Science.gov

Sample records for acetaldehyde metabolism influence

  1. Acetaldehyde

    Integrated Risk Information System (IRIS)

    Acetaldehyde ; CASRN 75 - 07 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  2. Alcohol and acetaldehyde metabolism in Caucasians, Chinese and Amerinds.

    PubMed Central

    Reed, T. E.; Kalant, H.; Gibbins, R. J.; Kapur, B. M.; Rankin, J. G.

    1976-01-01

    Ethanol (0.4 to 0.8 g/kg in 30 minutes) was given by mouth to 102 healthy young volunteers (37 Caucasian men, 21 Caucasian women, 20 Chinese men and 24 Ojibwa men). Venous blood concentrations of ethanol and acetaldehyde 60, 90, 120 and 150 minutes after the end of drinking were measured by gas chromatography. The calculated rates of ethanol metabolism in the Caucasian men and women did not differ, but the overall group means for subgroups of Caucasians (103.6 mg/kg-h), Chinese (136.6 mg/kg-h) and Ojibwa (182.7 mg/kg-h) with decreasing postabsorption values differed significantly from each other. Mean acetaldehyde values paralleled the rates of ethanol metabolism: Ojibwa, 14.6 mug/ml; Chinese, 10.0 mug/ml; and Caucasians, 9.4 mug/ml. The high rate of ethanol metabolism in Amerind subjects differs from previous findings. Habitual level of alcohol consumption, proportion of body fat and genetic factors appear to account for most of the group differences. PMID:991030

  3. Metabolism of paraldehyde to acetaldehyde by rat liver microsomes.

    PubMed

    Zera, R T; Nagasawa, H T

    1981-12-01

    Paraldehyde (PAL) was shown to be metabolized to acetaldehyde (AcH) by rat liver microsomes in vitro only when the cofactors for the cytochrome P-450 system were present. Microsomes from phenobarbital treated rats significantly increased the amount of AcH produced from PAL. Attempts to inhibit this reaction by addition of SKF-525A to the incubation medium resulted in augmentation of the AcH generated, very likely due to the metabolic deethylation of SKF-525A itself to AcH. Rats pretreated with D-penicillamine and then given PAL excreted 2,5,5-trimethylthiazolidine-4-carboxylic acid (TTCA)-a condensation product of AcH and D-penicillamine-in the urine. These results strongly suggest that PAL is metabolized in vivo by the hepatic microsomal system giving rise to AcH as a metabolite.

  4. Short-term salivary acetaldehyde increase due to direct exposure to alcoholic beverages as an additional cancer risk factor beyond ethanol metabolism

    PubMed Central

    2011-01-01

    Background An increasing body of evidence now implicates acetaldehyde as a major underlying factor for the carcinogenicity of alcoholic beverages and especially for oesophageal and oral cancer. Acetaldehyde associated with alcohol consumption is regarded as 'carcinogenic to humans' (IARC Group 1), with sufficient evidence available for the oesophagus, head and neck as sites of carcinogenicity. At present, research into the mechanistic aspects of acetaldehyde-related oral cancer has been focused on salivary acetaldehyde that is formed either from ethanol metabolism in the epithelia or from microbial oxidation of ethanol by the oral microflora. This study was conducted to evaluate the role of the acetaldehyde that is found as a component of alcoholic beverages as an additional factor in the aetiology of oral cancer. Methods Salivary acetaldehyde levels were determined in the context of sensory analysis of different alcoholic beverages (beer, cider, wine, sherry, vodka, calvados, grape marc spirit, tequila, cherry spirit), without swallowing, to exclude systemic ethanol metabolism. Results The rinsing of the mouth for 30 seconds with an alcoholic beverage is able to increase salivary acetaldehyde above levels previously judged to be carcinogenic in vitro, with levels up to 1000 μM in cases of beverages with extreme acetaldehyde content. In general, the highest salivary acetaldehyde concentration was found in all cases in the saliva 30 sec after using the beverages (average 353 μM). The average concentration then decreased at the 2-min (156 μM), 5-min (76 μM) and 10-min (40 μM) sampling points. The salivary acetaldehyde concentration depends primarily on the direct ingestion of acetaldehyde contained in the beverages at the 30-sec sampling, while the influence of the metabolic formation from ethanol becomes the major factor at the 2-min sampling point. Conclusions This study offers a plausible mechanism to explain the increased risk for oral cancer associated with

  5. Short-term salivary acetaldehyde increase due to direct exposure to alcoholic beverages as an additional cancer risk factor beyond ethanol metabolism.

    PubMed

    Lachenmeier, Dirk W; Monakhova, Yulia B

    2011-01-06

    An increasing body of evidence now implicates acetaldehyde as a major underlying factor for the carcinogenicity of alcoholic beverages and especially for oesophageal and oral cancer. Acetaldehyde associated with alcohol consumption is regarded as 'carcinogenic to humans' (IARC Group 1), with sufficient evidence available for the oesophagus, head and neck as sites of carcinogenicity. At present, research into the mechanistic aspects of acetaldehyde-related oral cancer has been focused on salivary acetaldehyde that is formed either from ethanol metabolism in the epithelia or from microbial oxidation of ethanol by the oral microflora. This study was conducted to evaluate the role of the acetaldehyde that is found as a component of alcoholic beverages as an additional factor in the aetiology of oral cancer. Salivary acetaldehyde levels were determined in the context of sensory analysis of different alcoholic beverages (beer, cider, wine, sherry, vodka, calvados, grape marc spirit, tequila, cherry spirit), without swallowing, to exclude systemic ethanol metabolism. The rinsing of the mouth for 30 seconds with an alcoholic beverage is able to increase salivary acetaldehyde above levels previously judged to be carcinogenic in vitro, with levels up to 1000 μM in cases of beverages with extreme acetaldehyde content. In general, the highest salivary acetaldehyde concentration was found in all cases in the saliva 30 sec after using the beverages (average 353 μM). The average concentration then decreased at the 2-min (156 μM), 5-min (76 μM) and 10-min (40 μM) sampling points. The salivary acetaldehyde concentration depends primarily on the direct ingestion of acetaldehyde contained in the beverages at the 30-sec sampling, while the influence of the metabolic formation from ethanol becomes the major factor at the 2-min sampling point. This study offers a plausible mechanism to explain the increased risk for oral cancer associated with high acetaldehyde concentrations in

  6. Metabolic engineering of acetaldehyde production by Streptococcus thermophilus.

    PubMed

    Chaves, A C S D; Fernandez, M; Lerayer, A L S; Mierau, I; Kleerebezem, M; Hugenholtz, J

    2002-11-01

    The process of acetaldehyde formation by the yogurt bacterium Streptococcus thermophilus is described in this paper. Attention was focused on one specific reaction for acetaldehyde formation catalyzed by serine hydroxymethyltransferase (SHMT), encoded by the glyA gene. In S. thermophilus, SHMT also possesses threonine aldolase (TA) activity, the interconversion of threonine into glycine and acetaldehyde. In this work, several wild-type S. thermophilus strains were screened for acetaldehyde production in the presence and absence of L-threonine. Supplementation of the growth medium with L-threonine led to an increase in acetaldehyde production. Furthermore, acetaldehyde formation during fermentation could be correlated to the TA activity of SHMT. To study the physiological role of SHMT, a glyA mutant was constructed by gene disruption. Inactivation of glyA resulted in a severe reduction in TA activity and complete loss of acetaldehyde formation during fermentation. Subsequently, an S. thermophilus strain was constructed in which the glyA gene was cloned under the control of a strong promoter (P(LacA)). When this strain was used for fermentation, an increase in TA activity and in acetaldehyde and folic acid production was observed. These results show that, in S. thermophilus, SHMT, displaying TA activity, constitutes the main pathway for acetaldehyde formation under our experimental conditions. These findings can be used to control and improve acetaldehyde production in fermented (dairy) products with S. thermophilus as starter culture.

  7. Metabolic Engineering of Acetaldehyde Production by Streptococcus thermophilus

    PubMed Central

    Chaves, A. C. S. D.; Fernandez, M.; Lerayer, A. L. S.; Mierau, I.; Kleerebezem, M.; Hugenholtz, J.

    2002-01-01

    The process of acetaldehyde formation by the yogurt bacterium Streptococcus thermophilus is described in this paper. Attention was focused on one specific reaction for acetaldehyde formation catalyzed by serine hydroxymethyltransferase (SHMT), encoded by the glyA gene. In S. thermophilus, SHMT also possesses threonine aldolase (TA) activity, the interconversion of threonine into glycine and acetaldehyde. In this work, several wild-type S. thermophilus strains were screened for acetaldehyde production in the presence and absence of l-threonine. Supplementation of the growth medium with l-threonine led to an increase in acetaldehyde production. Furthermore, acetaldehyde formation during fermentation could be correlated to the TA activity of SHMT. To study the physiological role of SHMT, a glyA mutant was constructed by gene disruption. Inactivation of glyA resulted in a severe reduction in TA activity and complete loss of acetaldehyde formation during fermentation. Subsequently, an S. thermophilus strain was constructed in which the glyA gene was cloned under the control of a strong promoter (PLacA). When this strain was used for fermentation, an increase in TA activity and in acetaldehyde and folic acid production was observed. These results show that, in S. thermophilus, SHMT, displaying TA activity, constitutes the main pathway for acetaldehyde formation under our experimental conditions. These findings can be used to control and improve acetaldehyde production in fermented (dairy) products with S. thermophilus as starter culture. PMID:12406762

  8. A physiologically based model for ethanol and acetaldehyde metabolism in human beings.

    PubMed

    Umulis, David M; Gürmen, Nihat M; Singh, Prashant; Fogler, H Scott

    2005-01-01

    Pharmacokinetic models for ethanol metabolism have contributed to the understanding of ethanol clearance in human beings. However, these models fail to account for ethanol's toxic metabolite, acetaldehyde. Acetaldehyde accumulation leads to signs and symptoms, such as cardiac arrhythmias, nausea, anxiety, and facial flushing. Nevertheless, it is difficult to determine the levels of acetaldehyde in the blood or other tissues because of artifactual formation and other technical issues. Therefore, we have constructed a promising physiologically based pharmacokinetic (PBPK) model, which is an excellent match for existing ethanol and acetaldehyde concentration-time data. The model consists of five compartments that exchange material: stomach, gastrointestinal tract, liver, central fluid, and muscle. All compartments except the liver are modeled as stirred reactors. The liver is modeled as a tubular flow reactor. We derived average enzymatic rate laws for alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH), determined kinetic parameters from the literature, and found best-fit parameters by minimizing the squared error between our profiles and the experimental data. The model's transient output correlates strongly with the experimentally observed results for healthy individuals and for those with reduced ALDH activity caused by a genetic deficiency of the primary acetaldehyde-metabolizing enzyme ALDH2. Furthermore, the model shows that the reverse reaction of acetaldehyde back into ethanol is essential and keeps acetaldehyde levels approximately 10-fold lower than if the reaction were irreversible.

  9. Daidzin suppresses ethanol consumption by Syrian golden hamsters without blocking acetaldehyde metabolism.

    PubMed

    Keung, W M; Lazo, O; Kunze, L; Vallee, B L

    1995-09-12

    Daidzin is a potent, selective, and reversible inhibitor of human mitochondrial aldehyde dehydrogenase (ALDH) that suppresses free-choice ethanol intake by Syrian golden hamsters. Other ALDH inhibitors, such as disulfiram (Antabuse) and calcium citrate carbimide (Temposil), have also been shown to suppress ethanol intake of laboratory animals and are thought to act by inhibiting the metabolism of acetaldehyde produced from ingested ethanol. To determine whether or not daidzin inhibits acetaldehyde metabolism in vivo, plasma acetaldehyde in daidzin-treated hamsters was measured after the administration of a test dose of ethanol. Daidzin treatment (150 mg/kg per day i.p. for 6 days) significantly suppresses (> 70%) hamster ethanol intake but does not affect overall acetaldehyde metabolism. In contrast, after administration of the same ethanol dose, plasma acetaldehyde concentration in disulfiram-treated hamsters reaches 0.9 mM, 70 times higher than that of the control. In vitro, daidzin suppresses hamster liver mitochondria-catalyzed acetaldehyde oxidation very potently with an IC50 value of 0.4 microM, which is substantially lower than the daidzin concentration (70 microM) found in the liver mitochondria of daidzin-treated hamsters. These results indicate that (i) the action of daidzin differs from that proposed for the classic, broad-acting ALDH inhibitors (e.g., disulfiram), and (ii) the daidzin-sensitive mitochondrial ALDH is not the one and only enzyme that is essential for acetaldehyde metabolism in golden hamsters.

  10. Carcinogenicity of acetaldehyde in alcoholic beverages: risk assessment outside ethanol metabolism.

    PubMed

    Lachenmeier, Dirk W; Kanteres, Fotis; Rehm, Jürgen

    2009-04-01

    In addition to being produced in ethanol metabolism, acetaldehyde occurs naturally in alcoholic beverages. Limited epidemiological evidence points to acetaldehyde as an independent risk factor for cancer during alcohol consumption, in addition to the effects of ethanol. This study aims to estimate human exposure to acetaldehyde from alcoholic beverages and provide a quantitative risk assessment. The human dietary intake of acetaldehyde via alcoholic beverages was estimated based on World Health Organization (WHO) consumption data and literature on the acetaldehyde contents of different beverage groups (beer, wine, spirits and unrecorded alcohol). The risk assessment was conducted using the European Food Safety Authority's margin of exposure (MOE) approach with benchmark doses obtained from dose-response modelling of animal experiments. Life-time cancer risk was calculated using the T25 dose descriptor. The average exposure to acetaldehyde from alcoholic beverages was estimated at 0.112 mg/kg body weight/day. The MOE was calculated to be 498, and the life-time cancer risk at 7.6 in 10,000. Higher risk may exist for people exposed to high acetaldehyde contaminations, as we have found in certain unrecorded alcohol beverages in Guatemala and Russia, for which we have demonstrated possible exposure scenarios, with risks in the range of 1 in 1000. The life-time cancer risks for acetaldehyde from alcoholic beverages greatly exceed the usual limits for cancer risks from the environment set between 1 : 10,000 and 1 : 1,000,000. Alcohol consumption has thus been identified as a direct source of acetaldehyde exposure, which in conjunction with other sources (food flavourings, tobacco) results in a magnitude of risk requiring intervention. An initial public health measure could be to reduce the acetaldehyde content in alcoholic beverages as low as technologically possible, and to restrict its use as a food flavour additive.

  11. Steady-state metabolism of ethanol in perfused rat livers treated with cyanamide: quantitative analysis of acetaldehyde effects on the metabolic flux rates.

    PubMed

    Yao, Chung-Tay; Lai, Ching-Long; Yin, Shih-Jiun

    2015-05-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are principal enzymes responsible for metabolism of ethanol in mammals. The steady-state metabolic flux of ethanol has been poorly understood. We investigated flux rates of the individual steps of ethanol metabolism in perfused rat livers treated with ALDH inactivator cyanamide as an attempt to mimic human ALDH2 deficiency commonly seen in East Asians. The net rates of ethanol oxidation, acetaldehyde oxidation, and acetate activation were determined with a set of defined equations, based on the set influx rates of ethanol and the measured efflux rates of ethanol, acetaldehyde, and acetate. After intraperitoneal injections of 0.2 and 1.5 mg/kg cyanamide, hepatic activities of mitochondrial ALDH2 and cytoplasmic ALDH1A1 decreased to a similar degree, that is, 51 to 57% and 69 to 74%, compared with the corresponding controls, respectively, whereas cytoplasmic ADH1 activity remained unchanged. At infusing 2 mM ethanol, acetaldehyde oxidation rate well matched (99%) the net ethanol oxidation rate in control liver. Both the ethanol and acetaldehyde oxidation rates were significantly decreased after cyanamide treatments. At 10 mM ethanol, the efflux acetaldehyde was significantly higher than that infusing 2 mM ethanol in both control and cyanamide groups. Seventy-eight percent of the oxidized ethanol released as efflux acetate. At 2 mM ethanol, the apparent flux control coefficients of ADH1 were assessed to be 0.78, 0.54, and 0.39, respectively, in control, low, and high cyanamide-treated livers. Kinetic simulations revealed that inhibition by acetaldehyde may largely account for the observed reduction of ADH1 oxidation rates after cyanamide treatment. Our results provide the first flux evidence that ADH and ALDH are steps influencing steady-state metabolism of ethanol in rat livers with inactivated ALDHs. Copyright © 2015 by the Research Society on Alcoholism.

  12. Drug-acetaldehyde interactions during ethanol metabolism in vitro.

    PubMed

    Nuñez-Vergara, L J; Yudelevich, J; Squella, J A; Speisky, H

    1991-01-01

    Acetaldehyde, at concentrations occurring in vivo was found to avidly react in vitro with several clinically relevant drugs. The greatest reactivity was observed for the hydrazine and hydrazide-containing drugs, hydralazine and isoniazid, respectively. Substantial reactivity was also evidenced for the amine-containing penicillins cyclacillin and ampicillin and for the cephalosporins cephalexin, cephradroxyl and cephradine. However, the virtual lack of reactivity of the amine-containing penicillanic and cephalosporanic acids reveals a major role of the acyl groups of these antibiotics in their reactivity towards acetaldehyde. The presence of moieties which increase the electron density of the amine group appears to favour the molecule reactivity. Amongst several phenylethylamines tested, dopamine and noradrenaline were the most active in forming adducts with acetaldehyde. It is suggested that in vitro binding of acetaldehyde to the above-mentioned drugs could lead in vivo to decreased drug bioavailability, and conceivably the adducts formed may mediate some of the side effects associated with simultaneous drug and alcohol ingestion.

  13. In vitro expression of Candida albicans alcohol dehydrogenase genes involved in acetaldehyde metabolism.

    PubMed

    Bakri, M M; Rich, A M; Cannon, R D; Holmes, A R

    2015-02-01

    Alcohol consumption is a risk factor for oral cancer, possibly via its conversion to acetaldehyde, a known carcinogen. The oral commensal yeast Candida albicans may be one of the agents responsible for this conversion intra-orally. The alcohol dehydrogenase (Adh) family of enzymes are involved in acetaldehyde metabolism in yeast but, for C. albicans it is not known which family member is responsible for the conversion of ethanol to acetaldehyde. In this study we determined the expression of mRNAs from three C. albicans Adh genes (CaADH1, CaADH2 and CaCDH3) for cells grown in different culture media at different growth phases by Northern blot analysis and quantitative reverse transcription polymerase chain reaction. CaADH1 was constitutively expressed under all growth conditions but there was differential expression of CaADH2. CaADH3 expression was not detected. To investigate whether CaAdh1p or CaAdh2p can contribute to alcohol catabolism in C. albicans, each gene from the reference strain C. albicans SC5314 was expressed in Saccharomyces cerevisiae. Cell extracts from an CaAdh1p-expressing S. cerevisiae recombinant, but not an CaAdh2p-expressing recombinant, or an empty vector control strain, possessed ethanol-utilizing Adh activity above endogenous S. cerevisiae activity. Furthermore, expression of C. albicans Adh1p in a recombinant S. cerevisiae strain in which the endogenous ScADH2 gene (known to convert ethanol to acetaldehyde in this yeast) had been deleted, conferred an NAD-dependent ethanol-utilizing, and so acetaldehyde-producing, Adh activity. We conclude that CaAdh1p is the enzyme responsible for ethanol use under in vitro growth conditions, and may contribute to the intra-oral production of acetaldehyde.

  14. The role of acetaldehyde outside ethanol metabolism in the carcinogenicity of alcoholic beverages: evidence from a large chemical survey.

    PubMed

    Lachenmeier, Dirk W; Sohnius, Eva-Maria

    2008-08-01

    Acetaldehyde is a volatile compound naturally found in alcoholic beverages, and it is regarded as possibly being carcinogenic to humans (IARC Group 2B). Acetaldehyde formed during ethanol metabolism is generally considered as a source of carcinogenicity in alcoholic beverages. However, no systematic data is available about its occurrence in alcoholic beverages and the carcinogenic potential of human exposure to this directly ingested form of acetaldehyde outside ethanol metabolism. In this study, we have analysed and evaluated a large sample collective of different alcoholic beverages (n=1,555). Beer (9+/-7 mg/l, range 0-63 mg/l) had significantly lower acetaldehyde contents than wine (34+/-34 mg/l, range 0-211 mg/l), or spirits (66+/-101 mg/l, range 0-1,159 mg/l). The highest acetaldehyde concentrations were generally found in fortified wines (118+/-120 mg/l, range 12-800 mg/l). Assuming an equal distribution between the beverage and saliva, the residual acetaldehyde concentrations in the saliva after swallowing could be on average 195 microM for beer, 734 microM for wine, 1,387 microM for spirits, or 2,417 microM for fortified wine, which are above levels previously regarded as potentially carcinogenic. Further research is needed to confirm the carcinogenic potential of directly ingested acetaldehyde. Until then, some possible preliminary interventions include the reduction of acetaldehyde in the beverages by improvement in production technology or the use of acetaldehyde binding additives. A re-evaluation of the 'generally recognized as safe' status of acetaldehyde is also required, which does not appear to be in agreement with its toxicity and carcinogenicity.

  15. Acetaldehyde and retinaldehyde-metabolizing enzymes in colon and pancreatic cancers.

    PubMed

    Singh, S; Arcaroli, J; Thompson, D C; Messersmith, W; Vasiliou, V

    2015-01-01

    Colorectal cancer (CRC) and pancreatic cancer are two very significant contributors to cancer-related deaths. Chronic alcohol consumption is an important risk factor for these cancers. Ethanol is oxidized primarily by alcohol dehydrogenases to acetaldehyde, an agent capable of initiating tumors by forming adducts with proteins and DNA. Acetaldehyde is metabolized by ALDH2, ALDH1B1, and ALDH1A1 to acetate. Retinoic acid (RA) is required for cellular differentiation and is known to arrest tumor development. RA is synthesized from retinaldehyde by the retinaldehyde dehydrogenases, specifically ALDH1A1, ALDH1A2, ALDH1A3, and ALDH8A1. By eliminating acetaldehyde and generating RA, ALDHs can play a crucial regulatory role in the initiation and progression of cancers. ALDH1 catalytic activity has been used as a biomarker to identify and isolate normal and cancer stem cells; its presence in a tumor is associated with poor prognosis in colon and pancreatic cancer. In summary, these ALDHs are not only biomarkers for CRC and pancreatic cancer but also play important mechanistic role in cancer initiation, progression, and eventual prognosis.

  16. Acetaldehyde and Retinaldehyde-Metabolizing Enzymes in Colon and Pancreatic cancers

    PubMed Central

    Singh, S; Arcaroli, J; Thompson, DC; Messersmith, W; Vasiliou, V

    2015-01-01

    Colorectal (CRC) and pancreatic cancers are two very significant contributors to cancer-related deaths. Chronic alcohol consumption is an important risk factor for these cancers. Ethanol is oxidized primarily by alcohol dehydrogenases to acetaldehyde, an agent capable of initiating tumors by forming adducts with proteins and DNA. Acetaldehyde is metabolized by ALDH2, ALDH1B1 and ALDH1A1 to acetate. Retinoic acid (RA) is required for cellular differentiation and is known to arrest tumor development. RA is synthesized from retinaldehyde by the retinaldehyde dehydrogenases, specifically ALDH1A1, ALDH1A2, ALDH1A3 and ALDH8A1. By eliminating acetaldehyde and generating RA, ALDHs can play a crucial regulatory role in the initiation and progression of cancers. ALDH1 catalytic activity has been used as a biomarker to identify and isolate normal and cancer stem cells; its presence in a tumor is associated with poor prognosis in colon and pancreatic cancer. In summary, these ALDHs are not only biomarkers for CRC and pancreatic cancer but also play important mechanistic role in cancer initiation, progression and eventual prognosis. PMID:25427913

  17. Cytotoxicity and metabolic stress induced by acetaldehyde in human intestinal LS174T goblet-like cells.

    PubMed

    Elamin, Elhaseen; Masclee, Ad; Troost, Freddy; Dekker, Jan; Jonkers, Daisy

    2014-08-01

    There is compelling evidence indicating that ethanol and its oxidative metabolite acetaldehyde can disrupt intestinal barrier function. Apart from the tight junctions, mucins secreted by goblet cells provide an effective barrier. Ethanol has been shown to induce goblet cell injury associated with alterations in mucin glycosylation. However, effects of its most injurious metabolite acetaldehyde remain largely unknown. This study aimed to assess short-term effects of acetaldehyde (0, 25, 50, 75, 100 μM) on functional characteristics of intestinal goblet-like cells (LS174T). Oxidative stress, mitochondrial function, ATP, and intramitochondrial calcium (Ca(2+)) were assessed by dichlorofluorescein, methyltetrazolium, and bioluminescence, MitoTracker green and rhod-2 double-labeling. Membrane integrity and apoptosis were evaluated by measuring lactate dehydrogenase (LDH), caspase 3/7, and cleavage of cytokeratin 18 (CK18). Expression of mucin 2 (MUC2) was determined by cell-based ELISA. Acetaldehyde significantly increased reactive oxygen species generation and decreased mitochondrial function compared with negative controls (P < 0.05). In addition, acetaldehyde dose-dependently decreased ATP levels and induced intramitochondrial Ca(2+) accumulation compared with negative controls (P < 0.05). Furthermore, acetaldehyde induced LDH release and increased caspase3/7 activity and percentage of cells expressing cleaved CK18 and increased MUC2 protein expression compared with negative controls (P < 0.0001). ATP depletion and LDH release could be largely prevented by the antioxidant N-acetylcysteine, suggesting a pivotal role for oxidative stress. Our data demonstrate that acetaldehyde has distinct oxidant-dependent metabolic and cytotoxic effects on LS174T cells that can lead to induction of cellular apoptosis. These effects may contribute to acetaldehyde-induced intestinal barrier dysfunction and subsequently to liver injury.

  18. Utilization and metabolic effects of acetaldehyde and ethanol in the perfused rat liver

    PubMed Central

    Lindros, K. O.; Vihma, R.; Forsander, O. A.

    1972-01-01

    1. Removal of acetaldehyde and ethanol has been studied in perfused rat livers. 2. The maximum rate of ethanol oxidation was 2μmol/min per g of liver, which was less than the calculated capacity of the ethanol-oxidizing system. The lactate/pyruvate ratio of the medium increased with the rate of ethanol removal. At low ethanol concentrations most of the acetaldehyde formed was oxidized further, but at ethanol concentrations above 16mm about 60% of the acetaldehyde left the liver unmetabolized. 3. At lower concentrations the greater part of added acetaldehyde was oxidized, but above 5mm, 50–60% of that removed was recovered as ethanol. 4. When the reduction of acetaldehyde was blocked by pyrazole, removal was strongly diminished. There was no effect on the lactate/pyruvate ratio during oxidation of low concentrations of acetaldehyde, even in the presence of pyrazole, but at higher concentrations a gradual increase occurred. 5. The results indicate that during ethanol oxidation the ethanol/acetaldehyde pair is not in redox equilibrium with the lactate/pyruvate pair. Ethanol oxidation was abolished by addition of acetaldehyde. Under these conditions the lactate/pyruvate ratio was 1.5–1.8 times the ethanol/acetaldehyde ratio, indicating equilibration of the alcohol dehydrogenase and lactate dehydrogenase systems. 6. The results support the view that ultimately the rate of mitochondrial oxidation of NADH limits the removal of ethanol in the liver. PMID:4342167

  19. Metabolism of [14C]paraldehyde in mice in vivo, generation and trapping of acetaldehyde.

    PubMed

    Zaleska, M M; Gessner, P K

    1983-03-01

    The metabolic fate and the kinetics of paraldehyde metabolism after the i.p. administration of a 400 mg/kg dose of this agent were investigated in mice. Paraldehyde was found to have a biologic half-life in this species of 41.5 min, its disappearance from blood being governed by a single component exponential process with a rate constant of 0.0167 min-1. By using [14C]paraldehyde, it was found that the major process responsible for paraldehyde disappearance was its metabolic degradation to carbon dioxide, a two-step process; the first step of which was inhibited by pretreatment with SKF-525A. The rate constants for the two steps being 0.0121 and 0.0212 min-1, respectively; on the basis of these rate constants it was calculated this pathway would account for 72.3% of the administered dose at infinite time. A second major pathway for the disposition of paraldehyde was its excretion in expired air, which, at infinite time, would account for 9.6% of the dose. No acetaldehyde (AcH) could be detected in either the breath or the blood of mice after paraldehyde administration. Pretreatment with the aldehyde dehydrogenase inhibitors, pargyline or cyanamide, did not result in the accumulation or excretion of detectable amounts of AcH. Pretreatment of mice administered [14C]paraldehyde with both cyanamide and D-penicillamine,, an AcH sequestering agent, resulted, however, in urinary excretion of the 14C-labeled condensate of D-penicillamine and AcH showing AcH to be formed from paraldehyde. The above results indicate that paraldehyde is rapidly metabolized in vivo to carbon dioxide and that AcH is an intermediary product in this process.

  20. Pharmacological recruitment of aldehyde dehydrogenase 3A1 (ALDH3A1) to assist ALDH2 in acetaldehyde and ethanol metabolism in vivo

    PubMed Central

    Chen, Che-Hong; Cruz, Leslie A.; Mochly-Rosen, Daria

    2015-01-01

    Correcting a genetic mutation that leads to a loss of function has been a challenge. One such mutation is in aldehyde dehydrogenase 2 (ALDH2), denoted ALDH2*2. This mutation is present in ∼0.6 billion East Asians and results in accumulation of toxic acetaldehyde after consumption of ethanol. To temporarily increase metabolism of acetaldehyde in vivo, we describe an approach in which a pharmacologic agent recruited another ALDH to metabolize acetaldehyde. We focused on ALDH3A1, which is enriched in the upper aerodigestive track, and identified Alda-89 as a small molecule that enables ALDH3A1 to metabolize acetaldehyde. When given together with the ALDH2-specific activator, Alda-1, Alda-89 reduced acetaldehyde-induced behavioral impairment by causing a rapid reduction in blood ethanol and acetaldehyde levels after acute ethanol intoxication in both wild-type and ALDH2-deficient, ALDH2*1/*2, heterozygotic knock-in mice. The use of a pharmacologic agent to recruit an enzyme to metabolize a substrate that it usually does not metabolize may represent a novel means to temporarily increase elimination of toxic agents in vivo. PMID:25713355

  1. Pharmacological recruitment of aldehyde dehydrogenase 3A1 (ALDH3A1) to assist ALDH2 in acetaldehyde and ethanol metabolism in vivo.

    PubMed

    Chen, Che-Hong; Cruz, Leslie A; Mochly-Rosen, Daria

    2015-03-10

    Correcting a genetic mutation that leads to a loss of function has been a challenge. One such mutation is in aldehyde dehydrogenase 2 (ALDH2), denoted ALDH2*2. This mutation is present in ∼ 0.6 billion East Asians and results in accumulation of toxic acetaldehyde after consumption of ethanol. To temporarily increase metabolism of acetaldehyde in vivo, we describe an approach in which a pharmacologic agent recruited another ALDH to metabolize acetaldehyde. We focused on ALDH3A1, which is enriched in the upper aerodigestive track, and identified Alda-89 as a small molecule that enables ALDH3A1 to metabolize acetaldehyde. When given together with the ALDH2-specific activator, Alda-1, Alda-89 reduced acetaldehyde-induced behavioral impairment by causing a rapid reduction in blood ethanol and acetaldehyde levels after acute ethanol intoxication in both wild-type and ALDH2-deficient, ALDH2*1/*2, heterozygotic knock-in mice. The use of a pharmacologic agent to recruit an enzyme to metabolize a substrate that it usually does not metabolize may represent a novel means to temporarily increase elimination of toxic agents in vivo.

  2. Hepatotoxicity of acetaldehyde in rats.

    PubMed

    Strubelt, O; Younes, M; Urch, T; Breining, H; Pentz, R

    1987-11-01

    The ability of acetaldehyde to initiate hepatotoxicity as evidenced by enzyme leakage, hepatic fat accumulation and histological alterations was studied in rats. Neither oral nor intraperitoneal treatment with acetaldehyde had any hepatotoxic effect, even following aldehyde dehydrogenase inhibition by disulfiram. This is probably due to the inability of exogenously added acetaldehyde to penetrate liver cell membranes. In contrast, acetaldehyde derived metabolically from ethanol was capable of inducing moderate hepatotoxicity when it accumulated upon pretreatment with disulfiram. Acetaldehyde may thus be partly responsible for alcohol-induced liver damage.

  3. Ethanol Metabolism by HeLa Cells Transduced with Human Alcohol Dehydrogenase Isoenzymes: Control of the Pathway by Acetaldehyde Concentration†

    PubMed Central

    Matsumoto, Michinaga; Cyganek, Izabela; Sanghani, Paresh C.; Cho, Won Kyoo; Liangpunsakul, Suthat; Crabb, David W.

    2010-01-01

    Background Human class I alcohol dehydrogenase 2 isoenzymes (encoded by the ADH1B locus) have large differences in kinetic properties; however, individuals inheriting the alleles for the different isoenzymes exhibit only small differences in alcohol elimination rates. This suggests that other cellular factors must regulate the activity of the isoenzymes. Methods The activity of the isoenzymes expressed from ADH1B*1, ADH1B*2, and ADH1B*3 cDNAs was examined in stably transduced HeLa cell lines, including lines which expressed human low Km aldehyde dehydrogenase (ALDH2). The ability of the cells to metabolize ethanol was compared with that of HeLa cells expressing rat class I ADH (HeLa-rat ADH cells), rat hepatoma (H4IIEC3) cells, and rat hepatocytes. Results The isoenzymes had similar protein half-lives in the HeLa cells. Rat hepatocytes, H4IIEC3 cells, and HeLa-rat ADH cells oxidized ethanol much faster than the cells expressing the ADH1B isoenzymes. This was not explained by high cellular NADH levels or endogenous inhibitors; but rather because the activity of the β1 and β2 ADHs were constrained by the accumulation of acetaldehyde, as shown by the increased rate of ethanol oxidation by cell lines expressing β2 ADH plus ALDH2. Conclusion The activity of the human β2 ADH isoenzyme is sensitive to inhibition by acetaldehyde, which likely limits its activity in vivo. This study emphasizes the importance of maintaining a low steady–state acetaldehyde concentration in hepatocytes during ethanol metabolism. PMID:21166830

  4. Aldehyde dehydrogenase 1B1: molecular cloning and characterization of a novel mitochondrial acetaldehyde-metabolizing enzyme.

    PubMed

    Stagos, Dimitrios; Chen, Ying; Brocker, Chad; Donald, Elizabeth; Jackson, Brian C; Orlicky, David J; Thompson, David C; Vasiliou, Vasilis

    2010-10-01

    Ethanol-induced damage is largely attributed to its toxic metabolite, acetaldehyde. Clearance of acetaldehyde is achieved by its oxidation, primarily catalyzed by the mitochondrial class II aldehyde dehydrogenase (ALDH2). ALDH1B1 is another mitochondrial aldehyde dehydrogenase (ALDH) that shares 75% peptide sequence homology with ALDH2. Recent population studies in whites suggest a role for ALDH1B1 in ethanol metabolism. However, to date, no formal documentation of the biochemical properties of ALDH1B1 has been forthcoming. In this current study, we cloned and expressed human recombinant ALDH1B1 in Sf9 insect cells. The resultant enzyme was purified by affinity chromatography to homogeneity. The kinetic properties of purified human ALDH1B1 were assessed using a wide range of aldehyde substrates. Human ALDH1B1 had an exclusive preference for NAD(+) as the cofactor and was catalytically active toward short- and medium-chain aliphatic aldehydes, aromatic aldehydes, and the products of lipid peroxidation, 4-hydroxynonenal and malondialdehyde. Most importantly, human ALDH1B1 exhibited an apparent K(m) of 55 μM for acetaldehyde, making it the second low K(m) ALDH for metabolism of this substrate. The dehydrogenase activity of ALDH1B1 was sensitive to disulfiram inhibition, a feature also shared with ALDH2. The tissue distribution of ALDH1B1 in C57BL/6J mice and humans was examined by quantitative polymerase chain reaction, Western blotting, and immunohistochemical analysis. The highest expression occurred in the liver, followed by the intestinal tract, implying a potential physiological role for ALDH1B1 in these tissues. The current study is the first report on the expression, purification, and biochemical characterization of human ALDH1B1 protein.

  5. Aldehyde Dehydrogenase 1B1: Molecular Cloning and Characterization of a Novel Mitochondrial Acetaldehyde-Metabolizing Enzyme

    PubMed Central

    Stagos, Dimitrios; Chen, Ying; Brocker, Chad; Donald, Elizabeth; Jackson, Brian C.; Orlicky, David J.; Thompson, David C.

    2010-01-01

    Ethanol-induced damage is largely attributed to its toxic metabolite, acetaldehyde. Clearance of acetaldehyde is achieved by its oxidation, primarily catalyzed by the mitochondrial class II aldehyde dehydrogenase (ALDH2). ALDH1B1 is another mitochondrial aldehyde dehydrogenase (ALDH) that shares 75% peptide sequence homology with ALDH2. Recent population studies in whites suggest a role for ALDH1B1 in ethanol metabolism. However, to date, no formal documentation of the biochemical properties of ALDH1B1 has been forthcoming. In this current study, we cloned and expressed human recombinant ALDH1B1 in Sf9 insect cells. The resultant enzyme was purified by affinity chromatography to homogeneity. The kinetic properties of purified human ALDH1B1 were assessed using a wide range of aldehyde substrates. Human ALDH1B1 had an exclusive preference for NAD+ as the cofactor and was catalytically active toward short- and medium-chain aliphatic aldehydes, aromatic aldehydes, and the products of lipid peroxidation, 4-hydroxynonenal and malondialdehyde. Most importantly, human ALDH1B1 exhibited an apparent Km of 55 μM for acetaldehyde, making it the second low Km ALDH for metabolism of this substrate. The dehydrogenase activity of ALDH1B1 was sensitive to disulfiram inhibition, a feature also shared with ALDH2. The tissue distribution of ALDH1B1 in C57BL/6J mice and humans was examined by quantitative polymerase chain reaction, Western blotting, and immunohistochemical analysis. The highest expression occurred in the liver, followed by the intestinal tract, implying a potential physiological role for ALDH1B1 in these tissues. The current study is the first report on the expression, purification, and biochemical characterization of human ALDH1B1 protein. PMID:20616185

  6. Ethanol metabolism by HeLa cells transduced with human alcohol dehydrogenase isoenzymes: control of the pathway by acetaldehyde concentration.

    PubMed

    Matsumoto, Michinaga; Cyganek, Izabela; Sanghani, Paresh C; Cho, Won Kyoo; Liangpunsakul, Suthat; Crabb, David W

    2011-01-01

    Human class I alcohol dehydrogenase 2 isoenzymes (encoded by the ADH1B locus) have large differences in kinetic properties; however, individuals inheriting the alleles for the different isoenzymes exhibit only small differences in alcohol elimination rates. This suggests that other cellular factors must regulate the activity of the isoenzymes. The activity of the isoenzymes expressed from ADH1B*1, ADH1B*2, and ADH1B*3 cDNAs was examined in stably transduced HeLa cell lines, including lines which expressed human low K(m) aldehyde dehydrogenase (ALDH2). The ability of the cells to metabolize ethanol was compared with that of HeLa cells expressing rat class I alcohol dehydrogenase (ADH) (HeLa-rat ADH cells), rat hepatoma (H4IIEC3) cells, and rat hepatocytes. The isoenzymes had similar protein half-lives in the HeLa cells. Rat hepatocytes, H4IIEC3 cells, and HeLa-rat ADH cells oxidized ethanol much faster than the cells expressing the ADH1B isoenzymes. This was not explained by high cellular NADH levels or endogenous inhibitors; but rather because the activity of the β1 and β2 ADHs was constrained by the accumulation of acetaldehyde, as shown by the increased rate of ethanol oxidation by cell lines expressing β2 ADH plus ALDH2. The activity of the human β2 ADH isoenzyme is sensitive to inhibition by acetaldehyde, which likely limits its activity in vivo. This study emphasizes the importance of maintaining a low steady-state acetaldehyde concentration in hepatocytes during ethanol metabolism. Copyright © 2010 by the Research Society on Alcoholism.

  7. Motor stimulant effects of ethanol injected into the substantia nigra pars reticulata: importance of catalase-mediated metabolism and the role of acetaldehyde.

    PubMed

    Arizzi-LaFrance, Maria N; Correa, Mercè; Aragon, Carlos M G; Salamone, John D

    2006-05-01

    A series of experiments was conducted to investigate the locomotor effects of local injections of ethanol and the ethanol metabolite, acetaldehyde, into substantia nigra pars reticulata (SNr). Infusions of ethanol into SNr resulted in a dose-related increase in locomotor activity, with maximal effects at a dose of 1.4 micromol. Ethanol injected into a control site dorsal to substantia nigra failed to stimulate locomotion, and another inactive site was identified in brainstem areas posterior to substantia nigra. The locomotor effects of intranigral ethanol (1.4 micromol) were reduced by coadministration of 10 mg/kg sodium azide, a catalase inhibitor that acts to reduce the metabolism of ethanol into acetaldehyde in the brain. SNr infusions of acetaldehyde, which is the first metabolite of ethanol, also increased locomotion. Taken together, these results indicate that SNr is one of the sites at which ethanol and acetaldehyde may be acting to induce locomotor activity. These results are consistent with the hypothesis that acetaldehyde is a centrally active metabolite of ethanol, and provide further support for the idea that catalase activity is a critical step in the regulation of ethanol-induced motor activity. These studies have implications for understanding the brain mechanisms involved in mediating the ascending limb of the biphasic dose-response curve for the effect of ethanol on locomotor activity.

  8. Acetaldehyde as an underestimated risk factor for cancer development: role of genetics in ethanol metabolism

    PubMed Central

    Stickel, Felix

    2009-01-01

    Chronic ethanol consumption is a strong risk factor for the development of certain types of cancer including those of the upper aerodigestive tract, the liver, the large intestine and the female breast. Multiple mechanisms are involved in alcohol-mediated carcinogenesis. Among those the action of acetaldehyde (AA), the first metabolite of ethanol oxidation is of particular interest. AA is toxic, mutagenic and carcinogenic in animal experiments. AA binds to DNA and forms carcinogenic adducts. Direct evidence of the role of AA in alcohol-associated carcinogenesis derived from genetic linkage studies in alcoholics. Polymorphisms or mutations of genes coding for AA generation or detoxifying enzymes resulting in elevated AA concentrations are associated with increased cancer risk. Approximately 40% of Japanese, Koreans or Chinese carry the AA dehydrogenase 2*2 (ALDH2*2) allele in its heterozygous form. This allele codes for an ALDH2 enzyme with little activity leading to high AA concentrations after the consumption of even small amounts of alcohol. When individuals with this allele consume ethanol chronically, a significant increased risk for upper alimentary tract and colorectal cancer is noted. In Caucasians, alcohol dehydrogenase 1C*1 (ADH1C*1) allele encodes for an ADH isoenzyme which produces 2.5 times more AA than the corresponding allele ADH1C*2. In studies with moderate to high alcohol intake, ADH1C*1 allele frequency and rate of homozygosity was found to be significantly associated with an increased risk for cancer of the upper aerodigestive tract, the liver, the colon and the female breast. These studies underline the important role of acetaldehyde in ethanol-mediated carcinogenesis. PMID:19847467

  9. Opposite motor responses elicited by ethanol in the posterior VTA: the role of acetaldehyde and the non-metabolized fraction of ethanol.

    PubMed

    Martí-Prats, Lucía; Sánchez-Catalán, María José; Orrico, Alejandro; Zornoza, Teodoro; Polache, Ana; Granero, Luis

    2013-09-01

    Recent electrophysiological evidence suggests that ethanol simultaneously exerts opposite effects on the activity of dopamine (DA) neurons in the ventral tegmental area (VTA) through two parallel mechanisms, one promoting and the other reducing the GABA release onto VTA DA neurons. Here we explore the possible behavioural implications of these findings by investigating the role displayed by acetaldehyde (the main metabolite of ethanol) and the non-metabolized fraction of ethanol in motor activity of rats. We analyse the appearance of motor activation or depression after intra-VTA administration of ethanol in rats subjected to different pharmacological pre-treatments designed to preferentially test either the effects of acetaldehyde or the non-metabolized ethanol. Motor activity was evaluated after intra-VTA administration of 35 nmol of ethanol, an apparently ineffective dose that does not modify the motor activity of animals. Pharmacological pre-treatments were used in order to either increase (cyanamide, 10 mg/kg, ip) or decrease (D-penicillamine, 50 mg/kg, ip and sodium azide, 7 mg/kg, ip) acetaldehyde levels in the VTA. Pre-treatments aimed to augment acetaldehyde, increased motor activity of rats. Otherwise, pre-treatments intended to decrease local acetaldehyde levels evoked significant reductions in motor activity that were prevented by the local blockade (bicuculline, 17.5 pmol) of the GABAA receptors. Our findings suggest that the brain-generated acetaldehyde is involved in the stimulant effects of ethanol, whereas the non-biotransformed fraction of ethanol, acting through the GABAA receptors, would account for the depressant effects. The present behavioural findings suggest that ethanol dually modulates the activity of DA neurons.

  10. The exchange of acetaldehyde between plants and the atmosphere: Stable carbon isotope and flux measurements

    NASA Astrophysics Data System (ADS)

    Jardine, Kolby Jeremiah

    The exchange of acetaldehyde between plant canopies and the atmosphere may significantly influence regional atmospheric chemistry and plant metabolism. While plants are known to both produce and consume acetaldehyde, the exchange of this compound with forested ecosystems is complicated by physical, biological, and chemical processes that range from being poorly understood to completely unknown. This precludes a quantitative understanding of acetaldehyde exchange rates between the atmosphere and the biosphere. In this study, the processes controlling the exchange of acetaldehyde with plant canopies was investigated using concentration, flux, and natural abundance 13C measurements of gas phase acetaldehyde from individual plants, soils, and entire ecosystems. Although previously only considered important in anoxic tissues, it was discovered that acetaldehyde is produced and consumed in leaves through ethanolic fermentation coupled to the pyruvate dehydrogenase bypass system under normal aerobic conditions. These coupled pathways determine the acetaldehyde compensation point, a major factor controlling its exchange with the atmosphere. Carbon isotope analysis suggests a new pathway for acetaldehyde production from plants under stress involving the peroxidation of membrane fatty acids. This pathway may be a major source of acetaldehyde to the atmosphere from plants under biotic and abiotic stresses. Plant stomata were found to be the dominant pathway for the exchange of acetaldehyde with the atmosphere with stomatal conductance influencing both emission and uptake fluxes. In addition, increasing temperature and solar radiation was found to increase the compensation point by increasing the rates of acetaldehyde production relative to consumption. Under ambient conditions, bare soil was neutral to the exchange of acetaldehyde while senescing and decaying leaves were found to be strong source of acetaldehyde to the atmosphere due to increased decomposition processes and

  11. Acetaldehyde metabolism by brain mitochondria from UChA and UChB rats.

    PubMed

    Quintanilla, M E; Tampier, L

    1995-01-01

    The acetaldehyde (AcH) oxidizing capacity of total brain homogenates from the genetically high-ethanol consumer (UChB) appeared to be greater than that of the low-ethanol consumer (UChA) rats. To gain further information about this strain difference, the activity of aldehyde dehydrogenase (AIDH) in different subcellular fractions of whole brain homogenates from naive UChA and UChB rat strains of both sexes has been studied by measuring the rate of AcH disappearance and by following the reduction of NAD to NADH. The results demonstrated that the higher capacity of brain homogenates from UChB rats to oxidize AcH when compared to UChA ones was because the UChB mitochondrial low Km AIDH exhibits a much greater affinity for NAD than that of the UChA rats, as evidenced by four-to fivefold differences in the Km values for NAD. But the dehydrogenases from both strains exhibited a similar maximum rate at saturating NAD concentrations. Because intact brain mitochondria isolated from UChB rats oxidized AcH at a higher rate than did mitochondria from UChA rats only in state 4, but not in state 3, this strain difference in AIDH activity might be restricted in vivo to NAD disposition.

  12. Metabolism of paraldehyde to acetaldehyde in liver microsomes. Evidence for the involvement of cytochrome P-450.

    PubMed

    Zaleska, M M; Gessner, P K

    1983-12-15

    A concentration-dependent acetaldehyde (AcH) generation was observed when paraldehyde was incubated with the mouse liver microsomal fraction. The process, which exhibited a requirement for oxygen and NADPH and was inhibited by carbon monoxide, was found to have a Km of 17.9 mM with respect to paraldehyde and a Vmax of 40.1 nmoles/mg protein/min with respect to AcH formation. NADH was much less effective as an electron donor than NADPH, though a more than additive increase in AcH generation was observed when both of these nucleotides were added to the incubation. The rate of microsomal AcH generation from paraldehyde was increased 2.5-fold by pretreatment of the mice with phenobarbital but only 0.6-fold by pretreatment with 3-methylcholanthrene. Pretreatment with 2-diethylaminoethyl-2,2-diphenylvalerate hydrochloride (SKF-525A) resulted in 54% inhibition of the reaction rate. Addition of metopirone to the incubation inhibited AcH generation in a concentration-related fashion, the inhibition being greatest, proportionately, in microsomes from phenobarbital-pretreated animals. The above results conclusively indicate the involvement of cytochrome P-540 mixed function oxidase in the formation of AcH from paraldehyde by mouse liver microsomes. It is also postulated that this process may be accomplished in the reaction analogous to O-dealkylation.

  13. Acetaldehyde metabolism by liver mitochondrial ALDH from UChA and UChB rats: effect of inhibitors.

    PubMed

    Tampier, L; Sánchez, E; Quintanilla, M E

    1996-01-01

    We have observed that blood acetaldehyde (AcH) levels after an ethanol dose were significantly higher in disulfiram-pre-treated UChA (low ethanol consumer) than in UChB (high ethanol consumer) rats. In order to explore these results further, we studied the effect of disulfiram (300 mg/kg i.p.) and chlorpropamide (80) mg/kg i.p.) pre-treatment on blood AcH levels after oral ethanol (60 mmol/kg) and on AcH metabolism by liver mitochondrial aldehyde(s) dehydrogenase(s) from UChA and UChB rats. AcH metabolism by liver mitochondrial aldehyde dehydrogenase (ALDH) was studied by following AcH disappearance rate and the formation of NADH at 340 nm in the incubation medium. The results showed that chlorpropamide, like disulfiram, produced a higher blood AcH level consistent with a greater inhibition of the low-Km mitochondrial ALDH in the UChA rats than in the UChB rats. These drugs did not inhibit the high Km mitochondrial ALDH. Kinetic studies of mitochondrial ALDH show that low-Km mitochondrial ALDH from UChB rats exhibits a higher affinity for NAD than UChA rats. This observation could explain the different inhibition of ALDH by both drugs, assuming that the inhibitors reduce NAD availability, the rate limiting step in the mitochondrial ALDH oxidation.

  14. Replacement of the initial steps of ethanol metabolism in Saccharomyces cerevisiae by ATP-independent acetylating acetaldehyde dehydrogenase.

    PubMed

    Kozak, Barbara U; van Rossum, Harmen M; Niemeijer, Matthijs S; van Dijk, Marlous; Benjamin, Kirsten; Wu, Liang; Daran, Jean-Marc G; Pronk, Jack T; van Maris, Antonius J A

    2016-03-01

    In Saccharomyces cerevisiae ethanol dissimilation is initiated by its oxidation and activation to cytosolic acetyl-CoA. The associated consumption of ATP strongly limits yields of biomass and acetyl-CoA-derived products. Here, we explore the implementation of an ATP-independent pathway for acetyl-CoA synthesis from ethanol that, in theory, enables biomass yield on ethanol that is up to 40% higher. To this end, all native yeast acetaldehyde dehydrogenases (ALDs) were replaced by heterologous acetylating acetaldehyde dehydrogenase (A-ALD). Engineered Ald(-) strains expressing different A-ALDs did not immediately grow on ethanol, but serial transfer in ethanol-grown batch cultures yielded growth rates of up to 70% of the wild-type value. Mutations in ACS1 were identified in all independently evolved strains and deletion of ACS1 enabled slow growth of non-evolved Ald(-) A-ALD strains on ethanol. Acquired mutations in A-ALD genes improved affinity-Vmax/Km for acetaldehyde. One of five evolved strains showed a significant 5% increase of its biomass yield in ethanol-limited chemostat cultures. Increased production of acetaldehyde and other by-products was identified as possible cause for lower than theoretically predicted biomass yields. This study proves that the native yeast pathway for conversion of ethanol to acetyl-CoA can be replaced by an engineered pathway with the potential to improve biomass and product yields. © FEMS 2016.

