Science.gov

Sample records for acetaldehyde metabolism influence

  1. Acetaldehyde

    Integrated Risk Information System (IRIS)

    Acetaldehyde ; CASRN 75 - 07 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  2. Short-term salivary acetaldehyde increase due to direct exposure to alcoholic beverages as an additional cancer risk factor beyond ethanol metabolism

    PubMed Central

    2011-01-01

    Background An increasing body of evidence now implicates acetaldehyde as a major underlying factor for the carcinogenicity of alcoholic beverages and especially for oesophageal and oral cancer. Acetaldehyde associated with alcohol consumption is regarded as 'carcinogenic to humans' (IARC Group 1), with sufficient evidence available for the oesophagus, head and neck as sites of carcinogenicity. At present, research into the mechanistic aspects of acetaldehyde-related oral cancer has been focused on salivary acetaldehyde that is formed either from ethanol metabolism in the epithelia or from microbial oxidation of ethanol by the oral microflora. This study was conducted to evaluate the role of the acetaldehyde that is found as a component of alcoholic beverages as an additional factor in the aetiology of oral cancer. Methods Salivary acetaldehyde levels were determined in the context of sensory analysis of different alcoholic beverages (beer, cider, wine, sherry, vodka, calvados, grape marc spirit, tequila, cherry spirit), without swallowing, to exclude systemic ethanol metabolism. Results The rinsing of the mouth for 30 seconds with an alcoholic beverage is able to increase salivary acetaldehyde above levels previously judged to be carcinogenic in vitro, with levels up to 1000 μM in cases of beverages with extreme acetaldehyde content. In general, the highest salivary acetaldehyde concentration was found in all cases in the saliva 30 sec after using the beverages (average 353 μM). The average concentration then decreased at the 2-min (156 μM), 5-min (76 μM) and 10-min (40 μM) sampling points. The salivary acetaldehyde concentration depends primarily on the direct ingestion of acetaldehyde contained in the beverages at the 30-sec sampling, while the influence of the metabolic formation from ethanol becomes the major factor at the 2-min sampling point. Conclusions This study offers a plausible mechanism to explain the increased risk for oral cancer associated with

  3. Metabolic engineering of acetaldehyde production by Streptococcus thermophilus.

    PubMed

    Chaves, A C S D; Fernandez, M; Lerayer, A L S; Mierau, I; Kleerebezem, M; Hugenholtz, J

    2002-11-01

    The process of acetaldehyde formation by the yogurt bacterium Streptococcus thermophilus is described in this paper. Attention was focused on one specific reaction for acetaldehyde formation catalyzed by serine hydroxymethyltransferase (SHMT), encoded by the glyA gene. In S. thermophilus, SHMT also possesses threonine aldolase (TA) activity, the interconversion of threonine into glycine and acetaldehyde. In this work, several wild-type S. thermophilus strains were screened for acetaldehyde production in the presence and absence of L-threonine. Supplementation of the growth medium with L-threonine led to an increase in acetaldehyde production. Furthermore, acetaldehyde formation during fermentation could be correlated to the TA activity of SHMT. To study the physiological role of SHMT, a glyA mutant was constructed by gene disruption. Inactivation of glyA resulted in a severe reduction in TA activity and complete loss of acetaldehyde formation during fermentation. Subsequently, an S. thermophilus strain was constructed in which the glyA gene was cloned under the control of a strong promoter (P(LacA)). When this strain was used for fermentation, an increase in TA activity and in acetaldehyde and folic acid production was observed. These results show that, in S. thermophilus, SHMT, displaying TA activity, constitutes the main pathway for acetaldehyde formation under our experimental conditions. These findings can be used to control and improve acetaldehyde production in fermented (dairy) products with S. thermophilus as starter culture.

  4. A physiologically based model for ethanol and acetaldehyde metabolism in human beings.

    PubMed

    Umulis, David M; Gürmen, Nihat M; Singh, Prashant; Fogler, H Scott

    2005-01-01

    Pharmacokinetic models for ethanol metabolism have contributed to the understanding of ethanol clearance in human beings. However, these models fail to account for ethanol's toxic metabolite, acetaldehyde. Acetaldehyde accumulation leads to signs and symptoms, such as cardiac arrhythmias, nausea, anxiety, and facial flushing. Nevertheless, it is difficult to determine the levels of acetaldehyde in the blood or other tissues because of artifactual formation and other technical issues. Therefore, we have constructed a promising physiologically based pharmacokinetic (PBPK) model, which is an excellent match for existing ethanol and acetaldehyde concentration-time data. The model consists of five compartments that exchange material: stomach, gastrointestinal tract, liver, central fluid, and muscle. All compartments except the liver are modeled as stirred reactors. The liver is modeled as a tubular flow reactor. We derived average enzymatic rate laws for alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH), determined kinetic parameters from the literature, and found best-fit parameters by minimizing the squared error between our profiles and the experimental data. The model's transient output correlates strongly with the experimentally observed results for healthy individuals and for those with reduced ALDH activity caused by a genetic deficiency of the primary acetaldehyde-metabolizing enzyme ALDH2. Furthermore, the model shows that the reverse reaction of acetaldehyde back into ethanol is essential and keeps acetaldehyde levels approximately 10-fold lower than if the reaction were irreversible.

  5. Daidzin suppresses ethanol consumption by Syrian golden hamsters without blocking acetaldehyde metabolism.

    PubMed

    Keung, W M; Lazo, O; Kunze, L; Vallee, B L

    1995-09-12

    Daidzin is a potent, selective, and reversible inhibitor of human mitochondrial aldehyde dehydrogenase (ALDH) that suppresses free-choice ethanol intake by Syrian golden hamsters. Other ALDH inhibitors, such as disulfiram (Antabuse) and calcium citrate carbimide (Temposil), have also been shown to suppress ethanol intake of laboratory animals and are thought to act by inhibiting the metabolism of acetaldehyde produced from ingested ethanol. To determine whether or not daidzin inhibits acetaldehyde metabolism in vivo, plasma acetaldehyde in daidzin-treated hamsters was measured after the administration of a test dose of ethanol. Daidzin treatment (150 mg/kg per day i.p. for 6 days) significantly suppresses (> 70%) hamster ethanol intake but does not affect overall acetaldehyde metabolism. In contrast, after administration of the same ethanol dose, plasma acetaldehyde concentration in disulfiram-treated hamsters reaches 0.9 mM, 70 times higher than that of the control. In vitro, daidzin suppresses hamster liver mitochondria-catalyzed acetaldehyde oxidation very potently with an IC50 value of 0.4 microM, which is substantially lower than the daidzin concentration (70 microM) found in the liver mitochondria of daidzin-treated hamsters. These results indicate that (i) the action of daidzin differs from that proposed for the classic, broad-acting ALDH inhibitors (e.g., disulfiram), and (ii) the daidzin-sensitive mitochondrial ALDH is not the one and only enzyme that is essential for acetaldehyde metabolism in golden hamsters.

  6. In vitro expression of Candida albicans alcohol dehydrogenase genes involved in acetaldehyde metabolism.

    PubMed

    Bakri, M M; Rich, A M; Cannon, R D; Holmes, A R

    2015-02-01

    Alcohol consumption is a risk factor for oral cancer, possibly via its conversion to acetaldehyde, a known carcinogen. The oral commensal yeast Candida albicans may be one of the agents responsible for this conversion intra-orally. The alcohol dehydrogenase (Adh) family of enzymes are involved in acetaldehyde metabolism in yeast but, for C. albicans it is not known which family member is responsible for the conversion of ethanol to acetaldehyde. In this study we determined the expression of mRNAs from three C. albicans Adh genes (CaADH1, CaADH2 and CaCDH3) for cells grown in different culture media at different growth phases by Northern blot analysis and quantitative reverse transcription polymerase chain reaction. CaADH1 was constitutively expressed under all growth conditions but there was differential expression of CaADH2. CaADH3 expression was not detected. To investigate whether CaAdh1p or CaAdh2p can contribute to alcohol catabolism in C. albicans, each gene from the reference strain C. albicans SC5314 was expressed in Saccharomyces cerevisiae. Cell extracts from an CaAdh1p-expressing S. cerevisiae recombinant, but not an CaAdh2p-expressing recombinant, or an empty vector control strain, possessed ethanol-utilizing Adh activity above endogenous S. cerevisiae activity. Furthermore, expression of C. albicans Adh1p in a recombinant S. cerevisiae strain in which the endogenous ScADH2 gene (known to convert ethanol to acetaldehyde in this yeast) had been deleted, conferred an NAD-dependent ethanol-utilizing, and so acetaldehyde-producing, Adh activity. We conclude that CaAdh1p is the enzyme responsible for ethanol use under in vitro growth conditions, and may contribute to the intra-oral production of acetaldehyde.

  7. The role of acetaldehyde outside ethanol metabolism in the carcinogenicity of alcoholic beverages: evidence from a large chemical survey.

    PubMed

    Lachenmeier, Dirk W; Sohnius, Eva-Maria

    2008-08-01

    Acetaldehyde is a volatile compound naturally found in alcoholic beverages, and it is regarded as possibly being carcinogenic to humans (IARC Group 2B). Acetaldehyde formed during ethanol metabolism is generally considered as a source of carcinogenicity in alcoholic beverages. However, no systematic data is available about its occurrence in alcoholic beverages and the carcinogenic potential of human exposure to this directly ingested form of acetaldehyde outside ethanol metabolism. In this study, we have analysed and evaluated a large sample collective of different alcoholic beverages (n=1,555). Beer (9+/-7 mg/l, range 0-63 mg/l) had significantly lower acetaldehyde contents than wine (34+/-34 mg/l, range 0-211 mg/l), or spirits (66+/-101 mg/l, range 0-1,159 mg/l). The highest acetaldehyde concentrations were generally found in fortified wines (118+/-120 mg/l, range 12-800 mg/l). Assuming an equal distribution between the beverage and saliva, the residual acetaldehyde concentrations in the saliva after swallowing could be on average 195 microM for beer, 734 microM for wine, 1,387 microM for spirits, or 2,417 microM for fortified wine, which are above levels previously regarded as potentially carcinogenic. Further research is needed to confirm the carcinogenic potential of directly ingested acetaldehyde. Until then, some possible preliminary interventions include the reduction of acetaldehyde in the beverages by improvement in production technology or the use of acetaldehyde binding additives. A re-evaluation of the 'generally recognized as safe' status of acetaldehyde is also required, which does not appear to be in agreement with its toxicity and carcinogenicity.

  8. Acetaldehyde and retinaldehyde-metabolizing enzymes in colon and pancreatic cancers.

    PubMed

    Singh, S; Arcaroli, J; Thompson, D C; Messersmith, W; Vasiliou, V

    2015-01-01

    Colorectal cancer (CRC) and pancreatic cancer are two very significant contributors to cancer-related deaths. Chronic alcohol consumption is an important risk factor for these cancers. Ethanol is oxidized primarily by alcohol dehydrogenases to acetaldehyde, an agent capable of initiating tumors by forming adducts with proteins and DNA. Acetaldehyde is metabolized by ALDH2, ALDH1B1, and ALDH1A1 to acetate. Retinoic acid (RA) is required for cellular differentiation and is known to arrest tumor development. RA is synthesized from retinaldehyde by the retinaldehyde dehydrogenases, specifically ALDH1A1, ALDH1A2, ALDH1A3, and ALDH8A1. By eliminating acetaldehyde and generating RA, ALDHs can play a crucial regulatory role in the initiation and progression of cancers. ALDH1 catalytic activity has been used as a biomarker to identify and isolate normal and cancer stem cells; its presence in a tumor is associated with poor prognosis in colon and pancreatic cancer. In summary, these ALDHs are not only biomarkers for CRC and pancreatic cancer but also play important mechanistic role in cancer initiation, progression, and eventual prognosis.

  9. Acetaldehyde and Retinaldehyde-Metabolizing Enzymes in Colon and Pancreatic cancers

    PubMed Central

    Singh, S; Arcaroli, J; Thompson, DC; Messersmith, W; Vasiliou, V

    2015-01-01

    Colorectal (CRC) and pancreatic cancers are two very significant contributors to cancer-related deaths. Chronic alcohol consumption is an important risk factor for these cancers. Ethanol is oxidized primarily by alcohol dehydrogenases to acetaldehyde, an agent capable of initiating tumors by forming adducts with proteins and DNA. Acetaldehyde is metabolized by ALDH2, ALDH1B1 and ALDH1A1 to acetate. Retinoic acid (RA) is required for cellular differentiation and is known to arrest tumor development. RA is synthesized from retinaldehyde by the retinaldehyde dehydrogenases, specifically ALDH1A1, ALDH1A2, ALDH1A3 and ALDH8A1. By eliminating acetaldehyde and generating RA, ALDHs can play a crucial regulatory role in the initiation and progression of cancers. ALDH1 catalytic activity has been used as a biomarker to identify and isolate normal and cancer stem cells; its presence in a tumor is associated with poor prognosis in colon and pancreatic cancer. In summary, these ALDHs are not only biomarkers for CRC and pancreatic cancer but also play important mechanistic role in cancer initiation, progression and eventual prognosis. PMID:25427913

  10. Cytotoxicity and metabolic stress induced by acetaldehyde in human intestinal LS174T goblet-like cells.

    PubMed

    Elamin, Elhaseen; Masclee, Ad; Troost, Freddy; Dekker, Jan; Jonkers, Daisy

    2014-08-01

    There is compelling evidence indicating that ethanol and its oxidative metabolite acetaldehyde can disrupt intestinal barrier function. Apart from the tight junctions, mucins secreted by goblet cells provide an effective barrier. Ethanol has been shown to induce goblet cell injury associated with alterations in mucin glycosylation. However, effects of its most injurious metabolite acetaldehyde remain largely unknown. This study aimed to assess short-term effects of acetaldehyde (0, 25, 50, 75, 100 μM) on functional characteristics of intestinal goblet-like cells (LS174T). Oxidative stress, mitochondrial function, ATP, and intramitochondrial calcium (Ca(2+)) were assessed by dichlorofluorescein, methyltetrazolium, and bioluminescence, MitoTracker green and rhod-2 double-labeling. Membrane integrity and apoptosis were evaluated by measuring lactate dehydrogenase (LDH), caspase 3/7, and cleavage of cytokeratin 18 (CK18). Expression of mucin 2 (MUC2) was determined by cell-based ELISA. Acetaldehyde significantly increased reactive oxygen species generation and decreased mitochondrial function compared with negative controls (P < 0.05). In addition, acetaldehyde dose-dependently decreased ATP levels and induced intramitochondrial Ca(2+) accumulation compared with negative controls (P < 0.05). Furthermore, acetaldehyde induced LDH release and increased caspase3/7 activity and percentage of cells expressing cleaved CK18 and increased MUC2 protein expression compared with negative controls (P < 0.0001). ATP depletion and LDH release could be largely prevented by the antioxidant N-acetylcysteine, suggesting a pivotal role for oxidative stress. Our data demonstrate that acetaldehyde has distinct oxidant-dependent metabolic and cytotoxic effects on LS174T cells that can lead to induction of cellular apoptosis. These effects may contribute to acetaldehyde-induced intestinal barrier dysfunction and subsequently to liver injury.

  11. Pharmacological recruitment of aldehyde dehydrogenase 3A1 (ALDH3A1) to assist ALDH2 in acetaldehyde and ethanol metabolism in vivo

    PubMed Central

    Chen, Che-Hong; Cruz, Leslie A.; Mochly-Rosen, Daria

    2015-01-01

    Correcting a genetic mutation that leads to a loss of function has been a challenge. One such mutation is in aldehyde dehydrogenase 2 (ALDH2), denoted ALDH2*2. This mutation is present in ∼0.6 billion East Asians and results in accumulation of toxic acetaldehyde after consumption of ethanol. To temporarily increase metabolism of acetaldehyde in vivo, we describe an approach in which a pharmacologic agent recruited another ALDH to metabolize acetaldehyde. We focused on ALDH3A1, which is enriched in the upper aerodigestive track, and identified Alda-89 as a small molecule that enables ALDH3A1 to metabolize acetaldehyde. When given together with the ALDH2-specific activator, Alda-1, Alda-89 reduced acetaldehyde-induced behavioral impairment by causing a rapid reduction in blood ethanol and acetaldehyde levels after acute ethanol intoxication in both wild-type and ALDH2-deficient, ALDH2*1/*2, heterozygotic knock-in mice. The use of a pharmacologic agent to recruit an enzyme to metabolize a substrate that it usually does not metabolize may represent a novel means to temporarily increase elimination of toxic agents in vivo. PMID:25713355

  12. Hepatotoxicity of acetaldehyde in rats.

    PubMed

    Strubelt, O; Younes, M; Urch, T; Breining, H; Pentz, R

    1987-11-01

    The ability of acetaldehyde to initiate hepatotoxicity as evidenced by enzyme leakage, hepatic fat accumulation and histological alterations was studied in rats. Neither oral nor intraperitoneal treatment with acetaldehyde had any hepatotoxic effect, even following aldehyde dehydrogenase inhibition by disulfiram. This is probably due to the inability of exogenously added acetaldehyde to penetrate liver cell membranes. In contrast, acetaldehyde derived metabolically from ethanol was capable of inducing moderate hepatotoxicity when it accumulated upon pretreatment with disulfiram. Acetaldehyde may thus be partly responsible for alcohol-induced liver damage.

  13. Ethanol Metabolism by HeLa Cells Transduced with Human Alcohol Dehydrogenase Isoenzymes: Control of the Pathway by Acetaldehyde Concentration†

    PubMed Central

    Matsumoto, Michinaga; Cyganek, Izabela; Sanghani, Paresh C.; Cho, Won Kyoo; Liangpunsakul, Suthat; Crabb, David W.

    2010-01-01

    Background Human class I alcohol dehydrogenase 2 isoenzymes (encoded by the ADH1B locus) have large differences in kinetic properties; however, individuals inheriting the alleles for the different isoenzymes exhibit only small differences in alcohol elimination rates. This suggests that other cellular factors must regulate the activity of the isoenzymes. Methods The activity of the isoenzymes expressed from ADH1B*1, ADH1B*2, and ADH1B*3 cDNAs was examined in stably transduced HeLa cell lines, including lines which expressed human low Km aldehyde dehydrogenase (ALDH2). The ability of the cells to metabolize ethanol was compared with that of HeLa cells expressing rat class I ADH (HeLa-rat ADH cells), rat hepatoma (H4IIEC3) cells, and rat hepatocytes. Results The isoenzymes had similar protein half-lives in the HeLa cells. Rat hepatocytes, H4IIEC3 cells, and HeLa-rat ADH cells oxidized ethanol much faster than the cells expressing the ADH1B isoenzymes. This was not explained by high cellular NADH levels or endogenous inhibitors; but rather because the activity of the β1 and β2 ADHs were constrained by the accumulation of acetaldehyde, as shown by the increased rate of ethanol oxidation by cell lines expressing β2 ADH plus ALDH2. Conclusion The activity of the human β2 ADH isoenzyme is sensitive to inhibition by acetaldehyde, which likely limits its activity in vivo. This study emphasizes the importance of maintaining a low steady–state acetaldehyde concentration in hepatocytes during ethanol metabolism. PMID:21166830

  14. Motor stimulant effects of ethanol injected into the substantia nigra pars reticulata: importance of catalase-mediated metabolism and the role of acetaldehyde.

    PubMed

    Arizzi-LaFrance, Maria N; Correa, Mercè; Aragon, Carlos M G; Salamone, John D

    2006-05-01

    A series of experiments was conducted to investigate the locomotor effects of local injections of ethanol and the ethanol metabolite, acetaldehyde, into substantia nigra pars reticulata (SNr). Infusions of ethanol into SNr resulted in a dose-related increase in locomotor activity, with maximal effects at a dose of 1.4 micromol. Ethanol injected into a control site dorsal to substantia nigra failed to stimulate locomotion, and another inactive site was identified in brainstem areas posterior to substantia nigra. The locomotor effects of intranigral ethanol (1.4 micromol) were reduced by coadministration of 10 mg/kg sodium azide, a catalase inhibitor that acts to reduce the metabolism of ethanol into acetaldehyde in the brain. SNr infusions of acetaldehyde, which is the first metabolite of ethanol, also increased locomotion. Taken together, these results indicate that SNr is one of the sites at which ethanol and acetaldehyde may be acting to induce locomotor activity. These results are consistent with the hypothesis that acetaldehyde is a centrally active metabolite of ethanol, and provide further support for the idea that catalase activity is a critical step in the regulation of ethanol-induced motor activity. These studies have implications for understanding the brain mechanisms involved in mediating the ascending limb of the biphasic dose-response curve for the effect of ethanol on locomotor activity.

  15. Opposite motor responses elicited by ethanol in the posterior VTA: the role of acetaldehyde and the non-metabolized fraction of ethanol.

    PubMed

    Martí-Prats, Lucía; Sánchez-Catalán, María José; Orrico, Alejandro; Zornoza, Teodoro; Polache, Ana; Granero, Luis

    2013-09-01

    Recent electrophysiological evidence suggests that ethanol simultaneously exerts opposite effects on the activity of dopamine (DA) neurons in the ventral tegmental area (VTA) through two parallel mechanisms, one promoting and the other reducing the GABA release onto VTA DA neurons. Here we explore the possible behavioural implications of these findings by investigating the role displayed by acetaldehyde (the main metabolite of ethanol) and the non-metabolized fraction of ethanol in motor activity of rats. We analyse the appearance of motor activation or depression after intra-VTA administration of ethanol in rats subjected to different pharmacological pre-treatments designed to preferentially test either the effects of acetaldehyde or the non-metabolized ethanol. Motor activity was evaluated after intra-VTA administration of 35 nmol of ethanol, an apparently ineffective dose that does not modify the motor activity of animals. Pharmacological pre-treatments were used in order to either increase (cyanamide, 10 mg/kg, ip) or decrease (D-penicillamine, 50 mg/kg, ip and sodium azide, 7 mg/kg, ip) acetaldehyde levels in the VTA. Pre-treatments aimed to augment acetaldehyde, increased motor activity of rats. Otherwise, pre-treatments intended to decrease local acetaldehyde levels evoked significant reductions in motor activity that were prevented by the local blockade (bicuculline, 17.5 pmol) of the GABAA receptors. Our findings suggest that the brain-generated acetaldehyde is involved in the stimulant effects of ethanol, whereas the non-biotransformed fraction of ethanol, acting through the GABAA receptors, would account for the depressant effects. The present behavioural findings suggest that ethanol dually modulates the activity of DA neurons.

  16. Acetaldehyde as an underestimated risk factor for cancer development: role of genetics in ethanol metabolism

    PubMed Central

    Stickel, Felix

    2009-01-01

    Chronic ethanol consumption is a strong risk factor for the development of certain types of cancer including those of the upper aerodigestive tract, the liver, the large intestine and the female breast. Multiple mechanisms are involved in alcohol-mediated carcinogenesis. Among those the action of acetaldehyde (AA), the first metabolite of ethanol oxidation is of particular interest. AA is toxic, mutagenic and carcinogenic in animal experiments. AA binds to DNA and forms carcinogenic adducts. Direct evidence of the role of AA in alcohol-associated carcinogenesis derived from genetic linkage studies in alcoholics. Polymorphisms or mutations of genes coding for AA generation or detoxifying enzymes resulting in elevated AA concentrations are associated with increased cancer risk. Approximately 40% of Japanese, Koreans or Chinese carry the AA dehydrogenase 2*2 (ALDH2*2) allele in its heterozygous form. This allele codes for an ALDH2 enzyme with little activity leading to high AA concentrations after the consumption of even small amounts of alcohol. When individuals with this allele consume ethanol chronically, a significant increased risk for upper alimentary tract and colorectal cancer is noted. In Caucasians, alcohol dehydrogenase 1C*1 (ADH1C*1) allele encodes for an ADH isoenzyme which produces 2.5 times more AA than the corresponding allele ADH1C*2. In studies with moderate to high alcohol intake, ADH1C*1 allele frequency and rate of homozygosity was found to be significantly associated with an increased risk for cancer of the upper aerodigestive tract, the liver, the colon and the female breast. These studies underline the important role of acetaldehyde in ethanol-mediated carcinogenesis. PMID:19847467

  17. The exchange of acetaldehyde between plants and the atmosphere: Stable carbon isotope and flux measurements

    NASA Astrophysics Data System (ADS)

    Jardine, Kolby Jeremiah

    The exchange of acetaldehyde between plant canopies and the atmosphere may significantly influence regional atmospheric chemistry and plant metabolism. While plants are known to both produce and consume acetaldehyde, the exchange of this compound with forested ecosystems is complicated by physical, biological, and chemical processes that range from being poorly understood to completely unknown. This precludes a quantitative understanding of acetaldehyde exchange rates between the atmosphere and the biosphere. In this study, the processes controlling the exchange of acetaldehyde with plant canopies was investigated using concentration, flux, and natural abundance 13C measurements of gas phase acetaldehyde from individual plants, soils, and entire ecosystems. Although previously only considered important in anoxic tissues, it was discovered that acetaldehyde is produced and consumed in leaves through ethanolic fermentation coupled to the pyruvate dehydrogenase bypass system under normal aerobic conditions. These coupled pathways determine the acetaldehyde compensation point, a major factor controlling its exchange with the atmosphere. Carbon isotope analysis suggests a new pathway for acetaldehyde production from plants under stress involving the peroxidation of membrane fatty acids. This pathway may be a major source of acetaldehyde to the atmosphere from plants under biotic and abiotic stresses. Plant stomata were found to be the dominant pathway for the exchange of acetaldehyde with the atmosphere with stomatal conductance influencing both emission and uptake fluxes. In addition, increasing temperature and solar radiation was found to increase the compensation point by increasing the rates of acetaldehyde production relative to consumption. Under ambient conditions, bare soil was neutral to the exchange of acetaldehyde while senescing and decaying leaves were found to be strong source of acetaldehyde to the atmosphere due to increased decomposition processes and

  18. Interrelationship between alcohol, smoking, acetaldehyde and cancer.

    PubMed

    Salaspuro, Mikko

    2007-01-01

    In industrialized countries alcohol and tobacco are the main risk factors of upper digestive tract cancer. With regard to the pathogenesis of these cancers, there is strong epidemiological, biochemical and genetic evidence supporting the role of the first metabolite of alcohol oxidation--acetaldehyde--as a common denominator. Alcohol is metabolized to acetaldehyde locally in the oral cavity by microbes representing normal oral flora. Poor oral hygiene, heavy drinking and chronic smoking modify oral flora to produce more acetaldehyde from ingested alcohol. Also, tobacco smoke contains acetaldehyde, which during smoking becomes dissolved in saliva. Via swallowing, salivary acetaldehyde of either origin is distributed from oral cavity to pharynx, oesophagus and stomach. Strongest evidence for the local carcinogenic action of acetaldehyde provides studies with ALDH2-deficient Asian drinkers, who form an exceptional human model for long-term acetaldehyde exposure. After drinking alcohol they have an increased concentration of acetaldehyde in their saliva and this is associated with over 10-fold risk of upper digestive tract cancers. In conclusion, acetaldehyde derived either from ethanol or tobacco appears to act in the upper digestive tract as a local carcinogen in a dose-dependent and synergistic way.

  19. Acetaldehyde and gastric cancer.

    PubMed

    Salaspuro, Mikko

    2011-04-01

    Aldehyde dehydrogenase (ALDH2) and alcohol dehydrogenase (ADH) gene polymorphisms associating with enhanced acetaldehyde exposure and markedly increased cancer risk in alcohol drinkers provide undisputable evidence for acetaldehyde being a local carcinogen not only in esophageal but also in gastric cancer. Accordingly, acetaldehyde associated with alcoholic beverages has recently been classified as a Group 1 carcinogen to humans. Microbes are responsible for the bulk of acetaldehyde production from ethanol both in saliva and Helicobacter pylori-infected and achlorhydric stomach. Acetaldehyde is the most abundant carcinogen in tobacco smoke and it readily dissolves into saliva during smoking. Many foodstuffs and 'non-alcoholic' beverages are important but unrecognized sources of local acetaldehyde exposure. The cumulative cancer risk associated with increasing acetaldehyde exposure suggests the need for worldwide screening of the acetaldehyde levels of alcoholic beverages and as well of the ethanol and acetaldehyde of food produced by fermentation. The generally regarded as safe status of acetaldehyde should be re-evaluated. The as low as reasonably achievable principle should be applied to the acetaldehyde of alcoholic and non-alcoholic beverages and food. Risk groups with ADH-and ALDH2 gene polymorphisms, H. pylori infection or achlorhydric atrophic gastritis, or both, should be screened and educated in this health issue. L-cysteine formulations binding carcinogenic acetaldehyde locally in the stomach provide new means for intervention studies.

  20. Acetaldehyde-induced cytotoxicity involves induction of spermine oxidase at the transcriptional level.

    PubMed

    Uemura, Takeshi; Tanaka, Yuka; Higashi, Kyohei; Miyamori, Daisuke; Takasaka, Tomokazu; Nagano, Tatsuo; Toida, Toshihiko; Yoshimoto, Kanji; Igarashi, Kazuei; Ikegaya, Hiroshi

    2013-08-09

    Ethanol consumption causes serious liver injury including cirrhosis and hepatocellular carcinoma. Ethanol is metabolized mainly in the liver to acetic acid through acetaldehyde. We investigated the effect of ethanol and acetaldehyde on polyamine metabolism since polyamines are essential factors for normal cellular functions. We found that acetaldehyde induced spermine oxidase (SMO) at the transcriptional level in HepG2 cells. The levels and activities of ornithine decarboxylase (ODC) and spermidine/spermine acetyltransferase (SSAT) were not affected by acetaldehyde. Spermidine content was increased and spermine content was decreased by acetaldehyde treatment. Knockdown of SMO expression using siRNA reduced acetaldehyde toxicity. Acetaldehyde exposure increased free acrolein levels. An increase of acrolein by acetaldehyde was SMO dependent. Our results indicate that cytotoxicity of acetaldehyde involves, at least in part, oxidation of spermine to spermidine by SMO, which is induced by acetaldehyde.

  1. Olfaction Under Metabolic Influences

    PubMed Central

    2012-01-01

    Recently published work and emerging research efforts have suggested that the olfactory system is intimately linked with the endocrine systems that regulate or modify energy balance. Although much attention has been focused on the parallels between taste transduction and neuroendocrine controls of digestion due to the novel discovery of taste receptors and molecular components shared by the tongue and gut, the equivalent body of knowledge that has accumulated for the olfactory system, has largely been overlooked. During regular cycles of food intake or disorders of endocrine function, olfaction is modulated in response to changing levels of various molecules, such as ghrelin, orexins, neuropeptide Y, insulin, leptin, and cholecystokinin. In view of the worldwide health concern regarding the rising incidence of diabetes, obesity, and related metabolic disorders, we present a comprehensive review that addresses the current knowledge of hormonal modulation of olfactory perception and how disruption of hormonal signaling in the olfactory system can affect energy homeostasis. PMID:22832483

  2. Acetaldehyde and the genome: beyond nuclear DNA adducts and carcinogenesis.

    PubMed

    Brooks, Philip J; Zakhari, Samir

    2014-03-01

    The designation of acetaldehyde associated with the consumption of alcoholic beverages as "carcinogenic to humans" (Group 1) by the International Agency for Research on Cancer (IARC) has brought renewed attention to the biological effects of acetaldehyde, as the primary oxidative metabolite of alcohol. Therefore, the overall focus of this review is on acetaldehyde and its direct and indirect effects on the nuclear and mitochondrial genome. We first consider different acetaldehyde-DNA adducts, including a critical assessment of the evidence supporting a role for acetaldehyde-DNA adducts in alcohol related carcinogenesis, and consideration of additional data needed to make a conclusion. We also review recent data on the role of the Fanconi anemia DNA repair pathway in protecting against acetaldehyde genotoxicity and carcinogenicity, as well as teratogenicity. We also review evidence from the older literature that acetaldehyde may impact the genome indirectly, via the formation of adducts with proteins that are themselves critically involved in the maintenance of genetic and epigenetic stability. Finally, we note the lack of information regarding acetaldehyde effects on the mitochondrial genome, which is notable since aldehyde dehydrogenase 2 (ALDH2), the primary acetaldehyde metabolic enzyme, is located in the mitochondrion, and roughly 30% of East Asian individuals are deficient in ALDH2 activity due to a genetic variant in the ALDH2 gene. In summary, a comprehensive understanding of all of the mechanisms by which acetaldehyde impacts the function of the genome has implications not only for alcohol and cancer, but types of alcohol related pathologies as well.

  3. Acetaldehyde and ethanol production by Helicobacter pylori.

    PubMed

    Salmela, K S; Roine, R P; Höök-Nikanne, J; Kosunen, T U; Salaspuro, M

    1994-04-01

    By virtue of possessing alcohol dehydrogenase activity, cytosol prepared from Helicobacter pylori produces toxic acetaldehyde from ethanol in vitro. To approach the in vivo situation in the stomach, we have now investigation whether intact H. pylori--without addition of exogenous nicotinamide adenine dinucleotide--also forms acetaldehyde. Furthermore, to assess the energy metabolism of H. pylori, we determined whether the alcohol dehydrogenase-catalyzed reaction can run in the opposite direction with ethanol as the end-product and thereby yield energy for the organism. Intact H. pylori formed acetaldehyde already at low ethanol concentrations (at 0.5% ethanol, acetaldehyde, 64 +/- 21 and 75 +/- 9 mumol/l (mean +/- SEM) for strains NCTC 11637 and NCTC 11638, respectively). H. pylori produced ethanol in concentrations that can be significant for the energy metabolism of the organism. Acetaldehyde production by H. pylori may be an important factor in the pathogenesis of gastroduodenal diseases associated with the organism. The primary function of H. pylori alcohol dehydrogenase may, however, be alcoholic fermentation and consequent energy production under microaerobic conditions.

  4. A PBPK MODEL FOR EVALUATING THE IMPACT OF ALDEHYDE DEHYDROGENASE POLYMORPHISMS ON COMPARATIVE RAT AND HUMAN NASAL TISSUE ACETALDEHYDE DOSIMETRY

    EPA Science Inventory

    ABSTRACT: Acetaldehyde is an important intermediate in chemical synthesis and a byproduct of normal oxidative metabolism of several industrially important compounds including ethanol, ethyl acetate and vinyl acetate. Chronic inhalation of acetaldehyde leads to degeneratio...

  5. A PBPK model for evaluating the impact of aldehyde dehydrogenase polymorphisms on comparative rat and human nasal tissue acetaldehyde dosimetry*

    EPA Science Inventory

    Acetaldehyde is an important intermediate in the chemical synthesis and normal oxidative metabolism of several industrially important compounds, including ethanol, ethyl acetate, and vinyl acetate. Chronic inhalation of acetaldehyde leads to degeneration of the olfactory and resp...

  6. Piecing together the puzzle of acetaldehyde as a neuroactive agent.

    PubMed

    Correa, Mercè; Salamone, John D; Segovia, Kristen N; Pardo, Marta; Longoni, Rosanna; Spina, Liliana; Peana, Alessandra T; Vinci, Stefania; Acquas, Elio

    2012-01-01

    Mainly known for its more famous parent compound, ethanol, acetaldehyde was first studied in the 1940s, but then research interest in this compound waned. However, in the last two decades, research on acetaldehyde has seen a revitalized and uninterrupted interest. Acetaldehyde, per se, and as a product of ethanol metabolism, is responsible for many pharmacological effects which are not clearly distinguishable from those of its parent compound, ethanol. Consequently, the most recent advances in acetaldehyde's psychopharmacology have been inspired by the experimental approach to test the hypothesis that some of the effects of ethanol are mediated by acetaldehyde and, in this regard, the characterization of metabolic pathways for ethanol and the localization within discrete brain regions of these effects have revitalized the interest on the role of acetaldehyde in ethanol's central effects. Here we present and discuss a wealth of experimental evidence that converges to suggest that acetaldehyde is an intrinsically active compound, is metabolically generated in the brain and, finally, mediates many of the psychopharmacological properties of ethanol.

  7. Enhanced catabolism to acetaldehyde in rostral ventrolateral medullary neurons accounts for the pressor effect of ethanol in spontaneously hypertensive rats.

    PubMed

    El-Mas, Mahmoud M; Abdel-Rahman, Abdel A

    2012-02-01

    We have previously shown that ethanol microinjection into the rostral ventrolateral medulla (RVLM) elicits sympathoexcitation and hypertension in conscious spontaneously hypertensive rats (SHRs) but not in Wistar-Kyoto (WKY) rats. In this study, evidence was sought to implicate the oxidative breakdown of ethanol in this strain-dependent hypertensive action of ethanol. Biochemical experiments revealed significantly higher catalase activity and similar aldehyde dehydrogenase (ALDH) activity in the RVLM of SHRs compared with WKY rats. We also investigated the influence of pharmacological inhibition of catalase (3-aminotriazole) or ALDH (cyanamide) on the cardiovascular effects of intra-RVLM ethanol or its metabolic product acetaldehyde in conscious rats. Compared with vehicle, ethanol (10 μg/rat) elicited a significant increase in blood pressure in SHRs that lasted for the 60-min observation period but had no effect on blood pressure in WKY rats. The first oxidation product, acetaldehyde, played a critical role in ethanol-evoked hypertension because 1) catalase inhibition (3-aminotriazole treatment) virtually abolished the ethanol-evoked pressor response in SHRs, 2) intra-RVLM acetaldehyde (2 μg/rat) reproduced the strain-dependent hypertensive effect of intra-RVLM ethanol, and 3) ALDH inhibition (cyanamide treatment) uncovered a pressor response to intra-RVLM acetaldehyde in WKY rats similar to the response observed in SHRs. These findings support the hypothesis that local production of acetaldehyde, due to enhanced catalase activity, in the RVLM mediates the ethanol-evoked pressor response in SHRs.

  8. Xylitol inhibits carcinogenic acetaldehyde production by Candida species.

    PubMed

    Uittamo, Johanna; Nieminen, Mikko T; Kaihovaara, Pertti; Bowyer, Paul; Salaspuro, Mikko; Rautemaa, Riina

    2011-10-15

    Acetaldehyde is a highly toxic and mutagenic product of alcohol fermentation and metabolism which has been classified as a Class I carcinogen for humans by the International Agency for Research on Cancer of the World Health Organisation (WHO). Many Candida species representing oral microbiota have been shown to be capable of marked acetaldehyde production. The aim of our study was to examine the effects of various sugar alcohols and sugars on microbial acetaldehyde production. The study hypothesis was that xylitol could reduce the amount of acetaldehyde produced by Candida. Laboratory and clinical isolates of seven Candida species were selected for the study. The isolates were incubated in 12 mM ethanol and 110 mM glucose, fructose or xylitol at 37°C for 30 min and the formed acetaldehyde was measured by gas chromatography. Xylitol significantly (p < 0.0001) reduced the amount of acetaldehyde produced from ethanol by 84%. In the absence of xylitol, the mean acetaldehyde production in ethanol incubation was 220.5 μM and in ethanol-xylitol incubation 32.8 μM. This was found to be mediated by inhibition of the alcohol dehydrogenase enzyme activity. Coincubation with glucose reduced the amount of produced acetaldehyde by 23% and coincubation with fructose by 29%. At concentrations that are representative of those found in the oral cavity during the intake of proprietary xylitol products, xylitol was found to reduce the production of carcinogenic acetaldehyde from ethanol by Candida below the mutagenic level of 40-100 μM.

  9. Acetaldehyde: A Chemical Whose Fortunes Have Changed.

    ERIC Educational Resources Information Center

    Wittcoff, Harold A.

    1983-01-01

    Describes industrial acetaldehyde synthesis/uses, explaining why acetaldehyde usage is declining in industry. Includes a discussion of the reaction chemistry, equations, and molecular structure diagrams. (JM)

  10. Induction of mitochondrial aldehyde dehydrogenase by submergence facilitates oxidation of acetaldehyde during re-aeration in rice.

    PubMed

    Tsuji, Hiroyuki; Meguro, Naoki; Suzuki, Yasuhiro; Tsutsumi, Nobuhiro; Hirai, Atsushi; Nakazono, Mikio

    2003-07-10

    Post-hypoxic injuries in plants are primarily caused by bursts of reactive oxygen species and acetaldehyde. In agreement with previous studies, we found accumulations of acetaldehyde in rice during re-aeration following submergence. During re-aeration, acetaldehyde-oxidizing aldehyde dehydrogenase (ALDH) activity increased, thereby causing the acetaldehyde content to decrease in rice. Interestingly, re-aerated rice plants showed an intense mitochondrial ALDH2a protein induction, even though ALDH2a mRNA was submergence induced and declined upon re-aeration. This suggests that rice ALDH2a mRNA is accumulated in order to quickly metabolize acetaldehyde that is produced upon re-aeration.

  11. Metabolic influences on RNA biology and translation.

    PubMed

    Lee, Chien-Der; Tu, Benjamin P

    2017-04-01

    Protein translation is one of the most energetically demanding processes for a cell to undertake. Changes in the nutrient environment may result in conditions that cannot support the rates of translation required for cell proliferation. As such, a cell must monitor its metabolic state to determine which mRNAs to translate into protein. How the various RNA species that participate in translation might relay information about metabolic state to regulate this process is not well understood. In this review, we discuss emerging examples of the influence of metabolism on aspects of RNA biology. We discuss how metabolic state impacts the localization and fate of different RNA species, as well as how nutrient cues can impact post-transcriptional modifications of RNA to regulate their functions in the control of translation.

  12. Acetaldehyde kinetics of enological yeast during alcoholic fermentation in grape must.

    PubMed

    Li, Erhu; Mira de Orduña, Ramón

    2017-02-01

    Acetaldehyde strongly binds to the wine preservative SO2 and, on average, causes 50-70 mg l(-1) of bound SO2 in red and white wines, respectively. Therefore, a reduction of bound and total SO2 concentrations necessitates knowledge of the factors that affect final acetaldehyde concentrations in wines. This study provides a comprehensive analysis of the acetaldehyde production and degradation kinetics of 26 yeast strains of oenological relevance during alcoholic fermentation in must under controlled anaerobic conditions. Saccharomyces cerevisiae and non-Saccharomyces strains displayed similar metabolic kinetics where acetaldehyde reached an initial peak value at the beginning of fermentations followed by partial reutilization. Quantitatively, the range of values obtained for non-Saccharomyces strains greatly exceeded the variability among the S. cerevisiae strains tested. Non-Saccharomyces strains of the species C. vini, H. anomala, H. uvarum, and M. pulcherrima led to low acetaldehyde residues (<10 mg l(-1)), while C. stellata, Z. bailii, and, especially, a S. pombe strain led to large residues (24-48 mg l(-1)). Acetaldehyde residues in S. cerevisiae cultures were intermediate and less dispersed (14-34 mg l(-1)). Addition of SO2 to Chardonnay must triggered significant increases in acetaldehyde formation and residual acetaldehyde. On average, 0.33 mg of residual acetaldehyde remained per mg of SO2 added to must, corresponding to an increase of 0.47 mg of bound SO2 per mg of SO2 added. This research demonstrates that certain non-Saccharomyces strains display acetaldehyde kinetics that would be suitable to reduce residual acetaldehyde, and hence, bound-SO2 levels in grape wines. The acetaldehyde formation potential may be included as strain selection argument in view of reducing preservative SO2 concentrations.

  13. Evaluation of the acetaldehyde production and degradation potential of 26 enological Saccharomyces and non-Saccharomyces yeast strains in a resting cell model system.

    PubMed

    Li, Erhu; de Orduña, Ramón Mira

    2011-09-01

    Acetaldehyde is relevant for wine aroma, wine color, and microbiological stability. Yeast are known to play a crucial role in production and utilization of acetaldehyde during fermentations but comparative quantitative data are scarce. This research evaluated the acetaldehyde metabolism of 26 yeast strains, including commercial Saccharomyces and non-Saccharomyces, in a reproducible resting cell model system. Acetaldehyde kinetics and peak values were highly genus, species, and strain dependent. Peak acetaldehyde values varied from 2.2 to 189.4 mg l(-1) and correlated well (r(2) = 0.92) with the acetaldehyde production yield coefficients that ranged from 0.4 to 42 mg acetaldehyde per g of glucose in absence of SO(2). S. pombe showed the highest acetaldehyde production yield coefficients and peak values. All other non-Saccharomyces species produced significantly less acetaldehyde than the S. cerevisiae strains and were less affected by SO(2) additions. All yeast strains could degrade acetaldehyde as sole substrate, but the acetaldehyde degradation rates did not correlate with acetaldehyde peak values or acetaldehyde production yield coefficients in incubations with glucose as sole substrate.

  14. Plant physiological and environmental controls over the exchange of acetaldehyde between forest canopies and the atmosphere

    NASA Astrophysics Data System (ADS)

    Jardine, K.; Harley, P.; Karl, T.; Guenther, A.; Lerdau, M.; Mak, J. E.

    2008-06-01

    We quantified fine scale sources and sinks of gas phase acetaldehyde in two forested ecosystems in the US. During the daytime, the upper canopy behaved as a net source while at lower heights, reduced emission rates or net uptake were observed. At night, uptake generally predominated thoughout the canopies. Net ecosystem emission rates were inversely related to foliar density which influenced the extinction of light and the acetaldehyde compensation point in the canopy. This is supported by branch level studies revealing much higher compensation points in the light than in the dark for poplar (Populus deltoides) and holly oak (Quercus ilex) implying a higher light/temperature sensitivity for acetaldehyde production relative to consumption. The view of stomata as the major pathway for acetaldehyde exchange is supported by strong linear correlations between branch transpiration rates and acetaldehyde exchange velocities for both species. In addition, natural abundance carbon isotope analysis of gas-phase acetaldehyde during poplar branch fumigation experiments revealed a significant kinetic isotope effect of 5.1±0.3‰, associated with the uptake of acetaldehyde. Similar experiments with dry dead poplar leaves showed no fractionation or uptake of acetaldehyde, confirming that this is only a property of living leaves. We suggest that acetaldehyde belongs to a potentially large list of plant metabolites where stomatal conductance can exert long term control over both emission and uptake rates due to the presence of both source(s) and sink(s) within the leaf which strongly buffer large changes in concentrations in the substomatal airspace due to changes in stomatal conductance. We conclude that the exchange of acetaldehyde between plant canopies and the atmosphere is fundamentally controlled by ambient acetaldehyde concentrations, stomatal conductance, and the acetaldehyde compensation point.

  15. 27 CFR 21.93 - Acetaldehyde.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.93 Acetaldehyde. (a) Aldehyde content (as acetaldehyde). Not less than 95.0 percent by weight. (b)...

  16. 27 CFR 21.93 - Acetaldehyde.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Acetaldehyde. 21.93 Section 21.93 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Acetaldehyde. (a) Aldehyde content (as acetaldehyde). Not less than 95.0 percent by weight. (b)...

  17. 27 CFR 21.93 - Acetaldehyde.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Acetaldehyde. 21.93 Section 21.93 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Acetaldehyde. (a) Aldehyde content (as acetaldehyde). Not less than 95.0 percent by weight. (b)...

  18. Phototransduction Influences Metabolic Flux and Nucleotide Metabolism in Mouse Retina*

    PubMed Central

    Du, Jianhai; Rountree, Austin; Cleghorn, Whitney M.; Contreras, Laura; Lindsay, Ken J.; Sadilek, Martin; Gu, Haiwei; Djukovic, Danijel; Raftery, Dan; Satrústegui, Jorgina; Kanow, Mark; Chan, Lawrence; Tsang, Stephen H.; Sweet, Ian R.; Hurley, James B.

    2016-01-01

    Production of energy in a cell must keep pace with demand. Photoreceptors use ATP to maintain ion gradients in darkness, whereas in light they use it to support phototransduction. Matching production with consumption can be accomplished by coupling production directly to consumption. Alternatively, production can be set by a signal that anticipates demand. In this report we investigate the hypothesis that signaling through phototransduction controls production of energy in mouse retinas. We found that respiration in mouse retinas is not coupled tightly to ATP consumption. By analyzing metabolic flux in mouse retinas, we also found that phototransduction slows metabolic flux through glycolysis and through intermediates of the citric acid cycle. We also evaluated the relative contributions of regulation of the activities of α-ketoglutarate dehydrogenase and the aspartate-glutamate carrier 1. In addition, a comprehensive analysis of the retinal metabolome showed that phototransduction also influences steady-state concentrations of 5′-GMP, ribose-5-phosphate, ketone bodies, and purines. PMID:26677218

  19. [Biological actions of acetaldehyde].

    PubMed

    Ijiri, I

    1999-11-01

    Acetaldehyde (AcH), the first metabolite of ethanol (EtOH), is a chemically reactive and pharmacologically active compound. The author has been engaged in the study of AcH in cooperation with many researchers for three decades. We have found many biological actions of AcH which cause cardiovascular symptoms after drinking and also inhibited EtOH absorption via the canine and rat intestinal tract. This report covers the following five points. 1. The subjects were classified into a non-flushing group and a flushing group, according to the degree of facial flushing after drinking 200 ml of Sake (Japanese rice wire) at a rate of 100 ml per 5 min. Blood EtOH profile was much the same in both groups, yet peak blood AcH concentration in the flushing group was significantly higher than that in the non-flushing group. All subjects in the flushing group showed marked flushing and an increase in pulse rate after drinking, but these symptoms were not apparent in the non-flushing group. These results suggested that cardiovascular symptoms were caused by AcH itself. 2. Urinary excretions of both norepinephrine and epinephrine increased in the flushing cases after drinking Sake in comparison with those who drank the same volume of water. However, these catecholamines did not change in the non-flushing group. These results suggested that it is catecholamines released from the sympathetic nerve end or the adrenal medulla by AcH which caused an increase in pulse rate. 3. Bradykinin is released from high molecular kininogen by activated kallikrein and acts to dilate distal blood vessels and raise permeability in tissues. On the other hand, kallidin is released from low molecular kininogen by activated glandular kallikrein and its action is weaker than that of bradykinin. Blood low molecular kininogen levels in the flushing group decreased gradually after drinking and were mutually related to the blood AcH concentrations. But levels in the non-flushing group showed no difference

  20. Acetaldehyde stimulation of net gluconeogenic carbon movement from applied malic acid in tomato fruit pericarp tissue

    SciTech Connect

    Halinska, A.; Frenkel, C. )

    1991-03-01

    Applied acetaldehyde is known to lead to sugar accumulation in fruit including tomatoes (Lycopersicon esculentum) presumably due to stimulation of gluconeogenesis. This conjecture was examined using tomato fruit pericarp discs as a test system and applied l-(U-{sup 14}C)malic acid as the source for gluconeogenic carbon mobilization. Results indicate that malic and perhaps other organic acids are carbon sources for gluconeogenesis occurring normally in ripening tomatoes. The process is stimulated by acetaldehyde apparently by attenuating the fructose-2,6-biphosphate levels. The mode of the acetaldehyde regulation of fructose-2,6-biphosphate metabolism awaits clarification.

  1. Sensory effect of acetaldehyde on the perception of 3-mercaptohexan-1-ol and 3-isobutyl-2-methoxypyrazine: Role of acetaldehyde in sensory interactions

    DOE PAGES

    Coetzee, C.; Brand, J.; Jacobson, Daniel A.; ...

    2016-01-28

    Background and Aims-Wine aroma is influenced by complex interactions between various wine constituents. This study investigated the sensory interactive effects of Sauvignon Blanc impact compounds, 3-mercaptohexan-1-ol and 3-isobutyl-2-methoxypyrazine, with acetaldehyde that typically forms during the oxidation of wine. Methods and Results-Spiked model wines were subjected to sensory descriptive analysis using a trained sensory panel. Additionally, the concentration of each compound varied from below aroma threshold values to high values as reported for wine. Depending on the concentration, acetaldehyde enhanced fruity attributes at a lower concentration, whereas suppression occurred at a higher concentration. Acetaldehyde effectively suppressed the green pepper aroma attributemore » at certain concentration values, whereas 3-mercaptohexan-1-ol suppressed oxidised green apple associated with acetaldehyde. Changes in attributes used for aroma description also occurred because of change in concentration. Conclusions-Complex sensory interactions may occur between Sauvignon Blanc impact compounds and one of the main oxidation-derived compounds, acetaldehyde. Acetaldehyde can enhance or suppress pleasant fruity characters depending on the concentration. Significance of the Study-This study showed the potential positive effect of acetaldehyde on white wine aroma when present at a low concentration. Formation of this compound during winemaking and ageing should, however, be controlled because of negative sensory interactions occurring at a higher concentration. In conclusion, this study may also contribute to the sensory characterisation of Sauvignon Blanc wine undergoing oxidation.« less

  2. Sensory effect of acetaldehyde on the perception of 3-mercaptohexan-1-ol and 3-isobutyl-2-methoxypyrazine: Role of acetaldehyde in sensory interactions

    SciTech Connect

    Coetzee, C.; Brand, J.; Jacobson, Daniel A.; Du Toit, W. J.

    2016-01-28

    Background and Aims-Wine aroma is influenced by complex interactions between various wine constituents. This study investigated the sensory interactive effects of Sauvignon Blanc impact compounds, 3-mercaptohexan-1-ol and 3-isobutyl-2-methoxypyrazine, with acetaldehyde that typically forms during the oxidation of wine. Methods and Results-Spiked model wines were subjected to sensory descriptive analysis using a trained sensory panel. Additionally, the concentration of each compound varied from below aroma threshold values to high values as reported for wine. Depending on the concentration, acetaldehyde enhanced fruity attributes at a lower concentration, whereas suppression occurred at a higher concentration. Acetaldehyde effectively suppressed the green pepper aroma attribute at certain concentration values, whereas 3-mercaptohexan-1-ol suppressed oxidised green apple associated with acetaldehyde. Changes in attributes used for aroma description also occurred because of change in concentration. Conclusions-Complex sensory interactions may occur between Sauvignon Blanc impact compounds and one of the main oxidation-derived compounds, acetaldehyde. Acetaldehyde can enhance or suppress pleasant fruity characters depending on the concentration. Significance of the Study-This study showed the potential positive effect of acetaldehyde on white wine aroma when present at a low concentration. Formation of this compound during winemaking and ageing should, however, be controlled because of negative sensory interactions occurring at a higher concentration. In conclusion, this study may also contribute to the sensory characterisation of Sauvignon Blanc wine undergoing oxidation.

  3. Malondialdehyde-acetaldehyde adducts decrease bronchial epithelial wound repair.

    PubMed

    Wyatt, Todd A; Kharbanda, Kusum K; Tuma, Dean J; Sisson, Joseph H; Spurzem, John R

    2005-05-01

    Most people who abuse alcohol are cigarette smokers. Previously, we have shown that malondialdehyde, an inflammation product of lipid peroxidation, and acetaldehyde, a component of both ethanol metabolism and cigarette smoke, form protein adducts that stimulate protein kinase C (PKC) activation in bronchial epithelial cells. We have also shown that PKC can regulate bronchial epithelial cell wound repair. We hypothesize that bovine serum albumin adducted with malondialdehyde and acetaldehyde (BSA-MAA) decreases bronchial epithelial cell wound repair via binding to scavenger receptors on bronchial epithelial cells. To test this, confluent monolayers of bovine bronchial epithelial cells were grown in serum-free media prior to wounding the cells. Bronchial epithelial cell wound closure was inhibited in a dose-dependent manner (up to 60%) in the presence of BSA-MAA than in media treated cells (Laboratory of Human Carcinogenesis [LHC]-9-Roswell Park Memorial Institute [RPMI]). The specific scavenger receptor ligand, fucoidan, also stimulated PKC activation and decreased wound repair. Pretreatment with fucoidan blocked malondialdehyde-acetaldehyde binding to bronchial epithelial cells. When bronchial epithelial cells were preincubated with a PKC alpha inhibitor, Gö 6976, the inhibition of wound closure by fucoidan and BSA-MAA was blocked. Western blot demonstrated the presence of several scavenger receptors on bronchial epithelial cell membranes, including SRA, SRBI, SRBII, and CD36. Scavenger receptor-mediated activation of PKC alpha may function to reduce wound healing under conditions of alcohol and cigarette smoke exposure where malondialdehyde-acetaldehyde adducts may be present.

  4. Genetic and metabolic influences on LDL subclasses

    SciTech Connect

    Krauss, R.M.; Rotter, J.I.; Lusis, A.J.

    1994-09-01

    Genetic and environmental factors influence LDL particle size and density, and expression of an atherogenic lipoprotein phenotype (ALP) characterized by predominance of small, dense LDL particles. Linkage of ALP the LDL receptor locus has been reported previously. Quantitative sib-pair relative-pair linkage methodologies were used to test for linkage of LDL particle size to candidate loci in 25 large pedigrees with familial coronary artery disease. Linkage to the LDL receptor gene locus was confirmed (p=0.008). Evidence was also obtained for linkage to the genes for apoCIII, cholesteryl ester transfer protein, and manganese superoxide dismutase. The results suggest multiple genetic determinants of LDL particle size that may involve different metabolic mechanisms giving rise to small, dense LDL and increased atherosclerosis risk.

  5. Calcium Channels and Oxidative Stress Mediate a Synergistic Disruption of Tight Junctions by Ethanol and Acetaldehyde in Caco-2 Cell Monolayers.

    PubMed

    Samak, Geetha; Gangwar, Ruchika; Meena, Avtar S; Rao, Roshan G; Shukla, Pradeep K; Manda, Bhargavi; Narayanan, Damodaran; Jaggar, Jonathan H; Rao, RadhaKrishna

    2016-12-13

    Ethanol is metabolized into acetaldehyde in most tissues. In this study, we investigated the synergistic effect of ethanol and acetaldehyde on the tight junction integrity in Caco-2 cell monolayers. Expression of alcohol dehydrogenase sensitized Caco-2 cells to ethanol-induced tight junction disruption and barrier dysfunction, whereas aldehyde dehydrogenase attenuated acetaldehyde-induced tight junction disruption. Ethanol up to 150 mM did not affect tight junction integrity or barrier function, but it dose-dependently increased acetaldehyde-mediated tight junction disruption and barrier dysfunction. Src kinase and MLCK inhibitors blocked this synergistic effect of ethanol and acetaldehyde on tight junction. Ethanol and acetaldehyde caused a rapid and synergistic elevation of intracellular calcium. Calcium depletion by BAPTA or Ca(2+)-free medium blocked ethanol and acetaldehyde-induced barrier dysfunction and tight junction disruption. Diltiazem and selective knockdown of TRPV6 or CaV1.3 channels, by shRNA blocked ethanol and acetaldehyde-induced tight junction disruption and barrier dysfunction. Ethanol and acetaldehyde induced a rapid and synergistic increase in reactive oxygen species by a calcium-dependent mechanism. N-acetyl-L-cysteine and cyclosporine A, blocked ethanol and acetaldehyde-induced barrier dysfunction and tight junction disruption. These results demonstrate that ethanol and acetaldehyde synergistically disrupt tight junctions by a mechanism involving calcium, oxidative stress, Src kinase and MLCK.

  6. Calcium Channels and Oxidative Stress Mediate a Synergistic Disruption of Tight Junctions by Ethanol and Acetaldehyde in Caco-2 Cell Monolayers

    PubMed Central

    Samak, Geetha; Gangwar, Ruchika; Meena, Avtar S.; Rao, Roshan G.; Shukla, Pradeep K.; Manda, Bhargavi; Narayanan, Damodaran; Jaggar, Jonathan H.; Rao, RadhaKrishna

    2016-01-01

    Ethanol is metabolized into acetaldehyde in most tissues. In this study, we investigated the synergistic effect of ethanol and acetaldehyde on the tight junction integrity in Caco-2 cell monolayers. Expression of alcohol dehydrogenase sensitized Caco-2 cells to ethanol-induced tight junction disruption and barrier dysfunction, whereas aldehyde dehydrogenase attenuated acetaldehyde-induced tight junction disruption. Ethanol up to 150 mM did not affect tight junction integrity or barrier function, but it dose-dependently increased acetaldehyde-mediated tight junction disruption and barrier dysfunction. Src kinase and MLCK inhibitors blocked this synergistic effect of ethanol and acetaldehyde on tight junction. Ethanol and acetaldehyde caused a rapid and synergistic elevation of intracellular calcium. Calcium depletion by BAPTA or Ca2+-free medium blocked ethanol and acetaldehyde-induced barrier dysfunction and tight junction disruption. Diltiazem and selective knockdown of TRPV6 or CaV1.3 channels, by shRNA blocked ethanol and acetaldehyde-induced tight junction disruption and barrier dysfunction. Ethanol and acetaldehyde induced a rapid and synergistic increase in reactive oxygen species by a calcium-dependent mechanism. N-acetyl-L-cysteine and cyclosporine A, blocked ethanol and acetaldehyde-induced barrier dysfunction and tight junction disruption. These results demonstrate that ethanol and acetaldehyde synergistically disrupt tight junctions by a mechanism involving calcium, oxidative stress, Src kinase and MLCK. PMID:27958326

  7. ALDH2 modulates autophagy flux to regulate acetaldehyde-mediated toxicity thresholds

    PubMed Central

    Tanaka, Koji; Whelan, Kelly A; Chandramouleeswaran, Prasanna M; Kagawa, Shingo; Rustgi, Sabrina L; Noguchi, Chiaki; Guha, Manti; Srinivasan, Satish; Amanuma, Yusuke; Ohashi, Shinya; Muto, Manabu; Klein-Szanto, Andres J; Noguchi, Eishi; Avadhani, Narayan G; Nakagawa, Hiroshi

    2016-01-01

    A polymorphic mutation in the acetaldehyde dehydrogenase 2 (ALDH2) gene has been epidemiologically linked to the high susceptibility to esophageal carcinogenesis for individuals with alcohol use disorders. Mice subjected to alcohol drinking show increased oxidative stress and DNA adduct formation in esophageal epithelia where Aldh2 loss augments alcohol-induced genotoxic effects; however, it remains elusive as to how esophageal epithelial cells with dysfunctional Aldh2 cope with oxidative stress related to alcohol metabolism. Here, we investigated the role of autophagy in murine esophageal epithelial cells (keratinocytes) exposed to ethanol and acetaldehyde. We find that ethanol and acetaldehyde trigger oxidative stress via mitochondrial superoxide in esophageal keratinocytes. Aldh2-deficient cells appeared to be highly susceptible to ethanol- or acetaldehyde-mediated toxicity. Alcohol dehydrogenase-mediated acetaldehyde production was implicated in ethanol-induced cell injury in Aldh2 deficient cells as ethanol-induced oxidative stress and cell death was partially inhibited by 4-methylpyrazole. Acetaldehyde activated autophagy flux in esophageal keratinocytes where Aldh2 deficiency increased dependence on autophagy to cope with ethanol-induced acetaldehyde-mediated oxidative stress. Pharmacological inhibition of autophagy flux by chloroquine stabilized p62/SQSTM1, and increased basal and acetaldehyde-mediate oxidative stress in Aldh2 deficient cells as documented in monolayer culture as well as single-cell derived three-dimensional esophageal organoids, recapitulating a physiological esophageal epithelial proliferation-differentiation gradient. Our innovative approach indicates, for the first time, that autophagy may provide cytoprotection to esophageal epithelial cells responding to oxidative stress that is induced by ethanol and its major metabolite acetaldehyde. Defining autophagymediated cytoprotection against alcohol-induced genotoxicity in the context of

  8. Vibrational force constants for acetaldehyde

    NASA Astrophysics Data System (ADS)

    Nikolova, B.

    1990-05-01

    The vibrational force field of ethanal (acetaldehyde), CH 3CHO, is refined by using procedures with differential increments for the force constants (Commun. Dep. Chem., Bulg. Acad. Sci., 21/3 (1988) 433). The characteristics general valence force constants of the high-dimensional symmetry classes of ethanal, A' of tenth and A″ of fifth order, are determined for the experimental assignment of bands. The low barrier to hindered internal rotation about the single carbon—carbon bond is quantitatively estimated on the grounds of normal vibrational analysis.

  9. Proton transfer in acetaldehyde and acetaldehyde-water clusters: Vacuum ultraviolet photoionization experiment and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Kostko, Oleg; Troy, Tyler P.; Bandyopadhyay, Biswajit; Ahmed, Musahid

    2015-03-01

    Acetaldehyde, a probable human carcinogen and of environmental importance, upon solvation provides a test bed for understanding proton transfer pathways and catalytic mechanisms. In this study, we report on single photon vacuum ultraviolet photoionization of small acetaldehyde and acetaldehyde-water clusters. Appearance energies of protonated clusters are extracted from the experimental photoionization efficiency curves and compared to electronic structure calculations. The comparison of experimental data to computational results provides mechanistic insight into the fragmentation mechanisms of the observed mass spectra. Using deuterated water for isotopic tagging, we observe that proton transfer is mediated via acetaldehyde and not water in protonated acetaldehyde-water clusters.

  10. Novel physiological roles for glutathione in sequestering acetaldehyde to confer acetaldehyde tolerance in Saccharomyces cerevisiae.

    PubMed

    Matsufuji, Yoshimi; Yamamoto, Kohei; Yamauchi, Kosei; Mitsunaga, Tohru; Hayakawa, Takashi; Nakagawa, Tomoyuki

    2013-01-01

    In this work, we identified novel physiological functions of glutathione in acetaldehyde tolerance in Saccharomyces cerevisiae. Strains deleted in the genes encoding the enzymes involved in glutathione synthesis and reduction, GSH1, GSH2 and GLR1, exhibited severe growth defects compared to wild-type under acetaldehyde stress, although strains deleted in the genes encoding glutathione peroxidases or glutathione transferases did not show any growth defects. On the other hand, intracellular levels of reduced glutathione decreased in the presence of acetaldehyde in response to acetaldehyde concentration. Moreover, we show that glutathione can trap a maximum of four acetaldehyde molecules within its molecule in a non-enzymatic manner. Taken together, these findings suggest that glutathione has an important role in acetaldehyde tolerance, as a direct scavenger of acetaldehyde in the cell.

  11. Influence of Metabolism on Epigenetics and Disease

    PubMed Central

    Kaelin, William G.; McKnight, Steven L.

    2013-01-01

    Chemical modifications of histones and DNA, such as histone methylation, histone acetylation, and DNA methylation, play critical roles in epigenetic gene regulation. Many of the enzymes that add or remove such chemical modifications are known, or might be suspected, to be sensitive to changes in intracellular metabolism. This knowledge provides a conceptual foundation for understanding how mutations in the metabolic enzymes SDH, FH, and IDH can result in cancer and, more broadly, for how alterations in metabolism and nutrition might contribute to disease. Here, we review literature pertinent to hypothetical connections between metabolic and epigenetic states in eukaryotic cells. PMID:23540690

  12. Carbon isotope analysis of acetaldehyde emitted from leaves following mechanical stress and anoxia.

    PubMed

    Jardine, K; Karl, T; Lerdau, M; Harley, P; Guenther, A; Mak, J E

    2009-07-01

    Although the emission of acetaldehyde from plants into the atmosphere following biotic and abiotic stresses may significantly impact air quality and climate, its metabolic origin(s) remains uncertain. We investigated the pathway(s) responsible for the production of acetaldehyde in plants by studying variations in the stable carbon isotope composition of acetaldehyde emitted during leaf anoxia or following mechanical stress. Under an anoxic environment, C3 leaves produced acetaldehyde during ethanolic fermentation with a similar carbon isotopic composition to C3 bulk biomass. In contrast, the initial emission burst following mechanical wounding was 5-12 per thousand more depleted in (13)C than emissions under anoxia. Due to a large kinetic isotope effect during pyruvate decarboxylation catalysed by pyruvate dehydrogenase, acetyl-CoA and its biosynthetic products such as fatty acids are also depleted in (13)C relative to bulk biomass. It is well known that leaf wounding stimulates the release of large quantities of fatty acids from membranes, as well as the accumulation of reactive oxygen species (ROS). We suggest that, following leaf wounding, acetaldehyde depleted in (13)C is produced from fatty acid peroxidation reactions initiated by the accumulation of ROS. However, a variety of other pathways could also explain our results, including the conversion of acetyl-CoA to acetaldehyde by the esterase activity of aldehyde dehydrogenase.

  13. Implications of acetaldehyde-derived DNA adducts for understanding alcohol-related carcinogenesis.

    PubMed

    Balbo, Silvia; Brooks, Philip J

    2015-01-01

    Among various potential mechanisms that could explain alcohol carcinogenicity, the metabolism of ethanol to acetaldehyde represents an obvious possible mechanism, at least in some tissues. The fundamental principle of genotoxic carcinogenesis is the formation of mutagenic DNA adducts in proliferating cells. If not repaired, these adducts can result in mutations during DNA replication, which are passed on to cells during mitosis. Consistent with a genotoxic mechanism, acetaldehyde does react with DNA to form a variety of different types of DNA adducts. In this chapter we will focus more specifically on N2-ethylidene-deoxyguanosine (N2-ethylidene-dG), the major DNA adduct formed from the reaction of acetaldehyde with DNA and specifically highlight recent data on the measurement of this DNA adduct in the human body after alcohol exposure. Because results are of particular biological relevance for alcohol-related cancer of the upper aerodigestive tract (UADT), we will also discuss the histology and cytology of the UADT, with the goal of placing the adduct data in the relevant cellular context for mechanistic interpretation. Furthermore, we will discuss the sources and concentrations of acetaldehyde and ethanol in different cell types during alcohol consumption in humans. Finally, in the last part of the chapter, we will critically evaluate the concept of carcinogenic levels of acetaldehyde, which has been raised in the literature, and discuss how data from acetaldehyde genotoxicity are and can be utilized in physiologically based models to evaluate exposure risk.

  14. Effects of acetaldehyde on hepatocyte glycerol uptake and cell size: implication of Aquaporin 9

    PubMed Central

    Potter, James J.; Koteish, Ayman; Hamilton, James; Liu, Xiaopu; Liu, Kun; Agre, Peter; Mezey, Esteban

    2010-01-01

    Background The effects of ethanol and acetaldehyde on uptake of glycerol and on cell size of hepatocytes and a role Aquaporin 9 (AQP9), a glycerol transport channel, were evaluated. Methods The studies were done in primary rat and mouse hepatocytes. The uptake of [14C] glycerol was determined with hepatocytes in suspension. For determination of cell size, rat hepatocytes on coated dishes were incubated with a lipophilic fluorochrome that is incorporated into the cell membrane and examined by confocal microscopy. A three dimensional z scan of the cell was performed, and the middle slice of the z scan was used for area measurements. Results Acute exposure to acetaldehyde, but not to ethanol, causes a rapid increase in the uptake of glycerol and an increase in hepatocyte size, which was inhibited by HgCl2, an inhibitor of aquaporins. This was not observed in hepatocytes from AQP9 knockout mice, nor observed by direct application of acetaldehyde to AQP9 expressed in Xenopus Laevis oocytes. Prolonged 24 hours exposure to either acetaldehyde or ethanol did not result in an increase in glycerol uptake by rat hepatocytes. Acetaldehyde decreased AQP9 mRNA and AQP9 protein, while ethanol decreased AQP9 mRNA but not AQP9 protein. Ethanol, but not acetaldehyde, increased the activities of glycerol kinase and phosphoenolpyruvate carboxykinase. Conclusions The acute effects of acetaldehyde, while mediated by AQP9, are probably influenced by binding of acetaldehyde to hepatocyte membranes and changes in cell permeability. The effects of ethanol in enhancing glucose kinase, and phosphoenolpyruvate carboxykinase leading to increased formation of glycerol-3-phosphate most likely contribute to alcoholic fatty liver. PMID:21294757

  15. Role of acetaldehyde in tobacco smoke addiction.

    PubMed

    Talhout, Reinskje; Opperhuizen, Antoon; van Amsterdam, Jan G C

    2007-10-01

    This review evaluates the presumed contribution of acetaldehyde to tobacco smoke addiction. In rodents, acetaldehyde induces reinforcing effects, and acts in concert with nicotine. Harman and salsolinol, condensation products of acetaldehyde and biogenic amines, may be responsible for the observed reinforcing effect of acetaldehyde. Harman and salsolinol inhibit monoamine oxidase (MAO), and some MAO-inhibitors are known to increase nicotine self-administration and maintain behavioural sensitization to nicotine. Harman is formed in cigarette smoke, and blood harman levels appear to be 2-10 times higher compared to non-smokers. Since harman readily passes the blood-brain barrier and has sufficient MAO-inhibiting potency, it may contribute to the lower MAO-activity observed in the brain of smokers. In contrast, the minor amounts of salsolinol that can be formed in vivo most likely do not contribute to tobacco addiction. Thus, acetaldehyde may increase the addictive potential of tobacco products via the formation of acetaldehyde-biogenic amine adducts in cigarette smoke and/or in vivo, but further research is necessary to substantiate this hypothesis.

  16. The effects of acetaldehyde on nicotine-induced transmitter levels in young and adult brain areas.

    PubMed

    Sershen, H; Shearman, E; Fallon, S; Chakraborty, G; Smiley, J; Lajtha, A

    2009-08-14

    The aim of the present study was to examine the effect of acetaldehyde administration on neurotransmitters in the presence of nicotine in brain areas associated with cognition and reward. We assayed these effects via microdialysis in conscious freely moving male Sprague-Dawley rats. It was reported that low doses of acetaldehyde enhance nicotine self-administration in young, but not in adult rats. Since nicotine enhances reward and learning, while acetaldehyde is reported to enhance reward but inhibit learning, acetaldehyde thus would be likely to stimulate reward without stimulating learning. We hoped that examining the effects of acetaldehyde (on nicotine-mediated neurotransmitter changes) would help to distinguish reward mechanisms less influenced by learning mechanisms. To avoid the aversive effect of acetaldehyde, we used a low dose of acetaldehyde (0.16 mg/kg) administered after nicotine (0.3mg/kg). We analyzed six brain regions: nucleus accumbens shell (NAccS), ventral tegmental area (VTA), ventral and dorsal hippocampus (VH and DH), and prefrontal and medial temporal cortex (PFC, MTC), assaying dopamine (DA), norepinephrine (NE) and serotonin (5-HT) and their metabolites in young and adult rats. The effect of acetaldehyde on nicotine-induced transmitter changes was different in young as compared to adult rat brain regions. In the NAccS of the young, DA was not affected while NE and 5-HT were increased. In the adult in this area DA and NE were decreased, while 5-HT was not altered. In other areas also in many cases, the effect of acetaldehyde in the young and in the adult was different. As an example, acetaldehyde administration increased NE in young and decreased NE in adult DH. We found stimulation of nicotine-induced changes by acetaldehyde in seven instances - six of these were observed in areas in young brain, NE in four areas (NAccS, DH, VH, and PFC), and 5-HT in two (NAccS and DH). Only one increase was noted in adult brain (DA in VTA). Inhibition of

  17. Cellular metabolism in colorectal carcinogenesis: Influence of lifestyle, gut microbiome and metabolic pathways.

    PubMed

    Hagland, Hanne R; Søreide, Kjetil

    2015-01-28

    The interconnectivity between diet, gut microbiota and cell molecular responses is well known; however, only recently has technology allowed the identification of strains of microorganisms harbored in the gastrointestinal tract that may increase susceptibility to cancer. The colonic environment appears to play a role in the development of colon cancer, which is influenced by the human metabolic lifestyle and changes in the gut microbiome. Studying metabolic changes at the cellular level in cancer be useful for developing novel improved preventative measures, such as screening through metabolic breath-tests or treatment options that directly affect the metabolic pathways responsible for the carcinogenicity.

  18. The ethanol metabolite acetaldehyde increases paracellular drug permeability in vitro and oral bioavailability in vivo.

    PubMed

    Fisher, Scott J; Swaan, Peter W; Eddington, Natalie D

    2010-01-01

    Alcohol consumption leads to the production of the highly reactive ethanol metabolite, acetaldehyde, which may affect intestinal tight junctions and increase paracellular permeability. We examined the effects of elevated acetaldehyde within the gastrointestinal tract on the permeability and bioavailability of hydrophilic markers and drug molecules of variable molecular weight and geometry. In vitro permeability was measured unidirectionally in Caco-2 and MDCKII cell models in the presence of acetaldehyde, ethanol, or disulfiram, an aldehyde dehydrogenase inhibitor, which causes acetaldehyde formation when coadministered with ethanol in vivo. Acetaldehyde significantly lowered transepithelial resistance in cell monolayers and increased permeability of the low-molecular-weight markers, mannitol and sucrose; however, permeability of high-molecular-weight markers, polyethylene glycol and inulin, was not affected. In vivo permeability was assessed in male Sprague-Dawley rats treated for 6 days with ethanol, disulfiram, or saline alone or in combination. Bioavailability of naproxen was not affected by any treatment, whereas that of paclitaxel was increased upon acetaldehyde exposure. Although disulfiram has been shown to inhibit multidrug resistance-1 P-glycoprotein (P-gp) in vitro, our data demonstrate that the known P-gp substrate paclitaxel is not affected by coadministration of disulfiram. In conclusion, we demonstrate that acetaldehyde significantly modulates tight junctions and paracellular permeability in vitro as well as the oral bioavailability of low-molecular-weight hydrophilic probes and therapeutic molecules in vivo even when these molecules are substrates for efflux transporters. These studies emphasize the significance of ethanol metabolism and drug interactions outside of the liver.

  19. Pathogenesis of alcoholic liver disease: Role of oxidative metabolism

    PubMed Central

    Ceni, Elisabetta; Mello, Tommaso; Galli, Andrea

    2014-01-01

    Alcohol consumption is a predominant etiological factor in the pathogenesis of chronic liver diseases, resulting in fatty liver, alcoholic hepatitis, fibrosis/cirrhosis, and hepatocellular carcinoma (HCC). Although the pathogenesis of alcoholic liver disease (ALD) involves complex and still unclear biological processes, the oxidative metabolites of ethanol such as acetaldehyde and reactive oxygen species (ROS) play a preeminent role in the clinical and pathological spectrum of ALD. Ethanol oxidative metabolism influences intracellular signaling pathways and deranges the transcriptional control of several genes, leading to fat accumulation, fibrogenesis and activation of innate and adaptive immunity. Acetaldehyde is known to be toxic to the liver and alters lipid homeostasis, decreasing peroxisome proliferator-activated receptors and increasing sterol regulatory element binding protein activity via an AMP-activated protein kinase (AMPK)-dependent mechanism. AMPK activation by ROS modulates autophagy, which has an important role in removing lipid droplets. Acetaldehyde and aldehydes generated from lipid peroxidation induce collagen synthesis by their ability to form protein adducts that activate transforming-growth-factor-β-dependent and independent profibrogenic pathways in activated hepatic stellate cells (HSCs). Furthermore, activation of innate and adaptive immunity in response to ethanol metabolism plays a key role in the development and progression of ALD. Acetaldehyde alters the intestinal barrier and promote lipopolysaccharide (LPS) translocation by disrupting tight and adherent junctions in human colonic mucosa. Acetaldehyde and LPS induce Kupffer cells to release ROS and proinflammatory cytokines and chemokines that contribute to neutrophils infiltration. In addition, alcohol consumption inhibits natural killer cells that are cytotoxic to HSCs and thus have an important antifibrotic function in the liver. Ethanol metabolism may also interfere with cell

  20. Pathogenesis of alcoholic liver disease: role of oxidative metabolism.

    PubMed

    Ceni, Elisabetta; Mello, Tommaso; Galli, Andrea

    2014-12-21

    Alcohol consumption is a predominant etiological factor in the pathogenesis of chronic liver diseases, resulting in fatty liver, alcoholic hepatitis, fibrosis/cirrhosis, and hepatocellular carcinoma (HCC). Although the pathogenesis of alcoholic liver disease (ALD) involves complex and still unclear biological processes, the oxidative metabolites of ethanol such as acetaldehyde and reactive oxygen species (ROS) play a preeminent role in the clinical and pathological spectrum of ALD. Ethanol oxidative metabolism influences intracellular signaling pathways and deranges the transcriptional control of several genes, leading to fat accumulation, fibrogenesis and activation of innate and adaptive immunity. Acetaldehyde is known to be toxic to the liver and alters lipid homeostasis, decreasing peroxisome proliferator-activated receptors and increasing sterol regulatory element binding protein activity via an AMP-activated protein kinase (AMPK)-dependent mechanism. AMPK activation by ROS modulates autophagy, which has an important role in removing lipid droplets. Acetaldehyde and aldehydes generated from lipid peroxidation induce collagen synthesis by their ability to form protein adducts that activate transforming-growth-factor-β-dependent and independent profibrogenic pathways in activated hepatic stellate cells (HSCs). Furthermore, activation of innate and adaptive immunity in response to ethanol metabolism plays a key role in the development and progression of ALD. Acetaldehyde alters the intestinal barrier and promote lipopolysaccharide (LPS) translocation by disrupting tight and adherent junctions in human colonic mucosa. Acetaldehyde and LPS induce Kupffer cells to release ROS and proinflammatory cytokines and chemokines that contribute to neutrophils infiltration. In addition, alcohol consumption inhibits natural killer cells that are cytotoxic to HSCs and thus have an important antifibrotic function in the liver. Ethanol metabolism may also interfere with cell

  1. Commentary: acetaldehyde and epithelial-to-mesenchymal transition in colon.

    PubMed

    Rao, Radhakrishna K

    2014-02-01

    Elamin and colleagues in this issue report that acetaldehyde activates Snail, a transcription factor involved in epithelial-to-mesenchymal transition, in an intestinal epithelium. Snail mediates acetaldehyde-induced tight junction disruption and increase in paracellular permeability. Results of this study and other previous studies raise several important questions. This commentary addresses these questions by discussing the acetaldehyde concentration in colon, disruption of epical junctional complexes in the intestinal epithelium by acetaldehyde, and the consequence of long-term exposure to acetaldehyde on colonic epithelial regeneration, carcinogenesis, and metastases. The precise role of acetaldehyde in colonic epithelial modifications and promotion of colorectal cancers still remains to be understood.

