluated had their levels reduced after treatment, following dose-response model. Discussion and Conclusion. Different biological activities were observed for both CE and EAF, suggesting P. cupana as a source of bioactive substances, especially tannins that may be used for several diseases treatments. PMID:28053639

  6. Identification of Neuroactive Constituents of the Ethyl Acetate Fraction from Cyperi Rhizoma Using Bioactivity-Guided Fractionation

    PubMed Central

    Sim, Yeomoon; Choi, Jin Gyu; Gu, Pil Sung; Ryu, Byeol; Kim, Jeong Hee; Kang, Insug; Jang, Dae Sik; Oh, Myung Sook

    2016-01-01

    Cyperi Rhizoma (CR), the rhizome of Cyperus rotundus L., exhibits neuroprotective effects in in vitro and in vivo models of neuronal diseases. Nevertheless, no study has aimed at finding the neuroactive constituent(s) of CR. In this study, we identified active compounds in a CR extract (CRE) using bioactivity-guided fractionation. We first compared the anti-oxidative and neuroprotective activities of four fractions and the CRE total extract. Only the ethyl acetate (EA) fraction revealed strong activity, and further isolation from the bioactive EA fraction yielded nine constituents: scirpusin A (1), scirpusin B (2), luteolin (3), 6′-acetyl-3,6-diferuloylsucrose (4), 4′,6′ diacetyl-3,6-diferuloylsucrose (5), p-coumaric acid (6), ferulic acid (7), pinellic acid (8), and fulgidic acid (9). The activities of constituents 1–9 were assessed in terms of anti-oxidative, neuroprotective, anti-inflammatory, and anti-amyloid-β activities. Constituents 1, 2, and 3 exhibited strong activities; constituents 1 and 2 were characterized for the first time in this study. These results provide evidence for the value of CRE as a source of multi-functional neuroprotectants, and constituents 1 and 2 may represent new candidates for further development in therapeutic use against neurodegenerative diseases. PMID:27350341

  7. Ethyl acetate extract of Hypericum japonicum induces apoptosis via the mitochondria-dependent pathway in vivo and in vitro.

    PubMed

    Zhuang, Qunchuan; Li, Jing; Chen, Youqin; Lin, Jiumao; Lai, Faze; Chen, Xuzheng; Lin, Xindeng; Peng, Jun

    2015-10-01

    The widely-used Chinese medicinal herb Hypericum japonicum, also known as Hypericum japonicum Thunb or Tianjihuang, displays potent anti‑carcinogenic effects against liver cancer. However, the molecular mechanism underlying the therapeutic effects of Hypericum japonicum remains to be elucidated. The present study investigated the in vivo efficacy of ethyl acetate extract of Hypericum japonicum (EAEHJ) against tumor growth in an H22 cell‑bearing liver cancer mouse model. Treatment with EAEHJ significantly reduced tumor weight, but had no effect on murine body weight. The results of the present study also showed that EAEHJ induced H22 cell apoptosis in vivo. In addition, the anti‑carcinogenic effects of EAEHJ were investigated in vitro. The results of the present study demonstrate that both phospholipid asymmetry in the plasma membrane and mitochondrial membrane potential were deregulated in HepG2 human hepatoma cells, following treatment with EAEHJ. Treatment with EAEHJ also increased the ratio of pro‑apoptotic B‑cell lymphoma 2 (Bcl‑2)‑associated X protein (Bax) to anti‑apoptotic Bcl‑2, and activated the caspase‑9 signaling pathway. These results suggest that EAEHJ is able to trigger the apoptosis of liver cancer cells via the mitochondria-dependent pathway.

  8. Antidiabetic Activity of Self Nanoemulsifying Drug Delivery System from Bay Leaves (Eugenia polyantha Wight) Ethyl Acetate Fraction

    NASA Astrophysics Data System (ADS)

    Prihapsara, F.; Harini, M.; Widiyani, T.; Artanti, A. N.; Ani, I. L.

    2017-02-01

    Insulin resistance is caused by inability of target tissues to insulin response. Bay leaves (Eugenia polyantha Wight) fraction or extract have been used for the treatment of antidibetic mellitus type-2 resistance insulin (ADMRI) but it has low solubility and bioavailability. To overcome these problems, ethyl acetate fraction of bay leaves was formulated into self nanoemulsifying drug delivery system (SNEDDS) using Virgin Coconut Oil (VCO) as a carrier oil. This study aims to produce nanoherbal medicine, determine effect of nanoherbal preparation derived from bay leaves as an anti-ADMRI. The results showed that the optimum SNEDDS formula was tween 80 : PEG 400 : Virgin Coconut Oil (30% : 60% : 10%) in 5 mL. It has emulsification time 13.00 seconds with the average of droplet size value 84.5 nanometer and zeta potential value ± 0.2 mV. Morphological observation showed the nanoemulsion particles has spherical shaped and stable in different pH media. Hypoglycaemic effect of single dose metformin, SNEDDS, combination a-half dose of SNEEDS with metformin value is 28.3%; 15.6%; 34.6% respectively.

  9. Michrochip chromatography using an open-tubular microchannel and a ternary water-ACN-ethyl acetate mixture carrier solution.

    PubMed

    Matsuda, Takafumi; Yamashita, Kenichi; Maeda, Hideaki; Hashimoto, Masahiko; Tsukagoshi, Kazuhiko

    2013-03-01

    A capillary chromatography system has been developed using a ternary mixed-solvents solution, i.e. water-hydrophilic/hydrophobic organic solvent mixture as a carrier solution. Here, we tried to carry out the chromatographic system on a microchip incorporating the open-tubular microchannels. A model analyte solution of isoluminol isothiocyanate (ILITC) and ILITC-labeled biomolecule was injected to the double T-junction part on the microchip. The analyte solution was delivered in the separation microchannel (40 μm deep, 100 μm wide, and 22 cm long) with the ternary water-ACN-ethyl acetate mixture carrier solution (3:8:4 volume ratio, the organic solvent rich or 15:3:2 volume ratio, the water-rich). The analyte, free-ILITC and labeled BSA mixture, was separated through the microchannel, where the carrier solvents were radially distributed in the separation channel generating inner and outer phases. The outer phase acts as a pseudo-stationary phase under laminar flow conditions in the system. The ILITC and the labeled BSA were eluted and detected with chemiluminescence reaction.

  10. Ethyl acetate extract of Peperomia tetraphylla induces cytotoxicity, cell cycle arrest, and apoptosis in lymphoma U937 cells.

    PubMed

    Yu, Dayong; Yang, Xiuxiu; Lu, Xuan; Shi, Liying; Feng, Baomin

    2016-12-01

    The current study evaluated the cytotoxicity and the mechanism of apoptotic induction by Peperomia tetraphylla in U937 lymphoma cells. The results showed that P. tetraphylla ethyl acetate extract (EAEPT) inhibited the cell growth in U937 cells by MTT assay. After the U937 cells were treated with EAEPT, the cells exhibited marked morphological features of apoptosis (Hoechst 33342 staining) and the number of apoptotic cell (Annexin V-FITC/PI staining) increased. The treatment of EAEPT could induce loss of mitochondrial membrane potential (MMP) and increase the ROS level. Moreover, EAEPT treatment resulted in the accumulation of cells at S phase. We found that EAEPT could induce the cleavage of the caspase 3, caspase 8, caspase 9 and Bid. And the treatment of EAEPT could increase expression of Bax and down-regulate the expression of CCNB1, CCND1 and CDK1. The sub-fraction of EAEPT, namely EASub1 demonstrated the highest cytotoxicity activity on U937 cells. It was confirmed that EAEPT could inhibit the growth of U937 cells by blocking the cell cycle and prompted apoptosis via the ROS-medicated mitochondria pathway in vitro.

  11. Ethyl acetate Salix alba leaves extract-loaded chitosan-based hydrogel film for wound dressing applications.

    PubMed

    Qureshi, Mohammad A; Khatoon, Fehmeeda; Rizvi, Moshahid A; Zafaryab, Md

    2015-01-01

    High toxicity and multidrug resistance associated with various standard antimicrobial drugs have necessitated search for safer alternatives in plant-derived materials. In this study, we performed biological examination of chitosan-based hydrogel film loaded with ethyl acetate Salix alba leaves extract against 11 standard laboratory strains. FTIR showed regeneration of saccharide peak in CP1A at 1047 cm(-1) and increased in height of other peaks. DSC exothermic decomposition peaks at 112 °C, 175 °C and 251 °C reveal the effect of extract on hydrogel film. From FESEM images, three-dimensional cross-linking and extract easily seen in the globular form from the surface. MTT assay on HEK 293 cells showed that CP1A was non-toxic. Minimum inhibitory concentration ranges from 4000 μg/ml to 125 μg/ml. Enterococcus faecium, Candida glabrata and Candida tropicalis were the most resistant, while Salmonella typhi and Candida guilliermondii were the most susceptible micro-organisms.

  12. Inhibition of Hepatitis C Virus Replication and Viral Helicase by Ethyl Acetate Extract of the Marine Feather Star Alloeocomatella polycladia

    PubMed Central

    Yamashita, Atsuya; Salam, Kazi Abdus; Furuta, Atsushi; Matsuda, Yasuyoshi; Fujita, Osamu; Tani, Hidenori; Fujita, Yoshihisa; Fujimoto, Yuusuke; Ikeda, Masanori; Kato, Nobuyuki; Sakamoto, Naoya; Maekawa, Shinya; Enomoto, Nobuyuki; Nakakoshi, Masamichi; Tsubuki, Masayoshi; Sekiguchi, Yuji; Tsuneda, Satoshi; Akimitsu, Nobuyoshi; Noda, Naohiro; Tanaka, Junichi; Moriishi, Kohji

    2012-01-01

    Hepatitis C virus (HCV) is a causative agent of acute and chronic hepatitis, leading to the development of hepatic cirrhosis and hepatocellular carcinoma. We prepared extracts from 61 marine organisms and screened them by an in vitro fluorescence assay targeting the viral helicase (NS3), which plays an important role in HCV replication, to identify effective candidates for anti-HCV agents. An ethyl acetate-soluble fraction of the feather star Alloeocomatella polycladia exhibited the strongest inhibition of NS3 helicase activity, with an IC50 of 11.7 µg/mL. The extract of A. polycladia inhibited interaction between NS3 and RNA but not ATPase of NS3. Furthermore, the replication of the replicons derived from three HCV strains of genotype 1b in cultured cells was suppressed by the extract with an EC50 value of 23 to 44 µg/mL, which is similar to the IC50 value of the NS3 helicase assay. The extract did not induce interferon or inhibit cell growth. These results suggest that the unknown compound(s) included in A. polycladia can inhibit HCV replication by suppressing the helicase activity of HCV NS3. This study may present a new approach toward the development of a novel therapy for chronic hepatitis C. PMID:22690141

  13. Comparison of Kato-Katz, ethyl-acetate sedimentation, and Midi Parasep® in the diagnosis of hookworm, Ascaris and Trichuris infections in the context of an evaluation of rural sanitation in India.

    PubMed

    Funk, Anna L; Boisson, Sophie; Clasen, Thomas; Ensink, Jeroen H J

    2013-06-01

    The Kato-Katz, conventional ethyl-acetate sedimentation, and Midi Parasep(®) methods for diagnosing infection with soil-transmitted helminths were compared. The Kato-Katz technique gave the best overall diagnostic performance with the highest results in all measures (prevalence, faecal egg count, sensitivity) followed by the conventional ethyl-acetate and then the Midi Parasep(®) technique. The Kato-Katz technique showed a significantly higher faecal egg count and sensitivity for both hookworm and Trichuris as compared to the Midi Parasep(®) technique. The conventional ethyl-acetate technique produced smaller pellets and showed lower pellet mobility as compared to the Midi Parasep(®).

  14. Ethyl 2-(1,2,3,4-tetrahydro­spiro­[carba­zole-3,2′-[1,3]dioxolan]-9-yl)acetate

    PubMed Central

    Löffler, Philipp M. G.; Ulven, Trond; Bond, Andrew D.

    2009-01-01

    In the title compound, C18H21NO4, the hydrogenated six-membered ring of the carbazole unit adopts a half-chair conformation. The dioxolane ring and ethyl­acetate substituent point to opposite sides of the carbazole plane. The ethyl­acetate substituent adopts an essentially fully extended conformation, and its mean plane forms a dihedral angle of 83.8 (1)° with respect to the carbazole mean plane. The mol­ecules are arranged into stacks in which the carbazole planes form a dihedral angle of 4.4 (1)° and have an approximate inter­planar separation of 3.6 Å. PMID:21582427

  15. Validation and uncertainty analysis of a multi-residue method for pesticides in grapes using ethyl acetate extraction and liquid chromatography-tandem mass spectrometry.

    PubMed

    Banerjee, Kaushik; Oulkar, Dasharath P; Dasgupta, Soma; Patil, Shubhangi B; Patil, Sangram H; Savant, Rahul; Adsule, Pandurang G

    2007-11-30

    A method was validated for the multi-residue analysis of 82 pesticides in grapes at ethyl acetate (10 mL); cleaned by dispersive solid phase extraction and the results were obtained by liquid chromatography-tandem mass spectrometry. Reduction in sample size and proportion of ethyl acetate for extraction did not affect accuracy or precision of analysis when compared to the reported methods and was also statistically similar to the QuEChERS technique. The method was rugged (HorRat < 0.5) with <20% measurement uncertainties. Limit of quantification was <10 ng/g with recoveries 70-120% for most pesticides. The method offers cheaper and safer alternative to typical multi-residue analysis methods for grape.

  16. Acetaldehyde-induced cytotoxicity involves induction of spermine oxidase at the transcriptional level.

    PubMed

    Uemura, Takeshi; Tanaka, Yuka; Higashi, Kyohei; Miyamori, Daisuke; Takasaka, Tomokazu; Nagano, Tatsuo; Toida, Toshihiko; Yoshimoto, Kanji; Igarashi, Kazuei; Ikegaya, Hiroshi

    2013-08-09

    Ethanol consumption causes serious liver injury including cirrhosis and hepatocellular carcinoma. Ethanol is metabolized mainly in the liver to acetic acid through acetaldehyde. We investigated the effect of ethanol and acetaldehyde on polyamine metabolism since polyamines are essential factors for normal cellular functions. We found that acetaldehyde induced spermine oxidase (SMO) at the transcriptional level in HepG2 cells. The levels and activities of ornithine decarboxylase (ODC) and spermidine/spermine acetyltransferase (SSAT) were not affected by acetaldehyde. Spermidine content was increased and spermine content was decreased by acetaldehyde treatment. Knockdown of SMO expression using siRNA reduced acetaldehyde toxicity. Acetaldehyde exposure increased free acrolein levels. An increase of acrolein by acetaldehyde was SMO dependent. Our results indicate that cytotoxicity of acetaldehyde involves, at least in part, oxidation of spermine to spermidine by SMO, which is induced by acetaldehyde.

  17. Identification of Pyrogallol in the Ethyl Acetate-Soluble Part of Coffee as the Main Contributor to Its Xanthine Oxidase Inhibitory Activity.

    PubMed

    Honda, Sari; Masuda, Toshiya

    2016-10-10

    In this study, ethyl acetate-soluble parts of hot-water extracts from roasted coffee beans were found to demonstrate potent xanthine oxidase (XO) inhibition. The XO inhibitory activities and chlorogenic lactone contents (chlorogenic lactones have previously been identified as XO inhibitors in roast coffee) were measured for ethyl acetate-soluble parts prepared from coffee beans roasted to three different degrees. Although chlorogenic lactone contents decreased with higher degrees of roasting, the XO inhibitory activity did not decrease. These data led us to investigate new potent inhibitors present in these ethyl acetate-soluble extracts. Repeated assay-guided purifications afforded a highly potent XO inhibitor, which was eluted before chlorogenic lactones via medium-pressure chromatography using an octadecylsilica gel column. The obtained inhibitor was identified as pyrogallol (1,2,3-trihydroxybenzene), which had an IC50 of 0.73 μmol L(-1), much stronger than that of other related polyphenolic compounds. Quantitative analysis of pyrogallol and chlorogenic lactones revealed that pyrogallol (at concentrations of 33.9 ± 4.2 nmol mL(-1) in light roast coffee and 39.4 ± 3.9 nmol mL(-1) in dark roast coffee) was the main XO inhibitor in hot-water extracts of roasted coffee beans (i.e., drinking coffee).

  18. Acetaldehyde and gastric cancer.

    PubMed

    Salaspuro, Mikko

    2011-04-01

    Aldehyde dehydrogenase (ALDH2) and alcohol dehydrogenase (ADH) gene polymorphisms associating with enhanced acetaldehyde exposure and markedly increased cancer risk in alcohol drinkers provide undisputable evidence for acetaldehyde being a local carcinogen not only in esophageal but also in gastric cancer. Accordingly, acetaldehyde associated with alcoholic beverages has recently been classified as a Group 1 carcinogen to humans. Microbes are responsible for the bulk of acetaldehyde production from ethanol both in saliva and Helicobacter pylori-infected and achlorhydric stomach. Acetaldehyde is the most abundant carcinogen in tobacco smoke and it readily dissolves into saliva during smoking. Many foodstuffs and 'non-alcoholic' beverages are important but unrecognized sources of local acetaldehyde exposure. The cumulative cancer risk associated with increasing acetaldehyde exposure suggests the need for worldwide screening of the acetaldehyde levels of alcoholic beverages and as well of the ethanol and acetaldehyde of food produced by fermentation. The generally regarded as safe status of acetaldehyde should be re-evaluated. The as low as reasonably achievable principle should be applied to the acetaldehyde of alcoholic and non-alcoholic beverages and food. Risk groups with ADH-and ALDH2 gene polymorphisms, H. pylori infection or achlorhydric atrophic gastritis, or both, should be screened and educated in this health issue. L-cysteine formulations binding carcinogenic acetaldehyde locally in the stomach provide new means for intervention studies.

  19. Modification and re-validation of the ethyl acetate-based multi-residue method for pesticides in produce

    PubMed Central

    Rooseboom, Astrid; van Dam, Ruud; Roding, Marleen; Arondeus, Karin; Sunarto, Suryati

    2007-01-01

    The ethyl acetate-based multi-residue method for determination of pesticide residues in produce has been modified for gas chromatographic (GC) analysis by implementation of dispersive solid-phase extraction (using primary–secondary amine and graphitized carbon black) and large-volume (20 μL) injection. The same extract, before clean-up and after a change of solvent, was also analyzed by liquid chromatography with tandem mass spectrometry (LC–MS–MS). All aspects related to sample preparation were re-assessed with regard to ease and speed of the analysis. The principle of the extraction procedure (solvent, salt) was not changed, to avoid the possibility invalidating data acquired over past decades. The modifications were made with techniques currently commonly applied in routine laboratories, GC–MS and LC–MS–MS, in mind. The modified method enables processing (from homogenization until final extracts for both GC and LC) of 30 samples per eight hours per person. Limits of quantification (LOQs) of 0.01 mg kg−1 were achieved with both GC–MS (full-scan acquisition, 10 mg matrix equivalent injected) and LC–MS–MS (2 mg injected) for most of the pesticides. Validation data for 341 pesticides and degradation products are presented. A compilation of analytical quality-control data for pesticides routinely analyzed by GC–MS (135 compounds) and LC–MS–MS (136 compounds) in over 100 different matrices, obtained over a period of 15 months, are also presented and discussed. At the 0.05 mg kg−1 level acceptable recoveries were obtained for 93% (GC–MS) and 92% (LC–MS–MS) of pesticide–matrix combinations. PMID:17563885

  20. Genomic saturation mutagenesis and polygenic analysis identify novel yeast genes affecting ethyl acetate production, a non-selectable polygenic trait

    PubMed Central

    Abt, Tom Den; Souffriau, Ben; Foulquié-Moreno, Maria R.; Duitama, Jorge; Thevelein, Johan M.

    2016-01-01

    Isolation of mutants in populations of microorganisms has been a valuable tool in experimental genetics for decades. The main disadvantage, however, is the inability of isolating mutants in non-selectable polygenic traits. Most traits of organisms, however, are non-selectable and polygenic, including industrially important properties of microorganisms. The advent of powerful technologies for polygenic analysis of complex traits has allowed simultaneous identification of multiple causative mutations among many thousands of irrelevant mutations. We now show that this also applies to haploid strains of which the genome has been loaded with induced mutations so as to affect as many non-selectable, polygenic traits as possible. We have introduced about 900 mutations into single haploid yeast strains using multiple rounds of EMS mutagenesis, while maintaining the mating capacity required for genetic mapping. We screened the strains for defects in flavor production, an important non-selectable, polygenic trait in yeast alcoholic beverage production. A haploid strain with multiple induced mutations showing reduced ethyl acetate production in semi-anaerobic fermentation, was selected and the underlying quantitative trait loci (QTLs) were mapped using pooled-segregant whole-genome sequence analysis after crossing with an unrelated haploid strain. Reciprocal hemizygosity analysis and allele exchange identified PMA1 and CEM1 as causative mutant alleles and TPS1 as a causative genetic background allele. The case of CEM1 revealed that relevant mutations without observable effect in the haploid strain with multiple induced mutations (in this case due to defective mitochondria) can be identified by polygenic analysis as long as the mutations have an effect in part of the segregants (in this case those that regained fully functional mitochondria). Our results show that genomic saturation mutagenesis combined with complex trait polygenic analysis could be used successfully to

  1. Harpagophytum Procumbens Ethyl Acetate Fraction Reduces Fluphenazine-Induced Vacuous Chewing Movements and Oxidative Stress in Rat Brain.

    PubMed

    Schaffer, Larissa Finger; de Freitas, Catiuscia Molz; Chiapinotto Ceretta, Ana Paula; Peroza, Luis Ricardo; de Moraes Reis, Elizete; Krum, Bárbara Nunes; Busanello, Alcindo; Boligon, Aline Augusti; Sudati, Jéssie Haigert; Fachinetto, Roselei; Wagner, Caroline

    2016-05-01

    Long-term treatment with fluphenazine is associated with manifestation of extrapyramidal side effects, such as tardive dyskinesia. The molecular mechanisms related to the pathophysiology of TD remain unclear, and several hypotheses, including a role for oxidative stress, have been proposed. Harpagophytum procumbens is an herbal medicine used mainly due to anti-inflammatory effects, but it also exhibits antioxidant effects. We investigated the effect of ethyl acetate fraction of H. procumbens (EAF HP) in fluphenazine-induced orofacial dyskinesia by evaluating behavioral parameters at different times (vacuous chewing movements (VCM's) and locomotor and exploratory activity), biochemical serological analyses, and biochemical markers of oxidative stress of the liver, kidney, cortex, and striatum. Chronic administration of fluphenazine (25 mg/kg, intramuscular (i.m) significantly increased the VCMs at all analyzed times (2, 7, 14, and 21 days), and this was inhibited by EAF HP (especially at a dose of 30 mg/kg). Fluphenazine decreased locomotion and exploratory activity, and EAF HP did not improve this decrease. Fluphenazine induced oxidative damage, as identified by changes in catalase activity and ROS levels in the cortex and striatum, which was reduced by EAF HP, especially in the striatum. In the cortex, EAF HP was protective against fluphenazine-induced changes in catalase activity but not against the increase in ROS level. Furthermore, EAF HP was shown to be safe, since affected serum biochemical parameters or parameters of oxidative stress in the liver and kidney. These findings suggest that the H. procumbens is a promising therapeutic agent for the treatment of involuntary oral movements.

  2. Determination of amitraz and its transformation products in pears by ethyl acetate extraction and liquid chromatography-tandem mass spectrometry.

    PubMed

    Tokman, Nilgun; Soler, Carla; Farré, Marinel la; Picó, Yolanda; Barceló, Damià

    2009-04-10

    A method has been developed for identification and quantification of the acaricide amitraz and its transformation products, 2,4-dimethylaniline (DMA), 2,4-dimethylformamidine (DMF) and N-2,4-dimethylphenyl-N-methylformamidine (DMPF) in pears. The analytes were extracted using ethyl acetate and anhydrous sodium sulphate. Analysis was performed by liquid chromatography-electrospray tandem mass spectrometry (LC-ESI-MS/MS) in the positive ion mode using a triple quadrupole (QqQ) instrument. Two precursor-product ion transitions were monitored for each compound in the selected reaction monitoring (SRM) mode. The method was validated with pears taken from the orchard before the amitraz treatment and spiked at the limit of quantification (LOQ), 10 times the LOQ and the maximum residue limit (MRL). Recoveries were between 70 and 106% and relative standard deviations were below 19% (n=5 at each spiked level). Excellent sensitivity resulted in limits of detection (LODs) for all the compounds below 10 microg kg(-1). Quantification was carried out using matrix-matched standards calibration, response was a linear function of the concentration from the LOQs to, at least, three orders of magnitude. Recoveries and standard deviations were comparable to those obtained after hydrolysis of amitraz and its metabolites to DMA. Occurrence of amitraz and its metabolites in field-treated pears showed that, seven days after the treatment, DMPF and DMF are the main degradation products. This work reports for the first time the use of a conventional pesticide multiresidue method and LC-ESI-MS/MS for determining amitraz and its metabolites in pears.

  3. Different characteristic effects of ageing on starch-based films plasticised by 1-ethyl-3-methylimidazolium acetate and by glycerol.

    PubMed

    Zhang, Binjia; Xie, Fengwei; Zhang, Tianlong; Chen, Ling; Li, Xiaoxi; Truss, Rowan W; Halley, Peter J; Shamshina, Julia L; McNally, Tony; Rogers, Robin D

    2016-08-01

    The focus of this study was on the effects of plasticisers (the ionic liquid 1-ethyl-3-methylimidazolium acetate, or [Emim][OAc]; and glycerol) on the changes of starch structure on multiple length scales, and the variation in properties of plasticised starch-based films, during ageing. The films were prepared by a simple melt compression moulding process, followed by storage at different relative humidity (RH) environments. Compared with glycerol, [Emim][OAc] could result in greater homogeneity in [Emim][OAc]-plasticised starch-based films (no gel-like aggregates and less molecular order (crystallites) on the nano-scale). Besides, much weaker starch-starch interactions but stronger starch-[Emim][OAc] interactions at the molecular level led to reduced strength and stiffness but increased flexibility of the films. More importantly, [Emim][OAc] (especially at high content) was revealed to more effectively maintain the plasticised state during ageing than glycerol: the densification (especially in the amorphous regions) was suppressed; and the structural characteristics especially on the nano-scale were stabilised (especially at a high RH), presumably due to the suppressed starch molecular interactions by [Emim][OAc] as confirmed by Raman spectroscopy. Such behaviour contributed to stabilised mechanical properties. Nonetheless, the crystallinity and thermal stability of starch-based films with both plasticisers were much less affected by ageing and moisture uptake during storage (42 days), but mostly depended on the plasticiser type and content. As starch is a typical semi-crystalline bio-polymer containing abundant hydroxyl groups and strong hydrogen bonding, the findings here could also be significant in creating materials from other similar biopolymers with tailored sensitivity and properties to the environment.

  4. Activation of apoptosis by ethyl acetate fraction of ethanol extract of Dianthus superbus in HepG2 cell line.

    PubMed

    Yu, Jian-Qing; Yin, Yan; Lei, Jia-Chuan; Zhang, Xiu-Qiao; Chen, Wei; Ding, Cheng-Li; Wu, Shan; He, Xiao-Yu; Liu, Yan-Wen; Zou, Guo-Lin

    2012-02-01

    Dianthus superbus L. is commonly used as a traditional Chinese medicine. We recently showed that ethyl acetate fraction (EE-DS) from ethanol extract of D. superbus exhibited the strongest antioxidant and cytotoxic activities. In this study, we examined apoptosis of HepG2 cells induced by EE-DS, and the mechanism underlying apoptosis was also investigated. Treatment of HepG2 cells with EE-DS (20-80 μg/ml) for 48 h led to a significant dose-dependent increase in the percentage of cells in sub-G1 phase by analysis of the content of DNA in cells, and a large number of apoptotic bodies containing nuclear fragments were observed in cells treated with 80 μg/ml of EE-DS for 24 h by using Hoechst 33258 staining. These data show that EE-DS can induce apoptosis of HepG2 cells. Immunoblot analysis showed that EE-DS significantly suppressed the expressions of Bcl-2 and NF-κB. Treatment of cells with EE-DS (80 μg/ml) for 48 h resulted in significant increase of cytochrome c in the cytosol, which indicated cytochrome c release from mitochondria. Activation of caspase-9 and -3 were also determined when the cells treated with EE-DS. The results suggest that apoptosis of HepG2 cells induced by EE-DS could be through the mitochondrial intrinsic pathway. High performance liquid chromatography (HPLC) data showed that the composition of EE-DS is complicated. Further studies are needed to find the effective constituents of EE-DS.

  5. Ethyl Acetate Extract of Origanum vulgare L. ssp. hirtum Prevents Streptozotocin-Induced Diabetes in C57BL/6 Mice.

    PubMed

    Vujicic, Milica; Nikolic, Ivana; Kontogianni, Vassiliki G; Saksida, Tamara; Charisiadis, Pantelis; Vasic, Bobana; Stosic-Grujicic, Stanislava; Gerothanassis, Ioannis P; Tzakos, Andreas G; Stojanovic, Ivana

    2016-07-01

    Type 1 diabetes (T1D) is an autoimmune disease that develops as a consequence of pancreatic β-cell death induced by proinflammatory mediators. Because Origanum vulgare L. ssp. hirtum (Greek oregano) contains antiinflammatory molecules, we hypothesized that it might be beneficial for the treatment of T1D. An ethyl acetate extract of oregano (EAO) was prepared from the leaves by a polar extraction method. Phytochemical composition was determined by liquid chromatography-UV diode array coupled to ion-trap mass spectrometry with electrospray ionization interface (LC/DAD/ESI-MS(n) ). In vitro immunomodulatory effect of EAO was estimated by measuring proliferation (MTT) or cytokine secretion (ELISA) from immune cells. Diabetes was induced by multiple low doses of streptozotocin (MLDS) in male C57BL/6 mice and EAO was administered intraperitoneally for 10 d. Determination of cellular composition (flow cytometry) and cytokine production (ELISA) was performed on 12th d after diabetes induction. EAO suppressed the function of both macrophages and lymphocytes in vitro. In vivo, EAO treatment significantly preserved pancreatic islets and reduced diabetes incidence in MLDS-challenged mice. Besides down-modulatory effect on macrophages, EAO reduced the number of total CD4(+) and activated CD4(+) CD25(+) T cells. Furthermore, EAO affected the number of T helper 1 (Th1) and T helper 17 (Th17) cells through downregulation of their key transcription factors T-bet and RORγT. Because EAO treatment protects mice from development of hyperglycemia by reducing proinflammatory macrophage/Th1/Th17 response, this plant extract could represent a basis for future diabetes therapy.

  6. Genomic saturation mutagenesis and polygenic analysis identify novel yeast genes affecting ethyl acetate production, a non-selectable polygenic trait.

    PubMed

    Abt, Tom Den; Souffriau, Ben; Foulquié-Moreno, Maria R; Duitama, Jorge; Thevelein, Johan M

    2016-03-18

    Isolation of mutants in populations of microorganisms has been a valuable tool in experimental genetics for decades. The main disadvantage, however, is the inability of isolating mutants in non-selectable polygenic traits. Most traits of organisms, however, are non-selectable and polygenic, including industrially important properties of microorganisms. The advent of powerful technologies for polygenic analysis of complex traits has allowed simultaneous identification of multiple causative mutations among many thousands of irrelevant mutations. We now show that this also applies to haploid strains of which the genome has been loaded with induced mutations so as to affect as many non-selectable, polygenic traits as possible. We have introduced about 900 mutations into single haploid yeast strains using multiple rounds of EMS mutagenesis, while maintaining the mating capacity required for genetic mapping. We screened the strains for defects in flavor production, an important non-selectable, polygenic trait in yeast alcoholic beverage production. A haploid strain with multiple induced mutations showing reduced ethyl acetate production in semi-anaerobic fermentation, was selected and the underlying quantitative trait loci (QTLs) were mapped using pooled-segregant whole-genome sequence analysis after crossing with an unrelated haploid strain. Reciprocal hemizygosity analysis and allele exchange identified PMA1 and CEM1 as causative mutant alleles and TPS1 as a causative genetic background allele. The case of CEM1 revealed that relevant mutations without observable effect in the haploid strain with multiple induced mutations (in this case due to defective mitochondria) can be identified by polygenic analysis as long as the mutations have an effect in part of the segregants (in this case those that regained fully functional mitochondria). Our results show that genomic saturation mutagenesis combined with complex trait polygenic analysis could be used successfully to

  7. Effect of total hydroalcholic extract of Nigella sativa and its n-hexane and ethyl acetate fractions on ACHN and GP-293 cell lines.

    PubMed

    Shahraki, Samira; Khajavirad, Abolfazl; Shafei, Mohammad Naser; Mahmoudi, Mahmoud; Tabasi, Nafisa Sadat

    2016-01-01

    Medicinal plants are noted for their many advantages including the ability to treat diseases such as cancer. In this study, we examined the antitumor effect of the medicinal plant Nigella sativa on the morphology, survival, and apoptosis of ACHN (human renal adenocarcinoma) and GP-293 (normal renal epithelial) cell lines. From a hydroalcoholic extract of N. sativa, n-hexane and ethyl acetate fractions were extracted. Cells were treated with various concentrations of total hydroalcholic extract and n-hexane and ethyl acetate fractions; cell viability, morphological changes, and apoptosis were then determined. Results were presented as mean ± standard error of the mean (SEM). One-way analysis of variance (ANOVA) was applied for the statistical analysis of the data. The total extract and the fractions in a dose- and time-dependent manner reduced the cell viability in ACHN with no effect on the GP-293 cell line. In addition, the total extract resulted in more morphological changes in the ACHN cells compared to the GP-293 cells. The effect of the total extract in inducing apoptosis after 48 hours in the ACHN cell line was greater than in GP-293. In addition, the effect of the two fractions was lower than the total extract at all used concentrations. Therefore, the effect of total extract and n-hexane and ethyl acetate fractions of N. sativa on cell viability and apoptosis in the ACHN cell line is greater than in the GP-293 cell line. However, the effect of the total extract is higher than either of the two fractions on their own.

  8. Diabetic therapeutic effects of ethyl acetate fraction from the roots of Musa paradisiaca and seeds of Eugenia jambolana in streptozotocin-induced male diabetic rats.

    PubMed

    Panda, D K; Ghosh, Debidas; Bhat, B; Talwar, S K; Jaggi, M; Mukherjee, R

    2009-11-01

    The folklore medicine of primitive people has been greatly appreciated for centuries. Many researchers study the curative efficiency and mode of action of various medicinal plants. Serum glucose level, lipid profile, glucose tolerance, hepatic and muscle glycogen contents as well as the activities of hepatic hexokinase and glucose-6-phosphatase recovered significantly after oral administration of ethyl acetate fractions of Eugenia jambolana (E. jambolana) or Musa paradisiaca (M. paradisiaca) in separate (E. jambolana L.: 200 mg/kg of body weight and M. paradisiaca: 100 mg/kg of body weight) or combined form for 90 days (twice a day through gavage) to streptozotocin-induced diabetic rats. The loss in body weight of diabetic animals was reversed and serum levels of insulin as well as C-peptide, which were found to be reduced in diabetic rats, increased significantly after oral administration of the fractions. A histological study of the rats' pancreas revealed that after 90 days of oral treatment with the plant fractions in separate or combined form, the size and volume of pancreatic islets in diabetic treated rats increased significantly compared with the diabetic control group. Treatment of diabetic rats with the combined dose (300 mg/kg of body weight) of plant fractions (200 mg E. jambolana and 100 mg M. paradisiaca) was found to be more effective than treatment with the individual fraction. The doses of E. jambolana and M. paradisiaca selected for this study are the optimum antihyperglycemic doses of the plant fractions, which were determined after conducting a dose-dependent study at various dose levels (50-500 mg/kg) in our pilot experiments. The plant fractions were found to be free from metabolic toxicity. Through HPTLC finger printing, three different compounds were noted in the ethyl acetate fraction of E. jambolana L. and eight different compounds in the ethyl acetate fraction of M. paradisiaca L.

  9. Anticancer Effects of 1,3-Dihydroxy-2-Methylanthraquinone and the Ethyl Acetate Fraction of Hedyotis Diffusa Willd against HepG2 Carcinoma Cells Mediated via Apoptosis

    PubMed Central

    Li, Yun-lan; Zhang, Jiali; Min, Dong; Hongyan, Zhou; Lin, Niu; Li, Qing-shan

    2016-01-01

    Hedyotis Diffusa Willd, used in Traditional Chinese Medicine, is a treatment for various diseases including cancer, owing to its mild effectiveness and low toxicity. The aim of this study was to identify the main anticancer components in Hedyotis Diffusa Willd, and explore mechanisms underlying their activity. Hedyotis Diffusa Willd was extracted and fractionated using ethyl acetate to obtain the H-Ethyl acetate fraction, which showed higher anticancer activity than the other fractions obtained against HepG2 cells with sulforhodamine B assays. The active component of the H-Ethyl acetate fraction was identified to be 1,3-dihydroxy-2-methylanthraquinone (DMQ) with much high inhibitory rate up to 48.9 ± 3.3% and selectivity rate up to 9.4 ± 4.5 folds (p<0.01) at 125 μmol/L. HepG2 cells treated with the fraction and DMQ visualized morphologically using light and fluorescence microscopy. Annexin V—fluorescein isothiocyanate / propidium iodide staining flow cytometry, DNA ladder and cell cycle distribution assays. Mechanistic studies showed up-regulation of caspase-3, -8, and -9 proteases activities (p<0.001), indicating involvement of mitochondrial apoptotic and death receptor pathways. Further studies revealed that reactive oxygen species in DMQ and the fraction treated HepG2 cells increased (p<0.01) while mitochondrial membrane potential reduced significantly (p<0.001) compared to the control by flow cytometry assays. Western blot analysis showed that Bax, p53, Fas, FasL, p21 and cytoplasmic cytochrome C were up-regulated (p<0.01), while Bcl-2, mitochondrial cytochrome C, cyclin E and CDK 2 were down-regulated dose-dependently (p<0.01). The reverse transcriptase-polymerase chain reaction showed that mRNA expressions of p53 and Bax increased (p<0.001) while that of Bcl-2 decreased (p<0.001). Pre-treatment with caspase-8 inhibitor Z-IETD-FMK, or caspase-9 inhibitor Z-LEHD-FMK, attenuated the growth-inhibitory and apoptosis-inducing effects of DMQ and the fraction

  10. Biochemical basis of mitochondrial acetaldehyde dismutation in Saccharomyces cerevisiae.

    PubMed Central

    Thielen, J; Ciriacy, M

    1991-01-01

    As reported previously, Saccharomyces cerevisiae cells deficient in all four known genes coding for alcohol dehydrogenases (ADH1 through ADH4) produce considerable amounts of ethanol during aerobic growth on glucose. It has been suggested that ethanol production in such adh0 cells is a corollary of acetaldehyde dismutation in mitochondria. This could be substantiated further by showing that mitochondrial ethanol formation requires functional electron transport, while the proton gradient or oxidative phosphorylation does not interfere with reduction of acetaldehyde in isolated mitochondria. This acetaldehyde-reducing activity is different from classical alcohol dehydrogenases in that it is associated with the inner mitochondrial membrane and also is unable to carry out ethanol oxidation. The putative cofactor is NADH + H+ generated by a soluble, matrix-located aldehyde dehydrogenase upon acetaldehyde oxidation to acetate. This enzyme has been purified from mitochondria of glucose-grown cells. It is clearly different from the known mitochondrial aldehyde dehydrogenase, which is absent in glucose-grown cells. Both acetaldehyde-reducing and acetaldehyde-oxidizing activities are also present in the mitochondrial fraction of fermentation-proficient (ADH+) cells. Mitochondrial acetaldehyde dismutation may have some significance in the removal of surplus acetaldehyde and in the formation of acetate in mitochondria during aerobic glucose fermentation. Images FIG. 4 PMID:1938903

  11. Mixture Toxicity of SN2-Reactive Soft Electrophiles: 3. Evaluation of Ethyl α-Halogenated Acetates with α-Halogenated Acetonitriles

    PubMed Central

    Pöch, G.; Schultz, T. W.

    2014-01-01

    Mixture toxicity for each of four ethyl α-halogenated acetates (ExACs) with each of three α-halogenated acetonitriles (xANs) was assessed. Inhibition of bioluminescence in Vibrio fischeri was measured after 15, 30 and 45-min of exposure. Concentration-response curves were developed for each chemical at each exposure duration and used to develop predicted concentration-response curves for the dose-addition and independence models of combined effect. Concentration-response curves for each mixture and each exposure duration were then evaluated against the predicted curves, using three metrics per model: 1) EC50-based additivity quotient (AQ) or independence quotient (IQ) values, 2) mean AQ (mAQ) or mean IQ (mIQ) values, calculated by averaging the EC25, EC50 and EC75 AQ or IQ values, and 3) deviation values from additivity (DV-A) or independence (DV-I). Mixture toxicity for ethyl iodoacetate (EIAC) was dose-additive with each of the xANs at all exposure durations and was often consistent with independence as well. The same was true for mixture toxicity of ethyl bromoacetate (EBAC) with each xAN. However, for the two more slowly reactive chemicals ethyl chloroacetate (ECAC) and ethyl fluoroacetate (EFAC) mixture toxicity with each xAN only became consistent with dose-addition upon increasing exposure duration. Consistency with independence for both ECAC and EFAC with the xANs was essentially limited to the EC50-IQ metric; thereby demonstrating the utility of calculating the mean quotient (mAQ, mIQ) and deviation value (DV-A, DV-I) metrics. Upon review of these findings with those from the first two papers in the series, the results suggest that instances in which mixture toxicity was not consistent with dose-addition relate: 1) to differences in the capability of the chemicals to form strong H-bonds with water and 2) to differences in relative reactivity and time-dependent toxicity levels of the chemicals. PMID:24368709

  12. Template-assisted hydrothermally obtained titania-ceria composites and their application as catalysts in ethyl acetate oxidation and methanol decomposition with a potential for sustainable environment protection

    NASA Astrophysics Data System (ADS)

    Tsoncheva, Tanya; Mileva, Alexandra; Issa, Gloria; Dimitrov, Momtchil; Kovacheva, Daniela; Henych, Jiří; Scotti, Nicola; Kormunda, Martin; Atanasova, Genoveva; Štengl, Vaclav

    2017-02-01

    High surface area mesoporous ceria-titania binary materials with high Lewis acidity and improved reduction properties were synthesized using template assisted hydrothermal technique. The obtained materials were characterized by low temperature nitrogen physisorption, XRD, SEM, TEM, Raman, UV-vis, XPS, FTIR, FTIR of adsorbed pyridine and thermo-programmed reduction with hydrogen. Their catalytic activity was tested in total oxidation of ethyl acetate and methanol decomposition to CO and hydrogen with a potential application in VOCs elimination and alternative fuels, respectively. The structural changes in the binary materials, which could be tuned by the variation in the Ce/Ti ratio and the temperature of hydrothermal treatment, provoked significant changes in their textural, surface and redox properties, which is in close relation to the catalytic activity and selectivity in various catalytic processes. The intimate contact between the individual oxides results in the formation of different catalytic active sites and their role in the studied catalytic reactions was discussed in details.

  13. Sulfur Ylides. Communication 1. Cyclopropanation of. cap alpha. ,. beta. -unsaturated Ketones with Ethyl (dimethylsulfuranylidene) acetate generated in the presence of phase-transfer catalysts

    SciTech Connect

    Tolstikov, G.A.; Galin, F.Z.; Iskandarova V.N.; Khalilov, L.M.; Panasenko, A.A.

    1986-04-01

    This paper presents a modified method for the cyclopropanation of alpha, beta-unsaturated ketones with ethyl (dimethylsulfuranylidene) acetate, generated in situ from a sulfonium salt with 85% KOH in the presence of a phase-transfer catalyst, and studies the sterochemistry of the polysubstituted cyclopropanes. The chemical shifts of the carbon atoms of the cyclopropane rings of the isomer pairs are close together in the C 13 NMR spectra, which makes the assignment of the signals of C/sup 2/ and C/sup 3/ and the sterochemical assignment of each isomer to the cis and the trans series difficult. It is shown that the signals of the carboxyl carbon atoms differ not more than 0.65 ppm in the isomer pairs.

  14. Characteristics of lipid extraction from Chlorella sp. cultivated in outdoor raceway ponds with mixture of ethyl acetate and ethanol for biodiesel production.

    PubMed

    Lu, Weidong; Wang, Zhongming; Yuan, Zhenhong

    2015-09-01

    In this work, neutral lipids (NLs) extraction capacity and selectivity of six solvents were firstly compared. In addition, an eco-friendly solvent combination of ethyl acetate and ethanol (EA/E) was proposed and tested for lipid extraction from Chlorella sp. cultivated in outdoor raceway ponds and effect of extraction variables on lipid yield were intensively studied. Results indicated that lipid extraction yield was increased with solvent to biomass ratio but did not vary significantly when the value exceeded 20:1. Lipid yield was found to be strongly dependent on extraction temperature and time. Finally, fatty acid profiles of lipid were determined and results indicated that the major components were octadecanoic acid, palmitic acid, linoleic acid and linolenic acid, demonstrating that the lipid extracted from the Chlorella sp. cultivated in outdoor raceway ponds by EA/E was suitable feedstock for biodiesel production.

  15. Cognitive enhancing and antioxidant activity of ethyl acetate soluble fraction of the methanol extract of Hibiscus rosa sinensis in scopolamine-induced amnesia

    PubMed Central

    Nade, Vandana S.; Kanhere, Sampat V.; Kawale, Laxman A.; Yadav, Adhikrao V.

    2011-01-01

    Objective: The objective of the present study was to evaluate the cognitive enhancing and antioxidant activity of Hibiscus rosa sinensis. Materials and Methods: The learning and memory was impaired by administration of scopolamine (1 mg/kg, i.p.) in mice which is associated with altered brain oxidative status. The object recognition test (ORT) and passive avoidance test (PAT) were used to assess cognitive enhancing activity. Animals were treated with an ethyl acetate soluble fraction of the methanol extract of H. sinensis (25, 50 and 100 mg/kg, p.o). Results: The ethyl acetate soluble fraction of the methanol extract of H. sinensis (EASF) attenuated amnesia induced by scopolamine and aging. The discrimination index (DI) was significantly decreased in the aged and scopolamine group in ORT. Pretreatment with EASF significantly increased the DI. In PAT, scopolamine-treated mice exhibited significantly shorter step-down latencies (SDL). EASF treatment showed a significant increase in SDL in young, aged as well as in scopolamine-treated animals. The biochemical analysis of brain revealed that scopolamine treatment increased lipid peroxidation and decreased levels of superoxide dismutase (SOD) and glutathione reductase (GSH). Administration of extract significantly reduced LPO and reversed the decrease in brain SOD and GSH levels. The administration of H. sinensis improved memory in amnesic mice and prevented the oxidative stress associated with scopolamine. The mechanism of such protection of H. sinensis may be due to augmentation of cellular antioxidants. Conclusion: The results of the present study suggested that H. sinensis had a protective role against age and scopolamine-induced amnesia, indicating its utility in management of cognitive disorders. PMID:21572646

  16. 40 CFR 180.595 - Flufenpyr-ethyl; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... residues of the herbicide, flufenpyr-ethyl; acetic acid, -phenoxy]-ethyl ester], in or on the following...) Tolerances are established for residues of the herbicide flufenpyr-ethyl; acetic acid, -phenoxy]-ethyl...

  17. 40 CFR 180.595 - Flufenpyr-ethyl; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... residues of the herbicide, flufenpyr-ethyl; acetic acid, -phenoxy]-ethyl ester], in or on the following...) Tolerances are established for residues of the herbicide flufenpyr-ethyl; acetic acid, -phenoxy]-ethyl...

  18. 40 CFR 180.595 - Flufenpyr-ethyl; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... residues of the herbicide, flufenpyr-ethyl; acetic acid, -phenoxy]-ethyl ester], in or on the following...) Tolerances are established for residues of the herbicide flufenpyr-ethyl; acetic acid, -phenoxy]-ethyl...

  19. 40 CFR 180.595 - Flufenpyr-ethyl; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... residues of the herbicide, flufenpyr-ethyl; acetic acid, -phenoxy]-ethyl ester], in or on the following...) Tolerances are established for residues of the herbicide flufenpyr-ethyl; acetic acid, -phenoxy]-ethyl...

  20. 40 CFR 180.595 - Flufenpyr-ethyl; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... residues of the herbicide, flufenpyr-ethyl; acetic acid, -phenoxy]-ethyl ester], in or on the following...) Tolerances are established for residues of the herbicide flufenpyr-ethyl; acetic acid, -phenoxy]-ethyl...

  1. Preparation of vinyl acetate

    DOEpatents

    Tustin, Gerald Charles; Zoeller, Joseph Robert; Depew, Leslie Sharon

    1998-01-01

    This invention pertains to the preparation of vinyl acetate by contacting a mixture of hydrogen and ketene with a heterogeneous catalyst containing a transition metal to produce acetaldehyde, which is then reacted with ketene in the presence of an acid catalyst to produce vinyl acetate.

  2. Preparation of vinyl acetate

    DOEpatents

    Tustin, G.C.; Zoeller, J.R.; Depew, L.S.

    1998-03-24

    This invention pertains to the preparation of vinyl acetate by contacting a mixture of hydrogen and ketene with a heterogeneous catalyst containing a transition metal to produce acetaldehyde, which is then reacted with ketene in the presence of an acid catalyst to produce vinyl acetate.

  3. 21 CFR 184.1295 - Ethyl formate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Substances Affirmed as GRAS § 184.1295 Ethyl formate. (a) Ethyl formate (C3H6O2, CAS Reg. No. 109-94-4) is also referred to as ethyl methanoate. It is an ester of formic acid and is prepared by esterification of formic acid with ethyl alcohol or by distillation of ethyl acetate and formic acid in the...

  4. 21 CFR 184.1295 - Ethyl formate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Substances Affirmed as GRAS § 184.1295 Ethyl formate. (a) Ethyl formate (C3H6O2, CAS Reg. No. 109-94-4) is also referred to as ethyl methanoate. It is an ester of formic acid and is prepared by esterification of formic acid with ethyl alcohol or by distillation of ethyl acetate and formic acid in the...

  5. Hepatotoxicity of acetaldehyde in rats.

    PubMed

    Strubelt, O; Younes, M; Urch, T; Breining, H; Pentz, R

    1987-11-01

    The ability of acetaldehyde to initiate hepatotoxicity as evidenced by enzyme leakage, hepatic fat accumulation and histological alterations was studied in rats. Neither oral nor intraperitoneal treatment with acetaldehyde had any hepatotoxic effect, even following aldehyde dehydrogenase inhibition by disulfiram. This is probably due to the inability of exogenously added acetaldehyde to penetrate liver cell membranes. In contrast, acetaldehyde derived metabolically from ethanol was capable of inducing moderate hepatotoxicity when it accumulated upon pretreatment with disulfiram. Acetaldehyde may thus be partly responsible for alcohol-induced liver damage.

  6. Evaluation of Antiradical and Anti-Inflammatory Activities of Ethyl Acetate and Butanolic Subfractions of Agelanthus dodoneifolius (DC.) Polhill & Wiens (Loranthaceae) Using Equine Myeloperoxidase and Both PMA-Activated Neutrophils and HL-60 Cells

    PubMed Central

    Boly, Rainatou; Franck, Thierry; Kohnen, Stephan; Lompo, Marius; Guissou, Innocent Pierre; Dubois, Jacques; Serteyn, Didier; Mouithys-Mickalad, Ange

    2015-01-01

    The ethyl acetate and n-butanolic subfractions of Agelanthus dodoneifolius were investigated for their antioxidant and antimyeloperoxidase (MPO) activities. The reactive oxygen species (ROS) generation was assessed by lucigenin-enhanced chemiluminescence (CL) and dichlorofluorescein- (DCF-) induced fluorescence techniques from phorbol myristate acetate- (PMA-) stimulated equine neutrophils and human myeloid cell line HL-60, respectively. In parallel, the effects of the tested subfractions were evaluated on the total MPO release by stimulated neutrophils and on the specific MPO activity by means of immunological assays. The results showed the potent activity of the butanolic subfraction, at least in respect of the chemiluminescence test (IC50 = 0.3 ± 0.1 µg/mL) and the ELISA and SIEFED assays (IC50 = 2.8 ± 1.2 µg/mL and 1.3 ± 1.0 µg/mL), respectively. However, the ethyl acetate subfraction was found to be the most potent in the DCF assay as at the highest concentration, DCF fluorescence intensity decreases of about 50%. Moreover, we demonstrated that the ethyl acetate subfraction was rich in catechin (16.51%) while it was not easy to identify the main compounds in the butanolic subfraction using the UPLC-MS/MS technique. Nevertheless, taken together, our results provide evidence that Agelanthus dodoneifolius subfractions may represent potential sources of natural antioxidants and of antimyeloperoxidase compounds. PMID:25821497

  7. In situ morphological assessment of apoptosis induced by Phaleria macrocarpa (Boerl.) fruit ethyl acetate fraction (PMEAF) in MDA-MB-231 cells by microscopy observation.

    PubMed

    Kavitha, Nowroji; Chen, Yeng; Kanwar, Jagat R; Sasidharan, Sreenivasan

    2017-03-01

    Phaleria macrocarpa (Boerl.) is a well-known medicinal plant and have been extensively used as traditional medicine for ages in treatment of various diseases. The purpose of this study was to determine the in situ cytotoxicity effect P. macrocarpa fruit ethyl acetate fraction (PMEAF) by using various conventional and modern microscopy techniques. The cytotoxicity of PMEAF treated MDA-MB-231 cells was determined through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay and CyQuant Cell Proliferation Assay after 24h of treatment. Both results were indicated that the PMEAF is a potential anticancer agent with the average IC50 values of 18.10μg/mL by inhibiting the MDA-MB-231 cell proliferation. Various conventional and modern microscopy techniques such as light microscopy, holographic microscopy, transmission (TEM) and scanning (SEM) electron microscope were used for the observation of morphological changes in PMEAF treated MDA-MB-231cells for 24h. The characteristic of apoptotic cell death includes cell shrinkage, membrane blebs, chromatin condensation and the formation of apoptotic bodies were observed. PMEAF might be the best candidate for developing more potent anticancer drugs or chemo-preventive supplements.

  8. Ethyl Acetate Fraction of Amomum xanthioides Exerts Antihepatofibrotic Actions via the Regulation of Fibrogenic Cytokines in a Dimethylnitrosamine-Induced Rat Model

    PubMed Central

    Lee, Sung-Bae; Kim, Hyeong-Geug; Kim, Hyo-Seon; Lee, Jin-Seok; Im, Hwi-Jin; Kim, Won-Yong

    2016-01-01

    Amomum xanthioides has been traditionally used to treat diverse digestive system disorders in the Asian countries. We investigated antihepatofibrotic effects of ethyl acetate fraction of Amomum xanthioides (EFAX). Liver fibrosis is induced by dimethylnitrosamine (DMN) injection (intraperitoneally, 10 mg/kg of DMN for 4 weeks to Sprague-Dawley rats). EFAX (25 or 50 mg/kg), silymarin (50 mg/kg), or distilled water was orally administered every day. The DMN injection drastically altered body and organ mass, serum biochemistry, and platelet count, while EFAX treatment significantly attenuated this alteration. Severe liver fibrosis is determined by trichrome staining and measurement of hydroxyproline contents. EFAX treatment significantly attenuated these symptoms as well as the increase in oxidative by-products of lipid and protein metabolism in liver tissues. DMN induced a dramatic activation of hepatic stellate cells and increases in the levels of protein and gene expression of transforming growth factor-beta (TGF-β), platelet derived growth factor-beta (PDGF-β), and connective tissue growth factor (CTGF). Immunohistochemical analyses revealed increases in the levels of protein and gene expression of α-smooth muscle actin. These alterations were significantly normalized by EFAX treatment. Our findings demonstrate the potent antihepatofibrotic properties of EFAX via modulation of fibrogenic cytokines, especially TGF-β in the liver fibrosis rat model. PMID:27594891

  9. In Vivo Antioxidant and Anti-Skin-Aging Activities of Ethyl Acetate Extraction from Idesia polycarpa Defatted Fruit Residue in Aging Mice Induced by D-Galactose

    PubMed Central

    Jia, Ran-ran; Chen, Fang

    2014-01-01

    Two different concentrations of D-galactose (D-gal) induced organism and skin aging in Kunming mice were used to examine comprehensively the antioxidant and antiaging activities of ethyl acetate extraction (EAE) from Idesia polycarpa defatted fruit residue for the first time. The oxygen radical absorbance capacity (ORAC) of EAE was 13.09 ± 0.11 μmol Trolox equivalents (TE)/mg, which showed EAE had great in vitro free radical scavenging and antioxidant activity. Biochemical indexes and morphological analysis of all tested tissues showed that EAE could effectively improve the total antioxidant capacity (T-AOC) of the antioxidant defense system of the aging mice, enhance the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) of tissues and serum, increase glutathione (GSH) content and decrease the malondialdehyde (MDA) content, and maintain the skin collagen, elastin, and moisture content. Meanwhile, EAE could effectively attenuate the morphological damage in brain, liver, kidney, and skin induced by D-gal and its effect was not less than that of the well-known L-ascorbic acid (VC) and α-tocopherol (VE). Overall, EAE is a potent natural antiaging agent with great antioxidant activity, which can be developed as a new medicine and cosmetic for the treatment of age-related conditions. PMID:24971146

  10. Evaluation of hydroxyapatite-bioglass and hydroxyapatite-ethyl vinyl acetate composite extracts on antioxidant defense mechanism and genotoxicity: an in vitro study.

    PubMed

    Arun, M; Silja, P K; Mohanan, P V

    2011-09-01

    Hydroxyapatite-bioglass (HA BG) and hydroxyapatite-ethyl vinyl acetate (HA EVA) are two composite materials that have been developed for bone substitution. Their activity on antioxidant defense mechanism and genotoxicity has not been investigated before. To further confirm its biocompatibility, the present study was undertaken to investigate the effect of HA BG and HA EVA on mice liver antioxidant mechanism along with chromosomal aberrations in human lymphocytes. Physiological saline extract of HA BG and HA EVA showed no adverse effect on liver antioxidant mechanism compared to the cyclophosphamide (CP)-induced toxicity on mice liver homogenate. The results were judged from the in vitro studies made on reduced glutathione, glutathione reductase and lipid peroxidation. These results were well supported by CP- and mytomycin C (MC)-induced genotoxicity studies on human lymphocytes in the presence and absence of a metabolic activator (S9). Hence, it was suggested that these tests could be considered for preliminary toxicological screening of materials intended for clinical applications ahead of in vivo animal model evaluation.

  11. Chemical fingerprint and metabolic profile analysis of ethyl acetate fraction of Gastrodia elata by ultra performance liquid chromatography/quadrupole-time of flight mass spectrometry.

    PubMed

    Tang, Chunlan; Wang, Li; Liu, Xinxin; Cheng, Mengchun; Xiao, Hongbin

    2016-02-01

    The chemical fingerprint and metabolic profile of traditional Chinese medicine is very complicated and has been a great challenge. In the present study, chemical fingerprint of ethyl acetate fraction of Gastrodia elata (EtAcGE) and metabolic profile of rat plasma sample after intragastric administration of EtAcGE (2.5g/kg) were investigated using ultra-high performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry (UPLC/Q-TOF MS). A total of 38 chemical constituents of EtAcGE were identified by comparing their retention time, accurate molecular mass and characteristic fragment ions with those of references, or tentatively characterized by comparing molecular formula, fragment ions with that of known compound or information available in literature. And 40 compounds were detected in dosed rat plasma sample, including 16 prototypes and 24 metabolites underwent metabolic process of glucuronidation, glucosylation, sulfation, methylation, hydroxylation, dehydrogenation or mixed modes. The metabolic "soft spots" was hydroxyl or carboxy group. This is the first research for chemical fingerprint and metabolic profile of EtAcGE, which lay a foundation for the further investigation of EtAcGE.