  15. Interrelationship between alcohol, smoking, acetaldehyde and cancer.

    PubMed

    Salaspuro, Mikko

    2007-01-01

    In industrialized countries alcohol and tobacco are the main risk factors of upper digestive tract cancer. With regard to the pathogenesis of these cancers, there is strong epidemiological, biochemical and genetic evidence supporting the role of the first metabolite of alcohol oxidation--acetaldehyde--as a common denominator. Alcohol is metabolized to acetaldehyde locally in the oral cavity by microbes representing normal oral flora. Poor oral hygiene, heavy drinking and chronic smoking modify oral flora to produce more acetaldehyde from ingested alcohol. Also, tobacco smoke contains acetaldehyde, which during smoking becomes dissolved in saliva. Via swallowing, salivary acetaldehyde of either origin is distributed from oral cavity to pharynx, oesophagus and stomach. Strongest evidence for the local carcinogenic action of acetaldehyde provides studies with ALDH2-deficient Asian drinkers, who form an exceptional human model for long-term acetaldehyde exposure. After drinking alcohol they have an increased concentration of acetaldehyde in their saliva and this is associated with over 10-fold risk of upper digestive tract cancers. In conclusion, acetaldehyde derived either from ethanol or tobacco appears to act in the upper digestive tract as a local carcinogen in a dose-dependent and synergistic way.

  16. Acetaldehyde and gastric cancer.

    PubMed

    Salaspuro, Mikko

    2011-04-01

    Aldehyde dehydrogenase (ALDH2) and alcohol dehydrogenase (ADH) gene polymorphisms associating with enhanced acetaldehyde exposure and markedly increased cancer risk in alcohol drinkers provide undisputable evidence for acetaldehyde being a local carcinogen not only in esophageal but also in gastric cancer. Accordingly, acetaldehyde associated with alcoholic beverages has recently been classified as a Group 1 carcinogen to humans. Microbes are responsible for the bulk of acetaldehyde production from ethanol both in saliva and Helicobacter pylori-infected and achlorhydric stomach. Acetaldehyde is the most abundant carcinogen in tobacco smoke and it readily dissolves into saliva during smoking. Many foodstuffs and 'non-alcoholic' beverages are important but unrecognized sources of local acetaldehyde exposure. The cumulative cancer risk associated with increasing acetaldehyde exposure suggests the need for worldwide screening of the acetaldehyde levels of alcoholic beverages and as well of the ethanol and acetaldehyde of food produced by fermentation. The generally regarded as safe status of acetaldehyde should be re-evaluated. The as low as reasonably achievable principle should be applied to the acetaldehyde of alcoholic and non-alcoholic beverages and food. Risk groups with ADH-and ALDH2 gene polymorphisms, H. pylori infection or achlorhydric atrophic gastritis, or both, should be screened and educated in this health issue. L-cysteine formulations binding carcinogenic acetaldehyde locally in the stomach provide new means for intervention studies.

  17. Acetaldehyde-induced cytotoxicity involves induction of spermine oxidase at the transcriptional level.

    PubMed

    Uemura, Takeshi; Tanaka, Yuka; Higashi, Kyohei; Miyamori, Daisuke; Takasaka, Tomokazu; Nagano, Tatsuo; Toida, Toshihiko; Yoshimoto, Kanji; Igarashi, Kazuei; Ikegaya, Hiroshi

    2013-08-09

    Ethanol consumption causes serious liver injury including cirrhosis and hepatocellular carcinoma. Ethanol is metabolized mainly in the liver to acetic acid through acetaldehyde. We investigated the effect of ethanol and acetaldehyde on polyamine metabolism since polyamines are essential factors for normal cellular functions. We found that acetaldehyde induced spermine oxidase (SMO) at the transcriptional level in HepG2 cells. The levels and activities of ornithine decarboxylase (ODC) and spermidine/spermine acetyltransferase (SSAT) were not affected by acetaldehyde. Spermidine content was increased and spermine content was decreased by acetaldehyde treatment. Knockdown of SMO expression using siRNA reduced acetaldehyde toxicity. Acetaldehyde exposure increased free acrolein levels. An increase of acrolein by acetaldehyde was SMO dependent. Our results indicate that cytotoxicity of acetaldehyde involves, at least in part, oxidation of spermine to spermidine by SMO, which is induced by acetaldehyde.

  18. Acetaldehyde and the genome: beyond nuclear DNA adducts and carcinogenesis.

    PubMed

    Brooks, Philip J; Zakhari, Samir

    2014-03-01

    The designation of acetaldehyde associated with the consumption of alcoholic beverages as "carcinogenic to humans" (Group 1) by the International Agency for Research on Cancer (IARC) has brought renewed attention to the biological effects of acetaldehyde, as the primary oxidative metabolite of alcohol. Therefore, the overall focus of this review is on acetaldehyde and its direct and indirect effects on the nuclear and mitochondrial genome. We first consider different acetaldehyde-DNA adducts, including a critical assessment of the evidence supporting a role for acetaldehyde-DNA adducts in alcohol related carcinogenesis, and consideration of additional data needed to make a conclusion. We also review recent data on the role of the Fanconi anemia DNA repair pathway in protecting against acetaldehyde genotoxicity and carcinogenicity, as well as teratogenicity. We also review evidence from the older literature that acetaldehyde may impact the genome indirectly, via the formation of adducts with proteins that are themselves critically involved in the maintenance of genetic and epigenetic stability. Finally, we note the lack of information regarding acetaldehyde effects on the mitochondrial genome, which is notable since aldehyde dehydrogenase 2 (ALDH2), the primary acetaldehyde metabolic enzyme, is located in the mitochondrion, and roughly 30% of East Asian individuals are deficient in ALDH2 activity due to a genetic variant in the ALDH2 gene. In summary, a comprehensive understanding of all of the mechanisms by which acetaldehyde impacts the function of the genome has implications not only for alcohol and cancer, but types of alcohol related pathologies as well.

  19. Acetaldehyde and ethanol production by Helicobacter pylori.

    PubMed

    Salmela, K S; Roine, R P; Höök-Nikanne, J; Kosunen, T U; Salaspuro, M

    1994-04-01

    By virtue of possessing alcohol dehydrogenase activity, cytosol prepared from Helicobacter pylori produces toxic acetaldehyde from ethanol in vitro. To approach the in vivo situation in the stomach, we have now investigation whether intact H. pylori--without addition of exogenous nicotinamide adenine dinucleotide--also forms acetaldehyde. Furthermore, to assess the energy metabolism of H. pylori, we determined whether the alcohol dehydrogenase-catalyzed reaction can run in the opposite direction with ethanol as the end-product and thereby yield energy for the organism. Intact H. pylori formed acetaldehyde already at low ethanol concentrations (at 0.5% ethanol, acetaldehyde, 64 +/- 21 and 75 +/- 9 mumol/l (mean +/- SEM) for strains NCTC 11637 and NCTC 11638, respectively). H. pylori produced ethanol in concentrations that can be significant for the energy metabolism of the organism. Acetaldehyde production by H. pylori may be an important factor in the pathogenesis of gastroduodenal diseases associated with the organism. The primary function of H. pylori alcohol dehydrogenase may, however, be alcoholic fermentation and consequent energy production under microaerobic conditions.

  20. Olfaction Under Metabolic Influences

    PubMed Central

    2012-01-01

    Recently published work and emerging research efforts have suggested that the olfactory system is intimately linked with the endocrine systems that regulate or modify energy balance. Although much attention has been focused on the parallels between taste transduction and neuroendocrine controls of digestion due to the novel discovery of taste receptors and molecular components shared by the tongue and gut, the equivalent body of knowledge that has accumulated for the olfactory system, has largely been overlooked. During regular cycles of food intake or disorders of endocrine function, olfaction is modulated in response to changing levels of various molecules, such as ghrelin, orexins, neuropeptide Y, insulin, leptin, and cholecystokinin. In view of the worldwide health concern regarding the rising incidence of diabetes, obesity, and related metabolic disorders, we present a comprehensive review that addresses the current knowledge of hormonal modulation of olfactory perception and how disruption of hormonal signaling in the olfactory system can affect energy homeostasis. PMID:22832483

  1. A PBPK MODEL FOR EVALUATING THE IMPACT OF ALDEHYDE DEHYDROGENASE POLYMORPHISMS ON COMPARATIVE RAT AND HUMAN NASAL TISSUE ACETALDEHYDE DOSIMETRY

    EPA Science Inventory

    ABSTRACT: Acetaldehyde is an important intermediate in chemical synthesis and a byproduct of normal oxidative metabolism of several industrially important compounds including ethanol, ethyl acetate and vinyl acetate. Chronic inhalation of acetaldehyde leads to degeneratio...

  2. A PBPK model for evaluating the impact of aldehyde dehydrogenase polymorphisms on comparative rat and human nasal tissue acetaldehyde dosimetry*

    EPA Science Inventory

    Acetaldehyde is an important intermediate in the chemical synthesis and normal oxidative metabolism of several industrially important compounds, including ethanol, ethyl acetate, and vinyl acetate. Chronic inhalation of acetaldehyde leads to degeneration of the olfactory and resp...

  3. A PBPK MODEL FOR EVALUATING THE IMPACT OF ALDEHYDE DEHYDROGENASE POLYMORPHISMS ON COMPARATIVE RAT AND HUMAN NASAL TISSUE ACETALDEHYDE DOSIMETRY

    EPA Science Inventory

    ABSTRACT: Acetaldehyde is an important intermediate in chemical synthesis and a byproduct of normal oxidative metabolism of several industrially important compounds including ethanol, ethyl acetate and vinyl acetate. Chronic inhalation of acetaldehyde leads to degeneratio...

  4. A PBPK model for evaluating the impact of aldehyde dehydrogenase polymorphisms on comparative rat and human nasal tissue acetaldehyde dosimetry*

    EPA Science Inventory

    Acetaldehyde is an important intermediate in the chemical synthesis and normal oxidative metabolism of several industrially important compounds, including ethanol, ethyl acetate, and vinyl acetate. Chronic inhalation of acetaldehyde leads to degeneration of the olfactory and resp...

  5. Piecing together the puzzle of acetaldehyde as a neuroactive agent.

    PubMed

    Correa, Mercè; Salamone, John D; Segovia, Kristen N; Pardo, Marta; Longoni, Rosanna; Spina, Liliana; Peana, Alessandra T; Vinci, Stefania; Acquas, Elio

    2012-01-01

    Mainly known for its more famous parent compound, ethanol, acetaldehyde was first studied in the 1940s, but then research interest in this compound waned. However, in the last two decades, research on acetaldehyde has seen a revitalized and uninterrupted interest. Acetaldehyde, per se, and as a product of ethanol metabolism, is responsible for many pharmacological effects which are not clearly distinguishable from those of its parent compound, ethanol. Consequently, the most recent advances in acetaldehyde's psychopharmacology have been inspired by the experimental approach to test the hypothesis that some of the effects of ethanol are mediated by acetaldehyde and, in this regard, the characterization of metabolic pathways for ethanol and the localization within discrete brain regions of these effects have revitalized the interest on the role of acetaldehyde in ethanol's central effects. Here we present and discuss a wealth of experimental evidence that converges to suggest that acetaldehyde is an intrinsically active compound, is metabolically generated in the brain and, finally, mediates many of the psychopharmacological properties of ethanol.

  6. Candida virulence and ethanol-derived acetaldehyde production in oral cancer and non-cancer subjects.

    PubMed

    Alnuaimi, A D; Ramdzan, A N; Wiesenfeld, D; O'Brien-Simpson, N M; Kolev, S D; Reynolds, E C; McCullough, M J

    2016-11-01

    To compare biofilm-forming ability, hydrolytic enzymes and ethanol-derived acetaldehyde production of oral Candida isolated from the patients with oral cancer and matched non-oral cancer. Fungal biofilms were grown in RPMI-1640 medium, and biofilm mass and biofilm activity were assessed using crystal violet staining and XTT salt reduction assays, respectively. Phospholipase, proteinase, and esterase production were measured using agar plate method, while fungal acetaldehyde production was assessed via gas chromatography. Candida isolated from patients with oral cancer demonstrated significantly higher biofilm mass (P = 0.031), biofilm metabolic activity (P < 0.001), phospholipase (P = 0.002), and proteinase (P = 0.0159) activity than isolates from patients with non-oral cancer. High ethanol-derived acetaldehyde-producing Candida were more prevalent in patients with oral cancer than non-oral cancer (P = 0.01). In univariate regression analysis, high biofilm mass (P = 0.03) and biofilm metabolic activity (P < 0.001), high phospholipase (P = 0.003), and acetaldehyde production ability (0.01) were significant risk factors for oral cancer; while in the multivariate regression analysis, high biofilm activity (0.01) and phospholipase (P = 0.01) were significantly positive influencing factors on oral cancer. These data suggest a significant positive association between the ability of Candida isolates to form biofilms, to produce hydrolytic enzymes, and to metabolize alcohol to acetaldehyde with their ability to promote oral cancer development. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Enhanced catabolism to acetaldehyde in rostral ventrolateral medullary neurons accounts for the pressor effect of ethanol in spontaneously hypertensive rats.

    PubMed

    El-Mas, Mahmoud M; Abdel-Rahman, Abdel A

    2012-02-01

    We have previously shown that ethanol microinjection into the rostral ventrolateral medulla (RVLM) elicits sympathoexcitation and hypertension in conscious spontaneously hypertensive rats (SHRs) but not in Wistar-Kyoto (WKY) rats. In this study, evidence was sought to implicate the oxidative breakdown of ethanol in this strain-dependent hypertensive action of ethanol. Biochemical experiments revealed significantly higher catalase activity and similar aldehyde dehydrogenase (ALDH) activity in the RVLM of SHRs compared with WKY rats. We also investigated the influence of pharmacological inhibition of catalase (3-aminotriazole) or ALDH (cyanamide) on the cardiovascular effects of intra-RVLM ethanol or its metabolic product acetaldehyde in conscious rats. Compared with vehicle, ethanol (10 μg/rat) elicited a significant increase in blood pressure in SHRs that lasted for the 60-min observation period but had no effect on blood pressure in WKY rats. The first oxidation product, acetaldehyde, played a critical role in ethanol-evoked hypertension because 1) catalase inhibition (3-aminotriazole treatment) virtually abolished the ethanol-evoked pressor response in SHRs, 2) intra-RVLM acetaldehyde (2 μg/rat) reproduced the strain-dependent hypertensive effect of intra-RVLM ethanol, and 3) ALDH inhibition (cyanamide treatment) uncovered a pressor response to intra-RVLM acetaldehyde in WKY rats similar to the response observed in SHRs. These findings support the hypothesis that local production of acetaldehyde, due to enhanced catalase activity, in the RVLM mediates the ethanol-evoked pressor response in SHRs.

  8. Xylitol inhibits carcinogenic acetaldehyde production by Candida species.

    PubMed

    Uittamo, Johanna; Nieminen, Mikko T; Kaihovaara, Pertti; Bowyer, Paul; Salaspuro, Mikko; Rautemaa, Riina

    2011-10-15

    Acetaldehyde is a highly toxic and mutagenic product of alcohol fermentation and metabolism which has been classified as a Class I carcinogen for humans by the International Agency for Research on Cancer of the World Health Organisation (WHO). Many Candida species representing oral microbiota have been shown to be capable of marked acetaldehyde production. The aim of our study was to examine the effects of various sugar alcohols and sugars on microbial acetaldehyde production. The study hypothesis was that xylitol could reduce the amount of acetaldehyde produced by Candida. Laboratory and clinical isolates of seven Candida species were selected for the study. The isolates were incubated in 12 mM ethanol and 110 mM glucose, fructose or xylitol at 37°C for 30 min and the formed acetaldehyde was measured by gas chromatography. Xylitol significantly (p < 0.0001) reduced the amount of acetaldehyde produced from ethanol by 84%. In the absence of xylitol, the mean acetaldehyde production in ethanol incubation was 220.5 μM and in ethanol-xylitol incubation 32.8 μM. This was found to be mediated by inhibition of the alcohol dehydrogenase enzyme activity. Coincubation with glucose reduced the amount of produced acetaldehyde by 23% and coincubation with fructose by 29%. At concentrations that are representative of those found in the oral cavity during the intake of proprietary xylitol products, xylitol was found to reduce the production of carcinogenic acetaldehyde from ethanol by Candida below the mutagenic level of 40-100 μM.

  9. Acetaldehyde: A Chemical Whose Fortunes Have Changed.

    ERIC Educational Resources Information Center

    Wittcoff, Harold A.

    1983-01-01

    Describes industrial acetaldehyde synthesis/uses, explaining why acetaldehyde usage is declining in industry. Includes a discussion of the reaction chemistry, equations, and molecular structure diagrams. (JM)

  10. Alcohol and acetaldehyde in public health: from marvel to menace.

    PubMed

    Guo, Rui; Ren, Jun

    2010-04-01

    Alcohol abuse is a serious medical and social problem. Although light to moderate alcohol consumption is beneficial to cardiovascular health, heavy drinking often results in organ damage and social problems. In addition, genetic susceptibility to the effect of alcohol on cancer and coronary heart disease differs across the population. A number of mechanisms including direct the toxicity of ethanol, its metabolites [e.g., acetaldehyde and fatty acid ethyl esters (FAEEs)] and oxidative stress may mediate alcoholic complications. Acetaldehyde, the primary metabolic product of ethanol, is an important candidate toxin in developing alcoholic diseases. Meanwhile, free radicals produced during ethanol metabolism and FAEEs are also important triggers for alcoholic damages.

  11. Induction of mitochondrial aldehyde dehydrogenase by submergence facilitates oxidation of acetaldehyde during re-aeration in rice.

    PubMed

    Tsuji, Hiroyuki; Meguro, Naoki; Suzuki, Yasuhiro; Tsutsumi, Nobuhiro; Hirai, Atsushi; Nakazono, Mikio

    2003-07-10

    Post-hypoxic injuries in plants are primarily caused by bursts of reactive oxygen species and acetaldehyde. In agreement with previous studies, we found accumulations of acetaldehyde in rice during re-aeration following submergence. During re-aeration, acetaldehyde-oxidizing aldehyde dehydrogenase (ALDH) activity increased, thereby causing the acetaldehyde content to decrease in rice. Interestingly, re-aerated rice plants showed an intense mitochondrial ALDH2a protein induction, even though ALDH2a mRNA was submergence induced and declined upon re-aeration. This suggests that rice ALDH2a mRNA is accumulated in order to quickly metabolize acetaldehyde that is produced upon re-aeration.

  12. Mystic Acetaldehyde: The Never-Ending Story on Alcoholism.

    PubMed

    Peana, Alessandra T; Sánchez-Catalán, María J; Hipólito, Lucia; Rosas, Michela; Porru, Simona; Bennardini, Federico; Romualdi, Patrizia; Caputi, Francesca F; Candeletti, Sanzio; Polache, Ana; Granero, Luis; Acquas, Elio

    2017-01-01

    After decades of uncertainties and drawbacks, the study on the role and significance of acetaldehyde in the effects of ethanol seemed to have found its main paths. Accordingly, the effects of acetaldehyde, after its systemic or central administration and as obtained following ethanol metabolism, looked as they were extensively characterized. However, almost 5 years after this research appeared at its highest momentum, the investigations on this topic have been revitalized on at least three main directions: (1) the role and the behavioral significance of acetaldehyde in different phases of ethanol self-administration and in voluntary ethanol consumption; (2) the distinction, in the central effects of ethanol, between those arising from its non-metabolized fraction and those attributable to ethanol-derived acetaldehyde; and (3) the role of the acetaldehyde-dopamine condensation product, salsolinol. The present review article aims at presenting and discussing prospectively the most recent data accumulated following these three research pathways on this never-ending story in order to offer the most up-to-date synoptic critical view on such still unresolved and exciting topic.

  13. Acetaldehyde kinetics of enological yeast during alcoholic fermentation in grape must.

    PubMed

    Li, Erhu; Mira de Orduña, Ramón

    2017-02-01

    Acetaldehyde strongly binds to the wine preservative SO2 and, on average, causes 50-70 mg l(-1) of bound SO2 in red and white wines, respectively. Therefore, a reduction of bound and total SO2 concentrations necessitates knowledge of the factors that affect final acetaldehyde concentrations in wines. This study provides a comprehensive analysis of the acetaldehyde production and degradation kinetics of 26 yeast strains of oenological relevance during alcoholic fermentation in must under controlled anaerobic conditions. Saccharomyces cerevisiae and non-Saccharomyces strains displayed similar metabolic kinetics where acetaldehyde reached an initial peak value at the beginning of fermentations followed by partial reutilization. Quantitatively, the range of values obtained for non-Saccharomyces strains greatly exceeded the variability among the S. cerevisiae strains tested. Non-Saccharomyces strains of the species C. vini, H. anomala, H. uvarum, and M. pulcherrima led to low acetaldehyde residues (<10 mg l(-1)), while C. stellata, Z. bailii, and, especially, a S. pombe strain led to large residues (24-48 mg l(-1)). Acetaldehyde residues in S. cerevisiae cultures were intermediate and less dispersed (14-34 mg l(-1)). Addition of SO2 to Chardonnay must triggered significant increases in acetaldehyde formation and residual acetaldehyde. On average, 0.33 mg of residual acetaldehyde remained per mg of SO2 added to must, corresponding to an increase of 0.47 mg of bound SO2 per mg of SO2 added. This research demonstrates that certain non-Saccharomyces strains display acetaldehyde kinetics that would be suitable to reduce residual acetaldehyde, and hence, bound-SO2 levels in grape wines. The acetaldehyde formation potential may be included as strain selection argument in view of reducing preservative SO2 concentrations.

  14. Plant physiological and environmental controls over the exchange of acetaldehyde between forest canopies and the atmosphere

    NASA Astrophysics Data System (ADS)

    Jardine, K.; Harley, P.; Karl, T.; Guenther, A.; Lerdau, M.; Mak, J. E.

    2008-06-01

    We quantified fine scale sources and sinks of gas phase acetaldehyde in two forested ecosystems in the US. During the daytime, the upper canopy behaved as a net source while at lower heights, reduced emission rates or net uptake were observed. At night, uptake generally predominated thoughout the canopies. Net ecosystem emission rates were inversely related to foliar density which influenced the extinction of light and the acetaldehyde compensation point in the canopy. This is supported by branch level studies revealing much higher compensation points in the light than in the dark for poplar (Populus deltoides) and holly oak (Quercus ilex) implying a higher light/temperature sensitivity for acetaldehyde production relative to consumption. The view of stomata as the major pathway for acetaldehyde exchange is supported by strong linear correlations between branch transpiration rates and acetaldehyde exchange velocities for both species. In addition, natural abundance carbon isotope analysis of gas-phase acetaldehyde during poplar branch fumigation experiments revealed a significant kinetic isotope effect of 5.1±0.3‰, associated with the uptake of acetaldehyde. Similar experiments with dry dead poplar leaves showed no fractionation or uptake of acetaldehyde, confirming that this is only a property of living leaves. We suggest that acetaldehyde belongs to a potentially large list of plant metabolites where stomatal conductance can exert long term control over both emission and uptake rates due to the presence of both source(s) and sink(s) within the leaf which strongly buffer large changes in concentrations in the substomatal airspace due to changes in stomatal conductance. We conclude that the exchange of acetaldehyde between plant canopies and the atmosphere is fundamentally controlled by ambient acetaldehyde concentrations, stomatal conductance, and the acetaldehyde compensation point.

  15. Evaluation of the acetaldehyde production and degradation potential of 26 enological Saccharomyces and non-Saccharomyces yeast strains in a resting cell model system.

    PubMed

    Li, Erhu; de Orduña, Ramón Mira

    2011-09-01

    Acetaldehyde is relevant for wine aroma, wine color, and microbiological stability. Yeast are known to play a crucial role in production and utilization of acetaldehyde during fermentations but comparative quantitative data are scarce. This research evaluated the acetaldehyde metabolism of 26 yeast strains, including commercial Saccharomyces and non-Saccharomyces, in a reproducible resting cell model system. Acetaldehyde kinetics and peak values were highly genus, species, and strain dependent. Peak acetaldehyde values varied from 2.2 to 189.4 mg l(-1) and correlated well (r(2) = 0.92) with the acetaldehyde production yield coefficients that ranged from 0.4 to 42 mg acetaldehyde per g of glucose in absence of SO(2). S. pombe showed the highest acetaldehyde production yield coefficients and peak values. All other non-Saccharomyces species produced significantly less acetaldehyde than the S. cerevisiae strains and were less affected by SO(2) additions. All yeast strains could degrade acetaldehyde as sole substrate, but the acetaldehyde degradation rates did not correlate with acetaldehyde peak values or acetaldehyde production yield coefficients in incubations with glucose as sole substrate.

  16. Human ALDH1B1 polymorphisms may affect the metabolism of acetaldehyde and all-trans retinaldehyde – in vitro studies and computational modeling

    PubMed Central

    Jackson, Brian C.; Reigan, Philip; Miller, Bettina; Thompson, David C.; Vasiliou, Vasilis

    2014-01-01

    Purpose To elucidate additional substrate specificities of ALDH1B1 and determine the effect that human ALDH1B1 polymorphisms will have on substrate specificity. Methods Computational-based molecular modeling was used to predict the binding of the substrates propionaldehyde, 4-hydroxynonenal, nitroglycerin, and all-trans retinaldehyde to ALDH1B1. Based on positive in silico results, the capacity of purified human recombinant ALDH1B1 to metabolize nitroglycerin and all-trans retinaldehyde was explored. Additionally, metabolism of 4-HNE by ALDH1B1 was revisited. Databases queried to find human polymorphisms of ALDH1B1 identified three major variants: ALDH1B1*2 (A86V), ALDH1B1*3 (L107R), and ALDH1B1*5 (M253V). Computational modeling was used to predict the binding of substrates and of cofactor (NAD+) to the variants. These human polymorphisms were created and expressed in a bacterial system and specific activity was determined. Results ALDH1B1 metabolizes (and appears to be inhibited by) nitroglycerin and has favorable kinetics for the metabolism of all-trans retinaldehyde. ALDH1B1 metabolizes 4-HNE with higher apparent affinity than previously described, but with low throughput. Recombinant ALDH1B1*2 is catalytically inactive, whereas both ALDH1B1*3 and ALDH1B1*5 are catalytically active. Modeling indicated that the lack of activity in ALDH1B1*2 is likely due to poor NAD+ binding. Modeling also suggests that ALDH1B1*3 may be less able to metabolize all-trans retinaldehyde and that ALDH1B1*5 may bind NAD+ poorly. Conclusions ALDH1B1 metabolizes nitroglycerin and all-trans-retinaldehyde. One of the three human polymorphisms, ALDH1B1*2, is catalytically inactive, likely due to poor NAD+ binding. Expression of this variant may affect ALDH1B1-dependent metabolic functions in stem cells and ethanol metabolism. PMID:25413692

  17. Human ALDH1B1 polymorphisms may affect the metabolism of acetaldehyde and all-trans retinaldehyde--in vitro studies and computational modeling.

    PubMed

    Jackson, Brian C; Reigan, Philip; Miller, Bettina; Thompson, David C; Vasiliou, Vasilis

    2015-05-01

    To elucidate additional substrate specificities of ALDH1B1 and determine the effect that human ALDH1B1 polymorphisms will have on substrate specificity. Computational-based molecular modeling was used to predict the binding of the substrates propionaldehyde, 4-hydroxynonenal, nitroglycerin, and all-trans retinaldehyde to ALDH1B1. Based on positive in silico results, the capacity of purified human recombinant ALDH1B1 to metabolize nitroglycerin and all-trans retinaldehyde was explored. Additionally, metabolism of 4-HNE by ALDH1B1 was revisited. Databases queried to find human polymorphisms of ALDH1B1 identified three major variants: ALDH1B1*2 (A86V), ALDH1B1*3 (L107R), and ALDH1B1*5 (M253V). Computational modeling was used to predict the binding of substrates and of cofactor (NAD(+)) to the variants. These human polymorphisms were created and expressed in a bacterial system and specific activity was determined. ALDH1B1 metabolizes (and appears to be inhibited by) nitroglycerin and has favorable kinetics for the metabolism of all-trans retinaldehyde. ALDH1B1 metabolizes 4-HNE with higher apparent affinity than previously described, but with low throughput. Recombinant ALDH1B1*2 is catalytically inactive, whereas both ALDH1B1*3 and ALDH1B1*5 are catalytically active. Modeling indicated that the lack of activity in ALDH1B1*2 is likely due to poor NAD(+) binding. Modeling also suggests that ALDH1B1*3 may be less able to metabolize all-trans retinaldehyde and that ALDH1B1*5 may bind NAD(+) poorly. ALDH1B1 metabolizes nitroglycerin and all-trans-retinaldehyde. One of the three human polymorphisms, ALDH1B1*2, is catalytically inactive, likely due to poor NAD(+) binding. Expression of this variant may affect ALDH1B1-dependent metabolic functions in stem cells and ethanol metabolism.

  18. 27 CFR 21.93 - Acetaldehyde.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Acetaldehyde. 21.93 Section 21.93 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Acetaldehyde. (a) Aldehyde content (as acetaldehyde). Not less than 95.0 percent by weight. (b)...

  19. 27 CFR 21.93 - Acetaldehyde.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Acetaldehyde. 21.93 Section 21.93 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Acetaldehyde. (a) Aldehyde content (as acetaldehyde). Not less than 95.0 percent by weight. (b)...

  20. Metabolic influences on RNA biology and translation.

    PubMed

    Lee, Chien-Der; Tu, Benjamin P

    2017-04-01

    Protein translation is one of the most energetically demanding processes for a cell to undertake. Changes in the nutrient environment may result in conditions that cannot support the rates of translation required for cell proliferation. As such, a cell must monitor its metabolic state to determine which mRNAs to translate into protein. How the various RNA species that participate in translation might relay information about metabolic state to regulate this process is not well understood. In this review, we discuss emerging examples of the influence of metabolism on aspects of RNA biology. We discuss how metabolic state impacts the localization and fate of different RNA species, as well as how nutrient cues can impact post-transcriptional modifications of RNA to regulate their functions in the control of translation.

  1. Influence of metabolic pathways on dam longevity

    USDA-ARS?s Scientific Manuscript database

    Metabolism is an ever-changing dynamic system that can influence various physiological conditions including reproductive performance. It has been established that use of caloric restriction can enhance lifespan. But, it is also a well known fact that high energy demands in tandem with moderate to ...

  2. [13C2]-Acetaldehyde promotes unequivocal formation of 1,N2-propano-2'-deoxyguanosine in human cells.

    PubMed

    Garcia, Camila Carrião M; Angeli, José Pedro F; Freitas, Florêncio P; Gomes, Osmar F; de Oliveira, Tiago F; Loureiro, Ana Paula M; Di Mascio, Paolo; Medeiros, Marisa H G

    2011-06-22

    Acetaldehyde is an environmentally widespread genotoxic aldehyde present in tobacco smoke, vehicle exhaust and several food products. Endogenously, acetaldehyde is produced by the metabolic oxidation of ethanol by hepatic NAD-dependent alcohol dehydrogenase and during threonine catabolism. The formation of DNA adducts has been regarded as a critical factor in the mechanisms of acetaldehyde mutagenicity and carcinogenesis. Acetaldehyde reacts with 2'-deoxyguanosine in DNA to form primarily N(2)-ethylidene-2'-deoxyguanosine. The subsequent reaction of N(2)-ethylidenedGuo with another molecule of acetaldehyde gives rise to 1,N(2)-propano-2'-deoxyguanosine (1,N(2)-propanodGuo), an adduct also found as a product of the crotonaldehyde reaction with dGuo. However, adducts resulting from the reaction of more than one molecule of acetaldehyde in vivo are still controversial. In this study, the unequivocal formation of 1,N(2)-propanodGuo by acetaldehyde was assessed in human cells via treatment with [(13)C(2)]-acetaldehyde. Detection of labeled 1,N(2)-propanodGuo was performed by HPLC/MS/MS. Upon acetaldehyde exposure (703 μM), increased levels of both 1,N(2)-etheno-2'-deoxyguanosine (1,N(2)-εdGuo), which is produced from α,β-unsaturated aldehydes formed during the lipid peroxidation process, and 1,N(2)-propanodGuo were observed. The unequivocal formation of 1,N(2)-propanodGuo in cells exposed to this aldehyde can be used to elucidate the mechanisms associated with acetaldehyde exposure and cancer risk.

  3. [Biological actions of acetaldehyde].

    PubMed

    Ijiri, I

    1999-11-01

    Acetaldehyde (AcH), the first metabolite of ethanol (EtOH), is a chemically reactive and pharmacologically active compound. The author has been engaged in the study of AcH in cooperation with many researchers for three decades. We have found many biological actions of AcH which cause cardiovascular symptoms after drinking and also inhibited EtOH absorption via the canine and rat intestinal tract. This report covers the following five points. 1. The subjects were classified into a non-flushing group and a flushing group, according to the degree of facial flushing after drinking 200 ml of Sake (Japanese rice wire) at a rate of 100 ml per 5 min. Blood EtOH profile was much the same in both groups, yet peak blood AcH concentration in the flushing group was significantly higher than that in the non-flushing group. All subjects in the flushing group showed marked flushing and an increase in pulse rate after drinking, but these symptoms were not apparent in the non-flushing group. These results suggested that cardiovascular symptoms were caused by AcH itself. 2. Urinary excretions of both norepinephrine and epinephrine increased in the flushing cases after drinking Sake in comparison with those who drank the same volume of water. However, these catecholamines did not change in the non-flushing group. These results suggested that it is catecholamines released from the sympathetic nerve end or the adrenal medulla by AcH which caused an increase in pulse rate. 3. Bradykinin is released from high molecular kininogen by activated kallikrein and acts to dilate distal blood vessels and raise permeability in tissues. On the other hand, kallidin is released from low molecular kininogen by activated glandular kallikrein and its action is weaker than that of bradykinin. Blood low molecular kininogen levels in the flushing group decreased gradually after drinking and were mutually related to the blood AcH concentrations. But levels in the non-flushing group showed no difference

  4. Acetaldehyde stimulation of net gluconeogenic carbon movement from applied malic acid in tomato fruit pericarp tissue

    SciTech Connect

    Halinska, A.; Frenkel, C. )

    1991-03-01

    Applied acetaldehyde is known to lead to sugar accumulation in fruit including tomatoes (Lycopersicon esculentum) presumably due to stimulation of gluconeogenesis. This conjecture was examined using tomato fruit pericarp discs as a test system and applied l-(U-{sup 14}C)malic acid as the source for gluconeogenic carbon mobilization. Results indicate that malic and perhaps other organic acids are carbon sources for gluconeogenesis occurring normally in ripening tomatoes. The process is stimulated by acetaldehyde apparently by attenuating the fructose-2,6-biphosphate levels. The mode of the acetaldehyde regulation of fructose-2,6-biphosphate metabolism awaits clarification.

  5. Sensory effect of acetaldehyde on the perception of 3-mercaptohexan-1-ol and 3-isobutyl-2-methoxypyrazine: Role of acetaldehyde in sensory interactions

    DOE PAGES

    Coetzee, C.; Brand, J.; Jacobson, Daniel A.; ...

    2016-01-28

    Background and Aims-Wine aroma is influenced by complex interactions between various wine constituents. This study investigated the sensory interactive effects of Sauvignon Blanc impact compounds, 3-mercaptohexan-1-ol and 3-isobutyl-2-methoxypyrazine, with acetaldehyde that typically forms during the oxidation of wine. Methods and Results-Spiked model wines were subjected to sensory descriptive analysis using a trained sensory panel. Additionally, the concentration of each compound varied from below aroma threshold values to high values as reported for wine. Depending on the concentration, acetaldehyde enhanced fruity attributes at a lower concentration, whereas suppression occurred at a higher concentration. Acetaldehyde effectively suppressed the green pepper aroma attributemore » at certain concentration values, whereas 3-mercaptohexan-1-ol suppressed oxidised green apple associated with acetaldehyde. Changes in attributes used for aroma description also occurred because of change in concentration. Conclusions-Complex sensory interactions may occur between Sauvignon Blanc impact compounds and one of the main oxidation-derived compounds, acetaldehyde. Acetaldehyde can enhance or suppress pleasant fruity characters depending on the concentration. Significance of the Study-This study showed the potential positive effect of acetaldehyde on white wine aroma when present at a low concentration. Formation of this compound during winemaking and ageing should, however, be controlled because of negative sensory interactions occurring at a higher concentration. In conclusion, this study may also contribute to the sensory characterisation of Sauvignon Blanc wine undergoing oxidation.« less

  6. Sensory effect of acetaldehyde on the perception of 3-mercaptohexan-1-ol and 3-isobutyl-2-methoxypyrazine: Role of acetaldehyde in sensory interactions

    SciTech Connect

    Coetzee, C.; Brand, J.; Jacobson, Daniel A.; Du Toit, W. J.

    2016-01-28

    Background and Aims-Wine aroma is influenced by complex interactions between various wine constituents. This study investigated the sensory interactive effects of Sauvignon Blanc impact compounds, 3-mercaptohexan-1-ol and 3-isobutyl-2-methoxypyrazine, with acetaldehyde that typically forms during the oxidation of wine. Methods and Results-Spiked model wines were subjected to sensory descriptive analysis using a trained sensory panel. Additionally, the concentration of each compound varied from below aroma threshold values to high values as reported for wine. Depending on the concentration, acetaldehyde enhanced fruity attributes at a lower concentration, whereas suppression occurred at a higher concentration. Acetaldehyde effectively suppressed the green pepper aroma attribute at certain concentration values, whereas 3-mercaptohexan-1-ol suppressed oxidised green apple associated with acetaldehyde. Changes in attributes used for aroma description also occurred because of change in concentration. Conclusions-Complex sensory interactions may occur between Sauvignon Blanc impact compounds and one of the main oxidation-derived compounds, acetaldehyde. Acetaldehyde can enhance or suppress pleasant fruity characters depending on the concentration. Significance of the Study-This study showed the potential positive effect of acetaldehyde on white wine aroma when present at a low concentration. Formation of this compound during winemaking and ageing should, however, be controlled because of negative sensory interactions occurring at a higher concentration. In conclusion, this study may also contribute to the sensory characterisation of Sauvignon Blanc wine undergoing oxidation.

  7. Malondialdehyde-acetaldehyde adducts decrease bronchial epithelial wound repair.

    PubMed

    Wyatt, Todd A; Kharbanda, Kusum K; Tuma, Dean J; Sisson, Joseph H; Spurzem, John R

    2005-05-01

    Most people who abuse alcohol are cigarette smokers. Previously, we have shown that malondialdehyde, an inflammation product of lipid peroxidation, and acetaldehyde, a component of both ethanol metabolism and cigarette smoke, form protein adducts that stimulate protein kinase C (PKC) activation in bronchial epithelial cells. We have also shown that PKC can regulate bronchial epithelial cell wound repair. We hypothesize that bovine serum albumin adducted with malondialdehyde and acetaldehyde (BSA-MAA) decreases bronchial epithelial cell wound repair via binding to scavenger receptors on bronchial epithelial cells. To test this, confluent monolayers of bovine bronchial epithelial cells were grown in serum-free media prior to wounding the cells. Bronchial epithelial cell wound closure was inhibited in a dose-dependent manner (up to 60%) in the presence of BSA-MAA than in media treated cells (Laboratory of Human Carcinogenesis [LHC]-9-Roswell Park Memorial Institute [RPMI]). The specific scavenger receptor ligand, fucoidan, also stimulated PKC activation and decreased wound repair. Pretreatment with fucoidan blocked malondialdehyde-acetaldehyde binding to bronchial epithelial cells. When bronchial epithelial cells were preincubated with a PKC alpha inhibitor, Gö 6976, the inhibition of wound closure by fucoidan and BSA-MAA was blocked. Western blot demonstrated the presence of several scavenger receptors on bronchial epithelial cell membranes, including SRA, SRBI, SRBII, and CD36. Scavenger receptor-mediated activation of PKC alpha may function to reduce wound healing under conditions of alcohol and cigarette smoke exposure where malondialdehyde-acetaldehyde adducts may be present.

  8. Production of Acetaldehyde by Zymomonas mobilis

    PubMed Central

    Wecker, Matt S. A.; Zall, Robert R.

    1987-01-01

    Mutants of Zymomonas mobilis were selected for decreased alcohol dehydrogenase activity by using consecutively higher concentrations of allyl alcohol. A mutant selected by using 100 mM allyl alcohol produced acetaldehyde at a level of 4.08 g/liter when the organism was grown in aerated batch cultures on a medium containing 4.0% (wt/wt) glucose. On the basis of the amount of glucose utilized, this level of acetaldehyde production represents nearly 40% of the maximum theoretical yield. Acetaldehyde produced during growth was continuously air stripped from the reactor. Acetaldehyde present in the exhaust stream was then trapped as the acetaldehyde-bisulfite addition product in an aqueous solution of sodium bisulfite and released by treatment with base. Acetaldehyde was found to inhibit growth of Z. mobilis at concentrations as low as 0.05% (wt/wt) acetaldehyde. An acetaldehyde-tolerant mutant of Z. mobilis was isolated after both mutagenesis with nitrosoguanidine and selection in the presence of vapor-phase acetaldehyde. The production of acetaldehyde has potential advantages over that of ethanol: lower energy requirements for product separation, efficient separation of product from dilute feed streams, continuous separation of product from the reactor, and a higher marketplace value. PMID:16347497

  9. Production of acetaldehyde by Zymomonas mobilis

    SciTech Connect

    Wecker, M.S.A.; Zall, R.R.

    1987-12-01

    Mutants of Zymomonas mobilis were selected for decreased alcohol dehydrogenase activity by using consecutively higher concentration of allyl alcohol. A mutant selected by using 100 mM allyl alcohol produced acetaldehyde at a level of 4.08 g/liter when the organism was grown in aerated batch cultures on a medium containing 4.0% (wt/wt) glucose. On the basis of the amount of glucose utilized, this level of acetaldehyde production represents nearly 40% of the maximum theoretical yield. Acetaldehyde produced during growth was continuously air stripped from the reactor. Acetaldehyde present in the exhaust stream was then trapped as the acetaldehyde-bisulfite addition product in an aqueous solution of sodium bisulfite and released by treatment with base. Acetaldehyde was found to inhibit growth of Z. mobilis at concentrations as low as 0.05% (wt/wt) acetaldehyde. An acetaldehyde-tolerant mutant of Z. mobilis was isolated after both mutagenesis with nitrosoguanidine and selection in the presence of vapor-phase acetaldehyde. The production of acetaldehyde has potential advantages over that of ethanol: lower energy requirements for production separation, efficient separation of product from dilute feed streams, continuous separation of product from the reactor, and a higher marketplace value.

  10. Phototransduction Influences Metabolic Flux and Nucleotide Metabolism in Mouse Retina*

    PubMed Central

    Du, Jianhai; Rountree, Austin; Cleghorn, Whitney M.; Contreras, Laura; Lindsay, Ken J.; Sadilek, Martin; Gu, Haiwei; Djukovic, Danijel; Raftery, Dan; Satrústegui, Jorgina; Kanow, Mark; Chan, Lawrence; Tsang, Stephen H.; Sweet, Ian R.; Hurley, James B.

    2016-01-01

    Production of energy in a cell must keep pace with demand. Photoreceptors use ATP to maintain ion gradients in darkness, whereas in light they use it to support phototransduction. Matching production with consumption can be accomplished by coupling production directly to consumption. Alternatively, production can be set by a signal that anticipates demand. In this report we investigate the hypothesis that signaling through phototransduction controls production of energy in mouse retinas. We found that respiration in mouse retinas is not coupled tightly to ATP consumption. By analyzing metabolic flux in mouse retinas, we also found that phototransduction slows metabolic flux through glycolysis and through intermediates of the citric acid cycle. We also evaluated the relative contributions of regulation of the activities of α-ketoglutarate dehydrogenase and the aspartate-glutamate carrier 1. In addition, a comprehensive analysis of the retinal metabolome showed that phototransduction also influences steady-state concentrations of 5′-GMP, ribose-5-phosphate, ketone bodies, and purines. PMID:26677218

  11. Calcium Channels and Oxidative Stress Mediate a Synergistic Disruption of Tight Junctions by Ethanol and Acetaldehyde in Caco-2 Cell Monolayers

    PubMed Central

    Samak, Geetha; Gangwar, Ruchika; Meena, Avtar S.; Rao, Roshan G.; Shukla, Pradeep K.; Manda, Bhargavi; Narayanan, Damodaran; Jaggar, Jonathan H.; Rao, RadhaKrishna

    2016-01-01

    Ethanol is metabolized into acetaldehyde in most tissues. In this study, we investigated the synergistic effect of ethanol and acetaldehyde on the tight junction integrity in Caco-2 cell monolayers. Expression of alcohol dehydrogenase sensitized Caco-2 cells to ethanol-induced tight junction disruption and barrier dysfunction, whereas aldehyde dehydrogenase attenuated acetaldehyde-induced tight junction disruption. Ethanol up to 150 mM did not affect tight junction integrity or barrier function, but it dose-dependently increased acetaldehyde-mediated tight junction disruption and barrier dysfunction. Src kinase and MLCK inhibitors blocked this synergistic effect of ethanol and acetaldehyde on tight junction. Ethanol and acetaldehyde caused a rapid and synergistic elevation of intracellular calcium. Calcium depletion by BAPTA or Ca2+-free medium blocked ethanol and acetaldehyde-induced barrier dysfunction and tight junction disruption. Diltiazem and selective knockdown of TRPV6 or CaV1.3 channels, by shRNA blocked ethanol and acetaldehyde-induced tight junction disruption and barrier dysfunction. Ethanol and acetaldehyde induced a rapid and synergistic increase in reactive oxygen species by a calcium-dependent mechanism. N-acetyl-L-cysteine and cyclosporine A, blocked ethanol and acetaldehyde-induced barrier dysfunction and tight junction disruption. These results demonstrate that ethanol and acetaldehyde synergistically disrupt tight junctions by a mechanism involving calcium, oxidative stress, Src kinase and MLCK. PMID:27958326

  12. Calcium Channels and Oxidative Stress Mediate a Synergistic Disruption of Tight Junctions by Ethanol and Acetaldehyde in Caco-2 Cell Monolayers.

    PubMed

    Samak, Geetha; Gangwar, Ruchika; Meena, Avtar S; Rao, Roshan G; Shukla, Pradeep K; Manda, Bhargavi; Narayanan, Damodaran; Jaggar, Jonathan H; Rao, RadhaKrishna

    2016-12-13

    Ethanol is metabolized into acetaldehyde in most tissues. In this study, we investigated the synergistic effect of ethanol and acetaldehyde on the tight junction integrity in Caco-2 cell monolayers. Expression of alcohol dehydrogenase sensitized Caco-2 cells to ethanol-induced tight junction disruption and barrier dysfunction, whereas aldehyde dehydrogenase attenuated acetaldehyde-induced tight junction disruption. Ethanol up to 150 mM did not affect tight junction integrity or barrier function, but it dose-dependently increased acetaldehyde-mediated tight junction disruption and barrier dysfunction. Src kinase and MLCK inhibitors blocked this synergistic effect of ethanol and acetaldehyde on tight junction. Ethanol and acetaldehyde caused a rapid and synergistic elevation of intracellular calcium. Calcium depletion by BAPTA or Ca(2+)-free medium blocked ethanol and acetaldehyde-induced barrier dysfunction and tight junction disruption. Diltiazem and selective knockdown of TRPV6 or CaV1.3 channels, by shRNA blocked ethanol and acetaldehyde-induced tight junction disruption and barrier dysfunction. Ethanol and acetaldehyde induced a rapid and synergistic increase in reactive oxygen species by a calcium-dependent mechanism. N-acetyl-L-cysteine and cyclosporine A, blocked ethanol and acetaldehyde-induced barrier dysfunction and tight junction disruption. These results demonstrate that ethanol and acetaldehyde synergistically disrupt tight junctions by a mechanism involving calcium, oxidative stress, Src kinase and MLCK.

  13. ALDH2 modulates autophagy flux to regulate acetaldehyde-mediated toxicity thresholds

    PubMed Central

    Tanaka, Koji; Whelan, Kelly A; Chandramouleeswaran, Prasanna M; Kagawa, Shingo; Rustgi, Sabrina L; Noguchi, Chiaki; Guha, Manti; Srinivasan, Satish; Amanuma, Yusuke; Ohashi, Shinya; Muto, Manabu; Klein-Szanto, Andres J; Noguchi, Eishi; Avadhani, Narayan G; Nakagawa, Hiroshi

    2016-01-01

    A polymorphic mutation in the acetaldehyde dehydrogenase 2 (ALDH2) gene has been epidemiologically linked to the high susceptibility to esophageal carcinogenesis for individuals with alcohol use disorders. Mice subjected to alcohol drinking show increased oxidative stress and DNA adduct formation in esophageal epithelia where Aldh2 loss augments alcohol-induced genotoxic effects; however, it remains elusive as to how esophageal epithelial cells with dysfunctional Aldh2 cope with oxidative stress related to alcohol metabolism. Here, we investigated the role of autophagy in murine esophageal epithelial cells (keratinocytes) exposed to ethanol and acetaldehyde. We find that ethanol and acetaldehyde trigger oxidative stress via mitochondrial superoxide in esophageal keratinocytes. Aldh2-deficient cells appeared to be highly susceptible to ethanol- or acetaldehyde-mediated toxicity. Alcohol dehydrogenase-mediated acetaldehyde production was implicated in ethanol-induced cell injury in Aldh2 deficient cells as ethanol-induced oxidative stress and cell death was partially inhibited by 4-methylpyrazole. Acetaldehyde activated autophagy flux in esophageal keratinocytes where Aldh2 deficiency increased dependence on autophagy to cope with ethanol-induced acetaldehyde-mediated oxidative stress. Pharmacological inhibition of autophagy flux by chloroquine stabilized p62/SQSTM1, and increased basal and acetaldehyde-mediate oxidative stress in Aldh2 deficient cells as documented in monolayer culture as well as single-cell derived three-dimensional esophageal organoids, recapitulating a physiological esophageal epithelial proliferation-differentiation gradient. Our innovative approach indicates, for the first time, that autophagy may provide cytoprotection to esophageal epithelial cells responding to oxidative stress that is induced by ethanol and its major metabolite acetaldehyde. Defining autophagymediated cytoprotection against alcohol-induced genotoxicity in the context of

  14. Vibrational force constants for acetaldehyde

    NASA Astrophysics Data System (ADS)

    Nikolova, B.

    1990-05-01

    The vibrational force field of ethanal (acetaldehyde), CH 3CHO, is refined by using procedures with differential increments for the force constants (Commun. Dep. Chem., Bulg. Acad. Sci., 21/3 (1988) 433). The characteristics general valence force constants of the high-dimensional symmetry classes of ethanal, A' of tenth and A″ of fifth order, are determined for the experimental assignment of bands. The low barrier to hindered internal rotation about the single carbon—carbon bond is quantitatively estimated on the grounds of normal vibrational analysis.

  15. Proton transfer in acetaldehyde and acetaldehyde-water clusters: Vacuum ultraviolet photoionization experiment and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Kostko, Oleg; Troy, Tyler P.; Bandyopadhyay, Biswajit; Ahmed, Musahid

    2015-03-01

    Acetaldehyde, a probable human carcinogen and of environmental importance, upon solvation provides a test bed for understanding proton transfer pathways and catalytic mechanisms. In this study, we report on single photon vacuum ultraviolet photoionization of small acetaldehyde and acetaldehyde-water clusters. Appearance energies of protonated clusters are extracted from the experimental photoionization efficiency curves and compared to electronic structure calculations. The comparison of experimental data to computational results provides mechanistic insight into the fragmentation mechanisms of the observed mass spectra. Using deuterated water for isotopic tagging, we observe that proton transfer is mediated via acetaldehyde and not water in protonated acetaldehyde-water clusters.

  16. Novel physiological roles for glutathione in sequestering acetaldehyde to confer acetaldehyde tolerance in Saccharomyces cerevisiae.

    PubMed

    Matsufuji, Yoshimi; Yamamoto, Kohei; Yamauchi, Kosei; Mitsunaga, Tohru; Hayakawa, Takashi; Nakagawa, Tomoyuki

    2013-01-01

    In this work, we identified novel physiological functions of glutathione in acetaldehyde tolerance in Saccharomyces cerevisiae. Strains deleted in the genes encoding the enzymes involved in glutathione synthesis and reduction, GSH1, GSH2 and GLR1, exhibited severe growth defects compared to wild-type under acetaldehyde stress, although strains deleted in the genes encoding glutathione peroxidases or glutathione transferases did not show any growth defects. On the other hand, intracellular levels of reduced glutathione decreased in the presence of acetaldehyde in response to acetaldehyde concentration. Moreover, we show that glutathione can trap a maximum of four acetaldehyde molecules within its molecule in a non-enzymatic manner. Taken together, these findings suggest that glutathione has an important role in acetaldehyde tolerance, as a direct scavenger of acetaldehyde in the cell.