  2. Acetaldehyde addition throughout the growth phase alleviates the phenotypic effect of zinc deficiency in Saccharomyces cerevisiae.

    PubMed

    Cheraiti, Naoufel; Sauvage, François-Xavier; Salmon, Jean-Michel

    2008-01-01

    During experiments to determine the effects of exogenously added acetaldehyde on pure cultures of various yeast strains, we discovered that an early acetaldehyde perfusion during the growth phase allowed several yeasts to partially overcome the phenotypic effects of zinc depletion during alcoholic fermentation. We, therefore, performed genome-wide expression and proteomic analysis on an industrial Saccharomyces cerevisiae yeast strain (VL1) growing in zinc-replete or zinc-depleted conditions in the presence of perfused acetaldehyde to identify molecular markers of this effect. Zinc depletion severely affects ethanol production and therefore nicotinamide adenine dinucleotide (NAD) regeneration, although we observed partial compensation by the upregulation of the poorly efficient Fe-dependent Adh4p in our conditions. A coordinate metabolic response was indeed observed in response to the early acetaldehyde perfusion, and particularly of the lower part of glycolysis, leading to the cellular replenishment of NAD cofactor. These various findings suggest that acetaldehyde exchange between strains may inhibit the growth of some yeast strains while encouraging the growth of others. This phenomenon could be particularly important for understanding the ecology of colonization of complex fermentation media by S. cerevisiae after elimination of non-Saccharomyces yeasts.

  3. Genetic-epidemiological evidence for the role of acetaldehyde in cancers related to alcohol drinking.

    PubMed

    Eriksson, C J Peter

    2015-01-01

    Alcohol drinking increases the risk for a number of cancers. Currently, the highest risk (Group 1) concerns oral cavity, pharynx, larynx, esophagus, liver, colorectum, and female breast, as assessed by the International Agency for Research on Cancer (IARC). Alcohol and other beverage constituents, their metabolic effects, and alcohol-related unhealthy lifestyles have been suggested as etiological factors. The aim of the present survey is to evaluate the carcinogenic role of acetaldehyde in alcohol-related cancers, with special emphasis on the genetic-epidemiological evidence. Acetaldehyde, as a constituent of alcoholic beverages, and microbial and endogenous alcohol oxidation well explain why alcohol-related cancers primarily occur in the digestive tracts and other tissues with active alcohol and acetaldehyde metabolism. Genetic-epidemiological research has brought compelling evidence for the causality of acetaldehyde in alcohol-related cancers. Thus, IARC recently categorized alcohol-drinking-related acetaldehyde to Group 1 for head and neck and esophageal cancers. This is probably just the tip of the iceberg, since more recent epidemiological studies have also shown significant positive associations between the aldehyde dehydrogenase ALDH2 (rs671)*2 allele (encoding inactive enzyme causing high acetaldehyde elevations) and gastric, colorectal, lung, and hepatocellular cancers. However, a number of the current studies lack the appropriate matching or stratification of alcohol drinking in the case-control comparisons, which has led to erroneous interpretations of the data. Future studies should consider these aspects more thoroughly. The polymorphism phenotypes (flushing and nausea) may provide valuable tools for future successful health education in the prevention of alcohol-drinking-related cancers.

  4. Periodontal disease: the influence of metabolic syndrome

    PubMed Central

    2012-01-01

    Metabolic syndrome (MetS) is a cluster of cardiovascular risk factors that include obesity, impaired glucose tolerance or diabetes, hyperinsulinemia, hypertension, and dyslipidemia. Recently, more attention has been reserved to the correlation between periodontitis and systemic health. MetS is characterized by oxidative stress, a condition in which the equilibrium between the production and the inactivation of reactive oxygen species (ROS) becomes disrupted. ROS have an essential role in a variety of physiological systems, but under a condition of oxidative stress, they contribute to cellular dysfunction and damage. Oxidative stress may act as a common link to explain the relationship between each component of MetS and periodontitis. All those conditions show increased serum levels of products derived from oxidative damage, promoting a proinflammatory state. Moreover, adipocytokines, produced by the fat cells of fat tissue, might modulate the balance between oxidant and antioxidant activities. An increased caloric intake involves a higher metabolic activity, which results in an increased production of ROS, inducing insulin resistance. At the same time, obese patients require more insulin to maintain blood glucose homeostasis – a state known as hyperinsulinemia, a condition that can evolve into type 2 diabetes. Oxidation products can increase neutrophil adhesion and chemotaxis, thus favoring oxidative damage. Hyperglycemia and an oxidizing state promote the genesis of advanced glycation end-products, which could also be implicated in the degeneration and damage of periodontal tissue. Thus, MetS, the whole of interconnected factors, presents systemic and local manifestations, such as cardiovascular disease and periodontitis, related by a common factor known as oxidative stress. PMID:23009606

  5. Para-methylstyrene from toluene and acetaldehyde

    SciTech Connect

    Innes, R.A.; Occelli, M.L.

    1984-08-01

    High yields of para-methylstyrene (PMS) were obtained in this study by coupling toluene and acetaldehyde then cracking the resultant 1,1-ditolylethane (DTE) to give equimolar amounts of PMS and toluene. In the first step, a total DTE and ''trimer'' yield of 98% on toluene and 93% on acetaldehyde was obtained using 98% sulfuric acid as catalyst at 5-10/sup 0/C. In the second step, a choline chloride-offretite cracked DTE with 84.0% conversion and 91% selectivity to PMS and toluene. Additional PMS can be obtained by cracking the by-product ''trimer'' formed by coupling DTE and toluene with acetaldehyde. Zeolite Rho was as active but yielded less PMS (86%) and produced more para-ethyltoluene (PET), an undesirable by-product.

  6. Heterogeneous Interactions of Acetaldehyde and Sulfuric Acid

    NASA Technical Reports Server (NTRS)

    Michelsen, R. R.; Ashbourn, S. F. M.; Iraci, L. T.

    2004-01-01

    The uptake of acetaldehyde [CH3CHO] by aqueous sulfuric acid has been studied via Knudsen cell experiments over ranges of temperature (210-250 K) and acid concentration (40-80 wt. %) representative of the upper troposphere. The Henry's law constants for acetaldehyde calculated from these data range from 6 x 10(exp 2) M/atm for 40 wt. % H2SO4 at 228 K to 2 x 10(exp 5) M/atm for 80 wt. % H2SO4 at 212 K. In some instances, acetaldehyde uptake exhibits apparent steady-state loss. The possible sources of this behavior, including polymerization, will be explored. Furthermore, the implications for heterogeneous reactions of aldehydes in sulfate aerosols in the upper troposphere will be discussed.

  7. Influence of Nutritional Factors on Lipid Metabolism.

    DTIC Science & Technology

    1980-12-01

    conditions of chronic high level fat oxidation such as exercise, Askew et al. (121) fed exercising rats diets supplemented with 0.5Z L- carnitine . Although...exercise increased adipose tissue fatty acid turnover, supplemental dietary carnitine neither increased skeletal muscle in vitro fatty acid oxidation...some investigators believe the relative activities of the sn-glycerolphosphate acyltransferase and carnitine palmttyltrans- ferase may influence the

  8. Influence of physical activity to bone metabolism.

    PubMed

    Drenjančević, Ines; Davidović Cvetko, Erna

    2013-02-01

    Bone remodeling is a lifetime process. Peak bone mass is achieved in the twenties, and that value is very important for skeleton health in older years of life. Modern life style with its diet poor in nutrients, and very low intensity of physical activity negatively influences health in general, and bone health as well. Bones are adapting to changes in load, so applying mechanical strain to bones results in greater bone mass and hardness. That makes physical activity important in maintaining skeleton health. Numerous studies confirm good influence of regular exercising to bone health, and connection of physical activity in youth to better bone density in older age. To activate bone remodeling mechanisms, it is necessary to apply mechanical strain to bones by exercise. Considering global problem of bone loss and osteoporosis new ways of activating young people to practice sports and active stile of life are necessary to maintain skeleton health and health in general. This paper aims to review physiological mechanisms of bone remodeling that are influenced by physical exercise.

  9. Modeling of experimental treatment of acetaldehyde-laden air and phenol-containing water using corona discharge technique.

    PubMed

    Faungnawakij, Kajornsak; Sano, Noriaki; Charinpanitkul, Tawatchai; Tanthapanichakoon, Wiwut

    2006-03-01

    Acetaldehyde-laden air and phenol-contaminated water were experimentally treated using corona discharge reactions and gas absorption in a single water-film column. Mathematical modeling of the combined treatment was developed in this work. Efficient removal of the gaseous acetaldehyde was achieved while the corona discharge reactions produced short-lived species such as O and O- as well as ozone. Direct contact of the radicals and ions with water was known to produce aqueous OH radical, which contributes to the decomposition of organic contaminants: phenol, absorbed acetaldehyde, and intermediate byproducts in the water. The influence of initial phenol concentration ranging from 15 to 50 mg L(-1) and that of influent acetaldehyde ranging from 0 to 200 ppm were experimentally investigated and used to build the math model. The maximum energetic efficiency of TOC, phenol, and acetaldehyde were obtained at 25.6 x 10(-9) mol carbon J(-1), 25.0 x 10(-9) mol phenol J(-1), and 2.0 x 10(-9) mol acetaldehyde J(-1), respectively. The predictions for the decomposition of acetaldehyde, phenol, and their intermediates were found to be in good agreement with the experimental results.

  10. Acetone and Acetaldehyde Exchange Above a Managed Temperate Mountain Grassland

    NASA Astrophysics Data System (ADS)

    Hörtnagl, L. J.; Bamberger, I.; Graus, M.; Ruuskanen, T.; Schnitzhofer, R.; Hansel, A.; Wohlfahrt, G.

    2011-12-01

    measurement campaigns and during undisturbed conditions. The shortcomings in predicting VOC fluxes might be a consequence of missing parameters that were not captured by our meteorological data. The identification and quantification of biochemical cycles associated with soil and plant root processes and the possible influence of insect life cycles on VOC exchange might provide important information during the development and parameterization of VOC models. The total amount of carbon associated with the VOC flux of the two compounds was low: the grassland was a net source of acetaldehyde in both years with emissions of 21.8 mg C m-2 and 10.2 mg C m-2 in 2008 and 2009, respectively, while the meadow was a source of acetone in 2008 with 14.6 mg C m-2 and a sink in 2009 with a cumulative uptake of 5.0 mg C m-2.

  11. Polymorphism of ethanol-metabolism genes and alcoholism: correlation of allelic variations with the pharmacokinetic and pharmacodynamic consequences.

    PubMed

    Chen, Yi-Chyan; Peng, Giia-Sheun; Wang, Ming-Fang; Tsao, Tien-Ping; Yin, Shih-Jiun

    2009-03-16

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are the principal enzymes responsible for metabolism of ethanol. Both ADH and ALDH exhibit genetic polymorphisms among racial populations. Functional variant alleles ADH1B*2 and ALDH2*2 have been consistently replicated to show protection against developing alcohol dependence. Multiple logistic regression analyses suggest that ADH1B*2 and ALDH2*2 may independently influence the risk for alcoholism. It has been well documented that homozygosity of ALDH2*2 almost fully protects against developing alcoholism and that the heterozygosity only affords a partial protection to varying degrees. Correlations of blood ethanol and acetaldehyde concentrations, cardiovascular hemodynamic responses, and subjective perceptions have been investigated in men with different combinatorial ADH1B and ALDH2 genotypes following challenge with ethanol for a period of 130 min. The pharmacokinetic and pharmacodynamic consequences indicate that acetaldehyde, rather than ethanol, is primarily responsible for the observed alcohol sensitivity reactions, suggesting that the full protection by ALDH2*2/*2 can be ascribed to the intense unpleasant physiological and psychological reactions caused by persistently elevated blood acetaldehyde after ingesting a small amount of alcohol and that the partial protection by ALDH2*1/*2 can be attributed to a faster elimination of acetaldehyde and the lower accumulation in circulation. ADH1B polymorphism does not significantly contribute to buildup of the blood acetaldehyde. Physiological tolerance or innate insensitivity to acetaldehyde may be crucial for development of alcohol dependence in alcoholics carrying ALDH2*2.

  12. Metabolic differences in cattle with excitable temperaments can influence productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperament can negatively affect various production traits, including live weight, ADG, DMI, conception rates, and carcass weight. Three research studies are summarized which indicate the potential influence of temperament on metabolism. In Brahman heifers, (n=12) the 6 most temperamental and 6 mos...

  13. The Metabolic Syndrome and Its Influence on Nonalcoholic Steatohepatitis.

    PubMed

    Kanwar, Pushpjeet; Kowdley, Kris V

    2016-05-01

    Nonalcoholic steatohepatitis (NASH) and the metabolic syndrome (MetS) are highly prevalent in the Western population. Their pathogenesis is closely linked to insulin resistance, which serves as a therapeutic target for the management of these conditions. This review article reviews the research supporting the influence of MetS on NASH and includes studies supporting their similar epidemiology, pathogenesis, and treatment.

  14. Determinations of ethanol, acetaldehyde and acetate in blood and urine during alcohol oxidation in man.

    PubMed

    Tsukamoto, S; Muto, T; Nagoya, T; Shimamura, M; Saito, M; Tainaka, H

    1989-01-01

    Blood and urine samples were analyzed for ethanol, acetaldehyde and acetate during alcohol oxidation in Japanese men by head space gas chromatography, following the consumption of 16 ml/kg of beer during a 20 min period. The maximum level of blood/urine ethanol was found to be 15-17 mM (20-22 mM), while that of acetaldehyde in a flusher and in non-flushers was 20 microM (52 microM) and 2-5 microM (10-13 microM), respectively. Acetate levels in these groups ranged from 0.2 mM (0.1 mM) to 0.8 mM (1.0 mM). Blood ethanol levels were dose dependent, whereas acetaldehyde and acetate levels reflected individual metabolic rates. The relative concentrations of ethanol and acetaldehyde in blood and that of acetate in alcohol metabolism could be summarized as follows: 7500 (15 mM): 1-3 (2-5 microM); 250-400 (0.5-0.8 mM) for non-flushers; and 7500 (15 mM): 5-10 (10-20 microM): 250-400 (0.5-0.8 mM) for a flusher.

  15. Mechanisms influencing bone metabolism in chronic illness.

    PubMed

    Daci, E; van Cromphaut, S; Bouillon, R

    2002-01-01

    Bone is permanently renewed by the coordinated actions of bone-resorbing osteoclasts and bone-forming osteoblasts, which model and remodel bone structure during growth and adult life. The origin of osteoblastic cells (osteoblasts, osteocytes and bone-lining cells) differs from that of osteoclasts, but both cell groups communicate with each other using cytokines and cell-cell contact as to optimally maintain bone homeostasis. This communication in many ways uses the same players as the communication between cells in the immune system. During acute life-threatening illness massive bone resorption is the rule, while bone formation is suppressed. During chronic illness, the balance between bone formation and bone resorption also shifts, frequently resulting in decreased bone mass and density. Several factors may contribute to the osteopenia that accompanies chronic illness, the most important being undernutrition and low body weight, inflammatory cytokines, disorders of the neuroendocrine axis (growth hormone/IGF-1 disturbances, thyroid and gonadal deficiency), immobilization, and the long-term use of glucocorticoids. Their combined effects not only influence the generation and activity of all bone cells involved, but probably also regulate their life span by apoptotic mechanisms. Osteopenia or even osteoporosis and bone fragility, and before puberty also decreased linear growth and lower peak bone mass are therefore frequent consequences of chronic illnesses.

  16. Ethanol and acetaldehyde induce similar changes in extracellular levels of glutamate, taurine and GABA in rat anterior cingulate cortex.

    PubMed

    Zuo, Gong Cheng; Yang, Jing Yu; Hao, Yue; Dong, Ying Xu; Wu, Chun Fu

    2007-03-30

    It is controversial regarding to the roles of acetaldehyde and ethanol in the central nervous system. In the present study, the effects of acetaldehyde and ethanol on extracellular levels of glutamate, taurine and GABA in the anterior cingulate cortex (ACC) of freely moving rats were investigated by using the microdialysis technique coupled to high performance liquid chromatography (HPLC) with fluorescent detection. The result showed that glutamate levels were significantly decreased after acute administration of acetaldehyde (AcH, 20 and 100 mg/kg, i.p.), while taurine levels were significantly increased after the higher dose of acetaldehyde (100 mg/kg, i.p.). GABA levels had no changes at any doses of acetaldehyde tested. Interestingly, similar changes of these amino acids were induced by ethanol (EtOH, 3 g/kg, i.p.) when sodium azide (NaN3, 10 mg/kg, i.p.), a catalase inhibitor that can reduce brain ethanol metabolism, was used simultaneously. These findings suggest that acetaldehyde and ethanol have the similar effects on the extracellular output of glutamate, taurine and GABA in the ACC.

  17. Acetaldehyde detoxification using resting cells of recombinant Escherichia coli overexpressing acetaldehyde dehydrogenase.

    PubMed

    Yao, Zhengying; Zhang, Chong; Zhao, Junfeng; Lu, Fengxia; Bie, Xiaomei; Lu, Zhaoxin

    2014-02-01

    Acetaldehyde dehydrogenase (E.C. 1.2.1.10) plays a key role in the acetaldehyde detoxification. The recombinant Escherichia coli cells producing acetaldehyde dehydrogenase (ist-ALDH) were applied as whole-cell biocatalysts for biodegradation of acetaldehyde. Response surface methodology (RSM) was employed to enhance the production of recombinant ist-ALDH. Under the optimum culture conditions containing 20.68 h post-induction time, 126.75 mL medium volume and 3 % (v/v) inoculum level, the maximum ist-ALDH activity reached 496.65 ± 0.81 U/mL, resulting in 12.5-fold increment after optimization. Furthermore, the optimum temperature and pH for the catalytic activity of wet cells were 40 °C and pH 9.5, respectively. The biocatalytic activity was improved 80 % by permeabilizing the recombinant cells with 0.075 % (v/v) Triton X-100. When using 2 mmol/L NAD(+) as coenzyme, the permeabilized cells could catalyze 98 % of acetaldehyde within 15 min. The results indicated that the recombinant E. coli with high productivity of ist-ALDH might be highly efficient and easy-to-make biocatalysts for acetaldehyde detoxification.

  18. Cattle temperament influences metabolism: 2. Metabolic response to an insulin sensivitiy test in beef steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cattle temperament, defined as the reactivity of cattle to humans or novel environments, can greatly influence several physiological systems in the body, including immunity, stress, and most recently discovered, metabolism. Greater circulating concentrations of non-esterified fatty acids (NEFAs) fou...

  19. [Gut microbiota may have influence on glucose and lipid metabolism].

    PubMed

    Hallundbæk Mikkelsen, Kristian; Nielsen, Morten Frost; Tvede, Michael; Hansen, Torben; Pedersen, Oluf Borbye; Holst, Jens Juul; Vilsbøll, Tina; Knop, Filip Krag

    2013-11-11

    New gene sequencing-based techniques and the large worldwide sequencing capacity have introduced a new era within the field of gut microbiota. Animal and human studies have shown that obesity and type 2 diabetes are associated with changes in the composition of the gut microbiota and that prebiotics, antibiotics or faecal transplantation can alter glucose and lipid metabolism. This paper summarizes the latest research regarding the association between gut microbiota, diabetes and obesity and some of the mechanisms by which gut bacteria may influence host metabolism.

  20. Using Non-Enzymatic Chemistry to Influence Microbial Metabolism

    PubMed Central

    Wallace, Stephen; Schultz, Erica E.; Balskus, Emily P.

    2015-01-01

    The structural manipulation of small molecule metabolites occurs in all organisms and plays a fundamental role in essentially all biological processes. Despite an increasing interest in developing new, non-enzymatic chemical reactions capable of functioning in the presence of living organisms, the ability of such transformations to interface with cellular metabolism and influence biological function is a comparatively underexplored area of research. This review will discuss efforts to combine non-enzymatic chemistry with microbial metabolism. We will highlight recent and historical uses of non-biological reactions to study microbial growth and function, the use of non-enzymatic transformations to rescue auxotrophic microorganisms, and the combination of engineered microbial metabolism and biocompatible chemical reactions for organic synthesis. PMID:25579453

  1. Betulin, betulinic acid and butein are inhibitors of acetaldehyde-induced activation of liver stellate cells.

    PubMed

    Szuster-Ciesielska, Agnieszka; Plewka, Krzysztof; Kandefer-Szerszeń, Martyna

    2011-01-01

    Liver fibrosis has been reported to be inhibited in vivo by oleanolic and ursolic acids; however, the activity of other triterpenes like betulin and betulinic acid has not been examined. Butein has also been reported to prevent and partly reverse liver fibrosis in vivo, although its mechanism of action is poorly understood. Therefore, the aim of this study was to determine the antifibrotic potential of butein, betulin, and betulinic acid and examine their mechanisms of action in vitro. This study was conducted in rat stellate cells (HSCs) that were treated with acetaldehyde, which is the most reactive product of ethanol metabolism. Butein, betulin, and betulinic acid were preincubated with rat HSCs at non-toxic concentrations. Treatment effects were measured in regard to acetaldehyde-induced toxicity and cell migration, and several markers of HSC activation were evaluated, including smooth muscle α-actin (α-SMA) and procollagen I expression. In addition, changes in the release of reactive oxygen species (ROS) and cytokines such as tumor necrosis factor-α (TNF-α) and tumor growth factor-β1 (TGF-β1) and changes in the production of metalloproteinase-2 (MMP-2) and tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) were determined. In vitro, HSCs were protected against acetaldehyde-induced toxicity by betulin but not by betulinic acid and butein. However, butein, betulin, and betulinic acid inhibited the production of ROS by HSCs treated with acetaldehyde and inhibited their migration. Butein also inhibited acetaldehyde-induced TGF-β1 production. Butein, betulin, and betulinic acid down-regulated acetaldehyde-induced production of TIMP-1 and TIMP-2. Betulin decreased the acetaldehyde-induced activity of MMP-2, but butein and betulinic acid did not. The results indicated that butein, betulin, and betulinic acid inhibited the acetaldehyde-induced activation of HSCs. Each drug functioned in a different manner, whereby some were acting as either

  2. Acetaldehyde involvement in ethanol's postabsortive effects during early ontogeny.

    PubMed

    March, Samanta M; Abate, P; Molina, Juan C

    2013-01-01

    Clinical and biomedical studies sustains the notion that early ontogeny is a vulnerable window to the impact of alcohol. Experiences with the drug during these stages increase latter disposition to prefer, use or abuse ethanol. This period of enhanced sensitivity to ethanol is accompanied by a high rate of activity in the central catalase system, which metabolizes ethanol in the brain. Acetaldehyde (ACD), the first oxidation product of ethanol, has been found to share many neurobehavioral effects with the drug. Cumulative evidence supports this notion in models employing adults. Nevertheless very few studies have been conducted to analyze the role of ACD in ethanol postabsorptive effects, in newborns or infant rats. In this work we review recent experimental literature that syndicates ACD as a mediator agent of reinforcing aspects of ethanol, during early ontogenetic stages. We also show a meta-analytical correlational approach that proposes how differences in the activity of brain catalase across ontogeny, could be modulating patterns of ethanol consumption.

  3. Effects of ALDH2 genotype, PPI treatment and L-cysteine on carcinogenic acetaldehyde in gastric juice and saliva after intragastric alcohol administration.

    PubMed

    Maejima, Ryuhei; Iijima, Katsunori; Kaihovaara, Pertti; Hatta, Waku; Koike, Tomoyuki; Imatani, Akira; Shimosegawa, Tooru; Salaspuro, Mikko

    2015-01-01

    Acetaldehyde (ACH) associated with alcoholic beverages is Group 1 carcinogen to humans (IARC/WHO). Aldehyde dehydrogenase (ALDH2), a major ACH eliminating enzyme, is genetically deficient in 30-50% of Eastern Asians. In alcohol drinkers, ALDH2-deficiency is a well-known risk factor for upper aerodigestive tract cancers, i.e., head and neck cancer and esophageal cancer. However, there is only a limited evidence for stomach cancer. In this study we demonstrated for the first time that ALDH2 deficiency results in markedly increased exposure of the gastric mucosa to acetaldehyde after intragastric administration of alcohol. Our finding provides concrete evidence for a causal relationship between acetaldehyde and gastric carcinogenesis. A plausible explanation is the gastric first pass metabolism of ethanol. The gastric mucosa expresses alcohol dehydrogenase (ADH) enzymes catalyzing the oxidation of ethanol to acetaldehyde, especially at the high ethanol concentrations prevailing in the stomach after the consumption of alcoholic beverages. The gastric mucosa also possesses the acetaldehyde-eliminating ALDH2 enzyme. Due to decreased mucosal ALDH2 activity, the elimination of ethanol-derived acetaldehyde is decreased, which results in its accumulation in the gastric juice. We also demonstrate that ALDH2 deficiency, proton pump inhibitor (PPI) treatment, and L-cysteine cause independent changes in gastric juice and salivary acetaldehyde levels, indicating that intragastric acetaldehyde is locally regulated by gastric mucosal ADH and ALDH2 enzymes, and by oral microbes colonizing an achlorhydric stomach. Markedly elevated acetaldehyde levels were also found at low intragastric ethanol concentrations corresponding to the ethanol levels of many foodstuffs, beverages, and dairy products produced by fermentation. A capsule that slowly releases L-cysteine effectively eliminated acetaldehyde from the gastric juice of PPI-treated ALDH2-active and ALDH2-deficient subjects. These

  4. Effects of ALDH2 Genotype, PPI Treatment and L-Cysteine on Carcinogenic Acetaldehyde in Gastric Juice and Saliva after Intragastric Alcohol Administration

    PubMed Central

    Maejima, Ryuhei; Iijima, Katsunori; Kaihovaara, Pertti; Hatta, Waku; Koike, Tomoyuki; Imatani, Akira; Shimosegawa, Tooru; Salaspuro, Mikko

    2015-01-01

    Acetaldehyde (ACH) associated with alcoholic beverages is Group 1 carcinogen to humans (IARC/WHO). Aldehyde dehydrogenase (ALDH2), a major ACH eliminating enzyme, is genetically deficient in 30–50% of Eastern Asians. In alcohol drinkers, ALDH2-deficiency is a well-known risk factor for upper aerodigestive tract cancers, i.e., head and neck cancer and esophageal cancer. However, there is only a limited evidence for stomach cancer. In this study we demonstrated for the first time that ALDH2 deficiency results in markedly increased exposure of the gastric mucosa to acetaldehyde after intragastric administration of alcohol. Our finding provides concrete evidence for a causal relationship between acetaldehyde and gastric carcinogenesis. A plausible explanation is the gastric first pass metabolism of ethanol. The gastric mucosa expresses alcohol dehydrogenase (ADH) enzymes catalyzing the oxidation of ethanol to acetaldehyde, especially at the high ethanol concentrations prevailing in the stomach after the consumption of alcoholic beverages. The gastric mucosa also possesses the acetaldehyde-eliminating ALDH2 enzyme. Due to decreased mucosal ALDH2 activity, the elimination of ethanol-derived acetaldehyde is decreased, which results in its accumulation in the gastric juice. We also demonstrate that ALDH2 deficiency, proton pump inhibitor (PPI) treatment, and L-cysteine cause independent changes in gastric juice and salivary acetaldehyde levels, indicating that intragastric acetaldehyde is locally regulated by gastric mucosal ADH and ALDH2 enzymes, and by oral microbes colonizing an achlorhydric stomach. Markedly elevated acetaldehyde levels were also found at low intragastric ethanol concentrations corresponding to the ethanol levels of many foodstuffs, beverages, and dairy products produced by fermentation. A capsule that slowly releases L-cysteine effectively eliminated acetaldehyde from the gastric juice of PPI-treated ALDH2-active and ALDH2-deficient subjects. These

  5. Quantitative analysis of the lactic acid and acetaldehyde produced by Streptococcus thermophilus and Lactobacillus bulgaricus strains isolated from traditional Turkish yogurts using HPLC.

    PubMed

    Gezginc, Y; Topcal, F; Comertpay, S; Akyol, I

    2015-03-01

    The present study was conducted to evaluate the lactic acid- and acetaldehyde-producing abilities of lactic acid bacterial species isolated from traditionally manufactured Turkish yogurts using HPLC. The lactic acid bacterial species purified from the yogurts were the 2 most widely used species in industrial yogurt production: Streptococcus thermophilus and Lactobacillus bulgaricus. These bacteria have the ability to ferment hexose sugars homofermentatively to generate lactic acid and some carbonyl compounds, such as acetaldehyde through pyruvate metabolism. The levels of the compounds produced during fermentation influence the texture and the flavor of the yogurt and are themselves influenced by the chemical composition of the milk, processing conditions, and the metabolic activity of the starter culture. In the study, morphological, biochemical, and molecular characteristics were employed to identify the bacteria obtained from homemade yogurts produced in different regions of Turkey. A collection of 91 Strep. thermophilus and 35 L. bulgaricus strains were investigated for their lactic acid- and acetaldehyde-formation capabilities in various media such as cow milk, LM17 agar, and aerobic-anaerobic SM17 agar or de Man, Rogosa, and Sharpe agar. The amounts of the metabolites generated by each strain in all conditions were quantified by HPLC. The levels were found to vary depending on the species, the strain, and the growth conditions used. Whereas lactic acid production ranged between 0 and 77.9 mg/kg for Strep. thermophilus strains, it ranged from 0 to 103.5 mg/kg for L. bulgaricus. Correspondingly, the ability to generate acetaldehyde ranged from 0 to 105.9 mg/kg in Strep. thermophilus and from 0 to 126.9 mg/kg in L. bulgaricus. Our study constitutes the first attempt to determine characteristics of the wild strains isolated from traditional Turkish yogurts, and the approach presented here, which reveals the differences in metabolite production abilities of the

  6. Development of industrial brewing yeast with low acetaldehyde production and improved flavor stability.

    PubMed

    Wang, Jinjing; Shen, Nan; Yin, Hua; Liu, Chunfeng; Li, Yongxian; Li, Qi

    2013-02-01

    Higher acetaldehyde concentration in beer is one of the main concerns of current beer industry in China. Acetaldehyde is always synthesized during beer brewing by the metabolism of yeast. Here, using ethanol as the sole carbon source and 4-methylpyrazole as the selection marker, we constructed a new mutant strain with lower acetaldehyde production and improved ethanol tolerance via traditional mutagenesis strategy. European Brewery Convention tube fermentation tests comparing the fermentation broths of mutant strain and industrial brewing strain showed that the acetaldehyde concentration of mutant strain was 81.67 % lower, whereas its resistant staling value was 1.0-fold higher. Owing to the mutation, the alcohol dehydrogenase activity of the mutant strain decreased to about 30 % of the wild-type strain. In the meantime, the fermentation performance of the newly screened strain has little difference compared with the wild-type strain, and there are no safety problems regarding the industrial usage of the mutant strain. Therefore, we suggest that the newly screened strain could be directly applied to brewing industry.

  7. Involvement of the endogenous opioid system in the psychopharmacological actions of ethanol: the role of acetaldehyde

    PubMed Central

    Font, Laura; Luján, Miguel Á.; Pastor, Raúl

    2013-01-01

    Significant evidence implicates the endogenous opioid system (EOS) (opioid peptides and receptors) in the mechanisms underlying the psychopharmacological effects of ethanol. Ethanol modulates opioidergic signaling and function at different levels, including biosynthesis, release, and degradation of opioid peptides, as well as binding of endogenous ligands to opioid receptors. The role of β-endorphin and µ-opioid receptors (OR) have been suggested to be of particular importance in mediating some of the behavioral effects of ethanol, including psychomotor stimulation and sensitization, consumption and conditioned place preference (CPP). Ethanol increases the release of β-endorphin from the hypothalamic arcuate nucleus (NArc), which can modulate activity of other neurotransmitter systems such as mesolimbic dopamine (DA). The precise mechanism by which ethanol induces a release of β-endorphin, thereby inducing behavioral responses, remains to be elucidated. The present review summarizes accumulative data suggesting that the first metabolite of ethanol, the psychoactive compound acetaldehyde, could participate in such mechanism. Two lines of research involving acetaldehyde are reviewed: (1) implications of the formation of acetaldehyde in brain areas such as the NArc, with high expression of ethanol metabolizing enzymes and presence of cell bodies of endorphinic neurons and (2) the formation of condensation products between DA and acetaldehyde such as salsolinol, which exerts its actions via OR. PMID:23914161

  8. Methanol and acetaldehyde fluxes over ryegrass

    NASA Astrophysics Data System (ADS)

    Custer, Thomas; Schade, Gunnar

    2007-09-01

    Oxygenated volatile organic compounds (OVOCs) play an active role in tropospheric chemistry but our knowledge concerning their release and ultimate fate is limited. However, the recent introduction of Proton Transfer Reaction Mass Spectrometry (PTRMS) has improved our capability to make direct field observations of OVOC mixing ratios and fluxes. We used PTRMS in an eddy covariance setup to measure selected OVOC exchange rates above a well-characterized agricultural plot in Northern Germany. In fall 2003, mixing ratios of methanol and acetaldehyde 2 m above the field ranged from 1 to 10 and 0.4 to 2.1 ppb, respectively, well correlated with one another. Fluxes of both gases were followed for growing Italian ryegrass (Lolium multiflorum) over a significant portion of its life cycle. Diurnally fluctuating emissions of methanol and very small acetaldehyde fluxes were observed up to the cutting and removal of the grass. Methanol emissions were exponentially related to ambient temperatures and appeared to be higher during the grass' rapid leaf area expansion and after a rain event. Acetaldehyde exchanges averaged over the whole period indicated very slow deposition. Our measurements confirm previous, similar results, as well as presumptions that grasses are comparatively low methanol emitters compared to non-grass species.

  9. Prebiotic synthesis of imidazole-4-acetaldehyde and histidine

    NASA Technical Reports Server (NTRS)

    Shen, Chun; Oro, J.; Yang, Lily; Miller, Stanley L.

    1987-01-01

    The prebiotic synthesis of imidazole-4-acetaldehyde and imidazole-4-glycol from erythrose and formamidine has been demonstrated as well as the prebiotic synthesis of imidazole-4-ethanol and imidazole-4-glycol from erythrose, formaldehyde, and ammonia. The maximum yields of imidazole-4-acetaldehyde, imidazole-4-ethanol, and imidazole-4-glycol obtained in these reactions are 1.6, 5.4, and 6.8 percent respectively, based on the erythrose. Imidazole-4-acetaldehyde would have been converted to histidine on the primitive earth by a Strecker synthesis, and several prebiotic reactions would convert imidazole-4-glycol and imidazole-4-ethanol to imidazole-4-acetaldehyde.

  10. Biochemical characterization of a bifunctional acetaldehyde-alcohol dehydrogenase purified from a facultative anaerobic bacterium Citrobacter sp. S-77.

    PubMed

    Tsuji, Kohsei; Yoon, Ki-Seok; Ogo, Seiji

    2016-03-01

    Acetaldehyde-alcohol dehydrogenase (ADHE) is a bifunctional enzyme consisting of two domains of an N-terminal acetaldehyde dehydrogenase (ALDH) and a C-terminal alcohol dehydrogenase (ADH). The enzyme is known to be important in the cellular alcohol metabolism. However, the role of coenzyme A-acylating ADHE responsible for ethanol production from acetyl-CoA remains uncertain. Here, we present the purification and biochemical characterization of an ADHE from Citrobacter sp. S-77 (ADHE(S77)). Interestingly, the ADHE(S77) was unable to be solubilized from membrane with detergents either 1% Triton X-100 or 1% Sulfobetaine 3-12. However, the enzyme was easily dissociated from membrane by high-salt buffers containing either 1.0 M NaCl or (NH(4))(2)SO(4) without detergents. The molecular weight of a native protein was estimated as approximately 400 kDa, consisting of four identical subunits of 96.3 kDa. Based on the specific activity and kinetic analysis, the ADHES77 tended to have catalytic reaction towards acetaldehyde elimination rather than acetaldehyde formation. Our experimental observation suggests that the ADHES77 may play a pivotal role in modulating intracellular acetaldehyde concentration.

  11. Metabolic influence of Botrytis cinerea infection in champagne base wine.

    PubMed

    Hong, Young-Shick; Cilindre, Clara; Liger-Belair, Gerard; Jeandet, Philippe; Hertkorn, Norbert; Schmitt-Kopplin, Philippe

    2011-07-13

    Botrytis cinerea infection of grape berries leads to changes in the chemical composition of grape and the corresponding wine and, thus, affects wine quality. The metabolic effect of Botrytis infection in Champagne base wine was investigated through a (1)H NMR-based metabolomic approach. Isoleucine, leucine, threonine, valine, arginine, proline, glutamine, γ-aminobutyric acid (GABA), succinate, malate, citrate, tartarate, fructose, glucose, oligosaccharides, amino acid derivatives, 2,3-butanediol, acetate, glycerol, tyrosine, 2-phenylethanol, trigonelline, and phenylpropanoids in a grape must and wine were identified by (1)H NMR spectroscopy and contributed to metabolic differentiations between healthy and botrytized wines by using multivariate statistical analysis such as principal component analysis (PCA). Lowered levels of glycerol, 2,3-butanediol, succinate, tyrosine, valine derivative, and phenylpropanoids but higher levels of oligosaccharides in the botrytized wines were main discriminant metabolites, demonstrating that Botrytis infection of grape caused the fermentative retardation during alcoholic fermentation because the main metabolites responsible for the differentiation are fermentative products. Moreover, higher levels of several oligosaccharides in the botrytized wines also indicated the less fermentative behavior of yeast in the botrytized wines. This study highlights a metabolomic approach for better understanding of the comprehensive metabolic influences of Botrytis infection of grape berries in Champagne wines.

  12. Influence of silver nanoparticles on metabolism and toxicity of moulds.

    PubMed

    Pietrzak, Katarzyna; Twarużek, Magdalena; Czyżowska, Agata; Kosicki, Robert; Gutarowska, Beata

    2015-01-01

    The unique antimicrobial features of silver nanoparticles (AgNPs) are commonly applied in innumerable products. The lack of published studies on the mechanisms of AgNPs action on fungi resulted in identification of the aim of this study, which was: the determination of the influence of AgNPs on the mould cytotoxicity for swine kidney cells (MTT test) and the production of selected mycotoxins, organic acids, extracellular enzymes by moulds. The conducted study had shown that silver nanoparticles can change the metabolism and toxicity of moulds. AgNPs decrease the mycotoxin production of Aspergillus sp. (81-96%) and reduce mould cytotoxicity (50-75%). AgNPs influence the organic acid production of A. niger and P. chrysogenum by decreasing their concentration (especially of the oxalic and citric acid). Also, a change in the extracellular enzyme profile of A. niger and P. chrysogenum was observed, however, the total enzymatic activity was increased.

  13. Biochemical basis of mitochondrial acetaldehyde dismutation in Saccharomyces cerevisiae.

    PubMed Central

    Thielen, J; Ciriacy, M

    1991-01-01

    As reported previously, Saccharomyces cerevisiae cells deficient in all four known genes coding for alcohol dehydrogenases (ADH1 through ADH4) produce considerable amounts of ethanol during aerobic growth on glucose. It has been suggested that ethanol production in such adh0 cells is a corollary of acetaldehyde dismutation in mitochondria. This could be substantiated further by showing that mitochondrial ethanol formation requires functional electron transport, while the proton gradient or oxidative phosphorylation does not interfere with reduction of acetaldehyde in isolated mitochondria. This acetaldehyde-reducing activity is different from classical alcohol dehydrogenases in that it is associated with the inner mitochondrial membrane and also is unable to carry out ethanol oxidation. The putative cofactor is NADH + H+ generated by a soluble, matrix-located aldehyde dehydrogenase upon acetaldehyde oxidation to acetate. This enzyme has been purified from mitochondria of glucose-grown cells. It is clearly different from the known mitochondrial aldehyde dehydrogenase, which is absent in glucose-grown cells. Both acetaldehyde-reducing and acetaldehyde-oxidizing activities are also present in the mitochondrial fraction of fermentation-proficient (ADH+) cells. Mitochondrial acetaldehyde dismutation may have some significance in the removal of surplus acetaldehyde and in the formation of acetate in mitochondria during aerobic glucose fermentation. Images FIG. 4 PMID:1938903

  14. 40 CFR 721.10036 - Acetaldehyde based polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acetaldehyde based polymer (generic... Specific Chemical Substances § 721.10036 Acetaldehyde based polymer (generic). (a) Chemical substance and... based polymer (PMN P-02-406) is subject to reporting under this section for the significant new...

  15. 40 CFR 721.10036 - Acetaldehyde based polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acetaldehyde based polymer (generic... Specific Chemical Substances § 721.10036 Acetaldehyde based polymer (generic). (a) Chemical substance and... based polymer (PMN P-02-406) is subject to reporting under this section for the significant new...

  16. 40 CFR 721.10036 - Acetaldehyde based polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acetaldehyde based polymer (generic... Specific Chemical Substances § 721.10036 Acetaldehyde based polymer (generic). (a) Chemical substance and... based polymer (PMN P-02-406) is subject to reporting under this section for the significant new...

  17. 40 CFR 721.10036 - Acetaldehyde based polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acetaldehyde based polymer (generic... Specific Chemical Substances § 721.10036 Acetaldehyde based polymer (generic). (a) Chemical substance and... based polymer (PMN P-02-406) is subject to reporting under this section for the significant new...

  18. 40 CFR 721.10036 - Acetaldehyde based polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acetaldehyde based polymer (generic... Specific Chemical Substances § 721.10036 Acetaldehyde based polymer (generic). (a) Chemical substance and... based polymer (PMN P-02-406) is subject to reporting under this section for the significant new...

  19. Effect of Modified Atmosphere Composition on the Metabolism of Glucose by Brochothrix thermosphacta

    PubMed Central

    Pin, Carmen; García de Fernando, Gonzalo D.; Ordóñez, Juan A.

    2002-01-01

    The influence of atmosphere composition on the metabolism of Brochothrix thermosphacta was studied by analyzing the consumption of glucose and the production of ethanol, acetic and lactic acids, acetaldehyde, and diacetyl-acetoin under atmospheres containing different combinations of carbon dioxide and oxygen. When glucose was metabolized under oxygen-free atmospheres, lactic acid was one of the main end products, while under atmospheres rich in oxygen mainly acetoin-diacetyl was produced. The proportions of the total consumed glucose used for the production of acetoin (aerobic metabolism) and lactic acid (anaerobic metabolism) were used to decide whether aerobic or anaerobic metabolism predominated at a given atmosphere composition. The boundary conditions between dominantly anaerobic and aerobic metabolisms were determined by logistic regression. The metabolism of glucose by B. thermosphacta was influenced not only by the oxygen content of the atmosphere but also by the carbon dioxide content. At high CO2 percentages, glucose metabolism remained anaerobic under greater oxygen contents. PMID:12200298

  20. Effect of modified atmosphere composition on the metabolism of glucose by Brochothrix thermosphacta.

    PubMed

    Pin, Carmen; García de Fernando, Gonzalo D; Ordóñez, Juan A

    2002-09-01

    The influence of atmosphere composition on the metabolism of Brochothrix thermosphacta was studied by analyzing the consumption of glucose and the production of ethanol, acetic and lactic acids, acetaldehyde, and diacetyl-acetoin under atmospheres containing different combinations of carbon dioxide and oxygen. When glucose was metabolized under oxygen-free atmospheres, lactic acid was one of the main end products, while under atmospheres rich in oxygen mainly acetoin-diacetyl was produced. The proportions of the total consumed glucose used for the production of acetoin (aerobic metabolism) and lactic acid (anaerobic metabolism) were used to decide whether aerobic or anaerobic metabolism predominated at a given atmosphere composition. The boundary conditions between dominantly anaerobic and aerobic metabolisms were determined by logistic regression. The metabolism of glucose by B. thermosphacta was influenced not only by the oxygen content of the atmosphere but also by the carbon dioxide content. At high CO(2) percentages, glucose metabolism remained anaerobic under greater oxygen contents.

  1. Reaction of acetaldehyde with 5-aminolevulinic acid via dihydropyrazine derivative.

    PubMed

    Suzuki, Toshinori; Yasuhara, Naoki; Ueda, Takashi; Inukai, Michiyo; Mio, Mitsunobu

    2015-01-01

    When a solution of 5-aminolevulinic acid (ALA) was incubated with acetaldehyde at neutral pH, a product was generated. This product was identified as 3-ethylpyrazine-2,5-dipropanoic acid (ETPY). ETPY was stable at neutral pH. It has been reported that ALA dimerizes at neutral pH generating 3,6-dihydropyrazine-2,5-dipropanoic acid (DHPY), and subsequently resulting in pyrazine-2,5-dipropanoic acid (PY) by autoxidation. In the present reaction, DHPY generated from ALA reacted with acetaldehyde, resulting in ETPY. Preadministration of ALA 3 min prior to acetaldehyde injection supressed the toxicity of acetaldehyde in male mice. These results suggest that ALA may be useful as a scavenger for acetaldehyde.

  2. Mechanism of acetaldehyde-induced deactivation of microbial lipases

    PubMed Central

    2011-01-01

    Background Microbial lipases represent the most important class of biocatalysts used for a wealth of applications in organic synthesis. An often applied reaction is the lipase-catalyzed transesterification of vinyl esters and alcohols resulting in the formation of acetaldehyde which is known to deactivate microbial lipases, presumably by structural changes caused by initial Schiff-base formation at solvent accessible lysine residues. Previous studies showed that several lipases were sensitive toward acetaldehyde deactivation whereas others were insensitive; however, a general explanation of the acetaldehyde-induced inactivation mechanism is missing. Results Based on five microbial lipases from Candida rugosa, Rhizopus oryzae, Pseudomonas fluorescens and Bacillus subtilis we demonstrate that the protonation state of lysine ε-amino groups is decisive for their sensitivity toward acetaldehyde. Analysis of the diverse modification products of Bacillus subtilis lipases in the presence of acetaldehyde revealed several stable products such as α,β-unsaturated polyenals, which result from base and/or amino acid catalyzed aldol condensation of acetaldehyde. Our studies indicate that these products induce the formation of stable Michael-adducts at solvent-accessible amino acids and thus lead to enzyme deactivation. Further, our results indicate Schiff-base formation with acetaldehyde to be involved in crosslinking of lipase molecules. Conclusions Differences in stability observed with various commercially available microbial lipases most probably result from different purification procedures carried out by the respective manufacturers. We observed that the pH of the buffer used prior to lyophilization of the enzyme sample is of utmost importance. The mechanism of acetaldehyde-induced deactivation of microbial lipases involves the generation of α,β-unsaturated polyenals from acetaldehyde which subsequently form stable Michael-adducts with the enzymes. Lyophilization of

  3. Development of an LC-MS/MS method for studying migration characteristics of acetaldehyde in polyethylene terephthalate (PET)-packed mineral water.

    PubMed

    Baumjohann, Nina; Harms, Diedrich

    2015-01-01

    During storage, acetaldehyde migration from polyethylene terephthalate (PET) bottles can affect the quality of mineral water even in the low µg l(-1) range negatively, as it features a fruity or plastic-like off-flavour. For a sensitive and fast analysis of acetaldehyde in mineral water, a new analysis method of 2,4-dinitrophenylhydrazine (DNPH) derivatisation followed by HPLC-electrospray tandem mass spectrometry (ESI-MS/MS) was developed. Acetaldehyde was directly derivatised in the mineral water sample avoiding extraction and/or pre-concentration steps and then analysed by reversed-phase HPLC-ESI-MS/MS using multiple reaction monitoring mode (MRM). Along with method development, the optimum molar excess of DNPH in contrast to acetaldehyde was studied for the mineral water matrix, because no specific and robust data were yet available for this critical parameter. Best results were obtained by using a calibration via the derivatisation reaction. Without any analyte enrichment or extraction, an LOD of 0.5 µg l(-1) and an LOQ of 1.9 µg l(-1) were achieved. Using the developed method, mineral water samples packed in PET bottles from Germany were analysed and the correlation between the acetaldehyde concentration and other characteristics of the samples was evaluated illustrating the applicability of the method. Besides a relationship between bottle size and CO2 content of the mineral water and acetaldehyde migration, a correlation with acetaldehyde migration and the material composition of the bottle, e.g. recycled PET, was noted. Investigating the light influence on the acetaldehyde migration with a newly developed, reproducible light exposure setup, a significant increase of the acetaldehyde concentration in carbonated mineral water samples was observed.

  4. Acetaldehyde removal using an atmospheric non-thermal plasma combined with a packed bed: role of the adsorption process.

    PubMed

    Klett, C; Duten, X; Tieng, S; Touchard, S; Jestin, P; Hassouni, K; Vega-González, A

    2014-08-30

    This work is an attempt in order to help towards understanding the influence of the adsorption process on the removal of a VOC (acetaldehyde, CH3CHO) using cyclic non thermal plasma (NTP) combined with a packed-bed of a catalyst support, α-Al2O3. In the first part, the results obtained by placing the saturated alumina pellets inside the plasma discharge zone are discussed, in terms of acetaldehyde removal, CO and CO2 production. In the second part, adsorption of CH3CHO, CO, CO2 and O3 was carried out, from single and multicomponent mixtures of the different compounds. The results showed that (i) the adsorption capacities followed the order CH3CHO≫  CO2>CO; (ii) O3 was decomposed on the alumina surface; (iii) CO oxidation occurred on the surface when O3 was present. In the third part, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was used to follow the alumina surface during acetaldehyde adsorption. DRIFTS measurements demonstrated that besides the bands of molecularly adsorbed acetaldehyde, several absorptions appeared on the spectra showing the intermediate surface transformation of acetaldehyde already at 300K. Finally, the relationship between the adsorption results and the NTP combined with a packed-bed process is discussed.

  5. Cattle temperament influences metabolism: metabolic response to glucose tolerance and insulin sensitivity tests in beef steers.

    PubMed

    Burdick Sanchez, N C; Carroll, J A; Broadway, P R; Hughes, H D; Roberts, S L; Richeson, J T; Schmidt, T B; Vann, R C

    2016-07-01

    Cattle temperament, defined as the reactivity of cattle to humans or novel environments, can greatly influence several physiological systems in the body, including immunity, stress, and most recently discovered, metabolism. Greater circulating concentrations of nonesterified fatty acids (NEFAs) found in temperamental cattle suggest that temperamental cattle are metabolically different than calm cattle. Further, elevated NEFA concentrations have been reported to influence insulin sensitivity. Therefore, the objective of this study was to determine whether cattle temperament would influence the metabolic response to a glucose tolerance test (GTT) and insulin sensitivity test (IST). Angus-cross steers (16 calm and 15 temperamental; 216 ± 6 kg BW) were selected based on temperament score measured at weaning. On day 1, steers were moved into indoor stanchions to allow measurement of individual ad libitum feed intake. On day 6, steers were fitted with indwelling rectal temperature probes and jugular catheters. At 9 AM on day 7, steers received the GTT (0.5-mL/kg BW of a 50% dextrose solution), and at 2 PM on day 7, steers received the IST (2.5 IU bovine insulin/kg BW). Blood samples were collected and serum isolated at -60, -45, -30, -15, 0, 10, 20, 30, 45, 60, 90, 120, and 150 min relative to each challenge. Serum was stored at -80°C until analyzed for cortisol, glucose, NEFA, and blood urea nitrogen concentrations. All variables changed over time (P < 0.01). For the duration of the study, temperamental steers maintained greater (P < 0.01) serum NEFA and less (P ≤ 0.01) serum blood urea nitrogen and insulin sensitivity (calculated using Revised Quantitative Insulin Sensitivity Check Index) compared with calm steers. During the GTT, temperamental steers had greater (P < 0.01) serum glucose, yet decreased (P = 0.03) serum insulin and (P < 0.01) serum insulin: serum glucose compared to calm cattle. During the IST, temperamental steers had greater (P < 0.01) serum

  6. Hormonal alterations in PCOS and its influence on bone metabolism.

    PubMed

    Krishnan, Abhaya; Muthusami, Sridhar

    2017-02-01

    According to the World Health Organization (WHO) polycystic ovary syndrome (PCOS) occurs in 4-8% of women worldwide. The prevalence of PCOS in Indian adolescents is 12.2% according to the Indian Council of Medical Research (ICMR). The National Institute of Health has documented that it affects approximately 5 million women of reproductive age in the United States. Hormonal imbalance is the characteristic of many women with polycystic ovarian syndrome (PCOS). The influence of various endocrine changes in PCOS women and their relevance to bone remains to be documented. Hormones, which include gonadotrophin-releasing hormone (GnRH), insulin, the leutinizing/follicle-stimulating hormone (LH/FSH) ratio, androgens, estrogens, growth hormones (GH), cortisol, parathyroid hormone (PTH) and calcitonin are disturbed in PCOS women. These hormones influence bone metabolism in human subjects directly as well as indirectly. The imbalance in these hormones results in increased prevalence of osteoporosis in PCOS women. Limited evidence suggests that the drugs taken during the treatment of PCOS increase the risk of bone fracture in PCOS patients through endocrine disruption. This review is aimed at the identification of the relationship between bone mineral density and hormonal changes in PCOS subjects and identifies potential areas to study bone-related disorders in PCOS women.

  7. A self-powered acetaldehyde sensor based on biofuel cell.

    PubMed

    Zhang, Lingling; Zhou, Ming; Dong, Shaojun

    2012-12-04

    Acetaldehyde is recognized as a type of organic environmental pollutant all over the world, which makes the sensitive, rapid, simple and low-cost detection of acetaldehyde urgent and significant. Inspired by the biological principle of feedback modulation, we have developed a novel and effective self-powered device for aqueous acetaldehyde detection. In this self-powered device, an ethanol/air enzymatic biofuel cell (BFC) served as the core component, which showed the maximum power output density of 28.5 μW cm(-2) at 0.34 V and the open circuit potential (V(oc)) of 0.64 V. The product of ethanol oxidation, acetaldehyde, would counteract the electrocatalysis at the bioanode and further decrease the power output of the BFC. Based on such principles, the fabricated acetaldehyde sensor exhibited excellent selectivity with wide linear range (5-200 μM) and low detection limit (1 μM), which conforms to the criteria provided by the World Health Organisation (WHO). In addition, the sensor fabrication is simple, fast, inexpensive, and user-friendly, and the detection process is convenient, efficient, and time-saving, requiring no complicated equipment. These make such self-powered acetaldehyde sensors feasible and practical for detecting aqueous acetaldehyde, particularly in the field of quality control and monitoring aimed at water resource protection.

  8. Inhibition of advanced glycation endproduct formation by acetaldehyde: role in the cardioprotective effect of ethanol.

    PubMed

    Al-Abed, Y; Mitsuhashi, T; Li, H; Lawson, J A; FitzGerald, G A; Founds, H; Donnelly, T; Cerami, A; Ulrich, P; Bucala, R

    1999-03-02

    Epidemiological studies suggest that there is a beneficial effect of moderate ethanol consumption on the incidence of cardiovascular disease. Ethanol is metabolized to acetaldehyde, a two-carbon carbonyl compound that can react with nucleophiles to form covalent addition products. We have identified a biochemical modification produced by the reaction of acetaldehyde with protein-bound Amadori products. Amadori products typically arise from the nonenzymatic addition of reducing sugars (such as glucose) to protein amino groups and are the precursors to irreversibly bound, crosslinking moieties called advanced glycation endproducts, or AGEs. AGEs accumulate over time on plasma lipoproteins and vascular wall components and play an important role in the development of diabetes- and age-related cardiovascular disease. The attachment of acetaldehyde to a model Amadori product produces a chemically stabilized complex that cannot rearrange and progress to AGE formation. We tested the role of this reaction in preventing AGE formation in vivo by administering ethanol to diabetic rats, which normally exhibit increased AGE formation and high circulating levels of the hemoglobin Amadori product, HbA1c, and the hemoglobin AGE product, Hb-AGE. In this model study, diabetic rats fed an ethanol diet for 4 weeks showed a 52% decrease in Hb-AGE when compared with diabetic controls (P < 0.001). Circulating levels of HbA1c were unaffected by ethanol, pointing to the specificity of the acetaldehyde reaction for the post-Amadori, advanced glycation process. These data suggest a possible mechanism for the so-called "French paradox," (the cardioprotection conferred by moderate ethanol ingestion) and may offer new strategies for inhibiting advanced glycation.

  9. Acetaldehyde involvement in ethanol's postabsortive effects during early ontogeny

    PubMed Central

    March, Samanta M.; Abate, P.; Molina, Juan C.

    2013-01-01

    Clinical and biomedical studies sustains the notion that early ontogeny is a vulnerable window to the impact of alcohol. Experiences with the drug during these stages increase latter disposition to prefer, use or abuse ethanol. This period of enhanced sensitivity to ethanol is accompanied by a high rate of activity in the central catalase system, which metabolizes ethanol in the brain. Acetaldehyde (ACD), the first oxidation product of ethanol, has been found to share many neurobehavioral effects with the drug. Cumulative evidence supports this notion in models employing adults. Nevertheless very few studies have been conducted to analyze the role of ACD in ethanol postabsorptive effects, in newborns or infant rats. In this work we review recent experimental literature that syndicates ACD as a mediator agent of reinforcing aspects of ethanol, during early ontogenetic stages. We also show a meta-analytical correlational approach that proposes how differences in the activity of brain catalase across ontogeny, could be modulating patterns of ethanol consumption. PMID:23801947

  10. Rumen microbial communities influence metabolic phenotypes in lambs

    PubMed Central

    Morgavi, Diego P.; Rathahao-Paris, Estelle; Popova, Milka; Boccard, Julien; Nielsen, Kristian F.; Boudra, Hamid

    2015-01-01

    The rumen microbiota is an essential part of ruminants shaping their nutrition and health. Despite its importance, it is not fully understood how various groups of rumen microbes affect host-microbe relationships and functions. The aim of the study was to simultaneously explore the rumen microbiota and the metabolic phenotype of lambs for identifying host-microbe associations and potential biomarkers of digestive functions. Twin lambs, separated in two groups after birth were exposed to practices (isolation and gavage with rumen fluid with protozoa or protozoa-depleted) that differentially restricted the acquisition of microbes. Rumen microbiota, fermentation parameters, digestibility and growth were monitored for up to 31 weeks of age. Microbiota assembled in isolation from other ruminants lacked protozoa and had low bacterial and archaeal diversity whereas digestibility was not affected. Exposure to adult sheep microbiota increased bacterial and archaeal diversity independently of protozoa presence. For archaea, Methanomassiliicoccales displaced Methanosphaera. Notwithstanding, protozoa induced differences in functional traits such as digestibility and significantly shaped bacterial community structure, notably Ruminococcaceae and Lachnospiraceae lower up to 6 folds, Prevotellaceae lower by ~40%, and Clostridiaceae and Veillonellaceae higher up to 10 folds compared to microbiota without protozoa. An orthogonal partial least squares-discriminant analysis of urinary metabolome matched differences in microbiota structure. Discriminant metabolites were mainly involved in amino acids and protein metabolic pathways while a negative interaction was observed between methylotrophic methanogens Methanomassiliicoccales and trimethylamine N-oxide. These results stress the influence of gut microbes on animal phenotype and show the potential of metabolomics for monitoring rumen microbial functions. PMID:26528248

  11. 40 CFR 80.56 - Measurement methods for formaldehyde and acetaldehyde.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and acetaldehyde. 80.56 Section 80.56 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Measurement methods for formaldehyde and acetaldehyde. (a) Formaldehyde and acetaldehyde will be measured by... acetaldehyde are used to determine the response, repeatability, and limit of quantitation of the HPLC...

  12. Modelling bidirectional fluxes of methanol and acetaldehyde with the FORCAsT canopy exchange model

    NASA Astrophysics Data System (ADS)

    Ashworth, Kirsti; Chung, Serena H.; McKinney, Karena A.; Liu, Ying; Munger, J. William; Martin, Scot T.; Steiner, Allison L.

    2016-12-01

    The FORCAsT canopy exchange model was used to investigate the underlying mechanisms governing foliage emissions of methanol and acetaldehyde, two short chain oxygenated volatile organic compounds ubiquitous in the troposphere and known to have strong biogenic sources, at a northern mid-latitude forest site. The explicit representation of the vegetation canopy within the model allowed us to test the hypothesis that stomatal conductance regulates emissions of these compounds to an extent that its influence is observable at the ecosystem scale, a process not currently considered in regional- or global-scale atmospheric chemistry models.We found that FORCAsT could only reproduce the magnitude and diurnal profiles of methanol and acetaldehyde fluxes measured at the top of the forest canopy at Harvard Forest if light-dependent emissions were introduced to the model. With the inclusion of such emissions, FORCAsT was able to successfully simulate the observed bidirectional exchange of methanol and acetaldehyde. Although we found evidence that stomatal conductance influences methanol fluxes and concentrations at scales beyond the leaf level, particularly at dawn and dusk, we were able to adequately capture ecosystem exchange without the addition of stomatal control to the standard parameterisations of foliage emissions, suggesting that ecosystem fluxes can be well enough represented by the emissions models currently used.

  13. Influence of host seed on metabolic activity by Enterobacter cloacae in the spermosphere

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known regarding the influences of nutrients released from plants on the metabolic activity of colonizing microbes. To gain a better understanding of these influences, we used bioluminescence- and oxygen consumption-based methods to compare bacterial metabolic activity expressed during col...

  14. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci.

    PubMed

    Pavlova, Sylvia I; Jin, Ling; Gasparovich, Stephen R; Tao, Lin

    2013-07-01

    Ethanol consumption and poor oral hygiene are risk factors for oral and oesophageal cancers. Although oral streptococci have been found to produce excessive acetaldehyde from ethanol, little is known about the mechanism by which this carcinogen is produced. By screening 52 strains of diverse oral streptococcal species, we identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol. We then constructed gene deletion mutants in this strain and analysed them for alcohol and acetaldehyde dehydrogenases by zymograms. The results showed that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol and ethanol, respectively. Two additional dehydrogenases, S-AdhA and TdhA, were identified with specificities to the secondary alcohol 2-propanol and threonine, respectively, but not to ethanol. S. gordonii V2016 did not show a detectable acetaldehyde dehydrogenase even though its adhE gene encodes a putative bifunctional acetaldehyde/alcohol dehydrogenase. Mutants with adhE deletion showed greater tolerance to ethanol in comparison with the wild-type and mutant with adhA or adhB deletion, indicating that AdhE is the major alcohol dehydrogenase in S. gordonii. Analysis of 19 additional strains of S. gordonii, S. mitis, S. oralis, S. salivarius and S. sanguinis showed expressions of up to three alcohol dehydrogenases, but none showed detectable acetaldehyde dehydrogenase, except one strain that showed a novel ALDH. Therefore, expression of multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase may contribute to excessive production of acetaldehyde from ethanol by certain oral streptococci.

  15. Centrally formed acetaldehyde mediates ethanol-induced brain PKA activation.

    PubMed

    Tarragon, E; Baliño, P; Aragon, C M G

    2014-09-19

    Centrally formed acetaldehyde has proven to be responsible for several psychopharmacological effects induced by ethanol. In addition, it has been suggested that the cAMP-PKA signaling transduction pathway plays an important role in the modulation of several ethanol-induced behaviors. Therefore, we hypothesized that acetaldehyde might be ultimately responsible for the activation of this intracellular pathway. We used three pharmacological agents that modify acetaldehyde activity (α-lipoic acid, aminotriazole, and d-penicillamine) to study the role of this metabolite on EtOH-induced PKA activation in mice. Our results show that the injection of α-lipoic acid, aminotriazole and d-penicillamine prior to acute EtOH administration effectively blocks the PKA-enhanced response to EtOH in the brain. These results strongly support the hypothesis of a selective release of acetaldehyde-dependent Ca(2+) as the mechanism involved in the neurobehavioral effects elicited by EtOH.

  16. Dissolution, speciation, and reaction of acetaldehyde in cold sulfuric acid

    NASA Astrophysics Data System (ADS)

    Michelsen, Rebecca R.; Ashbourn, Samantha F. M.; Iraci, Laura T.

    2004-12-01

    The uptake of gas-phase acetaldehyde [CH3CHO, ethanal] by aqueous sulfuric acid solutions was studied under upper tropospheric/lower stratospheric (UT/LS) conditions. The solubility of acetaldehyde was found to be low, between 2 × 102 M atm-1 and 1.5 × 105 M atm-1 under the ranges of temperature (211-241 K) and acid composition (39-76 weight percent, wt%, H2SO4) studied. Under most conditions, acetaldehyde showed simple solubility behavior when exposed to sulfuric acid. Under moderately acidic conditions (usually 47 wt% H2SO4), evidence of reaction was observed. Enhancement of uptake at long times was occasionally detected in conjunction with reaction. The source of these behaviors and the effect of acetaldehyde speciation on solubility are discussed. Implications for the uptake of oxygenated organic compounds by tropospheric aerosols are considered.

  17. Eclipsed Acetaldehyde as a Precursor for Producing Vinyl Alcohol

    PubMed Central

    Osman, Osman I.; Alyoubi, Abdulrahman O.; Elroby, Shabaan A. K.; Hilal, Rifaat H.; Aziz, Saadullah G.

    2012-01-01

    The MP2 and DFT/B3LYP methods at 6-311++G(d,p) and aug-cc-pdz basis sets have been used to probe the origin of relative stability preference for eclipsed acetaldehyde over its bisected counterpart. A relative energy stability range of 1.02 to 1.20 kcal/mol, in favor of the eclipsed conformer, was found and discussed. An NBO study at these chemistry levels complemented these findings and assigned the eclipsed acetaldehyde preference mainly to the vicinal antiperiplanar hyperconjugative interactions. The tautomeric interconversion between the more stable eclipsed acetaldehyde and vinyl alcohol has been achieved through a four-membered ring transition state (TS). The obtained barrier heights and relative stabilities of eclipsed acetaldehyde and the two conformers of vinyl alchol at these model chemistries have been estimated and discussed. PMID:23203130

  18. An acetaldehyde-sequestering agent inhibits appetitive reinforcement and behavioral stimulation induced by ethanol in preweanling rats.

    PubMed

    Pautassi, Ricardo Marcos; Nizhnikov, Michael E; Fabio, Ma Carolina; Spear, Norman E

    2011-01-01

    Ethanol's motivational consequences have been related to the actions of acetaldehyde, a metabolic product of ethanol oxidation. The present study assessed the role of acetaldehyde in the motivational effects of ethanol on preweanling rats. In Experiment 1 pups (postnatal days 13-14, PD 13-14) were given systemic administration of D-penicillamine (DP, a drug that sequesters acetaldehyde: 0, 25, 50 or 75 mg/kg) before pairings of 1.0 g/kg ethanol and a rough surface (sandpaper, conditioned stimulus, CS). At test, pups given sandpaper-ethanol pairings exhibited greater preference for the CS than unpaired controls, but this preference was not expressed by pups given DP. Pre-training administration of 25 or 50 mg/kg DP completely blocked the expression of ethanol-mediated appetitive conditioning. D-penicillamine did not alter blood ethanol levels. Subsequent experiments revealed that ethanol-induced activation was blocked by central (intra-cisterna magna injections, volume: 1 μl, dose: 0 or 75 μg) but not systemic treatment with DP (0, 25, 50 or 75 mg/kg; ip). These results indicate that: (a) preweanling rats are sensitive to the reinforcing effect of ethanol, and (b) that this effect is associated with the motor activating effect of the drug. These effects seem to be mediated by the first metabolite of ethanol, acetaldehyde.

  19. AN ACETALDEHYDE-SEQUESTERING AGENT INHIBITS APPETITIVE REINFORCEMENT AND BEHAVIORAL STIMULATION INDUCED BY ETHANOL IN PREWEANLING RATS

    PubMed Central

    Pautassi, Ricardo Marcos; Nizhnikov, Michael E.; Fabio, Ma. Carolina; Spear, Norman E.

    2010-01-01

    Ethanol's motivational consequences have been related to the actions of acetaldehyde, a metabolic product of ethanol oxidation. The present study assessed the role of acetaldehyde in the motivational effects of ethanol on pre-weanling rats. In Experiment 1 pups (postnatal days 13–14, PD 13–14) were given systemic administration of d-penicillamine (DP, a drug that sequesters acetaldehyde: 0, 25, 50 or 75 mg/kg) before pairings of 1.0 g/kg ethanol and a rough surface (sandpaper, conditioned stimulus, CS). At test, pups given sandpaper-ethanol pairings exhibited greater preference for the CS than unpaired controls, but this preference was not expressed by pups given DP. Pre-training administration of 25 or 50 mg/kg DP completely blocked the expression of ethanol-mediated appetitive conditioning. D-penicillamine did not alter blood ethanol levels. Subsequent experiments revealed that ethanol-induced activation was blocked by central (intra-cisterna magna injections, volume: 1 μl, dose: 0 or 75 μg) but not systemic treatment with DP (0, 25, 50 or 75 mg/kg; ip). These results indicate that: (a) pre-weanling rats are sensitive to the reinforcing effect of ethanol, and (b) that this effect is associated with the motor activating effect of the drug. These effects seem to be mediated by the first metabolite of ethanol, acetaldehyde. PMID:20951160

  20. Atmospheric Vinyl Alcohol to Acetaldehyde Tautomerization Revisited.

    PubMed

    Peeters, Jozef; Nguyen, Vinh Son; Müller, Jean-François

    2015-10-15

    The atmospheric oxidation of vinyl alcohol (VA) produced by photoisomerization of acetaldehyde (AA) is thought to be a source of formic acid (FA). Nevertheless, a recent theoretical study predicted a high rate coefficient k1(298 K) of ≈10(-14) cm(3) molecule(-1) s(-1) for the FA-catalyzed tautomerization reaction 1 of VA back into AA, which suggests that FA buffers its own production from VA. However, the unusually high frequency factor implied by that study prompted us to reinvestigate reaction 1 . On the basis of a high-level ab initio potential energy profile, we first established that transition state theory is applicable, and derived a k1(298 K) of only ≈2 × 10(-20) cm(3) molecule(-1) s(-1), concluding that the reaction is negligible. Instead, we propose and rationalize another important VA sink: its uptake by aqueous aerosol and cloud droplets followed by fast liquid-phase tautomerization to AA; global modeling puts the average lifetime by this sink at a few hours, similar to oxidation by OH.

  1. Influence of GSTT1 Genetic Polymorphisms on Arsenic Metabolism

    PubMed Central

    Kile, Molly L.; Houseman, E. Andres; Quamruzzaman, Quazi; Rahman, Mahmuder; Mahiuddin, Golam; Mostofa, Golam; Hsueh, Yu-Mei; Christiani, David C.

    2014-01-01

    SUMMARY A repeated measures study was conducted in Pabna, Bangladesh to investigate factors that influence biomarkers of arsenic exposure. Drinking water arsenic concentrations were measured by inductively-coupled plasma mass spectrometry (ICP-MS) and urinary arsenic species [arsenite (As3), arsenate (As5), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA)] were detected using High Performance Liquid Chromatography (HPLC) and Hydride Generated Atomic Absorption Spectrometry (HGAAS). Linear mixed effects models with random intercepts were used to evaluate the effects of arsenic contaminated drinking water, genetic polymorphisms in glutathione-S-transferase (GSTT1 and GSTM1) on total urinary arsenic, primary methylation index [MMA/(As3+As5)], secondary methylation index (DMA/MMA), and total methylation index [(MMA+DMA)/(As3+As5)]. Drinking water arsenic concentrations were positively associated with total urinary arsenic concentrations and total methylation index. A significant gene-environment interaction was observed between urinary arsenic exposure in drinking water GSTT1 but not GSTM1 where GSTT1 null individuals had a slightly higher excretion rate of arsenic compared to GSTT1 wildtypes after adjusting for other factors. Additionally, individuals with GSTT1 null genotypes had a higher primary methylation index and lower secondary methylation index compared to GSTT1 wildtype after adjusting for other factors. This data suggests that GSTT1 contributes to the observed variability in arsenic metabolism. Since individuals with a higher primary methylation index and lower secondary methylation index are more susceptible to arsenic related disease, these results suggest that GSTT1 null individuals may be more susceptible to arsenic-related toxicity. No significant associations were observed between GSTM1 and any of the arsenic methylation indices. PMID:24511153

  2. Influence of GSTT1 Genetic Polymorphisms on Arsenic Metabolism.

    PubMed

    Kile, Molly L; Houseman, E Andres; Quamruzzaman, Quazi; Rahman, Mahmuder; Mahiuddin, Golam; Mostofa, Golam; Hsueh, Yu-Mei; Christiani, David C

    2013-08-01

    A repeated measures study was conducted in Pabna, Bangladesh to investigate factors that influence biomarkers of arsenic exposure. Drinking water arsenic concentrations were measured by inductively-coupled plasma mass spectrometry (ICP-MS) and urinary arsenic species [arsenite (As3), arsenate (As5), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA)] were detected using High Performance Liquid Chromatography (HPLC) and Hydride Generated Atomic Absorption Spectrometry (HGAAS). Linear mixed effects models with random intercepts were used to evaluate the effects of arsenic contaminated drinking water, genetic polymorphisms in glutathione-S-transferase (GSTT1 and GSTM1) on total urinary arsenic, primary methylation index [MMA/(As3+As5)], secondary methylation index (DMA/MMA), and total methylation index [(MMA+DMA)/(As3+As5)]. Drinking water arsenic concentrations were positively associated with total urinary arsenic concentrations and total methylation index. A significant gene-environment interaction was observed between urinary arsenic exposure in drinking water GSTT1 but not GSTM1 where GSTT1 null individuals had a slightly higher excretion rate of arsenic compared to GSTT1 wildtypes after adjusting for other factors. Additionally, individuals with GSTT1 null genotypes had a higher primary methylation index and lower secondary methylation index compared to GSTT1 wildtype after adjusting for other factors. This data suggests that GSTT1 contributes to the observed variability in arsenic metabolism. Since individuals with a higher primary methylation index and lower secondary methylation index are more susceptible to arsenic related disease, these results suggest that GSTT1 null individuals may be more susceptible to arsenic-related toxicity. No significant associations were observed between GSTM1 and any of the arsenic methylation indices.

  3. Metabolic learning and memory formation by the brain influence systemic metabolic homeostasis

    PubMed Central

    Zhang, Yumin; Liu, Gang; Yan, Jingqi; Zhang, Yalin; Li, Bo; Cai, Dongsheng

    2015-01-01

    Metabolic homeostasis is regulated by the brain, whether this regulation involves learning and memory of metabolic information remains unexplored. Here we use a calorie-based, taste-independent learning/memory paradigm to show that Drosophila form metabolic memories that help balancing food choice with caloric intake; however, this metabolic learning or memory is lost under chronic high-calorie feeding. We show that loss of individual learning/memory-regulating genes causes a metabolic learning defect, leading to elevated trehalose and lipids levels. Importantly, this function of metabolic learning requires not only the mushroom body but the hypothalamus-like pars intercerebralis, while NF-κB activation in the pars intercerebralis mimics chronic overnutrition in that it causes metabolic learning impairment and disorders. Finally, we evaluate this concept of metabolic learning/memory in mice, suggesting the hypothalamus is involved in a form of nutritional learning and memory, which is critical for determining resistance or susceptibility to obesity. In conclusion, our data indicate the brain, and potentially the hypothalamus, direct metabolic learning and the formation of memories, which contribute to the control of systemic metabolic homeostasis. PMID:25848677

  4. Acetaldehyde Stimulation of Net Gluconeogenic Carbon Movement from Applied Malic Acid in Tomato Fruit Pericarp Tissue 12

    PubMed Central

    Halinska, Anna; Frenkel, Chaim

    1991-01-01

    Applied acetaldehyde is known to lead to sugar accumulation in fruit including tomatoes (Lycopersicon esculentum) (O Paz, HW Janes, BA Prevost, C Frenkel [1982] J Food Sci 47: 270-274) presumably due to stimulation of gluconeogenesis. This conjecture was examined using tomato fruit pericarp discs as a test system and applied i-[U-14C]malic acid as the source for gluconeogenic carbon mobilization. The label from malate was recovered in respiratory CO2, in other organic acids, in ethanol insoluble material, and an appreciable amount in the ethanol soluble sugar fraction. In Rutgers tomatoes, the label recovery in the sugar fraction and an attendant label reduction in the organic acids fraction intensified with fruit ripening. In both Rutgers and in the nonripening tomato rin, these processes were markedly stimulated by 4000 ppm acetaldehyde. The onset of label apportioning from malic acids to sugars coincided with decreased levels of fructose-2,6-biphosphate, the gluconeogenesis inhibitor. In acetaldehyde-treated tissues, with enhanced label mobilization, this decline reached one-half to one third of the initial fructose-2,6-biphosphate levels. Application of 30 micromolar fructose-2,6-biphosphate or 2,5-anhydro-d-mannitol in turn led to a precipitous reduction in the label flow to sugars presumably due to inhibition of fructose-1,6-biphosphatase by the compounds. We conclude that malic and perhaps other organic acids are carbon sources for gluconeogenesis occurring normally in ripening tomatoes. The process is stimulated by acetaldehyde apparently by attenuating the fructose-2,6-biphosphate levels. The mode of the acetaldehyde regulation of fructose-2,6-biphosphate metabolism awaits clarification. PMID:16668078

  5. Origin of acetaldehyde during milk fermentation using (13)C-labeled precursors.

    PubMed

    Ott, A; Germond, J E; Chaintreau, A

    2000-05-01

    Acetaldehyde formation by Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus during fermentation of cow's milk was investigated using (13)C-labeled glucose, L-threonine, and pyruvate with a recent static-and-trapped-headspace technique that does not require derivatization of acetaldehyde prior to gas chromatography-mass spectrometry. Over 90% and almost 100% of acetaldehyde originated from glucose during fermentation by L. delbrueckii subsp. bulgaricus and S. thermophilus, respectively, taking into account both singly and doubly labeled acetaldehyde. As both microorganisms showed threonine aldolase activity and formed labeled acetaldehyde from (13)C-labeled threonine during the fermentation of milk, this amino acid should also contribute to the acetaldehyde produced.

  6. Response to acetaldehyde stress in the yeast Saccharomyces cerevisiae involves a strain-dependent regulation of several ALD genes and is mediated by the general stress response pathway.