  12. Effect of preparation method on the surface characteristics and activity of the Pd/OMS-2 catalysts for the oxidation of carbon monoxide, toluene, and ethyl acetate

    NASA Astrophysics Data System (ADS)

    Liu, Lisha; Song, Yong; Fu, Zhidan; Ye, Qing; Cheng, Shuiyuan; Kang, Tianfang; Dai, Hongxing

    2017-02-01

    The cryptomelane-type manganese oxide octahedral molecular sieve (OMS-2)-supported Pd (0.5 wt% Pd/OMS-2-DP, 0.5 wt% Pd/OMS-2-PI, and 0.5 wt% Pd/OMS-2-EX) catalysts were prepared by the deposition-precipitation, pre-incorporation, and ion-exchanging strategies, respectively. It is shown that the preparation method exerted an important effect on the physicochemical property of the sample. Among the OMS-2-supported Pd catalysts, 0.5 wt% Pd/OMS-2-DP possessed the highest surface (Mn2+ + Mn3+)/Mn4+ atomic ratio and the highest surface Pd loading and acid sites. The 0.5 wt% Pd/OMS-2 catalysts outperformed the Pd-free counterpart, among which 0.5 wt% Pd/OMS-2-DP presented the best catalytic activity (T50% and T90% were 25 and 55 °C for CO oxidation, 240 and 285 °C for toluene oxidation, and 160 and 200 °C for ethyl acetate oxidation, respectively). We believe that the high Pd surface loading, high surface atomic ratio of (Mn2+ + Mn3+)/Mn4+, and good low-temperature reducibility, good oxygen mobility, and high acidity were responsible for the excellent performance of the 0.5 wt% Pd/OMS-2-DP catalyst.

  13. Comparative evaluation of the metabolic effects of hydroxytyrosol and its lipophilic derivatives (hydroxytyrosyl acetate and ethyl hydroxytyrosyl ether) in hypercholesterolemic rats.

    PubMed

    Tabernero, María; Sarriá, Beatriz; Largo, Carlota; Martínez-López, Sara; Madrona, Andrés; Espartero, José Luis; Bravo, Laura; Mateos, Raquel

    2014-07-25

    Hydroxytyrosol (HT), a virgin olive oil phenolic phytochemical with proven health benefits, has been used to generate new lipophilic antioxidants to preserve fats and oils against autoxidation. The aim of this work is to comparatively evaluate the physiological effects of HT and its lipophilic derivatives, hydroxytyrosyl acetate (HT-Ac) and ethyl hydroxytyrosyl ether (HT-Et), in high-cholesterol fed animals. Male Wistar rats (n = 8) were fed a standard diet (C group), a cholesterol-rich diet (Chol group) or a cholesterol-rich diet supplemented with phenolic compounds (HT group, HT-Ac group and HT-Et group) for 8 weeks. Body and tissue weights, the lipid profile, redox status, and biochemical, hormonal, and inflammatory biomarkers were evaluated. Plasma levels of total cholesterol, LDL cholesterol, glucose, insulin and leptin, as well as malondialdehyde in serum increased in Chol compared to C (p < 0.05). Rats fed the test diets had improved glucose, insulin, leptin and MDA levels and antioxidant capacity status, with HT-Ac being the most effective compound. The studied phenolic compounds also modulated TNF-α and IL-1β plasma levels compared to Chol. HT-Ac and HT-Et improved adipose tissue distribution and adipokine production, decreasing MCP-1 and IL-1β levels. Our results confirm the metabolic effects of HT, which are maintained and even improved by hydrophobic derivatives, particularly HT-Ac.

  14. Characteristics of starch-based films plasticised by glycerol and by the ionic liquid 1-ethyl-3-methylimidazolium acetate: a comparative study.

    PubMed

    Xie, Fengwei; Flanagan, Bernadine M; Li, Ming; Sangwan, Parveen; Truss, Rowan W; Halley, Peter J; Strounina, Ekaterina V; Whittaker, Andrew K; Gidley, Michael J; Dean, Katherine M; Shamshina, Julia L; Rogers, Robin D; McNally, Tony

    2014-10-13

    This paper reports the plasticisation effect of the ionic liquid, 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]), as compared with the traditionally used plasticiser, glycerol, on the characteristics of starch-based films. For minimising the additional effect of processing, a simple compression moulding process (which involves minimal shear) was used for preparation of starch-based films. The results show that [Emim][OAc] was favourable for plasticisation, i.e., disruption of starch granules (by scanning electron microscopy), and could result in a more amorphous structure in the starch-based materials (by X-ray diffraction and dynamic mechanical analysis). (13)C CP/MAS and SPE/MAS NMR spectroscopy revealed that not only was the crystallinity reduced by [Emim][OAc], but also the amorphous starch present was plasticised to a more mobile form as indicated by the appearance of amorphous starch in the SPE/MAS spectrum. Mechanical results illustrate that, when either glycerol or [Emim][OAc] was used, a higher plasticiser content could contribute to higher flexibility. In spite of the accelerated thermal degradation of starch by [Emim][OAc] as shown by thermogravimetric analysis, the biodegradation study revealed the antimicrobial effect of [Emim][OAc] on the starch-based materials. Considering the high-amylose starch used here which is typically difficult to gelatinise in a traditional plasticiser (water and/or glycerol), [Emim][OAc] is demonstrated to be a promising plasticiser for starch to develop "green" flexible antimicrobial materials for novel applications.

  15. Pre-dispersed organo-montmorillonite (organo-MMT) nanofiller: Morphology, cytocompatibility and impact on flexibility, toughness and biostability of biomedical ethyl vinyl acetate (EVA) copolymer.

    PubMed

    Osman, Azlin F; M Fitri, Tuty Fareyhynn; Rakibuddin, Md; Hashim, Fatimah; Tuan Johari, Syed Ahmad Tajudin; Ananthakrishnan, Rajakumar; Ramli, Rafiza

    2017-05-01

    Polymer-clay based nanocomposites are among the attractive materials to be applied for various applications, including biomedical. The incorporation of the nano sized clay (nanoclay) into polymer matrices can result in their remarkable improvement in mechanical, thermal and barrier properties as long as the nanofillers are well exfoliated and dispersed throughout the matrix. In this work, exfoliation strategy through pre-dispersing process of the organically modified montmorillonite (organo-MMT) nanofiller was done to obtain ethyl vinyl acetate (EVA) nanocomposite with improved flexibility, toughness, thermal stability and biostability. Our results indicated that the degree of organo-MMT exfoliation affects its cytotoxicity level and the properties of the resulting EVA nanocomposite. The pre-dispersed organo-MMT by ultrasonication in water possesses higher degree of exfoliation as compared to its origin condition and significantly performed reduced cytotoxicity level. Beneficially, this nanofiller also enhanced the EVA flexibility, thermal stability and biostability upon the in vitro exposure. We postulated that these were due to plasticizing effect and enhanced EVA-nanofiller interactions contributing to more stable chemical bonds in the main copolymer chains. Improvement in copolymer flexibility is beneficial for close contact with human soft tissue, while enhancement in toughness and biostability is crucial to extend its life expectancy as insulation material for implantable device.

  16. Antidepressant-like effects of the ethyl acetate soluble fraction of the root bark of Morus alba on the immobility behavior of rats in the forced swim test.

    PubMed

    Lim, Dong Wook; Kim, Yun Tai; Park, Ji-Hae; Baek, Nam-In; Han, Daeseok

    2014-06-12

    In this study, the antidepressant-like effects of Morus alba fractions in rats were investigated in the forced swim test (FST). Male Wistar rats (9-week-old) were administered orally the M. alba ethyl acetate (EtOAc 30 and 100 mg/kg) and M. alba n-butanol fractions (n-BuOH 30 and 100 mg/kg) every day for 7 consecutive days. On day 7, 1 h after the final administration of the fractions, the rats were exposed to the FST. M. alba EtOAc fraction at the dose of 100 mg/kg induced a decrease in immobility behavior (p < 0.01) with a concomitant increase in both climbing (p < 0.05) and swimming (p < 0.05) behaviors when compared with the control group, and M. alba EtOAc fraction at the dose of 100 mg/kg decreased the hypothalamic-pituitary-adrenal (HPA) axis response to the stress, as indicated by an attenuated corticosterone response and decreased c-fos immunoreactivity in the hippocampal and hypothalamic paraventricular nucleus (PVN) region. These findings demonstrated that M. alba EtOAc fraction have beneficial effects on depressive behaviors and restore both altered c-fos expression and HPA activity.

  17. Oxidation of ethyl ether on borate glass: chemiluminescence, mechanism, and development of a sensitive gas sensor.

    PubMed

    Hu, Jing; Xu, Kailai; Jia, Yunzhen; Lv, Yi; Li, Yubao; Hou, Xiandeng

    2008-11-01

    A gas sensor was developed by using the chemiluminescence (CL) emission from the oxidation of ethyl ether by oxygen in the air on the surface of borate glass. Theoretical calculation, together with experimental investigation, revealed the main CL reactions: ethyl ether is first oxidized to acetaldehyde and then to acetic acid, during which main luminous intermediates such as CH 3CO (*) are generated and emit light with a peak at 493 nm. At a reaction temperature of 245 degrees C, the overall maximal emission was found at around 460 nm, and the linear range of the CL intensity versus the concentration of ethyl ether was 0.12-51.7 microg mL (-1) ( R = 0.999, n = 7) with a limit of detection (3sigma) of 0.04 microg mL (-1). Interference from foreign substances including alcohol (methanol, ethanol and isopropanol), acetone, ethyl acetate, n-hexane, cyclohexane, dichloromethane, or ether ( n-butyl ether, tetrahydrofuran, propylene oxide, isopropyl ether and methyl tert-butyl ether) was not significant except a minimal signal from n-butyl ether (<2%). It is a simple, sensitive and selective gas sensor for the determination of trace ethyl ether.

  18. Development of Paper, Chemical Agent Detector, 3-Way Liquid Containing Non-Mutagenic Dyes. 2. Replacement of the Blue Indicator Dye Ethyl-bis-(2,4- Dinitrophenyl Acetate (EDA)

    DTIC Science & Technology

    1988-06-01

    OL JU)OY (ý2ýPj 00 (V)~ Oetence nationale DTI DEVELOPIIEnT OF PAPER, CHEMICAL AGENT DETECTOR, 3-WAY LIQUID CONTAINING NON-MUTAGENIC DYES . Hi...REPLACEMENT OF THE BLUE INflICATOR DYE ETH.YL-b is-(2.4-DI NITROPH ENYL) ACETATE IEDA) by D. Thoravala, J.W. Bovenkampb, R.W. Betsa and B.V. Lcroixb...NON-MUTAGENIC DYES . n-REPLACEMENT OF THE BLUE INDICATOR DYE ETHYL-bis-(2,4-DINITROPHENYL) ACETATE (EDA) by D. Thoraval and R.W. Bets Anachemic Canada

  19. Ethyl acetate extract from marine sponge Hyattella cribriformis exhibit potent anticancer activity by promoting tubulin polymerization as evidenced mitotic arrest and induction of apoptosis

    PubMed Central

    Annamalai, Pazhanimuthu; Thayman, Malini; Rajan, Sowmiya; Raman, Lakshmi Sundaram; Ramasubbu, Sankar; Perumal, Pachiappan

    2015-01-01

    Background: Marine sponges are important sources of bioactive compounds. Objective: This study investigated the anticancer properties of Hyattella cribriformis ethyl acetate (EA) fraction in various cancer and normal cell lines. Materials and Methods: anticancer assay was carried out in 15 cell lines to evaluate the anticancer potential of the EA fraction. Impact on cell cycle distribution was determined using flow cytometry. The fraction was investigated for interfering microtubules assembly in both in vitro and cellular assay. Further studies were conducted to determine the fraction induced cell death (apoptosis) using calcein/propidium iodide dual staining, activated caspase-3 and phosphorylation of Bcl-2 protein at Ser70. DNA fragmentation assay was performed to confirm the apoptosis. Results: EA fraction exhibited potent inhibition of cancer cell growth and resulted in 50% growth inhibition (GI50) of 0.27 μg/mL in A673 cell line. Sarcoma (MG-63, Saos-2) and ovarian (SK-OV-3 and OVCAR-3) cancer cell lines also showed superior anticancer activity GI50 of 1.0 μg/mL. Colon and breast cancer cell lines exhibited moderate GI compare other cancer cell lines and normal human lung fibroblast showed GI50 of 15.6 μg/mL. EA fraction showed potent G2/M phase arrest in A673 cell line and induced apoptosis at 48 h exposure. EA fraction promoted microtubule polymerization in tubulin polymerization assay and increased level of polymerized tubulin in the HeLa cells. Fraction induced the activation of caspase-3 and phosphorylation of Bcl-2 anti-apoptotic protein. Fraction induced DNA fragmentation in HeLa cells as evidence of apoptosis. Conclusion: Marine sponge H. cribriformis EA fraction exhibited potent anticancer activity through tubulin polymerization and induction of apoptosis. PMID:25829774

  20. Synergistic Anti-bacterial Effects of Phellinus baumii Ethyl Acetate Extracts and β-Lactam Antimicrobial Agents Against Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Hong, Seung Bok; Rhee, Man Hee; Yun, Bong-Sik; Lim, Young Hoon; Song, Hyung Geun

    2016-01-01

    Background The development of new drugs or alternative therapies effective against methicillin-resistant Staphylococcus aureus (MRSA) is of great importance, and various natural anti-MRSA products are good candidates for combination therapies. We evaluated the antibacterial activities of a Phellinus baumii ethyl acetate extract (PBEAE) and its synergistic effects with β-lactams against MRSA. Methods The broth microdilution method was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the PBEAE. The PBEAE synergistic effects were determined by evaluating the MICs of anti-staphylococcal antibiotic mixtures, with or without PBEAE. Anti-MRSA synergistic bactericidal effects of the PBEAE and β-lactams were assessed by time-killing assay. An ELISA was used to determine the effect of the PBEAE on penicillin binding protein (PBP)2a production. Results The MICs and MBCs of PBEAE against MRSA were 256-512 and 1,024-2,048 µg/mL, respectively. The PBEAE significantly reduced MICs of all β-lactams tested, including oxacillin, cefazolin, cefepime, and penicillin. However, the PBEAE had little or no effect on the activity of non-β-lactams. Time-killing assays showed that the synergistic effects of two β-lactams (oxacillin and cefazolin) with the PBEAE were bactericidal in nature (Δlog10 colony forming unit/mL at 24 hr: 2.34-2.87 and 2.10-3.04, respectively). The PBEAE induced a dose-dependent decrease in PBP2a production by MRSA, suggesting that the inhibition of PBP2a production was a major synergistic mechanism between the β-lactams and the PBEAE. Conclusions PBEAE can enhance the efficacy of β-lactams for combined therapy in patients infected with MRSA. PMID:26709257

  1. Acetaldehyde: A Chemical Whose Fortunes Have Changed.

    ERIC Educational Resources Information Center

    Wittcoff, Harold A.

    1983-01-01

    Describes industrial acetaldehyde synthesis/uses, explaining why acetaldehyde usage is declining in industry. Includes a discussion of the reaction chemistry, equations, and molecular structure diagrams. (JM)

  2. Photocatalytic oxidation of gaseous 2-chloroethyl ethyl sulfide over TiO2.

    PubMed

    Martyanov, Igor N; Klabunde, Kenneth J

    2003-08-01

    Photocatalytic oxidation of gaseous 2-chloroethyl ethyl sulfide (2-CEES, ClCH2CH2SCH2CH3) over TiO2 illuminated with UV light and maintained at 25 or 80 degrees C in air has been investigated. 2-CEES was found to suffer progressive oxidation to yield ethylene (CH2CH2), chloroethylene (ClCHCH2), ethanol (CH3CH2OH), acetaldehyde (CH3C(O)H), chloroacetaldehyde (ClCH2C(O)H), diethyl disulfide (CH3CH2S2CH2CH3), 2-chloroethyl ethyl disulfide (ClCH2CH2S2CH2CH3), and bis(2-chloroethyl) disulfide (ClCH2CH2S2CH2CH2Cl) as the main primary intermediates, and water (H2O), carbon dioxide (CO2), sulfur dioxide (SO2), surface sulfate ions (SO4(2-)), and hydrogen chloride (HCl) as the final products. Trace concentrations of gaseous 2-chloroethanol (ClCH2CH2OH), ethanesulfonyl chloride (CH3CH2SO2Cl), ethyl thioacetate (CH3CH2SC(O)CH3), and considerable amounts of acetic acid (CH3C(O)OH), crotonaldehyde (CH3CHCHC(O)H), methyl acetate (CH3C(O)OCH3), and methyl formate (CH3OC(O)H) were also detected in the gas phase during the photooxidation conducted at 80 degrees C. Increase in temperature from 25 to 80 degrees C accelerates formation of gaseous ethanol, acetaldehyde, chloroacetaldehyde, diethyl disulfide, 2-chloroethyl ethyl disulfide, and bis(2-chloroethyl) disulfide but suppresses ethylene and chloroethylene production at initial stages of the process. Some aspects of the possible reaction mechanism leading to this wide array of intermediates and final products are discussed.

  3. Crystal structure of ethyl 2-[9-(5-bromo-2-hy-droxy-phen-yl)-1,8-dioxo-1,2,3,4,5,6,7,8,9,10-deca-hydro-acridin-10-yl]acetate.

    PubMed

    Mohamed, Shaaban K; Akkurt, Mehmet; Jasinski, Jerry P; Abdelhamid, Antar A; Tamam, Asmaa H; Albayati, Mustafa R

    2015-12-01

    In the title compound, C23H24BrNO5, the central 1,4-di-hydro-pyridine ring of the 1,2,3,4,5,6,7,8,9,10-deca-hydro-acridine ring system adopts a half-chair conformation. The two cyclo-hexene rings fused to the central ring both have a twisted-boat conformation. The mean planes of the bromo-hydroxy-phenyl ring and the major and minor components of the disordered ethyl amino-acetate moiety make dihedral angles of 78.99 (12), 85.9 (2) and 88.3 (9)°, respectively, with the 1,4-di-hydro-pyridine ring. The terminal ethyl group of the ethyl amino-acetate moiety is disordered over two sets of sites with refined occupancies of 0.768 (17) and 0.232 (17). The mol-ecular conformation is stabilized by an intra-molecular O-H⋯O hydrogen bond, forming an S(8) ring motif. In the crystal, C-H⋯O hydrogen bonds connect the mol-ecules into layers parallel to (001), enclosing R 1 (2)(7) ring motifs.

  4. Spectroscopic analysis (FT-IR, FT-Raman and NMR) and molecular docking study of ethyl 2-(4-oxo-3-phenethyl-3,4-dihydroquinazolin-2-ylthio)-acetate

    NASA Astrophysics Data System (ADS)

    El-Azab, Adel S.; Jalaja, K.; Abdel-Aziz, Alaa A.-M.; Al-Obaid, Abdulrahman M.; Sheena Mary, Y.; Yohannan Panicker, C.; Van Alsenoy, C.

    2016-09-01

    The vibrational wavenumbers, molecular structure, MEP, NLO, NBO and HOMO, LUMO analysis of Ethyl 2-(4-oxo-3-phenethyl-3,4-dihydroquinazolin-2-ylthio)-acetate (EPDA) were reported. The change in electron density in the antibonding orbitals and stabilization energies have been calculated by NBO analysis to give clear evidence of stabilization in the hyperconjugation of hydrogen bonded interaction. The difference in HOMO and LUMO energy support the charge transfer interaction within the molecule. NMR studies and Fukui functions are also reported. From molecular electrostatic potential plot it is evident that the negative charge covers the carbonyl groups, phenyl rings and the positive region is over the CH2 groups with the acetate group. Molecular docking studies shows that the title compound forms a stable complex with pyrrole inhibitor and gives a binding affinity value of -8.3 kcal/mol and the results suggest that the compound might exhibit inhibitory activity against pyrrole inhibitor.

  5. 27 CFR 21.93 - Acetaldehyde.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.93 Acetaldehyde. (a) Aldehyde content (as acetaldehyde). Not less than 95.0 percent by weight. (b)...

  6. 27 CFR 21.93 - Acetaldehyde.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Acetaldehyde. 21.93 Section 21.93 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Acetaldehyde. (a) Aldehyde content (as acetaldehyde). Not less than 95.0 percent by weight. (b)...

  7. 27 CFR 21.93 - Acetaldehyde.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Acetaldehyde. 21.93 Section 21.93 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Acetaldehyde. (a) Aldehyde content (as acetaldehyde). Not less than 95.0 percent by weight. (b)...

  8. One-pot lipase-catalyzed aldol reaction combination of in situ formed acetaldehyde.

    PubMed

    Wang, Na; Zhang, Wei; Zhou, Long-Hua; Deng, Qing-Feng; Xie, Zong-Bo; Yu, Xiao-Qi

    2013-12-01

    A facile tandem route to α,β-unsaturated aldehydes was developed by combining the two catalytic activities of the same enzyme in a one-pot strategy for the aldol reaction and in situ generation of acetaldehyde. Lipase from Mucor miehei was found to have conventional and promiscuous catalytic activities for the hydrolysis of vinyl acetate and aldol condensation with in situ formed acetaldehyde. The first reaction continuously provided material for the second reaction, which effectively reduced the volatilization loss, oxidation, and polymerization of acetaldehyde, as well as avoided a negative effect on the enzyme of excessive amounts of acetaldehyde. After optimizing the process, several substrates participated in the reaction and provided the target products in moderate to high yields using this single lipase-catalyzed one-pot biotransformation.

  9. Acetaldehyde Adsorption and Reaction onCeO2(100) Thin Films

    SciTech Connect

    Mullins, David R; Albrecht, Peter M

    2013-01-01

    This study reports and compares the adsorption and dissociation of acetaldehyde on oxidized and reduced CeOX(100) thin films. Acetaldehyde reacts and decomposes on fully oxidized CeO2(100) whereas it desorbs molecularly at low temperature on CeO2(111). The primary products are CO, CO2 and water along with trace amounts of crotonaldehyde and acetylene. The acetaldehyde adsorbs as the 2-acetaldehyde species, dioxyethylene. Decomposition proceeds by dehydrogenation through acetate and enolate intermediates. The reaction pathway is similar on the reduced CeO2-X(100) surface however the inability to react with surface O on the reduced surface results in H2 rather than H2O desorption and C is left on the surface rather than producing CO and CO2. C-O bond cleavage in the enolate intermediate followed by reaction with surface H results in ethylene desorption.

  10. Anti-inflammatory potential of an ethyl acetate fraction isolated from Justicia gendarussa roots through inhibition of iNOS and COX-2 expression via NF-κB pathway.

    PubMed

    Kumar, Kavitha S; Vijayan, Viji; Bhaskar, Shobha; Krishnan, Kripa; Shalini, V; Helen, A

    2012-01-01

    Justicia gendarussa Burm.f. (J. gendarussa) is a plant used as traditional medicine in different parts of India and China to treat inflammatory disorders like rheumatoid arthritis. But its mechanism of anti-inflammatory action is still unclear. Hence in this context, the objective of our study is to reveal the mechanism of anti-inflammatory activity of J. gendarussa which would form an additional proof to the traditional knowledge of this plant. The anti-inflammatory function and mechanism(s) of action was studied in an ethyl acetate fraction isolated from methanolic extract of J. gendarussa roots (EJG). Anti-inflammatory studies were conducted on rats using partitioned fractions isolated from methanolic extract of J. gendarussa roots. In carrageenan-induced rat paw edema, ethyl acetate fraction brought about 80% and 93% edema inhibition at 3rd and 5th hour at a dose of 50 mg/kg, when compared to other extracts and Voveran. We investigated whether EJG inhibits the release of cycloxygenase (COX), 5-lipoxygenase (5-LOX), interleukin-6 (IL-6) and nuclear factor kappa B (NF-κB) in LPS stimulated human peripheral blood mononuclear cells (hPBMCs). Results shows that EJG dose dependently inhibited LPS-activated COX, 5-LOX, IL-6, and NF-κB in hPBMCs. EJG also reduced LPS induced levels of iNOS and COX-2 mRNA expression in hPBMCs. This study provides an insight into the probable mechanism(s) underlying the anti-inflammatory activity of EJG and therefore, we report the first confirmation of the anti-inflammatory potential of this traditionally employed herbal medicine in vitro.

  11. A vinyl acetate sensor based on cataluminescence on MgO nanoparticles.

    PubMed

    Wu, Chen Chou; Cao, Xiaoan; Wen, Qiang; Wang, Zehua; Gao, Qianqian; Zhu, Huichang

    2009-10-15

    A novel cataluminescence (CTL) sensor using nanosized MgO as the sensing material for determination of the trace of vinyl acetate in air was proposed in the present study. Eight catalysts were examined and the results showed that the CTL intensity on MgO nanoparticles was the strongest. Under the optimized conditions, the linear range of the CTL intensity versus the concentration of vinyl acetate vapor was 2-2000 ppm with a detection limit of 1.0 ppm (3sigma) and a relative standard deviation (R.S.D.) of 1.18% for five times determination of 1000 ppm vinyl acetate. There were no CTL emissions when foreign substances, including ammonia, benzene, acetic acid, formaldehyde and ethyl acetate, passed through the sensor. CTL emissions were detected for methanol, ethanol and acetaldehyde at levels around 5.5%, 10.1% and 13.4% compared with the responsed vinyl acetate. The sensor had a long lifetime more than 100 h.

  12. Atmospheric chemistry of toxic contaminants 2. Saturated aliphatics: Acetaldehyde, dioxane, ethylene glycol ethers, propylene oxide

    SciTech Connect

    Grosjean, D. )

    1990-11-01

    Detailed mechanisms are outlined for the chemical reactions that contribute to in-situ formation and atmospheric removal of the saturated aliphatic contaminants acetaldehyde, dioxane, ethylene glycol ethers (methyl, ethyl, n-butyl) and propylene oxide. In-situ formation is of major importance for acetaldehyde. In-situ removal involves reaction with OH (all compounds) and, for acetaldehyde, photolysis and reaction with NO{sub 3}. Acetaldehyde, dioxane, and the ethers are rapidly removed (half-lives of less than one day), leading to PAN (acetaldehyde) and to 2-oxodioxane and formaldehyde (dioxane). Reaction products of the glycol ethers include a large number of hydroxyesters, hydroxyacids, and hydroxycarbonyls. Propylene oxide reacts only slowly with OH, with an atmospheric half-life of 3 - 10 days, to yeild formaldehyde, acetaldehyde, and PAN. Uncertainties in the reaction mechanisms for dioxane, the glycol ethers, and propylene oxide are discussed and include C-C vs C-O bond scission in alkoxy radicals as well as alkoxy radical unimolecular decomposition vs reaction with oxygen.

  13. [Biological actions of acetaldehyde].

    PubMed

    Ijiri, I

    1999-11-01

    Acetaldehyde (AcH), the first metabolite of ethanol (EtOH), is a chemically reactive and pharmacologically active compound. The author has been engaged in the study of AcH in cooperation with many researchers for three decades. We have found many biological actions of AcH which cause cardiovascular symptoms after drinking and also inhibited EtOH absorption via the canine and rat intestinal tract. This report covers the following five points. 1. The subjects were classified into a non-flushing group and a flushing group, according to the degree of facial flushing after drinking 200 ml of Sake (Japanese rice wire) at a rate of 100 ml per 5 min. Blood EtOH profile was much the same in both groups, yet peak blood AcH concentration in the flushing group was significantly higher than that in the non-flushing group. All subjects in the flushing group showed marked flushing and an increase in pulse rate after drinking, but these symptoms were not apparent in the non-flushing group. These results suggested that cardiovascular symptoms were caused by AcH itself. 2. Urinary excretions of both norepinephrine and epinephrine increased in the flushing cases after drinking Sake in comparison with those who drank the same volume of water. However, these catecholamines did not change in the non-flushing group. These results suggested that it is catecholamines released from the sympathetic nerve end or the adrenal medulla by AcH which caused an increase in pulse rate. 3. Bradykinin is released from high molecular kininogen by activated kallikrein and acts to dilate distal blood vessels and raise permeability in tissues. On the other hand, kallidin is released from low molecular kininogen by activated glandular kallikrein and its action is weaker than that of bradykinin. Blood low molecular kininogen levels in the flushing group decreased gradually after drinking and were mutually related to the blood AcH concentrations. But levels in the non-flushing group showed no difference

  14. Interrelationship between alcohol, smoking, acetaldehyde and cancer.

    PubMed

    Salaspuro, Mikko

    2007-01-01

    In industrialized countries alcohol and tobacco are the main risk factors of upper digestive tract cancer. With regard to the pathogenesis of these cancers, there is strong epidemiological, biochemical and genetic evidence supporting the role of the first metabolite of alcohol oxidation--acetaldehyde--as a common denominator. Alcohol is metabolized to acetaldehyde locally in the oral cavity by microbes representing normal oral flora. Poor oral hygiene, heavy drinking and chronic smoking modify oral flora to produce more acetaldehyde from ingested alcohol. Also, tobacco smoke contains acetaldehyde, which during smoking becomes dissolved in saliva. Via swallowing, salivary acetaldehyde of either origin is distributed from oral cavity to pharynx, oesophagus and stomach. Strongest evidence for the local carcinogenic action of acetaldehyde provides studies with ALDH2-deficient Asian drinkers, who form an exceptional human model for long-term acetaldehyde exposure. After drinking alcohol they have an increased concentration of acetaldehyde in their saliva and this is associated with over 10-fold risk of upper digestive tract cancers. In conclusion, acetaldehyde derived either from ethanol or tobacco appears to act in the upper digestive tract as a local carcinogen in a dose-dependent and synergistic way.

  15. Gene cloning, expression, and characterization of a novel acetaldehyde dehydrogenase from Issatchenkia terricola strain XJ-2.

    PubMed

    Yao, Zhengying; Zhang, Chong; Lu, Fengxia; Bie, Xiaomei; Lu, Zhaoxin

    2012-03-01

    Acetaldehyde is a known mutagen and carcinogen. Active aldehyde dehydrogenase (ALDH) represents an important mechanism for acetaldehyde detoxification. A yeast strain XJ-2 isolated from grape samples was found to produce acetaldehyde dehydrogenase with a high activity of 2.28 U/mg and identified as Issatchenkia terricola. The enzyme activity was validated by oxidizing acetaldehyde to acetate with NAD(+) as coenzyme based on the headspace gas chromatography analysis. A novel acetaldehyde dehydrogenase gene (ist-ALD) was cloned by combining SiteFinding-PCR and self-formed adaptor PCR. The ist-ALD gene comprised an open reading frame of 1,578 bp and encoded a protein of 525 amino acids. The predicted protein of ist-ALD showed the highest identity (73%) to ALDH from Pichia angusta. The ist-ALD gene was expressed in Escherichia coli, and the gene product (ist-ALDH) presented a productivity of 442.3 U/mL cells. The purified ist-ALDH was a homotetramer of 232 kDa consisting of 57 kDa-subunit according to the SDS-PAGE and native PAGE analysis. Ist-ALDH exhibited the optimal activity at pH 9.0 and 40°C, respectively. The activity of ist-ALDH was enhanced by K(+), NH4(+), dithiothreitol, and 2-mercaptoethanol but strongly inhibited by Ag(+), Hg(2+), Cu(2+), and phenylmethyl sulfonylfluoride. In the presence of NAD(+), ist-ALDH could oxidize many aliphatic, aromatic, and heterocyclic aldehydes, preferably acetaldehyde. Kinetic study revealed that ist-ALDH had a k (cat) value of 27.71/s and a k (cat)/K (m) value of 26.80 × 10(3)/(mol s) on acetaldehyde, demonstrating ist-ALDH, a catalytically active enzyme by comparing with other ALDHs. These studies indicated that ist-ALDH was a potential enzymatic product for acetaldehyde detoxification.

  16. Kinetic involvement of acetaldehyde substrate inhibition on the rate equation of yeast aldehyde dehydrogenase.

    PubMed

    Eggert, Matthew W; Byrne, Mark E; Chambers, Robert P

    2012-10-01

    In order to evaluate the effectiveness of aldehyde dehydrogenase (ALDH) from Saccharomyces cerevisiae as a catalyst for the conversion of acetaldehyde into its physiologically and biologically less toxic acetate, the kinetics over broad concentrations were studied to develop a suitable kinetic rate expression. Even with literature accounts of the binding complexations, the yeast ALDH currently lacks a quantitative kinetic rate expression accounting for simultaneous inhibition parameters under higher acetaldehyde concentrations. Both substrate acetaldehyde and product NADH were observed as individual sources of inhibition with the combined effect of a ternary complex of acetaldehyde and the coenzyme leading to experimental rates as little as an eighth of the expected activity. Furthermore, the onset and strength of inhibition from each component were directly affected by the concentration of the co-substrate NAD. While acetaldehyde inhibition of ALDH is initiated below concentrations of 0.05 mM in the presence of 0.5 mM NAD or less, the acetaldehyde inhibition onset shifts to 0.2 mM with as much as 1.6 mM NAD. The convenience of the statistical software package JMP allowed for effective determination of experimental kinetic constants and simplification to a suitable rate expression: v = Vmax(AB)/(K(ia)K(b) + K(b)A + K(a)B + AB + B(2)/K(I-Ald) + B(2)Q/K(I-Ald-NADH) + BQ/K(I-NADH)) where the last three terms represent the inhibition complex terms for acetaldehyde, acetaldehyde-NADH, and NADH, respectively. The corresponding values of K(I-Ald), K(I-Ald-NADH), and K(I-NADH) for yeast ALDH are 2.55, 0.0269, and 0.162 mM at 22 °C and pH 7.8.

  17. Vibrational force constants for acetaldehyde

    NASA Astrophysics Data System (ADS)

    Nikolova, B.

    1990-05-01

    The vibrational force field of ethanal (acetaldehyde), CH 3CHO, is refined by using procedures with differential increments for the force constants (Commun. Dep. Chem., Bulg. Acad. Sci., 21/3 (1988) 433). The characteristics general valence force constants of the high-dimensional symmetry classes of ethanal, A' of tenth and A″ of fifth order, are determined for the experimental assignment of bands. The low barrier to hindered internal rotation about the single carbon—carbon bond is quantitatively estimated on the grounds of normal vibrational analysis.

  18. Proton transfer in acetaldehyde and acetaldehyde-water clusters: Vacuum ultraviolet photoionization experiment and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Kostko, Oleg; Troy, Tyler P.; Bandyopadhyay, Biswajit; Ahmed, Musahid

    2015-03-01

    Acetaldehyde, a probable human carcinogen and of environmental importance, upon solvation provides a test bed for understanding proton transfer pathways and catalytic mechanisms. In this study, we report on single photon vacuum ultraviolet photoionization of small acetaldehyde and acetaldehyde-water clusters. Appearance energies of protonated clusters are extracted from the experimental photoionization efficiency curves and compared to electronic structure calculations. The comparison of experimental data to computational results provides mechanistic insight into the fragmentation mechanisms of the observed mass spectra. Using deuterated water for isotopic tagging, we observe that proton transfer is mediated via acetaldehyde and not water in protonated acetaldehyde-water clusters.

  19. Ethyl acetate fraction of adlay bran ethanolic extract inhibits oncogene expression and suppresses DMH-induced preneoplastic lesions of the colon in F344 rats through an anti-inflammatory pathway.

    PubMed

    Chung, Cheng-Pei; Hsu, Hsin-Yi; Huang, Din-Wen; Hsu, Hsing-Hua; Lin, Ju-Tsui; Shih, Chun-Kuang; Chiang, Wenchang

    2010-07-14

    Adlay ( Coix lachryma-jobi L. var. ma-yuen Stapf) is a grass crop and was reported to possess anti-inflammatory activity and an antiproliferative effect in cancer cell lines. The purpose of this study was to evaluate the effects of the ethyl acetate fraction of an adlay bran ethanolic extract (ABE-Ea) on colon carcinogenesis in an animal model and investigate its mechanism. Male F344 rats received 1,2-dimethylhydrazine (DMH) and consumed different doses of ABE-Ea. The medium-dose group (17.28 mg of ABE-Ea/day) exhibited the best suppressive effect on colon carcinogenesis and prevented preneoplastic mucin-depleted foci (MDF) formation. Moreover, RAS and Ets2 oncogenes were significantly down-regulated in this group compared to the negative control group, whereas Wee1, a gene involved in the cell cycle, was up-regulated. Cyclooxygenase-2 (COX-2) protein expression was significantly suppressed in all colons receiving the ABE-Ea, indicating that ABE-Ea delayed carcinogenesis by suppressing chronic inflammation. ABE-Ea included considerable a proportion of phenolic compounds, and ferulic acid was the major phenolic acid (5206 microg/g ABE-Ea) on the basis of HPLC analysis. Results from this study suggest that ABE-Ea suppressed DMH-indued preneoplastic lesions of the colon in F344 rats and that ferulic acid may be one of the active compounds.

  20. Semipurified Ethyl Acetate Partition of Methanolic Extract of Melastoma malabathricum Leaves Exerts Gastroprotective Activity Partly via Its Antioxidant-Antisecretory-Anti-Inflammatory Action and Synergistic Action of Several Flavonoid-Based Compounds

    PubMed Central

    Ismail Suhaimy, Noor Wahida; Noor Azmi, Ahmad Khusairi; Mohtarrudin, Norhafizah; Cheema, Manraj Singh

    2017-01-01

    Recent study has demonstrated the gastroprotective activity of crude methanolic extract of M. malabathricum leaves. The present study evaluated the gastroprotective potential of semipurified extracts (partitions): petroleum ether, ethyl acetate (EAMM), and aqueous obtained from the methanolic extract followed by the elucidation of the gastroprotective mechanisms of the most effective partition. Using the ethanol-induced gastric ulcer assay, all partitions exerted significant gastroprotection, with EAMM being the most effective partition. EAMM significantly (i) reduced the volume and acidity (free and total) while increasing the pH of gastric juice and enhanced the gastric wall mucus secretion when assessed using the pylorus ligation assay, (ii) increased the enzymatic and nonenzymatic antioxidant activity of the stomach tissue, (iii) lost its gastroprotective activity following pretreatment with N-omega-nitro-L-arginine methyl ester (L-NAME; NO blocker) or carbenoxolone (CBXN; NP-SH blocker), (iv) exerted antioxidant activity against various in vitro oxidation assays, and (v) showed moderate in vitro anti-inflammatory activity via the LOX-modulated pathway. In conclusion, EAMM exerts a remarkable NO/NP-SH-dependent gastroprotective effect that is attributed to its antisecretory and antioxidant activities, ability to stimulate the gastric mucus production and endogenous antioxidant system, and synergistic action of several gastroprotective-induced flavonoids. PMID:28168011

  1. Semipurified Ethyl Acetate Partition of Methanolic Extract of Melastoma malabathricum Leaves Exerts Gastroprotective Activity Partly via Its Antioxidant-Antisecretory-Anti-Inflammatory Action and Synergistic Action of Several Flavonoid-Based Compounds.

    PubMed

    Ismail Suhaimy, Noor Wahida; Noor Azmi, Ahmad Khusairi; Mohtarrudin, Norhafizah; Omar, Maizatul Hasyima; Tohid, Siti Farah Md; Cheema, Manraj Singh; Teh, Lay Kek; Salleh, Mohd Zaki; Zakaria, Zainul Amiruddin

    2017-01-01

    Recent study has demonstrated the gastroprotective activity of crude methanolic extract of M. malabathricum leaves. The present study evaluated the gastroprotective potential of semipurified extracts (partitions): petroleum ether, ethyl acetate (EAMM), and aqueous obtained from the methanolic extract followed by the elucidation of the gastroprotective mechanisms of the most effective partition. Using the ethanol-induced gastric ulcer assay, all partitions exerted significant gastroprotection, with EAMM being the most effective partition. EAMM significantly (i) reduced the volume and acidity (free and total) while increasing the pH of gastric juice and enhanced the gastric wall mucus secretion when assessed using the pylorus ligation assay, (ii) increased the enzymatic and nonenzymatic antioxidant activity of the stomach tissue, (iii) lost its gastroprotective activity following pretreatment with N-omega-nitro-L-arginine methyl ester (L-NAME; NO blocker) or carbenoxolone (CBXN; NP-SH blocker), (iv) exerted antioxidant activity against various in vitro oxidation assays, and (v) showed moderate in vitro anti-inflammatory activity via the LOX-modulated pathway. In conclusion, EAMM exerts a remarkable NO/NP-SH-dependent gastroprotective effect that is attributed to its antisecretory and antioxidant activities, ability to stimulate the gastric mucus production and endogenous antioxidant system, and synergistic action of several gastroprotective-induced flavonoids.

  2. Validation and uncertainty analysis of a multiresidue method for 42 pesticides in made tea, tea infusion and spent leaves using ethyl acetate extraction and liquid chromatography-tandem mass spectrometry.

    PubMed

    Kanrar, Bappaditya; Mandal, Sudeb; Bhattacharyya, Anjan

    2010-03-19

    A rapid, specific and sensitive multiresidue method to determine 42 pesticides in made tea, tea infusion and spent leaves has been developed and validated for the routine analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The method was reproducible (Horwitz ratio (HorRat) <0.5 at 50 ng/g) and validated by the analysis of sample spiked at 50 and 100 ng/g in made tea, tea infusion and spent leaves. The samples were extracted with ethyl acetate+cyclohexane (9:1; v/v), and the extracts were cleaned up by dispersive solid phase extraction with primary secondary amine sorbent+graphitized carbon black+Florisil. The recoveries of all the pesticides were between 70% and 120% with a relative standard deviation of less than 15% and correlation coefficient for each pesticide was R(2) > or =0.99. The matrix effect on signal of respective compounds was measured by comparing matrix-matched calibration standards with those in solvent-only. The limits of quantitation (LOQ) met the requirements of the maximum residue limits (MRLs) for pesticides in tea as recommended by the European Union.

  3. Novel physiological roles for glutathione in sequestering acetaldehyde to confer acetaldehyde tolerance in Saccharomyces cerevisiae.

    PubMed

    Matsufuji, Yoshimi; Yamamoto, Kohei; Yamauchi, Kosei; Mitsunaga, Tohru; Hayakawa, Takashi; Nakagawa, Tomoyuki

    2013-01-01

    In this work, we identified novel physiological functions of glutathione in acetaldehyde tolerance in Saccharomyces cerevisiae. Strains deleted in the genes encoding the enzymes involved in glutathione synthesis and reduction, GSH1, GSH2 and GLR1, exhibited severe growth defects compared to wild-type under acetaldehyde stress, although strains deleted in the genes encoding glutathione peroxidases or glutathione transferases did not show any growth defects. On the other hand, intracellular levels of reduced glutathione decreased in the presence of acetaldehyde in response to acetaldehyde concentration. Moreover, we show that glutathione can trap a maximum of four acetaldehyde molecules within its molecule in a non-enzymatic manner. Taken together, these findings suggest that glutathione has an important role in acetaldehyde tolerance, as a direct scavenger of acetaldehyde in the cell.

  4. Crystal structure of (Z)-ethyl 2-{5-[(2-benzyl­idene-3-oxo-2,3-di­hydro­benzo[b][1,4]thia­zin-4-yl)meth­yl]-1H-1,2,3-triazol-1-yl}acetate

    PubMed Central

    Ellouz, M.; Sebbar, N. K.; Essassi, E. M.; Ouzidan, Y.; Mague, J. T.

    2015-01-01

    The title compound, C22H20N4O3S, features two fused six-membered rings linked to a 1,2,3-triazole ring which is attached to an ethyl acetate group. The heterocycle in the benzo­thia­zine residue has an envelope conformation with the S atom being the flap. The conformation of the ethyl acetate side chain, which is directed to the same side of the mol­ecule as the C6 ring of the fused-ring system, may be partially established by a pair of weak intra­molecular C—H⋯O(carbon­yl) inter­actions. The three-dimensional packing is aided by inter­molecular C—H⋯O and C—H⋯N inter­actions. PMID:26870477

  5. Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on Oxide‐Derived Copper

    PubMed Central

    Bertheussen, Erlend; Verdaguer‐Casadevall, Arnau; Ravasio, Davide; Montoya, Joseph H.; Trimarco, Daniel B.; Roy, Claudie; Meier, Sebastian; Wendland, Jürgen; Nørskov, Jens K.

    2015-01-01

    Abstract Oxide‐derived copper (OD‐Cu) electrodes exhibit unprecedented CO reduction performance towards liquid fuels, producing ethanol and acetate with >50 % Faradaic efficiency at −0.3 V (vs. RHE). By using static headspace‐gas chromatography for liquid phase analysis, we identify acetaldehyde as a minor product and key intermediate in the electroreduction of CO to ethanol on OD‐Cu electrodes. Acetaldehyde is produced with a Faradaic efficiency of ≈5 % at −0.33 V (vs. RHE). We show that acetaldehyde forms at low steady‐state concentrations, and that free acetaldehyde is difficult to detect in alkaline solutions using NMR spectroscopy, requiring alternative methods for detection and quantification. Our results represent an important step towards understanding the CO reduction mechanism on OD‐Cu electrodes. PMID:26692282

  6. Acetaldehyde as an intermediate in the electroreduction of carbon monoxide to ethanol on oxide-derived copper

    SciTech Connect

    Bertheussen, Erlend; Verdaguer-Casadevall, Arnau; Ravasio, Davide; Montoya, Joseph H.; Trimarco, Daniel B.; Roy, Claudie; Meier, Sebastian; Wendland, Jürgen; Nørskov, Jens K.; Stephens, Ifan E. L.; Chorkendorff, Ib

    2015-12-21

    Oxide-derived copper (OD-Cu) electrodes exhibit unprecedented CO reduction performance towards liquid fuels, producing ethanol and acetate with >50 % Faradaic efficiency at -0.3 V (vs. RHE). By using static headspace-gas chromatography for liquid phase analysis, we identify acetaldehyde as a minor product and key intermediate in the electroreduction of CO to ethanol on OD-Cu electrodes. Acetaldehyde is produced with a Faradaic efficiency of ≈5 % at -0.33 V (vs. RHE). We show that acetaldehyde forms at low steady-state concentrations, and that free acetaldehyde is difficult to detect in alkaline solutions using NMR spectroscopy, requiring alternative methods for detection and quantification. Our results indicate an important step towards understanding the CO reduction mechanism on OD-Cu electrodes.

  7. Acetaldehyde as an intermediate in the electroreduction of carbon monoxide to ethanol on oxide-derived copper

    DOE PAGES

    Bertheussen, Erlend; Verdaguer-Casadevall, Arnau; Ravasio, Davide; ...

    2015-12-21

    Oxide-derived copper (OD-Cu) electrodes exhibit unprecedented CO reduction performance towards liquid fuels, producing ethanol and acetate with >50 % Faradaic efficiency at -0.3 V (vs. RHE). By using static headspace-gas chromatography for liquid phase analysis, we identify acetaldehyde as a minor product and key intermediate in the electroreduction of CO to ethanol on OD-Cu electrodes. Acetaldehyde is produced with a Faradaic efficiency of ≈5 % at -0.33 V (vs. RHE). We show that acetaldehyde forms at low steady-state concentrations, and that free acetaldehyde is difficult to detect in alkaline solutions using NMR spectroscopy, requiring alternative methods for detection and quantification.more » Our results indicate an important step towards understanding the CO reduction mechanism on OD-Cu electrodes.« less

  8. Anti-wrinkle effects of Sargassum muticum ethyl acetate fraction on ultraviolet B-irradiated hairless mouse skin and mechanistic evaluation in the human HaCaT keratinocyte cell line

    PubMed Central

    Song, Jae Hyoung; Piao, Mei Jing; Han, Xia; Kang, Kyoung Ah; Kang, Hee Kyoung; Yoon, Weon Jong; Ko, Mi Hee; Lee, Nam Ho; Lee, Mi Young; Chae, Sungwook; Hyun, Jin Won

    2016-01-01

    The present study investigated the photoprotective properties of the ethyl acetate fraction of Sargassum muticum (SME) against ultraviolet B (UVB)-induced skin damage and photoaging in a mouse model. HR-1 strain hairless male mice were divided into three groups: An untreated control group, a UVB-irradiated vehicle group and a UVB-irradiated SME group. The UVB-irradiated mice in the SME group were orally administered with SME (100 mg/kg body weight in 0.1 ml water per day) and then exposed to radiation at a dose of 60–120 mJ/cm2. Wrinkle formation and skin damage were evaluated by analysis of skin replicas, epidermal thickness and collagen fiber integrity in the dermal connective tissue. The mechanism underlying the action of SME was also investigated in the human HaCaT keratinocyte cell line following exposure of the cells to UVB at a dose of 30 mJ/cm2. The protein expression levels and activity of matrix metalloproteinase-1 (MMP-1), and the binding of activator protein-1 (AP-1) to the MMP-1 promoter were assessed in the HaCaT cells using western blot analysis, an MMP-1 fluorescent assay and a chromatin immune-precipitation assay, respectively. The results showed that the mean length and depth of the wrinkles in the UVB-exposed hairless mice were significantly improved by oral administration of SME, which also prevented the increase in epidermal thickness triggered by UVB irradiation. Furthermore, a marked increase in collagen bundle formation was observed in the UVB-treated mice with SME administration. SME pretreatment also significantly inhibited the UVB-induced upregulation in the expression and activity of MMP-1 in the cultured HaCaT keratinocytes, and the UVB-enhanced association of AP-1 with the MMP-1 promoter. These results suggested that SME may be useful as an anti-photoaging resource for the skin. PMID:27573915

  9. Diminution of Hepatic Response to 7, 12-dimethylbenz(α)anthracene by Ethyl Acetate Fraction of Acacia catechu Willd. through Modulation of Xenobiotic and Anti-Oxidative Enzymes in Rats

    PubMed Central

    Kumar, Rakesh; Kaur, Rajbir; Singh, Amrit Pal; Arora, Saroj

    2014-01-01

    Background Liver is the primary metabolizing site of body and is prone to damage by exogenous as well as endogenous intoxicants. Polycyclic aromatic hydrocarbons such as 7, 12- dimethylbenz(α)anthracene (DMBA) is an exogenous hepatotoxin, which is well known for modulating phase I, II and anti-oxidative enzymes of liver. Plants contain plethora of polyphenolic compounds which can reverse the damaging effect of various xenobiotics. The present study investigated protective role of the ethyl acetate fraction of Acacia catechu Willd. (EAF) against DMBA induced alteration in hepatic metabolizing and anti-oxidative enzymes in rats. Methodology and Principal Findings The rats were subjected to hepatic damage by treating with DMBA for 7 weeks on alternative days and treatment schedule was terminated at the end of 14 weeks. The rats were euthanized at the end of protocol and livers were homogenized. The liver homogenates were used to analyse phase I (NADPH-cytochrome P450 reducatse, NADH-cytochrome b5 reductase, cytochrome P420, cytochrome b5), phase II (glutathione-S-transferase, DT diaphorase and γ-Glutamyl transpeptidase) and antioxidative enzymes (catalase, superoxide dismutase, ascorbate peroxidase, glutathione reductase, guiacol peroxidase and lactate dehydrogenase). Furthermore, other oxidative stress parameters (thiobarbituric acid reactive substances, lipid hydroperoxides and conjugated dienes and reduced glutathione) and liver marker enzymes (serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase and alkaline phosphatase) were also studied. The DMBA induced significant changes in activity of hepatic enzymes that was reversed by treatment with three dose levels of EAF. Conclusion It is concluded that EAF affords hepato-protection against DMBA in rats through modulation of phase I, II and anti-oxidative enzymes. PMID:24587216

  10. Process for the preparation of vinyl acetate

    DOEpatents

    Tustin, Gerald Charles; Zoeller, Joseph Robert; Depew, Leslie Sharon

    1998-01-01

    This invention pertains to the preparation of vinyl acetate by contacting within a contact zone a mixture of ketene and acetaldehyde with an acid catalyst at about one bar pressure and between about 85.degree. and 200.degree. C. and removing the reaction products from the contact zone.

  11. Process for the preparation of vinyl acetate

    DOEpatents

    Tustin, G.C.; Zoeller, J.R.; Depew, L.S.

    1998-02-17

    This invention pertains to the preparation of vinyl acetate by contacting within a contact zone a mixture of ketene and acetaldehyde with an acid catalyst at about one bar pressure and between about 85 and 200 C and removing the reaction products from the contact zone.

  12. Ethyl ether

    Integrated Risk Information System (IRIS)

    Ethyl ether ; CASRN 60 - 29 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  13. Ethyl carbamate

    Integrated Risk Information System (IRIS)

    Ethyl carbamate ; CASRN 51 - 79 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  14. Ethyl chloride

    Integrated Risk Information System (IRIS)

    Ethyl chloride ; CASRN 75 - 00 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  15. 27 CFR 21.107 - Ethyl acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... by weight. (5) Specific gravity at 20 °/20 °C. Not less than 0.882. (6) Distillation range. (For.... (5) Specific gravity at 20 °/20 °C. Not less than 0.899. (6) Distillation range. (For applicable...

  16. 27 CFR 21.107 - Ethyl acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... by weight. (5) Specific gravity at 20 °/20 °C. Not less than 0.882. (6) Distillation range. (For.... (5) Specific gravity at 20 °/20 °C. Not less than 0.899. (6) Distillation range. (For applicable...

  17. 27 CFR 21.107 - Ethyl acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... by weight. (5) Specific gravity at 20 °/20 °C. Not less than 0.882. (6) Distillation range. (For.... (5) Specific gravity at 20 °/20 °C. Not less than 0.899. (6) Distillation range. (For applicable...

  18. 27 CFR 21.107 - Ethyl acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... by weight. (5) Specific gravity at 20 °/20 °C. Not less than 0.882. (6) Distillation range. (For.... (5) Specific gravity at 20 °/20 °C. Not less than 0.899. (6) Distillation range. (For applicable...

  19. 27 CFR 21.107 - Ethyl acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... by weight. (5) Specific gravity at 20 °/20 °C. Not less than 0.882. (6) Distillation range. (For.... (5) Specific gravity at 20 °/20 °C. Not less than 0.899. (6) Distillation range. (For applicable...

  20. Role of acetaldehyde in tobacco smoke addiction.

    PubMed

    Talhout, Reinskje; Opperhuizen, Antoon; van Amsterdam, Jan G C

    2007-10-01

    This review evaluates the presumed contribution of acetaldehyde to tobacco smoke addiction. In rodents, acetaldehyde induces reinforcing effects, and acts in concert with nicotine. Harman and salsolinol, condensation products of acetaldehyde and biogenic amines, may be responsible for the observed reinforcing effect of acetaldehyde. Harman and salsolinol inhibit monoamine oxidase (MAO), and some MAO-inhibitors are known to increase nicotine self-administration and maintain behavioural sensitization to nicotine. Harman is formed in cigarette smoke, and blood harman levels appear to be 2-10 times higher compared to non-smokers. Since harman readily passes the blood-brain barrier and has sufficient MAO-inhibiting potency, it may contribute to the lower MAO-activity observed in the brain of smokers. In contrast, the minor amounts of salsolinol that can be formed in vivo most likely do not contribute to tobacco addiction. Thus, acetaldehyde may increase the addictive potential of tobacco products via the formation of acetaldehyde-biogenic amine adducts in cigarette smoke and/or in vivo, but further research is necessary to substantiate this hypothesis.

  1. [A study on the mechanism of reductive alkylation for preparing 3-(beta-hydroxy-ethyl-sulfonyl) N-ethyl aniline with HPLC/MS].

    PubMed

    Zhang, R; Wu, Z W; Lin, L S; Yang, H Y

    2000-11-01

    Hydrogenating 3-(beta-hydroxy-ethyl-sulfonyl)-aniline and acetaldehyde in the presence of Raney Nickel as a catalyst, 3-(beta-hydroxy-ethyl-sulfonyl)-N-ethyl-aniline was obtained with 98% conversion and 95% monoalkylation selectivity under optimum conditions. By using high performance liquid chromatography/mass selective detection technique to characterize the structures of the products, the mechanism of reductive alkylation is proposed. From the intermediates determined, it is shown that the reaction mechanism would go via an unstable N-alpha-hydroxyethylaniline derivative and Schiff base stage. After hydrogenation of Schiff base, finally the product 3-(beta-hydroxyethyl-sulfonyl)-N-ethyl aniline was formed.

  2. 21 CFR 172.515 - Synthetic flavoring substances and adjuvants.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... appropriate section in this part. Acetal; acetaldehyde diethyl acetal. Acetaldehyde phenethyl propyl acetal.... Benzyl acetoacetate. Benzyl alcohol. Benzyl benzoate. Benzyl butyl ether. Benzyl butyrate. Benzyl... ethyl ether. Benzyl formate. 3-Benzyl-4-heptanone; benzyl dipropyl ketone. Benzyl isobutyrate....

  3. Crystal structure of ethyl 2-[9-(5-bromo-2-hy­droxy­phen­yl)-1,8-dioxo-1,2,3,4,5,6,7,8,9,10-deca­hydro­acridin-10-yl]acetate

    PubMed Central

    Mohamed, Shaaban K.; Akkurt, Mehmet; Jasinski, Jerry P.; Abdelhamid, Antar A.; Tamam, Asmaa H.; Albayati, Mustafa R.

    2015-01-01

    In the title compound, C23H24BrNO5, the central 1,4-di­hydro­pyridine ring of the 1,2,3,4,5,6,7,8,9,10-deca­hydro­acridine ring system adopts a half-chair conformation. The two cyclo­hexene rings fused to the central ring both have a twisted-boat conformation. The mean planes of the bromo­hydroxy­phenyl ring and the major and minor components of the disordered ethyl amino­acetate moiety make dihedral angles of 78.99 (12), 85.9 (2) and 88.3 (9)°, respectively, with the 1,4-di­hydro­pyridine ring. The terminal ethyl group of the ethyl amino­acetate moiety is disordered over two sets of sites with refined occupancies of 0.768 (17) and 0.232 (17). The mol­ecular conformation is stabilized by an intra­molecular O—H⋯O hydrogen bond, forming an S(8) ring motif. In the crystal, C—H⋯O hydrogen bonds connect the mol­ecules into layers parallel to (001), enclosing R 1 2(7) ring motifs. PMID:26870566

  4. Anti-wrinkle effects of Sargassum muticum ethyl acetate fraction on ultraviolet B-irradiated hairless mouse skin and mechanistic evaluation in the human HaCaT keratinocyte cell line.

    PubMed

    Song, Jae Hyoung; Piao, Mei Jing; Han, Xia; Kang, Kyoung Ah; Kang, Hee Kyoung; Yoon, Weon Jong; Ko, Mi Hee; Lee, Nam Ho; Lee, Mi Young; Chae, Sungwook; Hyun, Jin Won

    2016-10-01

    The present study investigated the photoprotective properties of the ethyl acetate fraction of Sargassum muticum (SME) against ultraviolet B (UVB)‑induced skin damage and photoaging in a mouse model. HR‑1 strain hairless male mice were divided into three groups: An untreated control group, a UVB‑irradiated vehicle group and a UVB‑irradiated SME group. The UVB‑irradiated mice in the SME group were orally administered with SME (100 mg/kg body weight in 0.1 ml water per day) and then exposed to radiation at a dose of 60‑120 mJ/cm2. Wrinkle formation and skin damage were evaluated by analysis of skin replicas, epidermal thickness and collagen fiber integrity in the dermal connective tissue. The mechanism underlying the action of SME was also investigated in the human HaCaT keratinocyte cell line following exposure of the cells to UVB at a dose of 30 mJ/cm2. The protein expression levels and activity of matrix metalloproteinase‑1 (MMP‑1), and the binding of activator protein‑1 (AP‑1) to the MMP‑1 promoter were assessed in the HaCaT cells using western blot analysis, an MMP‑1 fluorescent assay and a chromatin immune‑precipitation assay, respectively. The results showed that the mean length and depth of the wrinkles in the UVB‑exposed hairless mice were significantly improved by oral administration of SME, which also prevented the increase in epidermal thickness triggered by UVB irradiation. Furthermore, a marked increase in collagen bundle formation was observed in the UVB‑treated mice with SME administration. SME pretreatment also significantly inhibited the UVB‑induced upregulation in the expression and activity of MMP‑1 in the cultured HaCaT keratinocytes, and the UVB‑enhanced association of AP‑1 with the MMP‑1 promoter. These results suggested that SME may be useful as an anti-photoaging resource for the skin.