  17. Genetic and metabolic influences on LDL subclasses

    SciTech Connect

    Krauss, R.M.; Rotter, J.I.; Lusis, A.J.

    1994-09-01

    Genetic and environmental factors influence LDL particle size and density, and expression of an atherogenic lipoprotein phenotype (ALP) characterized by predominance of small, dense LDL particles. Linkage of ALP the LDL receptor locus has been reported previously. Quantitative sib-pair relative-pair linkage methodologies were used to test for linkage of LDL particle size to candidate loci in 25 large pedigrees with familial coronary artery disease. Linkage to the LDL receptor gene locus was confirmed (p=0.008). Evidence was also obtained for linkage to the genes for apoCIII, cholesteryl ester transfer protein, and manganese superoxide dismutase. The results suggest multiple genetic determinants of LDL particle size that may involve different metabolic mechanisms giving rise to small, dense LDL and increased atherosclerosis risk.

  18. Implications of acetaldehyde-derived DNA adducts for understanding alcohol-related carcinogenesis.

    PubMed

    Balbo, Silvia; Brooks, Philip J

    2015-01-01

    Among various potential mechanisms that could explain alcohol carcinogenicity, the metabolism of ethanol to acetaldehyde represents an obvious possible mechanism, at least in some tissues. The fundamental principle of genotoxic carcinogenesis is the formation of mutagenic DNA adducts in proliferating cells. If not repaired, these adducts can result in mutations during DNA replication, which are passed on to cells during mitosis. Consistent with a genotoxic mechanism, acetaldehyde does react with DNA to form a variety of different types of DNA adducts. In this chapter we will focus more specifically on N2-ethylidene-deoxyguanosine (N2-ethylidene-dG), the major DNA adduct formed from the reaction of acetaldehyde with DNA and specifically highlight recent data on the measurement of this DNA adduct in the human body after alcohol exposure. Because results are of particular biological relevance for alcohol-related cancer of the upper aerodigestive tract (UADT), we will also discuss the histology and cytology of the UADT, with the goal of placing the adduct data in the relevant cellular context for mechanistic interpretation. Furthermore, we will discuss the sources and concentrations of acetaldehyde and ethanol in different cell types during alcohol consumption in humans. Finally, in the last part of the chapter, we will critically evaluate the concept of carcinogenic levels of acetaldehyde, which has been raised in the literature, and discuss how data from acetaldehyde genotoxicity are and can be utilized in physiologically based models to evaluate exposure risk.

  19. Carbon isotope analysis of acetaldehyde emitted from leaves following mechanical stress and anoxia.

    PubMed

    Jardine, K; Karl, T; Lerdau, M; Harley, P; Guenther, A; Mak, J E

    2009-07-01

    Although the emission of acetaldehyde from plants into the atmosphere following biotic and abiotic stresses may significantly impact air quality and climate, its metabolic origin(s) remains uncertain. We investigated the pathway(s) responsible for the production of acetaldehyde in plants by studying variations in the stable carbon isotope composition of acetaldehyde emitted during leaf anoxia or following mechanical stress. Under an anoxic environment, C3 leaves produced acetaldehyde during ethanolic fermentation with a similar carbon isotopic composition to C3 bulk biomass. In contrast, the initial emission burst following mechanical wounding was 5-12 per thousand more depleted in (13)C than emissions under anoxia. Due to a large kinetic isotope effect during pyruvate decarboxylation catalysed by pyruvate dehydrogenase, acetyl-CoA and its biosynthetic products such as fatty acids are also depleted in (13)C relative to bulk biomass. It is well known that leaf wounding stimulates the release of large quantities of fatty acids from membranes, as well as the accumulation of reactive oxygen species (ROS). We suggest that, following leaf wounding, acetaldehyde depleted in (13)C is produced from fatty acid peroxidation reactions initiated by the accumulation of ROS. However, a variety of other pathways could also explain our results, including the conversion of acetyl-CoA to acetaldehyde by the esterase activity of aldehyde dehydrogenase.

  20. An Optimized Method for the Measurement of Acetaldehyde by High-Performance Liquid Chromatography

    PubMed Central

    Guan, Xiangying; Rubin, Emanuel; Anni, Helen

    2011-01-01

    Background Acetaldehyde is produced during ethanol metabolism predominantly in the liver by alcohol dehydrogenase, and rapidly eliminated by oxidation to acetate via aldehyde dehydrogenase. Assessment of circulating acetaldehyde levels in biological matrices is performed by headspace gas chromatography and reverse phase high-performance liquid chromatography (RP-HPLC). Methods We have developed an optimized method for the measurement of acetaldehyde by RP-HPLC in hepatoma cell culture medium, blood and plasma. After sample deproteinization, acetaldehyde was derivatized with 2,4-dinitrophenylhydrazine (DNPH). The reaction was optimized for pH, amount of derivatization reagent,, time and temperature. Extraction methods of the acetaldehyde-hydrazone (AcH-DPN) stable derivative and product stability studies were carried out. Acetaldehyde was identified by its retention time in comparison to AcH-DPN standard, using a new chromatography gradient program, and quantitated based on external reference standards and standard addition calibration curves in the presence and absence of ethanol. Results Derivatization of acetaldehyde was performed at pH 4.0 with a 80-fold molar excess of DNPH. The reaction was completed in 40 min at ambient temperature, and the product was stable for 2 days. A clear separation of AcH-DNP from DNPH was obtained with a new 11-min chromatography program. Acetaldehyde detection was linear up to 80 μM. The recovery of acetaldehyde was >88% in culture media, and >78% in plasma. We quantitatively determined the ethanol-derived acetaldehyde in hepatoma cells, rat blood and plasma with a detection limit around 3 μM. The accuracy of the method was <9% for intraday and <15% for interday measurements, in small volume (70 μl) plasma sampling. Conclusions An optimized method for the quantitative determination of acetaldehyde in biological systems was developed using derivatization with DNPH, followed by a short RP-HPLC separation of AcH-DNP. The method has

  1. The metabolism of ethanol-derived acetaldehyde by alcohol dehydrogenase (EC 1.1.1.1) and aldehyde dehydrogenase (EC 1.2.1.3) in Drosophila melanogaster larvae.

    PubMed Central

    Heinstra, P W; Geer, B W; Seykens, D; Langevin, M

    1989-01-01

    Both aldehyde dehydrogenase (ALDH, EC 1.2.1.3) and the aldehyde dehydrogenase activity of alcohol dehydrogenase (ADH, EC 1.1.1.1) were found to coexist in Drosophila melanogaster larvae. The enzymes, however, showed different inhibition patterns with respect to pyrazole, cyanamide and disulphiram. ALDH-1 and ALDH-2 isoenzymes were detected in larvae by electrophoretic methods. Nonetheless, in tracer studies in vivo, more than 75% of the acetaldehyde converted to acetate by the ADH ethanol-degrading pathway appeared to be also catalysed by the ADH enzyme. The larval fat body probably was the major site of this pathway. Images Fig. 1. Fig. 2. PMID:2499314

  2. Role of acetaldehyde in tobacco smoke addiction.

    PubMed

    Talhout, Reinskje; Opperhuizen, Antoon; van Amsterdam, Jan G C

    2007-10-01

    This review evaluates the presumed contribution of acetaldehyde to tobacco smoke addiction. In rodents, acetaldehyde induces reinforcing effects, and acts in concert with nicotine. Harman and salsolinol, condensation products of acetaldehyde and biogenic amines, may be responsible for the observed reinforcing effect of acetaldehyde. Harman and salsolinol inhibit monoamine oxidase (MAO), and some MAO-inhibitors are known to increase nicotine self-administration and maintain behavioural sensitization to nicotine. Harman is formed in cigarette smoke, and blood harman levels appear to be 2-10 times higher compared to non-smokers. Since harman readily passes the blood-brain barrier and has sufficient MAO-inhibiting potency, it may contribute to the lower MAO-activity observed in the brain of smokers. In contrast, the minor amounts of salsolinol that can be formed in vivo most likely do not contribute to tobacco addiction. Thus, acetaldehyde may increase the addictive potential of tobacco products via the formation of acetaldehyde-biogenic amine adducts in cigarette smoke and/or in vivo, but further research is necessary to substantiate this hypothesis.

  3. Effects of acetaldehyde on hepatocyte glycerol uptake and cell size: implication of Aquaporin 9

    PubMed Central

    Potter, James J.; Koteish, Ayman; Hamilton, James; Liu, Xiaopu; Liu, Kun; Agre, Peter; Mezey, Esteban

    2010-01-01

    Background The effects of ethanol and acetaldehyde on uptake of glycerol and on cell size of hepatocytes and a role Aquaporin 9 (AQP9), a glycerol transport channel, were evaluated. Methods The studies were done in primary rat and mouse hepatocytes. The uptake of [14C] glycerol was determined with hepatocytes in suspension. For determination of cell size, rat hepatocytes on coated dishes were incubated with a lipophilic fluorochrome that is incorporated into the cell membrane and examined by confocal microscopy. A three dimensional z scan of the cell was performed, and the middle slice of the z scan was used for area measurements. Results Acute exposure to acetaldehyde, but not to ethanol, causes a rapid increase in the uptake of glycerol and an increase in hepatocyte size, which was inhibited by HgCl2, an inhibitor of aquaporins. This was not observed in hepatocytes from AQP9 knockout mice, nor observed by direct application of acetaldehyde to AQP9 expressed in Xenopus Laevis oocytes. Prolonged 24 hours exposure to either acetaldehyde or ethanol did not result in an increase in glycerol uptake by rat hepatocytes. Acetaldehyde decreased AQP9 mRNA and AQP9 protein, while ethanol decreased AQP9 mRNA but not AQP9 protein. Ethanol, but not acetaldehyde, increased the activities of glycerol kinase and phosphoenolpyruvate carboxykinase. Conclusions The acute effects of acetaldehyde, while mediated by AQP9, are probably influenced by binding of acetaldehyde to hepatocyte membranes and changes in cell permeability. The effects of ethanol in enhancing glucose kinase, and phosphoenolpyruvate carboxykinase leading to increased formation of glycerol-3-phosphate most likely contribute to alcoholic fatty liver. PMID:21294757

  4. Influence of Nutritional Factors on Lipid Metabolism.

    DTIC Science & Technology

    1980-12-01

    on lipid metabolism in the liver, muscle , a freuenlydiffers and is species dependent. Fatty acid ul UCASIFTED SECURITY CLASSIFICATION OF THIS PA49MhM...The effect of diet on lipid metabolism in the liver, muscle , and adipose tissue frequently differs and is species dependent. Fatty acid uptake...will encom- pass the effect of diet on lipid metabolism in the liver, muscle , and adipose tissue, with emphasis on fatty acid uptake, synthesis

  5. Influence of Metabolism on Epigenetics and Disease

    PubMed Central

    Kaelin, William G.; McKnight, Steven L.

    2013-01-01

    Chemical modifications of histones and DNA, such as histone methylation, histone acetylation, and DNA methylation, play critical roles in epigenetic gene regulation. Many of the enzymes that add or remove such chemical modifications are known, or might be suspected, to be sensitive to changes in intracellular metabolism. This knowledge provides a conceptual foundation for understanding how mutations in the metabolic enzymes SDH, FH, and IDH can result in cancer and, more broadly, for how alterations in metabolism and nutrition might contribute to disease. Here, we review literature pertinent to hypothetical connections between metabolic and epigenetic states in eukaryotic cells. PMID:23540690

  6. The effects of acetaldehyde on nicotine-induced transmitter levels in young and adult brain areas.

    PubMed

    Sershen, H; Shearman, E; Fallon, S; Chakraborty, G; Smiley, J; Lajtha, A

    2009-08-14

    The aim of the present study was to examine the effect of acetaldehyde administration on neurotransmitters in the presence of nicotine in brain areas associated with cognition and reward. We assayed these effects via microdialysis in conscious freely moving male Sprague-Dawley rats. It was reported that low doses of acetaldehyde enhance nicotine self-administration in young, but not in adult rats. Since nicotine enhances reward and learning, while acetaldehyde is reported to enhance reward but inhibit learning, acetaldehyde thus would be likely to stimulate reward without stimulating learning. We hoped that examining the effects of acetaldehyde (on nicotine-mediated neurotransmitter changes) would help to distinguish reward mechanisms less influenced by learning mechanisms. To avoid the aversive effect of acetaldehyde, we used a low dose of acetaldehyde (0.16 mg/kg) administered after nicotine (0.3mg/kg). We analyzed six brain regions: nucleus accumbens shell (NAccS), ventral tegmental area (VTA), ventral and dorsal hippocampus (VH and DH), and prefrontal and medial temporal cortex (PFC, MTC), assaying dopamine (DA), norepinephrine (NE) and serotonin (5-HT) and their metabolites in young and adult rats. The effect of acetaldehyde on nicotine-induced transmitter changes was different in young as compared to adult rat brain regions. In the NAccS of the young, DA was not affected while NE and 5-HT were increased. In the adult in this area DA and NE were decreased, while 5-HT was not altered. In other areas also in many cases, the effect of acetaldehyde in the young and in the adult was different. As an example, acetaldehyde administration increased NE in young and decreased NE in adult DH. We found stimulation of nicotine-induced changes by acetaldehyde in seven instances - six of these were observed in areas in young brain, NE in four areas (NAccS, DH, VH, and PFC), and 5-HT in two (NAccS and DH). Only one increase was noted in adult brain (DA in VTA). Inhibition of

  7. The ethanol metabolite acetaldehyde increases paracellular drug permeability in vitro and oral bioavailability in vivo.

    PubMed

    Fisher, Scott J; Swaan, Peter W; Eddington, Natalie D

    2010-01-01

    Alcohol consumption leads to the production of the highly reactive ethanol metabolite, acetaldehyde, which may affect intestinal tight junctions and increase paracellular permeability. We examined the effects of elevated acetaldehyde within the gastrointestinal tract on the permeability and bioavailability of hydrophilic markers and drug molecules of variable molecular weight and geometry. In vitro permeability was measured unidirectionally in Caco-2 and MDCKII cell models in the presence of acetaldehyde, ethanol, or disulfiram, an aldehyde dehydrogenase inhibitor, which causes acetaldehyde formation when coadministered with ethanol in vivo. Acetaldehyde significantly lowered transepithelial resistance in cell monolayers and increased permeability of the low-molecular-weight markers, mannitol and sucrose; however, permeability of high-molecular-weight markers, polyethylene glycol and inulin, was not affected. In vivo permeability was assessed in male Sprague-Dawley rats treated for 6 days with ethanol, disulfiram, or saline alone or in combination. Bioavailability of naproxen was not affected by any treatment, whereas that of paclitaxel was increased upon acetaldehyde exposure. Although disulfiram has been shown to inhibit multidrug resistance-1 P-glycoprotein (P-gp) in vitro, our data demonstrate that the known P-gp substrate paclitaxel is not affected by coadministration of disulfiram. In conclusion, we demonstrate that acetaldehyde significantly modulates tight junctions and paracellular permeability in vitro as well as the oral bioavailability of low-molecular-weight hydrophilic probes and therapeutic molecules in vivo even when these molecules are substrates for efflux transporters. These studies emphasize the significance of ethanol metabolism and drug interactions outside of the liver.

  8. Commentary: acetaldehyde and epithelial-to-mesenchymal transition in colon.

    PubMed

    Rao, Radhakrishna K

    2014-02-01

    Elamin and colleagues in this issue report that acetaldehyde activates Snail, a transcription factor involved in epithelial-to-mesenchymal transition, in an intestinal epithelium. Snail mediates acetaldehyde-induced tight junction disruption and increase in paracellular permeability. Results of this study and other previous studies raise several important questions. This commentary addresses these questions by discussing the acetaldehyde concentration in colon, disruption of epical junctional complexes in the intestinal epithelium by acetaldehyde, and the consequence of long-term exposure to acetaldehyde on colonic epithelial regeneration, carcinogenesis, and metastases. The precise role of acetaldehyde in colonic epithelial modifications and promotion of colorectal cancers still remains to be understood.

  9. Acetaldehyde addition throughout the growth phase alleviates the phenotypic effect of zinc deficiency in Saccharomyces cerevisiae.

    PubMed

    Cheraiti, Naoufel; Sauvage, François-Xavier; Salmon, Jean-Michel

    2008-01-01

    During experiments to determine the effects of exogenously added acetaldehyde on pure cultures of various yeast strains, we discovered that an early acetaldehyde perfusion during the growth phase allowed several yeasts to partially overcome the phenotypic effects of zinc depletion during alcoholic fermentation. We, therefore, performed genome-wide expression and proteomic analysis on an industrial Saccharomyces cerevisiae yeast strain (VL1) growing in zinc-replete or zinc-depleted conditions in the presence of perfused acetaldehyde to identify molecular markers of this effect. Zinc depletion severely affects ethanol production and therefore nicotinamide adenine dinucleotide (NAD) regeneration, although we observed partial compensation by the upregulation of the poorly efficient Fe-dependent Adh4p in our conditions. A coordinate metabolic response was indeed observed in response to the early acetaldehyde perfusion, and particularly of the lower part of glycolysis, leading to the cellular replenishment of NAD cofactor. These various findings suggest that acetaldehyde exchange between strains may inhibit the growth of some yeast strains while encouraging the growth of others. This phenomenon could be particularly important for understanding the ecology of colonization of complex fermentation media by S. cerevisiae after elimination of non-Saccharomyces yeasts.

  10. Genetic-epidemiological evidence for the role of acetaldehyde in cancers related to alcohol drinking.

    PubMed

    Eriksson, C J Peter

    2015-01-01

    Alcohol drinking increases the risk for a number of cancers. Currently, the highest risk (Group 1) concerns oral cavity, pharynx, larynx, esophagus, liver, colorectum, and female breast, as assessed by the International Agency for Research on Cancer (IARC). Alcohol and other beverage constituents, their metabolic effects, and alcohol-related unhealthy lifestyles have been suggested as etiological factors. The aim of the present survey is to evaluate the carcinogenic role of acetaldehyde in alcohol-related cancers, with special emphasis on the genetic-epidemiological evidence. Acetaldehyde, as a constituent of alcoholic beverages, and microbial and endogenous alcohol oxidation well explain why alcohol-related cancers primarily occur in the digestive tracts and other tissues with active alcohol and acetaldehyde metabolism. Genetic-epidemiological research has brought compelling evidence for the causality of acetaldehyde in alcohol-related cancers. Thus, IARC recently categorized alcohol-drinking-related acetaldehyde to Group 1 for head and neck and esophageal cancers. This is probably just the tip of the iceberg, since more recent epidemiological studies have also shown significant positive associations between the aldehyde dehydrogenase ALDH2 (rs671)*2 allele (encoding inactive enzyme causing high acetaldehyde elevations) and gastric, colorectal, lung, and hepatocellular cancers. However, a number of the current studies lack the appropriate matching or stratification of alcohol drinking in the case-control comparisons, which has led to erroneous interpretations of the data. Future studies should consider these aspects more thoroughly. The polymorphism phenotypes (flushing and nausea) may provide valuable tools for future successful health education in the prevention of alcohol-drinking-related cancers.

  11. Heterogeneous Interactions of Acetaldehyde and Sulfuric Acid

    NASA Technical Reports Server (NTRS)

    Michelsen, R. R.; Ashbourn, S. F. M.; Iraci, L. T.

    2004-01-01

    The uptake of acetaldehyde [CH3CHO] by aqueous sulfuric acid has been studied via Knudsen cell experiments over ranges of temperature (210-250 K) and acid concentration (40-80 wt. %) representative of the upper troposphere. The Henry's law constants for acetaldehyde calculated from these data range from 6 x 10(exp 2) M/atm for 40 wt. % H2SO4 at 228 K to 2 x 10(exp 5) M/atm for 80 wt. % H2SO4 at 212 K. In some instances, acetaldehyde uptake exhibits apparent steady-state loss. The possible sources of this behavior, including polymerization, will be explored. Furthermore, the implications for heterogeneous reactions of aldehydes in sulfate aerosols in the upper troposphere will be discussed.

  12. Para-methylstyrene from toluene and acetaldehyde

    SciTech Connect

    Innes, R.A.; Occelli, M.L.

    1984-08-01

    High yields of para-methylstyrene (PMS) were obtained in this study by coupling toluene and acetaldehyde then cracking the resultant 1,1-ditolylethane (DTE) to give equimolar amounts of PMS and toluene. In the first step, a total DTE and ''trimer'' yield of 98% on toluene and 93% on acetaldehyde was obtained using 98% sulfuric acid as catalyst at 5-10/sup 0/C. In the second step, a choline chloride-offretite cracked DTE with 84.0% conversion and 91% selectivity to PMS and toluene. Additional PMS can be obtained by cracking the by-product ''trimer'' formed by coupling DTE and toluene with acetaldehyde. Zeolite Rho was as active but yielded less PMS (86%) and produced more para-ethyltoluene (PET), an undesirable by-product.

  13. Acetone and Acetaldehyde Exchange Above a Managed Temperate Mountain Grassland

    NASA Astrophysics Data System (ADS)

    Hörtnagl, L. J.; Bamberger, I.; Graus, M.; Ruuskanen, T.; Schnitzhofer, R.; Hansel, A.; Wohlfahrt, G.

    2011-12-01

    measurement campaigns and during undisturbed conditions. The shortcomings in predicting VOC fluxes might be a consequence of missing parameters that were not captured by our meteorological data. The identification and quantification of biochemical cycles associated with soil and plant root processes and the possible influence of insect life cycles on VOC exchange might provide important information during the development and parameterization of VOC models. The total amount of carbon associated with the VOC flux of the two compounds was low: the grassland was a net source of acetaldehyde in both years with emissions of 21.8 mg C m-2 and 10.2 mg C m-2 in 2008 and 2009, respectively, while the meadow was a source of acetone in 2008 with 14.6 mg C m-2 and a sink in 2009 with a cumulative uptake of 5.0 mg C m-2.

  14. Modeling of experimental treatment of acetaldehyde-laden air and phenol-containing water using corona discharge technique.

    PubMed

    Faungnawakij, Kajornsak; Sano, Noriaki; Charinpanitkul, Tawatchai; Tanthapanichakoon, Wiwut

    2006-03-01

    Acetaldehyde-laden air and phenol-contaminated water were experimentally treated using corona discharge reactions and gas absorption in a single water-film column. Mathematical modeling of the combined treatment was developed in this work. Efficient removal of the gaseous acetaldehyde was achieved while the corona discharge reactions produced short-lived species such as O and O- as well as ozone. Direct contact of the radicals and ions with water was known to produce aqueous OH radical, which contributes to the decomposition of organic contaminants: phenol, absorbed acetaldehyde, and intermediate byproducts in the water. The influence of initial phenol concentration ranging from 15 to 50 mg L(-1) and that of influent acetaldehyde ranging from 0 to 200 ppm were experimentally investigated and used to build the math model. The maximum energetic efficiency of TOC, phenol, and acetaldehyde were obtained at 25.6 x 10(-9) mol carbon J(-1), 25.0 x 10(-9) mol phenol J(-1), and 2.0 x 10(-9) mol acetaldehyde J(-1), respectively. The predictions for the decomposition of acetaldehyde, phenol, and their intermediates were found to be in good agreement with the experimental results.

  15. Pathogenesis of alcoholic liver disease: Role of oxidative metabolism

    PubMed Central

    Ceni, Elisabetta; Mello, Tommaso; Galli, Andrea

    2014-01-01

    Alcohol consumption is a predominant etiological factor in the pathogenesis of chronic liver diseases, resulting in fatty liver, alcoholic hepatitis, fibrosis/cirrhosis, and hepatocellular carcinoma (HCC). Although the pathogenesis of alcoholic liver disease (ALD) involves complex and still unclear biological processes, the oxidative metabolites of ethanol such as acetaldehyde and reactive oxygen species (ROS) play a preeminent role in the clinical and pathological spectrum of ALD. Ethanol oxidative metabolism influences intracellular signaling pathways and deranges the transcriptional control of several genes, leading to fat accumulation, fibrogenesis and activation of innate and adaptive immunity. Acetaldehyde is known to be toxic to the liver and alters lipid homeostasis, decreasing peroxisome proliferator-activated receptors and increasing sterol regulatory element binding protein activity via an AMP-activated protein kinase (AMPK)-dependent mechanism. AMPK activation by ROS modulates autophagy, which has an important role in removing lipid droplets. Acetaldehyde and aldehydes generated from lipid peroxidation induce collagen synthesis by their ability to form protein adducts that activate transforming-growth-factor-β-dependent and independent profibrogenic pathways in activated hepatic stellate cells (HSCs). Furthermore, activation of innate and adaptive immunity in response to ethanol metabolism plays a key role in the development and progression of ALD. Acetaldehyde alters the intestinal barrier and promote lipopolysaccharide (LPS) translocation by disrupting tight and adherent junctions in human colonic mucosa. Acetaldehyde and LPS induce Kupffer cells to release ROS and proinflammatory cytokines and chemokines that contribute to neutrophils infiltration. In addition, alcohol consumption inhibits natural killer cells that are cytotoxic to HSCs and thus have an important antifibrotic function in the liver. Ethanol metabolism may also interfere with cell

  16. Cellular metabolism in colorectal carcinogenesis: Influence of lifestyle, gut microbiome and metabolic pathways.

    PubMed

    Hagland, Hanne R; Søreide, Kjetil

    2015-01-28

    The interconnectivity between diet, gut microbiota and cell molecular responses is well known; however, only recently has technology allowed the identification of strains of microorganisms harbored in the gastrointestinal tract that may increase susceptibility to cancer. The colonic environment appears to play a role in the development of colon cancer, which is influenced by the human metabolic lifestyle and changes in the gut microbiome. Studying metabolic changes at the cellular level in cancer be useful for developing novel improved preventative measures, such as screening through metabolic breath-tests or treatment options that directly affect the metabolic pathways responsible for the carcinogenicity.

  17. [Metabolic pathways of OGCP and the influence of parkin protein on the metabolism of OGCP].

    PubMed

    Wang, Chun-yu; Cao, Li; Tang, Bei-sha; Zhang, Hai-nan; Guo, Ji-feng; Liao, Shu-sheng; Tang, Jian-guang; Yan, Xin-riang; Tan, Li-ming

    2011-03-01

    To study the metabolic pathways of 2-oxoglutarate carrier protein (OGCP)and the influence of parkin protein on the metabolism of OGCP. The OGCP metabolic pathways were identified through inhibiting proteasome activities with specific proteasome inhibitors and protease inhibitors. The isotope pulse-chase experiments were performed to measure the turnover rate of OGCP and to study the influence of parkin protein on the metabolism of OGCP. Proteasome inhibitors and protease inhibitors inhibited OGCP degradation. The OGCP metabolism had a half-life of about 8-10 h. Overexpression of parkin protein accelerated the OGCP degradation. OGCP degrades through proteasome and lysosome degradation pathways. The degradation of parkin protein can promote the degradation of OGCP.

  18. Determinations of ethanol, acetaldehyde and acetate in blood and urine during alcohol oxidation in man.

    PubMed

    Tsukamoto, S; Muto, T; Nagoya, T; Shimamura, M; Saito, M; Tainaka, H

    1989-01-01

    Blood and urine samples were analyzed for ethanol, acetaldehyde and acetate during alcohol oxidation in Japanese men by head space gas chromatography, following the consumption of 16 ml/kg of beer during a 20 min period. The maximum level of blood/urine ethanol was found to be 15-17 mM (20-22 mM), while that of acetaldehyde in a flusher and in non-flushers was 20 microM (52 microM) and 2-5 microM (10-13 microM), respectively. Acetate levels in these groups ranged from 0.2 mM (0.1 mM) to 0.8 mM (1.0 mM). Blood ethanol levels were dose dependent, whereas acetaldehyde and acetate levels reflected individual metabolic rates. The relative concentrations of ethanol and acetaldehyde in blood and that of acetate in alcohol metabolism could be summarized as follows: 7500 (15 mM): 1-3 (2-5 microM); 250-400 (0.5-0.8 mM) for non-flushers; and 7500 (15 mM): 5-10 (10-20 microM): 250-400 (0.5-0.8 mM) for a flusher.

  19. Influence of nutrition on liver oxidative metabolism.

    PubMed

    Jorquera, F; Culebras, J M; González-Gallego, J

    1996-06-01

    The liver plays a major role in the disposition of the majority of drugs. This is due to the presence of several drug-metabolizing enzyme systems, including a group of membrane-bound mixed-function oxidative enzymes, mainly the cytochrome P450 system. Hepatic oxidative capacity can be assessed by changes in antipyrine metabolism. Different drugs and other factors may induce or inhibit the cytochrome P450-dependent system. This effect is important in terms of the efficacy or toxicity of drugs that are substrates for the system. Microsomal oxidation in animals fed with protein-deficient diets is depressed. The mixed-function oxidase activity recovers after a hyperproteic diet or the addition of lipids. Similar findings have been reported in patients with protein-calorie malnutrition, although results in the elderly are conflicting. Different studies have revealed that microsomal oxidation is impaired by total parenteral nutrition and that this effect is absent when changing the caloric source from carbohydrates to a conventional amino acid solution or after lipid addition, especially when administered as medium-chain/long-chain triglyceride mixtures. Peripheral parenteral nutrition appears to increase antipyrine clearance.

  20. Acetaldehyde detoxification using resting cells of recombinant Escherichia coli overexpressing acetaldehyde dehydrogenase.

    PubMed

    Yao, Zhengying; Zhang, Chong; Zhao, Junfeng; Lu, Fengxia; Bie, Xiaomei; Lu, Zhaoxin

    2014-02-01

    Acetaldehyde dehydrogenase (E.C. 1.2.1.10) plays a key role in the acetaldehyde detoxification. The recombinant Escherichia coli cells producing acetaldehyde dehydrogenase (ist-ALDH) were applied as whole-cell biocatalysts for biodegradation of acetaldehyde. Response surface methodology (RSM) was employed to enhance the production of recombinant ist-ALDH. Under the optimum culture conditions containing 20.68 h post-induction time, 126.75 mL medium volume and 3 % (v/v) inoculum level, the maximum ist-ALDH activity reached 496.65 ± 0.81 U/mL, resulting in 12.5-fold increment after optimization. Furthermore, the optimum temperature and pH for the catalytic activity of wet cells were 40 °C and pH 9.5, respectively. The biocatalytic activity was improved 80 % by permeabilizing the recombinant cells with 0.075 % (v/v) Triton X-100. When using 2 mmol/L NAD(+) as coenzyme, the permeabilized cells could catalyze 98 % of acetaldehyde within 15 min. The results indicated that the recombinant E. coli with high productivity of ist-ALDH might be highly efficient and easy-to-make biocatalysts for acetaldehyde detoxification.

  1. Ethanol and acetaldehyde induce similar changes in extracellular levels of glutamate, taurine and GABA in rat anterior cingulate cortex.

    PubMed

    Zuo, Gong Cheng; Yang, Jing Yu; Hao, Yue; Dong, Ying Xu; Wu, Chun Fu

    2007-03-30

    It is controversial regarding to the roles of acetaldehyde and ethanol in the central nervous system. In the present study, the effects of acetaldehyde and ethanol on extracellular levels of glutamate, taurine and GABA in the anterior cingulate cortex (ACC) of freely moving rats were investigated by using the microdialysis technique coupled to high performance liquid chromatography (HPLC) with fluorescent detection. The result showed that glutamate levels were significantly decreased after acute administration of acetaldehyde (AcH, 20 and 100 mg/kg, i.p.), while taurine levels were significantly increased after the higher dose of acetaldehyde (100 mg/kg, i.p.). GABA levels had no changes at any doses of acetaldehyde tested. Interestingly, similar changes of these amino acids were induced by ethanol (EtOH, 3 g/kg, i.p.) when sodium azide (NaN3, 10 mg/kg, i.p.), a catalase inhibitor that can reduce brain ethanol metabolism, was used simultaneously. These findings suggest that acetaldehyde and ethanol have the similar effects on the extracellular output of glutamate, taurine and GABA in the ACC.

  2. Polymorphism of ethanol-metabolism genes and alcoholism: correlation of allelic variations with the pharmacokinetic and pharmacodynamic consequences.

    PubMed

    Chen, Yi-Chyan; Peng, Giia-Sheun; Wang, Ming-Fang; Tsao, Tien-Ping; Yin, Shih-Jiun

    2009-03-16

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are the principal enzymes responsible for metabolism of ethanol. Both ADH and ALDH exhibit genetic polymorphisms among racial populations. Functional variant alleles ADH1B*2 and ALDH2*2 have been consistently replicated to show protection against developing alcohol dependence. Multiple logistic regression analyses suggest that ADH1B*2 and ALDH2*2 may independently influence the risk for alcoholism. It has been well documented that homozygosity of ALDH2*2 almost fully protects against developing alcoholism and that the heterozygosity only affords a partial protection to varying degrees. Correlations of blood ethanol and acetaldehyde concentrations, cardiovascular hemodynamic responses, and subjective perceptions have been investigated in men with different combinatorial ADH1B and ALDH2 genotypes following challenge with ethanol for a period of 130 min. The pharmacokinetic and pharmacodynamic consequences indicate that acetaldehyde, rather than ethanol, is primarily responsible for the observed alcohol sensitivity reactions, suggesting that the full protection by ALDH2*2/*2 can be ascribed to the intense unpleasant physiological and psychological reactions caused by persistently elevated blood acetaldehyde after ingesting a small amount of alcohol and that the partial protection by ALDH2*1/*2 can be attributed to a faster elimination of acetaldehyde and the lower accumulation in circulation. ADH1B polymorphism does not significantly contribute to buildup of the blood acetaldehyde. Physiological tolerance or innate insensitivity to acetaldehyde may be crucial for development of alcohol dependence in alcoholics carrying ALDH2*2.

  3. Periodontal disease: the influence of metabolic syndrome

    PubMed Central

    2012-01-01

    Metabolic syndrome (MetS) is a cluster of cardiovascular risk factors that include obesity, impaired glucose tolerance or diabetes, hyperinsulinemia, hypertension, and dyslipidemia. Recently, more attention has been reserved to the correlation between periodontitis and systemic health. MetS is characterized by oxidative stress, a condition in which the equilibrium between the production and the inactivation of reactive oxygen species (ROS) becomes disrupted. ROS have an essential role in a variety of physiological systems, but under a condition of oxidative stress, they contribute to cellular dysfunction and damage. Oxidative stress may act as a common link to explain the relationship between each component of MetS and periodontitis. All those conditions show increased serum levels of products derived from oxidative damage, promoting a proinflammatory state. Moreover, adipocytokines, produced by the fat cells of fat tissue, might modulate the balance between oxidant and antioxidant activities. An increased caloric intake involves a higher metabolic activity, which results in an increased production of ROS, inducing insulin resistance. At the same time, obese patients require more insulin to maintain blood glucose homeostasis – a state known as hyperinsulinemia, a condition that can evolve into type 2 diabetes. Oxidation products can increase neutrophil adhesion and chemotaxis, thus favoring oxidative damage. Hyperglycemia and an oxidizing state promote the genesis of advanced glycation end-products, which could also be implicated in the degeneration and damage of periodontal tissue. Thus, MetS, the whole of interconnected factors, presents systemic and local manifestations, such as cardiovascular disease and periodontitis, related by a common factor known as oxidative stress. PMID:23009606

  4. Impairment of aldehyde dehydrogenase 2 increases accumulation of acetaldehyde-derived DNA damage in the esophagus after ethanol ingestion

    PubMed Central

    Yukawa, Yoshiyuki; Ohashi, Shinya; Amanuma, Yusuke; Nakai, Yukie; Tsurumaki, Mihoko; Kikuchi, Osamu; Miyamoto, Shin’ichi; Oyama, Tsunehiro; Kawamoto, Toshihiro; Chiba, Tsutomu; Matsuda, Tomonari; Muto, Manabu

    2014-01-01

    Ethanol and its metabolite, acetaldehyde, are the definite carcinogens for esophageal squamous cell carcinoma (ESCC), and reduced catalytic activity of aldehyde dehydrogenase 2 (ALDH2), which detoxifies acetaldehyde, increases the risk for ESCC. However, it remains unknown whether the ALDH2 genotype influences the level of acetaldehyde-derived DNA damage in the esophagus after ethanol ingestion. In the present study, we administered ethanol orally or intraperitoneally to Aldh2-knockout and control mice, and we quantified the level of acetaldehyde-derived DNA damage, especially N2-ethylidene-2’-deoxyguanosine (N2-ethylidene-dG), in the esophagus. In the model of oral ethanol administration, the esophageal N2-ethylidene-dG level was significantly higher in Aldh2-knockout mice compared with control mice. Similarly, in the model of intraperitoneal ethanol administration, in which the esophagus is not exposed directly to the alcohol solution, the esophageal N2-ethylidene-dG level was also elevated in Aldh2-knockout mice. This result indicates that circulating ethanol-derived acetaldehyde causes esophageal DNA damage, and that the extent of damage is influenced by knockout of Aldh2. Taken together, our findings strongly suggest the importance of acetaldehyde-derived DNA damage which is induced in the esophagus of individuals with ALDH2 gene impairment. This provides a physiological basis for understanding alcohol-related esophageal carcinogenesis. PMID:24959382

  5. Influence of physical activity to bone metabolism.

    PubMed

    Drenjančević, Ines; Davidović Cvetko, Erna

    2013-02-01

    Bone remodeling is a lifetime process. Peak bone mass is achieved in the twenties, and that value is very important for skeleton health in older years of life. Modern life style with its diet poor in nutrients, and very low intensity of physical activity negatively influences health in general, and bone health as well. Bones are adapting to changes in load, so applying mechanical strain to bones results in greater bone mass and hardness. That makes physical activity important in maintaining skeleton health. Numerous studies confirm good influence of regular exercising to bone health, and connection of physical activity in youth to better bone density in older age. To activate bone remodeling mechanisms, it is necessary to apply mechanical strain to bones by exercise. Considering global problem of bone loss and osteoporosis new ways of activating young people to practice sports and active stile of life are necessary to maintain skeleton health and health in general. This paper aims to review physiological mechanisms of bone remodeling that are influenced by physical exercise.

  6. Betulin, betulinic acid and butein are inhibitors of acetaldehyde-induced activation of liver stellate cells.

    PubMed

    Szuster-Ciesielska, Agnieszka; Plewka, Krzysztof; Kandefer-Szerszeń, Martyna

    2011-01-01

    Liver fibrosis has been reported to be inhibited in vivo by oleanolic and ursolic acids; however, the activity of other triterpenes like betulin and betulinic acid has not been examined. Butein has also been reported to prevent and partly reverse liver fibrosis in vivo, although its mechanism of action is poorly understood. Therefore, the aim of this study was to determine the antifibrotic potential of butein, betulin, and betulinic acid and examine their mechanisms of action in vitro. This study was conducted in rat stellate cells (HSCs) that were treated with acetaldehyde, which is the most reactive product of ethanol metabolism. Butein, betulin, and betulinic acid were preincubated with rat HSCs at non-toxic concentrations. Treatment effects were measured in regard to acetaldehyde-induced toxicity and cell migration, and several markers of HSC activation were evaluated, including smooth muscle α-actin (α-SMA) and procollagen I expression. In addition, changes in the release of reactive oxygen species (ROS) and cytokines such as tumor necrosis factor-α (TNF-α) and tumor growth factor-β1 (TGF-β1) and changes in the production of metalloproteinase-2 (MMP-2) and tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) were determined. In vitro, HSCs were protected against acetaldehyde-induced toxicity by betulin but not by betulinic acid and butein. However, butein, betulin, and betulinic acid inhibited the production of ROS by HSCs treated with acetaldehyde and inhibited their migration. Butein also inhibited acetaldehyde-induced TGF-β1 production. Butein, betulin, and betulinic acid down-regulated acetaldehyde-induced production of TIMP-1 and TIMP-2. Betulin decreased the acetaldehyde-induced activity of MMP-2, but butein and betulinic acid did not. The results indicated that butein, betulin, and betulinic acid inhibited the acetaldehyde-induced activation of HSCs. Each drug functioned in a different manner, whereby some were acting as either

  7. Acetaldehyde involvement in ethanol's postabsortive effects during early ontogeny.

    PubMed

    March, Samanta M; Abate, P; Molina, Juan C

    2013-01-01

    Clinical and biomedical studies sustains the notion that early ontogeny is a vulnerable window to the impact of alcohol. Experiences with the drug during these stages increase latter disposition to prefer, use or abuse ethanol. This period of enhanced sensitivity to ethanol is accompanied by a high rate of activity in the central catalase system, which metabolizes ethanol in the brain. Acetaldehyde (ACD), the first oxidation product of ethanol, has been found to share many neurobehavioral effects with the drug. Cumulative evidence supports this notion in models employing adults. Nevertheless very few studies have been conducted to analyze the role of ACD in ethanol postabsorptive effects, in newborns or infant rats. In this work we review recent experimental literature that syndicates ACD as a mediator agent of reinforcing aspects of ethanol, during early ontogenetic stages. We also show a meta-analytical correlational approach that proposes how differences in the activity of brain catalase across ontogeny, could be modulating patterns of ethanol consumption.

  8. Effects of ALDH2 genotype, PPI treatment and L-cysteine on carcinogenic acetaldehyde in gastric juice and saliva after intragastric alcohol administration.

    PubMed

    Maejima, Ryuhei; Iijima, Katsunori; Kaihovaara, Pertti; Hatta, Waku; Koike, Tomoyuki; Imatani, Akira; Shimosegawa, Tooru; Salaspuro, Mikko

    2015-01-01

    Acetaldehyde (ACH) associated with alcoholic beverages is Group 1 carcinogen to humans (IARC/WHO). Aldehyde dehydrogenase (ALDH2), a major ACH eliminating enzyme, is genetically deficient in 30-50% of Eastern Asians. In alcohol drinkers, ALDH2-deficiency is a well-known risk factor for upper aerodigestive tract cancers, i.e., head and neck cancer and esophageal cancer. However, there is only a limited evidence for stomach cancer. In this study we demonstrated for the first time that ALDH2 deficiency results in markedly increased exposure of the gastric mucosa to acetaldehyde after intragastric administration of alcohol. Our finding provides concrete evidence for a causal relationship between acetaldehyde and gastric carcinogenesis. A plausible explanation is the gastric first pass metabolism of ethanol. The gastric mucosa expresses alcohol dehydrogenase (ADH) enzymes catalyzing the oxidation of ethanol to acetaldehyde, especially at the high ethanol concentrations prevailing in the stomach after the consumption of alcoholic beverages. The gastric mucosa also possesses the acetaldehyde-eliminating ALDH2 enzyme. Due to decreased mucosal ALDH2 activity, the elimination of ethanol-derived acetaldehyde is decreased, which results in its accumulation in the gastric juice. We also demonstrate that ALDH2 deficiency, proton pump inhibitor (PPI) treatment, and L-cysteine cause independent changes in gastric juice and salivary acetaldehyde levels, indicating that intragastric acetaldehyde is locally regulated by gastric mucosal ADH and ALDH2 enzymes, and by oral microbes colonizing an achlorhydric stomach. Markedly elevated acetaldehyde levels were also found at low intragastric ethanol concentrations corresponding to the ethanol levels of many foodstuffs, beverages, and dairy products produced by fermentation. A capsule that slowly releases L-cysteine effectively eliminated acetaldehyde from the gastric juice of PPI-treated ALDH2-active and ALDH2-deficient subjects. These

  9. Effects of ALDH2 Genotype, PPI Treatment and L-Cysteine on Carcinogenic Acetaldehyde in Gastric Juice and Saliva after Intragastric Alcohol Administration

    PubMed Central

    Maejima, Ryuhei; Iijima, Katsunori; Kaihovaara, Pertti; Hatta, Waku; Koike, Tomoyuki; Imatani, Akira; Shimosegawa, Tooru; Salaspuro, Mikko

    2015-01-01

    Acetaldehyde (ACH) associated with alcoholic beverages is Group 1 carcinogen to humans (IARC/WHO). Aldehyde dehydrogenase (ALDH2), a major ACH eliminating enzyme, is genetically deficient in 30–50% of Eastern Asians. In alcohol drinkers, ALDH2-deficiency is a well-known risk factor for upper aerodigestive tract cancers, i.e., head and neck cancer and esophageal cancer. However, there is only a limited evidence for stomach cancer. In this study we demonstrated for the first time that ALDH2 deficiency results in markedly increased exposure of the gastric mucosa to acetaldehyde after intragastric administration of alcohol. Our finding provides concrete evidence for a causal relationship between acetaldehyde and gastric carcinogenesis. A plausible explanation is the gastric first pass metabolism of ethanol. The gastric mucosa expresses alcohol dehydrogenase (ADH) enzymes catalyzing the oxidation of ethanol to acetaldehyde, especially at the high ethanol concentrations prevailing in the stomach after the consumption of alcoholic beverages. The gastric mucosa also possesses the acetaldehyde-eliminating ALDH2 enzyme. Due to decreased mucosal ALDH2 activity, the elimination of ethanol-derived acetaldehyde is decreased, which results in its accumulation in the gastric juice. We also demonstrate that ALDH2 deficiency, proton pump inhibitor (PPI) treatment, and L-cysteine cause independent changes in gastric juice and salivary acetaldehyde levels, indicating that intragastric acetaldehyde is locally regulated by gastric mucosal ADH and ALDH2 enzymes, and by oral microbes colonizing an achlorhydric stomach. Markedly elevated acetaldehyde levels were also found at low intragastric ethanol concentrations corresponding to the ethanol levels of many foodstuffs, beverages, and dairy products produced by fermentation. A capsule that slowly releases L-cysteine effectively eliminated acetaldehyde from the gastric juice of PPI-treated ALDH2-active and ALDH2-deficient subjects. These

  10. The Metabolic Syndrome and Its Influence on Nonalcoholic Steatohepatitis.

    PubMed

    Kanwar, Pushpjeet; Kowdley, Kris V

    2016-05-01

    Nonalcoholic steatohepatitis (NASH) and the metabolic syndrome (MetS) are highly prevalent in the Western population. Their pathogenesis is closely linked to insulin resistance, which serves as a therapeutic target for the management of these conditions. This review article reviews the research supporting the influence of MetS on NASH and includes studies supporting their similar epidemiology, pathogenesis, and treatment.

  11. Metabolic differences in cattle with excitable temperaments can influence productivity

    USDA-ARS?s Scientific Manuscript database

    Temperament can negatively affect various production traits, including live weight, ADG, DMI, conception rates, and carcass weight. Three research studies are summarized which indicate the potential influence of temperament on metabolism. In Brahman heifers, (n=12) the 6 most temperamental and 6 mos...

  12. Quantitative analysis of the lactic acid and acetaldehyde produced by Streptococcus thermophilus and Lactobacillus bulgaricus strains isolated from traditional Turkish yogurts using HPLC.

    PubMed

    Gezginc, Y; Topcal, F; Comertpay, S; Akyol, I

    2015-03-01

    The present study was conducted to evaluate the lactic acid- and acetaldehyde-producing abilities of lactic acid bacterial species isolated from traditionally manufactured Turkish yogurts using HPLC. The lactic acid bacterial species purified from the yogurts were the 2 most widely used species in industrial yogurt production: Streptococcus thermophilus and Lactobacillus bulgaricus. These bacteria have the ability to ferment hexose sugars homofermentatively to generate lactic acid and some carbonyl compounds, such as acetaldehyde through pyruvate metabolism. The levels of the compounds produced during fermentation influence the texture and the flavor of the yogurt and are themselves influenced by the chemical composition of the milk, processing conditions, and the metabolic activity of the starter culture. In the study, morphological, biochemical, and molecular characteristics were employed to identify the bacteria obtained from homemade yogurts produced in different regions of Turkey. A collection of 91 Strep. thermophilus and 35 L. bulgaricus strains were investigated for their lactic acid- and acetaldehyde-formation capabilities in various media such as cow milk, LM17 agar, and aerobic-anaerobic SM17 agar or de Man, Rogosa, and Sharpe agar. The amounts of the metabolites generated by each strain in all conditions were quantified by HPLC. The levels were found to vary depending on the species, the strain, and the growth conditions used. Whereas lactic acid production ranged between 0 and 77.9 mg/kg for Strep. thermophilus strains, it ranged from 0 to 103.5 mg/kg for L. bulgaricus. Correspondingly, the ability to generate acetaldehyde ranged from 0 to 105.9 mg/kg in Strep. thermophilus and from 0 to 126.9 mg/kg in L. bulgaricus. Our study constitutes the first attempt to determine characteristics of the wild strains isolated from traditional Turkish yogurts, and the approach presented here, which reveals the differences in metabolite production abilities of the

  13. Development of industrial brewing yeast with low acetaldehyde production and improved flavor stability.

    PubMed

    Wang, Jinjing; Shen, Nan; Yin, Hua; Liu, Chunfeng; Li, Yongxian; Li, Qi

    2013-02-01

    Higher acetaldehyde concentration in beer is one of the main concerns of current beer industry in China. Acetaldehyde is always synthesized during beer brewing by the metabolism of yeast. Here, using ethanol as the sole carbon source and 4-methylpyrazole as the selection marker, we constructed a new mutant strain with lower acetaldehyde production and improved ethanol tolerance via traditional mutagenesis strategy. European Brewery Convention tube fermentation tests comparing the fermentation broths of mutant strain and industrial brewing strain showed that the acetaldehyde concentration of mutant strain was 81.67 % lower, whereas its resistant staling value was 1.0-fold higher. Owing to the mutation, the alcohol dehydrogenase activity of the mutant strain decreased to about 30 % of the wild-type strain. In the meantime, the fermentation performance of the newly screened strain has little difference compared with the wild-type strain, and there are no safety problems regarding the industrial usage of the mutant strain. Therefore, we suggest that the newly screened strain could be directly applied to brewing industry.

  14. Mechanisms influencing bone metabolism in chronic illness.

    PubMed

    Daci, E; van Cromphaut, S; Bouillon, R

    2002-01-01

    Bone is permanently renewed by the coordinated actions of bone-resorbing osteoclasts and bone-forming osteoblasts, which model and remodel bone structure during growth and adult life. The origin of osteoblastic cells (osteoblasts, osteocytes and bone-lining cells) differs from that of osteoclasts, but both cell groups communicate with each other using cytokines and cell-cell contact as to optimally maintain bone homeostasis. This communication in many ways uses the same players as the communication between cells in the immune system. During acute life-threatening illness massive bone resorption is the rule, while bone formation is suppressed. During chronic illness, the balance between bone formation and bone resorption also shifts, frequently resulting in decreased bone mass and density. Several factors may contribute to the osteopenia that accompanies chronic illness, the most important being undernutrition and low body weight, inflammatory cytokines, disorders of the neuroendocrine axis (growth hormone/IGF-1 disturbances, thyroid and gonadal deficiency), immobilization, and the long-term use of glucocorticoids. Their combined effects not only influence the generation and activity of all bone cells involved, but probably also regulate their life span by apoptotic mechanisms. Osteopenia or even osteoporosis and bone fragility, and before puberty also decreased linear growth and lower peak bone mass are therefore frequent consequences of chronic illnesses.

  15. Methanol and acetaldehyde fluxes over ryegrass

    NASA Astrophysics Data System (ADS)

    Custer, Thomas; Schade, Gunnar

    2007-09-01

    Oxygenated volatile organic compounds (OVOCs) play an active role in tropospheric chemistry but our knowledge concerning their release and ultimate fate is limited. However, the recent introduction of Proton Transfer Reaction Mass Spectrometry (PTRMS) has improved our capability to make direct field observations of OVOC mixing ratios and fluxes. We used PTRMS in an eddy covariance setup to measure selected OVOC exchange rates above a well-characterized agricultural plot in Northern Germany. In fall 2003, mixing ratios of methanol and acetaldehyde 2 m above the field ranged from 1 to 10 and 0.4 to 2.1 ppb, respectively, well correlated with one another. Fluxes of both gases were followed for growing Italian ryegrass (Lolium multiflorum) over a significant portion of its life cycle. Diurnally fluctuating emissions of methanol and very small acetaldehyde fluxes were observed up to the cutting and removal of the grass. Methanol emissions were exponentially related to ambient temperatures and appeared to be higher during the grass' rapid leaf area expansion and after a rain event. Acetaldehyde exchanges averaged over the whole period indicated very slow deposition. Our measurements confirm previous, similar results, as well as presumptions that grasses are comparatively low methanol emitters compared to non-grass species.