    PubMed

    Aranda, Agustín; del Olmo Ml, Marcel lí

    2003-06-01

    One of the stress conditions that yeast may encounter is the presence of acetaldehyde. In a previous study we identified that, in response to this stress, several HSP genes are induced that are also involved in the response to other forms of stress. Aldehyde dehydrogenases (ALDH) play an important role in yeast acetaldehyde metabolism (e.g. when cells are growing in ethanol). In this work we analyse the expression of the genes encoding these enzymes (ALD) and also the corresponding enzymatic activities under several growth conditions. We investigate three kinds of yeast strains: laboratory strains, strains involved in the alcoholic fermentation stage of wine production and flor yeasts (responsible for the biological ageing of sherry wines). The latter are very important to consider because they grow in media containing high ethanol concentrations, and produce important amounts of acetaldehyde. Under several growth conditions, further addition of acetaldehyde or ethanol in flor yeasts induced the expression of some ALD genes and led to an increase in ALDH activity. This result is consistent with their need to obtain energy from ethanol during biological ageing processes. Our data also suggest that post-transcriptional and/or post-translational mechanisms are involved in regulating the activity of these enzymes. Finally, analyses indicate that the Msn2/4p and Hsf1p transcription factors are necessary for HSP26, ALD2/3 and ALD4 gene expression under acetaldehyde stress, while PKA represses the expression of these genes.

  7. Non-Saccharomyces and Saccharomyces strains co-fermentation increases acetaldehyde accumulation: effect on anthocyanin-derived pigments in Tannat red wines.

    PubMed

    Medina, Karina; Boido, Eduardo; Fariña, Laura; Dellacassa, Eduardo; Carrau, Francisco

    2016-07-01

    During fermentation, Saccharomyces cerevisiae releases into the medium secondary metabolic products, such as acetaldehyde, able to react with anthocyanins, producing more stable derived pigments. However, very limited reports are found about non-Saccharomyces effects on grape fermentation. In this study, six non-Saccharomyces yeast strains, belonging to the genera Metschnikowia and Hanseniaspora, were screened for their effect on red wine colour and wine-making capacity under pure culture conditions and mixed with Saccharomyces. An artificial red grape must was prepared, containing a phenolic extract of Tannat grapes that allows monitoring changes of key phenol parameters during fermentation, but without skin solids in the medium. When fermented in pure cultures, S. cerevisiae produced higher concentrations of acetaldehyde and vitisin B (acetaldehyde reaction-dependent) compared to M. pulcherrima M00/09G, Hanseniaspora guillermondii T06/09G, H. opuntiae T06/01G, H. vineae T02/05F and H. clermontiae (A10/82Fand C10/54F). However, co-fermentation of H. vineae and H. clermontiae with S. cerevisiae resulted in a significantly higher concentration of acetaldehyde compared with the pure S. cerevisiae control. HPLC-DAD-MS analysis confirmed an increased formation of vitisin B in co-fermentation treatments when compared to pure Saccharomyces fermentation, suggesting the key role of acetaldehyde. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Degradation of Acetaldehyde and Its Precursors by Pelobacter carbinolicus and P. acetylenicus

    PubMed Central

    Schmidt, Alexander; Frensch, Marco; Schleheck, David; Schink, Bernhard; Müller, Nicolai

    2014-01-01

    patterns of both Pelobacter spp. grown with the named substrates were highly similar suggesting that both share the same steps in ethanol and acetalydehyde metabolism. The early assumption that acetaldehyde is a central intermediate in Pelobacter metabolism was now proven biochemically. PMID:25536080

  9. Degradation of acetaldehyde and its precursors by Pelobacter carbinolicus and P. acetylenicus.

    PubMed

    Schmidt, Alexander; Frensch, Marco; Schleheck, David; Schink, Bernhard; Müller, Nicolai

    2014-01-01

    both Pelobacter spp. grown with the named substrates were highly similar suggesting that both share the same steps in ethanol and acetalydehyde metabolism. The early assumption that acetaldehyde is a central intermediate in Pelobacter metabolism was now proven biochemically.

  10. Measuring δ(13)C values of atmospheric acetaldehyde via sodium bisulfite adsorption and cysteamine derivatisation.

    PubMed

    Guo, Songjun; Chen, Mei; Wen, Sheng; Sheng, Guoying; Fu, Jiamo

    2012-01-01

    δ(13)C values of gaseous acetaldehyde were measured by gas chromatograph-combustion-isotope ratio mass spectrometer (GC-C-IRMS) via sodium bisulfite (NaHSO(3)) adsorption and cysteamine derivatisation. Gaseous acetaldehyde was collected via NaHSO(3)-coated Sep-Pak(®) silica gel cartridge, then derivatised with cysteamine, and then the δ(13)C value of the acetaldehyde-cysteamine derivative was measured by GC-C-IRMS. Using two acetaldehydes with different δ(13)C values, derivatisation experiments were carried out to cover concentrations between 0.009×10(-3) and 1.96×10(-3) mg·l(-1)) of atmospheric acetaldehyde, and then δ(13)C fractionation was evaluated in the derivatisation of acetaldehyde based on stoichiometric mass balance after measuring the δ(13)C values of acetaldehyde, cysteamine and the acetaldehyde-cysteamine derivative. δ(13)C measurements in the derivertisation process showed good reproducibility (<0.5 ‰) for gaseous acetaldehyde. The differences between predicted and measured δ(13)C values were 0.04-0.31 ‰ for acetaldehyde-cysteamine derivative, indicating that the derivatisation introduces no isotope fractionation for gaseous acetaldehyde, and obtained δ(13)C values of acetaldehyde in ambient air at the two sites were distinct (-34.00 ‰ at an urban site versus-31.00 ‰ at a forest site), implying potential application of the method to study atmospheric acetaldehyde.

  11. Mass-Specific Metabolic Rate Influences Sperm Performance through Energy Production in Mammals.

    PubMed

    Tourmente, Maximiliano; Roldan, Eduardo R S

    2015-01-01

    Mass-specific metabolic rate, the rate at which organisms consume energy per gram of body weight, is negatively associated with body size in metazoans. As a consequence, small species have higher cellular metabolic rates and are able to process resources at a faster rate than large species. Since mass-specific metabolic rate has been shown to constrain evolution of sperm traits, and most of the metabolic activity of sperm cells relates to ATP production for sperm motility, we hypothesized that mass-specific metabolic rate could influence sperm energetic metabolism at the cellular level if sperm cells maintain the metabolic rate of organisms that generate them. We compared data on sperm straight-line velocity, mass-specific metabolic rate, and sperm ATP content from 40 mammalian species and found that the mass-specific metabolic rate positively influences sperm swimming velocity by (a) an indirect effect of sperm as the result of an increased sperm length, and (b) a direct effect independent of sperm length. In addition, our analyses show that species with higher mass-specific metabolic rate have higher ATP content per sperm and higher concentration of ATP per μm of sperm length, which are positively associated with sperm velocity. In conclusion, our results suggest that species with high mass-specific metabolic rate have been able to evolve both long and fast sperm. Moreover, independently of its effect on the production of larger sperm, the mass-specific metabolic rate is able to influence sperm velocity by increasing sperm ATP content in mammals.

  12. Influence of nanophase titania topography on bacterial attachment and metabolism

    PubMed Central

    Park, Margaret R; Banks, Michelle K; Applegate, Bruce; Webster, Thomas J

    2008-01-01

    Surfaces with nanophase compared to conventional (or nanometer smooth) topographies are known to have different properties of area, charge, and reactivity. Previously published research indicates that the attachment of certain bacteria (such as Pseudomonas fluorescens 5RL) is higher on surfaces with nanophase compared to conventional topographies, however, their effect on bacterial metabolism is unclear. Results presented here show that the adhesion of Pseudomonas fluorescens 5RL and Pseudomonas putida TVA8 was higher on nanophase than conventional titania. Importantly, in terms of metabolism, bacteria attached to the nanophase surfaces had higher bioluminescence rates than on the conventional surfaces under all nutrient conditions. Thus, the results from this study show greater select bacterial metabolism on nanometer than conventional topographies, critical results with strong consequences for the design of improved biosensors for bacteria detection. PMID:19337418

  13. Cattle temperament influences metabolism:3. Metabolic response to a feed restriction challenge in beef steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies have demonstrated metabolic differences between calm and temperamental cattle. Specifically, Temperamental cattle exhibit greater concentrations of non-esterified fatty acids (NEFAs), decreased blood urea nitrogen (BUN), and decreased insulin sensitivity compared to Calm cattle. It is...

  14. Cattle temperament influences metabolism: 1. Metabolic response to a glucose tolerance test in beef steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperamental cattle are behaviorally, physiologically, and immunologically different in comparison to calm cattle. Recently, the metabolic differences between temperamental and calm cattle have begun to be explored; temperamental cattle maintain greater circulating concentrations of non-esterified ...

  15. Revealing parasite influence in metabolic pathways in Apicomplexa infected patients

    PubMed Central

    2010-01-01

    Background As an obligate intracellular parasite, Apicomplexa interacts with the host in the special living environment, competing for energy and nutrients from the host cells by manipulating the host metabolism. Previous studies of host-parasite interaction mainly focused on using cellular and biochemical methods to investigate molecular functions in metabolic pathways of parasite infected hosts. Computational approaches taking advantage of high-throughput biological data and topology of metabolic pathways have a great potential in revealing the details and mechanism of parasites-to-host interactions. A new analytical method was designed in this work to study host-parasite interactions in human cells infected with Plasmodium falciparum and Cryptosporidium parvum. Results We introduced a new method that analyzes the host metabolic pathways in divided parts: host specific subpathways and host-parasite common subpathways. Upon analysis on gene expression data from cells infected by Plasmodium falciparum or Cryptosporidium parvum, we found: (i) six host-parasite common subpathways and four host specific subpathways were significantly altered in plasmodium infected human cells; (ii) plasmodium utilized fatty acid biosynthesis and elongation, and Pantothenate and CoA biosynthesis to obtain nutrients from host environment; (iii) in Cryptosporidium parvum infected cells, most of the host-parasite common enzymes were down-regulated, whereas the host specific enzymes up-regulated; (iv) the down-regulation of common subpathways in host cells might be caused by competition for the substrates and up-regulation of host specific subpathways may be stimulated by parasite infection. Conclusion Results demonstrated a significantly coordinated expression pattern between the two groups of subpathways. The method helped expose the impact of parasite infection on host cell metabolism, which was previously concealed in the pathway enrichment analysis. Our approach revealed detailed

  16. Quality Characteristics and Quantification of Acetaldehyde and Methanol in Apple Wine Fermentation by Various Pre-Treatments of Mash.

    PubMed

    Won, Seon Yi; Seo, Jae Soon; Kwak, Han Sub; Lee, Youngseung; Kim, Misook; Shim, Hyoung-Seok; Jeong, Yoonhwa

    2015-12-01

    The objective of this study was to compare the effects of adding lactic acid and pectinase, and chaptalization for the quality of apple wine and the production of hazardous compounds (methanol and acetaldehyde). The pH of all of the samples was below 4; therefore, mash seemed to be fermented without any issue. Total acidity was the highest in sample A due to lactic acid addition. Pre-treated groups (samples B, C, and D) showed higher total acidities than that of the control (P<0.05). Pre-treatments might influence the production of organic acids in apple wines. The control and pectinase added sample (sample B) had the lowest alcohol contents. Adding lactic acid produced more alcohol, and chaptalized samples produced more alcohol due to the addition of sugar. Adding pectinase with and without chaptalization was not effective for producing more alcohol. The control sample had significantly higher acetaldehyde content (2.39 mg/L) than the other samples (1.00~2.07 mg/L); therefore, pre-treatments for apple wine fermentation produced a lower amount of acetaldehyde. Among the pre-treated samples, samples C and D showed the lowest acetaldehyde content of 1.00 mg/L and 1.16 mg/L, respectively. On the other hand, a significantly higher amount of methanol was generated for sample A (1.03 mg/L) and sample D (1.22 mg/L) than that of the control (0.82 mg/L) (P<0.05). Adding lactic acid or chaptalization was effective in reducing methanol and acetaldehyde in apple wines.

  17. Quality Characteristics and Quantification of Acetaldehyde and Methanol in Apple Wine Fermentation by Various Pre-Treatments of Mash

    PubMed Central

    Won, Seon Yi; Seo, Jae Soon; Kwak, Han Sub; Lee, Youngseung; Kim, Misook; Shim, Hyoung-Seok; Jeong, Yoonhwa

    2015-01-01

    The objective of this study was to compare the effects of adding lactic acid and pectinase, and chaptalization for the quality of apple wine and the production of hazardous compounds (methanol and acetaldehyde). The pH of all of the samples was below 4; therefore, mash seemed to be fermented without any issue. Total acidity was the highest in sample A due to lactic acid addition. Pre-treated groups (samples B, C, and D) showed higher total acidities than that of the control (P<0.05). Pre-treatments might influence the production of organic acids in apple wines. The control and pectinase added sample (sample B) had the lowest alcohol contents. Adding lactic acid produced more alcohol, and chaptalized samples produced more alcohol due to the addition of sugar. Adding pectinase with and without chaptalization was not effective for producing more alcohol. The control sample had significantly higher acetaldehyde content (2.39 mg/L) than the other samples (1.00~2.07 mg/L); therefore, pre-treatments for apple wine fermentation produced a lower amount of acetaldehyde. Among the pre-treated samples, samples C and D showed the lowest acetaldehyde content of 1.00 mg/L and 1.16 mg/L, respectively. On the other hand, a significantly higher amount of methanol was generated for sample A (1.03 mg/L) and sample D (1.22 mg/L) than that of the control (0.82 mg/L) (P<0.05). Adding lactic acid or chaptalization was effective in reducing methanol and acetaldehyde in apple wines. PMID:26770917

  18. Glucokinase regulatory proten genetic variant interacts with omega-3 PUFA to influence insulin resistance and inflammation in metabolic syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucokinase Regulatory Protein (GCKR) plays a central role regulating both hepatic triglyceride and glucose metabolism. Fatty acids are key metabolic regulators, which interact with genetic factors and influence glucose metabolism and other metabolic traits. Omega-3 polyunsaturated fatty acids (n-3...

  19. Phototautomerization of Acetaldehyde to Vinyl Alcohol: A Primary Process in UV-Irradiated Acetaldehyde from 295 to 335 nm.

    PubMed

    Clubb, Alexander E; Jordan, Meredith J T; Kable, S H; Osborn, David L

    2012-12-06

    The concentrations of organic acids, key species in the formation of secondary organic aerosols, are underestimated by atmospheric chemistry models by a factor of ∼2. Vinyl alcohol (VA, CH2═CHOH, ethenol) has been suggested as a precursor to formic acid, but sufficient tropospheric sources of VA have not been identified. Here, we show that VA is formed upon irradiation of neat acetaldehyde (CH3CHO) in the actinic ultraviolet region, between 295 and 330 nm. Besides the well-known photochemical products CO and CH4, we infer up to a 15% quantum yield of VA at 20 Torr acetaldehyde pressure and a photolysis wavelength of 330 nm. The experiments confirm a recent model predicting phototautomerization of acetaldehyde to VA and imply that photolysis of small aldehydes and ketones could provide tropospheric sources of enols sufficient to impact organic acid budgets. We also report absolute infrared absorption cross sections of VA.

  20. The effect of flooding on the exchange of the volatile C2-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphere

    NASA Astrophysics Data System (ADS)

    Rottenberger, S.; Kleiss, B.; Kuhn, U.; Wolf, A.; Piedade, M. T. F.; Junk, W.; Kesselmeier, J.

    2008-02-01

    The effect of root inundation on the leaf emissions of ethanol, acetaldehyde and acetic acid was investigated with 2-3 years old tree seedlings of four Amazonian floodplain species by applying dynamic cuvette systems under greenhouse conditions. Emissions were monitored over a period of several days of inundation using a combination of Proton Transfer Reaction Mass Spectrometry (PTR-MS) and conventional techniques (HPLC, ion chromatography). Under non-flooded conditions, none of the species exhibited significant emissions of any of the compounds. A slight deposition of acetaldehyde and acetic acid was mainly observed, instead. Tree species specific variations in deposition velocities were largely due to variations in stomatal conductance. Flooding of the roots resulted in leaf emissions of ethanol and acetaldehyde by all species, while emissions of acetic acid occurred only by the species exhibiting the highest ethanol and acetaldehyde emission rates. All three compounds showed a similar diurnal emission profile, each displaying an emission burst in the morning, followed by a decline in the evening. This concurrent behavior supports the conclusion, that all three compounds emitted by the leaves are derived from ethanol produced in the roots by alcoholic fermentation, transported to the leaves with the transpiration stream and finally partly converted to acetaldehyde and acetic acid by enzymatic processes. Co-emissions and peaking in the early morning confirmed that root ethanol, after transportation with the transpiration stream to the leaves and enzymatic oxidation to acetaldehyde and acetate, is the metabolic precursor for all compounds emitted. Emission rates substantially varied among tree species, with maxima differing by up to two orders of magnitude (3-200 nmol m-2 min-1 for ethanol and 5-500 nmol m-2 min-1 for acetaldehyde). Acetic acid emissions reached 12 nmol m-2 min-1. The observed differences in emission rates between the tree species are discussed

  1. The effect of flooding on the exchange of the volatile C2-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphere

    NASA Astrophysics Data System (ADS)

    Rottenberger, S.; Kleiss, B.; Kuhn, U.; Wolf, A.; Piedade, M. T. F.; Junk, W.; Kesselmeier, J.

    2008-08-01

    The effect of root inundation on the leaf emissions of ethanol, acetaldehyde and acetic acid in relation to assimilation and transpiration was investigated with 2 3 years old tree seedlings of four Amazonian floodplain species by applying dynamic cuvette systems under greenhouse conditions. Emissions were monitored over a period of several days of inundation using a combination of Proton Transfer Reaction Mass Spectrometry (PTR-MS) and conventional techniques (HPLC, ion chromatography). Under non-flooded conditions, none of the species exhibited measurable emissions of any of the compounds, but rather low deposition of acetaldehyde and acetic acid was observed instead. Tree species specific variations in deposition velocities were largely due to variations in stomatal conductance. Flooding of the roots resulted in leaf emissions of ethanol and acetaldehyde by all species, while emissions of acetic acid were only observed from the species exhibiting the highest ethanol and acetaldehyde emission rates. All three compounds showed a similar diurnal emission profile, each displaying an emission burst in the morning, followed by a decline in the evening. This concurrent behavior supports the conclusion, that all three compounds emitted by the leaves are derived from ethanol produced in the roots by alcoholic fermentation, transported to the leaves with the transpiration stream and finally partly converted to acetaldehyde and acetic acid by enzymatic processes. Co-emissions and peaking in the early morning suggest that root ethanol, after transportation with the transpiration stream to the leaves and enzymatic oxidation to acetaldehyde and acetate, is the metabolic precursor for all compounds emitted, though we can not totally exclude other production pathways. Emission rates substantially varied among tree species, with maxima differing by up to two orders of magnitude (25 1700 nmol m-2 min-1 for ethanol and 5 500 nmol m-2 min-1 for acetaldehyde). Acetic acid emissions

  2. Combination of ADH1B*2/ALDH2*2 polymorphisms alters acetaldehyde-derived DNA damage in the blood of Japanese alcoholics.

    PubMed

    Yukawa, Yoshiyuki; Muto, Manabu; Hori, Kimiko; Nagayoshi, Haruna; Yokoyama, Akira; Chiba, Tsutomu; Matsuda, Tomonari

    2012-09-01

    The acetaldehyde associated with alcoholic beverages is an evident carcinogen for the esophagus. Genetic polymorphisms of the alcohol dehydrogenase 1B (ADH1B) and aldehyde dehydrogenase 2 (ALDH2) genes are associated with the risk of esophageal cancer. However, the exact mechanism via which these genetic polymorphisms affect esophageal carcinogenesis has not been elucidated. ADH1B*2 is involved in overproduction of acetaldehyde due to increased ethanol metabolism into acetaldehyde, and ALDH2*2 is involved in accumulation of acetaldehyde due to the deficiency of acetaldehyde metabolism. Acetaldehyde can interact with DNA and form DNA adducts, resulting in DNA damage. N(2)-ethylidene-2'-deoxyguanosine (N(2)-ethylidene-dG) is the most abundant DNA adduct derived from acetaldehyde. Therefore, we quantified N(2)-ethylidene-dG levels in blood samples from 66 Japanese alcoholic patients using liquid chromatography/electrospray tandem mass spectrometry, and investigated the relationship between N(2)-ethylidene-dG levels and ADH1B and ALDH2 genotypes. The median N(2)-ethylidene-dG levels (25th percentile, 75th percentile) in patients with ADH1B*1/*1 plus ALDH2*1/*1, ADH1B*2 carrier plus ALDH2*1/*1, ADH1B*1/*1 plus ALDH2*1/*2, and ADH1B*2 carrier plus ALDH2*1/*2 were 2.14 (0.97, 2.37)/10(7) bases, 2.38 (1.18, 2.98)/10(7) bases, 5.38 (3.19, 6.52)/10(7) bases, and 21.04 (12.75, 34.80)/10(7) bases, respectively. In the ALDH2*1/*2 group, N(2)-ethylidene-dG levels were significantly higher in ADH1B*2 carriers than in the ADH1B*1/*1 group (P < 0.01). N(2)-ethylidene-dG levels were significantly higher in the ALDH2*1/*2 group than in the ALDH2*1/*1 group, regardless of ADH1B genotype (ADH1B*1/*1, P < 0.05; ADH1B*2 carriers, P < 0.01) N(2)-ethylidene-dG levels in blood DNA of the alcoholics was remarkably higher in individuals with a combination of the ADH1B*2 and ALDH2*2 alleles. These results provide a new perspective on the carcinogenicity of the acetaldehyde associated with

  3. Pyruvic acid and acetaldehyde production by different strains of Saccharomyces cerevisiae: relationship with Vitisin A and B formation in red wines.

    PubMed

    Morata, A; Gómez-Cordovés, M C; Colomo, B; Suárez, J A

    2003-12-03

    The production of pyruvate and acetaldehyde by 10 strains of Saccharomyces cerevisiae was monitored during the fermentation of Vitis vinifera L. variety Tempranillo grape must to determine how these compounds might influence the formation of the pyroanthocyanins vitisin A and B (malvidin-3-O-glucoside-pyruvate acid and malvidin-3-O-glucoside-4 vinyl, respectively). Pyruvate and acetaldehyde production patterns were determined for each strain. Pyruvate production reached a maximum on day four of fermentation, while acetaldehyde production was at its peak in the final stages. The correlation between pyruvate production and vitisin A formation was especially strong (R (2) = 0.80) on day 4, when the greatest quantity of pyruvate was found in the medium. The correlation between acetaldehyde production and the formation of vitisin B was strongest (R (2) = 0.81) at the end of fermentation when the acetaldehyde content of the medium was at its highest. Identification and quantification experiments were performed by HPLC-DAD. The identification of the vitisins was confirmed by LC/ESI-MS.

  4. BIOGENIC SOURCES FOR FORMALDEHYDE AND ACETALDEHYDE DURING SUMMER MONTHS

    EPA Science Inventory

    Photochemical modeling estimated contributions to ambient concentrations of formaldehyde and acetaldehyde from biogenic emissions over the continental United States during January 2001 (Eos Trans. AGU, 83(47), Fall Meet. Suppl., Abstract A52B-0117). Results showed that maximum co...

  5. Maximum exposure levels for xylene, formaldehyde and acetaldehyde in cars.

    PubMed

    Schupp, Thomas; Bolt, Hermann M; Hengstler, Jan G

    2005-01-31

    Although millions of individuals are exposed to emissions from articles inside cars, relatively little has been published about possible adverse health effects and about exposure levels that can be considered safe or "acceptable". Xylene, formaldehyde and acetaldehyde represent typical examples of relevant volatile organic substances (VOC) released from articles inside cars. Recently, a concept for derivation of maximum exposure levels for volatile organic substances in cars has been published. In the present study we applied this concept to derive maximum exposure levels for xylene, formaldehyde and acetaldehyde and compared the resulting concentrations to exposure levels usually found inside of cars. We derived Short Term Exposure Levels Inside Automotive Vehicles (STELIA) of 29, 0.125 and 15.3 mg/m(3) for xylene, formaldehyde and acetaldehyde, respectively. These STELIAs should not be exceeded during short-term exposures, for instance when starting a car that had been heated up during parking in the sun. Exposure Levels Inside Automotive Vehicles (ELIA, chronic) for chronic exposure to non-genotoxic substances were 8.8, 0.125 and 0.635 mg/m(3) for systemic as well as 17.6, 0.125 and 1.7 mg/m(3) for local exposure to xylene, formaldehyde and acetaldehyde, respectively. Although, it is known that exposure limits for carcinogenic substances should be treated with caution, encouraged by the well documented threshold mechanisms we nevertheless derived ELIAs for Carcinogenic and Mutagenic Substances (ELIA, cm) resulting in 0.125 and 0.635 mg/m(3) for formaldehyde and acetaldehyde. If these ELIAs are matched against average concentrations of xylene, formaldehyde and acetaldehyde found in cars at 23 degrees C (1.22, 0.048 and 0.042 mg/m(3)), there is no reason for concern. With respect to STELIAs and extrapolated concentrations at 65 degrees C (14.7, 1.47 and 1.68 mg/m(3), for xylene, formaldehyde and acetaldehyde, respectively), however, a reduction of the

  6. Influence of genetic background on fluoride metabolism in mice.

    PubMed

    Carvalho, J G; Leite, A L; Yan, D; Everett, E T; Whitford, G M; Buzalaf, M A R

    2009-11-01

    A/J and 129P3/J mouse strains have different susceptibilities to dental fluorosis, due to their genetic backgrounds. This study tested whether these differences are due to variations in water intake and/or F metabolism. A/J (susceptible to dental fluorosis) and 129P3/J mice (resistant) received drinking water containing 0, 10, or 50 ppm F. Weekly F intake, excretion and retention, and terminal plasma and femur F levels were determined. Dental fluorosis was evaluated clinically and by quantitative fluorescence (QF). Data were tested by two-way ANOVA. Although F intakes by the strains were similar, excretion by A/J mice was significantly higher due to greater urinary F excretion, which resulted in lower plasma and femur F levels. Compared with 129P3/J mice given 50 ppm F, significantly higher QF scores were recorded for A/J mice. In conclusion, these strains differ with respect to several features of F metabolism, and amelogenesis in the 129P3/J strain seems to be unaffected by high F exposure.

  7. Influence of Genetic Background on Fluoride Metabolism in Mice

    PubMed Central

    Carvalho, J.G.; Leite, A.L.; Yan, D.; Everett, E.T.; Whitford, G.M.; Buzalaf, M.A.R.

    2009-01-01

    A/J and 129P3/J mouse strains have different susceptibilities to dental fluorosis, due to their genetic backgrounds. This study tested whether these differences are due to variations in water intake and/or F metabolism. A/J (susceptible to dental fluorosis) and 129P3/J mice (resistant) received drinking water containing 0, 10, or 50 ppm F. Weekly F intake, excretion and retention, and terminal plasma and femur F levels were determined. Dental fluorosis was evaluated clinically and by quantitative fluorescence (QF). Data were tested by two-way ANOVA. Although F intakes by the strains were similar, excretion by A/J mice was significantly higher due to greater urinary F excretion, which resulted in lower plasma and femur F levels. Compared with 129P3/J mice given 50 ppm F, significantly higher QF scores were recorded for A/J mice. In conclusion, these strains differ with respect to several features of F metabolism, and amelogenesis in the 129P3/J strain seems to be unaffected by high F exposure. PMID:19828896

  8. Influence of metabolic syndrome on upper gastrointestinal disease.

    PubMed

    Sogabe, Masahiro; Okahisa, Toshiya; Kimura, Tetsuo; Okamoto, Koichi; Miyamoto, Hiroshi; Muguruma, Naoki; Takayama, Tetsuji

    2016-08-01

    A recent increase in the rate of obesity as a result of insufficient physical exercise and excess food consumption has been seen in both developed and developing countries throughout the world. Additionally, the recent increased number of obese individuals with lifestyle-related diseases associated with abnormalities in glucose metabolism, dyslipidemia, and hypertension, defined as metabolic syndrome (MS), has been problematic. Although MS has been highlighted as a risk factor for ischemic heart disease and arteriosclerotic diseases, it was also recently shown to be associated with digestive system disorders, including upper gastrointestinal diseases. Unlike high body weight and high body mass index, abdominal obesity with visceral fat accumulation is implicated in the onset of various digestive system diseases because excessive visceral fat accumulation may cause an increase in intra-abdominal pressure, inducing the release of various bioactive substances, known as adipocytokines, including tumor necrosis factor-α, interleukin-6, resistin, leptin, and adiponectin. This review article focuses on upper gastrointestinal disorders and their association with MS, including obesity, visceral fat accumulation, and the major upper gastrointestinal diseases.

  9. Ethanol formation in adh0 mutants reveals the existence of a novel acetaldehyde-reducing activity in Saccharomyces cerevisiae.

    PubMed Central

    Drewke, C; Thielen, J; Ciriacy, M

    1990-01-01

    A strain of Saccharomyces cerevisiae has been constructed which is deficient in the four alcohol dehydrogenase (ADH) isozymes known at present. This strain (adh0), being irreversibly mutated in the genes ADH1, ADH3, and ADH4 and carrying a point mutation in the gene ADH2 coding for the glucose-repressible isozyme ADHII, still produces up to one third of the theoretical maximum yield of ethanol in a homofermentative conversion of glucose to ethanol. Analysis of the glucose metabolism of adh0 cells shows that the lack of all known ADH isozymes results in the formation of glycerol as a major fermentation product, accompanied by a significant production of acetaldehyde and acetate. Treatment of glucose-growing adh0 cells with the respiratory-chain inhibitor antimycin A leads to an immediate cessation of ethanol production, demonstrating that ethanol production in adh0 cells is dependent on mitochondrial electron transport. Reduction of acetaldehyde to ethanol in isolated mitochondria could also be demonstrated. This reduction is apparently linked to the oxidation of acetaldehyde to acetate. Preliminary data suggest that this novel type of ethanol formation in S. cerevisiae is associated with the inner mitochondrial membrane. Images PMID:2193925

  10. Splanchnic insulin metabolism in obesity. Influence of body fat distribution.

    PubMed Central

    Peiris, A N; Mueller, R A; Smith, G A; Struve, M F; Kissebah, A H

    1986-01-01

    The effects of obesity and body fat distribution on splanchnic insulin metabolism and the relationship to peripheral insulin sensitivity were assessed in 6 nonobese and 16 obese premenopausal women. When compared with the nonobese women, obese women had significantly greater prehepatic production and portal vein levels of insulin both basally and following glucose stimulation. This increase correlated with the degree of adiposity but not with waist-to-hip girth ratio (WHR). WHR, however, correlated inversely with the hepatic extraction fraction and directly with the posthepatic delivery of insulin. The latter correlated with the degree of peripheral insulinemia. The decline in hepatic insulin extraction with increasing WHR also correlated with the accompanying diminution in peripheral insulin sensitivity. Increasing adiposity is thus associated with insulin hypersecretion. The pronounced hyperinsulinemia of upper body fat localization, however, is due to an additional defect in hepatic insulin extraction. This defect is closely allied with the decline in peripheral insulin sensitivity. PMID:3537010

  11. Modification of the acetaldehyde concentration during alcoholic fermentation and effects on fermentation kinetics.

    PubMed

    Roustan, Jean Louis; Sablayrolles, Jean-Marie

    2002-01-01

    We studied the kinetic effects of increasing the residual acetaldehyde concentration during alcoholic fermentation, especially during the stationary phase. We added this compound via pulse or continuous injections. The yeast response depended on the amount of acetaldehyde added: high concentrations inhibited fermentation while low concentrations led to stimulation. When regular small additions were made, up to 100 mM acetaldehyde could be added and this caused a very significant drop in the fermentation duration. We also modulated the acetaldehyde concentration by modifying the alcohol dehydrogenase-catalyzed reaction. Two approaches were tested (i) adding aldehydes (propanal and furfural) that competitively inhibited the reduction of acetaldehyde and (ii) adding electron acceptors that reduced the quantity of NADH available. Several possible mechanisms responsible for (i) the impact of acetaldehyde on fermentation kinetics and (ii) the modulation of the residual acetaldehyde concentration are discussed.

  12. Metabolic and Sensory Influences on Odor Sensitivity in Humans.

    PubMed

    Ramaekers, Marielle G; Verhoef, Alard; Gort, Gerrit; Luning, Pieternel A; Boesveldt, Sanne

    2016-02-01

    Our olfactory sense plays an important role in eating behavior by modulating our food preferences and intake. However, hunger or satiety may also influence how we perceive odors. Albeit speculative, contradictory results found in the past may have resulted from confounding by type of meal that participants ate to induce satiety. We aimed to investigate the influence of hunger state on olfactory sensitivity, comparing hunger to satiety using 2 different types of lunch to control for sensory-specific satiety. Odor detection thresholds were measured in 2 groups of participants (39 per group, 18-40 years), under 3 conditions: when hungry (twice), after a sweet lunch, and after a savory lunch. One group had their detection thresholds tested for a sweet odor, whereas in the other group, sensitivity to a savory odor was measured. Differences in olfactory sensitivity conditions were analyzed using linear mixed models. Participants had higher scores on the odor sensitivity task in a hungry versus satiated state (P = 0.001). Within the satiated condition, there was no effect of type of lunch on odor sensitivity. In conclusion, hunger slightly enhances sensitivity to food odors, but did not significantly depend on the type of food participants ate, suggesting no clear influence of sensory-specific satiety.

  13. Metabolic Depression in Cunner (Tautogolabrus adspersus) Is Influenced by Ontogeny, and Enhances Thermal Tolerance

    PubMed Central

    Nash, Gordon W.; Gamperl, A. Kurt

    2014-01-01

    To examine the effect of ontogeny on metabolic depression in the cunner (Tautogolabrus adspersus), and to understand how ontogeny and the ability to metabolically depress influence this species' upper thermal tolerance: 1) the metabolic rate of 9°C-acclimated cunner of three size classes [0.2–0.5 g, young of the year (YOY); 3–6 g, small; and 80–120 g, large (adult)] was measured during a 2°C per day decrease in temperature; and 2) the metabolic response of the same three size classes of cunner to an acute thermal challenge [2°C h−1 from 10°C until Critical Thermal Maximum, CTMax] was examined, and compared to that of the Atlantic cod (Gadus morhua). The onset-temperature for metabolic depression in cunner increased with body size, i.e. from 5°C in YOY cunner to 7°C in adults. In contrast, the extent of metabolic depression was ∼80% (Q10 = ∼15) for YOY fish, ∼65% (Q10 = ∼8) for small fish and ∼55% (Q10 = ∼5) for adults, and this resulted in the metabolic scaling exponent (b) gradually increasing from 0.84 to 0.92 between 9°C to 1°C. All size classes of cunner had significantly (approximately 60%) lower routine metabolic rates at 10°C than Atlantic cod. However, there was no species' difference in the temperature-induced maximum metabolic rate, and this resulted in factorial metabolic scope values that were more than two-fold greater for cunner, and CTMax values that were 6–9°C higher (∼21 vs. 28°C). These results: 1) show that ontogeny influences the temperature of initiation and the extent of metabolic depression in cunner, but not O2 consumption when in a hypometabolic state; and 2) suggest that the evolution of cold-induced metabolic depression in this northern wrasse species has not resulted in a trade-off with upper thermal tolerance, but instead, an enhancement of this species' metabolic plasticity. PMID:25514755

  14. Suboptimal Light Conditions Influence Source-Sink Metabolism during Flowering

    PubMed Central

    Christiaens, Annelies; De Keyser, Ellen; Pauwels, Els; De Riek, Jan; Gobin, Bruno; Van Labeke, Marie-Christine

    2016-01-01

    Reliance on carbohydrates during flower forcing was investigated in one early and one late flowering cultivar of azalea (Rhododendron simsii hybrids). Carbohydrate accumulation, invertase activity, and expression of a purported sucrose synthase gene (RsSUS) was monitored during flower forcing under suboptimal (natural) and optimal (supplemental light) light conditions, after a cold treatment (7°C + dark) to break flower bud dormancy. Post-production sucrose metabolism and flowering quality was also assessed. Glucose and fructose concentrations and invertase activity increased in petals during flowering, while sucrose decreased. In suboptimal light conditions RsSUS expression in leaves increased as compared to optimal light conditions, indicating that plants in suboptimal light conditions have a strong demand for carbohydrates. However, carbohydrates in leaves were markedly lower in suboptimal light conditions compared to optimal light conditions. This resulted in poor flowering of plants in suboptimal light conditions. Post-production flowering relied on the stored leaf carbon, which could be accumulated under optimal light conditions in the greenhouse. These results show that flower opening in azalea relies on carbohydrates imported from leaves and is source-limiting under suboptimal light conditions. PMID:26973689

  15. Copper's influence on iron metabolism in K562 cells

    SciTech Connect

    Percival, S.S.; Armstrong, E. )

    1991-03-15

    Copper deficiency is associated with a cellular defect in iron metabolism that results in poor hemoglobin synthesis. In order to determine this mechanisms, K562 cells, a human erythroleukemic cell line, were incubated with 1 mM bethocuproine disulfonic acid (BCS) to produce a copper deficiency or were supplemented with 8 {mu}M copper. Hemoglobin was simultaneously induced in some cells by the addition of 25 {mu}M hemin to the culture medium. Incubation with BCS resulted in a 30 to 40% reduction in intracellular Cu/Zn superoxide dismutase activity while supplementation resulted in a 20 to 50% increase in activity. The authors then examined the effect of these copper manipulations on {sup 59}Fe uptake from transferrin, on ferritin levels and on hemoglobin levels. Hemoglobin was only slightly affected by the copper treatments. In both noninduced cells and induced cells, copper supplementation resulted in a greater level of intracellular iron, a greater level of immunoreactive ferritin, and an enhanced uptake of {sup 59}Fe from transferrin. In BCS-incubated cells, intracellular iron, ferritin and {sup 59}Fe uptake from transferrin were reduced by at least 50%. Because the ferritin levels were reduced, intracellular iron mobilization did not appear to be impaired in copper deficiency. The results suggest that copper deficiency impairs the transport of iron by transferrin into the cell.

  16. The influence of BMI on the association between serum lycopene and the metabolic syndrome.

    PubMed

    Han, Guang-Ming; Soliman, Ghada A; Meza, Jane L; Islam, K M Monirul; Watanabe-Galloway, Shinobu

    2016-04-14

    Overweight and obese individuals have an increased risk of developing the metabolic syndrome because of subsequent chronic inflammation and oxidative stress, which the antioxidant nutrient lycopene can reduce. However, studies indicate that different BMI statuses can alter the positive effects of lycopene. Therefore, the purpose of this study was to examine how BMI influences the association between serum lycopene and the metabolic syndrome. The tertile rank method was used to divide 13 196 participants, aged 20 years and older, into three groups according to serum concentrations of lycopene. The associations between serum lycopene and the metabolic syndrome were analysed separately for normal-weight, overweight and obese participants. Overall, the prevalence of the metabolic syndrome was significantly higher in the first tertile group (OR 38·6%; 95% CI 36·9, 40·3) compared with the second tertile group (OR 29·3%; 95% CI 27·5, 31·1) and the third tertile group (OR 26·6%; 95% CI 24·9, 28·3). However, the associations between lycopene and the metabolic syndrome were only significant for normal-weight and overweight participants (P0·05), even after adjusting for possible confounding variables. In conclusion, BMI appears to strongly influence the association between serum lycopene and the metabolic syndrome.

  17. Metabolism

    MedlinePlus

    Metabolism refers to all the physical and chemical processes in the body that convert or use energy, ... Tortora GJ, Derrickson BH. Metabolism. In: Tortora GJ, Derrickson ... Physiology . 14th ed. Hoboken, NJ: John Wiley & Sons; 2014:chap ...

  18. Metabolism

    MedlinePlus

    ... El metabolismo Metabolism Basics Our bodies get the energy they need from food through metabolism, the chemical ... that convert the fuel from food into the energy needed to do everything from moving to thinking ...

  19. UVB Radiation Delays Tribolium castaneum Metamorphosis by Influencing Ecdysteroid Metabolism.

    PubMed

    Sang, Wen; Yu, Lin; He, Li; Ma, Wei-Hua; Zhu, Zhi-Hui; Zhu, Fen; Wang, Xiao-Ping; Lei, Chao-Liang

    2016-01-01

    Ultraviolet B (UVB) radiation is an important environmental factor. It is generally known that UVB exhibits high genotoxicity due to causing DNA damage, potentially leading to skin carcinogenesis and aging in mammals. However, little is known about the effects of UVB on the development and metamorphosis of insects, which are the most abundant terrestrial animals. In the present study, we performed dose-response analyses of the effects UVB irradiation on Tribolium castaneum metamorphosis, assessed the function of the T. castaneum prothoracicotropic hormone gene (Trcptth), and analyzed ecdysteroid pathway gene expression profile and ecdysterone titers post-UVB irradiation. The results showed that UVB not only caused death of T. castaneum larvae, but also delayed larval-pupal metamorphosis and reduced the size and emergence rate of pupae. In addition, we verified the function of Trcptth, which is responsible for regulating metamorphosis. It was also found that the expression profiles of Trcptth as well as ecdysteroidogenesis and response genes were influenced by UVB radiation. Therefore, a disturbance pulse of ecdysteroid may be involved in delaying development under exposure to irradiation. To our knowledge, this is the first report indicating that UVB can influence the metamorphosis of insects. This study will contribute to a better understanding of the impact of UVB on signaling mechanisms in insect metamorphosis.

  20. UVB Radiation Delays Tribolium castaneum Metamorphosis by Influencing Ecdysteroid Metabolism

    PubMed Central

    Sang, Wen; Yu, Lin; He, Li; Ma, Wei-Hua; Zhu, Zhi-Hui; Zhu, Fen; Wang, Xiao-Ping; Lei, Chao-Liang

    2016-01-01

    Ultraviolet B (UVB) radiation is an important environmental factor. It is generally known that UVB exhibits high genotoxicity due to causing DNA damage, potentially leading to skin carcinogenesis and aging in mammals. However, little is known about the effects of UVB on the development and metamorphosis of insects, which are the most abundant terrestrial animals. In the present study, we performed dose-response analyses of the effects UVB irradiation on Tribolium castaneum metamorphosis, assessed the function of the T. castaneum prothoracicotropic hormone gene (Trcptth), and analyzed ecdysteroid pathway gene expression profile and ecdysterone titers post-UVB irradiation. The results showed that UVB not only caused death of T. castaneum larvae, but also delayed larval-pupal metamorphosis and reduced the size and emergence rate of pupae. In addition, we verified the function of Trcptth, which is responsible for regulating metamorphosis. It was also found that the expression profiles of Trcptth as well as ecdysteroidogenesis and response genes were influenced by UVB radiation. Therefore, a disturbance pulse of ecdysteroid may be involved in delaying development under exposure to irradiation. To our knowledge, this is the first report indicating that UVB can influence the metamorphosis of insects. This study will contribute to a better understanding of the impact of UVB on signaling mechanisms in insect metamorphosis. PMID:26986217

  1. INFLUENCE OF DIETARY SUBSTANCES ON INTESTINAL DRUG METABOLISM AND TRANSPORT

    PubMed Central

    Won, Christina S.; Oberlies, Nicholas H.; Paine, Mary F.

    2011-01-01

    Successful delivery of promising new chemical entities via the oral route is rife with challenges, some of which cannot be explained or foreseen during drug development. Further complicating an already multifaceted problem is the obvious, yet often overlooked, effect of dietary substances on drug disposition and response. Some dietary substances, particularly fruit juices, have been shown to inhibit biochemical processes in the intestine, leading to altered pharmacokinetic (PK), and potentially pharmacodynamic (PD), outcomes. Inhibition of intestinal CYP3A-mediated metabolism is the major mechanism by which fruit juices, including grapefruit juice, enhances systemic exposure to new and already marketed drugs. Inhibition of intestinal non-CYP3A enzymes and apically-located transport proteins represent recently identified mechanisms that can alter PK and PD. Several fruit juices have been shown to inhibit these processes in vitro, but some interactions have not translated to the clinic. The lack of in vitro-in vivo concordance is due largely to a lack of rigorous methods to elucidate causative ingredients prior to clinical testing. Identification of specific components and underlying mechanisms is challenging, as dietary substances frequently contain multiple, often unknown, bioactive ingredients that vary in composition and bioactivity. A translational research approach, combining expertise from clinical pharmacologists and natural products chemists, is needed to develop robust models describing PK/PD relationships between a given dietary substance and drug of interest. Validation of these models through well-designed clinical trials would facilitate development of common practice guidelines for managing drug-dietary substance interactions appropriately. PMID:21189136

  2. The Role of CYP2E1 in Alcohol Metabolism and Sensitivity in the Central Nervous System

    PubMed Central

    Heit, Claire; Dong, Hongbin; Chen, Ying; Thompson, David C.; Deitrich, Richard A.; Vasiliou, Vasilis

    2015-01-01

    Ethanol consumption has effects on the central nervous system (CNS), manifesting as motor incoordination, sleep induction (hypnosis), anxiety, amnesia, and the reinforcement or aversion of alcohol consumption. Acetaldehyde (the direct metabolite of ethanol oxidation) contributes to many aspects of the behavioral effects of ethanol. Given acetaldehyde cannot pass through the blood brain barrier, its concentration in the CNS is primarily determined by local production from ethanol. Catalase and cytochrome P450 2E1(CYP2E1) represent the major enzymes in the CNS that catalyze ethanol oxidation. CYP2E1 is expressed abundantly within the microsomes of certain brain cells and is localized to particular brain regions. This chapter focuses on the discussion of CYP2E1 in ethanol metabolism in the CNS, covering topics including how it is regulated, where it is expressed and how it influences sensitivity to ethanol in the brain. PMID:23400924

  3. Occurrence of 2-methylthiazolidine-4-carboxylic acid, a condensation product of cysteine and acetaldehyde, in human blood as a consequence of ethanol consumption.

    PubMed

    Reischl, Roland J; Bicker, Wolfgang; Keller, Thomas; Lamprecht, Günther; Lindner, Wolfgang

    2012-10-01

    Acetaldehyde is a strongly electrophilic compound that is endogenously produced as a first intermediate in oxidative ethanol metabolism. Its high reactivity towards biogenic nucleophiles has toxicity as a consequence. Acetaldehyde readily undergoes a non-enzymatic condensation reaction and consecutive ring formation with cysteine to form 2-methylthiazolidine-4-carboxylic acid (MTCA). For analytical purposes, N-acetylation of MTCA was required for stabilization and to enable its quantification by reversed-phase chromatography combined with electrospray ionization-tandem mass spectrometry. Qualitative screening of post mortem blood samples with negative blood alcohol concentration (BAC) mostly showed low basal levels of MTCA. In BAC-positive post mortem samples, but not in corresponding urine specimens, strongly increased levels were present. To estimate the association between ethanol consumption and the occurrence of MTCA in human blood, the time curves of BAC and MTCA concentration were determined after a single oral dose of 0.5 g ethanol per kilogram of body weight. The blood elimination kinetics of MTCA was slower than that of ethanol. The peak concentration of MTCA (12.6 mg L(-1)) was observed 4 h after ethanol intake (BAC 0.07‰) and MTCA was still detectable after 13 h. Although intermediary acetaldehyde scavenging by formation of MTCA is interesting from a toxicological point of view, lack of hydrolytic stability under physiological conditions may hamper the use of MTCA as a quantitative marker of acetaldehyde exposure, such as resulting from alcohol consumption.

  4. Circadian rhythms in myocardial metabolism and contractile function; influence of workload and oleate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multiple extra-cardiac stimuli, such as workload and circulating nutrients (e.g., fatty acids), known to influence myocardial metabolism and contractile function exhibit marked circadian rhythms. The aim of the present study was to investigate whether the rat heart exhibits circadian rhythms in its ...

  5. Relationship between acetaldehyde concentration in mouth air and tongue coating volume

    PubMed Central

    YOKOI, Aya; MARUYAMA, Takayuki; YAMANAKA, Reiko; EKUNI, Daisuke; TOMOFUJI, Takaaki; KASHIWAZAKI, Haruhiko; YAMAZAKI, Yutaka; MORITA, Manabu

    2015-01-01

    Objective Acetaldehyde is the first metabolite of ethanol and is produced in the epithelium by mucosal ALDH, while higher levels are derived from microbial oxidation of ethanol by oral microflora such as Candida species. However, it is uncertain whether acetaldehyde concentration in human breath is related to oral condition or local production of acetaldehyde by oral microflora. The aim of this pilot study was to investigate the relationship between physiological acetaldehyde concentration and oral condition in healthy volunteers. Material and Methods Sixty-five volunteers (51 males and 14 females, aged from 20 to 87 years old) participated in the present study. Acetaldehyde concentration in mouth air was measured using a portable monitor. Oral examination, detection of oral Candida species and assessment of alcohol sensitivity were performed. Results Acetaldehyde concentration [median (25%, 75%)] in mouth air was 170.7 (73.5, 306.3) ppb. Acetaldehyde concentration in participants with a tongue coating status score of 3 was significantly higher than in those with a score of 1 (p<0.017). After removing tongue coating, acetaldehyde concentration decreased significantly (p<0.05). Acetaldehyde concentration was not correlated with other clinical parameters, presence of Candida species, smoking status or alcohol sensitivity. Conclusion Physiological acetaldehyde concentration in mouth air was associated with tongue coating volume. PMID:25760268

  6. Formaldehyde and acetaldehyde emissions from residential wood combustion in Portugal

    NASA Astrophysics Data System (ADS)

    Cerqueira, Mário; Gomes, Luís; Tarelho, Luís; Pio, Casimiro

    2013-06-01

    A series of experiments were conducted to characterize formaldehyde and acetaldehyde emissions from residential combustion of common wood species growing in Portugal. Five types of wood were investigated: maritime pine (Pinus pinaster), eucalyptus (Eucalyptus globulus), cork oak (Quercus suber), holm oak (Quercus rotundifolia) and pyrenean oak (Quercus pyrenaica). Laboratory experiments were performed with a typical wood stove used for domestic heating in Portugal and operating under realistic home conditions. Aldehydes were sampled from diluted combustion flue gas using silica cartridges coated with 2,4-dinitrophenylhydrazine and analyzed by high performance liquid chromatography with diode array detection. The average formaldehyde to acetaldehyde concentration ratio (molar basis) in the stove flue gas was in the range of 2.1-2.9. Among the tested wood types, pyrenean oak produced the highest emissions for both formaldehyde and acetaldehyde: 1772 ± 649 and 1110 ± 454 mg kg-1 biomass burned (dry basis), respectively. By contrast, maritime pine produced the lowest emissions: 653 ± 151 and 371 ± 162 mg kg-1 biomass (dry basis) burned, respectively. Aldehydes were sampled separately during distinct periods of the holm oak wood combustion cycles. Significant variations in the flue gas concentrations were found, with higher values measured during the devolatilization stage than in the flaming and smoldering stages.

  7. Exogenous acetaldehyde as a tool for modulating wine color and astringency during fermentation.

    PubMed

    Sheridan, Marlena K; Elias, Ryan J

    2015-06-15

    Wine tannins undergo modifications during fermentation and storage that can decrease their perceived astringency and increase color stability. Acetaldehyde acts as a bridging compound to form modified tannins and polymeric pigments that are less likely to form tannin-protein complexes than unmodified tannins. Red wines are often treated with oxygen in order to yield acetaldehyde, however this approach can lead to unintended consequences due to the generation of reactive oxygen species. The present study employs exogenous acetaldehyde at relatively low and high treatment concentrations during fermentation to encourage tannin modification without promoting potentially deleterious oxidation reactions. The high acetaldehyde treatment significantly increased polymeric pigments in the wine without increasing concentrations of free and sulfite-bound acetaldehyde. Protein-tannin precipitation was also significantly decreased with the addition of exogenous acetaldehyde. These results indicate a possible treatment of wines early in their production to increase color stability and lower astringency of finished wines.

  8. Influence of tacrolimus metabolism rate on BKV infection after kidney transplantation

    PubMed Central

    Thölking, Gerold; Schmidt, Christina; Koch, Raphael; Schuette-Nuetgen, Katharina; Pabst, Dirk; Wolters, Heiner; Kabar, Iyad; Hüsing, Anna; Pavenstädt, Hermann; Reuter, Stefan; Suwelack, Barbara

    2016-01-01

    Immunosuppression is the major risk factor for BK virus nephropathy (BKVN) after renal transplantation (RTx). As the individual tacrolimus (Tac) metabolism rate correlates with Tac side effects, we hypothesized that Tac metabolism might also influence the BKV infection risk. In this case-control study RTx patients with BK viremia within 4 years after RTx (BKV group) were compared with a BKV negative control group. The Tac metabolism rate expressed as the blood concentration normalized by the daily dose (C/D ratio) was applied to assess the Tac metabolism rate. BK viremia was detected in 86 patients after a median time of 6 (0–36) months after RTx. BKV positive patients showed lower Tac C/D ratios at 1, 3 and 6 months after RTx and were classified as fast Tac metabolizers. 8 of 86 patients with BK viremia had histologically proven BKN and a higher median maximum viral load than BKV patients without BKN (441,000 vs. 18,572 copies/mL). We conclude from our data that fast Tac metabolism (C/D ratio <1.05) is associated with BK viremia after RTx. Calculation of the Tac C/D ratio early after RTx, may assist transplant clinicians to identify patients at risk and to choose the optimal immunosuppressive regimen. PMID:27573493

  9. Preferred Barefoot Step Frequency is Influenced by Factors Beyond Minimizing Metabolic Rate.

    PubMed

    Yandell, Matthew B; Zelik, Karl E

    2016-03-18

    Humans tend to increase their step frequency in barefoot walking, as compared to shod walking at the same speed. Based on prior studies and the energy minimization hypothesis we predicted that people make this adjustment to minimize metabolic cost. We performed an experiment quantifying barefoot walking metabolic rate at different step frequencies, specifically comparing preferred barefoot to preferred shod step frequency. We found that subjects increased their preferred frequency when walking barefoot at 1.4 m/s (~123 vs. ~117 steps/min shod, P = 2e-5). However, average barefoot walking metabolic rates at the preferred barefoot and shod step frequencies were not significantly different (P = 0.40). Instead, we observed subject-specific trends: five subjects consistently reduced (-8% average), and three subjects consistently increased (+10% average) their metabolic rate at preferred barefoot vs. preferred shod frequency. Thus, it does not appear that people ubiquitously select a barefoot step frequency that minimizes metabolic rate. We concluded that preferred barefoot step frequency is influenced by factors beyond minimizing metabolic rate, such as shoe properties and/or perceived comfort. Our results highlight the subject-specific nature of locomotor adaptations and how averaging data across subjects may obscure meaningful trends. Alternative experimental designs may be needed to better understand individual adaptations.

  10. Preferred Barefoot Step Frequency is Influenced by Factors Beyond Minimizing Metabolic Rate

    NASA Astrophysics Data System (ADS)

    Yandell, Matthew B.; Zelik, Karl E.

    2016-03-01

    Humans tend to increase their step frequency in barefoot walking, as compared to shod walking at the same speed. Based on prior studies and the energy minimization hypothesis we predicted that people make this adjustment to minimize metabolic cost. We performed an experiment quantifying barefoot walking metabolic rate at different step frequencies, specifically comparing preferred barefoot to preferred shod step frequency. We found that subjects increased their preferred frequency when walking barefoot at 1.4 m/s (~123 vs. ~117 steps/min shod, P = 2e-5). However, average barefoot walking metabolic rates at the preferred barefoot and shod step frequencies were not significantly different (P = 0.40). Instead, we observed subject-specific trends: five subjects consistently reduced (‑8% average), and three subjects consistently increased (+10% average) their metabolic rate at preferred barefoot vs. preferred shod frequency. Thus, it does not appear that people ubiquitously select a barefoot step frequency that minimizes metabolic rate. We concluded that preferred barefoot step frequency is influenced by factors beyond minimizing metabolic rate, such as shoe properties and/or perceived comfort. Our results highlight the subject-specific nature of locomotor adaptations and how averaging data across subjects may obscure meaningful trends. Alternative experimental designs may be needed to better understand individual adaptations.

  11. Involvement of dopamine D2 receptors in addictive-like behaviour for acetaldehyde.

    PubMed

    Brancato, Anna; Plescia, Fulvio; Marino, Rosa Anna Maria; Maniaci, Giuseppe; Navarra, Michele; Cannizzaro, Carla

    2014-01-01

    Acetaldehyde, the first metabolite of ethanol, is active in the central nervous system, where it exerts motivational properties. Acetaldehyde is able to induce drinking behaviour in operant-conflict paradigms that resemble the core features of the addictive phenotype: drug-intake acquisition and maintenance, drug-seeking, relapse and drug use despite negative consequences. Since acetaldehyde directly stimulates dopamine neuronal firing in the mesolimbic system, the aim of this study was the investigation of dopamine D2-receptors' role in the onset of the operant drinking behaviour for acetaldehyde in different functional stages, by the administration of two different D2-receptor agonists, quinpirole and ropinirole. Our results show that acetaldehyde was able to induce and maintain a drug-taking behaviour, displaying an escalation during training, and a reinstatement behaviour after 1-week forced abstinence. Acetaldehyde operant drinking behaviour involved D2-receptor signalling: in particular, quinpirole administration at 0.03 mg/kg, induced a significant decrease in the number of lever presses both in extinction and in relapse. Ropinirole, administered at 0.03 mg/kg during extinction, did not produce any modification but, when administered during abstinence, induced a strong decrease in acetaldehyde intake in the following relapse session. Taken together, our data suggest that acetaldehyde exerts its own motivational properties, involving the dopaminergic transmission: indeed, activation of pre-synaptic D2-receptors by quinpirole, during extinction and relapse, negatively affects operant behaviour for acetaldehyde, likely decreasing acetaldehyde-induced dopamine release. The activation of post-synaptic D2-receptors by ropinirole, during abstinence, decreases the motivation to the consecutive reinstatement of acetaldehyde drinking behaviour, likely counteracting the reduction in the dopaminergic tone typical of withdrawal. These data further strengthen the evidence

  12. Acetaldehyde removal from indoor air through chemical absorption using L-cysteine.

    PubMed

    Yamashita, Kyoko; Noguchi, Miyuki; Mizukoshi, Atsushi; Yanagisawa, Yukio

    2010-09-01

    The irreversible removal of acetaldehyde from indoor air via a chemical reaction with amino acids was investigated. To compare effectiveness, five types of amino acid (glycine, l-lysine, l-methionine, l-cysteine, and l-cystine) were used as the reactants. First, acetaldehyde-laden air was introduced into aqueous solutions of each amino acid and the removal abilities were compared. Among the five amino acids, l-cysteine solution showed much higher removal efficiency, while the other amino acids solutions didn't show any significant differences from the removal efficiency of water used as a control. Next, as a test of the removal abilities of acetaldehyde by semi-solid l-cysteine, a gel containing l-cysteine solution was put in a fluororesin bag filled with acetaldehyde gas, and the change of acetaldehyde concentration was measured. The l-cysteine-containing gel removed 80% of the acetaldehyde in the air within 24 hours. The removal ability likely depended on the unique reaction whereby acetaldehyde and l-cysteine rapidly produce 2-methylthiazolidine-4-carboxylic acid. These results suggested that the reaction between acetaldehyde and l-cysteine has possibilities for irreversibly removing toxic acetaldehyde from indoor air.

  13. Analysis of rabbit intervertebral disc physiology based on water metabolism. I. Factors influencing metabolism of the normal intervertebral discs

    SciTech Connect

    Hirano, N.; Tsuji, H.; Ohshima, H.; Kitano, S.; Sano, A.

    1988-11-01

    Basic factors influencing the metabolism of intervertebral discs of rabbits were quantitatively analyzed based on the water metabolism. The blood flow surrounding the intervertebral disc was calculated using pharmacokinetic concepts from the data obtained by time-related tritiated water distribution analyses. The blood flow was estimated as 0.056 (mg/min/mg tissue) in the anterior annulus, 0.106 in the posterior annulus, 0.120 in the lateral annulus, and 0.084 in the nucleus pulposus, respectively (Experiment 1). Water content and fixed charge density in the intervertebral disc fractions also were measured (Experiment 2). The cations and uncharged small solutes transported into the disc tissue ranged in descending order from nucleus pulposus, lateral annulus, posterior annulus, to anterior annulus. The authors also calculated theoretically the swelling pressure of the proteoglycan in the intervertebral disc fractions from the results of Experiment 2. It was concluded that swelling pressure was highest in the nucleus pulposus, and lowest in the anterior annulus. The water in the posterior annulus is less exchangeable than in the other disc tissue fractions.

  14. [Acetaldehyde and some biochemical parameters in alcoholic intoxications].

    PubMed

    Vasil'eva, E V; Morozov, Iu E; Lopatkin, O N; Zarubin, V V; Mamedov, V K

    2004-01-01

    The need in comprehensive gas chromatography and biochemistry examinations is grounded for cadaver expertise in order to cope with issues related with alcoholic intoxication. Descriptions of 3 examination methods of biological fluids are elucidated, i.e. gas chromatography, electrophoresis and fixing of a degree of endogenous intoxication. The concentration of acetaldehyde in 3 body media (blood, urine and liquor) are analyzed in detail; the isoenzyme spectra of lactate-, alcohol- and aldehyde dehydrogenase as well as the contents of medium molecules in death of alcohol poisonings and due to mechanical trauma are also in the focus of attention.

  15. Plant physiological and environmental controls over the exchange of acetaldehyde between forest canopies and the atmosphere

    NASA Astrophysics Data System (ADS)

    Jardine, K.; Harley, P.; Karl, T.; Guenther, A.; Lerdau, M.; Mak, J. E.

    2008-11-01

    We quantified fine scale sources and sinks of gas phase acetaldehyde in two forested ecosystems in the US. During the daytime, the upper canopy behaved as a net source while at lower heights, reduced emission rates or net uptake were observed. At night, uptake generally predominated throughout the canopies. Net ecosystem emission rates were inversely related to foliar density due to the extinction of light in the canopy and a respective decrease of the acetaldehyde compensation point. This is supported by branch level studies revealing much higher compensation points in the light than in the dark for poplar (Populus deltoides) and holly oak (Quercus ilex) implying a higher light/temperature sensitivity for acetaldehyde production relative to consumption. The view of stomata as the major pathway for acetaldehyde exchange is supported by strong linear correlations between branch transpiration rates and acetaldehyde exchange velocities for both species. In addition, natural abundance carbon isotope analysis of gas-phase acetaldehyde during poplar branch fumigation experiments revealed a significant kinetic isotope effect of 5.1±0.3‰ associated with the uptake of acetaldehyde. Similar experiments with dry dead poplar leaves showed no fractionation or uptake of acetaldehyde, confirming that this is only a property of living leaves. We suggest that acetaldehyde belongs to a potentially large list of plant metabolites where stomatal resistance can exert long term control over both emission and uptake rates due to the presence of both source(s) and sink(s) within the leaf which strongly buffer large changes in concentrations in the substomatal airspace due to changes in stomatal resistance. We conclude that the exchange of acetaldehyde between plant canopies and the atmosphere is fundamentally controlled by ambient acetaldehyde concentrations, stomatal resistance, and the compensation point which is a function of light/temperature.

  16. Metabolism

    MedlinePlus

    ... and intestines. Several of the hormones of the endocrine system are involved in controlling the rate and direction ... For Kids For Parents MORE ON THIS TOPIC Endocrine System What Can I Do About My High Metabolism? ...

  17. Metabolism

    MedlinePlus

    ... symptoms. Metabolic diseases and conditions include: Hyperthyroidism (pronounced: hi-per-THIGH-roy-dih-zum). Hyperthyroidism is caused ... or through surgery or radiation treatments. Hypothyroidism (pronounced: hi-po-THIGH-roy-dih-zum). Hypothyroidism is caused ...

  18. Immune response to acetaldehyde-human serum albumin adduct among healthy subjects related to alcohol intake.

    PubMed

    Romanazzi, Valeria; Schilirò, Tiziana; Carraro, Elisabetta; Gilli, Giorgio

    2013-09-01

    Acetaldehyde (AA) is the main metabolic product in ethanol metabolism, although it can also derive from sources of airborne pollution. As a typical aldehyde, AA is able to react with a variety of molecular targets, including DNA and protein. This property justifies the hypothesis of a immune reaction against this kind of adduct, to be studied by a seroprevalence screening approach. In this study, the correlation between drinking habits and the amount of circulating AA-human serum albumin adduct (AA-HSA) was evaluated in a group of healthy subjects, non alcohol-addicted. Daily ethanol intake (grams) was inferred for each subject using the information collected through a questionnaire, and AA-HSA antibodies (AA-HSA ab) analyses were performed using the Displacement Assay on whole blood samples. The findings showed a correlation between ethanol intake and immune response to molecular adduct. These results underscore the evaluation of AA-HSA ab amount as a suitable molecular marker for alcohol intake that can be applied in future investigations on a large scale for prevention screening.

  19. Oxygen vacancy-assisted coupling and enolization of acetaldehyde on CeO2(111).

    PubMed

    Calaza, Florencia C; Xu, Ye; Mullins, David R; Overbury, Steven H

    2012-10-31

    The temperature-dependent adsorption and reaction of acetaldehyde (CH(3)CHO) on a fully oxidized and a highly reduced thin-film CeO(2)(111) surface have been investigated using a combination of reflection-absorption infrared spectroscopy (RAIRS) and periodic density functional theory (DFT+U) calculations. On the fully oxidized surface, acetaldehyde adsorbs weakly through its carbonyl O interacting with a lattice Ce(4+) cation in the η(1)-O configuration. This state desorbs at 210 K without reaction. On the highly reduced surface, new vibrational signatures appear below 220 K. They are identified by RAIRS and DFT as a dimer state formed from the coupling of the carbonyl O and the acyl C of two acetaldehyde molecules. This dimer state remains up to 400 K before decomposing to produce another distinct set of vibrational signatures, which are identified as the enolate form of acetaldehyde (CH(2)CHO¯). Furthermore, the calculated activation barriers for the coupling of acetaldehyde, the decomposition of the dimer state, and the recombinative desorption of enolate and H as acetaldehyde are in good agreement with previously reported TPD results for acetaldehyde adsorbed on reduced CeO(2)(111) [Chen et al. J. Phys. Chem. C 2011, 115, 3385]. The present findings demonstrate that surface oxygen vacancies alter the reactivity of the CeO(2)(111) surface and play a crucial role in stabilizing and activating acetaldehyde for coupling reactions.

  20. The hydrogen-storing microporous silica 'Microcluster' reduces acetaldehyde contained in a distilled spirit.

    PubMed

    Kato, Shinya; Miwa, Nobuhiko

    2016-12-01

    Acetaldehyde is a detrimental substance produced in alcoholic liquor aging. We assessed an ability of hydrogen-storing microporous silica 'Microcluster' (MC+) to reduce acetaldehyde, as compared with autoclave-dehydrogenated MC+ (MC-). Acetaldehyde was quantified spectrophotometrically by an enzymatic method. Authentic acetaldehyde was treated by MC+ for 20min, and decreased from 43.4ppm to 10.9ppm, but maintained at 49.3ppm by MC-. On the other hand, acetaldehyde contained in a distilled spirit was decreased from 29.5ppm to 3.1ppm at 20min by MC+, but not decreased by MC-. Addition of MC+ or MC- to distilled water without acetaldehyde showed no seeming effect on the quantification used. Accordingly acetaldehyde in a distilled spirit is reduced to ethanol by hydrogen contained in MC+, but not by the silica moiety of MC+. Hydrogen gas of 1.2mL was released for 20min from MC+ of 0.59g in water, resulting in dissolved hydrogen of 1.09ppm and an oxidation- reduction potential of -687.0mV indicative of a marked reducing ability. Thus, MC+ has an ability to reduce acetaldehyde in a distilled spirit due to dissolved hydrogen released from MC+.

  1. The detection of acetaldehyde in cold dust clouds

    NASA Technical Reports Server (NTRS)

    Matthews, H. E.; Friber, P.; Irvine, W. M.

    1985-01-01

    Observations of the 1(01)-0(00) rotational transitions of A and E state acetaldehyde are reported. The transitions were detected, for the first time in interstellar space, in the cold dust clouds TMC-1 and L134N, and in Sgr B2. This is also the first time acetaldehyde has been found in a dust cloud and is the most complex oxygen-bearing molecule yet known in this environment. A column density of 6 x 10 to the 12th/sq cm in TMC-1, comparable to many other species detected there, and an approximately equal column density in L134N are formed. In the direction of Sgr B2, the CH3CHO profile appears to consist of broad emission features from the hot molecular cloud core, together with absorption features resulting from intervening colder material. The possible detection of HC9N toward IRC + 10 deg 216 through its J = 33-32 transition is also reported. Implications for cold dust cloud chemistry and excitation are discussed.

  2. Role of malondialdehyde-acetaldehyde adducts in liver injury.

    PubMed

    Tuma, Dean J

    2002-02-15

    Malondialdehyde and acetaldehyde react together with proteins in a synergistic manner and form hybrid protein adducts, designated as MAA adducts. MAA-protein adducts are composed of two major products whose structures and mechanism of formation have been elucidated. MAA adduct formation, especially in the liver, has been demonstrated in vivo during ethanol consumption. These protein adducts are capable of inducing a potent immune response, resulting in the generation of antibodies against both MAA epitopes, as well as against epitopes on the carrier protein. Chronic ethanol administration to rats results in significant circulating antibody titers against MAA-adducted proteins, and high anti-MAA titers have been associated with the severity of liver damage in humans with alcoholic liver disease. In vitro exposure of liver endothelial or hepatic stellate cells to MAA adducts induces a proinflammatory and profibrogenic response in these cells. Thus, during excessive ethanol consumption, ethanol oxidation and ethanol-induced oxidative stress result in the formation of acetaldehyde and malondialdehyde, respectively. These aldehydes can react together synergistically with proteins and generate MAA adducts, which are very immunogenic and possess proinflammatory and profibrogenic properties. By virtue of these potentially toxic effects, MAA adducts may play an important role in the pathogenesis of alcoholic liver injury.

  3. Sex influences the effect of a lifelong increase in serotonin transporter function on cerebral metabolism.

    PubMed

    Dawson, Neil; Ferrington, Linda; Olverman, Henry J; Harmar, Anthony J; Kelly, Paul A T

    2009-08-01

    Polymorphic variation in the human serotonin transporter (SERT; 5-HTT) gene resulting in a lifelong increase in SERT expression is associated with reduced anxiety and a reduced risk of affective disorder. Evidence also suggests that sex influences the effect of this polymorphism on affective functioning. Here we use novel transgenic mice overexpressing human SERT (hSERT OVR) to investigate the possible influence of sex on the alterations in SERT protein expression and cerebral function that occur in response to increased SERT gene transcription. SERT binding levels were significantly increased in the brain of hSERT OVR mice in a region-dependent manner. The increased SERT binding in hSERT OVR mice was more pronounced in female than in male mice. Cerebral metabolism, as reflected by a quantitative index of local cerebral glucose utilization (iLCMRglu), was significantly decreased in many brain regions in hSERT OVR female as compared with wild-type female mice, whereas there was no evidence for a significant effect in any region in males. The ability of hSERT overexpression to modify cerebral metabolism was significantly greater in females than in males. This effect was particularly pronounced in the medial striatum, globus pallidus, somatosensory cortex, mamillary body, and ventrolateral thalamus. Overall, these findings demonstrate that the influence of a lifelong increase in SERT gene transcription on cerebral function is greater in females than in males and may relate, in part, to the influence of sex on genetically driven increases in SERT protein expression.

  4. Influence of Cd, Co, and Zn on inorganic carbon acquisition and carbon metabolism in Emiliania huxleyi.

    NASA Astrophysics Data System (ADS)

    Sutton, J. N.; Boye, M.; De La Broise, D.; Probert, I.

    2014-12-01

    Trace elements are essential micronutrients for primary producers; hence they influence the global carbon cycle and contribute to the regulation of Earth's climate. Over the past 25 years, the influence of Fe concentration on phytoplankton production has been well studied and this research has been instrumental in our understanding of the influence that biology has on the sequestration of atmospheric CO2. However, other trace elements that are directly involved in carbon metabolism by primary producers, such as Zn, Cd, and Co, have received less attention. We examined the physiological response of two strains of Emiliania huxleyi to a range of realistic trace element concentrations (Zn, Cd, Co) in the marine environment under batch, semi-continuous, and continuous culture conditions. In addition, the continuous culture system was maintained at a pH of 8.15 ±0.02 by a sensor and regulator-controlled CO2­ injection system. The results from this study will highlight the influence that trace element composition of seawater has on the growth rate, elemental quota, inorganic carbon uptake, and carbon metabolism of Emiliania huxleyi. Potential limitations for the interpretation of paleo-productivity records will be discussed.

  5. Is hepatic lipid metabolism of beef cattle influenced by breed and dietary silage level?

    PubMed Central

    2014-01-01

    Background In ruminants, unsaturated dietary fatty acids are biohydrogenated in the rumen and are further metabolised in various tissues, including liver, which has an important role in lipid and lipoprotein metabolism. Therefore, manipulation of muscle fatty acid composition should take into account liver metabolism. In the present study, the influence of breed and diet on liver lipid composition and gene expression was investigated in order to clarify the role of this organ in the lipid metabolism of ruminants. Forty purebred young bulls from two phylogenetically distant autochthonous cattle breeds, Alentejana and Barrosã, were assigned to two different diets (low vs. high silage) and slaughtered at 18 months of age. Liver fatty acid composition, mRNA levels of enzymes and transcription factors involved in lipid metabolism, as well as the plasma lipid profile, were assessed. Results In spite of similar plasma non-esterified fatty acids levels, liver triacylglycerols content was higher in Barrosã than in Alentejana bulls. Moreover, the fatty acid composition of liver was clearly distinct from the remaining tissues involved in fatty acid metabolism of ruminants, as shown by Principal Components Analysis. The hepatic tissue is particularly rich in α-linolenic acid and their products of desaturation and elongation. Results indicate that DGAT1, ELOVL2, FADS1 and FADS2 genes influence the fatty acid composition of the liver the most. Moreover, genes such as DGAT1 and ELOVL2 appear to be more sensitive to genetic background than to dietary manipulation, whereas genes encoding for desaturases, such as FADS1, appear to be modulated by dietary silage level. Conclusions Our results indicate that liver plays an important role in the biosynthesis of n-3 LC-PUFA. It is also suggested that dietary silage level influences the hepatic fatty acid metabolism in a breed-dependent manner, through changes in the expression of genes encoding for enzymes associated with the

  6. Diffusion behaviour of the acetaldehyde scavenger 2-aminobenzamide in polyethylene terephthalate for beverage bottles

    PubMed Central

    Franz, Roland; Gmeiner, Margit; Gruner, Anita; Kemmer, Diana; Welle, Frank

    2016-01-01

    ABSTRACT Polyethylene terephthalate (PET) bottles are widely used as packaging material for natural mineral water. However, trace levels of acetaldehyde can migrate into natural mineral water during the shelf life and might influence the taste of the PET bottled water. 2-Aminobenzamide is widely used during PET bottle production as a scavenging agent for acetaldehyde. The aim of this study was the determination of the migration kinetics of 2-aminobenzamide into natural mineral water as well as into 20% ethanol. From the migration kinetics, the diffusion coefficients of 2-aminobenzamide in PET at 23 and 40°C were determined to be 4.2 × 10− 16 and 4.2 × 10− 15 cm2 s–1, respectively. The diffusion coefficient for 20% ethanol at 40°C was determined to be 7.7 × 10− 15 cm2 s–1, which indicates that 20% ethanol is causing swelling of the PET polymer. From a comparison of migration values between 23 and 40°C, acceleration factors of 9.7 when using water as contact medium and 18.1 for 20% ethanol as simulant can be derived for definition of appropriate accelerated test conditions at 40°C. The European Union regulatory acceleration test based on 80 kJ mol–1 as conservative activation energy overestimates the experimentally determined acceleration rates by a factor of 1.6 and 3.1, respectively. PMID:26666986

  7. Diffusion behaviour of the acetaldehyde scavenger 2-aminobenzamide in polyethylene terephthalate for beverage bottles.

    PubMed

    Franz, Roland; Gmeiner, Margit; Gruner, Anita; Kemmer, Diana; Welle, Frank

    2016-01-01

    Polyethylene terephthalate (PET) bottles are widely used as packaging material for natural mineral water. However, trace levels of acetaldehyde can migrate into natural mineral water during the shelf life and might influence the taste of the PET bottled water. 2-Aminobenzamide is widely used during PET bottle production as a scavenging agent for acetaldehyde. The aim of this study was the determination of the migration kinetics of 2-aminobenzamide into natural mineral water as well as into 20% ethanol. From the migration kinetics, the diffusion coefficients of 2-aminobenzamide in PET at 23 and 40°C were determined to be 4.2 × 10(-)(16) and 4.2 × 10(-)(15) cm(2) s(-1), respectively. The diffusion coefficient for 20% ethanol at 40°C was determined to be 7.7 × 10(-)(15) cm(2) s(-1), which indicates that 20% ethanol is causing swelling of the PET polymer. From a comparison of migration values between 23 and 40°C, acceleration factors of 9.7 when using water as contact medium and 18.1 for 20% ethanol as simulant can be derived for definition of appropriate accelerated test conditions at 40°C. The European Union regulatory acceleration test based on 80 kJ mol(-1) as conservative activation energy overestimates the experimentally determined acceleration rates by a factor of 1.6 and 3.1, respectively.

  8. Very early acetaldehyde production by industrial Saccharomyces cerevisiae strains: a new intrinsic character.

    PubMed

    Cheraiti, Naoufel; Guezenec, Stéphane; Salmon, Jean-Michel

    2010-03-01

    During a general survey of the acetaldehyde-producing properties of commercially available wine yeast strains, we discovered that, although final acetaldehyde production cannot be used as a discriminating factor between yeast strains, initial specific acetaldehyde production rates were of highly interest for classifying yeast strains. This parameter is very closely related to the growth- and fermentation-lag phase durations. We also found that this acetaldehyde early production occurs with very different extent between commercial active dry yeast strains during the rehydration phase and could partially explain the known variable resistance of yeast strains to sulfites. Acetaldehyde production appeared, therefore, as very precocious, strain-dependent, and biomass-independent character. These various findings suggest that this new intrinsic characteristic of industrial fermenting yeast may be likely considered as an early marker of the general fermenting activity of industrial fermenting yeasts. This phenomenon could be particularly important for understanding the ecology of colonization of complex fermentation media by Saccharomyces cerevisiae.

  9. Genetic influences on type 2 diabetes and metabolic syndrome related quantitative traits in Mauritius.

    PubMed

    Jowett, Jeremy B; Diego, Vincent P; Kotea, Navaratnam; Kowlessur, Sudhir; Chitson, Pierrot; Dyer, Thomas D; Zimmet, Paul; Blangero, John

    2009-02-01

    Epidemiological studies report a high prevalence of type 2 diabetes and metabolic syndrome in the island nation of Mauritius. The Mauritius Family Study was initiated to examine heritable factors that contribute to these high rates of prevalence and consists of 400 individuals in 24 large extended multigenerational pedigrees. Anthropometric and biochemical measurements relating to the metabolic syndrome were undertaken in addition to family and lifestyle based information for each individual. Variance components methods were used to determine the heritability of the type 2 diabetes and metabolic syndrome related quantitative traits. The cohort was made up of 218 females (55%) and 182 males with 22% diagnosed with type 2 diabetes and a further 30% having impaired glucose tolerance or impaired fasting glucose. Notably BMI was not significantly increased in those with type 2 diabetes (P= .12), however a significant increase in waist circumference was observed in these groups (P= .02). The heritable proportion of trait variance was substantial and greater than values previously published for hip circumference, LDL and total cholesterol, diastolic and systolic blood pressure and serum creatinine. Height, weight and BMI heritabilities were all in the upper range of those previously reported. The phenotypic characteristics of the Mauritius family cohort are similar to those previously reported in the Mauritian population with a high observed prevalence rate of type 2 diabetes. A high heritability for key type 2 diabetes and metabolic syndrome related phenotypes (range 0.23 to 0.68), suggest the cohort will have utility in identifying genes that influence these quantitative traits.