  5. Commentary: acetaldehyde and epithelial-to-mesenchymal transition in colon.

    PubMed

    Rao, Radhakrishna K

    2014-02-01

    Elamin and colleagues in this issue report that acetaldehyde activates Snail, a transcription factor involved in epithelial-to-mesenchymal transition, in an intestinal epithelium. Snail mediates acetaldehyde-induced tight junction disruption and increase in paracellular permeability. Results of this study and other previous studies raise several important questions. This commentary addresses these questions by discussing the acetaldehyde concentration in colon, disruption of epical junctional complexes in the intestinal epithelium by acetaldehyde, and the consequence of long-term exposure to acetaldehyde on colonic epithelial regeneration, carcinogenesis, and metastases. The precise role of acetaldehyde in colonic epithelial modifications and promotion of colorectal cancers still remains to be understood.

  6. Acetaldehyde and ethanol production by Helicobacter pylori.

    PubMed

    Salmela, K S; Roine, R P; Höök-Nikanne, J; Kosunen, T U; Salaspuro, M

    1994-04-01

    By virtue of possessing alcohol dehydrogenase activity, cytosol prepared from Helicobacter pylori produces toxic acetaldehyde from ethanol in vitro. To approach the in vivo situation in the stomach, we have now investigation whether intact H. pylori--without addition of exogenous nicotinamide adenine dinucleotide--also forms acetaldehyde. Furthermore, to assess the energy metabolism of H. pylori, we determined whether the alcohol dehydrogenase-catalyzed reaction can run in the opposite direction with ethanol as the end-product and thereby yield energy for the organism. Intact H. pylori formed acetaldehyde already at low ethanol concentrations (at 0.5% ethanol, acetaldehyde, 64 +/- 21 and 75 +/- 9 mumol/l (mean +/- SEM) for strains NCTC 11637 and NCTC 11638, respectively). H. pylori produced ethanol in concentrations that can be significant for the energy metabolism of the organism. Acetaldehyde production by H. pylori may be an important factor in the pathogenesis of gastroduodenal diseases associated with the organism. The primary function of H. pylori alcohol dehydrogenase may, however, be alcoholic fermentation and consequent energy production under microaerobic conditions.

  7. Para-methylstyrene from toluene and acetaldehyde

    SciTech Connect

    Innes, R.A.; Occelli, M.L.

    1984-08-01

    High yields of para-methylstyrene (PMS) were obtained in this study by coupling toluene and acetaldehyde then cracking the resultant 1,1-ditolylethane (DTE) to give equimolar amounts of PMS and toluene. In the first step, a total DTE and ''trimer'' yield of 98% on toluene and 93% on acetaldehyde was obtained using 98% sulfuric acid as catalyst at 5-10/sup 0/C. In the second step, a choline chloride-offretite cracked DTE with 84.0% conversion and 91% selectivity to PMS and toluene. Additional PMS can be obtained by cracking the by-product ''trimer'' formed by coupling DTE and toluene with acetaldehyde. Zeolite Rho was as active but yielded less PMS (86%) and produced more para-ethyltoluene (PET), an undesirable by-product.

  8. Heterogeneous Interactions of Acetaldehyde and Sulfuric Acid

    NASA Technical Reports Server (NTRS)

    Michelsen, R. R.; Ashbourn, S. F. M.; Iraci, L. T.

    2004-01-01

    The uptake of acetaldehyde [CH3CHO] by aqueous sulfuric acid has been studied via Knudsen cell experiments over ranges of temperature (210-250 K) and acid concentration (40-80 wt. %) representative of the upper troposphere. The Henry's law constants for acetaldehyde calculated from these data range from 6 x 10(exp 2) M/atm for 40 wt. % H2SO4 at 228 K to 2 x 10(exp 5) M/atm for 80 wt. % H2SO4 at 212 K. In some instances, acetaldehyde uptake exhibits apparent steady-state loss. The possible sources of this behavior, including polymerization, will be explored. Furthermore, the implications for heterogeneous reactions of aldehydes in sulfate aerosols in the upper troposphere will be discussed.

  9. Acetaldehyde detoxification using resting cells of recombinant Escherichia coli overexpressing acetaldehyde dehydrogenase.

    PubMed

    Yao, Zhengying; Zhang, Chong; Zhao, Junfeng; Lu, Fengxia; Bie, Xiaomei; Lu, Zhaoxin

    2014-02-01

    Acetaldehyde dehydrogenase (E.C. 1.2.1.10) plays a key role in the acetaldehyde detoxification. The recombinant Escherichia coli cells producing acetaldehyde dehydrogenase (ist-ALDH) were applied as whole-cell biocatalysts for biodegradation of acetaldehyde. Response surface methodology (RSM) was employed to enhance the production of recombinant ist-ALDH. Under the optimum culture conditions containing 20.68 h post-induction time, 126.75 mL medium volume and 3 % (v/v) inoculum level, the maximum ist-ALDH activity reached 496.65 ± 0.81 U/mL, resulting in 12.5-fold increment after optimization. Furthermore, the optimum temperature and pH for the catalytic activity of wet cells were 40 °C and pH 9.5, respectively. The biocatalytic activity was improved 80 % by permeabilizing the recombinant cells with 0.075 % (v/v) Triton X-100. When using 2 mmol/L NAD(+) as coenzyme, the permeabilized cells could catalyze 98 % of acetaldehyde within 15 min. The results indicated that the recombinant E. coli with high productivity of ist-ALDH might be highly efficient and easy-to-make biocatalysts for acetaldehyde detoxification.

  10. Adsorption and Reaction of Acetaldehyde on Shape-Controlled CeO2 Nanocrystals: Elucidation of Structure-function Relationships

    SciTech Connect

    Mann, Amanda K; Wu, Zili; Calaza, Florencia; Overbury, Steven {Steve} H

    2014-01-01

    CeO2 cubes with {100} facets, octahedra with {111} facets, and wires with highly defective structures were utilized to probe the structure-dependent reactivity of acetaldehyde. Using temperature-programmed desorption (TPD), temperature-programmed surface reactions (TPSR), and in situ infrared spectroscopy it was found that acetaldehyde desorbs unreacted or undergoes reduction, coupling, or C-C bond scission reactions depending on the surface structure of CeO2. Room temperature FTIR indicates that acetaldehyde binds primarily as 1-acetaldehyde on the octahedra, in a variety of conformations on the cubes, including coupling products and acetate and enolate species, and primarily as coupling products on the wires. The percent consumption of acetaldehyde follows the order of wires > cubes > octahedra. All the nanoshapes produce the coupling product crotonaldehyde; however, the selectivity to produce ethanol follows the order wires cubes >> octahedra. The selectivity and other differences can be attributed to the variation in the basicity of the surfaces, defects densities, coordination numbers of surface atoms, and the reducibility of the nanoshapes.

  11. Metabolic engineering of acetaldehyde production by Streptococcus thermophilus.

    PubMed

    Chaves, A C S D; Fernandez, M; Lerayer, A L S; Mierau, I; Kleerebezem, M; Hugenholtz, J

    2002-11-01

    The process of acetaldehyde formation by the yogurt bacterium Streptococcus thermophilus is described in this paper. Attention was focused on one specific reaction for acetaldehyde formation catalyzed by serine hydroxymethyltransferase (SHMT), encoded by the glyA gene. In S. thermophilus, SHMT also possesses threonine aldolase (TA) activity, the interconversion of threonine into glycine and acetaldehyde. In this work, several wild-type S. thermophilus strains were screened for acetaldehyde production in the presence and absence of L-threonine. Supplementation of the growth medium with L-threonine led to an increase in acetaldehyde production. Furthermore, acetaldehyde formation during fermentation could be correlated to the TA activity of SHMT. To study the physiological role of SHMT, a glyA mutant was constructed by gene disruption. Inactivation of glyA resulted in a severe reduction in TA activity and complete loss of acetaldehyde formation during fermentation. Subsequently, an S. thermophilus strain was constructed in which the glyA gene was cloned under the control of a strong promoter (P(LacA)). When this strain was used for fermentation, an increase in TA activity and in acetaldehyde and folic acid production was observed. These results show that, in S. thermophilus, SHMT, displaying TA activity, constitutes the main pathway for acetaldehyde formation under our experimental conditions. These findings can be used to control and improve acetaldehyde production in fermented (dairy) products with S. thermophilus as starter culture.

  12. Acetaldehyde and the genome: beyond nuclear DNA adducts and carcinogenesis.

    PubMed

    Brooks, Philip J; Zakhari, Samir

    2014-03-01

    The designation of acetaldehyde associated with the consumption of alcoholic beverages as "carcinogenic to humans" (Group 1) by the International Agency for Research on Cancer (IARC) has brought renewed attention to the biological effects of acetaldehyde, as the primary oxidative metabolite of alcohol. Therefore, the overall focus of this review is on acetaldehyde and its direct and indirect effects on the nuclear and mitochondrial genome. We first consider different acetaldehyde-DNA adducts, including a critical assessment of the evidence supporting a role for acetaldehyde-DNA adducts in alcohol related carcinogenesis, and consideration of additional data needed to make a conclusion. We also review recent data on the role of the Fanconi anemia DNA repair pathway in protecting against acetaldehyde genotoxicity and carcinogenicity, as well as teratogenicity. We also review evidence from the older literature that acetaldehyde may impact the genome indirectly, via the formation of adducts with proteins that are themselves critically involved in the maintenance of genetic and epigenetic stability. Finally, we note the lack of information regarding acetaldehyde effects on the mitochondrial genome, which is notable since aldehyde dehydrogenase 2 (ALDH2), the primary acetaldehyde metabolic enzyme, is located in the mitochondrion, and roughly 30% of East Asian individuals are deficient in ALDH2 activity due to a genetic variant in the ALDH2 gene. In summary, a comprehensive understanding of all of the mechanisms by which acetaldehyde impacts the function of the genome has implications not only for alcohol and cancer, but types of alcohol related pathologies as well.

  13. Methanol and acetaldehyde fluxes over ryegrass

    NASA Astrophysics Data System (ADS)

    Custer, Thomas; Schade, Gunnar

    2007-09-01

    Oxygenated volatile organic compounds (OVOCs) play an active role in tropospheric chemistry but our knowledge concerning their release and ultimate fate is limited. However, the recent introduction of Proton Transfer Reaction Mass Spectrometry (PTRMS) has improved our capability to make direct field observations of OVOC mixing ratios and fluxes. We used PTRMS in an eddy covariance setup to measure selected OVOC exchange rates above a well-characterized agricultural plot in Northern Germany. In fall 2003, mixing ratios of methanol and acetaldehyde 2 m above the field ranged from 1 to 10 and 0.4 to 2.1 ppb, respectively, well correlated with one another. Fluxes of both gases were followed for growing Italian ryegrass (Lolium multiflorum) over a significant portion of its life cycle. Diurnally fluctuating emissions of methanol and very small acetaldehyde fluxes were observed up to the cutting and removal of the grass. Methanol emissions were exponentially related to ambient temperatures and appeared to be higher during the grass' rapid leaf area expansion and after a rain event. Acetaldehyde exchanges averaged over the whole period indicated very slow deposition. Our measurements confirm previous, similar results, as well as presumptions that grasses are comparatively low methanol emitters compared to non-grass species.

  14. Flecainide acetate acetic acid solvates.

    PubMed

    Veldre, Kaspars; Actiņs, Andris; Eglite, Zane

    2011-02-01

    Flecainide acetate forms acetic acid solvates with 0.5 and 2 acetic acid molecules. Powder X-ray diffraction, differential thermal analysis/thermogravimetric, infrared, and potentiometric titration were used to determine the composition of solvates. Flecainide acetate hemisolvate with acetic acid decomposes to form a new crystalline form of flecainide acetate. This form is less stable than the already known polymorphic form at all temperatures, and it is formed due to kinetic reasons. Both flecainide acetate nonsolvated and flecainide acetate hemisolvate forms crystallize in monoclinic crystals, but flecainide triacetate forms triclinic crystals. Solvate formation was not observed when flecainide base was treated with formic acid, propanoic acid, and butanoic acid. Only nonsolvated flecainide salts were obtained in these experiments.

  15. Acetaldehyde and retinaldehyde-metabolizing enzymes in colon and pancreatic cancers.

    PubMed

    Singh, S; Arcaroli, J; Thompson, D C; Messersmith, W; Vasiliou, V

    2015-01-01

    Colorectal cancer (CRC) and pancreatic cancer are two very significant contributors to cancer-related deaths. Chronic alcohol consumption is an important risk factor for these cancers. Ethanol is oxidized primarily by alcohol dehydrogenases to acetaldehyde, an agent capable of initiating tumors by forming adducts with proteins and DNA. Acetaldehyde is metabolized by ALDH2, ALDH1B1, and ALDH1A1 to acetate. Retinoic acid (RA) is required for cellular differentiation and is known to arrest tumor development. RA is synthesized from retinaldehyde by the retinaldehyde dehydrogenases, specifically ALDH1A1, ALDH1A2, ALDH1A3, and ALDH8A1. By eliminating acetaldehyde and generating RA, ALDHs can play a crucial regulatory role in the initiation and progression of cancers. ALDH1 catalytic activity has been used as a biomarker to identify and isolate normal and cancer stem cells; its presence in a tumor is associated with poor prognosis in colon and pancreatic cancer. In summary, these ALDHs are not only biomarkers for CRC and pancreatic cancer but also play important mechanistic role in cancer initiation, progression, and eventual prognosis.

  16. Acetaldehyde and Retinaldehyde-Metabolizing Enzymes in Colon and Pancreatic cancers

    PubMed Central

    Singh, S; Arcaroli, J; Thompson, DC; Messersmith, W; Vasiliou, V

    2015-01-01

    Colorectal (CRC) and pancreatic cancers are two very significant contributors to cancer-related deaths. Chronic alcohol consumption is an important risk factor for these cancers. Ethanol is oxidized primarily by alcohol dehydrogenases to acetaldehyde, an agent capable of initiating tumors by forming adducts with proteins and DNA. Acetaldehyde is metabolized by ALDH2, ALDH1B1 and ALDH1A1 to acetate. Retinoic acid (RA) is required for cellular differentiation and is known to arrest tumor development. RA is synthesized from retinaldehyde by the retinaldehyde dehydrogenases, specifically ALDH1A1, ALDH1A2, ALDH1A3 and ALDH8A1. By eliminating acetaldehyde and generating RA, ALDHs can play a crucial regulatory role in the initiation and progression of cancers. ALDH1 catalytic activity has been used as a biomarker to identify and isolate normal and cancer stem cells; its presence in a tumor is associated with poor prognosis in colon and pancreatic cancer. In summary, these ALDHs are not only biomarkers for CRC and pancreatic cancer but also play important mechanistic role in cancer initiation, progression and eventual prognosis. PMID:25427913

  17. Prebiotic synthesis of imidazole-4-acetaldehyde and histidine

    NASA Technical Reports Server (NTRS)

    Shen, Chun; Oro, J.; Yang, Lily; Miller, Stanley L.

    1987-01-01

    The prebiotic synthesis of imidazole-4-acetaldehyde and imidazole-4-glycol from erythrose and formamidine has been demonstrated as well as the prebiotic synthesis of imidazole-4-ethanol and imidazole-4-glycol from erythrose, formaldehyde, and ammonia. The maximum yields of imidazole-4-acetaldehyde, imidazole-4-ethanol, and imidazole-4-glycol obtained in these reactions are 1.6, 5.4, and 6.8 percent respectively, based on the erythrose. Imidazole-4-acetaldehyde would have been converted to histidine on the primitive earth by a Strecker synthesis, and several prebiotic reactions would convert imidazole-4-glycol and imidazole-4-ethanol to imidazole-4-acetaldehyde.

  18. Degradation of Acetaldehyde and Its Precursors by Pelobacter carbinolicus and P. acetylenicus

    PubMed Central

    Schmidt, Alexander; Frensch, Marco; Schleheck, David; Schink, Bernhard; Müller, Nicolai

    2014-01-01

    Pelobacter carbinolicus and P. acetylenicus oxidize ethanol in syntrophic cooperation with methanogens. Cocultures with Methanospirillum hungatei served as model systems for the elucidation of syntrophic ethanol oxidation previously done with the lost “Methanobacillus omelianskii” coculture. During growth on ethanol, both Pelobacter species exhibited NAD+-dependent alcohol dehydrogenase activity. Two different acetaldehyde-oxidizing activities were found: a benzyl viologen-reducing enzyme forming acetate, and a NAD+-reducing enzyme forming acetyl-CoA. Both species synthesized ATP from acetyl-CoA via acetyl phosphate. Comparative 2D-PAGE of ethanol-grown P. carbinolicus revealed enhanced expression of tungsten-dependent acetaldehyde: ferredoxin oxidoreductases and formate dehydrogenase. Tungsten limitation resulted in slower growth and the expression of a molybdenum-dependent isoenzyme. Putative comproportionating hydrogenases and formate dehydrogenase were expressed constitutively and are probably involved in interspecies electron transfer. In ethanol-grown cocultures, the maximum hydrogen partial pressure was about 1,000 Pa (1 mM) while 2 mM formate was produced. The redox potentials of hydrogen and formate released during ethanol oxidation were calculated to be EH2 = -358±12 mV and EHCOOH = -366±19 mV, respectively. Hydrogen and formate formation and degradation further proved that both carriers contributed to interspecies electron transfer. The maximum Gibbs free energy that the Pelobacter species could exploit during growth on ethanol was −35 to −28 kJ per mol ethanol. Both species could be cultivated axenically on acetaldehyde, yielding energy from its disproportionation to ethanol and acetate. Syntrophic cocultures grown on acetoin revealed a two-phase degradation: first acetoin degradation to acetate and ethanol without involvement of the methanogenic partner, and subsequent syntrophic ethanol oxidation. Protein expression and activity

  19. Degradation of acetaldehyde and its precursors by Pelobacter carbinolicus and P. acetylenicus.

    PubMed

    Schmidt, Alexander; Frensch, Marco; Schleheck, David; Schink, Bernhard; Müller, Nicolai

    2014-01-01

    Pelobacter carbinolicus and P. acetylenicus oxidize ethanol in syntrophic cooperation with methanogens. Cocultures with Methanospirillum hungatei served as model systems for the elucidation of syntrophic ethanol oxidation previously done with the lost "Methanobacillus omelianskii" coculture. During growth on ethanol, both Pelobacter species exhibited NAD+-dependent alcohol dehydrogenase activity. Two different acetaldehyde-oxidizing activities were found: a benzyl viologen-reducing enzyme forming acetate, and a NAD+-reducing enzyme forming acetyl-CoA. Both species synthesized ATP from acetyl-CoA via acetyl phosphate. Comparative 2D-PAGE of ethanol-grown P. carbinolicus revealed enhanced expression of tungsten-dependent acetaldehyde: ferredoxin oxidoreductases and formate dehydrogenase. Tungsten limitation resulted in slower growth and the expression of a molybdenum-dependent isoenzyme. Putative comproportionating hydrogenases and formate dehydrogenase were expressed constitutively and are probably involved in interspecies electron transfer. In ethanol-grown cocultures, the maximum hydrogen partial pressure was about 1,000 Pa (1 mM) while 2 mM formate was produced. The redox potentials of hydrogen and formate released during ethanol oxidation were calculated to be EH2 = -358±12 mV and EHCOOH = -366±19 mV, respectively. Hydrogen and formate formation and degradation further proved that both carriers contributed to interspecies electron transfer. The maximum Gibbs free energy that the Pelobacter species could exploit during growth on ethanol was -35 to -28 kJ per mol ethanol. Both species could be cultivated axenically on acetaldehyde, yielding energy from its disproportionation to ethanol and acetate. Syntrophic cocultures grown on acetoin revealed a two-phase degradation: first acetoin degradation to acetate and ethanol without involvement of the methanogenic partner, and subsequent syntrophic ethanol oxidation. Protein expression and activity patterns of

  20. 40 CFR 721.10036 - Acetaldehyde based polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acetaldehyde based polymer (generic... Specific Chemical Substances § 721.10036 Acetaldehyde based polymer (generic). (a) Chemical substance and... based polymer (PMN P-02-406) is subject to reporting under this section for the significant new...

  1. 40 CFR 721.10036 - Acetaldehyde based polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acetaldehyde based polymer (generic... Specific Chemical Substances § 721.10036 Acetaldehyde based polymer (generic). (a) Chemical substance and... based polymer (PMN P-02-406) is subject to reporting under this section for the significant new...

  2. 40 CFR 721.10036 - Acetaldehyde based polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acetaldehyde based polymer (generic... Specific Chemical Substances § 721.10036 Acetaldehyde based polymer (generic). (a) Chemical substance and... based polymer (PMN P-02-406) is subject to reporting under this section for the significant new...

  3. 40 CFR 721.10036 - Acetaldehyde based polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acetaldehyde based polymer (generic... Specific Chemical Substances § 721.10036 Acetaldehyde based polymer (generic). (a) Chemical substance and... based polymer (PMN P-02-406) is subject to reporting under this section for the significant new...

  4. 40 CFR 721.10036 - Acetaldehyde based polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acetaldehyde based polymer (generic... Specific Chemical Substances § 721.10036 Acetaldehyde based polymer (generic). (a) Chemical substance and... based polymer (PMN P-02-406) is subject to reporting under this section for the significant new...

  5. Validation of Human Physiologically Based Pharmacokinetic Model for Vinyl Acetate Against Human Nasal Dosimetry Data

    SciTech Connect

    Hinderliter, Paul M.; Thrall, Karla D.; Corley, Rick A.; Bloemen, Louis J.; Bogdanffy, M S.

    2005-05-01

    Vinyl acetate has been shown to induce nasal lesions in rodents in inhalation bioassays. A physiologically based pharmacokinetic (PBPK) model for vinyl acetate has been used in human risk assessment, but previous in vivo validation was conducted only in rats. Controlled human exposures to vinyl acetate were conducted to provide validation data for the application of the model in humans. Five volunteers were exposed to 1, 5, and 10 ppm 13 C1 , 13 C2 vinyl acetate via inhalation. A probe inserted into thenasopharyngeal region sampled both 13 C1 , 13 C2 vinyl acetate and the major metabolite 13 C1 , 13 C2 acetaldehyde during rest and light exercise. Nasopharyngeal air concentrations were analyzed in real time by ion trap mass spectrometry (MS/MS). Experimental concentrations of both vinyl acetate and acetaldehyde were then compared to predicted concentrations calculated from the previously published human model. Model predictions of vinyl acetate nasal extraction compared favorably with measured values of vinyl acetate, as did predictions of nasopharyngeal acetaldehyde when compared to measured acetaldehyde. The results showed that the current PBPK model structure and parameterization are appropriate for vinyl acetate. These analyses were conducted from 1 to 10 ppm vinyl acetate, a range relevant to workplace exposure standards but which would not be expected to saturate vinyl acetate metabolism. Risk assessment based on this model further concluded that 24 h per day exposures up to 1 ppm do not present concern regarding cancer or non-cancer toxicity. Validation of the vinyl acetate human PBPK model provides support for these conclusions.

  6. Validation of human physiologically based pharmacokinetic model for vinyl acetate against human nasal dosimetry data.

    PubMed

    Hinderliter, P M; Thrall, K D; Corley, R A; Bloemen, L J; Bogdanffy, M S

    2005-05-01

    Vinyl acetate has been shown to induce nasal lesions in rodents in inhalation bioassays. A physiologically based pharmacokinetic (PBPK) model for vinyl acetate has been used in human risk assessment, but previous in vivo validation was conducted only in rats. Controlled human exposures to vinyl acetate were conducted to provide validation data for the application of the model in humans. Five volunteers were exposed to 1, 5, and 10 ppm 13C1,13C2 vinyl acetate via inhalation. A probe inserted into the nasopharyngeal region sampled both 13C1,13C2 vinyl acetate and the major metabolite 13C1,13C2 acetaldehyde during rest and light exercise. Nasopharyngeal air concentrations were analyzed in real time by ion trap mass spectrometry (MS/MS). Experimental concentrations of both vinyl acetate and acetaldehyde were then compared to predicted concentrations calculated from the previously published human model. Model predictions of vinyl acetate nasal extraction compared favorably with measured values of vinyl acetate, as did predictions of nasopharyngeal acetaldehyde when compared to measured acetaldehyde. The results showed that the current PBPK model structure and parameterization are appropriate for vinyl acetate. These analyses were conducted from 1 to 10 ppm vinyl acetate, a range relevant to workplace exposure standards but which would not be expected to saturate vinyl acetate metabolism. Risk assessment based on this model further concluded that 24 h per day exposures up to 1 ppm do not present concern regarding cancer or non-cancer toxicity. Validation of the vinyl acetate human PBPK model provides support for these conclusions.

  7. Reaction of acetaldehyde with 5-aminolevulinic acid via dihydropyrazine derivative.

    PubMed

    Suzuki, Toshinori; Yasuhara, Naoki; Ueda, Takashi; Inukai, Michiyo; Mio, Mitsunobu

    2015-01-01

    When a solution of 5-aminolevulinic acid (ALA) was incubated with acetaldehyde at neutral pH, a product was generated. This product was identified as 3-ethylpyrazine-2,5-dipropanoic acid (ETPY). ETPY was stable at neutral pH. It has been reported that ALA dimerizes at neutral pH generating 3,6-dihydropyrazine-2,5-dipropanoic acid (DHPY), and subsequently resulting in pyrazine-2,5-dipropanoic acid (PY) by autoxidation. In the present reaction, DHPY generated from ALA reacted with acetaldehyde, resulting in ETPY. Preadministration of ALA 3 min prior to acetaldehyde injection supressed the toxicity of acetaldehyde in male mice. These results suggest that ALA may be useful as a scavenger for acetaldehyde.

  8. Mesoxalaldehyde acetals

    SciTech Connect

    Gordeeva, G.N.; Kalashnikov, S.M.; Popov, Yu.N.; Kruglov, E.A.; Imashev, U.B.

    1987-11-10

    The treatment of methylglyoxal acetals by alkyl nitrites in the presence of the corresponding aliphatic alcohols and hydrochloric acid leads to the formation of linear mesoxalaldehyde acetals, whose structure was established by NMR spectroscopy and mass spectrometry. The major pathways for the decomposition of these molecules upon electron impact were established.

  9. Mechanism of anaerobic ether cleavage: conversion of 2-phenoxyethanol to phenol and acetaldehyde by Acetobacterium sp.

    PubMed

    Speranza, Giovanna; Mueller, Britta; Orlandi, Maximilian; Morelli, Carlo F; Manitto, Paolo; Schink, Bernhard

    2002-04-05

    2-Phenoxyethanol is converted into phenol and acetate by a strictly anaerobic Gram-positive bacterium, Acetobacterium strain LuPhet1. Acetate results from oxidation of acetaldehyde that is the early product of the biodegradation process (Frings, J., and Schink, B. (1994) Arch. Microbiol. 162, 199-204). Feeding experiments with resting cell suspensions and 2-phenoxyethanol bearing two deuterium atoms at either carbon of the glycolic moiety as substrate demonstrated that the carbonyl group of the acetate derives from the alcoholic function and the methyl group derives from the adjacent carbon. A concomitant migration of a deuterium atom from C-1 to C-2 was observed. These findings were confirmed by NMR analysis of the acetate obtained by fermentation of 2-phenoxy-[2-(13)C,1-(2)H(2)]ethanol, 2-phenoxy-[1-(13)C,1-(2)H(2)]ethanol, and 2-phenoxy-[1,2-(13)C(2),1-(2)H(2)]ethanol. During the course of the biotransformation process, the molecular integrity of the glycolic unit was completely retained, no loss of the migrating deuterium occurred by exchange with the medium, and the 1,2-deuterium shift was intramolecular. A diol dehydratase-like mechanism could explain the enzymatic cleavage of the ether bond of 2-phenoxyethanol, provided that an intramolecular H/OC(6)H(5) exchange is assumed, giving rise to the hemiacetal precursor of acetaldehyde. However, an alternative mechanism is proposed that is supported by the well recognized propensity of alpha-hydroxyradical and of its conjugate base (ketyl anion) to eliminate a beta-positioned leaving group.

  10. Mechanism of acetaldehyde-induced deactivation of microbial lipases

    PubMed Central

    2011-01-01

    Background Microbial lipases represent the most important class of biocatalysts used for a wealth of applications in organic synthesis. An often applied reaction is the lipase-catalyzed transesterification of vinyl esters and alcohols resulting in the formation of acetaldehyde which is known to deactivate microbial lipases, presumably by structural changes caused by initial Schiff-base formation at solvent accessible lysine residues. Previous studies showed that several lipases were sensitive toward acetaldehyde deactivation whereas others were insensitive; however, a general explanation of the acetaldehyde-induced inactivation mechanism is missing. Results Based on five microbial lipases from Candida rugosa, Rhizopus oryzae, Pseudomonas fluorescens and Bacillus subtilis we demonstrate that the protonation state of lysine ε-amino groups is decisive for their sensitivity toward acetaldehyde. Analysis of the diverse modification products of Bacillus subtilis lipases in the presence of acetaldehyde revealed several stable products such as α,β-unsaturated polyenals, which result from base and/or amino acid catalyzed aldol condensation of acetaldehyde. Our studies indicate that these products induce the formation of stable Michael-adducts at solvent-accessible amino acids and thus lead to enzyme deactivation. Further, our results indicate Schiff-base formation with acetaldehyde to be involved in crosslinking of lipase molecules. Conclusions Differences in stability observed with various commercially available microbial lipases most probably result from different purification procedures carried out by the respective manufacturers. We observed that the pH of the buffer used prior to lyophilization of the enzyme sample is of utmost importance. The mechanism of acetaldehyde-induced deactivation of microbial lipases involves the generation of α,β-unsaturated polyenals from acetaldehyde which subsequently form stable Michael-adducts with the enzymes. Lyophilization of

  11. Ethanol formation in adh0 mutants reveals the existence of a novel acetaldehyde-reducing activity in Saccharomyces cerevisiae.

    PubMed Central

    Drewke, C; Thielen, J; Ciriacy, M

    1990-01-01

    A strain of Saccharomyces cerevisiae has been constructed which is deficient in the four alcohol dehydrogenase (ADH) isozymes known at present. This strain (adh0), being irreversibly mutated in the genes ADH1, ADH3, and ADH4 and carrying a point mutation in the gene ADH2 coding for the glucose-repressible isozyme ADHII, still produces up to one third of the theoretical maximum yield of ethanol in a homofermentative conversion of glucose to ethanol. Analysis of the glucose metabolism of adh0 cells shows that the lack of all known ADH isozymes results in the formation of glycerol as a major fermentation product, accompanied by a significant production of acetaldehyde and acetate. Treatment of glucose-growing adh0 cells with the respiratory-chain inhibitor antimycin A leads to an immediate cessation of ethanol production, demonstrating that ethanol production in adh0 cells is dependent on mitochondrial electron transport. Reduction of acetaldehyde to ethanol in isolated mitochondria could also be demonstrated. This reduction is apparently linked to the oxidation of acetaldehyde to acetate. Preliminary data suggest that this novel type of ethanol formation in S. cerevisiae is associated with the inner mitochondrial membrane. Images PMID:2193925

  12. Piecing together the puzzle of acetaldehyde as a neuroactive agent.

    PubMed

    Correa, Mercè; Salamone, John D; Segovia, Kristen N; Pardo, Marta; Longoni, Rosanna; Spina, Liliana; Peana, Alessandra T; Vinci, Stefania; Acquas, Elio

    2012-01-01

    Mainly known for its more famous parent compound, ethanol, acetaldehyde was first studied in the 1940s, but then research interest in this compound waned. However, in the last two decades, research on acetaldehyde has seen a revitalized and uninterrupted interest. Acetaldehyde, per se, and as a product of ethanol metabolism, is responsible for many pharmacological effects which are not clearly distinguishable from those of its parent compound, ethanol. Consequently, the most recent advances in acetaldehyde's psychopharmacology have been inspired by the experimental approach to test the hypothesis that some of the effects of ethanol are mediated by acetaldehyde and, in this regard, the characterization of metabolic pathways for ethanol and the localization within discrete brain regions of these effects have revitalized the interest on the role of acetaldehyde in ethanol's central effects. Here we present and discuss a wealth of experimental evidence that converges to suggest that acetaldehyde is an intrinsically active compound, is metabolically generated in the brain and, finally, mediates many of the psychopharmacological properties of ethanol.

  13. A self-powered acetaldehyde sensor based on biofuel cell.

    PubMed

    Zhang, Lingling; Zhou, Ming; Dong, Shaojun

    2012-12-04

    Acetaldehyde is recognized as a type of organic environmental pollutant all over the world, which makes the sensitive, rapid, simple and low-cost detection of acetaldehyde urgent and significant. Inspired by the biological principle of feedback modulation, we have developed a novel and effective self-powered device for aqueous acetaldehyde detection. In this self-powered device, an ethanol/air enzymatic biofuel cell (BFC) served as the core component, which showed the maximum power output density of 28.5 μW cm(-2) at 0.34 V and the open circuit potential (V(oc)) of 0.64 V. The product of ethanol oxidation, acetaldehyde, would counteract the electrocatalysis at the bioanode and further decrease the power output of the BFC. Based on such principles, the fabricated acetaldehyde sensor exhibited excellent selectivity with wide linear range (5-200 μM) and low detection limit (1 μM), which conforms to the criteria provided by the World Health Organisation (WHO). In addition, the sensor fabrication is simple, fast, inexpensive, and user-friendly, and the detection process is convenient, efficient, and time-saving, requiring no complicated equipment. These make such self-powered acetaldehyde sensors feasible and practical for detecting aqueous acetaldehyde, particularly in the field of quality control and monitoring aimed at water resource protection.

  14. Xylitol inhibits carcinogenic acetaldehyde production by Candida species.

    PubMed

    Uittamo, Johanna; Nieminen, Mikko T; Kaihovaara, Pertti; Bowyer, Paul; Salaspuro, Mikko; Rautemaa, Riina

    2011-10-15

    Acetaldehyde is a highly toxic and mutagenic product of alcohol fermentation and metabolism which has been classified as a Class I carcinogen for humans by the International Agency for Research on Cancer of the World Health Organisation (WHO). Many Candida species representing oral microbiota have been shown to be capable of marked acetaldehyde production. The aim of our study was to examine the effects of various sugar alcohols and sugars on microbial acetaldehyde production. The study hypothesis was that xylitol could reduce the amount of acetaldehyde produced by Candida. Laboratory and clinical isolates of seven Candida species were selected for the study. The isolates were incubated in 12 mM ethanol and 110 mM glucose, fructose or xylitol at 37°C for 30 min and the formed acetaldehyde was measured by gas chromatography. Xylitol significantly (p < 0.0001) reduced the amount of acetaldehyde produced from ethanol by 84%. In the absence of xylitol, the mean acetaldehyde production in ethanol incubation was 220.5 μM and in ethanol-xylitol incubation 32.8 μM. This was found to be mediated by inhibition of the alcohol dehydrogenase enzyme activity. Coincubation with glucose reduced the amount of produced acetaldehyde by 23% and coincubation with fructose by 29%. At concentrations that are representative of those found in the oral cavity during the intake of proprietary xylitol products, xylitol was found to reduce the production of carcinogenic acetaldehyde from ethanol by Candida below the mutagenic level of 40-100 μM.

  15. Effects of acetic acid, ethanol, and SO(2) on the removal of volatile acidity from acidic wines by two Saccharomyces cerevisiae commercial strains.

    PubMed

    Vilela-Moura, Alice; Schuller, Dorit; Mendes-Faia, Arlete; Côrte-Real, Manuela

    2010-07-01

    Herein, we report the influence of different combinations of initial concentration of acetic acid and ethanol on the removal of acetic acid from acidic wines by two commercial Saccharomyces cerevisiae strains S26 and S29. Both strains reduced the volatile acidity of an acidic wine (1.0 gl(-1) acetic acid and 11% (v/v) ethanol) by 78% and 48%, respectively. Acetic acid removal by strains S26 and S29 was associated with a decrease in ethanol concentration of 0.7 and 1.2% (v/v), respectively. Strain S26 revealed better removal efficiency due to its higher tolerance to stress factors imposed by acidic wines. Sulfur dioxide (SO(2)) in the concentration range 95-170 mg l(-1)inhibits the ability of both strains to reduce the volatile acidity of the acidic wine used under our experimental conditions. Therefore, deacidification should be carried out either in wines stabilized by filtration or in wines with SO(2)concentrations up to 70 mg l(-1). Deacidification of wines with the better performing strain S26 was associated with changes in the concentration of volatile compounds. The most pronounced increase was observed for isoamyl acetate (banana) and ethyl hexanoate (apple, pineapple), with an 18- and 25-fold increment, respectively, to values above the detection threshold. The acetaldehyde concentration of the deacidified wine was 2.3 times higher, and may have a detrimental effect on the wine aroma. Moreover, deacidification led to increased fatty acids concentration, but still within the range of values described for spontaneous fermentations, and with apparently no negative impact on the organoleptical properties.

  16. 40 CFR 80.56 - Measurement methods for formaldehyde and acetaldehyde.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and acetaldehyde. 80.56 Section 80.56 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Measurement methods for formaldehyde and acetaldehyde. (a) Formaldehyde and acetaldehyde will be measured by... acetaldehyde are used to determine the response, repeatability, and limit of quantitation of the HPLC...

  17. New insights in understanding plasma-catalysis reaction pathways: study of the catalytic ozonation of an acetaldehyde saturated Ag/TiO2/SiO2 catalyst

    NASA Astrophysics Data System (ADS)

    Sauce, Sonia; Vega-González, Arlette; Jia, Zixian; Touchard, Sylvain; Hassouni, Khaled; Kanaev, Andrei; Duten, Xavier

    2015-07-01

    This paper is a preliminary study intended to straighten out the role of reactive oxygen species in the activation mechanisms occurring in a plasma driven catalysis process for acetaldehyde decomposition. For this purpose, the interaction between the surface, the pollutant and one of the main oxidative species generated by non-thermal plasma, namely ozone, was studied. Acetaldehyde catalytic ozonation over a nanostructured Ag/TiO2/SiO2 catalyst is carried out at room temperature and atmospheric pressure, and followed by diffuse reflectance infrared fourier transform spectroscopy (DRIFTS). For this, the catalyst is firstly saturated with acetaldehyde. At the end of the saturation, acetaldehyde and crotonaldehyde, its condensation product, are identified as the major adsorbed species. In a second step, the surface ozonation is carried out and three additional intermediates are identified, namely, acetone, formic acid and acetic acid. Gaseous CO, CO2, methyl formate and methyl acetate are detected at the DRIFTS outlet, evidencing the partial mineralization of the adsorbed species. A global reaction scheme is proposed for explaining the formation of those adsorbed intermediates and gaseous products. This proposed heterogeneous ozone induced chemistry has to be taken into account when associating non-thermal plasma in air to a catalyst. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  18. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci.

    PubMed

    Pavlova, Sylvia I; Jin, Ling; Gasparovich, Stephen R; Tao, Lin

    2013-07-01

    Ethanol consumption and poor oral hygiene are risk factors for oral and oesophageal cancers. Although oral streptococci have been found to produce excessive acetaldehyde from ethanol, little is known about the mechanism by which this carcinogen is produced. By screening 52 strains of diverse oral streptococcal species, we identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol. We then constructed gene deletion mutants in this strain and analysed them for alcohol and acetaldehyde dehydrogenases by zymograms. The results showed that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol and ethanol, respectively. Two additional dehydrogenases, S-AdhA and TdhA, were identified with specificities to the secondary alcohol 2-propanol and threonine, respectively, but not to ethanol. S. gordonii V2016 did not show a detectable acetaldehyde dehydrogenase even though its adhE gene encodes a putative bifunctional acetaldehyde/alcohol dehydrogenase. Mutants with adhE deletion showed greater tolerance to ethanol in comparison with the wild-type and mutant with adhA or adhB deletion, indicating that AdhE is the major alcohol dehydrogenase in S. gordonii. Analysis of 19 additional strains of S. gordonii, S. mitis, S. oralis, S. salivarius and S. sanguinis showed expressions of up to three alcohol dehydrogenases, but none showed detectable acetaldehyde dehydrogenase, except one strain that showed a novel ALDH. Therefore, expression of multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase may contribute to excessive production of acetaldehyde from ethanol by certain oral streptococci.

  19. Alternate fuels and chemicals from synthesis gas: Vinyl acetate monomer. Final report

    SciTech Connect

    Richard D. Colberg; Nick A. Collins; Edwin F. Holcombe; Gerald C. Tustin; Joseph R. Zoeller

    1999-01-01

    There has been a long-standing desire on the part of industry and the U.S. Department of Energy to replace the existing ethylene-based vinyl acetate monomer (VAM) process with an entirely synthesis gas-based process. Although there are a large number of process options for the conversion of synthesis gas to VAM, Eastman Chemical Company undertook an analytical approach, based on known chemical and economic principles, to reduce the potential candidate processes to a select group of eight processes. The critical technologies that would be required for these routes were: (1) the esterification of acetaldehyde (AcH) with ketene to generate VAM, (2) the hydrogenation of ketene to acetaldehyde, (3) the hydrogenation of acetic acid to acetaldehyde, and (4) the reductive carbonylation of methanol to acetaldehyde. This report describes the selection process for the candidate processes, the successful development of the key technologies, and the economic assessments for the preferred routes. In addition, improvements in the conversion of acetic anhydride and acetaldehyde to VAM are discussed. The conclusion from this study is that, with the technology developed in this study, VAM may be produced from synthesis gas, but the cost of production is about 15% higher than the conventional oxidative acetoxylation of ethylene, primarily due to higher capital associated with the synthesis gas-based processes.

  20. Centrally formed acetaldehyde mediates ethanol-induced brain PKA activation.

    PubMed

    Tarragon, E; Baliño, P; Aragon, C M G

    2014-09-19

    Centrally formed acetaldehyde has proven to be responsible for several psychopharmacological effects induced by ethanol. In addition, it has been suggested that the cAMP-PKA signaling transduction pathway plays an important role in the modulation of several ethanol-induced behaviors. Therefore, we hypothesized that acetaldehyde might be ultimately responsible for the activation of this intracellular pathway. We used three pharmacological agents that modify acetaldehyde activity (α-lipoic acid, aminotriazole, and d-penicillamine) to study the role of this metabolite on EtOH-induced PKA activation in mice. Our results show that the injection of α-lipoic acid, aminotriazole and d-penicillamine prior to acute EtOH administration effectively blocks the PKA-enhanced response to EtOH in the brain. These results strongly support the hypothesis of a selective release of acetaldehyde-dependent Ca(2+) as the mechanism involved in the neurobehavioral effects elicited by EtOH.

  1. Dissolution, speciation, and reaction of acetaldehyde in cold sulfuric acid

    NASA Astrophysics Data System (ADS)

    Michelsen, Rebecca R.; Ashbourn, Samantha F. M.; Iraci, Laura T.

    2004-12-01

    The uptake of gas-phase acetaldehyde [CH3CHO, ethanal] by aqueous sulfuric acid solutions was studied under upper tropospheric/lower stratospheric (UT/LS) conditions. The solubility of acetaldehyde was found to be low, between 2 × 102 M atm-1 and 1.5 × 105 M atm-1 under the ranges of temperature (211-241 K) and acid composition (39-76 weight percent, wt%, H2SO4) studied. Under most conditions, acetaldehyde showed simple solubility behavior when exposed to sulfuric acid. Under moderately acidic conditions (usually 47 wt% H2SO4), evidence of reaction was observed. Enhancement of uptake at long times was occasionally detected in conjunction with reaction. The source of these behaviors and the effect of acetaldehyde speciation on solubility are discussed. Implications for the uptake of oxygenated organic compounds by tropospheric aerosols are considered.

  2. Eclipsed Acetaldehyde as a Precursor for Producing Vinyl Alcohol

    PubMed Central

    Osman, Osman I.; Alyoubi, Abdulrahman O.; Elroby, Shabaan A. K.; Hilal, Rifaat H.; Aziz, Saadullah G.

    2012-01-01

    The MP2 and DFT/B3LYP methods at 6-311++G(d,p) and aug-cc-pdz basis sets have been used to probe the origin of relative stability preference for eclipsed acetaldehyde over its bisected counterpart. A relative energy stability range of 1.02 to 1.20 kcal/mol, in favor of the eclipsed conformer, was found and discussed. An NBO study at these chemistry levels complemented these findings and assigned the eclipsed acetaldehyde preference mainly to the vicinal antiperiplanar hyperconjugative interactions. The tautomeric interconversion between the more stable eclipsed acetaldehyde and vinyl alcohol has been achieved through a four-membered ring transition state (TS). The obtained barrier heights and relative stabilities of eclipsed acetaldehyde and the two conformers of vinyl alchol at these model chemistries have been estimated and discussed. PMID:23203130

  3. Atmospheric Vinyl Alcohol to Acetaldehyde Tautomerization Revisited.

    PubMed

    Peeters, Jozef; Nguyen, Vinh Son; Müller, Jean-François

    2015-10-15

    The atmospheric oxidation of vinyl alcohol (VA) produced by photoisomerization of acetaldehyde (AA) is thought to be a source of formic acid (FA). Nevertheless, a recent theoretical study predicted a high rate coefficient k1(298 K) of ≈10(-14) cm(3) molecule(-1) s(-1) for the FA-catalyzed tautomerization reaction 1 of VA back into AA, which suggests that FA buffers its own production from VA. However, the unusually high frequency factor implied by that study prompted us to reinvestigate reaction 1 . On the basis of a high-level ab initio potential energy profile, we first established that transition state theory is applicable, and derived a k1(298 K) of only ≈2 × 10(-20) cm(3) molecule(-1) s(-1), concluding that the reaction is negligible. Instead, we propose and rationalize another important VA sink: its uptake by aqueous aerosol and cloud droplets followed by fast liquid-phase tautomerization to AA; global modeling puts the average lifetime by this sink at a few hours, similar to oxidation by OH.

  4. Thallium acetate

    Integrated Risk Information System (IRIS)

    Jump to main content . Integrated Risk Information System Recent Additions | Contact Us Search : All EPA IRIS • You are here : EPA Home • Research • Environmental Assessment • IRIS • IRIS Summaries Redirect Page As of September 30 , 2009 , the assessment summary for Thallium acetate is included in t

  5. Phenylmercuric acetate

    Integrated Risk Information System (IRIS)

    Phenylmercuric acetate ; CASRN 62 - 38 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinog

  6. Ammonium acetate

    Integrated Risk Information System (IRIS)

    Ammonium acetate ; CASRN 631 - 61 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  7. Vinyl acetate

    Integrated Risk Information System (IRIS)

    Vinyl acetate ; CASRN 108 - 05 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  8. 27 CFR 21.56 - Formula No. 29.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... gallon of 100 percent acetaldehyde or 5 gallons of an alcohol solution of acetaldehyde containing not less than 20 percent acetaldehyde, or 1 gallon of ethyl acetate having an ester content of 100 percent... pounds if solid, or 1 gallon if liquid, of any chemical. When material other than acetaldehyde or...

  9. Origin of acetaldehyde during milk fermentation using (13)C-labeled precursors.

    PubMed

    Ott, A; Germond, J E; Chaintreau, A

    2000-05-01

    Acetaldehyde formation by Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus during fermentation of cow's milk was investigated using (13)C-labeled glucose, L-threonine, and pyruvate with a recent static-and-trapped-headspace technique that does not require derivatization of acetaldehyde prior to gas chromatography-mass spectrometry. Over 90% and almost 100% of acetaldehyde originated from glucose during fermentation by L. delbrueckii subsp. bulgaricus and S. thermophilus, respectively, taking into account both singly and doubly labeled acetaldehyde. As both microorganisms showed threonine aldolase activity and formed labeled acetaldehyde from (13)C-labeled threonine during the fermentation of milk, this amino acid should also contribute to the acetaldehyde produced.

  10. 27 CFR 21.56 - Formula No. 29.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... intermediates. 551.Acetaldehyde. 552.Other aldehydes. 561.Ethyl ether. 562.Other ethers. 571.Ethylene dibromide... less than 20 percent acetaldehyde, or 1 gallon of ethyl acetate having an ester content of 100 percent... pounds if solid, or 1 gallon if liquid, of any chemical. When material other than acetaldehyde or...

  11. Measuring δ(13)C values of atmospheric acetaldehyde via sodium bisulfite adsorption and cysteamine derivatisation.

    PubMed

    Guo, Songjun; Chen, Mei; Wen, Sheng; Sheng, Guoying; Fu, Jiamo

    2012-01-01

    δ(13)C values of gaseous acetaldehyde were measured by gas chromatograph-combustion-isotope ratio mass spectrometer (GC-C-IRMS) via sodium bisulfite (NaHSO(3)) adsorption and cysteamine derivatisation. Gaseous acetaldehyde was collected via NaHSO(3)-coated Sep-Pak(®) silica gel cartridge, then derivatised with cysteamine, and then the δ(13)C value of the acetaldehyde-cysteamine derivative was measured by GC-C-IRMS. Using two acetaldehydes with different δ(13)C values, derivatisation experiments were carried out to cover concentrations between 0.009×10(-3) and 1.96×10(-3) mg·l(-1)) of atmospheric acetaldehyde, and then δ(13)C fractionation was evaluated in the derivatisation of acetaldehyde based on stoichiometric mass balance after measuring the δ(13)C values of acetaldehyde, cysteamine and the acetaldehyde-cysteamine derivative. δ(13)C measurements in the derivertisation process showed good reproducibility (<0.5 ‰) for gaseous acetaldehyde. The differences between predicted and measured δ(13)C values were 0.04-0.31 ‰ for acetaldehyde-cysteamine derivative, indicating that the derivatisation introduces no isotope fractionation for gaseous acetaldehyde, and obtained δ(13)C values of acetaldehyde in ambient air at the two sites were distinct (-34.00 ‰ at an urban site versus-31.00 ‰ at a forest site), implying potential application of the method to study atmospheric acetaldehyde.

  12. Parameters Affecting Ethyl Ester Production by Saccharomyces cerevisiae during Fermentation▿

    PubMed Central

    Saerens, S. M. G.; Delvaux, F.; Verstrepen, K. J.; Van Dijck, P.; Thevelein, J. M.; Delvaux, F. R.

    2008-01-01

    Volatile esters are responsible for the fruity character of fermented beverages and thus constitute a vital group of aromatic compounds in beer and wine. Many fermentation parameters are known to affect volatile ester production. In order to obtain insight into the production of ethyl esters during fermentation, we investigated the influence of several fermentation variables. A higher level of unsaturated fatty acids in the fermentation medium resulted in a general decrease in ethyl ester production. On the other hand, a higher fermentation temperature resulted in greater ethyl octanoate and decanoate production, while a higher carbon or nitrogen content of the fermentation medium resulted in only moderate changes in ethyl ester production. Analysis of the expression of the ethyl ester biosynthesis genes EEB1 and EHT1 after addition of medium-chain fatty acid precursors suggested that the expression level is not the limiting factor for ethyl ester production, as opposed to acetate ester production. Together with the previous demonstration that provision of medium-chain fatty acids, which are the substrates for ethyl ester formation, to the fermentation medium causes a strong increase in the formation of the corresponding ethyl esters, this result further supports the hypothesis that precursor availability has an important role in ethyl ester production. We concluded that, at least in our fermentation conditions and with our yeast strain, the fatty acid precursor level rather than the activity of the biosynthetic enzymes is the major limiting factor for ethyl ester production. The expression level and activity of the fatty acid biosynthetic enzymes therefore appear to be prime targets for flavor modification by alteration of process parameters or through strain selection. PMID:17993562

  13. Phototautomerization of Acetaldehyde to Vinyl Alcohol: A Primary Process in UV-Irradiated Acetaldehyde from 295 to 335 nm.

    PubMed

    Clubb, Alexander E; Jordan, Meredith J T; Kable, S H; Osborn, David L

    2012-12-06

    The concentrations of organic acids, key species in the formation of secondary organic aerosols, are underestimated by atmospheric chemistry models by a factor of ∼2. Vinyl alcohol (VA, CH2═CHOH, ethenol) has been suggested as a precursor to formic acid, but sufficient tropospheric sources of VA have not been identified. Here, we show that VA is formed upon irradiation of neat acetaldehyde (CH3CHO) in the actinic ultraviolet region, between 295 and 330 nm. Besides the well-known photochemical products CO and CH4, we infer up to a 15% quantum yield of VA at 20 Torr acetaldehyde pressure and a photolysis wavelength of 330 nm. The experiments confirm a recent model predicting phototautomerization of acetaldehyde to VA and imply that photolysis of small aldehydes and ketones could provide tropospheric sources of enols sufficient to impact organic acid budgets. We also report absolute infrared absorption cross sections of VA.

  14. BIOGENIC SOURCES FOR FORMALDEHYDE AND ACETALDEHYDE DURING SUMMER MONTHS

    EPA Science Inventory

    Photochemical modeling estimated contributions to ambient concentrations of formaldehyde and acetaldehyde from biogenic emissions over the continental United States during January 2001 (Eos Trans. AGU, 83(47), Fall Meet. Suppl., Abstract A52B-0117). Results showed that maximum co...

  15. Malondialdehyde-acetaldehyde adducts decrease bronchial epithelial wound repair.

    PubMed

    Wyatt, Todd A; Kharbanda, Kusum K; Tuma, Dean J; Sisson, Joseph H; Spurzem, John R

    2005-05-01

    Most people who abuse alcohol are cigarette smokers. Previously, we have shown that malondialdehyde, an inflammation product of lipid peroxidation, and acetaldehyde, a component of both ethanol metabolism and cigarette smoke, form protein adducts that stimulate protein kinase C (PKC) activation in bronchial epithelial cells. We have also shown that PKC can regulate bronchial epithelial cell wound repair. We hypothesize that bovine serum albumin adducted with malondialdehyde and acetaldehyde (BSA-MAA) decreases bronchial epithelial cell wound repair via binding to scavenger receptors on bronchial epithelial cells. To test this, confluent monolayers of bovine bronchial epithelial cells were grown in serum-free media prior to wounding the cells. Bronchial epithelial cell wound closure was inhibited in a dose-dependent manner (up to 60%) in the presence of BSA-MAA than in media treated cells (Laboratory of Human Carcinogenesis [LHC]-9-Roswell Park Memorial Institute [RPMI]). The specific scavenger receptor ligand, fucoidan, also stimulated PKC activation and decreased wound repair. Pretreatment with fucoidan blocked malondialdehyde-acetaldehyde binding to bronchial epithelial cells. When bronchial epithelial cells were preincubated with a PKC alpha inhibitor, Gö 6976, the inhibition of wound closure by fucoidan and BSA-MAA was blocked. Western blot demonstrated the presence of several scavenger receptors on bronchial epithelial cell membranes, including SRA, SRBI, SRBII, and CD36. Scavenger receptor-mediated activation of PKC alpha may function to reduce wound healing under conditions of alcohol and cigarette smoke exposure where malondialdehyde-acetaldehyde adducts may be present.

  16. Chlorimuron-ethyl

    Integrated Risk Information System (IRIS)

    Chlorimuron - ethyl ; CASRN 90982 - 32 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinog

  17. Methyl ethyl ketone (MEK)

    Integrated Risk Information System (IRIS)

    EPA 635 / R - 03 / 009 www.epa.gov / iris TOXICOLOGICAL REVIEW OF METHYL ETHYL KETONE ( CAS No . 78 - 93 - 3 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) September 2003 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has been r

  18. Ethyl alcohol production

    SciTech Connect

    Hofman, V.; Hauck, D.

    1980-11-01

    Recent price increases and temporary shortages of petroleum products have caused farmers to search for alternate sources of fuel. The production of ethyl alcohol from grain is described and the processes involved include saccharification, fermentation and distillation. The resulting stillage has potential as a livestock feed.

  19. Maximum exposure levels for xylene, formaldehyde and acetaldehyde in cars.

    PubMed

    Schupp, Thomas; Bolt, Hermann M; Hengstler, Jan G

    2005-01-31

    Although millions of individuals are exposed to emissions from articles inside cars, relatively little has been published about possible adverse health effects and about exposure levels that can be considered safe or "acceptable". Xylene, formaldehyde and acetaldehyde represent typical examples of relevant volatile organic substances (VOC) released from articles inside cars. Recently, a concept for derivation of maximum exposure levels for volatile organic substances in cars has been published. In the present study we applied this concept to derive maximum exposure levels for xylene, formaldehyde and acetaldehyde and compared the resulting concentrations to exposure levels usually found inside of cars. We derived Short Term Exposure Levels Inside Automotive Vehicles (STELIA) of 29, 0.125 and 15.3 mg/m(3) for xylene, formaldehyde and acetaldehyde, respectively. These STELIAs should not be exceeded during short-term exposures, for instance when starting a car that had been heated up during parking in the sun. Exposure Levels Inside Automotive Vehicles (ELIA, chronic) for chronic exposure to non-genotoxic substances were 8.8, 0.125 and 0.635 mg/m(3) for systemic as well as 17.6, 0.125 and 1.7 mg/m(3) for local exposure to xylene, formaldehyde and acetaldehyde, respectively. Although, it is known that exposure limits for carcinogenic substances should be treated with caution, encouraged by the well documented threshold mechanisms we nevertheless derived ELIAs for Carcinogenic and Mutagenic Substances (ELIA, cm) resulting in 0.125 and 0.635 mg/m(3) for formaldehyde and acetaldehyde. If these ELIAs are matched against average concentrations of xylene, formaldehyde and acetaldehyde found in cars at 23 degrees C (1.22, 0.048 and 0.042 mg/m(3)), there is no reason for concern. With respect to STELIAs and extrapolated concentrations at 65 degrees C (14.7, 1.47 and 1.68 mg/m(3), for xylene, formaldehyde and acetaldehyde, respectively), however, a reduction of the

  20. Direct measurement of Criegee intermediate (CH2OO) reactions with acetone, acetaldehyde, and hexafluoroacetone.

    PubMed

    Taatjes, Craig A; Welz, Oliver; Eskola, Arkke J; Savee, John D; Osborn, David L; Lee, Edmond P F; Dyke, John M; Mok, Daniel W K; Shallcross, Dudley E; Percival, Carl J

    2012-08-14

    Criegee biradicals, i.e., carbonyl oxides, are critical intermediates in ozonolysis and have been implicated in autoignition chemistry and other hydrocarbon oxidation systems, but until recently the direct measurement of their gas-phase kinetics has not been feasible. Indirect determinations of Criegee intermediate kinetics often rely on the introduction of a scavenger molecule into an ozonolysis system and analysis of the effects of the scavenger on yields of products associated with Criegee intermediate reactions. Carbonyl species, in particular hexafluoroacetone (CF(3)COCF(3)), have often been used as scavengers. In this work, the reactions of the simplest Criegee intermediate, CH(2)OO (formaldehyde oxide), with three carbonyl species have been measured by laser photolysis/tunable synchrotron photoionization mass spectrometry. Diiodomethane photolysis produces CH(2)I radicals, which react with O(2) to yield CH(2)OO + I. The formaldehyde oxide is reacted with a large excess of a carbonyl reactant and both the disappearance of CH(2)OO and the formation of reaction products are monitored. The rate coefficient for CH(2)OO + hexafluoroacetone is k(1) = (3.0 ± 0.3) × 10(-11) cm(3) molecule(-1) s(-1), supporting the use of hexafluoroacetone as a Criegee-intermediate scavenger. The reactions with acetaldehyde, k(2) = (9.5 ± 0.7) × 10(-13) cm(3) molecule(-1) s(-1), and with acetone, k(3) = (2.3 ± 0.3) × 10(-13) cm(3) molecule(-1) s(-1), are substantially slower. Secondary ozonides and products of ozonide isomerization are observed from the reactions of CH(2)OO with acetone and hexafluoroacetone. Their photoionization spectra are interpreted with the aid of quantum-chemical and Franck-Condon-factor calculations. No secondary ozonide was observable in the reaction of CH(2)OO with acetaldehyde, but acetic acid was identified as a product under the conditions used (4 Torr and 293 K).