  16. THE INFLUENCE OF BILE ON METABOLISM

    PubMed Central

    Joslin, Elliott P.

    1901-01-01

    has had more experience with the administration of bile than I, tells me that he has found its action variable in patients. In some cases it is a laxative; in others, in which there is diarrhœa, due apparently to large amounts of fat in the food, it has the opposite effect. 5. As to the general effect of bile on body metabolism, it was observed that the urea and nitrogen were excreted in greater amount in the bile period than in either of the others. No definite conclusions can be drawn from this fact, because more nitrogen was ingested during these four days; moreover, it must be borne in mind that in these results the salol may have been a factor. 6. The amount of urine was increased by more than 50 per cent in the bile period. It is interesting to note that the amount was about the same during this bile period as in the second experiment when the bile was again taking its natural course. Von Noorden has recorded a similar increase in the amount of urine following the removal of the obstruction in acute catarrhal jaundice. The salol coating of the bile pills, which amounted to one and a quarter grammes a day, is not sufficient to account for this effect. This is evident from the work of Kumagawa, who gave two grammes of sodium salicylate daily to a dog of 25 kilos without essentially changing the amount of urine secreted. On the other hand, in taking the 30 pills daily the patient drank several extra glasses of water, and in the second experiment her general condition was naturally better than at any other time. PMID:19866955

  17. Cattle temperament influences metabolism: 2. Metabolic response to an insulin sensivitiy test in beef steers

    USDA-ARS?s Scientific Manuscript database

    Cattle temperament, defined as the reactivity of cattle to humans or novel environments, can greatly influence several physiological systems in the body, including immunity, stress, and most recently discovered, metabolism. Greater circulating concentrations of non-esterified fatty acids (NEFAs) fou...

  18. [Gut microbiota may have influence on glucose and lipid metabolism].

    PubMed

    Hallundbæk Mikkelsen, Kristian; Nielsen, Morten Frost; Tvede, Michael; Hansen, Torben; Pedersen, Oluf Borbye; Holst, Jens Juul; Vilsbøll, Tina; Knop, Filip Krag

    2013-11-11

    New gene sequencing-based techniques and the large worldwide sequencing capacity have introduced a new era within the field of gut microbiota. Animal and human studies have shown that obesity and type 2 diabetes are associated with changes in the composition of the gut microbiota and that prebiotics, antibiotics or faecal transplantation can alter glucose and lipid metabolism. This paper summarizes the latest research regarding the association between gut microbiota, diabetes and obesity and some of the mechanisms by which gut bacteria may influence host metabolism.

  19. The ketogenic diet: metabolic influences on brain excitability and epilepsy

    PubMed Central

    Lutas, Andrew; Yellen, Gary

    2012-01-01

    A dietary therapy for pediatric epilepsy known as the ketogenic diet has seen a revival in its clinical use in the past decade. Though the diet’s underlying mechanism remains unknown, modern scientific approaches like genetic disruption of glucose metabolism are allowing for more detailed questions to be addressed. Recent work indicates that several mechanisms may exist for the ketogenic diet including disruption of glutamatergic synaptic transmission, inhibition of glycolysis, and activation of ATP-sensitive potassium channels. Here we describe on-going work in these areas that is providing a better understanding of metabolic influences on brain excitability and epilepsy. PMID:23228828

  20. Role of ethanol-derived acetaldehyde in operant oral self-administration of ethanol in rats.

    PubMed

    Peana, Alessandra T; Porcheddu, Valeria; Bennardini, Federico; Carta, Antonio; Rosas, Michela; Acquas, Elio

    2015-12-01

    The role of ethanol-derived acetaldehyde has not been examined yet on performance in a model of operant oral self-administration. However, previous studies reported that an acetaldehyde-sequestering agent, D-penicillamine (DP) and an inhibitor of catalase-mediated acetaldehyde production, 3-amino-1,2,4-triazole (3-AT) reduce voluntary ethanol consumption. The aim of our investigation was to evaluate the effects of DP and 3-AT on acquisition and maintenance of oral operant ethanol self-administration. Using operant chambers, rats learned to nose poke in order to receive ethanol solution (5-10 % v/v) under an FR1 schedule of reinforcement in which discrete light and tone cues were presented during ethanol delivery. DP and 3-AT impair the acquisition of ethanol self-administration, whereas its maintenance is not affected neither by drug given alone for both 10 or 5 % ethanol nor by drugs association for 5 % ethanol. Moreover, when the concentration of ethanol was diminished from 10 to 5 %, rats increased the rate of self-administration behaviour. These findings suggest that brain acetaldehyde plays a critical role during acquisition of operant self-administration in ethanol-naïve rats. In contrast, during the maintenance phase, acetaldehyde could contribute to ethanol self-administration by a combined mechanism: On one hand, its lack (by DP or 3-AT) might result in further ethanol-seeking and taking and, on the other, inhibition of ethanol metabolism (by 3-AT) might release an action of the un-metabolised fraction of ethanol that does not overall result in compromising maintenance of ethanol self-administration.

  1. Using Non-Enzymatic Chemistry to Influence Microbial Metabolism

    PubMed Central

    Wallace, Stephen; Schultz, Erica E.; Balskus, Emily P.

    2015-01-01

    The structural manipulation of small molecule metabolites occurs in all organisms and plays a fundamental role in essentially all biological processes. Despite an increasing interest in developing new, non-enzymatic chemical reactions capable of functioning in the presence of living organisms, the ability of such transformations to interface with cellular metabolism and influence biological function is a comparatively underexplored area of research. This review will discuss efforts to combine non-enzymatic chemistry with microbial metabolism. We will highlight recent and historical uses of non-biological reactions to study microbial growth and function, the use of non-enzymatic transformations to rescue auxotrophic microorganisms, and the combination of engineered microbial metabolism and biocompatible chemical reactions for organic synthesis. PMID:25579453

  2. Prebiotic synthesis of imidazole-4-acetaldehyde and histidine

    NASA Technical Reports Server (NTRS)

    Shen, Chun; Oro, J.; Yang, Lily; Miller, Stanley L.

    1987-01-01

    The prebiotic synthesis of imidazole-4-acetaldehyde and imidazole-4-glycol from erythrose and formamidine has been demonstrated as well as the prebiotic synthesis of imidazole-4-ethanol and imidazole-4-glycol from erythrose, formaldehyde, and ammonia. The maximum yields of imidazole-4-acetaldehyde, imidazole-4-ethanol, and imidazole-4-glycol obtained in these reactions are 1.6, 5.4, and 6.8 percent respectively, based on the erythrose. Imidazole-4-acetaldehyde would have been converted to histidine on the primitive earth by a Strecker synthesis, and several prebiotic reactions would convert imidazole-4-glycol and imidazole-4-ethanol to imidazole-4-acetaldehyde.

  3. Prebiotic synthesis of imidazole-4-acetaldehyde and histidine

    NASA Technical Reports Server (NTRS)

    Shen, Chun; Oro, J.; Yang, Lily; Miller, Stanley L.

    1987-01-01

    The prebiotic synthesis of imidazole-4-acetaldehyde and imidazole-4-glycol from erythrose and formamidine has been demonstrated as well as the prebiotic synthesis of imidazole-4-ethanol and imidazole-4-glycol from erythrose, formaldehyde, and ammonia. The maximum yields of imidazole-4-acetaldehyde, imidazole-4-ethanol, and imidazole-4-glycol obtained in these reactions are 1.6, 5.4, and 6.8 percent respectively, based on the erythrose. Imidazole-4-acetaldehyde would have been converted to histidine on the primitive earth by a Strecker synthesis, and several prebiotic reactions would convert imidazole-4-glycol and imidazole-4-ethanol to imidazole-4-acetaldehyde.

  4. Major Anaerobic Bacteria Responsible for the Production of Carcinogenic Acetaldehyde from Ethanol in the Colon and Rectum.

    PubMed

    Tsuruya, Atsuki; Kuwahara, Akika; Saito, Yuta; Yamaguchi, Haruhiko; Tenma, Natsuki; Inai, Makoto; Takahashi, Seiji; Tsutsumi, Eri; Suwa, Yoshihide; Totsuka, Yukari; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Mizukami, Takeshi; Yokoyama, Akira; Shimoyama, Takefumi; Nakayama, Toru

    2016-07-01

    The importance of ethanol oxidation by intestinal aerobes and facultative anaerobes under aerobic conditions in the pathogenesis of ethanol-related colorectal cancer has been proposed. However, the role of obligate anaerobes therein remains to be established, and it is still unclear which bacterial species, if any, are most important in the production and/or elimination of carcinogenic acetaldehyde under such conditions. This study was undertaken to address these issues. More than 500 bacterial strains were isolated from the faeces of Japanese alcoholics and phylogenetically characterized, and their aerobic ethanol metabolism was studied in vitro to examine their ability to accumulate acetaldehyde beyond the minimum mutagenic concentration (MMC, 50 µM). Bacterial strains that were considered to potentially accumulate acetaldehyde beyond the MMC under aerobic conditions in the colon and rectum were identified and referred to as 'potential acetaldehyde accumulators' (PAAs). Ruminococcus, an obligate anaerobe, was identified as a genus that includes a large number of PAAs. Other obligate anaerobes were also found to include PAAs. The accumulation of acetaldehyde by PAAs colonizing the colorectal mucosal surface could be described, at least in part, as the response of PAAs to oxidative stress. Ethanol oxidation by intestinal obligate anaerobes under aerobic conditions in the colon and rectum could also play an important role in the pathogenesis of ethanol-related colorectal cancer. © The Author 2016. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  5. Biochemical characterization of a bifunctional acetaldehyde-alcohol dehydrogenase purified from a facultative anaerobic bacterium Citrobacter sp. S-77.

    PubMed

    Tsuji, Kohsei; Yoon, Ki-Seok; Ogo, Seiji

    2016-03-01

    Acetaldehyde-alcohol dehydrogenase (ADHE) is a bifunctional enzyme consisting of two domains of an N-terminal acetaldehyde dehydrogenase (ALDH) and a C-terminal alcohol dehydrogenase (ADH). The enzyme is known to be important in the cellular alcohol metabolism. However, the role of coenzyme A-acylating ADHE responsible for ethanol production from acetyl-CoA remains uncertain. Here, we present the purification and biochemical characterization of an ADHE from Citrobacter sp. S-77 (ADHE(S77)). Interestingly, the ADHE(S77) was unable to be solubilized from membrane with detergents either 1% Triton X-100 or 1% Sulfobetaine 3-12. However, the enzyme was easily dissociated from membrane by high-salt buffers containing either 1.0 M NaCl or (NH(4))(2)SO(4) without detergents. The molecular weight of a native protein was estimated as approximately 400 kDa, consisting of four identical subunits of 96.3 kDa. Based on the specific activity and kinetic analysis, the ADHES77 tended to have catalytic reaction towards acetaldehyde elimination rather than acetaldehyde formation. Our experimental observation suggests that the ADHES77 may play a pivotal role in modulating intracellular acetaldehyde concentration. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Biochemical basis of mitochondrial acetaldehyde dismutation in Saccharomyces cerevisiae.

    PubMed Central

    Thielen, J; Ciriacy, M

    1991-01-01

    As reported previously, Saccharomyces cerevisiae cells deficient in all four known genes coding for alcohol dehydrogenases (ADH1 through ADH4) produce considerable amounts of ethanol during aerobic growth on glucose. It has been suggested that ethanol production in such adh0 cells is a corollary of acetaldehyde dismutation in mitochondria. This could be substantiated further by showing that mitochondrial ethanol formation requires functional electron transport, while the proton gradient or oxidative phosphorylation does not interfere with reduction of acetaldehyde in isolated mitochondria. This acetaldehyde-reducing activity is different from classical alcohol dehydrogenases in that it is associated with the inner mitochondrial membrane and also is unable to carry out ethanol oxidation. The putative cofactor is NADH + H+ generated by a soluble, matrix-located aldehyde dehydrogenase upon acetaldehyde oxidation to acetate. This enzyme has been purified from mitochondria of glucose-grown cells. It is clearly different from the known mitochondrial aldehyde dehydrogenase, which is absent in glucose-grown cells. Both acetaldehyde-reducing and acetaldehyde-oxidizing activities are also present in the mitochondrial fraction of fermentation-proficient (ADH+) cells. Mitochondrial acetaldehyde dismutation may have some significance in the removal of surplus acetaldehyde and in the formation of acetate in mitochondria during aerobic glucose fermentation. Images FIG. 4 PMID:1938903

  7. 40 CFR 721.10036 - Acetaldehyde based polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acetaldehyde based polymer (generic... Specific Chemical Substances § 721.10036 Acetaldehyde based polymer (generic). (a) Chemical substance and... based polymer (PMN P-02-406) is subject to reporting under this section for the significant new...

  8. 40 CFR 721.10036 - Acetaldehyde based polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acetaldehyde based polymer (generic... Specific Chemical Substances § 721.10036 Acetaldehyde based polymer (generic). (a) Chemical substance and... based polymer (PMN P-02-406) is subject to reporting under this section for the significant new...

  9. 40 CFR 721.10036 - Acetaldehyde based polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acetaldehyde based polymer (generic... Specific Chemical Substances § 721.10036 Acetaldehyde based polymer (generic). (a) Chemical substance and... based polymer (PMN P-02-406) is subject to reporting under this section for the significant new uses...

  10. 40 CFR 721.10036 - Acetaldehyde based polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acetaldehyde based polymer (generic... Specific Chemical Substances § 721.10036 Acetaldehyde based polymer (generic). (a) Chemical substance and... based polymer (PMN P-02-406) is subject to reporting under this section for the significant new uses...

  11. 40 CFR 721.10036 - Acetaldehyde based polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acetaldehyde based polymer (generic... Specific Chemical Substances § 721.10036 Acetaldehyde based polymer (generic). (a) Chemical substance and... based polymer (PMN P-02-406) is subject to reporting under this section for the significant new uses...

  12. Reaction of acetaldehyde with 5-aminolevulinic acid via dihydropyrazine derivative.

    PubMed

    Suzuki, Toshinori; Yasuhara, Naoki; Ueda, Takashi; Inukai, Michiyo; Mio, Mitsunobu

    2015-01-01

    When a solution of 5-aminolevulinic acid (ALA) was incubated with acetaldehyde at neutral pH, a product was generated. This product was identified as 3-ethylpyrazine-2,5-dipropanoic acid (ETPY). ETPY was stable at neutral pH. It has been reported that ALA dimerizes at neutral pH generating 3,6-dihydropyrazine-2,5-dipropanoic acid (DHPY), and subsequently resulting in pyrazine-2,5-dipropanoic acid (PY) by autoxidation. In the present reaction, DHPY generated from ALA reacted with acetaldehyde, resulting in ETPY. Preadministration of ALA 3 min prior to acetaldehyde injection supressed the toxicity of acetaldehyde in male mice. These results suggest that ALA may be useful as a scavenger for acetaldehyde.

  13. Mechanism of acetaldehyde-induced deactivation of microbial lipases.

    PubMed

    Franken, Benjamin; Eggert, Thorsten; Jaeger, Karl E; Pohl, Martina

    2011-02-22

    Microbial lipases represent the most important class of biocatalysts used for a wealth of applications in organic synthesis. An often applied reaction is the lipase-catalyzed transesterification of vinyl esters and alcohols resulting in the formation of acetaldehyde which is known to deactivate microbial lipases, presumably by structural changes caused by initial Schiff-base formation at solvent accessible lysine residues. Previous studies showed that several lipases were sensitive toward acetaldehyde deactivation whereas others were insensitive; however, a general explanation of the acetaldehyde-induced inactivation mechanism is missing. Based on five microbial lipases from Candida rugosa, Rhizopus oryzae, Pseudomonas fluorescens and Bacillus subtilis we demonstrate that the protonation state of lysine ε-amino groups is decisive for their sensitivity toward acetaldehyde. Analysis of the diverse modification products of Bacillus subtilis lipases in the presence of acetaldehyde revealed several stable products such as α,β-unsaturated polyenals, which result from base and/or amino acid catalyzed aldol condensation of acetaldehyde. Our studies indicate that these products induce the formation of stable Michael-adducts at solvent-accessible amino acids and thus lead to enzyme deactivation. Further, our results indicate Schiff-base formation with acetaldehyde to be involved in crosslinking of lipase molecules. Differences in stability observed with various commercially available microbial lipases most probably result from different purification procedures carried out by the respective manufacturers. We observed that the pH of the buffer used prior to lyophilization of the enzyme sample is of utmost importance. The mechanism of acetaldehyde-induced deactivation of microbial lipases involves the generation of α,β-unsaturated polyenals from acetaldehyde which subsequently form stable Michael-adducts with the enzymes. Lyophilization of the enzymes from buffer at pH 6

  14. Mechanism of acetaldehyde-induced deactivation of microbial lipases

    PubMed Central

    2011-01-01

    Background Microbial lipases represent the most important class of biocatalysts used for a wealth of applications in organic synthesis. An often applied reaction is the lipase-catalyzed transesterification of vinyl esters and alcohols resulting in the formation of acetaldehyde which is known to deactivate microbial lipases, presumably by structural changes caused by initial Schiff-base formation at solvent accessible lysine residues. Previous studies showed that several lipases were sensitive toward acetaldehyde deactivation whereas others were insensitive; however, a general explanation of the acetaldehyde-induced inactivation mechanism is missing. Results Based on five microbial lipases from Candida rugosa, Rhizopus oryzae, Pseudomonas fluorescens and Bacillus subtilis we demonstrate that the protonation state of lysine ε-amino groups is decisive for their sensitivity toward acetaldehyde. Analysis of the diverse modification products of Bacillus subtilis lipases in the presence of acetaldehyde revealed several stable products such as α,β-unsaturated polyenals, which result from base and/or amino acid catalyzed aldol condensation of acetaldehyde. Our studies indicate that these products induce the formation of stable Michael-adducts at solvent-accessible amino acids and thus lead to enzyme deactivation. Further, our results indicate Schiff-base formation with acetaldehyde to be involved in crosslinking of lipase molecules. Conclusions Differences in stability observed with various commercially available microbial lipases most probably result from different purification procedures carried out by the respective manufacturers. We observed that the pH of the buffer used prior to lyophilization of the enzyme sample is of utmost importance. The mechanism of acetaldehyde-induced deactivation of microbial lipases involves the generation of α,β-unsaturated polyenals from acetaldehyde which subsequently form stable Michael-adducts with the enzymes. Lyophilization of

  15. Development of an LC-MS/MS method for studying migration characteristics of acetaldehyde in polyethylene terephthalate (PET)-packed mineral water.

    PubMed

    Baumjohann, Nina; Harms, Diedrich

    2015-01-01

    During storage, acetaldehyde migration from polyethylene terephthalate (PET) bottles can affect the quality of mineral water even in the low µg l(-1) range negatively, as it features a fruity or plastic-like off-flavour. For a sensitive and fast analysis of acetaldehyde in mineral water, a new analysis method of 2,4-dinitrophenylhydrazine (DNPH) derivatisation followed by HPLC-electrospray tandem mass spectrometry (ESI-MS/MS) was developed. Acetaldehyde was directly derivatised in the mineral water sample avoiding extraction and/or pre-concentration steps and then analysed by reversed-phase HPLC-ESI-MS/MS using multiple reaction monitoring mode (MRM). Along with method development, the optimum molar excess of DNPH in contrast to acetaldehyde was studied for the mineral water matrix, because no specific and robust data were yet available for this critical parameter. Best results were obtained by using a calibration via the derivatisation reaction. Without any analyte enrichment or extraction, an LOD of 0.5 µg l(-1) and an LOQ of 1.9 µg l(-1) were achieved. Using the developed method, mineral water samples packed in PET bottles from Germany were analysed and the correlation between the acetaldehyde concentration and other characteristics of the samples was evaluated illustrating the applicability of the method. Besides a relationship between bottle size and CO2 content of the mineral water and acetaldehyde migration, a correlation with acetaldehyde migration and the material composition of the bottle, e.g. recycled PET, was noted. Investigating the light influence on the acetaldehyde migration with a newly developed, reproducible light exposure setup, a significant increase of the acetaldehyde concentration in carbonated mineral water samples was observed.

  16. The effects of acetaldehyde, glyoxal and acetic acid on the heterogeneous reaction of nitrogen dioxide on gamma-alumina.

    PubMed

    Sun, Zhenyu; Kong, Lingdong; Ding, Xiaoxiao; Du, Chengtian; Zhao, Xi; Chen, Jianmin; Fu, Hongbo; Yang, Xin; Cheng, Tiantao

    2016-04-14

    Heterogeneous reactions of nitrogen oxides on the surface of aluminium oxide result in the formation of adsorbed nitrite and nitrate. However, little is known about the effects of other species on these heterogeneous reactions and their products. In this study, diffuse reflectance infrared spectroscopy (DRIFTS) was used to analyze the process of the heterogeneous reaction of NO2 on the surface of aluminium oxide particles in the presence of pre-adsorbed organic species (acetaldehyde, glyoxal and acetic acid) at 298 K and reveal the influence of these organic species on the formation of adsorbed nitrite and nitrate. It was found that the pre-adsorption of organic species (acetaldehyde, glyoxal and acetic acid) on γ-Al2O3 could suppress the formation of nitrate to different extents. Under the same experimental conditions, the suppression of the formation of nitrate by the pre-adsorption of acetic acid is much stronger than that by pre-adsorption of acetaldehyde and glyoxal, indicating that the influence of acetic acid on the heterogeneous reaction of NO2 is different from that of acetaldehyde and glyoxal. Surface nitrite is formed and identified to be an intermediate product. For the heterogeneous reaction of NO2 on the surface of γ-Al2O3 with and without the pre-adsorption of acetaldehyde and glyoxal, it is firstly formed and then gradually disappears as the reaction proceeds, but for the reaction with the pre-adsorption of acetic acid, it is the final main product besides nitrate. This indicates that the pre-adsorption of acetic acid would promote the formation of nitrite, while the others would not change the trend of the formation of nitrite. The possible influence mechanisms of the pre-adsorption of acetaldehyde, glyoxal and acetic acid on the heterogeneous conversion of NO2 on γ-Al2O3 are proposed and atmospheric implications based on these results are discussed.

  17. Acetaldehyde removal using an atmospheric non-thermal plasma combined with a packed bed: role of the adsorption process.

    PubMed

    Klett, C; Duten, X; Tieng, S; Touchard, S; Jestin, P; Hassouni, K; Vega-González, A

    2014-08-30

    This work is an attempt in order to help towards understanding the influence of the adsorption process on the removal of a VOC (acetaldehyde, CH3CHO) using cyclic non thermal plasma (NTP) combined with a packed-bed of a catalyst support, α-Al2O3. In the first part, the results obtained by placing the saturated alumina pellets inside the plasma discharge zone are discussed, in terms of acetaldehyde removal, CO and CO2 production. In the second part, adsorption of CH3CHO, CO, CO2 and O3 was carried out, from single and multicomponent mixtures of the different compounds. The results showed that (i) the adsorption capacities followed the order CH3CHO≫  CO2>CO; (ii) O3 was decomposed on the alumina surface; (iii) CO oxidation occurred on the surface when O3 was present. In the third part, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was used to follow the alumina surface during acetaldehyde adsorption. DRIFTS measurements demonstrated that besides the bands of molecularly adsorbed acetaldehyde, several absorptions appeared on the spectra showing the intermediate surface transformation of acetaldehyde already at 300K. Finally, the relationship between the adsorption results and the NTP combined with a packed-bed process is discussed.

  18. Slow-release L-cysteine capsule prevents gastric mucosa exposure to carcinogenic acetaldehyde: results of a randomised single-blinded, cross-over study of Helicobacter-associated atrophic gastritis.

    PubMed

    Hellström, Per M; Hendolin, Panu; Kaihovaara, Pertti; Kronberg, Leif; Meierjohann, Axel; Millerhovf, Anders; Paloheimo, Lea; Sundelin, Heidi; Syrjänen, Kari; Webb, Dominic-Luc; Salaspuro, Mikko

    2017-02-01

    Helicobacter-induced atrophic gastritis with a hypochlorhydric milieu is a risk factor for gastric cancer. Microbes colonising acid-free stomach oxidise ethanol to acetaldehyde, a recognised group 1 carcinogen. To assess gastric production of acetaldehyde and its inert condensation product, non-toxic 2-methyl-1,3-thiazolidine-4-carboxylic acid (MTCA), after alcohol intake under treatment with slow-release L-cysteine or placebo. Seven patients with biopsy-confirmed atrophic gastritis, low serum pepsinogen and high gastrin-17 were studied in a cross-over single-blinded design. On separate days, patients randomly received 200 mg slow-release L-cysteine or placebo with intragastric instillation of 15% (0.3 g/kg) ethanol. After intake, gastric concentrations of ethanol, acetaldehyde, L-cysteine and MTCA were analysed. Administration of L-cysteine increased MTCA (p < .0004) and decreased gastric acetaldehyde concentrations by 68% (p < .0001). The peak L-cysteine level was 7552 ± 2687 μmol/L at 40 min and peak MTCA level 196 ± 98 μmol/L at 80 min after intake. Gastric L-cysteine and MTCA concentrations were maintained for 3 h. The AUC for MTCA was 11-fold higher than acetaldehyde, indicating gastric first-pass metabolism of ethanol. With placebo, acetaldehyde remained elevated also at low ethanol concentrations representing 'non-alcoholic' beverages and food items. After gastric ethanol instillation, slow-release L-cysteine eliminates acetaldehyde to form inactive MTCA, which remains in gastric juice for up to 3 h. High acetaldehyde levels indicate a marked gastric first-pass metabolism of ethanol resulting in gastric accumulation of carcinogenic acetaldehyde. Local exposure of the gastric mucosa to acetaldehyde can be mitigated by slow-release L-cysteine capsules.

  19. Influence of silver nanoparticles on metabolism and toxicity of moulds.

    PubMed

    Pietrzak, Katarzyna; Twarużek, Magdalena; Czyżowska, Agata; Kosicki, Robert; Gutarowska, Beata

    2015-01-01

    The unique antimicrobial features of silver nanoparticles (AgNPs) are commonly applied in innumerable products. The lack of published studies on the mechanisms of AgNPs action on fungi resulted in identification of the aim of this study, which was: the determination of the influence of AgNPs on the mould cytotoxicity for swine kidney cells (MTT test) and the production of selected mycotoxins, organic acids, extracellular enzymes by moulds. The conducted study had shown that silver nanoparticles can change the metabolism and toxicity of moulds. AgNPs decrease the mycotoxin production of Aspergillus sp. (81-96%) and reduce mould cytotoxicity (50-75%). AgNPs influence the organic acid production of A. niger and P. chrysogenum by decreasing their concentration (especially of the oxalic and citric acid). Also, a change in the extracellular enzyme profile of A. niger and P. chrysogenum was observed, however, the total enzymatic activity was increased.

  20. Metabolic influence of Botrytis cinerea infection in champagne base wine.

    PubMed

    Hong, Young-Shick; Cilindre, Clara; Liger-Belair, Gerard; Jeandet, Philippe; Hertkorn, Norbert; Schmitt-Kopplin, Philippe

    2011-07-13

    Botrytis cinerea infection of grape berries leads to changes in the chemical composition of grape and the corresponding wine and, thus, affects wine quality. The metabolic effect of Botrytis infection in Champagne base wine was investigated through a (1)H NMR-based metabolomic approach. Isoleucine, leucine, threonine, valine, arginine, proline, glutamine, γ-aminobutyric acid (GABA), succinate, malate, citrate, tartarate, fructose, glucose, oligosaccharides, amino acid derivatives, 2,3-butanediol, acetate, glycerol, tyrosine, 2-phenylethanol, trigonelline, and phenylpropanoids in a grape must and wine were identified by (1)H NMR spectroscopy and contributed to metabolic differentiations between healthy and botrytized wines by using multivariate statistical analysis such as principal component analysis (PCA). Lowered levels of glycerol, 2,3-butanediol, succinate, tyrosine, valine derivative, and phenylpropanoids but higher levels of oligosaccharides in the botrytized wines were main discriminant metabolites, demonstrating that Botrytis infection of grape caused the fermentative retardation during alcoholic fermentation because the main metabolites responsible for the differentiation are fermentative products. Moreover, higher levels of several oligosaccharides in the botrytized wines also indicated the less fermentative behavior of yeast in the botrytized wines. This study highlights a metabolomic approach for better understanding of the comprehensive metabolic influences of Botrytis infection of grape berries in Champagne wines.

  1. A self-powered acetaldehyde sensor based on biofuel cell.

    PubMed

    Zhang, Lingling; Zhou, Ming; Dong, Shaojun

    2012-12-04

    Acetaldehyde is recognized as a type of organic environmental pollutant all over the world, which makes the sensitive, rapid, simple and low-cost detection of acetaldehyde urgent and significant. Inspired by the biological principle of feedback modulation, we have developed a novel and effective self-powered device for aqueous acetaldehyde detection. In this self-powered device, an ethanol/air enzymatic biofuel cell (BFC) served as the core component, which showed the maximum power output density of 28.5 μW cm(-2) at 0.34 V and the open circuit potential (V(oc)) of 0.64 V. The product of ethanol oxidation, acetaldehyde, would counteract the electrocatalysis at the bioanode and further decrease the power output of the BFC. Based on such principles, the fabricated acetaldehyde sensor exhibited excellent selectivity with wide linear range (5-200 μM) and low detection limit (1 μM), which conforms to the criteria provided by the World Health Organisation (WHO). In addition, the sensor fabrication is simple, fast, inexpensive, and user-friendly, and the detection process is convenient, efficient, and time-saving, requiring no complicated equipment. These make such self-powered acetaldehyde sensors feasible and practical for detecting aqueous acetaldehyde, particularly in the field of quality control and monitoring aimed at water resource protection.

  2. Amino acid metabolic signaling influences Aedes aegypti midgut microbiome variability.

    PubMed

    Short, Sarah M; Mongodin, Emmanuel F; MacLeod, Hannah J; Talyuli, Octavio A C; Dimopoulos, George

    2017-07-01

    The mosquito midgut microbiota has been shown to influence vector competence for multiple human pathogens. The microbiota is highly variable in the field, and the sources of this variability are not well understood, which limits our ability to understand or predict its effects on pathogen transmission. In this work, we report significant variation in female adult midgut bacterial load between strains of A. aegypti which vary in their susceptibility to dengue virus. Composition of the midgut microbiome was similar overall between the strains, with 81-92% of reads coming from the same five bacterial families, though we did detect differences in the presence of some bacterial families including Flavobacteriaceae and Entobacteriaceae. We conducted transcriptomic analysis on the two mosquito strains that showed the greatest difference in bacterial load, and found that they differ in transcript abundance of many genes implicated in amino acid metabolism, in particular the branched chain amino acid degradation pathway. We then silenced this pathway by targeting multiple genes using RNA interference, which resulted in strain-specific bacterial proliferation, thereby eliminating the difference in midgut bacterial load between the strains. This suggests that the branched chain amino acid (BCAA) degradation pathway controls midgut bacterial load, though the mechanism underlying this remains unclear. Overall, our results indicate that amino acid metabolism can act to influence the midgut microbiota. Moreover, they suggest that genetic or physiological variation in BCAA degradation pathway activity may in part explain midgut microbiota variation in the field.

  3. Amino acid metabolic signaling influences Aedes aegypti midgut microbiome variability

    PubMed Central

    Short, Sarah M.; Mongodin, Emmanuel F.; MacLeod, Hannah J.; Talyuli, Octavio A. C.

    2017-01-01

    The mosquito midgut microbiota has been shown to influence vector competence for multiple human pathogens. The microbiota is highly variable in the field, and the sources of this variability are not well understood, which limits our ability to understand or predict its effects on pathogen transmission. In this work, we report significant variation in female adult midgut bacterial load between strains of A. aegypti which vary in their susceptibility to dengue virus. Composition of the midgut microbiome was similar overall between the strains, with 81–92% of reads coming from the same five bacterial families, though we did detect differences in the presence of some bacterial families including Flavobacteriaceae and Entobacteriaceae. We conducted transcriptomic analysis on the two mosquito strains that showed the greatest difference in bacterial load, and found that they differ in transcript abundance of many genes implicated in amino acid metabolism, in particular the branched chain amino acid degradation pathway. We then silenced this pathway by targeting multiple genes using RNA interference, which resulted in strain-specific bacterial proliferation, thereby eliminating the difference in midgut bacterial load between the strains. This suggests that the branched chain amino acid (BCAA) degradation pathway controls midgut bacterial load, though the mechanism underlying this remains unclear. Overall, our results indicate that amino acid metabolism can act to influence the midgut microbiota. Moreover, they suggest that genetic or physiological variation in BCAA degradation pathway activity may in part explain midgut microbiota variation in the field. PMID:28753661

  4. Influence of dietary macronutrients on liver fat accumulation and metabolism.

    PubMed

    Parry, Siôn A; Hodson, Leanne

    2017-09-24

    The liver is a principal metabolic organ within the human body and has a major role in regulating carbohydrate, fat, and protein metabolism. With increasing rates of obesity, the prevalence of non-alcoholic fatty liver disease (NAFLD) is growing. It remains unclear why NAFLD, which is now defined as the hepatic manifestation of the metabolic syndrome, develops but lifestyle factors such as diet (ie, total calorie and specific nutrient intakes), appear to play a key role. Here we review the available observational and intervention studies that have investigated the influence of dietary macronutrients on liver fat content. Findings from observational studies are conflicting with some reporting that relative to healthy controls, patients with NAFLD consume diets higher in total fat/saturated fatty acids, whilst others find they consume diets higher in carbohydrates/sugars. From the limited number of intervention studies that have been undertaken, a consistent finding is a hypercaloric diet, regardless of whether the excess calories have been provided either as fat, sugar, or both, increases liver fat content. In contrast, a hypocaloric diet decreases liver fat content. Findings from both hyper- and hypo-caloric feeding studies provide some suggestion that macronutrient composition may also play a role in regulating liver fat content and this is supported by data from isocaloric feeding studies; fatty acid composition and/or carbohydrate content/type appear to influence whether there is accrual of liver fat or not. The mechanisms by which specific macronutrients, when consumed as part of an isocaloric diet, cause a change in liver fat remain to be fully elucidated. © American Federation for Medical Research (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Effect of modified atmosphere composition on the metabolism of glucose by Brochothrix thermosphacta.

    PubMed

    Pin, Carmen; García de Fernando, Gonzalo D; Ordóñez, Juan A

    2002-09-01

    The influence of atmosphere composition on the metabolism of Brochothrix thermosphacta was studied by analyzing the consumption of glucose and the production of ethanol, acetic and lactic acids, acetaldehyde, and diacetyl-acetoin under atmospheres containing different combinations of carbon dioxide and oxygen. When glucose was metabolized under oxygen-free atmospheres, lactic acid was one of the main end products, while under atmospheres rich in oxygen mainly acetoin-diacetyl was produced. The proportions of the total consumed glucose used for the production of acetoin (aerobic metabolism) and lactic acid (anaerobic metabolism) were used to decide whether aerobic or anaerobic metabolism predominated at a given atmosphere composition. The boundary conditions between dominantly anaerobic and aerobic metabolisms were determined by logistic regression. The metabolism of glucose by B. thermosphacta was influenced not only by the oxygen content of the atmosphere but also by the carbon dioxide content. At high CO(2) percentages, glucose metabolism remained anaerobic under greater oxygen contents.

  6. Effect of Modified Atmosphere Composition on the Metabolism of Glucose by Brochothrix thermosphacta

    PubMed Central

    Pin, Carmen; García de Fernando, Gonzalo D.; Ordóñez, Juan A.

    2002-01-01

    The influence of atmosphere composition on the metabolism of Brochothrix thermosphacta was studied by analyzing the consumption of glucose and the production of ethanol, acetic and lactic acids, acetaldehyde, and diacetyl-acetoin under atmospheres containing different combinations of carbon dioxide and oxygen. When glucose was metabolized under oxygen-free atmospheres, lactic acid was one of the main end products, while under atmospheres rich in oxygen mainly acetoin-diacetyl was produced. The proportions of the total consumed glucose used for the production of acetoin (aerobic metabolism) and lactic acid (anaerobic metabolism) were used to decide whether aerobic or anaerobic metabolism predominated at a given atmosphere composition. The boundary conditions between dominantly anaerobic and aerobic metabolisms were determined by logistic regression. The metabolism of glucose by B. thermosphacta was influenced not only by the oxygen content of the atmosphere but also by the carbon dioxide content. At high CO2 percentages, glucose metabolism remained anaerobic under greater oxygen contents. PMID:12200298

  7. Inhibition of advanced glycation endproduct formation by acetaldehyde: role in the cardioprotective effect of ethanol.

    PubMed

    Al-Abed, Y; Mitsuhashi, T; Li, H; Lawson, J A; FitzGerald, G A; Founds, H; Donnelly, T; Cerami, A; Ulrich, P; Bucala, R

    1999-03-02

    Epidemiological studies suggest that there is a beneficial effect of moderate ethanol consumption on the incidence of cardiovascular disease. Ethanol is metabolized to acetaldehyde, a two-carbon carbonyl compound that can react with nucleophiles to form covalent addition products. We have identified a biochemical modification produced by the reaction of acetaldehyde with protein-bound Amadori products. Amadori products typically arise from the nonenzymatic addition of reducing sugars (such as glucose) to protein amino groups and are the precursors to irreversibly bound, crosslinking moieties called advanced glycation endproducts, or AGEs. AGEs accumulate over time on plasma lipoproteins and vascular wall components and play an important role in the development of diabetes- and age-related cardiovascular disease. The attachment of acetaldehyde to a model Amadori product produces a chemically stabilized complex that cannot rearrange and progress to AGE formation. We tested the role of this reaction in preventing AGE formation in vivo by administering ethanol to diabetic rats, which normally exhibit increased AGE formation and high circulating levels of the hemoglobin Amadori product, HbA1c, and the hemoglobin AGE product, Hb-AGE. In this model study, diabetic rats fed an ethanol diet for 4 weeks showed a 52% decrease in Hb-AGE when compared with diabetic controls (P < 0.001). Circulating levels of HbA1c were unaffected by ethanol, pointing to the specificity of the acetaldehyde reaction for the post-Amadori, advanced glycation process. These data suggest a possible mechanism for the so-called "French paradox," (the cardioprotection conferred by moderate ethanol ingestion) and may offer new strategies for inhibiting advanced glycation.

  8. 40 CFR 80.56 - Measurement methods for formaldehyde and acetaldehyde.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and acetaldehyde. 80.56 Section 80.56 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Measurement methods for formaldehyde and acetaldehyde. (a) Formaldehyde and acetaldehyde will be measured by... acetaldehyde are used to determine the response, repeatability, and limit of quantitation of the HPLC...

  9. Acetaldehyde involvement in ethanol's postabsortive effects during early ontogeny

    PubMed Central

    March, Samanta M.; Abate, P.; Molina, Juan C.

    2013-01-01

    Clinical and biomedical studies sustains the notion that early ontogeny is a vulnerable window to the impact of alcohol. Experiences with the drug during these stages increase latter disposition to prefer, use or abuse ethanol. This period of enhanced sensitivity to ethanol is accompanied by a high rate of activity in the central catalase system, which metabolizes ethanol in the brain. Acetaldehyde (ACD), the first oxidation product of ethanol, has been found to share many neurobehavioral effects with the drug. Cumulative evidence supports this notion in models employing adults. Nevertheless very few studies have been conducted to analyze the role of ACD in ethanol postabsorptive effects, in newborns or infant rats. In this work we review recent experimental literature that syndicates ACD as a mediator agent of reinforcing aspects of ethanol, during early ontogenetic stages. We also show a meta-analytical correlational approach that proposes how differences in the activity of brain catalase across ontogeny, could be modulating patterns of ethanol consumption. PMID:23801947

  10. Modelling bidirectional fluxes of methanol and acetaldehyde with the FORCAsT canopy exchange model

    NASA Astrophysics Data System (ADS)

    Ashworth, Kirsti; Chung, Serena H.; McKinney, Karena A.; Liu, Ying; Munger, J. William; Martin, Scot T.; Steiner, Allison L.

    2016-12-01

    The FORCAsT canopy exchange model was used to investigate the underlying mechanisms governing foliage emissions of methanol and acetaldehyde, two short chain oxygenated volatile organic compounds ubiquitous in the troposphere and known to have strong biogenic sources, at a northern mid-latitude forest site. The explicit representation of the vegetation canopy within the model allowed us to test the hypothesis that stomatal conductance regulates emissions of these compounds to an extent that its influence is observable at the ecosystem scale, a process not currently considered in regional- or global-scale atmospheric chemistry models.We found that FORCAsT could only reproduce the magnitude and diurnal profiles of methanol and acetaldehyde fluxes measured at the top of the forest canopy at Harvard Forest if light-dependent emissions were introduced to the model. With the inclusion of such emissions, FORCAsT was able to successfully simulate the observed bidirectional exchange of methanol and acetaldehyde. Although we found evidence that stomatal conductance influences methanol fluxes and concentrations at scales beyond the leaf level, particularly at dawn and dusk, we were able to adequately capture ecosystem exchange without the addition of stomatal control to the standard parameterisations of foliage emissions, suggesting that ecosystem fluxes can be well enough represented by the emissions models currently used.

  11. Modelling bidirectional fluxes of methanol and acetaldehyde with the FORCAsT canopy exchange model

    SciTech Connect

    Ashworth, Kirsti; Chung, Serena H.; McKinney, Karena A.; Liu, Ying; Munger, J. William; Martin, Scot T.; Steiner, Allison L.

    2016-12-15

    Here, the FORCAsT canopy exchange model was used to investigate the underlying mechanisms governing foliage emissions of methanol and acetaldehyde, two short chain oxygenated volatile organic compounds ubiquitous in the troposphere and known to have strong biogenic sources, at a northern mid-latitude forest site. The explicit representation of the vegetation canopy within the model allowed us to test the hypothesis that stomatal conductance regulates emissions of these compounds to an extent that its influence is observable at the ecosystem scale, a process not currently considered in regional- or global-scale atmospheric chemistry models. Here, we found that FORCAsT could only reproduce the magnitude and diurnal profiles of methanol and acetaldehyde fluxes measured at the top of the forest canopy at Harvard Forest if light-dependent emissions were introduced to the model. With the inclusion of such emissions, FORCAsT was able to successfully simulate the observed bidirectional exchange of methanol and acetaldehyde. Although we found evidence that stomatal conductance influences methanol fluxes and concentrations at scales beyond the leaf level, particularly at dawn and dusk, we were able to adequately capture ecosystem exchange without the addition of stomatal control to the standard parameterisations of foliage emissions, suggesting that ecosystem fluxes can be well enough represented by the emissions models currently used.

  12. Modelling bidirectional fluxes of methanol and acetaldehyde with the FORCAsT canopy exchange model

    DOE PAGES

    Ashworth, Kirsti; Chung, Serena H.; McKinney, Karena A.; ...

    2016-12-15

    Here, the FORCAsT canopy exchange model was used to investigate the underlying mechanisms governing foliage emissions of methanol and acetaldehyde, two short chain oxygenated volatile organic compounds ubiquitous in the troposphere and known to have strong biogenic sources, at a northern mid-latitude forest site. The explicit representation of the vegetation canopy within the model allowed us to test the hypothesis that stomatal conductance regulates emissions of these compounds to an extent that its influence is observable at the ecosystem scale, a process not currently considered in regional- or global-scale atmospheric chemistry models. Here, we found that FORCAsT could only reproducemore » the magnitude and diurnal profiles of methanol and acetaldehyde fluxes measured at the top of the forest canopy at Harvard Forest if light-dependent emissions were introduced to the model. With the inclusion of such emissions, FORCAsT was able to successfully simulate the observed bidirectional exchange of methanol and acetaldehyde. Although we found evidence that stomatal conductance influences methanol fluxes and concentrations at scales beyond the leaf level, particularly at dawn and dusk, we were able to adequately capture ecosystem exchange without the addition of stomatal control to the standard parameterisations of foliage emissions, suggesting that ecosystem fluxes can be well enough represented by the emissions models currently used.« less

  13. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci.

    PubMed

    Pavlova, Sylvia I; Jin, Ling; Gasparovich, Stephen R; Tao, Lin

    2013-07-01

    Ethanol consumption and poor oral hygiene are risk factors for oral and oesophageal cancers. Although oral streptococci have been found to produce excessive acetaldehyde from ethanol, little is known about the mechanism by which this carcinogen is produced. By screening 52 strains of diverse oral streptococcal species, we identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol. We then constructed gene deletion mutants in this strain and analysed them for alcohol and acetaldehyde dehydrogenases by zymograms. The results showed that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol and ethanol, respectively. Two additional dehydrogenases, S-AdhA and TdhA, were identified with specificities to the secondary alcohol 2-propanol and threonine, respectively, but not to ethanol. S. gordonii V2016 did not show a detectable acetaldehyde dehydrogenase even though its adhE gene encodes a putative bifunctional acetaldehyde/alcohol dehydrogenase. Mutants with adhE deletion showed greater tolerance to ethanol in comparison with the wild-type and mutant with adhA or adhB deletion, indicating that AdhE is the major alcohol dehydrogenase in S. gordonii. Analysis of 19 additional strains of S. gordonii, S. mitis, S. oralis, S. salivarius and S. sanguinis showed expressions of up to three alcohol dehydrogenases, but none showed detectable acetaldehyde dehydrogenase, except one strain that showed a novel ALDH. Therefore, expression of multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase may contribute to excessive production of acetaldehyde from ethanol by certain oral streptococci.

  14. Acute effect of a supplemented milk drink on bone metabolism in healthy postmenopausal women is influenced by the metabolic syndrome.

    PubMed

    Thomas, Sunethra D C; Morris, Howard A; Nordin, B E C

    2015-09-25

    Dietary factors acutely influence the rate of bone resorption, as demonstrated by changes in serum bone resorption markers. Dietary calcium exerts its effect by reducing parathyroid hormone levels while other components induce gut incretin hormones both of which reduce bone resorption markers. The impact of dietary calcium on bone turnover when energy metabolism is modulated such as in metabolic syndrome has not been explored. This study was designed investigate whether metabolic syndrome or a greater amount of visceral fat influences the impact of dietary calcium on bone turnover. The influence of the metabolic syndrome on effects of dietary calcium on bone turnover in community dwelling postmenopausal women was studied. Twenty five volunteers consumed 200 mL of low fat milk with additional 560 mg calcium (one serve of Milo®) in the evening on one occasion. Fasting morning serum biochemistry before and after the milk drink with lumber spine bone density, bone mineral content, fat and lean mass using dual energy X-ray absorptiometry (DXA) and waist circumference were measured. The women were divided into 2 groups using the waist measurement of 88 cm, as a criterion of metabolic syndrome. Student's t tests were used to determine significant differences between the 2 groups. The lumbar spine mineral content was higher in women with metabolic syndrome. After consuming the milk drink, serum bone resorption marker C terminal telopeptide (CTX) was suppressed to a significant extent in women with metabolic syndrome compared to those without. The results suggests that dietary calcium may exert a greater suppression of bone resorption in post-menopausal women with metabolic syndrome than healthy women. Despite substantial evidence for close links between energy metabolism and bone metabolism this is the first report suggesting visceral fat or metabolic syndrome may influence the effects of dietary calcium on bone metabolism.

  15. Centrally formed acetaldehyde mediates ethanol-induced brain PKA activation.

    PubMed

    Tarragon, E; Baliño, P; Aragon, C M G

    2014-09-19

    Centrally formed acetaldehyde has proven to be responsible for several psychopharmacological effects induced by ethanol. In addition, it has been suggested that the cAMP-PKA signaling transduction pathway plays an important role in the modulation of several ethanol-induced behaviors. Therefore, we hypothesized that acetaldehyde might be ultimately responsible for the activation of this intracellular pathway. We used three pharmacological agents that modify acetaldehyde activity (α-lipoic acid, aminotriazole, and d-penicillamine) to study the role of this metabolite on EtOH-induced PKA activation in mice. Our results show that the injection of α-lipoic acid, aminotriazole and d-penicillamine prior to acute EtOH administration effectively blocks the PKA-enhanced response to EtOH in the brain. These results strongly support the hypothesis of a selective release of acetaldehyde-dependent Ca(2+) as the mechanism involved in the neurobehavioral effects elicited by EtOH.

  16. Dissolution, speciation, and reaction of acetaldehyde in cold sulfuric acid

    NASA Astrophysics Data System (ADS)

    Michelsen, Rebecca R.; Ashbourn, Samantha F. M.; Iraci, Laura T.

    2004-12-01

    The uptake of gas-phase acetaldehyde [CH3CHO, ethanal] by aqueous sulfuric acid solutions was studied under upper tropospheric/lower stratospheric (UT/LS) conditions. The solubility of acetaldehyde was found to be low, between 2 × 102 M atm-1 and 1.5 × 105 M atm-1 under the ranges of temperature (211-241 K) and acid composition (39-76 weight percent, wt%, H2SO4) studied. Under most conditions, acetaldehyde showed simple solubility behavior when exposed to sulfuric acid. Under moderately acidic conditions (usually 47 wt% H2SO4), evidence of reaction was observed. Enhancement of uptake at long times was occasionally detected in conjunction with reaction. The source of these behaviors and the effect of acetaldehyde speciation on solubility are discussed. Implications for the uptake of oxygenated organic compounds by tropospheric aerosols are considered.

  17. Eclipsed Acetaldehyde as a Precursor for Producing Vinyl Alcohol

    PubMed Central

    Osman, Osman I.; Alyoubi, Abdulrahman O.; Elroby, Shabaan A. K.; Hilal, Rifaat H.; Aziz, Saadullah G.

    2012-01-01

    The MP2 and DFT/B3LYP methods at 6-311++G(d,p) and aug-cc-pdz basis sets have been used to probe the origin of relative stability preference for eclipsed acetaldehyde over its bisected counterpart. A relative energy stability range of 1.02 to 1.20 kcal/mol, in favor of the eclipsed conformer, was found and discussed. An NBO study at these chemistry levels complemented these findings and assigned the eclipsed acetaldehyde preference mainly to the vicinal antiperiplanar hyperconjugative interactions. The tautomeric interconversion between the more stable eclipsed acetaldehyde and vinyl alcohol has been achieved through a four-membered ring transition state (TS). The obtained barrier heights and relative stabilities of eclipsed acetaldehyde and the two conformers of vinyl alchol at these model chemistries have been estimated and discussed. PMID:23203130

  18. Circadian Influence on Metabolism and Inflammation in Atherosclerosis.

    PubMed

    McAlpine, Cameron S; Swirski, Filip K

    2016-06-24

    Many aspects of human health and disease display daily rhythmicity. The brain's suprachiasmic nucleus, which interprets recurring external stimuli, and autonomous molecular networks in peripheral cells together, set our biological circadian clock. Disrupted or misaligned circadian rhythms promote multiple pathologies including chronic inflammatory and metabolic diseases such as atherosclerosis. Here, we discuss studies suggesting that circadian fluctuations in the vessel wall and in the circulation contribute to atherogenesis. Data from humans and mice indicate that an impaired molecular clock, disturbed sleep, and shifting light-dark patterns influence leukocyte and lipid supply in the circulation and alter cellular behavior in atherosclerotic lesions. We propose that a better understanding of both local and systemic circadian rhythms in atherosclerosis will enhance clinical management, treatment, and public health policy. © 2016 American Heart Association, Inc.

  19. ANTABUS AND THE METABOLISM OF ALCOHOL

    PubMed Central

    Newman, Henry W.

    1950-01-01

    Antabus does not alter the rate of alcohol metabolism in dogs. It interferes with the metabolism of acetaldehyde, so that the ordinarily prompt removal of this substance from the tissues as it is produced in the metabolism of alcohol does not take place. It seems reasonable to assume that it is this accumulation of acetaldehyde in the tissues in abnormally high concentrations that is responsible for the unpleasant symptoms following the taking of alcohol by a patient receiving antabus. PMID:15426985

  20. An acetaldehyde-sequestering agent inhibits appetitive reinforcement and behavioral stimulation induced by ethanol in preweanling rats.