  10. Influence of feeding regimens on rat gut fluids and colonic metabolism of diclofenac-β-cyclodextrin.

    PubMed

    Vieira, Amélia C F; Murdan, Sudaxshina; Serra, Arménio C; Veiga, Francisco J; Gonsalves, António M d'A Rocha; Basit, Abdul W

    2014-11-04

    Feeding states may affect the performance of colonic prodrugs. The aim is to investigate the influence of feeding regimen in Wistar rats on: (i) distribution and pH contents along the gut and (ii) metabolism of two colonic prodrugs, diclofenac-β-cyclodextrin and a commercially available control, sulfasalazine, within the caecal and colonic contents. Male Wistar rats were subject to four different feeding regimens, the gut contents characterized (mass and pH) and the metabolism of prodrugs investigated. The feeding regimen affects gut contents (mass and pH), more specifically in the stomach and lower intestine, and affects the rate of metabolism of diclofenac-β-cyclodextrin, but not that of sulfasalazine. The latter's degradation is much faster than that of diclofenac-β-cyclodextrin while the metabolism of both prodrugs is faster in colonic (versus caecal) contents. Fasting results in most rapid degradation of diclofenac-β-cyclodextrin, possibly due to lack of competition (absence of food) for microbial enzymatic activity.

  11. Elucidating the influence of praziquantel nanosuspensions on the in vivo metabolism of Taenia crassiceps cysticerci.

    PubMed

    Silva, Luciana Damacena; Arrúa, Eva Carolina; Pereira, Dayanne Amaral; Fraga, Carolina Miguel; Costa, Tatiane Luiza da; Hemphill, Andrew; Salomon, Claudio Javier; Vinaud, Marina Clare

    2016-09-01

    The aim of this work was to develop nanosuspensions of praziquantel (PZQ) and to evaluate their influence on the energetic metabolism of cysticerci inoculated in BALB/c mice. We analyzed metabolic alterations of glycolytic pathways and the tricarboxylic acid cycle in the parasite. The nanosuspensions were prepared by precipitation and polyvinyl alcohol (PVA), poloxamer 188 (P188) and poloxamer 407 (P407) were used as stabilizers. Nanosuspension prepared with PVA had a particle size of 100nm, while P188- and P407-based nanosuspensions had particle sizes of 74nm and 285nm, respectively. The zeta potential was -8.1, -8.6, and -13.2 for the formulations stabilized with PVA, P188 and P407, respectively. Treatments of T. crassiceps cysticerci-infected mice resulted in an increase in glycolysis organic acids, and enhanced the partial reversion of the tricarboxylic acid cycle, the urea cycle and the production of ketonic bodies in the parasites when compared to the groups treated with conventional PZQ. These data suggest that PZQ nanosuspensions greatly modified the energetic metabolism of cysticerci in vivo. Moreover, the remarkable metabolic alterations produced by the stabilizers indicate that further studies on nanoformulations are required to find potentially suitable nanomedicines.

  12. Biomarkers of susceptibility following benzene exposure: influence of genetic polymorphisms on benzene metabolism and health effects.

    PubMed

    Carbonari, Damiano; Chiarella, Pieranna; Mansi, Antonella; Pigini, Daniela; Iavicoli, Sergio; Tranfo, Giovanna

    2016-01-01

    Benzene is a ubiquitous occupational and environmental pollutant. Improved industrial hygiene allowed airborne concentrations close to the environmental context (1-1000 µg/m(3)). Conversely, new limits for benzene levels in urban air were set (5 µg/m(3)). The biomonitoring of exposure to such low benzene concentrations are performed measuring specific and sensitive biomarkers such as S-phenylmercapturic acid, trans, trans-muconic acid and urinary benzene: many studies referred high variability in the levels of these biomarkers, suggesting the involvement of polymorphic metabolic genes in the individual susceptibility to benzene toxicity. We reviewed the influence of metabolic polymorphisms on the biomarkers levels of benzene exposure and effect, in order to understand the real impact of benzene exposure on subjects with increased susceptibility.

  13. Metabolic profiling of biofilm bacteria known to cause microbial influenced corrosion.

    PubMed

    Beale, D J; Morrison, P D; Key, C; Palombo, E A

    2014-01-01

    This study builds upon previous research that demonstrated the simplicity of obtaining metabolite profiles of bacteria in urban water networks, by using the metabolic profile of bacteria extracted from a reticulation pipe biofilm, which is known to cause microbial influenced corrosion (MIC). The extracellular metabolites of the isolated bacteria, and those bacteria in consortium, were analysed in isolation, and after exposure to low levels of copper. Applying chemometric analytical methodologies to the metabolomic data, we were able to better understand the profile of the isolated biofilm bacteria, which were differentiated according to their activity and copper exposure. It was found that the metabolic activity of the isolated bacteria and the bacteria in consortium varied according to the bacterium's ability to metabolise copper. This demonstrates the power of metabolomic techniques for the discrimination of water reticulation biofilms comprising similar bacteria in consortium, but undergoing different physico-chemical activities, such as corrosion and corrosion inhibition.

  14. Assessment of the environmental and genetic factors influencing prevalence of metabolic syndrome in Saudi Arabia

    PubMed Central

    Gosadi, Ibrahim M.

    2016-01-01

    Metabolic syndrome (MS) is a combination of factors that increases the risk of cardiovascular atherosclerotic diseases including diabetes, obesity, dyslipidemia, and high blood pressure. Cardiovascular diseases are one of the leading causes of death in the adult Saudi population where the increase in cardiovascular-related mortality is augmented by the rise in the prevalence of MS. Metabolic syndrome is a multi-factorial disorder influenced by interactions between genetic and environmental components. This review aims to provide a comprehensive assessment of studied environmental and genetic factors explaining the prevalence of MS in the Kingdom of Saudi Arabia. Additionally, this review aims to illustrate factors related to the population genetics of Saudi Arabia, which might explain a proportion of the prevalence of MS. PMID:26739969

  15. Influence of Obesity and Metabolic Disease on Carotid Atherosclerosis in Patients with Coronary Artery Disease (CordioPrev Study)

    PubMed Central

    Garcia-Rios, Antonio; Delgado-Casado, Nieves; Gomez-Luna, Purificacion; Gomez-Garduño, Angela; Gomez-Delgado, Francisco; Alcala-Diaz, Juan F.; Yubero-Serrano, Elena; Marin, Carmen; Perez-Caballero, Ana I.; Fuentes-Jimenez, Francisco J.; Camargo, Antonio; Rodriguez-Cantalejo, Fernando; Tinahones, Francisco J.; Ordovas, Jose M.; Perez- Jimenez, Francisco; Perez-Martinez, Pablo; Lopez-Miranda, Jose

    2016-01-01

    Background Recent data suggest that the presence of associated metabolic abnormalities may be important modifiers of the association of obesity with a poorer prognosis in coronary heart disease. We determined the influence of isolated overweight and obesity on carotid intima media thickness (IMT-CC), and also assessed whether this influence was determined by the presence of metabolic abnormalities. Methods 1002 participants from the CordioPrev study were studied at entry. We determined their metabolic phenotypes and performed carotid ultrasound assessment. We evaluated the influence of obesity, overweight and metabolic phenotypes on the IMT-CC. Results Metabolically sick participants (defined by the presence of two or more metabolic abnormalities) showed a greater IMT-CC than metabolically healthy individuals (p = 4 * 10−6). Overweight and normal weight patients who were metabolically healthy showed a lower IMT-CC than the metabolically abnormal groups (all p<0.05). When we evaluated only body weight (without considering metabolic phenotypes), overweight or obese patients did not differ significantly from normal-weight patients in their IMT-CC (p = 0.077). However, obesity was a determinant of IMT-CC when compared to the composite group of normal weight and overweight patients (all not obese). Conclusions In coronary patients, a metabolically abnormal phenotype is associated with a greater IMT-CC, and may be linked to a higher risk of suffering new cardiovascular events. The protection conferred in the IMT-CC by the absence of metabolic abnormality may be blunted by the presence of obesity. Trial Registration ClinicalTrials.gov NCT00924937 PMID:27064675

  16. Organochloride pesticides modulated gut microbiota and influenced bile acid metabolism in mice.

    PubMed

    Liu, Qian; Shao, Wentao; Zhang, Chunlan; Xu, Cheng; Wang, Qihan; Liu, Hui; Sun, Haidong; Jiang, Zhaoyan; Gu, Aihua

    2017-04-06

    Organochlorine pesticides (OCPs) can persistently accumulate in body and threaten human health. Bile acids and intestinal microbial metabolism have emerged as important signaling molecules in the host. However, knowledge on which intestinal microbiota and bile acids are modified by OCPs remains unclear. In this study, adult male C57BL/6 mice were exposed to p, p'-dichlorodiphenyldichloroethylene (p, p'-DDE) and β-hexachlorocyclohexane (β-HCH) for 8 weeks. The relative abundance and composition of various bacterial species were analyzed by 16S rRNA gene sequencing. Bile acid composition was analyzed by metabolomic analysis using UPLC-MS. The expression of genes involved in hepatic and enteric bile acids metabolism was measured by real-time PCR. Expression of genes in bile acids synthesis and transportation were measured in HepG2 cells incubated with p, p'-DDE and β-HCH. Our findings showed OCPs changed relative abundance and composition of intestinal microbiota, especially in enhanced Lactobacillus with bile salt hydrolase (BSH) activity. OCPs affected bile acid composition, enhanced hydrophobicity, decreased expression of genes on bile acid reabsorption in the terminal ileum and compensatory increased expression of genes on synthesis of bile acids in the liver. We demonstrated that chronic exposure of OCPs could impair intestinal microbiota; as a result, hepatic and enteric bile acid profiles and metabolism were influenced. The findings in this study draw our attention to the hazards of chronic OCPs exposure in modulating bile acid metabolism that might cause metabolic disorders and their potential to cause related diseases in human.

  17. Leptin influences estrogen metabolism and increases DNA adduct formation in breast cancer cells

    PubMed Central

    Shouman, Samia; Wagih, Mohamed; Kamel, Marwa

    2016-01-01

    Objective: The elevated incidence of obesity has been paralleled with higher risks of breast cancer. High adiposity increases leptin secretion from adipose tissue, which in turn increases cancer cell proliferation. The interplay between leptin and estrogen is one of the mechanisms through which leptin influences breast carcinogenesis. An unbalanced estrogen metabolism increases the formations of catechol estrogen quinones, DNA adducts, and cancer mutations. This study aims to investigate the effect of leptin on some estrogen metabolic enzymes and DNA adduction in breast cancer cells. Methods: High performance liquid chromatography (HPLC) was performed to analyze the DNA adducts 4-OHE1[E2]-1-N3 adenine and 4-OHE1[E2]-1-N7 guanine. Reporter gene assay, real time reverse transcription polymerase chain reaction (real time RT-PCR), and Western blot were used to assess the expression of estrogen metabolizing genes and enzymes: Cytochrome P-450 1B1 (CYP1B1), Nicotinamide adenine dinucleotide phosphate-quinone oxidoreductase1 (NQO1), and Catechol-O-methyl transferase (COMT). Results: Leptin significantly increased the DNA adducts 4-OHE1[E2]-1-N3 adenine and 4-OHE1[E2]-1-N7 guanine. Furthermore, leptin significantly upregulated CYP1B1 promoter activity and protein expression. The luciferase promoter activities of NQO1 and mRNA levels were significantly reduced. Moreover, leptin greatly reduced the reporter activities of the COMT-P1 and COMT-P2 promoters and diminished the protein expression of COMT. Conclusions: Leptin increases DNA adduct levels in breast cancer cells partly by affecting key genes and enzymes involved in estrogen metabolism. Thus, increased focus should be directed toward leptin and its effects on the estrogen metabolic pathway as an effective approach against breast cancer. PMID:28154783

  18. Vanadate Influence on Metabolism of Sugar Phosphates in Fungus Phycomyces blakesleeanus

    PubMed Central

    Žižić, Milan; Živić, Miroslav; Maksimović, Vuk; Stanić, Marina; Križak, Strahinja; Antić, Tijana Cvetić; Zakrzewska, Joanna

    2014-01-01

    The biological and chemical basis of vanadium action in fungi is relatively poorly understood. In the present study, we investigate the influence of vanadate (V5+) on phosphate metabolism of Phycomyces blakesleeanus. Addition of V5+ caused increase of sugar phosphates signal intensities in 31P NMR spectra in vivo. HPLC analysis of mycelial phosphate extracts demonstrated increased concentrations of glucose 6 phosphate, fructose 6 phosphate, fructose 1, 6 phosphate and glucose 1 phosphate after V5+ treatment. Influence of V5+ on the levels of fructose 2, 6 phosphate, glucosamine 6 phosphate and glucose 1, 6 phosphate (HPLC), and polyphosphates, UDPG and ATP (31P NMR) was also established. Increase of sugar phosphates content was not observed after addition of vanadyl (V4+), indicating that only vanadate influences its metabolism. Obtained results from in vivo experiments indicate catalytic/inhibitory vanadate action on enzymes involved in reactions of glycolysis and glycogenesis i.e., phosphoglucomutase, phosphofructokinase and glycogen phosphorylase in filamentous fungi. PMID:25036378

  19. Sulfur and adenine metabolisms are linked, and both modulate sulfite resistance in wine yeast.

    PubMed

    Aranda, Agustín; Jiménez-Martí, Elena; Orozco, Helena; Matallana, Emilia; Del Olmo, Marcellí

    2006-08-09

    Sulfite treatment is the most common way to prevent grape must spoilage in winemaking because the yeast Saccharomyces cerevisiae is particularly resistant to this chemical. In this paper we report that sulfite resistance depends on sulfur and adenine metabolism. The amount of adenine and methionine in a chemically defined growth medium modulates sulfite resistance of wine yeasts. Mutations in the adenine biosynthetic pathway or the presence of adenine in a synthetic minimal culture medium increase sulfite resistance. The presence of methionine has the opposite effect, inducing a higher sensitivity to SO(2). The concentration of methionine, adenine, and sulfite in a synthetic grape must influences the progress of fermentation and at the transcriptional level the expression of genes involved in sulfur (MET16), adenine (ADE4), and acetaldehyde (ALD6) metabolism. Sulfite alters the pattern of expression of all these genes. This fact indicates that the response to this stress is complex and involves several metabolic pathways.

  20. Resolving Some Paradoxes in the Thermal Decomposition Mechanism of Acetaldehyde.

    PubMed

    Sivaramakrishnan, Raghu; Michael, Joe V; Harding, Lawrence B; Klippenstein, Stephen J

    2015-07-16

    The mechanism for the thermal decomposition of acetaldehyde has been revisited with an analysis of literature kinetics experiments using theoretical kinetics. The present modeling study was motivated by recent observations, with very sensitive diagnostics, of some unexpected products in high temperature microtubular reactor experiments on the thermal decomposition of CH3CHO and its deuterated analogs, CH3CDO, CD3CHO, and CD3CDO. The observations of these products prompted the authors of these studies to suggest that the enol tautomer, CH2CHOH (vinyl alcohol), is a primary intermediate in the thermal decomposition of acetaldehyde. The present modeling efforts on acetaldehyde decomposition incorporate a master equation reanalysis of the CH3CHO potential energy surface (PES). The lowest-energy process on this PES is an isomerization of CH3CHO to CH2CHOH. However, the subsequent product channels for CH2CHOH are substantially higher in energy, and the only unimolecular process that can be thermally accessed is a reisomerization to CH3CHO. The incorporation of these new theoretical kinetics predictions into models for selected literature experiments on CH3CHO thermal decomposition confirms our earlier experiment and theory-based conclusions that the dominant decomposition process in CH3CHO at high temperatures is C-C bond fission with a minor contribution (∼10-20%) from the roaming mechanism to form CH4 and CO. The present modeling efforts also incorporate a master-equation analysis of the H + CH2CHOH potential energy surface. This bimolecular reaction is the primary mechanism for removal of CH2CHOH, which can accumulate to minor amounts at high temperatures, T > 1000 K, in most lab-scale experiments that use large initial concentrations of CH3CHO. Our modeling efforts indicate that the observation of ketene, water, and acetylene in the recent microtubular experiments are primarily due to bimolecular reactions of CH3CHO and CH2CHOH with H-atoms and have no bearing on

  1. Influence of metal concentrations, percent salinity, and length of exposure on the metabolic rate of fathead minnows (Pimephales promelas).

    PubMed

    Pistole, David H; Peles, John D; Taylor, Kelly

    2008-07-01

    Understanding the effects of chemical toxicants on energetic processes is an important aspect of ecotoxicology. However, the influence of toxicant concentration and time of exposure on metabolism in aquatic organisms is still poorly understood. The purpose of this investigation was to determine the influence of increasing levels of three stressors (Cu, Cd, percent salinity) and exposure time (24 h and 96 h) on the metabolic rate of fathead minnows (Pimephales promelas). In all 24-h exposures, there existed a threshold concentration, above which metabolic rate decreased significantly compared to the control and lower concentrations. In contrast, the metabolic rate of fish exposed for 96 h increased significantly in all concentrations compared to fish from the control. We suggest fathead minnows exhibit a consistent pattern of metabolic response to stressors, regardless of the physiological mechanisms involved, and that this response differs as a function of time of exposure.

  2. Influence of metabolic genotypes on biomarkers of exposure to 1,3-butadiene in humans.

    PubMed

    Fustinoni, Silvia; Soleo, Leonardo; Warholm, Margareta; Begemann, Petra; Rannug, Agneta; Neumann, Hans-G; Swenberg, James A; Vimercati, Luigi; Colombi, Antonio

    2002-10-01

    Carcinogenicity of 1,3-butadiene (BD) has been linked to its metabolic activation of genotoxic epoxides. The inherited variations in the activity of BD-metabolizing enzymes may be responsible for individual differences that modulate the effects of BD exposure. In this study, 40 Italian subjects (30 BD-exposed workers and 10 clerks) were investigated to evaluate the role of genetic polymorphism of cytochromes P450 2E1, microsomal epoxide hydrolase, glutathione transferases GSTM1, GSTP1, GSTT1, and alcohol dehydrogenase, on urinary N-acetyl-S-(3,4-hydroxybutyl)-L-cysteine (MI) and hemoglobin N-(2,3,4-trihydroxybutyl)-valine adducts (THBVal). Median urinary MI and THBVal levels were 1.71 mg/g creatinine and 37.0 pmol/g globin in BD-exposed workers (exposure range, 4-201 microg/m(3)) and 1.42 mg/g creatinine and 35.3 pmol/g globin in unexposed subjects. No difference between the two groups was observed. Among all subjects, MI and THBVal levels were significantly correlated (r = 0.333). Smoking positively influenced the formation of THBVal. Higher THBVal levels were found in subjects with GSTM1 null and GSTT1 null genotypes; borderline influences were also noticed for CYP2E1(G(-35)T). An additive effect of combined polymorphisms for CYP2E1, GSTM1, and GSTT1 genes on the THBVal levels was suggested. A multiple linear regression analysis, where each factor contributed significantly, correlated THBVal levels with smoking, CYP2E1(G(-35)T), GSTT1, and GSTM1 genotypes (r = 0.698). Our results indicate that the THBVal level is influenced by genotypes, and that the analysis of combined polymorphisms may be the key to a better understanding of the role played by polymorphism of BD-metabolizing enzymes.

  3. Influence of CYP2D6 and CYP2C19 genotypes on venlafaxine metabolic ratios and stereoselective metabolism in forensic autopsy cases.

    PubMed

    Karlsson, L; Zackrisson, A-L; Josefsson, M; Carlsson, B; Green, H; Kugelberg, F C

    2015-04-01

    We investigated whether polymorphisms in the CYP2D6 and CYP2C19 genes influence the metabolic ratios and enantiomeric S/R ratios of venlafaxine (VEN) and its metabolites O-desmethylvenlafaxine (ODV), N-desmethylvenlafaxine (NDV) and N,O-didesmethylvenlafaxine (DDV) in blood from forensic autopsy cases. In all, 94 postmortem cases found positive for VEN during toxicological screening were included. The CYP2D6 genotype was shown to significantly influence the ODV/VEN (P=0.003), DDV/NDV (P=0.010) and DDV/ODV (P=0.034) ratios. The DDV/ODV (P=0.013) and DDV/VEN (P=0.021) ratios were significantly influenced by the CYP2C19 genotype. The S/R ratios of VEN were significantly influenced by both CYP2D6 and CYP2C19 genotypes. CYP2D6 poor metabolizers (PMs) had lower S/R VEN ratios and CYP2C19 PMs had high S/R ratios of VEN in comparison. Our results show that the CYP2D6 genotype influences the O-demethylation whereas CYP2C19 influences the N-demethylation of VEN and its metabolites. In addition, we show a stereoselective metabolism where CYP2D6 favours the R-enantiomer whereas CYP2C19 favours the S-enantiomer.

  4. Pyrolysis of Acetaldehyde: a Fleeting Glimpse of Vinylidene

    NASA Astrophysics Data System (ADS)

    Vasilou, A. J.; Piech, K. M.; Ellison, G. B.; Golan, A.; Kostko, O.; Ahmed, M.; Osborn, D. L.; Daily, J. W.; Nimlos, M. R.; Stanton, J. F.

    2011-06-01

    The thermal decomposition of acetaldehyde has been studied in a heated silicon carbide ``microtubular reactor", with products monitored by both photoionization mass spectrometry and matrix-isolation Fourier transform infrared spectroscopy. A well-known, and observed, route of decomposition occurs when the weakest C-C bond is broken; this process leads to methyl and formyl radicals. In addition to this, we find evidence for two additional channels: CH_3CHO + Δ → H_2CCO (ketene) and CH_3CHO + Δ → C_2H_2 (acetylene), reactions that also generate molecular hydrogen and water, respectively. This talk focuses on the last pathway, which proceeds via vinyl alcohol. Evidence is presented that the high temperature unimolecular dehydration of vinyl alcohol proceeds by two mechanisms; one of these is a (1,2) elimination that directly yields acetylene, and the other is a (1,1) elimination that necessarily accesses the vinylidene isomer of C_2H_2 as an intermediate.

  5. Computer modeling of cool flames and ignition of acetaldehyde

    SciTech Connect

    Cavanagh, J.; Cox, R.A. ); Olson, G. )

    1990-10-01

    A detailed mechanism for the oxidation of acetaldehyde at temperatures between 500-1000 K has been assembled using 77 elementary reactions involving 32 reactant, product, and intermediate species. Rate coefficients were taken from recent critical evaluations of experimental data. Where experimental measurements were not available, the rate parameters were estimated from the body of currently available kinetics information. The mechanism was shown to predict correctly the rates and products observed in CH{sub 3}CHO oxidation studies in a low-pressure in a stirred flow reactor and at high pressure in a rapid compression machine. The oscillatory phenomena in the flow system and the two-stage ignition observed at high pressure were satisfactorily described by the mechanism. It is shown that cool flames are caused by degenerate branching mainly by peracetic acid and that hydrogen peroxide promotes hot ignition.

  6. The effects of acetaldehyde and acrolein on muscle catabolism in C2 myotubes.

    PubMed

    Rom, Oren; Kaisari, Sharon; Aizenbud, Dror; Reznick, Abraham Z

    2013-12-01

    The toxic aldehydes acetaldehyde and acrolein were previously suggested to damage skeletal muscle. Several conditions in which exposure to acetaldehyde and acrolein is increased were associated with muscle wasting and dysfunction. These include alcoholic myopathy, renal failure, oxidative stress, and inflammation. A main exogenous source of both acetaldehyde and acrolein is cigarette smoking, which was previously associated with increased muscle catabolism. Recently, we have shown that exposure of skeletal myotubes to cigarette smoke stimulated muscle catabolism via increased oxidative stress, activation of p38 MAPK, and upregulation of muscle-specific E3 ubiquitin ligases. In this study, we aimed to investigate the effects of acetaldehyde and acrolein on catabolism of skeletal muscle. Skeletal myotubes differentiated from the C2 myoblast cell line were exposed to acetaldehyde or acrolein and their effects on signaling pathways related to muscle catabolism were studied. Exposure of myotubes to acetaldehyde did not promote muscle catabolism. However, exposure to acrolein caused increased generation of free radicals, activation of p38 MAPK, upregulation of the muscle-specific E3 ligases atrogin-1 and MuRF1, degradation of myosin heavy chain, and atrophy of myotubes. Inhibition of p38 MAPK by SB203580 abolished acrolein-induced muscle catabolism. Our findings demonstrate that acrolein but not acetaldehyde activates a signaling cascade resulting in muscle catabolism in skeletal myotubes. Although within the limitations of an in vitro study, these findings indicate that acrolein may promote muscle wasting in conditions of increased exposure to this aldehyde.

  7. Role of apoptotic hepatocytes in HCV dissemination: regulation by acetaldehyde.

    PubMed

    Ganesan, Murali; Natarajan, Sathish Kumar; Zhang, Jinjin; Mott, Justin L; Poluektova, Larisa I; McVicker, Benita L; Kharbanda, Kusum K; Tuma, Dean J; Osna, Natalia A

    2016-06-01

    Alcohol consumption exacerbates hepatitis C virus (HCV) pathogenesis and promotes disease progression, although the mechanisms are not quite clear. We have previously observed that acetaldehyde (Ach) continuously produced by the acetaldehyde-generating system (AGS), temporarily enhanced HCV RNA levels, followed by a decrease to normal or lower levels, which corresponded to apoptosis induction. Here, we studied whether Ach-induced apoptosis caused depletion of HCV-infected cells and what role apoptotic bodies (AB) play in HCV-alcohol crosstalk. In liver cells exposed to AGS, we observed the induction of miR-122 and miR-34a. As miR-34a has been associated with apoptotic signaling and miR-122 with HCV replication, these findings may suggest that cells with intensive viral replication undergo apoptosis. Furthermore, when AGS-induced apoptosis was blocked by a pan-caspase inhibitor, the expression of HCV RNA was not changed. AB from HCV-infected cells contained HCV core protein and the assembled HCV particle that infect intact hepatocytes, thereby promoting the spread of infection. In addition, AB are captured by macrophages to switch their cytokine profile to the proinflammatory one. Macrophages exposed to HCV(+) AB expressed more IL-1β, IL-18, IL-6, and IL-10 mRNAs compared with those exposed to HCV(-) AB. The generation of AB from AGS-treated HCV-infected cells even enhanced the induction of aforementioned cytokines. We conclude that HCV and alcohol metabolites trigger the formation of AB containing HCV particles. The consequent spread of HCV to neighboring hepatocytes via infected AB, as well as the induction of liver inflammation by AB-mediated macrophage activation potentially exacerbate the HCV infection course by alcohol and worsen disease progression.

  8. Investigation of carbohydrate and protein metabolism in the digestive organs of the rabbit under the combined influence of vibration, acceleration and irradiation

    NASA Technical Reports Server (NTRS)

    Yuy, R. I.

    1975-01-01

    During spaceflight, the organism is subjected to the influence of various extremal factors such as acceleration, vibration, irradiation, etc. The study of the influence of these factors on metabolism, especially carbohydrate and protein metabolism, in young rabbits is of great significance in simulation experiments. Dynamic factors and irradiation, depending on dose and duration, lead to reduced RNA and protein metabolism.

  9. Disentangling the relative influence of bacterioplankton phylogeny and metabolism on lysogeny in reservoirs and lagoons.

    PubMed

    Maurice, Corinne F; Mouillot, David; Bettarel, Yvan; De Wit, Rutger; Sarmento, Hugo; Bouvier, Thierry

    2011-05-01

    Previous studies indicate that lysogeny is preponderant when environmental conditions are challenging for the bacterial communities and when their metabolism is reduced. Furthermore, it appears that lysogeny is more frequent within certain bacterial phylogenetic groups. In this comparative study from 10 freshwater reservoirs and 10 coastal lagoons, we aim to disentangle the influence of these different factors. In eight reservoirs and four lagoons, lysogeny was detected by induction assays with mitomycin C, and induction significantly modified the bacterial community composition (BCC), whereas community composition remained constant in ecosystems in which lysogeny was not observed. Among the phylogenetic groups studied, the most abundant ones were Bacteroidetes and α-proteobacteria in lagoons, and β-proteobacteria and Bacteroidetes in reservoirs. These dominant groups comprised the highest proportions of inducible lysogens. In order to unravel the effects of bacterial metabolism from phylogeny on lysogeny, we measured bacterial community physiology and the specific activities of selected phylogenetic groups. The proportion of inducible lysogens within the α- and the β-proteobacteria decreased with increasing group-specific metabolism in lagoons and reservoirs, respectively. In contrast, this relationship was not observed for the other lysogen-containing groups. Hence, both host physiology and phylogeny are critical for the establishment of lysogeny. This study illustrates the importance of lysogeny among the most abundant phylogenetic groups, and further suggests its strong structuring impact on BCC.

  10. Influence of gel and powdered formulations of coenzyme Q10 on metabolic parameters in rats.

    PubMed

    Preuss, Harry G; Echard, Bobby; Bagchi, Debasis; Clouatre, Dallas; Perricone, Nicholas V

    2010-07-01

    The healthful benefits of two commercially available formulations of coenzyme Q10 (Co Q10), one in gel and the other in a powdered form, on a variety of metabolic parameters in Sprague-Dawley rats (SD) were compared to control. The principal metabolic parameters examined were systolic blood pressure (SBP), DNA fragmentation, and free radical formation in hepatic and renal tissues. Compared to control, the powdered formulation significantly decreased SBP in the normotensive SD, whereas both commercial formulations lowered hepatic and renal DNA fragmentation and free radical formation. The gel-formulation lowered hepatic DNA fragmentation more than the powdered-formulation. In conclusion, both gel- and powdered-formulations of Co Q10 significantly influenced the metabolic parameters assessed in a favorable fashion, with the powdered-formulation more effective on SBP and the gel-formulation more effective on overcoming hepatic DNA fragmentation. From the data, we conclude that the choice of the formulation containing Co Q10 to be used should be based on the desired healthful benefits.

  11. Metabolic Influence of Psychrophilic Diatoms on Travertines at the Huanglong Natural Scenic District of China

    PubMed Central

    Sun, Shiyong; Dong, Faqin; Ehrlich, Hermann; Zhao, Xueqing; Liu, Mingxue; Dai, Qunwei; Li, Qiongfang; An, Dejun; Dong, Hailiang

    2014-01-01

    Diatoms are a highly diversified group of algae that are widely distributed in aquatic ecosystems, and various species have different nutrient and temperature requirements for optimal growth. Here, we describe unusual psychrophilic diatoms of Cymbella in a travertine deposition environment in southwestern China in winter season. Travertine surfaces are colonized by these psychrophilic diatoms, which form biofilms of extracellular polysaccharide substances (EPS) with active metabolic activities in extremely cold conditions. The travertine in Huanglong, is a typical single crystalline calcite with anisotropic lattice distortions of unit cell parameters along axes of a and c, and this structure is suggestive of some level of metabolic mediation on mineralization. Near-edge X-ray absorption fine structure spectroscopy (NEXAFS) results further confirmed the occurrence of biogenic distortion of the crystal lattice of travertine calcite. Overall, our results imply that the metabolic influence of psychrophilic diatoms may be particularly important for promoting formation and dissolution of travertine in extremely cold environments of Huanglong. The EPS of psychrophilic diatoms will protect travertine from HCO3− etching and provide template for forming travertine when water re-flowing, in warm season. PMID:25522049

  12. The fungicide triadimefon affects beer flavor and composition by influencing Saccharomyces cerevisiae metabolism.

    PubMed

    Kong, Zhiqiang; Li, Minmin; An, Jingjing; Chen, Jieying; Bao, Yuming; Francis, Frédéric; Dai, Xiaofeng

    2016-09-15

    Despite the fact that beer is produced on a large scale, the effects of pesticide residues on beer have been rarely investigated. In this study, we used micro-brewing settings to determine the effect of triadimefon on the growth of Saccharomyces cerevisiae and beer flavor. The yeast growth in medium was significantly inhibited (45%) at concentrations higher than 5 mg L(-1), reaching 80% and 100% inhibition at 10 mg L(-1) and 50 mg L(-1), respectively. There were significant differences in sensory quality between beer samples fermented with and without triadimefon based on data obtained with an electronic tongue and nose. Such an effect was most likely underlain by changes in yeast fermentation activity, including decreased utilization of maltotriose and most amino acids, reduced production of isobutyl and isoamyl alcohols, and increased ethyl acetate content in the fungicide treated samples. Furthermore, yeast metabolic profiling by phenotype microarray and UPLC/TOF-MS showed that triadimefon caused significant changes in the metabolism of glutathione, phenylalanine and sphingolipids, and in sterol biosynthesis. Thus, triadimefon negatively affects beer sensory qualities by influencing the metabolic activity of S. cerevisiae during fermentation, emphasizing the necessity of stricter control over fungicide residues in brewing by the food industry.

  13. The influence of metabolic heat production on body temperature of a small lizard, Anolis carolinensis.

    PubMed

    Brown, Richard P; Au, Timothy

    2009-06-01

    Little is known about the impact of increased metabolism on body temperatures of small ectotherms. We found that postprandial metabolic rates of 5 g Anolis carolinensis lizards were elevated by factorial increases of 2.3+/-1.0 (mean+/-S.E.) at 26 degrees C and 3.8+/-2.1 at 30 degrees C over their fasting rates. Cloacal body temperatures exceeded environmental temperatures by a small amount in fasted individuals (26 degrees C: 0.3+/-0.02 degrees C, 30 degrees C: 0.3+/-0.02 degrees C), and by a significantly larger amount in fed individuals (26 degrees C: 1.0+/-0.06 degrees C, 30 degrees C: 0.8+/-0.08 degrees C). We conclude that an increased metabolic rate due to specific dynamic action leads to a small but significant elevation of body temperature in this species. Comparisons with thermal increments reported for a large (750 g) varanid lizard suggest that body size has only a minor influence on body-air temperature differentials of ectotherms. This is consistent with theoretical predictions. Finally, endogenous heat production could help elevate body temperatures in the wild and therefore play a minor role in thermoregulation.

  14. Influence of rifampicin on drug metabolism: differences between hexobarbital and antipyrine.

    PubMed

    Breimer, D D; Zilly, W; Richter, E

    1977-04-01

    Six healthy volunteers were treated with 1,200 mg of rifampicin daily for 8 days. Before and immediately afterward each received indocyanine green, hexobarbital, galactose, and antipyrine by intravenous infusion on 3 consecutive days. The plasma concentrations of the drugs were determined several times after infusion. The average elimination half-life of hexobarbital had decreased from 407 to 171 min and its metabolic clearance had increased almost threefold. In contrast, the average elimination half-life of antipyrine was virtually the same on both occasions (6.9 and 7.2 hr) and there was no change in metabolic clearance. In a tuberculous patient treated with rifampicin the antipyrine elimination rate was unaffected. Rifampicin did not influence indocyanine green clearance or galactose elimination capacity. Serum gamma glutamyl transferase was not affected but urinary D-glucaric acid excretion was increased during rifampicin treatment. The experiment with hexobarbital was repeated after 2 weeks in all subjects; half-lives and clearance values had returned to near control values. It appears that rifampicin is a selective inducer of oxidative drug metabolism in man.

  15. Influence of vitamin E on polyamine metabolism in ozone-exposed rat lungs

    SciTech Connect

    Elsayed, N.M.

    1987-06-01

    The influence of vitamin E (E) on lung polyamine metabolism of rats exposed to ozone (O/sub 3/) was examined. Rats fed diets either E-deficient or supplemented with 1000 IU E/kg were exposed to 0.5 +/- 0.05 ppm O/sub 3/ or filtered room air continuously for 5 days. They were then sacrificed and their lungs were analyzed for biochemical changes. Lung E content was strongly associated with the dietary level, and increased (36%, P less than 0.05) after O/sub 3/ exposure only in E-supplemented rats. Lung polyamine metabolism was not affected in the air-control rats by E level, but increased after O/sub 3/ exposure in both dietary groups. The activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase were elevated above air controls. However, the increases were significant only for E-deficient rats when compared to E-supplemented rats. After O/sub 3/ exposure, putrescine increased significantly in both dietary groups; spermidine increased but was significantly higher only in the E-deficient group; and spermine remained unchanged in both dietary groups. Elevated E content of supplemented rat lungs after O/sub 3/ exposure may represent its mobilization under oxidant stress. Increased polyamine metabolism of E-deficient rats suggests either a greater sensitivity to injury by O/sub 3/ or a possible antioxidant function for polyamines compensating for E deficiency.

  16. The fungicide triadimefon affects beer flavor and composition by influencing Saccharomyces cerevisiae metabolism

    NASA Astrophysics Data System (ADS)

    Kong, Zhiqiang; Li, Minmin; An, Jingjing; Chen, Jieying; Bao, Yuming; Francis, Frédéric; Dai, Xiaofeng

    2016-09-01

    Despite the fact that beer is produced on a large scale, the effects of pesticide residues on beer have been rarely investigated. In this study, we used micro-brewing settings to determine the effect of triadimefon on the growth of Saccharomyces cerevisiae and beer flavor. The yeast growth in medium was significantly inhibited (45%) at concentrations higher than 5 mg L‑1, reaching 80% and 100% inhibition at 10 mg L‑1 and 50 mg L‑1, respectively. There were significant differences in sensory quality between beer samples fermented with and without triadimefon based on data obtained with an electronic tongue and nose. Such an effect was most likely underlain by changes in yeast fermentation activity, including decreased utilization of maltotriose and most amino acids, reduced production of isobutyl and isoamyl alcohols, and increased ethyl acetate content in the fungicide treated samples. Furthermore, yeast metabolic profiling by phenotype microarray and UPLC/TOF-MS showed that triadimefon caused significant changes in the metabolism of glutathione, phenylalanine and sphingolipids, and in sterol biosynthesis. Thus, triadimefon negatively affects beer sensory qualities by influencing the metabolic activity of S. cerevisiae during fermentation, emphasizing the necessity of stricter control over fungicide residues in brewing by the food industry.

  17. The fungicide triadimefon affects beer flavor and composition by influencing Saccharomyces cerevisiae metabolism

    PubMed Central

    Kong, Zhiqiang; Li, Minmin; An, Jingjing; Chen, Jieying; Bao, Yuming; Francis, Frédéric; Dai, Xiaofeng

    2016-01-01

    Despite the fact that beer is produced on a large scale, the effects of pesticide residues on beer have been rarely investigated. In this study, we used micro-brewing settings to determine the effect of triadimefon on the growth of Saccharomyces cerevisiae and beer flavor. The yeast growth in medium was significantly inhibited (45%) at concentrations higher than 5 mg L−1, reaching 80% and 100% inhibition at 10 mg L−1 and 50 mg L−1, respectively. There were significant differences in sensory quality between beer samples fermented with and without triadimefon based on data obtained with an electronic tongue and nose. Such an effect was most likely underlain by changes in yeast fermentation activity, including decreased utilization of maltotriose and most amino acids, reduced production of isobutyl and isoamyl alcohols, and increased ethyl acetate content in the fungicide treated samples. Furthermore, yeast metabolic profiling by phenotype microarray and UPLC/TOF-MS showed that triadimefon caused significant changes in the metabolism of glutathione, phenylalanine and sphingolipids, and in sterol biosynthesis. Thus, triadimefon negatively affects beer sensory qualities by influencing the metabolic activity of S. cerevisiae during fermentation, emphasizing the necessity of stricter control over fungicide residues in brewing by the food industry. PMID:27629523

  18. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments.

    PubMed

    Li, Dong; Sharp, Jonathan O; Drewes, Jörg E

    2016-01-01

    To reveal the variation of microbial community functions during water filtration process in river sediments, which has been utilized widely in natural water treatment systems, this study investigates the influence of municipal wastewater discharge to streams on the phylotype and metabolic potential of the microbiome in upstream and particularly various depths of downstream river sediments. Cluster analyses based on both microbial phylogenetic and functional data collectively revealed that shallow upstream sediments grouped with those from deeper subsurface downstream regions. These sediment samples were distinct from those found in shallow downstream sediments. Functional genes associated with carbohydrate, xenobiotic, and certain amino acid metabolisms were overrepresented in upstream and deep downstream samples. In contrast, the more immediate contact with wastewater discharge in shallow downstream samples resulted in an increase in the relative abundance of genes associated with nitrogen, sulfur, purine and pyrimidine metabolisms, as well as restriction-modification systems. More diverse bacterial phyla were associated with upstream and deep downstream sediments, mainly including Actinobacteria, Planctomycetes, and Firmicutes. In contrast, in shallow downstream sediments, genera affiliated with Betaproteobacteria and Gammaproteobacteria were enriched with putative functions that included ammonia and sulfur oxidation, polyphosphate accumulation, and methylotrophic bacteria. Collectively, these results highlight the enhanced capabilities of microbial communities residing in deeper stream sediments for the transformation of water contaminants and thus provide a foundation for better design of natural water treatment systems to further improve the removal of contaminants.

  19. Phenolic metabolism in grafted versus nongrafted cherry tomatoes under the influence of water stress.

    PubMed

    Sánchez-Rodríguez, Eva; Ruiz, Juan Manuel; Ferreres, Federico; Moreno, Diego A

    2011-08-24

    Use of grafts using rootstocks capable of palliating the effects of water stress can be a possible solution to reduce yield losses. For response to stress, plants can induce the metabolism of phenylpropanoids. The aim of the present work is to determine the response of reciprocal grafts made between one tolerant cherry tomato cultivar, Zarina, and a more sensitive cultivar, Josefina. The analysis of the phenylpropanoids pathway was carried out both enzymatically and metabolically. DAHP synthase, shikimate dehydrogenase, phenylalanine ammonium-lyase, cinnamate 4-hydroxylase, and 4-coumarate CoA ligase activities were determined, and characteristic metabolites from the pathway were measured by means of HPLC-MS. Growth in the grafts JosxZar and ZarxJos was not appreciably affected by stress. JosxZar had increased concentrations of phenolic compounds after water stress. This could be correlated with the greater activity of synthesis enzymes as well as a decrease in phenol-degrading enzymes. Phenolic metabolism is more influenced by the aerial part, and therefore it is concluded that the capacity of inducing tolerance in rootstocks depends on the genotype of the shoot.

  20. Nutritional Influences on Skatole Formation and Skatole Metabolism in the Pig

    PubMed Central

    Wesoly, Raffael; Weiler, Ulrike

    2012-01-01

    Summary Skatole is a tryptophan metabolite with fecal odor. Skatole and the testicular steroid androstenone are regarded as the main compounds leading to ‘boar taint,’ a sex-specific odor from pork taken from entire males, as elevated concentrations of both substances may be found in adipose boars tissue. High skatole concentrations in adipose tissue are the result of a complex process, which includes microbial formation in the colon, absorption, metabolism and accretion in fat. Several of these steps leading to high skatole concentrations are influenced by feed components and additives. The present paper discusses the mechanisms by which effective feeding strategies and feed additives exert their influence in the prevention of high skatole concentrations in adipose pig tissue. PMID:26486918

  1. Uptake, translocation, and metabolism of oxabetrinil and CGA-133205 in grain sorghum (Sorghum bicolor) and their influence on metolachlor metabolism

    SciTech Connect

    Yenne, S.P.; Hatzios, K.K.; Meredith, S.A. )

    1990-10-01

    The uptake, translocation, and metabolism of the oxime ether safeners oxabetrinil and CGA-133205 in grain sorghum (Sorghum bicolor (L.) Moench, var. Funk G-522-DR) were investigated. Following application of ({sup 14}C)oxabetrinil and ({sup 14}C)CGA-133205 to imbibed seeds, it appears that the safeners are conferring protection to grain sorghum by increasing the rate of metolachlor metabolism.

  2. A single sip of a strong alcoholic beverage causes exposure to carcinogenic concentrations of acetaldehyde in the oral cavity.

    PubMed

    Linderborg, Klas; Salaspuro, Mikko; Väkeväinen, Satu

    2011-09-01

    The aim of this study was to explore oral exposure to carcinogenic (group 1) acetaldehyde after single sips of strong alcoholic beverages containing no or high concentrations of acetaldehyde. Eight volunteers tasted 5 ml of ethanol diluted to 40 vol.% with no acetaldehyde and 40 vol.% calvados containing 2400 μM acetaldehyde. Salivary acetaldehyde and ethanol concentrations were measured by gas chromatography. The protocol was repeated after ingestion of ethanol (0.5 g/kg body weight). Salivary acetaldehyde concentration was significantly higher after sipping calvados than after sipping ethanol at 30s both with (215 vs. 128 μmol/l, p<0.05) and without (258 vs. 89 μmol/l, p<0.05) alcohol ingestion. From 2 min onwards there were no significant differences in the decreasing salivary acetaldehyde concentration, which remained above the level of carcinogenicity still at 10 min. The systemic alcohol distribution from blood to saliva had no additional effect on salivary acetaldehyde after sipping of the alcoholic beverages. Carcinogenic concentrations of acetaldehyde are produced from ethanol in the oral cavity instantly after a small sip of strong alcoholic beverage, and the exposure continues for at least 10 min. Acetaldehyde present in the beverage has a short-term effect on total acetaldehyde exposure.

  3. Improvement of visible light photocatalytic acetaldehyde decomposition of bismuth vanadate/silica nanocomposites by cocatalyst loading.

    PubMed

    Murakami, Naoya; Takebe, Naohiro; Tsubota, Toshiki; Ohno, Teruhisa

    2012-04-15

    Photocatalytic activity of bismuth vanadate (BiVO(4)) for acetaldehyde decomposition under visible light irradiation was improved by inclusion of a nanocomposition of silica as an adsorbent material and loading of platinum (Pt) or trivalent iron ion (Fe(3+)) as reduction cocatalysts. Addition of silica enhanced photocatalytic activity due to improvement of adsorption ability, but total decomposition of acetaldehyde was not observed within 24h of visible light irradiation. For further improvement of photocatalytic activity, BiVO(4) with an optimized amount of silica composition were modified with Pt or Fe(3+). Photodeposition of Pt greatly increased photocatalytic activity, and acetaldehyde was totally decomposed within 24h of visible light irradiation.

  4. Ethanol-induced myocardial ischemia: close relation between blood acetaldehyde level and myocardial ischemia.

    PubMed

    Ando, H; Abe, H; Hisanou, R

    1993-05-01

    A patient with vasospastic angina who developed myocardial ischemia following ethanol ingestion but not after exercise was described. Myocardial ischemia was evidenced by electrocardiograms (ECGs) and thallium-201 scintigrams. The blood acetaldehyde level after ethanol ingestion was abnormally high. The time course and severity of myocardial ischemia coincided with those of the blood ethanol and acetaldehyde level. Coronary arteriography showed ergonovine maleate-induced coronary vasospasm at the left anterior descending coronary artery. ECG changes similar to those induced by ethanol ingestion were observed at the same time. These findings suggest that the high blood acetaldehyde level might be responsible for the development of coronary vasospasm and myocardial ischemia in this patient.

  5. Effect of fermented sea tangle on the alcohol dehydrogenase and acetaldehyde dehydrogenase in Saccharomyces cerevisiae.

    PubMed

    Cha, Jae-Young; Jeong, Jae-Jun; Yang, Hyun-Ju; Lee, Bae-Jin; Cho, Young-Su

    2011-08-01

    Sea tangle, a kind of brown seaweed, was fermented with Lactobacillus brevis BJ-20. The gamma-aminobutyric acid (GABA) content in fermented sea tangle (FST) was 5.56% (w/w) and GABA in total free amino acid of FST was 49.5%. The effect of FST on the enzyme activities and mRNA protein expression of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) involved in alcohol metabolism in Saccharomyces cerevisiae was investigated. Yeast was cultured in YPD medium supplemented with different concentrations of FST powder [0, 0.4, 0.8, and 1.0% (w/v)] for 18 h. FST had no cytotoxic effect on the yeast growth. The highest activities and protein expressions of ADH and ALDH from the cell-free extracts of S. cerevisiae were evident with the 0.4% and 0.8% (w/v) FST-supplemented concentrations, respectively. The highest concentrations of GABA as well as minerals (Zn, Ca, and Mg) were found in the cell-free extracts of S. cerevisiae cultured in medium supplemented with 0.4% (w/v) FST. The levels of GABA, Zn, Ca, and Mg in S. cerevisiae were strongly correlated with the enzyme activities of ADH and ALDH in yeast. These results indicate that FST can enhance the enzyme activities and protein expression of ADH and ALDH in S. cerevisiae.

  6. [The influence of migration background and parental education on childhood obesity and the metabolic syndrome].

    PubMed

    Dannemann, A; Ernert, A; Rücker, P; Babitsch, B; Wiegand, S

    2011-05-01

    Obesity and metabolic syndrome are important risk factors for cardiovascular diseases. In this study, the influence of migration background and parental education on the degree of obesity and the presence of the metabolic syndrome (MS) in children and adolescents (N=492) requiring sociopediatric care were investigated. Two regression models were computed with the dependent variables BMI-SDS and MS, respectively. Age, gender, migration background, and parental education were used as independent variables. When controlling for age and gender, higher BMI-SDS were found among Turkish patients (β=0.21; p=0.002) and patients with other migration backgrounds (β=0.11; p=0.085) compared to German patients. The BMI-SDS values were also higher among patients from families with a low parental education level compared to those with a higher education level (β=0.31; p<0.001). The key risk factor for MS is the BMI-SDS (OR: 8.9; p=0.011). No influence could be determined for migration background and parental education, when controlling for age, gender, and BMI-SDS. Obesity therapy should be increasingly tailored to the needs of identified risk groups. This will also allow for a targeted prevention of comorbidities.

  7. Mitochondria influence postmortem metabolism and pH in an in vitro model.

    PubMed

    Scheffler, Tracy L; Matarneh, Sulaiman K; England, Eric M; Gerrard, David E

    2015-12-01

    Our objective was to determine the influence of mitochondria on metabolites and pH decline using an in vitro model of postmortem muscle metabolism. Mitochondria were isolated from porcine longissimus lumborum and added (0, 0.5, or 2.0mg) to powdered muscle in reaction media containing either a combination of inhibitors for mitochondria complexes (I, IV, and V) or diluent (without inhibitors). In the absence of inhibitors, adding mitochondria (0.5 and 2.0mg) reduced ATP loss from 30 to 120 min, but did not alter glycogen or lactate during this time. In reactions with mitochondria, inhibitors decreased ATP levels by 30 min and increased glycogen degradation by 60 min. Regardless of mitochondria content, inhibitors enhanced lactate accumulation from 15 to 240 min, and decreased pH from 15 min to 1440 min. In the in vitro model, mitochondria influence the maintenance of ATP, and inhibition of mitochondria enzyme activity contributes to accelerated metabolism and pH decline.

  8. Influence of vitamin B auxotrophy on nitrogen metabolism in eukaryotic phytoplankton

    PubMed Central

    Bertrand, Erin M.; Allen, Andrew E.

    2012-01-01

    While nitrogen availability is known to limit primary production in large parts of the ocean, vitamin starvation amongst eukaryotic phytoplankton is becoming increasingly recognized as an oceanographically relevant phenomenon. Cobalamin (B12) and thiamine (B1) auxotrophy are widespread throughout eukaryotic phytoplankton, with over 50% of cultured isolates requiring B12 and 20% requiring B1. The frequency of vitamin auxotrophy in harmful algal bloom species is even higher. Instances of colimitation between nitrogen and B vitamins have been observed in marine environments, and interactions between these nutrients have been shown to impact phytoplankton species composition. This review surveys available data, including relevant gene expression patterns, to evaluate the potential for interactive effects of nitrogen and vitamin B12 and B1 starvation in eukaryotic phytoplankton. B12 plays essential roles in amino acid and one-carbon metabolism, while B1 is important for primary carbohydrate and amino acid metabolism and likely useful as an anti-oxidant. Here we will focus on three potential metabolic interconnections between vitamin, nitrogen, and sulfur metabolism that may have ramifications for the role of vitamin and nitrogen scarcities in driving ocean productivity and species composition. These include: (1) B12, B1, and N starvation impacts on osmolyte and antioxidant production, (2) B12 and B1 starvation impacts on polyamine biosynthesis, and (3) influence of B12 and B1 starvation on the diatom urea cycle and amino acid recycling through impacts on the citric acid cycle. We evaluate evidence for these interconnections and identify oceanographic contexts in which each may impact rates of primary production and phytoplankton community composition. Major implications include that B12 and B1 deprivation may impair the ability of phytoplankton to recover from nitrogen starvation and that changes in vitamin and nitrogen availability may synergistically impact harmful

  9. Consequences of complex environments: Temperature and energy intake interact to influence growth and metabolic rate.

    PubMed

    Stahlschmidt, Zachary R; Jodrey, Alicia D; Luoma, Rachel L

    2015-09-01

    The field of comparative physiology has a rich history of elegantly examining the effects of individual environmental factors on performance traits linked to fitness (e.g., thermal performance curves for locomotion). However, animals live in complex environments wherein multiple environmental factors co-vary. Thus, we investigated the independent and interactive effects of temperature and energy intake on the growth and metabolic rate of juvenile corn snakes (Pantherophis guttatus) in the context of shifts in complex environments. Unlike previous studies that imposed constant or fluctuating temperature regimes, we manipulated the availability of preferred thermal microclimates (control vs. relatively warm regimes) for eight weeks and allowed snakes to behaviorally thermoregulate among microclimates. By also controlling for energy intake, we demonstrate an interactive effect of temperature and energy on growth-relevant temperature shifts had no effect on snakes' growth when energy intake was low and a positive effect on growth when energy intake was high. Thus, acclimation to relatively warm thermal options can result in increased rates of growth when food is abundant in a taxon in which body size confers fitness advantages. Temperature and energy also interactively influenced metabolic rate-snakes in the warmer temperature regime exhibited reduced metabolic rate (O2 consumption rate at 25 °C and 30 °C) if they had relatively high energy intake. Although we advocate for continued investigation into the effects of complex environments on other traits, our results indicate that warming may actually benefit important life history traits in some taxa and that metabolic shifts may underlie thermal acclimation.

  10. Genetic influences on type 2 diabetes and metabolic syndrome related quantitative traits in Mauritius

    PubMed Central

    Jowett, Jeremy B.; Diego, Vincent P.; Kotea, Navaratnam; Kowlessur, Sudhir; Chitson, Pierrot; Dyer, Thomas D.; Zimmet, Paul; Blangero, John

    2009-01-01

    Epidemiological studies report a high prevalence of type 2 diabetes and metabolic syndrome in the island nation of Mauritius. The Mauritius Family Study was initiated to examine heritable factors that contribute to these high rates of prevalence and consists of 400 individuals in 24 large extended multigenerational pedigrees. Anthropometric and biochemical measurements relating to the metabolic syndrome were undertaken in addition to family and lifestyle based information for each individual. Variance components methods were used to determine the heritability of the type 2 diabetes and metabolic syndrome related quantitative traits. The cohort was made up of 218 females (55%) and 182 males with 22% diagnosed with type 2 diabetes and a further 30% having impaired glucose tolerance or impaired fasting glucose. Notably BMI was not significantly increased in those with type 2 diabetes (P=0.119), however a significant increase in waist circumference was observed in these groups (P=0.02). The heritable proportion of trait variance was substantial and greater than values previously published for hip circumference, LDL and total cholesterol, diastolic and systolic blood pressure and serum creatinine. Height, weight and BMI heritabilities were all in the upper range of those previously reported. The phenotypic characteristics of the Mauritius Family cohort are similar to those previously reported in the Mauritian population with a high observed prevalence rate of type 2 diabetes. A high heritability for key type 2 diabetes and metabolic syndrome related phenotypes (range 0.23 to 0.68), suggest the cohort will have utility in identifying genes that influence these quantitative traits. PMID:19210179

  11. The structure of wheat bread influences the postprandial metabolic response in healthy men.

    PubMed

    Eelderink, Coby; Noort, Martijn W J; Sozer, Nesli; Koehorst, Martijn; Holst, Jens J; Deacon, Carolyn F; Rehfeld, Jens F; Poutanen, Kaisa; Vonk, Roel J; Oudhuis, Lizette; Priebe, Marion G

    2015-10-01

    Postprandial high glucose and insulin responses after starchy food consumption, associated with an increased risk of developing several metabolic diseases, could possibly be improved by altering food structure. We investigated the influence of a compact food structure; different wheat products with a similar composition were created using different processing conditions. The postprandial glucose kinetics and metabolic response to bread with a compact structure (flat bread, FB) was compared to bread with a porous structure (control bread, CB) in a randomized, crossover study with ten healthy male volunteers. Pasta (PA), with a very compact structure, was used as the control. The rate of appearance of exogenous glucose (RaE), endogenous glucose production, and glucose clearance rate (GCR) was calculated using stable isotopes. Furthermore, postprandial plasma concentrations of glucose, insulin, several intestinal hormones and bile acids were analyzed. The structure of FB was considerably more compact compared to CB, as confirmed by microscopy, XRT analysis (porosity) and density measurements. Consumption of FB resulted in lower peak glucose, insulin and glucose-dependent insulinotropic polypeptide (ns) responses and a slower initial RaE compared to CB. These variables were similar to the PA response, except for RaE which remained slower over a longer period after PA consumption. Interestingly, the GCR after FB was higher than expected based on the insulin response, indicating increased insulin sensitivity or insulin-independent glucose disposal. These results demonstrate that the structure of wheat bread can influence the postprandial metabolic response, with a more compact structure being more beneficial for health. Bread-making technology should be further explored to create healthier products.

  12. The influence of hydrologic connectivity on ecosystem metabolism and nitrate uptake in an active beaver meadow

    NASA Astrophysics Data System (ADS)

    Wegener, P.; Covino, T. P.; Wohl, E.; Kampf, S. K.; Lacy, S.

    2015-12-01

    Wetlands have been widely demonstrated to provide important watershed services, such as the sequestration of carbon (C) and removal of nitrate (NO3-) from through-flowing water. Hydrologic connectivity (degree of water and associated material exchange) between floodplain water bodies (e.g., side channels, ponds) and the main channel influence rates of C accumulation and NO3- uptake, and the degree to which wetlands contribute to enhanced water quality at the catchment scale. However, environmental engineers have largely ignored the role of hydrologic connectivity in providing essential ecosystem services, and constructed wetlands are commonly built using compacted clay and berms that result in less groundwater and surface water exchange than observed in natural wetlands. In a study of an active beaver meadow (multithreaded, riparian wetland) in Rocky Mountain National Park, CO, we show how shifts in hydrology (connectivity, residence times, flow paths) from late spring snowmelt (high connectivity) to autumn/winter baseflow (low connectivity) influence ecosystem metabolism metrics (e.g., gross primary production, ecosystem respiration, and net ecosystem productivity) and NO3- uptake rates. We use a combination of mixing analyses, tracer tests, and hydrometric methods to evaluate shifts in surface and subsurface hydrologic connections between floodplain water bodies from snowmelt to baseflow. In the main channel and three floodplain water bodies, we quantify metabolism metrics and NO3- uptake kinetics across shifting flow regimes. Results from our research indicate that NO3- uptake and metabolism dynamics respond to changing levels of hydrologic connectivity to the main channel, emphasizing the importance of incorporating connectivity in wetland mitigation practices that seek to enhance water quality at the catchment scale.

  13. The Influence of Dam Discharge Regime and Canyon Orientation on Ecosystem Metabolism in the Colorado River

    NASA Astrophysics Data System (ADS)

    Kennedy, T. A.; Tietjen, T.; Wright, S.

    2005-05-01

    Since the closure of Glen Canyon Dam and the beginning of flow regulation of the Colorado River in Grand Canyon in 1963, considerable efforts have been directed toward understanding the aquatic ecology of this altered ecosystem. Understanding what controls resource availability has been a central focus of these efforts because the Colorado River supports populations of sport fish and endangered humpback chub, both of which appear to be strongly resource limited. There is evidence that dam discharge regime and canyon orientation influence algal standing crop due to their effects on water velocity (scour) and solar insolation, respectively. We explored whether these physical factors influenced rates of primary production and ecosystem respiration, two different metrics of resource availability, in the clear tailwater section of the Colorado River by conducting whole system metabolism measurements across a range of discharge regimes and in reaches with different orientation (i.e. N-S vs. E-W). We found that while both discharge regime and canyon orientation influence rates of primary production, seasonal changes in light availability appear to have a far stronger influence on rates of primary production in the Colorado River. Water temperature appeared to be the main driver of ecosystem respiration.

  14. Ethanol-induced injuries to carrot cells : the role of acetaldehyde.

    PubMed

    Perata, P; Alpi, A

    1991-03-01

    Carrot (Daucus carota L.) cell cultures show high sensitivity to ethanol since both unorganized cell growth and somatic embryogenesis are strongly inhibited by ethanol at relatively low concentrations (10-20 millimolar). The role of acetaldehyde on ethanol-induced injuries to suspension cultured carrot cells was evaluated. When ethanol oxidation to acetaldehyde is prevented by adding an alcohol-dehydrogenase (EC 1.1.1.1) inhibitor (4-methylpyrazole) to the culture medium, no ethanol toxicity was observed, even if ethanol was present at relatively high concentrations (40-80 millimolar). Data are also presented on the effects of exogenously added acetaldehyde on both carrot cell growth and somatic embryogenesis. We conclude that the observed toxic effects of ethanol cannot be ascribed to ethanol per se but to acetaldehyde.

  15. One-pot lipase-catalyzed aldol reaction combination of in situ formed acetaldehyde.

    PubMed

    Wang, Na; Zhang, Wei; Zhou, Long-Hua; Deng, Qing-Feng; Xie, Zong-Bo; Yu, Xiao-Qi

    2013-12-01

    A facile tandem route to α,β-unsaturated aldehydes was developed by combining the two catalytic activities of the same enzyme in a one-pot strategy for the aldol reaction and in situ generation of acetaldehyde. Lipase from Mucor miehei was found to have conventional and promiscuous catalytic activities for the hydrolysis of vinyl acetate and aldol condensation with in situ formed acetaldehyde. The first reaction continuously provided material for the second reaction, which effectively reduced the volatilization loss, oxidation, and polymerization of acetaldehyde, as well as avoided a negative effect on the enzyme of excessive amounts of acetaldehyde. After optimizing the process, several substrates participated in the reaction and provided the target products in moderate to high yields using this single lipase-catalyzed one-pot biotransformation.

  16. Acetaldehyde Adsorption and Reaction onCeO2(100) Thin Films

    SciTech Connect

    Mullins, David R; Albrecht, Peter M

    2013-01-01

    This study reports and compares the adsorption and dissociation of acetaldehyde on oxidized and reduced CeOX(100) thin films. Acetaldehyde reacts and decomposes on fully oxidized CeO2(100) whereas it desorbs molecularly at low temperature on CeO2(111). The primary products are CO, CO2 and water along with trace amounts of crotonaldehyde and acetylene. The acetaldehyde adsorbs as the 2-acetaldehyde species, dioxyethylene. Decomposition proceeds by dehydrogenation through acetate and enolate intermediates. The reaction pathway is similar on the reduced CeO2-X(100) surface however the inability to react with surface O on the reduced surface results in H2 rather than H2O desorption and C is left on the surface rather than producing CO and CO2. C-O bond cleavage in the enolate intermediate followed by reaction with surface H results in ethylene desorption.

  17. Rosiglitazone protects human neuroblastoma SH-SY5Y cells against acetaldehyde-induced cytotoxicity

    SciTech Connect

    Jung, Tae Woo; Lee, Ji Young; Shim, Wan Sub; Kang, Eun Seok; Kim, Soo Kyung; Ahn, Chul Woo; Lee, Hyun Chul; Cha, Bong Soo . E-mail: bscha@yumc.yonsei.ac.kr

    2006-02-03

    Acetaldehyde, an inhibitor of mitochondrial function, has been widely used as a neurotoxin because it elicits a severe Parkinson's disease-like syndrome with elevation of the intracellular reactive oxygen species level and apoptosis. Rosiglitazone, a peroxisome proliferator-activated receptor-{gamma} agonist, has been known to show various non-hypoglycemic effects, including anti-inflammatory, anti-atherogenic, and anti-apoptotic. In this study, we investigated the protective effects of rosiglitazone on acetaldehyde-induced apoptosis in human neuroblastoma SH-SY5Y cells and attempted to examine its mechanism. Acetaldehyde-induced apoptosis was moderately reversed by rosiglitazone treatment. Our results suggest that the protective effects of rosiglitazone on acetaldehyde-induced apoptosis may be ascribed to ability to induce the expression of anti-oxidant enzymes and to regulate Bcl-2 and Bax expression. These data indicate that rosiglitazone may provide a useful therapeutic strategy for the prevention of progressive neurodegenerative disease such as Parkinson's disease.

  18. An improved biosensor for acetaldehyde determination using a bienzymatic strategy at poly(neutral red) modified carbon film electrodes.

    PubMed

    Ghica, Mariana Emilia; Pauliukaite, Rasa; Marchand, Nicolas; Devic, Eric; Brett, Christopher M A

    2007-05-15

    Improved biosensors for acetaldehyde determination have been developed using a bienzymatic strategy, based on a mediator-modified carbon film electrode and co-immobilisation of NADH oxidase and aldehyde dehydrogenase. Modification of the carbon film electrode with poly(neutral red) mediator resulted in a sensitive, low-cost and reliable NADH detector. Immobilisation of the enzymes was performed using encapsulation in a sol-gel matrix or cross-linking with glutaraldehyde. The bienzymatic biosensors were characterized by studying the influence of pH, applied potential and co-factors. The sol-gel and glutaraldehyde biosensors showed a linear response up to 60 microM and 100 microM, respectively, with detection limits of 2.6 microM and 3.3 microM and sensitivities were 1.7 microA mM(-1) and 5.6 microA mM(-1). The optimised biosensors showed good stability and good selectivity and have been tested for application for the determination of acetaldehyde in natural samples such as wine.

  19. Coproduction of acetaldehyde and hydrogen during glucose fermentation by Escherichia coli.

    PubMed

    Zhu, Huilin; Gonzalez, Ramon; Bobik, Thomas A

    2011-09-01

    Escherichia coli K-12 strain MG1655 was engineered to coproduce acetaldehyde and hydrogen during glucose fermentation by the use of exogenous acetyl-coenzyme A (acetyl-CoA) reductase (for the conversion of acetyl-CoA to acetaldehyde) and the native formate hydrogen lyase. A putative acetaldehyde dehydrogenase/acetyl-CoA reductase from Salmonella enterica (SeEutE) was cloned, produced at high levels, and purified by nickel affinity chromatography. In vitro assays showed that this enzyme had both acetaldehyde dehydrogenase activity (68.07 ± 1.63 μmol min(-1) mg(-1)) and the desired acetyl-CoA reductase activity (49.23 ± 2.88 μmol min(-1) mg(-1)). The eutE gene was engineered into an E. coli mutant lacking native glucose fermentation pathways (ΔadhE, ΔackA-pta, ΔldhA, and ΔfrdC). The engineered strain (ZH88) produced 4.91 ± 0.29 mM acetaldehyde while consuming 11.05 mM glucose but also produced 6.44 ± 0.26 mM ethanol. Studies showed that ethanol was produced by an unknown alcohol dehydrogenase(s) that converted the acetaldehyde produced by SeEutE to ethanol. Allyl alcohol was used to select for mutants with reduced alcohol dehydrogenase activity. Three allyl alcohol-resistant mutants were isolated; all produced more acetaldehyde and less ethanol than ZH88. It was also found that modifying the growth medium by adding 1 g of yeast extract/liter and lowering the pH to 6.0 further increased the coproduction of acetaldehyde and hydrogen. Under optimal conditions, strain ZH136 converted glucose to acetaldehyde and hydrogen in a 1:1 ratio with a specific acetaldehyde production rate of 0.68 ± 0.20 g h(-1) g(-1) dry cell weight and at 86% of the maximum theoretical yield. This specific production rate is the highest reported thus far and is promising for industrial application. The possibility of a more efficient "no-distill" ethanol fermentation procedure based on the coproduction of acetaldehyde and hydrogen is discussed.

  20. Coproduction of Acetaldehyde and Hydrogen during Glucose Fermentation by Escherichia coli ▿ †

    PubMed Central

    Zhu, Huilin; Gonzalez, Ramon; Bobik, Thomas A.

    2011-01-01

    Escherichia coli K-12 strain MG1655 was engineered to coproduce acetaldehyde and hydrogen during glucose fermentation by the use of exogenous acetyl-coenzyme A (acetyl-CoA) reductase (for the conversion of acetyl-CoA to acetaldehyde) and the native formate hydrogen lyase. A putative acetaldehyde dehydrogenase/acetyl-CoA reductase from Salmonella enterica (SeEutE) was cloned, produced at high levels, and purified by nickel affinity chromatography. In vitro assays showed that this enzyme had both acetaldehyde dehydrogenase activity (68.07 ± 1.63 μmol min−1 mg−1) and the desired acetyl-CoA reductase activity (49.23 ± 2.88 μmol min−1 mg−1). The eutE gene was engineered into an E. coli mutant lacking native glucose fermentation pathways (ΔadhE, ΔackA-pta, ΔldhA, and ΔfrdC). The engineered strain (ZH88) produced 4.91 ± 0.29 mM acetaldehyde while consuming 11.05 mM glucose but also produced 6.44 ± 0.26 mM ethanol. Studies showed that ethanol was produced by an unknown alcohol dehydrogenase(s) that converted the acetaldehyde produced by SeEutE to ethanol. Allyl alcohol was used to select for mutants with reduced alcohol dehydrogenase activity. Three allyl alcohol-resistant mutants were isolated; all produced more acetaldehyde and less ethanol than ZH88. It was also found that modifying the growth medium by adding 1 g of yeast extract/liter and lowering the pH to 6.0 further increased the coproduction of acetaldehyde and hydrogen. Under optimal conditions, strain ZH136 converted glucose to acetaldehyde and hydrogen in a 1:1 ratio with a specific acetaldehyde production rate of 0.68 ± 0.20 g h−1 g−1 dry cell weight and at 86% of the maximum theoretical yield. This specific production rate is the highest reported thus far and is promising for industrial application. The possibility of a more efficient “no-distill” ethanol fermentation procedure based on the coproduction of acetaldehyde and hydrogen is discussed. PMID:21803884

  1. Influence of coral and algal exudates on microbially mediated reef metabolism.

    PubMed

    Haas, Andreas F; Nelson, Craig E; Rohwer, Forest; Wegley-Kelly, Linda; Quistad, Steven D; Carlson, Craig A; Leichter, James J; Hatay, Mark; Smith, Jennifer E

    2013-01-01

    Benthic primary producers in tropical reef ecosystems can alter biogeochemical cycling and microbial processes in the surrounding seawater. In order to quantify these influences, we measured rates of photosynthesis, respiration, and dissolved organic carbon (DOC) exudate release by the dominant benthic primary producers (calcifying and non-calcifying macroalgae, turf-algae and corals) on reefs of Mo'orea French Polynesia. Subsequently, we examined planktonic and benthic microbial community response to these dissolved exudates by measuring bacterial growth rates and oxygen and DOC fluxes in dark and daylight incubation experiments. All benthic primary producers exuded significant quantities of DOC (roughly 10% of their daily fixed carbon) into the surrounding water over a diurnal cycle. The microbial community responses were dependent upon the source of the exudates and whether the inoculum of microbes included planktonic or planktonic plus benthic communities. The planktonic and benthic microbial communities in the unamended control treatments exhibited opposing influences on DO concentration where respiration dominated in treatments comprised solely of plankton and autotrophy dominated in treatments with benthic plus plankon microbial communities. Coral exudates (and associated inorganic nutrients) caused a shift towards a net autotrophic microbial metabolism by increasing the net production of oxygen by the benthic and decreasing the net consumption of oxygen by the planktonic microbial community. In contrast, the addition of algal exudates decreased the net primary production by the benthic communities and increased the net consumption of oxygen by the planktonic microbial community thereby resulting in a shift towards net heterotrophic community metabolism. When scaled up to the reef habitat, exudate-induced effects on microbial respiration did not outweigh the high oxygen production rates of benthic algae, such that reef areas dominated with benthic primary

  2. Influence of coral and algal exudates on microbially mediated reef metabolism

    PubMed Central

    Nelson, Craig E.; Rohwer, Forest; Wegley-Kelly, Linda; Quistad, Steven D.; Carlson, Craig A.; Leichter, James J.; Hatay, Mark; Smith, Jennifer E.

    2013-01-01

    Benthic primary producers in tropical reef ecosystems can alter biogeochemical cycling and microbial processes in the surrounding seawater. In order to quantify these influences, we measured rates of photosynthesis, respiration, and dissolved organic carbon (DOC) exudate release by the dominant benthic primary producers (calcifying and non-calcifying macroalgae, turf-algae and corals) on reefs of Mo‘orea French Polynesia. Subsequently, we examined planktonic and benthic microbial community response to these dissolved exudates by measuring bacterial growth rates and oxygen and DOC fluxes in dark and daylight incubation experiments. All benthic primary producers exuded significant quantities of DOC (roughly 10% of their daily fixed carbon) into the surrounding water over a diurnal cycle. The microbial community responses were dependent upon the source of the exudates and whether the inoculum of microbes included planktonic or planktonic plus benthic communities. The planktonic and benthic microbial communities in the unamended control treatments exhibited opposing influences on DO concentration where respiration dominated in treatments comprised solely of plankton and autotrophy dominated in treatments with benthic plus plankon microbial communities. Coral exudates (and associated inorganic nutrients) caused a shift towards a net autotrophic microbial metabolism by increasing the net production of oxygen by the benthic and decreasing the net consumption of oxygen by the planktonic microbial community. In contrast, the addition of algal exudates decreased the net primary production by the benthic communities and increased the net consumption of oxygen by the planktonic microbial community thereby resulting in a shift towards net heterotrophic community metabolism. When scaled up to the reef habitat, exudate-induced effects on microbial respiration did not outweigh the high oxygen production rates of benthic algae, such that reef areas dominated with benthic primary

  3. Gene cloning, expression, and characterization of a novel acetaldehyde dehydrogenase from Issatchenkia terricola strain XJ-2.

    PubMed

    Yao, Zhengying; Zhang, Chong; Lu, Fengxia; Bie, Xiaomei; Lu, Zhaoxin

    2012-03-01

    Acetaldehyde is a known mutagen and carcinogen. Active aldehyde dehydrogenase (ALDH) represents an important mechanism for acetaldehyde detoxification. A yeast strain XJ-2 isolated from grape samples was found to produce acetaldehyde dehydrogenase with a high activity of 2.28 U/mg and identified as Issatchenkia terricola. The enzyme activity was validated by oxidizing acetaldehyde to acetate with NAD(+) as coenzyme based on the headspace gas chromatography analysis. A novel acetaldehyde dehydrogenase gene (ist-ALD) was cloned by combining SiteFinding-PCR and self-formed adaptor PCR. The ist-ALD gene comprised an open reading frame of 1,578 bp and encoded a protein of 525 amino acids. The predicted protein of ist-ALD showed the highest identity (73%) to ALDH from Pichia angusta. The ist-ALD gene was expressed in Escherichia coli, and the gene product (ist-ALDH) presented a productivity of 442.3 U/mL cells. The purified ist-ALDH was a homotetramer of 232 kDa consisting of 57 kDa-subunit according to the SDS-PAGE and native PAGE analysis. Ist-ALDH exhibited the optimal activity at pH 9.0 and 40°C, respectively. The activity of ist-ALDH was enhanced by K(+), NH4(+), dithiothreitol, and 2-mercaptoethanol but strongly inhibited by Ag(+), Hg(2+), Cu(2+), and phenylmethyl sulfonylfluoride. In the presence of NAD(+), ist-ALDH could oxidize many aliphatic, aromatic, and heterocyclic aldehydes, preferably acetaldehyde. Kinetic study revealed that ist-ALDH had a k (cat) value of 27.71/s and a k (cat)/K (m) value of 26.80 × 10(3)/(mol s) on acetaldehyde, demonstrating ist-ALDH, a catalytically active enzyme by comparing with other ALDHs. These studies indicated that ist-ALDH was a potential enzymatic product for acetaldehyde detoxification.

  4. Acetaldehyde: A Small Organic Molecule with Big Impact on Organocatalytic Reactions.

    PubMed

    Kim, Sun Min; Kim, Young Sug; Kim, Dong Wan; Rios, Ramon; Yang, Jung Woon

    2016-02-12

    Stereocontrolled formation of carbon-carbon and carbon-heteroatom bonds through asymmetric organocatalysis is a formidable challenge for modern synthetic chemistry. Among the most significant contributions to this field are the transformations involving the use of acetaldehyde or α-heteroatom-substituted acetaldehydes for constructing valuable synthons (e.g., amino acid derivatives and hydroxycarbonyl). In this Minireview, versatile (enantioselective) organocatalytic transformations are discussed.

  5. Kinetic involvement of acetaldehyde substrate inhibition on the rate equation of yeast aldehyde dehydrogenase.

    PubMed

    Eggert, Matthew W; Byrne, Mark E; Chambers, Robert P

    2012-10-01

    In order to evaluate the effectiveness of aldehyde dehydrogenase (ALDH) from Saccharomyces cerevisiae as a catalyst for the conversion of acetaldehyde into its physiologically and biologically less toxic acetate, the kinetics over broad concentrations were studied to develop a suitable kinetic rate expression. Even with literature accounts of the binding complexations, the yeast ALDH currently lacks a quantitative kinetic rate expression accounting for simultaneous inhibition parameters under higher acetaldehyde concentrations. Both substrate acetaldehyde and product NADH were observed as individual sources of inhibition with the combined effect of a ternary complex of acetaldehyde and the coenzyme leading to experimental rates as little as an eighth of the expected activity. Furthermore, the onset and strength of inhibition from each component were directly affected by the concentration of the co-substrate NAD. While acetaldehyde inhibition of ALDH is initiated below concentrations of 0.05 mM in the presence of 0.5 mM NAD or less, the acetaldehyde inhibition onset shifts to 0.2 mM with as much as 1.6 mM NAD. The convenience of the statistical software package JMP allowed for effective determination of experimental kinetic constants and simplification to a suitable rate expression: v = Vmax(AB)/(K(ia)K(b) + K(b)A + K(a)B + AB + B(2)/K(I-Ald) + B(2)Q/K(I-Ald-NADH) + BQ/K(I-NADH)) where the last three terms represent the inhibition complex terms for acetaldehyde, acetaldehyde-NADH, and NADH, respectively. The corresponding values of K(I-Ald), K(I-Ald-NADH), and K(I-NADH) for yeast ALDH are 2.55, 0.0269, and 0.162 mM at 22 °C and pH 7.8.