  1. Acetate as an active metabolite of ethanol: studies of locomotion, loss of righting reflex, and anxiety in rodents.

    PubMed

    Pardo, Marta; Betz, Adrienne J; San Miguel, Noemí; López-Cruz, Laura; Salamone, John D; Correa, Mercè

    2013-01-01

    IT HAS BEEN POSTULATED THAT A NUMBER OF THE CENTRAL EFFECTS OF ETHANOL ARE MEDIATED VIA ETHANOL METABOLITES: acetaldehyde and acetate. Ethanol is known to produce a large variety of behavioral actions such anxiolysis, narcosis, and modulation of locomotion. Acetaldehyde contributes to some of those effects although the contribution of acetate is less known. In the present studies, rats and mice were used to assess the acute and chronic effects of acetate after central or peripheral administration. Male Sprague-Dawley rats were used for the comparison between central (intraventricular, ICV) and peripheral (intraperitoneal, IP) administration of acute doses of acetate on locomotion. CD1 male mice were used to study acute IP effects of acetate on locomotion, and also the effects of chronic oral consumption of acetate (0, 500, or 1000 mg/l, during 7, 15, 30, or 60 days) on ethanol- (1.0, 2.0, 4.0, or 4.5 g/kg, IP) induced locomotion, anxiolysis, and loss of righting reflex (LORR). In rats, ICV acetate (0.7-2.8 μmoles) reduced spontaneous locomotion at doses that, in the case of ethanol and acetaldehyde, had previously been shown to stimulate locomotion. Peripheral acute administration of acetate also suppressed locomotion in rats (25-100 mg/kg), but not in mice. In addition, although chronic administration of acetate during 15 days did not have an effect on spontaneous locomotion in an open field, it blocked ethanol-induced locomotion. However, ethanol-induced anxiolysis was not affected by chronic administration of acetate. Chronic consumption of acetate (up to 60 days) did not have an effect on latency to, or duration of LORR induced by ethanol, but significantly increased the number of mice that did not achieve LORR. The present work provides new evidence supporting the hypothesis that acetate should be considered a centrally-active metabolite of ethanol that contributes to some behavioral effects of this alcohol, such as motor suppression.

  2. Modification of the acetaldehyde concentration during alcoholic fermentation and effects on fermentation kinetics.

    PubMed

    Roustan, Jean Louis; Sablayrolles, Jean-Marie

    2002-01-01

    We studied the kinetic effects of increasing the residual acetaldehyde concentration during alcoholic fermentation, especially during the stationary phase. We added this compound via pulse or continuous injections. The yeast response depended on the amount of acetaldehyde added: high concentrations inhibited fermentation while low concentrations led to stimulation. When regular small additions were made, up to 100 mM acetaldehyde could be added and this caused a very significant drop in the fermentation duration. We also modulated the acetaldehyde concentration by modifying the alcohol dehydrogenase-catalyzed reaction. Two approaches were tested (i) adding aldehydes (propanal and furfural) that competitively inhibited the reduction of acetaldehyde and (ii) adding electron acceptors that reduced the quantity of NADH available. Several possible mechanisms responsible for (i) the impact of acetaldehyde on fermentation kinetics and (ii) the modulation of the residual acetaldehyde concentration are discussed.

  3. Ethyl acetate extract from Asparagus cochinchinensis exerts anti‑inflammatory effects in LPS‑stimulated RAW264.7 macrophage cells by regulating COX‑2/iNOS, inflammatory cytokine expression, MAP kinase pathways, the cell cycle and anti-oxidant activity.

    PubMed

    Lee, Hyun Ah; Koh, Eun Kyoung; Sung, Ji Eun; Kim, Ji Eun; Song, Sung Hwa; Kim, Dong Seob; Son, Hong Joo; Lee, Chung Yeoul; Lee, Hee Seob; Bae, Chang Joon; Hwang, Dae Youn

    2017-04-01

    Asparagus cochinchinesis (A. cochinchinesis) is a medicine traditionally used to treat fever, cough, kidney disease, breast cancer, inflammatory disease and brain disease in northeast Asian countries. Although numerous studies of the anti‑inflammatory effects of A. cochinchinesis have been conducted, the underlying mechanisms of such effects in macrophages remain to be demonstrated. To investigate the mechanism of suppressive effects on the inflammatory response in macrophages, alterations of the nitric oxide (NO) level, the cell viability, inducible nitric oxide synthase (iNOS) and cyclooxygenase‑2 (COX‑2) expression levels, inflammatory cytokine expression, the mitogen-activated protein kinase (MAPK) signaling pathway, cell cycle arrest and reactive oxygen species (ROS) levels were measured in lipopolysaccharide (LPS)-activated RAW264.7 cells following treatment with ethyl acetate extract from A. cochinchinesis root (EaEAC). RAW264.7 cells pretreated two different concentrations of EaEAC prior to LPS treatment exhibited no significant toxicity. The concentration of NO was significantly decreased in the EaEAC + LPS treated group compared with the vehicle + LPS treated group. A similar decrease in mRNA transcript level of COX‑2, iNOS, pro-inflammatory cytokines [tumor necrosis factor‑α and interleukin (IL)‑1β] and anti‑inflammatory cytokines (IL‑6 and IL‑10) was detected in the EaEAC + LPS treated group compared with the vehicle + LPS treated group, although the decrease rate varied. Enhancement of the phosphorylation of MAPK family members following LPS treatment was partially rescued in the EaEAC pretreated group, and the cell cycle was arrested at the G2/M phase. Furthermore, the EaEAC pretreated group exhibited a reduced level of ROS generation compared with the vehicle + LPS treated group. Taken together, these results suggest that EaEAC suppresses inflammatory responses through inhibition of NO production, COX‑2 expression

  4. GC-MS and GC-MS/MS measurement of ibuprofen in 10-μL aliquots of human plasma and mice serum using [α-methylo-(2)H3]ibuprofen after ethyl acetate extraction and pentafluorobenzyl bromide derivatization: Discovery of a collision energy-dependent H/D isotope effect and pharmacokinetic application to inhaled ibuprofen-arginine in mice.

    PubMed

    Tsikas, Dimitrios; Kayacelebi, Arslan Arinc; Hanff, Erik; Mitschke, Anja; Beckmann, Bibiana; Tillmann, Hanns-Christian; Gutzki, Frank-Mathias; Müller, Meike; Bernasconi, Corrado

    2017-02-01

    GC-MS and GC-MS/MS methods were developed and validated for the quantitative determination of ibuprofen (d0-ibuprofen), a non-steroidal anti-inflammatory drug (NSAID), in human plasma using α-methyl-(2)H3-4-(isobutyl)phenylacetic acid (d3-ibuprofen) as internal standard. Plasma (10μL) was diluted with acetate buffer (80μL, 1M, pH 4.9) and d0- and d3-ibuprofen were extracted with ethyl acetate (2×500μL). After solvent evaporation d0- and d3-ibuprofen were derivatized in anhydrous acetonitrile by using pentafluorobenzyl (PFB) bromide and N,N-diisopropylethylamine as the base catalyst. Under electron-capture negative-ion chemical ionization (ECNICI), the PFB esters of d0- and d3-ibuprofen readily ionize to form their carboxylate anions [M-PFB](-) at m/z 205 and m/z 208, respectively. Collision-induced dissociation (CID) of m/z 205 and m/z 208 resulted in the formation of the anions at m/z 161 and m/z 164, respectively, due to neutral loss of CO2 (44 Da). A collision energy-dependent H/D isotope effect was observed, which involves abstraction/elimination of H(-) from d0-ibuprofen and D(-) from d3-ibuprofen and is minimum at a CE value of 5eV. Quantitative GC-MS determination was performed by selected-ion monitoring of m/z 205 and m/z 208. Quantitative GC-MS/MS determination was performed by selected-reaction monitoring of the mass transitions m/z 205 to m/z 161 for d0-ibuprofen and m/z 208 to m/z 164 for d3-ibuprofen. In a therapeutically relevant concentration range (0-1000μM) d0-ibuprofen added to human plasma was determined with accuracy (recovery, %) and imprecision (relative standard deviation, %) ranging between 93.7 and 110%, and between 0.8 and 4.9%, respectively. GC-MS (y) and GC-MS/MS (x) yielded almost identical results (y=4.00+0.988x, r(2)=0.9991). In incubation mixtures of arachidonic acid (10μM), d3-ibuprofen (10μM) or d0-ibuprofen (10μM) with ovine cyclooxygenase (COX) isoforms 1 and 2, the concentration of d3-ibuprofen and d0-ibuprofen did not

  5. Ethyl N-phenyloxamate.

    PubMed

    García-Báez E, Efrén V; Gómez-Castro, Carlos Z; Höpfl, Herbert; Martínez-Martínez, Francisco J; Padilla-Martínez, Itzia I

    2003-10-01

    The oxamate group in the title compound, C(10)H(11)NO(3), is almost coplanar with the phenyl ring because of intramolecular hydrogen-bonding interactions, and the structure can be described as an anilide single bonded to an ethyl carboxylate group. The supramolecular structure is achieved through intermolecular hard N-H...O and soft C-H...X (X = O and phenyl) hydrogen-bonding interactions.

  6. Relationship between acetaldehyde concentration in mouth air and tongue coating volume

    PubMed Central

    YOKOI, Aya; MARUYAMA, Takayuki; YAMANAKA, Reiko; EKUNI, Daisuke; TOMOFUJI, Takaaki; KASHIWAZAKI, Haruhiko; YAMAZAKI, Yutaka; MORITA, Manabu

    2015-01-01

    Objective Acetaldehyde is the first metabolite of ethanol and is produced in the epithelium by mucosal ALDH, while higher levels are derived from microbial oxidation of ethanol by oral microflora such as Candida species. However, it is uncertain whether acetaldehyde concentration in human breath is related to oral condition or local production of acetaldehyde by oral microflora. The aim of this pilot study was to investigate the relationship between physiological acetaldehyde concentration and oral condition in healthy volunteers. Material and Methods Sixty-five volunteers (51 males and 14 females, aged from 20 to 87 years old) participated in the present study. Acetaldehyde concentration in mouth air was measured using a portable monitor. Oral examination, detection of oral Candida species and assessment of alcohol sensitivity were performed. Results Acetaldehyde concentration [median (25%, 75%)] in mouth air was 170.7 (73.5, 306.3) ppb. Acetaldehyde concentration in participants with a tongue coating status score of 3 was significantly higher than in those with a score of 1 (p<0.017). After removing tongue coating, acetaldehyde concentration decreased significantly (p<0.05). Acetaldehyde concentration was not correlated with other clinical parameters, presence of Candida species, smoking status or alcohol sensitivity. Conclusion Physiological acetaldehyde concentration in mouth air was associated with tongue coating volume. PMID:25760268

  7. Formaldehyde and acetaldehyde emissions from residential wood combustion in Portugal

    NASA Astrophysics Data System (ADS)

    Cerqueira, Mário; Gomes, Luís; Tarelho, Luís; Pio, Casimiro

    2013-06-01

    A series of experiments were conducted to characterize formaldehyde and acetaldehyde emissions from residential combustion of common wood species growing in Portugal. Five types of wood were investigated: maritime pine (Pinus pinaster), eucalyptus (Eucalyptus globulus), cork oak (Quercus suber), holm oak (Quercus rotundifolia) and pyrenean oak (Quercus pyrenaica). Laboratory experiments were performed with a typical wood stove used for domestic heating in Portugal and operating under realistic home conditions. Aldehydes were sampled from diluted combustion flue gas using silica cartridges coated with 2,4-dinitrophenylhydrazine and analyzed by high performance liquid chromatography with diode array detection. The average formaldehyde to acetaldehyde concentration ratio (molar basis) in the stove flue gas was in the range of 2.1-2.9. Among the tested wood types, pyrenean oak produced the highest emissions for both formaldehyde and acetaldehyde: 1772 ± 649 and 1110 ± 454 mg kg-1 biomass burned (dry basis), respectively. By contrast, maritime pine produced the lowest emissions: 653 ± 151 and 371 ± 162 mg kg-1 biomass (dry basis) burned, respectively. Aldehydes were sampled separately during distinct periods of the holm oak wood combustion cycles. Significant variations in the flue gas concentrations were found, with higher values measured during the devolatilization stage than in the flaming and smoldering stages.

  8. The exchange of acetaldehyde between plants and the atmosphere: Stable carbon isotope and flux measurements

    NASA Astrophysics Data System (ADS)

    Jardine, Kolby Jeremiah

    The exchange of acetaldehyde between plant canopies and the atmosphere may significantly influence regional atmospheric chemistry and plant metabolism. While plants are known to both produce and consume acetaldehyde, the exchange of this compound with forested ecosystems is complicated by physical, biological, and chemical processes that range from being poorly understood to completely unknown. This precludes a quantitative understanding of acetaldehyde exchange rates between the atmosphere and the biosphere. In this study, the processes controlling the exchange of acetaldehyde with plant canopies was investigated using concentration, flux, and natural abundance 13C measurements of gas phase acetaldehyde from individual plants, soils, and entire ecosystems. Although previously only considered important in anoxic tissues, it was discovered that acetaldehyde is produced and consumed in leaves through ethanolic fermentation coupled to the pyruvate dehydrogenase bypass system under normal aerobic conditions. These coupled pathways determine the acetaldehyde compensation point, a major factor controlling its exchange with the atmosphere. Carbon isotope analysis suggests a new pathway for acetaldehyde production from plants under stress involving the peroxidation of membrane fatty acids. This pathway may be a major source of acetaldehyde to the atmosphere from plants under biotic and abiotic stresses. Plant stomata were found to be the dominant pathway for the exchange of acetaldehyde with the atmosphere with stomatal conductance influencing both emission and uptake fluxes. In addition, increasing temperature and solar radiation was found to increase the compensation point by increasing the rates of acetaldehyde production relative to consumption. Under ambient conditions, bare soil was neutral to the exchange of acetaldehyde while senescing and decaying leaves were found to be strong source of acetaldehyde to the atmosphere due to increased decomposition processes and

  9. Exogenous acetaldehyde as a tool for modulating wine color and astringency during fermentation.

    PubMed

    Sheridan, Marlena K; Elias, Ryan J

    2015-06-15

    Wine tannins undergo modifications during fermentation and storage that can decrease their perceived astringency and increase color stability. Acetaldehyde acts as a bridging compound to form modified tannins and polymeric pigments that are less likely to form tannin-protein complexes than unmodified tannins. Red wines are often treated with oxygen in order to yield acetaldehyde, however this approach can lead to unintended consequences due to the generation of reactive oxygen species. The present study employs exogenous acetaldehyde at relatively low and high treatment concentrations during fermentation to encourage tannin modification without promoting potentially deleterious oxidation reactions. The high acetaldehyde treatment significantly increased polymeric pigments in the wine without increasing concentrations of free and sulfite-bound acetaldehyde. Protein-tannin precipitation was also significantly decreased with the addition of exogenous acetaldehyde. These results indicate a possible treatment of wines early in their production to increase color stability and lower astringency of finished wines.

  10. Acetone and Acetaldehyde Exchange Above a Managed Temperate Mountain Grassland

    NASA Astrophysics Data System (ADS)

    Hörtnagl, L. J.; Bamberger, I.; Graus, M.; Ruuskanen, T.; Schnitzhofer, R.; Hansel, A.; Wohlfahrt, G.

    2011-12-01

    The exchange of acetone and acetaldehyde was measured above an intensively managed hay meadow in the Stubai Valley (Tyrol, Austria) during the growing seasons in 2008 and 2009. Half-hourly fluxes of both compounds were calculated by means of the virtual disjunct eddy covariance (vDEC) method by combining the 3-dimensional wind data from a sonic anemometer with the compound specific volume mixing ratios quantified with a proton-transfer-reaction mass spectrometer (PTR-MS). The cutting of the meadow resulted in the largest perturbation of the VOC exchange rates. Peak emissions for both VOC species were observed during and right after the cutting of the meadow, with rates of up to 12.1 and 10.1 nmol m-2 s-1 for acetaldehyde and acetone, respectively, reflecting the drying of the wounded plant material. During certain time periods, undisturbed by management events, both compounds exhibited a clear diurnal cycle. Emission rates of up to 3.7 nmol m-2 s-1 for acetaldehyde and 3.2 nmol m-2 s-1 for acetone were measured in October 2008, while a uptake of both compounds with rates of up to 1.8 and 2.1 nmol m-2 s-1, respectively, could be observed in May 2009, when also clear compensation points of 0.3 ppb for acetaldehyde and 1.0 ppb for acetone were observed. In an effort to explore the controls on observed exchange patterns, a simple and multiple linear regression analysis was conducted. A clear interconnection between VOC concentrations and VOC exchange could be seen only in May 2009, when concentration values alone explained 30.6% and 11.7% of the acetaldehyde and acetone flux variance, respectively. However, when trying to predict the observed exchange patterns of both VOC species in a multiple linear regression based on supporting environmental measurements - including air and soil temperature, soil water content and PAR among others - the analysis yielded unsatisfactory results, accounting for 10% and 4% of the observed acetaldehyde and acetone flux variance over both

  11. Efficient expression of codon-adapted human acetaldehyde dehydrogenase 2 cDNA with 6xHis tag in Pichia pastoris.

    PubMed

    Zhao, YuFeng; Lei, MingKe; Wu, YuanXin; Zhang, ZiSheng; Wang, CunWen

    2009-10-01

    Human mitochondrial acetaldehyde dehydrogenase 2 (ALDH2) catalyzes the oxidation of acetaldehyde to acetic acid. Therefore, ALDH2 has therapeutic potential in detoxification of acetaldehyde. Furthermore, ALDH2 catalyzes nitroglycerin to nitrate and 1, 2-glyceryldinitrate during therapy for angina pectoris, myocardial infarction, and heart failure. Large quantities of ALDH2 will be needed for potential clinical practice. In this study, Pichia pastoris was used as a platform for expression of human ALDH2. Based on the ALDH2*1 cDNA sequence, we designed ALDH2 cDNA by choosing the P. pastoris preferred codons and by decreasing the G + C content level. The sequence was synthesized using the overlap extension PCR method. The cDNA and 6xHis tags were subcloned into the plasmid pPIC9K. The recombinant protein was expressed in P. pastoris GS115 and purified using Ni(2+)-Sepharose affinity chromatography. The amount of secreted protein in the culture was 80 mg/L in shake-flask cultivation and 260 mg/L in high-density bioreactor fermentation. Secreted ALDH2 was easily purified from the culture supernatant by using Ni(2+)-Sepharose affinity chromatography. After purification of the fermentation supernatant, the enzyme had a specific activity of 1.2 U/mg protein. The yield was about 16 mg/L in a shake flask culture of P. pastoris GS115 which contained the original human ALDH2*1 cDNA.

  12. Involvement of dopamine D2 receptors in addictive-like behaviour for acetaldehyde.

    PubMed

    Brancato, Anna; Plescia, Fulvio; Marino, Rosa Anna Maria; Maniaci, Giuseppe; Navarra, Michele; Cannizzaro, Carla

    2014-01-01

    Acetaldehyde, the first metabolite of ethanol, is active in the central nervous system, where it exerts motivational properties. Acetaldehyde is able to induce drinking behaviour in operant-conflict paradigms that resemble the core features of the addictive phenotype: drug-intake acquisition and maintenance, drug-seeking, relapse and drug use despite negative consequences. Since acetaldehyde directly stimulates dopamine neuronal firing in the mesolimbic system, the aim of this study was the investigation of dopamine D2-receptors' role in the onset of the operant drinking behaviour for acetaldehyde in different functional stages, by the administration of two different D2-receptor agonists, quinpirole and ropinirole. Our results show that acetaldehyde was able to induce and maintain a drug-taking behaviour, displaying an escalation during training, and a reinstatement behaviour after 1-week forced abstinence. Acetaldehyde operant drinking behaviour involved D2-receptor signalling: in particular, quinpirole administration at 0.03 mg/kg, induced a significant decrease in the number of lever presses both in extinction and in relapse. Ropinirole, administered at 0.03 mg/kg during extinction, did not produce any modification but, when administered during abstinence, induced a strong decrease in acetaldehyde intake in the following relapse session. Taken together, our data suggest that acetaldehyde exerts its own motivational properties, involving the dopaminergic transmission: indeed, activation of pre-synaptic D2-receptors by quinpirole, during extinction and relapse, negatively affects operant behaviour for acetaldehyde, likely decreasing acetaldehyde-induced dopamine release. The activation of post-synaptic D2-receptors by ropinirole, during abstinence, decreases the motivation to the consecutive reinstatement of acetaldehyde drinking behaviour, likely counteracting the reduction in the dopaminergic tone typical of withdrawal. These data further strengthen the evidence

  13. Plant physiological and environmental controls over the exchange of acetaldehyde between forest canopies and the atmosphere

    NASA Astrophysics Data System (ADS)

    Jardine, K.; Harley, P.; Karl, T.; Guenther, A.; Lerdau, M.; Mak, J. E.

    2008-06-01

    We quantified fine scale sources and sinks of gas phase acetaldehyde in two forested ecosystems in the US. During the daytime, the upper canopy behaved as a net source while at lower heights, reduced emission rates or net uptake were observed. At night, uptake generally predominated thoughout the canopies. Net ecosystem emission rates were inversely related to foliar density which influenced the extinction of light and the acetaldehyde compensation point in the canopy. This is supported by branch level studies revealing much higher compensation points in the light than in the dark for poplar (Populus deltoides) and holly oak (Quercus ilex) implying a higher light/temperature sensitivity for acetaldehyde production relative to consumption. The view of stomata as the major pathway for acetaldehyde exchange is supported by strong linear correlations between branch transpiration rates and acetaldehyde exchange velocities for both species. In addition, natural abundance carbon isotope analysis of gas-phase acetaldehyde during poplar branch fumigation experiments revealed a significant kinetic isotope effect of 5.1±0.3‰, associated with the uptake of acetaldehyde. Similar experiments with dry dead poplar leaves showed no fractionation or uptake of acetaldehyde, confirming that this is only a property of living leaves. We suggest that acetaldehyde belongs to a potentially large list of plant metabolites where stomatal conductance can exert long term control over both emission and uptake rates due to the presence of both source(s) and sink(s) within the leaf which strongly buffer large changes in concentrations in the substomatal airspace due to changes in stomatal conductance. We conclude that the exchange of acetaldehyde between plant canopies and the atmosphere is fundamentally controlled by ambient acetaldehyde concentrations, stomatal conductance, and the acetaldehyde compensation point.

  14. Acetaldehyde kinetics of enological yeast during alcoholic fermentation in grape must.

    PubMed

    Li, Erhu; Mira de Orduña, Ramón

    2017-02-01

    Acetaldehyde strongly binds to the wine preservative SO2 and, on average, causes 50-70 mg l(-1) of bound SO2 in red and white wines, respectively. Therefore, a reduction of bound and total SO2 concentrations necessitates knowledge of the factors that affect final acetaldehyde concentrations in wines. This study provides a comprehensive analysis of the acetaldehyde production and degradation kinetics of 26 yeast strains of oenological relevance during alcoholic fermentation in must under controlled anaerobic conditions. Saccharomyces cerevisiae and non-Saccharomyces strains displayed similar metabolic kinetics where acetaldehyde reached an initial peak value at the beginning of fermentations followed by partial reutilization. Quantitatively, the range of values obtained for non-Saccharomyces strains greatly exceeded the variability among the S. cerevisiae strains tested. Non-Saccharomyces strains of the species C. vini, H. anomala, H. uvarum, and M. pulcherrima led to low acetaldehyde residues (<10 mg l(-1)), while C. stellata, Z. bailii, and, especially, a S. pombe strain led to large residues (24-48 mg l(-1)). Acetaldehyde residues in S. cerevisiae cultures were intermediate and less dispersed (14-34 mg l(-1)). Addition of SO2 to Chardonnay must triggered significant increases in acetaldehyde formation and residual acetaldehyde. On average, 0.33 mg of residual acetaldehyde remained per mg of SO2 added to must, corresponding to an increase of 0.47 mg of bound SO2 per mg of SO2 added. This research demonstrates that certain non-Saccharomyces strains display acetaldehyde kinetics that would be suitable to reduce residual acetaldehyde, and hence, bound-SO2 levels in grape wines. The acetaldehyde formation potential may be included as strain selection argument in view of reducing preservative SO2 concentrations.

  15. Acetaldehyde removal from indoor air through chemical absorption using L-cysteine.

    PubMed

    Yamashita, Kyoko; Noguchi, Miyuki; Mizukoshi, Atsushi; Yanagisawa, Yukio

    2010-09-01

    The irreversible removal of acetaldehyde from indoor air via a chemical reaction with amino acids was investigated. To compare effectiveness, five types of amino acid (glycine, l-lysine, l-methionine, l-cysteine, and l-cystine) were used as the reactants. First, acetaldehyde-laden air was introduced into aqueous solutions of each amino acid and the removal abilities were compared. Among the five amino acids, l-cysteine solution showed much higher removal efficiency, while the other amino acids solutions didn't show any significant differences from the removal efficiency of water used as a control. Next, as a test of the removal abilities of acetaldehyde by semi-solid l-cysteine, a gel containing l-cysteine solution was put in a fluororesin bag filled with acetaldehyde gas, and the change of acetaldehyde concentration was measured. The l-cysteine-containing gel removed 80% of the acetaldehyde in the air within 24 hours. The removal ability likely depended on the unique reaction whereby acetaldehyde and l-cysteine rapidly produce 2-methylthiazolidine-4-carboxylic acid. These results suggested that the reaction between acetaldehyde and l-cysteine has possibilities for irreversibly removing toxic acetaldehyde from indoor air.

  16. Organic reactions catalyzed by methylrhenium trioxide: Reactions of ethyl diazoacetate and organic azides

    SciTech Connect

    Zhu, Z.; Espenson, J.H. |

    1996-10-16

    Methylrhenium trioxide (CH{sub 3}ReO{sub 3} or MTO) catalyzes several classes of reactions of ethyl diazoacetate, EDA. It is the first high valent oxo complex for carbene transfer. Under mild conditions and in the absence of other substrates, EDA was converted to a 9:1 mixture of diethyl maleate and diethyl fumarate. In the presence of alcohols, {alpha}-alkoxy ethyl acetates were obtained in good yield. The yields dropped for the larger and more branched alcohols, the balance of material being diethyl maleate and fumarate. An electron-donating group in the para position of phenols favors the formation of {alpha}-phenoxy ethyl acetates. The use of EDA to form {alpha}-thio ethyl acetates and N-substituted glycine ethyl esters, on the other hand, is hardly affected by the size or structure of the parent thiol or amine, with all of these reactions proceeding in high yield. MTO-catalyzed cycloaddition reactions occur between EDA and aromatic imines, olefins, and carbonyl compounds. Three-membered ring products are formed: aziridines, cyclopropanes, and epoxides, respectively. The reactions favor the formation of trans products, and provide a convenient route for the preparation of aziridines. Intermediate carbenoid and nitrenoid species have been proposed. In the presence of an oxygen source such as an epoxide, ethyl diazoacetate and azibenzil are converted to an oxalic acid monoethyl ester and to benzil; at the same time the epoxide was converted to an olefin. 75 refs., 1 fig., 7 tabs.

  17. Sensory effect of acetaldehyde on the perception of 3-mercaptohexan-1-ol and 3-isobutyl-2-methoxypyrazine: Role of acetaldehyde in sensory interactions

    DOE PAGES

    Coetzee, C.; Brand, J.; Jacobson, Daniel A.; ...

    2016-01-28

    Background and Aims-Wine aroma is influenced by complex interactions between various wine constituents. This study investigated the sensory interactive effects of Sauvignon Blanc impact compounds, 3-mercaptohexan-1-ol and 3-isobutyl-2-methoxypyrazine, with acetaldehyde that typically forms during the oxidation of wine. Methods and Results-Spiked model wines were subjected to sensory descriptive analysis using a trained sensory panel. Additionally, the concentration of each compound varied from below aroma threshold values to high values as reported for wine. Depending on the concentration, acetaldehyde enhanced fruity attributes at a lower concentration, whereas suppression occurred at a higher concentration. Acetaldehyde effectively suppressed the green pepper aroma attributemore » at certain concentration values, whereas 3-mercaptohexan-1-ol suppressed oxidised green apple associated with acetaldehyde. Changes in attributes used for aroma description also occurred because of change in concentration. Conclusions-Complex sensory interactions may occur between Sauvignon Blanc impact compounds and one of the main oxidation-derived compounds, acetaldehyde. Acetaldehyde can enhance or suppress pleasant fruity characters depending on the concentration. Significance of the Study-This study showed the potential positive effect of acetaldehyde on white wine aroma when present at a low concentration. Formation of this compound during winemaking and ageing should, however, be controlled because of negative sensory interactions occurring at a higher concentration. In conclusion, this study may also contribute to the sensory characterisation of Sauvignon Blanc wine undergoing oxidation.« less

  18. Sensory effect of acetaldehyde on the perception of 3-mercaptohexan-1-ol and 3-isobutyl-2-methoxypyrazine: Role of acetaldehyde in sensory interactions

    SciTech Connect

    Coetzee, C.; Brand, J.; Jacobson, Daniel A.; Du Toit, W. J.

    2016-01-28

    Background and Aims-Wine aroma is influenced by complex interactions between various wine constituents. This study investigated the sensory interactive effects of Sauvignon Blanc impact compounds, 3-mercaptohexan-1-ol and 3-isobutyl-2-methoxypyrazine, with acetaldehyde that typically forms during the oxidation of wine. Methods and Results-Spiked model wines were subjected to sensory descriptive analysis using a trained sensory panel. Additionally, the concentration of each compound varied from below aroma threshold values to high values as reported for wine. Depending on the concentration, acetaldehyde enhanced fruity attributes at a lower concentration, whereas suppression occurred at a higher concentration. Acetaldehyde effectively suppressed the green pepper aroma attribute at certain concentration values, whereas 3-mercaptohexan-1-ol suppressed oxidised green apple associated with acetaldehyde. Changes in attributes used for aroma description also occurred because of change in concentration. Conclusions-Complex sensory interactions may occur between Sauvignon Blanc impact compounds and one of the main oxidation-derived compounds, acetaldehyde. Acetaldehyde can enhance or suppress pleasant fruity characters depending on the concentration. Significance of the Study-This study showed the potential positive effect of acetaldehyde on white wine aroma when present at a low concentration. Formation of this compound during winemaking and ageing should, however, be controlled because of negative sensory interactions occurring at a higher concentration. In conclusion, this study may also contribute to the sensory characterisation of Sauvignon Blanc wine undergoing oxidation.

  19. 27 CFR 21.33 - Formula No. 2-B.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....Processing miscellaneous products. (2) As a raw material: 521.Ethyl acetate. 522.Ethyl chloride. 523.Other ethyl esters. 524.Sodium ethylate, anhydrous. 530.Ethylamines. 540.Dyes and intermediates. 551.Acetaldehyde. 552.Other aldehydes. 561.Ethyl ether. 562.Other ethers. 571.Ethylene dibromide. 572.Ethylene...

  20. Kinetics of the reactions of chlorine atoms with a series of acetates

    NASA Astrophysics Data System (ADS)

    Xing, Jia-Hua; Takahashi, Kenshi; Hurley, Michael D.; Wallington, Timothy J.

    2009-06-01

    The kinetics of the reactions of Cl atoms with a series of alkyl acetates were investigated using relative and absolute rate methods in 2-700 Torr of N 2 at room temperature. Consistent results were obtained using the two methods. The data from the absolute rate measurements were more precise and were (in units of 10 -11 cm 3 molecule -1 s -1): ethyl acetate, 1.76 ± 0.11; n-propyl acetate, 7.19 ± 0.11; i-propyl acetate, 1.97 ± 0.24; n-butyl acetate, 15.8 ± 0.94; i-butyl acetate, 9.97 ± 0.60; s-butyl acetate, 8.01 ± 0.48; and t-butyl acetate, 1.64 ± 0.10. The reactivity of alkyl acetates is discussed in terms of structure-activity relationship.

  1. Enzymes involved in vinyl acetate decomposition by Pseudomonas fluorescens PCM 2123 strain.

    PubMed

    Szczyrba, Elżbieta; Greń, Izabela; Bartelmus, Grażyna

    2014-03-01

    Esterases are widely used in food processing industry, but there is little information concerning enzymes involved in decompositions of esters contributing to pollution of environment. Vinyl acetate (an ester of vinyl alcohol and acetic acid) is a representative of volatile organic compounds (VOCs) in decomposition, of which hydrolyses and oxidoreductases are mainly involved. Their activities under periodically changing conditions of environment are essential for the removal of dangerous VOCs. Esterase and alcohol/aldehyde dehydrogenase activities were determined in crude cell extract from Pseudomonas fluorescens PMC 2123 after vinyl acetate induction. All examined enzymes exhibit their highest activity at 30-35 °C and pH 7.0-7.5. Esterase preferably hydrolyzed ester bonds with short fatty chains without plain differences for C2 or C4. Comparison of Km values for alcohol and aldehyde dehydrogenases for acetaldehyde suggested that this metabolite was preferentially oxidized than reduced. Activity of alcohol dehydrogenase reducing acetaldehyde to ethanol suggested that one mechanism of defense against the elevated concentration of toxic acetaldehyde could be its temporary reduction to ethanol. Esterase activity was inhibited by phenylmethanesulfonyl fluoride, while β-mercaptoethanol, dithiothreitol, and ethylenediaminetetraacetic acid had no inhibitor effect. From among metal ions, only Mg(2+) and Fe(2+) stimulated the cleavage of ester bond.

  2. [Acetaldehyde and some biochemical parameters in alcoholic intoxications].

    PubMed

    Vasil'eva, E V; Morozov, Iu E; Lopatkin, O N; Zarubin, V V; Mamedov, V K

    2004-01-01

    The need in comprehensive gas chromatography and biochemistry examinations is grounded for cadaver expertise in order to cope with issues related with alcoholic intoxication. Descriptions of 3 examination methods of biological fluids are elucidated, i.e. gas chromatography, electrophoresis and fixing of a degree of endogenous intoxication. The concentration of acetaldehyde in 3 body media (blood, urine and liquor) are analyzed in detail; the isoenzyme spectra of lactate-, alcohol- and aldehyde dehydrogenase as well as the contents of medium molecules in death of alcohol poisonings and due to mechanical trauma are also in the focus of attention.

  3. Plant physiological and environmental controls over the exchange of acetaldehyde between forest canopies and the atmosphere

    NASA Astrophysics Data System (ADS)

    Jardine, K.; Harley, P.; Karl, T.; Guenther, A.; Lerdau, M.; Mak, J. E.

    2008-11-01

    We quantified fine scale sources and sinks of gas phase acetaldehyde in two forested ecosystems in the US. During the daytime, the upper canopy behaved as a net source while at lower heights, reduced emission rates or net uptake were observed. At night, uptake generally predominated throughout the canopies. Net ecosystem emission rates were inversely related to foliar density due to the extinction of light in the canopy and a respective decrease of the acetaldehyde compensation point. This is supported by branch level studies revealing much higher compensation points in the light than in the dark for poplar (Populus deltoides) and holly oak (Quercus ilex) implying a higher light/temperature sensitivity for acetaldehyde production relative to consumption. The view of stomata as the major pathway for acetaldehyde exchange is supported by strong linear correlations between branch transpiration rates and acetaldehyde exchange velocities for both species. In addition, natural abundance carbon isotope analysis of gas-phase acetaldehyde during poplar branch fumigation experiments revealed a significant kinetic isotope effect of 5.1±0.3‰ associated with the uptake of acetaldehyde. Similar experiments with dry dead poplar leaves showed no fractionation or uptake of acetaldehyde, confirming that this is only a property of living leaves. We suggest that acetaldehyde belongs to a potentially large list of plant metabolites where stomatal resistance can exert long term control over both emission and uptake rates due to the presence of both source(s) and sink(s) within the leaf which strongly buffer large changes in concentrations in the substomatal airspace due to changes in stomatal resistance. We conclude that the exchange of acetaldehyde between plant canopies and the atmosphere is fundamentally controlled by ambient acetaldehyde concentrations, stomatal resistance, and the compensation point which is a function of light/temperature.

  4. Oxygen vacancy-assisted coupling and enolization of acetaldehyde on CeO2(111).

    PubMed

    Calaza, Florencia C; Xu, Ye; Mullins, David R; Overbury, Steven H

    2012-10-31

    The temperature-dependent adsorption and reaction of acetaldehyde (CH(3)CHO) on a fully oxidized and a highly reduced thin-film CeO(2)(111) surface have been investigated using a combination of reflection-absorption infrared spectroscopy (RAIRS) and periodic density functional theory (DFT+U) calculations. On the fully oxidized surface, acetaldehyde adsorbs weakly through its carbonyl O interacting with a lattice Ce(4+) cation in the η(1)-O configuration. This state desorbs at 210 K without reaction. On the highly reduced surface, new vibrational signatures appear below 220 K. They are identified by RAIRS and DFT as a dimer state formed from the coupling of the carbonyl O and the acyl C of two acetaldehyde molecules. This dimer state remains up to 400 K before decomposing to produce another distinct set of vibrational signatures, which are identified as the enolate form of acetaldehyde (CH(2)CHO¯). Furthermore, the calculated activation barriers for the coupling of acetaldehyde, the decomposition of the dimer state, and the recombinative desorption of enolate and H as acetaldehyde are in good agreement with previously reported TPD results for acetaldehyde adsorbed on reduced CeO(2)(111) [Chen et al. J. Phys. Chem. C 2011, 115, 3385]. The present findings demonstrate that surface oxygen vacancies alter the reactivity of the CeO(2)(111) surface and play a crucial role in stabilizing and activating acetaldehyde for coupling reactions.

  5. The hydrogen-storing microporous silica 'Microcluster' reduces acetaldehyde contained in a distilled spirit.

    PubMed

    Kato, Shinya; Miwa, Nobuhiko

    2016-12-01

    Acetaldehyde is a detrimental substance produced in alcoholic liquor aging. We assessed an ability of hydrogen-storing microporous silica 'Microcluster' (MC+) to reduce acetaldehyde, as compared with autoclave-dehydrogenated MC+ (MC-). Acetaldehyde was quantified spectrophotometrically by an enzymatic method. Authentic acetaldehyde was treated by MC+ for 20min, and decreased from 43.4ppm to 10.9ppm, but maintained at 49.3ppm by MC-. On the other hand, acetaldehyde contained in a distilled spirit was decreased from 29.5ppm to 3.1ppm at 20min by MC+, but not decreased by MC-. Addition of MC+ or MC- to distilled water without acetaldehyde showed no seeming effect on the quantification used. Accordingly acetaldehyde in a distilled spirit is reduced to ethanol by hydrogen contained in MC+, but not by the silica moiety of MC+. Hydrogen gas of 1.2mL was released for 20min from MC+ of 0.59g in water, resulting in dissolved hydrogen of 1.09ppm and an oxidation- reduction potential of -687.0mV indicative of a marked reducing ability. Thus, MC+ has an ability to reduce acetaldehyde in a distilled spirit due to dissolved hydrogen released from MC+.

  6. A physiologically based model for ethanol and acetaldehyde metabolism in human beings.

    PubMed

    Umulis, David M; Gürmen, Nihat M; Singh, Prashant; Fogler, H Scott

    2005-01-01

    Pharmacokinetic models for ethanol metabolism have contributed to the understanding of ethanol clearance in human beings. However, these models fail to account for ethanol's toxic metabolite, acetaldehyde. Acetaldehyde accumulation leads to signs and symptoms, such as cardiac arrhythmias, nausea, anxiety, and facial flushing. Nevertheless, it is difficult to determine the levels of acetaldehyde in the blood or other tissues because of artifactual formation and other technical issues. Therefore, we have constructed a promising physiologically based pharmacokinetic (PBPK) model, which is an excellent match for existing ethanol and acetaldehyde concentration-time data. The model consists of five compartments that exchange material: stomach, gastrointestinal tract, liver, central fluid, and muscle. All compartments except the liver are modeled as stirred reactors. The liver is modeled as a tubular flow reactor. We derived average enzymatic rate laws for alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH), determined kinetic parameters from the literature, and found best-fit parameters by minimizing the squared error between our profiles and the experimental data. The model's transient output correlates strongly with the experimentally observed results for healthy individuals and for those with reduced ALDH activity caused by a genetic deficiency of the primary acetaldehyde-metabolizing enzyme ALDH2. Furthermore, the model shows that the reverse reaction of acetaldehyde back into ethanol is essential and keeps acetaldehyde levels approximately 10-fold lower than if the reaction were irreversible.

  7. Stabilization of Candida rugosa lipase during transacetylation with vinyl acetate.

    PubMed

    Majumder, Abir B; Gupta, Munishwar N

    2010-04-01

    An optimally prepared Candida rugosa lipase aggregate cross-linked with bovine serum albumin, was found to overcome acetaldehyde deactivation during transacetylation of a series of benzyl alcohols with vinyl acetate. The formulation, under the same reaction conditions, exhibited 4-30x enhancement in the reaction rate as compared to the celite immobilized lyophilized formulation and 25-133x enhancement as compared to the free lyophilized enzyme depending upon the alcohol chosen. The racemic 1-phenylethanol, taken as one of the alcohols, underwent a more efficient enantioselective transacetylation giving 80% enantiomeric excess of the product, (R)-1-phenylethyl acetate, at 38% conversion (E = 15) within 24h while the enzyme immobilized on celite gave 83% enantiomeric excess at 18% conversion (E = 13) during the same period of time.

  8. The detection of acetaldehyde in cold dust clouds

    NASA Technical Reports Server (NTRS)

    Matthews, H. E.; Friber, P.; Irvine, W. M.

    1985-01-01

    Observations of the 1(01)-0(00) rotational transitions of A and E state acetaldehyde are reported. The transitions were detected, for the first time in interstellar space, in the cold dust clouds TMC-1 and L134N, and in Sgr B2. This is also the first time acetaldehyde has been found in a dust cloud and is the most complex oxygen-bearing molecule yet known in this environment. A column density of 6 x 10 to the 12th/sq cm in TMC-1, comparable to many other species detected there, and an approximately equal column density in L134N are formed. In the direction of Sgr B2, the CH3CHO profile appears to consist of broad emission features from the hot molecular cloud core, together with absorption features resulting from intervening colder material. The possible detection of HC9N toward IRC + 10 deg 216 through its J = 33-32 transition is also reported. Implications for cold dust cloud chemistry and excitation are discussed.

  9. Role of malondialdehyde-acetaldehyde adducts in liver injury.

    PubMed

    Tuma, Dean J

    2002-02-15

    Malondialdehyde and acetaldehyde react together with proteins in a synergistic manner and form hybrid protein adducts, designated as MAA adducts. MAA-protein adducts are composed of two major products whose structures and mechanism of formation have been elucidated. MAA adduct formation, especially in the liver, has been demonstrated in vivo during ethanol consumption. These protein adducts are capable of inducing a potent immune response, resulting in the generation of antibodies against both MAA epitopes, as well as against epitopes on the carrier protein. Chronic ethanol administration to rats results in significant circulating antibody titers against MAA-adducted proteins, and high anti-MAA titers have been associated with the severity of liver damage in humans with alcoholic liver disease. In vitro exposure of liver endothelial or hepatic stellate cells to MAA adducts induces a proinflammatory and profibrogenic response in these cells. Thus, during excessive ethanol consumption, ethanol oxidation and ethanol-induced oxidative stress result in the formation of acetaldehyde and malondialdehyde, respectively. These aldehydes can react together synergistically with proteins and generate MAA adducts, which are very immunogenic and possess proinflammatory and profibrogenic properties. By virtue of these potentially toxic effects, MAA adducts may play an important role in the pathogenesis of alcoholic liver injury.

  10. Very early acetaldehyde production by industrial Saccharomyces cerevisiae strains: a new intrinsic character.

    PubMed

    Cheraiti, Naoufel; Guezenec, Stéphane; Salmon, Jean-Michel

    2010-03-01

    During a general survey of the acetaldehyde-producing properties of commercially available wine yeast strains, we discovered that, although final acetaldehyde production cannot be used as a discriminating factor between yeast strains, initial specific acetaldehyde production rates were of highly interest for classifying yeast strains. This parameter is very closely related to the growth- and fermentation-lag phase durations. We also found that this acetaldehyde early production occurs with very different extent between commercial active dry yeast strains during the rehydration phase and could partially explain the known variable resistance of yeast strains to sulfites. Acetaldehyde production appeared, therefore, as very precocious, strain-dependent, and biomass-independent character. These various findings suggest that this new intrinsic characteristic of industrial fermenting yeast may be likely considered as an early marker of the general fermenting activity of industrial fermenting yeasts. This phenomenon could be particularly important for understanding the ecology of colonization of complex fermentation media by Saccharomyces cerevisiae.

  11. Ethyl tertiary-butyl ether: a toxicological review.

    PubMed

    McGregor, Douglas

    2007-05-01

    A number of oxygenated compounds (oxygenates) are available for use in gasoline to reduce vehicle exhaust emissions, reduce the aromatic compound content, and avoid the use of organo-lead compounds, while maintaining high octane numbers. Ethyl tertiary-butyl ether (ETBE) is one such compound. The current use of ETBE in gasoline or petrol is modest but increasing, with consequently similar trends in the potential for human exposure. Inhalation is the most likely mode of exposure, with about 30% of inhaled ETBE being retained by the lungs and distributed around the body. Following cessation of exposure, the blood concentration of ETBE falls rapidly, largely as a result of its metabolism to tertiary-butyl alcohol (TBA) and acetaldehyde. TBA may be further metabolized, first to 2-methyl-1,2-propanediol and then to 2-hydroxyisobutyrate, the two dominant metabolites found in urine of volunteers and rats. The rapid oxidation of acetaldehyde suggests that its blood concentration is unlikely to rise above normal as a result of human exposure to sources of ETBE. Single-dose toxicity tests show that ETBE has low toxicity and is essentially nonirritant to eyes and skin; it did not cause sensitization in a maximization test in guinea pigs. Neurological effects have been observed only at very high exposure concentrations. There is evidence for an effect of ETBE on the kidney of rats. Increases in kidney weight were seen in both sexes, but protein droplet accumulation (with alpha(2u)-globulin involvement) and sustained increases in cell proliferation occurred only in males. In liver, centrilobular necrosis was induced in mice, but not rats, after exposure by inhalation, although this lesion was reported in some rats exposed to very high oral doses of ETBE. The proportion of liver cells engaged in S-phase DNA synthesis was increased in mice of both sexes exposed by inhalation. ETBE has no specific effects on reproduction, development, or genetic material. Carcinogenicity studies

  12. Resolving Some Paradoxes in the Thermal Decomposition Mechanism of Acetaldehyde.

    PubMed

    Sivaramakrishnan, Raghu; Michael, Joe V; Harding, Lawrence B; Klippenstein, Stephen J

    2015-07-16

    The mechanism for the thermal decomposition of acetaldehyde has been revisited with an analysis of literature kinetics experiments using theoretical kinetics. The present modeling study was motivated by recent observations, with very sensitive diagnostics, of some unexpected products in high temperature microtubular reactor experiments on the thermal decomposition of CH3CHO and its deuterated analogs, CH3CDO, CD3CHO, and CD3CDO. The observations of these products prompted the authors of these studies to suggest that the enol tautomer, CH2CHOH (vinyl alcohol), is a primary intermediate in the thermal decomposition of acetaldehyde. The present modeling efforts on acetaldehyde decomposition incorporate a master equation reanalysis of the CH3CHO potential energy surface (PES). The lowest-energy process on this PES is an isomerization of CH3CHO to CH2CHOH. However, the subsequent product channels for CH2CHOH are substantially higher in energy, and the only unimolecular process that can be thermally accessed is a reisomerization to CH3CHO. The incorporation of these new theoretical kinetics predictions into models for selected literature experiments on CH3CHO thermal decomposition confirms our earlier experiment and theory-based conclusions that the dominant decomposition process in CH3CHO at high temperatures is C-C bond fission with a minor contribution (∼10-20%) from the roaming mechanism to form CH4 and CO. The present modeling efforts also incorporate a master-equation analysis of the H + CH2CHOH potential energy surface. This bimolecular reaction is the primary mechanism for removal of CH2CHOH, which can accumulate to minor amounts at high temperatures, T > 1000 K, in most lab-scale experiments that use large initial concentrations of CH3CHO. Our modeling efforts indicate that the observation of ketene, water, and acetylene in the recent microtubular experiments are primarily due to bimolecular reactions of CH3CHO and CH2CHOH with H-atoms and have no bearing on

  13. 40 CFR 180.585 - Pyraflufen-ethyl; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... residues of the herbicide, pyraflufen-ethyl, including its metabolites and degradates, in the commodities...] acetate, and its acid metabolite, E-1, 2-chloro-5-(4-chloro-5-difluoromethoxy-1-methyl-1H-pyrazol-3-yl)-4... metabolites: E-1, 2-chloro-5-(4-chloro-5-difluoromethoxy-1-methyl-1H-pyrazol-3-yl)-4-fluorophenoxyacetic...

  14. 40 CFR 180.585 - Pyraflufen-ethyl; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... residues of the herbicide, pyraflufen-ethyl, including its metabolites and degradates, in the commodities...] acetate, and its acid metabolite, E-1, 2-chloro-5-(4-chloro-5-difluoromethoxy-1-methyl-1H-pyrazol-3-yl)-4... metabolites: E-1, 2-chloro-5-(4-chloro-5-difluoromethoxy-1-methyl-1H-pyrazol-3-yl)-4-fluorophenoxyacetic...

  15. Reactivity and reaction intermediates for acetic acid adsorbed on CeO2(111)

    SciTech Connect

    Calaza, Florencia C.; Chen, Tsung -Liang; Mullins, David R.; Xu, Ye; Steven H. Overbury

    2015-05-02

    Adsorption and reaction of acetic acid on a CeO2(1 1 1) surface was studied by a combination of ultra-highvacuum based methods including temperature desorption spectroscopy (TPD), soft X-ray photoelectronspectroscopy (sXPS), near edge X-ray absorption spectroscopy (NEXAFS) and reflection absorption IRspectroscopy (RAIRS), together with density functional theory (DFT) calculations. TPD shows that thedesorption products are strongly dependent upon the initial oxidation state of the CeO2 surface, includingselectivity between acetone and acetaldehyde products. The combination of sXPS and NEXAFS demon-strate that acetate forms upon adsorption at low temperature and is stable to above 500 K, above whichpoint ketene, acetone and acetic acid desorb. Furthermore, DFT and RAIRS show that below 500 K, bridge bondedacetate coexists with a moiety formed by adsorption of an acetate at an oxygen vacancy, formed bywater desorption.

  16. Reactivity and reaction intermediates for acetic acid adsorbed on CeO2(111)

    DOE PAGES

    Calaza, Florencia C.; Chen, Tsung -Liang; Mullins, David R.; ...

    2015-05-02

    Adsorption and reaction of acetic acid on a CeO2(1 1 1) surface was studied by a combination of ultra-highvacuum based methods including temperature desorption spectroscopy (TPD), soft X-ray photoelectronspectroscopy (sXPS), near edge X-ray absorption spectroscopy (NEXAFS) and reflection absorption IRspectroscopy (RAIRS), together with density functional theory (DFT) calculations. TPD shows that thedesorption products are strongly dependent upon the initial oxidation state of the CeO2 surface, includingselectivity between acetone and acetaldehyde products. The combination of sXPS and NEXAFS demon-strate that acetate forms upon adsorption at low temperature and is stable to above 500 K, above whichpoint ketene, acetone and acetic acidmore » desorb. Furthermore, DFT and RAIRS show that below 500 K, bridge bondedacetate coexists with a moiety formed by adsorption of an acetate at an oxygen vacancy, formed bywater desorption.« less

  17. The Japan Flavour and Fragrance Materials Association's (JFFMA) safety assessment of acetal food flavouring substances uniquely used in Japan.

    PubMed

    Okamura, Hiroyuki; Abe, Hajime; Hasegawa-Baba, Yasuko; Saito, Kenji; Sekiya, Fumiko; Hayashi, Shim-Mo; Mirokuji, Yoshiharu; Maruyama, Shinpei; Ono, Atsushi; Nakajima, Madoka; Degawa, Masakuni; Ozawa, Shogo; Shibutani, Makoto; Maitani, Tamio

    2015-01-01

    Using the procedure devised by the Joint FAO/WHO Expert Committee on Food Additives (JECFA), we performed safety evaluations on five acetal flavouring substances uniquely used in Japan: acetaldehyde 2,3-butanediol acetal, acetoin dimethyl acetal, hexanal dibutyl acetal, hexanal glyceryl acetal and 4-methyl-2-pentanone propyleneglycol acetal. As no genotoxicity study data were available in the literature, all five substances had no chemical structural alerts predicting genotoxicity. Using Cramer's classification, acetoin dimethyl acetal and hexanal dibutyl acetal were categorised as class I, and acetaldehyde 2,3-butanediol acetal, hexanal glyceryl acetal and 4-methyl-2-pentanone propyleneglycol acetal as class III. The estimated daily intakes for all five substances were within the range of 1.45-6.53 µg/person/day using the method of maximised survey-derived intake based on the annual production data in Japan from 2001, 2005, 2008 and 2010, and 156-720 µg/person/day using the single-portion exposure technique (SPET), based on the average use levels in standard portion sizes of flavoured foods. The daily intakes of the two class I substances were below the threshold of toxicological concern (TTC) - 1800 μg/person/day. The daily intakes of the three class III substances exceeded the TTC (90 μg/person/day). Two of these, acetaldehyde 2,3-butanediol acetal and hexanal glyceryl acetal, were expected to be metabolised into endogenous products after ingestion. For 4-methyl-2-pentanone propyleneglycol acetal, one of its metabolites was not expected to be metabolised into endogenous products. However, its daily intake level, based on the estimated intake calculated by the SPET method, was about 1/15 000th of the no observed effect level. It was thus concluded that all five substances raised no safety concerns when used for flavouring foods at the currently estimated intake levels. While no information on in vitro and in vivo toxicity for all five substances was available

  18. Acetaldehyde involvement in ethanol's postabsortive effects during early ontogeny.

    PubMed

    March, Samanta M; Abate, P; Molina, Juan C

    2013-01-01

    Clinical and biomedical studies sustains the notion that early ontogeny is a vulnerable window to the impact of alcohol. Experiences with the drug during these stages increase latter disposition to prefer, use or abuse ethanol. This period of enhanced sensitivity to ethanol is accompanied by a high rate of activity in the central catalase system, which metabolizes ethanol in the brain. Acetaldehyde (ACD), the first oxidation product of ethanol, has been found to share many neurobehavioral effects with the drug. Cumulative evidence supports this notion in models employing adults. Nevertheless very few studies have been conducted to analyze the role of ACD in ethanol postabsorptive effects, in newborns or infant rats. In this work we review recent experimental literature that syndicates ACD as a mediator agent of reinforcing aspects of ethanol, during early ontogenetic stages. We also show a meta-analytical correlational approach that proposes how differences in the activity of brain catalase across ontogeny, could be modulating patterns of ethanol consumption.

  19. Pyrolysis of Acetaldehyde: a Fleeting Glimpse of Vinylidene

    NASA Astrophysics Data System (ADS)

    Vasilou, A. J.; Piech, K. M.; Ellison, G. B.; Golan, A.; Kostko, O.; Ahmed, M.; Osborn, D. L.; Daily, J. W.; Nimlos, M. R.; Stanton, J. F.

    2011-06-01

    The thermal decomposition of acetaldehyde has been studied in a heated silicon carbide ``microtubular reactor", with products monitored by both photoionization mass spectrometry and matrix-isolation Fourier transform infrared spectroscopy. A well-known, and observed, route of decomposition occurs when the weakest C-C bond is broken; this process leads to methyl and formyl radicals. In addition to this, we find evidence for two additional channels: CH_3CHO + Δ → H_2CCO (ketene) and CH_3CHO + Δ → C_2H_2 (acetylene), reactions that also generate molecular hydrogen and water, respectively. This talk focuses on the last pathway, which proceeds via vinyl alcohol. Evidence is presented that the high temperature unimolecular dehydration of vinyl alcohol proceeds by two mechanisms; one of these is a (1,2) elimination that directly yields acetylene, and the other is a (1,1) elimination that necessarily accesses the vinylidene isomer of C_2H_2 as an intermediate.

  20. Computer modeling of cool flames and ignition of acetaldehyde

    SciTech Connect

    Cavanagh, J.; Cox, R.A. ); Olson, G. )

    1990-10-01

    A detailed mechanism for the oxidation of acetaldehyde at temperatures between 500-1000 K has been assembled using 77 elementary reactions involving 32 reactant, product, and intermediate species. Rate coefficients were taken from recent critical evaluations of experimental data. Where experimental measurements were not available, the rate parameters were estimated from the body of currently available kinetics information. The mechanism was shown to predict correctly the rates and products observed in CH{sub 3}CHO oxidation studies in a low-pressure in a stirred flow reactor and at high pressure in a rapid compression machine. The oscillatory phenomena in the flow system and the two-stage ignition observed at high pressure were satisfactorily described by the mechanism. It is shown that cool flames are caused by degenerate branching mainly by peracetic acid and that hydrogen peroxide promotes hot ignition.

  1. Induction of mitochondrial aldehyde dehydrogenase by submergence facilitates oxidation of acetaldehyde during re-aeration in rice.

    PubMed

    Tsuji, Hiroyuki; Meguro, Naoki; Suzuki, Yasuhiro; Tsutsumi, Nobuhiro; Hirai, Atsushi; Nakazono, Mikio

    2003-07-10

    Post-hypoxic injuries in plants are primarily caused by bursts of reactive oxygen species and acetaldehyde. In agreement with previous studies, we found accumulations of acetaldehyde in rice during re-aeration following submergence. During re-aeration, acetaldehyde-oxidizing aldehyde dehydrogenase (ALDH) activity increased, thereby causing the acetaldehyde content to decrease in rice. Interestingly, re-aerated rice plants showed an intense mitochondrial ALDH2a protein induction, even though ALDH2a mRNA was submergence induced and declined upon re-aeration. This suggests that rice ALDH2a mRNA is accumulated in order to quickly metabolize acetaldehyde that is produced upon re-aeration.

  2. Daidzin suppresses ethanol consumption by Syrian golden hamsters without blocking acetaldehyde metabolism.

    PubMed

    Keung, W M; Lazo, O; Kunze, L; Vallee, B L

    1995-09-12

    Daidzin is a potent, selective, and reversible inhibitor of human mitochondrial aldehyde dehydrogenase (ALDH) that suppresses free-choice ethanol intake by Syrian golden hamsters. Other ALDH inhibitors, such as disulfiram (Antabuse) and calcium citrate carbimide (Temposil), have also been shown to suppress ethanol intake of laboratory animals and are thought to act by inhibiting the metabolism of acetaldehyde produced from ingested ethanol. To determine whether or not daidzin inhibits acetaldehyde metabolism in vivo, plasma acetaldehyde in daidzin-treated hamsters was measured after the administration of a test dose of ethanol. Daidzin treatment (150 mg/kg per day i.p. for 6 days) significantly suppresses (> 70%) hamster ethanol intake but does not affect overall acetaldehyde metabolism. In contrast, after administration of the same ethanol dose, plasma acetaldehyde concentration in disulfiram-treated hamsters reaches 0.9 mM, 70 times higher than that of the control. In vitro, daidzin suppresses hamster liver mitochondria-catalyzed acetaldehyde oxidation very potently with an IC50 value of 0.4 microM, which is substantially lower than the daidzin concentration (70 microM) found in the liver mitochondria of daidzin-treated hamsters. These results indicate that (i) the action of daidzin differs from that proposed for the classic, broad-acting ALDH inhibitors (e.g., disulfiram), and (ii) the daidzin-sensitive mitochondrial ALDH is not the one and only enzyme that is essential for acetaldehyde metabolism in golden hamsters.