    PubMed

    Pautassi, Ricardo Marcos; Nizhnikov, Michael E; Fabio, Ma Carolina; Spear, Norman E

    2011-01-01

    Ethanol's motivational consequences have been related to the actions of acetaldehyde, a metabolic product of ethanol oxidation. The present study assessed the role of acetaldehyde in the motivational effects of ethanol on preweanling rats. In Experiment 1 pups (postnatal days 13-14, PD 13-14) were given systemic administration of D-penicillamine (DP, a drug that sequesters acetaldehyde: 0, 25, 50 or 75 mg/kg) before pairings of 1.0 g/kg ethanol and a rough surface (sandpaper, conditioned stimulus, CS). At test, pups given sandpaper-ethanol pairings exhibited greater preference for the CS than unpaired controls, but this preference was not expressed by pups given DP. Pre-training administration of 25 or 50 mg/kg DP completely blocked the expression of ethanol-mediated appetitive conditioning. D-penicillamine did not alter blood ethanol levels. Subsequent experiments revealed that ethanol-induced activation was blocked by central (intra-cisterna magna injections, volume: 1 μl, dose: 0 or 75 μg) but not systemic treatment with DP (0, 25, 50 or 75 mg/kg; ip). These results indicate that: (a) preweanling rats are sensitive to the reinforcing effect of ethanol, and (b) that this effect is associated with the motor activating effect of the drug. These effects seem to be mediated by the first metabolite of ethanol, acetaldehyde.

  1. AN ACETALDEHYDE-SEQUESTERING AGENT INHIBITS APPETITIVE REINFORCEMENT AND BEHAVIORAL STIMULATION INDUCED BY ETHANOL IN PREWEANLING RATS

    PubMed Central

    Pautassi, Ricardo Marcos; Nizhnikov, Michael E.; Fabio, Ma. Carolina; Spear, Norman E.

    2010-01-01

    Ethanol's motivational consequences have been related to the actions of acetaldehyde, a metabolic product of ethanol oxidation. The present study assessed the role of acetaldehyde in the motivational effects of ethanol on pre-weanling rats. In Experiment 1 pups (postnatal days 13–14, PD 13–14) were given systemic administration of d-penicillamine (DP, a drug that sequesters acetaldehyde: 0, 25, 50 or 75 mg/kg) before pairings of 1.0 g/kg ethanol and a rough surface (sandpaper, conditioned stimulus, CS). At test, pups given sandpaper-ethanol pairings exhibited greater preference for the CS than unpaired controls, but this preference was not expressed by pups given DP. Pre-training administration of 25 or 50 mg/kg DP completely blocked the expression of ethanol-mediated appetitive conditioning. D-penicillamine did not alter blood ethanol levels. Subsequent experiments revealed that ethanol-induced activation was blocked by central (intra-cisterna magna injections, volume: 1 μl, dose: 0 or 75 μg) but not systemic treatment with DP (0, 25, 50 or 75 mg/kg; ip). These results indicate that: (a) pre-weanling rats are sensitive to the reinforcing effect of ethanol, and (b) that this effect is associated with the motor activating effect of the drug. These effects seem to be mediated by the first metabolite of ethanol, acetaldehyde. PMID:20951160

  2. Cattle temperament influences metabolism: metabolic response to glucose tolerance and insulin sensitivity tests in beef steers.

    PubMed

    Burdick Sanchez, N C; Carroll, J A; Broadway, P R; Hughes, H D; Roberts, S L; Richeson, J T; Schmidt, T B; Vann, R C

    2016-07-01

    Cattle temperament, defined as the reactivity of cattle to humans or novel environments, can greatly influence several physiological systems in the body, including immunity, stress, and most recently discovered, metabolism. Greater circulating concentrations of nonesterified fatty acids (NEFAs) found in temperamental cattle suggest that temperamental cattle are metabolically different than calm cattle. Further, elevated NEFA concentrations have been reported to influence insulin sensitivity. Therefore, the objective of this study was to determine whether cattle temperament would influence the metabolic response to a glucose tolerance test (GTT) and insulin sensitivity test (IST). Angus-cross steers (16 calm and 15 temperamental; 216 ± 6 kg BW) were selected based on temperament score measured at weaning. On day 1, steers were moved into indoor stanchions to allow measurement of individual ad libitum feed intake. On day 6, steers were fitted with indwelling rectal temperature probes and jugular catheters. At 9 AM on day 7, steers received the GTT (0.5-mL/kg BW of a 50% dextrose solution), and at 2 PM on day 7, steers received the IST (2.5 IU bovine insulin/kg BW). Blood samples were collected and serum isolated at -60, -45, -30, -15, 0, 10, 20, 30, 45, 60, 90, 120, and 150 min relative to each challenge. Serum was stored at -80°C until analyzed for cortisol, glucose, NEFA, and blood urea nitrogen concentrations. All variables changed over time (P < 0.01). For the duration of the study, temperamental steers maintained greater (P < 0.01) serum NEFA and less (P ≤ 0.01) serum blood urea nitrogen and insulin sensitivity (calculated using Revised Quantitative Insulin Sensitivity Check Index) compared with calm steers. During the GTT, temperamental steers had greater (P < 0.01) serum glucose, yet decreased (P = 0.03) serum insulin and (P < 0.01) serum insulin: serum glucose compared to calm cattle. During the IST, temperamental steers had greater (P < 0.01) serum

  3. Atmospheric Vinyl Alcohol to Acetaldehyde Tautomerization Revisited.

    PubMed

    Peeters, Jozef; Nguyen, Vinh Son; Müller, Jean-François

    2015-10-15

    The atmospheric oxidation of vinyl alcohol (VA) produced by photoisomerization of acetaldehyde (AA) is thought to be a source of formic acid (FA). Nevertheless, a recent theoretical study predicted a high rate coefficient k1(298 K) of ≈10(-14) cm(3) molecule(-1) s(-1) for the FA-catalyzed tautomerization reaction 1 of VA back into AA, which suggests that FA buffers its own production from VA. However, the unusually high frequency factor implied by that study prompted us to reinvestigate reaction 1 . On the basis of a high-level ab initio potential energy profile, we first established that transition state theory is applicable, and derived a k1(298 K) of only ≈2 × 10(-20) cm(3) molecule(-1) s(-1), concluding that the reaction is negligible. Instead, we propose and rationalize another important VA sink: its uptake by aqueous aerosol and cloud droplets followed by fast liquid-phase tautomerization to AA; global modeling puts the average lifetime by this sink at a few hours, similar to oxidation by OH.

  4. Hormonal alterations in PCOS and its influence on bone metabolism.

    PubMed

    Krishnan, Abhaya; Muthusami, Sridhar

    2017-02-01

    According to the World Health Organization (WHO) polycystic ovary syndrome (PCOS) occurs in 4-8% of women worldwide. The prevalence of PCOS in Indian adolescents is 12.2% according to the Indian Council of Medical Research (ICMR). The National Institute of Health has documented that it affects approximately 5 million women of reproductive age in the United States. Hormonal imbalance is the characteristic of many women with polycystic ovarian syndrome (PCOS). The influence of various endocrine changes in PCOS women and their relevance to bone remains to be documented. Hormones, which include gonadotrophin-releasing hormone (GnRH), insulin, the leutinizing/follicle-stimulating hormone (LH/FSH) ratio, androgens, estrogens, growth hormones (GH), cortisol, parathyroid hormone (PTH) and calcitonin are disturbed in PCOS women. These hormones influence bone metabolism in human subjects directly as well as indirectly. The imbalance in these hormones results in increased prevalence of osteoporosis in PCOS women. Limited evidence suggests that the drugs taken during the treatment of PCOS increase the risk of bone fracture in PCOS patients through endocrine disruption. This review is aimed at the identification of the relationship between bone mineral density and hormonal changes in PCOS subjects and identifies potential areas to study bone-related disorders in PCOS women. © 2017 Society for Endocrinology.

  5. Rumen microbial communities influence metabolic phenotypes in lambs

    PubMed Central

    Morgavi, Diego P.; Rathahao-Paris, Estelle; Popova, Milka; Boccard, Julien; Nielsen, Kristian F.; Boudra, Hamid

    2015-01-01

    The rumen microbiota is an essential part of ruminants shaping their nutrition and health. Despite its importance, it is not fully understood how various groups of rumen microbes affect host-microbe relationships and functions. The aim of the study was to simultaneously explore the rumen microbiota and the metabolic phenotype of lambs for identifying host-microbe associations and potential biomarkers of digestive functions. Twin lambs, separated in two groups after birth were exposed to practices (isolation and gavage with rumen fluid with protozoa or protozoa-depleted) that differentially restricted the acquisition of microbes. Rumen microbiota, fermentation parameters, digestibility and growth were monitored for up to 31 weeks of age. Microbiota assembled in isolation from other ruminants lacked protozoa and had low bacterial and archaeal diversity whereas digestibility was not affected. Exposure to adult sheep microbiota increased bacterial and archaeal diversity independently of protozoa presence. For archaea, Methanomassiliicoccales displaced Methanosphaera. Notwithstanding, protozoa induced differences in functional traits such as digestibility and significantly shaped bacterial community structure, notably Ruminococcaceae and Lachnospiraceae lower up to 6 folds, Prevotellaceae lower by ~40%, and Clostridiaceae and Veillonellaceae higher up to 10 folds compared to microbiota without protozoa. An orthogonal partial least squares-discriminant analysis of urinary metabolome matched differences in microbiota structure. Discriminant metabolites were mainly involved in amino acids and protein metabolic pathways while a negative interaction was observed between methylotrophic methanogens Methanomassiliicoccales and trimethylamine N-oxide. These results stress the influence of gut microbes on animal phenotype and show the potential of metabolomics for monitoring rumen microbial functions. PMID:26528248

  6. Sympathetic neural influence on bone metabolism in microgravity (Review).

    PubMed

    Mano, Tadaaki; Nishimura, N; Iwase, S

    2010-12-01

    Bone loss is one of the most important complications for astronauts who are exposed to long-term microgravity in space and also for bedridden elderly people. Recent studies have indicated that the sympathetic nervous system plays a role in bone metabolism. This paper reviews findings concerning with sympathetic influences on bone metabolism to hypothesize the mechanism how sympathetic neural functions are related to bone loss in microgravity. Animal studies have suggested that leptin stimulates hypothalamus increasing sympathetic outflow to bone and enhances bone resorption through noradrenaline and β-adrenoreceptors in bone. In humans, even though there have been some controversial findings, use of β-adrenoblockers has been reported to be beneficial for prevention of osteoporosis and bone fracture. On the other hand, microneurographically-recorded sympathetic nerve activity was enhanced by exposure to microgravity in space as well as dry immersion or long-term bed rest to simulate microgravity. The same sympathetic activity became higher in elderly people whose bone mass becomes generally reduced. Our recent findings indicated a significant correlation between muscle sympathetic nerve activity and urinary deoxypyridinoline as a specific marker measuring bone resorption. Based on these findings we would like to propose a following hypothesis concerning the sympathetic involvement in the mechanism of bone loss in microgravity: An exposure to prolonged microgravity may enhance sympathetic neural traffic not only to muscle but also to bone. This sympathetic enhancement increases plasma noradrenaline level and inhibits osteogenesis and facilitates bone resorption through β-adrenoreceptors in bone to facilitate bone resorption to reduce bone mass. The use of β-adrenoblockers to prevent bone loss in microgravity may be reasonable.

  7. Metabolic phenotypes of obesity influence triglyceride and inflammation homoeostasis.

    PubMed

    Perez-Martinez, Pablo; Alcala-Diaz, Juan F; Delgado-Lista, Javier; Garcia-Rios, Antonio; Gomez-Delgado, Francisco; Marin-Hinojosa, Carmen; Rodriguez-Cantalejo, Fernando; Delgado-Casado, Nieves; Perez-Caballero, Ana I; Fuentes-Jimenez, Francisco J; Camargo, Antonio; Tinahones, Francisco J; Ordovas, Jose M; Perez-Jimenez, Francisco; Lopez-Miranda, Jose

    2014-11-01

    We examined the degree of postprandial triglyceride (TG) response over the day, representing a highly dynamic state, with continuous metabolic adaptations, among normal-weight, overweight and obese patients, according to their metabolically healthy or abnormal status. A total of 1002 patients from the CORDIOPREV clinical trial (NCT00924937) were submitted to an oral fat load test meal with 0·7 g fat/kg body weight (12% saturated fatty acids (SFA), 10% polyunsaturated fatty acids (PUFA), 43% monounsaturated fatty acids (MUFA), 10% protein and 25% carbohydrates). Serial blood test analysing lipid fractions and inflammation markers (high-sensitivity C-reactive protein (hs-CRP)) were drawn at 0, 1, 2, 3 and 4 h during postprandial state. We explored the dynamic response according to six body size phenotypes: (i) normal weight, metabolically healthy; (ii) normal weight, metabolically abnormal; (iii) overweight, metabolically healthy; (iv) overweight, metabolically abnormal; (v) obese, metabolically healthy; and (vi) obese, metabolically abnormal. Metabolically healthy patients displayed lower postprandial response of plasma TG and large triacylglycerol-rich lipoproteins (TRLs)-TG, compared with those metabolically abnormal, independently whether or not they were obese (P < 0·001 and P < 0·001, respectively). Moreover, the area under the curve (AUC) of TG and AUC of large TRLs-TG were greater in the group of metabolically abnormal compared with the group of metabolically healthy (P < 0·001 and P < 0·001, respectively). Interestingly, metabolically abnormal subjects displayed higher postprandial response of plasma hs-CRP than did the subgroup of normal, overweight and obese, metabolically healthy patients (P < 0·001). Our findings showed that certain types of the metabolic phenotypes of obesity are more favourable modulating phenotypic flexibility after a dynamic fat load test, through TG metabolism and inflammation homoeostasis. To identify, these phenotypes may be

  8. Acetaldehyde Stimulation of Net Gluconeogenic Carbon Movement from Applied Malic Acid in Tomato Fruit Pericarp Tissue 12

    PubMed Central

    Halinska, Anna; Frenkel, Chaim

    1991-01-01

    Applied acetaldehyde is known to lead to sugar accumulation in fruit including tomatoes (Lycopersicon esculentum) (O Paz, HW Janes, BA Prevost, C Frenkel [1982] J Food Sci 47: 270-274) presumably due to stimulation of gluconeogenesis. This conjecture was examined using tomato fruit pericarp discs as a test system and applied i-[U-14C]malic acid as the source for gluconeogenic carbon mobilization. The label from malate was recovered in respiratory CO2, in other organic acids, in ethanol insoluble material, and an appreciable amount in the ethanol soluble sugar fraction. In Rutgers tomatoes, the label recovery in the sugar fraction and an attendant label reduction in the organic acids fraction intensified with fruit ripening. In both Rutgers and in the nonripening tomato rin, these processes were markedly stimulated by 4000 ppm acetaldehyde. The onset of label apportioning from malic acids to sugars coincided with decreased levels of fructose-2,6-biphosphate, the gluconeogenesis inhibitor. In acetaldehyde-treated tissues, with enhanced label mobilization, this decline reached one-half to one third of the initial fructose-2,6-biphosphate levels. Application of 30 micromolar fructose-2,6-biphosphate or 2,5-anhydro-d-mannitol in turn led to a precipitous reduction in the label flow to sugars presumably due to inhibition of fructose-1,6-biphosphatase by the compounds. We conclude that malic and perhaps other organic acids are carbon sources for gluconeogenesis occurring normally in ripening tomatoes. The process is stimulated by acetaldehyde apparently by attenuating the fructose-2,6-biphosphate levels. The mode of the acetaldehyde regulation of fructose-2,6-biphosphate metabolism awaits clarification. PMID:16668078

  9. Influence of host seed on metabolic activity by Enterobacter cloacae in the spermosphere

    USDA-ARS?s Scientific Manuscript database

    Little is known regarding the influences of nutrients released from plants on the metabolic activity of colonizing microbes. To gain a better understanding of these influences, we used bioluminescence- and oxygen consumption-based methods to compare bacterial metabolic activity expressed during col...

  10. Polymorphisms of alcohol dehydrogenase-1B and aldehyde dehydrogenase-2 and the blood and salivary ethanol and acetaldehyde concentrations of Japanese alcoholic men.

    PubMed

    Yokoyama, Akira; Tsutsumi, Eri; Imazeki, Hiromi; Suwa, Yoshihide; Nakamura, Chizu; Yokoyama, Tetsuji

    2010-07-01

    The effects of genetic polymorphism of aldehyde dehydrogenase-2 (ALDH2) on alcohol metabolism are striking in nonalcoholics, and the effects of genetic polymorphism of alcohol dehydrogenase-1B (ADH1B) are modest at most, whereas genetic polymorphisms of both strongly affect the susceptibility to alcoholism and upper aerodigestive tract (UADT) cancer of drinkers. We evaluated associations between ADH1B/ADH1C/ALDH2 genotypes and the blood and salivary ethanol and acetaldehyde levels of 168 Japanese alcoholic men who came to our hospital for the first time in the morning and had been drinking until the day before. The ethanol levels in their blood and saliva were similar, but the acetaldehyde levels in their saliva were much higher than in their blood, probably because of acetaldehyde production by oral bacteria. Blood and salivary ethanol and acetaldehyde levels were both significantly higher in the subjects with the less active ADH1B*1/*1 genotype than in the ADH1B*2 carriers, but none of the levels differed according to ALDH2 genotype. Significant linkage disequilibrium was detected between the ADH1B and ADH1C genotypes, but ADH1C genotype did not affect the blood or salivary ethanol or acetaldehyde levels. High blood acetaldehyde levels were found even in the active ALDH2*1/*1 alcoholics, which were comparable with the levels of the inactive heterozygous ALDH2*1/*2 alcoholics with less active ADH1B*1/*1. The slope of the increase in blood acetaldehyde level as the blood ethanol level increased was significantly steeper in alcoholics with inactive heterozygous ALDH2*1/*2 plus ADH1B*2 allele than with any other genotype combinations, but the slopes of the increase in salivary acetaldehyde level as the salivary ethanol level increased did not differ between the groups of subjects with any combinations of ALDH2 and ADH1B genotypes. The ADH1B/ALDH2 genotype affected the blood and salivary ethanol and acetaldehyde levels of nonabstinent alcoholics in a different manner

  11. Understanding metabolic regulation and its influence on cell physiology

    PubMed Central

    Metallo, Christian M.; Heiden, Matthew G. Vander

    2013-01-01

    Metabolism impacts all cellular functions and plays a fundamental role in biology. In the last century, our knowledge of metabolic pathway architecture and the genomic landscape of disease have increased exponentially. Combined with these insights, advances in analytical methods for quantifying metabolites and systems approaches to analyze these data now provide powerful tools to study metabolic regulation. Here we review the diverse mechanisms cells use to adapt metabolism to specific physiological states and discuss how metabolic flux analyses can be applied to identify important regulatory nodes to understand normal and pathological cell physiology. PMID:23395269

  12. Origin of acetaldehyde during milk fermentation using (13)C-labeled precursors.

    PubMed

    Ott, A; Germond, J E; Chaintreau, A

    2000-05-01

    Acetaldehyde formation by Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus during fermentation of cow's milk was investigated using (13)C-labeled glucose, L-threonine, and pyruvate with a recent static-and-trapped-headspace technique that does not require derivatization of acetaldehyde prior to gas chromatography-mass spectrometry. Over 90% and almost 100% of acetaldehyde originated from glucose during fermentation by L. delbrueckii subsp. bulgaricus and S. thermophilus, respectively, taking into account both singly and doubly labeled acetaldehyde. As both microorganisms showed threonine aldolase activity and formed labeled acetaldehyde from (13)C-labeled threonine during the fermentation of milk, this amino acid should also contribute to the acetaldehyde produced.

  13. Research on alcohol metabolism among Asians and its implications for understanding causes of alcoholism.

    PubMed Central

    Suddendorf, R F

    1989-01-01

    Research into the causes of alcoholism is a relatively recent scientific endeavor. One area of study which could lead to better understanding of the disease is the possibility of a genetic predisposition to alcoholism. Recent work has demonstrated that people have varying complements of enzymes to metabolize alcohol. Current knowledge is examined about the influence of various ethanol metabolizing enzymes on alcohol consumption by Asians and members of other ethnic groups. The two principal enzymes involved in ethanol oxidative metabolism are alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). ADH is responsible for the metabolism of ethanol to acetaldehyde. ALDH catalyzes the conversion of acetaldehyde to acetate. The different isozymes account for the diversity of alcohol metabolism among individuals. An isozyme of ADH (beta 2 beta 2) is found more frequently in Asians than in whites, and an ALDH isozyme (ALDH2), although present in Asians, often is in an inactive form. The presence of an inactive form of ALDH2 is thought to be responsible for an increase in acetaldehyde levels in the body. Acetaldehyde is considered responsible for the facial flushing reaction often observed among Asians who have consumed alcohol. A dysphoric reaction to alcohol, producing uncomfortable sensations, is believed to be a response to deter further consumption. Although the presence of an inactive ALDH2 isozyme may serve as a deterrent to alcohol consumption, its presence does not fully explain the levels of alcohol consumption by those with the inactive isozyme. Other conditions, such as social pressure, and yet undetermined biological factors, may play a significant role in alcohol consumption. PMID:2511595

  14. The Involvement of Acetaldehyde in Ethanol-Induced Cell Cycle Impairment.

    PubMed

    Scheer, Marc A; Schneider, Katrina J; Finnigan, Rochelle L; Maloney, Eamon P; Wells, Mark A; Clemens, Dahn L

    2016-03-31

    Hepatocytes metabolize the vast majority of ingested ethanol. This metabolic activity results in hepatic toxicity and impairs the ability of hepatocytes to replicate. Previous work by our group has shown that ethanol metabolism results in a G2/M cell cycle arrest. The intent of these studies was to discern the roles of acetaldehyde and reactive oxygen, two of the major by-products of ethanol metabolism, in the G2/M cell cycle arrest. To investigate the role of ethanol metabolites in the cell cycle arrest, VA-13 and VL-17A cells were used. These are recombinant Hep G2 cells that express alcohol dehydrogenase or alcohol dehydrogenase and cytochrome P450 2E1, respectively. Cells were cultured with or without ethanol, lacking or containing the antioxidants N-acetylcysteine (NAC) or trolox, for three days. Cellular accumulation was monitored by the DNA content of the cultures. The accumulation of the cyclin-dependent kinase, Cdc2 in the inactive phosphorylated form (p-Cdc2) and the cyclin-dependent kinase inhibitor p21 were determined by immunoblot analysis. Cultures maintained in the presence of ethanol demonstrated a G2/M cell cycle arrest that was associated with a reduction in DNA content and increased levels of p-Cdc2 and p21, compared with cells cultured in its absence. Inclusion of antioxidants in the ethanol containing media was unable to rescue the cells from the cell cycle arrest or these ethanol metabolism-mediated effects. Additionally, culturing the cells in the presence of acetaldehyde alone resulted in increased levels of p-Cdc2 and p21. Acetaldehyde produced during ethanol oxidation has a major role in the ethanol metabolism-mediated G2/M cell cycle arrest, and the concurrent accumulation of p21 and p-Cdc2. Although reactive oxygen species are thought to have a significant role in ethanol-induced hepatocellular damage, they may have a less important role in the inability of hepatocytes to replace dead or damaged cells.

  15. Influence of nutritional variables and obesity on health and metabolism.

    PubMed

    Azevedo, Fernanda Reis de; Brito, Bruna Cristina

    2012-01-01

    Obesity is a recurring theme in current scientific literature. This can easily be explained by its exponential increase in all layers of society. The popularity of this subject has also given rise to associated questions, which have achieved greater prominence in health-related publications. In order to assess what has been studied in the field of obesity and nutrition, an overview of all articles published on these subjects in some of the main Brazilian scientific journals over the past two years was performed. Among the subthemes selected for this study, those related to childhood obesity attracted attention due to their greater frequency. These were subdivided into: prevalence, intrauterine and breastfeeding influences that may lead to the development of this condition, impact on quality of life, cardiovascular system and metabolism, and possible prevention strategies. Furthermore, issues related to obesity in adults were explored, such as risk factors and new strategies for prevention, with special attention given to the many studies evaluating different aspects of bariatric surgery. Finally, the subject of malnutrition and the impact of the deficiency of specific micronutrients such as selenium, vitamin D, and vitamin B12 were assessed. Based on the results, it was possible to assess the actual importance of obesity and nutrition in health maintenance, and also the several lines of research regarding these issues. Thus, it is essential to create new methods, which must be quick and efficient, to update health professionals involved in the treatment of obesity.

  16. Influence of physical exercise on sex-hormone metabolism.

    PubMed

    Keizer, H A; Poortman, J; Bunnik, G S

    1980-05-01

    We have studied the effects of short-term exercise on the degradation rate of estradiol (E2) measured as the metabolic clearance rate (MCRE2). Six young women (mean age 20.7 yr) volunteered for this study in which we investigated the influence of a submaximal bicycle ergometer load on the MCRE2. All measurements were done in the morning of the 7th to 10th day of the menstrual cycle. [3H]estradiol 17 beta ([3H]E2) was administered intravenously at a constant rate by an infusion pump. During the exercise period on the bicycle ergometer (70% VO2max, 10 min) and the recovery period (25% VO2max, 30 min), several blood samples were taken in which the [3H]E2 concentration was estimated. The results showed a strong decrease in the MCRE2 (range 18-67%) at the end of the work load for all the volunteers. At the end of the recovery period, the MCR was still lower than the basal value (range 30-50%). The possible mechanisms and relevance of these exercise-induced MCR changes of estradiol are discussed.

  17. Product detection of the CH radical reaction with acetaldehyde.

    PubMed

    Goulay, Fabien; Trevitt, Adam J; Savee, John D; Bouwman, Jordy; Osborn, David L; Taatjes, Craig A; Wilson, Kevin R; Leone, Stephen R

    2012-06-21

    The reaction of the methylidyne radical (CH) with acetaldehyde (CH(3)CHO) is studied at room temperature and at a pressure of 4 Torr (533.3 Pa) using a multiplexed photoionization mass spectrometer coupled to the tunable vacuum ultraviolet synchrotron radiation of the Advanced Light Source at Lawrence Berkeley National Laboratory. The CH radicals are generated by 248 nm multiphoton photolysis of CHBr(3) and react with acetaldehyde in an excess of helium and nitrogen gas flow. Five reaction exit channels are observed corresponding to elimination of methylene (CH(2)), elimination of a formyl radical (HCO), elimination of carbon monoxide (CO), elimination of a methyl radical (CH(3)), and elimination of a hydrogen atom. Analysis of the photoionization yields versus photon energy for the reaction of CH and CD radicals with acetaldehyde and CH radical with partially deuterated acetaldehyde (CD(3)CHO) provides fine details about the reaction mechanism. The CH(2) elimination channel is found to preferentially form the acetyl radical by removal of the aldehydic hydrogen. The insertion of the CH radical into a C-H bond of the methyl group of acetaldehyde is likely to lead to a C(3)H(5)O reaction intermediate that can isomerize by β-hydrogen transfer of the aldehydic hydrogen atom and dissociate to form acrolein + H or ketene + CH(3), which are observed directly. Cycloaddition of the radical onto the carbonyl group is likely to lead to the formation of the observed products, methylketene, methyleneoxirane, and acrolein.

  18. Non-Saccharomyces and Saccharomyces strains co-fermentation increases acetaldehyde accumulation: effect on anthocyanin-derived pigments in Tannat red wines.

    PubMed

    Medina, Karina; Boido, Eduardo; Fariña, Laura; Dellacassa, Eduardo; Carrau, Francisco

    2016-07-01

    During fermentation, Saccharomyces cerevisiae releases into the medium secondary metabolic products, such as acetaldehyde, able to react with anthocyanins, producing more stable derived pigments. However, very limited reports are found about non-Saccharomyces effects on grape fermentation. In this study, six non-Saccharomyces yeast strains, belonging to the genera Metschnikowia and Hanseniaspora, were screened for their effect on red wine colour and wine-making capacity under pure culture conditions and mixed with Saccharomyces. An artificial red grape must was prepared, containing a phenolic extract of Tannat grapes that allows monitoring changes of key phenol parameters during fermentation, but without skin solids in the medium. When fermented in pure cultures, S. cerevisiae produced higher concentrations of acetaldehyde and vitisin B (acetaldehyde reaction-dependent) compared to M. pulcherrima M00/09G, Hanseniaspora guillermondii T06/09G, H. opuntiae T06/01G, H. vineae T02/05F and H. clermontiae (A10/82Fand C10/54F). However, co-fermentation of H. vineae and H. clermontiae with S. cerevisiae resulted in a significantly higher concentration of acetaldehyde compared with the pure S. cerevisiae control. HPLC-DAD-MS analysis confirmed an increased formation of vitisin B in co-fermentation treatments when compared to pure Saccharomyces fermentation, suggesting the key role of acetaldehyde. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Response to acetaldehyde stress in the yeast Saccharomyces cerevisiae involves a strain-dependent regulation of several ALD genes and is mediated by the general stress response pathway.

    PubMed

    Aranda, Agustín; del Olmo Ml, Marcel lí

    2003-06-01

    One of the stress conditions that yeast may encounter is the presence of acetaldehyde. In a previous study we identified that, in response to this stress, several HSP genes are induced that are also involved in the response to other forms of stress. Aldehyde dehydrogenases (ALDH) play an important role in yeast acetaldehyde metabolism (e.g. when cells are growing in ethanol). In this work we analyse the expression of the genes encoding these enzymes (ALD) and also the corresponding enzymatic activities under several growth conditions. We investigate three kinds of yeast strains: laboratory strains, strains involved in the alcoholic fermentation stage of wine production and flor yeasts (responsible for the biological ageing of sherry wines). The latter are very important to consider because they grow in media containing high ethanol concentrations, and produce important amounts of acetaldehyde. Under several growth conditions, further addition of acetaldehyde or ethanol in flor yeasts induced the expression of some ALD genes and led to an increase in ALDH activity. This result is consistent with their need to obtain energy from ethanol during biological ageing processes. Our data also suggest that post-transcriptional and/or post-translational mechanisms are involved in regulating the activity of these enzymes. Finally, analyses indicate that the Msn2/4p and Hsf1p transcription factors are necessary for HSP26, ALD2/3 and ALD4 gene expression under acetaldehyde stress, while PKA represses the expression of these genes.

  20. Degradation of acetaldehyde and its precursors by Pelobacter carbinolicus and P. acetylenicus.

    PubMed

    Schmidt, Alexander; Frensch, Marco; Schleheck, David; Schink, Bernhard; Müller, Nicolai

    2014-01-01

    both Pelobacter spp. grown with the named substrates were highly similar suggesting that both share the same steps in ethanol and acetalydehyde metabolism. The early assumption that acetaldehyde is a central intermediate in Pelobacter metabolism was now proven biochemically.

  1. Degradation of Acetaldehyde and Its Precursors by Pelobacter carbinolicus and P. acetylenicus

    PubMed Central

    Schmidt, Alexander; Frensch, Marco; Schleheck, David; Schink, Bernhard; Müller, Nicolai

    2014-01-01

    patterns of both Pelobacter spp. grown with the named substrates were highly similar suggesting that both share the same steps in ethanol and acetalydehyde metabolism. The early assumption that acetaldehyde is a central intermediate in Pelobacter metabolism was now proven biochemically. PMID:25536080

  2. Measuring δ(13)C values of atmospheric acetaldehyde via sodium bisulfite adsorption and cysteamine derivatisation.

    PubMed

    Guo, Songjun; Chen, Mei; Wen, Sheng; Sheng, Guoying; Fu, Jiamo

    2012-01-01

    δ(13)C values of gaseous acetaldehyde were measured by gas chromatograph-combustion-isotope ratio mass spectrometer (GC-C-IRMS) via sodium bisulfite (NaHSO(3)) adsorption and cysteamine derivatisation. Gaseous acetaldehyde was collected via NaHSO(3)-coated Sep-Pak(®) silica gel cartridge, then derivatised with cysteamine, and then the δ(13)C value of the acetaldehyde-cysteamine derivative was measured by GC-C-IRMS. Using two acetaldehydes with different δ(13)C values, derivatisation experiments were carried out to cover concentrations between 0.009×10(-3) and 1.96×10(-3) mg·l(-1)) of atmospheric acetaldehyde, and then δ(13)C fractionation was evaluated in the derivatisation of acetaldehyde based on stoichiometric mass balance after measuring the δ(13)C values of acetaldehyde, cysteamine and the acetaldehyde-cysteamine derivative. δ(13)C measurements in the derivertisation process showed good reproducibility (<0.5 ‰) for gaseous acetaldehyde. The differences between predicted and measured δ(13)C values were 0.04-0.31 ‰ for acetaldehyde-cysteamine derivative, indicating that the derivatisation introduces no isotope fractionation for gaseous acetaldehyde, and obtained δ(13)C values of acetaldehyde in ambient air at the two sites were distinct (-34.00 ‰ at an urban site versus-31.00 ‰ at a forest site), implying potential application of the method to study atmospheric acetaldehyde.

  3. Inhibition of CYP2E1 leads to decreased malondialdehyde-acetaldehyde adduct formation in VL-17A cells under chronic alcohol exposure.

    PubMed

    Swaminathan, Kavitha; Clemens, Dahn L; Dey, Aparajita

    2013-03-14

    Ethanol metabolism leads to the formation of acetaldehyde and malondialdehyde. Acetaldehyde and malondialdehyde can together form malondialdehyde-acetaldehyde (MAA) adducts. The role of alcohol dehydrogenase (ADH) and cytochrome P4502E1 (CYP2E1) in the formation of MAA-adducts in liver cells has been investigated. Chronic ethanol treated VL-17A cells over-expressing ADH and CYP2E1 were pretreated with the specific CYP2E1 inhibitor - diallyl sulfide or ADH inhibitor - pyrazole or ADH and CYP2E1 inhibitor - 4-methyl pyrazole. Malondialdehyde, acetaldehyde or MAA-adduct formation was measured along with assays for viability, oxidative stress and apoptosis. Inhibition of CYP2E1 with 10 μM diallyl sulfide or ADH with 2mM pyrazole or ADH and CYP2E1 with 5mM 4-methyl pyrazole led to decreased oxidative stress and toxicity in chronic ethanol (100 mM) treated VL-17A cells. In vitro incubation of VL-17A cell lysates with acetaldehyde and malondialdehyde generated through ethanol led to increased acetaldehyde (AA)-, malondialdehyde (MDA)-, and MAA-adduct formation. Specific inhibition of CYP2E1 or ADH and the combined inhibition of ADH and CYP2E1 greatly decreased the formation of the protein aldehyde adducts. Specific inhibition of CYP2E1 led to the greatest decrease in oxidative stress, toxicity and protein aldehyde adduct formation, implicating that CYP2E1 accelerates the formation of protein aldehyde adducts which can be an important mechanism for alcohol mediated liver injury. CYP2E1-mediated metabolism of ethanol leads to increased AA-, MDA-, and MAA-adduct formation in liver cells which may aggravate liver injury. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Radicals derived from acetaldehyde and vinyl alcohol.

    PubMed

    Estep, Marissa L; Morgan, W James; Winkles, Alexander T; Abbott, Adam S; Villegas-Escobar, Nery; Mullinax, J Wayne; Turner, Walter E; Wang, Xiao; Turney, Justin M; Schaefer, Henry F

    2017-09-04

    Vinyl alcohol and acetaldehyde are isoelectronic products of incomplete butanol combustion. Along with the radicals resulting from the removal of atomic hydrogen or the hydroxyl radical, these species are studied here using ab initio methods as complete as coupled cluster theory with single, double, triple, and perturbative quadruple excitations [CCSDT(Q)], with basis sets as large as cc-pV5Z. The relative energies provided herein are further refined by including corrections for relativistic effects, the frozen core approximation, and the Born-Oppenheimer approximation. The effects of anharmonic zero-point vibrational energies are also treated. The syn conformer of vinyl alcohol is predicted to be lower in energy than the anti conformer by 1.1 kcal mol(-1). The alcoholic hydrogen of syn-vinyl alcohol is found to be the easiest to remove, requiring 84.4 kcal mol(-1). Five other radicals are also carefully considered, with four conformers investigated for the 1-hydroxyvinyl radical. Beyond energetics, we have conducted an overhaul of the spectroscopic literature for these species. Our results also provide predictions for fundamental modes yet to be reported experimentally. To our knowledge, the ν3 (3076 cm(-1)) and ν4 (2999 cm(-1)) C-H stretches for syn-vinyl alcohol and all but one of the vibrational modes for anti-vinyl alcohol (ν1-ν14) are yet to be observed experimentally. For the acetyl radical, ν6 (1035 cm(-1)), ν11 (944 cm(-1)), ν12 (97 cm(-1)), and accounting for our changes to the assignment of the 1419.9 cm(-1) experimental mode, ν10 (1441 cm(-1)), are yet to be observed. We have predicted these unobserved fundamentals and reassigned the experimental 1419.9 cm(-1) frequency in the acetyl radical to ν4 rather than to ν10. Our work also strongly supports reassignment of the ν10 and ν11 fundamentals of the vinoxy radical. We suggest that the bands assigned to the overtones of these fundamentals were in fact combination bands. Our findings may be

  5. Metabolic reprogramming in glioblastoma: the influence of cancer metabolism on epigenetics and unanswered questions

    PubMed Central

    Agnihotri, Sameer; Zadeh, Gelareh

    2016-01-01

    A defining hallmark of glioblastoma is altered tumor metabolism. The metabolic shift towards aerobic glycolysis with reprogramming of mitochondrial oxidative phosphorylation, regardless of oxygen availability, is a phenomenon known as the Warburg effect. In addition to the Warburg effect, glioblastoma tumor cells also utilize the tricarboxylic acid cycle/oxidative phosphorylation in a different capacity than normal tissue. Altered metabolic enzymes and their metabolites are oncogenic and not simply a product of tumor proliferation. Here we highlight the advantages of why tumor cells, including glioblastoma cells, require metabolic reprogramming and how tumor metabolism can converge on tumor epigenetics and unanswered questions in the field. PMID:26180081

  6. Influence of GSTT1 Genetic Polymorphisms on Arsenic Metabolism

    PubMed Central

    Kile, Molly L.; Houseman, E. Andres; Quamruzzaman, Quazi; Rahman, Mahmuder; Mahiuddin, Golam; Mostofa, Golam; Hsueh, Yu-Mei; Christiani, David C.

    2014-01-01

    SUMMARY A repeated measures study was conducted in Pabna, Bangladesh to investigate factors that influence biomarkers of arsenic exposure. Drinking water arsenic concentrations were measured by inductively-coupled plasma mass spectrometry (ICP-MS) and urinary arsenic species [arsenite (As3), arsenate (As5), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA)] were detected using High Performance Liquid Chromatography (HPLC) and Hydride Generated Atomic Absorption Spectrometry (HGAAS). Linear mixed effects models with random intercepts were used to evaluate the effects of arsenic contaminated drinking water, genetic polymorphisms in glutathione-S-transferase (GSTT1 and GSTM1) on total urinary arsenic, primary methylation index [MMA/(As3+As5)], secondary methylation index (DMA/MMA), and total methylation index [(MMA+DMA)/(As3+As5)]. Drinking water arsenic concentrations were positively associated with total urinary arsenic concentrations and total methylation index. A significant gene-environment interaction was observed between urinary arsenic exposure in drinking water GSTT1 but not GSTM1 where GSTT1 null individuals had a slightly higher excretion rate of arsenic compared to GSTT1 wildtypes after adjusting for other factors. Additionally, individuals with GSTT1 null genotypes had a higher primary methylation index and lower secondary methylation index compared to GSTT1 wildtype after adjusting for other factors. This data suggests that GSTT1 contributes to the observed variability in arsenic metabolism. Since individuals with a higher primary methylation index and lower secondary methylation index are more susceptible to arsenic related disease, these results suggest that GSTT1 null individuals may be more susceptible to arsenic-related toxicity. No significant associations were observed between GSTM1 and any of the arsenic methylation indices. PMID:24511153

  7. Influence of GSTT1 Genetic Polymorphisms on Arsenic Metabolism.

    PubMed

    Kile, Molly L; Houseman, E Andres; Quamruzzaman, Quazi; Rahman, Mahmuder; Mahiuddin, Golam; Mostofa, Golam; Hsueh, Yu-Mei; Christiani, David C

    2013-08-01

    A repeated measures study was conducted in Pabna, Bangladesh to investigate factors that influence biomarkers of arsenic exposure. Drinking water arsenic concentrations were measured by inductively-coupled plasma mass spectrometry (ICP-MS) and urinary arsenic species [arsenite (As3), arsenate (As5), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA)] were detected using High Performance Liquid Chromatography (HPLC) and Hydride Generated Atomic Absorption Spectrometry (HGAAS). Linear mixed effects models with random intercepts were used to evaluate the effects of arsenic contaminated drinking water, genetic polymorphisms in glutathione-S-transferase (GSTT1 and GSTM1) on total urinary arsenic, primary methylation index [MMA/(As3+As5)], secondary methylation index (DMA/MMA), and total methylation index [(MMA+DMA)/(As3+As5)]. Drinking water arsenic concentrations were positively associated with total urinary arsenic concentrations and total methylation index. A significant gene-environment interaction was observed between urinary arsenic exposure in drinking water GSTT1 but not GSTM1 where GSTT1 null individuals had a slightly higher excretion rate of arsenic compared to GSTT1 wildtypes after adjusting for other factors. Additionally, individuals with GSTT1 null genotypes had a higher primary methylation index and lower secondary methylation index compared to GSTT1 wildtype after adjusting for other factors. This data suggests that GSTT1 contributes to the observed variability in arsenic metabolism. Since individuals with a higher primary methylation index and lower secondary methylation index are more susceptible to arsenic related disease, these results suggest that GSTT1 null individuals may be more susceptible to arsenic-related toxicity. No significant associations were observed between GSTM1 and any of the arsenic methylation indices.

  8. Effects of acetaldehyde on nuclear protein binding to the nuclear factor I consensus sequence in the alpha 2(I) collagen promoter.

    PubMed

    Anania, F A; Potter, J J; Rennie-Tankersley, L; Mezey, E

    1995-06-01

    Acetaldehyde has been shown to increase collagen production in cultured rat myofibroblastlike cells and to activate the mouse alpha 2(I) collagen promoter in transfected NIH 3T3 cells. Nuclear factor I (NF-I), a CCAAT binding transcription factor, is known to bind and activate the alpha 1(I) and alpha 2(I) collagen genes. Activation of the alpha 2(I) collagen promoter was not observed when the NF-I binding site of the promoter was deleted. In this study, we determined if acetaldehyde influences the binding of NF-I to the alpha 2(I) collagen promoter. Nuclear proteins extracted from NIH 3T3 cells, or myofibroblastlike cells, 36 hours after the addition of acetaldehyde (200 mumol/L) in serum-free media showed increased binding to the consensus sequence of the NF-I binding site by DNase I protection analysis and by electrophoretic mobility shift assay (EMSA) as compared with control nuclear extracts that were not exposed to acetaldehyde. Furthermore, nuclear proteins extracted from myofibroblastlike cells that had been previously exposed to acetaldehyde had a marked increase in NF-I protein, as shown by Western blot with NF-I antibodies. Antisera to NF-I resulted in a slow migrating DNA-protein-antibody complex (supershift) on EMSA. However, the NF-I antibody did not supershift all the DNA-protein complexes, and the supershift band was not increased with nuclear proteins from acetaldehyde-treated cells despite the increased binding of these nuclear protein preparations to the NF-I oligo. Therefore, nuclear proteins, in addition to NF-I, bind to the NF-I consensus sequence and may have their binding altered by acetaldehyde.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Quality Characteristics and Quantification of Acetaldehyde and Methanol in Apple Wine Fermentation by Various Pre-Treatments of Mash.

    PubMed

    Won, Seon Yi; Seo, Jae Soon; Kwak, Han Sub; Lee, Youngseung; Kim, Misook; Shim, Hyoung-Seok; Jeong, Yoonhwa

    2015-12-01

    The objective of this study was to compare the effects of adding lactic acid and pectinase, and chaptalization for the quality of apple wine and the production of hazardous compounds (methanol and acetaldehyde). The pH of all of the samples was below 4; therefore, mash seemed to be fermented without any issue. Total acidity was the highest in sample A due to lactic acid addition. Pre-treated groups (samples B, C, and D) showed higher total acidities than that of the control (P<0.05). Pre-treatments might influence the production of organic acids in apple wines. The control and pectinase added sample (sample B) had the lowest alcohol contents. Adding lactic acid produced more alcohol, and chaptalized samples produced more alcohol due to the addition of sugar. Adding pectinase with and without chaptalization was not effective for producing more alcohol. The control sample had significantly higher acetaldehyde content (2.39 mg/L) than the other samples (1.00~2.07 mg/L); therefore, pre-treatments for apple wine fermentation produced a lower amount of acetaldehyde. Among the pre-treated samples, samples C and D showed the lowest acetaldehyde content of 1.00 mg/L and 1.16 mg/L, respectively. On the other hand, a significantly higher amount of methanol was generated for sample A (1.03 mg/L) and sample D (1.22 mg/L) than that of the control (0.82 mg/L) (P<0.05). Adding lactic acid or chaptalization was effective in reducing methanol and acetaldehyde in apple wines.

  10. Quality Characteristics and Quantification of Acetaldehyde and Methanol in Apple Wine Fermentation by Various Pre-Treatments of Mash

    PubMed Central

    Won, Seon Yi; Seo, Jae Soon; Kwak, Han Sub; Lee, Youngseung; Kim, Misook; Shim, Hyoung-Seok; Jeong, Yoonhwa

    2015-01-01

    The objective of this study was to compare the effects of adding lactic acid and pectinase, and chaptalization for the quality of apple wine and the production of hazardous compounds (methanol and acetaldehyde). The pH of all of the samples was below 4; therefore, mash seemed to be fermented without any issue. Total acidity was the highest in sample A due to lactic acid addition. Pre-treated groups (samples B, C, and D) showed higher total acidities than that of the control (P<0.05). Pre-treatments might influence the production of organic acids in apple wines. The control and pectinase added sample (sample B) had the lowest alcohol contents. Adding lactic acid produced more alcohol, and chaptalized samples produced more alcohol due to the addition of sugar. Adding pectinase with and without chaptalization was not effective for producing more alcohol. The control sample had significantly higher acetaldehyde content (2.39 mg/L) than the other samples (1.00~2.07 mg/L); therefore, pre-treatments for apple wine fermentation produced a lower amount of acetaldehyde. Among the pre-treated samples, samples C and D showed the lowest acetaldehyde content of 1.00 mg/L and 1.16 mg/L, respectively. On the other hand, a significantly higher amount of methanol was generated for sample A (1.03 mg/L) and sample D (1.22 mg/L) than that of the control (0.82 mg/L) (P<0.05). Adding lactic acid or chaptalization was effective in reducing methanol and acetaldehyde in apple wines. PMID:26770917

  11. Metabolic learning and memory formation by the brain influence systemic metabolic homeostasis

    PubMed Central

    Zhang, Yumin; Liu, Gang; Yan, Jingqi; Zhang, Yalin; Li, Bo; Cai, Dongsheng

    2015-01-01

    Metabolic homeostasis is regulated by the brain, whether this regulation involves learning and memory of metabolic information remains unexplored. Here we use a calorie-based, taste-independent learning/memory paradigm to show that Drosophila form metabolic memories that help balancing food choice with caloric intake; however, this metabolic learning or memory is lost under chronic high-calorie feeding. We show that loss of individual learning/memory-regulating genes causes a metabolic learning defect, leading to elevated trehalose and lipids levels. Importantly, this function of metabolic learning requires not only the mushroom body but the hypothalamus-like pars intercerebralis, while NF-κB activation in the pars intercerebralis mimics chronic overnutrition in that it causes metabolic learning impairment and disorders. Finally, we evaluate this concept of metabolic learning/memory in mice, suggesting the hypothalamus is involved in a form of nutritional learning and memory, which is critical for determining resistance or susceptibility to obesity. In conclusion, our data indicate the brain, and potentially the hypothalamus, direct metabolic learning and the formation of memories, which contribute to the control of systemic metabolic homeostasis. PMID:25848677

  12. Metabolic learning and memory formation by the brain influence systemic metabolic homeostasis.

    PubMed

    Zhang, Yumin; Liu, Gang; Yan, Jingqi; Zhang, Yalin; Li, Bo; Cai, Dongsheng

    2015-04-07

    Metabolic homeostasis is regulated by the brain, but whether this regulation involves learning and memory of metabolic information remains unexplored. Here we use a calorie-based, taste-independent learning/memory paradigm to show that Drosophila form metabolic memories that help in balancing food choice with caloric intake; however, this metabolic learning or memory is lost under chronic high-calorie feeding. We show that loss of individual learning/memory-regulating genes causes a metabolic learning defect, leading to elevated trehalose and lipid levels. Importantly, this function of metabolic learning requires not only the mushroom body but also the hypothalamus-like pars intercerebralis, while NF-κB activation in the pars intercerebralis mimics chronic overnutrition in that it causes metabolic learning impairment and disorders. Finally, we evaluate this concept of metabolic learning/memory in mice, suggesting that the hypothalamus is involved in a form of nutritional learning and memory, which is critical for determining resistance or susceptibility to obesity. In conclusion, our data indicate that the brain, and potentially the hypothalamus, direct metabolic learning and the formation of memories, which contribute to the control of systemic metabolic homeostasis.

  13. Phototautomerization of Acetaldehyde to Vinyl Alcohol: A Primary Process in UV-Irradiated Acetaldehyde from 295 to 335 nm.

    PubMed

    Clubb, Alexander E; Jordan, Meredith J T; Kable, S H; Osborn, David L

    2012-12-06

    The concentrations of organic acids, key species in the formation of secondary organic aerosols, are underestimated by atmospheric chemistry models by a factor of ∼2. Vinyl alcohol (VA, CH2═CHOH, ethenol) has been suggested as a precursor to formic acid, but sufficient tropospheric sources of VA have not been identified. Here, we show that VA is formed upon irradiation of neat acetaldehyde (CH3CHO) in the actinic ultraviolet region, between 295 and 330 nm. Besides the well-known photochemical products CO and CH4, we infer up to a 15% quantum yield of VA at 20 Torr acetaldehyde pressure and a photolysis wavelength of 330 nm. The experiments confirm a recent model predicting phototautomerization of acetaldehyde to VA and imply that photolysis of small aldehydes and ketones could provide tropospheric sources of enols sufficient to impact organic acid budgets. We also report absolute infrared absorption cross sections of VA.

  14. The effect of flooding on the exchange of the volatile C2-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphere

    NASA Astrophysics Data System (ADS)

    Rottenberger, S.; Kleiss, B.; Kuhn, U.; Wolf, A.; Piedade, M. T. F.; Junk, W.; Kesselmeier, J.

    2008-08-01

    The effect of root inundation on the leaf emissions of ethanol, acetaldehyde and acetic acid in relation to assimilation and transpiration was investigated with 2 3 years old tree seedlings of four Amazonian floodplain species by applying dynamic cuvette systems under greenhouse conditions. Emissions were monitored over a period of several days of inundation using a combination of Proton Transfer Reaction Mass Spectrometry (PTR-MS) and conventional techniques (HPLC, ion chromatography). Under non-flooded conditions, none of the species exhibited measurable emissions of any of the compounds, but rather low deposition of acetaldehyde and acetic acid was observed instead. Tree species specific variations in deposition velocities were largely due to variations in stomatal conductance. Flooding of the roots resulted in leaf emissions of ethanol and acetaldehyde by all species, while emissions of acetic acid were only observed from the species exhibiting the highest ethanol and acetaldehyde emission rates. All three compounds showed a similar diurnal emission profile, each displaying an emission burst in the morning, followed by a decline in the evening. This concurrent behavior supports the conclusion, that all three compounds emitted by the leaves are derived from ethanol produced in the roots by alcoholic fermentation, transported to the leaves with the transpiration stream and finally partly converted to acetaldehyde and acetic acid by enzymatic processes. Co-emissions and peaking in the early morning suggest that root ethanol, after transportation with the transpiration stream to the leaves and enzymatic oxidation to acetaldehyde and acetate, is the metabolic precursor for all compounds emitted, though we can not totally exclude other production pathways. Emission rates substantially varied among tree species, with maxima differing by up to two orders of magnitude (25 1700 nmol m-2 min-1 for ethanol and 5 500 nmol m-2 min-1 for acetaldehyde). Acetic acid emissions

  15. The effect of flooding on the exchange of the volatile C2-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphere

    NASA Astrophysics Data System (ADS)

    Rottenberger, S.; Kleiss, B.; Kuhn, U.; Wolf, A.; Piedade, M. T. F.; Junk, W.; Kesselmeier, J.