  6. Malondialdehyde-acetaldehyde-adducted protein inhalation causes lung injury.

    PubMed

    Wyatt, Todd A; Kharbanda, Kusum K; McCaskill, Michael L; Tuma, Dean J; Yanov, Daniel; DeVasure, Jane; Sisson, Joseph H

    2012-02-01

    In addition to cigarette smoking, alcohol exposure is also associated with increased lung infections and decreased mucociliary clearance. However, little research has been conducted on the combination effects of alcohol and cigarette smoke on lungs. Previously, we have demonstrated in a mouse model that the combination of cigarette smoke and alcohol exposure results in the formation of a very stable hybrid malondialdehyde-acetaldehyde (MAA)-adducted protein in the lung. In in vitro studies, MAA-adducted protein stimulates bronchial epithelial cell interleukin-8 (IL-8) via the activation of protein kinase C epsilon (PKCɛ). We hypothesized that direct MAA-adducted protein exposure in the lungs would mimic such a combination of smoke and alcohol exposure leading to airway inflammation. To test this hypothesis, C57BL/6J female mice were intranasally instilled with either saline, 30μL of 50μg/mL bovine serum albumin (BSA)-MAA, or unadducted BSA for up to 3 weeks. Likewise, human lung surfactant proteins A and D (SPA and SPD) were purified from human pulmonary proteinosis lung lavage fluid and successfully MAA-adducted in vitro. Similar to BSA-MAA, SPD-MAA was instilled into mouse lungs. Lungs were necropsied and assayed for histopathology, PKCɛ activation, and lung lavage chemokines. In control mice instilled with saline, normal lungs had few inflammatory cells. No significant effects were observed in unadducted BSA- or SPD-instilled mice. However, when mice were instilled with BSA-MAA or SPD-MAA for 3 weeks, a significant peribronchiolar localization of inflammatory cells was observed. Both BSA-MAA and SPD-MAA stimulated increased lung lavage neutrophils and caused a significant elevation in the chemokine, keratinocyte chemokine, which is a functional homologue to human IL-8. Likewise, MAA-adducted protein stimulated the activation of airway and lung slice PKCɛ. These data support that the MAA-adducted protein induces a proinflammatory response in the lungs and

  7. Influence of dietary saturated fat content on adiposity, macrophage behavior, inflammation, and metabolism: composition matters

    PubMed Central

    Enos, Reilly T.; Davis, J. Mark; Velázquez, Kandy T.; McClellan, Jamie L.; Day, Stani D.; Carnevale, Kevin A.; Murphy, E. Angela

    2013-01-01

    We examined the effects of three high-fat diets (HFD), differing in the percentage of total calories from saturated fat (SF) (6%, 12%, and 24%) but identical in total fat (40%), on body composition, macrophage behavior, inflammation, and metabolic dysfunction in mice. Diets were administered for 16 weeks. Body composition and metabolism [glucose, insulin, triglycerides, LDL-cholesterol (LDL-C), HDL-cholesterol (HDL-C), total cholesterol (TC)] were examined monthly. Adipose tissue (AT) expression of marker genes for M1 and M2 macrophages and inflammatory mediators [Toll-like receptor (TLR)-2, TLR-4, MCP-1, tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-10, suppressor of cytokine signaling (SOCS)1, IFN-γ] was measured along with activation of nuclear factor kappa-B (NFκB), c-Jun N-terminal kinase (JNK), and p38- mitogen-activated protein kinase (MAPK). AT macrophage infiltration was examined using immunohistochemistry. Circulating MCP-1, IL-6, adiponectin, and leptin were also measured. SF content, independent of total fat, can profoundly affect adiposity, macrophage behavior, inflammation, and metabolic dysfunction. In general, the 12%-SF diet, most closely mimicking the standard American diet, led to the greatest adiposity, macrophage infiltration, and insulin resistance (IR), whereas the 6%-SF and 24%-SF diets produced lower levels of these variables, with the 24%-SF diet resulting in the least degree of IR and the highest TC/HDL-C ratio. Macrophage behavior, inflammation, and IR following HFD are heavily influenced by dietary SF content; however, these responses are not necessarily proportional to the SF percentage. PMID:23103474

  8. Influence of dietary saturated fat content on adiposity, macrophage behavior, inflammation, and metabolism: composition matters.

    PubMed

    Enos, Reilly T; Davis, J Mark; Velázquez, Kandy T; McClellan, Jamie L; Day, Stani D; Carnevale, Kevin A; Murphy, E Angela

    2013-01-01

    We examined the effects of three high-fat diets (HFD), differing in the percentage of total calories from saturated fat (SF) (6%, 12%, and 24%) but identical in total fat (40%), on body composition, macrophage behavior, inflammation, and metabolic dysfunction in mice. Diets were administered for 16 weeks. Body composition and metabolism [glucose, insulin, triglycerides, LDL-cholesterol (LDL-C), HDL-cholesterol (HDL-C), total cholesterol (TC)] were examined monthly. Adipose tissue (AT) expression of marker genes for M1 and M2 macrophages and inflammatory mediators [Toll-like receptor (TLR)-2, TLR-4, MCP-1, tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-10, suppressor of cytokine signaling (SOCS)1, IFN-γ] was measured along with activation of nuclear factor kappa-B (NFκB), c-Jun N-terminal kinase (JNK), and p38- mitogen-activated protein kinase (MAPK). AT macrophage infiltration was examined using immunohistochemistry. Circulating MCP-1, IL-6, adiponectin, and leptin were also measured. SF content, independent of total fat, can profoundly affect adiposity, macrophage behavior, inflammation, and metabolic dysfunction. In general, the 12%-SF diet, most closely mimicking the standard American diet, led to the greatest adiposity, macrophage infiltration, and insulin resistance (IR), whereas the 6%-SF and 24%-SF diets produced lower levels of these variables, with the 24%-SF diet resulting in the least degree of IR and the highest TC/HDL-C ratio. Macrophage behavior, inflammation, and IR following HFD are heavily influenced by dietary SF content; however, these responses are not necessarily proportional to the SF percentage.

  9. Acetaldehyde disrupts tight junctions in Caco-2 cell monolayers by a protein phosphatase 2A-dependent mechanism.

    PubMed

    Dunagan, Mitzi; Chaudhry, Kamaljit; Samak, Geetha; Rao, R K

    2012-12-15

    Acetaldehyde is accumulated at high concentrations in the colonic lumen following ethanol administration. Previous studies demonstrated that acetaldehyde disrupts intestinal epithelial tight junctions and increases paracellular permeability. In the present study, we investigated the role of PP2A in the acetaldehyde-induced disruption of intestinal epithelial tight junctions. Caco-2 cell monolayers were exposed to 200-600 μM acetaldehyde for varying times, and the epithelial barrier function was evaluated by measuring transepithelial electrical resistance and inulin permeability. Acetaldehyde treatment resulted in a time-dependent increase in inulin permeability and redistribution of occludin and ZO-1 from the intercellular junctions. Treatment of cells with fostriecin (a PP2A-selective inhibitor) or knockdown of PP2A by siRNA blocked acetaldehyde-induced increase in inulin permeability and redistribution of occludin and ZO-1. The effects of fostriecin and acetaldehyde were confirmed in mouse intestine ex vivo. Acetaldehyde-induced tight junction disruption and barrier dysfunction were also attenuated by a PP2A-specific inhibitory peptide, TPDYFL. Coimmunoprecipitation studies showed that acetaldehyde increased the interaction of PP2A with occludin and induced dephosphorylation of occludin on threonine residues. Fostriecin and TPDYFL significantly reduced acetaldehyde-induced threonine dephosphorylation of occludin. Acetaldehyde failed to change the level of the methylated form of PP2A-C subunit. However, genistein (a tyrosine kinase inhibitor) blocked acetaldehyde-induced association of PP2A with occludin and threonine dephosphorylation of occludin. These results demonstrate that acetaldehyde-induced disruption of tight junctions is mediated by PP2A translocation to tight junctions and dephosphorylation of occludin on threonine residues.

  10. Protective Effect of Sodium Ferulate on Acetaldehyde-Treated Precision-Cut Rat Liver Slices

    PubMed Central

    Guo, Yu; Wu, Xiao-Qian; Zhang, Chun; Liao, Zhang-Xiu; Wu, Yong

    2012-01-01

    Abstract Activated hepatic stellate cells (HSCs) play a key role in hepatic fibrogenesis, and inhibition of HSC activation may prevent liver fibrosis. Acetaldehyde, the most deleterious metabolite of alcohol, triggers HSC activation in alcoholic liver injury. In the present study, we investigated the protective effect of sodium ferulate (SF), a sodium salt of ferulic acid that is rich in fruits and vegetables, on acetaldehyde-stimulated HSC activation using precision-cut liver slices (PCLSs). Rat PCLSs were co-incubated with 350 μM acetaldehyde and different concentrations of SF. Hepatotoxicity was assessed by measuring enzyme leakage and malondialdehyde content in tissue. α-Smooth muscle actin, transforming growth factor-β1, and hydroxyproline were determined to assess the activation of HSCs. In addition, matrix metalloproteinase (MMP)-1 and the tissue inhibitor of metalloproteinase (TIMP-1) were determined to evaluate collagen degradation. SF prominently prevented the enzyme leakage in acetaldehyde-treated slices and also inhibited HSC activation and collagen production stimulated by acetaldehyde. In addition, SF increased MMP-1 expression and decreased TIMP-1 expression. These results showed that SF protected PCLSs from acetaldehyde-stimulated HSC activation and liver injury, which may be associated with the attenuation of oxidative injury and acceleration of collagen degradation. PMID:22404575

  11. Effect of rinsing with ethanol-containing mouthrinses on the production of salivary acetaldehyde.

    PubMed

    Moazzez, Rebecca; Thompson, Hayley; Palmer, Richard M; Wilson, Ron F; Proctor, Gordon B; Wade, William G

    2011-12-01

    It has been suggested that the use of alcohol-containing mouthrinses could lead to the presence of acetaldehyde in saliva. In this cross-over study, salivary acetaldehyde levels and microbial profiles were determined before and after rinsing with ethanol-containing mouthrinses with essential oils (EO) and cetyl pyridinium chloride (CPC) as the active ingredients, and with 21.6% ethanol and water controls. After rinsing with all ethanol-containing rinses, acetaldehyde was detected in saliva after 30 s but declined to low levels after 5 min. The highest peak levels were seen with the ethanol control (median = 82.9 μM at 2 min) and were significantly higher than those seen at the same time after rinsing with the EO rinse (43.1 μM). There was no correlation between microbial counts or plaque scores and acetaldehyde levels, although dividing the subjects on the basis of a peak acetaldehyde salivary concentration of > 90.8 μM after the ethanol rinse revealed that the high responders were highly significantly more likely to harbour salivary yeasts than were the low responders. Rinsing with ethanol-containing mouthrinses causes a rapid, but transient, increase in salivary acetaldehyde levels.

  12. An original method for producing acetaldehyde and diacetyl by yeast fermentation.

    PubMed

    Rosca, Irina; Petrovici, Anca Roxana; Brebu, Mihai; Stoica, Irina; Minea, Bogdan; Marangoci, Narcisa

    In this study a natural culture medium that mimics the synthetic yeast peptone glucose medium used for yeast fermentations was designed to screen and select yeasts capable of producing high levels of diacetyl and acetaldehyde. The presence of whey powder and sodium citrate in the medium along with manganese and magnesium sulfate enhanced both biomass and aroma development. A total of 52 yeasts strains were cultivated in two different culture media, namely, yeast peptone glucose medium and yeast acetaldehyde-diacetyl medium. The initial screening of the strains was based on the qualitative reaction of the acetaldehyde with Schiff's reagent (violet color) and diacetyl with Brady's reagent (yellow precipitate). The fermented culture media of 10 yeast strains were subsequently analyzed by gas chromatography to quantify the concentration of acetaldehyde and diacetyl synthesized. Total titratable acidity values indicated that a total titratable acidity of 5.5°SH, implying culture medium at basic pH, was more favorable for the acetaldehyde biosynthesis using strain D15 (Candida lipolytica; 96.05mgL(-1) acetaldehyde) while a total titratable acidity value of 7°SH facilitated diacetyl flavor synthesis by strain D38 (Candida globosa; 3.58mgL(-1) diacetyl). Importantly, the results presented here suggest that this can be potentially used in the baking industry.

  13. The total margin of exposure of ethanol and acetaldehyde for heavy drinkers consuming cider or vodka.

    PubMed

    Lachenmeier, Dirk W; Gill, Jan S; Chick, Jonathan; Rehm, Jürgen

    2015-09-01

    Heavy drinkers in Scotland may consume 1600 g ethanol per week. Due to its low price, cider may be preferred over other beverages. Anecdotal evidence has linked cider to specific health hazards beyond other alcoholic beverages. To examine this hypothesis, nine apple and pear cider samples were chemically analysed for constituents and contaminants. None of the products exceeded regulatory or toxicological thresholds, but the regular occurrence of acetaldehyde in cider was detected. To provide a quantitative risk assessment, two collectives of exclusive drinkers of cider and vodka were compared and the intake of acetaldehyde was estimated using probabilistic Monte-Carlo type analysis. The cider consumers were found to ingest more than 200-times the amount of acetaldehyde consumed by vodka consumers. The margins of exposure (MOE) of acetaldehyde were 224 for the cider and over 220,000 for vodka consumers. However, if the effects of ethanol were considered in a cumulative assessment of the combined MOE, the effect of acetaldehyde was minor and the combined MOE for both groups was 0.3. We suggest that alcohol policy priority should be given on reducing ethanol intake by measures such as minimum pricing, rather than to focus on acetaldehyde.

  14. Protective role of ALDH2 against acetaldehyde-derived DNA damage in oesophageal squamous epithelium.

    PubMed

    Amanuma, Yusuke; Ohashi, Shinya; Itatani, Yoshiro; Tsurumaki, Mihoko; Matsuda, Shun; Kikuchi, Osamu; Nakai, Yukie; Miyamoto, Shin'ichi; Oyama, Tsunehiro; Kawamoto, Toshihiro; Whelan, Kelly A; Nakagawa, Hiroshi; Chiba, Tsutomu; Matsuda, Tomonari; Muto, Manabu

    2015-09-16

    Acetaldehyde is an ethanol-derived definite carcinogen that causes oesophageal squamous cell carcinoma (ESCC). Aldehyde dehydrogenase 2 (ALDH2) is a key enzyme that eliminates acetaldehyde, and impairment of ALDH2 increases the risk of ESCC. ALDH2 is produced in various tissues including the liver, heart, and kidney, but the generation and functional roles of ALDH2 in the oesophagus remain elusive. Here, we report that ethanol drinking increased ALDH2 production in the oesophagus of wild-type mice. Notably, levels of acetaldehyde-derived DNA damage represented by N(2)-ethylidene-2'-deoxyguanosine were higher in the oesophagus of Aldh2-knockout mice than in wild-type mice upon ethanol consumption. In vitro experiments revealed that acetaldehyde induced ALDH2 production in both mouse and human oesophageal keratinocytes. Furthermore, the N(2)-ethylidene-2'-deoxyguanosine levels increased in both Aldh2-knockout mouse keratinocytes and ALDH2-knockdown human keratinocytes treated with acetaldehyde. Conversely, forced production of ALDH2 sharply diminished the N(2)-ethylidene-2'-deoxyguanosine levels. Our findings provide new insight into the preventive role of oesophageal ALDH2 against acetaldehyde-derived DNA damage.

  15. Adsorption of acetaldehyde on ice as seen from computer simulation and infrared spectroscopy measurements.

    PubMed

    Darvas, Mária; Lasne, Jérôme; Laffon, Carine; Parent, Philippe; Picaud, Sylvain; Jedlovszky, Pál

    2012-03-06

    Detailed investigation of the adsorption of acetaldehyde on I(h) ice is performed under tropospheric conditions by means of grand canonical Monte Carlo computer simulations and compared to infrared spectroscopy measurements. The experimental and simulation results are in a clear accordance with each other. The simulations indicate that the adsorption process follows Langmuir behavior in the entire pressure range of the vapor phase of acetaldehyde. Further, it was found that the adsorption layer is strictly monomolecular, and the adsorbed acetaldehyde molecules are bound to the ice surface by only one hydrogen bond, typically formed with the dangling H atoms at the ice surface, in agreement with the experimental results. Besides this hydrogen bonding, at high surface coverages dipolar attraction between neighboring acetaldehyde molecules also contributes considerably to the energy gain of the adsorption. The acetaldehyde molecules adopt strongly tilted orientations relative to the ice surface, the tilt angle being scattered between 50° and 90° (i.e., perpendicular orientation). The range of the preferred tilt angles narrows, and the preference for perpendicular orientation becomes stronger upon saturation of the adsorption layer. The CH(3) group of the acetaldehyde molecules points as straight away from the ice surface within the constraint imposed by the tilt angle adopted by the molecule as possible. The heat of adsorption at infinitely low coverage is found to be -36 ± 2 kJ/mol from the infrared spectroscopy measurement, which is in excellent agreement with the computer simulation value of -34.1 kJ/mol.

  16. Protective effect of sodium ferulate on acetaldehyde-treated precision-cut rat liver slices.

    PubMed

    Guo, Yu; Wu, Xiao-Qian; Zhang, Chun; Liao, Zhang-Xiu; Wu, Yong; Wang, Hui

    2012-06-01

    Activated hepatic stellate cells (HSCs) play a key role in hepatic fibrogenesis, and inhibition of HSC activation may prevent liver fibrosis. Acetaldehyde, the most deleterious metabolite of alcohol, triggers HSC activation in alcoholic liver injury. In the present study, we investigated the protective effect of sodium ferulate (SF), a sodium salt of ferulic acid that is rich in fruits and vegetables, on acetaldehyde-stimulated HSC activation using precision-cut liver slices (PCLSs). Rat PCLSs were co-incubated with 350 μM acetaldehyde and different concentrations of SF. Hepatotoxicity was assessed by measuring enzyme leakage and malondialdehyde content in tissue. α-Smooth muscle actin, transforming growth factor-β(1), and hydroxyproline were determined to assess the activation of HSCs. In addition, matrix metalloproteinase (MMP)-1 and the tissue inhibitor of metalloproteinase (TIMP-1) were determined to evaluate collagen degradation. SF prominently prevented the enzyme leakage in acetaldehyde-treated slices and also inhibited HSC activation and collagen production stimulated by acetaldehyde. In addition, SF increased MMP-1 expression and decreased TIMP-1 expression. These results showed that SF protected PCLSs from acetaldehyde-stimulated HSC activation and liver injury, which may be associated with the attenuation of oxidative injury and acceleration of collagen degradation.

  17. Atmospheric chemistry of toxic contaminants 2. Saturated aliphatics: Acetaldehyde, dioxane, ethylene glycol ethers, propylene oxide

    SciTech Connect

    Grosjean, D. )

    1990-11-01

    Detailed mechanisms are outlined for the chemical reactions that contribute to in-situ formation and atmospheric removal of the saturated aliphatic contaminants acetaldehyde, dioxane, ethylene glycol ethers (methyl, ethyl, n-butyl) and propylene oxide. In-situ formation is of major importance for acetaldehyde. In-situ removal involves reaction with OH (all compounds) and, for acetaldehyde, photolysis and reaction with NO{sub 3}. Acetaldehyde, dioxane, and the ethers are rapidly removed (half-lives of less than one day), leading to PAN (acetaldehyde) and to 2-oxodioxane and formaldehyde (dioxane). Reaction products of the glycol ethers include a large number of hydroxyesters, hydroxyacids, and hydroxycarbonyls. Propylene oxide reacts only slowly with OH, with an atmospheric half-life of 3 - 10 days, to yeild formaldehyde, acetaldehyde, and PAN. Uncertainties in the reaction mechanisms for dioxane, the glycol ethers, and propylene oxide are discussed and include C-C vs C-O bond scission in alkoxy radicals as well as alkoxy radical unimolecular decomposition vs reaction with oxygen.

  18. Influence of phenolic constituents from Yucca schidigera bark on arachidonate metabolism in vitro.

    PubMed

    Wenzig, Eva M; Oleszek, Wieslaw; Stochmal, Anna; Kunert, Olaf; Bauer, Rudolf

    2008-10-08

    Yucca schidigera Roezl. (Agavaceae) has been traditionally used to treat a variety of diseases including arthritis and rheumatism. Phenolic constituents isolated from yucca bark, such as resveratrol, trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene, and the yuccaols, have been shown to possess various activities in vitro, such as antioxidant, radical scavenging, iNOS expression inhibitory, and platelet aggregation inhibitory effects. In the present study, the influence of a phenolic-rich fraction from yucca bark and of its main phenolic constituents on key enzymes of arachidonate metabolism was investigated. The fraction and the pure phenolics were shown to inhibit COX-1, COX-2, and LTB 4 formation by 5-LOX in vitro to different extents. The degree of COX-1 inhibition was found to be strongly dependent on the substitution pattern of ring B of the stilbenic moiety. The same trend was observed for the COX-2 inhibitory potential, which was, however, in general much lower for the yuccaols as compared with resveratrol. Resveratrol was also the only compound possessing an LTB 4 formation inhibitory activity. The inhibitory activity on key enzymes of arachidonate metabolism observed in this study might contribute to the explanation of the anti-inflammatory and antiplatelet effects observed for Y. schidigera and its phenolic constituents.

  19. Rain influences the physiological and metabolic responses to exercise in hot conditions.

    PubMed

    Ito, Ryo; Yamashita, Naoyuki; Suzuki, Eiko; Matsumoto, Takaaki

    2015-01-01

    Outdoor exercise often proceeds in rainy conditions. However, the cooling effects of rain on human physiological responses have not been systematically studied in hot conditions. The present study determined physiological and metabolic responses using a climatic chamber that can precisely simulate hot, rainy conditions. Eleven healthy men ran on a treadmill at an intensity of 70% VO2max for 30 min in the climatic chamber at an ambient temperature of 33°C in the presence (RAIN) or absence (CON) of 30 mm · h(-1) of precipitation and a headwind equal to the running velocity of 3.15 ± 0.19 m · s(-1). Oesophageal temperature, mean skin temperature, heart rate, rating of perceived exertion, blood parameters, volume of expired air and sweat loss were measured. Oesophageal and mean skin temperatures were significantly lower from 5 to 30 min, and heart rate was significantly lower from 20 to 30 min in RAIN than in CON (P < 0.05 for all). Plasma lactate and epinephrine concentrations (30 min) and sweat loss were significantly lower (P < 0.05) in RAIN compared with CON. Rain appears to influence physiological and metabolic responses to exercise in heat such that heat-induced strain might be reduced.

  20. Influence of metabolic stress on the inheritance of cell determination in the moss, Pottia intermedia.

    PubMed

    Lobachevska, O; Kyjak, N; Khorkavtsiv, O; Dovgalyuk, A; Kit, N; Klyuchivska, O; Stoika, R; Ripetsky, R; Cove, D

    2005-03-01

    Epigenetically-determined apogamy in aposporous regenerants of the moss Pottia intermedia persists during vegetative propagation, the capacity of apogamy being inherited by individual aposporous protonemal cells. To test Bauer-Lazarenko's proposal that stable apogamy in mosses may be due to some self-replicating cytoplasmic factor, the effects of different metabolic stress treatments on the expression of apogamy have been tested. Chronic metabolic stress caused by long-term growth of autotrophic aposporous protonema on mineral medium with 0.25% of casamino acids and on Murashiga-Skoog (MS) medium with sucrose and phytohormones, as well as by transitory action of high kinetin concentration, have a much stronger influence on the expression of apogamy, than short-term stress treatments with RNase and Pb(2+). Apogamy has been found to be lost stably, after prolonged growth on MS medium containing kinetin and ABA. The proposal that the capacity for apogamy is related to the release of aposporous protonemal cells from a putative factor for apogamy is discussed.

  1. Differential lipid metabolism in monocytes and macrophages: influence of cholesterol loading[S

    PubMed Central

    Fernandez-Ruiz, Irene; Puchalska, Patrycja; Narasimhulu, Chandrakala Aluganti; Sengupta, Bhaswati; Parthasarathy, Sampath

    2016-01-01

    The influence of the hypercholesterolemia associated with atherosclerosis on monocytes is poorly understood. Monocytes are exposed to high concentrations of lipids, particularly cholesterol and lysophosphatidylcholine (lyso-PC). Indeed, in line with recent reports, we found that monocytes accumulate cholesteryl esters (CEs) in hypercholesterolemic mice, demonstrating the need for studies that analyze the effects of lipid accumulation on monocytes. Here we analyze the effects of cholesterol and lyso-PC loading in human monocytes and macrophages. We found that cholesterol acyltransferase and CE hydrolase activities are lower in monocytes. Monocytes also showed a different expression profile of cholesterol influx and efflux genes in response to lipid loading and a different pattern of lyso-PC metabolism. In monocytes, increased levels of CE slowed the conversion of lyso-PC into PC. Interestingly, although macrophages accumulated glycerophosphocholine, phosphocholine was the main water-soluble choline metabolite being generated in monocytes, suggesting a role for mono- and diacylglycerol in the chemoattractability of these cells. In summary, monocytes and macrophages show significant differences in lipid metabolism and gene expression profiles in response to lipid loading. These findings provide new insights into the mechanisms of atherosclerosis and suggest potentials for targeting monocyte chemotactic properties not only in atherosclerosis but also in other diseases. PMID:26839333

  2. The relative influence of nutrients and habitat on stream metabolism in agricultural streams

    USGS Publications Warehouse

    Frankforter, J.D.; Weyers, H.S.; Bales, J.D.; Moran, P.W.; Calhoun, D.L.

    2010-01-01

    Stream metabolism was measured in 33 streams across a gradient of nutrient concentrations in four agricultural areas of the USA to determine the relative influence of nutrient concentrations and habitat on primary production (GPP) and respiration (CR-24). In conjunction with the stream metabolism estimates, water quality and algal biomass samples were collected, as was an assessment of habitat in the sampling reach. When data for all study areas were combined, there were no statistically significant relations between gross primary production or community respiration and any of the independent variables. However, significant regression models were developed for three study areas for GPP (r 2 = 0.79-0.91) and CR-24 (r 2 = 0.76-0.77). Various forms of nutrients (total phosphorus and area-weighted total nitrogen loading) were significant for predicting GPP in two study areas, with habitat variables important in seven significant models. Important physical variables included light availability, precipitation, basin area, and in-stream habitat cover. Both benthic and seston chlorophyll were not found to be important explanatory variables in any of the models; however, benthic ash-free dry weight was important in two models for GPP. ?? 2009 The Author(s).

  3. Influence of Resistance Training on Blood Pressure in Patients with Metabolic Syndrome and Menopause

    PubMed Central

    Cardoso, Glêbia Alexa; Silva, Alexandre Sérgio; de Souza, Alesandra Araújo; dos Santos, Marcos Antônio Pereira; da Silva, Raquel Suelen Brito; de Lacerda, Lavoisiana Mateus; Motae, Maria Paula

    2014-01-01

    This study investigated the chronic and acute influence of resistance exercise on blood pressure in women with metabolic syndrome before and after climacteric. Twenty sedentary women, nine non-menopausal (RNM) and 11 menopausal (RM), performed training for 12 weeks. Meanwhile, 23 controls, 11 not menopausal (CNM) and 12 menopausal (CM), remained sedentary. Blood pressure was measured before and after the training period in conditions of rest and after a session of exercise. Training promoted variations in blood pressure at rest from 116±13 to 118±10 mmHg (p=0.73) and from 128±12 mmHg to 120±11mmHg (p=0.12) in RNM and RM, respectively. CNM and CM varied from 115±11 to 116±12 mmHg (p=0.9) and from 115±14 mmHg to 116±13 mmHg (p=0.74). Blood pressure values in one acute session did not differ between groups (p>0.05). Resistance training did not improve blood pressure in women with metabolic syndrome, regardless of climacteric. PMID:25713648

  4. Influence of biochar addition on methane metabolism during thermophilic phase of composting.

    PubMed

    Sonoki, Tomonori; Furukawa, Toru; Jindo, Keiji; Suto, Koki; Aoyama, Masakazu; Sánchez-Monedero, Miguel Á

    2013-07-01

    CH(4) is known to be generated during the most active phase of composting, even in well-managed composting piles. In this manuscript, we studied the influence of biochar on the CH(4) metabolism during composting of cattle manure and local organic wastes. We evaluated the presence of methanogens and methanotrophs in the composting piles quantified by the level of mcrA encoding methyl coenzyme M reductase alpha subunit and pmoA encoding particulate methane monooxygenase. A decrease of methanogens (mcrA) and an increase of methanotrophs (pmoA) were measured in the composting mixture containing biochar during the most active phase of composting. During the thermophilic phase, the mcrA/pmoA ratios obtained in the composting piles with biochar were twofold lower than in the pile without biochar.

  5. The influence of altered gravity on carbohydrate metabolism in excised wheat leaves

    NASA Technical Reports Server (NTRS)

    Obenland, D. M.; Brown, C. S.

    1994-01-01

    We developed a system to study the influence of altered gravity on carbohydrate metabolism in excised wheat leaves by means of clinorotation. The use of excised leaves in our clinostat studies offered a number of advantages over the use of whole plants, most important of which were minimization of exogenous mechanical stress and a greater amount of carbohydrate accumulation during the time of treatment. We found that horizontal clinorotation of excised wheat leaves resulted in significant reductions in the accumulation of fructose, sucrose, starch and fructan relative to control, vertically clinorotated leaves. Photosynthesis, dark respiration and the extractable activities of ADP glucose pyrophosphorylase (EC 2.7.7.27), sucrose phosphate synthase (EC 2.4.4.14), sucrose sucrose fructosyltransferase (EC 2.4.1.99), and fructan hydrolase (EC 3.2.1.80) were unchanged due to altered gravity treatment.

  6. Genetic and nutritional deficiencies in folate metabolism influence tumorigenicity in Apcmin/+ mice.

    PubMed

    Lawrance, Andrea K; Deng, Liyuan; Brody, Lawrence C; Finnell, Richard H; Shane, Barry; Rozen, Rima

    2007-05-01

    Epidemiological studies indicate that adequate dietary folate is protective against colon cancer, although mechanisms remain largely elusive. We investigated the effects of genetic disruptions of folate transport and metabolism and of dietary folate deficiency in a mouse model of colon cancer, the Apc(min/+) mouse. Apc(min/+) mice with heterozygous knockout of the gene for reduced folate carrier 1 (Rfc1(+/-)) developed significantly fewer adenomas compared to Rfc1(+/+)Apc(min/+) mice [30.3+/-4.6 vs. 60.4+/-9.4 on a control diet (CD) and 42.6+/-4.4 vs. 55.8+/-7.6 on a folate-deficient diet, respectively]. Rfc1(+/-)Apc(min/+) mice also carried a lower tumor load, an indicator of tumor size as well as of tumor number. In contrast, there were no differences in adenoma formation between Apc(min/+) mice carrying a knockout allele for methionine synthase (Mtr(+/-)), an enzyme that catalyzes folate-dependent homocysteine remethylation, and Mtr(+/+)Apc(min/+) mice. However, in both Mtr groups of mice, dietary folate deficiency significantly increased adenoma number (from 32.3+/-3.8 on a CD to 48.1+/-4.2 on a folate-deficient diet), increased plasma homocysteine, decreased global DNA methylation in preneoplastic intestines and increased apoptosis in tissues. There were no genotype-associated differences in these parameters in the Rfc1 group, suggesting that the protection conferred by Rfc1 deficiency is carried out through a different mechanism. In conclusion, genetic and nutritional disturbances in folate metabolism can have distinct influences on tumorigenesis in Apc(min/+) mice; altered levels of homocysteine, global DNA methylation and apoptosis may contribute mechanistically to dietary influence.

  7. Activity before exercise influences recovery metabolism in the lizard Dipsosaurus dorsalis.

    PubMed

    Scholnick, D A; Gleeson, T T

    2000-06-01

    During recovery from even a brief period of exercise, metabolic rate remains elevated above resting levels for extended periods. The intensity and duration of exercise as well as body temperature and hormone levels can influence this excess post-exercise oxygen consumption (EPOC). We examined the influence of activity before exercise (ABE), commonly termed warm-up in endotherms, on EPOC in the desert iguana Dipsosaurus dorsalis. The rate of oxygen consumption and blood lactate levels were measured in 11 female D. dorsalis (mass 41.1 +/- 3.0 g; mean +/- s.e.m.) during rest, after two types of ABE and after 5 min of exhaustive exercise followed by 60 min of recovery. ABE was either single (15 s of maximal activity followed by a 27 min pause) or intermittent (twelve 15 s periods of exercise separated by 2 min pauses). Our results indicate that both single and intermittent ABE reduced recovery metabolic rate. EPOC volumes decreased from 0.261 to 0.156 ml of oxygen consumed during 60 min of recovery when lizards were subjected to intermittent ABE. The average cost of activity (net V(O2) during exercise and 60 min of recovery per distance traveled) was almost 40 % greater in lizards that exercised without any prior activity than in lizards that underwent ABE. Blood lactate levels and removal rates were greatest in animals that underwent ABE. These findings may be of particular importance for terrestrial ectotherms that typically use burst locomotion and have a small aerobic scope and a long recovery period.

  8. Relative reactivities of histamine and indoleamines with acetaldehyde.

    PubMed

    Ohya, Takeshi; Niitsu, Masaru

    2003-08-01

    Relative reactivities of histamine and indoleamines such as tryptamine, 5-hydroxytryptamine and 5-methoxytryptamine with acetaldehyde (AA) under physiological conditions were investigated. AA was found to have much higher reactivity towards histamine than towards indoleamines. For example, when a reaction mixture of AA (1 mM) and histamine or tryptamine (5 mM) in 0.1 M phosphate buffer (pH 7.4) was incubated at 37 degrees C for 24 h, AA decreased by 11% in the case of tryptamine, while in the case of histamine, it decreased 88%. In addition, the reaction product of AA with histamine was investigated. Mixtures of a fixed amount of histamine (5 mM) and various amounts of AA (1-20 mM) in phosphate buffer (pH 7.4) were incubated for 5 h at 37 degrees C. In all cases, only one product, 4-methylspinaceamine (4-MSPA), was observed. The yield of 4-MSPA was in approximate agreement with the losses of histamine and AA, indicating that the loss of histamine caused by the reaction of AA was quantatively converted to 4-MSPA. These results show that the reaction of AA with histamine easily takes place to produce 4-MSPA in an aqueous medium close to physiological conditions.

  9. Thz Spectroscopy of Acetaldehyde and Search of 13C Species in Orion

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Motiyenko, R. A.; Ilyushin, V. V.; Tercero, B.; Cernicharo, J.; Guillemin, J.-C.

    2012-06-01

    Acetaldehyde (CH_3CHO) is one of the high priority complex organic molecules for the astrophysical community. There is a lack of data concerning the 13C species since the measurements are limited to 40 GHz up to date. This molecule displays a large amplitude motion: the hindered rotation of the methyl group with respect to the rest of the molecule. The analysis is performed with RAM36 code which used the Rho Axis Method. Last year we presented the analysis of the millimeterwave spectra of the 13CH_3CHO species. We extended the analysis to the THz range of the vibrational ground state for both species. We are also analyzing the first torsional state (≈140 cm-1) for two reasons: first, this permits to remove correlation between parameters. Second, this state contribute to the partition function even at ISM temperature (100--150 K) since there is an influence on the column density determined in case of detection. The searches of these isotopomers are in progress in ORION. This work was supported by the CNES and the Action sur Projets de l'INSU, PCMI. This work was also done under the ANR-08-BLAN-0054. Kilb, R.W.; Lin, C.C.; and Wilson, E.B. J. Chem. Phys. 26, (1957) 1695 Ilyushin, V.V. et al J. Mol. Spectrosc. 259, (2010) 26 Margules, L. et al. FA07, 66th International Symposium on Molecular Spectroscopy (2011)

  10. Crosslinking density influences chondrocyte metabolism in dynamically loaded photocrosslinked poly(ethylene glycol) hydrogels.

    PubMed

    Bryant, Stephanie J; Chowdhury, Tina T; Lee, David A; Bader, Dan L; Anseth, Kristi S

    2004-03-01

    In approaches to tissue engineer articular cartilage, an important consideration for in situ forming cell carriers is the impact of mechanical loading on the cell composite structure and function. Photopolymerized hydrogel scaffolds based on poly(ethylene glycol) (PEG) may be synthesized with a range of crosslinking densities and corresponding macroscopic properties. This study tests the hypothesis that changes in the hydrogel crosslinking density influences the metabolic response of encapsulated chondrocytes to an applied load. PEG hydrogels were formulated with two crosslinking densities that resulted in gel compressive moduli ranging from 60 to 670 kPa. When chondrocytes were encapsulated in these PEG gels, an increase in crosslinking density resulted in an inhibition in cell proliferation and proteoglycan synthesis. Moreover, when the gels were dynamically loaded for 48 h in unconfined compression with compressive strains oscillating from 0 to 15% at a frequency of 1 Hz, cell proliferation and proteoglycan synthesis were affected in a crosslinking-density-dependent manner. Cell proliferation was inhibited in both crosslinked gels, but was greater in the highly crosslinked gel. In contrast, dynamic loading did not influence proteoglycan synthesis in the loosely crosslinked gel, but a marked decrease in proteoglycan production was observed in the highly crosslinked gel. In summary, changes in PEG hydrogel properties greatly affect how chondrocytes respond to an applied dynamic load.

  11. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis.

    PubMed

    Trompette, Aurélien; Gollwitzer, Eva S; Yadava, Koshika; Sichelstiel, Anke K; Sprenger, Norbert; Ngom-Bru, Catherine; Blanchard, Carine; Junt, Tobias; Nicod, Laurent P; Harris, Nicola L; Marsland, Benjamin J

    2014-02-01

    Metabolites from intestinal microbiota are key determinants of host-microbe mutualism and, consequently, the health or disease of the intestinal tract. However, whether such host-microbe crosstalk influences inflammation in peripheral tissues, such as the lung, is poorly understood. We found that dietary fermentable fiber content changed the composition of the gut and lung microbiota, in particular by altering the ratio of Firmicutes to Bacteroidetes. The gut microbiota metabolized the fiber, consequently increasing the concentration of circulating short-chain fatty acids (SCFAs). Mice fed a high-fiber diet had increased circulating levels of SCFAs and were protected against allergic inflammation in the lung, whereas a low-fiber diet decreased levels of SCFAs and increased allergic airway disease. Treatment of mice with the SCFA propionate led to alterations in bone marrow hematopoiesis that were characterized by enhanced generation of macrophage and dendritic cell (DC) precursors and subsequent seeding of the lungs by DCs with high phagocytic capacity but an impaired ability to promote T helper type 2 (TH2) cell effector function. The effects of propionate on allergic inflammation were dependent on G protein-coupled receptor 41 (GPR41, also called free fatty acid receptor 3 or FFAR3), but not GPR43 (also called free fatty acid receptor 2 or FFAR2). Our results show that dietary fermentable fiber and SCFAs can shape the immunological environment in the lung and influence the severity of allergic inflammation.

  12. Acetaldehyde self-administration by a two-bottle choice paradigm: consequences on emotional reactivity, spatial learning, and memory.

    PubMed

    Plescia, Fulvio; Brancato, Anna; Venniro, Marco; Maniaci, Giuseppe; Cannizzaro, Emanuele; Sutera, Flavia Maria; De Caro, Viviana; Giannola, Libero Italo; Cannizzaro, Carla

    2015-03-01

    Acetaldehyde, the first alcohol metabolite, is responsible for many pharmacological effects that are not clearly distinguishable from those exerted by its parent compound. It alters motor performance, induces reinforced learning and motivated behavior, and produces different reactions according to the route of administration and the relative accumulation in the brain or in the periphery. The effective activity of oral acetaldehyde represents an unresolved field of inquiry that deserves further investigation. Thus, this study explores the acquisition and maintenance of acetaldehyde drinking behavior in adult male rats, employing a two-bottle choice paradigm for water and acetaldehyde solution (from 0.9% to 3.2% v/v), over 8 weeks. The behavioral consequences exerted by chronic acetaldehyde intake are assessed by a set of different tests: trials in an open-field arena and elevated-plus maze provided information on both general motor and explorative activity, and anxiety-driven behavioral responses. The Morris water maze allowed the exploration of cognitive processes such as spatial learning and memory. Determination of acetaldehyde levels in the brain was carried out at the end of the drinking paradigm. Our results indicate that rats exposed for the first time to acetaldehyde at 0.9% displayed a regular and stable daily drinking pattern that reached higher values and a "peaks and drops" shaped-trend when acetaldehyde concentration was increased to 3.2%. Accordingly, an increase in acetaldehyde levels in the brain was determined compared to non-acetaldehyde drinking rats. Acetaldehyde intake during the free-choice paradigm exerted an anxiogenic response in the open-field arena and elevated-plus maze, which in turn correlates with an enhancement in cognitive flexibility and spatial orientation skills, when an adaptive response to a stressful environmental challenge was required. These findings further support the idea that acetaldehyde is indeed a centrally active and

  13. Genes Encoding Enzymes Involved in Ethanol Metabolism

    PubMed Central

    Hurley, Thomas D.; Edenberg, Howard J.

    2012-01-01

    The effects of beverage alcohol (ethanol) on the body are determined largely by the rate at which it and its main breakdown product, acetaldehyde, are metabolized after consumption. The main metabolic pathway for ethanol involves the enzymes alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). Seven different ADHs and three different ALDHs that metabolize ethanol have been identified. The genes encoding these enzymes exist in different variants (i.e., alleles), many of which differ by a single DNA building block (i.e., single nucleotide polymorphisms [SNPs]). Some of these SNPs result in enzymes with altered kinetic properties. For example, certain ADH1B and ADH1C variants that are commonly found in East Asian populations lead to more rapid ethanol breakdown and acetaldehyde accumulation in the body. Because acetaldehyde has harmful effects on the body, people carrying these alleles are less likely to drink and have a lower risk of alcohol dependence. Likewise, an ALDH2 variant with reduced activity results in acetaldehyde buildup and also has a protective effect against alcoholism. In addition to affecting drinking behaviors and risk for alcoholism, ADH and ALDH alleles impact the risk for esophageal cancer. PMID:23134050

  14. The Role of Acetaldehyde in the Increased Acceptance of Ethanol after Prenatal Ethanol Exposure.

    PubMed

    Gaztañaga, Mirari; Angulo-Alcalde, Asier; Spear, Norman E; Chotro, M Gabriela

    2017-01-01

    Recent studies show that acetaldehyde, the first metabolite in the oxidation of ethanol, can be responsible for both, the appetitive and the aversive effects produced by ethanol intoxication. More specifically, it has been hypothesized that acetaldehyde produced in the periphery by the liver is responsible for the aversive effects of ethanol, while the appetitive effects relate to the acetaldehyde produced centrally through the catalase system. On the other hand, from studies in our and other laboratories, it is known that ethanol exposure during the last gestational days (GD) consistently enhances the postnatal acceptance of ethanol when measured during early ontogeny in the rat. This increased liking of ethanol is a conditioned appetitive response acquired by the fetus by the association of ethanol's flavor and an appetitive reinforcer. Although this reinforcer has not yet been fully identified, one possibility points to acetaldehyde produced centrally in the fetus as a likely candidate. This hypothesis is supported by data showing that very early in the rat's ontogeny brain catalases are functional, while the liver's enzymatic system is still immature. In this study, rat dams were administered on GD 17-20 with water or ethanol, together with an acetaldehyde-sequestering agent (D-penicillamine). The offspring's responses to ethanol was then assessed at different postnatal stages with procedures adequate for each developmental stage: on day 1, using the "odor crawling locomotion test" to measure ethanol's odor attractiveness; on day 5, in an operant conditioning procedure with ethanol as the reinforcer; and on day 14 in an ethanol intake test. Results show that the absence of acetaldehyde during prenatal ethanol exposure impeded the observation of the increased acceptance of ethanol at any age. This seems to confirm the crucial role of acetaldehyde as a reinforcer in the appetitive learning occurring during prenatal ethanol exposure.

  15. The Role of Acetaldehyde in the Increased Acceptance of Ethanol after Prenatal Ethanol Exposure

    PubMed Central

    Gaztañaga, Mirari; Angulo-Alcalde, Asier; Spear, Norman E.; Chotro, M. Gabriela

    2017-01-01

    Recent studies show that acetaldehyde, the first metabolite in the oxidation of ethanol, can be responsible for both, the appetitive and the aversive effects produced by ethanol intoxication. More specifically, it has been hypothesized that acetaldehyde produced in the periphery by the liver is responsible for the aversive effects of ethanol, while the appetitive effects relate to the acetaldehyde produced centrally through the catalase system. On the other hand, from studies in our and other laboratories, it is known that ethanol exposure during the last gestational days (GD) consistently enhances the postnatal acceptance of ethanol when measured during early ontogeny in the rat. This increased liking of ethanol is a conditioned appetitive response acquired by the fetus by the association of ethanol’s flavor and an appetitive reinforcer. Although this reinforcer has not yet been fully identified, one possibility points to acetaldehyde produced centrally in the fetus as a likely candidate. This hypothesis is supported by data showing that very early in the rat’s ontogeny brain catalases are functional, while the liver’s enzymatic system is still immature. In this study, rat dams were administered on GD 17–20 with water or ethanol, together with an acetaldehyde-sequestering agent (D-penicillamine). The offspring’s responses to ethanol was then assessed at different postnatal stages with procedures adequate for each developmental stage: on day 1, using the “odor crawling locomotion test” to measure ethanol’s odor attractiveness; on day 5, in an operant conditioning procedure with ethanol as the reinforcer; and on day 14 in an ethanol intake test. Results show that the absence of acetaldehyde during prenatal ethanol exposure impeded the observation of the increased acceptance of ethanol at any age. This seems to confirm the crucial role of acetaldehyde as a reinforcer in the appetitive learning occurring during prenatal ethanol exposure. PMID:28197082

  16. Determination of acetaldehyde in saliva by gas-diffusion flow injection analysis.

    PubMed

    Ramdzan, Adlin N; Mornane, Patrick J; McCullough, Michael J; Mazurek, Waldemar; Kolev, Spas D

    2013-07-05

    The consumption of ethanol is known to increase the likelihood of oral cancer. In addition, there has been a growing concern about possible association between long term use of ethanol-containing mouthwashes and oral cancer. Acetaldehyde, known to be a carcinogen, is the first metabolite of ethanol and it can be produced in the oral cavity after consumption or exposure to ethanol. This paper reports on the development of a gas-diffusion flow injection method for the online determination of salivary acetaldehyde by its colour reaction with 3-methyl-2-benzothiazolinone hydrazone (MBTH) and ferric chloride. Acetaldehyde samples and standards (80 μL) were injected into the donor stream containing NaCl from which acetaldehyde diffused through the hydrophobic Teflon membrane of the gas-diffusion cell into the acceptor stream containing the two reagents mentioned above. The resultant intense green coloured dye was monitored spectrophotometrically at 600 nm. Under the optimum working conditions the method is characterized by a sampling rate of 9h(-1), a linear calibration range of 0.5-15 mg L(-1) (absorbance=5.40×10(-2) [acetaldehyde, mg L(-1)], R(2)=0.998), a relative standard deviation (RSD) of 1.90% (n=10, acetaldehyde concentration of 2.5 mg L(-1)), and a limit of detection (LOD) of 12.3 μg L(-1). The LOD and sampling rate of the proposed method are superior to those of the conventional gas chromatographic (GC) method (LOD=93.0 μg L(-1) and sampling rate=4 h(-1)). The reliability of the proposed method was illustrated by the fact that spiked with acetaldehyde saliva samples yielded excellent recoveries (96.6-101.9%), comparable to those obtained by GC (96.4-102.3%) and there was no statistically significant difference at the 95% confidence level between the two methods when non-spiked saliva samples were analysed.

  17. Quantification by SIFT-MS of acetaldehyde released by lung cells in a 3D model.

    PubMed

    Rutter, Abigail V; Chippendale, Thomas W E; Yang, Ying; Španěl, Patrik; Smith, David; Sulé-Suso, Josep

    2013-01-07

    Our previous studies have shown that both lung cancer cells and non-malignant lung cells release acetaldehyde in vitro. However, data from other laboratories have produced conflicting results. Furthermore, all these studies have been carried out in 2D models which are less physiological cell growth systems when compared to 3D models. Therefore, we have carried out further work on the release of acetaldehyde by lung cells in 3D collagen hydrogels. Lung cancer cells CALU-1 and non-malignant lung cells NL20 were seeded in these hydrogels at different cell concentrations and the release of acetaldehyde was measured with the Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) technique. The data obtained showed that the amount of acetaldehyde released by both cell types grown in a 3D model is higher when compared to that of the same cells grown in 2D models. More importantly, acetaldehyde from the headspace of lung cancer cells could be measured even at a low cell concentration (10(5) cells per hydrogel). The differential of acetaldehyde release could be, depending on the cell concentration, more than 3 fold higher for cancer cells when compared to non-malignant lung cells. This pilot study is the first to study acetaldehyde emission from albeit only two cell types cultured in 3D scaffolds. Clearly, from such limited data the behaviour of other cell types and of tumour cells in vivo cannot be predicted with confidence. Nevertheless, this work represents another step in the search for volatile biomarkers of tumour cells, the ultimate goal of which is to exploit volatile compounds in exhaled breath and other biological fluids as biomarkers of tumours in vivo.

  18. Influence of Neonatal Hypothyroidism on Hepatic Gene Expression and Lipid Metabolism in Adulthood

    PubMed Central

    Bocos, Carlos; Henríquez-Hernández, Luis A.; Kahlon, Nusrat; Herrera, Emilio; Norstedt, Gunnar; Parini, Paolo; Flores-Morales, Amilcar; Fernández-Pérez, Leandro

    2012-01-01

    Thyroid hormones are required for normal growth and development in mammals. Congenital-neonatal hypothyroidism (CH) has a profound impact on physiology, but its specific influence in liver is less understood. Here, we studied how CH influences the liver gene expression program in adulthood. Pregnant rats were given the antithyroid drug methimazole (MMI) from GD12 until PND30 to induce CH in male offspring. Growth defects due to CH were evident as reductions in body weight and tail length from the second week of life. Once the MMI treatment was discontinued, the feed efficiency increased in CH, and this was accompanied by significant catch-up growth. On PND80, significant reductions in body mass, tail length, and circulating IGF-I levels remained in CH rats. Conversely, the mRNA levels of known GH target genes were significantly upregulated. The serum levels of thyroid hormones, cholesterol, and triglycerides showed no significant differences. In contrast, CH rats showed significant changes in the expression of hepatic genes involved in lipid metabolism, including an increased transcription of PPARα and a reduced expression of genes involved in fatty acid and cholesterol uptake, cellular sterol efflux, triglyceride assembly, bile acid synthesis, and lipogenesis. These changes were associated with a decrease of intrahepatic lipids. Finally, CH rats responded to the onset of hypothyroidism in adulthood with a reduction of serum fatty acids and hepatic cholesteryl esters and to T3 replacement with an enhanced activation of malic enzyme. In summary, we provide in vivo evidence that neonatal hypothyroidism influences the hepatic transcriptional program and tissue sensitivity to hormone treatment in adulthood. This highlights the critical role that a euthyroid state during development plays on normal liver physiology in adulthood. PMID:22666351

  19. Influence of obesity and metabolic disease on carotid atherosclerosis in patients with coronary artery disease (CordioPrev study)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Recent data suggest that the presence of associated metabolic abnormalities may be important modifiers of the association of obesity with a poorer prognosis in coronary heart disease. We determined the influence of isolated overweight and obesity on carotid intima media thickness (IMT-CC...

  20. Influence of abnormally high leptin levels during pregnancy on metabolic phenotypes in progeny mice.

    PubMed

    Makarova, Elena N; Chepeleva, Elena V; Panchenko, Polina E; Bazhan, Nadezhda M

    2013-12-01

    Maternal obesity increases the risk of obesity in offspring, and obesity is accompanied by an increase in blood leptin levels. The "yellow" mutation at the mouse agouti locus (A(y)) increases blood leptin levels in C57BL preobese pregnant mice without affecting other metabolic characteristics. We investigated the influence of the A(y) mutation or leptin injection at the end of pregnancy in C57BL mice on metabolic phenotypes and the susceptibility to diet-induced obesity (DIO) in offspring. In both C57BL-A(y) and leptin-treated mice, the maternal effect was more pronounced in male offspring. Compared with males born to control mothers, males born to A(y) mothers displayed equal food intake (FI) but decreased body weight (BW) gain after weaning, equal glucose tolerance, and enhanced FI-to-BW ratios on the standard diet but the same FI and BW on the high-fat diet. Males born to A(y) mothers were less responsive to the anorectic effect of exogenous leptin and less resistant to fasting (were not hyperphagic and gained less weight during refeeding after food deprivation) compared with males born to control mothers. However, all progeny displayed equal hypothalamic expression of Agouti gene-related protein (AgRP), neuropeptide Y (NPY), and proopiomelanocortin (POMC) and equal plasma leptin and glucose levels after food deprivation. Leptin injections in C57BL mice on day 17 of pregnancy decreased BW in both male and female offspring but inhibited FI and DIO only in male offspring. Our results show that hyperleptinemia during pregnancy has sex-specific long-term effects on energy balance regulation in progeny and does not predispose offspring to developing obesity.

  1. CD36 Protein Influences Myocardial Ca2+ Homeostasis and Phospholipid Metabolism

    PubMed Central

    Pietka, Terri A.; Sulkin, Matthew S.; Kuda, Ondrej; Wang, Wei; Zhou, Dequan; Yamada, Kathryn A.; Yang, Kui; Su, Xiong; Gross, Richard W.; Nerbonne, Jeanne M.; Efimov, Igor R.; Abumrad, Nada A.

    2012-01-01

    Sarcolemmal CD36 facilitates myocardial fatty acid (FA) uptake, which is markedly reduced in CD36-deficient rodents and humans. CD36 also mediates signal transduction events involving a number of cellular pathways. In taste cells and macrophages, CD36 signaling was recently shown to regulate store-responsive Ca2+ flux and activation of Ca2+-dependent phospholipases A2 that cycle polyunsaturated FA into phospholipids. It is unknown whether CD36 deficiency influences myocardial Ca2+ handling and phospholipid metabolism, which could compromise the heart, typically during stresses. Myocardial function was examined in fed or fasted (18–22 h) CD36−/− and WT mice. Echocardiography and telemetry identified conduction anomalies that were associated with the incidence of sudden death in fasted CD36−/− mice. No anomalies or death occurred in WT mice during fasting. Optical imaging of perfused hearts from fasted CD36−/− mice documented prolongation of Ca2+ transients. Consistent with this, knockdown of CD36 in cardiomyocytes delayed clearance of cytosolic Ca2+. Hearts of CD36−/− mice (fed or fasted) had 3-fold higher SERCA2a and 40% lower phospholamban levels. Phospholamban phosphorylation by protein kinase A (PKA) was enhanced after fasting reflecting increased PKA activity and cAMP levels in CD36−/− hearts. Abnormal Ca2+ homeostasis in the CD36−/− myocardium associated with increased lysophospholipid content and a higher proportion of 22:6 FA in phospholipids suggests altered phospholipase A2 activity and changes in membrane dynamics. The data support the role of CD36 in coordinating Ca2+ homeostasis and lipid metabolism and the importance of this role during myocardial adaptation to fasting. Potential relevance of the findings to CD36-deficient humans would need to be determined. PMID:23019328

  2. Influence of dietary nitrate supplementation on physiological and muscle metabolic adaptations to sprint interval training.

    PubMed

    Thompson, Christopher; Wylie, Lee J; Blackwell, Jamie R; Fulford, Jonathan; Black, Matthew I; Kelly, James; McDonagh, Sinead T J; Carter, James; Bailey, Stephen J; Vanhatalo, Anni; Jones, Andrew M

    2017-03-01

    We hypothesized that 4 wk of dietary nitrate supplementation would enhance exercise performance and muscle metabolic adaptations to sprint interval training (SIT). Thirty-six recreationally active subjects, matched on key variables at baseline, completed a series of exercise tests before and following a 4-wk period in which they were allocated to one of the following groups: 1) SIT and [Formula: see text]-depleted beetroot juice as a placebo (SIT+PL); 2) SIT and [Formula: see text]-rich beetroot juice (~13 mmol [Formula: see text]/day; SIT+BR); or 3) no training and [Formula: see text]-rich beetroot juice (NT+BR). During moderate-intensity exercise, pulmonary oxygen uptake was reduced by 4% following 4 wk of SIT+BR and NT+BR (P < 0.05) but not SIT+PL. The peak work rate attained during incremental exercise increased more in SIT+BR than in SIT+PL (P < 0.05) or NT+BR (P < 0.001). The reduction in muscle and blood [lactate] and the increase in muscle pH from preintervention to postintervention were greater at 3 min of severe-intensity exercise in SIT+BR compared with SIT+PL and NT+BR (P < 0.05). However, the change in severe-intensity exercise performance was not different between SIT+BR and SIT+PL (P > 0.05). The relative proportion of type IIx muscle fibers in the vastus lateralis muscle was reduced in SIT+BR only (P < 0.05). These findings suggest that BR supplementation may enhance some aspects of the physiological adaptations to SIT.NEW & NOTEWORTHY We investigated the influence of nitrate-rich and nitrate-depleted beetroot juice on the muscle metabolic and physiological adaptations to 4 wk of sprint interval training. Compared with placebo, dietary nitrate supplementation reduced the O2 cost of submaximal exercise, resulted in greater improvement in incremental (but not severe-intensity) exercise performance, and augmented some muscle metabolic adaptations to training. Nitrate supplementation may facilitate some of the physiological responses to sprint interval

  3. A novel antifungal is active against Candida albicans biofilms and inhibits mutagenic acetaldehyde production in vitro.

    PubMed

    Nieminen, Mikko T; Novak-Frazer, Lily; Rautemaa, Wilma; Rajendran, Ranjith; Sorsa, Timo; Ramage, Gordon; Bowyer, Paul; Rautemaa, Riina

    2014-01-01

    The ability of C. albicans to form biofilms is a major virulence factor and a challenge for management. This is evident in biofilm-associated chronic oral-oesophageal candidosis, which has been shown to be potentially carcinogenic in vivo. We have previously shown that most Candida spp. can produce significant levels of mutagenic acetaldehyde (ACH). ACH is also an important mediator of candidal biofilm formation. We have also reported that D,L-2-hydroxyisocaproic acid (HICA) significantly inhibits planktonic growth of C. albicans. The aim of the present study was to investigate the effect of HICA on C. albicans biofilm formation and ACH production in vitro. Inhibition of biofilm formation by HICA, analogous control compounds or caspofungin was measured using XTT to measure biofilm metabolic activity and PicoGreen as a marker of biomass. Biofilms were visualised by scanning electron microscopy (SEM). ACH levels were measured by gas chromatography. Transcriptional changes in the genes involved in ACH metabolism were measured using RT-qPCR. The mean metabolic activity and biomass of all pre-grown (4, 24, 48 h) biofilms were significantly reduced after exposure to HICA (p<0.05) with the largest reductions seen at acidic pH. Caspofungin was mainly active against biofilms pre-grown for 4 h at neutral pH. Mutagenic levels (>40 μM) of ACH were detected in 24 and 48 h biofilms at both pHs. Interestingly, no ACH production was detected from D-glucose in the presence of HICA at acidic pH (p<0.05). Expression of genes responsible for ACH catabolism was up-regulated by HICA but down-regulated by caspofungin. SEM showed aberrant hyphae and collapsed hyphal structures during incubation with HICA at acidic pH. We conclude that HICA has potential as an antifungal agent with ability to inhibit C. albicans cell growth and biofilm formation. HICA also significantly reduces the mutagenic potential of C. albicans biofilms, which may be important when treating bacterial-fungal biofilm

  4. A novel antifungal is active against Candida albicans biofilms and inhibits mutagenic acetaldehyde production in vitro.

    PubMed

    Nieminen, Mikko T; Novak-Frazer, Lily; Rautemaa, Vilma; Rajendran, Ranjith; Sorsa, Timo; Ramage, Gordon; Bowyer, Paul; Rautemaa, Riina

    2014-01-01

    The ability of C. albicans to form biofilms is a major virulence factor and a challenge for management. This is evident in biofilm-associated chronic oral-oesophageal candidosis, which has been shown to be potentially carcinogenic in vivo. We have previously shown that most Candida spp. can produce significant levels of mutagenic acetaldehyde (ACH). ACH is also an important mediator of candidal biofilm formation. We have also reported that D,L-2-hydroxyisocaproic acid (HICA) significantly inhibits planktonic growth of C. albicans. The aim of the present study was to investigate the effect of HICA on C. albicans biofilm formation and ACH production in vitro. Inhibition of biofilm formation by HICA, analogous control compounds or caspofungin was measured using XTT to measure biofilm metabolic activity and PicoGreen as a marker of biomass. Biofilms were visualised by scanning electron microscopy (SEM). ACH levels were measured by gas chromatography. Transcriptional changes in the genes involved in ACH metabolism were measured using RT-qPCR. The mean metabolic activity and biomass of all pre-grown (4, 24, 48 h) biofilms were significantly reduced after exposure to HICA (p<0.05) with the largest reductions seen at acidic pH. Caspofungin was mainly active against biofilms pre-grown for 4 h at neutral pH. Mutagenic levels (>40 µM) of ACH were detected in 24 and 48 h biofilms at both pHs. Interestingly, no ACH production was detected from D-glucose in the presence of HICA at acidic pH (p<0.05). Expression of genes responsible for ACH catabolism was up-regulated by HICA but down-regulated by caspofungin. SEM showed aberrant hyphae and collapsed hyphal structures during incubation with HICA at acidic pH. We conclude that HICA has potential as an antifungal agent with ability to inhibit C. albicans cell growth and biofilm formation. HICA also significantly reduces the mutagenic potential of C. albicans biofilms, which may be important when treating bacterial-fungal biofilm

  5. How type of parturition and health status influence hormonal and metabolic profiles in newborn foals.

    PubMed

    Panzani, S; Comin, A; Galeati, G; Romano, G; Villani, M; Faustini, M; Veronesi, M C

    2012-04-01

    Thyroid hormones, insulin growth factor I (IGF-I) and non-esterified fatty acids (NEFA) represent important hormonal and metabolic factors associated with perinatal growth and maturation. Their action could be influenced by the type of parturition and the health status of the foal and therefore the aim of this work is to evaluate their plasma concentrations in newborn foals during the first 2 wks of life. Three groups of subjects were enrolled: 15 healthy foals born by spontaneous parturition, 24 healthy foals born by induced parturition and 26 pathologic foals. From each of the healthy foals, blood was collected at 10, 20 and 30 minutes, 3 and 12 hours from birth, daily from Day 1 to Day 7, and at Day 10 and 14 of life. In pathologic foals samples were collected twice a day from the day of admission at the hospital until the day of discharge or death. Thyroid hormones (T3 and T4) and IGF-I were analyzed by radioimmunoassay and NEFA by enzymatic-colorimetric methods. In all the three groups a declining trend of T3 and T4 plasma concentrations was detectable, with lower levels in the pathologic group compared to healthy foals. Spontaneous foals showed higher levels of T3 at 7 d compared to induced foals, while T4 levels were higher in spontaneous vs. induced foals before 6 h of life, at three and seven days. IGF-I showed increasing plasma concentrations in all three considered groups. No differences were found between healthy and pathologic foals. NEFA in spontaneous and induced healthy foals showed a declining trend with higher levels during the first hours of life. Pathologic foals presented higher levels compared to spontaneous foals only at 24 h and 10 d. These data suggest that the type of foaling could influence the reference ranges for thyroid hormones. Moreover, pathologic foals showed some hormonal and metabolic differences related to their health status. Above all changes of thyroid hormones levels, early in postnatal life, could be a cause, and not only a

  6. Measurement of acetaldehyde in exhaled breath using a laser absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Kamat, Pratyuma C.; Roller, Chad B.; Namjou, Khosrow; Jeffers, James D.; Faramarzalian, Ali; Salas, Rodolfo; McCann, Patrick J.

    2007-07-01

    A high-resolution liquid-nitrogen-free mid-infrared tunable diode laser absorption spectroscopy (TDLAS) system was used to perform real-time measurement of acetaldehyde concentrations in human exhaled breath following ingestion of an alcoholic beverage. Acetaldehyde absorption features were measured near 5.79 μm (1727 cm-1) using a IV-VI semiconductor laser, a 100 m long path optical gas cell, and second- harmonic detection coupled with wavelength modulation. Acetaldehyde levels were measured with a minimum detection limit of 80 ppb for 5 s integration time. The variations in exhaled acetaldehyde levels over time were analyzed prior to and following ingestion of two different amounts of white wine. A method to calibrate acetaldehyde measurements internally using water vapor absorption lines was investigated to eliminate the need for system calibration with gas standards. The potential of a TDLAS system to be used as a noninvasive clinical tool for measurements of large volatile compounds with possible applications in cancer detection is demonstrated.

  7. Theoretical study of the mechanism of cycloaddition reaction between dichloro-germylidene and acetaldehyde

    NASA Astrophysics Data System (ADS)

    Lu, Xiuhui; Han, Junfeng; Xu, Yuehua; Shi, Leyi; Lian, Zhenxia

    2010-06-01

    The mechanism of the cycloadditional reaction between singlet dichloro-germylidene(R1) and (acetaldehyde(R2) has been investigated with MP2/6-31G* method, including geometry optimization, vibrational analysis and energies for the involved stationary points on the potential energy surface. From the potential energy profile, we predict that the cycloaddition reaction between singlet dichloro-germylidene and acetaldehyde has two competitive dominant reaction pathways. Going with the formation of two side products (INT3 and INT4), simultaneously. The two competitive reactions both consist of two steps: (1) two reactants firstly form a three-membered ring intermediate (INT1) and a twisted four-membered ring intermediate (INT2), respectively, both of which are barrier-free exothermic reactions of 44.5 and 63.0 kJ/mol; (2) then INT1 and INT2 further isomerize to a four-membered ring product (P1) and a chlorine-transfer product (P2) via transitions (TS1 and TS2), respectively, with the barriers of 9.3 and 1.0 kJ/mol; simultaneously, P1 and INT2 react further with acetaldehyde(R2) to give two side products (INT3 and INT4), respectively, which are also barrier-free exothermic reaction of 65.4 and 102.7 kJ/mol.

  8. Dissociative electron attachments to ethanol and acetaldehyde: A combined experimental and simulation study

    SciTech Connect

    Wang, Xu-Dong; Xuan, Chuan-Jin; Feng, Wen-Ling; Tian, Shan Xi

    2015-02-14

    Dissociation dynamics of the temporary negative ions of ethanol and acetaldehyde formed by the low-energy electron attachments is investigated by using the anion velocity map imaging technique and ab initio molecular dynamics simulations. The momentum images of the dominant fragments O{sup −}/OH{sup −} and CH{sub 3}{sup −} are recorded, indicating the low kinetic energies of O{sup −}/OH{sup −} for ethanol while the low and high kinetic energy distributions of O{sup −} ions for acetaldehyde. The CH{sub 3}{sup −} image for acetaldehyde also shows the low kinetic energy. With help of the dynamics simulations, the fragmentation processes are qualitatively clarified. A new cascade dissociation pathway to produce the slow O{sup −} ion via the dehydrogenated intermediate, CH{sub 3}CHO{sup −} (acetaldehyde anion), is proposed for the dissociative electron attachment to ethanol. After the electron attachment to acetaldehyde molecule, the slow CH{sub 3}{sup −} is produced quickly in the two-body dissociation with the internal energy redistributions in different aspects before bond cleavages.

  9. Formaldehyde and acetaldehyde associated with the use of natural gas as a fuel for light vehicles

    NASA Astrophysics Data System (ADS)

    Corrêa, Sérgio M.; Arbilla, Graciela

    Data collected from 1998 to 2001 clearly show that formaldehyde levels in ambient air of the city of Rio de Janeiro increased in 2001 (Corrêa et al., 2003, Atmospheric Environment 37, 23-29). In order to continue this study, samples were collected at the same site in the period from 2001 to 2002. In this work, we present the observed trends for formaldehyde and acetaldehyde levels from 1998 to 2002. Mean formaldehyde levels increased from 20 ppb in 1998 to 80 ppb in 2002, while acetaldehyde concentrations remained nearly unchanged. The formaldehyde/acetaldehyde ratio increased from 1.0 to 4.5 in the same period of time. These results may be explained by the increasing use of compressed natural gas by the vehicular fleet, in substitution of ethanol and gasohol (a mixture of gasoline and ethanol, 24% v/v). In order to confirm this hypothesis, some experiments were carried out to estimate the formaldehyde and acetaldehyde emissions from 20 automobiles powered by natural gas. The results showed a mean formaldehyde/acetaldehyde emission ratio of 3.42 for natural gas-fueled vehicles and of 0.24 when the same vehicles are fueled with gasohol. These high levels of formaldehyde may be attributed to the incomplete combustion of methane (80-90% of the natural gas) that is catalytically converted to formaldehyde in the exhaust pipe.

  10. The influence of trilostane on steroid hormone metabolism in canine adrenal glands and corpora lutea-an in vitro study.

    PubMed

    Ouschan, C; Lepschy, M; Zeugswetter, F; Möstl, E

    2012-03-01

    Trilostane is widely used to treat hyperadrenocorticism in dogs. Trilostane competitively inhibits the enzyme 3-beta hydroxysteroid dehydrogenase (3β-HSD), which converts pregnenolone (P5) to progesterone (P4) and dehydroepiandrosterone (DHEA) to androstendione (A4). Although trilostane is frequently used in dogs, the molecular mechanism underlying its effect on canine steroid hormone biosynthesis is still an enigma. Multiple enzymes of 3β-HSD have been found in humans, rats and mice and their presence might explain the contradictory results of studies on the effectiveness of trilostane. We therefore investigated the influence of trilostane on steroid hormone metabolism in dogs by means of an in vitro model. Canine adrenal glands from freshly euthanized dogs and corpora lutea (CL) were incubated with increasing doses of trilostane. Tritiated P5 or DHEA were used as substrates. The resulting radioactive metabolites were extracted, separated by thin layer chromatography and visualized by autoradiography. A wide variety of radioactive metabolites were formed in the adrenal glands and in the CL, indicating high metabolic activity in both tissues. In the adrenal cortex, trilostane influences the P5 metabolism in a dose- and time-dependent manner, while DHEA metabolism and metabolism of both hormones in the CL were unaffected. The results indicate for the first time that there might be more than one enzyme of 3β-HSD present in dogs and that trilostane selectively inhibits P5 conversion to P4 only in the adrenal gland.

  11. Influence of Niche-Specific Nutrients on Secondary Metabolism in Vibrionaceae

    PubMed Central

    Phippen, Christopher; Gotfredsen, Charlotte H.; Nielsen, Kristian Fog

    2016-01-01

    ABSTRACT Many factors, such as the substrate and the growth phase, influence biosynthesis of secondary metabolites in microorganisms. Therefore, it is crucial to consider these factors when establishing a bioprospecting strategy. Mimicking the conditions of the natural environment has been suggested as a means of inducing or influencing microbial secondary metabolite production. The purpose of the present study was to determine how the bioactivity of Vibrionaceae was influenced by carbon sources typical of their natural environment. We determined how mannose and chitin, compared to glucose, influenced the antibacterial activity of a collection of Vibrionaceae strains isolated because of their ability to produce antibacterial compounds but that in subsequent screenings seemed to have lost this ability. The numbers of bioactive isolates were 2- and 3.5-fold higher when strains were grown on mannose and chitin, respectively, than on glucose. As secondary metabolites are typically produced during late growth, potential producers were also allowed 1 to 2 days of growth before exposure to the pathogen. This strategy led to a 3-fold increase in the number of bioactive strains on glucose and an 8-fold increase on both chitin and mannose. We selected two bioactive strains belonging to species for which antibacterial activity had not previously been identified. Using ultrahigh-performance liquid chromatography–high-resolution mass spectrometry and bioassay-guided fractionation, we found that the siderophore fluvibactin was responsible for the antibacterial activity of Vibrio furnissii and Vibrio fluvialis. These results suggest a role of chitin in the regulation of secondary metabolism in vibrios and demonstrate that considering bacterial ecophysiology during development of screening strategies will facilitate bioprospecting. IMPORTANCE A challenge in microbial natural product discovery is the elicitation of the biosynthetic gene clusters that are silent when

  12. The ethanol metabolite acetaldehyde induces water and salt intake via two distinct pathways in the central nervous system of rats.

    PubMed

    Ujihara, Izumi; Hitomi, Suzuro; Ono, Kentaro; Kakinoki, Yasuaki; Hashimoto, Hirofumi; Ueta, Yoichi; Inenaga, Kiyotoshi

    2015-12-01

    The sensation of thirst experienced after heavy alcohol drinking is widely regarded as a consequence of ethanol (EtOH)-induced diuresis, but EtOH in high doses actually induces anti-diuresis. The present study was designed to investigate the introduction mechanism of water and salt intake after heavy alcohol drinking, focusing on action of acetaldehyde, a metabolite of EtOH and a toxic substance, using rats. The aldehyde dehydrogenase (ALDH) inhibitor cyanamide was used to mimic the effect of prolonged acetaldehyde exposure because acetaldehyde is quickly degraded by ALDH. Systemic administration of a high-dose of EtOH at 2.5 g/kg induced water and salt intake with anti-diuresis. Cyanamide enhanced the fluid intake following EtOH and acetaldehyde administration. Systemic administration of acetaldehyde with cyanamide suppressed blood pressure and increased plasma renin activity. Blockade of central angiotensin receptor AT1R suppressed the acetaldehyde-induced fluid intake and c-Fos expression in the circumventricular organs (CVOs), which form part of dipsogenic mechanism in the brain. In addition, central administration of acetaldehyde together with cyanamide selectively induced water but not salt intake without changes in blood pressure. In electrophysiological recordings from slice preparations, acetaldehyde specifically excited angiotensin-sensitive neurons in the CVO. These results suggest that acetaldehyde evokes the thirst sensation following heavy alcohol drinking, by two distinct and previously unsuspected mechanisms, independent of diuresis. First acetaldehyde indirectly activates AT1R in the dipsogenic centers via the peripheral renin-angiotensin system following the depressor response and induces both water and salt intake. Secondly acetaldehyde directly activates neurons in the dipsogenic centers and induces only water intake.

  13. Influence of the hypothalamus on the midbrain tonic inhibitory mechanism on metabolic heat production in rats.

    PubMed

    Uno, Tadashi; Roth, Joachim; Shibata, Masaaki

    2003-07-15

    Influence of the hypothalamus on increased body temperature was examined in male rats. Body temperature was increased by removing the midbrain tonic inhibitory mechanism (TIM) on heat production from brown adipose tissue (BAT) by microinjections of a local anesthetic, procaine, into the midbrain. Procaine microinjections in unanesthetized rats increased rectal temperature that was followed by a strong tail skin temperature rise. Procaine microinjections in unanesthetized and decerebrated rats also increased rectal temperature but without skin temperature rise. These decerebrated animals fatally developed hyperthermia. In anesthetized rats, procaine microinjections increased temperature of the interscapular BAT (IBAT) higher with shorter onset for temperature rise than rectal temperature. Increased IBAT temperature by procaine microinjections in anesthetized rats was attenuated during hypothalamic warming, and enhanced during hypothalamic cooling when compared with that observed during thermoneutral hypothalamic temperature. These results suggest that the midbrain TIM is able to function in unanesthetized conscious rats, and that the integrity of the midbrain mechanism to tonically inhibit metabolic heat production does not require the presence of intact hypothalamus. These results also suggest that the hypothalamus modulates directly or indirectly IBAT heat production that was induced by removal of the midbrain TIM.

  14. Influence of daylength on gibberellin metabolism and stem growth in Silene armeria.

    PubMed

    van den Ende, H; Zeevaart, J A

    1971-06-01

    When radioactive gibberellin A5 ((3)H-GA5) was applied to the apices and surrounding young leaves of the long-day plant Silene armeria, it was partially converted to at least two other acidic substances. One of them was similar to GA3 in chromatographic, but not in biological properties. The other metabolite was more polar than GA3 and inactive in the dwarf d-5 corn assay.The rate of (3)H-GA5 conversion was influenced by the photoperiod under which Silene plants were grown. Exposure to 2 long days significantly increased (3)H-GA5 metabolism over that in control plants kept under short days. The increased conversion of (3)H-GA5 persisted for at least a few days after transferring Silene plants back from long to short days. Likewise, stem growth induced by long photoperiods continued for a considerable period of time under subsequent short days.Application of the growth retardant AMO-1618 to Silene reduced the levels of two endogenous GA-like substances, one of them with GA5-like properties, more under long than under short days. These results indicate that long photoperiods, which induce flower formation and stem elongation in Silene, increase the turnover of endogenous gibberellins.

  15. Influence of pH on microbial hydrogen metabolism in diverse sedimentary ecosystems.

    PubMed

    Goodwin, S; Conrad, R; Zeikus, J G

    1988-02-01

    Hydrogen transformation kinetic parameters were measured in sediments from anaerobic systems covering a wide range of environmental pH values to assess the influence of pH on hydrogen metabolism. The concentrations of dissolved hydrogen were measured and hydrogen transformation kinetics of the sediments were monitored in the laboratory by monitoring hydrogen consumption progress curves. The hydrogen turnover rate constants (kt) decreased directly as a function of decreasing sediment pH, and the maximum hydrogen uptake velocities (Vmax) varied as a function of pH within each of the trophic states. Conversely, the half-saturation concentrations (Km) were independent of pH. The steady-state hydrogen concentrations were at least 2 orders of magnitude lower than the half-saturation constants for hydrogen uptake. Dissolved hydrogen concentrations were at least fivefold higher in sediments from eutrophic systems than from oligotrophic and dystrophic systems. The rates of hydrogen production determined from the assumption of steady state decreased with sediment pH. These data indicate that progressively lower pH values inhibit microbial hydrogen-producing and -consuming processes within sedimentary ecosystems.

  16. Influence of the metabolic state on the tolerance of Pichia kudriavzevii to heavy metals.

    PubMed

    Mesquita, Vanessa A; Machado, Manuela D; Silva, Cristina F; Soares, Eduardo V

    2016-11-01

    This work aims to examine the influence of the metabolic state of the yeast Pichia kudriavzevii on the susceptibility to a metals mixture (5 mg L(-1) Cd, 10 mg L(-1) Pb, and 5 mg L(-1) Zn). Cells exposed to the metals mixture in the presence of 25 mmol L(-1) glucose displayed a higher loss of membrane integrity and proliferation capacity, compared to cells incubated in the absence of glucose. The analysis of the effect of individual metals revealed that glucose increased the toxic effect of Cd marginally, and of Pb significantly. The increased susceptibility to heavy metals due to glucose was attenuated in the simultaneous presence of a mitochondrial respiration inhibitor such as sodium azide (NaN3 ). ATP-depleted yeast cells, resulting from treatment with the non-metabolizable glucose analogue 2-deoxy-d-glucose, showed an increased susceptibility to heavy metals mixture. Pre-incubation of yeast cells with 1 or 1.5 mmol L(-1) Ca(2+) reduced significantly (P < 0.05) the loss of membrane integrity induced by the metals mixture. These findings contribute to the understanding of metals mechanisms of toxicity in the non-conventional yeast P. kudriavzevii.

  17. Influence of dietary methionine on the metabolism of selenomethionine in rats

    SciTech Connect

    Butler, J.A.; Beilstein, M.A.; Whanger, P.D. )

    1989-07-01

    To determine the influence of methionine on selenomethionine (SeMet) metabolism, weanling male rats were fed for 8 wk a basal diet marginally deficient in sulfur amino acids, containing 2.0 micrograms selenium (Se)/g as DL-SeMet and supplemented with 0, 0.3, 0.6 or 1.2% DL-methionine. Increased dietary methionine caused decreased selenium deposition in all tissues examined but increased glutathione peroxidase activity in testes, liver and lungs. A positive correlation was found between dietary methionine and the calculated percentage of selenium associated with GSHPx. In a second experiment, {sup 75}SeMet was injected into weanling male rats which had been fed the basal diet containing 2.0 micrograms selenium as DL-SeMet with or without the addition of 1.0% methionine. The selenoamino acid content of tissues and the distribution of {sup 75}Se in erythrocyte proteins were determined. In comparison to the rats fed the basal diet without added methionine, significantly more {sup 75}Se-selenocysteine was found in liver and muscle, more {sup 75}Se was found in erythrocyte GSHPx and less {sup 75}Se was found in erythrocyte hemoglobin of rats fed 1.0% methionine. These data suggest that methionine diverts SeMet from incorporation into general proteins and enhances its conversion to selenocysteine for specific selenium-requiring proteins, such as GSHPx.

  18. Intrinsic vs. extrinsic influences on life history expression: metabolism and parentally induced temperature influences on embryo development rate

    USGS Publications Warehouse

    Martin, Thomas E.; Ton, Riccardo; Nikilson, Alina

    2013-01-01

    Intrinsic processes are assumed to underlie life history expression and trade-offs, but extrinsic inputs are theorised to shift trait expression and mask trade-offs within species. Here, we explore application of this theory across species. We do this based on parentally induced embryo temperature as an extrinsic input, and mass-specific embryo metabolism as an intrinsic process, underlying embryonic development rate. We found that embryonic metabolism followed intrinsic allometry rules among 49 songbird species from temperate and tropical sites. Extrinsic inputs via parentally induced temperatures explained the majority of variation in development rates and masked a relationship with metabolism; metabolism explained a minor proportion of the variation in development rates among species, and only after accounting for temperature effects. We discuss evidence that temperature further obscures the expected interspecific trade-off between development rate and offspring quality. These results demonstrate the importance of considering extrinsic inputs to trait expression and trade-offs across species.

  19. Intrinsic vs. extrinsic influences on life history expression: metabolism and parentally induced temperature influences on embryo development rate.