  3. The effects of acetaldehyde and acrolein on muscle catabolism in C2 myotubes.

    PubMed

    Rom, Oren; Kaisari, Sharon; Aizenbud, Dror; Reznick, Abraham Z

    2013-12-01

    The toxic aldehydes acetaldehyde and acrolein were previously suggested to damage skeletal muscle. Several conditions in which exposure to acetaldehyde and acrolein is increased were associated with muscle wasting and dysfunction. These include alcoholic myopathy, renal failure, oxidative stress, and inflammation. A main exogenous source of both acetaldehyde and acrolein is cigarette smoking, which was previously associated with increased muscle catabolism. Recently, we have shown that exposure of skeletal myotubes to cigarette smoke stimulated muscle catabolism via increased oxidative stress, activation of p38 MAPK, and upregulation of muscle-specific E3 ubiquitin ligases. In this study, we aimed to investigate the effects of acetaldehyde and acrolein on catabolism of skeletal muscle. Skeletal myotubes differentiated from the C2 myoblast cell line were exposed to acetaldehyde or acrolein and their effects on signaling pathways related to muscle catabolism were studied. Exposure of myotubes to acetaldehyde did not promote muscle catabolism. However, exposure to acrolein caused increased generation of free radicals, activation of p38 MAPK, upregulation of the muscle-specific E3 ligases atrogin-1 and MuRF1, degradation of myosin heavy chain, and atrophy of myotubes. Inhibition of p38 MAPK by SB203580 abolished acrolein-induced muscle catabolism. Our findings demonstrate that acrolein but not acetaldehyde activates a signaling cascade resulting in muscle catabolism in skeletal myotubes. Although within the limitations of an in vitro study, these findings indicate that acrolein may promote muscle wasting in conditions of increased exposure to this aldehyde.

  4. Role of apoptotic hepatocytes in HCV dissemination: regulation by acetaldehyde.

    PubMed

    Ganesan, Murali; Natarajan, Sathish Kumar; Zhang, Jinjin; Mott, Justin L; Poluektova, Larisa I; McVicker, Benita L; Kharbanda, Kusum K; Tuma, Dean J; Osna, Natalia A

    2016-06-01

    Alcohol consumption exacerbates hepatitis C virus (HCV) pathogenesis and promotes disease progression, although the mechanisms are not quite clear. We have previously observed that acetaldehyde (Ach) continuously produced by the acetaldehyde-generating system (AGS), temporarily enhanced HCV RNA levels, followed by a decrease to normal or lower levels, which corresponded to apoptosis induction. Here, we studied whether Ach-induced apoptosis caused depletion of HCV-infected cells and what role apoptotic bodies (AB) play in HCV-alcohol crosstalk. In liver cells exposed to AGS, we observed the induction of miR-122 and miR-34a. As miR-34a has been associated with apoptotic signaling and miR-122 with HCV replication, these findings may suggest that cells with intensive viral replication undergo apoptosis. Furthermore, when AGS-induced apoptosis was blocked by a pan-caspase inhibitor, the expression of HCV RNA was not changed. AB from HCV-infected cells contained HCV core protein and the assembled HCV particle that infect intact hepatocytes, thereby promoting the spread of infection. In addition, AB are captured by macrophages to switch their cytokine profile to the proinflammatory one. Macrophages exposed to HCV(+) AB expressed more IL-1β, IL-18, IL-6, and IL-10 mRNAs compared with those exposed to HCV(-) AB. The generation of AB from AGS-treated HCV-infected cells even enhanced the induction of aforementioned cytokines. We conclude that HCV and alcohol metabolites trigger the formation of AB containing HCV particles. The consequent spread of HCV to neighboring hepatocytes via infected AB, as well as the induction of liver inflammation by AB-mediated macrophage activation potentially exacerbate the HCV infection course by alcohol and worsen disease progression.

  5. ALDH2 modulates autophagy flux to regulate acetaldehyde-mediated toxicity thresholds

    PubMed Central

    Tanaka, Koji; Whelan, Kelly A; Chandramouleeswaran, Prasanna M; Kagawa, Shingo; Rustgi, Sabrina L; Noguchi, Chiaki; Guha, Manti; Srinivasan, Satish; Amanuma, Yusuke; Ohashi, Shinya; Muto, Manabu; Klein-Szanto, Andres J; Noguchi, Eishi; Avadhani, Narayan G; Nakagawa, Hiroshi

    2016-01-01

    A polymorphic mutation in the acetaldehyde dehydrogenase 2 (ALDH2) gene has been epidemiologically linked to the high susceptibility to esophageal carcinogenesis for individuals with alcohol use disorders. Mice subjected to alcohol drinking show increased oxidative stress and DNA adduct formation in esophageal epithelia where Aldh2 loss augments alcohol-induced genotoxic effects; however, it remains elusive as to how esophageal epithelial cells with dysfunctional Aldh2 cope with oxidative stress related to alcohol metabolism. Here, we investigated the role of autophagy in murine esophageal epithelial cells (keratinocytes) exposed to ethanol and acetaldehyde. We find that ethanol and acetaldehyde trigger oxidative stress via mitochondrial superoxide in esophageal keratinocytes. Aldh2-deficient cells appeared to be highly susceptible to ethanol- or acetaldehyde-mediated toxicity. Alcohol dehydrogenase-mediated acetaldehyde production was implicated in ethanol-induced cell injury in Aldh2 deficient cells as ethanol-induced oxidative stress and cell death was partially inhibited by 4-methylpyrazole. Acetaldehyde activated autophagy flux in esophageal keratinocytes where Aldh2 deficiency increased dependence on autophagy to cope with ethanol-induced acetaldehyde-mediated oxidative stress. Pharmacological inhibition of autophagy flux by chloroquine stabilized p62/SQSTM1, and increased basal and acetaldehyde-mediate oxidative stress in Aldh2 deficient cells as documented in monolayer culture as well as single-cell derived three-dimensional esophageal organoids, recapitulating a physiological esophageal epithelial proliferation-differentiation gradient. Our innovative approach indicates, for the first time, that autophagy may provide cytoprotection to esophageal epithelial cells responding to oxidative stress that is induced by ethanol and its major metabolite acetaldehyde. Defining autophagymediated cytoprotection against alcohol-induced genotoxicity in the context of

  6. A single sip of a strong alcoholic beverage causes exposure to carcinogenic concentrations of acetaldehyde in the oral cavity.

    PubMed

    Linderborg, Klas; Salaspuro, Mikko; Väkeväinen, Satu

    2011-09-01

    The aim of this study was to explore oral exposure to carcinogenic (group 1) acetaldehyde after single sips of strong alcoholic beverages containing no or high concentrations of acetaldehyde. Eight volunteers tasted 5 ml of ethanol diluted to 40 vol.% with no acetaldehyde and 40 vol.% calvados containing 2400 μM acetaldehyde. Salivary acetaldehyde and ethanol concentrations were measured by gas chromatography. The protocol was repeated after ingestion of ethanol (0.5 g/kg body weight). Salivary acetaldehyde concentration was significantly higher after sipping calvados than after sipping ethanol at 30s both with (215 vs. 128 μmol/l, p<0.05) and without (258 vs. 89 μmol/l, p<0.05) alcohol ingestion. From 2 min onwards there were no significant differences in the decreasing salivary acetaldehyde concentration, which remained above the level of carcinogenicity still at 10 min. The systemic alcohol distribution from blood to saliva had no additional effect on salivary acetaldehyde after sipping of the alcoholic beverages. Carcinogenic concentrations of acetaldehyde are produced from ethanol in the oral cavity instantly after a small sip of strong alcoholic beverage, and the exposure continues for at least 10 min. Acetaldehyde present in the beverage has a short-term effect on total acetaldehyde exposure.

  7. Acetaldehyde stimulation of net gluconeogenic carbon movement from applied malic acid in tomato fruit pericarp tissue

    SciTech Connect

    Halinska, A.; Frenkel, C. )

    1991-03-01

    Applied acetaldehyde is known to lead to sugar accumulation in fruit including tomatoes (Lycopersicon esculentum) presumably due to stimulation of gluconeogenesis. This conjecture was examined using tomato fruit pericarp discs as a test system and applied l-(U-{sup 14}C)malic acid as the source for gluconeogenic carbon mobilization. Results indicate that malic and perhaps other organic acids are carbon sources for gluconeogenesis occurring normally in ripening tomatoes. The process is stimulated by acetaldehyde apparently by attenuating the fructose-2,6-biphosphate levels. The mode of the acetaldehyde regulation of fructose-2,6-biphosphate metabolism awaits clarification.

  8. Improvement of visible light photocatalytic acetaldehyde decomposition of bismuth vanadate/silica nanocomposites by cocatalyst loading.

    PubMed

    Murakami, Naoya; Takebe, Naohiro; Tsubota, Toshiki; Ohno, Teruhisa

    2012-04-15

    Photocatalytic activity of bismuth vanadate (BiVO(4)) for acetaldehyde decomposition under visible light irradiation was improved by inclusion of a nanocomposition of silica as an adsorbent material and loading of platinum (Pt) or trivalent iron ion (Fe(3+)) as reduction cocatalysts. Addition of silica enhanced photocatalytic activity due to improvement of adsorption ability, but total decomposition of acetaldehyde was not observed within 24h of visible light irradiation. For further improvement of photocatalytic activity, BiVO(4) with an optimized amount of silica composition were modified with Pt or Fe(3+). Photodeposition of Pt greatly increased photocatalytic activity, and acetaldehyde was totally decomposed within 24h of visible light irradiation.

  9. Ethanol-induced myocardial ischemia: close relation between blood acetaldehyde level and myocardial ischemia.

    PubMed

    Ando, H; Abe, H; Hisanou, R

    1993-05-01

    A patient with vasospastic angina who developed myocardial ischemia following ethanol ingestion but not after exercise was described. Myocardial ischemia was evidenced by electrocardiograms (ECGs) and thallium-201 scintigrams. The blood acetaldehyde level after ethanol ingestion was abnormally high. The time course and severity of myocardial ischemia coincided with those of the blood ethanol and acetaldehyde level. Coronary arteriography showed ergonovine maleate-induced coronary vasospasm at the left anterior descending coronary artery. ECG changes similar to those induced by ethanol ingestion were observed at the same time. These findings suggest that the high blood acetaldehyde level might be responsible for the development of coronary vasospasm and myocardial ischemia in this patient.

  10. Furfuryl ethyl ether: important aging flavor and a new marker for the storage conditions of beer.

    PubMed

    Vanderhaegen, Bart; Neven, Hedwig; Daenen, Luk; Verstrepen, Kevin J; Verachtert, Hubert; Derdelinckx, Guy

    2004-03-24

    Recently, it was reported that furfuryl ethyl ether is an important flavor compound indicative of beer storage and aging conditions. A study of the reaction mechanism indicates that furfuryl ethyl ether is most likely formed by protonation of furfuryl alcohol or furfuryl acetate followed by S(N)2-substitution of the leaving group by the nucleophilic ethanol. For the reaction in beer, a pseudo-first-order reaction kinetics was derived. A close correlation was found between the values predicted by the kinetic model and the actual furfuryl ethyl ether concentration evolution during storage of beer. Furthermore, 10 commercial beers of different types, aged during 4 years in natural conditions, were analyzed, and it was found that the furfuryl ethyl ether flavor threshold was largely exceeded in each type of beer. In these natural aging conditions, lower pH, darker color, and higher alcohol content were factors that enhanced furfuryl ethyl ether formation. On the other hand, sulfite clearly reduced furfuryl ethyl ether formation. All results show that the furfuryl ethyl ether concentration is an excellent time-temperature integrator for beer storage.

  11. The effects of acetaldehyde on nicotine-induced transmitter levels in young and adult brain areas.

    PubMed

    Sershen, H; Shearman, E; Fallon, S; Chakraborty, G; Smiley, J; Lajtha, A

    2009-08-14

    The aim of the present study was to examine the effect of acetaldehyde administration on neurotransmitters in the presence of nicotine in brain areas associated with cognition and reward. We assayed these effects via microdialysis in conscious freely moving male Sprague-Dawley rats. It was reported that low doses of acetaldehyde enhance nicotine self-administration in young, but not in adult rats. Since nicotine enhances reward and learning, while acetaldehyde is reported to enhance reward but inhibit learning, acetaldehyde thus would be likely to stimulate reward without stimulating learning. We hoped that examining the effects of acetaldehyde (on nicotine-mediated neurotransmitter changes) would help to distinguish reward mechanisms less influenced by learning mechanisms. To avoid the aversive effect of acetaldehyde, we used a low dose of acetaldehyde (0.16 mg/kg) administered after nicotine (0.3mg/kg). We analyzed six brain regions: nucleus accumbens shell (NAccS), ventral tegmental area (VTA), ventral and dorsal hippocampus (VH and DH), and prefrontal and medial temporal cortex (PFC, MTC), assaying dopamine (DA), norepinephrine (NE) and serotonin (5-HT) and their metabolites in young and adult rats. The effect of acetaldehyde on nicotine-induced transmitter changes was different in young as compared to adult rat brain regions. In the NAccS of the young, DA was not affected while NE and 5-HT were increased. In the adult in this area DA and NE were decreased, while 5-HT was not altered. In other areas also in many cases, the effect of acetaldehyde in the young and in the adult was different. As an example, acetaldehyde administration increased NE in young and decreased NE in adult DH. We found stimulation of nicotine-induced changes by acetaldehyde in seven instances - six of these were observed in areas in young brain, NE in four areas (NAccS, DH, VH, and PFC), and 5-HT in two (NAccS and DH). Only one increase was noted in adult brain (DA in VTA). Inhibition of

  12. Ethanol-induced injuries to carrot cells : the role of acetaldehyde.

    PubMed

    Perata, P; Alpi, A

    1991-03-01

    Carrot (Daucus carota L.) cell cultures show high sensitivity to ethanol since both unorganized cell growth and somatic embryogenesis are strongly inhibited by ethanol at relatively low concentrations (10-20 millimolar). The role of acetaldehyde on ethanol-induced injuries to suspension cultured carrot cells was evaluated. When ethanol oxidation to acetaldehyde is prevented by adding an alcohol-dehydrogenase (EC 1.1.1.1) inhibitor (4-methylpyrazole) to the culture medium, no ethanol toxicity was observed, even if ethanol was present at relatively high concentrations (40-80 millimolar). Data are also presented on the effects of exogenously added acetaldehyde on both carrot cell growth and somatic embryogenesis. We conclude that the observed toxic effects of ethanol cannot be ascribed to ethanol per se but to acetaldehyde.

  13. Rosiglitazone protects human neuroblastoma SH-SY5Y cells against acetaldehyde-induced cytotoxicity

    SciTech Connect

    Jung, Tae Woo; Lee, Ji Young; Shim, Wan Sub; Kang, Eun Seok; Kim, Soo Kyung; Ahn, Chul Woo; Lee, Hyun Chul; Cha, Bong Soo . E-mail: bscha@yumc.yonsei.ac.kr

    2006-02-03

    Acetaldehyde, an inhibitor of mitochondrial function, has been widely used as a neurotoxin because it elicits a severe Parkinson's disease-like syndrome with elevation of the intracellular reactive oxygen species level and apoptosis. Rosiglitazone, a peroxisome proliferator-activated receptor-{gamma} agonist, has been known to show various non-hypoglycemic effects, including anti-inflammatory, anti-atherogenic, and anti-apoptotic. In this study, we investigated the protective effects of rosiglitazone on acetaldehyde-induced apoptosis in human neuroblastoma SH-SY5Y cells and attempted to examine its mechanism. Acetaldehyde-induced apoptosis was moderately reversed by rosiglitazone treatment. Our results suggest that the protective effects of rosiglitazone on acetaldehyde-induced apoptosis may be ascribed to ability to induce the expression of anti-oxidant enzymes and to regulate Bcl-2 and Bax expression. These data indicate that rosiglitazone may provide a useful therapeutic strategy for the prevention of progressive neurodegenerative disease such as Parkinson's disease.

  14. Coproduction of acetaldehyde and hydrogen during glucose fermentation by Escherichia coli.

    PubMed

    Zhu, Huilin; Gonzalez, Ramon; Bobik, Thomas A

    2011-09-01

    Escherichia coli K-12 strain MG1655 was engineered to coproduce acetaldehyde and hydrogen during glucose fermentation by the use of exogenous acetyl-coenzyme A (acetyl-CoA) reductase (for the conversion of acetyl-CoA to acetaldehyde) and the native formate hydrogen lyase. A putative acetaldehyde dehydrogenase/acetyl-CoA reductase from Salmonella enterica (SeEutE) was cloned, produced at high levels, and purified by nickel affinity chromatography. In vitro assays showed that this enzyme had both acetaldehyde dehydrogenase activity (68.07 ± 1.63 μmol min(-1) mg(-1)) and the desired acetyl-CoA reductase activity (49.23 ± 2.88 μmol min(-1) mg(-1)). The eutE gene was engineered into an E. coli mutant lacking native glucose fermentation pathways (ΔadhE, ΔackA-pta, ΔldhA, and ΔfrdC). The engineered strain (ZH88) produced 4.91 ± 0.29 mM acetaldehyde while consuming 11.05 mM glucose but also produced 6.44 ± 0.26 mM ethanol. Studies showed that ethanol was produced by an unknown alcohol dehydrogenase(s) that converted the acetaldehyde produced by SeEutE to ethanol. Allyl alcohol was used to select for mutants with reduced alcohol dehydrogenase activity. Three allyl alcohol-resistant mutants were isolated; all produced more acetaldehyde and less ethanol than ZH88. It was also found that modifying the growth medium by adding 1 g of yeast extract/liter and lowering the pH to 6.0 further increased the coproduction of acetaldehyde and hydrogen. Under optimal conditions, strain ZH136 converted glucose to acetaldehyde and hydrogen in a 1:1 ratio with a specific acetaldehyde production rate of 0.68 ± 0.20 g h(-1) g(-1) dry cell weight and at 86% of the maximum theoretical yield. This specific production rate is the highest reported thus far and is promising for industrial application. The possibility of a more efficient "no-distill" ethanol fermentation procedure based on the coproduction of acetaldehyde and hydrogen is discussed.

  15. Coproduction of Acetaldehyde and Hydrogen during Glucose Fermentation by Escherichia coli ▿ †

    PubMed Central

    Zhu, Huilin; Gonzalez, Ramon; Bobik, Thomas A.

    2011-01-01

    Escherichia coli K-12 strain MG1655 was engineered to coproduce acetaldehyde and hydrogen during glucose fermentation by the use of exogenous acetyl-coenzyme A (acetyl-CoA) reductase (for the conversion of acetyl-CoA to acetaldehyde) and the native formate hydrogen lyase. A putative acetaldehyde dehydrogenase/acetyl-CoA reductase from Salmonella enterica (SeEutE) was cloned, produced at high levels, and purified by nickel affinity chromatography. In vitro assays showed that this enzyme had both acetaldehyde dehydrogenase activity (68.07 ± 1.63 μmol min−1 mg−1) and the desired acetyl-CoA reductase activity (49.23 ± 2.88 μmol min−1 mg−1). The eutE gene was engineered into an E. coli mutant lacking native glucose fermentation pathways (ΔadhE, ΔackA-pta, ΔldhA, and ΔfrdC). The engineered strain (ZH88) produced 4.91 ± 0.29 mM acetaldehyde while consuming 11.05 mM glucose but also produced 6.44 ± 0.26 mM ethanol. Studies showed that ethanol was produced by an unknown alcohol dehydrogenase(s) that converted the acetaldehyde produced by SeEutE to ethanol. Allyl alcohol was used to select for mutants with reduced alcohol dehydrogenase activity. Three allyl alcohol-resistant mutants were isolated; all produced more acetaldehyde and less ethanol than ZH88. It was also found that modifying the growth medium by adding 1 g of yeast extract/liter and lowering the pH to 6.0 further increased the coproduction of acetaldehyde and hydrogen. Under optimal conditions, strain ZH136 converted glucose to acetaldehyde and hydrogen in a 1:1 ratio with a specific acetaldehyde production rate of 0.68 ± 0.20 g h−1 g−1 dry cell weight and at 86% of the maximum theoretical yield. This specific production rate is the highest reported thus far and is promising for industrial application. The possibility of a more efficient “no-distill” ethanol fermentation procedure based on the coproduction of acetaldehyde and hydrogen is discussed. PMID:21803884

  16. Effects of acetaldehyde on hepatocyte glycerol uptake and cell size: implication of Aquaporin 9

    PubMed Central

    Potter, James J.; Koteish, Ayman; Hamilton, James; Liu, Xiaopu; Liu, Kun; Agre, Peter; Mezey, Esteban

    2010-01-01

    Background The effects of ethanol and acetaldehyde on uptake of glycerol and on cell size of hepatocytes and a role Aquaporin 9 (AQP9), a glycerol transport channel, were evaluated. Methods The studies were done in primary rat and mouse hepatocytes. The uptake of [14C] glycerol was determined with hepatocytes in suspension. For determination of cell size, rat hepatocytes on coated dishes were incubated with a lipophilic fluorochrome that is incorporated into the cell membrane and examined by confocal microscopy. A three dimensional z scan of the cell was performed, and the middle slice of the z scan was used for area measurements. Results Acute exposure to acetaldehyde, but not to ethanol, causes a rapid increase in the uptake of glycerol and an increase in hepatocyte size, which was inhibited by HgCl2, an inhibitor of aquaporins. This was not observed in hepatocytes from AQP9 knockout mice, nor observed by direct application of acetaldehyde to AQP9 expressed in Xenopus Laevis oocytes. Prolonged 24 hours exposure to either acetaldehyde or ethanol did not result in an increase in glycerol uptake by rat hepatocytes. Acetaldehyde decreased AQP9 mRNA and AQP9 protein, while ethanol decreased AQP9 mRNA but not AQP9 protein. Ethanol, but not acetaldehyde, increased the activities of glycerol kinase and phosphoenolpyruvate carboxykinase. Conclusions The acute effects of acetaldehyde, while mediated by AQP9, are probably influenced by binding of acetaldehyde to hepatocyte membranes and changes in cell permeability. The effects of ethanol in enhancing glucose kinase, and phosphoenolpyruvate carboxykinase leading to increased formation of glycerol-3-phosphate most likely contribute to alcoholic fatty liver. PMID:21294757

  17. Acetaldehyde: A Small Organic Molecule with Big Impact on Organocatalytic Reactions.

    PubMed

    Kim, Sun Min; Kim, Young Sug; Kim, Dong Wan; Rios, Ramon; Yang, Jung Woon

    2016-02-12

    Stereocontrolled formation of carbon-carbon and carbon-heteroatom bonds through asymmetric organocatalysis is a formidable challenge for modern synthetic chemistry. Among the most significant contributions to this field are the transformations involving the use of acetaldehyde or α-heteroatom-substituted acetaldehydes for constructing valuable synthons (e.g., amino acid derivatives and hydroxycarbonyl). In this Minireview, versatile (enantioselective) organocatalytic transformations are discussed.

  18. Malondialdehyde-acetaldehyde-adducted protein inhalation causes lung injury.

    PubMed

    Wyatt, Todd A; Kharbanda, Kusum K; McCaskill, Michael L; Tuma, Dean J; Yanov, Daniel; DeVasure, Jane; Sisson, Joseph H

    2012-02-01

    In addition to cigarette smoking, alcohol exposure is also associated with increased lung infections and decreased mucociliary clearance. However, little research has been conducted on the combination effects of alcohol and cigarette smoke on lungs. Previously, we have demonstrated in a mouse model that the combination of cigarette smoke and alcohol exposure results in the formation of a very stable hybrid malondialdehyde-acetaldehyde (MAA)-adducted protein in the lung. In in vitro studies, MAA-adducted protein stimulates bronchial epithelial cell interleukin-8 (IL-8) via the activation of protein kinase C epsilon (PKCɛ). We hypothesized that direct MAA-adducted protein exposure in the lungs would mimic such a combination of smoke and alcohol exposure leading to airway inflammation. To test this hypothesis, C57BL/6J female mice were intranasally instilled with either saline, 30μL of 50μg/mL bovine serum albumin (BSA)-MAA, or unadducted BSA for up to 3 weeks. Likewise, human lung surfactant proteins A and D (SPA and SPD) were purified from human pulmonary proteinosis lung lavage fluid and successfully MAA-adducted in vitro. Similar to BSA-MAA, SPD-MAA was instilled into mouse lungs. Lungs were necropsied and assayed for histopathology, PKCɛ activation, and lung lavage chemokines. In control mice instilled with saline, normal lungs had few inflammatory cells. No significant effects were observed in unadducted BSA- or SPD-instilled mice. However, when mice were instilled with BSA-MAA or SPD-MAA for 3 weeks, a significant peribronchiolar localization of inflammatory cells was observed. Both BSA-MAA and SPD-MAA stimulated increased lung lavage neutrophils and caused a significant elevation in the chemokine, keratinocyte chemokine, which is a functional homologue to human IL-8. Likewise, MAA-adducted protein stimulated the activation of airway and lung slice PKCɛ. These data support that the MAA-adducted protein induces a proinflammatory response in the lungs and

  19. Acetate as an active metabolite of ethanol: studies of locomotion, loss of righting reflex, and anxiety in rodents

    PubMed Central

    Pardo, Marta; Betz, Adrienne J.; San Miguel, Noemí; López-Cruz, Laura; Salamone, John D.; Correa, Mercè

    2013-01-01

    It has been postulated that a number of the central effects of ethanol are mediated via ethanol metabolites: acetaldehyde and acetate. Ethanol is known to produce a large variety of behavioral actions such anxiolysis, narcosis, and modulation of locomotion. Acetaldehyde contributes to some of those effects although the contribution of acetate is less known. In the present studies, rats and mice were used to assess the acute and chronic effects of acetate after central or peripheral administration. Male Sprague-Dawley rats were used for the comparison between central (intraventricular, ICV) and peripheral (intraperitoneal, IP) administration of acute doses of acetate on locomotion. CD1 male mice were used to study acute IP effects of acetate on locomotion, and also the effects of chronic oral consumption of acetate (0, 500, or 1000 mg/l, during 7, 15, 30, or 60 days) on ethanol- (1.0, 2.0, 4.0, or 4.5 g/kg, IP) induced locomotion, anxiolysis, and loss of righting reflex (LORR). In rats, ICV acetate (0.7–2.8 μmoles) reduced spontaneous locomotion at doses that, in the case of ethanol and acetaldehyde, had previously been shown to stimulate locomotion. Peripheral acute administration of acetate also suppressed locomotion in rats (25–100 mg/kg), but not in mice. In addition, although chronic administration of acetate during 15 days did not have an effect on spontaneous locomotion in an open field, it blocked ethanol-induced locomotion. However, ethanol-induced anxiolysis was not affected by chronic administration of acetate. Chronic consumption of acetate (up to 60 days) did not have an effect on latency to, or duration of LORR induced by ethanol, but significantly increased the number of mice that did not achieve LORR. The present work provides new evidence supporting the hypothesis that acetate should be considered a centrally-active metabolite of ethanol that contributes to some behavioral effects of this alcohol, such as motor suppression. PMID:23847487

  20. Acetaldehyde disrupts tight junctions in Caco-2 cell monolayers by a protein phosphatase 2A-dependent mechanism.

    PubMed

    Dunagan, Mitzi; Chaudhry, Kamaljit; Samak, Geetha; Rao, R K

    2012-12-15

    Acetaldehyde is accumulated at high concentrations in the colonic lumen following ethanol administration. Previous studies demonstrated that acetaldehyde disrupts intestinal epithelial tight junctions and increases paracellular permeability. In the present study, we investigated the role of PP2A in the acetaldehyde-induced disruption of intestinal epithelial tight junctions. Caco-2 cell monolayers were exposed to 200-600 μM acetaldehyde for varying times, and the epithelial barrier function was evaluated by measuring transepithelial electrical resistance and inulin permeability. Acetaldehyde treatment resulted in a time-dependent increase in inulin permeability and redistribution of occludin and ZO-1 from the intercellular junctions. Treatment of cells with fostriecin (a PP2A-selective inhibitor) or knockdown of PP2A by siRNA blocked acetaldehyde-induced increase in inulin permeability and redistribution of occludin and ZO-1. The effects of fostriecin and acetaldehyde were confirmed in mouse intestine ex vivo. Acetaldehyde-induced tight junction disruption and barrier dysfunction were also attenuated by a PP2A-specific inhibitory peptide, TPDYFL. Coimmunoprecipitation studies showed that acetaldehyde increased the interaction of PP2A with occludin and induced dephosphorylation of occludin on threonine residues. Fostriecin and TPDYFL significantly reduced acetaldehyde-induced threonine dephosphorylation of occludin. Acetaldehyde failed to change the level of the methylated form of PP2A-C subunit. However, genistein (a tyrosine kinase inhibitor) blocked acetaldehyde-induced association of PP2A with occludin and threonine dephosphorylation of occludin. These results demonstrate that acetaldehyde-induced disruption of tight junctions is mediated by PP2A translocation to tight junctions and dephosphorylation of occludin on threonine residues.

  1. Protective Effect of Sodium Ferulate on Acetaldehyde-Treated Precision-Cut Rat Liver Slices

    PubMed Central

    Guo, Yu; Wu, Xiao-Qian; Zhang, Chun; Liao, Zhang-Xiu; Wu, Yong

    2012-01-01

    Abstract Activated hepatic stellate cells (HSCs) play a key role in hepatic fibrogenesis, and inhibition of HSC activation may prevent liver fibrosis. Acetaldehyde, the most deleterious metabolite of alcohol, triggers HSC activation in alcoholic liver injury. In the present study, we investigated the protective effect of sodium ferulate (SF), a sodium salt of ferulic acid that is rich in fruits and vegetables, on acetaldehyde-stimulated HSC activation using precision-cut liver slices (PCLSs). Rat PCLSs were co-incubated with 350 μM acetaldehyde and different concentrations of SF. Hepatotoxicity was assessed by measuring enzyme leakage and malondialdehyde content in tissue. α-Smooth muscle actin, transforming growth factor-β1, and hydroxyproline were determined to assess the activation of HSCs. In addition, matrix metalloproteinase (MMP)-1 and the tissue inhibitor of metalloproteinase (TIMP-1) were determined to evaluate collagen degradation. SF prominently prevented the enzyme leakage in acetaldehyde-treated slices and also inhibited HSC activation and collagen production stimulated by acetaldehyde. In addition, SF increased MMP-1 expression and decreased TIMP-1 expression. These results showed that SF protected PCLSs from acetaldehyde-stimulated HSC activation and liver injury, which may be associated with the attenuation of oxidative injury and acceleration of collagen degradation. PMID:22404575

  2. Effect of rinsing with ethanol-containing mouthrinses on the production of salivary acetaldehyde.

    PubMed

    Moazzez, Rebecca; Thompson, Hayley; Palmer, Richard M; Wilson, Ron F; Proctor, Gordon B; Wade, William G

    2011-12-01

    It has been suggested that the use of alcohol-containing mouthrinses could lead to the presence of acetaldehyde in saliva. In this cross-over study, salivary acetaldehyde levels and microbial profiles were determined before and after rinsing with ethanol-containing mouthrinses with essential oils (EO) and cetyl pyridinium chloride (CPC) as the active ingredients, and with 21.6% ethanol and water controls. After rinsing with all ethanol-containing rinses, acetaldehyde was detected in saliva after 30 s but declined to low levels after 5 min. The highest peak levels were seen with the ethanol control (median = 82.9 μM at 2 min) and were significantly higher than those seen at the same time after rinsing with the EO rinse (43.1 μM). There was no correlation between microbial counts or plaque scores and acetaldehyde levels, although dividing the subjects on the basis of a peak acetaldehyde salivary concentration of > 90.8 μM after the ethanol rinse revealed that the high responders were highly significantly more likely to harbour salivary yeasts than were the low responders. Rinsing with ethanol-containing mouthrinses causes a rapid, but transient, increase in salivary acetaldehyde levels.

  3. An original method for producing acetaldehyde and diacetyl by yeast fermentation.

    PubMed

    Rosca, Irina; Petrovici, Anca Roxana; Brebu, Mihai; Stoica, Irina; Minea, Bogdan; Marangoci, Narcisa

    In this study a natural culture medium that mimics the synthetic yeast peptone glucose medium used for yeast fermentations was designed to screen and select yeasts capable of producing high levels of diacetyl and acetaldehyde. The presence of whey powder and sodium citrate in the medium along with manganese and magnesium sulfate enhanced both biomass and aroma development. A total of 52 yeasts strains were cultivated in two different culture media, namely, yeast peptone glucose medium and yeast acetaldehyde-diacetyl medium. The initial screening of the strains was based on the qualitative reaction of the acetaldehyde with Schiff's reagent (violet color) and diacetyl with Brady's reagent (yellow precipitate). The fermented culture media of 10 yeast strains were subsequently analyzed by gas chromatography to quantify the concentration of acetaldehyde and diacetyl synthesized. Total titratable acidity values indicated that a total titratable acidity of 5.5°SH, implying culture medium at basic pH, was more favorable for the acetaldehyde biosynthesis using strain D15 (Candida lipolytica; 96.05mgL(-1) acetaldehyde) while a total titratable acidity value of 7°SH facilitated diacetyl flavor synthesis by strain D38 (Candida globosa; 3.58mgL(-1) diacetyl). Importantly, the results presented here suggest that this can be potentially used in the baking industry.

  4. Carbon isotope analysis of acetaldehyde emitted from leaves following mechanical stress and anoxia.

    PubMed

    Jardine, K; Karl, T; Lerdau, M; Harley, P; Guenther, A; Mak, J E

    2009-07-01

    Although the emission of acetaldehyde from plants into the atmosphere following biotic and abiotic stresses may significantly impact air quality and climate, its metabolic origin(s) remains uncertain. We investigated the pathway(s) responsible for the production of acetaldehyde in plants by studying variations in the stable carbon isotope composition of acetaldehyde emitted during leaf anoxia or following mechanical stress. Under an anoxic environment, C3 leaves produced acetaldehyde during ethanolic fermentation with a similar carbon isotopic composition to C3 bulk biomass. In contrast, the initial emission burst following mechanical wounding was 5-12 per thousand more depleted in (13)C than emissions under anoxia. Due to a large kinetic isotope effect during pyruvate decarboxylation catalysed by pyruvate dehydrogenase, acetyl-CoA and its biosynthetic products such as fatty acids are also depleted in (13)C relative to bulk biomass. It is well known that leaf wounding stimulates the release of large quantities of fatty acids from membranes, as well as the accumulation of reactive oxygen species (ROS). We suggest that, following leaf wounding, acetaldehyde depleted in (13)C is produced from fatty acid peroxidation reactions initiated by the accumulation of ROS. However, a variety of other pathways could also explain our results, including the conversion of acetyl-CoA to acetaldehyde by the esterase activity of aldehyde dehydrogenase.

  5. The total margin of exposure of ethanol and acetaldehyde for heavy drinkers consuming cider or vodka.

    PubMed

    Lachenmeier, Dirk W; Gill, Jan S; Chick, Jonathan; Rehm, Jürgen

    2015-09-01

    Heavy drinkers in Scotland may consume 1600 g ethanol per week. Due to its low price, cider may be preferred over other beverages. Anecdotal evidence has linked cider to specific health hazards beyond other alcoholic beverages. To examine this hypothesis, nine apple and pear cider samples were chemically analysed for constituents and contaminants. None of the products exceeded regulatory or toxicological thresholds, but the regular occurrence of acetaldehyde in cider was detected. To provide a quantitative risk assessment, two collectives of exclusive drinkers of cider and vodka were compared and the intake of acetaldehyde was estimated using probabilistic Monte-Carlo type analysis. The cider consumers were found to ingest more than 200-times the amount of acetaldehyde consumed by vodka consumers. The margins of exposure (MOE) of acetaldehyde were 224 for the cider and over 220,000 for vodka consumers. However, if the effects of ethanol were considered in a cumulative assessment of the combined MOE, the effect of acetaldehyde was minor and the combined MOE for both groups was 0.3. We suggest that alcohol policy priority should be given on reducing ethanol intake by measures such as minimum pricing, rather than to focus on acetaldehyde.

  6. Implications of acetaldehyde-derived DNA adducts for understanding alcohol-related carcinogenesis.

    PubMed

    Balbo, Silvia; Brooks, Philip J

    2015-01-01

    Among various potential mechanisms that could explain alcohol carcinogenicity, the metabolism of ethanol to acetaldehyde represents an obvious possible mechanism, at least in some tissues. The fundamental principle of genotoxic carcinogenesis is the formation of mutagenic DNA adducts in proliferating cells. If not repaired, these adducts can result in mutations during DNA replication, which are passed on to cells during mitosis. Consistent with a genotoxic mechanism, acetaldehyde does react with DNA to form a variety of different types of DNA adducts. In this chapter we will focus more specifically on N2-ethylidene-deoxyguanosine (N2-ethylidene-dG), the major DNA adduct formed from the reaction of acetaldehyde with DNA and specifically highlight recent data on the measurement of this DNA adduct in the human body after alcohol exposure. Because results are of particular biological relevance for alcohol-related cancer of the upper aerodigestive tract (UADT), we will also discuss the histology and cytology of the UADT, with the goal of placing the adduct data in the relevant cellular context for mechanistic interpretation. Furthermore, we will discuss the sources and concentrations of acetaldehyde and ethanol in different cell types during alcohol consumption in humans. Finally, in the last part of the chapter, we will critically evaluate the concept of carcinogenic levels of acetaldehyde, which has been raised in the literature, and discuss how data from acetaldehyde genotoxicity are and can be utilized in physiologically based models to evaluate exposure risk.

  7. Protective role of ALDH2 against acetaldehyde-derived DNA damage in oesophageal squamous epithelium.

    PubMed

    Amanuma, Yusuke; Ohashi, Shinya; Itatani, Yoshiro; Tsurumaki, Mihoko; Matsuda, Shun; Kikuchi, Osamu; Nakai, Yukie; Miyamoto, Shin'ichi; Oyama, Tsunehiro; Kawamoto, Toshihiro; Whelan, Kelly A; Nakagawa, Hiroshi; Chiba, Tsutomu; Matsuda, Tomonari; Muto, Manabu

    2015-09-16

    Acetaldehyde is an ethanol-derived definite carcinogen that causes oesophageal squamous cell carcinoma (ESCC). Aldehyde dehydrogenase 2 (ALDH2) is a key enzyme that eliminates acetaldehyde, and impairment of ALDH2 increases the risk of ESCC. ALDH2 is produced in various tissues including the liver, heart, and kidney, but the generation and functional roles of ALDH2 in the oesophagus remain elusive. Here, we report that ethanol drinking increased ALDH2 production in the oesophagus of wild-type mice. Notably, levels of acetaldehyde-derived DNA damage represented by N(2)-ethylidene-2'-deoxyguanosine were higher in the oesophagus of Aldh2-knockout mice than in wild-type mice upon ethanol consumption. In vitro experiments revealed that acetaldehyde induced ALDH2 production in both mouse and human oesophageal keratinocytes. Furthermore, the N(2)-ethylidene-2'-deoxyguanosine levels increased in both Aldh2-knockout mouse keratinocytes and ALDH2-knockdown human keratinocytes treated with acetaldehyde. Conversely, forced production of ALDH2 sharply diminished the N(2)-ethylidene-2'-deoxyguanosine levels. Our findings provide new insight into the preventive role of oesophageal ALDH2 against acetaldehyde-derived DNA damage.

  8. Adsorption of acetaldehyde on ice as seen from computer simulation and infrared spectroscopy measurements.

    PubMed

    Darvas, Mária; Lasne, Jérôme; Laffon, Carine; Parent, Philippe; Picaud, Sylvain; Jedlovszky, Pál

    2012-03-06

    Detailed investigation of the adsorption of acetaldehyde on I(h) ice is performed under tropospheric conditions by means of grand canonical Monte Carlo computer simulations and compared to infrared spectroscopy measurements. The experimental and simulation results are in a clear accordance with each other. The simulations indicate that the adsorption process follows Langmuir behavior in the entire pressure range of the vapor phase of acetaldehyde. Further, it was found that the adsorption layer is strictly monomolecular, and the adsorbed acetaldehyde molecules are bound to the ice surface by only one hydrogen bond, typically formed with the dangling H atoms at the ice surface, in agreement with the experimental results. Besides this hydrogen bonding, at high surface coverages dipolar attraction between neighboring acetaldehyde molecules also contributes considerably to the energy gain of the adsorption. The acetaldehyde molecules adopt strongly tilted orientations relative to the ice surface, the tilt angle being scattered between 50° and 90° (i.e., perpendicular orientation). The range of the preferred tilt angles narrows, and the preference for perpendicular orientation becomes stronger upon saturation of the adsorption layer. The CH(3) group of the acetaldehyde molecules points as straight away from the ice surface within the constraint imposed by the tilt angle adopted by the molecule as possible. The heat of adsorption at infinitely low coverage is found to be -36 ± 2 kJ/mol from the infrared spectroscopy measurement, which is in excellent agreement with the computer simulation value of -34.1 kJ/mol.

  9. Protective effect of sodium ferulate on acetaldehyde-treated precision-cut rat liver slices.

    PubMed

    Guo, Yu; Wu, Xiao-Qian; Zhang, Chun; Liao, Zhang-Xiu; Wu, Yong; Wang, Hui

    2012-06-01

    Activated hepatic stellate cells (HSCs) play a key role in hepatic fibrogenesis, and inhibition of HSC activation may prevent liver fibrosis. Acetaldehyde, the most deleterious metabolite of alcohol, triggers HSC activation in alcoholic liver injury. In the present study, we investigated the protective effect of sodium ferulate (SF), a sodium salt of ferulic acid that is rich in fruits and vegetables, on acetaldehyde-stimulated HSC activation using precision-cut liver slices (PCLSs). Rat PCLSs were co-incubated with 350 μM acetaldehyde and different concentrations of SF. Hepatotoxicity was assessed by measuring enzyme leakage and malondialdehyde content in tissue. α-Smooth muscle actin, transforming growth factor-β(1), and hydroxyproline were determined to assess the activation of HSCs. In addition, matrix metalloproteinase (MMP)-1 and the tissue inhibitor of metalloproteinase (TIMP-1) were determined to evaluate collagen degradation. SF prominently prevented the enzyme leakage in acetaldehyde-treated slices and also inhibited HSC activation and collagen production stimulated by acetaldehyde. In addition, SF increased MMP-1 expression and decreased TIMP-1 expression. These results showed that SF protected PCLSs from acetaldehyde-stimulated HSC activation and liver injury, which may be associated with the attenuation of oxidative injury and acceleration of collagen degradation.

  10. Nitrosation Reactions of Ethyl Centralite

    DTIC Science & Technology

    1977-02-01

    up in ethyl alcohol, and the extract was treated with animai charcoal and filtered to give a yellow solution. Evaporation to half volume and dilution...stirrer, thermometer, and dropping funnel. Concentrated hydrochloric acid (25 ml) was slowly added while stirring, followed by a solution of a NaNO (6

  11. S-Ethyl dipropylthiocarbamate (EPTC)

    Integrated Risk Information System (IRIS)

    S - Ethyl dipropylthiocarbamate ( EPTC ) ; CASRN 759 - 94 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessme

  12. Detection of interstellar ethyl cyanide

    NASA Technical Reports Server (NTRS)

    Johnson, D. R.; Lovas, F. J.; Gottlieb, C. A.; Gottlieb, E. W.; Litvak, M. M.; Thaddeus, P.; Guelin, M.

    1977-01-01

    Twenty-four millimeter-wave emission lines of ethyl cyanide (CH3CH2CN) have been detected in the Orion Nebula (OMC-1) and seven in Sgr B2. To derive precise radial velocities from the astronomical data, a laboratory measurement of the rotational spectrum of ethyl cyanide has been made at frequencies above 41 GHz. In OMC-1, the rotational temperature of ethyl cyanide is 90 K (in good agreement with other molecules), the local-standard-of-rest radial velocity is 4.5 + or - 1.0 km/s (versus 8.5 km/s for most molecules), and the column density is 1.8 by 10 to the 14th power per sq cm (a surprisingly high figure for a complicated molecule). The high abundance of ethyl cyanide in the Orion Nebula suggests that ethane and perhaps larger saturated hydrocarbons may be common constituents of molecular clouds and have escaped detection only because they are nonpolar or only weakly polar.

  13. Nanofabrication in cellulose acetate.

    PubMed

    Zeng, Hongjun; Lajos, Robert; Metlushko, Vitali; Elzy, Ed; An, Se Young; Sautner, Joshua

    2009-03-07

    We have demonstrated nanofabrication with commercialized cellulose acetate. Cellulose acetate is used for bulk nanofabrication and surface nanofabrication. In bulk nanofabrication, cellulose acetate reacts with an e-beam and permanent patterns are formed in it instead of being transferred to other substrates. We have studied the nano relief modulation performance of cellulose acetate before and after development. The depth of the nanopatterns is magnified after development, and is varied by exposing dosage and line width of the pattern. The thinnest 65 nm wide line is achieved in the bulk fabrication. We also demonstrate a binary phase Fresnel lens array which is directly patterned in a cellulose acetate sheet. Because of its unique mechanical and optical properties, cellulose is a good candidate for a template material for soft imprinting lithography. In the surface nanofabrication, cellulose acetate thin film spin-coated on silicon wafers is employed as a new resist for e-beam lithography. We achieved 50 nm lines with 100 nm pitches, dots 50 nm in diameter, and single lines with the smallest width of 20 nm. As a new resist of e-beam lithography, cellulose acetate has high resolution comparable with conventional resists, while having several advantages such as low cost, long stock time and less harmfulness to human health.

  14. Relative reactivities of histamine and indoleamines with acetaldehyde.

    PubMed

    Ohya, Takeshi; Niitsu, Masaru

    2003-08-01

    Relative reactivities of histamine and indoleamines such as tryptamine, 5-hydroxytryptamine and 5-methoxytryptamine with acetaldehyde (AA) under physiological conditions were investigated. AA was found to have much higher reactivity towards histamine than towards indoleamines. For example, when a reaction mixture of AA (1 mM) and histamine or tryptamine (5 mM) in 0.1 M phosphate buffer (pH 7.4) was incubated at 37 degrees C for 24 h, AA decreased by 11% in the case of tryptamine, while in the case of histamine, it decreased 88%. In addition, the reaction product of AA with histamine was investigated. Mixtures of a fixed amount of histamine (5 mM) and various amounts of AA (1-20 mM) in phosphate buffer (pH 7.4) were incubated for 5 h at 37 degrees C. In all cases, only one product, 4-methylspinaceamine (4-MSPA), was observed. The yield of 4-MSPA was in approximate agreement with the losses of histamine and AA, indicating that the loss of histamine caused by the reaction of AA was quantatively converted to 4-MSPA. These results show that the reaction of AA with histamine easily takes place to produce 4-MSPA in an aqueous medium close to physiological conditions.

  15. Acetaldehyde involvement in ethanol's postabsortive effects during early ontogeny

    PubMed Central

    March, Samanta M.; Abate, P.; Molina, Juan C.

    2013-01-01

    Clinical and biomedical studies sustains the notion that early ontogeny is a vulnerable window to the impact of alcohol. Experiences with the drug during these stages increase latter disposition to prefer, use or abuse ethanol. This period of enhanced sensitivity to ethanol is accompanied by a high rate of activity in the central catalase system, which metabolizes ethanol in the brain. Acetaldehyde (ACD), the first oxidation product of ethanol, has been found to share many neurobehavioral effects with the drug. Cumulative evidence supports this notion in models employing adults. Nevertheless very few studies have been conducted to analyze the role of ACD in ethanol postabsorptive effects, in newborns or infant rats. In this work we review recent experimental literature that syndicates ACD as a mediator agent of reinforcing aspects of ethanol, during early ontogenetic stages. We also show a meta-analytical correlational approach that proposes how differences in the activity of brain catalase across ontogeny, could be modulating patterns of ethanol consumption. PMID:23801947

  16. 49 CFR 173.322 - Ethyl chloride.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Ethyl chloride. 173.322 Section 173.322 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.322 Ethyl chloride. Ethyl chloride must...

  17. 49 CFR 173.322 - Ethyl chloride.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Ethyl chloride. 173.322 Section 173.322 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.322 Ethyl chloride. Ethyl chloride must...

  18. 49 CFR 173.322 - Ethyl chloride.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Ethyl chloride. 173.322 Section 173.322 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.322 Ethyl chloride. Ethyl chloride must...

  19. 49 CFR 173.322 - Ethyl chloride.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Ethyl chloride. 173.322 Section 173.322 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.322 Ethyl chloride. Ethyl chloride must...

  20. 21 CFR 172.868 - Ethyl cellulose.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethyl cellulose. 172.868 Section 172.868 Food and... Multipurpose Additives § 172.868 Ethyl cellulose. The food additive ethyl cellulose may be safely used in food in accordance with the following prescribed conditions: (a) The food additive is a cellulose...

  1. 21 CFR 172.868 - Ethyl cellulose.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethyl cellulose. 172.868 Section 172.868 Food and... Multipurpose Additives § 172.868 Ethyl cellulose. The food additive ethyl cellulose may be safely used in food in accordance with the following prescribed conditions: (a) The food additive is a cellulose...

  2. 21 CFR 172.868 - Ethyl cellulose.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethyl cellulose. 172.868 Section 172.868 Food and... Multipurpose Additives § 172.868 Ethyl cellulose. The food additive ethyl cellulose may be safely used in food in accordance with the following prescribed conditions: (a) The food additive is a cellulose...

  3. 21 CFR 573.420 - Ethyl cellulose.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ethyl cellulose. 573.420 Section 573.420 Food and... Listing § 573.420 Ethyl cellulose. The food additive ethyl cellulose may be safely used in animal feed in accordance with the following prescribed conditions: (a) The food additive is a cellulose ether...

  4. 21 CFR 172.868 - Ethyl cellulose.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethyl cellulose. 172.868 Section 172.868 Food and... Multipurpose Additives § 172.868 Ethyl cellulose. The food additive ethyl cellulose may be safely used in food in accordance with the following prescribed conditions: (a) The food additive is a cellulose...

  5. 21 CFR 184.1293 - Ethyl alcohol.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethyl alcohol. 184.1293 Section 184.1293 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1293 Ethyl alcohol. (a) Ethyl alcohol (ethanol) is the chemical C2H5OH....

  6. 21 CFR 184.1293 - Ethyl alcohol.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethyl alcohol. 184.1293 Section 184.1293 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1293 Ethyl alcohol. (a) Ethyl alcohol (ethanol) is the chemical C2H5OH....

  7. 21 CFR 184.1293 - Ethyl alcohol.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethyl alcohol. 184.1293 Section 184.1293 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1293 Ethyl alcohol. (a) Ethyl alcohol (ethanol) is the chemical C2H5OH. (b) The ingredient meets...

  8. 21 CFR 184.1293 - Ethyl alcohol.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethyl alcohol. 184.1293 Section 184.1293 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1293 Ethyl alcohol. (a) Ethyl alcohol (ethanol) is the chemical C2H5OH....

  9. 21 CFR 184.1293 - Ethyl alcohol.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethyl alcohol. 184.1293 Section 184.1293 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1293 Ethyl alcohol. (a) Ethyl alcohol (ethanol) is the chemical C2H5OH....

  10. Uptake and Reactions of Formaldehyde, Acetaldehyde, Acetone, Propanal and Ethanol in Sulfuric Acid solutions at 200-240 K: Implications for upper tropospheric aerosol composition

    NASA Astrophysics Data System (ADS)

    Iraci, L. T.; Williams, M. B.; Axson, J.; Michelsen, R.

    2007-12-01

    The production of light absorbing, organic material in aerosol that is normally considered to be transparent in the UV and visible wavelength regions has significant implications for biogeochemical cycling and climate modelling. Production mechanisms likely involve carbonyl compounds such as formaldehyde, acetone, acetaldehyde and propanal that are present in significant quantities in the upper troposphere (UT). In this study, we have performed experiments focusing on a class of acid catalyzed carbonyl reactions, the formation of acetals. R2C=O + 2R'OH --> R2C(OR')2 + H2O Using a Knudsen cell apparatus, we have measured the rate of uptake of formaldehyde, acetaldehyde, acetone, propanal, and ethanol into sulfuric acid solutions ranging between 40-70 wt% of acid, containing 0-0.1 M of ethanol, acetone or formaldehyde at temperatures of 220-250 K. For all reactant pairs, the aldol condensation path, including self reaction, should be insignificant at the acidities studied. Evidence for reaction between organics was observed for all pairs, except those involving propanal which were likely limited by the very low solubility. We attribute enhanced uptake to the formation of acetals, such as 1,1-diethoxyethane and 2,2- diethoxypropane, among others. Enhanced uptake was observed to proceed on timescales > 1 hour and sometimes shows complex dependence on acidity that is likely related to speciation of the individual carbonyls in acidic solution. The acetal products do not absorb in the visible but are less volatile than parent molecules, allowing for accumulation in sulfuric acid particles, and enhanced uptake. Cross reactions of carbonyls with alcohols in sulfuric acid medium have not been previously measured, yet methanol and ethanol show high solubility and are present at significant concentrations in the UT. Thus even at slow reaction rates, the acetal reaction has ample starting material and proceeds under conditions common to the UT. We will present results for the

  11. The fermentation stress response protein Aaf1p/Yml081Wp regulates acetate production in Saccharomyces cerevisiae.

    PubMed

    Walkey, Christopher J; Luo, Zongli; Madilao, Lufiani L; van Vuuren, Hennie J J

    2012-01-01

    The production of acetic acid during wine fermentation is a critical issue for wineries since the sensory quality of a wine can be affected by the amount of acetic acid it contains. We found that the C2H2-type zinc-finger transcription factor YML081Wp regulated the mRNA levels of ALD4 and ALD6, which encode a cytosolic acetaldehyde dehydrogenase (ACDH) and a mitochondrial ACDH, respectively. These enzymes produce acetate from acetaldehyde as part of the pyruvate dehydrogenase bypass. This regulation was also reflected in the protein levels of Ald4p and Ald6p, as well as total ACDH activity. In the absence of ALD6, YML081W had no effect on acetic acid levels, suggesting that this transcription factor's effects are mediated primarily through this gene. lacZ reporter assays revealed that Yml081wp stimulates ALD6 transcription, in large part from a GAGGGG element 590 base pairs upstream of the translation start site. The non-annotated ORF YML081W therefore encodes a transcription factor that regulates acetate production in Saccharomyces cerevisiae. We propose AAF1 as a gene name for the YML081W ORF.

  12. A comparative study of biodegradation of vinyl acetate by environmental strains.

    PubMed

    Greń, Izabela; Gąszczak, Agnieszka; Guzik, Urszula; Bartelmus, Grażyna; Labużek, Sylwia

    2011-06-01

    Four Gram-negative strains, E3_2001, EC1_2004, EC3_3502 and EC2_3502, previously isolated from soil samples, were subjected to comparative studies in order to select the best vinyl acetate degrader for waste gas treatment. Comparison of biochemical and physiological tests as well as the results of fatty acids analyses were comparable with the results of 16S rRNA gene sequence analyses. The isolated strains were identified as Pseudomonas putida EC3_2001, Pseudomonas putida EC1_2004, Achromobacter xylosoxidans EC3_3502 and Agrobacterium sp. EC2_3502 strains. Two additional strains, Pseudomonas fluorescens PCM 2123 and Stenotrophomonas malthophilia KB2, were used as controls. All described strains were able to use vinyl acetate as the only source of carbon and energy under aerobic as well as oxygen deficiency conditions. Esterase, alcohol dehydrogenase and aldehyde dehydrogenase were involved in vinyl acetate decomposition under aerobic conditions. Shorter degradation times of vinyl acetate were associated with accumulation of acetic acid, acetaldehyde and ethanol as intermediates in the culture fluids of EC3_2001 and KB2 strains. Complete aerobic degradation of vinyl acetate combined with a low increase in biomass was observed for EC3_2001 and EC1_2004 strains. In conclusion, P. putida EC1_2004 is proposed as the best vinyl acetate degrader for future waste gas treatment in trickle-bed bioreactors.

  13. Optimization in the formaldehyde determination at sub-ppm level from acetals by HPLC-DAD

    SciTech Connect

    Medvedovici, A.; David, V.; David, F.; Sandra, P.

    1999-02-01

    Carbonylic compounds are mainly monitored as atmospheric pollutants, due to their major contribution to the formation of free radicals and ozone, by means of photolysis. Determination of formaldehyde at sub-ppm level as impurity in acetals using HPLC-DAD is described. Automated on-line precolumn derivatization reaction with 2,4-dinitrophenylhydrazine has been used. Breakdown rates of some industrial scale used acetals (Methylal, Ethylal) to formaldehyde by hydrolysis in aqueous media, according to pH, are described.

  14. Acetaldehyde self-administration by a two-bottle choice paradigm: consequences on emotional reactivity, spatial learning, and memory.

    PubMed

    Plescia, Fulvio; Brancato, Anna; Venniro, Marco; Maniaci, Giuseppe; Cannizzaro, Emanuele; Sutera, Flavia Maria; De Caro, Viviana; Giannola, Libero Italo; Cannizzaro, Carla

    2015-03-01

    Acetaldehyde, the first alcohol metabolite, is responsible for many pharmacological effects that are not clearly distinguishable from those exerted by its parent compound. It alters motor performance, induces reinforced learning and motivated behavior, and produces different reactions according to the route of administration and the relative accumulation in the brain or in the periphery. The effective activity of oral acetaldehyde represents an unresolved field of inquiry that deserves further investigation. Thus, this study explores the acquisition and maintenance of acetaldehyde drinking behavior in adult male rats, employing a two-bottle choice paradigm for water and acetaldehyde solution (from 0.9% to 3.2% v/v), over 8 weeks. The behavioral consequences exerted by chronic acetaldehyde intake are assessed by a set of different tests: trials in an open-field arena and elevated-plus maze provided information on both general motor and explorative activity, and anxiety-driven behavioral responses. The Morris water maze allowed the exploration of cognitive processes such as spatial learning and memory. Determination of acetaldehyde levels in the brain was carried out at the end of the drinking paradigm. Our results indicate that rats exposed for the first time to acetaldehyde at 0.9% displayed a regular and stable daily drinking pattern that reached higher values and a "peaks and drops" shaped-trend when acetaldehyde concentration was increased to 3.2%. Accordingly, an increase in acetaldehyde levels in the brain was determined compared to non-acetaldehyde drinking rats. Acetaldehyde intake during the free-choice paradigm exerted an anxiogenic response in the open-field arena and elevated-plus maze, which in turn correlates with an enhancement in cognitive flexibility and spatial orientation skills, when an adaptive response to a stressful environmental challenge was required. These findings further support the idea that acetaldehyde is indeed a centrally active and

  15. Increasing Anaerobic Acetate Consumption and Ethanol Yields in Saccharomyces cerevisiae with NADPH-Specific Alcohol Dehydrogenase

    PubMed Central

    Henningsen, Brooks M.; Hon, Shuen; Covalla, Sean F.; Sonu, Carolina; Argyros, D. Aaron; Barrett, Trisha F.; Wiswall, Erin; Froehlich, Allan C.

    2015-01-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter−1 acetate during fermentation of 114 g liter−1 glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter−1, this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter−1 and raised the ethanol yield to 7% above the wild-type level. PMID:26386051

  16. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase.

    PubMed

    Henningsen, Brooks M; Hon, Shuen; Covalla, Sean F; Sonu, Carolina; Argyros, D Aaron; Barrett, Trisha F; Wiswall, Erin; Froehlich, Allan C; Zelle, Rintze M

    2015-12-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter(-1) acetate during fermentation of 114 g liter(-1) glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter(-1), this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter(-1) and raised the ethanol yield to 7% above the wild-type level.

  17. Acetate ester production by Chinese yellow rice wine yeast overexpressing the alcohol acetyltransferase-encoding gene ATF2.

    PubMed

    Zhang, J; Zhang, C; Qi, Y; Dai, L; Ma, H; Guo, X; Xiao, D

    2014-11-27

    Acetate ester, which are produced by fermenting yeast cells in an enzyme-catalyzed intracellular reaction, are responsible for the fruity character of fermented alcoholic beverages such as Chinese yellow rice wine. Alcohol acetyltransferase (AATase) is currently believed to be the key enzyme responsible for the production of acetate ester. In order to determine the precise role of the ATF2 gene in acetate ester production, an ATF2 gene encoding a type of AATase was overexpressed and the ability of the mutant to form acetate esters (including ethyl acetate, isoamyl acetate, and isobutyl acetate) was investigated. The results showed that after 5 days of fermentation, the concentrations of ethyl acetate, isoamyl acetate, and isobutyl acetate in yellow rice wines fermented with EY2 (pUC-PIA2K) increased to 137.79 mg/L (an approximate 4.9-fold increase relative to the parent cell RY1), 26.68 mg/L, and 7.60 mg/L, respectively. This study confirms that the ATF2 gene plays an important role in the production of acetate ester production during Chinese yellow rice wine fermentation, thereby offering prospects for the development of yellow rice wine yeast starter strains with optimized ester-producing capabilities.