    2008-02-01

    The effect of root inundation on the leaf emissions of ethanol, acetaldehyde and acetic acid was investigated with 2-3 years old tree seedlings of four Amazonian floodplain species by applying dynamic cuvette systems under greenhouse conditions. Emissions were monitored over a period of several days of inundation using a combination of Proton Transfer Reaction Mass Spectrometry (PTR-MS) and conventional techniques (HPLC, ion chromatography). Under non-flooded conditions, none of the species exhibited significant emissions of any of the compounds. A slight deposition of acetaldehyde and acetic acid was mainly observed, instead. Tree species specific variations in deposition velocities were largely due to variations in stomatal conductance. Flooding of the roots resulted in leaf emissions of ethanol and acetaldehyde by all species, while emissions of acetic acid occurred only by the species exhibiting the highest ethanol and acetaldehyde emission rates. All three compounds showed a similar diurnal emission profile, each displaying an emission burst in the morning, followed by a decline in the evening. This concurrent behavior supports the conclusion, that all three compounds emitted by the leaves are derived from ethanol produced in the roots by alcoholic fermentation, transported to the leaves with the transpiration stream and finally partly converted to acetaldehyde and acetic acid by enzymatic processes. Co-emissions and peaking in the early morning confirmed that root ethanol, after transportation with the transpiration stream to the leaves and enzymatic oxidation to acetaldehyde and acetate, is the metabolic precursor for all compounds emitted. Emission rates substantially varied among tree species, with maxima differing by up to two orders of magnitude (3-200 nmol m-2 min-1 for ethanol and 5-500 nmol m-2 min-1 for acetaldehyde). Acetic acid emissions reached 12 nmol m-2 min-1. The observed differences in emission rates between the tree species are discussed

  16. Combination of ADH1B*2/ALDH2*2 polymorphisms alters acetaldehyde-derived DNA damage in the blood of Japanese alcoholics.

    PubMed

    Yukawa, Yoshiyuki; Muto, Manabu; Hori, Kimiko; Nagayoshi, Haruna; Yokoyama, Akira; Chiba, Tsutomu; Matsuda, Tomonari

    2012-09-01

    The acetaldehyde associated with alcoholic beverages is an evident carcinogen for the esophagus. Genetic polymorphisms of the alcohol dehydrogenase 1B (ADH1B) and aldehyde dehydrogenase 2 (ALDH2) genes are associated with the risk of esophageal cancer. However, the exact mechanism via which these genetic polymorphisms affect esophageal carcinogenesis has not been elucidated. ADH1B*2 is involved in overproduction of acetaldehyde due to increased ethanol metabolism into acetaldehyde, and ALDH2*2 is involved in accumulation of acetaldehyde due to the deficiency of acetaldehyde metabolism. Acetaldehyde can interact with DNA and form DNA adducts, resulting in DNA damage. N(2)-ethylidene-2'-deoxyguanosine (N(2)-ethylidene-dG) is the most abundant DNA adduct derived from acetaldehyde. Therefore, we quantified N(2)-ethylidene-dG levels in blood samples from 66 Japanese alcoholic patients using liquid chromatography/electrospray tandem mass spectrometry, and investigated the relationship between N(2)-ethylidene-dG levels and ADH1B and ALDH2 genotypes. The median N(2)-ethylidene-dG levels (25th percentile, 75th percentile) in patients with ADH1B*1/*1 plus ALDH2*1/*1, ADH1B*2 carrier plus ALDH2*1/*1, ADH1B*1/*1 plus ALDH2*1/*2, and ADH1B*2 carrier plus ALDH2*1/*2 were 2.14 (0.97, 2.37)/10(7) bases, 2.38 (1.18, 2.98)/10(7) bases, 5.38 (3.19, 6.52)/10(7) bases, and 21.04 (12.75, 34.80)/10(7) bases, respectively. In the ALDH2*1/*2 group, N(2)-ethylidene-dG levels were significantly higher in ADH1B*2 carriers than in the ADH1B*1/*1 group (P < 0.01). N(2)-ethylidene-dG levels were significantly higher in the ALDH2*1/*2 group than in the ALDH2*1/*1 group, regardless of ADH1B genotype (ADH1B*1/*1, P < 0.05; ADH1B*2 carriers, P < 0.01) N(2)-ethylidene-dG levels in blood DNA of the alcoholics was remarkably higher in individuals with a combination of the ADH1B*2 and ALDH2*2 alleles. These results provide a new perspective on the carcinogenicity of the acetaldehyde associated with

  17. The effect of inhibition of aldehyde dehydrogenase on nasal uptake of inspired acetaldehyde.

    PubMed

    Stanek, J J; Morris, J B

    1999-06-01

    ppm, respectively by 9, 110, and 210 nmol/min, values that correspond well with the total nasal ALDH activity of 370 nmol/min. In toto, these results suggest that inspired acetaldehyde is metabolized in situ by ALDH, but at exposure concentrations of 300 ppm or greater, the delivered dosage rate may equal or exceed the capacity of this enzyme.

  18. Pyruvic acid and acetaldehyde production by different strains of Saccharomyces cerevisiae: relationship with Vitisin A and B formation in red wines.

    PubMed

    Morata, A; Gómez-Cordovés, M C; Colomo, B; Suárez, J A

    2003-12-03

    The production of pyruvate and acetaldehyde by 10 strains of Saccharomyces cerevisiae was monitored during the fermentation of Vitis vinifera L. variety Tempranillo grape must to determine how these compounds might influence the formation of the pyroanthocyanins vitisin A and B (malvidin-3-O-glucoside-pyruvate acid and malvidin-3-O-glucoside-4 vinyl, respectively). Pyruvate and acetaldehyde production patterns were determined for each strain. Pyruvate production reached a maximum on day four of fermentation, while acetaldehyde production was at its peak in the final stages. The correlation between pyruvate production and vitisin A formation was especially strong (R (2) = 0.80) on day 4, when the greatest quantity of pyruvate was found in the medium. The correlation between acetaldehyde production and the formation of vitisin B was strongest (R (2) = 0.81) at the end of fermentation when the acetaldehyde content of the medium was at its highest. Identification and quantification experiments were performed by HPLC-DAD. The identification of the vitisins was confirmed by LC/ESI-MS.

  19. BIOGENIC SOURCES FOR FORMALDEHYDE AND ACETALDEHYDE DURING SUMMER MONTHS

    EPA Science Inventory

    Photochemical modeling estimated contributions to ambient concentrations of formaldehyde and acetaldehyde from biogenic emissions over the continental United States during January 2001 (Eos Trans. AGU, 83(47), Fall Meet. Suppl., Abstract A52B-0117). Results showed that maximum co...

  20. BIOGENIC SOURCES FOR FORMALDEHYDE AND ACETALDEHYDE DURING SUMMER MONTHS

    EPA Science Inventory

    Photochemical modeling estimated contributions to ambient concentrations of formaldehyde and acetaldehyde from biogenic emissions over the continental United States during January 2001 (Eos Trans. AGU, 83(47), Fall Meet. Suppl., Abstract A52B-0117). Results showed that maximum co...

  1. Maximum exposure levels for xylene, formaldehyde and acetaldehyde in cars.

    PubMed

    Schupp, Thomas; Bolt, Hermann M; Hengstler, Jan G

    2005-01-31

    Although millions of individuals are exposed to emissions from articles inside cars, relatively little has been published about possible adverse health effects and about exposure levels that can be considered safe or "acceptable". Xylene, formaldehyde and acetaldehyde represent typical examples of relevant volatile organic substances (VOC) released from articles inside cars. Recently, a concept for derivation of maximum exposure levels for volatile organic substances in cars has been published. In the present study we applied this concept to derive maximum exposure levels for xylene, formaldehyde and acetaldehyde and compared the resulting concentrations to exposure levels usually found inside of cars. We derived Short Term Exposure Levels Inside Automotive Vehicles (STELIA) of 29, 0.125 and 15.3 mg/m(3) for xylene, formaldehyde and acetaldehyde, respectively. These STELIAs should not be exceeded during short-term exposures, for instance when starting a car that had been heated up during parking in the sun. Exposure Levels Inside Automotive Vehicles (ELIA, chronic) for chronic exposure to non-genotoxic substances were 8.8, 0.125 and 0.635 mg/m(3) for systemic as well as 17.6, 0.125 and 1.7 mg/m(3) for local exposure to xylene, formaldehyde and acetaldehyde, respectively. Although, it is known that exposure limits for carcinogenic substances should be treated with caution, encouraged by the well documented threshold mechanisms we nevertheless derived ELIAs for Carcinogenic and Mutagenic Substances (ELIA, cm) resulting in 0.125 and 0.635 mg/m(3) for formaldehyde and acetaldehyde. If these ELIAs are matched against average concentrations of xylene, formaldehyde and acetaldehyde found in cars at 23 degrees C (1.22, 0.048 and 0.042 mg/m(3)), there is no reason for concern. With respect to STELIAs and extrapolated concentrations at 65 degrees C (14.7, 1.47 and 1.68 mg/m(3), for xylene, formaldehyde and acetaldehyde, respectively), however, a reduction of the

  2. Mass-Specific Metabolic Rate Influences Sperm Performance through Energy Production in Mammals.

    PubMed

    Tourmente, Maximiliano; Roldan, Eduardo R S

    2015-01-01

    Mass-specific metabolic rate, the rate at which organisms consume energy per gram of body weight, is negatively associated with body size in metazoans. As a consequence, small species have higher cellular metabolic rates and are able to process resources at a faster rate than large species. Since mass-specific metabolic rate has been shown to constrain evolution of sperm traits, and most of the metabolic activity of sperm cells relates to ATP production for sperm motility, we hypothesized that mass-specific metabolic rate could influence sperm energetic metabolism at the cellular level if sperm cells maintain the metabolic rate of organisms that generate them. We compared data on sperm straight-line velocity, mass-specific metabolic rate, and sperm ATP content from 40 mammalian species and found that the mass-specific metabolic rate positively influences sperm swimming velocity by (a) an indirect effect of sperm as the result of an increased sperm length, and (b) a direct effect independent of sperm length. In addition, our analyses show that species with higher mass-specific metabolic rate have higher ATP content per sperm and higher concentration of ATP per μm of sperm length, which are positively associated with sperm velocity. In conclusion, our results suggest that species with high mass-specific metabolic rate have been able to evolve both long and fast sperm. Moreover, independently of its effect on the production of larger sperm, the mass-specific metabolic rate is able to influence sperm velocity by increasing sperm ATP content in mammals.

  3. Mass-Specific Metabolic Rate Influences Sperm Performance through Energy Production in Mammals

    PubMed Central

    Tourmente, Maximiliano; Roldan, Eduardo R. S.

    2015-01-01

    Mass-specific metabolic rate, the rate at which organisms consume energy per gram of body weight, is negatively associated with body size in metazoans. As a consequence, small species have higher cellular metabolic rates and are able to process resources at a faster rate than large species. Since mass-specific metabolic rate has been shown to constrain evolution of sperm traits, and most of the metabolic activity of sperm cells relates to ATP production for sperm motility, we hypothesized that mass-specific metabolic rate could influence sperm energetic metabolism at the cellular level if sperm cells maintain the metabolic rate of organisms that generate them. We compared data on sperm straight-line velocity, mass-specific metabolic rate, and sperm ATP content from 40 mammalian species and found that the mass-specific metabolic rate positively influences sperm swimming velocity by (a) an indirect effect of sperm as the result of an increased sperm length, and (b) a direct effect independent of sperm length. In addition, our analyses show that species with higher mass-specific metabolic rate have higher ATP content per sperm and higher concentration of ATP per μm of sperm length, which are positively associated with sperm velocity. In conclusion, our results suggest that species with high mass-specific metabolic rate have been able to evolve both long and fast sperm. Moreover, independently of its effect on the production of larger sperm, the mass-specific metabolic rate is able to influence sperm velocity by increasing sperm ATP content in mammals. PMID:26371474

  4. Influence of nanophase titania topography on bacterial attachment and metabolism

    PubMed Central

    Park, Margaret R; Banks, Michelle K; Applegate, Bruce; Webster, Thomas J

    2008-01-01

    Surfaces with nanophase compared to conventional (or nanometer smooth) topographies are known to have different properties of area, charge, and reactivity. Previously published research indicates that the attachment of certain bacteria (such as Pseudomonas fluorescens 5RL) is higher on surfaces with nanophase compared to conventional topographies, however, their effect on bacterial metabolism is unclear. Results presented here show that the adhesion of Pseudomonas fluorescens 5RL and Pseudomonas putida TVA8 was higher on nanophase than conventional titania. Importantly, in terms of metabolism, bacteria attached to the nanophase surfaces had higher bioluminescence rates than on the conventional surfaces under all nutrient conditions. Thus, the results from this study show greater select bacterial metabolism on nanometer than conventional topographies, critical results with strong consequences for the design of improved biosensors for bacteria detection. PMID:19337418

  5. Ethanol formation in adh0 mutants reveals the existence of a novel acetaldehyde-reducing activity in Saccharomyces cerevisiae.

    PubMed Central

    Drewke, C; Thielen, J; Ciriacy, M

    1990-01-01

    A strain of Saccharomyces cerevisiae has been constructed which is deficient in the four alcohol dehydrogenase (ADH) isozymes known at present. This strain (adh0), being irreversibly mutated in the genes ADH1, ADH3, and ADH4 and carrying a point mutation in the gene ADH2 coding for the glucose-repressible isozyme ADHII, still produces up to one third of the theoretical maximum yield of ethanol in a homofermentative conversion of glucose to ethanol. Analysis of the glucose metabolism of adh0 cells shows that the lack of all known ADH isozymes results in the formation of glycerol as a major fermentation product, accompanied by a significant production of acetaldehyde and acetate. Treatment of glucose-growing adh0 cells with the respiratory-chain inhibitor antimycin A leads to an immediate cessation of ethanol production, demonstrating that ethanol production in adh0 cells is dependent on mitochondrial electron transport. Reduction of acetaldehyde to ethanol in isolated mitochondria could also be demonstrated. This reduction is apparently linked to the oxidation of acetaldehyde to acetate. Preliminary data suggest that this novel type of ethanol formation in S. cerevisiae is associated with the inner mitochondrial membrane. Images PMID:2193925

  6. Ethanol and acetaldehyde exposure induces specific epigenetic modifications in the prodynorphin gene promoter in a human neuroblastoma cell line.

    PubMed

    D'Addario, Claudio; Johansson, Sofia; Candeletti, Sanzio; Romualdi, Patrizia; Ögren, Sven Ove; Terenius, Lars; Ekström, Tomas J

    2011-03-01

    Ethanol alters neural activity through interaction with multiple neurotransmitters and neuromodulators. The endogenous opioid system seems to play a key role, since the opioid receptor antagonist naltrexone (ReVia®) attenuates craving for alcohol. We recently reported that ethanol and acetaldehyde, the first product of ethanol metabolism, affect transcription of opioid system genes in human SH-SY5Y neuroblastoma cells. In the current study, potential epigenetic mechanisms were investigated to clarify these effects on prodynorphin gene expression. DNA methylation was analyzed by bisulfite pyrosequencing, and chromatin immunoprecipitation was used to assess putative specific histone modifications at the prodynorphin gene promoter. The results demonstrated a temporal relationship between selective chromatin modifications induced by ethanol and acetaldehyde and changes in prodynorphin gene expression quantitated by real-time qPCR. DNA methylation was not altered in any of the experimental conditions used. The epigenetic changes may precede gene transcription, and histone modifications might keep the prodynorphin gene in a poised state for later reactivation. A link has been observed between gene expression alterations and selective epigenetic modulation in the prodynorphin promoter region, demonstrating a specificity of the changes induced by ethanol and acetaldehyde. The latter may be mediating ethanol effects at the genomic level.

  7. Taraxerone enhances alcohol oxidation via increases of alcohol dehyderogenase (ADH) and acetaldehyde dehydrogenase (ALDH) activities and gene expressions.

    PubMed

    Sung, Chang-Keun; Kim, Seung-Mi; Oh, Chang-Jin; Yang, Sun-A; Han, Byung-Hee; Mo, Eun-Kyoung

    2012-07-01

    The present study, taraxerone (d-friedoolean-14-en-3-one) was isolated from Sedum sarmentosum with purity 96.383%, and its enhancing effects on alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) activities were determined: EC(50) values were 512.42 ± 3.12 and 500.16 ± 3.23 μM for ADH and ALDH, respectively. In order to obtain more information on taraxerone related with the alcohol metabolism, 40% ethanol (5 mL/kg body weight) with 0.5-1mM of taraxerone were administered to mice. The plasma alcohol and acetaldehyde concentrations of taraxerone-treated groups were significantly lowered than those of the control group (p<0.01): approximately 20-67% and 7-57% lowered for plasma alcohol and acetaldehyde, respectively. Compare to the control group, the ADH and ALDH expressions in the liver tissues were abruptly increased in the taraxerone-treated groups after ethanol exposure. In addition, taraxerone prevented catalase, superoxide dismutase, and reduced glutathione concentrations from the decrease induced by ethanol administration with the concentration dependent manner. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Revealing parasite influence in metabolic pathways in Apicomplexa infected patients

    PubMed Central

    2010-01-01

    Background As an obligate intracellular parasite, Apicomplexa interacts with the host in the special living environment, competing for energy and nutrients from the host cells by manipulating the host metabolism. Previous studies of host-parasite interaction mainly focused on using cellular and biochemical methods to investigate molecular functions in metabolic pathways of parasite infected hosts. Computational approaches taking advantage of high-throughput biological data and topology of metabolic pathways have a great potential in revealing the details and mechanism of parasites-to-host interactions. A new analytical method was designed in this work to study host-parasite interactions in human cells infected with Plasmodium falciparum and Cryptosporidium parvum. Results We introduced a new method that analyzes the host metabolic pathways in divided parts: host specific subpathways and host-parasite common subpathways. Upon analysis on gene expression data from cells infected by Plasmodium falciparum or Cryptosporidium parvum, we found: (i) six host-parasite common subpathways and four host specific subpathways were significantly altered in plasmodium infected human cells; (ii) plasmodium utilized fatty acid biosynthesis and elongation, and Pantothenate and CoA biosynthesis to obtain nutrients from host environment; (iii) in Cryptosporidium parvum infected cells, most of the host-parasite common enzymes were down-regulated, whereas the host specific enzymes up-regulated; (iv) the down-regulation of common subpathways in host cells might be caused by competition for the substrates and up-regulation of host specific subpathways may be stimulated by parasite infection. Conclusion Results demonstrated a significantly coordinated expression pattern between the two groups of subpathways. The method helped expose the impact of parasite infection on host cell metabolism, which was previously concealed in the pathway enrichment analysis. Our approach revealed detailed

  9. Cattle temperament influences metabolism:3. Metabolic response to a feed restriction challenge in beef steers

    USDA-ARS?s Scientific Manuscript database

    Recent studies have demonstrated metabolic differences between calm and temperamental cattle. Specifically, Temperamental cattle exhibit greater concentrations of non-esterified fatty acids (NEFAs), decreased blood urea nitrogen (BUN), and decreased insulin sensitivity compared to Calm cattle. It is...

  10. Cattle temperament influences metabolism: 1. Metabolic response to a glucose tolerance test in beef steers

    USDA-ARS?s Scientific Manuscript database

    Temperamental cattle are behaviorally, physiologically, and immunologically different in comparison to calm cattle. Recently, the metabolic differences between temperamental and calm cattle have begun to be explored; temperamental cattle maintain greater circulating concentrations of non-esterified ...

  11. Modification of the acetaldehyde concentration during alcoholic fermentation and effects on fermentation kinetics.

    PubMed

    Roustan, Jean Louis; Sablayrolles, Jean-Marie

    2002-01-01

    We studied the kinetic effects of increasing the residual acetaldehyde concentration during alcoholic fermentation, especially during the stationary phase. We added this compound via pulse or continuous injections. The yeast response depended on the amount of acetaldehyde added: high concentrations inhibited fermentation while low concentrations led to stimulation. When regular small additions were made, up to 100 mM acetaldehyde could be added and this caused a very significant drop in the fermentation duration. We also modulated the acetaldehyde concentration by modifying the alcohol dehydrogenase-catalyzed reaction. Two approaches were tested (i) adding aldehydes (propanal and furfural) that competitively inhibited the reduction of acetaldehyde and (ii) adding electron acceptors that reduced the quantity of NADH available. Several possible mechanisms responsible for (i) the impact of acetaldehyde on fermentation kinetics and (ii) the modulation of the residual acetaldehyde concentration are discussed.

  12. The influence of climate on the basal metabolic rate of small mammals: a slow-fast metabolic continuum.

    PubMed

    Lovegrove, B G

    2003-03-01

    The influence of climate (mean annual rainfall, rainfall variability, ambient temperature, T(a)) on the basal metabolic rate (BMR) of 267 small mammals (<1 kg) from six zoogeographical zones was investigated using conventional and phylogenetically independent data (linear contrasts). All climate variables varied between zones, as did BMR and body temperature ( T(b)), but not thermal conductance. Holarctic zones were more seasonal and colder, but rainfall was less variable, than non-Holarctic zones. In general, the BMR was most strongly influenced by body mass, followed by T(a) and the rainfall variables. However, there was significant variation in the strength of these relationships between zones. BMR and T(b) increased with latitude, and mass-independent BMR and T(b) were positively correlated. The latter relationship offers evidence of a slow-fast metabolic continuum in small mammals. The fast end of the continuum (high BMR) is associated with the highest latitudes where BMR is most strongly influenced by T(a) and mean annual rainfall (i.e. mean productivity). The slow end of the continuum (low BMR) is associated with the semi-tropics, low productivity zones, and climatically unpredictable zones, such as deserts. Here rainfall variability has the strongest influence on BMR after body size. The implications of a slow-fast metabolic continuum are discussed in terms of various models associated with the evolution of BMR, such as the aerobic capacity models and the "energetic definition of fitness" models.

  13. Inhibition of testosterone biosynthesis by ethanol. Relation to hepatic and testicular acetaldehyde, ketone bodies and cytosolic redox state in rats.

    PubMed Central

    Eriksson, C J; Widenius, T V; Ylikahri, R H; Härkönen, M; Leinonen, P

    1983-01-01

    In experiments in which liver and testis freeze-stops were performed on pentobarbital-anaesthetized rats, ethanol (1.5 g/kg body wt.) reduced plasma testosterone concentration from 13.1 to 3.2 nmol/litre. 4-Methylpyrazole abolished the ethanol-induced hepatic and testicular increase in the lactate/pyruvate ratio, and the testicular acetaldehyde level, but did not diminish the reduction in plasma testosterone concentration. In testes, but not in liver, ethanol decreased the 3-hydroxybutyrate/acetoacetate ratio, and 4-methylpyrazole did not prevent this effect. In experiments in which freeze-stop was performed after cervical dislocation, ethanol decreased the testis testosterone concentration from 590 to 220 pmol per g wet wt. The effects of ethanol and 4-methylpyrazole on testis acetaldehyde, lactate/pyruvate and 3-hydroxybutyrate/acetoacetate ratios were the same as found during anaesthesia. The NAD+-dependent ethanol oxidation capacity in testis ranged from 0.1 to 0.2 mumol/min per g wet wt. and seemed to be inhibited by 4-methylpyrazole both in vivo and in vitro. In additional experiments, ethanol doses between 0.3 and 0.9 g/kg body wt. did not alter the plasma testosterone concentration in rats treated, or not treated, with cyanamide, which induced elevated acetaldehyde levels in blood and testes. The results suggest that ethanol-induced inhibition of testosterone biosynthesis was not caused by extratesticular redox increases, or by extra- or intra-testicular acetaldehyde per se. The inhibition is accompanied by changes in testicular ketone-body metabolism. PMID:6847648

  14. Prostate-specific antigen lowering effect of metabolic syndrome is influenced by prostate volume.

    PubMed

    Choi, Woo Suk; Heo, Nam Ju; Paick, Jae-Seung; Son, Hwancheol

    2016-04-01

    To investigate the influence of metabolic syndrome on prostate-specific antigen levels by considering prostate volume and plasma volume. We retrospectively analyzed 4111 men who underwent routine check-ups including prostate-specific antigen and transrectal ultrasonography. The definition of metabolic syndrome was based on the modified Adult Treatment Panel III criteria. Prostate-specific antigen mass density (prostate-specific antigen × plasma volume / prostate volume) was calculated for adjusting plasma volume and prostate volume. We compared prostate-specific antigen and prostate-specific antigen mass density levels of participants with metabolic syndrome (metabolic syndrome group, n = 1242) and without metabolic syndrome (non-prostate-specific antigen metabolic syndrome group, n = 2869). To evaluate the impact of metabolic syndrome on prostate-specific antigen, linear regression analysis for the natural logarithm of prostate-specific antigen was used. Patients in the metabolic syndrome group had significantly older age (P < 0.001), larger prostate volume (P < 0.001), higher plasma volume (P < 0.001) and lower mean serum prostate-specific antigen (non-metabolic syndrome group vs metabolic syndrome group; 1.22 ± 0.91 vs 1.15 ± 0.76 ng/mL, P = 0.006). Prostate-specific antigen mass density in the metabolic syndrome group was still significantly lower than that in the metabolic syndrome group (0.124 ± 0.084 vs 0.115 ± 0.071 μg/mL, P = 0.001). After adjusting for age, prostate volume and plasma volume using linear regression model, the presence of metabolic syndrome was a significant independent factor for lower prostate-specific antigen (prostate-specific antigen decrease by 4.1%, P = 0.046). Prostate-specific antigen levels in patients with metabolic syndrome seem to be lower, and this finding might be affected by the prostate volume. © 2016 The Japanese Urological Association.

  15. Glucokinase regulatory proten genetic variant interacts with omega-3 PUFA to influence insulin resistance and inflammation in metabolic syndrome

    USDA-ARS?s Scientific Manuscript database

    Glucokinase Regulatory Protein (GCKR) plays a central role regulating both hepatic triglyceride and glucose metabolism. Fatty acids are key metabolic regulators, which interact with genetic factors and influence glucose metabolism and other metabolic traits. Omega-3 polyunsaturated fatty acids (n-3...

  16. A tomato vacuolar invertase inhibitor mediates sucrose metabolism an influences fruit ripening

    USDA-ARS?s Scientific Manuscript database

    Fruit ripening is a complex process that involves a series of physiological and biochemical changes that ultimately influence fruit quality traits, such as color and flavor. Sugar metabolism is an important factor in ripening and there is evidence that it influences various aspects of ripening, alth...

  17. [Abilities of acetaldehyde removal in different water-treating techniques].

    PubMed

    Zhang, Chun-Lei; Wang, Dan; Wang, Dong-Sheng; Chen, Chao; Fan, Kang-Ping

    2011-03-01

    The effect of acetaldehyde removal by several kinds of water-treating technologies is experienced in laboratory and the results reveal that traditional water-treating processes have hardly any useful results and the absorption of GAC does no better either for its efficiency depending on the GAC service time greatly and with a very short leakage time. However, the micro-biological degradation process in the BAC filter can consume more than 95% acetaldehyde in 13 minutes when the biomass has been fully acclimatized. The acclimation process usually lasts 4-30 h under field conditions depending on the stabilization and maturity of the original biomass on the carbon, but can be shortened remarkably by means of inhibiting the activity of existing biomass or artificially inoculating acclimatized microbe.

  18. Large-scale transcriptome analysis reveals arabidopsis metabolic pathways are frequently influenced by different pathogens.

    PubMed

    Jiang, Zhenhong; He, Fei; Zhang, Ziding

    2017-07-01

    Through large-scale transcriptional data analyses, we highlighted the importance of plant metabolism in plant immunity and identified 26 metabolic pathways that were frequently influenced by the infection of 14 different pathogens. Reprogramming of plant metabolism is a common phenomenon in plant defense responses. Currently, a large number of transcriptional profiles of infected tissues in Arabidopsis (Arabidopsis thaliana) have been deposited in public databases, which provides a great opportunity to understand the expression patterns of metabolic pathways during plant defense responses at the systems level. Here, we performed a large-scale transcriptome analysis based on 135 previously published expression samples, including 14 different pathogens, to explore the expression pattern of Arabidopsis metabolic pathways. Overall, metabolic genes are significantly changed in expression during plant defense responses. Upregulated metabolic genes are enriched on defense responses, and downregulated genes are enriched on photosynthesis, fatty acid and lipid metabolic processes. Gene set enrichment analysis (GSEA) identifies 26 frequently differentially expressed metabolic pathways (FreDE_Paths) that are differentially expressed in more than 60% of infected samples. These pathways are involved in the generation of energy, fatty acid and lipid metabolism as well as secondary metabolite biosynthesis. Clustering analysis based on the expression levels of these 26 metabolic pathways clearly distinguishes infected and control samples, further suggesting the importance of these metabolic pathways in plant defense responses. By comparing with FreDE_Paths from abiotic stresses, we find that the expression patterns of 26 FreDE_Paths from biotic stresses are more consistent across different infected samples. By investigating the expression correlation between transcriptional factors (TFs) and FreDE_Paths, we identify several notable relationships. Collectively, the current study

  19. Influence of temperature, oxygen and salinity on the metabolism of the European sea bass

    NASA Astrophysics Data System (ADS)

    Claireaux, G.; Lagardère, J.-P.

    1999-09-01

    Standard (SMR) and routine (RMR) metabolic rates of groups (4 to 5 individuals) of European sea bass ( Dicentrarchus labrax) were measured at combinations of the following factors: temperature (10, 15, 20 and 25°C), oxygenation level (air saturation to 1.5 mg dm -3) and salinity (30, 20, 10 and 5‰). The influence of these environmental conditions on fish metabolic demand was then analysed through ANOVA. At 10, 15, 20 and 25°C, standard metabolic rates were 36, 65, 89, and 91 mg O 2 kg -1 h -1, respectively, while routine oxygen consumptions covered most of the metabolic range accessible. Osmoregulatory costs are linked to metabolic activity through ventilation. This relationship was highlighted by the observed interaction between environmental salinity and temperature. We were, however, unable to detect interactions between salinity and routine metabolic rate, or between salinity and oxygenation level. In order to delineate more precisely the restrictions imposed by water oxygenation on fish metabolic performance we determined the limiting oxygen concentration curves at each experimental temperature. We followed up by modelling the bass active metabolic rate (AMR) and metabolic scope (MS) as functions of both ambient temperature and oxygenation. These mathematical models allowed the characterisation of the controlling and limiting effects of water temperature and oxygen content on the metabolic capacity of the species. Thus, AMR at 10, 15 and 20°C were estimated at 65, 160 and 360 mg O 2 kg -1 h -1, respectively. However, at higher temperature (25°C) AMR dropped slightly (to 340 mg O 2 kg -1 h -1). Bass MS increased by a factor of 9 between 10 and 20°C, but diminished at higher temperatures. The present study contributes to our current understanding of the influences of environmental factors on the metabolism of sea bass and provides a bioenergetic basis for a study of how environmental constraints govern the spatial and temporal distribution pattern of this

  20. Occurrence of 2-methylthiazolidine-4-carboxylic acid, a condensation product of cysteine and acetaldehyde, in human blood as a consequence of ethanol consumption.

    PubMed

    Reischl, Roland J; Bicker, Wolfgang; Keller, Thomas; Lamprecht, Günther; Lindner, Wolfgang

    2012-10-01

    Acetaldehyde is a strongly electrophilic compound that is endogenously produced as a first intermediate in oxidative ethanol metabolism. Its high reactivity towards biogenic nucleophiles has toxicity as a consequence. Acetaldehyde readily undergoes a non-enzymatic condensation reaction and consecutive ring formation with cysteine to form 2-methylthiazolidine-4-carboxylic acid (MTCA). For analytical purposes, N-acetylation of MTCA was required for stabilization and to enable its quantification by reversed-phase chromatography combined with electrospray ionization-tandem mass spectrometry. Qualitative screening of post mortem blood samples with negative blood alcohol concentration (BAC) mostly showed low basal levels of MTCA. In BAC-positive post mortem samples, but not in corresponding urine specimens, strongly increased levels were present. To estimate the association between ethanol consumption and the occurrence of MTCA in human blood, the time curves of BAC and MTCA concentration were determined after a single oral dose of 0.5 g ethanol per kilogram of body weight. The blood elimination kinetics of MTCA was slower than that of ethanol. The peak concentration of MTCA (12.6 mg L(-1)) was observed 4 h after ethanol intake (BAC 0.07‰) and MTCA was still detectable after 13 h. Although intermediary acetaldehyde scavenging by formation of MTCA is interesting from a toxicological point of view, lack of hydrolytic stability under physiological conditions may hamper the use of MTCA as a quantitative marker of acetaldehyde exposure, such as resulting from alcohol consumption.

  1. Relationship between acetaldehyde concentration in mouth air and tongue coating volume

    PubMed Central

    YOKOI, Aya; MARUYAMA, Takayuki; YAMANAKA, Reiko; EKUNI, Daisuke; TOMOFUJI, Takaaki; KASHIWAZAKI, Haruhiko; YAMAZAKI, Yutaka; MORITA, Manabu

    2015-01-01

    Objective Acetaldehyde is the first metabolite of ethanol and is produced in the epithelium by mucosal ALDH, while higher levels are derived from microbial oxidation of ethanol by oral microflora such as Candida species. However, it is uncertain whether acetaldehyde concentration in human breath is related to oral condition or local production of acetaldehyde by oral microflora. The aim of this pilot study was to investigate the relationship between physiological acetaldehyde concentration and oral condition in healthy volunteers. Material and Methods Sixty-five volunteers (51 males and 14 females, aged from 20 to 87 years old) participated in the present study. Acetaldehyde concentration in mouth air was measured using a portable monitor. Oral examination, detection of oral Candida species and assessment of alcohol sensitivity were performed. Results Acetaldehyde concentration [median (25%, 75%)] in mouth air was 170.7 (73.5, 306.3) ppb. Acetaldehyde concentration in participants with a tongue coating status score of 3 was significantly higher than in those with a score of 1 (p<0.017). After removing tongue coating, acetaldehyde concentration decreased significantly (p<0.05). Acetaldehyde concentration was not correlated with other clinical parameters, presence of Candida species, smoking status or alcohol sensitivity. Conclusion Physiological acetaldehyde concentration in mouth air was associated with tongue coating volume. PMID:25760268

  2. Reaction of Acetaldehyde with Wine Flavonoids in the Presence of Sulfur Dioxide.

    PubMed

    Sheridan, Marlena K; Elias, Ryan J

    2016-11-16

    Acetaldehyde is responsible for many of the beneficial changes that occur in red wine as a result of oxidation. Ethylidene bridges are formed between flavonoids upon their reaction with acetaldehyde, which can contribute to improvements in color stability and SO2-resistant pigments. In the present study, the reactions between acetaldehyde and various flavonoids (catechin, tannins from grape seed extract, and malvidin-3-glucoside) were examined in a model wine system. Lower pH conditions were seen to significantly increase the rate of reaction with acetaldehyde, whereas dissolved oxygen did not affect the rate. In systems containing SO2, the rate of reaction of acetaldehyde with catechin was slowed but was not prevented until SO2 was in great excess. Significant improvements in color stability were also observed after treatment with acetaldehyde, despite the presence of equimolar SO2. These results demonstrate that acetaldehyde is reactive in its sulfonate form, which is contrary to widely held assumptions. In addition, the products of the reaction of flavonoids with acetaldehyde were characterized using MALDI-TOF MS in this study. Ethyl-bridged catechin nonamers were observed, as well as anthocyanin and pyranoanthocyanin derivatives of catechin and tannin oligomers. The results of this work illustrate the significance of acetaldehyde reactions in forming stable pigments in wine and the reactivity of acetaldehyde from its sulfonate form.

  3. Relationship between acetaldehyde concentration in mouth air and tongue coating volume.

    PubMed

    Yokoi, Aya; Maruyama, Takayuki; Yamanaka, Reiko; Ekuni, Daisuke; Tomofuji, Takaaki; Kashiwazaki, Haruhiko; Yamazaki, Yutaka; Morita, Manabu

    2015-01-01

    Acetaldehyde is the first metabolite of ethanol and is produced in the epithelium by mucosal ALDH, while higher levels are derived from microbial oxidation of ethanol by oral microflora such as Candida species. However, it is uncertain whether acetaldehyde concentration in human breath is related to oral condition or local production of acetaldehyde by oral microflora. The aim of this pilot study was to investigate the relationship between physiological acetaldehyde concentration and oral condition in healthy volunteers. Sixty-five volunteers (51 males and 14 females, aged from 20 to 87 years old) participated in the present study. Acetaldehyde concentration in mouth air was measured using a portable monitor. Oral examination, detection of oral Candida species and assessment of alcohol sensitivity were performed. Acetaldehyde concentration [median (25%, 75%)] in mouth air was 170.7 (73.5, 306.3) ppb. Acetaldehyde concentration in participants with a tongue coating status score of 3 was significantly higher than in those with a score of 1 (p<0.017). After removing tongue coating, acetaldehyde concentration decreased significantly (p<0.05). Acetaldehyde concentration was not correlated with other clinical parameters, presence of Candida species, smoking status or alcohol sensitivity. Physiological acetaldehyde concentration in mouth air was associated with tongue coating volume.

  4. Formaldehyde and acetaldehyde emissions from residential wood combustion in Portugal

    NASA Astrophysics Data System (ADS)

    Cerqueira, Mário; Gomes, Luís; Tarelho, Luís; Pio, Casimiro

    2013-06-01

    A series of experiments were conducted to characterize formaldehyde and acetaldehyde emissions from residential combustion of common wood species growing in Portugal. Five types of wood were investigated: maritime pine (Pinus pinaster), eucalyptus (Eucalyptus globulus), cork oak (Quercus suber), holm oak (Quercus rotundifolia) and pyrenean oak (Quercus pyrenaica). Laboratory experiments were performed with a typical wood stove used for domestic heating in Portugal and operating under realistic home conditions. Aldehydes were sampled from diluted combustion flue gas using silica cartridges coated with 2,4-dinitrophenylhydrazine and analyzed by high performance liquid chromatography with diode array detection. The average formaldehyde to acetaldehyde concentration ratio (molar basis) in the stove flue gas was in the range of 2.1-2.9. Among the tested wood types, pyrenean oak produced the highest emissions for both formaldehyde and acetaldehyde: 1772 ± 649 and 1110 ± 454 mg kg-1 biomass burned (dry basis), respectively. By contrast, maritime pine produced the lowest emissions: 653 ± 151 and 371 ± 162 mg kg-1 biomass (dry basis) burned, respectively. Aldehydes were sampled separately during distinct periods of the holm oak wood combustion cycles. Significant variations in the flue gas concentrations were found, with higher values measured during the devolatilization stage than in the flaming and smoldering stages.

  5. Influence of zinc deficiency on iron metabolism in rats

    SciTech Connect

    Liu, H.; Loennerdal, B.; Keen, C.L. )

    1991-03-15

    It has been reported that one of the effects of dietary Zn deficiency is increased tissue Fe concentrations. One explanation for this is that Fe absorption is enhanced in Zn deficiency. An additional possibility is that Fe metabolism is altered in the deficient animal. To test this idea, the authors studied the effects of Zn deficiency on Fe metabolism in d 18 male rats fed diets ad libitum containing 0.3 ppm Zn (ZD) or 50 ppm Zn (C) for 2 wk. Following i.v. injection with a tracer dose of transferrin saturated with {sup 59}Fe, rats were killed at time intervals up to 120 min. Tissues were collected and analyzed for {sup 59}Fe radioactivity and mineral concentrations. Plasma, kidney, and liver Fe concentrations of ZD rats were higher than those of C rats while Zn concentrations were lower. At all time points, kidney and liver {sup 59}Fe retention on a per g basis was higher in the ZD rats than in the C rats. In contrast, there was no difference in the clearance of {sup 59}Fe from the plasma between the groups, implying that the higher tissue {sup 59}Fe retention in ZD rats was not due to a shortened biological half-life of Tf. The above data show that independent of Fe absorption, Zn deficiency can increase Fe retention, although the mechanism(s) underlying this effect remains to be determined.

  6. Influence of metabolic syndrome on upper gastrointestinal disease.

    PubMed

    Sogabe, Masahiro; Okahisa, Toshiya; Kimura, Tetsuo; Okamoto, Koichi; Miyamoto, Hiroshi; Muguruma, Naoki; Takayama, Tetsuji

    2016-08-01

    A recent increase in the rate of obesity as a result of insufficient physical exercise and excess food consumption has been seen in both developed and developing countries throughout the world. Additionally, the recent increased number of obese individuals with lifestyle-related diseases associated with abnormalities in glucose metabolism, dyslipidemia, and hypertension, defined as metabolic syndrome (MS), has been problematic. Although MS has been highlighted as a risk factor for ischemic heart disease and arteriosclerotic diseases, it was also recently shown to be associated with digestive system disorders, including upper gastrointestinal diseases. Unlike high body weight and high body mass index, abdominal obesity with visceral fat accumulation is implicated in the onset of various digestive system diseases because excessive visceral fat accumulation may cause an increase in intra-abdominal pressure, inducing the release of various bioactive substances, known as adipocytokines, including tumor necrosis factor-α, interleukin-6, resistin, leptin, and adiponectin. This review article focuses on upper gastrointestinal disorders and their association with MS, including obesity, visceral fat accumulation, and the major upper gastrointestinal diseases.

  7. Influence of genetic background on fluoride metabolism in mice.

    PubMed

    Carvalho, J G; Leite, A L; Yan, D; Everett, E T; Whitford, G M; Buzalaf, M A R

    2009-11-01

    A/J and 129P3/J mouse strains have different susceptibilities to dental fluorosis, due to their genetic backgrounds. This study tested whether these differences are due to variations in water intake and/or F metabolism. A/J (susceptible to dental fluorosis) and 129P3/J mice (resistant) received drinking water containing 0, 10, or 50 ppm F. Weekly F intake, excretion and retention, and terminal plasma and femur F levels were determined. Dental fluorosis was evaluated clinically and by quantitative fluorescence (QF). Data were tested by two-way ANOVA. Although F intakes by the strains were similar, excretion by A/J mice was significantly higher due to greater urinary F excretion, which resulted in lower plasma and femur F levels. Compared with 129P3/J mice given 50 ppm F, significantly higher QF scores were recorded for A/J mice. In conclusion, these strains differ with respect to several features of F metabolism, and amelogenesis in the 129P3/J strain seems to be unaffected by high F exposure.

  8. Influence of Genetic Background on Fluoride Metabolism in Mice

    PubMed Central

    Carvalho, J.G.; Leite, A.L.; Yan, D.; Everett, E.T.; Whitford, G.M.; Buzalaf, M.A.R.

    2009-01-01

    A/J and 129P3/J mouse strains have different susceptibilities to dental fluorosis, due to their genetic backgrounds. This study tested whether these differences are due to variations in water intake and/or F metabolism. A/J (susceptible to dental fluorosis) and 129P3/J mice (resistant) received drinking water containing 0, 10, or 50 ppm F. Weekly F intake, excretion and retention, and terminal plasma and femur F levels were determined. Dental fluorosis was evaluated clinically and by quantitative fluorescence (QF). Data were tested by two-way ANOVA. Although F intakes by the strains were similar, excretion by A/J mice was significantly higher due to greater urinary F excretion, which resulted in lower plasma and femur F levels. Compared with 129P3/J mice given 50 ppm F, significantly higher QF scores were recorded for A/J mice. In conclusion, these strains differ with respect to several features of F metabolism, and amelogenesis in the 129P3/J strain seems to be unaffected by high F exposure. PMID:19828896

  9. Splanchnic insulin metabolism in obesity. Influence of body fat distribution.

    PubMed Central

    Peiris, A N; Mueller, R A; Smith, G A; Struve, M F; Kissebah, A H

    1986-01-01

    The effects of obesity and body fat distribution on splanchnic insulin metabolism and the relationship to peripheral insulin sensitivity were assessed in 6 nonobese and 16 obese premenopausal women. When compared with the nonobese women, obese women had significantly greater prehepatic production and portal vein levels of insulin both basally and following glucose stimulation. This increase correlated with the degree of adiposity but not with waist-to-hip girth ratio (WHR). WHR, however, correlated inversely with the hepatic extraction fraction and directly with the posthepatic delivery of insulin. The latter correlated with the degree of peripheral insulinemia. The decline in hepatic insulin extraction with increasing WHR also correlated with the accompanying diminution in peripheral insulin sensitivity. Increasing adiposity is thus associated with insulin hypersecretion. The pronounced hyperinsulinemia of upper body fat localization, however, is due to an additional defect in hepatic insulin extraction. This defect is closely allied with the decline in peripheral insulin sensitivity. PMID:3537010

  10. The Role of CYP2E1 in Alcohol Metabolism and Sensitivity in the Central Nervous System

    PubMed Central

    Heit, Claire; Dong, Hongbin; Chen, Ying; Thompson, David C.; Deitrich, Richard A.; Vasiliou, Vasilis

    2015-01-01

    Ethanol consumption has effects on the central nervous system (CNS), manifesting as motor incoordination, sleep induction (hypnosis), anxiety, amnesia, and the reinforcement or aversion of alcohol consumption. Acetaldehyde (the direct metabolite of ethanol oxidation) contributes to many aspects of the behavioral effects of ethanol. Given acetaldehyde cannot pass through the blood brain barrier, its concentration in the CNS is primarily determined by local production from ethanol. Catalase and cytochrome P450 2E1(CYP2E1) represent the major enzymes in the CNS that catalyze ethanol oxidation. CYP2E1 is expressed abundantly within the microsomes of certain brain cells and is localized to particular brain regions. This chapter focuses on the discussion of CYP2E1 in ethanol metabolism in the CNS, covering topics including how it is regulated, where it is expressed and how it influences sensitivity to ethanol in the brain. PMID:23400924

  11. Exogenous acetaldehyde as a tool for modulating wine color and astringency during fermentation.

    PubMed

    Sheridan, Marlena K; Elias, Ryan J

    2015-06-15

    Wine tannins undergo modifications during fermentation and storage that can decrease their perceived astringency and increase color stability. Acetaldehyde acts as a bridging compound to form modified tannins and polymeric pigments that are less likely to form tannin-protein complexes than unmodified tannins. Red wines are often treated with oxygen in order to yield acetaldehyde, however this approach can lead to unintended consequences due to the generation of reactive oxygen species. The present study employs exogenous acetaldehyde at relatively low and high treatment concentrations during fermentation to encourage tannin modification without promoting potentially deleterious oxidation reactions. The high acetaldehyde treatment significantly increased polymeric pigments in the wine without increasing concentrations of free and sulfite-bound acetaldehyde. Protein-tannin precipitation was also significantly decreased with the addition of exogenous acetaldehyde. These results indicate a possible treatment of wines early in their production to increase color stability and lower astringency of finished wines.

  12. Effect of acetaldehyde on Saccharomyces cerevisiae and Zymomonas mobilis subjected to environmental shocks

    SciTech Connect

    Stanley, G.A.; Hobley, T.J.; Pamment, N.B.

    1997-01-05

    The lag phase of Saccharomyces cerevisiae subjected to a step increase in temperature or ethanol concentration was reduced by as much as 60% when acetaldehyde was added to the medium at concentrations less than 0.1 g/L. Maximum specific growth rates were also substantially increased. Even greater proportional reductions in lag time due to acetaldehyde addition were observed for ethanol-shocked cultures of Zymomonas mobilis. Acetaldehyde had no effect on S. cerevisiae cultures started from stationary phase inocula in the absence of environmental shock and its lag-reducing effects were greater in complex medium than in a defined synthetic medium. Acetaldehyde reacted strongly with the ingredients of complex culture media. It is proposed that the effect of added acetaldehyde may be to compensate for the inability of cells to maintain transmembrane acetaldehyde gradients following an environmental shock.

  13. Skeletal Muscle Triacylglycerol Hydrolysis Does Not Influence Metabolic Complications of Obesity

    PubMed Central

    Sitnick, Mitch T.; Basantani, Mahesh K.; Cai, Lingzhi; Schoiswohl, Gabriele; Yazbeck, Cynthia F.; Distefano, Giovanna; Ritov, Vladimir; DeLany, James P.; Schreiber, Renate; Stolz, Donna B.; Gardner, Noah P.; Kienesberger, Petra C.; Pulinilkunnil, Thomas; Zechner, Rudolf; Goodpaster, Bret H.; Coen, Paul; Kershaw, Erin E.

    2013-01-01

    Intramyocellular triacylglycerol (IMTG) accumulation is highly associated with insulin resistance and metabolic complications of obesity (lipotoxicity), whereas comparable IMTG accumulation in endurance-trained athletes is associated with insulin sensitivity (the athlete’s paradox). Despite these findings, it remains unclear whether changes in IMTG accumulation and metabolism per se influence muscle-specific and systemic metabolic homeostasis and insulin responsiveness. By mediating the rate-limiting step in triacylglycerol hydrolysis, adipose triglyceride lipase (ATGL) has been proposed to influence the storage/production of deleterious as well as essential lipid metabolites. However, the physiological relevance of ATGL-mediated triacylglycerol hydrolysis in skeletal muscle remains unknown. To determine the contribution of IMTG hydrolysis to tissue-specific and systemic metabolic phenotypes in the context of obesity, we generated mice with targeted deletion or transgenic overexpression of ATGL exclusively in skeletal muscle. Despite dramatic changes in IMTG content on both chow and high-fat diets, modulation of ATGL-mediated IMTG hydrolysis did not significantly influence systemic energy, lipid, or glucose homeostasis, nor did it influence insulin responsiveness or mitochondrial function. These data argue against a role for altered IMTG accumulation and lipolysis in muscle insulin resistance and metabolic complications of obesity. PMID:23835334

  14. Skeletal muscle triacylglycerol hydrolysis does not influence metabolic complications of obesity.

    PubMed

    Sitnick, Mitch T; Basantani, Mahesh K; Cai, Lingzhi; Schoiswohl, Gabriele; Yazbeck, Cynthia F; Distefano, Giovanna; Ritov, Vladimir; DeLany, James P; Schreiber, Renate; Stolz, Donna B; Gardner, Noah P; Kienesberger, Petra C; Pulinilkunnil, Thomas; Zechner, Rudolf; Goodpaster, Bret H; Coen, Paul; Kershaw, Erin E

    2013-10-01

    Intramyocellular triacylglycerol (IMTG) accumulation is highly associated with insulin resistance and metabolic complications of obesity (lipotoxicity), whereas comparable IMTG accumulation in endurance-trained athletes is associated with insulin sensitivity (the athlete's paradox). Despite these findings, it remains unclear whether changes in IMTG accumulation and metabolism per se influence muscle-specific and systemic metabolic homeostasis and insulin responsiveness. By mediating the rate-limiting step in triacylglycerol hydrolysis, adipose triglyceride lipase (ATGL) has been proposed to influence the storage/production of deleterious as well as essential lipid metabolites. However, the physiological relevance of ATGL-mediated triacylglycerol hydrolysis in skeletal muscle remains unknown. To determine the contribution of IMTG hydrolysis to tissue-specific and systemic metabolic phenotypes in the context of obesity, we generated mice with targeted deletion or transgenic overexpression of ATGL exclusively in skeletal muscle. Despite dramatic changes in IMTG content on both chow and high-fat diets, modulation of ATGL-mediated IMTG hydrolysis did not significantly influence systemic energy, lipid, or glucose homeostasis, nor did it influence insulin responsiveness or mitochondrial function. These data argue against a role for altered IMTG accumulation and lipolysis in muscle insulin resistance and metabolic complications of obesity.

  15. Molecules in motion: influences of diffusion on metabolic structure and function in skeletal muscle

    PubMed Central

    Kinsey, Stephen T.; Locke, Bruce R.; Dillaman, Richard M.