    PubMed

    Martin, Thomas E; Ton, Riccardo; Niklison, Alina

    2013-06-01

    Intrinsic processes are assumed to underlie life history expression and trade-offs, but extrinsic inputs are theorised to shift trait expression and mask trade-offs within species. Here, we explore application of this theory across species. We do this based on parentally induced embryo temperature as an extrinsic input, and mass-specific embryo metabolism as an intrinsic process, underlying embryonic development rate. We found that embryonic metabolism followed intrinsic allometry rules among 49 songbird species from temperate and tropical sites. Extrinsic inputs via parentally induced temperatures explained the majority of variation in development rates and masked a relationship with metabolism; metabolism explained a minor proportion of the variation in development rates among species, and only after accounting for temperature effects. We discuss evidence that temperature further obscures the expected interspecific trade-off between development rate and offspring quality. These results demonstrate the importance of considering extrinsic inputs to trait expression and trade-offs across species.

  20. Redirection of the Reaction Specificity of a Thermophilic Acetolactate Synthase toward Acetaldehyde Formation

    PubMed Central

    Cheng, Maria; Yoshiyasu, Hayato; Okano, Kenji; Ohtake, Hisao; Honda, Kohsuke

    2016-01-01

    Acetolactate synthase and pyruvate decarboxylase are thiamine pyrophosphate-dependent enzymes that convert pyruvate into acetolactate and acetaldehyde, respectively. Although the former are encoded in the genomes of many thermophiles and hyperthermophiles, the latter has been found only in mesophilic organisms. In this study, the reaction specificity of acetolactate synthase from Thermus thermophilus was redirected to catalyze acetaldehyde formation to develop a thermophilic pyruvate decarboxylase. Error-prone PCR and mutant library screening led to the identification of a quadruple mutant with 3.1-fold higher acetaldehyde-forming activity than the wild-type. Site-directed mutagenesis experiments revealed that the increased activity of the mutant was due to H474R amino acid substitution, which likely generated two new hydrogen bonds near the thiamine pyrophosphate-binding site. These hydrogen bonds might result in the better accessibility of H+ to the substrate-cofactor-enzyme intermediate and a shift in the reaction specificity of the enzyme. PMID:26731734

  1. Impact of bioethanol fuel implementation in transport based on modelled acetaldehyde concentration in the urban environment.

    PubMed

    Sundvor, Ingrid; López-Aparicio, Susana

    2014-10-15

    This study shows the results obtained from emission and air dispersion modelling of acetaldehyde in the city of Oslo and associated with the circulation of bioethanol vehicles. Two scenarios of bioethanol implementation, both realistic and hypothetical, have been considered under winter conditions; 1) realistic baseline scenario, which corresponds to the current situation in Oslo where one bus line is running with bioethanol (E95; 95% ethanol-5% petrol) among petrol and diesel vehicles; and 2) a hypothetical scenario characterized by a full implementation of high-blend bioethanol (i.e. E85) as fuel for transportation, and thus an entire bioethanol fleet. The results indicate that a full implementation of bioethanol will have a certain impact on urban air quality due to direct emissions of acetaldehyde. Acetaldehyde emissions are estimated to increase by 233% and concentration levels increase up to 650% with regard to the baseline.

  2. Redirection of the Reaction Specificity of a Thermophilic Acetolactate Synthase toward Acetaldehyde Formation.

    PubMed

    Cheng, Maria; Yoshiyasu, Hayato; Okano, Kenji; Ohtake, Hisao; Honda, Kohsuke

    2016-01-01

    Acetolactate synthase and pyruvate decarboxylase are thiamine pyrophosphate-dependent enzymes that convert pyruvate into acetolactate and acetaldehyde, respectively. Although the former are encoded in the genomes of many thermophiles and hyperthermophiles, the latter has been found only in mesophilic organisms. In this study, the reaction specificity of acetolactate synthase from Thermus thermophilus was redirected to catalyze acetaldehyde formation to develop a thermophilic pyruvate decarboxylase. Error-prone PCR and mutant library screening led to the identification of a quadruple mutant with 3.1-fold higher acetaldehyde-forming activity than the wild-type. Site-directed mutagenesis experiments revealed that the increased activity of the mutant was due to H474R amino acid substitution, which likely generated two new hydrogen bonds near the thiamine pyrophosphate-binding site. These hydrogen bonds might result in the better accessibility of H+ to the substrate-cofactor-enzyme intermediate and a shift in the reaction specificity of the enzyme.

  3. The influence of carbohydrate quality on cardiovascular disease, the metabolic syndrome, type 2 diabetes, and obesity - an overview.

    PubMed

    Slyper, Arnold H

    2013-01-01

    There is compelling evidence that carbohydrate quality has important influences on cardiovascular disease, the metabolic syndrome, type 2 diabetes, and obesity. Cohort and interventional studies indicate that dietary fiber is an important determinant of satiation, satiety, and weight gain, and also protects against cardiovascular disease. Cohort studies have shown that vegetables and fruits protect against coronary heart disease, whereas whole grains provide protection against cardiovascular disease, type 2 diabetes, and weight gain. Dietary glycemia within the range eaten by most of the population seems not to have a significant influence on body weight, although it may influence waist circumference. There is strong evidence from interventional trials that dietary glycemia does influence insulin resistance and diabetes control. Moreover, replacing saturated fat with high-glycemic carbohydrate may increase cardiovascular risk. Soft drink consumption is a proven cause of weight gain, which may relate to the lack of satiation provided by these drinks. In large amounts, dietary fructose leads to greater adverse metabolic changes than equivalent amounts of glucose, although the extent to which fructose per se is contributing to many of the metabolic changes found in the obese, as distinct from the calories it provides, is still a matter of debate.

  4. EPAC activation inhibits acetaldehyde-induced activation and proliferation of hepatic stellate cell via Rap1.

    PubMed

    Yang, Yan; Yang, Feng; Wu, Xiaojuan; Lv, Xiongwen; Li, Jun

    2016-05-01

    Hepatic stellate cells (HSCs) activation represents an essential event during alcoholic liver fibrosis (ALF). Previous studies have demonstrated that the rat HSCs could be significantly activated after exposure to 200 μmol/L acetaldehyde for 48 h, and the cAMP/PKA signaling pathways were also dramatically upregulated in activated HSCs isolated from alcoholic fibrotic rat liver. Exchange protein activated by cAMP (EPAC) is a family of guanine nucleotide exchange factors (GEFs) for the small Ras-like GTPases Rap, and is being considered as a vital mediator of cAMP signaling in parallel with the principal cAMP target protein kinase A (PKA). Our data showed that both cAMP/PKA and cAMP/EPAC signaling pathways were involved in acetaldehyde-induced HSCs. Acetaldehyde could reduce the expression of EPAC1 while enhancing the expression of EPAC2. The cAMP analog Me-cAMP, which stimulates the EPAC/Rap1 pathway, could significantly decrease the proliferation and collagen synthesis of acetaldehyde-induced HSCs. Furthermore, depletion of EPAC2, but not EPAC1, prevented the activation of HSC measured as the production of α-SMA and collagen type I and III, indicating that EPAC1 appears to have protective effects on acetaldehyde-induced HSCs. Curiously, activation of PKA or EPAC perhaps has opposite effects on the synthesis of collagen and α-SMA: EPAC activation by Me-cAMP increased the levels of GTP-bound (activated) Rap1 while PKA activation by Phe-cAMP had no significant effects on such binding. These results suggested that EPAC activation could inhibit the activation and proliferation of acetaldehyde-induced HSCs via Rap1.

  5. Growth trajectory influences temperature preference in fish through an effect on metabolic rate.

    PubMed

    Killen, Shaun S

    2014-11-01

    Most animals experience temperature variations as they move through the environment. For ectotherms, in particular, temperature has a strong influence on habitat choice. While well studied at the species level, less is known about factors affecting the preferred temperature of individuals; especially lacking is information on how physiological traits are linked to thermal preference and whether such relationships are affected by factors such feeding history and growth trajectory. This study examined these issues in the common minnow Phoxinus phoxinus, to determine the extent to which feeding history, standard metabolic rate (SMR) and aerobic scope (AS), interact to affect temperature preference. Individuals were either: 1) food deprived (FD) for 21 days, then fed ad libitum for the next 74 days; or 2) fed ad libitum throughout the entire period. All animals were then allowed to select preferred temperatures using a shuttle-box, and then measured for SMR and AS at 10 °C, estimated by rates of oxygen uptake. Activity within the shuttle-box under a constant temperature regime was also measured. In both FD and control fish, SMR was negatively correlated with preferred temperature. The SMR of the FD fish was increased compared with the controls, probably due to the effects of compensatory growth, and so these growth-compensated fish preferred temperatures that were on average 2.85 °C cooler than controls fed a maintenance ration throughout the study. Fish experiencing compensatory growth also displayed a large reduction in activity. In growth-compensated fish and controls, activity measured at 10 °C was positively correlated with preferred temperature. Individual fish prefer temperatures that vary predictably with SMR and activity level, which are both plastic in response to feeding history and growth trajectories. Cooler temperatures probably allow individuals to reduce maintenance costs and divert more energy towards growth. A reduction in SMR at cooler

  6. Influence of mixotrophic growth on rhythmic oscillations in expression of metabolic pathways in diazotrophic cyanobacterium Cyanothece sp. ATCC 51142.

    PubMed

    Krishnakumar, S; Gaudana, Sandeep B; Digmurti, Madhuri G; Viswanathan, Ganesh A; Chetty, Madhu; Wangikar, Pramod P

    2015-01-01

    This study investigates the influence of mixotrophy on physiology and metabolism by analysis of global gene expression in unicellular diazotrophic cyanobacterium Cyanothece sp. ATCC 51142 (henceforth Cyanothece 51142). It was found that Cyanothece 51142 continues to oscillate between photosynthesis and respiration in continuous light under mixotrophy with cycle time of ∼ 13 h. Mixotrophy is marked by an extended respiratory phase compared with photoautotrophy. It can be argued that glycerol provides supplementary energy for nitrogen fixation, which is derived primarily from the glycogen reserves during photoautotrophy. The genes of NDH complex, cytochrome c oxidase and ATP synthase are significantly overexpressed in mixotrophy during the day compared to autotrophy with synchronous expression of the bidirectional hydrogenase genes possibly to maintain redox balance. However, nitrogenase complex remains exclusive to nighttime metabolism concomitantly with uptake hydrogenase. This study throws light on interrelations between metabolic pathways with implications in design of hydrogen producer strains.

  7. Acetaldehyde Induces Cytotoxicity of SH-SY5Y Cells via Inhibition of Akt Activation and Induction of Oxidative Stress.

    PubMed

    Yan, Tingting; Zhao, Yan; Zhang, Xia

    2016-01-01

    Excessive alcohol consumption can lead to brain tissue damage and cognitive dysfunction. It has been shown that heavy drinking is associated with an earlier onset of neurodegenerative diseases such as Alzheimer's disease. Acetaldehyde, the most toxic metabolite of ethanol, is speculated to mediate the brain tissue damage and cognitive dysfunction induced by the chronic excessive consumption of alcohol. However, the exact mechanisms by which acetaldehyde induces neurotoxicity are not totally understood. In this study, we investigated the cytotoxic effects of acetaldehyde in SH-SY5Y cells and found that acetaldehyde induced apoptosis of SH-SY5Y cells by downregulating the expression of antiapoptotic Bcl-2 and Bcl-xL and upregulating the expression of proapoptotic Bax. Acetaldehyde treatment led to a significant decrease in the levels of activated Akt and cyclic AMP-responsive element binding protein (CREB). In addition, acetaldehyde induced the activation of p38 mitogen-activated protein kinase (MAPK) while inhibiting the activation of extracellular signal-regulated kinases (ERKs, p44/p42MAPK). Meanwhile, acetaldehyde treatment caused an increase in the production of reactive oxygen species and elevated the oxidative stress in SH-SY5Y cells. Therefore, acetaldehyde induces cytotoxicity of SH-SY5Y cells via promotion of apoptotic signaling, inhibition of cell survival pathway, and induction of oxidative stress.

  8. Inhibition of intracolonic acetaldehyde production and alcoholic fermentation in rats by ciprofloxacin.

    PubMed

    Visapää, J P; Jokelainen, K; Nosova, T; Salaspuro, M

    1998-08-01

    Heavy drinking is associated with many gastrointestinal symptoms and diseases, such as rapid intestinal transit time, diarrhea, colon polyps, and colorectal cancer. Acetaldehyde produced from ethanol by intestinal microbes has recently been suggested to be one of the pathogenetic factors related to alcohol-associated gastrointestinal morbidity. Furthermore, acetaldehyde is absorbed from the colon into portal blood and may thus contribute to the development of alcoholic liver injury. The present study was aimed to investigate the significance of gut aerobic flora in intracolonic acetaldehyde formation. For this study, 58 male Wistar rats (aged 9 to 11 weeks) were used. Half of the rats received ciprofloxacin for four consecutive days. Control rats (n = 29) received standard chow. On the fifth day of treatment, 1.5 g/kg body weight of ethanol was administered intraperitoneally to 19 rats receiving ciprofloxacin and 19 control rats. Ten ciprofloxacin-treated and 10 control rats received equal volumes of physiological saline intraperitoneally. Two hours after the injection of ethanol or saline, the samples of colonic contents and blood were obtained. Acetaldehyde and ethanol levels of the samples were determined by headspace gas chromatography. The intracolonic acetaldehyde level 2 hr after ethanol administration was 483+/-169 microM (maximum: 2.7 mM). High intracolonic acetaldehyde after ethanol injection was significantly reduced by ciprofloxacin treatment. After ciprofloxacin, intracolonic acetaldehyde levels before and after the injection of ethanol were 25+/-4.8 and 23+/-15 microM, respectively. Ciprofloxacin treatment resulted also in significantly higher blood (p < 0.005) and intracolonic (p < 0.0001) ethanol levels than in the control animals. Furthermore, ciprofloxacin treatment totally abolished the formation of endogenous ethanol in the large intestine. This study demonstrates that alcoholic fermentation and intracoIonic acetaldehyde production can be

  9. Quantification of DNA adducts in lungs, liver and brain of rats exposed to acetaldehyde.

    PubMed

    Garcia, Camila C M; Batista, Guilherme L; Freitas, Florêncio P; Lopes, Fernando S; Sanchez, Angélica B; Gutz, Ivano G R; Di Mascio, Paolo; Medeiros, Marisa H G

    2014-10-01

    Air pollution is a major risk for human health. Acetaldehyde is an environmental pollutant present in tobacco smoke, vehicle exhaust and several food products. Formation of DNA adducts has been regarded as a critical factor in the mechanisms of acetaldehyde mutagenicity and carcinogenesis. Acetaldehyde reacts with 2'-deoxyguanosine in DNA to primarily form N(2)-ethylidene-2'-deoxyguanosine (N(2)-ethylidene-dGuo). The subsequent reaction of N(2)-ethylidene-dGuo with another molecule of acetaldehyde gives rise to 1,N(2)-propano-2´-deoxyguanosine (1,N(2)-propanodGuo). In this study, on-line reverse-phase high-performance liquid chromatography (HPLC) separation with tandem mass spectrometry detection was utilized for the accurate quantification of 1,N(2)-propanodGuo and 1,N(2)-etheno-2'-deoxyguanosine (1,N(2)-edGuo) in tissues of rats exposed to 12 ppb, 33 ppb and 96 ppb acetaldehyde in atmospheric air for 50 days. A significant increase in the levels of 1,N(2)-propanodGuo was observed in lung tissues of rats exposed to 12 ppb (7.8/10(8) dGuo); 33 ppb (8.9/10(8) dGuo) and 96 ppb (11.6/10(8) dGuo) compared to controls (4.2/10(8) dGuo). For comparative purposes, the levels of 1,N(2)-etheno-2'-deoxyguanosine (1,N(2)-edGuo), which is produced from a,b-unsaturated aldehydes formed during the lipid peroxidation process were also measured. Elevated levels of 1,N(2)-edGuo were observed only in lung tissues of animals exposed to 96 ppb acetaldehyde. 1,N(2)-propanodGuo also differed quantitatively in liver but not in brain. The monitoring of 1,N(2)-propanodGuo levels in tissues provides important information on acetaldehyde genotoxicity and may contribute to the elucidation of the mechanisms associated with acetaldehyde exposure and cancer risk. Supported byFAPESP:2011/10048-5, CAPES, INCT Redoxoma:573530/2008-4,NAP Redoxoma: 2011.1.9352.1.8, CEPID Redoxoma:2013/07937-8.

  10. Metabolic scope and interspecific competition in sculpins of Greenland are influenced by increased temperatures due to climate change.

    PubMed

    Seth, Henrik; Gräns, Albin; Sandblom, Erik; Olsson, Catharina; Wiklander, Kerstin; Johnsson, Jörgen I; Axelsson, Michael

    2013-01-01

    Ongoing climate change has led to an increase in sea surface temperatures of 2-4°C on the west coast of Greenland. Since fish are ectothermic, metabolic rate increases with ambient temperature. This makes these animals particularly sensitive to changes in temperature; subsequently any change may influence their metabolic scope, i.e. the physiological capacity to undertake aerobically challenging activities. Any temperature increase may thus disrupt species-specific temperature adaptations, at both the molecular level as well as in behavior, and concomitant species differences in the temperature sensitivity may shift the competitive balance among coexisting species. We investigated the influence of temperature on metabolic scope and competitive ability in three species of marine sculpin that coexist in Greenland coastal waters. Since these species have different distribution ranges, we hypothesized that there should be a difference in their physiological response to temperature; hence we compared their metabolic scope at three temperatures (4, 9 and 14°C). Their competitive ability at the ambient temperature of 9°C was also tested in an attempt to link physiological capacity with behaviour. The Arctic staghorn sculpin, the species with the northernmost distribution range, had a lower metabolic scope in the higher temperature range compared to the other two species, which had similar metabolic scope at the three temperatures. The Arctic staghorn sculpin also had reduced competitive ability at 9°C and may thus already be negatively affected by the current ocean warming. Our results suggest that climate change can have effects on fish physiology and interspecific competition, which may alter the species composition of the Arctic fish fauna.

  11. Influence of elevated temperature on metabolism during aestivation: implications for muscle disuse atrophy.

    PubMed

    Young, Karen M; Cramp, Rebecca L; White, Craig R; Franklin, Craig E

    2011-11-15

    Reactive oxygen species (ROS), produced commensurate with aerobic metabolic rate, contribute to muscle disuse atrophy (MDA) in immobilised animals by damaging myoskeletal protein and lipids. Aestivating frogs appear to avoid MDA in part by substantially suppressing metabolic rate. However, as ectotherms, metabolic rate is sensitive to environmental temperature, and the high ambient temperatures that may be experienced by frogs during aestivation could in fact promote MDA. In this study, we investigated the effect of temperature on the metabolic rate of the aestivating frog Cyclorana alboguttata and its skeletal muscles in order to determine their likely susceptibility to MDA. Compared with non-aestivating frogs, a significant decrease in metabolic rate was recorded for aestivating frogs at 20, 24 and 30°C. At 30°C, however, the metabolic rate of aestivating frogs was significantly higher, approximately double that of frogs aestivating at 20 or 24°C, and the magnitude of the metabolic depression was significantly reduced at 30°C compared with that at 20°C. Temperature effects were also observed at the tissue level. At 24 and 30°C the metabolic rate of all muscles from aestivating frogs was significantly depressed compared with that of muscles from non-aestivating frogs. However, during aestivation at 30°C the metabolic rates of gastrocnemius, sartorius and cruralis were significantly elevated compared with those from frogs aestivating at 24°C. Our data show that the metabolism of C. alboguttata and its skeletal muscles is elevated at higher temperatures during aestivation and that the capacity of the whole animal to actively depress metabolism is impaired at 30°C.

  12. Can bioactive compounds of Crocus sativus L. influence the metabolic activity of selected CYP enzymes in the rat?

    PubMed

    Dovrtělová, G; Nosková, K; Juřica, J; Turjap, M; Zendulka, O

    2015-01-01

    Safranal and crocin are biologically active compounds isolated from Crocus sativus L., commonly known as saffron. Clinical trials confirm that saffron has antidepressant effect, thus being a potential valuable alternative in the treatment of depression. The aim of the present study was to determine, whether systemic administration of safranal and crocin can influence the metabolic activity of CYP3A, CYP2C11, CYP2B, and CYP2A in rat liver microsomes (RLM). The experiments were carried out on male Wistar albino rats intragastrically administered with safranal (4, 20, and 100 mg/kg/day) or with intraperitoneal injections of crocin (4, 20, and 100 mg/kg/day). Our results demonstrate the ability of safranal and crocin to increase the total protein content and to change the metabolic activity of several CYP enzymes assessed as CYP specific hydroxylations of testosterone in RLM. Crocin significantly decreased the metabolic activity of all selected CYP enzymes, while safranal significantly increased the metabolic activity of CYP2B, CYP2C11 and CYP3A enzymes. Therefore, both substances could increase the risk of interactions with co-administered substances metabolized by cytochrome P450 enzymes.

  13. ATRAP Expression in Brown Adipose Tissue Does Not Influence the Development of Diet-Induced Metabolic Disorders in Mice

    PubMed Central

    Ohki, Kohji; Wakui, Hiromichi; Azushima, Kengo; Uneda, Kazushi; Haku, Sona; Kobayashi, Ryu; Haruhara, Kotaro; Kinguchi, Sho; Matsuda, Miyuki; Ohsawa, Masato; Maeda, Akinobu; Minegishi, Shintaro; Ishigami, Tomoaki; Toya, Yoshiyuki; Yamashita, Akio; Umemura, Satoshi; Tamura, Kouichi

    2017-01-01

    Activation of tissue renin–angiotensin system (RAS), mainly mediated by an angiotensin II (Ang II) type 1 receptor (AT1R), plays an important role in the development of obesity-related metabolic disorders. We have shown that AT1R-associated protein (ATRAP), a specific binding protein of AT1R, functions as an endogenous inhibitor to prevent excessive activation of tissue RAS. In the present study, we newly generated ATRAP/Agtrap-floxed (ATRAPfl/fl) mice and adipose tissue-specific ATRAP downregulated (ATRAPadipoq) mice by the Cre/loxP system using Adipoq-Cre. Using these mice, we examined the functional role of adipose ATRAP in the pathogenesis of obesity-related metabolic disorders. Compared with ATRAPfl/fl mice, ATRAPadipoq mice exhibited a decreased ATRAP expression in visceral white adipose tissue (WAT) and brown adipose tissue (BAT) by approximately 30% and 85%, respectively. When mice were fed a high-fat diet, ATRAPfl/fl mice showed decreased endogenous ATRAP expression in WAT that was equivalent to ATRAPadipoq mice, and there was no difference in the exacerbation of dietary obesity and glucose and lipid metabolism. These results indicate that ATRAP in BAT does not influence the pathogenesis of dietary obesity or metabolic disorders. Future studies that modulate ATRAP in WAT are necessary to assess its in vivo functions in the development of obesity-related metabolic disorders. PMID:28335584

  14. Interleukin 1B Variant -1473G/C (rs1143623) Influences Triglyceride and Interleukin 6 Metabolism

    PubMed Central

    Delgado-Lista, Javier; Garcia-Rios, Antonio; Perez-Martinez, Pablo; Solivera, Juan; Yubero-Serrano, Elena M.; Fuentes, Francisco; Parnell, Laurence D.; Shen, Jian; Gomez, Purificacion; Jimenez-Gomez, Yolanda; Gomez-Luna, Maria J.; Marin, Carmen; Belisle, Sarah E.; Rodriguez-Cantalejo, Fernando; Meydani, Simin N.; Ordovas, Jose M.; Perez-Jimenez, Francisco

    2011-01-01

    Context: IL1b (IL1B or IL1β), a key modulator of the immune response, exerts its functions mainly via IL6 regulation. Fatty meals cause transient hypertriglyceridemia and are considered to be proinflammatory, but the extent of these responses shows high interindividual susceptibility. Objective: We evaluated the influence of a genetic variant located in the promoter region of IL1B (-1473G/C) on fasting and postprandial lipids and IL6. Design, Setting, and Participants: A total of 477 people over age 65 yr were genotyped for IL1B -1473G/C, and we evaluated fasting lipids depending on genotype. Then, 88 healthy young men were also genotyped and were fed a saturated fatty acid-rich meal. Serial blood samples were drawn for 11 h after the meal, and lipid fractions and IL6 were assayed. Main Outcome and Interventions: Fasting lipids were studied in the aged persons. Fasting and postprandial measurements of lipids and IL6 were performed in the healthy young men. Results: In the aged persons, CC subjects (minor allele homozygotes) showed higher triglyceride (P = 0.002) and cholesterol (P = 0.011) levels. Healthy young male carriers of the minor C allele showed higher postprandial triglycerides (P = 0.037), and those carried into large triglyceride-rich lipoproteins (P = 0.004). In addition, they showed higher postprandial IL6 concentrations (P = 0.008). Conclusions: Our work shows that inflammatory genes may regulate fasting and postprandial lipids because the carriers of the minor allele of an IL gene variant have altered lipid metabolism. To reinforce these gene-phenotype findings, IL6 (the natural effector of IL1B) was increased in these persons. PMID:21307135

  15. Influence of autoclaved fungal materials on spearmint (Mentha spicata L.) growth, morphogenesis, and secondary metabolism.

    PubMed

    Khan, Naseem I; Tisserat, Brent; Berhow, Mark; Vaughn, Steven F

    2005-07-01

    The influence of autoclaved fungal materials such as culture filtrate, freeze-dried mycelium (FDM), mycelium suspension, and spore suspension (SS) on the growth, morphogenesis, and carvone production of spearmint (Mentha spicata L.) plants was studied. Fungal materials were either applied as a drench or spray on the plants. Spearmint plants (cv. "294099") drenched with SS (1 x 10(8) spores/ml) of Trichoderma reesei showed no significant differences in leaf numbers, root numbers, or shoot numbers compared with nontreated controls. However, significantly higher fresh weights and carvone levels were observed in plants drenched with T. reesei SS compared with the untreated controls. Fungal materials derived from Aspergillus sp., Fusarium graminearum, F. sporotrichoides, Penicillium sp., P. acculeatum, Rhizopus oryzae, and T. reesei were sprayed on spearmint foliage. F. graminearum, F. sporotrichoides, or R. oryzae elicited no enhanced growth, morphogenesis, or secondary metabolism responses. The best growth and morphogenesis responses were obtained employing Aspergillus sp., Penicillium sp., or T. reesei foliar sprays. For example, spearmint cv. "557807" plants sprayed with 100 mg/l FDM T. reesei isolate NRRL 11460 C30 stimulated higher fresh weights (75%), shoot numbers (39%), leaf numbers (57%), and root numbers (108%) compared with untreated plants. This effect was not dose-dependent because similar growth and morphogenesis responses were obtained by testing 10, 100, or 1000 mg/l FDM concentrations. Carvone levels in fungal-treated foliar-sprayed plants were comparable to nontreated controls. However, total carvone levels per plant were higher in fungal-treated plants because of their increased fresh weight.

  16. The factors influencing urinary arsenic excretion and metabolism of workers in steel and iron smelting foundry.

    PubMed

    Shuhua, Xi; Qingshan, Sun; Fei, Wang; Shengnan, Liu; Ling, Yan; Lin, Zhang; Yingli, Song; Nan, Yan; Guifan, Sun

    2014-01-01

    In order to evaluate the degree of arsenic (As) exposure and the factors influencing urinary As excretion and metabolism, 192 workers from a steel and iron smelting plant, with different type of work in production such as roller, steel smelting, iron smelting and metallic charge preparation, were recruited. Information about characteristics of each subject was obtained by questionnaire and inorganic As (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) in urine were determined. The results showed that steel smelters had significantly higher concentrations of DMA and total As (TAs) than rollers and metallic charge preparation workers, and iron and steel smelters had a higher value of primary methylation index and lower proportion of the iAs (iAs%) than rollers and metallic charge preparation workers. In steel smelters, urinary As level exceeded the biological exposure index (BEI) limit for urinary As of 35 μg/l by 65.52%, and higher than metallic charge preparation workers (35.14%). The individuals consumed seafood in recent 3 days had a higher TAs than the individuals without seafood consumption. Multivariate logistic regression analysis showed that different jobs, taken Chinese medicine of bezoar and seafood consumption in recent 3 days were significantly associated with urinary TAs exceeded BEI limit value 35 μg/l. Our results suggest that workers in steel and iron smelting plant had a lower level of As exposure, and seafood consumption and taking Chinese medicine of bezoar also could increase the risk of urinary TAs exceeded BEI limit value.

  17. Limited Influence of Oxygen on the Evolution of Chemical Diversity in Metabolic Networks

    PubMed Central

    Takemoto, Kazuhiro; Yoshitake, Ikumi

    2013-01-01

    Oxygen is thought to promote species and biomolecule diversity. Previous studies have suggested that oxygen expands metabolic networks by acquiring metabolites with different chemical properties (higher hydrophobicity, for example). However, such conclusions are typically based on biased evaluation, and are therefore non-conclusive. Thus, we re-investigated the effect of oxygen on metabolic evolution using a phylogenetic comparative method and metadata analysis to reduce the bias as much as possible. Notably, we found no difference in metabolic network expansion between aerobes and anaerobes when evaluating phylogenetic relationships. Furthermore, we showed that previous studies have overestimated or underestimated the degrees of differences in the chemical properties (e.g., hydrophobicity) between oxic and anoxic metabolites in metabolic networks of unicellular organisms; however, such overestimation was not observed when considering the metabolic networks of multicellular organisms. These findings indicate that the contribution of oxygen to increased chemical diversity in metabolic networks is lower than previously thought; rather, phylogenetic signals and cell-cell communication result in increased chemical diversity. However, this conclusion does not contradict the effect of oxygen on metabolic evolution; instead, it provides a deeper understanding of how oxygen contributes to metabolic evolution despite several limitations in data analysis methods. PMID:24958261

  18. Influence of herpes simplex virus infection on benzo(a)pyrene metabolism in monkey kidney cells

    SciTech Connect

    Degenhardt, J.H.; Whitcomb, B.; Hall, M.R.

    1984-01-01

    Current research in our laboratory is designed to investigate the intracellular interactions of BP with oncogenic DNA viruses of animals and humans. In this study, our purpose was to determine whether BP is metabolized in herpes simplex virus type 2 (HSV-2) infected cells and whether HSV-2 infection affects intracellular levels of the aryl hydrocarbon hydroxylase system necessary for BP metabolism.

  19. Metabolic regulation and maximal reaction optimization in the central metabolism of a yeast cell

    NASA Astrophysics Data System (ADS)

    Kasbawati, Gunawan, A. Y.; Hertadi, R.; Sidarto, K. A.

    2015-03-01

    Regulation of fluxes in a metabolic system aims to enhance the production rates of biotechnologically important compounds. Regulation is held via modification the cellular activities of a metabolic system. In this study, we present a metabolic analysis of ethanol fermentation process of a yeast cell in terms of continuous culture scheme. The metabolic regulation is based on the kinetic formulation in combination with metabolic control analysis to indicate the key enzymes which can be modified to enhance ethanol production. The model is used to calculate the intracellular fluxes in the central metabolism of the yeast cell. Optimal control is then applied to the kinetic model to find the optimal regulation for the fermentation system. The sensitivity results show that there are external and internal control parameters which are adjusted in enhancing ethanol production. As an external control parameter, glucose supply should be chosen in appropriate way such that the optimal ethanol production can be achieved. For the internal control parameter, we find three enzymes as regulation targets namely acetaldehyde dehydrogenase, pyruvate decarboxylase, and alcohol dehydrogenase which reside in the acetaldehyde branch. Among the three enzymes, however, only acetaldehyde dehydrogenase has a significant effect to obtain optimal ethanol production efficiently.

  20. The influence of metabolic rate on longevity in the nematode Caenorhabditis elegans.

    PubMed

    Van Voorhies, Wayne A

    2002-12-01

    Much of the recent interest in aging research is due to the discovery of genes in a variety of model organisms that appear to modulate aging. A large amount of research has focused on the use of such long-lived mutants to examine the fundamental causes of aging. While model organisms do offer many advantages for studying aging, it also critical to consider the limitations of these systems. In particular, ectothermic (poikilothermic) organisms can tolerate a much larger metabolic depression than humans. Thus, considering only chronological longevity when assaying for long-lived mutants provides a limited perspective on the mechanisms by which longevity is increased. In order to provide true insight into the aging process additional physiological processes, such as metabolic rate, must also be assayed. This is especially true in the nematode Caenorhabditis elegans, which can naturally enter into a metabolically reduced state in which it survives many times longer than its usual lifetime. Currently it is seen as controversial if long-lived C. elegans mutants retain normal metabolic function. Resolving this issue requires accurately measuring the metabolic rate of C. elegans under conditions that minimize environmental stress. Additionally, the relatively small size of C. elegans requires the use of sensitive methodologies when determining metabolic rates. Several studies indicating that long-lived C. elegans mutants have normal metabolic rates may be flawed due to the use of inappropriate measurement conditions and techniques. Comparisons of metabolic rate between long-lived and wild-type C. elegans under more optimized conditions indicate that the extended longevity of at least some long-lived C. elegans mutants may be due to a reduction in metabolic rate, rather than an alteration of a metabolically independent genetic mechanism specific to aging.

  1. BIOGENIC SOURCES OF FORMALDEHYDE AND ACETALDEHYDE DURING SUMMER AND WINTER CONDITIONS

    EPA Science Inventory

    Photochemical modeling estimated contributions to ambient concentrations of formaldehyde and acetaldehyde from biogenic emissions over the continental United States during January 2001 (Eos Trans. AGU, 83(47), Fall Meet. Suppl., Abstract A52B-0117). Results showed that maximum co...

  2. Regional Sources of Atmospheric Formaldehyde and Acetaldehyde, and Implications for Atmospheric Modeling

    EPA Science Inventory

    Formaldehyde and acetaldehyde concentrations over the Eastern half of the United States are simulated with a 3-D air quality model to identify the most important chemical precursors under January and July conditions. We find that both aldehydes primarily result from photochemical...

  3. 40 CFR 721.10662 - Acetaldehyde, substituted-, reaction products with 2-butyne-1, 4-diol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10662 Acetaldehyde, substituted-, reaction products with 2-butyne-1, 4-diol (generic). (a) Chemical substance and significant new...

  4. 40 CFR 721.10662 - Acetaldehyde, substituted-, reaction products with 2-butyne-1, 4-diol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acetaldehyde, substituted-, reaction...-, reaction products with 2-butyne-1, 4-diol (generic). (a) Chemical substance and significant new uses...-, reaction products with 2-butyne-1, 4-diol (PMN P-11-204) is subject to reporting under this section for...

  5. Inhibition by ethanol, acetaldehyde and trifluoroethanol of reactions catalysed by yeast and horse liver alcohol dehydrogenases.

    PubMed Central

    Dickenson, C J; Dickinson, F M

    1978-01-01

    1. Produced inhibition by ethanol of the acetaldehyde-NADH reaction, catalysed by the alcohol dehydrogenases from yeast and horse liver, was studied at 25 degrees C and pH 6-9. 2. The results with yeast alcohol dehydrogenase are generally consistent with the preferred-pathway mechanism proposed previously [Dickenson & Dickinson (1975) Biochem. J. 147, 303-311]. The observed hyperbolic inhibition by ethanol of the maximum rate of acetaldehyde reduction confirms the existence of the alternative pathway involving an enzyme-ethanol complex. 3. The maximum rate of acetaldehyde reduction with horse liver alcohol dehydrogenase is also subject to hyperbolic inhibition by ethanol. 4. The measured inhibition constants for ethanol provide some of the information required in the determination of the dissociation constant for ethanol from the active ternary complex. 5. Product inhibition by acetaldehyde of the ethanol-NAD+ reaction with yeast alcohol dehydrogenase was examined briefly. The results are consistent with the proposed mechanism. However, the nature of the inhibition of the maximum rate cannot be determined within the accessible range of experimental conditions. 6. Inhibition of yeast alcohol dehydrogenase by trifluoroethanol was studied at 25 degrees C and pH 6-10. The inhibition was competitive with respect to ethanol in the ethanol-NAD+ reaction. Estimates were made of the dissociation constant for trifluoroethanol from the enzyme-NAD+-trifluoroethanol complex in the range pH6-10. PMID:208509

  6. The influence of Dworshak Dam on epilithic community metabolism in the Clearwater River, U.S.A.

    USGS Publications Warehouse

    Munn, M.D.; Brusven, M.A.

    2004-01-01

    Epilithic community metabolism was determined on a seasonal basis over two years in nonregulated and regulated reaches of the Clearwater River in northern Idaho, U.S.A. Metabolism was estimated using three, 12-liter recirculating chambers and the dissolved oxygen method, with parameters expressed as g O2 m−2 d−1. In the nonregulated reach above the reservoir, gross community productivity (GCP) ranged from 0.8 to 3.2, community respiration (CR24) from 0.3 to 1.2, and production/respiration (P/R) ratios from 1.2 to 3.3. Epilithic metabolism in the regulated reach immediately below the dam increased sharply; GCP ranged from 4.2 to 25.5, CR24 from 1.9 to 9.7, and P/R ratios from 1.4 to 5.7. Increased primary production and respiration in the regulated reach was a result of extensive growth of an aquatic moss (Fontanalis neo-mexicanus). The influence of the dam on epilithic community metabolism was mitigated 2.5 km downstream of the dam due to the regulated North Fork of the Clearwater River (NFCR) merging with the larger, nonregulated Clearwater River. While the regulated Clearwater River below the confluence was somewhat affected by the regulated NFCR flows upstream, metabolism was similar to that found above the reservoir (GCP = 1.2 – 2.6, CR24 = 0.6 – 1.3, and P/R = 1.4 – 2.2). This study demonstrates that while Dworshak Dam has altered both primary production and respiration directly below the dam, the placement of the dam only 2.5 km upstream from a nonregulated reach greatly mitigates its effects on stream metabolism downstream.

  7. Influence of coffee brew in metabolic syndrome and type 2 diabetes.

    PubMed

    Abrahão, Sheila Andrade; Pereira, Rosemary Gualberto Fonseca Alvarenga; de Sousa, Raimundo Vicente; Lima, Adriene Ribeiro; Crema, Gabriela Previatti; Barros, Bianca Sacramento

    2013-06-01

    This study aimed to evaluate the effect of coffee drinking on clinical markers of diabetes and metabolic syndrome in Zucker rats. Diabetic Zucker rats with metabolic syndrome and control Zucker rats were used for in vivo tests. The animals received daily doses of coffee drink by gavage for 30 days. After the treatment, the levels of glucose, triglycerides, total cholesterol and fractions, creatinine, uric acid, activity of aspartate aminotransferase and alanine aminotransferase were evaluated. Urea and creatinine levels were also analyzed in urine. By collaborating in the modulation of the metabolic syndrome and diabetes mellitus type 2, coffee drink helped in reducing serum glucose, total cholesterol and triglycerides. The results demonstrate that treatment with roasted coffee drink, because of its hypoglycemic and hypolipidemic effect, is efficient in the protection of animals with metabolic syndrome and diabetes mellitus type 2.

  8. Cellular metabolic rate is influenced by life-history traits in tropical and temperate birds.

    PubMed

    Jimenez, Ana Gabriela; Van Brocklyn, James; Wortman, Matthew; Williams, Joseph B

    2014-01-01

    In general, tropical birds have a "slow pace of life," lower rates of whole-animal metabolism and higher survival rates, than temperate species. A fundamental challenge facing physiological ecologists is the understanding of how variation in life-history at the whole-organism level might be linked to cellular function. Because tropical birds have lower rates of whole-animal metabolism, we hypothesized that cells from tropical species would also have lower rates of cellular metabolism than cells from temperate species of similar body size and common phylogenetic history. We cultured primary dermal fibroblasts from 17 tropical and 17 temperate phylogenetically-paired species of birds in a common nutritive and thermal environment and then examined basal, uncoupled, and non-mitochondrial cellular O2 consumption (OCR), proton leak, and anaerobic glycolysis (extracellular acidification rates [ECAR]), using an XF24 Seahorse Analyzer. We found that multiple measures of metabolism in cells from tropical birds were significantly lower than their temperate counterparts. Basal and uncoupled cellular metabolism were 29% and 35% lower in cells from tropical birds, respectively, a decrease closely aligned with differences in whole-animal metabolism between tropical and temperate birds. Proton leak was significantly lower in cells from tropical birds compared with cells from temperate birds. Our results offer compelling evidence that whole-animal metabolism is linked to cellular respiration as a function of an animal's life-history evolution. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to have lower rates of metabolism than cells from shorter-lived temperate species.

  9. Cellular Metabolic Rate Is Influenced by Life-History Traits in Tropical and Temperate Birds

    PubMed Central

    Jimenez, Ana Gabriela; Van Brocklyn, James; Wortman, Matthew; Williams, Joseph B.

    2014-01-01

    In general, tropical birds have a “slow pace of life,” lower rates of whole-animal metabolism and higher survival rates, than temperate species. A fundamental challenge facing physiological ecologists is the understanding of how variation in life-history at the whole-organism level might be linked to cellular function. Because tropical birds have lower rates of whole-animal metabolism, we hypothesized that cells from tropical species would also have lower rates of cellular metabolism than cells from temperate species of similar body size and common phylogenetic history. We cultured primary dermal fibroblasts from 17 tropical and 17 temperate phylogenetically-paired species of birds in a common nutritive and thermal environment and then examined basal, uncoupled, and non-mitochondrial cellular O2 consumption (OCR), proton leak, and anaerobic glycolysis (extracellular acidification rates [ECAR]), using an XF24 Seahorse Analyzer. We found that multiple measures of metabolism in cells from tropical birds were significantly lower than their temperate counterparts. Basal and uncoupled cellular metabolism were 29% and 35% lower in cells from tropical birds, respectively, a decrease closely aligned with differences in whole-animal metabolism between tropical and temperate birds. Proton leak was significantly lower in cells from tropical birds compared with cells from temperate birds. Our results offer compelling evidence that whole-animal metabolism is linked to cellular respiration as a function of an animal’s life-history evolution. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to have lower rates of metabolism than cells from shorter-lived temperate species. PMID:24498080

  10. Pueraria lobata (Kudzu root) hangover remedies and acetaldehyde-associated neoplasm risk.

    PubMed

    McGregor, Neil R

    2007-11-01

    Recent introduction of several commercial Kudzu root (Pueraria lobata) containing hangover remedies has occurred in western countries. The available data is reviewed to assess if there are any potential concerns in relationship to the development of neoplasm if these products are used chronically. The herb Pueraria has two components that are used as traditional therapies; Pueraria lobata, the root based herb and Pueraria flos, the flower based herb. Both of these herbal components have different traditional claims and constituents. Pueraria flos, which enhances acetaldehyde removal, is the traditional hangover remedy. Conversely, Pueraria lobata is a known inhibitor of mitochondrial aldehyde dehydrogenase (ALDH2) and increases acetaldehyde. Pueraria lobata is being investigated for use as an aversion therapy for alcoholics due to these characteristics. Pueraria lobata is not a traditional hangover therapy yet has been accepted as the registered active component in many of these hangover products. The risk of development of acetaldehyde pathology, including neoplasms, is associated with genetic polymorphism with enhanced alcohol dehydrogenase (ADH) or reduced ALDH activity leading to increased acetaldehyde levels in the tissues. The chronic usage of Pueraria lobata at times of high ethanol consumption, such as in hangover remedies, may predispose subjects to an increased risk of acetaldehyde-related neoplasm and pathology. The guidelines for Disulfiram, an ALDH2 inhibitor, provide a set of guidelines for use with the herb Pueraria lobata. Pueraria lobata appears to be an inappropriate herb for use in herbal hangover remedies as it is an inhibitor of ALDH2. The recommendations for its use should be similar to those for the ALDH2 inhibitor, Disulfiram.

  11. Abundances of ethylene oxide and acetaldehyde in hot molecular cloud cores

    NASA Technical Reports Server (NTRS)

    Nummelin, A.; Dickens, J. E.; Bergman, P.; Hjalmarson, A.; Irvine, W. M.; Ikeda, M.; Ohishi, M.

    1998-01-01

    We have searched for millimetre-wave line emission from ethylene oxide (c-C2H4O) and its structural isomer acetaldehyde (CH3CHO) in 11 molecular clouds using SEST. Ethylene oxide and acetaldehyde were detected through multiple lines in the hot cores NGC 6334F, G327.3-0.6, G31.41+0.31, and G34.3+0.2. Acetaldehyde was also detected towards G10.47+0.03, G322.2+0.6, and Orion 3'N, and one ethylene oxide line was tentatively detected in G10.47+0.03. Column densities and rotational excitation temperatures were derived using a procedure which fits the observed line intensifies by finding the minimum chi 2-value. The resulting rotational excitation temperatures of ethylene oxide and acetaldehyde are in the range 16-38 K, indicating that these species are excited in the outer, cooler parts of the hot cores or that the excitation is significantly subthermal. For an assumed source size of 20", the deduced column densities are (0.6-1)x10(14) cm-2 for ethylene oxide and (2-5)x10(14) cm-2 for acetaldehyde. The fractional abundances with respect to H2 are X[c-C2H4O]=(2-6)xl0(-10), and X[CH3CHO]=(0.8-3)x10(-9). The ratio X[CH3CHO]/X[c-C2H4O] varies between 2.6 (NGC 6334F) and 8.5 (G327.3-0.6). We also detected and analysed multiple transitions of CH3OH, CH3OCH3, C2H5OH, and HCOOH. The chemical, and possibly evolutionary, states of NGC 6334F, G327.3-0.6, G31.41+0.31, and G34.3+0.2 seem to be very similar.

  12. Influence of Fasting Status and Sample Preparation on Metabolic Biomarker Measurements in Postmenopausal Women

    PubMed Central

    Murphy, Neil; Falk, Roni T.; Messinger, Diana B.; Pollak, Michael; Xue, Xiaonan; Lin, Juan; Sgueglia, Robin; Strickler, Howard D.

    2016-01-01

    Background Epidemiologic data linking metabolic markers-such as insulin, insulin-like growth factors (IGFs)-and adipose tissue-derived factors with cancer are inconsistent. Between-study differences in blood collection protocols, in particular participant’s fasting status, may influence measurements. Methods We investigated the impact of fasting status and blood sample processing time on components of the insulin/IGF axis and in adipokines in a controlled feeding study of 45 healthy postmenopausal-women aged 50–75 years. Fasting blood samples were drawn (T0), after which subjects ate a standardized breakfast; subsequent blood draws were made at 1 hour (T1), 3 hours (T3), and 6 hours (T6) after breakfast. Serum samples were assayed for insulin, C-peptide, total- and free-IGF-I, IGF-binding protein [BP]-1 and -3, total and high molecular weight (HMW)-adiponectin, retinol binding protein-4, plasminogen activator inhibitor (PAI)-1, and resistin. Results Insulin and C-peptide levels followed similar postprandial trajectories; intra-class correlation coefficients [ICC] for insulin = 0.75, (95%CI:0.64–0.97) and C-peptide (ICC = 0.66, 95%CI:0.54–0.77) were similarly correlated in fasting (Spearman correlation, r = 0.78, 95%CI:0.64–0.88) and postprandial states (T1, r = 0.77 (95%CI: 0.62–0.87); T3,r = 0.78 (95%CI: 0.63–0.87); T6,r = 0.77 (95%CI: 0.61–0.87)). Free-IGF-I and IGFBP-1 levels were also affected by fasting status, whereas total-IGF-I and IGFBP-3 levels remained unchanged. Levels of adipokines were largely insensitive to fasting status and blood sample processing delays. Conclusion Several components of the insulin/IGF axis were significantly impacted by fasting state and in particular, C-peptide levels were substantially altered postprandially and in a similar manner to insulin. PMID:27930694

  13. [Influence of nutrition on selected metabolic cardiovascular risk factors among female residents of Krakow].

    PubMed

    Piórecka, Beata; Jagielski, Paweł; Zwirska, Jaśmina; Piskorz, Anna; Brzostek, Tomasz; Schlegel-Zawadzka, Małgorzata

    2007-01-01

    The study involved influence of nutritional factors on select anthropometrical and lipid indices (total cholesterol, LDL, HDL) in female residents of Krakow who were voluntarily participating in the investigation. Only women free of diagnosed cardiovascular diseases were included. The study group consisting of 100 women aged 30-65 years, was divided into two groups: pre-menopause (PM, n=47) and after menopause (AM, n=53). The anthropometrical measurements, % of fat tissue - Tanita scale and Body Mass Index (BMI) was calculated. The energy value and the consumption of basic nutrients intake were calculated using 24-hour recalls from the day before the examination. The AM group presented higher anthropometrical and metabolic risk profile: overweight and obesity (BMI-PM = 25.51 +/- 4.16 kg/m2; AM = 28.28 +/- 4.89 kg/m2) and central adiposity type (WC-PM = 81.04 +/- 10.00 cm; AM = 86.46 +/- 11.73 cm); lipids (Total cholesterol-PM = 5.14 +/- 0.87 mmol/l, AM = 5.67 +/- 1.10 mmol/l; LDL-chol-PM = 2.98 +/- 0.90 mmol/l, AM = 3.40 +/- 0.93 mmol/l; HDL-chol-PM = 1.65 +/- 0.39 mmol/l; AM = 1.63 + 0.46 mmol/l). The irregular participation of fatty acids, proteins from plant sources and dietary fibers in daily diet were found (%Energy PM: SFA = 11.66 +/- 4.34, MUFA = 10.91 +/- 4.04, PUFA = 4.76 +/- 2.75, Keys index = 41.89 +/- 14.91; %EnergyAM: SFA = 11.48 +/- 3.86, MUFA = 11.02 +/- 4.12, PUFA = 4.89 +/- 2.92, Keys index = 40.87 +/- 14.4). Women in the AM group represented healthier nutritional behaviors. Results presented indicate that in further study concerning evaluation of nutrients consumption among women the fact of natural menopause should be considered.

  14. Metabolic regulation of lateral hypothalamic glucose-inhibited orexin neurons may influence midbrain reward neurocircuitry.

    PubMed

    Sheng, Zhenyu; Santiago, Ammy M; Thomas, Mark P; Routh, Vanessa H

    2014-09-01

    Lateral hypothalamic area (LHA) orexin neurons modulate reward-based feeding by activating ventral tegmental area (VTA) dopamine (DA) neurons. We hypothesize that signals of peripheral energy status influence reward-based feeding by modulating the glucose sensitivity of LHA orexin glucose-inhibited (GI) neurons. This hypothesis was tested using electrophysiological recordings of LHA orexin-GI neurons in brain slices from 4 to 6week old male mice whose orexin neurons express green fluorescent protein (GFP) or putative VTA-DA neurons from C57Bl/6 mice. Low glucose directly activated ~60% of LHA orexin-GFP neurons in both whole cell and cell attached recordings. Leptin indirectly reduced and ghrelin directly enhanced the activation of LHA orexin-GI neurons by glucose decreases from 2.5 to 0.1mM by 53±12% (n=16, P<0.001) and 41±24% (n=8, P<0.05), respectively. GABA or neurotensin receptor blockade prevented leptin's effect on glucose sensitivity. Fasting increased activation of LHA orexin-GI neurons by decreased glucose, as would be predicted by these hormonal effects. We also evaluated putative VTA-DA neurons in a novel horizontal slice preparation containing the LHA and VTA. Decreased glucose increased the frequency of spontaneous excitatory post-synaptic currents (sEPSCs; 125 ± 40%, n=9, P<0.05) and action potentials (n=9; P<0.05) in 45% (9/20) of VTA DA neurons. sEPSCs were completely blocked by AMPA and NMDA glutamate receptor antagonists (CNQX 20 μM, n=4; APV 20μM, n=4; respectively), demonstrating that these sEPSCs were mediated by glutamatergic transmission onto VTA DA neurons. Orexin-1 but not 2 receptor antagonism with SB334867 (10μM; n=9) and TCS-OX2-29 (2μM; n=5), respectively, blocks the effects of decreased glucose on VTA DA neurons. Thus, decreased glucose increases orexin-dependent excitatory glutamate neurotransmission onto VTA DA neurons. These data suggest that the glucose sensitivity of LHA orexin-GI neurons links metabolic state and reward

  15. Influence of fasting and refeeding on 3,3',5'-triiodothyronine metabolism in man

    SciTech Connect

    LoPresti, J.S.; Gray, D.; Nicoloff, J.T. )

    1991-01-01

    To determine the influence of prolonged fasting and refeeding on rT3 metabolism in man, five euthyroid obese subjects underwent a 13-day fast, followed by a refeeding period. Each patient received an iv dose of 25 muCi (125I)rT3 during the fed control period, on days 7 and 13 of the fast, and on the fourth day after refeeding with a regular diet. Serial blood and urine samples were obtained to determine serum rT3 clearance and production rates and the urinary tracer rT3 deiodination fraction. Significant increases in serum rT3 values were noted by day 7 and remained elevated for the duration of the fast (P less than 0.01). Normalization of rT3 levels occurred after 4 days of refeeding. Both 7 and 13 days of fasting decreased rT3 clearance (132.6 +/- 8.3 L/day (P less than 0.001) and 132.2 +/- 9.5 L/day (P less than 0.001), respectively) without changing rT3 production (36.8 +/- 5.3 and 33.0 +/- 3.7 nmol/D, respectively) compared to control values (207.0 +/- 10.9 L/day and 31.8 +/- 3.8 nmol/day, respectively). Refeeding did not restore rT3 clearance (151.2 +/- 6.9 L/day; P less than 0.002), but significantly reduced blood rT3 production (18.4 +/- 3.8 nmol/day; P less than 0.003). The fractional deiodination of rT3 was significantly reduced on day 7 (42.5 +/- 4.6%; P less than 0.01) and day 13 (41.9 +/- 3.7%; P less than 0.01) of fasting compared to the control value (69.2 +/- 2.8%), while refeeding only partially restored deiodination to baseline (48.4 +/- 5.1%; P less than 0.04). The clearance of rT3 was highly dependent on the fractional deiodination rate (r = 0.83; P less than 0.001). Although rT3 production remained constant during fasting, reduced rT3 production was seen on the fourth day of refeeding. This unique observation explained the fall in serum rT3 to prefasting levels after 4 days of refeeding when rT3 clearance was still inhibited.

  16. Formation of 2-propanol in condensed molecular films of acetaldehyde following electron impact ionisation-induced proton transfer*

    NASA Astrophysics Data System (ADS)

    Borrmann, Tobias; Swiderek, Petra

    2016-06-01

    Experimental studies on thin condensed layers of acetaldehyde have previously revealed that electron exposure at an energy above the ionisation threshold leads to formation of 2-propanol. However, the mechanism of this reaction remained unclear. Therefore, a computational approach is used to explore the electron-induced reactions of acetaldehyde yielding 2-propanol. Starting from hydrogen-bonded dimers of acetaldehyde we show that the initial ionisation event triggers proton transfer between the two acetaldehyde moieties resulting in a hydrogen-bonded complex of a [OCCH3] radical and a protonated acetaldehyde cation. Given an excess energy of up to 0.75 eV and a favourable arrangement, a methyl radical released upon dissociation of the CC bond within the [OCCH3] radical can migrate to the carbonyl carbon of the protonated acetaldehyde cation. This produces a 2-propanol radical cation and CO. Neutral 2-propanol is then obtained by recombination with a second electron. A mechanism involving ionisation-driven proton transfer is thus proposed as pathway to the formation of 2-propanol during electron exposure of condensed layers of acetaldehyde.

  17. The influence of oxygen supply on metabolism of neural cells cultured on a gas-permeable PTFE foil.

    PubMed

    Mauth, Corinna; Pavlica, Sanja; Deiwick, Andrea; Steffen, Anja; Bader, Augustinus

    2010-01-01

    The influence of oxygen on neural stem cell proliferation, differentiation, and apoptosis is of great interest for regenerative therapies in neurodegenerative disorders, such as Parkinson's disease. These oxygen depending mechanisms have to been considered for the optimization of neural cell culture conditions. In this study, we used a cell culture system with an oxygen-permeable polytetrafluorethylene (PTFE) foil to investigate the effect of oxygen on metabolism and survival of neural cell lines in vitro. Human glial astrocytoma-derived cells (GOS-3) and rat pheochromacytoma cells (PC12) were cultured on the gas-permeable PTFE foil as well as a conventional non oxygen-permeable cell culture substrate at various oxygen concentrations. Analyses of metabolic activity, gene expression of apoptotic grade, and dopamine synthesis were performed. Under low oxygen partial pressure (2%, 5%) the anaerobic metabolism and apoptotic rate of cultured cells is diminished on PTFE foil when compared with the conventional culture dishes. In contrast, under higher oxygen atmosphere (21%) the number of apoptotic cells on the PTFE foil was enhanced. This culture model demonstrates a suitable model for the improvement of oxygen dependent metabolism under low oxygen conditions as well as for induction of oxidative stress by high oxygen atmosphere without supplementation of neurotoxins.

  18. Low-intensity lasers, modern filling materials, and bonding systems influence on mineral metabolism of hard dental tissues

    NASA Astrophysics Data System (ADS)

    Kunin, Anatoly A.; Yesaulenko, I. E.; Zoibelmann, M.; Pankova, Svetlana N.; Ippolitov, Yu. A.; Oleinik, Olga I.; Popova, T. A.; Koretskaya, I. V.; Shumilovitch, Bogdan R.; Podolskaya, Elana E.

    2001-10-01

    One of the main reasons of low quality filling is breaking Ca-P balance in hard tissues. Our research was done with the purpose of studying the influence of low intensity lasers, diodic radiation, the newest filling and bonding systems on the processes of mineral metabolism in hard dental tissues while filling a tooth. 250 patients having caries and its compli-cations were examined and treated. Our complex research included: visual and instrumental examination, finding out the level of oral cavity hygiene, acid enamel biopsy, scanning electronic microscopy and X-ray spectrum microanalysis. Filling processes may produce a negative effect on mineral metabolism of hard dental tissues the latter is less pronounced when applying fluoride-containing filling materials with bonding systems. It has also been found that bonding dentin and enamel systems are designed for both a better filling adhesion (i.e. mechanical adhesion) and migration of useful microelements present in them by their sinking into hard dental tissues (i.e. chemical adhesion). Our research showed a positive influence of low intensity laser and diodic beams accompanying the use of modern filling and bonding systems on mineral metabolism of hard dental tissues.

  19. Global atmospheric budget of acetaldehyde: 3-D model analysis and constraints from in-situ and satellite observations

    NASA Astrophysics Data System (ADS)

    Millet, D. B.; Guenther, A.; Siegel, D. A.; Nelson, N. B.; Singh, H. B.; de Gouw, J. A.; Warneke, C.; Williams, J.; Eerdekens, G.; Sinha, V.; Karl, T.; Flocke, F.; Apel, E.; Riemer, D. D.; Palmer, P. I.; Barkley, M.

    2010-04-01

    We construct a global atmospheric budget for acetaldehyde using a 3-D model of atmospheric chemistry (GEOS-Chem), and use an ensemble of observations to evaluate present understanding of its sources and sinks. Hydrocarbon oxidation provides the largest acetaldehyde source in the model (128 Tg a-1, a factor of 4 greater than the previous estimate), with alkanes, alkenes, and ethanol the main precursors. There is also a minor source from isoprene oxidation. We use an updated chemical mechanism for GEOS-Chem, and photochemical acetaldehyde yields are consistent with the Master Chemical Mechanism. We present a new approach to quantifying the acetaldehyde air-sea flux based on the global distribution of light absorption due to colored dissolved organic matter (CDOM) derived from satellite ocean color observations. The resulting net ocean emission is 57 Tg a-1, the second largest global source of acetaldehyde. A key uncertainty is the acetaldehyde turnover time in the ocean mixed layer, with quantitative model evaluation over the ocean complicated by known measurement artifacts in clean air. Simulated concentrations in surface air over the ocean generally agree well with aircraft measurements, though the model tends to overestimate the vertical gradient. PAN:NOx ratios are well-simulated in the marine boundary layer, providing some support for the modeled ocean source. We introduce the Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1) for acetaldehyde and ethanol and use it to quantify their net flux from living terrestrial plants. Including emissions from decaying plants the total direct acetaldehyde source from the land biosphere is 23 Tg a-1. Other terrestrial acetaldehyde sources include biomass burning (3 Tg a-1) and anthropogenic emissions (2 Tg a-1). Simulated concentrations in the continental boundary layer are generally unbiased and capture the spatial gradients seen in observations over North America, Europe, and tropical South America. However

  20. Global atmospheric budget of acetaldehyde: 3-D model analysis and constraints from in-situ and satellite observations

    NASA Astrophysics Data System (ADS)

    Millet, D. B.; Guenther, A.; Siegel, D. A.; Nelson, N. B.; Singh, H. B.; de Gouw, J. A.; Warneke, C.; Williams, J.; Eerdekens, G.; Sinha, V.; Karl, T.; Flocke, F.; Apel, E.; Riemer, D. D.; Palmer, P. I.; Barkley, M.

    2009-11-01

    We construct a global atmospheric budget for acetaldehyde using a 3-D model of atmospheric chemistry (GEOS-Chem), and use an ensemble of observations to evaluate present understanding of its sources and sinks. Hydrocarbon oxidation provides the largest acetaldehyde source in the model (130 Tg a-1), with alkanes, alkenes, ethanol, and isoprene the main precursors. We use an updated chemical mechanism for GEOS-Chem, and photochemical acetaldehyde yields are consistent with the Master Chemical Mechanism. We apply SeaWiFS satellite observations to define the global distribution of light absorption due to marine dissolved organic matter (DOM), and estimate the corresponding sea-to-air acetaldehyde flux based on measured photoproduction rates from DOM. The resulting net ocean emission is 58 Tg a-1, the second largest global source of acetaldehyde. Quantitative model evaluation over the ocean is complicated by known measurement artifacts in clean air. Simulated concentrations in surface air over the ocean generally agree well with aircraft measurements, though the model tends to overestimate the vertical gradient. PAN:NOx ratios are well-simulated in the marine boundary layer, providing some support for the modeled ocean source. A key uncertainty is the acetaldehyde turnover time in the ocean mixed layer. We introduce the Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1) for acetaldehyde and ethanol and use it to quantify their net flux from living terrestrial plants. Including emissions from decaying plants the total direct acetaldehyde source from the land biosphere is 22 Tg a-1. Other terrestrial acetaldehyde sources include biomass burning (3 Tg a-1) and anthropogenic emissions (2 Tg a-1). Simulated concentrations in the continental boundary layer are generally unbiased and capture the spatial gradients seen in observations over North America, Europe, and tropical South America. However, the model underestimates acetaldehyde levels in urban outflow

  1. Reversible cardiac dysfunction after venlafaxine overdose and possible influence of genotype and metabolism.

    PubMed

    Castanares-Zapatero, Diego; Gillard, Nathalie; Capron, Arnaud; Haufroid, Vincent; Hantson, Philippe

    2016-09-01

    Acute poisoning by large venlafaxine (VEN) overdoses may result in serious cardiac events like acute left ventricular dysfunction or even fatalities. In humans, venlafaxine is biotransformed for the most part by CYP2D6 and CYP2C19 isoenzymes to its major metabolite O-desmethylvenlafaxine (ODV), and in parallel to N-desmethylvenlafaxine (NDV) and N,O-didesmethylvenlafaxine (NODV) by several CYP isoenzymes, mainly including CYP3A4 and CYP2C19. The ODV concentrations must be taken into consideration along with those of VEN when relating blood concentrations to clinical effects. Herein we describe a case of reversible cardiac dysfunction following VEN self-poisoning. The peak ODV concentration (46,094ng/mL) was observed 20h post-ingestion, being one of the highest ever associated with survival. The calculated elimination half-life was 10h for VEN and 22h for ODV, and the calculated ODV/VEN metabolic ratio 12.9. Genotyping confirmed the patient to have an extensive metabolizer phenotype for CYP2D6, and an ultra-rapid metabolizer phenotype for CYP2C19. We suspect cardiotoxicity was related to sustained ODV exposure despite extensive VEN metabolism, and therefore suggest that ODV metabolism saturation may occur following large VEN overdoses.

  2. Seasonal influence over serum and urine metabolic markers in submariners during prolonged patrols

    PubMed Central

    Holy, Xavier; Bégot, Laurent; Renault, Sylvie; Butigieg, Xavier; André, Catherine; Bonneau, Dominique; Savourey, Gustave; Collombet, Jean-Marc

    2015-01-01

    Within the framework of earlier publications, we have consistently dedicated our investigations to eliciting the effects of both seasonal vitamin D deficiency and submarine-induced hypercapnia on serum parameters for acid–base balance and bone metabolism in submariners over a 2-month winter (WP) or summer (SP) patrols. The latest findings reported herein, contribute further evidence with regard to overall physiological regulations in the same submariner populations that underwent past scrutiny. Hence, urine and blood samples were collected in WP and SP submariners at control prepatrol time as well as on submarine patrol days 20, 41, and 58. Several urine and serum metabolic markers were quantified, namely, deoxypyridinoline (DPD), lactate, albumin, creatinine, nonesterified fatty acids (NEFA), and ionized sodium (Na+) or potassium (K+), with a view to assessing bone, muscle, liver, or kidney metabolisms. We evidenced bone metabolism alteration (urine DPD, calcium, and phosphorus) previously recorded in submarine crewmembers under prolonged patrols. We also highlighted transitory modifications in liver metabolism (serum albumin) occurring within the first 20 days of submersion. We further evidenced changes in submariners’ renal physiology (serum creatinine) throughout the entire patrol time span. Measurements of ionic homeostasis (serum Na+ and K+) displayed potential seasonal impact over active ionic pumps in submariners. Finally, there is some evidence that submersion provides beneficial conditions prone to fend off seasonal lactic acidosis (serum lactate) detected in WP submariners. PMID:26265754

  3. Daily regulation of serum and urinary hepcidin is not influenced by submaximal cycling exercise in humans with normal iron metabolism.

    PubMed

    Troadec, Marie-Bérengère; Lainé, Fabrice; Daniel, Vincent; Rochcongar, Pierre; Ropert, Martine; Cabillic, Florian; Perrin, Michèle; Morcet, Jeff; Loréal, Olivier; Olbina, Gordana; Westerman, Mark; Nemeth, Elizabeta; Ganz, Tomas; Brissot, Pierre

    2009-06-01

    Hepcidin and hemojuvelin (HJV) are two critical regulators of iron metabolism as indicated by the development of major iron overload associated to mutations in hepcidin and HJV genes. Hepcidin and HJV are highly expressed in liver and muscles, respectively. Intensive muscular exercise has been reported to modify serum iron parameters and to increase hepcidinuria. The present study aimed at evaluating the potential impact of low intensity muscle exercise on iron metabolism and on hepcidin, its key regulator. Fourteen normal volunteers underwent submaximal cycling-based exercise in a crossover design and various iron parameters, including serum and urinary hepcidin, were serially studied. The results demonstrated that submaximal ergocycle endurance exercise did not modulate hepcidin. This study also indicated that hepcidinuria did not show any daily variation whereas serum hepcidin did. The findings, by demonstrating that hepcidin concentrations are not influenced by submaximal cycling exercise, may have implications for hepcidin sampling in medical practice.

  4. Particle properties of sugar maple hemicellulose hydrolysate and its influence on growth and metabolic behavior of Pichia stipitis.

    PubMed

    Sun, Zhijie; Shupe, Alan; Liu, Tingjun; Hu, Ruofei; Amidon, Thomas E; Liu, Shijie

    2011-01-01

    In this study the influence of the insoluble solids in nano-filtrated sugar maple hemicellulosic hydrolysate on the metabolic behavior of Pichia stiptis was investigated. The particle properties of hemicellulosic hydrolysate were analyzed. Phosphoric acid and ammonium (PA) were applied to remove the particles. The metabolic behavior and growth property of P. stipitis in particle--removed hydrolysate was measured. Results demonstrated that the average particle size and zeta potential of the untreated hydrolysate were 2266.9±78.2 nm and -6.09±0.49 mV. Xylose consumption and ethanol production rate were significantly decreased when particle content is greater than 1.63 g/L. Because the majority of particles (34 g/L) were removed from hydrolysates by phosphoric acid and ammonium treatment, the fermentability of the hydrolysate was significantly improved. These results indicated particles play an important role in hydrolysate inhibition effect.

  5. Psychiatrists' follow-up of identified metabolic risk: a mixed-method analysis of outcomes and influences on practice

    PubMed Central

    Patterson, Sue; Freshwater, Kathleen; Goulter, Nicole; Ewing, Julie; Leamon, Boyd; Choudhary, Anand; Moudgil, Vikas; Emmerson, Brett

    2016-01-01

    Aims and method To describe and explain psychiatrists' responses to metabolic abnormalities identified during screening. We carried out an audit of clinical records to assess rates of monitoring and follow-up practice. Semi-structured interviews with 36 psychiatrists followed by descriptive and thematic analyses were conducted. Results Metabolic abnormalities were identified in 76% of eligible patients screened. Follow-up, recorded for 59%, was variable but more likely with four or more abnormalities. Psychiatrists endorse guidelines but ambivalence about responsibility, professional norms, resource constraints and skills deficits as well as patient factors influences practice. Therapeutic optimism and desire to be a ‘good doctor’ supported comprehensive follow-up. Clinical implications Psychiatrists are willing to attend to physical healthcare, and obstacles to recommended practice are surmountable. Psychiatrists seek consensus among stakeholders about responsibilities and a systemic approach addressing the social determinants of health inequities. Understanding patients' expectations is critical to promoting best practice. PMID:27752343

  6. Endogenous ethanol--its metabolic, behavioral and biomedical significance.

    PubMed

    Ostrovsky YuM

    1986-01-01

    Ethanol is constantly formed endogenously from acetaldehyde, and level of the former can be measured in both human beings and animals. Acetaldehyde can be generated in situ from the metabolism of pyruvate, threonine, deoxyribose-5-phosphate, phosphoethanolamine, alanine and presumably from other substrates. The levels of blood and tissue endogenous ethanol change as a function of various physiologic and experimental conditions such as starvation, aging, stress, cooling, adrenalectomy, etc. and are regulated by many exogenous compounds such as antimetabolites, derivatives of amino acids, lithium salts, disulfiram, cyanamide, etc. Under free choice alcohol selection situations, the levels of endogenous ethanol in rat blood and alcohol preference by the animals are negatively correlated. Similar negative correlations have been found between the levels of blood endogenous ethanol and the frequency of delirium in alcoholic patients undergoing alcohol withdrawal. Endogenous ethanol and acetaldehyde can therefore be regarded as compounds which fulfil substrate, regulatory and modulator functions.

  7. Identification of differences in human and great ape phytanic acid metabolism that could influence gene expression profiles and physiological functions

    PubMed Central

    2010-01-01

    Background It has been proposed that anatomical differences in human and great ape guts arose in response to species-specific diets and energy demands. To investigate functional genomic consequences of these differences, we compared their physiological levels of phytanic acid, a branched chain fatty acid that can be derived from the microbial degradation of chlorophyll in ruminant guts. Humans who accumulate large stores of phytanic acid commonly develop cerebellar ataxia, peripheral polyneuropathy, and retinitis pigmentosa in addition to other medical conditions. Furthermore, phytanic acid is an activator of the PPAR-alpha transcription factor that influences the expression of genes relevant to lipid metabolism. Results Despite their trace dietary phytanic acid intake, all great ape species had elevated red blood cell (RBC) phytanic acid levels relative to humans on diverse diets. Unlike humans, chimpanzees showed sexual dimorphism in RBC phytanic acid levels, which were higher in males relative to females. Cultured skin fibroblasts from all species had a robust capacity to degrade phytanic acid. We provide indirect evidence that great apes, in contrast to humans, derive significant amounts of phytanic acid from the hindgut fermentation of plant materials. This would represent a novel reduction of metabolic activity in humans relative to the great apes. Conclusion We identified differences in the physiological levels of phytanic acid in humans and great apes and propose this is causally related to their gut anatomies and microbiomes. Phytanic acid levels could contribute to cross-species and sex-specific differences in human and great ape transcriptomes, especially those related to lipid metabolism. Based on the medical conditions caused by phytanic acid accumulation, we suggest that differences in phytanic acid metabolism could influence the functions of human and great ape nervous, cardiovascular, and skeletal systems. PMID:20932325

  8. Glucokinase Regulatory Protein Genetic Variant Interacts with Omega-3 PUFA to Influence Insulin Resistance and Inflammation in Metabolic Syndrome

    PubMed Central

    Garcia-Rios, Antonio; Mc Monagle, Jolene; Gulseth, Hanne L.; Ordovas, Jose M.; Shaw, Danielle I.; Karlström, Brita; Kiec-Wilk, Beata; Blaak, Ellen E.; Helal, Olfa; Malczewska-Malec, Małgorzata; Defoort, Catherine; Risérus, Ulf; Saris, Wim H. M.; Lovegrove, Julie A.; Drevon, Christian A.; Roche, Helen M.; Lopez-Miranda, Jose

    2011-01-01

    Glucokinase Regulatory Protein (GCKR) plays a central role regulating both hepatic triglyceride and glucose metabolism. Fatty acids are key metabolic regulators, which interact with genetic factors and influence glucose metabolism and other metabolic traits. Omega-3 polyunsaturated fatty acids (n-3 PUFA) have been of considerable interest, due to their potential to reduce metabolic syndrome (MetS) risk. Objective To examine whether genetic variability at the GCKR gene locus was associated with the degree of insulin resistance, plasma concentrations of C-reactive protein (CRP) and n-3 PUFA in MetS subjects. Design Homeostasis model assessment of insulin resistance (HOMA-IR), HOMA-B, plasma concentrations of C-peptide, CRP, fatty acid composition and the GCKR rs1260326-P446L polymorphism, were determined in a cross-sectional analysis of 379 subjects with MetS participating in the LIPGENE dietary cohort. Results Among subjects with n-3 PUFA levels below the population median, carriers of the common C/C genotype had higher plasma concentrations of fasting insulin (P = 0.019), C-peptide (P = 0.004), HOMA-IR (P = 0.008) and CRP (P = 0.032) as compared with subjects carrying the minor T-allele (Leu446). In contrast, homozygous C/C carriers with n-3 PUFA levels above the median showed lower plasma concentrations of fasting insulin, peptide C, HOMA-IR and CRP, as compared with individuals with the T-allele. Conclusions We have demonstrated a significant interaction between the GCKR rs1260326-P446L polymorphism and plasma n-3 PUFA levels modulating insulin resistance and inflammatory markers in MetS subjects. Further studies are needed to confirm this gene-diet interaction in the general population and whether targeted dietary recommendations can prevent MetS in genetically susceptible individuals. Trial Registration ClinicalTrials.gov NCT00429195 PMID:21674002

  9. The influence of one-carbon metabolism on gene promoter methylation in a population-based breast cancer study

    PubMed Central

    Gammon, Marilie D; Jefferson, Elizabeth; Zhang, Yujing; Cho, Yoon Hee; Wetmur, James G; Teitelbaum, Susan L; Bradshaw, Patrick T; Terry, Mary Beth; Garbowski, Gail; Hibshoosh, Hanina; Neugut, Alfred I; Santella, Regina M

    2011-01-01

    Abnormal methylation in gene promoters is a hallmark of the cancer genome; however, factors that may influence promoter methylation have not been well elucidated. As the one-carbon metabolism pathway provides the universal methyl donor for methylation reactions, perturbation of this pathway might influence DNA methylation and, ultimately, affect gene functions. Utilizing approximately 800 breast cancer tumor tissues from a large population-based study, we investigated the relationships between dietary and genetic factors involved in the one-carbon metabolism pathway and promoter methylation of a panel of 13 breast cancer-related genes. We found that CCND2, HIN1 and CHD1 were the most “dietary sensitive” genes, as methylation of their promoters was associated with intakes of at least two out of the eight dietary methyl factors examined. On the other hand, some micronutrients (i.e., B2 and B6) were more “epigenetically active” as their intake levels correlated with promoter methylation status in 3 out of the 13 breast cancer genes evaluated. Both positive (hypermethylation) and inverse (hypomethylation) associations with high micronutrient intake were observed. Unlike what we saw for dietary factors, we did not observe any clear patterns between one-carbon genetic polymorphisms and the promoter methylation status of the genes examined. Our results provide preliminary evidence that one-carbon metabolism may have the capacity to influence the breast cancer epigenome. Given that epigenetic alterations are thought to occur early in cancer development and are potentially reversible, dietary modifications may offer promising venues for cancer intervention and prevention. PMID:22048254

  10. The influence of cytosolic phosphorylating glyceraldehyde 3-phosphate dehydrogenase (GAPC) on potato tuber metabolism.

    PubMed

    Hajirezaei, Mohammad-Reza; Biemelt, Sophia; Peisker, Martin; Lytovchenko, Anna; Fernie, Alisdair R; Sonnewald, Uwe

    2006-01-01

    The aim of this work was to investigate the importance of cytosolic phosphorylating glyceraldehyde 3-phosphate dehydrogenase (GAPC) in potato carbohydrate metabolism. For this purpose, the cytosolic isoform of phosphorylating GAPC was cloned and used for an antisense approach to generate transgenic potato plants that exhibited constitutively decreased GAPDH activity. Potato lines with decreased activities of phosphorylating GAPC exhibited no major changes in either whole-plant or tuber morphology. However, the levels of 3-phosphoglycerate were decreased in leaves of the transformants. A broad metabolic phenotyping of tubers from the transformants revealed an increase in sucrose and UDPglucose content, a decrease in the glycolytic intermediates 3-phosphoglycerate and phosphoenolpyruvate but little change in the levels of other metabolites. Moreover, the transformants displayed no differences in cold sweetening with respect to the wild type. Taken together these data suggest that phosphorylating GAPC plays only a minor role in the regulation of potato metabolism. The results presented here are discussed in relation to current models regarding primary metabolism in the potato tuber parenchyma.

  11. How Do the Metabolic Effects of Chronic Stress Influence Breast Cancer Biology

    DTIC Science & Technology

    2013-04-01

    glucose metabolism. Nature. 2012;484:333-U66. 8. Shankar K, Harrell A, Liu X, Ronis MJJ, Badger TM. Increased adipocyte de novo lipogenesis...Oncogene. 2003;22:6408-23. 10 49. Gorska E, Popko K, Stelmaszczyk-Emmel A, Ciepiela O, Kucharska A, Wasik M. 11 Leptin receptors. European Journal of

  12. Glucose metabolism in different regions of the rat brain under hypokinetic stress influence

    NASA Technical Reports Server (NTRS)

    Konitzer, K.; Voigt, S.

    1980-01-01

    Glucose metabolism in rats kept under long term hypokinetic stress was studied in 7 brain regions. Determination was made of the regional levels of glucose, lactate, glutamate, glutamine, aspartate, gamma-aminobutyrate and the incorporation of C-14 from plasma glucose into these metabolites, in glycogen and protein. From the content and activity data the regional glucose flux was approximated quantitatively. Under normal conditions the activity gradient cortex and frontal pole cerebellum, thalamus and mesencephalon, hypothalamus and pons and medulla is identical with that of the regional blood supply (measured with I131 serum albumin as the blood marker). Within the first days of immobilization a functional hypoxia occurred in all brain regions and the utilization of cycle amino acids for protein synthesis was strongly diminished. After the first week of stress the capillary volumes of all regions increased, aerobic glucose metabolism was enhanced (factors 1.3 - 2.0) and the incorporation of glucose C-14 via cycle amino acids into protein was considerably potentiated. The metabolic parameters normalized between the 7th and 11th week of stress. Blood supply and metabolic rate increased most in the hypothalamus.

  13. Food composition influences metabolism, heart rate and organ growth during digestion in Python regius.

    PubMed

    Henriksen, Poul Secher; Enok, Sanne; Overgaard, Johannes; Wang, Tobias

    2015-05-01

    Digestion in pythons is associated with a large increase in oxygen consumption (SDA), increased cardiac output and growth in visceral organs assisting in digestion. The processes leading to the large postprandial rise in metabolism in snakes is subject to opposing views. Gastric work, protein synthesis and organ growth have each been speculated to be major contributors to the SDA. To investigate the role of food composition on SDA, heart rate (HR) and organ growth, 48 ball pythons (Python regius) were fed meals of either fat, glucose, protein or protein combined with carbonate. Our study shows that protein, in the absence or presence of carbonate causes a large SDA response, while glucose caused a significantly smaller SDA response and digestion of fat failed to affect metabolism. Addition of carbonate to the diet to stimulate gastric acid secretion did not increase the SDA response. These results support protein synthesis as a major contributor to the SDA response and show that increased gastric acid secretion occurs at a low metabolic cost. The increase in metabolism was supported by tachycardia caused by altered autonomic regulation as well as an increased non-adrenergic, non-cholinergic (NANC) tone in response to all diets, except for the lipid meal. Organ growth only occurred in the small intestine and liver in snakes fed on a high protein diet.