  18. The Role of Acetaldehyde in the Increased Acceptance of Ethanol after Prenatal Ethanol Exposure.

    PubMed

    Gaztañaga, Mirari; Angulo-Alcalde, Asier; Spear, Norman E; Chotro, M Gabriela

    2017-01-01

    Recent studies show that acetaldehyde, the first metabolite in the oxidation of ethanol, can be responsible for both, the appetitive and the aversive effects produced by ethanol intoxication. More specifically, it has been hypothesized that acetaldehyde produced in the periphery by the liver is responsible for the aversive effects of ethanol, while the appetitive effects relate to the acetaldehyde produced centrally through the catalase system. On the other hand, from studies in our and other laboratories, it is known that ethanol exposure during the last gestational days (GD) consistently enhances the postnatal acceptance of ethanol when measured during early ontogeny in the rat. This increased liking of ethanol is a conditioned appetitive response acquired by the fetus by the association of ethanol's flavor and an appetitive reinforcer. Although this reinforcer has not yet been fully identified, one possibility points to acetaldehyde produced centrally in the fetus as a likely candidate. This hypothesis is supported by data showing that very early in the rat's ontogeny brain catalases are functional, while the liver's enzymatic system is still immature. In this study, rat dams were administered on GD 17-20 with water or ethanol, together with an acetaldehyde-sequestering agent (D-penicillamine). The offspring's responses to ethanol was then assessed at different postnatal stages with procedures adequate for each developmental stage: on day 1, using the "odor crawling locomotion test" to measure ethanol's odor attractiveness; on day 5, in an operant conditioning procedure with ethanol as the reinforcer; and on day 14 in an ethanol intake test. Results show that the absence of acetaldehyde during prenatal ethanol exposure impeded the observation of the increased acceptance of ethanol at any age. This seems to confirm the crucial role of acetaldehyde as a reinforcer in the appetitive learning occurring during prenatal ethanol exposure.

  19. The ethanol metabolite acetaldehyde increases paracellular drug permeability in vitro and oral bioavailability in vivo.

    PubMed

    Fisher, Scott J; Swaan, Peter W; Eddington, Natalie D

    2010-01-01

    Alcohol consumption leads to the production of the highly reactive ethanol metabolite, acetaldehyde, which may affect intestinal tight junctions and increase paracellular permeability. We examined the effects of elevated acetaldehyde within the gastrointestinal tract on the permeability and bioavailability of hydrophilic markers and drug molecules of variable molecular weight and geometry. In vitro permeability was measured unidirectionally in Caco-2 and MDCKII cell models in the presence of acetaldehyde, ethanol, or disulfiram, an aldehyde dehydrogenase inhibitor, which causes acetaldehyde formation when coadministered with ethanol in vivo. Acetaldehyde significantly lowered transepithelial resistance in cell monolayers and increased permeability of the low-molecular-weight markers, mannitol and sucrose; however, permeability of high-molecular-weight markers, polyethylene glycol and inulin, was not affected. In vivo permeability was assessed in male Sprague-Dawley rats treated for 6 days with ethanol, disulfiram, or saline alone or in combination. Bioavailability of naproxen was not affected by any treatment, whereas that of paclitaxel was increased upon acetaldehyde exposure. Although disulfiram has been shown to inhibit multidrug resistance-1 P-glycoprotein (P-gp) in vitro, our data demonstrate that the known P-gp substrate paclitaxel is not affected by coadministration of disulfiram. In conclusion, we demonstrate that acetaldehyde significantly modulates tight junctions and paracellular permeability in vitro as well as the oral bioavailability of low-molecular-weight hydrophilic probes and therapeutic molecules in vivo even when these molecules are substrates for efflux transporters. These studies emphasize the significance of ethanol metabolism and drug interactions outside of the liver.

  20. The Role of Acetaldehyde in the Increased Acceptance of Ethanol after Prenatal Ethanol Exposure

    PubMed Central

    Gaztañaga, Mirari; Angulo-Alcalde, Asier; Spear, Norman E.; Chotro, M. Gabriela

    2017-01-01

    Recent studies show that acetaldehyde, the first metabolite in the oxidation of ethanol, can be responsible for both, the appetitive and the aversive effects produced by ethanol intoxication. More specifically, it has been hypothesized that acetaldehyde produced in the periphery by the liver is responsible for the aversive effects of ethanol, while the appetitive effects relate to the acetaldehyde produced centrally through the catalase system. On the other hand, from studies in our and other laboratories, it is known that ethanol exposure during the last gestational days (GD) consistently enhances the postnatal acceptance of ethanol when measured during early ontogeny in the rat. This increased liking of ethanol is a conditioned appetitive response acquired by the fetus by the association of ethanol’s flavor and an appetitive reinforcer. Although this reinforcer has not yet been fully identified, one possibility points to acetaldehyde produced centrally in the fetus as a likely candidate. This hypothesis is supported by data showing that very early in the rat’s ontogeny brain catalases are functional, while the liver’s enzymatic system is still immature. In this study, rat dams were administered on GD 17–20 with water or ethanol, together with an acetaldehyde-sequestering agent (D-penicillamine). The offspring’s responses to ethanol was then assessed at different postnatal stages with procedures adequate for each developmental stage: on day 1, using the “odor crawling locomotion test” to measure ethanol’s odor attractiveness; on day 5, in an operant conditioning procedure with ethanol as the reinforcer; and on day 14 in an ethanol intake test. Results show that the absence of acetaldehyde during prenatal ethanol exposure impeded the observation of the increased acceptance of ethanol at any age. This seems to confirm the crucial role of acetaldehyde as a reinforcer in the appetitive learning occurring during prenatal ethanol exposure. PMID:28197082

  1. Determination of acetaldehyde in saliva by gas-diffusion flow injection analysis.

    PubMed

    Ramdzan, Adlin N; Mornane, Patrick J; McCullough, Michael J; Mazurek, Waldemar; Kolev, Spas D

    2013-07-05

    The consumption of ethanol is known to increase the likelihood of oral cancer. In addition, there has been a growing concern about possible association between long term use of ethanol-containing mouthwashes and oral cancer. Acetaldehyde, known to be a carcinogen, is the first metabolite of ethanol and it can be produced in the oral cavity after consumption or exposure to ethanol. This paper reports on the development of a gas-diffusion flow injection method for the online determination of salivary acetaldehyde by its colour reaction with 3-methyl-2-benzothiazolinone hydrazone (MBTH) and ferric chloride. Acetaldehyde samples and standards (80 μL) were injected into the donor stream containing NaCl from which acetaldehyde diffused through the hydrophobic Teflon membrane of the gas-diffusion cell into the acceptor stream containing the two reagents mentioned above. The resultant intense green coloured dye was monitored spectrophotometrically at 600 nm. Under the optimum working conditions the method is characterized by a sampling rate of 9h(-1), a linear calibration range of 0.5-15 mg L(-1) (absorbance=5.40×10(-2) [acetaldehyde, mg L(-1)], R(2)=0.998), a relative standard deviation (RSD) of 1.90% (n=10, acetaldehyde concentration of 2.5 mg L(-1)), and a limit of detection (LOD) of 12.3 μg L(-1). The LOD and sampling rate of the proposed method are superior to those of the conventional gas chromatographic (GC) method (LOD=93.0 μg L(-1) and sampling rate=4 h(-1)). The reliability of the proposed method was illustrated by the fact that spiked with acetaldehyde saliva samples yielded excellent recoveries (96.6-101.9%), comparable to those obtained by GC (96.4-102.3%) and there was no statistically significant difference at the 95% confidence level between the two methods when non-spiked saliva samples were analysed.

  2. Quantification by SIFT-MS of acetaldehyde released by lung cells in a 3D model.

    PubMed

    Rutter, Abigail V; Chippendale, Thomas W E; Yang, Ying; Španěl, Patrik; Smith, David; Sulé-Suso, Josep

    2013-01-07

    Our previous studies have shown that both lung cancer cells and non-malignant lung cells release acetaldehyde in vitro. However, data from other laboratories have produced conflicting results. Furthermore, all these studies have been carried out in 2D models which are less physiological cell growth systems when compared to 3D models. Therefore, we have carried out further work on the release of acetaldehyde by lung cells in 3D collagen hydrogels. Lung cancer cells CALU-1 and non-malignant lung cells NL20 were seeded in these hydrogels at different cell concentrations and the release of acetaldehyde was measured with the Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) technique. The data obtained showed that the amount of acetaldehyde released by both cell types grown in a 3D model is higher when compared to that of the same cells grown in 2D models. More importantly, acetaldehyde from the headspace of lung cancer cells could be measured even at a low cell concentration (10(5) cells per hydrogel). The differential of acetaldehyde release could be, depending on the cell concentration, more than 3 fold higher for cancer cells when compared to non-malignant lung cells. This pilot study is the first to study acetaldehyde emission from albeit only two cell types cultured in 3D scaffolds. Clearly, from such limited data the behaviour of other cell types and of tumour cells in vivo cannot be predicted with confidence. Nevertheless, this work represents another step in the search for volatile biomarkers of tumour cells, the ultimate goal of which is to exploit volatile compounds in exhaled breath and other biological fluids as biomarkers of tumours in vivo.

  3. The Ground and First Excited Torsional States of Acetic Acid.

    PubMed

    Ilyushin, V. V.; Alekseev, E. A.; Dyubko, S. F.; Podnos, S. V.; Kleiner, I.; Margulès, L.; Wlodarczak, G.; Demaison, J.; Cosléou, J.; Maté, B.; Karyakin, E. N.; Golubiatnikov, G. Yu.; Fraser, G. T.; Suenram, R. D.; Hougen, J. T.

    2001-02-01

    A global fit of microwave and millimeter-wave rotational transitions in the ground and first excited torsional states (v(t) = 0 and 1) of acetic acid (CH(3)COOH) is reported, which combines older measurements from the literature with new measurements from Kharkov, Lille, and NIST. The fit uses a model developed initially for acetaldehyde and methanol-type internal rotor molecules. It requires 34 parameters to achieve a unitless weighted standard deviation of 0.84 for a total of 2518 data and includes A- and E-species transitions with J

  4. Decontamination of gaseous acetaldehyde over CoOx-loaded SiO2 xerogels under ambient, dark conditions.

    PubMed

    Martyanov, I N; Uma, S; Rodrigues, S; Klabunde, K J

    2005-03-15

    A series of CoO(x)-doped silica xerogels with various Co(2+) loadings (Co/Si = 0, 1, 2, 4, 6, and 10 mol %) has been prepared. All xerogels exhibit large (800-1050 m(2)/g) surface areas. Narrow pore size distributions with pore size maxima around 3 nm are characteristic for Co/Si = 1, 2, 4, 6, 10 samples. As-prepared CoO(x)/SiO(2) xerogels show high catalytic activity in the air oxidation of gaseous acetaldehyde at room temperature. Carbon dioxide and trace amounts of methane are the only products detected in the gas phase. Acetic acid, a less volatile product, resides on the surface of the xerogels but can slowly desorb. The formation of CO(2) begins after an induction period. The beginning of CO(2) production coincides with the conversion of Co(2+) incorporated in the SiO(2) framework into Co(3+). Thermogravimetry/gas chromatography/mass spectrometry analysis, UV-vis and FTIR spectroscopies, as well as kinetic measurements are employed for CoO(x)/SiO(2) catalyst characterization. A possible mechanism of the reaction is discussed.

  5. Breeding of a sake yeast mutant with enhanced ethyl caproate productivity in sake brewing using rice milled at a high polishing ratio.

    PubMed

    Takahashi, Toshinari; Ohara, Yusuke; Sueno, Kazuo

    2017-03-09

    Sake yeast produces a fruity flavor known as ginjo-ko-which is mainly attributable to ethyl caproate and isoamyl acetate-during fermentation in sake brewing. The production of these flavor components is inhibited by unsaturated fatty acids derived from the outer layer of rice as raw material. We isolated three mutants (hec2, hec3, and hec6) with enhanced ethyl caproate productivity in sake brewing using rice milled at a high polishing ratio from a cerulenin-resistant mutant derived from the hia1 strain, which shows enhanced isoamyl acetate productivity. The hec2 mutant had the homozygous FAS2 mutation Gly1250Ser, which is known to confer high ethyl caproate productivity. When the homozygous FAS2 mutation Gly1250Ser was introduced into strain hia1, ethyl caproate productivity was increased but neither this nor intracellular caproic acid content approached the levels observed in the hec2 mutant, indicating that a novel mutation was responsible for the high ethyl caproate productivity. We also found that the expression of EEB1 encoding acyl-coenzyme A: ethanol O-acyltransferase (AEATase) and enzymatic activity were increased in the hec2 mutant. These results suggest that the upregulation of EEB1 expression and AEATase activity may also have contributed to the enhancement of ethyl caproate synthesis from ethanol and caproyl-CoA. Our findings are useful for the brewing of sake with improved flavor due to high levels of isoamyl acetate and ethyl caproate.

  6. Measurement of acetaldehyde in exhaled breath using a laser absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Kamat, Pratyuma C.; Roller, Chad B.; Namjou, Khosrow; Jeffers, James D.; Faramarzalian, Ali; Salas, Rodolfo; McCann, Patrick J.

    2007-07-01

    A high-resolution liquid-nitrogen-free mid-infrared tunable diode laser absorption spectroscopy (TDLAS) system was used to perform real-time measurement of acetaldehyde concentrations in human exhaled breath following ingestion of an alcoholic beverage. Acetaldehyde absorption features were measured near 5.79 μm (1727 cm-1) using a IV-VI semiconductor laser, a 100 m long path optical gas cell, and second- harmonic detection coupled with wavelength modulation. Acetaldehyde levels were measured with a minimum detection limit of 80 ppb for 5 s integration time. The variations in exhaled acetaldehyde levels over time were analyzed prior to and following ingestion of two different amounts of white wine. A method to calibrate acetaldehyde measurements internally using water vapor absorption lines was investigated to eliminate the need for system calibration with gas standards. The potential of a TDLAS system to be used as a noninvasive clinical tool for measurements of large volatile compounds with possible applications in cancer detection is demonstrated.

  7. Theoretical study of the mechanism of cycloaddition reaction between dichloro-germylidene and acetaldehyde

    NASA Astrophysics Data System (ADS)

    Lu, Xiuhui; Han, Junfeng; Xu, Yuehua; Shi, Leyi; Lian, Zhenxia

    2010-06-01

    The mechanism of the cycloadditional reaction between singlet dichloro-germylidene(R1) and (acetaldehyde(R2) has been investigated with MP2/6-31G* method, including geometry optimization, vibrational analysis and energies for the involved stationary points on the potential energy surface. From the potential energy profile, we predict that the cycloaddition reaction between singlet dichloro-germylidene and acetaldehyde has two competitive dominant reaction pathways. Going with the formation of two side products (INT3 and INT4), simultaneously. The two competitive reactions both consist of two steps: (1) two reactants firstly form a three-membered ring intermediate (INT1) and a twisted four-membered ring intermediate (INT2), respectively, both of which are barrier-free exothermic reactions of 44.5 and 63.0 kJ/mol; (2) then INT1 and INT2 further isomerize to a four-membered ring product (P1) and a chlorine-transfer product (P2) via transitions (TS1 and TS2), respectively, with the barriers of 9.3 and 1.0 kJ/mol; simultaneously, P1 and INT2 react further with acetaldehyde(R2) to give two side products (INT3 and INT4), respectively, which are also barrier-free exothermic reaction of 65.4 and 102.7 kJ/mol.

  8. Dissociative electron attachments to ethanol and acetaldehyde: A combined experimental and simulation study

    SciTech Connect

    Wang, Xu-Dong; Xuan, Chuan-Jin; Feng, Wen-Ling; Tian, Shan Xi

    2015-02-14

    Dissociation dynamics of the temporary negative ions of ethanol and acetaldehyde formed by the low-energy electron attachments is investigated by using the anion velocity map imaging technique and ab initio molecular dynamics simulations. The momentum images of the dominant fragments O{sup −}/OH{sup −} and CH{sub 3}{sup −} are recorded, indicating the low kinetic energies of O{sup −}/OH{sup −} for ethanol while the low and high kinetic energy distributions of O{sup −} ions for acetaldehyde. The CH{sub 3}{sup −} image for acetaldehyde also shows the low kinetic energy. With help of the dynamics simulations, the fragmentation processes are qualitatively clarified. A new cascade dissociation pathway to produce the slow O{sup −} ion via the dehydrogenated intermediate, CH{sub 3}CHO{sup −} (acetaldehyde anion), is proposed for the dissociative electron attachment to ethanol. After the electron attachment to acetaldehyde molecule, the slow CH{sub 3}{sup −} is produced quickly in the two-body dissociation with the internal energy redistributions in different aspects before bond cleavages.

  9. Acetaldehyde addition throughout the growth phase alleviates the phenotypic effect of zinc deficiency in Saccharomyces cerevisiae.

    PubMed

    Cheraiti, Naoufel; Sauvage, François-Xavier; Salmon, Jean-Michel

    2008-01-01

    During experiments to determine the effects of exogenously added acetaldehyde on pure cultures of various yeast strains, we discovered that an early acetaldehyde perfusion during the growth phase allowed several yeasts to partially overcome the phenotypic effects of zinc depletion during alcoholic fermentation. We, therefore, performed genome-wide expression and proteomic analysis on an industrial Saccharomyces cerevisiae yeast strain (VL1) growing in zinc-replete or zinc-depleted conditions in the presence of perfused acetaldehyde to identify molecular markers of this effect. Zinc depletion severely affects ethanol production and therefore nicotinamide adenine dinucleotide (NAD) regeneration, although we observed partial compensation by the upregulation of the poorly efficient Fe-dependent Adh4p in our conditions. A coordinate metabolic response was indeed observed in response to the early acetaldehyde perfusion, and particularly of the lower part of glycolysis, leading to the cellular replenishment of NAD cofactor. These various findings suggest that acetaldehyde exchange between strains may inhibit the growth of some yeast strains while encouraging the growth of others. This phenomenon could be particularly important for understanding the ecology of colonization of complex fermentation media by S. cerevisiae after elimination of non-Saccharomyces yeasts.

  10. Formaldehyde and acetaldehyde associated with the use of natural gas as a fuel for light vehicles

    NASA Astrophysics Data System (ADS)

    Corrêa, Sérgio M.; Arbilla, Graciela

    Data collected from 1998 to 2001 clearly show that formaldehyde levels in ambient air of the city of Rio de Janeiro increased in 2001 (Corrêa et al., 2003, Atmospheric Environment 37, 23-29). In order to continue this study, samples were collected at the same site in the period from 2001 to 2002. In this work, we present the observed trends for formaldehyde and acetaldehyde levels from 1998 to 2002. Mean formaldehyde levels increased from 20 ppb in 1998 to 80 ppb in 2002, while acetaldehyde concentrations remained nearly unchanged. The formaldehyde/acetaldehyde ratio increased from 1.0 to 4.5 in the same period of time. These results may be explained by the increasing use of compressed natural gas by the vehicular fleet, in substitution of ethanol and gasohol (a mixture of gasoline and ethanol, 24% v/v). In order to confirm this hypothesis, some experiments were carried out to estimate the formaldehyde and acetaldehyde emissions from 20 automobiles powered by natural gas. The results showed a mean formaldehyde/acetaldehyde emission ratio of 3.42 for natural gas-fueled vehicles and of 0.24 when the same vehicles are fueled with gasohol. These high levels of formaldehyde may be attributed to the incomplete combustion of methane (80-90% of the natural gas) that is catalytically converted to formaldehyde in the exhaust pipe.

  11. Design and Evaluation of Ethyl Cellulose Based Matrix Tablets of Ibuprofen with pH Modulated Release Kinetics

    PubMed Central

    Chandran, S.; Asghar, Laila F. A.; Mantha, Neelima

    2008-01-01

    Controlled release preparations have been reported to reduce the gastro irritant and ulcerogenic effects of non steroidal antiinflammatory drugs. In the present study, an attempt was made to develop matrix tablet-based controlled release formulations of ibuprofen, using ethyl cellulose as the rate-controlling polymer. In order to prevent initial release of the drug in the acidic environment of the stomach, cellulose acetate phthalate was incorporated in the matrix in varying amounts. It was found that with increasing the proportion of ethyl cellulose in the matrix, the drug release was extended for 14-16 h. Incorporation of cellulose acetate phthalate in ethyl cellulose matrix provided very low initial release of the drug in the first 2-3 h followed by enhanced release rate in alkaline medium owing to the high solubility of cellulose acetate phthalate at basic pH which led to creation of a porous matrix. It was concluded that combination of cellulose acetate phthalate with ethyl cellulose in the matrix base can be an effective means of developing a controlled release formulation of ibuprofen with very low initial release followed with controlled release up to 14-16 h. PMID:21394255

  12. Evaluation of the acetaldehyde production and degradation potential of 26 enological Saccharomyces and non-Saccharomyces yeast strains in a resting cell model system.

    PubMed

    Li, Erhu; de Orduña, Ramón Mira

    2011-09-01

    Acetaldehyde is relevant for wine aroma, wine color, and microbiological stability. Yeast are known to play a crucial role in production and utilization of acetaldehyde during fermentations but comparative quantitative data are scarce. This research evaluated the acetaldehyde metabolism of 26 yeast strains, including commercial Saccharomyces and non-Saccharomyces, in a reproducible resting cell model system. Acetaldehyde kinetics and peak values were highly genus, species, and strain dependent. Peak acetaldehyde values varied from 2.2 to 189.4 mg l(-1) and correlated well (r(2) = 0.92) with the acetaldehyde production yield coefficients that ranged from 0.4 to 42 mg acetaldehyde per g of glucose in absence of SO(2). S. pombe showed the highest acetaldehyde production yield coefficients and peak values. All other non-Saccharomyces species produced significantly less acetaldehyde than the S. cerevisiae strains and were less affected by SO(2) additions. All yeast strains could degrade acetaldehyde as sole substrate, but the acetaldehyde degradation rates did not correlate with acetaldehyde peak values or acetaldehyde production yield coefficients in incubations with glucose as sole substrate.

  13. The ethanol metabolite acetaldehyde induces water and salt intake via two distinct pathways in the central nervous system of rats.

    PubMed

    Ujihara, Izumi; Hitomi, Suzuro; Ono, Kentaro; Kakinoki, Yasuaki; Hashimoto, Hirofumi; Ueta, Yoichi; Inenaga, Kiyotoshi

    2015-12-01

    The sensation of thirst experienced after heavy alcohol drinking is widely regarded as a consequence of ethanol (EtOH)-induced diuresis, but EtOH in high doses actually induces anti-diuresis. The present study was designed to investigate the introduction mechanism of water and salt intake after heavy alcohol drinking, focusing on action of acetaldehyde, a metabolite of EtOH and a toxic substance, using rats. The aldehyde dehydrogenase (ALDH) inhibitor cyanamide was used to mimic the effect of prolonged acetaldehyde exposure because acetaldehyde is quickly degraded by ALDH. Systemic administration of a high-dose of EtOH at 2.5 g/kg induced water and salt intake with anti-diuresis. Cyanamide enhanced the fluid intake following EtOH and acetaldehyde administration. Systemic administration of acetaldehyde with cyanamide suppressed blood pressure and increased plasma renin activity. Blockade of central angiotensin receptor AT1R suppressed the acetaldehyde-induced fluid intake and c-Fos expression in the circumventricular organs (CVOs), which form part of dipsogenic mechanism in the brain. In addition, central administration of acetaldehyde together with cyanamide selectively induced water but not salt intake without changes in blood pressure. In electrophysiological recordings from slice preparations, acetaldehyde specifically excited angiotensin-sensitive neurons in the CVO. These results suggest that acetaldehyde evokes the thirst sensation following heavy alcohol drinking, by two distinct and previously unsuspected mechanisms, independent of diuresis. First acetaldehyde indirectly activates AT1R in the dipsogenic centers via the peripheral renin-angiotensin system following the depressor response and induces both water and salt intake. Secondly acetaldehyde directly activates neurons in the dipsogenic centers and induces only water intake.

  14. Branchial and renal pathology in the fish exposed chronically to methoxy ethyl mercuric chloride

    SciTech Connect

    Gill, T.S.; Pant, J.C.; Tewari, H.

    1988-08-01

    Pathological manifestations causally related to pesticide poisoning have been described in both surficial and internal tissues of the fishes. Among the various organomercurials are phenyl mercuric acetate, methyl mercuric dicyanidiamide, methoxy ethyl mercuric chloride, methoxy ethyl mercuric silicate etc. Of these, the methoxy ethyl mercuric chloride (MEMC) is used in agriculture as an antifungal seed dressing, and its toxicity is primarily manifest in the Hg/sup 2 +/ ion. This report describes pathogenesis of branchial and renal lesions in the common freshwater fish, Puntius conchonius exposed chronically to sublethal levels of MEMC. Prior to this, alterations in the peripheral blood and metabolite levels in response to experimental MEMC poisoning have been demonstrated in this species.

  15. Redirection of the Reaction Specificity of a Thermophilic Acetolactate Synthase toward Acetaldehyde Formation

    PubMed Central

    Cheng, Maria; Yoshiyasu, Hayato; Okano, Kenji; Ohtake, Hisao; Honda, Kohsuke

    2016-01-01

    Acetolactate synthase and pyruvate decarboxylase are thiamine pyrophosphate-dependent enzymes that convert pyruvate into acetolactate and acetaldehyde, respectively. Although the former are encoded in the genomes of many thermophiles and hyperthermophiles, the latter has been found only in mesophilic organisms. In this study, the reaction specificity of acetolactate synthase from Thermus thermophilus was redirected to catalyze acetaldehyde formation to develop a thermophilic pyruvate decarboxylase. Error-prone PCR and mutant library screening led to the identification of a quadruple mutant with 3.1-fold higher acetaldehyde-forming activity than the wild-type. Site-directed mutagenesis experiments revealed that the increased activity of the mutant was due to H474R amino acid substitution, which likely generated two new hydrogen bonds near the thiamine pyrophosphate-binding site. These hydrogen bonds might result in the better accessibility of H+ to the substrate-cofactor-enzyme intermediate and a shift in the reaction specificity of the enzyme. PMID:26731734

  16. Impact of bioethanol fuel implementation in transport based on modelled acetaldehyde concentration in the urban environment.

    PubMed

    Sundvor, Ingrid; López-Aparicio, Susana

    2014-10-15

    This study shows the results obtained from emission and air dispersion modelling of acetaldehyde in the city of Oslo and associated with the circulation of bioethanol vehicles. Two scenarios of bioethanol implementation, both realistic and hypothetical, have been considered under winter conditions; 1) realistic baseline scenario, which corresponds to the current situation in Oslo where one bus line is running with bioethanol (E95; 95% ethanol-5% petrol) among petrol and diesel vehicles; and 2) a hypothetical scenario characterized by a full implementation of high-blend bioethanol (i.e. E85) as fuel for transportation, and thus an entire bioethanol fleet. The results indicate that a full implementation of bioethanol will have a certain impact on urban air quality due to direct emissions of acetaldehyde. Acetaldehyde emissions are estimated to increase by 233% and concentration levels increase up to 650% with regard to the baseline.

  17. Redirection of the Reaction Specificity of a Thermophilic Acetolactate Synthase toward Acetaldehyde Formation.

    PubMed

    Cheng, Maria; Yoshiyasu, Hayato; Okano, Kenji; Ohtake, Hisao; Honda, Kohsuke

    2016-01-01

    Acetolactate synthase and pyruvate decarboxylase are thiamine pyrophosphate-dependent enzymes that convert pyruvate into acetolactate and acetaldehyde, respectively. Although the former are encoded in the genomes of many thermophiles and hyperthermophiles, the latter has been found only in mesophilic organisms. In this study, the reaction specificity of acetolactate synthase from Thermus thermophilus was redirected to catalyze acetaldehyde formation to develop a thermophilic pyruvate decarboxylase. Error-prone PCR and mutant library screening led to the identification of a quadruple mutant with 3.1-fold higher acetaldehyde-forming activity than the wild-type. Site-directed mutagenesis experiments revealed that the increased activity of the mutant was due to H474R amino acid substitution, which likely generated two new hydrogen bonds near the thiamine pyrophosphate-binding site. These hydrogen bonds might result in the better accessibility of H+ to the substrate-cofactor-enzyme intermediate and a shift in the reaction specificity of the enzyme.

  18. Genetic-epidemiological evidence for the role of acetaldehyde in cancers related to alcohol drinking.

    PubMed

    Eriksson, C J Peter

    2015-01-01

    Alcohol drinking increases the risk for a number of cancers. Currently, the highest risk (Group 1) concerns oral cavity, pharynx, larynx, esophagus, liver, colorectum, and female breast, as assessed by the International Agency for Research on Cancer (IARC). Alcohol and other beverage constituents, their metabolic effects, and alcohol-related unhealthy lifestyles have been suggested as etiological factors. The aim of the present survey is to evaluate the carcinogenic role of acetaldehyde in alcohol-related cancers, with special emphasis on the genetic-epidemiological evidence. Acetaldehyde, as a constituent of alcoholic beverages, and microbial and endogenous alcohol oxidation well explain why alcohol-related cancers primarily occur in the digestive tracts and other tissues with active alcohol and acetaldehyde metabolism. Genetic-epidemiological research has brought compelling evidence for the causality of acetaldehyde in alcohol-related cancers. Thus, IARC recently categorized alcohol-drinking-related acetaldehyde to Group 1 for head and neck and esophageal cancers. This is probably just the tip of the iceberg, since more recent epidemiological studies have also shown significant positive associations between the aldehyde dehydrogenase ALDH2 (rs671)*2 allele (encoding inactive enzyme causing high acetaldehyde elevations) and gastric, colorectal, lung, and hepatocellular cancers. However, a number of the current studies lack the appropriate matching or stratification of alcohol drinking in the case-control comparisons, which has led to erroneous interpretations of the data. Future studies should consider these aspects more thoroughly. The polymorphism phenotypes (flushing and nausea) may provide valuable tools for future successful health education in the prevention of alcohol-drinking-related cancers.

  19. EPAC activation inhibits acetaldehyde-induced activation and proliferation of hepatic stellate cell via Rap1.

    PubMed

    Yang, Yan; Yang, Feng; Wu, Xiaojuan; Lv, Xiongwen; Li, Jun

    2016-05-01

    Hepatic stellate cells (HSCs) activation represents an essential event during alcoholic liver fibrosis (ALF). Previous studies have demonstrated that the rat HSCs could be significantly activated after exposure to 200 μmol/L acetaldehyde for 48 h, and the cAMP/PKA signaling pathways were also dramatically upregulated in activated HSCs isolated from alcoholic fibrotic rat liver. Exchange protein activated by cAMP (EPAC) is a family of guanine nucleotide exchange factors (GEFs) for the small Ras-like GTPases Rap, and is being considered as a vital mediator of cAMP signaling in parallel with the principal cAMP target protein kinase A (PKA). Our data showed that both cAMP/PKA and cAMP/EPAC signaling pathways were involved in acetaldehyde-induced HSCs. Acetaldehyde could reduce the expression of EPAC1 while enhancing the expression of EPAC2. The cAMP analog Me-cAMP, which stimulates the EPAC/Rap1 pathway, could significantly decrease the proliferation and collagen synthesis of acetaldehyde-induced HSCs. Furthermore, depletion of EPAC2, but not EPAC1, prevented the activation of HSC measured as the production of α-SMA and collagen type I and III, indicating that EPAC1 appears to have protective effects on acetaldehyde-induced HSCs. Curiously, activation of PKA or EPAC perhaps has opposite effects on the synthesis of collagen and α-SMA: EPAC activation by Me-cAMP increased the levels of GTP-bound (activated) Rap1 while PKA activation by Phe-cAMP had no significant effects on such binding. These results suggested that EPAC activation could inhibit the activation and proliferation of acetaldehyde-induced HSCs via Rap1.

  20. In vitro expression of Candida albicans alcohol dehydrogenase genes involved in acetaldehyde metabolism.

    PubMed

    Bakri, M M; Rich, A M; Cannon, R D; Holmes, A R

    2015-02-01

    Alcohol consumption is a risk factor for oral cancer, possibly via its conversion to acetaldehyde, a known carcinogen. The oral commensal yeast Candida albicans may be one of the agents responsible for this conversion intra-orally. The alcohol dehydrogenase (Adh) family of enzymes are involved in acetaldehyde metabolism in yeast but, for C. albicans it is not known which family member is responsible for the conversion of ethanol to acetaldehyde. In this study we determined the expression of mRNAs from three C. albicans Adh genes (CaADH1, CaADH2 and CaCDH3) for cells grown in different culture media at different growth phases by Northern blot analysis and quantitative reverse transcription polymerase chain reaction. CaADH1 was constitutively expressed under all growth conditions but there was differential expression of CaADH2. CaADH3 expression was not detected. To investigate whether CaAdh1p or CaAdh2p can contribute to alcohol catabolism in C. albicans, each gene from the reference strain C. albicans SC5314 was expressed in Saccharomyces cerevisiae. Cell extracts from an CaAdh1p-expressing S. cerevisiae recombinant, but not an CaAdh2p-expressing recombinant, or an empty vector control strain, possessed ethanol-utilizing Adh activity above endogenous S. cerevisiae activity. Furthermore, expression of C. albicans Adh1p in a recombinant S. cerevisiae strain in which the endogenous ScADH2 gene (known to convert ethanol to acetaldehyde in this yeast) had been deleted, conferred an NAD-dependent ethanol-utilizing, and so acetaldehyde-producing, Adh activity. We conclude that CaAdh1p is the enzyme responsible for ethanol use under in vitro growth conditions, and may contribute to the intra-oral production of acetaldehyde.

  1. Acetaldehyde Induces Cytotoxicity of SH-SY5Y Cells via Inhibition of Akt Activation and Induction of Oxidative Stress.

    PubMed

    Yan, Tingting; Zhao, Yan; Zhang, Xia

    2016-01-01

    Excessive alcohol consumption can lead to brain tissue damage and cognitive dysfunction. It has been shown that heavy drinking is associated with an earlier onset of neurodegenerative diseases such as Alzheimer's disease. Acetaldehyde, the most toxic metabolite of ethanol, is speculated to mediate the brain tissue damage and cognitive dysfunction induced by the chronic excessive consumption of alcohol. However, the exact mechanisms by which acetaldehyde induces neurotoxicity are not totally understood. In this study, we investigated the cytotoxic effects of acetaldehyde in SH-SY5Y cells and found that acetaldehyde induced apoptosis of SH-SY5Y cells by downregulating the expression of antiapoptotic Bcl-2 and Bcl-xL and upregulating the expression of proapoptotic Bax. Acetaldehyde treatment led to a significant decrease in the levels of activated Akt and cyclic AMP-responsive element binding protein (CREB). In addition, acetaldehyde induced the activation of p38 mitogen-activated protein kinase (MAPK) while inhibiting the activation of extracellular signal-regulated kinases (ERKs, p44/p42MAPK). Meanwhile, acetaldehyde treatment caused an increase in the production of reactive oxygen species and elevated the oxidative stress in SH-SY5Y cells. Therefore, acetaldehyde induces cytotoxicity of SH-SY5Y cells via promotion of apoptotic signaling, inhibition of cell survival pathway, and induction of oxidative stress.

  2. Betulin, betulinic acid and butein are inhibitors of acetaldehyde-induced activation of liver stellate cells.

    PubMed

    Szuster-Ciesielska, Agnieszka; Plewka, Krzysztof; Kandefer-Szerszeń, Martyna

    2011-01-01

    Liver fibrosis has been reported to be inhibited in vivo by oleanolic and ursolic acids; however, the activity of other triterpenes like betulin and betulinic acid has not been examined. Butein has also been reported to prevent and partly reverse liver fibrosis in vivo, although its mechanism of action is poorly understood. Therefore, the aim of this study was to determine the antifibrotic potential of butein, betulin, and betulinic acid and examine their mechanisms of action in vitro. This study was conducted in rat stellate cells (HSCs) that were treated with acetaldehyde, which is the most reactive product of ethanol metabolism. Butein, betulin, and betulinic acid were preincubated with rat HSCs at non-toxic concentrations. Treatment effects were measured in regard to acetaldehyde-induced toxicity and cell migration, and several markers of HSC activation were evaluated, including smooth muscle α-actin (α-SMA) and procollagen I expression. In addition, changes in the release of reactive oxygen species (ROS) and cytokines such as tumor necrosis factor-α (TNF-α) and tumor growth factor-β1 (TGF-β1) and changes in the production of metalloproteinase-2 (MMP-2) and tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) were determined. In vitro, HSCs were protected against acetaldehyde-induced toxicity by betulin but not by betulinic acid and butein. However, butein, betulin, and betulinic acid inhibited the production of ROS by HSCs treated with acetaldehyde and inhibited their migration. Butein also inhibited acetaldehyde-induced TGF-β1 production. Butein, betulin, and betulinic acid down-regulated acetaldehyde-induced production of TIMP-1 and TIMP-2. Betulin decreased the acetaldehyde-induced activity of MMP-2, but butein and betulinic acid did not. The results indicated that butein, betulin, and betulinic acid inhibited the acetaldehyde-induced activation of HSCs. Each drug functioned in a different manner, whereby some were acting as either

  3. Inhibition of intracolonic acetaldehyde production and alcoholic fermentation in rats by ciprofloxacin.

    PubMed

    Visapää, J P; Jokelainen, K; Nosova, T; Salaspuro, M

    1998-08-01

    Heavy drinking is associated with many gastrointestinal symptoms and diseases, such as rapid intestinal transit time, diarrhea, colon polyps, and colorectal cancer. Acetaldehyde produced from ethanol by intestinal microbes has recently been suggested to be one of the pathogenetic factors related to alcohol-associated gastrointestinal morbidity. Furthermore, acetaldehyde is absorbed from the colon into portal blood and may thus contribute to the development of alcoholic liver injury. The present study was aimed to investigate the significance of gut aerobic flora in intracolonic acetaldehyde formation. For this study, 58 male Wistar rats (aged 9 to 11 weeks) were used. Half of the rats received ciprofloxacin for four consecutive days. Control rats (n = 29) received standard chow. On the fifth day of treatment, 1.5 g/kg body weight of ethanol was administered intraperitoneally to 19 rats receiving ciprofloxacin and 19 control rats. Ten ciprofloxacin-treated and 10 control rats received equal volumes of physiological saline intraperitoneally. Two hours after the injection of ethanol or saline, the samples of colonic contents and blood were obtained. Acetaldehyde and ethanol levels of the samples were determined by headspace gas chromatography. The intracolonic acetaldehyde level 2 hr after ethanol administration was 483+/-169 microM (maximum: 2.7 mM). High intracolonic acetaldehyde after ethanol injection was significantly reduced by ciprofloxacin treatment. After ciprofloxacin, intracolonic acetaldehyde levels before and after the injection of ethanol were 25+/-4.8 and 23+/-15 microM, respectively. Ciprofloxacin treatment resulted also in significantly higher blood (p < 0.005) and intracolonic (p < 0.0001) ethanol levels than in the control animals. Furthermore, ciprofloxacin treatment totally abolished the formation of endogenous ethanol in the large intestine. This study demonstrates that alcoholic fermentation and intracoIonic acetaldehyde production can be

  4. Quantification of DNA adducts in lungs, liver and brain of rats exposed to acetaldehyde.

    PubMed

    Garcia, Camila C M; Batista, Guilherme L; Freitas, Florêncio P; Lopes, Fernando S; Sanchez, Angélica B; Gutz, Ivano G R; Di Mascio, Paolo; Medeiros, Marisa H G

    2014-10-01

    Air pollution is a major risk for human health. Acetaldehyde is an environmental pollutant present in tobacco smoke, vehicle exhaust and several food products. Formation of DNA adducts has been regarded as a critical factor in the mechanisms of acetaldehyde mutagenicity and carcinogenesis. Acetaldehyde reacts with 2'-deoxyguanosine in DNA to primarily form N(2)-ethylidene-2'-deoxyguanosine (N(2)-ethylidene-dGuo). The subsequent reaction of N(2)-ethylidene-dGuo with another molecule of acetaldehyde gives rise to 1,N(2)-propano-2´-deoxyguanosine (1,N(2)-propanodGuo). In this study, on-line reverse-phase high-performance liquid chromatography (HPLC) separation with tandem mass spectrometry detection was utilized for the accurate quantification of 1,N(2)-propanodGuo and 1,N(2)-etheno-2'-deoxyguanosine (1,N(2)-edGuo) in tissues of rats exposed to 12 ppb, 33 ppb and 96 ppb acetaldehyde in atmospheric air for 50 days. A significant increase in the levels of 1,N(2)-propanodGuo was observed in lung tissues of rats exposed to 12 ppb (7.8/10(8) dGuo); 33 ppb (8.9/10(8) dGuo) and 96 ppb (11.6/10(8) dGuo) compared to controls (4.2/10(8) dGuo). For comparative purposes, the levels of 1,N(2)-etheno-2'-deoxyguanosine (1,N(2)-edGuo), which is produced from a,b-unsaturated aldehydes formed during the lipid peroxidation process were also measured. Elevated levels of 1,N(2)-edGuo were observed only in lung tissues of animals exposed to 96 ppb acetaldehyde. 1,N(2)-propanodGuo also differed quantitatively in liver but not in brain. The monitoring of 1,N(2)-propanodGuo levels in tissues provides important information on acetaldehyde genotoxicity and may contribute to the elucidation of the mechanisms associated with acetaldehyde exposure and cancer risk. Supported byFAPESP:2011/10048-5, CAPES, INCT Redoxoma:573530/2008-4,NAP Redoxoma: 2011.1.9352.1.8, CEPID Redoxoma:2013/07937-8.

  5. The role of acetaldehyde outside ethanol metabolism in the carcinogenicity of alcoholic beverages: evidence from a large chemical survey.

    PubMed

    Lachenmeier, Dirk W; Sohnius, Eva-Maria

    2008-08-01

    Acetaldehyde is a volatile compound naturally found in alcoholic beverages, and it is regarded as possibly being carcinogenic to humans (IARC Group 2B). Acetaldehyde formed during ethanol metabolism is generally considered as a source of carcinogenicity in alcoholic beverages. However, no systematic data is available about its occurrence in alcoholic beverages and the carcinogenic potential of human exposure to this directly ingested form of acetaldehyde outside ethanol metabolism. In this study, we have analysed and evaluated a large sample collective of different alcoholic beverages (n=1,555). Beer (9+/-7 mg/l, range 0-63 mg/l) had significantly lower acetaldehyde contents than wine (34+/-34 mg/l, range 0-211 mg/l), or spirits (66+/-101 mg/l, range 0-1,159 mg/l). The highest acetaldehyde concentrations were generally found in fortified wines (118+/-120 mg/l, range 12-800 mg/l). Assuming an equal distribution between the beverage and saliva, the residual acetaldehyde concentrations in the saliva after swallowing could be on average 195 microM for beer, 734 microM for wine, 1,387 microM for spirits, or 2,417 microM for fortified wine, which are above levels previously regarded as potentially carcinogenic. Further research is needed to confirm the carcinogenic potential of directly ingested acetaldehyde. Until then, some possible preliminary interventions include the reduction of acetaldehyde in the beverages by improvement in production technology or the use of acetaldehyde binding additives. A re-evaluation of the 'generally recognized as safe' status of acetaldehyde is also required, which does not appear to be in agreement with its toxicity and carcinogenicity.

  6. Acetic acid bacteria spoilage of bottled red wine -- a review.

    PubMed

    Bartowsky, Eveline J; Henschke, Paul A

    2008-06-30

    Acetic acid bacteria (AAB) are ubiquitous organisms that are well adapted to sugar and ethanol rich environments. This family of Gram-positive bacteria are well known for their ability to produce acetic acid, the main constituent in vinegar. The oxidation of ethanol through acetaldehyde to acetic acid is well understood and characterised. AAB form part of the complex natural microbial flora of grapes and wine, however their presence is less desirable than the lactic acid bacteria and yeast. Even though AAB were described by Pasteur in the 1850s, wine associated AAB are still difficult to cultivate on artificial laboratory media and until more recently, their taxonomy has not been well characterised. Wine is at most risk of spoilage during production and the presence of these strictly aerobic bacteria in grape must and during wine maturation can be controlled by eliminating, or at least limiting oxygen, an essential growth factor. However, a new risk, spoilage of wine by AAB after packaging, has only recently been reported. As wine is not always sterile filtered prior to bottling, especially red wine, it often has a small resident bacterial population (<10(3) cfu/mL), which under conducive conditions might proliferate. Bottled red wines, sealed with natural cork closures, and stored in a vertical upright position may develop spoilage by acetic acid bacteria. This spoilage is evident as a distinct deposit of bacterial biofilm in the neck of the bottle at the interface of the wine and the headspace of air, and is accompanied with vinegar, sherry, bruised apple, nutty, and solvent like off-aromas, depending on the degree of spoilage. This review focuses on the wine associated AAB species, the aroma and flavour changes in wine due to AAB metabolism, discusses the importance of oxygen ingress into the bottle and presents a hypothesis for the mechanism of spoilage of bottled red wine.

  7. Influence of temperature in the kinetics of the gas-phase reactions of a series of acetates with Cl atoms

    NASA Astrophysics Data System (ADS)

    Cuevas, Carlos A.; Notario, Alberto; Martínez, Ernesto; Albaladejo, José

    Absolute rate coefficients have been measured for the first time as a function of temperature for the gas phase reactions of chlorine atoms with a series of aliphatic acetates: methyl acetate ( k1), ethyl acetate ( k2), n-propyl acetate ( k3) and n-butyl acetate ( k4). The experiments were carried out using the pulsed laser photolysis-resonance fluorescence technique (PLP-RF), over the temperature range 265-383 K. The obtained kinetic data were used to derive the Arrhenius expressions: k1=(9.31±1.02)×10-12exp[-(359±70)/T]; k2=(4.35±0.65)×10-12exp[(342±92)/T]; k3=(2.22±0.20)×10-11exp[(217±58)/T] and k4=(5.41±1.51)×10-11exp[(245±168)/T] (in units of cm 3 molecule -1 s -1). The rate constants obtained at room temperature were as follows: methyl acetate, 0.279±0.031; ethyl acetate, 1.37±0.20; n-propyl acetate, 4.60±0.41 and n-butyl acetate, 12.3±3.4 (in units 10 -11 cm 3 molecule -1 s -1). The results are discussed in terms of structure-reactivity relationships and the atmospherics implications are also analyzed.

  8. BIOGENIC SOURCES OF FORMALDEHYDE AND ACETALDEHYDE DURING SUMMER AND WINTER CONDITIONS

    EPA Science Inventory

    Photochemical modeling estimated contributions to ambient concentrations of formaldehyde and acetaldehyde from biogenic emissions over the continental United States during January 2001 (Eos Trans. AGU, 83(47), Fall Meet. Suppl., Abstract A52B-0117). Results showed that maximum co...

  9. Regional Sources of Atmospheric Formaldehyde and Acetaldehyde, and Implications for Atmospheric Modeling

    EPA Science Inventory

    Formaldehyde and acetaldehyde concentrations over the Eastern half of the United States are simulated with a 3-D air quality model to identify the most important chemical precursors under January and July conditions. We find that both aldehydes primarily result from photochemical...

  10. Development of industrial brewing yeast with low acetaldehyde production and improved flavor stability.

    PubMed

    Wang, Jinjing; Shen, Nan; Yin, Hua; Liu, Chunfeng; Li, Yongxian; Li, Qi

    2013-02-01

    Higher acetaldehyde concentration in beer is one of the main concerns of current beer industry in China. Acetaldehyde is always synthesized during beer brewing by the metabolism of yeast. Here, using ethanol as the sole carbon source and 4-methylpyrazole as the selection marker, we constructed a new mutant strain with lower acetaldehyde production and improved ethanol tolerance via traditional mutagenesis strategy. European Brewery Convention tube fermentation tests comparing the fermentation broths of mutant strain and industrial brewing strain showed that the acetaldehyde concentration of mutant strain was 81.67 % lower, whereas its resistant staling value was 1.0-fold higher. Owing to the mutation, the alcohol dehydrogenase activity of the mutant strain decreased to about 30 % of the wild-type strain. In the meantime, the fermentation performance of the newly screened strain has little difference compared with the wild-type strain, and there are no safety problems regarding the industrial usage of the mutant strain. Therefore, we suggest that the newly screened strain could be directly applied to brewing industry.

  11. Involvement of the endogenous opioid system in the psychopharmacological actions of ethanol: the role of acetaldehyde

    PubMed Central

    Font, Laura; Luján, Miguel Á.; Pastor, Raúl

    2013-01-01

    Significant evidence implicates the endogenous opioid system (EOS) (opioid peptides and receptors) in the mechanisms underlying the psychopharmacological effects of ethanol. Ethanol modulates opioidergic signaling and function at different levels, including biosynthesis, release, and degradation of opioid peptides, as well as binding of endogenous ligands to opioid receptors. The role of β-endorphin and µ-opioid receptors (OR) have been suggested to be of particular importance in mediating some of the behavioral effects of ethanol, including psychomotor stimulation and sensitization, consumption and conditioned place preference (CPP). Ethanol increases the release of β-endorphin from the hypothalamic arcuate nucleus (NArc), which can modulate activity of other neurotransmitter systems such as mesolimbic dopamine (DA). The precise mechanism by which ethanol induces a release of β-endorphin, thereby inducing behavioral responses, remains to be elucidated. The present review summarizes accumulative data suggesting that the first metabolite of ethanol, the psychoactive compound acetaldehyde, could participate in such mechanism. Two lines of research involving acetaldehyde are reviewed: (1) implications of the formation of acetaldehyde in brain areas such as the NArc, with high expression of ethanol metabolizing enzymes and presence of cell bodies of endorphinic neurons and (2) the formation of condensation products between DA and acetaldehyde such as salsolinol, which exerts its actions via OR. PMID:23914161

  12. 40 CFR 721.10662 - Acetaldehyde, substituted-, reaction products with 2-butyne-1, 4-diol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10662 Acetaldehyde, substituted-, reaction products with 2-butyne-1, 4-diol (generic). (a) Chemical substance and significant new...

  13. 40 CFR 721.10662 - Acetaldehyde, substituted-, reaction products with 2-butyne-1, 4-diol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acetaldehyde, substituted-, reaction...-, reaction products with 2-butyne-1, 4-diol (generic). (a) Chemical substance and significant new uses...-, reaction products with 2-butyne-1, 4-diol (PMN P-11-204) is subject to reporting under this section for...

  14. Inhibition by ethanol, acetaldehyde and trifluoroethanol of reactions catalysed by yeast and horse liver alcohol dehydrogenases.

    PubMed Central

    Dickenson, C J; Dickinson, F M

    1978-01-01

    1. Produced inhibition by ethanol of the acetaldehyde-NADH reaction, catalysed by the alcohol dehydrogenases from yeast and horse liver, was studied at 25 degrees C and pH 6-9. 2. The results with yeast alcohol dehydrogenase are generally consistent with the preferred-pathway mechanism proposed previously [Dickenson & Dickinson (1975) Biochem. J. 147, 303-311]. The observed hyperbolic inhibition by ethanol of the maximum rate of acetaldehyde reduction confirms the existence of the alternative pathway involving an enzyme-ethanol complex. 3. The maximum rate of acetaldehyde reduction with horse liver alcohol dehydrogenase is also subject to hyperbolic inhibition by ethanol. 4. The measured inhibition constants for ethanol provide some of the information required in the determination of the dissociation constant for ethanol from the active ternary complex. 5. Product inhibition by acetaldehyde of the ethanol-NAD+ reaction with yeast alcohol dehydrogenase was examined briefly. The results are consistent with the proposed mechanism. However, the nature of the inhibition of the maximum rate cannot be determined within the accessible range of experimental conditions. 6. Inhibition of yeast alcohol dehydrogenase by trifluoroethanol was studied at 25 degrees C and pH 6-10. The inhibition was competitive with respect to ethanol in the ethanol-NAD+ reaction. Estimates were made of the dissociation constant for trifluoroethanol from the enzyme-NAD+-trifluoroethanol complex in the range pH6-10. PMID:208509

  15. 21 CFR 573.420 - Ethyl cellulose.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.420 Ethyl cellulose. The food additive ethyl cellulose may be safely used in animal feed in accordance with the following prescribed conditions: (a) The food additive is a cellulose ether...

  16. 21 CFR 573.420 - Ethyl cellulose.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.420 Ethyl cellulose. The food additive ethyl cellulose may be safely used in animal feed in accordance with the following prescribed conditions: (a) The food additive is a cellulose ether...

  17. 21 CFR 573.420 - Ethyl cellulose.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.420 Ethyl cellulose. The food additive ethyl cellulose may be safely used in animal feed in accordance with the following prescribed conditions: (a) The food additive is a cellulose ether...

  18. 21 CFR 573.420 - Ethyl cellulose.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.420 Ethyl cellulose. The food additive ethyl cellulose may be safely used in animal feed in accordance with the following prescribed conditions: (a) The food additive is a cellulose ether...

  19. 27 CFR 21.108 - Ethyl ether.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Ethyl ether. 21.108 Section 21.108 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT....108 Ethyl ether. (a) Odor. Characteristic odor. (b) Specific gravity at 15.56 °/15.56 °C. Not...

  20. Pueraria lobata (Kudzu root) hangover remedies and acetaldehyde-associated neoplasm risk.

    PubMed

    McGregor, Neil R

    2007-11-01

    Recent introduction of several commercial Kudzu root (Pueraria lobata) containing hangover remedies has occurred in western countries. The available data is reviewed to assess if there are any potential concerns in relationship to the development of neoplasm if these products are used chronically. The herb Pueraria has two components that are used as traditional therapies; Pueraria lobata, the root based herb and Pueraria flos, the flower based herb. Both of these herbal components have different traditional claims and constituents. Pueraria flos, which enhances acetaldehyde removal, is the traditional hangover remedy. Conversely, Pueraria lobata is a known inhibitor of mitochondrial aldehyde dehydrogenase (ALDH2) and increases acetaldehyde. Pueraria lobata is being investigated for use as an aversion therapy for alcoholics due to these characteristics. Pueraria lobata is not a traditional hangover therapy yet has been accepted as the registered active component in many of these hangover products. The risk of development of acetaldehyde pathology, including neoplasms, is associated with genetic polymorphism with enhanced alcohol dehydrogenase (ADH) or reduced ALDH activity leading to increased acetaldehyde levels in the tissues. The chronic usage of Pueraria lobata at times of high ethanol consumption, such as in hangover remedies, may predispose subjects to an increased risk of acetaldehyde-related neoplasm and pathology. The guidelines for Disulfiram, an ALDH2 inhibitor, provide a set of guidelines for use with the herb Pueraria lobata. Pueraria lobata appears to be an inappropriate herb for use in herbal hangover remedies as it is an inhibitor of ALDH2. The recommendations for its use should be similar to those for the ALDH2 inhibitor, Disulfiram.

  1. Abundances of ethylene oxide and acetaldehyde in hot molecular cloud cores

    NASA Technical Reports Server (NTRS)

    Nummelin, A.; Dickens, J. E.; Bergman, P.; Hjalmarson, A.; Irvine, W. M.; Ikeda, M.; Ohishi, M.

    1998-01-01

    We have searched for millimetre-wave line emission from ethylene oxide (c-C2H4O) and its structural isomer acetaldehyde (CH3CHO) in 11 molecular clouds using SEST. Ethylene oxide and acetaldehyde were detected through multiple lines in the hot cores NGC 6334F, G327.3-0.6, G31.41+0.31, and G34.3+0.2. Acetaldehyde was also detected towards G10.47+0.03, G322.2+0.6, and Orion 3'N, and one ethylene oxide line was tentatively detected in G10.47+0.03. Column densities and rotational excitation temperatures were derived using a procedure which fits the observed line intensifies by finding the minimum chi 2-value. The resulting rotational excitation temperatures of ethylene oxide and acetaldehyde are in the range 16-38 K, indicating that these species are excited in the outer, cooler parts of the hot cores or that the excitation is significantly subthermal. For an assumed source size of 20", the deduced column densities are (0.6-1)x10(14) cm-2 for ethylene oxide and (2-5)x10(14) cm-2 for acetaldehyde. The fractional abundances with respect to H2 are X[c-C2H4O]=(2-6)xl0(-10), and X[CH3CHO]=(0.8-3)x10(-9). The ratio X[CH3CHO]/X[c-C2H4O] varies between 2.6 (NGC 6334F) and 8.5 (G327.3-0.6). We also detected and analysed multiple transitions of CH3OH, CH3OCH3, C2H5OH, and HCOOH. The chemical, and possibly evolutionary, states of NGC 6334F, G327.3-0.6, G31.41+0.31, and G34.3+0.2 seem to be very similar.

  2. Formation of 2-propanol in condensed molecular films of acetaldehyde following electron impact ionisation-induced proton transfer*

    NASA Astrophysics Data System (ADS)

    Borrmann, Tobias; Swiderek, Petra

    2016-06-01

    Experimental studies on thin condensed layers of acetaldehyde have previously revealed that electron exposure at an energy above the ionisation threshold leads to formation of 2-propanol. However, the mechanism of this reaction remained unclear. Therefore, a computational approach is used to explore the electron-induced reactions of acetaldehyde yielding 2-propanol. Starting from hydrogen-bonded dimers of acetaldehyde we show that the initial ionisation event triggers proton transfer between the two acetaldehyde moieties resulting in a hydrogen-bonded complex of a [OCCH3] radical and a protonated acetaldehyde cation. Given an excess energy of up to 0.75 eV and a favourable arrangement, a methyl radical released upon dissociation of the CC bond within the [OCCH3] radical can migrate to the carbonyl carbon of the protonated acetaldehyde cation. This produces a 2-propanol radical cation and CO. Neutral 2-propanol is then obtained by recombination with a second electron. A mechanism involving ionisation-driven proton transfer is thus proposed as pathway to the formation of 2-propanol during electron exposure of condensed layers of acetaldehyde.

  3. Modeling of experimental treatment of acetaldehyde-laden air and phenol-containing water using corona discharge technique.

    PubMed

    Faungnawakij, Kajornsak; Sano, Noriaki; Charinpanitkul, Tawatchai; Tanthapanichakoon, Wiwut

    2006-03-01

    Acetaldehyde-laden air and phenol-contaminated water were experimentally treated using corona discharge reactions and gas absorption in a single water-film column. Mathematical modeling of the combined treatment was developed in this work. Efficient removal of the gaseous acetaldehyde was achieved while the corona discharge reactions produced short-lived species such as O and O- as well as ozone. Direct contact of the radicals and ions with water was known to produce aqueous OH radical, which contributes to the decomposition of organic contaminants: phenol, absorbed acetaldehyde, and intermediate byproducts in the water. The influence of initial phenol concentration ranging from 15 to 50 mg L(-1) and that of influent acetaldehyde ranging from 0 to 200 ppm were experimentally investigated and used to build the math model. The maximum energetic efficiency of TOC, phenol, and acetaldehyde were obtained at 25.6 x 10(-9) mol carbon J(-1), 25.0 x 10(-9) mol phenol J(-1), and 2.0 x 10(-9) mol acetaldehyde J(-1), respectively. The predictions for the decomposition of acetaldehyde, phenol, and their intermediates were found to be in good agreement with the experimental results.

  4. Calcium Channels and Oxidative Stress Mediate a Synergistic Disruption of Tight Junctions by Ethanol and Acetaldehyde in Caco-2 Cell Monolayers.

    PubMed

    Samak, Geetha; Gangwar, Ruchika; Meena, Avtar S; Rao, Roshan G; Shukla, Pradeep K; Manda, Bhargavi; Narayanan, Damodaran; Jaggar, Jonathan H; Rao, RadhaKrishna

    2016-12-13

    Ethanol is metabolized into acetaldehyde in most tissues. In this study, we investigated the synergistic effect of ethanol and acetaldehyde on the tight junction integrity in Caco-2 cell monolayers. Expression of alcohol dehydrogenase sensitized Caco-2 cells to ethanol-induced tight junction disruption and barrier dysfunction, whereas aldehyde dehydrogenase attenuated acetaldehyde-induced tight junction disruption. Ethanol up to 150 mM did not affect tight junction integrity or barrier function, but it dose-dependently increased acetaldehyde-mediated tight junction disruption and barrier dysfunction. Src kinase and MLCK inhibitors blocked this synergistic effect of ethanol and acetaldehyde on tight junction. Ethanol and acetaldehyde caused a rapid and synergistic elevation of intracellular calcium. Calcium depletion by BAPTA or Ca(2+)-free medium blocked ethanol and acetaldehyde-induced barrier dysfunction and tight junction disruption. Diltiazem and selective knockdown of TRPV6 or CaV1.3 channels, by shRNA blocked ethanol and acetaldehyde-induced tight junction disruption and barrier dysfunction. Ethanol and acetaldehyde induced a rapid and synergistic increase in reactive oxygen species by a calcium-dependent mechanism. N-acetyl-L-cysteine and cyclosporine A, blocked ethanol and acetaldehyde-induced barrier dysfunction and tight junction disruption. These results demonstrate that ethanol and acetaldehyde synergistically disrupt tight junctions by a mechanism involving calcium, oxidative stress, Src kinase and MLCK.