    2011-01-01

    Metabolic processes are often represented as a group of metabolites that interact through enzymatic reactions, thus forming a network of linked biochemical pathways. Implicit in this view is that diffusion of metabolites to and from enzymes is very fast compared with reaction rates, and metabolic fluxes are therefore almost exclusively dictated by catalytic properties. However, diffusion may exert greater control over the rates of reactions through: (1) an increase in reaction rates; (2) an increase in diffusion distances; or (3) a decrease in the relevant diffusion coefficients. It is therefore not surprising that skeletal muscle fibers have long been the focus of reaction–diffusion analyses because they have high and variable rates of ATP turnover, long diffusion distances, and hindered metabolite diffusion due to an abundance of intracellular barriers. Examination of the diversity of skeletal muscle fiber designs found in animals provides insights into the role that diffusion plays in governing both rates of metabolic fluxes and cellular organization. Experimental measurements of metabolic fluxes, diffusion distances and diffusion coefficients, coupled with reaction–diffusion mathematical models in a range of muscle types has started to reveal some general principles guiding muscle structure and metabolic function. Foremost among these is that metabolic processes in muscles do, in fact, appear to be largely reaction controlled and are not greatly limited by diffusion. However, the influence of diffusion is apparent in patterns of fiber growth and metabolic organization that appear to result from selective pressure to maintain reaction control of metabolism in muscle. PMID:21177946

  16. Involvement of dopamine D2 receptors in addictive-like behaviour for acetaldehyde.

    PubMed

    Brancato, Anna; Plescia, Fulvio; Marino, Rosa Anna Maria; Maniaci, Giuseppe; Navarra, Michele; Cannizzaro, Carla

    2014-01-01

    Acetaldehyde, the first metabolite of ethanol, is active in the central nervous system, where it exerts motivational properties. Acetaldehyde is able to induce drinking behaviour in operant-conflict paradigms that resemble the core features of the addictive phenotype: drug-intake acquisition and maintenance, drug-seeking, relapse and drug use despite negative consequences. Since acetaldehyde directly stimulates dopamine neuronal firing in the mesolimbic system, the aim of this study was the investigation of dopamine D2-receptors' role in the onset of the operant drinking behaviour for acetaldehyde in different functional stages, by the administration of two different D2-receptor agonists, quinpirole and ropinirole. Our results show that acetaldehyde was able to induce and maintain a drug-taking behaviour, displaying an escalation during training, and a reinstatement behaviour after 1-week forced abstinence. Acetaldehyde operant drinking behaviour involved D2-receptor signalling: in particular, quinpirole administration at 0.03 mg/kg, induced a significant decrease in the number of lever presses both in extinction and in relapse. Ropinirole, administered at 0.03 mg/kg during extinction, did not produce any modification but, when administered during abstinence, induced a strong decrease in acetaldehyde intake in the following relapse session. Taken together, our data suggest that acetaldehyde exerts its own motivational properties, involving the dopaminergic transmission: indeed, activation of pre-synaptic D2-receptors by quinpirole, during extinction and relapse, negatively affects operant behaviour for acetaldehyde, likely decreasing acetaldehyde-induced dopamine release. The activation of post-synaptic D2-receptors by ropinirole, during abstinence, decreases the motivation to the consecutive reinstatement of acetaldehyde drinking behaviour, likely counteracting the reduction in the dopaminergic tone typical of withdrawal. These data further strengthen the evidence

  17. Metabolic and Sensory Influences on Odor Sensitivity in Humans.

    PubMed

    Ramaekers, Marielle G; Verhoef, Alard; Gort, Gerrit; Luning, Pieternel A; Boesveldt, Sanne

    2016-02-01

    Our olfactory sense plays an important role in eating behavior by modulating our food preferences and intake. However, hunger or satiety may also influence how we perceive odors. Albeit speculative, contradictory results found in the past may have resulted from confounding by type of meal that participants ate to induce satiety. We aimed to investigate the influence of hunger state on olfactory sensitivity, comparing hunger to satiety using 2 different types of lunch to control for sensory-specific satiety. Odor detection thresholds were measured in 2 groups of participants (39 per group, 18-40 years), under 3 conditions: when hungry (twice), after a sweet lunch, and after a savory lunch. One group had their detection thresholds tested for a sweet odor, whereas in the other group, sensitivity to a savory odor was measured. Differences in olfactory sensitivity conditions were analyzed using linear mixed models. Participants had higher scores on the odor sensitivity task in a hungry versus satiated state (P = 0.001). Within the satiated condition, there was no effect of type of lunch on odor sensitivity. In conclusion, hunger slightly enhances sensitivity to food odors, but did not significantly depend on the type of food participants ate, suggesting no clear influence of sensory-specific satiety.

  18. Acetaldehyde removal from indoor air through chemical absorption using L-cysteine.

    PubMed

    Yamashita, Kyoko; Noguchi, Miyuki; Mizukoshi, Atsushi; Yanagisawa, Yukio

    2010-09-01

    The irreversible removal of acetaldehyde from indoor air via a chemical reaction with amino acids was investigated. To compare effectiveness, five types of amino acid (glycine, l-lysine, l-methionine, l-cysteine, and l-cystine) were used as the reactants. First, acetaldehyde-laden air was introduced into aqueous solutions of each amino acid and the removal abilities were compared. Among the five amino acids, l-cysteine solution showed much higher removal efficiency, while the other amino acids solutions didn't show any significant differences from the removal efficiency of water used as a control. Next, as a test of the removal abilities of acetaldehyde by semi-solid l-cysteine, a gel containing l-cysteine solution was put in a fluororesin bag filled with acetaldehyde gas, and the change of acetaldehyde concentration was measured. The l-cysteine-containing gel removed 80% of the acetaldehyde in the air within 24 hours. The removal ability likely depended on the unique reaction whereby acetaldehyde and l-cysteine rapidly produce 2-methylthiazolidine-4-carboxylic acid. These results suggested that the reaction between acetaldehyde and l-cysteine has possibilities for irreversibly removing toxic acetaldehyde from indoor air.

  19. Copper's influence on iron metabolism in K562 cells

    SciTech Connect

    Percival, S.S.; Armstrong, E. )

    1991-03-15

    Copper deficiency is associated with a cellular defect in iron metabolism that results in poor hemoglobin synthesis. In order to determine this mechanisms, K562 cells, a human erythroleukemic cell line, were incubated with 1 mM bethocuproine disulfonic acid (BCS) to produce a copper deficiency or were supplemented with 8 {mu}M copper. Hemoglobin was simultaneously induced in some cells by the addition of 25 {mu}M hemin to the culture medium. Incubation with BCS resulted in a 30 to 40% reduction in intracellular Cu/Zn superoxide dismutase activity while supplementation resulted in a 20 to 50% increase in activity. The authors then examined the effect of these copper manipulations on {sup 59}Fe uptake from transferrin, on ferritin levels and on hemoglobin levels. Hemoglobin was only slightly affected by the copper treatments. In both noninduced cells and induced cells, copper supplementation resulted in a greater level of intracellular iron, a greater level of immunoreactive ferritin, and an enhanced uptake of {sup 59}Fe from transferrin. In BCS-incubated cells, intracellular iron, ferritin and {sup 59}Fe uptake from transferrin were reduced by at least 50%. Because the ferritin levels were reduced, intracellular iron mobilization did not appear to be impaired in copper deficiency. The results suggest that copper deficiency impairs the transport of iron by transferrin into the cell.

  20. Suboptimal Light Conditions Influence Source-Sink Metabolism during Flowering.

    PubMed

    Christiaens, Annelies; De Keyser, Ellen; Pauwels, Els; De Riek, Jan; Gobin, Bruno; Van Labeke, Marie-Christine

    2016-01-01

    Reliance on carbohydrates during flower forcing was investigated in one early and one late flowering cultivar of azalea (Rhododendron simsii hybrids). Carbohydrate accumulation, invertase activity, and expression of a purported sucrose synthase gene (RsSUS) was monitored during flower forcing under suboptimal (natural) and optimal (supplemental light) light conditions, after a cold treatment (7°C + dark) to break flower bud dormancy. Post-production sucrose metabolism and flowering quality was also assessed. Glucose and fructose concentrations and invertase activity increased in petals during flowering, while sucrose decreased. In suboptimal light conditions RsSUS expression in leaves increased as compared to optimal light conditions, indicating that plants in suboptimal light conditions have a strong demand for carbohydrates. However, carbohydrates in leaves were markedly lower in suboptimal light conditions compared to optimal light conditions. This resulted in poor flowering of plants in suboptimal light conditions. Post-production flowering relied on the stored leaf carbon, which could be accumulated under optimal light conditions in the greenhouse. These results show that flower opening in azalea relies on carbohydrates imported from leaves and is source-limiting under suboptimal light conditions.

  1. Suboptimal Light Conditions Influence Source-Sink Metabolism during Flowering

    PubMed Central

    Christiaens, Annelies; De Keyser, Ellen; Pauwels, Els; De Riek, Jan; Gobin, Bruno; Van Labeke, Marie-Christine

    2016-01-01

    Reliance on carbohydrates during flower forcing was investigated in one early and one late flowering cultivar of azalea (Rhododendron simsii hybrids). Carbohydrate accumulation, invertase activity, and expression of a purported sucrose synthase gene (RsSUS) was monitored during flower forcing under suboptimal (natural) and optimal (supplemental light) light conditions, after a cold treatment (7°C + dark) to break flower bud dormancy. Post-production sucrose metabolism and flowering quality was also assessed. Glucose and fructose concentrations and invertase activity increased in petals during flowering, while sucrose decreased. In suboptimal light conditions RsSUS expression in leaves increased as compared to optimal light conditions, indicating that plants in suboptimal light conditions have a strong demand for carbohydrates. However, carbohydrates in leaves were markedly lower in suboptimal light conditions compared to optimal light conditions. This resulted in poor flowering of plants in suboptimal light conditions. Post-production flowering relied on the stored leaf carbon, which could be accumulated under optimal light conditions in the greenhouse. These results show that flower opening in azalea relies on carbohydrates imported from leaves and is source-limiting under suboptimal light conditions. PMID:26973689

  2. Metabolic Depression in Cunner (Tautogolabrus adspersus) Is Influenced by Ontogeny, and Enhances Thermal Tolerance

    PubMed Central

    Nash, Gordon W.; Gamperl, A. Kurt

    2014-01-01

    To examine the effect of ontogeny on metabolic depression in the cunner (Tautogolabrus adspersus), and to understand how ontogeny and the ability to metabolically depress influence this species' upper thermal tolerance: 1) the metabolic rate of 9°C-acclimated cunner of three size classes [0.2–0.5 g, young of the year (YOY); 3–6 g, small; and 80–120 g, large (adult)] was measured during a 2°C per day decrease in temperature; and 2) the metabolic response of the same three size classes of cunner to an acute thermal challenge [2°C h−1 from 10°C until Critical Thermal Maximum, CTMax] was examined, and compared to that of the Atlantic cod (Gadus morhua). The onset-temperature for metabolic depression in cunner increased with body size, i.e. from 5°C in YOY cunner to 7°C in adults. In contrast, the extent of metabolic depression was ∼80% (Q10 = ∼15) for YOY fish, ∼65% (Q10 = ∼8) for small fish and ∼55% (Q10 = ∼5) for adults, and this resulted in the metabolic scaling exponent (b) gradually increasing from 0.84 to 0.92 between 9°C to 1°C. All size classes of cunner had significantly (approximately 60%) lower routine metabolic rates at 10°C than Atlantic cod. However, there was no species' difference in the temperature-induced maximum metabolic rate, and this resulted in factorial metabolic scope values that were more than two-fold greater for cunner, and CTMax values that were 6–9°C higher (∼21 vs. 28°C). These results: 1) show that ontogeny influences the temperature of initiation and the extent of metabolic depression in cunner, but not O2 consumption when in a hypometabolic state; and 2) suggest that the evolution of cold-induced metabolic depression in this northern wrasse species has not resulted in a trade-off with upper thermal tolerance, but instead, an enhancement of this species' metabolic plasticity. PMID:25514755

  3. UVB Radiation Delays Tribolium castaneum Metamorphosis by Influencing Ecdysteroid Metabolism.

    PubMed

    Sang, Wen; Yu, Lin; He, Li; Ma, Wei-Hua; Zhu, Zhi-Hui; Zhu, Fen; Wang, Xiao-Ping; Lei, Chao-Liang

    2016-01-01

    Ultraviolet B (UVB) radiation is an important environmental factor. It is generally known that UVB exhibits high genotoxicity due to causing DNA damage, potentially leading to skin carcinogenesis and aging in mammals. However, little is known about the effects of UVB on the development and metamorphosis of insects, which are the most abundant terrestrial animals. In the present study, we performed dose-response analyses of the effects UVB irradiation on Tribolium castaneum metamorphosis, assessed the function of the T. castaneum prothoracicotropic hormone gene (Trcptth), and analyzed ecdysteroid pathway gene expression profile and ecdysterone titers post-UVB irradiation. The results showed that UVB not only caused death of T. castaneum larvae, but also delayed larval-pupal metamorphosis and reduced the size and emergence rate of pupae. In addition, we verified the function of Trcptth, which is responsible for regulating metamorphosis. It was also found that the expression profiles of Trcptth as well as ecdysteroidogenesis and response genes were influenced by UVB radiation. Therefore, a disturbance pulse of ecdysteroid may be involved in delaying development under exposure to irradiation. To our knowledge, this is the first report indicating that UVB can influence the metamorphosis of insects. This study will contribute to a better understanding of the impact of UVB on signaling mechanisms in insect metamorphosis.

  4. UVB Radiation Delays Tribolium castaneum Metamorphosis by Influencing Ecdysteroid Metabolism

    PubMed Central

    Sang, Wen; Yu, Lin; He, Li; Ma, Wei-Hua; Zhu, Zhi-Hui; Zhu, Fen; Wang, Xiao-Ping; Lei, Chao-Liang

    2016-01-01

    Ultraviolet B (UVB) radiation is an important environmental factor. It is generally known that UVB exhibits high genotoxicity due to causing DNA damage, potentially leading to skin carcinogenesis and aging in mammals. However, little is known about the effects of UVB on the development and metamorphosis of insects, which are the most abundant terrestrial animals. In the present study, we performed dose-response analyses of the effects UVB irradiation on Tribolium castaneum metamorphosis, assessed the function of the T. castaneum prothoracicotropic hormone gene (Trcptth), and analyzed ecdysteroid pathway gene expression profile and ecdysterone titers post-UVB irradiation. The results showed that UVB not only caused death of T. castaneum larvae, but also delayed larval-pupal metamorphosis and reduced the size and emergence rate of pupae. In addition, we verified the function of Trcptth, which is responsible for regulating metamorphosis. It was also found that the expression profiles of Trcptth as well as ecdysteroidogenesis and response genes were influenced by UVB radiation. Therefore, a disturbance pulse of ecdysteroid may be involved in delaying development under exposure to irradiation. To our knowledge, this is the first report indicating that UVB can influence the metamorphosis of insects. This study will contribute to a better understanding of the impact of UVB on signaling mechanisms in insect metamorphosis. PMID:26986217

  5. The influence of BMI on the association between serum lycopene and the metabolic syndrome.

    PubMed

    Han, Guang-Ming; Soliman, Ghada A; Meza, Jane L; Islam, K M Monirul; Watanabe-Galloway, Shinobu

    2016-04-14

    Overweight and obese individuals have an increased risk of developing the metabolic syndrome because of subsequent chronic inflammation and oxidative stress, which the antioxidant nutrient lycopene can reduce. However, studies indicate that different BMI statuses can alter the positive effects of lycopene. Therefore, the purpose of this study was to examine how BMI influences the association between serum lycopene and the metabolic syndrome. The tertile rank method was used to divide 13 196 participants, aged 20 years and older, into three groups according to serum concentrations of lycopene. The associations between serum lycopene and the metabolic syndrome were analysed separately for normal-weight, overweight and obese participants. Overall, the prevalence of the metabolic syndrome was significantly higher in the first tertile group (OR 38·6%; 95% CI 36·9, 40·3) compared with the second tertile group (OR 29·3%; 95% CI 27·5, 31·1) and the third tertile group (OR 26·6%; 95% CI 24·9, 28·3). However, the associations between lycopene and the metabolic syndrome were only significant for normal-weight and overweight participants (P0·05), even after adjusting for possible confounding variables. In conclusion, BMI appears to strongly influence the association between serum lycopene and the metabolic syndrome.

  6. INFLUENCE OF DIETARY SUBSTANCES ON INTESTINAL DRUG METABOLISM AND TRANSPORT

    PubMed Central

    Won, Christina S.; Oberlies, Nicholas H.; Paine, Mary F.

    2011-01-01

    Successful delivery of promising new chemical entities via the oral route is rife with challenges, some of which cannot be explained or foreseen during drug development. Further complicating an already multifaceted problem is the obvious, yet often overlooked, effect of dietary substances on drug disposition and response. Some dietary substances, particularly fruit juices, have been shown to inhibit biochemical processes in the intestine, leading to altered pharmacokinetic (PK), and potentially pharmacodynamic (PD), outcomes. Inhibition of intestinal CYP3A-mediated metabolism is the major mechanism by which fruit juices, including grapefruit juice, enhances systemic exposure to new and already marketed drugs. Inhibition of intestinal non-CYP3A enzymes and apically-located transport proteins represent recently identified mechanisms that can alter PK and PD. Several fruit juices have been shown to inhibit these processes in vitro, but some interactions have not translated to the clinic. The lack of in vitro-in vivo concordance is due largely to a lack of rigorous methods to elucidate causative ingredients prior to clinical testing. Identification of specific components and underlying mechanisms is challenging, as dietary substances frequently contain multiple, often unknown, bioactive ingredients that vary in composition and bioactivity. A translational research approach, combining expertise from clinical pharmacologists and natural products chemists, is needed to develop robust models describing PK/PD relationships between a given dietary substance and drug of interest. Validation of these models through well-designed clinical trials would facilitate development of common practice guidelines for managing drug-dietary substance interactions appropriately. PMID:21189136

  7. Metabolomic Applications to Decipher Gut Microbial Metabolic Influence in Health and Disease

    PubMed Central

    Martin, François-Pierre J.; Collino, Sebastiano; Rezzi, Serge; Kochhar, Sunil

    2012-01-01

    Dietary preferences and nutrients composition have been shown to influence human and gut microbial metabolism, which ultimately has specific effects on health and diseases’ risk. Increasingly, results from molecular biology and microbiology demonstrate the key role of the gut microbiota metabolic interface to the overall mammalian host’s health status. There is therefore raising interest in nutrition research to characterize the molecular foundations of the gut microbial–mammalian cross talk at both physiological and biochemical pathway levels. Tackling these challenges can be achieved through systems biology approaches, such as metabolomics, to underpin the highly complex metabolic exchanges between diverse biological compartments, including organs, systemic biofluids, and microbial symbionts. By the development of specific biomarkers for prediction of health and disease, metabolomics is increasingly used in clinical applications as regard to disease etiology, diagnostic stratification, and potentially mechanism of action of therapeutical and nutraceutical solutions. Surprisingly, an increasing number of metabolomics investigations in pre-clinical and clinical studies based on proton nuclear magnetic resonance (1H NMR) spectroscopy and mass spectrometry provided compelling evidence that system wide and organ-specific biochemical processes are under the influence of gut microbial metabolism. This review aims at describing recent applications of metabolomics in clinical fields where main objective is to discern the biochemical mechanisms under the influence of the gut microbiota, with insight into gastrointestinal health and diseases diagnostics and improvement of homeostasis metabolic regulation. PMID:22557976

  8. Metabolism

    MedlinePlus

    Metabolism refers to all the physical and chemical processes in the body that convert or use energy, ... Tortora GJ, Derrickson BH. Metabolism. In: Tortora GJ, Derrickson ... Physiology . 14th ed. Hoboken, NJ: John Wiley & Sons; 2014:chap ...

  9. Metabolism

    MedlinePlus

    ... El metabolismo Metabolism Basics Our bodies get the energy they need from food through metabolism, the chemical ... that convert the fuel from food into the energy needed to do everything from moving to thinking ...

  10. Influence of diabetic treatment regimens on vitamin D metabolism in elderly patients.

    PubMed

    Ragonesi, P D; Taddei, M T; Ragonesi, G; Dantes, M; Ronchi, E

    1996-01-01

    The influence of diabetic treatment regimens on vitamin D metabolism and on bone mineral content has been explored in 41 elderly patients with normal renal and hepatic functions. The data obtained suggest that oral treatment with hypoglycemic compounds exerts a negative influence on vitamin D metabolism. It is possible that the reduction of 25-OH-hydroxy-vitamin D levels depends on a high conversion rate to the active 1,25-dihydroxy-vitamin D, as a consequence of parathormone-stimulated increase of 1-alpha-hydroxylase activity. On the other hand, no differences in bone mineral densities were observed in correlation with the diabetic treatment regimens. Therefore, oral treatment with hypoglycemic compounds can only be associated with an accelerated vitamin D metabolism.

  11. Circadian rhythms in myocardial metabolism and contractile function; influence of workload and oleate

    USDA-ARS?s Scientific Manuscript database

    Multiple extra-cardiac stimuli, such as workload and circulating nutrients (e.g., fatty acids), known to influence myocardial metabolism and contractile function exhibit marked circadian rhythms. The aim of the present study was to investigate whether the rat heart exhibits circadian rhythms in its ...

  12. [Acetaldehyde and some biochemical parameters in alcoholic intoxications].

    PubMed

    Vasil'eva, E V; Morozov, Iu E; Lopatkin, O N; Zarubin, V V; Mamedov, V K

    2004-01-01

    The need in comprehensive gas chromatography and biochemistry examinations is grounded for cadaver expertise in order to cope with issues related with alcoholic intoxication. Descriptions of 3 examination methods of biological fluids are elucidated, i.e. gas chromatography, electrophoresis and fixing of a degree of endogenous intoxication. The concentration of acetaldehyde in 3 body media (blood, urine and liquor) are analyzed in detail; the isoenzyme spectra of lactate-, alcohol- and aldehyde dehydrogenase as well as the contents of medium molecules in death of alcohol poisonings and due to mechanical trauma are also in the focus of attention.

  13. Plant physiological and environmental controls over the exchange of acetaldehyde between forest canopies and the atmosphere

    NASA Astrophysics Data System (ADS)

    Jardine, K.; Harley, P.; Karl, T.; Guenther, A.; Lerdau, M.; Mak, J. E.

    2008-11-01

    We quantified fine scale sources and sinks of gas phase acetaldehyde in two forested ecosystems in the US. During the daytime, the upper canopy behaved as a net source while at lower heights, reduced emission rates or net uptake were observed. At night, uptake generally predominated throughout the canopies. Net ecosystem emission rates were inversely related to foliar density due to the extinction of light in the canopy and a respective decrease of the acetaldehyde compensation point. This is supported by branch level studies revealing much higher compensation points in the light than in the dark for poplar (Populus deltoides) and holly oak (Quercus ilex) implying a higher light/temperature sensitivity for acetaldehyde production relative to consumption. The view of stomata as the major pathway for acetaldehyde exchange is supported by strong linear correlations between branch transpiration rates and acetaldehyde exchange velocities for both species. In addition, natural abundance carbon isotope analysis of gas-phase acetaldehyde during poplar branch fumigation experiments revealed a significant kinetic isotope effect of 5.1±0.3‰ associated with the uptake of acetaldehyde. Similar experiments with dry dead poplar leaves showed no fractionation or uptake of acetaldehyde, confirming that this is only a property of living leaves. We suggest that acetaldehyde belongs to a potentially large list of plant metabolites where stomatal resistance can exert long term control over both emission and uptake rates due to the presence of both source(s) and sink(s) within the leaf which strongly buffer large changes in concentrations in the substomatal airspace due to changes in stomatal resistance. We conclude that the exchange of acetaldehyde between plant canopies and the atmosphere is fundamentally controlled by ambient acetaldehyde concentrations, stomatal resistance, and the compensation point which is a function of light/temperature.

  14. Female hormones: do they influence muscle and tendon protein metabolism?

    PubMed

    Hansen, Mette

    2017-08-29

    Due to increased longevity, women can expect to live more than one-third of their lives in a post-menopausal state, which is characterised by low circulating levels of oestrogen and progesterone. The aim of this review is to provide insights into current knowledge of the effect of female hormones (or lack of female hormones) on skeletal muscle protein turnover at rest and in response to exercise. This review is primarily based on data from human trials. Many elderly post-menopausal women experience physical disabilities and loss of independence related to sarcopenia, which reduces life quality and is associated with substantial financial costs. Resistance training and dietary optimisation can counteract or at least decelerate the degenerative ageing process, but lack of oestrogen in post-menopausal women may reduce their sensitivity to these anabolic stimuli and accelerate muscle loss. Tendons and ligaments are also affected by sex hormones, but the effect seems to differ between endogenous and exogenous female hormones. Furthermore, the effect seems to depend on the age, and as a result influence the biomechanical properties of the ligaments and tendons differentially. Based on the present knowledge oestrogen seems to play a significant role with regard to skeletal muscle protein turnover. Therefore, oestrogen/hormonal replacement therapy may counteract the degenerative changes in skeletal muscle. Nevertheless, there is a need for greater insight into the direct and indirect mechanistic effects of female hormones before any evidence-based recommendations regarding type, dose, duration and timing of hormone replacement therapy can be provided.

  15. Influence of Vegetation on Methane Metabolism in Subarctic Lakes

    NASA Astrophysics Data System (ADS)

    Hamilton, B. T.; Spry, E.; Beck, M. A.; McCalley, C. K.; Johnson, J. E.; Palace, M. W.; Varner, R. K.; Bothner, W. A.

    2016-12-01

    Subarctic lakes are significant sources of atmospheric methane. Methane is produced in the sediment of subarctic lakes by chemosynthetic organisms. These organisms primarily produce methane through hydrogenotrophic or acetoclastic methanogenesis. These production pathways result in isotopically distinct methane. The lakes in the Stordalen mire region have been extensively studied for methane emissions. Our study focused on identifying the dominate pathway of methane production in the sediments of five lakes in a sporadic permafrost region in Northern Sweden. We measured the carbon isotope ratio of methane from lake sediments obtained adjacent to areas dominated by different plant communities found within the mire: hardwood forests, dominated by Betula pubescens ssp. Czerepanovii and Salix spp, sedges (Carex rostrata and Eriophorum angustifolium), and the aquatic plant Equisetum fluviatile. T-test revealed that the δ13C signature of methane from sites surrounded by hardwood forest species was significantly lower than that of areas dominated by sedges species (p=0.02), and Equisetum fluviatile. (p=0.005). This suggests that areas dominated by sedges and Equisetum spp.produce methane through the acetoclastic pathway while areas that are surrounded by hardwood forest species may be more influenced by hydrogenotrophic methanogenesis.

  16. Acute Metabolic Influences on the Natriuretic Peptide System in Humans

    PubMed Central

    Hamid, Tariq; Arora, Garima; Agha, Obiajulu; Allen, Kaitlin; Tainsh, Robert E.T.; Hu, Dongjian; Ryan, Romy A.; Domian, Ibrahim J.; Buys, Emmanuel S.; Bloch, Donald B.; Prabhu, Sumanth D.; Bloch, Kenneth D.; Newton-Cheh, Christopher; Wang, Thomas J.

    2016-01-01

    BACKGROUND The cardiac natriuretic peptides (NPs), atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP), have central roles in sodium and blood pressure regulation. Extracardiac factors (e.g., obesity and diabetes) influence NP production, potentially altering cardiovascular responses to volume and pressure stress. OBJECTIVES This study examined the effects of acute carbohydrate intake on the NP system in humans, and investigated underlying mechanisms. METHODS Normotensive subjects (N = 33) were given a high-carbohydrate shake. Venous blood was sampled to measure N-terminal (NT)-proANP and NT-proBNP levels. Human embryonic stem cell–derived cardiomyocytes (hESC-CMs) and HepG2 cells were treated with glucose, and expression levels of NPs and micro ribonucleic acid 425 (miR-425), a negative regulator of ANP, were examined. The role of nuclear factor kappa B (NF-κB) in the glucose-mediated effects was investigated using a NF-κB inhibitor and expression plasmids encoding NF-κB subunits. RESULTS We observed a 27% reduction in the levels of circulating NT-proANP (p < 0.001, maximal at 6 h) after carbohydrate challenge, with no effect on NT-proBNP levels in our human subjects. Glucose treatment of hESC-CMs for 6 h and 24 h increased levels of the primary transcript of miR-425 (pri-miR-425) and mature miR-425. A corresponding decrease in NPPA messenger RNA levels was also observed at both time points. Overexpression of NF-κB subunits in H9c2 cardiomyocytes increased miR-425 levels, whereas inhibition of NF-κB abrogated the glucose-mediated increase in pri-miR-425 levels in HepG2 cells. CONCLUSIONS Acute carbohydrate challenge is associated with a reduction in ANP production. The mechanism appears to involve a glucose-induced increase in the expression of miR-425, mediated by NF-κB signaling. PMID:26892417

  17. The hydrogen-storing microporous silica 'Microcluster' reduces acetaldehyde contained in a distilled spirit.

    PubMed

    Kato, Shinya; Miwa, Nobuhiko

    2016-12-01

    Acetaldehyde is a detrimental substance produced in alcoholic liquor aging. We assessed an ability of hydrogen-storing microporous silica 'Microcluster' (MC+) to reduce acetaldehyde, as compared with autoclave-dehydrogenated MC+ (MC-). Acetaldehyde was quantified spectrophotometrically by an enzymatic method. Authentic acetaldehyde was treated by MC+ for 20min, and decreased from 43.4ppm to 10.9ppm, but maintained at 49.3ppm by MC-. On the other hand, acetaldehyde contained in a distilled spirit was decreased from 29.5ppm to 3.1ppm at 20min by MC+, but not decreased by MC-. Addition of MC+ or MC- to distilled water without acetaldehyde showed no seeming effect on the quantification used. Accordingly acetaldehyde in a distilled spirit is reduced to ethanol by hydrogen contained in MC+, but not by the silica moiety of MC+. Hydrogen gas of 1.2mL was released for 20min from MC+ of 0.59g in water, resulting in dissolved hydrogen of 1.09ppm and an oxidation- reduction potential of -687.0mV indicative of a marked reducing ability. Thus, MC+ has an ability to reduce acetaldehyde in a distilled spirit due to dissolved hydrogen released from MC+.

  18. Oxygen vacancy-assisted coupling and enolization of acetaldehyde on CeO2(111).

    PubMed

    Calaza, Florencia C; Xu, Ye; Mullins, David R; Overbury, Steven H

    2012-10-31

    The temperature-dependent adsorption and reaction of acetaldehyde (CH(3)CHO) on a fully oxidized and a highly reduced thin-film CeO(2)(111) surface have been investigated using a combination of reflection-absorption infrared spectroscopy (RAIRS) and periodic density functional theory (DFT+U) calculations. On the fully oxidized surface, acetaldehyde adsorbs weakly through its carbonyl O interacting with a lattice Ce(4+) cation in the η(1)-O configuration. This state desorbs at 210 K without reaction. On the highly reduced surface, new vibrational signatures appear below 220 K. They are identified by RAIRS and DFT as a dimer state formed from the coupling of the carbonyl O and the acyl C of two acetaldehyde molecules. This dimer state remains up to 400 K before decomposing to produce another distinct set of vibrational signatures, which are identified as the enolate form of acetaldehyde (CH(2)CHO¯). Furthermore, the calculated activation barriers for the coupling of acetaldehyde, the decomposition of the dimer state, and the recombinative desorption of enolate and H as acetaldehyde are in good agreement with previously reported TPD results for acetaldehyde adsorbed on reduced CeO(2)(111) [Chen et al. J. Phys. Chem. C 2011, 115, 3385]. The present findings demonstrate that surface oxygen vacancies alter the reactivity of the CeO(2)(111) surface and play a crucial role in stabilizing and activating acetaldehyde for coupling reactions.

  19. Determination of 14C/ 12C of acetaldehyde in indoor air by compound specific radiocarbon analysis

    NASA Astrophysics Data System (ADS)

    Kato, Yoshimi; Shinohara, Naohide; Yoshinaga, Jun; Uchida, Masao; Matsuda, Ayuri; Yoneda, Minoru; Shibata, Yasuyuki

    A method of compound-specific radiocarbon analysis (CSRA) for acetaldehyde in indoor air was established for the source apportionment purpose and the methodology was applied to indoor air samples. Acetaldehyde in indoor air samples was collected using the conventional 2,4-dinitrophenylhydrazine (DNPH) derivatization method. Typically 24-h air sampling at 5-10 L min -1 allowed collection of adequate amount of acetaldehyde for radiocarbon analysis by accelerator mass spectrometry (AMS). The 14C abundance of acetaldehyde in indoor air was measured by AMS after solvent extraction of derivatized acetaldehyde and sequential purification by a preparative liquid chromatography system and a preparative capillary gas chromatography system. The recovery and purity of the derivatized acetaldehyde was satisfactory for 14C analysis by AMS. 14C abundance of acetaldehyde was calculated by considering that of derivatizing agent DNPH. Our preliminary survey showed that percent modern carbon (pMC) values of acetaldehyde isolated from indoor air sampled in newly built, unoccupied housings ( n=5) in the suburb of Tokyo ranged from 49.4 to 67.0. This result indicated that contribution of anthropogenic source was greater than previously expected.

  20. 40 CFR 80.56 - Measurement methods for formaldehyde and acetaldehyde.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Measurement methods for formaldehyde... Measurement methods for formaldehyde and acetaldehyde. (a) Formaldehyde and acetaldehyde will be measured by....140 of this chapter for formaldehyde analysis. Diluted exhaust sample volumes must be at least 15 L...

  1. 40 CFR 80.56 - Measurement methods for formaldehyde and acetaldehyde.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Measurement methods for formaldehyde... Measurement methods for formaldehyde and acetaldehyde. (a) Formaldehyde and acetaldehyde will be measured by....140 of this chapter for formaldehyde analysis. Diluted exhaust sample volumes must be at least 15 L...

  2. 40 CFR 80.56 - Measurement methods for formaldehyde and acetaldehyde.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Measurement methods for formaldehyde... Measurement methods for formaldehyde and acetaldehyde. (a) Formaldehyde and acetaldehyde will be measured by....140 of this chapter for formaldehyde analysis. Diluted exhaust sample volumes must be at least 15 L...

  3. Role of malondialdehyde-acetaldehyde adducts in liver injury.

    PubMed

    Tuma, Dean J

    2002-02-15

    Malondialdehyde and acetaldehyde react together with proteins in a synergistic manner and form hybrid protein adducts, designated as MAA adducts. MAA-protein adducts are composed of two major products whose structures and mechanism of formation have been elucidated. MAA adduct formation, especially in the liver, has been demonstrated in vivo during ethanol consumption. These protein adducts are capable of inducing a potent immune response, resulting in the generation of antibodies against both MAA epitopes, as well as against epitopes on the carrier protein. Chronic ethanol administration to rats results in significant circulating antibody titers against MAA-adducted proteins, and high anti-MAA titers have been associated with the severity of liver damage in humans with alcoholic liver disease. In vitro exposure of liver endothelial or hepatic stellate cells to MAA adducts induces a proinflammatory and profibrogenic response in these cells. Thus, during excessive ethanol consumption, ethanol oxidation and ethanol-induced oxidative stress result in the formation of acetaldehyde and malondialdehyde, respectively. These aldehydes can react together synergistically with proteins and generate MAA adducts, which are very immunogenic and possess proinflammatory and profibrogenic properties. By virtue of these potentially toxic effects, MAA adducts may play an important role in the pathogenesis of alcoholic liver injury.

  4. The detection of acetaldehyde in cold dust clouds

    NASA Technical Reports Server (NTRS)

    Matthews, H. E.; Friber, P.; Irvine, W. M.

    1985-01-01

    Observations of the 1(01)-0(00) rotational transitions of A and E state acetaldehyde are reported. The transitions were detected, for the first time in interstellar space, in the cold dust clouds TMC-1 and L134N, and in Sgr B2. This is also the first time acetaldehyde has been found in a dust cloud and is the most complex oxygen-bearing molecule yet known in this environment. A column density of 6 x 10 to the 12th/sq cm in TMC-1, comparable to many other species detected there, and an approximately equal column density in L134N are formed. In the direction of Sgr B2, the CH3CHO profile appears to consist of broad emission features from the hot molecular cloud core, together with absorption features resulting from intervening colder material. The possible detection of HC9N toward IRC + 10 deg 216 through its J = 33-32 transition is also reported. Implications for cold dust cloud chemistry and excitation are discussed.

  5. Neonatal environment exerts a sustained influence on the development of the intestinal microbiota and metabolic phenotype

    PubMed Central

    Merrifield, Claire A; Lewis, Marie C; Berger, Bernard; Cloarec, Olivier; Heinzmann, Silke S; Charton, Florence; Krause, Lutz; Levin, Nadine S; Duncker, Swantje; Mercenier, Annick; Holmes, Elaine; Bailey, Mick; Nicholson, Jeremy K

    2016-01-01

    The postnatal environment, including factors such as weaning and acquisition of the gut microbiota, has been causally linked to the development of later immunological diseases such as allergy and autoimmunity, and has also been associated with a predisposition to metabolic disorders. We show that the very early-life environment influences the development of both the gut microbiota and host metabolic phenotype in a porcine model of human infants. Farm piglets were nursed by their mothers for 1 day, before removal to highly controlled, individual isolators where they received formula milk until weaning at 21 days. The experiment was repeated, to create two batches, which differed only in minor environmental fluctuations during the first day. At day 1 after birth, metabolic profiling of serum by 1H nuclear magnetic resonance spectroscopy demonstrated significant, systemic, inter-batch variation which persisted until weaning. However, the urinary metabolic profiles demonstrated that significant inter-batch effects on 3-hydroxyisovalerate, trimethylamine-N-oxide and mannitol persisted beyond weaning to at least 35 days. Batch effects were linked to significant differences in the composition of colonic microbiota at 35 days, determined by 16 S pyrosequencing. Different weaning diets modulated both the microbiota and metabolic phenotype independently of the persistent batch effects. We demonstrate that the environment during the first day of life influences development of the microbiota and metabolic phenotype and thus should be taken into account when interrogating experimental outcomes. In addition, we suggest that intervention at this early time could provide ‘metabolic rescue' for at-risk infants who have undergone aberrant patterns of initial intestinal colonisation. PMID:26066712

  6. Immune response to acetaldehyde-human serum albumin adduct among healthy subjects related to alcohol intake.

    PubMed

    Romanazzi, Valeria; Schilirò, Tiziana; Carraro, Elisabetta; Gilli, Giorgio

    2013-09-01

    Acetaldehyde (AA) is the main metabolic product in ethanol metabolism, although it can also derive from sources of airborne pollution. As a typical aldehyde, AA is able to react with a variety of molecular targets, including DNA and protein. This property justifies the hypothesis of a immune reaction against this kind of adduct, to be studied by a seroprevalence screening approach. In this study, the correlation between drinking habits and the amount of circulating AA-human serum albumin adduct (AA-HSA) was evaluated in a group of healthy subjects, non alcohol-addicted. Daily ethanol intake (grams) was inferred for each subject using the information collected through a questionnaire, and AA-HSA antibodies (AA-HSA ab) analyses were performed using the Displacement Assay on whole blood samples. The findings showed a correlation between ethanol intake and immune response to molecular adduct. These results underscore the evaluation of AA-HSA ab amount as a suitable molecular marker for alcohol intake that can be applied in future investigations on a large scale for prevention screening.

  7. Influence of tacrolimus metabolism rate on BKV infection after kidney transplantation

    PubMed Central

    Thölking, Gerold; Schmidt, Christina; Koch, Raphael; Schuette-Nuetgen, Katharina; Pabst, Dirk; Wolters, Heiner; Kabar, Iyad; Hüsing, Anna; Pavenstädt, Hermann; Reuter, Stefan; Suwelack, Barbara

    2016-01-01

    Immunosuppression is the major risk factor for BK virus nephropathy (BKVN) after renal transplantation (RTx). As the individual tacrolimus (Tac) metabolism rate correlates with Tac side effects, we hypothesized that Tac metabolism might also influence the BKV infection risk. In this case-control study RTx patients with BK viremia within 4 years after RTx (BKV group) were compared with a BKV negative control group. The Tac metabolism rate expressed as the blood concentration normalized by the daily dose (C/D ratio) was applied to assess the Tac metabolism rate. BK viremia was detected in 86 patients after a median time of 6 (0–36) months after RTx. BKV positive patients showed lower Tac C/D ratios at 1, 3 and 6 months after RTx and were classified as fast Tac metabolizers. 8 of 86 patients with BK viremia had histologically proven BKN and a higher median maximum viral load than BKV patients without BKN (441,000 vs. 18,572 copies/mL). We conclude from our data that fast Tac metabolism (C/D ratio <1.05) is associated with BK viremia after RTx. Calculation of the Tac C/D ratio early after RTx, may assist transplant clinicians to identify patients at risk and to choose the optimal immunosuppressive regimen. PMID:27573493

  8. Preferred Barefoot Step Frequency is Influenced by Factors Beyond Minimizing Metabolic Rate

    NASA Astrophysics Data System (ADS)

    Yandell, Matthew B.; Zelik, Karl E.

    2016-03-01

    Humans tend to increase their step frequency in barefoot walking, as compared to shod walking at the same speed. Based on prior studies and the energy minimization hypothesis we predicted that people make this adjustment to minimize metabolic cost. We performed an experiment quantifying barefoot walking metabolic rate at different step frequencies, specifically comparing preferred barefoot to preferred shod step frequency. We found that subjects increased their preferred frequency when walking barefoot at 1.4 m/s (~123 vs. ~117 steps/min shod, P = 2e-5). However, average barefoot walking metabolic rates at the preferred barefoot and shod step frequencies were not significantly different (P = 0.40). Instead, we observed subject-specific trends: five subjects consistently reduced (‑8% average), and three subjects consistently increased (+10% average) their metabolic rate at preferred barefoot vs. preferred shod frequency. Thus, it does not appear that people ubiquitously select a barefoot step frequency that minimizes metabolic rate. We concluded that preferred barefoot step frequency is influenced by factors beyond minimizing metabolic rate, such as shoe properties and/or perceived comfort. Our results highlight the subject-specific nature of locomotor adaptations and how averaging data across subjects may obscure meaningful trends. Alternative experimental designs may be needed to better understand individual adaptations.

  9. Preferred Barefoot Step Frequency is Influenced by Factors Beyond Minimizing Metabolic Rate.

    PubMed

    Yandell, Matthew B; Zelik, Karl E

    2016-03-18

    Humans tend to increase their step frequency in barefoot walking, as compared to shod walking at the same speed. Based on prior studies and the energy minimization hypothesis we predicted that people make this adjustment to minimize metabolic cost. We performed an experiment quantifying barefoot walking metabolic rate at different step frequencies, specifically comparing preferred barefoot to preferred shod step frequency. We found that subjects increased their preferred frequency when walking barefoot at 1.4 m/s (~123 vs. ~117 steps/min shod, P = 2e-5). However, average barefoot walking metabolic rates at the preferred barefoot and shod step frequencies were not significantly different (P = 0.40). Instead, we observed subject-specific trends: five subjects consistently reduced (-8% average), and three subjects consistently increased (+10% average) their metabolic rate at preferred barefoot vs. preferred shod frequency. Thus, it does not appear that people ubiquitously select a barefoot step frequency that minimizes metabolic rate. We concluded that preferred barefoot step frequency is influenced by factors beyond minimizing metabolic rate, such as shoe properties and/or perceived comfort. Our results highlight the subject-specific nature of locomotor adaptations and how averaging data across subjects may obscure meaningful trends. Alternative experimental designs may be needed to better understand individual adaptations.

  10. Preferred Barefoot Step Frequency is Influenced by Factors Beyond Minimizing Metabolic Rate

    PubMed Central

    Yandell, Matthew B.; Zelik, Karl E.

    2016-01-01

    Humans tend to increase their step frequency in barefoot walking, as compared to shod walking at the same speed. Based on prior studies and the energy minimization hypothesis we predicted that people make this adjustment to minimize metabolic cost. We performed an experiment quantifying barefoot walking metabolic rate at different step frequencies, specifically comparing preferred barefoot to preferred shod step frequency. We found that subjects increased their preferred frequency when walking barefoot at 1.4 m/s (~123 vs. ~117 steps/min shod, P = 2e-5). However, average barefoot walking metabolic rates at the preferred barefoot and shod step frequencies were not significantly different (P = 0.40). Instead, we observed subject-specific trends: five subjects consistently reduced (−8% average), and three subjects consistently increased (+10% average) their metabolic rate at preferred barefoot vs. preferred shod frequency. Thus, it does not appear that people ubiquitously select a barefoot step frequency that minimizes metabolic rate. We concluded that preferred barefoot step frequency is influenced by factors beyond minimizing metabolic rate, such as shoe properties and/or perceived comfort. Our results highlight the subject-specific nature of locomotor adaptations and how averaging data across subjects may obscure meaningful trends. Alternative experimental designs may be needed to better understand individual adaptations. PMID:26988124

  11. Alcohol Metabolism and Cancer Risk

    PubMed Central

    Seitz, Helmut K.; Becker, Peter

    2007-01-01

    Chronic alcohol consumption increases the risk for cancer of the organs and tissues of the respiratory tract and the upper digestive tract (i.e., upper aerodigestive tract), liver, colon, rectum, and breast. Various factors may contribute to the development (i.e., pathogenesis) of alcohol-associated cancer, including the actions of acetaldehyde, the first and most toxic metabolite of alcohol metabolism. The main enzymes involved in alcohol and acetaldehyde metabolism are alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), which are encoded by multiple genes. Because some of these genes exist in several variants (i.e., are polymorphic), and the enzymes encoded by certain variants may result in elevated acetaldehyde levels, the presence of these variants may predispose to certain cancers. Several mechanisms may contribute to alcohol-related cancer development. Acetaldehyde itself is a cancer-causing substance in experimental animals and reacts with DNA to form cancer-promoting compounds. In addition, highly reactive, oxygen-containing molecules that are generated during certain pathways of alcohol metabolism can damage the DNA, thus also inducing tumor development. Together with other factors related to chronic alcohol consumption, these metabolism-related factors may increase tumor risk in chronic heavy drinkers. PMID:17718399

  12. Very early acetaldehyde production by industrial Saccharomyces cerevisiae strains: a new intrinsic character.

    PubMed

    Cheraiti, Naoufel; Guezenec, Stéphane; Salmon, Jean-Michel

    2010-03-01

    During a general survey of the acetaldehyde-producing properties of commercially available wine yeast strains, we discovered that, although final acetaldehyde production cannot be used as a discriminating factor between yeast strains, initial specific acetaldehyde production rates were of highly interest for classifying yeast strains. This parameter is very closely related to the growth- and fermentation-lag phase durations. We also found that this acetaldehyde early production occurs with very different extent between commercial active dry yeast strains during the rehydration phase and could partially explain the known variable resistance of yeast strains to sulfites. Acetaldehyde production appeared, therefore, as very precocious, strain-dependent, and biomass-independent character. These various findings suggest that this new intrinsic characteristic of industrial fermenting yeast may be likely considered as an early marker of the general fermenting activity of industrial fermenting yeasts. This phenomenon could be particularly important for understanding the ecology of colonization of complex fermentation media by Saccharomyces cerevisiae.

  13. Diffusion behaviour of the acetaldehyde scavenger 2-aminobenzamide in polyethylene terephthalate for beverage bottles

    PubMed Central

    Franz, Roland; Gmeiner, Margit; Gruner, Anita; Kemmer, Diana; Welle, Frank

    2016-01-01

    ABSTRACT Polyethylene terephthalate (PET) bottles are widely used as packaging material for natural mineral water. However, trace levels of acetaldehyde can migrate into natural mineral water during the shelf life and might influence the taste of the PET bottled water. 2-Aminobenzamide is widely used during PET bottle production as a scavenging agent for acetaldehyde. The aim of this study was the determination of the migration kinetics of 2-aminobenzamide into natural mineral water as well as into 20% ethanol. From the migration kinetics, the diffusion coefficients of 2-aminobenzamide in PET at 23 and 40°C were determined to be 4.2 × 10− 16 and 4.2 × 10− 15 cm2 s–1, respectively. The diffusion coefficient for 20% ethanol at 40°C was determined to be 7.7 × 10− 15 cm2 s–1, which indicates that 20% ethanol is causing swelling of the PET polymer. From a comparison of migration values between 23 and 40°C, acceleration factors of 9.7 when using water as contact medium and 18.1 for 20% ethanol as simulant can be derived for definition of appropriate accelerated test conditions at 40°C. The European Union regulatory acceleration test based on 80 kJ mol–1 as conservative activation energy overestimates the experimentally determined acceleration rates by a factor of 1.6 and 3.1, respectively. PMID:26666986

  14. Diffusion behaviour of the acetaldehyde scavenger 2-aminobenzamide in polyethylene terephthalate for beverage bottles.

    PubMed

    Franz, Roland; Gmeiner, Margit; Gruner, Anita; Kemmer, Diana; Welle, Frank

    2016-01-01

    Polyethylene terephthalate (PET) bottles are widely used as packaging material for natural mineral water. However, trace levels of acetaldehyde can migrate into natural mineral water during the shelf life and might influence the taste of the PET bottled water. 2-Aminobenzamide is widely used during PET bottle production as a scavenging agent for acetaldehyde. The aim of this study was the determination of the migration kinetics of 2-aminobenzamide into natural mineral water as well as into 20% ethanol. From the migration kinetics, the diffusion coefficients of 2-aminobenzamide in PET at 23 and 40°C were determined to be 4.2 × 10(-)(16) and 4.2 × 10(-)(15) cm(2) s(-1), respectively. The diffusion coefficient for 20% ethanol at 40°C was determined to be 7.7 × 10(-)(15) cm(2) s(-1), which indicates that 20% ethanol is causing swelling of the PET polymer. From a comparison of migration values between 23 and 40°C, acceleration factors of 9.7 when using water as contact medium and 18.1 for 20% ethanol as simulant can be derived for definition of appropriate accelerated test conditions at 40°C. The European Union regulatory acceleration test based on 80 kJ mol(-1) as conservative activation energy overestimates the experimentally determined acceleration rates by a factor of 1.6 and 3.1, respectively.

  15. Analysis of rabbit intervertebral disc physiology based on water metabolism. I. Factors influencing metabolism of the normal intervertebral discs

    SciTech Connect

    Hirano, N.; Tsuji, H.; Ohshima, H.; Kitano, S.; Sano, A.

    1988-11-01

    Basic factors influencing the metabolism of intervertebral discs of rabbits were quantitatively analyzed based on the water metabolism. The blood flow surrounding the intervertebral disc was calculated using pharmacokinetic concepts from the data obtained by time-related tritiated water distribution analyses. The blood flow was estimated as 0.056 (mg/min/mg tissue) in the anterior annulus, 0.106 in the posterior annulus, 0.120 in the lateral annulus, and 0.084 in the nucleus pulposus, respectively (Experiment 1). Water content and fixed charge density in the intervertebral disc fractions also were measured (Experiment 2). The cations and uncharged small solutes transported into the disc tissue ranged in descending order from nucleus pulposus, lateral annulus, posterior annulus, to anterior annulus. The authors also calculated theoretically the swelling pressure of the proteoglycan in the intervertebral disc fractions from the results of Experiment 2. It was concluded that swelling pressure was highest in the nucleus pulposus, and lowest in the anterior annulus. The water in the posterior annulus is less exchangeable than in the other disc tissue fractions.

  16. Prevalence of the metabolic syndrome and its influencing factors among adolescent girls in Mashhad, Iran.

    PubMed

    Mirhosseini, Naghmeh-Zahra; Yusoff, Noor Aini Mohd; Shahar, Suzana; Parizadeh, Syyed Mohahhad Reza; Mobarhen, Majid Ghayour; Shakery, Mohammad Taghi

    2009-01-01

    This study sought to determine the prevalence of the metabolic syndrome, one of the major public-health challenges worldwide, and its influencing factors among 15 to 17 years old adolescent girls in Mashhad, Iran. A total of 622 high school adolescents participated in a cross-sectional study. A self-administered questionnaire was used to assess socio-demographic characteristics and dietary habits. Anthropometric assessments, blood pressure measurement and biochemical assessment were done. Applying BMI Z-score for age and gender (WHO 2007), 14.6 % and 3.4 % of subjects were classified as overweight and obese, respectively. Enlarged WC (> 80 cm) was seen in 9.5% of subjects. The prevalence of combined hypertension was 6.1% which was increased by the severity of obesity. A total of 24.5% of subjects had hypertriglyceridemia and 57% of them had low level of HDL-cholesterol. Hyperglycemia was present in 16.7% of subjects. Based on the NCEP ATP III (2001) criteria, the prevalence of the metabolic syndrome was 6.5% and increased to 45.1% in obese subjects. Increasing BMI or WC, led to significant increment in the number of metabolic syndrome features (p < 0.001). High socioeconomic status of family, medical history of parents and dietary habits especially high consumption of carbohydrates were influencing factors in the prevalence of the metabolic syndrome. Approximately 6.5% of all and 45% of obese subjects met the criteria for the metabolic syndrome. Dietary habits especially carbohydrate consumption, socioeconomic status of family and medical history of parents can be influential factors in the prevalence of the metabolic syndrome.