  14. The influence of starvation upon hepatic drug metabolism in rats, mice, and guinea pigs.

    NASA Technical Reports Server (NTRS)

    Furner, R. L.; Feller, D. D.

    1971-01-01

    Male rats, mice, and guinea pigs were starved for 1, 2, or 3 days, and the metabolism of ethylmorphine, p-nitroanisole, and aniline was studied. Results suggest that the oxidative enzyme systems studied are not interdependent, and the pathways studied appear to be species dependent.

  15. The Relationship of Body Fat to Metabolic Disease: Influence of Sex and Ethnicity

    PubMed Central

    Sumner, Anne E.

    2012-01-01

    Clinical investigations designed to determine risk profiles for the development of cardiovascular disease (CVD) and type 2 diabetes mellitus (DM) are usually performed in homogenous populations and often focus on body mass index (BMI), waist circumference (WC), and fasting triglyceride (TG) levels. However, there are major ethnic differences in the relationship of these risk factors to outcomes. For example, the BMI risk threshold may be higher in blacks than in whites and higher in women than in men. Furthermore, a WC that predicts an obese BMI in white women only predicts a BMI in the overweight category in black women. In addition, overweight black men have a greater risk of developing type 2 DM than do overweight black women. Although TG levels are excellent predictors of insulin resistance in whites, they are not effective markers of insulin resistance in blacks. Among the criteria sets currently available to predict the development of CVD and type 2 DM, the most well known is the metabolic syndrome. The metabolic syndrome has 5 criteria: central obesity, hypertriglyceridemia, low high-density lipoprotein (HDL) levels, fasting hyperglycemia, and hypertension. To make the diagnosis of the metabolic syndrome, 3 of the 5 factors must be present. For central obesity and low HDL, the metabolic syndrome guidelines are sex specific. Diagnostic guidelines should also take ethnic differences into account, particularly in the diagnosis of central obesity and hypertriglyceridemia. PMID:19108808

  16. [Alcohol metabolism at moderate drinking in healthy men. Comparison between differences of alcohol beverages, with and without meal, and genetic polymorphism].

    PubMed

    Oshima, Shunji; Haseba, Takeshi; Masuda, Chiaki; Abe, Yuko; Sami, Manabu; Kanda, Tomomasa; Ohno, Youkichi

    2011-06-01

    Studies on metabolisms of alcohol and the metabolites (e.g.:acetaldehyde) after drinking give basic and important information to recognize the physiological influence of drinking to human bodies. The aims of these studies were to clarify the influences of ALDH2 genotype difference, kinds of alcohol beverages, and fasted or prandial state to alcohol metabolisms at moderate drinking. The studies were conducted by a randomized cross-over design. After overnight fast, fifteen of ALDH2*1/*1 (Experiment 1) and twenty of ALDH21/*2 (Experiment 2) in Japanese healthy men aged 40 to 59 years old drank beer or shochu at a dose of 0.32g ethanol / kg body weight with or without test meal (460 kcal). The peak of blood ethanol (C(max)) was higher with shochu than with beer in the fasted condition in both ALDH2 genotypes, however, the difference between two types of alcohol beverages went out in the prandial condition. Simultaneous ingestion of test meal with alcohol beverage significantly decreased blood ethanol concentrations and increased ethanol disappearance rate (EDR) in the both genotypes. EDR values were significantly higher in ALDH2*1/*1 type than in ALDH2*1/*2 type in the both beverages with and without meal, whereas beta values showed no significant difference between two genotypes. The concentrations of blood acetaldehyde in ALDH2*1/*2 type were higher in prandial condition than in fasted condition with shochu. These results indicate that meal modified the differences of alcohol metabolism between beer and shochu and also between ALDH2 genotypes. Thus, alcohol metabolism in daily drinking is shown to be regulated by various combinatorial drinking conditions.

  17. Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on Oxide‐Derived Copper

    PubMed Central

    Bertheussen, Erlend; Verdaguer‐Casadevall, Arnau; Ravasio, Davide; Montoya, Joseph H.; Trimarco, Daniel B.; Roy, Claudie; Meier, Sebastian; Wendland, Jürgen; Nørskov, Jens K.

    2015-01-01

    Abstract Oxide‐derived copper (OD‐Cu) electrodes exhibit unprecedented CO reduction performance towards liquid fuels, producing ethanol and acetate with >50 % Faradaic efficiency at −0.3 V (vs. RHE). By using static headspace‐gas chromatography for liquid phase analysis, we identify acetaldehyde as a minor product and key intermediate in the electroreduction of CO to ethanol on OD‐Cu electrodes. Acetaldehyde is produced with a Faradaic efficiency of ≈5 % at −0.33 V (vs. RHE). We show that acetaldehyde forms at low steady‐state concentrations, and that free acetaldehyde is difficult to detect in alkaline solutions using NMR spectroscopy, requiring alternative methods for detection and quantification. Our results represent an important step towards understanding the CO reduction mechanism on OD‐Cu electrodes. PMID:26692282

  18. Acetaldehyde as an intermediate in the electroreduction of carbon monoxide to ethanol on oxide-derived copper

    SciTech Connect

    Bertheussen, Erlend; Verdaguer-Casadevall, Arnau; Ravasio, Davide; Montoya, Joseph H.; Trimarco, Daniel B.; Roy, Claudie; Meier, Sebastian; Wendland, Jürgen; Nørskov, Jens K.; Stephens, Ifan E. L.; Chorkendorff, Ib

    2015-12-21

    Oxide-derived copper (OD-Cu) electrodes exhibit unprecedented CO reduction performance towards liquid fuels, producing ethanol and acetate with >50 % Faradaic efficiency at -0.3 V (vs. RHE). By using static headspace-gas chromatography for liquid phase analysis, we identify acetaldehyde as a minor product and key intermediate in the electroreduction of CO to ethanol on OD-Cu electrodes. Acetaldehyde is produced with a Faradaic efficiency of ≈5 % at -0.33 V (vs. RHE). We show that acetaldehyde forms at low steady-state concentrations, and that free acetaldehyde is difficult to detect in alkaline solutions using NMR spectroscopy, requiring alternative methods for detection and quantification. Our results indicate an important step towards understanding the CO reduction mechanism on OD-Cu electrodes.

  19. Acetaldehyde as an intermediate in the electroreduction of carbon monoxide to ethanol on oxide-derived copper

    DOE PAGES

    Bertheussen, Erlend; Verdaguer-Casadevall, Arnau; Ravasio, Davide; ...

    2015-12-21

    Oxide-derived copper (OD-Cu) electrodes exhibit unprecedented CO reduction performance towards liquid fuels, producing ethanol and acetate with >50 % Faradaic efficiency at -0.3 V (vs. RHE). By using static headspace-gas chromatography for liquid phase analysis, we identify acetaldehyde as a minor product and key intermediate in the electroreduction of CO to ethanol on OD-Cu electrodes. Acetaldehyde is produced with a Faradaic efficiency of ≈5 % at -0.33 V (vs. RHE). We show that acetaldehyde forms at low steady-state concentrations, and that free acetaldehyde is difficult to detect in alkaline solutions using NMR spectroscopy, requiring alternative methods for detection and quantification.more » Our results indicate an important step towards understanding the CO reduction mechanism on OD-Cu electrodes.« less

  20. The role of acetaldehyde and glycerol in the adaptation to ethanol stress of Saccharomyces cerevisiae and other yeasts.

    PubMed

    Vriesekoop, Frank; Haass, Cornelia; Pamment, Neville B

    2009-05-01

    Ethanol inhibition is a commonly encountered stress condition during typical yeast fermentations and often results in reduced fermentation rates and production yields. While past studies have shown that acetaldehyde addition has a significant ameliorating effect on the growth of ethanol-stressed Saccharomyces cerevisiae, this study investigated the potential ameliorating effect of acetaldehyde on a wide range of ethanol-stressed yeasts. Acetaldehyde does not appear to be a universal ameliorating agent for yeasts exposed to ethanol stress. It is also shown that as a result of an ethanol stress, most yeasts rapidly produce glycerol as an alternative means of NAD(+) regeneration rather than having a specific requirement for glycerol. The results strongly suggest that both ethanol and acetaldehyde exposure have a direct effect on the cellular NAD(+)/NADH ratio, which can manifest itself as modulations in glycerol production.

  1. Acetaldehyde at clinically relevant concentrations inhibits inward rectifier potassium current I(K1) in rat ventricular myocytes.

    PubMed

    Bébarová, M; Matejovič, P; Šimurdová, M; Šimurda, J

    2015-01-01

    Considering the effects of alcohol on cardiac electrical behavior as well as the important role of the inward rectifier potassium current I(K1) in arrhythmogenesis, this study was aimed at the effect of acetaldehyde, the primary metabolite of ethanol, on I(K1) in rat ventricular myocytes. Acetaldehyde induced a reversible inhibition of I(K1) with IC(50) = 53.7+/-7.7 microM at -110 mV; a significant inhibition was documented even at clinically-relevant concentrations (at 3 microM by 13.1+/-3.0 %). The inhibition was voltage-independent at physiological voltages above -90 mV. The I(K1) changes under acetaldehyde may contribute to alcohol-induced alterations of cardiac electrophysiology, especially in individuals with a genetic defect of aldehyde dehydrogenase where the acetaldehyde level may be elevated.

  2. Macronutrient Intake Influences the Effect of 25-Hydroxy-Vitamin D Status on Metabolic Syndrome Outcomes in African American Girls

    PubMed Central

    Newton, Anna L.; Hanks, Lynae J.; Ashraf, Ambika P.; Williams, Elizabeth; Davis, Michelle; Casazza, Krista

    2012-01-01

    The objectives were to determine the effect of macronutrient modification on vitamin D status and if change in 25-hydroxy-vitamin D concentration influences components of metabolic syndrome in obese African American girls. Methods. Five-week intervention using reduced CHO (43% carbohydrate; 27% fat: SPEC) versus standard CHO (55% carbohydrate; 40% fat: STAN) eucaloric diet. Subjects were 28 obese African American females, aged 9–14 years. Dual energy X-ray absorptiometry and meal test were performed at baseline and five weeks. Results. Approximately 30% of girls had metabolic syndrome. Serum 25OHD increased in both groups at five weeks [STAN: 20.3 ± 1.1 to 22.4 ± 1.1 (P < 0.05) versus SPEC: 16.1 ± 1.0 to 16.8 ± 1.0 (P = 0.05)]. The STAN group, increased 25OHD concentration over five weeks (P < 0.05), which was positively related to triglycerides (P < 0.001) and inversely associated with total cholesterol (P < 0.001) and LDL (P < 0.001). The SPEC group, had increase in 25OHD (P = 0.05), which was positively related to fasting insulin (P < 0.001) and insulin sensitivity while inversely associated with fasting glucose (P < 0.05). The contribution of vitamin D status to metabolic syndrome parameters differs according to macronutrient intake. Improvement in 25OHD may improve fasting glucose, insulin sensitivity, and LDL; however, macronutrient intake warrants consideration. PMID:22792449

  3. Genotype influences sulfur metabolism in broccoli (Brassica oleracea L.) under elevated CO2 and NaCl stress.

    PubMed

    Rodríguez-Hernández, María del Carmen; Moreno, Diego A; Carvajal, Micaela; Martínez-Ballesta, María del Carmen

    2014-12-01

    Climatic change predicts elevated salinity in soils as well as increased carbon dioxide dioxide [CO2] in the atmosphere. The present study aims to determine the effect of combined salinity and elevated [CO2] on sulfur (S) metabolism and S-derived phytochemicals in green and purple broccoli (cv. Naxos and cv. Viola, respectively). Elevated [CO2] involved the amelioration of salt stress, especially in cv. Viola, where a lower biomass reduction by salinity was accompanied by higher sodium (Na(+)) and chloride (Cl(-)) compartmentation in the vacuole. Moreover, salinity and elevated [CO2] affected the mineral and glucosinolate contents and the activity of biosynthetic enzymes of S-derived compounds and the degradative enzyme of glucosinolate metabolism, myrosinase, as well as the related amino acids and the antioxidant glutathione (GSH). In cv. Naxos, elevated [CO2] may trigger the antioxidant response to saline stress by means of increased GSH concentration. Also, in cv. Naxos, indolic glucosinolates were more influenced by the NaCl×CO2 interaction whereas in cv. Viola the aliphatic glucosinolates were significantly increased by these conditions. Salinity and elevated [CO2] enhanced the S cellular partitioning and metabolism affecting the myrosinase-glucosinolate system.

  4. Endogenous and dietary lipids influencing feed intake and energy metabolism of periparturient dairy cows.

    PubMed

    Kuhla, B; Metges, C C; Hammon, H M

    2016-07-01

    The high metabolic priority of the mammary gland for milk production, accompanied by limited feed intake around parturition results in a high propensity to mobilize body fat reserves. Under these conditions, fuel selection of many peripheral organs is switched, for example, from carbohydrate to fat utilization to spare glucose for milk production and to ensure partitioning of tissue- and dietary-derived nutrients toward the mammary gland. For example, muscle tissue uses nonesterified fatty acids (NEFA) but releases lactate and amino acids in a coordinated order, thereby providing precursors for milk synthesis or hepatic gluconeogenesis. Tissue metabolism and in concert, nutrient partitioning are controlled by the endocrine system involving a reduction in insulin secretion and systemic insulin sensitivity and orchestrated changes in plasma hormones such as insulin, adiponectin, insulin growth factor-I, growth hormone, glucagon, leptin, glucocorticoids, and catecholamines. However, the endocrine system is highly sensitive and responsive to an overload of fatty acids no matter if excessive NEFA supply originates from exogenous or endogenous sources. Feeding a diet containing rumen-protected fat from late lactation to calving and beyond exerts similar negative effects on energy intake, glucose and insulin concentrations as does a high extent of body fat mobilization around parturition in regard to the risk for ketosis and fatty liver development. High plasma NEFA concentrations are thought not to act directly at the brain level, but they increase the energy charge of the liver which is, signaled to the brain to diminish feed intake. Cows differing in fat mobilization during the transition phase differ in their hepatic energy charge, whole body fat oxidation, glucose metabolism, plasma ghrelin, and leptin concentrations and in feed intake several week before parturition. Hence, a high lipid load, no matter if stored, mobilized or fed, affects the endocrine system

  5. Proton transfer reactions between nitric acid and acetone, hydroxyacetone, acetaldehyde and benzaldehyde in the solid phase.

    PubMed

    Lasne, Jérôme; Laffon, Carine; Parent, Philippe

    2012-12-05

    The heterogeneous and homogeneous reactions of acetone, hydroxyacetone, acetaldehyde and benzaldehyde with solid nitric acid (HNO(3)) films have been studied with Reflection-Absorption Infrared Spectroscopy (RAIRS) under Ultra-High Vacuum (UHV) conditions in the 90-170 K temperature range. In the bulk or at the surface of the films, nitric acid transfers its proton to the carbonyl function of the organic molecules, producing protonated acetone-H(+), hydroxyacetone-H(+), acetaldehyde-H(+) and benzaldehyde-H(+), and nitrate anions NO(3)(-), a reaction not observed when nitric acid is previously hydrated [J. Lasne, C. Laffon and Ph. Parent, Phys. Chem. Chem. Phys., 2012, 14, 697]. This provides a molecular-scale description of the carbonyl protonation reaction in an acid medium, the first step of the acid-catalyzed condensation of carbonyl compounds, fuelling the growth of secondary organic aerosols (SOA) in the atmosphere.

  6. Photo-tautomerization of acetaldehyde to vinyl alcohol: a potential route to tropospheric acids.

    PubMed

    Andrews, Duncan U; Heazlewood, Brianna R; Maccarone, Alan T; Conroy, Trent; Payne, Richard J; Jordan, Meredith J T; Kable, Scott H

    2012-09-07

    Current atmospheric models underestimate the production of organic acids in the troposphere. We report a detailed kinetic model of the photochemistry of acetaldehyde (ethanal) under tropospheric conditions. The rate constants are benchmarked to collision-free experiments, where extensive photo-isomerization is observed upon irradiation with actinic ultraviolet radiation (310 to 330 nanometers). The model quantitatively reproduces the experiments and shows unequivocally that keto-enol photo-tautomerization, forming vinyl alcohol (ethenol), is the crucial first step. When collisions at atmospheric pressure are included, the model quantitatively reproduces previously reported quantum yields for photodissociation at all pressures and wavelengths. The model also predicts that 21 ± 4% of the initially excited acetaldehyde forms stable vinyl alcohol, a known precursor to organic acid formation, which may help to account for the production of organic acids in the troposphere.

  7. [Influence of dinitrosyl iron complexes on blood metabolism in rats with thermal trauma].

    PubMed

    Martusevich, A K; Solov'eva, A G; Peteriagin, S P; Davydiuk, A V

    2014-01-01

    The dynamics in the oxidative and energy metabolism and enzyme systems of blood detoxification in animals with thermal trauma injected with dinitrosyl iron complexes was explored. The positive effect of dinitrosyl iron complexes on the state of blood pro- and antioxidant systems in animals with experimental thermal injury having profound oxidative stress is shown. This effect is observed as a considerable reduction of the intensity (normalization) of lipid peroxidation processes against significant elevation of antioxidant potential of blood plasma. This tendency was also fixed in erythrocyte membranes. It is also stated, that dinitrosyl iron complexes clearly normalized erythrocyte energy metabolism already by the 3rd day after trauma. In addition, infusions of dinitrosyl iron complexes caused marked stimulation of aldehyde dehydrogenase catalytic activity in burned rats via mechanism, associated with enzyme detoxification properties.

  8. Influence of eccentric actions on the metabolic cost of resistance exercise

    NASA Technical Reports Server (NTRS)

    Dudley, Gary A.; Golden, Catherine L.; Tesch, Per A.; Harris, Robert T.; Buchanan, Paul

    1991-01-01

    The contributions of concentric (con) and eccentric (ecc) muscle actions are evaluated with respect to increasing the metabolic cost of resistance exercise. Male subjects perform leg exercise with either con and ecc actions or only con actions while the net energy cost of the exercise is measured by oxygen consumption data. In both groups, the con actions require 290 J/kg body weight of total work, with an energy cost of 0.003 cal/J. The energy costs for the con/ecc actions of the second group is increased by 14 percent. The metabolic cost of leg exercise is concluded to be primarily generated by the con leg actions, and ecc leg actions increase the resistance with only a slight increase in required energy. The findings are significant for practical applications that emphasize the conservation of energy expenditure during exercise in spacecraft environments.

  9. The Influence of Crowding Conditions on the Thermodynamic Feasibility of Metabolic Pathways.

    PubMed

    Angeles-Martinez, Liliana; Theodoropoulos, Constantinos

    2015-12-01

    Intracellular reactions are carried out in a crowded medium where the macromolecules occupy ∼40% of the total volume. This decrease in the available volume affects the activity of the reactants. Scaled particle theory is used for the estimation of the activity coefficients of the metabolites, and thereby for the assessment of the impact of the presence of background molecules, on the estimation of the Gibbs free energy change (ΔrG) of the reactions. The lactic acid pathway and the central carbon metabolism of Actinobacillus succinogenes for the production of succinic acid from glycerol have been used as illustrative case studies. Results suggest the importance of maintaining intracellular crowded regions to favor the feasibility of a pathway that in other circumstances would be infeasible. Moreover, the crowding conditions may change the directionality of reactions and can modify the feasible range of fluxes estimated for a metabolic system compared with those obtained at standard biological conditions.

  10. Influence of respirometry methods on intraspecific variation in standard metabolic rates in newts.

    PubMed

    Kristín, Peter; Gvoždík, Lumír

    2012-09-01

    Standard metabolic rate (SMR) is both a highly informative and variable trait. Variation in SMR stems not only from diverse intrinsic and extrinsic factors, but also from the use of diverse methods for metabolic measurements. We measured CO(2) production (VCO(2)) and oxygen consumption rates (VO(2)) using two flow-through respirometry modes, continuous and intermittent (stop-flow), to evaluate their potential contribution to SMR variation in Alpine newts, Ichthyosaura alpestris. Both respirometry modes yielded similar and repeatable VCO(2) values. Although VO(2) was highly repeatable, continuous respirometry produced lower VO(2) than the intermittent method. During intermittent measurements, the total number of activity bouts was higher than during continuous respirometry trials. Statistical correction for disparate activity levels minimized variation in oxygen consumption between respirometry modes. We conclude that use of either method of flow-through respirometry, if properly applied, introduced less noise to SMR estimates than a variation in activity levels.

  11. The Influence of Crowding Conditions on the Thermodynamic Feasibility of Metabolic Pathways

    PubMed Central

    Angeles-Martinez, Liliana; Theodoropoulos, Constantinos

    2015-01-01

    Intracellular reactions are carried out in a crowded medium where the macromolecules occupy ∼40% of the total volume. This decrease in the available volume affects the activity of the reactants. Scaled particle theory is used for the estimation of the activity coefficients of the metabolites, and thereby for the assessment of the impact of the presence of background molecules, on the estimation of the Gibbs free energy change (ΔrG) of the reactions. The lactic acid pathway and the central carbon metabolism of Actinobacillus succinogenes for the production of succinic acid from glycerol have been used as illustrative case studies. Results suggest the importance of maintaining intracellular crowded regions to favor the feasibility of a pathway that in other circumstances would be infeasible. Moreover, the crowding conditions may change the directionality of reactions and can modify the feasible range of fluxes estimated for a metabolic system compared with those obtained at standard biological conditions. PMID:26636950

  12. Influences of lead (II) chloride on the nitrogen metabolism of spinach.

    PubMed

    Wu, Xiao; Xiao, Wu; Liu, Chao; Chao, Liu; Qu, Chunxiang; Chunxiang, Qu; Huang, Hao; Hao, Huang; Liu, Xiaoqing; Xiaoqing, Liu; Chen, Liang; Liang, Chen; Su, Mingyu; Mingyu, Su; Hong, Fashui; Fashui, Hong

    2008-03-01

    Lead (Pb(2+)) is a well-known highly toxic element. The mechanisms of the Pb(2+) toxicity are not well understood for nitrogen metabolism of higher plants. In this paper, we studied the effects of various concentrations of PbCl(2) on the nitrogen metabolism of growing spinach. The experimental results showed that Pb(2+) treatments significantly decreased the nitrate nitrogen (NO(-)(3)-N) absorption and inhibited the activities of nitrate reductase, glutamate dehydrogenase, glutamine synthase, and glutamic-pyruvic transaminase of spinach, and inhibited the synthesis of organic nitrogen compounds such as protein and chlorophyll. However, Pb(2+) treatments increased the accumulation of ammonium nitrogen NH(+)(4)-N)in spinach cell. It implied that Pb(2+) could inhibit inorganic nitrogen to be translated into organic nitrogen in spinach, thus led to the reduction in spinach growth.

  13. Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach.

    PubMed

    Yang, Fan; Hong, Fashui; You, Wenjuan; Liu, Chao; Gao, Fengqing; Wu, Cheng; Yang, Ping

    2006-05-01

    Previous research showed that nano-TiO2 could significantly promote photosynthesis and greatly improve growth of spinach, but we also speculated that an increase of spinach growth by nano-TiO2 treatment might be closely related to the change of nitrogen metabolism. The effects of nanoanatase TiO2 on the nitrogen metabolism of growing spinach were studied by treating them with nano-anatase TiO2. The results showed that nano-anatase TiO2 treatment could obviously increase the activities of nitrate reductase, glutamate dehydrogenase, glutamine synthase, and glutamic-pyruvic transaminase during the growing stage. Nano-anatase TiO2 treatment could also promote spinach to absorb nitrate, accelerate inorganic nitrogen (such as NO3--N and NH4+-N) to be translated into organic nitrogen (such as protein and chlorophyll), and enhance the fresh weight and dry weights.

  14. Permanent draft genome of acetaldehyde degradation bacterium, Shewanella sp. YQH10.

    PubMed

    Liu, Yang; Shang, Xiexie; Zeng, Runying

    2015-02-01

    Shewanella sp. YQH10 isolated from mangrove sediment, was a novel species of Shewanella, which has the ability to degrade acetaldehyde. Here, we present an annotated draft genome sequence of Shewanella sp. YQH10, which contains 4,215,794 bp with a G + C content of 48.1%. This information regarding the genetic basis of this bacterium can greatly advance our understanding of the physiology of this species.

  15. The Distribution of Astronomical Aldehydes - the Case for Extended Emission of Acetaldehyde (CH3CHO).

    NASA Astrophysics Data System (ADS)

    Burkhardt, Andrew; Loomis, Ryan; Dollhopf, Niklaus M.; Corby, Joanna F.; Remijan, Anthony

    2014-06-01

    With the advent of new broadband spectral line interferometric observations, we can now begin to fully characterize the spectra and distribution of complex organic molecules that have been largely ignored since their original detections using single dish telescopes. First detected in 1973, acetaldehyde (CH_3CHO) has been detected in numerous sources including TMC-1, Sgr B2(N) and Orion KL (Gottlieb et al 1973; Mathews et al. 1984; Johansson et al. 1991); yet its distribution within these sources is still not well known. Unlike a number of other molecules observed in these regions, acetaldehyde is not observed to be concentrated in hot core regions toward Sgr B2(N), but to have an extended distribution, a trait shared by other aldehydes (Hollis et al. 2001; Chengalur and Kanekar, 2003). An extended distribution may indicate formation through gas phase ion molecule reactions, or that the distribution is a result of non-thermal processes liberating the molecule off grain surfaces. Meanwhile, a compact distribution may indicate warm grain surface chemistry with subsequent desorption by thermal processes. Spatial maps will also help determine abundance correlations with other related molecules such as formic acid, aiding in the investigation of formation routes. In this talk, we present multiple transition maps of acetaldehyde toward Orion KL using both CARMA and the ALMA Band 6 Science Verification data which show evidence of an extended distribution of acetaldehyde, suggesting a similar formation chemistry in Orion KL as suggested by Chengular and Kanekar (2003) towards Sgr B2(N). In addition, spatial correlations to other molecules in the region will be shown, possibly suggesting a common formation chemistry for some aldehydes.

  16. How Do the Metabolic Effects of Chronic Stress Influence Breast Cancer Biology?

    DTIC Science & Technology

    2012-04-01

    Balboa-Castillo T, Lopez-Garcia E, Leon-Munoz LM, Gutierrez-Fisac JL, Banegas JR, Rodriguez-Artalejo F 2009 BMI, Waist Circumference , and Mortality...epidemiological studies have revealed that social isolation is associated with an increased risk of both all-cause mortality and metabolic diseases such as...diabetes (1). Although association studies examining social isolation and human cancer risk have had mixed results (2)-4), the conclusions of these

  17. The Influence of an Obesogenic Diet on Oxysterol Metabolism in C57BL/6J Mice.

    PubMed

    Wooten, Joshua S; Wu, Huaizhu; Raya, Joe; Perrard, Xiaoyuan Dai; Gaubatz, John; Hoogeveen, Ron C

    2014-01-01

    Our current understanding of oxysterol metabolism during different disease states such as obesity and dyslipidemia is limited. Therefore, the aim of this study was to determine the effect of diet-induced obesity on the tissue distribution of various oxysterols and the mRNA expression of key enzymes involved in oxysterol metabolism. To induce obesity, male C57BL/6J mice were fed a high fat-cholesterol diet for 24 weeks. Following diet-induced obesity, plasma levels of 4 β -hydroxycholesterol, 5,6 α -epoxycholesterol, 5,6 β -epoxycholesterol, 7 α -hydroxycholesterol, 7 β -hydroxycholesterol, and 27-hydroxycholesterol were significantly (P < 0.05) increased. In the liver and adipose tissue of the obese mice, 4 β -hydroxycholesterol was significantly (P < 0.05) increased, whereas 27-hydroxycholesterol was increased only in the adipose tissue. No significant changes in either hepatic or adipose tissue mRNA expression were observed for oxysterol synthesizing enzymes 4 β -hydroxylase, 27-hydroxylase, or 7 α -hydroxylase. Hepatic mRNA expression of SULT2B1b, a key enzyme involved in oxysterol detoxification, was significantly (P < 0.05) elevated in the obese mice. Interestingly, the appearance of the large HDL1 lipoprotein was observed with increased oxysterol synthesis during obesity. In diet-induced obese mice, dietary intake and endogenous enzymatic synthesis of oxysterols could not account for the increased oxysterol levels, suggesting that nonenzymatic cholesterol oxidation pathways may be responsible for the changes in oxysterol metabolism.

  18. Influence of antidepressant drugs on chlorpromazine metabolism in human liver--an in vitro study.

    PubMed

    Wójcikowski, Jacek; Daniel, Władysława A

    2010-01-01

    The aim of the present study was to investigate the possible effects of antidepressant drugs (fluvoxamine, imipramine) on the metabolism of the aliphatic-type phenothiazine neuroleptic chlorpromazine in the human liver. The experiment was performed in vitro using human liver microsomes. The kinetic analysis of chlorpromazine metabolism carried out in the absence or presence of antidepressants showed that fluvoxamine potently inhibited chlorpromazine 5-sulfoxidation (K(i) = 2.8 μM), mono-N-demethylation (K(i) = 1.4 μM) and di-N-demethylation (K(i) = 1.1 μM) via a competitive mechanism at therapeutic antidepressant concentrations. Imipramine moderately diminished the rate of chlorpromazine 5-sulfoxidation (K(i) = 8.7 μM, competitive inhibition), mono-N-demethylation (K(i) = 16.0 μM, non-competitive inhibition) and di-N-demethylation (K(i) = 13.5 μM mixed inhibition). Considering the serious side-effects of chlorpromazine and some of its metabolites, metabolic interactions between this neuroleptic and antidepressant drugs (especially the chlorpromazine-fluvoxamine interaction) may be of pharmacological and clinical importance.

  19. Influence of Anaerobiosis and Low Temperature on Bacillus cereus Growth, Metabolism, and Membrane Properties

    PubMed Central

    Clavel, Thierry; Clerté, Caroline; Carlin, Frédéric; Giniès, Christian; Nguyen-The, Christophe

    2012-01-01

    The impact of simultaneous anaerobiosis and low temperature on growth parameters, metabolism, and membrane properties of Bacillus cereus ATCC 14579 was studied. No growth was observed under anaerobiosis at 12°C. In bioreactors, growth rates and biomass production were drastically reduced by simultaneous anaerobiosis and low temperature (15°C). The two conditions had a synergistic effect on biomass reduction. In anaerobic cultures, fermentative metabolism was modified by low temperature, with a marked reduction in ethanol production leading to a lower ability to produce NAD+. Anaerobiosis reduced unsaturated fatty acids at both low optimal temperatures. In addition, simultaneous anaerobiosis and low temperatures markedly reduced levels of branched-chain fatty acids compared to all other conditions (accounting for 33% of total fatty acids against more 71% for low-temperature aerobiosis, optimal-temperature aerobiosis, and optimal-temperature anaerobiosis). This corresponded to high-melting-temperature lipids and to low-fluidity membranes, as indicated by differential scanning calorimetry, 1,6-diphenyl-1,3,5-hexatriene (DPH) fluorescence anisotropy, and infrared spectroscopy. This is in contrast to requirements for cold adaptation. A link between modification in the synthesis of metabolites of fermentative metabolism and the reduction of branched-chain fatty acids at low temperature under anaerobiosis, through a modification of the oxidizing capacity, is assumed. This link may partly explain the impact of low temperature and anaerobiosis on membrane properties and growth performance. PMID:22247126

  20. Subthalamic nucleus stimulation does not influence basal glucose metabolism or insulin sensitivity in patients with Parkinson's disease.

    PubMed

    Lammers, Nicolette M; Sondermeijer, Brigitte M; Twickler, Th B Marcel; de Bie, Rob M; Ackermans, Mariëtte T; Fliers, Eric; Schuurman, P Richard; La Fleur, Susanne E; Serlie, Mireille J

    2014-01-01

    Animal studies have shown that central dopamine signaling influences glucose metabolism. As a first step to show this association in an experimental setting in humans, we studied whether deep brain stimulation (DBS) of the subthalamic nucleus (STN), which modulates the basal ganglia circuitry, alters basal endogenous glucose production (EGP) or insulin sensitivity in patients with Parkinson's disease (PD). We studied 8 patients with PD treated with DBS STN, in the basal state and during a hyperinsulinemic euglycemic clamp using a stable glucose isotope, in the stimulated and non-stimulated condition. We measured EGP, hepatic insulin sensitivity, peripheral insulin sensitivity (Rd), resting energy expenditure (REE), glucoregulatory hormones, and Parkinson symptoms, using the Unified Parkinson's Disease Rating Scale (UPDRS). Basal plasma glucose and EGP did not differ between the stimulated and non-stimulated condition. Hepatic insulin sensitivity was similar in both conditions and there were no significant differences in Rd and plasma glucoregulatory hormones between DBS on and DBS off. UPDRS was significantly higher in the non-stimulated condition. DBS of the STN in patients with PD does not influence basal EGP or insulin sensitivity. These results suggest that acute modulation of the motor basal ganglia circuitry does not affect glucose metabolism in humans.

  1. Exercise, sex, menstrual cycle phase, and 17beta-estradiol influence metabolism-related genes in human skeletal muscle.

    PubMed

    Fu, Ming-hua H; Maher, Amy C; Hamadeh, Mazen J; Ye, Changhua; Tarnopolsky, Mark A

    2009-12-30

    Higher fat and lower carbohydrate and amino acid oxidation are observed in women compared with men during endurance exercise. We hypothesized that the observed sex difference is due to estrogen and that menstrual cycle phase or supplementation of men with 17beta-estradiol (E(2)) would coordinately influence the mRNA content of genes involved in lipid and/or carbohydrate metabolism in skeletal muscle. Twelve men and twelve women had muscle biopsies taken before and immediately after 90 min of cycling at 65% peak oxygen consumption (Vo(2peak)). Women were studied in the midfollicular (Fol) and midluteal (Lut) phases, and men were studied after 8 days of E(2) or placebo supplementation. Targeted RT-PCR was used to compare mRNA content for genes involved in transcriptional regulation and lipid, carbohydrate, and amino acid metabolism. Sex was the greatest predictor of substrate metabolism gene content. Sex affected the mRNA content of FATm, FABPc, SREBP-1c, mtGPAT, PPARdelta, PPARalpha, CPTI, TFP-alpha, GLUT4, HKII, PFK, and BCOADK (P < 0.05). E(2) administration significantly (P < 0.05) affected the mRNA content of PGC-1alpha, PPARalpha, PPARdelta, TFP-alpha, CPTI, SREBP-1c, mtGPAT, GLUT4, GS-1, and AST. Acute exercise increased the mRNA abundance for PGC-1alpha, HSL, FABPc, CPTI, GLUT4, HKII, and AST (P < 0.05). Menstrual cycle had a small effect on PPARdelta, GP, and glycogenin mRNA content. Overall, women have greater mRNA content for several genes involved in lipid metabolism, which is partially due to an effect of E(2).

  2. Influence of dietary linseed oil and sunflower seed oil on some mechanical and metabolic parameters of isolated working rat hearts.

    PubMed

    Demaison, L; Grynberg, A

    1991-01-01

    The role played by membrane lipid environment on cardiac function remains poorly defined. The polyunsaturated fatty acid profile of myocardial phospholipids could be of utmost importance in the regulation of key-enzyme activities. This study was undertaken to determine whether selective incorporation of n-6 or n-3 fatty acids in membrane phospholipids might influence cardiac mechanical performances and metabolism. For 8 wk, male weaning Wistar rats were fed a semi-purified diet containing either 10% sunflower seed oil (72% C18:2 n-6) or 10% linseed oil (54% C18:3 n-3) as the sole source of lipids. The hearts were then removed and perfused according to working mode with a Krebs-Henseleit buffer containing glucose (11 mM) and insulin (10 Ul/l). Cardiac rate, coronary and aortic flows and ejection fraction were monitored after 30 min of perfusion. Myocardial metabolism was estimated by evaluating the intracellular fate of 1-14C palmitate. Sunflower seed oil and linseed oil feeding did not modify either coronary or aortic flow, which suggests that cardiac mechanical work was not affected by the diets. Conversely, cardiac rate was significantly decreased (-18%; P less than 0.01) when rats were fed the n-3 polyunsaturated fatty acid rich diet. Radioanalysis of the myocardial metabolism suggested that replacing n-6 polyunsaturated fatty acids by n-3 polyunsaturated fatty acids: i) did not alter palmitate uptake; ii) prolonged palmitate incorporation into cardiac triglycerides; iii) reduced beta-oxidation of palmitic acid. These results support the assumption that dietary fatty acids, particularly n-6 and n-3 fatty acids, play an important role in the regulation of cardiac mechanical and metabolic activity.

  3. Effect and mechanism of waterborne prolonged Zn exposure influencing hepatic lipid metabolism in javelin goby Synechogobius hasta.

    PubMed

    Huang, Chao; Luo, Zhi; Hogstrand, Christer; Chen, Feng; Shi, Xi; Chen, Qi-Liang; Song, Yu-Feng; Pan, Ya-Xiong

    2016-07-01

    The present study was conducted to determine the effect and mechanism of waterborne Zn exposure influencing hepatic lipid deposition and metabolism in javelin goby Synechogobius hasta. S. hasta were exposed to four waterborne Zn concentrations (Zn 0.005 [control], 0.18, 0.36 and 0.55 mg l(-1) , respectively) for 60 days. Sampling occurred at days 20, 40 and 60, respectively. Zn exposure increased Zn content, declined hepatic lipid content and reduced viscerosomatic and hepatosomatic indices and lipogenic enzyme activities, including 6-phosphogluconate dehydrogenase (6PGD), glucose-6-phosphate dehydrogenase (G6PD), malic enzyme (ME) and fatty acid synthase (FAS). At days 20 and 60, Zn exposure decreased hepatic mRNA levels of 6PGD, G6PD, ME, FAS, acetyl-CoA carboxylase (ACC)α, ACCβ, hormone-sensitive lipase (HSL)a, HSLb, sterol-regulator element-binding protein (SREBP)-1, peroxisome proliferators-activated receptor (PPAR)α and PPARγ. However, the mRNA levels of CPT 1 and adipose triglyceride lipase increased following Zn exposure. On day 40, Zn exposure reduced hepatic mRNA expression of 6PGD, G6PD, ME, FAS, ACCα, ACCβ, HSLa, HSLb, SREBP-1 and PPARγ but increased mRNA expression of CPT 1, adipose triglyceride lipase and PPARα. General speaking, Zn exposure reduced hepatic lipid content by inhibiting lipogenesis and stimulating lipolysis. For the first time, the present study provided evidence that chronic Zn exposure differentially influenced mRNA expression and activities of genes and enzymes involved in lipogenic and lipolytic metabolism in a duration-dependent manner, and provided new insight into the relationship between metal elements and lipid metabolism. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Pretreatment of rice straw using a butanone or an acetaldehyde dilute solution explosion for producing ethanol.

    PubMed

    Zhang, Jian; Zhang, Wen-Xue; Yang, Jian; Liu, Yue-Hong; Zhong, Xia; Wu, Zheng-Yun; Kida, Kenji; Deng, Yu

    2012-04-01

    Ethanol conversion from rice straw using butanone and acetaldehyde dilute solution explosions was evaluated based on the optimization of pure water explosion. To decrease residual inhibitor content, the exploded slurry was dried and investigated at different temperature. Using a 0.9-mol/L butanone solution explosion, with the explosion pressure set at 3.1 MPa, the residence time at 7 min, the dried rice straw-to-water ratio at 1:3 (w/w), and the exploded slurry drying temperuture at 90 °C for 8 h, the yields of total sugar, glucose, and xylose were 85%, 88%, 82% (w/w), respectively, and the ethanol productivity was 26.0 g/100 g rice straw dry matter. Moreover, 0.5-mol/L acetaldehyde dilute solution explosion improved the efficiency of enzymatic hydrolysis (EH) and simultaneous saccharification and co-fermentation (SSCF), and the residual inhibitors had negligible effects on EH and SSCF after detoxification by drying. The results suggested that compared with pure water explosions, the use of butanone and of acetaldehyde dilute solution explosions lowered the explosive temperature and improved the sugar yield, although relative crystallinity of the rice straw dry matter was increased after the explosion.

  5. Acetaldehyde Oxime, A Product Formed during the In Vivo Nitrate Reductase Assay of Soybean Leaves 1

    PubMed Central

    Mulvaney, Charlene S.; Hageman, Richard H.

    1984-01-01

    Evolution of nitrogen oxides (NO(x), primarily as nitric oxide) from soybean (Glycine max [L.] Merr.) leaves during purged in vivo nitrate reductase assays had been reported; however, these reports were based on a method that had been used for determination of NO(x) in air. This method also detects other N compounds. Preliminary work led us to doubt that the evolved N was nitric oxide. Studies were undertaken to identify the N compound evolved from the in vivo assay that had been reported as NO(x). Material for identification was obtained by cryogenic trapping and fractional distillation, and by chemical trapping procedures. Mass spectrometry, ultraviolet spectroscopy, and 15N-labeled nitrate were used to identify the compounds evolved and to determine whether these compounds were derived from nitrate. Acetaldehyde oxime was identified as the predominant N compound evolved and this compound is readily detected by the method for NO(x) determination. Substantial quantities of acetaldehyde oxime (16.2 micromoles per gram fresh weight per hour) were evolved during the in vivo assay. Small amounts of nitrous oxide (0.63 micrograms N per gram fresh weight per hour) were evolved, but this compound is not detected as NO(x). Acetaldehyde oxime and nitrous oxide were both produced as a result of nitrate (15NO3−) reduction during the assay. PMID:16663781

  6. Sources and sinks of acetone, methanol, and acetaldehyde in North Atlantic air

    NASA Astrophysics Data System (ADS)

    Lewis, A. C.; Hopkins, J. R.; Carpenter, L. J.; Stanton, J.; Read, K. A.; Pilling, M. J.

    2005-03-01

    Measurements of acetone, methanol, acetaldehyde and a range of non-methane hydrocarbons have been made in North Atlantic marine air at the Mace Head observatory. Under maritime conditions the combination of OVOCs (acetone, methanol and 5 acetaldehyde) contributed up to 85% of the total mass of measured non methane organics in air and up to 80% of the OH radical organic sink, when compared with the sum of all other organic compounds including non-methane hydrocarbons, DMS and OH-reactive halocarbons (trichloromethane and tetrachloroethylene). The observations showed anomalies in the variance and abundance of acetaldehyde and acetone 10 over that expected for species with a remote terrestrial emission source and OH controlled chemical lifetime. A detailed model incorporating an explicit chemical degradation mechanism indicated in situ formation during air mass transport was on timescales longer than the atmospheric lifetime of precursor hydrocarbons or primary emission. The period over which this process was significant was similar to that of airmass mo15 tion on intercontinental scales, and formation via this route may reproduce that of a widespread diffuse source. The model indicates that continued short chain OVOC formation occurs many days from the point of emission, via longer lived intermediates of oxidation such as organic peroxides and long chain alcohols.

  7. Sources and sinks of acetone, methanol, and acetaldehyde in North Atlantic marine air

    NASA Astrophysics Data System (ADS)

    Lewis, A. C.; Hopkins, J. R.; Carpenter, L. J.; Stanton, J.; Read, K. A.; Pilling, M. J.

    2005-08-01

    Measurements of acetone, methanol, acetaldehyde and a range of non-methane hydrocarbons have been made in North Atlantic marine air at the Mace Head observatory. Under maritime conditions the combination of OVOCs (acetone, methanol and acetaldehyde) contributed up to 85% of the total mass of measured non methane organics in air and up to 80% of the OH radical organic sink, when compared with the sum of all other organic compounds including non-methane hydrocarbons, DMS and OH-reactive halocarbons (trichloromethane and tetrachloroethylene). The observations showed anomalies in the variance and abundance of acetaldehyde and acetone over that expected for species with a remote terrestrial emission source and OH controlled chemical lifetime. A detailed model incorporating an explicit chemical degradation mechanism indicated in situ formation during air mass transport was on timescales longer than the atmospheric lifetime of precursor hydrocarbons or primary emission. The period over which this process was significant was similar to that of airmass motion on intercontinental scales, and formation via this route may reproduce that of a widespread diffuse source. The model indicates that continued short chain OVOC formation occurs many days from the point of emission, via longer lived intermediates of oxidation such as organic peroxides and long chain alcohols.

  8. Cholesterol Enhances the Toxic Effect of Ethanol and Acetaldehyde in Primary Mouse Hepatocytes

    PubMed Central

    López-Islas, Anayelly; Chagoya-Hazas, Victoria; Pérez-Aguilar, Benjamin; Palestino-Domínguez, Mayrel; Souza, Verónica; Miranda, Roxana U.; Bucio, Leticia; Gómez-Quiroz, Luis Enrique; Gutiérrez-Ruiz, María-Concepción

    2016-01-01

    Obesity and alcohol consumption are risk factors for hepatic steatosis, and both commonly coexist. Our objective was to evaluate the effect of ethanol and acetaldehyde on primary hepatocytes obtained from mice fed for two days with a high cholesterol (HC) diet. HC hepatocytes increased lipid and cholesterol content. HC diet sensitized hepatocytes to the toxic effect of ethanol and acetaldehyde. Cyp2E1 content increased with HC diet, as well as in those treated with ethanol or acetaldehyde, while the activity of this enzyme determined in microsomes increased in the HC and in all ethanol treated hepatocytes, HC and CW. Oxidized proteins were increased in the HC cultures treated or not with the toxins. Transmission electron microscopy showed endoplasmic reticulum (ER) stress and megamitochondria in hepatocytes treated with ethanol as in HC and the ethanol HC treated hepatocytes. ER stress determined by PERK content was increased in ethanol treated hepatocytes from HC mice and CW. Nuclear translocation of ATF6 was observed in HC hepatocytes treated with ethanol, results that indicate that lipids overload and ethanol treatment favor ER stress. Oxidative stress, ER stress, and mitochondrial damage underlie potential mechanisms for increased damage in steatotic hepatocyte treated with ethanol. PMID:26788255

  9. Biochemical retrosynthesis of 2'-deoxyribonucleosides from glucose, acetaldehyde, and a nucleobase.

    PubMed

    Horinouchi, Nobuyuki; Ogawa, Jun; Kawano, Takako; Sakai, Takafumi; Saito, Kyota; Matsumoto, Seiichiro; Sasaki, Mie; Mikami, Yoichi; Shimizu, Sakayu

    2006-08-01

    2'-Deoxyribonucleosides are important as building blocks for the synthesis of antisense drugs, antiviral nucleosides, and 2'-deoxyribonucleotides for polymerase chain reaction. The microbial production of 2'-deoxyribonucleosides from simple materials, glucose, acetaldehyde, and a nucleobase, through the reverse reactions of 2'-deoxyribonucleoside degradation and the glycolytic pathway, was investigated. The glycolytic pathway of baker's yeast yielded fructose 1,6-diphosphate from glucose using the energy of adenosine 5'-triphosphate generated from adenosine 5'-monophosphate through alcoholic fermentation with the yeast. Fructose 1,6-diphosphate was further transformed to 2-deoxyribose 5-phosphate in the presence of acetaldehyde by deoxyriboaldolase-expressing Escherichia coli cells via D-glyceraldehyde 3-phosphate. E. coli transformants expressing phosphopentomutase and nucleoside phosphorylase produced 2'-deoxyribonucleosides from 2-deoxyribose 5-phosphate and a nucleobase via 2-deoxyribose 1-phosphate through the reverse reactions of 2'-deoxyribonucleoside degradation. Coupling of the glycolytic pathway and deoxyriboaldolase-catalyzing reaction efficiently supplied 2-deoxyribose 5-phosphate, which is a key intermediate for 2'-deoxyribonucleoside synthesis. 2'-Deoxyinosine (9.9 mM) was produced from glucose, acetaldehyde, and adenine through three-step reactions via fructose 1,6-diphosphate and then 2-deoxyribose 5-phosphate, the molar yield as to glucose being 17.8%.

  10. Cholesterol Enhances the Toxic Effect of Ethanol and Acetaldehyde in Primary Mouse Hepatocytes.

    PubMed

    López-Islas, Anayelly; Chagoya-Hazas, Victoria; Pérez-Aguilar, Benjamin; Palestino-Domínguez, Mayrel; Souza, Verónica; Miranda, Roxana U; Bucio, Leticia; Gómez-Quiroz, Luis Enrique; Gutiérrez-Ruiz, María-Concepción

    2016-01-01

    Obesity and alcohol consumption are risk factors for hepatic steatosis, and both commonly coexist. Our objective was to evaluate the effect of ethanol and acetaldehyde on primary hepatocytes obtained from mice fed for two days with a high cholesterol (HC) diet. HC hepatocytes increased lipid and cholesterol content. HC diet sensitized hepatocytes to the toxic effect of ethanol and acetaldehyde. Cyp2E1 content increased with HC diet, as well as in those treated with ethanol or acetaldehyde, while the activity of this enzyme determined in microsomes increased in the HC and in all ethanol treated hepatocytes, HC and CW. Oxidized proteins were increased in the HC cultures treated or not with the toxins. Transmission electron microscopy showed endoplasmic reticulum (ER) stress and megamitochondria in hepatocytes treated with ethanol as in HC and the ethanol HC treated hepatocytes. ER stress determined by PERK content was increased in ethanol treated hepatocytes from HC mice and CW. Nuclear translocation of ATF6 was observed in HC hepatocytes treated with ethanol, results that indicate that lipids overload and ethanol treatment favor ER stress. Oxidative stress, ER stress, and mitochondrial damage underlie potential mechanisms for increased damage in steatotic hepatocyte treated with ethanol.

  11. Risk assessment for the Italian population of acetaldehyde in alcoholic and non-alcoholic beverages.

    PubMed

    Paiano, Viviana; Bianchi, Giancarlo; Davoli, Enrico; Negri, Eva; Fanelli, Roberto; Fattore, Elena

    2014-07-01

    Acetaldehyde is a naturally-occurring carcinogenic compound, present in different food items, especially in alcoholic beverages. The aims of this study were to measure acetaldehyde concentration in different beverages consumed in Italy and to estimate the potential cancer risk. The analytical procedure was based on headspace solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS), using the isotopic dilution method. The margin of exposure (MOE) approach of the European Food Safety Authority (EFSA) was used for risk characterisation. The highest concentrations (median, min-max) were detected in grappa samples (499, 23.4-1850mg/l), followed by fruit-based liqueurs and spirits (62.0, 5.23-483mg/l) and wine (68.0, 18.1-477mg/l); the lowest were detected in gin (0.91, 0.78-1.90mg/l). The lowest MOE was estimated for high wine consumers (69). These results suggest that regulatory measures and consumer guidance may be necessary for acetaldehyde in beverages.

  12. Synthesis of nanoporous carbohydrate metal-organic framework and encapsulation of acetaldehyde

    NASA Astrophysics Data System (ADS)

    Al-Ghamdi, Saleh; Kathuria, Ajay; Abiad, Mohamad; Auras, Rafael

    2016-10-01

    Gamma cyclodextrin (γ-CD) metal organic frameworks (CDMOFs) were synthesized by coordinating γ-CDs with potassium hydroxide (KOH), referred hereafter as CDMOF-a, and potassium benzoate (C7H5KO2), denoted as CDMOF-b. The obtained CDMOF structures were characterized using nitrogen sorption isotherm, thermo-gravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). High surface areas were achieved by the γ-CD based MOF structures where the Langmuir specific surface areas (SSA) of CDMOF-a and CDMOF-b were determined as 1376 m2 g-1 and 607 m2 g-1; respectively. The dehydrated CDMOF structures demonstrated good thermal stability up to 250 °C as observed by the TGA studies. XRD results for CDMOF-a and CDMOF-b reveal a body centered-cubic (BCC) and trigonal crystal system; respectively. Due to its accessible porous structure and high surface area, acetaldehyde was successfully encapsulated in CDMOF-b. During the release kinetic studies, we observed peak release of 53 μg of acetaldehyde per g of CDMOF-b, which was 100 times greater than previously reported encapsulation in β-CD. However, aldol condensation reaction occurred during encapsulation of acetaldehyde into CDMOF-a. This research work demonstrates the potential to encapsulate volatile organic compounds in CDMOF-b, and their associated release for applications including food, pharmaceuticals and packaging.

  13. Cloud shading and fog drip influence the metabolism of a coastal pine ecosystem.

    PubMed

    Carbone, Mariah S; Park Williams, A; Ambrose, Anthony R; Boot, Claudia M; Bradley, Eliza S; Dawson, Todd E; Schaeffer, Sean M; Schimel, Joshua P; Still, Christopher J

    2013-02-01

    Assessing the ecological importance of clouds has substantial implications for our basic understanding of ecosystems and for predicting how they will respond to a changing climate. This study was conducted in a coastal Bishop pine forest ecosystem that experiences regular cycles of stratus cloud cover and inundation in summer. Our objective was to understand how these clouds impact ecosystem metabolism by contrasting two sites along a gradient of summer stratus cover. The site that was under cloud cover ~15% more of the summer daytime hours had lower air temperatures and evaporation rates, higher soil moisture content, and received more frequent fog drip inputs than the site with less cloud cover. These cloud-driven differences in environmental conditions translated into large differences in plant and microbial activity. Pine trees at the site with greater cloud cover exhibited less water stress in summer, larger basal area growth, and greater rates of sap velocity. The difference in basal area growth between the two sites was largely due to summer growth. Microbial metabolism was highly responsive to fog drip, illustrated by an observed ~3-fold increase in microbial biomass C with increasing summer fog drip. In addition, the site with more cloud cover had greater total soil respiration and a larger fractional contribution from heterotrophic sources. We conclude that clouds are important to the ecological functioning of these coastal forests, providing summer shading and cooling that relieve pine and microbial drought stress as well as regular moisture inputs that elevate plant and microbial metabolism. These findings are important for understanding how these and other seasonally dry coastal ecosystems will respond to predicted changes in stratus cover, rainfall, and temperature.

  14. Increments and duplication events of enzymes and transcription factors influence metabolic and regulatory diversity in prokaryotes.

    PubMed

    Martínez-Núñez, Mario Alberto; Poot-Hernandez, Augusto Cesar; Rodríguez-Vázquez, Katya; Perez-Rueda, Ernesto

    2013-01-01

    In this work, the content of enzymes and DNA-binding transcription factors (TFs) in 794 non-redundant prokaryotic genomes was evaluated. The identification of enzymes was based on annotations deposited in the KEGG database as well as in databases of functional domains (COG and PFAM) and structural domains (Superfamily). For identifications of the TFs, hidden Markov profiles were constructed based on well-known transcriptional regulatory families. From these analyses, we obtained diverse and interesting results, such as the negative rate of incremental changes in the number of detected enzymes with respect to the genome size. On the contrary, for TFs the rate incremented as the complexity of genome increased. This inverse related performance shapes the diversity of metabolic and regulatory networks and impacts the availability of enzymes and TFs. Furthermore, the intersection of the derivatives between enzymes and TFs was identified at 9,659 genes, after this point, the regulatory complexity grows faster than metabolic complexity. In addition, TFs have a low number of duplications, in contrast to the apparent high number of duplications associated with enzymes. Despite the greater number of duplicated enzymes versus TFs, the increment by which duplicates appear is higher in TFs. A lower proportion of enzymes among archaeal genomes (22%) than in the bacterial ones (27%) was also found. This low proportion might be compensated by the interconnection between the metabolic pathways in Archaea. A similar proportion was also found for the archaeal TFs, for which the formation of regulatory complexes has been proposed. Finally, an enrichment of multifunctional enzymes in Bacteria, as a mechanism of ecological adaptation, was detected.

  15. Increments and Duplication Events of Enzymes and Transcription Factors Influence Metabolic and Regulatory Diversity in Prokaryotes

    PubMed Central

    Martínez-Núñez, Mario Alberto; Poot-Hernandez, Augusto Cesar; Rodríguez-Vázquez, Katya; Perez-Rueda, Ernesto

    2013-01-01

    In this work, the content of enzymes and DNA-binding transcription factors (TFs) in 794 non-redundant prokaryotic genomes was evaluated. The identification of enzymes was based on annotations deposited in the KEGG database as well as in databases of functional domains (COG and PFAM) and structural domains (Superfamily). For identifications of the TFs, hidden Markov profiles were constructed based on well-known transcriptional regulatory families. From these analyses, we obtained diverse and interesting results, such as the negative rate of incremental changes in the number of detected enzymes with respect to the genome size. On the contrary, for TFs the rate incremented as the complexity of genome increased. This inverse related performance shapes the diversity of metabolic and regulatory networks and impacts the availability of enzymes and TFs. Furthermore, the intersection of the derivatives between enzymes and TFs was identified at 9,659 genes, after this point, the regulatory complexity grows faster than metabolic complexity. In addition, TFs have a low number of duplications, in contrast to the apparent high number of duplications associated with enzymes. Despite the greater number of duplicated enzymes versus TFs, the increment by which duplicates appear is higher in TFs. A lower proportion of enzymes among archaeal genomes (22%) than in the bacterial ones (27%) was also found. This low proportion might be compensated by the interconnection between the metabolic pathways in Archaea. A similar proportion was also found for the archaeal TFs, for which the formation of regulatory complexes has been proposed. Finally, an enrichment of multifunctional enzymes in Bacteria, as a mechanism of ecological adaptation, was detected. PMID:23922780

  16. [Advances in influence of UV-B radiation on medicinal plant secondary metabolism].

    PubMed

    Wu, Yang; Fang, Minfeng; Yue, Ming; Chai, Yongfu; Wang, Hui; Li, Yifei

    2012-08-01

    Stratospheric ozone depletion results in an increased level of solar UV-B radiation (UV-B, 280-320 nm) reaching the earth surface. By the effect of UV-B radiation, various medicinal active ingredients changed because of the change of gene expression, enzyme activity and secondary metabolism, clinical effect is also changed. The research status of UV-B radiation and the accumulation of plant secondary metabolites in the past 10 years were summarized in this paper to supply reference for cultivation and exploitation of the medicinal plants.

  17. Rituximab exposure is influenced by baseline metabolic tumor volume and predicts outcome of DLBCL patients: a LYSA study.

    PubMed

    Tout, Mira; Casasnovas, Olivier; Meignan, Michel; Lamy, Thierry; Morschhauser, Franck; Salles, Gilles; Gyan, Emmanuel; Haioun, Corinne; Mercier, Mélanie; Feugier, Pierre; Boussetta, Sami; Paintaud, Gilles; Ternant, David; Cartron, Guillaume

    2017-03-01

    High variability in patient outcome after rituximab-based treatment is partly explained by rituximab concentrations, and pharmacokinetic variability could be influenced by tumor burden. We aimed at quantifying the influence of baseline total metabolic tumor volume (TMTV0) on rituximab pharmacokinetics and of TMTV0 and rituximab exposure on outcome in patients with diffuse large B-cell lymphoma (DLBCL). TMTV0 was measured by (18)F-FDG-PET/CT in 108 previously untreated DLBCL patients who received four 375 mg/m(2) rituximab infusions every 2 weeks in combination with chemotherapy in two prospective trials. A two-compartment population model allowed describing rituximab pharmacokinetics and calculating rituximab exposure (area under the concentration-time curve; AUC). The association of TMTV0 and AUC with metabolic response after 4 cycles, as well as progression-free survival (PFS) and overall survival (OS), was assessed using logistic regression and Cox models, respectively. Cutoff values for patient outcome were determined using ROC curve analysis. Exposure to rituximab decreased as TMTV0 increased (R(2)=0.41, P<.0001). A high AUC in cycle 1 (≥9400 mg.h/L) was associated with better response (OR, 5.56; P=.0006) and longer PFS (hazard ratio [HR], 0.38; P=.011) and OS (HR, 0.17; P=.001). A nomogram for rituximab dose needed to obtain optimal AUC according to TMTV0 was constructed, and the 375 mg/m(2) classical dose would be suitable for patients with TMTV0 <281 cm(3) In summary, rituximab exposure is influenced by TMTV0 and correlates with response and outcome of DLBCL patients. Dose individualization according to TMTV0 should be evaluated in prospective studies. Studies were registered at www.clinicaltrials.gov as NCT00498043 and NCT00841945.

  18. Starmerella bombicola influences the metabolism of Saccharomyces cerevisiae at pyruvate decarboxylase and alcohol dehydrogenase level during mixed wine fermentation

    PubMed Central

    2012-01-01

    Background The use of a multistarter fermentation process with Saccharomyces cerevisiae and non-Saccharomyces wine yeasts has been proposed to simulate natural must fermentation and to confer greater complexity and specificity to wine. In this context, the combined use of S. cerevisiae and immobilized Starmerella bombicola cells (formerly Candida stellata) was assayed to enhance glycerol concentration, reduce ethanol content and to improve the analytical composition of wine. In order to investigate yeast metabolic interaction during controlled mixed fermentation and to evaluate the influence of S. bombicola on S. cerevisiae, the gene expression and enzymatic activity of two key enzymes of the alcoholic fermentation pathway such as pyruvate decarboxylase (Pdc1) and alcohol dehydrogenase (Adh1) were studied. Results The presence of S. bombicola immobilized cells in a mixed fermentation trial confirmed an increase in fermentation rate, a combined consumption of glucose and fructose, an increase in glycerol and a reduction in the production of ethanol as well as a modification in the fermentation of by products. The alcoholic fermentation of S. cerevisiae was also influenced by S. bombicola immobilized cells. Indeed, Pdc1 activity in mixed fermentation was lower than that exhibited in pure culture while Adh1 activity showed an opposite behavior. The expression of both PDC1 and ADH1 genes was highly induced at the initial phase of fermentation. The expression level of PDC1 at the end of fermentation was much higher in pure culture while ADH1 level was similar in both pure and mixed fermentations. Conclusion In mixed fermentation, S. bombicola immobilized cells greatly affected the fermentation behavior of S. cerevisiae and the analytical composition of wine. The influence of S. bombicola on S. cerevisiae was not limited to a simple additive contribution. Indeed, its presence caused metabolic modifications during S. cerevisiae fermentation causing variation in the gene

  19. Iron-dependent changes in cellular energy metabolism: influence on citric acid cycle and oxidative phosphorylation.

    PubMed

    Oexle, H; Gnaiger, E; Weiss, G

    1999-11-10

    Iron modulates the expression of the critical citric acid cycle enzyme aconitase via a translational mechanism involving iron regulatory proteins. Thus, the present study was undertaken to investigate the consequences of iron perturbation on citric acid cycle activity, oxidative phosphorylation and mitochondrial respiration in the human cell line K-562. In agreement with previous data iron increases the activity of mitochondrial aconitase while it is reduced upon addition of the iron chelator desferrioxamine (DFO). Interestingly, iron also positively affects three other citric acid cycle enzymes, namely citrate synthase, isocitric dehydrogenase, and succinate dehydrogenase, while DFO decreases the activity of these enzymes. Consequently, iron supplementation results in increased formation of reducing equivalents (NADH) by the citric acid cycle, and thus in increased mitochondrial oxygen consumption and ATP formation via oxidative phosphorylation as shown herein. This in turn leads to downregulation of glucose utilization. In contrast, all these metabolic pathways are reduced upon iron depletion, and thus glycolysis and lactate formation are significantly increased in order to compensate for the decrease in ATP production via oxidative phosphorylation in the presence of DFO. Our results point to a complex interaction between iron homeostasis, oxygen supply and cellular energy metabolism in human cells.

  20. Paternal reproductive strategy influences metabolic capacities and muscle development of Atlantic salmon (Salmo salar L.) embryos.

    PubMed

    Morasse, Sébastien; Guderley, Helga; Dodson, Julian J

    2008-01-01

    Male Atlantic salmon follow a conditional strategy, becoming either "combatants" that undertake a seaward migration and spend at least a year at sea or "sneakers" that remain in freshwater and mature as parr. A variety of physiological indices showed significant but small differences between the offspring of males that use these two reproductive tactics. Offspring fathered by anadromous male Atlantic salmon (Salmo salar L.) showed greater muscular development and muscle metabolic capacities but lower spontaneous movements than those fathered by mature male parr. At hatch and at maximum attainable wet weight (MAWW), offspring fathered by anadromous males had higher activities of mitochondrial (cytochrome C oxidase and citrate synthase) and glycolytic (lactate dehydrogenase [LDH]) enzymes than progeny of mature male parr. Enzymatic profiles of progeny of anadromous fathers also suggested greater nitrogen excretion capacity (glutamate dehydrogenase) and increased muscular development (creatine kinase and LDH) than in the progeny of mature parr. At MAWW, juveniles fathered by mature parr made considerably more spontaneous movements, presumably increasing their energy expenditures. For juveniles fathered by anadromous males, total cross-sectional areas of white and red muscle at hatch were higher due to the greater number of large-diameter fibers. We suggest that the slightly lower metabolic capacities and muscular development of alevins fathered by mature parr could reflect differences in energy partitioning during their dependence on vitellus. Greater spontaneous movements of offspring of mature male parr could favor feeding and growth after the resorption of the vitellus.

  1. Influence of Delipation on the Energy Metabolism in Pig Parthenogenetically Activated Embryos.

    PubMed

    Wang, C; Niu, Y; Chi, D; Zeng, Y; Liu, H; Dai, Y; Li, J

    2015-10-01

    This study was designed not only to measure the effect of delipation on the developmental viability of pig parthenogenetically activated (PA) embryos, but also to evaluate the changes of mitochondria DNA (mtDNA), reactive oxygen species (ROS) level, adenosine triphosphate (ATP) content and gene (Acsl3, Acadsb, Acaa2, Glut1) expression level at different stages after delipation. Results showed that no effect was observed on the cleavage ability, but significant lower blastocyst rate was obtained in delipated embryos. Copy number of mtDNA decreased gradually from MII to four-cell stages and subsequently kept consistent with blastocyst stage both in delipated and control embryos, but the copy number of mtDNA in delipated embryos was similar to that in the control groups no matter at which developmental stage was observed. Both in delipated and control embryos, ATP content progressive decreased from one-cell to blastocyst stages, while just at one-cell stage, a significant decrease of ATP level was observed in delipated embryos compared with that of control. The level of ROS increased obviously after delipation at cleavage stage, but no difference was seen at blastocyst stage. Finally, the expression level of genes related to fatty acids beta-oxidation (Acadsb and Acaa2) was decreased, while the expression level of genes related to glucose metabolism (Glut 1) was upregulated after delipation. In conclusion, the reduction of lipids in pig oocytes will affect the developmental competence of pig PA embryos by disturbed energy metabolism and ROS stress.

  2. Nitrogen metabolism and seed composition as influenced by glyphosate application in glyphosate-resistant soybean.

    PubMed

    Bellaloui, Nacer; Zablotowicz, Robert M; Reddy, Krishna N; Abel, Craig A

    2008-04-23

    Previous research has demonstrated that glyphosate can affect nitrogen fixation or nitrogen assimilation in soybean. This 2-year field study investigated the effects of glyphosate application of 1.12 and 3.36 kg of ae ha(-1) on nitrogen metabolism and seed composition in glyphosate-resistant (GR) soybean. There was no effect of glyphosate application on nitrogen fixation as measured by acetylene reduction assay, soybean yield, or seed nitrogen content. However, there were significant effects of glyphosate application on nitrogen assimilation, as measured by in vivo nitrate reductase activity (NRA) in leaves, roots, and nodules, especially at high rate. Transiently lower leaf nitrogen or (15)N natural abundance in high glyphosate application soybean supports the inhibition of NRA. With the higher glyphosate application level protein was significantly higher (10.3%) in treated soybean compared to untreated soybean. Inversely, total oil and linolenic acid were lowest at the high glyphosate application rate, but oleic acid was greatest (22%) in treated soybean. These results suggest that nitrate assimilation in GR soybean was more affected than nitrogen fixation by glyphosate application and that glyphosate application may alter nitrogen and carbon metabolism.

  3. Oxidative stress and carbon metabolism influence Aspergillus flavus transcriptome composition and secondary metabolite production

    PubMed Central

    Fountain, Jake C.; Bajaj, Prasad; Pandey, Manish; Nayak, Spurthi N.; Yang, Liming; Kumar, Vinay; Jayale, Ashwin S.; Chitikineni, Anu; Zhuang, Weijian; Scully, Brian T.; Lee, R. Dewey; Kemerait, Robert C.; Varshney, Rajeev K.; Guo, Baozhu

    2016-01-01

    Contamination of crops with aflatoxin is a serious global threat to food safety. Aflatoxin production by Aspergillus flavus is exacerbated by drought stress in the field and by oxidative stress in vitro. We examined transcriptomes of three toxigenic and three atoxigenic isolates of A. flavus in aflatoxin conducive and non-conducive media with varying levels of H2O2 to investigate the relationship of secondary metabolite production, carbon source, and oxidative stress. We found that toxigenic and atoxigenic isolates employ distinct mechanisms to remediate oxidative damage, and that carbon source affected the isolates’ expression profiles. Iron metabolism, monooxygenases, and secondary metabolism appeared to participate in isolate oxidative responses. The results suggest that aflatoxin and aflatrem biosynthesis may remediate oxidative stress by consuming excess oxygen and that kojic acid production may limit iron-mediated, non-enzymatic generation of reactive oxygen species. Together, secondary metabolite production may enhance A. flavus stress tolerance, and may be reduced by enhancing host plant tissue antioxidant capacity though genetic improvement by breeding selection. PMID:27941917

  4. Acinetobacter baumannii phenylacetic acid metabolism influences infection outcome through a direct effect on neutrophil chemotaxis

    PubMed Central

    Bhuiyan, Md Saruar; Ellett, Felix; Murray, Gerald L.; Kostoulias, Xenia; Cerqueira, Gustavo M.; Schulze, Keith E.; Mahamad Maifiah, Mohd Hafidz; Li, Jian; Creek, Darren J.; Lieschke, Graham J.; Peleg, Anton Y.

    2016-01-01

    Innate cellular immune responses are a critical first-line defense against invading bacterial pathogens. Leukocyte migration from the bloodstream to a site of infection is mediated by chemotactic factors that are often host-derived. More recently, there has been a greater appreciation of the importance of bacterial factors driving neutrophil movement during infection. Here, we describe the development of a zebrafish infection model to study Acinetobacter baumannii pathogenesis. By using isogenic A. baumannii mutants lacking expression of virulence effector proteins, we demonstrated that bacterial drivers of disease severity are conserved between zebrafish and mammals. By using transgenic zebrafish with fluorescent phagocytes, we showed that a mutation of an established A. baumannii global virulence regulator led to marked changes in neutrophil behavior involving rapid neutrophil influx to a localized site of infection, followed by prolonged neutrophil dwelling. This neutrophilic response augmented bacterial clearance and was secondary to an impaired A. baumannii phenylacetic acid catabolism pathway, which led to accumulation of phenylacetate. Purified phenylacetate was confirmed to be a neutrophil chemoattractant. These data identify a previously unknown mechanism of bacterial-guided neutrophil chemotaxis in vivo, providing insight into the role of bacterial metabolism in host innate immune evasion. Furthermore, the work provides a potentially new therapeutic paradigm of targeting a bacterial metabolic pathway to augment host innate immune responses and attenuate disease. PMID:27506797

  5. [The influence of halogenated anesthetic agents on the hemodynamics and myocardial metabolism in ischemic heart disease].

    PubMed

    Vasil'ev, A V; Nesterova, Iu V; Brand, Ia B

    2007-01-01

    The authors studied the effects of anesthesia with equipotential concentrations of halothane, enflurane, and isoflurane plus 33% O2 on central hemodynamics, coronary flow, and myocardial metabolism in 60 patients undergoing myocardial revascularization surgery. The study found that halothane and isoflurane with 33% O2 caused dose-dependent and well-controlled arterial hypotension and decreased left ventricular (LV) stroke work index, myocardial consumption of O2 MCO2), total peripheral vascular resistance, and coronary vascular resistance (CVR), which increased coronary volume flow. Monoanesthesia with enflurane lowered myocardial contractility and did not change LV work; MCO2 decreased, while coronary sinus flow increased due to a decrease in CVR. Thus, the comparison of hemodynamic and myocardial effects of the three potent inhaled anesthetics--halothane, enflurane, and isoflurane - demonstrated their positive effects on myocardial oxygen balance in a form of dosed and controlled decrease in its work in cardiological patients with preserved LV contractility. The imported anesthetics enflurane and isoflurane do not have any significant advantage over the Russian-made halothane in this category of patients. At the same time, halothane vs. enflurane has a more noticeable "unloading" effect on afterload and does not cause convulsive episodes and periods of cerebral activity depression; in contrast to isoflurane, halothane dose not cause metabolic disturbances in a compromised myocardium; halothane is used in lower inhaled concentrations to achieve the same degree of myocardial work decrease without a substantial decrease in cardiac efficiency. These facts suggest that halothane has a practical advantage over the other anesthetics.

  6. Overexpression of isocitrate lyase-glyoxylate bypass influence on metabolism in Aspergillus niger.

    PubMed

    Meijer, S; Otero, J; Olivares, R; Andersen, M R; Olsson, L; Nielsen, J

    2009-03-01

    In order to improve the production of succinate and malate by the filamentous fungus Aspergillus niger the activity of the glyoxylate bypass pathway was increased by over-expression of the isocitrate lyase (icl) gene. The hypothesis was that when isocitrate lyase was up-regulated the flux towards glyoxylate would increase, leading to excess formation of malate and succinate compared to the wild-type. However,metabolic network analysis showed that an increased icl expression did not result in an increased glyoxylate bypass flux. The analysis did show a global response with respect to gene expression, leading to an increased flux through the oxidative part of the TCA cycle. Instead of an increased production of succinate and malate, a major increase in fumarate production was observed. The effect of malonate, a competitive inhibitor of succinate dehydrogenase (SDH), on the physiological behaviour of the cells was investigated. Inhibition of SDH was expected to lead to succinate production, but this was not observed. There was an increase in citrate and oxalate production in the wild-type strain. Further more, in the strain with over-expression of icl the organic acid production shifted from fumarate towards malate production when malonate was added to the cultivation medium. Overall,the icl over-expression and malonate addition had a significant impact on metabolism and on organic acid production profiles. Although the expected succinate and malate formation was not observed, a distinct and interesting production of fumarate and malate was found.

  7. The influence of some metabolic inhibitors on phagocytic activity of mouse macrophages in vitro.

    PubMed

    Cifarelli, A; Pepe, G; Paradisi, F; Piccolo, D

    1979-02-06

    The action of different metabolic inhibitors on phagocytosis by macrophages from mouse peritoneal exudate cultured in vitro was studied. The following metabolic inhibitors were tested: sodium iodoacetate, sodium fluoride, sodium fluoroacetate, sodium malonate, 2-4-dinitrophenol, sodium azide, ouabain and cycloheximide, all at the concentration of 10(-3) M. Iodoacetate caused a strong inhibitory effect on phagocytosis; this observation confirms that glycolysis is the main source of energy for the phagocytic process. On the contrary, fluoride, although it is an effective inhibitor of glycolysis, did not exert any effect. This difference may be explained by the fact that sodium fluoride blocks anaerobic glycolysis only in vitro at an unphysiological temperature (0 degrees C). Fluoroacetate and malonate, two compounds which interfere with the Krebs cycle, did not inhibit phagocytosis, but it is known that the Krebs cycle activity is poorly developed in the macrophagic cells. Sodium azide and 2-4-dinitrophenol, two inhibitors of oxidative phosphorylation, showed an effect on phagocytosis only after 3 h of contact with the cell cultures. Ouabain blocks Na+ and K+ transport across the plasma membrane and, probably, it inhibited phagocytosis by interfering with the movements of the cell membrane. Finally, the mode of action of cycloheximide on phagocytosis is uncertain. This compound inhibits the protein synthesis and, perhaps, it can act by preventing the renewal of the cell membrane.

  8. Influence of tacrolimus metabolism rate on renal function after solid organ transplantation

    PubMed Central

    Thölking, Gerold; Gerth, Hans Ulrich; Schuette-Nuetgen, Katharina; Reuter, Stefan

    2017-01-01

    The calcineurin inhibitor (CNI) tacrolimus (TAC) is an integral part of the immunosuppressive regimen after solid organ transplantation. Although TAC is very effective in prevention of acute rejection episodes, its highly variable pharmacokinetic and narrow therapeutic window require frequent monitoring of drug levels and dose adjustments. TAC can cause CNI nephrotoxicity even at low blood trough levels (4-6 ng/mL). Thus, other factors besides the TAC trough level might contribute to CNI-related kidney injury. Unfortunately, TAC pharmacokinetic is determined by a whole bunch of parameters. However, for daily clinical routine a simple application strategy is needed. To address this problem, we and others have evaluated a simple calculation method in which the TAC blood trough concentration (C) is divided by the daily dose (D). Fast TAC metabolism (C/D ratio < 1.05) was identified as a potential risk factor for an inferior kidney function after transplantation. In this regard, we recently showed a strong association between fast TAC metabolism and CNI nephrotoxicity as well as BKV infection. Therefore, the TAC C/D ratio may assist transplant clinicians in a simple way to individualize the immunosuppressive regimen. PMID:28280692

  9. Influence of CO2 and Temperature on Metabolism and Development of Helicoverpa armigera (Noctuidae: Lepidoptera).

    PubMed

    Akbar, S Md; Pavani, T; Nagaraja, T; Sharma, H C

    2016-02-01

    Climate change will have a major bearing on survival and development of insects as a result of increase in CO2 and temperature. Therefore, we studied the direct effects of CO2 and temperature on larval development and metabolism in cotton bollworm, Helicoverpa armigera (Hübner). The larvae were reared under a range of CO2 (350, 550, and 750 ppm) and temperature (15, 25, 35, and 45°C) regimes on artificial diet. Elevated CO2 negatively affected the larval survival, larval weight, larval period, pupation, and adult emergence, but showed a positive effect on pupal weight, pupal period, and fecundity. Increase in temperature exhibited a negative effect on larval survival, larval period, pupal weights, and pupal period, but a positive effect on larval growth. Pupation and adult emergence were optimum at 25°C. Elevated CO2 and temperature increased food consumption and metabolism of larvae by enhancing the activity of midgut proteases, carbohydrases (amylase and cellulase), and mitochondrial enzymes and therefore may cause more damage to crop production. Elevated CO2 and global warming will affect insect growth and development, which will change the interactions between the insect pests and their crop hosts. Therefore, there is need to gain an understanding of these interactions to develop strategies for mitigating the effects of climate change.

  10. Exercise Training and Calorie Restriction Influence the Metabolic Parameters in Ovariectomized Female Rats

    PubMed Central

    Pósa, Anikó; Kupai, Krisztina; Szalai, Zita; Veszelka, Médea; Török, Szilvia; Varga, Csaba

    2015-01-01

    The estrogen deficiency after menopause leads to overweight or obesity, and physical exercise is one of the important modulators of this body weight gain. Female Wistar rats underwent ovariectomy surgery (OVX) or sham operation (SO). OVX and SO groups were randomized into new groups based on the voluntary physical activity (with or without running) and the type of diet for 12 weeks. Rats were fed standard chow (CTRL), high triglyceride diet (HT), or restricted diet (CR). The metabolic syndrome was assessed by measuring the body weight gain, the glucose sensitivity, and the levels of insulin, triglyceride, leptin, and aspartate aminotransferase transaminase (AST) and alanine aminotransferase (ALT). The exercise training combined with the CR resulted in improvements in the glucose tolerance and the insulin sensitivity. Plasma TG, AST, and ALT levels were significantly higher in OVX rats fed with HT but these high values were suppressed by exercise and CR. Compared to SO animals, estrogen deprivation with HT caused a significant increase in leptin level. Our data provide evidence that CR combined with voluntary physical exercise can be a very effective strategy to prevent the development of a metabolic syndrome induced by high calorie diet. PMID:25874022

  11. [Influence of low concentration of sulphuric anhydride on metabolic status of peripheral blood lymphocytes in guinea pigs sensibilised with a biological allergen].