  5. Calcium Channels and Oxidative Stress Mediate a Synergistic Disruption of Tight Junctions by Ethanol and Acetaldehyde in Caco-2 Cell Monolayers

    PubMed Central

    Samak, Geetha; Gangwar, Ruchika; Meena, Avtar S.; Rao, Roshan G.; Shukla, Pradeep K.; Manda, Bhargavi; Narayanan, Damodaran; Jaggar, Jonathan H.; Rao, RadhaKrishna

    2016-01-01

    Ethanol is metabolized into acetaldehyde in most tissues. In this study, we investigated the synergistic effect of ethanol and acetaldehyde on the tight junction integrity in Caco-2 cell monolayers. Expression of alcohol dehydrogenase sensitized Caco-2 cells to ethanol-induced tight junction disruption and barrier dysfunction, whereas aldehyde dehydrogenase attenuated acetaldehyde-induced tight junction disruption. Ethanol up to 150 mM did not affect tight junction integrity or barrier function, but it dose-dependently increased acetaldehyde-mediated tight junction disruption and barrier dysfunction. Src kinase and MLCK inhibitors blocked this synergistic effect of ethanol and acetaldehyde on tight junction. Ethanol and acetaldehyde caused a rapid and synergistic elevation of intracellular calcium. Calcium depletion by BAPTA or Ca2+-free medium blocked ethanol and acetaldehyde-induced barrier dysfunction and tight junction disruption. Diltiazem and selective knockdown of TRPV6 or CaV1.3 channels, by shRNA blocked ethanol and acetaldehyde-induced tight junction disruption and barrier dysfunction. Ethanol and acetaldehyde induced a rapid and synergistic increase in reactive oxygen species by a calcium-dependent mechanism. N-acetyl-L-cysteine and cyclosporine A, blocked ethanol and acetaldehyde-induced barrier dysfunction and tight junction disruption. These results demonstrate that ethanol and acetaldehyde synergistically disrupt tight junctions by a mechanism involving calcium, oxidative stress, Src kinase and MLCK. PMID:27958326

  6. Conversion of Biomass-Derived Small Oxygenates over HZSM-5 and its Deactivation Mechanism

    SciTech Connect

    Ramasamy, Karthikeyan K.; Gerber, Mark A.; Flake, Matthew D.; Zhang, He; Wang, Yong

    2014-02-28

    HZSM-5 catalyst deactivation was studied using aqueous feed mixtures containing ethanol, ethanol+ acetic acid, ethanol+ethyl acetate, or ethanol+acetaldehyde in a fixed bed reactor at 360°C and 300psig. Compared to ethanol alone experiment, addition of other oxygenates reduced catalyst life in the order of: ethyl acetate acid<acetaldehyde. Based on the liquid product and the spent catalyst analyses from the individual ethanol, acetaldehyde, acetic acid, and ethyl acetate feed, the presence of acetaldehyde appears to produce high molecular weight aromatic compounds which deactivate the catalyst through a pore-blocking mechanism. Acetic acid deactivates the catalyst through an active site poisoning mechanism or strong adsorption of acetate intermediates on the active sites (hydroxyl groups). Ethanol deactivates the catalyst primarily through its pore-blocking mechanism, but the rate of ethanol deactivation is orders of magnitude slower than that of acetaldehyde. Ethyl acetate hydrolyzes to form acetic acid and ethanol which deactivate the catalyst through its respective mechanisms. In addition, each functional group of oxygenates requires different active sites/catalysts and different operating conditions due to competitive adsorptions on active sites for their conversion to the desired products. Therefore, it is necessary to pre-treat the mixture of oxygenates to produce a feed stream containing the same or similar functional group compounds before converting the feed stream to hydrocarbon compounds over HZSM-5 catalyst.

  7. Global atmospheric budget of acetaldehyde: 3-D model analysis and constraints from in-situ and satellite observations

    NASA Astrophysics Data System (ADS)

    Millet, D. B.; Guenther, A.; Siegel, D. A.; Nelson, N. B.; Singh, H. B.; de Gouw, J. A.; Warneke, C.; Williams, J.; Eerdekens, G.; Sinha, V.; Karl, T.; Flocke, F.; Apel, E.; Riemer, D. D.; Palmer, P. I.; Barkley, M.

    2010-04-01

    We construct a global atmospheric budget for acetaldehyde using a 3-D model of atmospheric chemistry (GEOS-Chem), and use an ensemble of observations to evaluate present understanding of its sources and sinks. Hydrocarbon oxidation provides the largest acetaldehyde source in the model (128 Tg a-1, a factor of 4 greater than the previous estimate), with alkanes, alkenes, and ethanol the main precursors. There is also a minor source from isoprene oxidation. We use an updated chemical mechanism for GEOS-Chem, and photochemical acetaldehyde yields are consistent with the Master Chemical Mechanism. We present a new approach to quantifying the acetaldehyde air-sea flux based on the global distribution of light absorption due to colored dissolved organic matter (CDOM) derived from satellite ocean color observations. The resulting net ocean emission is 57 Tg a-1, the second largest global source of acetaldehyde. A key uncertainty is the acetaldehyde turnover time in the ocean mixed layer, with quantitative model evaluation over the ocean complicated by known measurement artifacts in clean air. Simulated concentrations in surface air over the ocean generally agree well with aircraft measurements, though the model tends to overestimate the vertical gradient. PAN:NOx ratios are well-simulated in the marine boundary layer, providing some support for the modeled ocean source. We introduce the Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1) for acetaldehyde and ethanol and use it to quantify their net flux from living terrestrial plants. Including emissions from decaying plants the total direct acetaldehyde source from the land biosphere is 23 Tg a-1. Other terrestrial acetaldehyde sources include biomass burning (3 Tg a-1) and anthropogenic emissions (2 Tg a-1). Simulated concentrations in the continental boundary layer are generally unbiased and capture the spatial gradients seen in observations over North America, Europe, and tropical South America. However

  8. Global atmospheric budget of acetaldehyde: 3-D model analysis and constraints from in-situ and satellite observations

    NASA Astrophysics Data System (ADS)

    Millet, D. B.; Guenther, A.; Siegel, D. A.; Nelson, N. B.; Singh, H. B.; de Gouw, J. A.; Warneke, C.; Williams, J.; Eerdekens, G.; Sinha, V.; Karl, T.; Flocke, F.; Apel, E.; Riemer, D. D.; Palmer, P. I.; Barkley, M.

    2009-11-01

    We construct a global atmospheric budget for acetaldehyde using a 3-D model of atmospheric chemistry (GEOS-Chem), and use an ensemble of observations to evaluate present understanding of its sources and sinks. Hydrocarbon oxidation provides the largest acetaldehyde source in the model (130 Tg a-1), with alkanes, alkenes, ethanol, and isoprene the main precursors. We use an updated chemical mechanism for GEOS-Chem, and photochemical acetaldehyde yields are consistent with the Master Chemical Mechanism. We apply SeaWiFS satellite observations to define the global distribution of light absorption due to marine dissolved organic matter (DOM), and estimate the corresponding sea-to-air acetaldehyde flux based on measured photoproduction rates from DOM. The resulting net ocean emission is 58 Tg a-1, the second largest global source of acetaldehyde. Quantitative model evaluation over the ocean is complicated by known measurement artifacts in clean air. Simulated concentrations in surface air over the ocean generally agree well with aircraft measurements, though the model tends to overestimate the vertical gradient. PAN:NOx ratios are well-simulated in the marine boundary layer, providing some support for the modeled ocean source. A key uncertainty is the acetaldehyde turnover time in the ocean mixed layer. We introduce the Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1) for acetaldehyde and ethanol and use it to quantify their net flux from living terrestrial plants. Including emissions from decaying plants the total direct acetaldehyde source from the land biosphere is 22 Tg a-1. Other terrestrial acetaldehyde sources include biomass burning (3 Tg a-1) and anthropogenic emissions (2 Tg a-1). Simulated concentrations in the continental boundary layer are generally unbiased and capture the spatial gradients seen in observations over North America, Europe, and tropical South America. However, the model underestimates acetaldehyde levels in urban outflow

  9. Acetate Kinase Isozymes Confer Robustness in Acetate Metabolism

    PubMed Central

    Chan, Siu Hung Joshua; Nørregaard, Lasse; Solem, Christian; Jensen, Peter Ruhdal

    2014-01-01

    Acetate kinase (ACK) (EC no: 2.7.2.1) interconverts acetyl-phosphate and acetate to either catabolize or synthesize acetyl-CoA dependent on the metabolic requirement. Among all ACK entries available in UniProt, we found that around 45% are multiple ACKs in some organisms including more than 300 species but surprisingly, little work has been done to clarify whether this has any significance. In an attempt to gain further insight we have studied the two ACKs (AckA1, AckA2) encoded by two neighboring genes conserved in Lactococcus lactis (L. lactis) by analyzing protein sequences, characterizing transcription structure, determining enzyme characteristics and effect on growth physiology. The results show that the two ACKs are most likely individually transcribed. AckA1 has a much higher turnover number and AckA2 has a much higher affinity for acetate in vitro. Consistently, growth experiments of mutant strains reveal that AckA1 has a higher capacity for acetate production which allows faster growth in an environment with high acetate concentration. Meanwhile, AckA2 is important for fast acetate-dependent growth at low concentration of acetate. The results demonstrate that the two ACKs have complementary physiological roles in L. lactis to maintain a robust acetate metabolism for fast growth at different extracellular acetate concentrations. The existence of ACK isozymes may reflect a common evolutionary strategy in bacteria in an environment with varying concentrations of acetate. PMID:24638105

  10. Dispersibility and emulsion-stabilizing effect of cellulose nanowhiskers esterified by vinyl acetate and vinyl cinnamate.

    PubMed

    Sèbe, Gilles; Ham-Pichavant, Frédérique; Pecastaings, Gilles

    2013-08-12

    The surface of cotton cellulose nanowhiskers (CNW's) was esterified by vinyl acetate (VAc) and vinyl cinnamate (VCin), in the presence of potassium carbonate as catalyst. Reactions were performed under microwave activation and monitored by Fourier transform infrared (FT-IR) spectroscopy. The supramolecular structure of CNW's before and after modification was characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM). Distinctively from the acetylation treatment, an increase in particles dimensions was noted after esterification with VCin, which was assigned to π-π stacking interactions that may exist between cinnamoyl moieties. The dispersibility and emulsion stabilizing effect of acylated CNW's was examined in ethyl acetate, toluene, and cyclohexane, three organic solvents of medium to low polarity. The acylated nanoparticles could never be dispersed in toluene nor cyclohexane, but they formed stable dispersions in ethyl acetate while remaining dispersible in water. Stable ethyl acetate-in-water, toluene-in-water, and cyclohexane-in-water emulsions were successfully prepared with CNW's grafted with acetyl moieties, whereas the VCin-treated particles could stabilize only the cyclohexane-in-water emulsions. The impact of esterification treatment on emulsion stability and droplets size was particularly discussed.

  11. Kallolide A acetate pyrazoline.

    PubMed

    Rodríguez-Escudero, Idaliz; Marrero, Jeffrey; Rodríguez, Abimael D

    2012-01-01

    IN THE CRYSTAL STRUCTURE OF KALLOLIDE A ACETATE PYRAZOLINE [SYSTEMATIC NAME: 7-methyl-16-oxo-4,10-bis-(prop-1-en-2-yl)-17,18-dioxa-14,15-diaza-tetra-cyclo-[9.4.2.1(6,9).0(1,12)]octa-deca-6,8,14-trien-5-yl acetate], C(23)H(28)N(2)O(5), there is a 12-member-ed carbon macrocyclic structure. In addition, there is a tris-ubstituted furan ring, an approximately planar γ-lactone ring [maximum deviation of 0.057 (3) Å] and a pyraz-oline ring, the latter in an envelope conformation. The pyrazoline and the γ-lactone rings are fused in a cis configuration. In the crystal, mol-ecules are linked by weak C-H⋯O inter-actions, forming a two-dimensional network parallel to (001). An intra-molecular C-H⋯O hydrogen bond is also present.

  12. Kallolide A acetate pyrazoline

    PubMed Central

    Rodríguez-Escudero, Idaliz; Marrero, Jeffrey; Rodríguez, Abimael D.

    2012-01-01

    In the crystal structure of kallolide A acetate pyrazoline [systematic name: 7-methyl-16-oxo-4,10-bis­(prop-1-en-2-yl)-17,18-dioxa-14,15-diaza­tetra­cyclo­[9.4.2.16,9.01,12]octa­deca-6,8,14-trien-5-yl acetate], C23H28N2O5, there is a 12-member­ed carbon macrocyclic structure. In addition, there is a tris­ubstituted furan ring, an approximately planar γ-lactone ring [maximum deviation of 0.057 (3) Å] and a pyraz­oline ring, the latter in an envelope conformation. The pyrazoline and the γ-lactone rings are fused in a cis configuration. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions, forming a two-dimensional network parallel to (001). An intra­molecular C—H⋯O hydrogen bond is also present. PMID:22259545

  13. The role of acetaldehyde and glycerol in the adaptation to ethanol stress of Saccharomyces cerevisiae and other yeasts.

    PubMed

    Vriesekoop, Frank; Haass, Cornelia; Pamment, Neville B

    2009-05-01

    Ethanol inhibition is a commonly encountered stress condition during typical yeast fermentations and often results in reduced fermentation rates and production yields. While past studies have shown that acetaldehyde addition has a significant ameliorating effect on the growth of ethanol-stressed Saccharomyces cerevisiae, this study investigated the potential ameliorating effect of acetaldehyde on a wide range of ethanol-stressed yeasts. Acetaldehyde does not appear to be a universal ameliorating agent for yeasts exposed to ethanol stress. It is also shown that as a result of an ethanol stress, most yeasts rapidly produce glycerol as an alternative means of NAD(+) regeneration rather than having a specific requirement for glycerol. The results strongly suggest that both ethanol and acetaldehyde exposure have a direct effect on the cellular NAD(+)/NADH ratio, which can manifest itself as modulations in glycerol production.

  14. Acetaldehyde at clinically relevant concentrations inhibits inward rectifier potassium current I(K1) in rat ventricular myocytes.

    PubMed

    Bébarová, M; Matejovič, P; Šimurdová, M; Šimurda, J

    2015-01-01

    Considering the effects of alcohol on cardiac electrical behavior as well as the important role of the inward rectifier potassium current I(K1) in arrhythmogenesis, this study was aimed at the effect of acetaldehyde, the primary metabolite of ethanol, on I(K1) in rat ventricular myocytes. Acetaldehyde induced a reversible inhibition of I(K1) with IC(50) = 53.7+/-7.7 microM at -110 mV; a significant inhibition was documented even at clinically-relevant concentrations (at 3 microM by 13.1+/-3.0 %). The inhibition was voltage-independent at physiological voltages above -90 mV. The I(K1) changes under acetaldehyde may contribute to alcohol-induced alterations of cardiac electrophysiology, especially in individuals with a genetic defect of aldehyde dehydrogenase where the acetaldehyde level may be elevated.

  15. Amidation reaction of eugenyl oxyacetate ethyl ester with 1,3 diaminopropane

    NASA Astrophysics Data System (ADS)

    Suryanti, V.; Wibowo, F. R.; Kusumaningsih, T.; Wibowo, A. H.; Khumaidah, S. A.; Wijayanti, L. A.

    2016-04-01

    Eugenol having various substituents on the aromatic ring (hydroxy, methoxy and allyl) are useful for starting material in synthesizing of its derivatives. Eugenol derivatives have shown wide future potential applications in many areas, especially as future drugs against many diseases. The aim of this work was to synthesize an amide of eugenol derivative. The starting material used was eugenol from clove oil and the reaction was conducted in 3 step reactions to give the final product. Firstly, eugenol was converted into eugenyl oxyacetate [2-(4-allyl-2-methoxyphenoxy) acetic acid] as a white crystal with 70.5% yield, which was then esterified with ethanol to have eugenyl oxyacetate ethyl ester [ethyl 2-(4-allyl-2-methoxyphenoxy) acetate] as brown liquid in 75.7%. The last step was the reaction between eugenyl oxyacetate ethyl ester and 1,3 diaminopropane to give 2-(4-allyl-2-methoxyphenoxy)-N-(3-aminopropyl) acetamide as a brown powder with 71.6% yield, where the amidation reaction was occurred.

  16. Cytotoxicity and metabolic stress induced by acetaldehyde in human intestinal LS174T goblet-like cells.

    PubMed

    Elamin, Elhaseen; Masclee, Ad; Troost, Freddy; Dekker, Jan; Jonkers, Daisy

    2014-08-01

    There is compelling evidence indicating that ethanol and its oxidative metabolite acetaldehyde can disrupt intestinal barrier function. Apart from the tight junctions, mucins secreted by goblet cells provide an effective barrier. Ethanol has been shown to induce goblet cell injury associated with alterations in mucin glycosylation. However, effects of its most injurious metabolite acetaldehyde remain largely unknown. This study aimed to assess short-term effects of acetaldehyde (0, 25, 50, 75, 100 μM) on functional characteristics of intestinal goblet-like cells (LS174T). Oxidative stress, mitochondrial function, ATP, and intramitochondrial calcium (Ca(2+)) were assessed by dichlorofluorescein, methyltetrazolium, and bioluminescence, MitoTracker green and rhod-2 double-labeling. Membrane integrity and apoptosis were evaluated by measuring lactate dehydrogenase (LDH), caspase 3/7, and cleavage of cytokeratin 18 (CK18). Expression of mucin 2 (MUC2) was determined by cell-based ELISA. Acetaldehyde significantly increased reactive oxygen species generation and decreased mitochondrial function compared with negative controls (P < 0.05). In addition, acetaldehyde dose-dependently decreased ATP levels and induced intramitochondrial Ca(2+) accumulation compared with negative controls (P < 0.05). Furthermore, acetaldehyde induced LDH release and increased caspase3/7 activity and percentage of cells expressing cleaved CK18 and increased MUC2 protein expression compared with negative controls (P < 0.0001). ATP depletion and LDH release could be largely prevented by the antioxidant N-acetylcysteine, suggesting a pivotal role for oxidative stress. Our data demonstrate that acetaldehyde has distinct oxidant-dependent metabolic and cytotoxic effects on LS174T cells that can lead to induction of cellular apoptosis. These effects may contribute to acetaldehyde-induced intestinal barrier dysfunction and subsequently to liver injury.

  17. Search for Deuterated methyl acetate in the ISM

    NASA Astrophysics Data System (ADS)

    Gorai, Prasanta; Chakrabarti, Sandip Kumar; Das, Ankan; Majumdar, Liton; Sahu, Dipen; Sivaraman, Bhalamurugan

    2016-07-01

    Methyl acetate (CH_3COOCH_3 ) has been recently observed by IRAM 30 m radio telescope in Orion. But the existence of its deuterated form are yet to be confirmed. Here, we study the properties of methyl acetate and its singly deuterated forms (CH_3COOCH_3, CH_2DCOOCH_3 and CH_3COOCH_2D). Our simulation results reveal that deuterated forms of methyl acetate could efficiently be produced both in gas as well as in ice phase. Production of methyl acetate could follow radical-radical reaction between acetyl (CH_3CO) and methoxy (CH_3O) radicals. To predict abundances of CH_3COOCH_3 along with its two singly deuterated isotopomers and its two isomers (ethyl formate and hydroxy acetone), we prepare a large gas-grain chemical network to study chemical evolution of these molecules. Since gas phase rate coefficients of our newly adopted network for methyl acetate and its related species were unknown, in our simulation, either we consider similar rate coefficients for similar types of reactions (by following existing data bases) or we carry out quantum chemical calculations to estimate the unknown rate coefficients. For the surface reactions, we use adsorption energies of reactants from some earlier studies. Moreover, we perform quantum chemical calculations to find out various spectral properties of various forms of methyl acetate in infrared, ultraviolet and sub-millimeter regions. We prepare two catalog files for the rotational transitions of CH_2DCOOCH_3 and CH_3COOCH_2D in JPL format, which might be useful for its detection in regions of interstellar media where CH_3COOCH_3 has already been observed.

  18. Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indole-3-acetic acid synthesis in Erwinia herbicola.

    PubMed Central

    Brandl, M T; Lindow, S E

    1996-01-01

    Erwinia herbicola 299R synthesizes indole-3-acetic acid (IAA) primarily by the indole-3-pyruvic acid pathway. A gene involved in the biosynthesis of IAA was cloned from strain 299R. This gene (ipdC) conferred the synthesis of indole-3-acetaldehyde and tryptophol upon Escherichia coli DH5 alpha in cultures supplemented with L-tryptophan. The deduced amino acid sequence of the gene product has high similarity to that of the indolepyruvate decarboxylase of Enterobacter cloacae. Regions within pyruvate decarboxylases of various fungal and plant species also exhibited considerable homology to portions of this gene. This gene therefore presumably encodes an indolepyruvate decarboxylase (IpdC) which catalyzes the conversion of indole-3-pyruvic acid to indole-3-acetaldehyde. Insertions of Tn3-spice within ipdC abolished the ability of strain 299R to synthesize indole-3-acetaldehyde and tryptophol and reduced its IAA production in tryptophan-supplemented minimal medium by approximately 10-fold, thus providing genetic evidence for the role of the indolepyruvate pathway in IAA synthesis in this strain. An ipdC probe hybridized strongly with the genomic DNA of all E. herbicola strains tested in Southern hybridization studies, suggesting that the indolepyruvate pathway is common in this species. Maximum parsimony analysis revealed that the ipdC gene is highly conserved within this group and that strains of diverse geographic origin were very similar with respect to ipdC. PMID:8900003

  19. Proton transfer reactions between nitric acid and acetone, hydroxyacetone, acetaldehyde and benzaldehyde in the solid phase.

    PubMed

    Lasne, Jérôme; Laffon, Carine; Parent, Philippe

    2012-12-05

    The heterogeneous and homogeneous reactions of acetone, hydroxyacetone, acetaldehyde and benzaldehyde with solid nitric acid (HNO(3)) films have been studied with Reflection-Absorption Infrared Spectroscopy (RAIRS) under Ultra-High Vacuum (UHV) conditions in the 90-170 K temperature range. In the bulk or at the surface of the films, nitric acid transfers its proton to the carbonyl function of the organic molecules, producing protonated acetone-H(+), hydroxyacetone-H(+), acetaldehyde-H(+) and benzaldehyde-H(+), and nitrate anions NO(3)(-), a reaction not observed when nitric acid is previously hydrated [J. Lasne, C. Laffon and Ph. Parent, Phys. Chem. Chem. Phys., 2012, 14, 697]. This provides a molecular-scale description of the carbonyl protonation reaction in an acid medium, the first step of the acid-catalyzed condensation of carbonyl compounds, fuelling the growth of secondary organic aerosols (SOA) in the atmosphere.

  20. Photo-tautomerization of acetaldehyde to vinyl alcohol: a potential route to tropospheric acids.

    PubMed

    Andrews, Duncan U; Heazlewood, Brianna R; Maccarone, Alan T; Conroy, Trent; Payne, Richard J; Jordan, Meredith J T; Kable, Scott H

    2012-09-07

    Current atmospheric models underestimate the production of organic acids in the troposphere. We report a detailed kinetic model of the photochemistry of acetaldehyde (ethanal) under tropospheric conditions. The rate constants are benchmarked to collision-free experiments, where extensive photo-isomerization is observed upon irradiation with actinic ultraviolet radiation (310 to 330 nanometers). The model quantitatively reproduces the experiments and shows unequivocally that keto-enol photo-tautomerization, forming vinyl alcohol (ethenol), is the crucial first step. When collisions at atmospheric pressure are included, the model quantitatively reproduces previously reported quantum yields for photodissociation at all pressures and wavelengths. The model also predicts that 21 ± 4% of the initially excited acetaldehyde forms stable vinyl alcohol, a known precursor to organic acid formation, which may help to account for the production of organic acids in the troposphere.

  1. Process for the preparation of ethyl benzene

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1995-12-19

    Ethyl benzene is produced in a catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 50 C to 300 C, using as the catalyst a mole sieve characterized as acidic by feeding ethylene to the catalyst bed while benzene is conveniently added through the reflux to result in a molar excess present in the reactor to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene and diethyl benzene in the bottoms. The bottoms are fractionated, the ethyl benzene recovered and the bottoms are contacted with benzene in the liquid phase in a fixed bed straight pass reactor under conditions to transalkylate the benzene thereby converting most of the diethyl benzene to ethyl benzene which is again separated and recovered. 2 figs.

  2. Process for the preparation of ethyl benzene

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1995-01-01

    Ethyl benzene is produced in a catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 50.degree. C. to 300.degree. C., using as the catalyst a mole sieve characterized as acidic by feeding ethylene to the catalyst bed while benzene is conveniently added through the reflux to result in a molar excess present in the reactor to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene and diethyl benzene in the bottoms. The bottoms are fractionated, the ethyl benzene recovered and the bottoms are contacted with benzene in the liquid phase in a fixed bed straight pass reactor under conditions to transalkylate the benzene thereby converting most of the diethyl benzene to ethyl benzene which is again separated and recovered.

  3. Methyl Ethyl Ketoxime; Final Test Rule

    EPA Pesticide Factsheets

    EPA is issuing this final test rule under section 4 of the Toxic Substances Control Act (TSCA), requiring manufacturers and processors of methyl ethyl ketoxime (MEKO, CAS No. 96-29-7) to perform testing for health effects.

  4. Highly efficient asymmetric synthesis of 3-indolyl(hydroxy)acetates via Friedel-Crafts alkylation of indoles.

    PubMed

    Hui, Yonghai; Zhang, Qi; Jiang, Jun; Lin, Lili; Liu, Xiaohua; Feng, Xiaoming

    2009-09-04

    An efficient enantioselective Friedel-Crafts alkylation of indoles to ethyl glyoxylate catalyzed by chiral N,N'-dioxide-Sc(III) complex was developed. The corresponding 3-indolyl(hydroxy)acetates compounds were afforded in good yields with high enantioselectivities (up to 95% ee).

  5. A Binary Host Plant Volatile Lure Combined With Acetic Acid to Monitor Codling Moth (Lepidoptera: Tortricidae).

    PubMed

    Knight, A L; Basoalto, E; Katalin, J; El-Sayed, A M

    2015-10-01

    Field studies were conducted in the United States, Hungary, and New Zealand to evaluate the effectiveness of septa lures loaded with ethyl (E,Z)-2,4-decadienoate (pear ester) and (E)-4,8-dimethyl-1,3,7-nonatriene (nonatriene) alone and in combination with an acetic acid co-lure for both sexes of codling moth, Cydia pomonella (L.). Additional studies were conducted to evaluate these host plant volatiles and acetic acid in combination with the sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone). Traps baited with pear ester/nonatriene + acetic acid placed within orchards treated either with codlemone dispensers or left untreated caught significantly more males, females, and total moths than similar traps baited with pear ester + acetic acid in some assays. Similarly, traps baited with codlemone/pear ester/nonatriene + acetic acid caught significantly greater numbers of moths than traps with codlemone/pear ester + acetic acid lures in some assays in orchards treated with combinational dispensers (dispensers loaded with codlemone/pear ester). These data suggest that monitoring of codling moth can be marginally improved in orchards under variable management plans using a binary host plant volatile lure in combination with codlemone and acetic acid. These results are likely to be most significant in orchards treated with combinational dispensers. Significant increases in the catch of female codling moths in traps with the binary host plant volatile blend plus acetic acid should be useful in developing more effective mass trapping strategies.

  6. Permanent draft genome of acetaldehyde degradation bacterium, Shewanella sp. YQH10.

    PubMed

    Liu, Yang; Shang, Xiexie; Zeng, Runying

    2015-02-01

    Shewanella sp. YQH10 isolated from mangrove sediment, was a novel species of Shewanella, which has the ability to degrade acetaldehyde. Here, we present an annotated draft genome sequence of Shewanella sp. YQH10, which contains 4,215,794 bp with a G + C content of 48.1%. This information regarding the genetic basis of this bacterium can greatly advance our understanding of the physiology of this species.

  7. Inhibition of advanced glycation endproduct formation by acetaldehyde: role in the cardioprotective effect of ethanol.

    PubMed

    Al-Abed, Y; Mitsuhashi, T; Li, H; Lawson, J A; FitzGerald, G A; Founds, H; Donnelly, T; Cerami, A; Ulrich, P; Bucala, R

    1999-03-02

    Epidemiological studies suggest that there is a beneficial effect of moderate ethanol consumption on the incidence of cardiovascular disease. Ethanol is metabolized to acetaldehyde, a two-carbon carbonyl compound that can react with nucleophiles to form covalent addition products. We have identified a biochemical modification produced by the reaction of acetaldehyde with protein-bound Amadori products. Amadori products typically arise from the nonenzymatic addition of reducing sugars (such as glucose) to protein amino groups and are the precursors to irreversibly bound, crosslinking moieties called advanced glycation endproducts, or AGEs. AGEs accumulate over time on plasma lipoproteins and vascular wall components and play an important role in the development of diabetes- and age-related cardiovascular disease. The attachment of acetaldehyde to a model Amadori product produces a chemically stabilized complex that cannot rearrange and progress to AGE formation. We tested the role of this reaction in preventing AGE formation in vivo by administering ethanol to diabetic rats, which normally exhibit increased AGE formation and high circulating levels of the hemoglobin Amadori product, HbA1c, and the hemoglobin AGE product, Hb-AGE. In this model study, diabetic rats fed an ethanol diet for 4 weeks showed a 52% decrease in Hb-AGE when compared with diabetic controls (P < 0.001). Circulating levels of HbA1c were unaffected by ethanol, pointing to the specificity of the acetaldehyde reaction for the post-Amadori, advanced glycation process. These data suggest a possible mechanism for the so-called "French paradox," (the cardioprotection conferred by moderate ethanol ingestion) and may offer new strategies for inhibiting advanced glycation.

  8. The Distribution of Astronomical Aldehydes - the Case for Extended Emission of Acetaldehyde (CH3CHO).

    NASA Astrophysics Data System (ADS)

    Burkhardt, Andrew; Loomis, Ryan; Dollhopf, Niklaus M.; Corby, Joanna F.; Remijan, Anthony

    2014-06-01

    With the advent of new broadband spectral line interferometric observations, we can now begin to fully characterize the spectra and distribution of complex organic molecules that have been largely ignored since their original detections using single dish telescopes. First detected in 1973, acetaldehyde (CH_3CHO) has been detected in numerous sources including TMC-1, Sgr B2(N) and Orion KL (Gottlieb et al 1973; Mathews et al. 1984; Johansson et al. 1991); yet its distribution within these sources is still not well known. Unlike a number of other molecules observed in these regions, acetaldehyde is not observed to be concentrated in hot core regions toward Sgr B2(N), but to have an extended distribution, a trait shared by other aldehydes (Hollis et al. 2001; Chengalur and Kanekar, 2003). An extended distribution may indicate formation through gas phase ion molecule reactions, or that the distribution is a result of non-thermal processes liberating the molecule off grain surfaces. Meanwhile, a compact distribution may indicate warm grain surface chemistry with subsequent desorption by thermal processes. Spatial maps will also help determine abundance correlations with other related molecules such as formic acid, aiding in the investigation of formation routes. In this talk, we present multiple transition maps of acetaldehyde toward Orion KL using both CARMA and the ALMA Band 6 Science Verification data which show evidence of an extended distribution of acetaldehyde, suggesting a similar formation chemistry in Orion KL as suggested by Chengular and Kanekar (2003) towards Sgr B2(N). In addition, spatial correlations to other molecules in the region will be shown, possibly suggesting a common formation chemistry for some aldehydes.

  9. Ethanol and acetaldehyde induce similar changes in extracellular levels of glutamate, taurine and GABA in rat anterior cingulate cortex.

    PubMed

    Zuo, Gong Cheng; Yang, Jing Yu; Hao, Yue; Dong, Ying Xu; Wu, Chun Fu

    2007-03-30

    It is controversial regarding to the roles of acetaldehyde and ethanol in the central nervous system. In the present study, the effects of acetaldehyde and ethanol on extracellular levels of glutamate, taurine and GABA in the anterior cingulate cortex (ACC) of freely moving rats were investigated by using the microdialysis technique coupled to high performance liquid chromatography (HPLC) with fluorescent detection. The result showed that glutamate levels were significantly decreased after acute administration of acetaldehyde (AcH, 20 and 100 mg/kg, i.p.), while taurine levels were significantly increased after the higher dose of acetaldehyde (100 mg/kg, i.p.). GABA levels had no changes at any doses of acetaldehyde tested. Interestingly, similar changes of these amino acids were induced by ethanol (EtOH, 3 g/kg, i.p.) when sodium azide (NaN3, 10 mg/kg, i.p.), a catalase inhibitor that can reduce brain ethanol metabolism, was used simultaneously. These findings suggest that acetaldehyde and ethanol have the similar effects on the extracellular output of glutamate, taurine and GABA in the ACC.

  10. Modelling bidirectional fluxes of methanol and acetaldehyde with the FORCAsT canopy exchange model

    NASA Astrophysics Data System (ADS)

    Ashworth, Kirsti; Chung, Serena H.; McKinney, Karena A.; Liu, Ying; Munger, J. William; Martin, Scot T.; Steiner, Allison L.

    2016-12-01

    The FORCAsT canopy exchange model was used to investigate the underlying mechanisms governing foliage emissions of methanol and acetaldehyde, two short chain oxygenated volatile organic compounds ubiquitous in the troposphere and known to have strong biogenic sources, at a northern mid-latitude forest site. The explicit representation of the vegetation canopy within the model allowed us to test the hypothesis that stomatal conductance regulates emissions of these compounds to an extent that its influence is observable at the ecosystem scale, a process not currently considered in regional- or global-scale atmospheric chemistry models.We found that FORCAsT could only reproduce the magnitude and diurnal profiles of methanol and acetaldehyde fluxes measured at the top of the forest canopy at Harvard Forest if light-dependent emissions were introduced to the model. With the inclusion of such emissions, FORCAsT was able to successfully simulate the observed bidirectional exchange of methanol and acetaldehyde. Although we found evidence that stomatal conductance influences methanol fluxes and concentrations at scales beyond the leaf level, particularly at dawn and dusk, we were able to adequately capture ecosystem exchange without the addition of stomatal control to the standard parameterisations of foliage emissions, suggesting that ecosystem fluxes can be well enough represented by the emissions models currently used.

  11. Pretreatment of rice straw using a butanone or an acetaldehyde dilute solution explosion for producing ethanol.

    PubMed

    Zhang, Jian; Zhang, Wen-Xue; Yang, Jian; Liu, Yue-Hong; Zhong, Xia; Wu, Zheng-Yun; Kida, Kenji; Deng, Yu

    2012-04-01

    Ethanol conversion from rice straw using butanone and acetaldehyde dilute solution explosions was evaluated based on the optimization of pure water explosion. To decrease residual inhibitor content, the exploded slurry was dried and investigated at different temperature. Using a 0.9-mol/L butanone solution explosion, with the explosion pressure set at 3.1 MPa, the residence time at 7 min, the dried rice straw-to-water ratio at 1:3 (w/w), and the exploded slurry drying temperuture at 90 °C for 8 h, the yields of total sugar, glucose, and xylose were 85%, 88%, 82% (w/w), respectively, and the ethanol productivity was 26.0 g/100 g rice straw dry matter. Moreover, 0.5-mol/L acetaldehyde dilute solution explosion improved the efficiency of enzymatic hydrolysis (EH) and simultaneous saccharification and co-fermentation (SSCF), and the residual inhibitors had negligible effects on EH and SSCF after detoxification by drying. The results suggested that compared with pure water explosions, the use of butanone and of acetaldehyde dilute solution explosions lowered the explosive temperature and improved the sugar yield, although relative crystallinity of the rice straw dry matter was increased after the explosion.

  12. Acetaldehyde Oxime, A Product Formed during the In Vivo Nitrate Reductase Assay of Soybean Leaves 1

    PubMed Central

    Mulvaney, Charlene S.; Hageman, Richard H.

    1984-01-01

    Evolution of nitrogen oxides (NO(x), primarily as nitric oxide) from soybean (Glycine max [L.] Merr.) leaves during purged in vivo nitrate reductase assays had been reported; however, these reports were based on a method that had been used for determination of NO(x) in air. This method also detects other N compounds. Preliminary work led us to doubt that the evolved N was nitric oxide. Studies were undertaken to identify the N compound evolved from the in vivo assay that had been reported as NO(x). Material for identification was obtained by cryogenic trapping and fractional distillation, and by chemical trapping procedures. Mass spectrometry, ultraviolet spectroscopy, and 15N-labeled nitrate were used to identify the compounds evolved and to determine whether these compounds were derived from nitrate. Acetaldehyde oxime was identified as the predominant N compound evolved and this compound is readily detected by the method for NO(x) determination. Substantial quantities of acetaldehyde oxime (16.2 micromoles per gram fresh weight per hour) were evolved during the in vivo assay. Small amounts of nitrous oxide (0.63 micrograms N per gram fresh weight per hour) were evolved, but this compound is not detected as NO(x). Acetaldehyde oxime and nitrous oxide were both produced as a result of nitrate (15NO3−) reduction during the assay. PMID:16663781

  13. Sources and sinks of acetone, methanol, and acetaldehyde in North Atlantic air

    NASA Astrophysics Data System (ADS)

    Lewis, A. C.; Hopkins, J. R.; Carpenter, L. J.; Stanton, J.; Read, K. A.; Pilling, M. J.

    2005-03-01

    Measurements of acetone, methanol, acetaldehyde and a range of non-methane hydrocarbons have been made in North Atlantic marine air at the Mace Head observatory. Under maritime conditions the combination of OVOCs (acetone, methanol and 5 acetaldehyde) contributed up to 85% of the total mass of measured non methane organics in air and up to 80% of the OH radical organic sink, when compared with the sum of all other organic compounds including non-methane hydrocarbons, DMS and OH-reactive halocarbons (trichloromethane and tetrachloroethylene). The observations showed anomalies in the variance and abundance of acetaldehyde and acetone 10 over that expected for species with a remote terrestrial emission source and OH controlled chemical lifetime. A detailed model incorporating an explicit chemical degradation mechanism indicated in situ formation during air mass transport was on timescales longer than the atmospheric lifetime of precursor hydrocarbons or primary emission. The period over which this process was significant was similar to that of airmass mo15 tion on intercontinental scales, and formation via this route may reproduce that of a widespread diffuse source. The model indicates that continued short chain OVOC formation occurs many days from the point of emission, via longer lived intermediates of oxidation such as organic peroxides and long chain alcohols.

  14. Sources and sinks of acetone, methanol, and acetaldehyde in North Atlantic marine air

    NASA Astrophysics Data System (ADS)

    Lewis, A. C.; Hopkins, J. R.; Carpenter, L. J.; Stanton, J.; Read, K. A.; Pilling, M. J.

    2005-08-01

    Measurements of acetone, methanol, acetaldehyde and a range of non-methane hydrocarbons have been made in North Atlantic marine air at the Mace Head observatory. Under maritime conditions the combination of OVOCs (acetone, methanol and acetaldehyde) contributed up to 85% of the total mass of measured non methane organics in air and up to 80% of the OH radical organic sink, when compared with the sum of all other organic compounds including non-methane hydrocarbons, DMS and OH-reactive halocarbons (trichloromethane and tetrachloroethylene). The observations showed anomalies in the variance and abundance of acetaldehyde and acetone over that expected for species with a remote terrestrial emission source and OH controlled chemical lifetime. A detailed model incorporating an explicit chemical degradation mechanism indicated in situ formation during air mass transport was on timescales longer than the atmospheric lifetime of precursor hydrocarbons or primary emission. The period over which this process was significant was similar to that of airmass motion on intercontinental scales, and formation via this route may reproduce that of a widespread diffuse source. The model indicates that continued short chain OVOC formation occurs many days from the point of emission, via longer lived intermediates of oxidation such as organic peroxides and long chain alcohols.

  15. Cholesterol Enhances the Toxic Effect of Ethanol and Acetaldehyde in Primary Mouse Hepatocytes

    PubMed Central

    López-Islas, Anayelly; Chagoya-Hazas, Victoria; Pérez-Aguilar, Benjamin; Palestino-Domínguez, Mayrel; Souza, Verónica; Miranda, Roxana U.; Bucio, Leticia; Gómez-Quiroz, Luis Enrique; Gutiérrez-Ruiz, María-Concepción

    2016-01-01

    Obesity and alcohol consumption are risk factors for hepatic steatosis, and both commonly coexist. Our objective was to evaluate the effect of ethanol and acetaldehyde on primary hepatocytes obtained from mice fed for two days with a high cholesterol (HC) diet. HC hepatocytes increased lipid and cholesterol content. HC diet sensitized hepatocytes to the toxic effect of ethanol and acetaldehyde. Cyp2E1 content increased with HC diet, as well as in those treated with ethanol or acetaldehyde, while the activity of this enzyme determined in microsomes increased in the HC and in all ethanol treated hepatocytes, HC and CW. Oxidized proteins were increased in the HC cultures treated or not with the toxins. Transmission electron microscopy showed endoplasmic reticulum (ER) stress and megamitochondria in hepatocytes treated with ethanol as in HC and the ethanol HC treated hepatocytes. ER stress determined by PERK content was increased in ethanol treated hepatocytes from HC mice and CW. Nuclear translocation of ATF6 was observed in HC hepatocytes treated with ethanol, results that indicate that lipids overload and ethanol treatment favor ER stress. Oxidative stress, ER stress, and mitochondrial damage underlie potential mechanisms for increased damage in steatotic hepatocyte treated with ethanol. PMID:26788255

  16. Biochemical retrosynthesis of 2'-deoxyribonucleosides from glucose, acetaldehyde, and a nucleobase.

    PubMed

    Horinouchi, Nobuyuki; Ogawa, Jun; Kawano, Takako; Sakai, Takafumi; Saito, Kyota; Matsumoto, Seiichiro; Sasaki, Mie; Mikami, Yoichi; Shimizu, Sakayu

    2006-08-01

    2'-Deoxyribonucleosides are important as building blocks for the synthesis of antisense drugs, antiviral nucleosides, and 2'-deoxyribonucleotides for polymerase chain reaction. The microbial production of 2'-deoxyribonucleosides from simple materials, glucose, acetaldehyde, and a nucleobase, through the reverse reactions of 2'-deoxyribonucleoside degradation and the glycolytic pathway, was investigated. The glycolytic pathway of baker's yeast yielded fructose 1,6-diphosphate from glucose using the energy of adenosine 5'-triphosphate generated from adenosine 5'-monophosphate through alcoholic fermentation with the yeast. Fructose 1,6-diphosphate was further transformed to 2-deoxyribose 5-phosphate in the presence of acetaldehyde by deoxyriboaldolase-expressing Escherichia coli cells via D-glyceraldehyde 3-phosphate. E. coli transformants expressing phosphopentomutase and nucleoside phosphorylase produced 2'-deoxyribonucleosides from 2-deoxyribose 5-phosphate and a nucleobase via 2-deoxyribose 1-phosphate through the reverse reactions of 2'-deoxyribonucleoside degradation. Coupling of the glycolytic pathway and deoxyriboaldolase-catalyzing reaction efficiently supplied 2-deoxyribose 5-phosphate, which is a key intermediate for 2'-deoxyribonucleoside synthesis. 2'-Deoxyinosine (9.9 mM) was produced from glucose, acetaldehyde, and adenine through three-step reactions via fructose 1,6-diphosphate and then 2-deoxyribose 5-phosphate, the molar yield as to glucose being 17.8%.

  17. Cholesterol Enhances the Toxic Effect of Ethanol and Acetaldehyde in Primary Mouse Hepatocytes.

    PubMed

    López-Islas, Anayelly; Chagoya-Hazas, Victoria; Pérez-Aguilar, Benjamin; Palestino-Domínguez, Mayrel; Souza, Verónica; Miranda, Roxana U; Bucio, Leticia; Gómez-Quiroz, Luis Enrique; Gutiérrez-Ruiz, María-Concepción

    2016-01-01

    Obesity and alcohol consumption are risk factors for hepatic steatosis, and both commonly coexist. Our objective was to evaluate the effect of ethanol and acetaldehyde on primary hepatocytes obtained from mice fed for two days with a high cholesterol (HC) diet. HC hepatocytes increased lipid and cholesterol content. HC diet sensitized hepatocytes to the toxic effect of ethanol and acetaldehyde. Cyp2E1 content increased with HC diet, as well as in those treated with ethanol or acetaldehyde, while the activity of this enzyme determined in microsomes increased in the HC and in all ethanol treated hepatocytes, HC and CW. Oxidized proteins were increased in the HC cultures treated or not with the toxins. Transmission electron microscopy showed endoplasmic reticulum (ER) stress and megamitochondria in hepatocytes treated with ethanol as in HC and the ethanol HC treated hepatocytes. ER stress determined by PERK content was increased in ethanol treated hepatocytes from HC mice and CW. Nuclear translocation of ATF6 was observed in HC hepatocytes treated with ethanol, results that indicate that lipids overload and ethanol treatment favor ER stress. Oxidative stress, ER stress, and mitochondrial damage underlie potential mechanisms for increased damage in steatotic hepatocyte treated with ethanol.

  18. Risk assessment for the Italian population of acetaldehyde in alcoholic and non-alcoholic beverages.

    PubMed

    Paiano, Viviana; Bianchi, Giancarlo; Davoli, Enrico; Negri, Eva; Fanelli, Roberto; Fattore, Elena

    2014-07-01

    Acetaldehyde is a naturally-occurring carcinogenic compound, present in different food items, especially in alcoholic beverages. The aims of this study were to measure acetaldehyde concentration in different beverages consumed in Italy and to estimate the potential cancer risk. The analytical procedure was based on headspace solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS), using the isotopic dilution method. The margin of exposure (MOE) approach of the European Food Safety Authority (EFSA) was used for risk characterisation. The highest concentrations (median, min-max) were detected in grappa samples (499, 23.4-1850mg/l), followed by fruit-based liqueurs and spirits (62.0, 5.23-483mg/l) and wine (68.0, 18.1-477mg/l); the lowest were detected in gin (0.91, 0.78-1.90mg/l). The lowest MOE was estimated for high wine consumers (69). These results suggest that regulatory measures and consumer guidance may be necessary for acetaldehyde in beverages.

  19. Synthesis of nanoporous carbohydrate metal-organic framework and encapsulation of acetaldehyde

    NASA Astrophysics Data System (ADS)

    Al-Ghamdi, Saleh; Kathuria, Ajay; Abiad, Mohamad; Auras, Rafael

    2016-10-01

    Gamma cyclodextrin (γ-CD) metal organic frameworks (CDMOFs) were synthesized by coordinating γ-CDs with potassium hydroxide (KOH), referred hereafter as CDMOF-a, and potassium benzoate (C7H5KO2), denoted as CDMOF-b. The obtained CDMOF structures were characterized using nitrogen sorption isotherm, thermo-gravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). High surface areas were achieved by the γ-CD based MOF structures where the Langmuir specific surface areas (SSA) of CDMOF-a and CDMOF-b were determined as 1376 m2 g-1 and 607 m2 g-1; respectively. The dehydrated CDMOF structures demonstrated good thermal stability up to 250 °C as observed by the TGA studies. XRD results for CDMOF-a and CDMOF-b reveal a body centered-cubic (BCC) and trigonal crystal system; respectively. Due to its accessible porous structure and high surface area, acetaldehyde was successfully encapsulated in CDMOF-b. During the release kinetic studies, we observed peak release of 53 μg of acetaldehyde per g of CDMOF-b, which was 100 times greater than previously reported encapsulation in β-CD. However, aldol condensation reaction occurred during encapsulation of acetaldehyde into CDMOF-a. This research work demonstrates the potential to encapsulate volatile organic compounds in CDMOF-b, and their associated release for applications including food, pharmaceuticals and packaging.

  20. Encapsulation of eugenyl acetate in PHBV using SEDS technique and in vitro release evaluation.

    PubMed

    Loss, Raquel A; Pereira, Gabriela N; Boschetto, Daiane L; Aguiar, Gean S P; Machado, Juliana R; Chaves, Lorenzo M P C; Silva, Maria J A; Oliveira, Débora; Oliveira, J Vladimir

    2016-10-01

    Eugenyl acetate obtained via enzymatic esterification using Lipozyme TL IM enzyme was encapsulated in biopolymer poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV) through solution-enhanced dispersion by supercritical fluids (SEDS). Produced particles were characterized by SEM and confocal microscopy techniques and in addition in vitro release assays were performed in isopropanol and ethyl acetate. Experimental micronization conditions comprised 8 and 10 MPa, 308 and 313 K and eugenyl acetate concentration ranging from 5 to 20 mg mL(-1), keeping PHBV concentration constant (20 mg mL(-1) in dichloromethane). The maximum encapsulation efficiency was 58.0 % for 5 mg mL(-1)of eugenyl acetate at 8 MPa and 308 K. The morphology of the encapsulated particles for most of the trials was spherical, with particle size ranging from 0.061 to 0.276 μm. Regarding the release in ethyl acetate and isopropanol solvents the higher the affinity of the encapsulated ester of these solvents, the faster the release was observed. These results demonstrate the importance of essential clove oil esterification reaction and encapsulation of the ester by SEDS method so that this encapsulated ester can be used in different industrial applications.

  1. 40 CFR 721.10595 - Octadecen-1-aminium, N-ethyl-N,N-dimethy-, ethyl sulfate (1:1).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Octadecen-1-aminium, N-ethyl-N,N... Significant New Uses for Specific Chemical Substances § 721.10595 Octadecen-1-aminium, N-ethyl-N,N-dimethy... chemical substance identified as octadecen-1-aminium, N-ethyl-N,N-dimethy-, ethyl sulfate (1:1) (PMN...

  2. Crystal structure of ethyl 2-(4-chloro­anilino)acetate

    PubMed Central

    Bouali, Jamila; Hafid, Abderrafia; Khouili, Mostafa; Saadi, Mohamed; Ketatni, El Mostafa

    2014-01-01

    The title compound, C10H12ClNO2, is close to planar (r.m.s. deviation for the 14 non-H atoms = 0.053 Å). In the crystal, inversion dimers linked by pairs of N—H⋯Oc (c = carbox­yl) hydrogen bonds generate R 2 2(10) loops. PMID:25309200

  3. In vitro antitumor activity of the ethyl acetate extract of Potentilla chinensis in osteosarcoma cancer cells

    PubMed Central

    Wan, Guang; Tao, Jin-Gang; Wang, Guo-Dong; Liu, Shen-Peng; Zhao, Hong-Xing; Liang, Qiu-Dong

    2016-01-01

    The aim of the current study was to evaluate the anticancer effect of the ethanol extract of Potentilla chinensis, a Chinese medicinal plant. An MTT assay was used to evaluate the cell viability of MG-63 human osteosarcoma cancer cells and fR-2 cells. Furthermore, the effect of the extract on apoptosis induction, cell cycle phase distribution and inhibition of cell migration in the MG63 human osteosarcoma cancer cell line was evaluated. The effect of the extract on cell cycle phase distribution was assessed by flow cytometry using propidium iodide (PI). Phase contrast microscopy detected the morphological changes in MG63 cancer cells following extract treatment. The results of the study demonstrated that the extract was cytotoxic to MG63 cancer cells, while the normal cell line (epithelial cell line) showed lower susceptibility. Phase contrast microscopy showed distinguishing morphological features, such as cell shrinkage and blebbing induced by the extract treatment in osteosarcoma cancer cells. The average proportion of Annexin V-positive cells (total apoptotic cells) significantly increased from 5.6% in the control to 24.2, 38.8 and 55.7% in the 40, 80 and 150 µg/ml groups, respectively. The extract induced early and late apoptosis in the cancer cells. Flow cytometric analysis revealed that the extract induced G0/G1-cell cycle arrest, which also showed significant dose-dependence. The extract induced a significant and concentration-dependent reduction in cell migration. Moreover, DNA fragmentation was also examined by observation of the formation of DNA ladders. It was demonstrated that DNA fragmentation was increased with extract concentration compared with that in the control. Taken together, EEPC may serve as potential therapeutic agent against osteosarcoma, provided that the toxicity profile and in vivo investigations demonstrate that it is safe. PMID:27573158

  4. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor.

    PubMed

    Guadalupe Medina, Víctor; Almering, Marinka J H; van Maris, Antonius J A; Pronk, Jack T

    2010-01-01

    In anaerobic cultures of wild-type Saccharomyces cerevisiae, glycerol production is essential to reoxidize NADH produced in biosynthetic processes. Consequently, glycerol is a major by-product during anaerobic production of ethanol by S. cerevisiae, the single largest fermentation process in industrial biotechnology. The present study investigates the possibility of completely eliminating glycerol production by engineering S. cerevisiae such that it can reoxidize NADH by the reduction of acetic acid to ethanol via NADH-dependent reactions. Acetic acid is available at significant amounts in lignocellulosic hydrolysates of agricultural residues. Consistent with earlier studies, deletion of the two genes encoding NAD-dependent glycerol-3-phosphate dehydrogenase (GPD1 and GPD2) led to elimination of glycerol production and an inability to grow anaerobically. However, when the E. coli mhpF gene, encoding the acetylating NAD-dependent acetaldehyde dehydrogenase (EC 1.2.1.10; acetaldehyde+NAD++coenzyme A<-->acetyl coenzyme A+NADH+H+), was expressed in the gpd1Delta gpd2Delta strain, anaerobic growth was restored by supplementation with 2.0 g liter(-1) acetic acid. The stoichiometry of acetate consumption and growth was consistent with the complete replacement of glycerol formation by acetate reduction to ethanol as the mechanism for NADH reoxidation. This study provides a proof of principle for the potential of this metabolic engineering strategy to improve ethanol yields, eliminate glycerol production, and partially convert acetate, which is a well-known inhibitor of yeast performance in lignocellulosic hydrolysates, to ethanol. Further research should address the kinetic aspects of acetate reduction and the effect of the elimination of glycerol production on cellular robustness (e.g., osmotolerance).

  5. Short-term salivary acetaldehyde increase due to direct exposure to alcoholic beverages as an additional cancer risk factor beyond ethanol metabolism

    PubMed Central

    2011-01-01

    Background An increasing body of evidence now implicates acetaldehyde as a major underlying factor for the carcinogenicity of alcoholic beverages and especially for oesophageal and oral cancer. Acetaldehyde associated with alcohol consumption is regarded as 'carcinogenic to humans' (IARC Group 1), with sufficient evidence available for the oesophagus, head and neck as sites of carcinogenicity. At present, research into the mechanistic aspects of acetaldehyde-related oral cancer has been focused on salivary acetaldehyde that is formed either from ethanol metabolism in the epithelia or from microbial oxidation of ethanol by the oral microflora. This study was conducted to evaluate the role of the acetaldehyde that is found as a component of alcoholic beverages as an additional factor in the aetiology of oral cancer. Methods Salivary acetaldehyde levels were determined in the context of sensory analysis of different alcoholic beverages (beer, cider, wine, sherry, vodka, calvados, grape marc spirit, tequila, cherry spirit), without swallowing, to exclude systemic ethanol metabolism. Results The rinsing of the mouth for 30 seconds with an alcoholic beverage is able to increase salivary acetaldehyde above levels previously judged to be carcinogenic in vitro, with levels up to 1000 μM in cases of beverages with extreme acetaldehyde content. In general, the highest salivary acetaldehyde concentration was found in all cases in the saliva 30 sec after using the beverages (average 353 μM). The average concentration then decreased at the 2-min (156 μM), 5-min (76 μM) and 10-min (40 μM) sampling points. The salivary acetaldehyde concentration depends primarily on the direct ingestion of acetaldehyde contained in the beverages at the 30-sec sampling, while the influence of the metabolic formation from ethanol becomes the major factor at the 2-min sampling point. Conclusions This study offers a plausible mechanism to explain the increased risk for oral cancer associated with

  6. Probing the Methyl Torsional Barriers of the E and Z Isomers of Butadienyl Acetate by Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jabri, Atef; Nguyen, Ha Vinh Lam; Kleiner, Isabelle; Van, Vinh; Stahl, Wolfgang

    2016-06-01

    The Fourier transform microwave spectra of the E and the Z isomer of butadienyl acetate have been measured in the frequency range from 2 to 26.5 GHz under molecular beam conditions. The most stable conformer of each isomer, in which all heavy atoms are located in a symmetry plane, was identified after analyzing the spectrum by comparison with results from quantum chemical calculations. The barrier to internal rotation of the acetyl methyl group was found to be 149.1822(20) cm-1 and 150.2128(48) cm-1 for the E and the Z isomer, respectively, which are similar to that of vinyl acetate. A comparison between two theoretical approaches treating internal rotations, the rho axis method (using the program BELGI-Cs) and combined axis method (using the program XIAM), is also performed. Since several years we study the barriers to internal rotation of the acetyl methyl group in acetates, CH3-COOR. Currently, we assume that all acetates can be divided into three classes. Class I contains α,β saturated acetates, where the torsional barrier is always close to 100 cm-1. Examples are a series of alkyl acetates such as methyl acetate and ethyl acetate. Class II contains α,β-unsaturated acetates where the C=C double bond is located in the COO plane. This is the case of vinyl acetate and butadienyl acetate. Finally, in class III with isopropenyl acetate and phenyl acetate as two representatives, α,β-unsaturated acetates, in which the double bond is not located in the COO plane, are collected. There, we observed a barrier height around 135 cm-1. This observation will be discussed in details. B. Velino, A. Maris, S. Melandri, W. Caminati, J. Mol. Spectrosc. 2009, 256, 228 H. V. L. Nguyen, A. Jabri, V. Van, and W. Stahl, J. Phys. Chem. A, 2014, 118, 12130.

  7. 21 CFR 184.1185 - Calcium acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... No. 62-54-4), also known as acetate of lime or vinegar salts, is the calcium salt of acetic acid. It may be produced by the calcium hydroxide neutralization of acetic acid. (b) The ingredient meets...

  8. 21 CFR 184.1185 - Calcium acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... No. 62-54-4), also known as acetate of lime or vinegar salts, is the calcium salt of acetic acid. It may be produced by the calcium hydroxide neutralization of acetic acid. (b) The ingredient meets...

  9. 21 CFR 184.1185 - Calcium acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... No. 62-54-4), also known as acetate of lime or vinegar salts, is the calcium salt of acetic acid. It may be produced by the calcium hydroxide neutralization of acetic acid. (b) The ingredient meets...

  10. 21 CFR 184.1185 - Calcium acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... as acetate of lime or vinegar salts, is the calcium salt of acetic acid. It may be produced by the calcium hydroxide neutralization of acetic acid. (b) The ingredient meets the specifications of the...

  11. Vinyl acetate monomer (VAM) genotoxicity profile: relevance for carcinogenicity.

    PubMed

    Albertini, Richard J

    2013-09-01

    Vinyl acetate monomer (VAM) is a site-of-contact carcinogen in rodents. It is also DNA reactive and mutagenic, but only after its carboxylesterase mediated conversion to acetaldehyde (AA), a metabolic reaction that also produces acetic acid and protons. As VAM's mutagenic metabolite, AA is normally produced endogenously; detoxification by aldehyde dehydrogenase (ALDH) is required to maintain intra-cellular AA homeostasis. This review examines VAM's overall genotoxicity, which is due to and limited by AA, and the processes leading to mutation induction. VAM and AA have both been universally negative in mutation studies in bacteria but both have tested positive in several in vitro studies in higher organisms that usually employed high concentrations of test agents. Recently however, in vitro studies evaluating submillimolar concentrations of VAM or AA have shown threshold dose-responses for mutagenicity in human cultured cells. Neither VAM nor AA induced systemic mutagenicity in in vivo studies in metabolically competent mice when tested at non-lethal doses while treatments of animals deficient in aldehyde dehydrogenase (Aldh in animals) did induce both gene and chromosome level mutations. The results of several studies have reinforced the critical role for aldehyde dehydrogenase 2 (ALDH2 in humans) in limiting AA's (and therefore VAM's) mutagenicity. The overall aim of this review of VAM's mutagenic potential through its AA metabolite is to propose a mode of action (MOA) for VAM's site-of-contact carcinogenesis that incorporates the overall process of mutation induction that includes both background mutations due to endogenous AA and those resulting from exogenous exposures.