    PubMed

    Dolgushin, M V; Sosedova, L M

    2005-01-01

    The influence of sulphuric anhydride (2-4 mg/m3) on the metabolic status of peripheral blood lymphocytes of sensibilised guinea pigs with different sequence of biological (allergenic) and chemical exposure has been studied. The metabolic state was evaluated by histochemical assay of succinate and lactate dehydrogenases and acid phosphatase. The changes in activities of dehydrogenases were found to indicate a definite relationship with specific responses of combined effects of different factors.

  12. Influence of different calcium contents in diets supplemented with anionic salts on bone metabolism in periparturient dairy cows.

    PubMed

    Liesegang, A; Chiappi, C; Risteli, J; Kessler, J; Hess, H D

    2007-04-01

    At the initiation of lactation, Ca homeostatic mechanisms have to react to a tremendous increase in demand for Ca. Mobilization of Ca from bone and increased absorption from the gastrointestinal tract are required to re-establish homeostasis. It has been shown that dietary anions play an important role in the prevention of milk fever by mobilizing Ca from bone and by increasing Ca absorption in the GI tract. The purpose of the present study was to investigate the influence of different Ca contents in diets supplemented with anionic salts on bone metabolism of dairy cows. Twenty-four holstein cows (housed inside, second to fourth lactation) without a milk fever history were divided into four groups (A, B, C, D). Each group was fed a different diet which was given from day 263 of gestation till the day of parturition. Group A and B received a low calcium diet (4 g/kg DM) whereas group C and D received a high Ca diet (8 g/kg DM). In addition group B and D received anionic salts. The DCAD was calculated with the formula: DCAD (mEq/kg DM)=(0.2 Ca2++0.16 Mg2++Na++K+)-(Cl-+0.6 S2-+0.65 P3-). Blood and urine samples were collected on days 256, 270 and 277 of gestation, on the day of parturition as well as the following 5 days and on days 9, 14 and 19 after parturition. Serum Ca, P, Mg, ICTP, OC, VITD, PTH and urinary pH were analysed. The bone resorption marker ICTP showed a significant increase after parturition in all the groups. On the contrary, the bone formation marker OC decreased after parturition in all the groups. The VITD concentrations in group D and the urinary pH in group B were significantly lower compared to the other groups (p<0.05). The Ca concentrations tended to be higher in group B around parturition than in all the other groups. No significant influence of the four different diets on all the other parameters could be shown. In conclusion, this data showed that the addition of anions and the different Ca contents had no significant influence on bone

  13. Influence of cadmium concentration and length of exposure on metabolic rate and gill Na+/K+ ATPase activity of golden shiners (Notemigonus crysoleucas).

    PubMed

    Peles, John D; Pistole, David H; Moffe, Mickey

    2012-06-01

    Although metabolic rate is considered to be useful as a general indicator of the biological effects of exposure to metals, it is seldom measured in conjunction with specific physiological, biochemical or cellular parameters. The purpose of this investigation was to examine the influence of cadmium (Cd) exposure on metabolic rate and gill Na(+)/K(+) ATPase activity in golden shiners (Notemigonus crysoleucas). Shiners were exposed to six levels of Cd (ranging from control to the maximum sublethal concentration) for 24- and 96-h periods. After 24-h, metabolic rate and Na(+)/K(+) ATPase activity of individual fish were strongly correlated. Shiners exposed to the four highest Cd concentrations (500, 800, 1100, and 1400 μg L(-1)) for 24-h exhibited a shock response that was characterized by mean values for metabolic rate and Na(+)/K(+) ATPase activity that were significantly lower compared to the control. Although results for 96-h exposures reflect a repair/recovery phase, there was no significant correlation between metabolic rate and Na(+)/K(+) ATPase activity. Metabolic rate of shiners was significantly elevated (65-100%) at all concentrations compared to the control after 96-h, whereas Na(+)/K(+) ATPase activity did not differ from the control. Elevated metabolic rate after 96-h likely reflects the influence of a variety of energetically demanding processes associated with repair and recovery.

  14. Influence of muscle fitness test performance on metabolic risk factors among adolescent girls

    PubMed Central

    2010-01-01

    Background The purpose of this study was to examine the association between muscular fitness (MF), assessed by 2 components of Fitnessgram test battery, the Curl-Up and Push-Ups tests and the metabolic risk score among adolescent girls. Methods A total of 229 girls (aged 12-15 years old) comprised the sample of this study. Anthropometric data (height, body mass, waist circumference) were collected. Body mass index (BMI) was also calculated. Muscular strength was assessed taking into account the tests that comprised the FITNESSGRAM test battery, i.e. the curl-up and the push-up. Participants were then categorized in one of 3 categories according the number of tests in which they accomplished the scores that allow them to be classified in health or above health zone. The blood pressure [BP], fasting total cholesterol [TC], low density lipoprotein-cholesterol [LDL-C], high density lipoprotein-cholesterol [HDL-C], triglycerides [TG], glucose, and a metabolic risk score (MRS) were also examined. Physical Activity Index (PAI) was obtained by questionnaire. Results Higher compliance with health-zone criteria (good in the 2 tests), adjusted for age and maturation, were positive and significantly (p ≤ 0.05) associated with height (r = 0.19) and PAI (r = 0.21), while a significant but negative association was found for BMI (r = -0.12); WC (r = -0.19); TC (r = -0.16); TG (r = -0.16); LDL (r = -0.16) and MRS (r = -0.16). Logistic regression showed that who were assigned to MF fittest group were less likely (OR = 0.27; p = 0.003) to be classified overweight/obese and less likely (OR = 0.26; p = 0.03) to be classified as having MRS. This last association was also found for those whom only performed 1 test under the health zone (OR = 0.23; p = 0.02). Conclusions Our data showed that low strength test performance was associated with increased risk for obesity and metabolic risk in adolescent girls even after adjustment for age and maturation. PMID:20573222

  15. Plant growth is influenced by glutamine synthetase-catalyzed nitrogen metabolism

    SciTech Connect

    Langston-Unkefer, P.J.

    1991-06-11

    Ammonia assimilation has been implicated as participating in regulation of nitrogen fixation in free-living bacteria. In fact, these simple organisms utilize an integrated regulation of carbon and nitrogen metabolism; we except to observe an integration of nitrogen and carbon fixation in plants; how could these complex systems grow efficiently and compete in the ecosystem without coordinating these two crucial activities We have been investigating the role of ammonia assimilation regulating the complex symbiotic nitrogen fixation of legumes. Just as is observed in the simple bacterial systems, perturbation of ammonia assimilation in legumes results in increased overall nitrogen fixation. The perturbed plants have increased growth and total nitrogen fixation capability. Because we have targeted the first enyzme in ammonia assimilation, glutamine synthetase, this provides a marker that could be used to assist selection or screening for increased biomass yield. 45 refs., 4 tabs.

  16. The Influence of the Gut Microbiome on Obesity, Metabolic Syndrome and Gastrointestinal Disease

    PubMed Central

    Parekh, Parth J; Balart, Luis A; Johnson, David A

    2015-01-01

    There is a fine balance in the mutual relationship between the intestinal microbiota and its mammalian host. It is thought that disruptions in this fine balance contribute/account for the pathogenesis of many diseases. Recently, the significance of the relationship between gut microbiota and its mammalian host in the pathogenesis of obesity and the metabolic syndrome has been demonstrated. Emerging data has linked intestinal dysbiosis to several gastrointestinal diseases including inflammatory bowel disease, irritable bowel syndrome, nonalcoholic fatty liver disease, and gastrointestinal malignancy. This article is intended to review the role of gut microbiota maintenance/alterations of gut microbiota as a significant factor as a significant factor discriminating between health and common diseases. Based on current available data, the role of microbial manipulation in disease management remains to be further defined and a focus for further clinical investigation. PMID:26087059

  17. Influence of zinc on growth, somatomedin, and glycosaminoglycan metabolism in rats

    SciTech Connect

    Bolze, M.S.; Reeves, R.D.; Lindbeck, F.E.; Elders, M.J.

    1987-01-01

    Weanling male rats were fed control ad libitum, zinc-deficient (ZD, 1 ppm zinc) or pair-fed (PF) control diets for 13 days. Rats subsequently were refed control diets for up to 8 days and serially killed. ZD and PF diets significantly decreased growth rate, feed intake, and feed efficiency compared to controls. Body weight and feed efficiency, but not feed intake, were significantly less in ZD compared to PF. Bone zinc was 315, 286, and 109 ..mu..g/g for control, PF, and ZD at the end of depletion. /sup 35/SO/sub 4/ uptake by glycosaminoglycans (GAG) was significantly less in ZD compared to either control ad libitum or PF rats. Xylosyltransferase activity was decreased significantly below PF and control by ZD, suggesting depressed enzyme activity and/or decreased GAG acceptor sites. Bioassayable somatomedin (Sm) activity was 0.81, 0.42 and 0.33 +/- 0.09 relative activity for control, PF and ZD at the end of depletion. Sm was statistically less in ZD compared to PF at day 2 and 5 of refeeding, but not at the end of depletion. Sm activity and GAG metabolism returned to normal after refeeding for 2-5 days in PF and for 5-8 days in ZD rats. Serum insulin but not glucose was significantly depressed by ZD and PF diets. Thus, zinc deficiency depressed growth and cartilage metabolism and was associated with decreased Sm activity and insulin levels. Some of these changes could be attributed to decreased feed intake as a result of ZD.

  18. Comparison of the metabolism of Acartia clausi and A. tonsa: influence of temperature and salinity.

    PubMed

    Gaudy; Cervetto; Pagano

    2000-04-26

    In the Marseilles region (French Mediterranean coast), A. clausi is one of the most abundant copepod species of the Gulf of Fos while A. tonsa constitutes the almost exclusive copepod species of the Berre lagoon, a neighbouring semi-closed brackish area communicating with the gulf. As different ecophysiological capabilities to stand the various temperature, salinity and food conditions could explain why these two species do not coexist in the same environment, comparative experiments were performed on metabolism and feeding. The respiration and ammonia excretion of the two species were measured in different combinations of temperature (10, 15 and 20 degrees C) and salinity (15, 25 and 35 per thousand). For each temperature, at the salinity of 35 per thousand, respiration rates were less in A. clausi than in A. tonsa, the contrary being observed at the lowest salinity. At any temperature ammonia excretion was greater at the intermediate salinity in A. tonsa and least in A. clausi. In Acartia tonsa, Q(10) of respiration and excretion were minimum at the lowest salinity, while in A. clausi they were unaffected by salinity variation. The O:N atomic ratio (from respiration and ammonia excretion rates) was significantly more elevated in A. clausi (mean 21.2; range 13.6-28.7) than in A. tonsa (mean 11.3; range 4.2-25) suggesting a more proteinic oriented metabolism in the later. Feeding experiments where Dunaliella tertiolecta30 per thousand) or lagoon (<16 per thousand) salinity. The relationships between ingestion and food concentration in the two species were not significantly different. These different results are compared to other ecophysiological information concerning these Acartia species (survival tolerances, osmotic regulation, feeding behaviour) and are discussed in relation with the characteristics of their niches in the studied region.

  19. Arterial stiffness and influences of the metabolic syndrome: a cross-countries study.

    PubMed

    Scuteri, Angelo; Cunha, Pedro G; Rosei, E Agabiti; Badariere, Jolita; Bekaert, Sofie; Cockcroft, John R; Cotter, Jorge; Cucca, Francesco; De Buyzere, Marc L; De Meyer, Tim; Ferrucci, Luigi; Franco, Osca; Gale, Nichols; Gillebert, Thierry C; Hofman, A; Langlois, Michel; Laucevicius, Aleksandras; Laurent, Stephane; Mattace Raso, Francesco U S; Morrell, Cristopher H; Muiesan, Maria Lorenza; Munnery, Margaret M; Navickas, Rokas; Oliveira, Pedro; Orru', Marco; Pilia, Maria Grazia; Rietzschel, Ernst R; Ryliskyte, Ligita; Salvetti, Massimo; Schlessinger, David; Sousa, Nuno; Stefanadis, Christodoulos; Strait, James; Van daele, Caroline; Villa, Isabel; Vlachopoulos, Charalambos; Witteman, Jacqueline; Xaplanteris, Panagiotis; Nilsson, Peter; Lakatta, Edward G

    2014-04-01

    Specific clusters of metabolic syndrome (MetS) components impact differentially on arterial stiffness, indexed as pulse wave velocity (PWV). Of note, in several population-based studies participating in the MARE (Metabolic syndrome and Arteries REsearch) Consortium the occurrence of specific clusters of MetS differed markedly across Europe and the US. The aim of the present study was to investigate whether specific clusters of MetS are consistently associated with stiffer arteries in different populations. We studied 20,570 subjects from 9 cohorts representing 8 different European countries and the US participating in the MARE Consortium. MetS was defined in accordance with NCEP ATPIII criteria as the simultaneous alteration in ≥3 of the 5 components: abdominal obesity (W), high triglycerides (T), low HDL cholesterol (H), elevated blood pressure (B), and elevated fasting glucose (G). PWV measured in each cohort was "normalized" to account for different acquisition methods. MetS had an overall prevalence of 24.2% (4985 subjects). MetS accelerated the age-associated increase in PWV levels at any age, and similarly in men and women. MetS clusters TBW, GBW, and GTBW are consistently associated with significantly stiffer arteries to an extent similar or greater than observed in subjects with alteration in all the five MetS components--even after controlling for age, sex, smoking, cholesterol levels, and diabetes mellitus--in all the MARE cohorts. In conclusion, different component clusters of MetS showed varying associations with arterial stiffness (PWV).

  20. Influence of metabolic dysfunction on cardiac mechanics in decompensated hypertrophy and heart failure.

    PubMed

    Tewari, Shivendra G; Bugenhagen, Scott M; Vinnakota, Kalyan C; Rice, J Jeremy; Janssen, Paul M L; Beard, Daniel A

    2016-05-01

    Alterations in energetic state of the myocardium are associated with decompensated heart failure in humans and in animal models. However, the functional consequences of the observed changes in energetic state on mechanical function are not known. The primary aim of the study was to quantify mechanical/energetic coupling in the heart and to determine if energetic dysfunction can contribute to mechanical failure. A secondary aim was to apply a quantitative systems pharmacology analysis to investigate the effects of drugs that target cross-bridge cycling kinetics in heart failure-associated energetic dysfunction. Herein, a model of metabolite- and calcium-dependent myocardial mechanics was developed from calcium concentration and tension time courses in rat cardiac muscle obtained at different lengths and stimulation frequencies. The muscle dynamics model accounting for the effect of metabolites was integrated into a model of the cardiac ventricles to simulate pressure-volume dynamics in the heart. This cardiac model was integrated into a simple model of the circulation to investigate the effects of metabolic state on whole-body function. Simulations predict that reductions in metabolite pools observed in canine models of heart failure can cause systolic dysfunction, blood volume expansion, venous congestion, and ventricular dilation. Simulations also predict that myosin-activating drugs may partially counteract the effects of energetic state on cross-bridge mechanics in heart failure while increasing myocardial oxygen consumption. Our model analysis demonstrates how metabolic changes observed in heart failure are alone sufficient to cause systolic dysfunction and whole-body heart failure symptoms.

  1. Effect of stress on hepatic 11beta-hydroxysteroid dehydrogenase activity and its influence on carbohydrate metabolism.

    PubMed

    Altuna, María Eugenia; Lelli, Sandra Marcela; San Martín de Viale, Leonor C; Damasco, María Cristina

    2006-10-01

    Stress activates the synthesis and secretion of catecholamines and adrenal glucocorticoids, increasing their circulating levels. In vivo, hepatic 11beta-hydroxysteroid dehydrogenase 1 (HSD1) stimulates the shift of 11-dehydrocorticosterone to corticosterone, enhancing active glucocorticoids at tissue level. We studied the effect of 3 types of stress, 1 induced by bucogastric overload with 200 mmol/L HCl causing metabolic acidosis (HCl), the second induced by bucogastric overload with 0.45% NaCl (NaCl), and the third induced by simulated overload (cannula), on the kinetics of hepatic HSD1 of rats and their influence on the activity of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase, glycemia, and glycogen deposition. Compared with unstressed controls, all types of stress significantly increased HSD1 activity (146% cannula, 130% NaCl, and 253% HCl), phosphoenolpyruvate carboxykinase activity (51% cannula, 48% NaCl, and 86% HCl), and glycemia (29% cannula, 30% NaCl, and 41% HCl), but decreased hepatic glycogen (68% cannula, 68% NaCl, and 78% HCl). Owing to these results, we suggest the following events occur when stress is induced: an increase in hepatic HSD1 activity, augmented active glucocorticoid levels, increased gluconeogenesis, and glycemia. Also involved are the multiple events indirectly related to glucocorticoids, which lead to the depletion of hepatic glycogen deposits, thereby contributing to increased glycemia. This new approach shows that stress increments the activity of hepatic HSD1 and suggests that this enzyme could be involved in the development of the Metabolic Syndrome.

  2. Stress-resistant neural stem cells positively influence regional energy metabolism after spinal cord injury in mice.

    PubMed

    Schwerdtfeger, Karsten; Mautes, Angelika E M; Bernreuther, Christian; Cui, Yifang; Manville, Jérôme; Dihné, Marcel; Blank, Simon; Schachner, Melitta

    2012-02-01

    The importance of stem cells to ameliorate the devastating consequences of traumatic injuries in the adult mammalian central nervous system calls for improvements in the capacity of these cells to cope, in particular, with the host response to the injury. We have previously shown, however, that in the acutely traumatized spinal cord local energy metabolism led to decreased ATP levels after neural stem cell (NSC) transplantation. As this might counteract NSC-mediated regenerative processes, we investigated if NSC selected for increased oxidative stress resistance are better suited to preserve local energy content. For this purpose, we exposed wild-type (WT) NSC to hydrogen peroxide prior to transplantation. We demonstrate here that transplantation of WT-NSC into a complete spinal cord compression injury model even lowers the ATP content beyond the level detected in spinal cord injury-control animals. Compared to WT-NSC, stress-resistant (SR) NSC did not lead to a further decrease in ATP content. These differences between WT- and SR-NSC were observed 4 h after the lesion with subsequent transplantation. At 24 h after lesioning, these differences were no more as obvious. Thus, in contrast to native NSC, transplantation of NSC selected for oxidative stress resistance can positively influence local energy metabolism in the first hours after spinal cord compression. The functional relevance of this observation has to be tested in further experiments.

  3. The Influence of the Type of Continuous Exercise Stress Applied during Growth Periods on Bone Metabolism and Osteogenesis

    PubMed Central

    Suzuki, Takao; Izawa, Hiromi; Satoh, Atsuko

    2016-01-01

    Background In this study, we examined the influence of exercise loading characteristics on bone metabolic responses and bone morphology in the growth phase and adulthood. Methods Running exercise (RUN) and jumping exercise (JUM) were used for the exercise loading in 28-day-old male Wistar rats. Bone metabolism was measured by blood osteocalcin (OC) and tartrate-resistant acid phosphatase (TRACP) levels. For bone morphology, the maximum bone length, bone weight, and bone strength of the femur and tibia were measured. Results A pre- and post-exercise loading comparison in the growth phase showed significantly increased OC levels in the RUN and JUM groups and significantly decreased TRACP levels in the JUM group. On the other hand, a pre- and post-exercise loading comparison in adulthood showed significantly decreased TRACP levels in the RUN and JUM groups. Femur lengths were significantly shorter in the RUN and JUM groups than in the control (CON) group, while bone weight was significantly greater in the JUM group than in the CON group. Conclusions Exercise loading activates OC levels in the growth phase and suppresses TRACP levels in adulthood. On the other hand, these results suggest that excessive exercise loading may suppress bone length. PMID:27622180

  4. Role and mechanism of the AMPK pathway in waterborne Zn exposure influencing the hepatic energy metabolism of Synechogobius hasta

    NASA Astrophysics Data System (ADS)

    Wu, Kun; Huang, Chao; Shi, Xi; Chen, Feng; Xu, Yi-Huan; Pan, Ya-Xiong; Luo, Zhi; Liu, Xu

    2016-12-01

    Previous studies have investigated the physiological responses in the liver of Synechogobius hasta exposed to waterborne zinc (Zn). However, at present, very little is known about the underlying molecular mechanisms of these responses. In this study, RNA sequencing (RNA-seq) was performed to analyse the differences in the hepatic transcriptomes between control and Zn-exposed S. hasta. A total of 36,339 unigenes and 1,615 bp of unigene N50 were detected. These genes were further annotated to the Nonredundant protein (NR), Nonredundant nucleotide (Nt), Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Groups (COG) and Gene Ontology (GO) databases. After 60 days of Zn exposure, 708 and 237 genes were significantly up- and down-regulated, respectively. Many differentially expressed genes (DEGs) involved in energy metabolic pathways were identified, and their expression profiles suggested increased catabolic processes and reduced biosynthetic processes. These changes indicated that waterborne Zn exposure increased the energy production and requirement, which was related to the activation of the AMPK signalling pathway. Furthermore, using the primary hepatocytes of S. hasta, we identified the role of the AMPK signalling pathway in Zn-influenced energy metabolism.

  5. Role and mechanism of the AMPK pathway in waterborne Zn exposure influencing the hepatic energy metabolism of Synechogobius hasta

    PubMed Central

    Wu, Kun; Huang, Chao; Shi, Xi; Chen, Feng; Xu, Yi-Huan; Pan, Ya-Xiong; Luo, Zhi; Liu, Xu

    2016-01-01

    Previous studies have investigated the physiological responses in the liver of Synechogobius hasta exposed to waterborne zinc (Zn). However, at present, very little is known about the underlying molecular mechanisms of these responses. In this study, RNA sequencing (RNA-seq) was performed to analyse the differences in the hepatic transcriptomes between control and Zn-exposed S. hasta. A total of 36,339 unigenes and 1,615 bp of unigene N50 were detected. These genes were further annotated to the Nonredundant protein (NR), Nonredundant nucleotide (Nt), Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Groups (COG) and Gene Ontology (GO) databases. After 60 days of Zn exposure, 708 and 237 genes were significantly up- and down-regulated, respectively. Many differentially expressed genes (DEGs) involved in energy metabolic pathways were identified, and their expression profiles suggested increased catabolic processes and reduced biosynthetic processes. These changes indicated that waterborne Zn exposure increased the energy production and requirement, which was related to the activation of the AMPK signalling pathway. Furthermore, using the primary hepatocytes of S. hasta, we identified the role of the AMPK signalling pathway in Zn-influenced energy metabolism. PMID:27934965

  6. Detrimental effects of ethanol and its metabolite acetaldehyde, on first trimester human placental cell turnover and function.

    PubMed

    Lui, Sylvia; Jones, Rebecca L; Robinson, Nathalie J; Greenwood, Susan L; Aplin, John D; Tower, Clare L

    2014-01-01

    Fetal alcohol spectrum disorder (FASD) describes developmental issues from high maternal alcohol intake, which commonly results in fetal growth restriction and long term morbidity. We aimed to investigate the effect of alcohol and acetaldehyde, on the first trimester placenta, the period essential for normal fetal organogenesis. Normal invasion and establishment of the placenta during this time are essential for sustaining fetal viability to term. We hypothesise that alcohol (ethanol) and acetaldehyde have detrimental effects on cytotrophoblast invasion, turnover and placental function. Taurine is an important amino acid for neuronal and physiological development, and so, its uptake was assayed in cells and placental explants exposed to alcohol or acetaldehyde. First trimester villous explants and BeWo cells were treated with 0, 10, 20, 40 mM ethanol or 0, 10, 20, 40 µM acetaldehyde. The invasive capacity of SGHPL4, a first trimester extravillous cytotrophoblast cell line, was unaffected by ethanol or acetaldehyde (p>0.05; N = 6). The cells in-cycle were estimated using immunostaining for Ki67. Proliferating trophoblast cells treated with ethanol were decreased in both experiments (explants: 40% at 20 mM and 40 mM, p<0.05, N = 8-9) (cell line: 5% at 20 mM and 40 mM, p<0.05, N = 6). Acetaldehyde also reduced Ki67-positive cells in both experiments (explants at 40 µM p<0.05; N = 6) (cell line at 10 µM and 40 µM; p<0.05; N = 7). Only in the cell line at 20 µM acetaldehyde demonstrated increased apoptosis (p<0.05; N = 6). Alcohol inhibited taurine transport in BeWo cells at 10 mM and 40 mM (p<0.05; N = 6), and in placenta at 40 mM (p<0.05; N = 7). Acetaldehyde did not affect taurine transport in either model (P<0.05; N = 6). Interestingly, system A amino acid transport in placental explants was increased at 10 µM and 40 µM acetaldehyde exposure (p<0.05; N = 6). Our results demonstrate that exposure to both genotoxins may contribute to the pathogenesis of FASD by

  7. Ethanol Metabolism and Osmolarity Modify Behavioral Responses to Ethanol in C. elegans

    PubMed Central

    Alaimo, Joseph T.; Davis, Scott J.; Song, Sam S.; Burnette, Christopher R.; Grotewiel, Mike; Shelton, Keith L.; Pierce-Shimomura, Jonathan T.; Davies, Andrew G.; Bettinger, Jill C.

    2012-01-01

    Background Ethanol is metabolized by a two-step process in which alcohol dehydrogenase (ADH) oxidizes ethanol to acetaldehyde, which is further oxidized to acetate by aldehyde dehydrogenase (ALDH). Although variation in ethanol metabolism in humans strongly influences the propensity to chronically abuse alcohol, few data exist on the behavioral effects of altered ethanol metabolism. Here, we used the nematode C. elegans to directly examine how changes in ethanol metabolism alter behavioral responses to alcohol during an acute exposure. Additionally, we investigated ethanol solution osmolarity as a potential explanation for contrasting published data on C. elegans ethanol sensitivity. Methods We developed a gas chromatography assay and validated a spectrophotometric method to measure internal ethanol in ethanol-exposed worms. Further, we tested the effects of mutations in ADH and ALDH genes on ethanol tissue accumulation and behavioral sensitivity to the drug. Finally, we tested the effects of ethanol solution osmolarity on behavioral responses and tissue ethanol accumulation. Results Only a small amount of exogenously applied ethanol accumulated in the tissues of C. elegans and consequently their tissue concentrations were similar to those that intoxicate humans. Independent inactivation of an ADH-encoding gene (sodh-1) or an ALDH-encoding gene (alh-6 or alh-13) increased the ethanol concentration in worms and caused hypersensitivity to the acute sedative effects of ethanol on locomotion. We also found that the sensitivity to the depressive effects of ethanol on locomotion is strongly influenced by the osmolarity of the exogenous ethanol solution. Conclusions Our results indicate that ethanol metabolism via ADH and ALDH has a statistically discernable but surprisingly minor influence on ethanol sedation and internal ethanol accumulation in worms. In contrast, the osmolarity of the medium in which ethanol is delivered to the animals has a more substantial effect on

  8. Influence of dietary manganese on performance, lipid metabolism, and carcass composition of growing and finishing steers.

    PubMed

    Legleiter, L R; Spears, J W; Lloyd, K E

    2005-10-01

    A study was conducted to determine the effect of dietary Mn on performance of growing and finishing steers, and to evaluate the effect of pharmacological concentrations of Mn on lipid metabolism and subsequent carcass quality in steers. One hundred twenty Angus cross steers were blocked by BW and origin and assigned randomly to one of six treatments (four replicate pens per treatment) providing 0 (control), 10, 20, 30, 120, or 240 mg of supplemental Mn/kg of DM from MnSO4. Steers were fed a corn silage-based growing diet for 84 d, and then switched to a corn-based finishing diet for an average of 112 d. The control growing diet analyzed 29 mg of Mn/kg of DM, whereas the control finishing diet analyzed 8 mg of Mn/kg of DM. Jugular blood samples were obtained on d 56 of the growing and finishing phase for plasma Mn and glucose analysis. Final BW, DMI, ADG, and G:F did not differ (P = 0.38 to P = 0.98) across treatments during growing and finishing phases. Plasma Mn concentrations were not affected by treatment; however, liver and LM Mn at slaughter increased linearly (P = 0.02 and 0.002, respectively) with increasing dietary Mn. Plasma glucose concentrations did not differ (P = 0.90) among treatments. Serum nonesterified fatty acid concentrations tended (P = 0.10) to decrease linearly with increasing dietary Mn on d 56 of the finishing phase. Longissimus muscle lipid concentration was affected quadratically (P = 0.08) by dietary Mn. Muscle lipid seemed to increase slightly when steers were fed 30 or 120 mg of Mn/kg of DM, but decreased with the addition of 240 mg of Mn/kg of DM. Carcass characteristics were not affected by dietary Mn. Manganese concentrations of 29 and 8 mg/kg of DM in the growing and finishing diets, respectively, were adequate for maximizing performance of growing and finishing steers in this experiment. Supplementing physiological or pharmacological concentrations of Mn affected lipid metabolism; however, this did not result in altered carcass

  9. Conjugated linoleic acids influence fatty acid metabolism in ovine ruminal epithelial cells.

    PubMed

    Masur, F; Benesch, F; Pfannkuche, H; Fuhrmann, H; Gäbel, G

    2016-04-01

    Conjugated linoleic acids (CLA), particularly cis-9,trans-11 (c9t11) and trans-10,cis-12 (t10c12), are used as feed additives to adapt to constantly increasing demands on the performance of lactating cows. Under these feeding conditions, the rumen wall, and the rumen epithelial cells (REC) in particular, are directly exposed to high amounts of CLA. This study determined the effect of CLA on the fatty acid (FA) metabolism of REC and expression of genes known to be modulated by FA. Cultured REC were incubated with c9t11, t10c12, and the structurally similar FA linoleic acid (LA), oleic acid (OA), and trans-vaccenic acid (TVA) for 48 h at a concentration of 100 µM. Cellular FA levels were determined by gas chromatography. Messenger RNA expression levels of stearoyl-CoA desaturase (SCD) and monocarboxylate transporter (MCT) 1 and 4 were quantified by reverse transcription-quantitative PCR. Fatty acid evaluation revealed significant effects of CLA, LA, OA, and TVA on the amount of FA metabolites of β-oxidation and elongation and of metabolites related to desaturation by SCD. The observed changes in FA content point (among others) to the ability of REC to synthesize c9t11 from TVA endogenously. The mRNA expression levels of SCD identified a decrease after CLA, LA, OA, or TVA treatment. In line with the changes in mRNA expression, we found reduced amounts of C16:1n-7 cis-9 and C18:1n-9 cis-9, the main products of SCD. The expression of MCT1 mRNA increased after c9t11 and t10c12 treatment, and CLA c9t11 induced an upregulation of MCT4. Application of peroxisome proliferator-activated receptor (PPAR) α antagonist suggested that activation of PPARα is involved in the changes of MCT1, MCT4, and SCD mRNA expression induced by c9t11. Participation of PPARγ in the changes of MCT1 and SCD mRNA expression was shown by the application of the respective antagonist. The study demonstrates that exposure to CLA affects both FA metabolism and regulatory pathways within REC.

  10. Adsorption and Reaction of Acetaldehyde on Shape-Controlled CeO2 Nanocrystals: Elucidation of Structure-function Relationships

    SciTech Connect

    Mann, Amanda K; Wu, Zili; Calaza, Florencia; Overbury, Steven {Steve} H

    2014-01-01

    CeO2 cubes with {100} facets, octahedra with {111} facets, and wires with highly defective structures were utilized to probe the structure-dependent reactivity of acetaldehyde. Using temperature-programmed desorption (TPD), temperature-programmed surface reactions (TPSR), and in situ infrared spectroscopy it was found that acetaldehyde desorbs unreacted or undergoes reduction, coupling, or C-C bond scission reactions depending on the surface structure of CeO2. Room temperature FTIR indicates that acetaldehyde binds primarily as 1-acetaldehyde on the octahedra, in a variety of conformations on the cubes, including coupling products and acetate and enolate species, and primarily as coupling products on the wires. The percent consumption of acetaldehyde follows the order of wires > cubes > octahedra. All the nanoshapes produce the coupling product crotonaldehyde; however, the selectivity to produce ethanol follows the order wires cubes >> octahedra. The selectivity and other differences can be attributed to the variation in the basicity of the surfaces, defects densities, coordination numbers of surface atoms, and the reducibility of the nanoshapes.

  11. Influence of high dietary lead on selenium metabolism in dairy calves

    SciTech Connect

    Neathery, M.W.; Miller, W.J.; Gentry, R.P.; Crowe, C.T.; Alfaro, E.; Fielding, A.S.; Pugh, D.G.; Blackmon, D.M.

    1987-03-01

    Metabolism of orally dosed /sup 75/Se was studied in 10 intact male Holstein calves that were fed ad libitum a control diet containing no added Pb or supplemented with 1000 ppm Pb as PbSO/sub 4/ for 4 wk. Lead-supplemented calves did not exhibit any clinical signs of Pb toxicity. Voluntary feed intake was reduced by 9.5% and average daily gain by 23%. Lead content of rib, liver, and kidney increased. Serum glutamic oxaloacetate transaminase activity was increased during the last 2 wk of the experiment in calves fed Pb. In calves receiving supplemental Pb, /sup 75/Se absorption, blood concentration, and urine concentration were reduced by 26, 21, and 42%, respectively. Tissue /sup 75/Se concentrations were significantly lower in kidney, liver, testicle, pancreas, small intestine, heart, spinal cord, and muscle in calves fed Pb. There was a significant negative correlation (r = -.78) between /sup 75/Se and stable Pb concentrations in the liver. It is not clear whether the ingestion of subclinical amounts of Pb could affect the absorption and utilization of Se in dairy calves to the extent of Se deficiency when dairy calves are kept in areas known to be low in Se.

  12. Relation between acute and long-term cognitive decline after surgery: Influence of metabolic syndrome☆

    PubMed Central

    Gambús, P.L; Trocóniz, I.F.; Feng, X.; Gimenez-Milá, M.; Mellado, R.; Degos, V.; Vacas, S.; Maze, M.

    2015-01-01

    Introduction The relationship between persistent postoperative cognitive decline and the more common acute variety remains unknown; using data acquired in preclinical studies of postoperative cognitive decline we attempted to characterize this relationship. Methods Low capacity runner (LCR) rats, which have all the features of the metabolic syndrome, were compared postoperatively with high capacity runner (HCR) rats for memory, assessed by trace fear conditioning (TFC) on the 7th postoperative day, and learning and memory (probe trial [PT]) assessed by the Morris water-maze (MWM) at three months postoperatively. Rate of learning (AL) data from the MWM test, were estimated by non-linear mixed effects modeling. The individual rat's TFC result at postoperative day (POD) 7 was correlated with its AL and PT from the MWM data sets at postoperative day POD 90. Results A single exponential decay model best described AL in the MWM with LCR and surgery (LCR–SURG) being the only significant covariates; first order AL rate constant was 0.07 s−1 in LCR–SURG and 0.16 s−1 in the remaining groups (p<0.05). TFC was significantly correlated with both AL (R = 0.74; p < 0.0001) and PT (R = 0.49; p < 0.01). Conclusion Severity of memory decline at 1 week after surgery presaged long-lasting deteriorations in learning and memory. PMID:26164200

  13. Factors influencing the abundance and metabolic capacities of microorganisms in Eastern Coastal Plain sediments.

    PubMed

    Phelps, T J; Pfiffner, S M; Sargent, K A; White, D C

    1994-01-01

    The abundance and metabolic capacities of microorganisms residing in 49 sediment samples from 4 boreholes in Atlantic Coastal Plain sediments were examined. Radiolabeled time-course experiments assessing in situ mirobial capacities were initiated within 30 min of core recovery. Acetate (1-(14)C- and(3)H-) incorporation into lipids, microbial colony forming units, and nutrient limitations were examined in aliquots of subsurface sediments. Water-saturated sands exhibited activity and numbers of viable microorganisms that were orders of magnitude greater than those of the low permeability dense clays. Increased radioisotope utilization rates were observed after 6-24-h incubation times when sediments were amended with additional water and/or nutrients. Supplements of water, phosphate, nitrate, sulfate, glucose, or minerals resulted in the stimulation of microbial activities, as evidenced by the rate of acetate incorporation into microbial lipids. Additions of water or phosphate resulted in the greatest stimulation of microbial activities. Regardless of depth, sediments that contained >20% clay particles exhibited lower activities and biomass densities, and greater stimulation with abundant water supplementation than did sediments containing >66% sands and hydraulic conductivities > 200 μm sec.(-1).

  14. Influence of heart rate at rest for predicting the metabolic syndrome in older Chinese adults.

    PubMed

    O'Hartaigh, Bríain; Jiang, Chao Qiang; Bosch, Jos A; Zhang, Wei Sen; Cheng, Kar Keung; Lam, Tai Hing; Thomas, G Neil

    2013-06-01

    The aim of this study was to examine the relationship between seated resting heart rate and the metabolic syndrome (MetS) among older residents of Guangzhou, South China. A total of 30,519 older participants (≥50 years) from the Guangzhou Biobank Cohort Study were stratified into quartiles based on seated resting heart rate. The associations between each quartile and the MetS were assessed using multivariable logistic regression. A total of 6,907 (22.8 %) individuals were diagnosed as having the MetS, which was significantly associated with increasing heart rate quartiles (P < 0.001). Participants in the uppermost quartile (mean resting heart rate 91 ± 8 beats/min) of this cardiovascular proxy had an almost twofold increased adjusted risk (odds ratio (95 % CI) = 1.94 (1.79, 2.11), P < 0.001) for the MetS, as compared to those in the lowest quartile (mean resting heart rate, 63 ± 4 beats/min). Heart rate, which is an inexpensive and simple clinical measure, was independently associated with the MetS in older Chinese adults. We hope these observations will spur further studies to examine the usefulness of resting heart rate as a means of risk stratification in such populations, for which targeted interventions should be implemented.

  15. Influence of sprint training on human skeletal muscle purine nucleotide metabolism.

    PubMed

    Stathis, C G; Febbraio, M A; Carey, M F; Snow, R J

    1994-04-01

    To examine the effect of sprint training on human skeletal muscle purine nucleotide metabolism, eight active untrained subjects completed a maximal 30-s sprint bout on a cycle ergometer before and after 7 wk of sprint training. Resting muscle ATP and total adenine nucleotide content were reduced (P < 0.05) by 19 and 18%, respectively, after training. Training resulted in a 52% attenuation (P < 0.05) in the magnitude of ATP depletion after exercise and a similar reduction (P < 0.05) in the accumulation of inosine 5'-monophosphate and ammonia. During recovery, muscle inosine 5'-monophosphate (P < 0.05) and inosine (P < 0.01) content were reduced after training, as was the accumulation of inosine (P < 0.05). Plasma ammonia was higher (P < 0.05) after training early in recovery; in contrast, plasma hypoxanthine concentrations were reduced (P < 0.05) during the latter stages of recovery. The attenuated resting ATP and total adenine nucleotide contents after training probably result from the acute effects of prior training sessions. The reduction in the magnitude of ATP depletion during a 30-s sprint bout after training must reflect an improved balance between ATP hydrolysis and resynthesis. It is unclear which mechanism(s) is responsible for the reduction in the magnitude of ATP degradation after training.

  16. Metabolic control may influence the increased superoxide generation in diabetic serum.

    PubMed

    Ceriello, A; Giugliano, D; Quatraro, A; Dello Russo, P; Lefèbvre, P J

    1991-07-01

    Superoxide anion (O2-) generation in serum from 10 Type 1 diabetic patients and 10 normal subjects was measured ex vivo. The amount of O2- production was significantly increased in diabetic serum 0.41 +/- 0.04 (+/- SD) vs 0.14 +/- 0.04 mumol l-1 min-1, p less than 0.001) and correlated with fasting plasma glucose and glycosylated protein levels in both diabetic (r = 0.72, p less than 0.01, and r = 0.62, p less than 0.05) and normal r = 0.75, p less than 0.01 and r = 0.64, p less than 0.05) subjects. Improved metabolic control in the diabetic patients was associated with a reduction of serum O2- production (0.28 +/- 0.06 mumol l-1 min-1, p less than 0.01), but the correlation between O2- levels and fasting plasma glucose and glycosylated protein concentrations was retained (r = 0.86 and r = 0.72, respectively, both p less than 0.01).

  17. Influence of dietary fiber consumption on oxidative metabolism and anaplerotic flux in isolated rat colonocytes.

    PubMed

    Marsman, K E; McBurney, M I

    1996-09-01

    Colonic fermentation of dietary fiber produces short-chain fatty acids which are energetic substrates for colonocytes. A high-fiber diet may lead to adaptations in colonocyte energy utilization, product formation and anaplerotic fluxes. For 2 weeks, Sprague-Dawley rats consumed diets containing 0, 150 or 300 g/kg fiber in place of digestible carbohydrate. Colonocytes were isolated; substrate oxidation and anaplerotic flux were measured. Glutamine oxidation was higher and glutamate formation was lower with increasing levels of fiber. Glucose, propionate and butyrate oxidation were not altered by diet. ATP yield from glutamine was higher in fiber-fed rats, but ATP from propionate, butyrate and glucose were not affected by the diets. Assessment of anaplerotic flux using the CO2 ratios method revealed no changes attributable to diet. The amount by which CO2 production is greater from C-1 vs C-2 of short-chain fatty acids in this system was established to be approximately 2-fold. Colonocytes use fuels in the preferential order of: glucose & butyrate > > propionate & glutamine. Because differences attributable to diet do not lead to physiologically significant alterations in anaplerotic flux or ATP yield, only minor adaptations of colonocyte oxidative metabolism occur after 2 weeks of consuming a high fiber diet.

  18. Ab Initio Quantum Calculations of Reactions in Astrophysical Ices: Acetaldehyde and Acetone with Ammonia

    NASA Astrophysics Data System (ADS)

    Chen, L.; Woon, D. E.

    2009-06-01

    Complex organic molecules, including amino acid precursors, have been observed in young stellar objects. Both laboratory and theoretical studies have shown that ice chemistry can play an important role in low-temperature synthetic pathways, with water serving as a catalyst that can significantly enhance reaction rates by lowering barriers or eliminating them altogether. Reactions between carbonyl species and ammonia are particularly promising, as shown in previous studies of the formaldehyde-ammonia reaction. In this study, we explore the reactions of ammonia with two larger carbonyl species, acetaldehyde and acetone, embedded in a water ice cluster. To examine the explicit impact of the water, we gradually increase the size of the cluster from 4H_2O to 12H_2O. Cluster calculations were performed at the MP2/{6-31}+G^{**} or B3LYP/{6-31}+G^{**} level. In order to account for the electrostatic contribution from bulk ice, the Polarizable Continuum Model (PCM) and Isodensity Surface Polarized Continuum Model (IPCM) were used to model reaction field solvation effects. For both acetaldehyde and acetone, the reactant is a charge transfer complex (a partial charge-transfer complex in small clusters and full proton-transfer complex in larger clusters). Rearrangement to amino-hydroxylated products can occur by surmounting a small reaction barrier. Stereo-selectivity is observed in the case of acetaldehyde. P. Ehrenfreund and S. B. Charnley, Ann. Rev. Astron. Astrophys. 38, 427 (2000). W. A. Schutte, L. J. Allamandola, and S. A. Sandford, Science 259, 1143 (1993) W. A. Schutte, L. J. Allamandola, and S. A. Sandford, Icarus 104, 118 (1993) D. E. Woon, Icarus 142, 550 (1999) S. P. Walch, C. W. Bauschicher, Jr., A. Ricca and E. L. O. Bakes, Chem. Phys. Lett, 333, 6 (2001)

  19. Sensitive gas chromatographic detection of acetaldehyde and acetone using a reduction gas detector

    NASA Technical Reports Server (NTRS)

    O'Hara, Dean; Singh, Hanwant B.

    1988-01-01

    The response of a newly available mercuric oxide Reduction Gas Detector (RGD-2) to subpicomole and larger quantities of acetaldehyde and acetone is tested. The RGD-2 is found to be capable of subpicomole detection for these carbonyls and is more sensitive than an FID (Flame Ionization Detector) by an order of magnitude. Operating parameters can be further optimized to make the RGD-2 some 20-40 times more sensitive than an FID. The detector is linear over a wide range and is easily adapted to a conventional gas chromatograph (GC). Such a GC-RGD-2 system should be suitable for atmospheric carbonyl measurements in clean as well as polluted environments.

  20. Millimeter and submillimeter wave spectra of mono-13C-acetaldehydes

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Motiyenko, R. A.; Ilyushin, V. V.; Guillemin, J. C.

    2015-07-01

    Context. The acetaldehyde molecule is ubiquitous in the interstellar medium of our galaxy, and due to its dense and complex spectrum, large dipole moment, and several low-lying torsional states, acetaldehyde is considered to be a "weed" molecule for radio astronomy observations. Mono-13C acetaldehydes 13CH3CHO and CH313CHO are likely to be identified in astronomical surveys, such as those available with the very sensitive ALMA telescope. Laboratory measurements and analysis of the millimeter and submillimeter-wave spectra are the prerequisites for the successful radioastronomical search for the new interstellar molecular species, as well as for new isotopologs of already detected interstellar molecules. Aims: In this context, to provide reliable predictions of 13CH3CHO and CH313CHO spectra in millimeter and submillimeter wave ranges, we study rotational spectra of these species in the frequency range from 50 to 945 GHz. Methods: The spectra of mono-13C acetaldehydes were recorded using the spectrometer based on Schottky-diode frequencymultiplication chains in the Lille laboratory. The rotational spectra of 13CH3CHO and CH313CHO molecules were analyzed using the Rho axis method. Results: In the recorded spectra we have assigned 6884 for the 13CH3CHO species and 6458 for CH313CHO species new rotational transitions belonging to the ground, first, and second excited torsional states. These measurements were fitted together with previously published data to the Hamiltonian models that use 91 and 87 parameters to achieve overall weighted rms deviations 0.88 for the 13CH3CHO species and 0.95 for CH313CHO. On the basis of the new spectroscopic results, predictions of transition frequencies in the frequency range up to 1 THz with J ≤ 60 and Ka ≤ 20 are presented for both isotopologs. Full Tables 3-6 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/579/A46

  1. Influence of high-altitude grazing on bone metabolism of growing sheep.

    PubMed

    Liesegang, A; Hüttenmoser, D; Risteli, J; Leiber, F; Kreuzer, M; Wanner, M

    2013-02-01

    The objective of this study was to identify the effect of high alpine grazing, associated with varying pasture grass qualities and more pronounced exercise on typically steep slopes, on bone metabolism by improving bone density and enhancing bone turnover in growing sheep. Twenty-four 5-month-old sheep were randomly assigned to two groups. One group was kept at high altitude (HA; 2000-2200 m a.s.l.) for 3 months, and the other group (C; control) remained in the lowlands (400 m a.s.l.). Both groups were kept in grazing pastures with access to good-quality swards. Before the start of the experiment, blood samples were taken, the sheep were weighed, and the left metatarsus of each animal was analysed by quantitative computer tomography. After 1 month, blood samples were taken and body weight was measured, followed by biweekly sampling. Finally, the animals were slaughtered, and the bones were collected for analysis of various bone parameters. Body weight development did not differ between the groups. Concentrations of 25-OH-Vitamin D, carboxy-terminal telopeptide of type I collagen and activities of bone-specific alkaline phosphatase were always higher in the HA group than in the C group, except on the last two sampling dates. Bone mineral content and density increased in both groups during the experiment, but more intensively in the HA group. In addition, the cortical thickness of the HA group increased. The present study demonstrates an increase in bone turnover and mineral content of the bones of the growing sheep grazing in high alpine pastures. The factors associated with HA grazing, therefore, clearly seem to improve bone composition.

  2. Influence of Coding Variability in APP-Aβ Metabolism Genes in Sporadic Alzheimer’s Disease

    PubMed Central

    Sassi, Celeste; Ridge, Perry G.; Nalls, Michael A.; Gibbs, Raphael; Ding, Jinhui; Lupton, Michelle K.; Troakes, Claire; Lunnon, Katie; Al-Sarraj, Safa; Brown, Kristelle S.; Medway, Christopher; Lord, Jenny; Turton, James; Morgan, Kevin; Powell, John F.; Kauwe, John S.; Cruchaga, Carlos; Bras, Jose; Goate, Alison M.; Singleton, Andrew B.; Guerreiro, Rita; Hardy, John

    2016-01-01

    The cerebral deposition of Aβ42, a neurotoxic proteolytic derivate of amyloid precursor protein (APP), is a central event in Alzheimer’s disease (AD)(Amyloid hypothesis). Given the key role of APP-Aβ metabolism in AD pathogenesis, we selected 29 genes involved in APP processing, Aβ degradation and clearance. We then used exome and genome sequencing to investigate the single independent (single-variant association test) and cumulative (gene-based association test) effect of coding variants in these genes as potential susceptibility factors for AD, in a cohort composed of 332 sporadic and mainly late-onset AD cases and 676 elderly controls from North America and the UK. Our study shows that common coding variability in these genes does not play a major role for the disease development. In the single-variant association analysis, the main hits, none of which statistically significant after multiple testing correction (1.9e-4

  3. Influence of Coding Variability in APP-Aβ Metabolism Genes in Sporadic Alzheimer's Disease.

    PubMed

    Sassi, Celeste; Ridge, Perry G; Nalls, Michael A; Gibbs, Raphael; Ding, Jinhui; Lupton, Michelle K; Troakes, Claire; Lunnon, Katie; Al-Sarraj, Safa; Brown, Kristelle S; Medway, Christopher; Lord, Jenny; Turton, James; Morgan, Kevin; Powell, John F; Kauwe, John S; Cruchaga, Carlos; Bras, Jose; Goate, Alison M; Singleton, Andrew B; Guerreiro, Rita; Hardy, John

    2016-01-01

    The cerebral deposition of Aβ42, a neurotoxic proteolytic derivate of amyloid precursor protein (APP), is a central event in Alzheimer's disease (AD)(Amyloid hypothesis). Given the key role of APP-Aβ metabolism in AD pathogenesis, we selected 29 genes involved in APP processing, Aβ degradation and clearance. We then used exome and genome sequencing to investigate the single independent (single-variant association test) and cumulative (gene-based association test) effect of coding variants in these genes as potential susceptibility factors for AD, in a cohort composed of 332 sporadic and mainly late-onset AD cases and 676 elderly controls from North America and the UK. Our study shows that common coding variability in these genes does not play a major role for the disease development. In the single-variant association analysis, the main hits, none of which statistically significant after multiple testing correction (1.9e-4

  4. Neurotoxicity effect of formaldehyde on occupational exposure and influence of individual susceptibility to some metabolism parameters.

    PubMed

    Zendehdel, Rezvan; Fazli, Zohreh; Mazinani, Mohammad

    2016-11-01

    Over the years, neurotoxicity and cognitive dysfunction have separately been associated with endogenous formaldehyde and reduction of acetylcholine signals. However, a limited number of studies have shown a relationship between cholinergic neurotransmitter and formaldehyde exposure. Therefore, the aim of this study was to assess the neurological effect on workers from melamine-dish preparation workshop, who were exposed to formaldehyde. A total of 35 formaldehyde-exposed workers were compared with 32 control employees from the food industry. Occupational exposure to formaldehyde was conducted using the National Institute of Occupational Safety and Health 3500 methods. Using the Ellman method, acetylcholinesterase (AChE) as a biomarker for neurotoxicity was analyzed in blood erythrocyte. The effects of alcohol dehydrogenase III (ADH3) and Mn-superoxide dismutase (Mn-SOD) polymorphism were used to survey the level of AChE activity. In this study, it was found that exposure to airborne formaldehyde increased from 0.024 to 0.74 ppm and the median personnel exposure was 0.057. Induction of AChE activity was observed in formaldehyde-exposed workers as compared with the control group (p < 0.01), while AChE activity increased in 64 % of the exposed subjects. Spearman's correlation (p < 0.02) was used to evaluate the association between AChE activity and occupational exposure to formaldehyde. Exposed subjects containing ADH32-2 genotype had higher AChE than others. The findings of this study suggest that the neurotoxic effect of formaldehyde depends on the AChE activity, which is affected by metabolism. It can be concluded that cholinergic signal reduction in cases of cognitive dysfunction could be associated with endogenous formaldehyde.

  5. The influence of ubiquinone (Co Q10) on the metabolic response to work.

    PubMed

    Zuliani, U; Bonetti, A; Campana, M; Cerioli, G; Solito, F; Novarini, A

    1989-03-01

    Ubiquinone (Co Q10) is a natural substance suitable for therapeutic use in cardiology and in the treatment of some muscular diseases. It might therefore be used during strenuous exercise (as in athletic competitions), especially in the presence of metabolic modifications which may justify its use. For this purpose, we have evaluated the effect of prolonged treatment with Co Q10 (100 mg/day per os for one month) on the biological changes induced by prolonged work on an ergometer bicycle (equal to about 50% of the single VO2max per 60 m'), immediately followed by exhaustive work (25 watts increase every 2 m'). From the venous blood of 12 healthy untrained subjects (students, volunteers, mean age 25.7 and body mass index 23.3) we examined some biological parameters [free fatty acids (FFA), free glycerol, lactate, glucose, insulin, CK] before, at the end of aerobic work, at the end of exhaustive work, and after 30 and 60 m' of the recovery phase. The same indexes, measured after identical times and work, were evaluated after one month of treatment with Co Q10. The only relevant modifications observed were those concerning FFA: at the end of aerobic work and after the administration of the drug, lower levels were reached (before, 1011 +/- 329 microEq/l; after 790 +/- 392; p less than 0.05); the same trend was observed at the end of the exhaustive work (1031 +/- 320 microEq/l vs 826 +/- 387; p less than 0.05). At the subsequent times, as well as for the other biological parameters examined, we did not observe any variation before or after the period of treatment.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Fatness mediates the influence of muscular fitness on metabolic syndrome in Colombian collegiate students

    PubMed Central

    Carrillo, Hugo Alejandro; González-Ruíz, Katherine; Vivas, Andrés; Triana-Reina, Héctor Reynaldo; Martínez-Torres, Javier; Prieto-Benavidez, Daniel Humberto; Ramos-Sepúlveda, Jeison Alexander; Villa-González, Emilio

    2017-01-01

    The purpose of this study was two-fold: to analyze the association between muscular fitness (MF) and clustering of metabolic syndrome (MetS) components, and to determine if fatness parameters mediate the association between MF and MetS clustering in Colombian collegiate students. This cross-sectional study included a total of 886 (51.9% women) healthy collegiate students (21.4 ± 3.3 years old). Standing broad jump and isometric handgrip dynamometry were used as indicators of lower and upper body MF, respectively. Also, a MF score was computed by summing the standardized values of both tests, and used to classify adults as fit or unfit. We also assessed fat mass, body mass index, waist-to-height ratio, and abdominal visceral fat, and categorized individuals as low and high fat using international cut-offs. A MetS cluster score was derived by calculating the sum of the sample-specific z-scores from the triglycerides, HDL cholesterol, fasting glucose, waist circumference, and arterial blood pressure. Linear regression models were used to examine whether the association between MF and MetS cluster was mediated by the fatness parameters. Data were collected from 2013 to 2016 and the analysis was done in 2016. Findings revealed that the best profiles (fit + low fat) were associated with lower levels of the MetS clustering (p <0.001 in the four fatness parameters), compared with unfit and fat (unfit + high fat) counterparts. Linear regression models indicated a partial mediating effect for fatness parameters in the association of MF with MetS clustering. Our findings indicate that efforts to improve MF in young adults may decrease MetS risk partially through an indirect effect on improvements to adiposity levels. Thus, weight reduction should be taken into account as a complementary goal to improvements in MF within exercise programs. PMID:28296952

  7. Influences of methamphetamine-induced acute intoxication on urinary and plasma metabolic profiles in the rat.

    PubMed

    Shima, Noriaki; Miyawaki, Izuru; Bando, Kiyoko; Horie, Hiroshi; Zaitsu, Kei; Katagi, Munehiro; Bamba, Takeshi; Tsuchihashi, Hitoshi; Fukusaki, Eiichiro

    2011-09-05

    Methamphetamine (MA) is an illicit psychostimulant, and its abuse has become an international public health problem. MA intoxication can cause life-threatening hyperthermia, renal and liver failure, cardiac arrhythmias, and neurological damage. To investigate the relationship between the underlying mechanism of such intoxication and metabolic networks, mass spectrometry-based metabolomics experiments were performed on Sprague-Dawley rats treated with MA at 10mgkg(-1)h(-1) for 4h. Using a combination of gas chromatography-time-of-flight mass spectrometry and capillary electrophoresis-tandem mass spectrometry, global and targeted analyses were performed on biological samples collected during 0-24 and 72-96h (for urine), and at 24 and 96h (for plasma) after the last drug administration. Body temperature and plasma biochemical parameters were also measured to detect abnormal reactions in neuronal and other several tissues. 5-Oxoproline, saccharic acid, uracil, 3-hydroxybutyrate (3-HB), adipic acid, glucose, glucose 6-phosphate, fructose 1,6-bisphosphate, and tricarboxylic acid (TCA) cycle intermediates, such as fumarate, were proposed as potential biomarkers related to MA-induced intoxications. In particular, the observation of decreased TCA cycle intermediates and 3-HB and increased glucose suggested that high doses of MA inhibit biogenic energy production by glycolysis, oxidative phosphorylation via the TCA cycle, and the beta-oxidation of fatty acids. These results may provide not only a clue to clarify the underlying mechanism of diverse intoxication effects, but also biological fluid-based diagnostic and forensic methods with which to objectively demonstrate intoxication without directly determining the drug.

  8. Influence of phosphorus nutrition on growth and metabolism of Duo grass (Duo festulolium).

    PubMed

    Priya, Padmanabhan; Sahi, Shivendra V

    2009-01-01

    Use of suitable plants that can extract and concentrate excess P from contaminated soil serves as an attractive method of phytoremediation. Plants vary in their potential to assimilate different organic and inorganic P-substrates. In this study, the response of Duo grass (Duo festulolium) to variable rates of soil-applied potassium dihydrogen phosphate (KH(2)PO(4)) on biomass yield and P uptake were studied. Duo grown for 5 weeks in soil with 2.5, 5 and 7.5 g KH(2)PO(4) kg(-1) soil showed a significantly higher biomass and shoot P content of 8.3, 11.4 and 12.3g P kg(-1) dry weight respectively compared to plants that received no soil added P. Also, the ability of Duo to metabolize different forms of P-substrates was determined by growing them in sterile Hoagland's agar media with different organic and inorganic P-substrates, viz. KH(2)PO(4), glucose-1-phosphate (G1P), inositiol hexaphosphate (IHP), adenosine triphosphate (ATP) and adenosine monophosphate (AMP) for 2 weeks. Plants on agar media with different P-substrates also showed enhanced biomass yield and shoot P relative to no P control and the P uptake was in the order of ATP>KH(2)PO(4)>G1P>IHP=AMP>no P control. The activities of both phytase (E.C.3.1.3.26) and acid phosphatases (E.C.3.1.3.2) were higher in all the P received plants than the control. Duo grass is capable of extracting P from the soil and also from the agar media and thus it can serve as possible candidate for phytoextraction of high P-soil.

  9. Fatness mediates the influence of muscular fitness on metabolic syndrome in Colombian collegiate students.

    PubMed

    García-Hermoso, Antonio; Carrillo, Hugo Alejandro; González-Ruíz, Katherine; Vivas, Andrés; Triana-Reina, Héctor Reynaldo; Martínez-Torres, Javier; Prieto-Benavidez, Daniel Humberto; Correa-Bautista, Jorge Enrique; Ramos-Sepúlveda, Jeison Alexander; Villa-González, Emilio; Peterson, Mark D; Ramírez-Vélez, Robinson

    2017-01-01

    The purpose of this study was two-fold: to analyze the association between muscular fitness (MF) and clustering of metabolic syndrome (MetS) components, and to determine if fatness parameters mediate the association between MF and MetS clustering in Colombian collegiate students. This cross-sectional study included a total of 886 (51.9% women) healthy collegiate students (21.4 ± 3.3 years old). Standing broad jump and isometric handgrip dynamometry were used as indicators of lower and upper body MF, respectively. Also, a MF score was computed by summing the standardized values of both tests, and used to classify adults as fit or unfit. We also assessed fat mass, body mass index, waist-to-height ratio, and abdominal visceral fat, and categorized individuals as low and high fat using international cut-offs. A MetS cluster score was derived by calculating the sum of the sample-specific z-scores from the triglycerides, HDL cholesterol, fasting glucose, waist circumference, and arterial blood pressure. Linear regression models were used to examine whether the association between MF and MetS cluster was mediated by the fatness parameters. Data were collected from 2013 to 2016 and the analysis was done in 2016. Findings revealed that the best profiles (fit + low fat) were associated with lower levels of the MetS clustering (p <0.001 in the four fatness parameters), compared with unfit and fat (unfit + high fat) counterparts. Linear regression models indicated a partial mediating effect for fatness parameters in the association of MF with MetS clustering. Our findings indicate that efforts to improve MF in young adults may decrease MetS risk partially through an indirect effect on improvements to adiposity levels. Thus, weight reduction should be taken into account as a complementary goal to improvements in MF within exercise programs.

  10. Influence of developmental nicotine exposure on the ventilatory and metabolic response to hyperthermia.

    PubMed

    Ferng, Jonathan; Fregosi, Ralph F

    2015-12-01

    To determine whether developmental nicotine exposure (DNE) alters the ventilatory and metabolic response to hyperthermia in neonatal rats (postnatal age 2-4 days), pregnant dams were exposed to nicotine (6 mg kg(-1) of nicotine tartrate daily) or saline with an osmotic mini-pump implanted subdermally on day 5 of gestation. Rat pups (a total of 72 controls and 72 DNE pups) were studied under thermoneutral conditions (chamber temperature 33°C) and during moderate thermal stress (37.5°C). In all pups, core temperature was similar to chamber temperature, with no treatment effects. The rates of pulmonary ventilation (V̇(I)), O2 consumption (V̇(O2)) and CO2 production (V̇(CO2)) did not change with hyperthermia in either control or DNE pups. However, V̇(I) was lower in DNE pups at both chamber temperatures, whereas the duration of spontaneous apnoeas was longer in DNE pups than in controls at 33°C. The V̇(I)/V̇(O2) ratio increased at 37.5°C in control pups, although it did not change in DNE pups. To simulate severe thermal stress, additional pups were studied at 33°C and 43°C. V̇(I) increased with heating in control pups but not in DNE pups. As heat stress continued, gasping was evoked in both groups, with no effect of DNE on the gasping pattern. Over a 20 min recovery period at 33°C, V̇(I) returned to baseline in control pups but remained depressed in DNE pups. In addition to altering baseline V̇(I) and apnoea duration, DNE is associated with subtle but significant alterations in the ventilatory response to hyperthermia in neonatal rats.

  11. Multi-Walled Carbon Nanotubes as a Catalyst for Gas-Phase Oxidation of Ethanol to Acetaldehyde.

    PubMed

    Wang, Jia; Huang, Rui; Feng, Zhenbao; Liu, Hongyang; Su, Dangsheng

    2016-07-21

    Multi-walled carbon nanotubes (CNTs) were directly used as a sustainable and green catalyst to convert ethanol into acetaldehyde in the presence of molecular oxygen. The C=O groups generated on the nanocarbon surface were demonstrated as active sites for the selective oxidation of ethanol to acetaldehyde. The transformation of disordered carbon debris on the CNT surface to ordered graphitic structures induced by thermal-treatment significantly enhanced the stability of the active C=O groups, and thus the catalytic performance. A high reactivity with approximately 60 % ethanol conversion and 93 % acetaldehyde selectivity was obtained over the optimized CNT catalyst at 270 °C. More importantly, the catalytic performance was quite stable even after 500 h, which is comparable with a supported gold catalyst. The robust catalytic performance displayed the potential application of CNTs in the industrial catalysis field.

  12. Single-photon double and triple ionization of acetaldehyde (ethanal) studied by multi-electron coincidence spectroscopy

    NASA Astrophysics Data System (ADS)

    Zagorodskikh, S.; Zhaunerchyk, V.; Mucke, M.; Eland, J. H. D.; Squibb, R. J.; Karlsson, L.; Linusson, P.; Feifel, R.

    2015-12-01

    Single-photon multiple ionization processes of acetaldehyde (ethanal) have been experimentally investigated by utilizing a multi-particle coincidence technique based on the time-of-flight magnetic bottle principle, in combination with either a synchrotron radiation source or a pulsed helium discharge lamp. The processes investigated include double and triple ionization in the valence region as well as single and double Auger decay of core-ionized acetaldehyde. The latter are studied site-selectively for chemically different carbon core vacancies, scrutinizing early theoretical predictions specifically made for the case of acetaldehyde. Moreover, Auger processes in shake-up and core-valence ionized states are investigated. In the cases where the processes involve simultaneous emission of two electrons, the distributions of the energy sharing are presented, emphasizing either the knock-out or shake-off mechanism.

  13. Mineralization of gaseous acetaldehyde by electrochemically generated Co(III) in H2SO4 with wet scrubber combinatorial system.

    PubMed

    Govindan, Muthuraman; Chung, Sang-Joon; Moon, Il-Shik

    2012-06-11

    Electrochemically generated Co(III) mediated catalytic room temperature incineration of acetaldehyde, which is one of volatile organic compounds (VOCs), combined with wet scrubbing system was developed and investigated. Depending on the electrolyte's type, absorption come removal efficiency is varied. In presence of electrogenerated Co(III) in sulfuric acid, acetaldehyde was mineralized to CO2 and not like only absorption in pure sulfuric acid. The Co(III) mediated catalytic incineration led to oxidative absorption and elimination to CO2, which was evidenced with titration, CO2, and cyclic voltammetric analyses. Experimental conditions, such as current density, concentration of mediator, and gas molar flow rate were optimized. By the optimization of the experimental conditions, the complete mineralization of acetaldehyde was realized at a room temperature using electrochemically generated Co(III) with wet scrubber combinatorial system.

  14. Therapeutic Strategies and Pharmacological Tools Influencing S1P Signaling and Metabolism.

    PubMed

    Vogt, Dominik; Stark, Holger

    2017-01-01

    During the last two decades the study of the sphingolipid anabolic, catabolic, and signaling pathways has attracted enormous interest. Especially the introduction of fingolimod into market as first p.o. therapeutic for the treatment of multiple sclerosis has boosted this effect. Although the complex regulation of sphingosine-1-phosphate (S1P) and other catabolic and anabolic sphingosine-related compounds is not fully understood, the influence on different (patho)physiological states from inflammation to cytotoxicity as well as the availability of versatile pharmacological tools that represent new approaches to study these states are described. Here, we have summarized various aspects concerning the many faces of sphingolipid function modulation by different pharmacological tools up to clinical candidates. Due to the immense heterogeneity of physiological or pharmacological actions and complex cross regulations, it is difficult to predict their role in upcoming therapeutic approaches. Currently, inflammatory, immunological, and/or antitumor aspects are discussed.

  15. [The influence of the antivitamine pyrithiamine on the metabolism of the thiamin-autotrophic Serratia marcescens].

    PubMed

    Hagedorn, H; Schmidt, O R

    1975-03-12

    A new method is described for the quantitative microbiological analysis of the thiamine analog pyrithiamine present in biological material. The method uses a mutant of Lactobacillus fermenti (ATCC 9338) stimulated by pyrithiamine. By this specific method it is found that Serratia marcescens is able to consume and to phosphorylate the antivitamine (presumably to pyrithiamine monophosphate). The uptake of the analog influences neither the generation time of Serratia marcescens nor the biomass of the culture, nor the total amounts of carbohydrate and protein within the cells. On the contrary, pyrithiamin stimulates the exponential death-rate k and decreases the quantity of neutral fats. The carbon source glycerol is consumed at a higher rate, which is paralleled by an increased total amount of pyruvate as well as by an increased biosynthesis of acetoin.

  16. Ozone Induced Impairment of Systemic Metabolic Processes: Influence of Prior Ozone Exposure and Metformin Pre-treatment on Aged Wistar Kyoto (WKY) Rats.

    EPA Science Inventory

    SOT2014 Abstract for presentation: March 23-27, 2014; Phoenix, AZ Ozone Induced Impairment of Systemic Metabolic Processes: Influence of Prior Ozone Exposure and Metformin Pre-treatment on Aged Wistar Kyoto (WKY) Rats. V. Bass, D. Andrews, J. Richards, M. Schladweiler, A. Ledb...

  17. Plane of nutrition during the preweaned period and Mannheimia haemolytica dose influence metabolic responses in post-weaned Holstein calves challenged with bovine herpesvirus-1 and Mannheimia haemolytica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine whether previous plane of milk replacer nutrition (PON) and M. haemolytica (MH) dose influences metabolic responses to a combined viral-bacterial respiratory challenge, Holstein calves (1 day of age; n=30) were assigned to treatments in a 2 x 3 factorial with preweaned PON and dose of M...

  18. Aluminium metabolism in chronic renat failure: Environmental influences and regional differences in Norway.

    PubMed

    Halse, J; Nordal, K P; Dahl, E; Thomassen, Y

    1990-03-01

    Many aspects of Al metabolism in chronic renal failure are poorly understood. A longitudinal study of serum Al concentrations in predialysis patients and healthy control subjects revealed very high values during the autumn of 1984 and 1985. Renal Al clearance was low during the autumnal spike in serum Al but increased substantially when the serum Al concentration declined. A second study confirmed that by using citric acid as a chelator, the gastrointestinal absorption of Al from Al(OH)3 may be considerably augmented as reflected by increases in both serum Al concentrations and renal Al clearance. The individual differences in Al absorption in this study were large.The first study suggests the existence of an unidentified environmental factor, possibly water borne, with profound effects on Al absorption and excretion. The citric acid/Al(OH)3 experiment suggests that the existence of such a factor is likely. The implications of these results are not known.A histomorphometric study of bone biopsies from 138 hemodialysis and 66 predialysis patients without clinical evidence of Al related disease, revealed Al deposits after staining with aurin tricarboxylic acid in 78% of the biopsies from the former and 24% of the latter patients. Serum Al concentrations did not differ between predialysis and hemodialysis patients with Al positive biopsies. Stratification of the hemodialysis patients, who came from all parts of Norway, revealed that patients living in regions with slightly Al contaminated drinking water (Al <30 μg/L) had lower serum Al concentrations than patients from regions with highly contaminated water (Al >100 μg/L). The prevalence of Al-positive biopsies was the same in both regions. Patients with Al-positive biopsies did not differ in serum Al level from those with Al-negative biopsies within the same region. Predialysis patients with Al-positive biopsies had significantly higher serum Al levels than predialysis patients with Al negative biopsies

  19. Nickel Availability in Soil as Influenced by Liming and Its Role in Soybean Nitrogen Metabolism

    PubMed Central

    de Macedo, Fernando G.; Bresolin, Joana D.; Santos, Elcio F.; Furlan, Felipe; Lopes da Silva, Wilson T.; Polacco, Joe C.; Lavres, José

    2016-01-01

    Nickel (Ni) availability in soil varies as a function of pH. Plants require Ni in small quantities for normal development, especially in legumes due its role in nitrogen (N) metabolism. This study investigated the effect of soil base saturation, and Ni amendments on Ni uptake, N accumulation in the leaves and grains, as well as to evaluate organic acids changes in soybean. In addition, two N assimilation enzymes were assayed: nitrate reductase (NR) and Ni-dependent urease. Soybean plants inoculated with Bradyrhizobium japonicum were cultivated in soil-filled pots under two base-cation saturation (BCS) ratios (50 and 70%) and five Ni rates – 0.0; 0.1; 0.5; 1.0; and 10.0 mg dm-3 Ni. At flowering (R1 developmental stage), plants for each condition were evaluated for organic acids (oxalic, malonic, succinic, malic, tartaric, fumaric, oxaloacetic, citric and lactic) levels as well as the activities of urease and NR. At the end of the growth period (R7 developmental stage – grain maturity), grain N and Ni accumulations were determined. The available soil-Ni in rhizosphere extracted by DTPA increased with Ni rates, notably in BCS50. The highest concentrations of organic acid and N occurred in BCS70 and 0.5 mg dm-3 of Ni. There were no significant differences for urease activity taken on plants grown at BSC50 for Ni rates, except for the control treatment, while plants cultivated at soil BCS70 increased the urease activity up to 0.5 mg dm-3 of Ni. In addition, the highest values for urease activities were reached from the 0.5 mg dm-3 of Ni rate for both BCS treatments. The NR activity was not affected by any treatment indicating good biological nitrogen fixation (BNF) for all plants. The reddish color of the nodules increased with Ni rates in both BCS50 and 70, also confirms the good BNF due to Ni availability. The optimal development of soybean occurs in BCS70, but requires an extra Ni supply for the production of organic acids and for increased N-shoot and grain

  20. Ghrelin Gene Variants Influence on Metabolic Syndrome Components in Aged Spanish Population

    PubMed Central

    Mora, Mireia; Adam, Victoria; Palomera, Elisabet; Blesa, Sebastian; Díaz, Gonzalo; Buquet, Xavier; Serra-Prat, Mateu; Martín-Escudero, Juan Carlos; Palanca, Ana; Chaves, Javier Felipe; Puig-Domingo, Manuel

    2015-01-01

    Background The role of genetic variations within the ghrelin gene on cardiometabolic profile and nutritional status is still not clear in humans, particularly in elderly people. Objectives We investigated six SNPs of the ghrelin gene and their relationship with metabolic syndrome (MS) components. Subjects and Methods 824 subjects (413 men/411 women, age 77.31±5.04) participating in the Mataró aging study (n = 310) and the Hortega study (n = 514) were analyzed. Anthropometric variables, ghrelin, lipids, glucose and blood pressure levels were measured, and distribution of SNPs -994CT (rs26312), -604GA (rs27647), -501AC (rs26802), R51Q (rs34911341), M72L (rs696217) and L90G (rs4684677) of the ghrelin gene evaluated. Genotypes were determined by multiplex PCR and SNaPshot minisequencing. MS (IDF criteria) was found in 54.9%. Results No association between any of the SNPs and levels of total fasting circulating ghrelin levels was found. C/A-A/A genotype of M72L was associated with increased risk of central obesity according to IDF criteria, while G/A-G/G genotypes of -604GA with reduced risk. A/A genotype of -501AC polymorphism was associated to decreased BMI. In relation to lipid profile, the same genotypes of -604GA were associated with increased total cholesterol and LDL-cholesterol and -501AC with reduced triglycerides. There were no associations with systolic or diastolic blood pressure levels or with hypertension, glucose levels or diabetes and ghrelin polymorphisms. However, G/G genotype of -604GA was associated with glucose >100 mg/dL. Haplotype analysis showed that only one haplotype is associated with increased risk of waist circumference and central obesity. The analysis of subjects by gender showed an important and different association of these polymorphisms regarding MS parameters. Conclusion Ghrelin gene variants -604GA, -501AC and M72L are associated with certain components of MS, in particular to BMI and lipid profile in elderly Spanish subjects. PMID

  1. Influence of Lead on Repetitive Behavior and Dopamine Metabolism in a Mouse Model of Iron Overload

    PubMed Central

    Kueon, Chojin; Kim, Jonghan

    2014-01-01

    Exposures to lead (Pb) are associated with neurological problems including psychiatric disorders and impaired learning and memory. Pb can be absorbed by iron transporters, which are up-regulated in hereditary hemochromatosis, an iron overload disorder in which increased iron deposition in various parenchymal organs promote metal-induced oxidative damage. While dysfunction in HFE (High Fe) gene is the major cause of hemochromatosis, the transport and toxicity of Pb in Hfe-related hemochromatosis are largely unknown. To elucidate the relationship between HFE gene dysfunction and Pb absorption, H67D knock-in Hfe-mutant and wild-type mice were given drinking water containing Pb 1.6 mg/ml ad libitum for 6 weeks and examined for behavioral phenotypes using the nestlet-shredding and marble-burying tests. Latency to nestlet-shredding in Pb-treated wild-type mice was prolonged compared with non-exposed wild-types (p < 0.001), whereas Pb exposure did not alter shredding latency in Hfe-mutant mice. In the marble-burying test, Hfe-mutant mice showed an increased number of marbles buried compared with wild-type mice (p = 0.002), indicating more repetitive behavior upon Hfe mutation. Importantly, Pb-exposed wild-type mice buried more marbles than non-exposed wild-types, whereas the number of marbles buried by Hfe-mutant mice did not change whether or not exposed to Pb. These results suggest that Hfe mutation could normalize Pb-induced behavioral alteration. To explore the mechanism of repetitive behavior caused by Pb, western blot analysis was conducted for proteins involved in brain dopamine metabolism. The levels of tyrosine hydroxylase and dopamine transporter increased upon Pb exposure in both genotypes, whereas Hfe-mutant mice displayed down-regulation of the dopamine transporter and dopamine D1 receptor with D2 receptor elevated. Taken together, our data support the idea that both Pb exposure and Hfe mutation increase repetitive behavior in mice and further suggest that

  2. The Influence of Red Light Exposure at Night on Circadian Metabolism and Physiology in Sprague–Dawley Rats

    PubMed Central

    Dauchy, Robert T; Wren, Melissa A; Dauchy, Erin M; Hoffman, Aaron E; Hanifin, John P; Warfield, Benjamin; Jablonski, Michael R; Brainard, George C; Hill, Steven M; Mao, Lulu; Dobek, Georgina L; Dupepe, Lynell M; Blask, David E

    2015-01-01

    Early studies on rodents showed that short-term exposure to high-intensity light (> 70 lx) above 600 nm (red-appearing) influences circadian neuroendocrine and metabolic physiology. Here we addressed the hypothesis that long-term, low-intensity red light exposure at night (rLEN) from a ‘safelight’ emitting no light below approximately 620 nm disrupts the nocturnal circadian melatonin signal as well as circadian rhythms in circulating metabolites, related regulatory hormones, and physiologic parameters. Male Sprague–Dawley rats (n = 12 per group) were maintained on control 12:12-h light:dark (300 lx; lights on, 0600) or experimental 12:12 rLEN (8.1 lx) lighting regimens. After 1 wk, rats underwent 6 low-volume blood draws via cardiocentesis (0400, 0800, 1200, 1600, 2000, and 2400) over a 4-wk period to assess arterial plasma melatonin, total fatty acid, glucose, lactic acid, pO2, pCO2, insulin, leptin and corticosterone concentrations. Results revealed plasma melatonin levels (mean ± 1 SD) were high in the dark phase (197.5 ± 4.6 pg/mL) and low in the light phase (2.6 ± 1.2 pg/mL) of control conditions and significantly lower than controls under experimental conditions throughout the 24-h period (P < 0.001). Prominent circadian rhythms of plasma levels of total fatty acid, glucose, lactic acid, pO2, pCO2, insulin, leptin, and corticosterone were significantly (P < 0.05) disrupted under experimental conditions as compared with the corresponding entrained rhythms under control conditions. Therefore, chronic use of low-intensity rLEN from a common safelight disrupts the circadian organization of neuroendocrine, metabolic, and physiologic parameters indicative of animal health and wellbeing. PMID:25651090

  3. Oral Microbiome Metabolism: From "Who Are They?" to "What Are They Doing?".

    PubMed

    Takahashi, N

    2015-12-01

    Recent advances in molecular biology have facilitated analyses of the oral microbiome ("Who are they?"); however, its functions (e.g., metabolic activities) are poorly understood ("What are they doing?"). This review aims to summarize our current understanding of the metabolism of the oral microbiome. Saccharolytic bacteria-including Streptococcus, Actinomyces, and Lactobacillus species-degrade carbohydrates into organic acids via the Embden-Meyerhof-Parnas pathway and several of its branch pathways, resulting in dental caries, while alkalization and acid neutralization via the arginine deiminase system, urease, and so on, counteract acidification. Proteolytic/amino acid-degrading bacteria, including Prevotella and Porphyromonas species, break down proteins and peptides into amino acids and degrade them further via specific pathways to produce short-chain fatty acids, ammonia, sulfur compounds, and indole/skatole, which act as virulent and modifying factors in periodontitis and oral malodor. Furthermore, it is suggested that ethanol-derived acetaldehyde can cause oral cancer, while nitrate-derived nitrite can aid caries prevention and systemic health. Microbial metabolic activity is influenced by the oral environment; however, it can also modify the oral environment, enhance the pathogenicity of bacteria, and induce microbial selection to create more pathogenic microbiome. Taking a metabolomic approach to analyzing the oral microbiome is crucial to improving our understanding of the functions of the oral microbiome.

  4. Multiannual observations of acetone, methanol, and ace