  12. Detrimental effects of ethanol and its metabolite acetaldehyde, on first trimester human placental cell turnover and function.

    PubMed

    Lui, Sylvia; Jones, Rebecca L; Robinson, Nathalie J; Greenwood, Susan L; Aplin, John D; Tower, Clare L

    2014-01-01

    Fetal alcohol spectrum disorder (FASD) describes developmental issues from high maternal alcohol intake, which commonly results in fetal growth restriction and long term morbidity. We aimed to investigate the effect of alcohol and acetaldehyde, on the first trimester placenta, the period essential for normal fetal organogenesis. Normal invasion and establishment of the placenta during this time are essential for sustaining fetal viability to term. We hypothesise that alcohol (ethanol) and acetaldehyde have detrimental effects on cytotrophoblast invasion, turnover and placental function. Taurine is an important amino acid for neuronal and physiological development, and so, its uptake was assayed in cells and placental explants exposed to alcohol or acetaldehyde. First trimester villous explants and BeWo cells were treated with 0, 10, 20, 40 mM ethanol or 0, 10, 20, 40 µM acetaldehyde. The invasive capacity of SGHPL4, a first trimester extravillous cytotrophoblast cell line, was unaffected by ethanol or acetaldehyde (p>0.05; N = 6). The cells in-cycle were estimated using immunostaining for Ki67. Proliferating trophoblast cells treated with ethanol were decreased in both experiments (explants: 40% at 20 mM and 40 mM, p<0.05, N = 8-9) (cell line: 5% at 20 mM and 40 mM, p<0.05, N = 6). Acetaldehyde also reduced Ki67-positive cells in both experiments (explants at 40 µM p<0.05; N = 6) (cell line at 10 µM and 40 µM; p<0.05; N = 7). Only in the cell line at 20 µM acetaldehyde demonstrated increased apoptosis (p<0.05; N = 6). Alcohol inhibited taurine transport in BeWo cells at 10 mM and 40 mM (p<0.05; N = 6), and in placenta at 40 mM (p<0.05; N = 7). Acetaldehyde did not affect taurine transport in either model (P<0.05; N = 6). Interestingly, system A amino acid transport in placental explants was increased at 10 µM and 40 µM acetaldehyde exposure (p<0.05; N = 6). Our results demonstrate that exposure to both genotoxins may contribute to the pathogenesis of FASD by

  13. Final report on the safety assessment of ethoxyethanol and ethoxyethanol acetate.

    PubMed

    Johnson, Wilbur

    2002-01-01

    Ethoxyethanol is an ether alcohol described as a solvent and viscosity-decreasing agent for use in cosmetics. Ethoxyethanol Acetate is the ester of Ethoxyethanol and acetic acid described as a solvent for use in cosmetics. Although these ingredients have been used in the past, neither ingredient is in current use. Ethoxyethanol is produced by reacting ethylene oxide with ethyl alcohol. Ethoxyethanol Acetate is produced via an esterification of Ethoxyethanol and acetic acid, acetic acid anhydride, or acetic chloride. Ethoxyethanol is metabolized to ethoxyacetaldehyde, which is further metabolized to ethoxyacetic acid, which is also a metabolite of Ethoxyethanol Acetate. Low to moderate acute inhalation toxicity is seen in animals studies. Acute oral toxicity studies in several species reported kidney damage, including extreme tubular degeneration. Kidney damage was also seen in acute dermal toxicity studies in rats and rabbits. Minor liver and kidney damage was also seen in short-term studies of rats injected subcutaneously with Ethoxyethanol, but was absent in dogs dosed intravenously. Mixed toxicity results were also seen in subchronic tests in mice and rats. Ethoxyethanol and Ethoxyethanol Acetate were mild to moderate eye irritants in rabbits; mild skin irritants in rabbits, and nonsensitizing in guinea pigs. Most genotoxicity tests were negative, but chromosome aberrations and sister-chromatid exchanges were among the positive results seen. Numerous reproductive and developmental toxicity studies, across several species, involving various routes of administration, indicate that Ethoxyethanol and Ethoxyethanol Acetate are reproductive toxicants and teratogens. Mild anemia was reported in individuals exposed occupationally to Ethoxyethanol, which resolved when the chemical was not used. Reproductive effects have been noted in males exposed occupationally to Ethoxyethanol. Although there are insufficient data to determine the potential carcinogenic effects of

  14. Enhanced catabolism to acetaldehyde in rostral ventrolateral medullary neurons accounts for the pressor effect of ethanol in spontaneously hypertensive rats.

    PubMed

    El-Mas, Mahmoud M; Abdel-Rahman, Abdel A

    2012-02-01

    We have previously shown that ethanol microinjection into the rostral ventrolateral medulla (RVLM) elicits sympathoexcitation and hypertension in conscious spontaneously hypertensive rats (SHRs) but not in Wistar-Kyoto (WKY) rats. In this study, evidence was sought to implicate the oxidative breakdown of ethanol in this strain-dependent hypertensive action of ethanol. Biochemical experiments revealed significantly higher catalase activity and similar aldehyde dehydrogenase (ALDH) activity in the RVLM of SHRs compared with WKY rats. We also investigated the influence of pharmacological inhibition of catalase (3-aminotriazole) or ALDH (cyanamide) on the cardiovascular effects of intra-RVLM ethanol or its metabolic product acetaldehyde in conscious rats. Compared with vehicle, ethanol (10 μg/rat) elicited a significant increase in blood pressure in SHRs that lasted for the 60-min observation period but had no effect on blood pressure in WKY rats. The first oxidation product, acetaldehyde, played a critical role in ethanol-evoked hypertension because 1) catalase inhibition (3-aminotriazole treatment) virtually abolished the ethanol-evoked pressor response in SHRs, 2) intra-RVLM acetaldehyde (2 μg/rat) reproduced the strain-dependent hypertensive effect of intra-RVLM ethanol, and 3) ALDH inhibition (cyanamide treatment) uncovered a pressor response to intra-RVLM acetaldehyde in WKY rats similar to the response observed in SHRs. These findings support the hypothesis that local production of acetaldehyde, due to enhanced catalase activity, in the RVLM mediates the ethanol-evoked pressor response in SHRs.

  15. Biochemical characterization of a bifunctional acetaldehyde-alcohol dehydrogenase purified from a facultative anaerobic bacterium Citrobacter sp. S-77.

    PubMed

    Tsuji, Kohsei; Yoon, Ki-Seok; Ogo, Seiji

    2016-03-01

    Acetaldehyde-alcohol dehydrogenase (ADHE) is a bifunctional enzyme consisting of two domains of an N-terminal acetaldehyde dehydrogenase (ALDH) and a C-terminal alcohol dehydrogenase (ADH). The enzyme is known to be important in the cellular alcohol metabolism. However, the role of coenzyme A-acylating ADHE responsible for ethanol production from acetyl-CoA remains uncertain. Here, we present the purification and biochemical characterization of an ADHE from Citrobacter sp. S-77 (ADHE(S77)). Interestingly, the ADHE(S77) was unable to be solubilized from membrane with detergents either 1% Triton X-100 or 1% Sulfobetaine 3-12. However, the enzyme was easily dissociated from membrane by high-salt buffers containing either 1.0 M NaCl or (NH(4))(2)SO(4) without detergents. The molecular weight of a native protein was estimated as approximately 400 kDa, consisting of four identical subunits of 96.3 kDa. Based on the specific activity and kinetic analysis, the ADHES77 tended to have catalytic reaction towards acetaldehyde elimination rather than acetaldehyde formation. Our experimental observation suggests that the ADHES77 may play a pivotal role in modulating intracellular acetaldehyde concentration.

  16. Acetaldehyde removal using an atmospheric non-thermal plasma combined with a packed bed: role of the adsorption process.

    PubMed

    Klett, C; Duten, X; Tieng, S; Touchard, S; Jestin, P; Hassouni, K; Vega-González, A

    2014-08-30

    This work is an attempt in order to help towards understanding the influence of the adsorption process on the removal of a VOC (acetaldehyde, CH3CHO) using cyclic non thermal plasma (NTP) combined with a packed-bed of a catalyst support, α-Al2O3. In the first part, the results obtained by placing the saturated alumina pellets inside the plasma discharge zone are discussed, in terms of acetaldehyde removal, CO and CO2 production. In the second part, adsorption of CH3CHO, CO, CO2 and O3 was carried out, from single and multicomponent mixtures of the different compounds. The results showed that (i) the adsorption capacities followed the order CH3CHO≫  CO2>CO; (ii) O3 was decomposed on the alumina surface; (iii) CO oxidation occurred on the surface when O3 was present. In the third part, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was used to follow the alumina surface during acetaldehyde adsorption. DRIFTS measurements demonstrated that besides the bands of molecularly adsorbed acetaldehyde, several absorptions appeared on the spectra showing the intermediate surface transformation of acetaldehyde already at 300K. Finally, the relationship between the adsorption results and the NTP combined with a packed-bed process is discussed.

  17. 40 CFR 721.10244 - Phosphonic acid, P-[2-[bis(2-hydroxyethyl)amino]ethyl]-, 2-[bis(2- chloroethoxy)phosphinyl]ethyl...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphonic acid, P- ethyl]-, 2- ethyl... New Uses for Specific Chemical Substances § 721.10244 Phosphonic acid, P- ethyl]-, 2- ethyl 2... substance identified as phosphonic acid, P- ethyl]-, 2- ethyl 2-chloroethyl ester (PMN P-09-195; CAS...

  18. 40 CFR 721.10244 - Phosphonic acid, P-[2-[bis(2-hydroxyethyl)amino]ethyl]-, 2-[bis(2- chloroethoxy)phosphinyl]ethyl...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphonic acid, P- ethyl]-, 2- ethyl... New Uses for Specific Chemical Substances § 721.10244 Phosphonic acid, P- ethyl]-, 2- ethyl 2... substance identified as phosphonic acid, P- ethyl]-, 2- ethyl 2-chloroethyl ester (PMN P-09-195; CAS...

  19. 40 CFR 721.10244 - Phosphonic acid, P-[2-[bis(2-hydroxyethyl)amino]ethyl]-, 2-[bis(2- chloroethoxy)phosphinyl]ethyl...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphonic acid, P- ethyl]-, 2- ethyl... New Uses for Specific Chemical Substances § 721.10244 Phosphonic acid, P- ethyl]-, 2- ethyl 2... substance identified as phosphonic acid, P- ethyl]-, 2- ethyl 2-chloroethyl ester (PMN P-09-195; CAS...

  20. Ab Initio Quantum Calculations of Reactions in Astrophysical Ices: Acetaldehyde and Acetone with Ammonia

    NASA Astrophysics Data System (ADS)

    Chen, L.; Woon, D. E.

    2009-06-01

    Complex organic molecules, including amino acid precursors, have been observed in young stellar objects. Both laboratory and theoretical studies have shown that ice chemistry can play an important role in low-temperature synthetic pathways, with water serving as a catalyst that can significantly enhance reaction rates by lowering barriers or eliminating them altogether. Reactions between carbonyl species and ammonia are particularly promising, as shown in previous studies of the formaldehyde-ammonia reaction. In this study, we explore the reactions of ammonia with two larger carbonyl species, acetaldehyde and acetone, embedded in a water ice cluster. To examine the explicit impact of the water, we gradually increase the size of the cluster from 4H_2O to 12H_2O. Cluster calculations were performed at the MP2/{6-31}+G^{**} or B3LYP/{6-31}+G^{**} level. In order to account for the electrostatic contribution from bulk ice, the Polarizable Continuum Model (PCM) and Isodensity Surface Polarized Continuum Model (IPCM) were used to model reaction field solvation effects. For both acetaldehyde and acetone, the reactant is a charge transfer complex (a partial charge-transfer complex in small clusters and full proton-transfer complex in larger clusters). Rearrangement to amino-hydroxylated products can occur by surmounting a small reaction barrier. Stereo-selectivity is observed in the case of acetaldehyde. P. Ehrenfreund and S. B. Charnley, Ann. Rev. Astron. Astrophys. 38, 427 (2000). W. A. Schutte, L. J. Allamandola, and S. A. Sandford, Science 259, 1143 (1993) W. A. Schutte, L. J. Allamandola, and S. A. Sandford, Icarus 104, 118 (1993) D. E. Woon, Icarus 142, 550 (1999) S. P. Walch, C. W. Bauschicher, Jr., A. Ricca and E. L. O. Bakes, Chem. Phys. Lett, 333, 6 (2001)

  1. Screening of High-Level 4-Hydroxy-2 (or 5)-Ethyl-5 (or 2)-Methyl-3(2H)-Furanone-Producing Strains from a Collection of Gene Deletion Mutants of Saccharomyces cerevisiae

    PubMed Central

    Watanabe, Jun; Akao, Takeshi; Watanabe, Daisuke; Mogi, Yoshinobu; Shimoi, Hitoshi

    2014-01-01

    4-Hydroxy-2 (or 5)-ethyl-5 (or 2)-methyl-3(2H)-furanone (HEMF) is an important flavor compound that contributes to the sensory properties of many natural products, particularly soy sauce and soybean paste. The compound exhibits a caramel-like aroma and several important physiological activities, such as strong antioxidant activity. HEMF is produced by yeast species in soy sauce manufacturing; however, the enzymes involved in HEMF production remain unknown, hindering efforts to breed yeasts with high-level HEMF production. In this study, we identified high-level HEMF-producing mutants among a Saccharomyces cerevisiae gene deletion mutant collection. Fourteen deletion mutants were screened as high-level HEMF-producing mutants, and the ADH1 gene deletion mutant (adh1Δ) exhibited the maximum HEMF production capacity. Further investigations of the adh1Δ mutant implied that acetaldehyde accumulation contributes to HEMF production, agreeing with previous findings. Therefore, acetaldehyde might be a precursor for HEMF. The ADH1 gene deletion mutant of Zygosaccharomyces rouxii, which is the dominant strain of yeast found during soy sauce fermentation, also produces HEMF effectively, suggesting that acetaldehyde accumulation might be a benchmark for breeding industrial yeasts with excellent HEMF production abilities. PMID:25362059

  2. Sensitive gas chromatographic detection of acetaldehyde and acetone using a reduction gas detector

    NASA Technical Reports Server (NTRS)

    O'Hara, Dean; Singh, Hanwant B.

    1988-01-01

    The response of a newly available mercuric oxide Reduction Gas Detector (RGD-2) to subpicomole and larger quantities of acetaldehyde and acetone is tested. The RGD-2 is found to be capable of subpicomole detection for these carbonyls and is more sensitive than an FID (Flame Ionization Detector) by an order of magnitude. Operating parameters can be further optimized to make the RGD-2 some 20-40 times more sensitive than an FID. The detector is linear over a wide range and is easily adapted to a conventional gas chromatograph (GC). Such a GC-RGD-2 system should be suitable for atmospheric carbonyl measurements in clean as well as polluted environments.

  3. Millimeter and submillimeter wave spectra of mono-13C-acetaldehydes

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Motiyenko, R. A.; Ilyushin, V. V.; Guillemin, J. C.

    2015-07-01

    Context. The acetaldehyde molecule is ubiquitous in the interstellar medium of our galaxy, and due to its dense and complex spectrum, large dipole moment, and several low-lying torsional states, acetaldehyde is considered to be a "weed" molecule for radio astronomy observations. Mono-13C acetaldehydes 13CH3CHO and CH313CHO are likely to be identified in astronomical surveys, such as those available with the very sensitive ALMA telescope. Laboratory measurements and analysis of the millimeter and submillimeter-wave spectra are the prerequisites for the successful radioastronomical search for the new interstellar molecular species, as well as for new isotopologs of already detected interstellar molecules. Aims: In this context, to provide reliable predictions of 13CH3CHO and CH313CHO spectra in millimeter and submillimeter wave ranges, we study rotational spectra of these species in the frequency range from 50 to 945 GHz. Methods: The spectra of mono-13C acetaldehydes were recorded using the spectrometer based on Schottky-diode frequencymultiplication chains in the Lille laboratory. The rotational spectra of 13CH3CHO and CH313CHO molecules were analyzed using the Rho axis method. Results: In the recorded spectra we have assigned 6884 for the 13CH3CHO species and 6458 for CH313CHO species new rotational transitions belonging to the ground, first, and second excited torsional states. These measurements were fitted together with previously published data to the Hamiltonian models that use 91 and 87 parameters to achieve overall weighted rms deviations 0.88 for the 13CH3CHO species and 0.95 for CH313CHO. On the basis of the new spectroscopic results, predictions of transition frequencies in the frequency range up to 1 THz with J ≤ 60 and Ka ≤ 20 are presented for both isotopologs. Full Tables 3-6 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/579/A46

  4. Multi-Walled Carbon Nanotubes as a Catalyst for Gas-Phase Oxidation of Ethanol to Acetaldehyde.

    PubMed

    Wang, Jia; Huang, Rui; Feng, Zhenbao; Liu, Hongyang; Su, Dangsheng

    2016-07-21

    Multi-walled carbon nanotubes (CNTs) were directly used as a sustainable and green catalyst to convert ethanol into acetaldehyde in the presence of molecular oxygen. The C=O groups generated on the nanocarbon surface were demonstrated as active sites for the selective oxidation of ethanol to acetaldehyde. The transformation of disordered carbon debris on the CNT surface to ordered graphitic structures induced by thermal-treatment significantly enhanced the stability of the active C=O groups, and thus the catalytic performance. A high reactivity with approximately 60 % ethanol conversion and 93 % acetaldehyde selectivity was obtained over the optimized CNT catalyst at 270 °C. More importantly, the catalytic performance was quite stable even after 500 h, which is comparable with a supported gold catalyst. The robust catalytic performance displayed the potential application of CNTs in the industrial catalysis field.

  5. Single-photon double and triple ionization of acetaldehyde (ethanal) studied by multi-electron coincidence spectroscopy

    NASA Astrophysics Data System (ADS)

    Zagorodskikh, S.; Zhaunerchyk, V.; Mucke, M.; Eland, J. H. D.; Squibb, R. J.; Karlsson, L.; Linusson, P.; Feifel, R.

    2015-12-01

    Single-photon multiple ionization processes of acetaldehyde (ethanal) have been experimentally investigated by utilizing a multi-particle coincidence technique based on the time-of-flight magnetic bottle principle, in combination with either a synchrotron radiation source or a pulsed helium discharge lamp. The processes investigated include double and triple ionization in the valence region as well as single and double Auger decay of core-ionized acetaldehyde. The latter are studied site-selectively for chemically different carbon core vacancies, scrutinizing early theoretical predictions specifically made for the case of acetaldehyde. Moreover, Auger processes in shake-up and core-valence ionized states are investigated. In the cases where the processes involve simultaneous emission of two electrons, the distributions of the energy sharing are presented, emphasizing either the knock-out or shake-off mechanism.

  6. Mineralization of gaseous acetaldehyde by electrochemically generated Co(III) in H2SO4 with wet scrubber combinatorial system.

    PubMed

    Govindan, Muthuraman; Chung, Sang-Joon; Moon, Il-Shik

    2012-06-11

    Electrochemically generated Co(III) mediated catalytic room temperature incineration of acetaldehyde, which is one of volatile organic compounds (VOCs), combined with wet scrubbing system was developed and investigated. Depending on the electrolyte's type, absorption come removal efficiency is varied. In presence of electrogenerated Co(III) in sulfuric acid, acetaldehyde was mineralized to CO2 and not like only absorption in pure sulfuric acid. The Co(III) mediated catalytic incineration led to oxidative absorption and elimination to CO2, which was evidenced with titration, CO2, and cyclic voltammetric analyses. Experimental conditions, such as current density, concentration of mediator, and gas molar flow rate were optimized. By the optimization of the experimental conditions, the complete mineralization of acetaldehyde was realized at a room temperature using electrochemically generated Co(III) with wet scrubber combinatorial system.

  7. Ethyl p-nitrophenyl phenylphosphorothioate (EPN)

    Integrated Risk Information System (IRIS)

    Ethyl p - nitrophenyl phenylphosphorothioate ( EPN ) ; CASRN 2104 - 64 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Ha

  8. Density functional theory study of acetic acid steam reforming on Ni(111)

    NASA Astrophysics Data System (ADS)

    Ran, Yan-Xiong; Du, Zhen-Yi; Guo, Yun-Peng; Feng, Jie; Li, Wen-Ying

    2017-04-01

    Catalytic steam reforming of bio-oil is a promising process to convert biomass into hydrogen. To shed light on this process, acetic acid is selected as the model compound of the oxygenates in bio-oil, and density functional theory is applied to investigate the mechanism of acetic acid steam reforming on the Ni(111) surface. The most favorable pathway of this process on the Ni(111) surface is suggested as CH3COOH* → CH3COO* → CH3CO* → CH2CO* → CH2* + CO* → CH* → CHOH* → CHO* → CO*, followed by the water gas shift reaction to produce CO2 and H2. CH* species are identified as the major carbon deposition precursor, and the water gas shift reaction is the rate-determining step during the whole acetic acid steam reforming process, as CO* + OH* → cis-COOH* is kinetically restricted with the highest barrier of 1.85 eV. Furthermore, the formation pathways and initial dissociation of important intermediates acetone and acetaldehyde are also investigated.

  9. Multiannual observations of acetone, methanol, and acetaldehyde in remote tropical atlantic air: implications for atmospheric OVOC budgets and oxidative capacity.

    PubMed

    Read, K A; Carpenter, L J; Arnold, S R; Beale, R; Nightingale, P D; Hopkins, J R; Lewis, A C; Lee, J D; Mendes, L; Pickering, S J

    2012-10-16

    Oxygenated volatile organic compounds (OVOCs) in the atmosphere are precursors to peroxy acetyl nitrate (PAN), affect the tropospheric ozone budget, and in the remote marine environment represent a significant sink of the hydroxyl radical (OH). The sparse observational database for these compounds, particularly in the tropics, contributes to a high uncertainty in their emissions and atmospheric significance. Here, we show measurements of acetone, methanol, and acetaldehyde in the tropical remote marine boundary layer made between October 2006 and September 2011 at the Cape Verde Atmospheric Observatory (CVAO) (16.85° N, 24.87° W). Mean mixing ratios of acetone, methanol, and acetaldehyde were 546 ± 295 pptv, 742 ± 419 pptv, and 428 ± 190 pptv, respectively, averaged from approximately hourly values over this five-year period. The CAM-Chem global chemical transport model reproduced annual average acetone concentrations well (21% overestimation) but underestimated levels by a factor of 2 in autumn and overestimated concentrations in winter. Annual average concentrations of acetaldehyde were underestimated by a factor of 10, rising to a factor of 40 in summer, and methanol was underestimated on average by a factor of 2, peaking to over a factor of 4 in spring. The model predicted summer minima in acetaldehyde and acetone, which were not apparent in the observations. CAM-Chem was adapted to include a two-way sea-air flux parametrization based on seawater measurements made in the Atlantic Ocean, and the resultant fluxes suggest that the tropical Atlantic region is a net sink for acetone but a net source for methanol and acetaldehyde. Inclusion of the ocean fluxes resulted in good model simulations of monthly averaged methanol levels although still with a 3-fold underestimation in acetaldehyde. Wintertime acetone levels were better simulated, but the observed autumn levels were more severely underestimated than in the standard model. We suggest that the latter may

  10. Acetaldehyde Content and Oxidative Stress in the Deleterious Effects of Alcohol Drinking on Rat Uterine Horn

    PubMed Central

    Buthet, Lara Romina; Maciel, María Eugenia; Quintans, Leandro Néstor; Rodríguez de Castro, Carmen; Costantini, Martín Hernán; Castro, José Alberto

    2013-01-01

    After alcohol exposure through a standard Lieber and De Carli diet for 28 days, a severe atrophy in the rat uteirne horn was observed, accompanied by significant alterations in its epithelial cells. Microsomal pathway of acetaldehyde production was slightly increased. Hydroxyl radicals were detected in the cytosolic fraction, and this was attributed to participation of xanthine oxidoreductase. They were also observed in the microsomal fraction in the presence of NADPH generating system. No generation of 1-hydroxyethyl was evidenced. The t-butylhydroperoxide-induced chemiluminescence analysis of uterine horn homogenates revealed a significant increase in the chemiluminiscence emission due to ethanol exposure. In the animals repeatedly exposed to alcohol, sulfhydryl content from uterine horn proteins was decreased, but no significant changes were observed in the protein carbonyl content from the same samples. Minor but significant decreasing changes were observed in the GSH content accompanied by a tendency to decrease in the GSH/GSSG ratio. A highly significant finding was the diminished activity content of glutathione peroxidase. Results suggest that acetaldehyde accumulation plus the oxidative stress may play an additional effect to the alcohol-promoted hormonal changes in the uterus reported by others after chronic exposure to alcohol. PMID:24348548

  11. Acetaldehyde content and oxidative stress in the deleterious effects of alcohol drinking on rat uterine horn.

    PubMed

    Buthet, Lara Romina; Maciel, María Eugenia; Quintans, Leandro Néstor; Rodríguez de Castro, Carmen; Costantini, Martín Hernán; Fanelli, Silvia Laura; Castro, José Alberto; Castro, Gerardo Daniel

    2013-01-01

    After alcohol exposure through a standard Lieber and De Carli diet for 28 days, a severe atrophy in the rat uteirne horn was observed, accompanied by significant alterations in its epithelial cells. Microsomal pathway of acetaldehyde production was slightly increased. Hydroxyl radicals were detected in the cytosolic fraction, and this was attributed to participation of xanthine oxidoreductase. They were also observed in the microsomal fraction in the presence of NADPH generating system. No generation of 1-hydroxyethyl was evidenced. The t-butylhydroperoxide-induced chemiluminescence analysis of uterine horn homogenates revealed a significant increase in the chemiluminiscence emission due to ethanol exposure. In the animals repeatedly exposed to alcohol, sulfhydryl content from uterine horn proteins was decreased, but no significant changes were observed in the protein carbonyl content from the same samples. Minor but significant decreasing changes were observed in the GSH content accompanied by a tendency to decrease in the GSH/GSSG ratio. A highly significant finding was the diminished activity content of glutathione peroxidase. Results suggest that acetaldehyde accumulation plus the oxidative stress may play an additional effect to the alcohol-promoted hormonal changes in the uterus reported by others after chronic exposure to alcohol.

  12. Interaction of yeasts with the products resulting from the condensation reaction between (+)-catechin and acetaldehyde.

    PubMed

    Lopez-Toledano, Azahara; Villaño-Valencia, Debora; Mayen, Manuel; Merida, Julieta; Medina, Manuel

    2004-04-21

    The condensation reaction between (+)-catechin and acetaldehyde was studied in model solutions in the presence and absence yeasts in order to evaluate its contribution to color changes in fermented drinks such as white wine. On the basis of the results, the yeasts retain the oligomers produced in the reaction, their retention ability increasing for higher polymerization degrees. As a result, the color of model solutions, measured as the absorbance at 420 nm, was found to decrease after the addition of yeasts. On the other hand, the yeasts exhibited no inhibitory effect on the condensation reaction, which took place at the same rate in their presence and absence. At acidity levels and reactant concentrations similar to those in wine, with acetaldehyde in high concentration as it is present in sherry wines, the reaction was found to occur very slowly. Taking into account that Yeasts are present during most of the winemaking process; consequently, they retain oligomers, and the studied reaction could mainly contribute to the alteration of the color of white wine after bottling.

  13. The (impossible?) formation of acetaldehyde on the grain surfaces: insights from quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Enrique-Romero, J.; Rimola, A.; Ceccarelli, C.; Balucani, N.

    2016-06-01

    Complex Organic Molecules (COMs) have been detected in the interstellar medium (ISM). However, it is not clear whether their synthesis occurs on the icy surfaces of interstellar grains or via a series of gas-phase reactions. As a test case of the COMs synthesis in the ISM, we present new quantum chemical calculations on the formation of acetaldehyde (CH3CHO) from the coupling of the HCO and CH3 radicals, both in gas phase and on water ice surfaces. The binding energies of HCO and CH3 on the amorphous water ice were also computed (2333 and 734 K, respectively). Results indicate that, in gas phase, the products could be either CH3CHO, CH4 + CO, or CH3OCH, depending on the relative orientation of the two radicals. However, on the amorphous water ice, only the CH4 + CO product is possible due to the geometrical constraints imposed by the water ice surface. Therefore, acetaldehyde cannot be synthesized by the CH3 + HCO coupling on the icy grains. We discuss the implications of these results and other cases, such as ethylene glycol and dimethyl ether, in which similar situations can occur, suggesting that formation of these molecules on the grain surfaces might be unlikely.

  14. Computational studies of the isomerization and hydration reactions of acetaldehyde oxide and methyl vinyl carbonyl oxide.

    PubMed

    Kuwata, Keith T; Hermes, Matthew R; Carlson, Matthew J; Zogg, Cheryl K

    2010-09-02

    Alkene ozonolysis is a major source of hydroxyl radical (*OH), the most important oxidant in the troposphere. Previous experimental and computational work suggests that for many alkenes the measured *OH yields should be attributed to the combined impact of both chemically activated and thermalized syn-alkyl Criegee intermediates (CIs), even though the thermalized CI should be susceptible to trapping by molecules such as water. We have used RRKM/master equation and variational transition state theory calculations to quantify the competition between unimolecular isomerization and bimolecular hydration reactions for the syn and anti acetaldehyde oxide formed in trans-2-butene ozonolysis and for the CIs formed in isoprene ozonolysis possessing syn-methyl groups. Statistical rate theory calculations were based on quantum chemical data provided by the B3LYP, QCISD, and multicoefficient G3 methods, and thermal rate constants were corrected for tunneling effects using the Eckart method. At tropospheric temperatures and pressures, all thermalized CIs with syn-methyl groups are predicted to undergo 1,4-hydrogen shifts from 2 to 8 orders of magnitude faster than they react with water monomer at its saturation number density. For thermalized anti acetaldehyde oxide, the rates of dioxirane formation and hydration should be comparable.

  15. 21 CFR 172.872 - Methyl ethyl cellulose.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methyl ethyl cellulose. 172.872 Section 172.872... Methyl ethyl cellulose. The food additive methyl ethyl cellulose may be safely used in food in accordance with the following prescribed conditions. (a) The additive is a cellulose ether having the...

  16. 40 CFR 180.441 - Quizalofop ethyl; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... residues of the herbicide quizalofop ethyl, including its metabolites and degradates, in or on the....05 (2) Tolerances are established for residues of the herbicide quizalofop ethyl, including its... with regional registration are established for residues of the herbicide quizalofop ethyl,...

  17. 40 CFR 180.441 - Quizalofop ethyl; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... combined residues of the herbicide quizalofop (2- propanoic acid) and quizalofop ethyl (ethyl-2- propanoate...) Tolerances are established for the combined residues of the herbicide quizalofop (2- propanoic acid... herbicide quizalofop-p ethyl ester , and its acid metabolite quizalofop-p , and the S enantiomers of...

  18. 40 CFR 180.441 - Quizalofop ethyl; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... residues of the herbicide quizalofop ethyl, including its metabolites and degradates, in or on the....05 (2) Tolerances are established for residues of the herbicide quizalofop ethyl, including its... with regional registration are established for residues of the herbicide quizalofop ethyl,...

  19. 40 CFR 180.441 - Quizalofop ethyl; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... residues of the herbicide quizalofop ethyl, including its metabolites and degradates, in or on the....05 (2) Tolerances are established for residues of the herbicide quizalofop ethyl, including its... with regional registration are established for residues of the herbicide quizalofop ethyl,...

  20. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-ethyl acrylate copolymers. 177.1320... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1320 Ethylene-ethyl acrylate copolymers. Ethylene-ethyl acrylate copolymers may be safely used to produce packaging materials,...

  1. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-ethyl acrylate copolymers. 177.1320... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1320 Ethylene-ethyl acrylate copolymers. Ethylene-ethyl acrylate copolymers may be safely used to produce packaging materials,...

  2. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-ethyl acrylate copolymers. 177.1320... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1320 Ethylene-ethyl acrylate copolymers. Ethylene-ethyl acrylate copolymers may be safely used to produce packaging materials,...

  3. Rheological and hydrodynamic properties of cellulose acetate/ionic liquid solutions.

    PubMed

    Rudaz, Cyrielle; Budtova, Tatiana

    2013-02-15

    Rheological properties of cellulose acetate/1-ethyl-3-methylimidazolium acetate (EMIMAc) solutions are studied using shear dynamic and steady state rheology in a large range of polymer concentrations (from 0.1 to 10 wt.%) and temperatures (from 0 °C to 80 °C). Master plots for storage and loss moduli and for dynamic viscosity were built and shift parameters determined. Cellulose acetate/EMIMAc behaves as a classical polymer solution and obeys Cox-Merz law. Cellulose acetate intrinsic viscosity [η] was determined as a function of temperature and compared with the literature data for cellulose acetates dissolved in other solvents and cellulose dissolved in EMIMAc. Cellulose acetate intrinsic viscosity turned out to be much less temperature sensitive than that of cellulose. Specific viscosity-C[η] master plot was built: the slopes in log-log scale are 1.2 and 3.1 in dilute and semi-dilute regions, respectively. The activation energy as a function of concentration follows a power-law dependence.

  4. Tuning Chocolate Flavor through Development of Thermotolerant Saccharomyces cerevisiae Starter Cultures with Increased Acetate Ester Production.

    PubMed

    Meersman, Esther; Steensels, Jan; Struyf, Nore; Paulus, Tinneke; Saels, Veerle; Mathawan, Melissa; Allegaert, Leen; Vrancken, Gino; Verstrepen, Kevin J

    2015-11-20

    Microbial starter cultures have extensively been used to enhance the consistency and efficiency of industrial fermentations. Despite the advantages of such controlled fermentations, the fermentation involved in the production of chocolate is still a spontaneous process that relies on the natural microbiota at cocoa farms. However, recent studies indicate that certain thermotolerant Saccharomyces cerevisiae cultures can be used as starter cultures for cocoa pulp fermentation. In this study, we investigate the potential of specifically developed starter cultures to modulate chocolate aroma. Specifically, we developed several new S. cerevisiae hybrids that combine thermotolerance and efficient cocoa pulp fermentation with a high production of volatile flavor-active esters. In addition, we investigated the potential of two strains of two non-Saccharomyces species that produce very large amounts of fruity esters (Pichia kluyveri and Cyberlindnera fabianii) to modulate chocolate aroma. Gas chromatography-mass spectrometry (GC-MS) analysis of the cocoa liquor revealed an increased concentration of various flavor-active esters and a decrease in spoilage-related off-flavors in batches inoculated with S. cerevisiae starter cultures and, to a lesser extent, in batches inoculated with P. kluyveri and Cyb. fabianii. Additionally, GC-MS analysis of chocolate samples revealed that while most short-chain esters evaporated during conching, longer and more-fat-soluble ethyl and acetate esters, such as ethyl octanoate, phenylethyl acetate, ethyl phenylacetate, ethyl decanoate, and ethyl dodecanoate, remained almost unaffected. Sensory analysis by an expert panel confirmed significant differences in the aromas of chocolates produced with different starter cultures. Together, these results show that the selection of different yeast cultures opens novel avenues for modulating chocolate flavor.

  5. Tuning Chocolate Flavor through Development of Thermotolerant Saccharomyces cerevisiae Starter Cultures with Increased Acetate Ester Production

    PubMed Central

    Meersman, Esther; Steensels, Jan; Struyf, Nore; Paulus, Tinneke; Saels, Veerle; Mathawan, Melissa; Allegaert, Leen; Vrancken, Gino

    2015-01-01

    Microbial starter cultures have extensively been used to enhance the consistency and efficiency of industrial fermentations. Despite the advantages of such controlled fermentations, the fermentation involved in the production of chocolate is still a spontaneous process that relies on the natural microbiota at cocoa farms. However, recent studies indicate that certain thermotolerant Saccharomyces cerevisiae cultures can be used as starter cultures for cocoa pulp fermentation. In this study, we investigate the potential of specifically developed starter cultures to modulate chocolate aroma. Specifically, we developed several new S. cerevisiae hybrids that combine thermotolerance and efficient cocoa pulp fermentation with a high production of volatile flavor-active esters. In addition, we investigated the potential of two strains of two non-Saccharomyces species that produce very large amounts of fruity esters (Pichia kluyveri and Cyberlindnera fabianii) to modulate chocolate aroma. Gas chromatography-mass spectrometry (GC-MS) analysis of the cocoa liquor revealed an increased concentration of various flavor-active esters and a decrease in spoilage-related off-flavors in batches inoculated with S. cerevisiae starter cultures and, to a lesser extent, in batches inoculated with P. kluyveri and Cyb. fabianii. Additionally, GC-MS analysis of chocolate samples revealed that while most short-chain esters evaporated during conching, longer and more-fat-soluble ethyl and acetate esters, such as ethyl octanoate, phenylethyl acetate, ethyl phenylacetate, ethyl decanoate, and ethyl dodecanoate, remained almost unaffected. Sensory analysis by an expert panel confirmed significant differences in the aromas of chocolates produced with different starter cultures. Together, these results show that the selection of different yeast cultures opens novel avenues for modulating chocolate flavor. PMID:26590272

  6. Astaxanthin Inhibits Acetaldehyde-Induced Cytotoxicity in SH-SY5Y Cells by Modulating Akt/CREB and p38MAPK/ERK Signaling Pathways

    PubMed Central

    Yan, Tingting; Zhao, Yan; Zhang, Xia; Lin, Xiaotong

    2016-01-01

    Excessive alcohol consumption can lead to brain tissue damage and cognitive dysfunction. Acetaldehyde, the most toxic metabolite of ethanol, mediates the brain tissue damage and cognitive dysfunction induced by chronic excessive alcohol consumption. In this study, the effect of astaxanthin, a marine bioactive compound, on acetaldehyde-induced cytotoxicity was investigated in SH-SY5Y cells. It was found that astaxanthin protected cells from apoptosis by ameliorating the effect of acetaldehyde on the expression of Bcl-2 family proteins, preventing the reduction of anti-apoptotic protein Bcl-2 and the increase of pro-apoptotic protein Bak induced by acetaldehyde. Further analyses showed that astaxanthin treatment inhibited acetaldehyde-induced reduction of the levels of activated Akt and cyclic AMP-responsive element binding protein (CREB). Astaxanthin treatment also prevented acetaldehyde-induced increase of the level of activated p38 mitogen-activated protein kinase (MAPK) and decrease of the level of activated extracellular signal-regulated kinases (ERKs). Activation of Akt/CREB pathway promotes cell survival and is involved in the upregulation of Bcl-2 gene. P38MAPK plays a critical role in apoptotic events while ERKs mediates the inhibition of apoptosis. Thus, astaxanthin may inhibit acetaldehyde-induced apoptosis through promoting the activation of Akt/CREB and ERKs and blocking the activation of p38MAPK. In addition, astaxanthin treatment suppressed the oxidative stress induced by acetaldehyde and restored the antioxidative capacity of SH-SY5Y cells. Therefore, astaxanthin may protect cells against acetaldehyde-induced cytotoxicity through maintaining redox balance and modulating apoptotic and survival signals. The results suggest that astaxanthin treatment may be beneficial for preventing neurotoxicity associated with acetaldehyde and excessive alcohol consumption. PMID:26978376

  7. Effects of ALDH2 genotype, PPI treatment and L-cysteine on carcinogenic acetaldehyde in gastric juice and saliva after intragastric alcohol administration.

    PubMed

    Maejima, Ryuhei; Iijima, Katsunori; Kaihovaara, Pertti; Hatta, Waku; Koike, Tomoyuki; Imatani, Akira; Shimosegawa, Tooru; Salaspuro, Mikko

    2015-01-01

    Acetaldehyde (ACH) associated with alcoholic beverages is Group 1 carcinogen to humans (IARC/WHO). Aldehyde dehydrogenase (ALDH2), a major ACH eliminating enzyme, is genetically deficient in 30-50% of Eastern Asians. In alcohol drinkers, ALDH2-deficiency is a well-known risk factor for upper aerodigestive tract cancers, i.e., head and neck cancer and esophageal cancer. However, there is only a limited evidence for stomach cancer. In this study we demonstrated for the first time that ALDH2 deficiency results in markedly increased exposure of the gastric mucosa to acetaldehyde after intragastric administration of alcohol. Our finding provides concrete evidence for a causal relationship between acetaldehyde and gastric carcinogenesis. A plausible explanation is the gastric first pass metabolism of ethanol. The gastric mucosa expresses alcohol dehydrogenase (ADH) enzymes catalyzing the oxidation of ethanol to acetaldehyde, especially at the high ethanol concentrations prevailing in the stomach after the consumption of alcoholic beverages. The gastric mucosa also possesses the acetaldehyde-eliminating ALDH2 enzyme. Due to decreased mucosal ALDH2 activity, the elimination of ethanol-derived acetaldehyde is decreased, which results in its accumulation in the gastric juice. We also demonstrate that ALDH2 deficiency, proton pump inhibitor (PPI) treatment, and L-cysteine cause independent changes in gastric juice and salivary acetaldehyde levels, indicating that intragastric acetaldehyde is locally regulated by gastric mucosal ADH and ALDH2 enzymes, and by oral microbes colonizing an achlorhydric stomach. Markedly elevated acetaldehyde levels were also found at low intragastric ethanol concentrations corresponding to the ethanol levels of many foodstuffs, beverages, and dairy products produced by fermentation. A capsule that slowly releases L-cysteine effectively eliminated acetaldehyde from the gastric juice of PPI-treated ALDH2-active and ALDH2-deficient subjects. These

  8. Astaxanthin Inhibits Acetaldehyde-Induced Cytotoxicity in SH-SY5Y Cells by Modulating Akt/CREB and p38MAPK/ERK Signaling Pathways.

    PubMed

    Yan, Tingting; Zhao, Yan; Zhang, Xia; Lin, Xiaotong

    2016-03-10

    Excessive alcohol consumption can lead to brain tissue damage and cognitive dysfunction. Acetaldehyde, the most toxic metabolite of ethanol, mediates the brain tissue damage and cognitive dysfunction induced by chronic excessive alcohol consumption. In this study, the effect of astaxanthin, a marine bioactive compound, on acetaldehyde-induced cytotoxicity was investigated in SH-SY5Y cells. It was found that astaxanthin protected cells from apoptosis by ameliorating the effect of acetaldehyde on the expression of Bcl-2 family proteins, preventing the reduction of anti-apoptotic protein Bcl-2 and the increase of pro-apoptotic protein Bak induced by acetaldehyde. Further analyses showed that astaxanthin treatment inhibited acetaldehyde-induced reduction of the levels of activated Akt and cyclic AMP-responsive element binding protein (CREB). Astaxanthin treatment also prevented acetaldehyde-induced increase of the level of activated p38 mitogen-activated protein kinase (MAPK) and decrease of the level of activated extracellular signal-regulated kinases (ERKs). Activation of Akt/CREB pathway promotes cell survival and is involved in the upregulation of Bcl-2 gene. P38MAPK plays a critical role in apoptotic events while ERKs mediates the inhibition of apoptosis. Thus, astaxanthin may inhibit acetaldehyde-induced apoptosis through promoting the activation of Akt/CREB and ERKs and blocking the activation of p38MAPK. In addition, astaxanthin treatment suppressed the oxidative stress induced by acetaldehyde and restored the antioxidative capacity of SH-SY5Y cells. Therefore, astaxanthin may protect cells against acetaldehyde-induced cytotoxicity through maintaining redox balance and modulating apoptotic and survival signals. The results suggest that astaxanthin treatment may be beneficial for preventing neurotoxicity associated with acetaldehyde and excessive alcohol consumption.

  9. Effects of ALDH2 Genotype, PPI Treatment and L-Cysteine on Carcinogenic Acetaldehyde in Gastric Juice and Saliva after Intragastric Alcohol Administration

    PubMed Central

    Maejima, Ryuhei; Iijima, Katsunori; Kaihovaara, Pertti; Hatta, Waku; Koike, Tomoyuki; Imatani, Akira; Shimosegawa, Tooru; Salaspuro, Mikko

    2015-01-01

    Acetaldehyde (ACH) associated with alcoholic beverages is Group 1 carcinogen to humans (IARC/WHO). Aldehyde dehydrogenase (ALDH2), a major ACH eliminating enzyme, is genetically deficient in 30–50% of Eastern Asians. In alcohol drinkers, ALDH2-deficiency is a well-known risk factor for upper aerodigestive tract cancers, i.e., head and neck cancer and esophageal cancer. However, there is only a limited evidence for stomach cancer. In this study we demonstrated for the first time that ALDH2 deficiency results in markedly increased exposure of the gastric mucosa to acetaldehyde after intragastric administration of alcohol. Our finding provides concrete evidence for a causal relationship between acetaldehyde and gastric carcinogenesis. A plausible explanation is the gastric first pass metabolism of ethanol. The gastric mucosa expresses alcohol dehydrogenase (ADH) enzymes catalyzing the oxidation of ethanol to acetaldehyde, especially at the high ethanol concentrations prevailing in the stomach after the consumption of alcoholic beverages. The gastric mucosa also possesses the acetaldehyde-eliminating ALDH2 enzyme. Due to decreased mucosal ALDH2 activity, the elimination of ethanol-derived acetaldehyde is decreased, which results in its accumulation in the gastric juice. We also demonstrate that ALDH2 deficiency, proton pump inhibitor (PPI) treatment, and L-cysteine cause independent changes in gastric juice and salivary acetaldehyde levels, indicating that intragastric acetaldehyde is locally regulated by gastric mucosal ADH and ALDH2 enzymes, and by oral microbes colonizing an achlorhydric stomach. Markedly elevated acetaldehyde levels were also found at low intragastric ethanol concentrations corresponding to the ethanol levels of many foodstuffs, beverages, and dairy products produced by fermentation. A capsule that slowly releases L-cysteine effectively eliminated acetaldehyde from the gastric juice of PPI-treated ALDH2-active and ALDH2-deficient subjects. These

  10. Urine ethyl glucuronide and ethyl sulphate using liquid chromatography-tandem mass spectrometry in a routine clinical laboratory.

    PubMed

    Armer, Jane M; Allcock, Rebecca L

    2017-01-01

    Background Detection of alcohol consumption in clients undergoing treatment for alcohol dependence can be difficult. The ethanol metabolites ethyl glucuronide and ethyl sulphate are detectable for longer in urine than either breath ethanol or urine ethanol. Our aim was to develop a liquid chromatography-tandem mass spectrometry method for urine ethyl glucuronide and ethyl sulphate for use in a routine clinical laboratory and define clinical cut-offs in a large population who had not consumed alcohol for at least two weeks. Methods Urine samples were diluted in 0.05% formic acid in HPLC grade water and then directly injected onto a Waters Acquity ultra high performance liquid chromatography coupled to a Waters TQ Detector. Eighty participants were recruited who had not consumed alcohol for at least two weeks to define cut-offs for urine ethyl glucuronide and ethyl sulphate. Samples and alcohol diaries were also collected from 12 alcohol-dependent clients attending a treatment programme. Results The assay was validated with a lower limit of quantitation of 0.20 mg/L for ethyl glucuronide and 0.04 mg/L for ethyl sulphate. Accuracy, precision, linearity and recovery were acceptable. Cut-offs were established for ethyl glucuronide, ethyl sulphate and ethyl sulphate/creatinine ratio (≤0.26 mg/L, ≤0.22 mg/L and ≤0.033 mg/mmol, respectively) in a non-drinking population. The validated cut-offs correctly identified clients in alcohol treatment who were continuing to drink alcohol. Conclusions A simple liquid chromatography-tandem mass spectrometry method for urine ethyl glucuronide and ethyl sulphate has been validated and cut-offs defined using 80 participants who had not consumed alcohol for at least two weeks. This is the largest study to date to define cut-offs for ethyl glucuronide, ethyl sulphate and ethyl sulphate/creatinine ratio.

  11. [Research of imidazo[1,2-a]benzimidazole derivatives. XXX. Synthesis and properties of (imidazo[1,2-a]benzimidazolyl-2)acetic acid derivatives].

    PubMed

    Anisimova, V A; Tolpygin, I E; Spasov, A A; Serdiuk, T S; Sukhov, A G

    2011-01-01

    Ethyl esters of (9-subtituted-imidazo[1,2-a]benzimidazolyl-2)acetic acids were synthesized. The chemical properties of these esters (hydrolysis, decarboxylation, hydrazinolysis) and biological activity (fungicidal, antimicrobial, antiarrhythmic activity, and also affects on the brain rhythmogenesis) of the prepared compounds were studied.

  12. Antimycobacterial activity of two natural alkaloids, vasicine acetate and 2-acetyl benzylamine, isolated from Indian shrub Adhatoda vasica Ness. leaves.

    PubMed

    Ignacimuthu, S; Shanmugam, N

    2010-12-01

    In folk medicine, Adhatoda vasica Ness. (Acanthaceae) is used to treat asthma and cough. The leaves of A. vasica were powdered and extracted with hexane, ethyl acetate and methanol. The hexane extract showed 97 percent reduction in colony-forming units (CFU) at 100 microg/ml. The hexane extract was subjected to column chromatography. Two natural compounds, vasicine acetate and 2-acetyl benzylamine, were isolated from it. They were bioassayed against Mycobacterium tuberculosis. The two compounds showed strong antimycobacterial activity. Vasicine acetate and 2-acetyl benzylamine isolated from hexane extract of A. vasica leaves, significantly inhibited M. tuberculosis and one multi-drug-resistant (MDR) strain and one sensitive strain at 200 and 50 microg/ml, respectively. Our study demonstrated that both the compounds, vasicine acetate and 2-acetyl benzylamine, could be evaluated further for developing a drug to control M. tuberculosis.

  13. Thz Spectroscopy of 13C Isotopic Species of a "weed": Acetaldehyde

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Motiyenko, R. A.; Guillemin, J.-C.

    2011-06-01

    Our studies of the isotopic species of 13C and D isotopologues of methyl formate (HCOOCH_3), have allowed the detection of more than 600 lines in Orion. This confirms that many observed U-lines are coming from isotopic species of one of the most abundant molecules in space. Since its first detection in 1976 in SgrB2 and in Orion A, acetaldehyde (CH_3CHO) was detected in many other numerous objects. If its deuterated species (CD_3CHO and CH_3CDO) have been previously studied in the millimeterwave range, the data concerning the 13C species are limited to few lines measured in 1957 up to 40 GHz. In this context we decided to study the 13C species of acetaldehyde. Acetaldehyde molecule displays a large amplitude motion: the hindered rotation of the methyl group with respect to the rest of the molecule. The analysis is performed with the Rho Axis Method. Recent versions of the codes include high orders term in order to reproduce the observed frequencies for large quantum numbers values as J-values as high as 70a,b,. Measurements and analysis of the rotational spectra of 13C isotopic species are in progress in Lille with a solid-state submillimetre-wave spectrometer (50-950 GHz), the first results will be presented. This work is supported by the contract ANR-08-BLAN-0054 and by the Programme National de Physico-Chimie du Milieu Interstellaire (PCMI-CNRS). Carvajal, M.; Margulès, L.; Tercero, B.; et al.A&A 500, (2009) 1109 Margulès, L.; Huet, T. R.; Demaison J.; et al.,ApJ 714, (2010) 1120. Ikeda, M.; Ohishi, M.; Nummelin, A.; et al., ApJ, 560, (2001) 792 Kleiner, I.; Lopez, J.-C.; Blanco, S.; et al.J. Mol. Spectrosc. 197, (1999) 275 Elkeurti M.; Coudert, L. H.; Medvedev, I. R.; et al.J. Mol. Spectrosc. 263, (2010) 145 Kilb, R.W.; Lin, C.C.; and Wilson, E.B.J. Chem. Phys. 26, (1957) 1695 Kleiner, I. J. Mol. Spectrosc. 260, (2010) 1 Ilyushin, V.V.; Kryvda, A; and Alekseev, E;J. Mol. Spectrosc. 255, (2009) 32

  14. Synthesis of Ethyl Salicylate Using Household Chemicals

    NASA Astrophysics Data System (ADS)

    Solomon, Sally; Hur, Chinhyu; Lee, Alan; Smith, Kurt

    1996-02-01

    Ethyl salicylate is synthesized, isolated, and characterized in a three-step process using simple equipment and household chemicals. First, acetylsalicylic acid is extracted from aspirin tablets with isopropyl alcohol, then hydrolyzed to salicylic acid with muriatic acid, and finally, the salicylic acid is esterified using ethanol and a boric acid catalyst. The experiment can be directed towards high school or university level students who have sufficient background in organic chemistry to recognize the structures and reactions that are involved.

  15. Production of ethyl alcohol from bananas

    SciTech Connect

    Jones, R.L.; Towns, T.

    1983-12-01

    The production of ethyl alcohol from waste bananas presents many special problems. During cooking, matting of the latex fibers from the banana peel recongeal when cooled and left untreated. This problem has been addressed by Alfaro by the use of CaC1/sub 2/. Separation of solids prior to distillation of the mashes in an economical fashion and use of the by product are also of concern to banana processors.

  16. Quantitative Determination of Acetaldehyde in Foods Using Automated Digestion with Simulated Gastric Fluid Followed by Headspace Gas Chromatography

    PubMed Central

    Uebelacker, Michael; Lachenmeier, Dirk W.

    2011-01-01

    Acetaldehyde (ethanal) is a genotoxic carcinogen, which may occur naturally or as an added flavour in foods. We have developed an efficient method to analyze the compound in a wide variety of food matrices. The analysis is conducted using headspace (HS) gas chromatography (GC) with flame ionization detector. Using a robot autosampler, the samples are digested in full automation with simulated gastric fluid (1 h at 37°C) under shaking, which frees acetaldehyde loosely bound to matrix compounds. Afterwards, an aliquot of the HS is injected into the GC system. Standard addition was applied for quantification to compensate for matrix effects. The precision of the method was sufficient (<3% coefficient of variation). The limit of detection was 0.01 mg/L and the limit of quantification was 0.04 mg/L. 140 authentic samples were analyzed. The acetaldehyde content in apples was 0.97 ± 0.80 mg/kg, orange juice contained 3.86 ± 2.88 mg/kg. The highest concentration was determined in a yoghurt (17 mg/kg). A first-exposure estimation resulted in a daily acetaldehyde intake of less than 0.1 mg/kg bodyweight from food, which is considerably lower than the exposures from alcohol consumption or tobacco smoking. PMID:21747735

  17. Theoretical study on the mechanism of cycloaddition reaction between silylene silylene(H₂Si=Si:) and acetaldehyde.

    PubMed

    Lu, Xiuhui; Shi, Leyi; Ji, Hua

    2012-11-01

    The mechanism of the cycloaddition reaction between singlet silylene silylene (H₂Si=Si:) and acetaldehyde has been investigated with CCSD(T)//MP2/6-31G* and CCSD(T)//MP2/6-31G** method, from the potential energy profile, we could predict that the reaction has three competitive dominant reaction pathways. The present rule of this reaction is that the 3p unoccupied orbital of the Si: atom in silylene silylene (H₂Si=Si:) inserts on the π orbital of acetaldehyde from oxygen side, resulting in the formation of an intermediate. Isomerization of the intermediate further leads to the generation of a four-membered ring silylene (the H₂Si-O in the opposite position). In addition, the [2 + 2] cycloaddition reaction of the two π-bonds in silylene silylene and acetaldehyde generates another four-membered ring silylene (the H₂Si-O in the syn-position). Because of the unsaturated property of Si: atom in the two four-membered ring silylenes, they could further react with acetaldehyde, resulting in the generation of two spiro-heterocyclic ring compounds with Si. Simultaneously, the ring strain of the four-membered ring silylene (the H₂Si-O in the syn-position) makes it isomerize to a twisted four-membered ring product.

  18. Quantitative determination of acetaldehyde in foods using automated digestion with simulated gastric fluid followed by headspace gas chromatography.

    PubMed

    Uebelacker, Michael; Lachenmeier, Dirk W

    2011-01-01

    Acetaldehyde (ethanal) is a genotoxic carcinogen, which may occur naturally or as an added flavour in foods. We have developed an efficient method to analyze the compound in a wide variety of food matrices. The analysis is conducted using headspace (HS) gas chromatography (GC) with flame ionization detector. Using a robot autosampler, the samples are digested in full automation with simulated gastric fluid (1 h at 37°C) under shaking, which frees acetaldehyde loosely bound to matrix compounds. Afterwards, an aliquot of the HS is injected into the GC system. Standard addition was applied for quantification to compensate for matrix effects. The precision of the method was sufficient (<3% coefficient of variation). The limit of detection was 0.01 mg/L and the limit of quantification was 0.04 mg/L. 140 authentic samples were analyzed. The acetaldehyde content in apples was 0.97 ± 0.80 mg/kg, orange juice contained 3.86 ± 2.88 mg/kg. The highest concentration was determined in a yoghurt (17 mg/kg). A first-exposure estimation resulted in a daily acetaldehyde intake of less than 0.1 mg/kg bodyweight from food, which is considerably lower than the exposures from alcohol consumption or tobacco smoking.

  19. An acetaldehyde-sequestering agent inhibits appetitive reinforcement and behavioral stimulation induced by ethanol in preweanling rats.

    PubMed

    Pautassi, Ricardo Marcos; Nizhnikov, Michael E; Fabio, Ma Carolina; Spear, Norman E

    2011-01-01

    Ethanol's motivational consequences have been related to the actions of acetaldehyde, a metabolic product of ethanol oxidation. The present study assessed the role of acetaldehyde in the motivational effects of ethanol on preweanling rats. In Experiment 1 pups (postnatal days 13-14, PD 13-14) were given systemic administration of D-penicillamine (DP, a drug that sequesters acetaldehyde: 0, 25, 50 or 75 mg/kg) before pairings of 1.0 g/kg ethanol and a rough surface (sandpaper, conditioned stimulus, CS). At test, pups given sandpaper-ethanol pairings exhibited greater preference for the CS than unpaired controls, but this preference was not expressed by pups given DP. Pre-training administration of 25 or 50 mg/kg DP completely blocked the expression of ethanol-mediated appetitive conditioning. D-penicillamine did not alter blood ethanol levels. Subsequent experiments revealed that ethanol-induced activation was blocked by central (intra-cisterna magna injections, volume: 1 μl, dose: 0 or 75 μg) but not systemic treatment with DP (0, 25, 50 or 75 mg/kg; ip). These results indicate that: (a) preweanling rats are sensitive to the reinforcing effect of ethanol, and (b) that this effect is associated with the motor activating effect of the drug. These effects seem to be mediated by the first metabolite of ethanol, acetaldehyde.

  20. Experimental and modeling study of the oxidation of acetaldehyde in an atmospheric-pressure pulsed corona discharge

    NASA Astrophysics Data System (ADS)

    Klett, C.; Touchard, S.; Vega-Gonzalez, A.; Redolfi, M.; Bonnin, X.; Hassouni, K.; Duten, X.

    2012-08-01

    This paper reports the results obtained for the degradation of acetaldehyde by an atmospheric plasma corona discharge working in a pulsed regime. It was shown that a few hundred ppm of acetaldehyde diluted in a pure N2 gas flow can be removed up to 80% by a discharge fed with an electric power lower than 1 W. Under the same conditions, adding up to 5% of O2 allowed the removal of up to 95% of the initial acetaldehyde. The main identified end products were CO2, CO and methanol. A quasi-homogeneous zero-dimensional chemical model was developed to investigate the respective efficiency of the discharge and post-discharge periods in the global removal of the pollutant. The identified main pathways of acetaldehyde degradation were quenching of N2 metastable states during plasma pulses and oxidation by O and OH radicals during the post-discharge. This latter contribution increased with input power because of ozone accumulation in the gas mixture acting as an additional oxygen reservoir.