  17. Caffeine Inhibits the Activation of Hepatic Stellate Cells Induced by Acetaldehyde via Adenosine A2A Receptor Mediated by the cAMP/PKA/SRC/ERK1/2/P38 MAPK Signal Pathway

    PubMed Central

    Yang, Wanzhi; Wang, Qi; Zhao, Han; Yang, Feng; Lv, Xiongwen; Li, Jun

    2014-01-01

    Hepatic stellate cell (HSC) activation is an essential event during alcoholic liver fibrosis. Evidence suggests that adenosine aggravates liver fibrosis via the adenosine A2A receptor (A2AR). Caffeine, which is being widely consumed during daily life, inhibits the action of adenosine. In this study, we attempted to validate the hypothesis that caffeine influences acetaldehyde-induced HSC activation by acting on A2AR. Acetaldehyde at 50, 100, 200, and 400 μM significantly increased HSC-T6 cells proliferation, and cell proliferation reached a maximum at 48 h after exposure to 200 μM acetaldehyde. Caffeine and the A2AR antagonist ZM241385 decreased the cell viability and inhibited the expression of procollagen type I and type III in acetaldehyde-induced HSC-T6 cells. In addition, the inhibitory effect of caffeine on the expression of procollagen type I was regulated by A2AR-mediated signal pathway involving cAMP, PKA, SRC, and ERK1/2. Interestingly, caffeine’s inhibitory effect on the expression of procollagen type III may depend upon the A2AR-mediated P38 MAPK-dependent pathway. Conclusions: Caffeine significantly inhibited acetaldehyde-induced HSC-T6 cells activation by distinct A2AR mediated signal pathway via inhibition of cAMP-PKA-SRC-ERK1/2 for procollagen type I and via P38 MAPK for procollagen type III. PMID:24682220

  18. Resolving Some Paradoxes in the Thermal Decomposition Mechanism of Acetaldehyde.

    PubMed

    Sivaramakrishnan, Raghu; Michael, Joe V; Harding, Lawrence B; Klippenstein, Stephen J

    2015-07-16

    The mechanism for the thermal decomposition of acetaldehyde has been revisited with an analysis of literature kinetics experiments using theoretical kinetics. The present modeling study was motivated by recent observations, with very sensitive diagnostics, of some unexpected products in high temperature microtubular reactor experiments on the thermal decomposition of CH3CHO and its deuterated analogs, CH3CDO, CD3CHO, and CD3CDO. The observations of these products prompted the authors of these studies to suggest that the enol tautomer, CH2CHOH (vinyl alcohol), is a primary intermediate in the thermal decomposition of acetaldehyde. The present modeling efforts on acetaldehyde decomposition incorporate a master equation reanalysis of the CH3CHO potential energy surface (PES). The lowest-energy process on this PES is an isomerization of CH3CHO to CH2CHOH. However, the subsequent product channels for CH2CHOH are substantially higher in energy, and the only unimolecular process that can be thermally accessed is a reisomerization to CH3CHO. The incorporation of these new theoretical kinetics predictions into models for selected literature experiments on CH3CHO thermal decomposition confirms our earlier experiment and theory-based conclusions that the dominant decomposition process in CH3CHO at high temperatures is C-C bond fission with a minor contribution (∼10-20%) from the roaming mechanism to form CH4 and CO. The present modeling efforts also incorporate a master-equation analysis of the H + CH2CHOH potential energy surface. This bimolecular reaction is the primary mechanism for removal of CH2CHOH, which can accumulate to minor amounts at high temperatures, T > 1000 K, in most lab-scale experiments that use large initial concentrations of CH3CHO. Our modeling efforts indicate that the observation of ketene, water, and acetylene in the recent microtubular experiments are primarily due to bimolecular reactions of CH3CHO and CH2CHOH with H-atoms and have no bearing on

  19. Resolving Some Paradoxes in the Thermal Decomposition Mechanism of Acetaldehyde

    SciTech Connect

    Sivaramakrishnan, R.; Michael, Joe V.; Harding, Lawrence B.; Klippenstein, Stephen J.

    2015-01-01

    The mechanism for the thermal decomposition of acetaldehyde has been revisited with an analysis of literature kinetics experiments using theoretical kinetics. The present modeling study was motivated by recent observations, with very sensitive diagnostics, of some unexpected products in high temperature micro-tubular reactor experiments on the thermal decomposition of CH3CHO and its deuterated analogs, CH3CDO, CD3CHO, and CD3CDO. The observations of these products prompted the authors of these studies to suggest that the enol tautomer, CH2CHOH (vinyl alcohol), is a primary intermediate in the thermal decomposition of acetaldehyde. The present modeling efforts on acetaldehyde decomposition incorporate a master equation re-analysis of the CH3CHO potential energy surface (PES). The lowest energy process on this PES is an isomerization of CH3CHO to CH2CHOH. However, the subsequent product channels for CH2CHOH are substantially higher in energy, and the only unimolecular process that can be thermally accessed is a re-isomerization to CH3CHO. The incorporation of these new theoretical kinetics predictions into models for selected literature experiments on CH3CHO thermal decomposition confirms our earlier experiment and theory based conclusions that the dominant decomposition process in CH3CHO at high temperatures is C-C bond fission with a minor contribution (~10-20%) from the roaming mechanism to form CH4 and CO. The present modeling efforts also incorporate a master-equation analysis of the H + CH2CHOH potential energy surface. This bimolecular reaction is the primary mechanism for removal of CH2CHOH, which can accumulate to minor amounts at high temperatures, T > 1000 K, in most lab-scale experiments that use large initial concentrations of CH3CHO. Our modeling efforts indicate that the observation of ketene, water and acetylene in the recent micro-tubular experiments are primarily due to bimolecular reactions of CH3CHO and CH2CHOH with H-atoms, and have no bearing on

  20. Acetaldehyde production and other ADH-related characteristics of aerobic bacteria isolated from hypochlorhydric human stomach.

    PubMed

    Väkeväinen, S; Tillonen, J; Blom, M; Jousimies-Somer, H; Salaspuro, M

    2001-03-01

    Acetaldehyde is a known local carcinogen in the digestive tract in humans. Bacterial overgrowth in the hypochlorhydric stomach enhances production of acetaldehyde from ethanol in vivo after alcohol ingestion. Therefore, microbially produced acetaldehyde may be a potential risk factor for alcohol-related gastric and cardiac cancers. This study was aimed to investigate which bacterial species and/or groups are responsible for acetaldehyde formation in the hypochlorhydric human stomach and to characterize their alcohol dehydrogenase (ADH) enzymes. After 7 days of treatment with 30 mg of lansoprazole twice a day, a gastroscopy was performed on eight volunteers to obtain hypochlorhydric gastric juice. Samples were cultured and bacteria were isolated and identified; thereafter, their acetaldehyde production capacity was measured gas chromatographically by incubating intact bacterial suspensions with ethanol at 37 degrees C. Cytosolic ADH activities, Km values, and protein concentration were determined spectrophotometrically. Acetaldehyde production of the isolated bacterial strains (n = 51) varied from less than 1 to 13,690 nmol of acetaldehyde/10(9) colony-forming units/hr. ADH activity of the strains that produced more than 100 nmol of acetaldehyde/10(9) colony-forming units/hr (n = 23) varied from 3.9 to 1253 nmol of nicotinamide adenine dinucleotide per minute per milligram of protein, and Km values for ethanol ranged from 0.65 to 116 mM and from 0.5 to 3.1 M (high Km). There was a statistically significant correlation (r = 0.64, p < 0.001) between ADH activity and acetaldehyde production from ethanol in the tested strains. The most potent acetaldehyde producers were Neisseria and Rothia species and Streptococcus salivarius, whereas nearly all Stomatococcus, Staphylococcus, and other Streptococcus species had a very low capacity to produce acetaldehyde. This study demonstrated that certain bacterial species or groups that originate from the oral cavity are

  1. X and Y Chromosome Complement Influence Adiposity and Metabolism in Mice

    PubMed Central

    Chen, Xuqi; McClusky, Rebecca; Itoh, Yuichiro; Reue, Karen

    2013-01-01

    Three different models of MF1 strain mice were studied to measure the effects of gonadal secretions and sex chromosome type and number on body weight and composition, and on related metabolic variables such as glucose homeostasis, feeding, and activity. The 3 genetic models varied sex chromosome complement in different ways, as follows: 1) “four core genotypes” mice, comprising XX and XY gonadal males, and XX and XY gonadal females; 2) the XY* model comprising groups similar to XO, XX, XY, and XXY; and 3) a novel model comprising 6 groups having XO, XX, and XY chromosomes with either testes or ovaries. In gonadally intact mice, gonadal males were heavier than gonadal females, but sex chromosome complement also influenced weight. The male/female difference was abolished by adult gonadectomy, after which mice with 2 sex chromosomes (XX or XY) had greater body weight and percentage of body fat than mice with 1 X chromosome. A second sex chromosome of either type, X or Y, had similar effects, indicating that the 2 sex chromosomes each possess factors that influence body weight and composition in the MF1 genetic background. Sex chromosome complement also influenced metabolic variables such as food intake and glucose tolerance. The results reveal a role for the Y chromosome in metabolism independent of testes and gonadal hormones and point to a small number of X–Y gene pairs with similar coding sequences as candidates for causing these effects. PMID:23397033

  2. Pyrolysis of Acetaldehyde: a Fleeting Glimpse of Vinylidene

    NASA Astrophysics Data System (ADS)

    Vasilou, A. J.; Piech, K. M.; Ellison, G. B.; Golan, A.; Kostko, O.; Ahmed, M.; Osborn, D. L.; Daily, J. W.; Nimlos, M. R.; Stanton, J. F.

    2011-06-01

    The thermal decomposition of acetaldehyde has been studied in a heated silicon carbide ``microtubular reactor", with products monitored by both photoionization mass spectrometry and matrix-isolation Fourier transform infrared spectroscopy. A well-known, and observed, route of decomposition occurs when the weakest C-C bond is broken; this process leads to methyl and formyl radicals. In addition to this, we find evidence for two additional channels: CH_3CHO + Δ → H_2CCO (ketene) and CH_3CHO + Δ → C_2H_2 (acetylene), reactions that also generate molecular hydrogen and water, respectively. This talk focuses on the last pathway, which proceeds via vinyl alcohol. Evidence is presented that the high temperature unimolecular dehydration of vinyl alcohol proceeds by two mechanisms; one of these is a (1,2) elimination that directly yields acetylene, and the other is a (1,1) elimination that necessarily accesses the vinylidene isomer of C_2H_2 as an intermediate.

  3. Computer modeling of cool flames and ignition of acetaldehyde

    SciTech Connect

    Cavanagh, J.; Cox, R.A. ); Olson, G. )

    1990-10-01

    A detailed mechanism for the oxidation of acetaldehyde at temperatures between 500-1000 K has been assembled using 77 elementary reactions involving 32 reactant, product, and intermediate species. Rate coefficients were taken from recent critical evaluations of experimental data. Where experimental measurements were not available, the rate parameters were estimated from the body of currently available kinetics information. The mechanism was shown to predict correctly the rates and products observed in CH{sub 3}CHO oxidation studies in a low-pressure in a stirred flow reactor and at high pressure in a rapid compression machine. The oscillatory phenomena in the flow system and the two-stage ignition observed at high pressure were satisfactorily described by the mechanism. It is shown that cool flames are caused by degenerate branching mainly by peracetic acid and that hydrogen peroxide promotes hot ignition.

  4. Role of apoptotic hepatocytes in HCV dissemination: regulation by acetaldehyde.

    PubMed

    Ganesan, Murali; Natarajan, Sathish Kumar; Zhang, Jinjin; Mott, Justin L; Poluektova, Larisa I; McVicker, Benita L; Kharbanda, Kusum K; Tuma, Dean J; Osna, Natalia A

    2016-06-01

    Alcohol consumption exacerbates hepatitis C virus (HCV) pathogenesis and promotes disease progression, although the mechanisms are not quite clear. We have previously observed that acetaldehyde (Ach) continuously produced by the acetaldehyde-generating system (AGS), temporarily enhanced HCV RNA levels, followed by a decrease to normal or lower levels, which corresponded to apoptosis induction. Here, we studied whether Ach-induced apoptosis caused depletion of HCV-infected cells and what role apoptotic bodies (AB) play in HCV-alcohol crosstalk. In liver cells exposed to AGS, we observed the induction of miR-122 and miR-34a. As miR-34a has been associated with apoptotic signaling and miR-122 with HCV replication, these findings may suggest that cells with intensive viral replication undergo apoptosis. Furthermore, when AGS-induced apoptosis was blocked by a pan-caspase inhibitor, the expression of HCV RNA was not changed. AB from HCV-infected cells contained HCV core protein and the assembled HCV particle that infect intact hepatocytes, thereby promoting the spread of infection. In addition, AB are captured by macrophages to switch their cytokine profile to the proinflammatory one. Macrophages exposed to HCV(+) AB expressed more IL-1β, IL-18, IL-6, and IL-10 mRNAs compared with those exposed to HCV(-) AB. The generation of AB from AGS-treated HCV-infected cells even enhanced the induction of aforementioned cytokines. We conclude that HCV and alcohol metabolites trigger the formation of AB containing HCV particles. The consequent spread of HCV to neighboring hepatocytes via infected AB, as well as the induction of liver inflammation by AB-mediated macrophage activation potentially exacerbate the HCV infection course by alcohol and worsen disease progression.

  5. Halogenated acetaldehydes: analysis, stability and fate in drinking water.

    PubMed

    Koudjonou, Boniface K; LeBel, Guy L

    2006-07-01

    In our previous studies, chloral hydrate has been the only chlorinated acetaldehyde determined in drinking water because authentic standards of other related haloacetaldehydes were not available. Recently, standards of dichloroacetaldehyde, bromochloroacetaldehyde, dibromoacetaldehyde, bromodichloroacetaldehyde, chlorodibromoacetaldehyde, and tribromoacetaldehyde have become available commercially. They were obtained and verified for purity and stability using a dual-column GC-ECD system. Each commercial standard was found to contain small amounts of the other target haloacetaldehydes (HAs). The stability of the HAs stock solutions was solvent dependent: in acetone, the brominated species partially degraded to bromoacetone, while all target HAs were stable in MTBE for up to 8 months. The analytical parameters, required for the quantification of HAs in water, were determined and used to evaluate the stability of the HAs in water. Under the conditions of the sampling protocol (field pH adjustment to pH 4.5 and storage at 4 degrees C), the target HAs were stable in water for up to 14 days. However, at typical drinking water pH and temperature conditions, the stability varied with the HA species, pH, temperature and storage period. The trihalogenated acetaldehydes degraded, in part, to their corresponding trihalomethanes (THMs) at increasing pH and temperature. Most target HAs were detected in drinking water samples collected from various Canadian drinking water systems, and the speciation was dependent on water parameters (e.g. bromide concentration) and treatment processes. From the water samples analysed, chloral hydrate ranged between 7% and 51% of the total HAs (w/w). The weigh ratio of total HAs to total THMs (10-46%) indicated that HAs contributed significantly to the pool of DBPs in drinking water.

  6. The effects of acetaldehyde and acrolein on muscle catabolism in C2 myotubes.

    PubMed

    Rom, Oren; Kaisari, Sharon; Aizenbud, Dror; Reznick, Abraham Z

    2013-12-01

    The toxic aldehydes acetaldehyde and acrolein were previously suggested to damage skeletal muscle. Several conditions in which exposure to acetaldehyde and acrolein is increased were associated with muscle wasting and dysfunction. These include alcoholic myopathy, renal failure, oxidative stress, and inflammation. A main exogenous source of both acetaldehyde and acrolein is cigarette smoking, which was previously associated with increased muscle catabolism. Recently, we have shown that exposure of skeletal myotubes to cigarette smoke stimulated muscle catabolism via increased oxidative stress, activation of p38 MAPK, and upregulation of muscle-specific E3 ubiquitin ligases. In this study, we aimed to investigate the effects of acetaldehyde and acrolein on catabolism of skeletal muscle. Skeletal myotubes differentiated from the C2 myoblast cell line were exposed to acetaldehyde or acrolein and their effects on signaling pathways related to muscle catabolism were studied. Exposure of myotubes to acetaldehyde did not promote muscle catabolism. However, exposure to acrolein caused increased generation of free radicals, activation of p38 MAPK, upregulation of the muscle-specific E3 ligases atrogin-1 and MuRF1, degradation of myosin heavy chain, and atrophy of myotubes. Inhibition of p38 MAPK by SB203580 abolished acrolein-induced muscle catabolism. Our findings demonstrate that acrolein but not acetaldehyde activates a signaling cascade resulting in muscle catabolism in skeletal myotubes. Although within the limitations of an in vitro study, these findings indicate that acrolein may promote muscle wasting in conditions of increased exposure to this aldehyde.

  7. Metabolism

    MedlinePlus

    ... symptoms. Metabolic diseases and conditions include: Hyperthyroidism (pronounced: hi-per-THIGH-roy-dih-zum). Hyperthyroidism is caused ... or through surgery or radiation treatments. Hypothyroidism (pronounced: hi-po-THIGH-roy-dih-zum). Hypothyroidism is caused ...

  8. Impact of chronic low to moderate alcohol consumption on blood lipid and heart energy profile in acetaldehyde dehydrogenase 2-deficient mice.

    PubMed

    Fan, Fan; Cao, Quan; Wang, Cong; Ma, Xin; Shen, Cheng; Liu, Xiang-wei; Bu, Li-ping; Zou, Yun-zeng; Hu, Kai; Sun, Ai-jun; Ge, Jun-bo

    2014-08-01

    To investigate the roles of acetaldehyde dehydrogenase 2 (ALDH2), the key enzyme of ethanol metabolism, in chronic low to moderate alcohol consumption-induced heart protective effects in mice. Twenty-one male wild-type (WT) or ALDH2-knockout (KO) mice were used in this study. In each genotype, 14 animals received alcohol (2.5%, 5% and 10% in week 1-3, respectively, and 18% in week 4-7), and 7 received water for 7 weeks. After the treatments, survival rate and general characteristics of the animals were evaluated. Serum ethanol and acetaldehyde levels and blood lipids were measured. Metabolomics was used to characterize the heart and serum metabolism profiles. Chronic alcohol intake decreased the survival rate of KO mice by 50%, and significantly decreased their body weight, but did not affect those of WT mice. Chronic alcohol intake significantly increased the serum ethanol levels in both WT and KO mice, but KO mice had significantly higher serum acetaldehyde levels than WT mice. Chronic alcohol intake significantly increased the serum HDL cholesterol levels in WT mice, and did not change the serum HDL cholesterol levels in KO mice. After chronic alcohol intake, WT and KO mice showed differential heart and serum metabolism profiles, including the 3 main energy substrate types (lipids, glucose and amino acids) and three carboxylic acid cycles. Low to moderate alcohol consumption increases HDL cholesterol levels and improves heart energy metabolism profile in WT mice but not in ALDH2-KO mice. Thus, preserved ALDH2 function is essential for the protective effect of low to moderate alcohol on the cardiovascular system.

  9. A single sip of a strong alcoholic beverage causes exposure to carcinogenic concentrations of acetaldehyde in the oral cavity.

    PubMed

    Linderborg, Klas; Salaspuro, Mikko; Väkeväinen, Satu

    2011-09-01

    The aim of this study was to explore oral exposure to carcinogenic (group 1) acetaldehyde after single sips of strong alcoholic beverages containing no or high concentrations of acetaldehyde. Eight volunteers tasted 5 ml of ethanol diluted to 40 vol.% with no acetaldehyde and 40 vol.% calvados containing 2400 μM acetaldehyde. Salivary acetaldehyde and ethanol concentrations were measured by gas chromatography. The protocol was repeated after ingestion of ethanol (0.5 g/kg body weight). Salivary acetaldehyde concentration was significantly higher after sipping calvados than after sipping ethanol at 30s both with (215 vs. 128 μmol/l, p<0.05) and without (258 vs. 89 μmol/l, p<0.05) alcohol ingestion. From 2 min onwards there were no significant differences in the decreasing salivary acetaldehyde concentration, which remained above the level of carcinogenicity still at 10 min. The systemic alcohol distribution from blood to saliva had no additional effect on salivary acetaldehyde after sipping of the alcoholic beverages. Carcinogenic concentrations of acetaldehyde are produced from ethanol in the oral cavity instantly after a small sip of strong alcoholic beverage, and the exposure continues for at least 10 min. Acetaldehyde present in the beverage has a short-term effect on total acetaldehyde exposure.

  10. Ethanol-induced myocardial ischemia: close relation between blood acetaldehyde level and myocardial ischemia.

    PubMed

    Ando, H; Abe, H; Hisanou, R

    1993-05-01

    A patient with vasospastic angina who developed myocardial ischemia following ethanol ingestion but not after exercise was described. Myocardial ischemia was evidenced by electrocardiograms (ECGs) and thallium-201 scintigrams. The blood acetaldehyde level after ethanol ingestion was abnormally high. The time course and severity of myocardial ischemia coincided with those of the blood ethanol and acetaldehyde level. Coronary arteriography showed ergonovine maleate-induced coronary vasospasm at the left anterior descending coronary artery. ECG changes similar to those induced by ethanol ingestion were observed at the same time. These findings suggest that the high blood acetaldehyde level might be responsible for the development of coronary vasospasm and myocardial ischemia in this patient.

  11. Sex influences the effect of a lifelong increase in serotonin transporter function on cerebral metabolism.

    PubMed

    Dawson, Neil; Ferrington, Linda; Olverman, Henry J; Harmar, Anthony J; Kelly, Paul A T

    2009-08-01

    Polymorphic variation in the human serotonin transporter (SERT; 5-HTT) gene resulting in a lifelong increase in SERT expression is associated with reduced anxiety and a reduced risk of affective disorder. Evidence also suggests that sex influences the effect of this polymorphism on affective functioning. Here we use novel transgenic mice overexpressing human SERT (hSERT OVR) to investigate the possible influence of sex on the alterations in SERT protein expression and cerebral function that occur in response to increased SERT gene transcription. SERT binding levels were significantly increased in the brain of hSERT OVR mice in a region-dependent manner. The increased SERT binding in hSERT OVR mice was more pronounced in female than in male mice. Cerebral metabolism, as reflected by a quantitative index of local cerebral glucose utilization (iLCMRglu), was significantly decreased in many brain regions in hSERT OVR female as compared with wild-type female mice, whereas there was no evidence for a significant effect in any region in males. The ability of hSERT overexpression to modify cerebral metabolism was significantly greater in females than in males. This effect was particularly pronounced in the medial striatum, globus pallidus, somatosensory cortex, mamillary body, and ventrolateral thalamus. Overall, these findings demonstrate that the influence of a lifelong increase in SERT gene transcription on cerebral function is greater in females than in males and may relate, in part, to the influence of sex on genetically driven increases in SERT protein expression.

  12. Influence of Cd, Co, and Zn on inorganic carbon acquisition and carbon metabolism in Emiliania huxleyi.

    NASA Astrophysics Data System (ADS)

    Sutton, J. N.; Boye, M.; De La Broise, D.; Probert, I.

    2014-12-01

    Trace elements are essential micronutrients for primary producers; hence they influence the global carbon cycle and contribute to the regulation of Earth's climate. Over the past 25 years, the influence of Fe concentration on phytoplankton production has been well studied and this research has been instrumental in our understanding of the influence that biology has on the sequestration of atmospheric CO2. However, other trace elements that are directly involved in carbon metabolism by primary producers, such as Zn, Cd, and Co, have received less attention. We examined the physiological response of two strains of Emiliania huxleyi to a range of realistic trace element concentrations (Zn, Cd, Co) in the marine environment under batch, semi-continuous, and continuous culture conditions. In addition, the continuous culture system was maintained at a pH of 8.15 ±0.02 by a sensor and regulator-controlled CO2­ injection system. The results from this study will highlight the influence that trace element composition of seawater has on the growth rate, elemental quota, inorganic carbon uptake, and carbon metabolism of Emiliania huxleyi. Potential limitations for the interpretation of paleo-productivity records will be discussed.

  13. Effect of fermented sea tangle on the alcohol dehydrogenase and acetaldehyde dehydrogenase in Saccharomyces cerevisiae.

    PubMed

    Cha, Jae-Young; Jeong, Jae-Jun; Yang, Hyun-Ju; Lee, Bae-Jin; Cho, Young-Su

    2011-08-01

    Sea tangle, a kind of brown seaweed, was fermented with Lactobacillus brevis BJ-20. The gamma-aminobutyric acid (GABA) content in fermented sea tangle (FST) was 5.56% (w/w) and GABA in total free amino acid of FST was 49.5%. The effect of FST on the enzyme activities and mRNA protein expression of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) involved in alcohol metabolism in Saccharomyces cerevisiae was investigated. Yeast was cultured in YPD medium supplemented with different concentrations of FST powder [0, 0.4, 0.8, and 1.0% (w/v)] for 18 h. FST had no cytotoxic effect on the yeast growth. The highest activities and protein expressions of ADH and ALDH from the cell-free extracts of S. cerevisiae were evident with the 0.4% and 0.8% (w/v) FST-supplemented concentrations, respectively. The highest concentrations of GABA as well as minerals (Zn, Ca, and Mg) were found in the cell-free extracts of S. cerevisiae cultured in medium supplemented with 0.4% (w/v) FST. The levels of GABA, Zn, Ca, and Mg in S. cerevisiae were strongly correlated with the enzyme activities of ADH and ALDH in yeast. These results indicate that FST can enhance the enzyme activities and protein expression of ADH and ALDH in S. cerevisiae.

  14. Is hepatic lipid metabolism of beef cattle influenced by breed and dietary silage level?

    PubMed Central

    2014-01-01

    Background In ruminants, unsaturated dietary fatty acids are biohydrogenated in the rumen and are further metabolised in various tissues, including liver, which has an important role in lipid and lipoprotein metabolism. Therefore, manipulation of muscle fatty acid composition should take into account liver metabolism. In the present study, the influence of breed and diet on liver lipid composition and gene expression was investigated in order to clarify the role of this organ in the lipid metabolism of ruminants. Forty purebred young bulls from two phylogenetically distant autochthonous cattle breeds, Alentejana and Barrosã, were assigned to two different diets (low vs. high silage) and slaughtered at 18 months of age. Liver fatty acid composition, mRNA levels of enzymes and transcription factors involved in lipid metabolism, as well as the plasma lipid profile, were assessed. Results In spite of similar plasma non-esterified fatty acids levels, liver triacylglycerols content was higher in Barrosã than in Alentejana bulls. Moreover, the fatty acid composition of liver was clearly distinct from the remaining tissues involved in fatty acid metabolism of ruminants, as shown by Principal Components Analysis. The hepatic tissue is particularly rich in α-linolenic acid and their products of desaturation and elongation. Results indicate that DGAT1, ELOVL2, FADS1 and FADS2 genes influence the fatty acid composition of the liver the most. Moreover, genes such as DGAT1 and ELOVL2 appear to be more sensitive to genetic background than to dietary manipulation, whereas genes encoding for desaturases, such as FADS1, appear to be modulated by dietary silage level. Conclusions Our results indicate that liver plays an important role in the biosynthesis of n-3 LC-PUFA. It is also suggested that dietary silage level influences the hepatic fatty acid metabolism in a breed-dependent manner, through changes in the expression of genes encoding for enzymes associated with the

  15. Elucidating the influence of praziquantel nanosuspensions on the in vivo metabolism of Taenia crassiceps cysticerci.

    PubMed

    Silva, Luciana Damacena; Arrúa, Eva Carolina; Pereira, Dayanne Amaral; Fraga, Carolina Miguel; Costa, Tatiane Luiza da; Hemphill, Andrew; Salomon, Claudio Javier; Vinaud, Marina Clare

    2016-09-01

    The aim of this work was to develop nanosuspensions of praziquantel (PZQ) and to evaluate their influence on the energetic metabolism of cysticerci inoculated in BALB/c mice. We analyzed metabolic alterations of glycolytic pathways and the tricarboxylic acid cycle in the parasite. The nanosuspensions were prepared by precipitation and polyvinyl alcohol (PVA), poloxamer 188 (P188) and poloxamer 407 (P407) were used as stabilizers. Nanosuspension prepared with PVA had a particle size of 100nm, while P188- and P407-based nanosuspensions had particle sizes of 74nm and 285nm, respectively. The zeta potential was -8.1, -8.6, and -13.2 for the formulations stabilized with PVA, P188 and P407, respectively. Treatments of T. crassiceps cysticerci-infected mice resulted in an increase in glycolysis organic acids, and enhanced the partial reversion of the tricarboxylic acid cycle, the urea cycle and the production of ketonic bodies in the parasites when compared to the groups treated with conventional PZQ. These data suggest that PZQ nanosuspensions greatly modified the energetic metabolism of cysticerci in vivo. Moreover, the remarkable metabolic alterations produced by the stabilizers indicate that further studies on nanoformulations are required to find potentially suitable nanomedicines.

  16. Genetic influences on type 2 diabetes and metabolic syndrome related quantitative traits in Mauritius.

    PubMed

    Jowett, Jeremy B; Diego, Vincent P; Kotea, Navaratnam; Kowlessur, Sudhir; Chitson, Pierrot; Dyer, Thomas D; Zimmet, Paul; Blangero, John

    2009-02-01

    Epidemiological studies report a high prevalence of type 2 diabetes and metabolic syndrome in the island nation of Mauritius. The Mauritius Family Study was initiated to examine heritable factors that contribute to these high rates of prevalence and consists of 400 individuals in 24 large extended multigenerational pedigrees. Anthropometric and biochemical measurements relating to the metabolic syndrome were undertaken in addition to family and lifestyle based information for each individual. Variance components methods were used to determine the heritability of the type 2 diabetes and metabolic syndrome related quantitative traits. The cohort was made up of 218 females (55%) and 182 males with 22% diagnosed with type 2 diabetes and a further 30% having impaired glucose tolerance or impaired fasting glucose. Notably BMI was not significantly increased in those with type 2 diabetes (P= .12), however a significant increase in waist circumference was observed in these groups (P= .02). The heritable proportion of trait variance was substantial and greater than values previously published for hip circumference, LDL and total cholesterol, diastolic and systolic blood pressure and serum creatinine. Height, weight and BMI heritabilities were all in the upper range of those previously reported. The phenotypic characteristics of the Mauritius family cohort are similar to those previously reported in the Mauritian population with a high observed prevalence rate of type 2 diabetes. A high heritability for key type 2 diabetes and metabolic syndrome related phenotypes (range 0.23 to 0.68), suggest the cohort will have utility in identifying genes that influence these quantitative traits.

  17. Influence of feeding regimens on rat gut fluids and colonic metabolism of diclofenac-β-cyclodextrin.

    PubMed

    Vieira, Amélia C F; Murdan, Sudaxshina; Serra, Arménio C; Veiga, Francisco J; Gonsalves, António M d'A Rocha; Basit, Abdul W

    2014-11-04

    Feeding states may affect the performance of colonic prodrugs. The aim is to investigate the influence of feeding regimen in Wistar rats on: (i) distribution and pH contents along the gut and (ii) metabolism of two colonic prodrugs, diclofenac-β-cyclodextrin and a commercially available control, sulfasalazine, within the caecal and colonic contents. Male Wistar rats were subject to four different feeding regimens, the gut contents characterized (mass and pH) and the metabolism of prodrugs investigated. The feeding regimen affects gut contents (mass and pH), more specifically in the stomach and lower intestine, and affects the rate of metabolism of diclofenac-β-cyclodextrin, but not that of sulfasalazine. The latter's degradation is much faster than that of diclofenac-β-cyclodextrin while the metabolism of both prodrugs is faster in colonic (versus caecal) contents. Fasting results in most rapid degradation of diclofenac-β-cyclodextrin, possibly due to lack of competition (absence of food) for microbial enzymatic activity.

  18. A Tomato Vacuolar Invertase Inhibitor Mediates Sucrose Metabolism and Influences Fruit Ripening.

    PubMed

    Qin, Guozheng; Zhu, Zhu; Wang, Weihao; Cai, Jianghua; Chen, Yong; Li, Li; Tian, Shiping

    2016-11-01

    Fruit ripening is a complex process that involves a series of physiological and biochemical changes that ultimately influence fruit quality traits, such as color and flavor. Sugar metabolism is an important factor in ripening, and there is evidence that it influences various aspects of ripening, although the associated mechanism is not well understood. In this study, we identified and analyzed the expression of 36 genes involved in Suc metabolism in ripening tomato (Solanum lycopersicum) fruit. Chromatin immunoprecipitation and gel mobility shift assays indicated that SlVIF, which encodes a vacuolar invertase inhibitor, and SlVI, encoding a vacuolar invertase, are directly regulated by the global fruit ripening regulator RIPENING INHIBITOR (RIN). Moreover, we showed that SlVIF physically interacts with SlVI to control Suc metabolism. Repression of SlVIF by RNA interference delayed tomato fruit ripening, while overexpression of SlVIF accelerated ripening, with concomitant changes in lycopene production and ethylene biosynthesis. An isobaric tags for relative and absolute quantification-based quantitative proteomic analysis further indicated that the abundance of a set of proteins involved in fruit ripening was altered by suppressing SlVIF expression, including proteins associated with lycopene generation and ethylene synthesis. These findings provide evidence for the role of Suc in promoting fruit ripening and establish that SlVIF contributes to fruit quality and the RIN-mediated ripening regulatory mechanisms, which are of significant agricultural value. © 2016 American Society of Plant Biologists. All Rights Reserved.

  19. The influence of metabolic syndrome in the outcomes of colorectal cancer patients.

    PubMed

    Goulart, André; Varejão, Ana; Nogueira, Fernanda; Martins, Sandra; Mesquita-Rodrigues, António; Sousa, Nuno; Leão, Pedro

    2017-07-08

    Determine the influence of metabolic syndrome and its different components in the outcomes of colorectal cancer surgery at 30days. Prospective study that included all patients submitted to elective colorectal cancer surgery between August 2015 and August 2016 at Hospital de Braga. Clinical and laboratory parameters evaluated pre-operatively were: central obesity, blood pressure, fasting glucose, triglycerides levels and HDL cholesterol levels. Any complications during the first 30-days after surgery were recorded (readmission, reintervention, anastomotic dehiscence, morbimortality). One hundred and thirty-four patients were included. Metabolic syndrome was diagnostic in 40.7% of patients with the ATPIII definition, 67.5% with the AHA definition and 67.0% with the IDF definition. At 30days after colorectal cancer surgery, 73.1% patients don't have any complication, 15.7% have minor complications (grade I/II of Clavien-Dindo classification), 11.1% have major complications (grade III/IV/V of Clavien-Dindo classification) and 1.5% have died from surgical complications (grade V of Clavien-Dindo classification). The statistic analysis didn't reveal any association between MS, or it's different components, and surgical outcomes. This study seems to indicate that metabolic syndrome don't have any influence in surgical outcomes of colorectal cancer surgery. Copyright © 2017 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  20. Sulfur and adenine metabolisms are linked, and both modulate sulfite resistance in wine yeast.

    PubMed

    Aranda, Agustín; Jiménez-Martí, Elena; Orozco, Helena; Matallana, Emilia; Del Olmo, Marcellí

    2006-08-09

    Sulfite treatment is the most common way to prevent grape must spoilage in winemaking because the yeast Saccharomyces cerevisiae is particularly resistant to this chemical. In this paper we report that sulfite resistance depends on sulfur and adenine metabolism. The amount of adenine and methionine in a chemically defined growth medium modulates sulfite resistance of wine yeasts. Mutations in the adenine biosynthetic pathway or the presence of adenine in a synthetic minimal culture medium increase sulfite resistance. The presence of methionine has the opposite effect, inducing a higher sensitivity to SO(2). The concentration of methionine, adenine, and sulfite in a synthetic grape must influences the progress of fermentation and at the transcriptional level the expression of genes involved in sulfur (MET16), adenine (ADE4), and acetaldehyde (ALD6) metabolism. Sulfite alters the pattern of expression of all these genes. This fact indicates that the response to this stress is complex and involves several metabolic pathways.

  1. Biomarkers of susceptibility following benzene exposure: influence of genetic polymorphisms on benzene metabolism and health effects.

    PubMed

    Carbonari, Damiano; Chiarella, Pieranna; Mansi, Antonella; Pigini, Daniela; Iavicoli, Sergio; Tranfo, Giovanna

    2016-01-01

    Benzene is a ubiquitous occupational and environmental pollutant. Improved industrial hygiene allowed airborne concentrations close to the environmental context (1-1000 µg/m(3)). Conversely, new limits for benzene levels in urban air were set (5 µg/m(3)). The biomonitoring of exposure to such low benzene concentrations are performed measuring specific and sensitive biomarkers such as S-phenylmercapturic acid, trans, trans-muconic acid and urinary benzene: many studies referred high variability in the levels of these biomarkers, suggesting the involvement of polymorphic metabolic genes in the individual susceptibility to benzene toxicity. We reviewed the influence of metabolic polymorphisms on the biomarkers levels of benzene exposure and effect, in order to understand the real impact of benzene exposure on subjects with increased susceptibility.

  2. Metabolic profiling of biofilm bacteria known to cause microbial influenced corrosion.

    PubMed

    Beale, D J; Morrison, P D; Key, C; Palombo, E A

    2014-01-01

    This study builds upon previous research that demonstrated the simplicity of obtaining metabolite profiles of bacteria in urban water networks, by using the metabolic profile of bacteria extracted from a reticulation pipe biofilm, which is known to cause microbial influenced corrosion (MIC). The extracellular metabolites of the isolated bacteria, and those bacteria in consortium, were analysed in isolation, and after exposure to low levels of copper. Applying chemometric analytical methodologies to the metabolomic data, we were able to better understand the profile of the isolated biofilm bacteria, which were differentiated according to their activity and copper exposure. It was found that the metabolic activity of the isolated bacteria and the bacteria in consortium varied according to the bacterium's ability to metabolise copper. This demonstrates the power of metabolomic techniques for the discrimination of water reticulation biofilms comprising similar bacteria in consortium, but undergoing different physico-chemical activities, such as corrosion and corrosion inhibition.

  3. Assessment of the environmental and genetic factors influencing prevalence of metabolic syndrome in Saudi Arabia

    PubMed Central

    Gosadi, Ibrahim M.

    2016-01-01

    Metabolic syndrome (MS) is a combination of factors that increases the risk of cardiovascular atherosclerotic diseases including diabetes, obesity, dyslipidemia, and high blood pressure. Cardiovascular diseases are one of the leading causes of death in the adult Saudi population where the increase in cardiovascular-related mortality is augmented by the rise in the prevalence of MS. Metabolic syndrome is a multi-factorial disorder influenced by interactions between genetic and environmental components. This review aims to provide a comprehensive assessment of studied environmental and genetic factors explaining the prevalence of MS in the Kingdom of Saudi Arabia. Additionally, this review aims to illustrate factors related to the population genetics of Saudi Arabia, which might explain a proportion of the prevalence of MS. PMID:26739969

  4. Influence of Obesity and Metabolic Disease on Carotid Atherosclerosis in Patients with Coronary Artery Disease (CordioPrev Study)

    PubMed Central

    Garcia-Rios, Antonio; Delgado-Casado, Nieves; Gomez-Luna, Purificacion; Gomez-Garduño, Angela; Gomez-Delgado, Francisco; Alcala-Diaz, Juan F.; Yubero-Serrano, Elena; Marin, Carmen; Perez-Caballero, Ana I.; Fuentes-Jimenez, Francisco J.; Camargo, Antonio; Rodriguez-Cantalejo, Fernando; Tinahones, Francisco J.; Ordovas, Jose M.; Perez- Jimenez, Francisco; Perez-Martinez, Pablo; Lopez-Miranda, Jose

    2016-01-01

    Background Recent data suggest that the presence of associated metabolic abnormalities may be important modifiers of the association of obesity with a poorer prognosis in coronary heart disease. We determined the influence of isolated overweight and obesity on carotid intima media thickness (IMT-CC), and also assessed whether this influence was determined by the presence of metabolic abnormalities. Methods 1002 participants from the CordioPrev study were studied at entry. We determined their metabolic phenotypes and performed carotid ultrasound assessment. We evaluated the influence of obesity, overweight and metabolic phenotypes on the IMT-CC. Results Metabolically sick participants (defined by the presence of two or more metabolic abnormalities) showed a greater IMT-CC than metabolically healthy individuals (p = 4 * 10−6). Overweight and normal weight patients who were metabolically healthy showed a lower IMT-CC than the metabolically abnormal groups (all p<0.05). When we evaluated only body weight (without considering metabolic phenotypes), overweight or obese patients did not differ significantly from normal-weight patients in their IMT-CC (p = 0.077). However, obesity was a determinant of IMT-CC when compared to the composite group of normal weight and overweight patients (all not obese). Conclusions In coronary patients, a metabolically abnormal phenotype is associated with a greater IMT-CC, and may be linked to a higher risk of suffering new cardiovascular events. The protection conferred in the IMT-CC by the absence of metabolic abnormality may be blunted by the presence of obesity. Trial Registration ClinicalTrials.gov NCT00924937 PMID:27064675

  5. Influence of Obesity and Metabolic Disease on Carotid Atherosclerosis in Patients with Coronary Artery Disease (CordioPrev Study).

    PubMed

    Talavera-Garcia, Eva; Delgado-Lista, Javier; Garcia-Rios, Antonio; Delgado-Casado, Nieves; Gomez-Luna, Purificacion; Gomez-Garduño, Angela; Gomez-Delgado, Francisco; Alcala-Diaz, Juan F; Yubero-Serrano, Elena; Marin, Carmen; Perez-Caballero, Ana I; Fuentes-Jimenez, Francisco J; Camargo, Antonio; Rodriguez-Cantalejo, Fernando; Tinahones, Francisco J; Ordovas, Jose M; Perez-Jimenez, Francisco; Perez-Martinez, Pablo; Lopez-Miranda, Jose

    2016-01-01

    Recent data suggest that the presence of associated metabolic abnormalities may be important modifiers of the association of obesity with a poorer prognosis in coronary heart disease. We determined the influence of isolated overweight and obesity on carotid intima media thickness (IMT-CC), and also assessed whether this influence was determined by the presence of metabolic abnormalities. 1002 participants from the CordioPrev study were studied at entry. We determined their metabolic phenotypes and performed carotid ultrasound assessment. We evaluated the influence of obesity, overweight and metabolic phenotypes on the IMT-CC. Metabolically sick participants (defined by the presence of two or more metabolic abnormalities) showed a greater IMT-CC than metabolically healthy individuals (p = 4 * 10(-6)). Overweight and normal weight patients who were metabolically healthy showed a lower IMT-CC than the metabolically abnormal groups (all p<0.05). When we evaluated only body weight (without considering metabolic phenotypes), overweight or obese patients did not differ significantly from normal-weight patients in their IMT-CC (p = 0.077). However, obesity was a determinant of IMT-CC when compared to the composite group of normal weight and overweight patients (all not obese). In coronary patients, a metabolically abnormal phenotype is associated with a greater IMT-CC, and may be linked to a higher risk of suffering new cardiovascular events. The protection conferred in the IMT-CC by the absence of metabolic abnormality may be blunted by the presence of obesity. ClinicalTrials.gov NCT00924937.

  6. One-pot lipase-catalyzed aldol reaction combination of in situ formed acetaldehyde.

    PubMed

    Wang, Na; Zhang, Wei; Zhou, Long-Hua; Deng, Qing-Feng; Xie, Zong-Bo; Yu, Xiao-Qi

    2013-12-01

    A facile tandem route to α,β-unsaturated aldehydes was developed by combining the two catalytic activities of the same enzyme in a one-pot strategy for the aldol reaction and in situ generation of acetaldehyde. Lipase from Mucor miehei was found to have conventional and promiscuous catalytic activities for the hydrolysis of vinyl acetate and aldol condensation with in situ formed acetaldehyde. The first reaction continuously provided material for the second reaction, which effectively reduced the volatilization loss, oxidation, and polymerization of acetaldehyde, as well as avoided a negative effect on the enzyme of excessive amounts of acetaldehyde. After optimizing the process, several substrates participated in the reaction and provided the target products in moderate to high yields using this single lipase-catalyzed one-pot biotransformation.

  7. Ethanol-induced injuries to carrot cells : the role of acetaldehyde.

    PubMed

    Perata, P; Alpi, A

    1991-03-01

    Carrot (Daucus carota L.) cell cultures show high sensitivity to ethanol since both unorganized cell growth and somatic embryogenesis are strongly inhibited by ethanol at relatively low concentrations (10-20 millimolar). The role of acetaldehyde on ethanol-induced injuries to suspension cultured carrot cells was evaluated. When ethanol oxidation to acetaldehyde is prevented by adding an alcohol-dehydrogenase (EC 1.1.1.1) inhibitor (4-methylpyrazole) to the culture medium, no ethanol toxicity was observed, even if ethanol was present at relatively high concentrations (40-80 millimolar). Data are also presented on the effects of exogenously added acetaldehyde on both carrot cell growth and somatic embryogenesis. We conclude that the observed toxic effects of ethanol cannot be ascribed to ethanol per se but to acetaldehyde.

  8. Acetaldehyde Adsorption and Reaction onCeO2(100) Thin Films

    SciTech Connect

    Mullins, David R; Albrecht, Peter M

    2013-01-01

    This study reports and compares the adsorption and dissociation of acetaldehyde on oxidized and reduced CeOX(100) thin films. Acetaldehyde reacts and decomposes on fully oxidized CeO2(100) whereas it desorbs molecularly at low temperature on CeO2(111). The primary products are CO, CO2 and water along with trace amounts of crotonaldehyde and acetylene. The acetaldehyde adsorbs as the 2-acetaldehyde species, dioxyethylene. Decomposition proceeds by dehydrogenation through acetate and enolate intermediates. The reaction pathway is similar on the reduced CeO2-X(100) surface however the inability to react with surface O on the reduced surface results in H2 rather than H2O desorption and C is left on the surface rather than producing CO and CO2. C-O bond cleavage in the enolate intermediate followed by reaction with surface H results in ethylene desorption.

  9. Rosiglitazone protects human neuroblastoma SH-SY5Y cells against acetaldehyde-induced cytotoxicity

    SciTech Connect

    Jung, Tae Woo; Lee, Ji Young; Shim, Wan Sub; Kang, Eun Seok; Kim, Soo Kyung; Ahn, Chul Woo; Lee, Hyun Chul; Cha, Bong Soo . E-mail: bscha@yumc.yonsei.ac.kr

    2006-02-03

    Acetaldehyde, an inhibitor of mitochondrial function, has been widely used as a neurotoxin because it elicits a severe Parkinson's disease-like syndrome with elevation of the intracellular reactive oxygen species level and apoptosis. Rosiglitazone, a peroxisome proliferator-activated receptor-{gamma} agonist, has been known to show various non-hypoglycemic effects, including anti-inflammatory, anti-atherogenic, and anti-apoptotic. In this study, we investigated the protective effects of rosiglitazone on acetaldehyde-induced apoptosis in human neuroblastoma SH-SY5Y cells and attempted to examine its mechanism. Acetaldehyde-induced apoptosis was moderately reversed by rosiglitazone treatment. Our results suggest that the protective effects of rosiglitazone on acetaldehyde-induced apoptosis may be ascribed to ability to induce the expression of anti-oxidant enzymes and to regulate Bcl-2 and Bax expression. These data indicate that rosiglitazone may provide a useful therapeutic strategy for the prevention of progressive neurodegenerative disease such as Parkinson's disease.

  10. Coproduction of Acetaldehyde and Hydrogen during Glucose Fermentation by Escherichia coli ▿ †

    PubMed Central

    Zhu, Huilin; Gonzalez, Ramon; Bobik, Thomas A.

    2011-01-01

    Escherichia coli K-12 strain MG1655 was engineered to coproduce acetaldehyde and hydrogen during glucose fermentation by the use of exogenous acetyl-coenzyme A (acetyl-CoA) reductase (for the conversion of acetyl-CoA to acetaldehyde) and the native formate hydrogen lyase. A putative acetaldehyde dehydrogenase/acetyl-CoA reductase from Salmonella enterica (SeEutE) was cloned, produced at high levels, and purified by nickel affinity chromatography. In vitro assays showed that this enzyme had both acetaldehyde dehydrogenase activity (68.07 ± 1.63 μmol min−1 mg−1) and the desired acetyl-CoA reductase activity (49.23 ± 2.88 μmol min−1 mg−1). The eutE gene was engineered into an E. coli mutant lacking native glucose fermentation pathways (ΔadhE, ΔackA-pta, ΔldhA, and ΔfrdC). The engineered strain (ZH88) produced 4.91 ± 0.29 mM acetaldehyde while consuming 11.05 mM glucose but also produced 6.44 ± 0.26 mM ethanol. Studies showed that ethanol was produced by an unknown alcohol dehydrogenase(s) that converted the acetaldehyde produced by SeEutE to ethanol. Allyl alcohol was used to select for mutants with reduced alcohol dehydrogenase activity. Three allyl alcohol-resistant mutants were isolated; all produced more acetaldehyde and less ethanol than ZH88. It was also found that modifying the growth medium by adding 1 g of yeast extract/liter and lowering the pH to 6.0 further increased the coproduction of acetaldehyde and hydrogen. Under optimal conditions, strain ZH136 converted glucose to acetaldehyde and hydrogen in a 1:1 ratio with a specific acetaldehyde production rate of 0.68 ± 0.20 g h−1 g−1 dry cell weight and at 86% of the maximum theoretical yield. This specific production rate is the highest reported thus far and is promising for industrial application. The possibility of a more efficient “no-distill” ethanol fermentation procedure based on the coproduction of acetaldehyde and hydrogen is discussed. PMID:21803884

  11. Coproduction of acetaldehyde and hydrogen during glucose fermentation by Escherichia coli.

    PubMed

    Zhu, Huilin; Gonzalez, Ramon; Bobik, Thomas A

    2011-09-01

    Escherichia coli K-12 strain MG1655 was engineered to coproduce acetaldehyde and hydrogen during glucose fermentation by the use of exogenous acetyl-coenzyme A (acetyl-CoA) reductase (for the conversion of acetyl-CoA to acetaldehyde) and the native formate hydrogen lyase. A putative acetaldehyde dehydrogenase/acetyl-CoA reductase from Salmonella enterica (SeEutE) was cloned, produced at high levels, and purified by nickel affinity chromatography. In vitro assays showed that this enzyme had both acetaldehyde dehydrogenase activity (68.07 ± 1.63 μmol min(-1) mg(-1)) and the desired acetyl-CoA reductase activity (49.23 ± 2.88 μmol min(-1) mg(-1)). The eutE gene was engineered into an E. coli mutant lacking native glucose fermentation pathways (ΔadhE, ΔackA-pta, ΔldhA, and ΔfrdC). The engineered strain (ZH88) produced 4.91 ± 0.29 mM acetaldehyde while consuming 11.05 mM glucose but also produced 6.44 ± 0.26 mM ethanol. Studies showed that ethanol was produced by an unknown alcohol dehydrogenase(s) that converted the acetaldehyde produced by SeEutE to ethanol. Allyl alcohol was used to select for mutants with reduced alcohol dehydrogenase activity. Three allyl alcohol-resistant mutants were isolated; all produced more acetaldehyde and less ethanol than ZH88. It was also found that modifying the growth medium by adding 1 g of yeast extract/liter and lowering the pH to 6.0 further increased the coproduction of acetaldehyde and hydrogen. Under optimal conditions, strain ZH136 converted glucose to acetaldehyde and hydrogen in a 1:1 ratio with a specific acetaldehyde production rate of 0.68 ± 0.20 g h(-1) g(-1) dry cell weight and at 86% of the maximum theoretical yield. This specific production rate is the highest reported thus far and is promising for industrial application. The possibility of a more efficient "no-distill" ethanol fermentation procedure based on the coproduction of acetaldehyde and hydrogen is discussed.

  12. Influence of in ovo thermal manipulation on lipid metabolism in embryonic duck liver.

    PubMed

    Wang, Guosong; Liu, Junying; Xiang, Shiyu; Yan, Xiping; Li, Qingqing; Cui, Can; Li, Liang; Liu, Hehe

    2014-07-01

    The growth and development of poultry embryos are easily affected by environmental factors, such as the incubation temperature and humidity. Metabolism, including lipid metabolism, during the embryonic stage is also important for the growth and development of poultry. Our study aimed to investigate the effects of incubation temperature on embryonic lipid metabolism in the liver of ducks. To fully evaluate the effects, thermal treatment was given between embryonic ages 11 and 24 days with a 1 °C higher incubation temperature than the control group, and lipid metabolism parameters in the liver and blood serum were analyzed both at embryonic stage day 20 and 2 weeks post-hatching. Our results showed no significant changes in the embryonic stage in total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) in the blood serum (P>0.05). Additionally, the mRNA expression levels and enzyme activities of fatty acid synthase (FAS), acetyl CoA carboxylase (ACC), and elongase of very long chain fatty acids (ELOVL) did not show significant changes either in the embryonic stage or at hatching day 20 (P>0.05). However, there were significant changes in the gene expression and enzyme activities of TC, LDL-C and FAS at post-hatching stages (P≤0.05). These results may indicate that the thermal treatment has less influence on lipid metabolism in the embryonic stage but has a much stronger effect in the post-hatching stage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Leptin influences estrogen metabolism and increases DNA adduct formation in breast cancer cells

    PubMed Central

    Shouman, Samia; Wagih, Mohamed; Kamel, Marwa

    2016-01-01

    Objective: The elevated incidence of obesity has been paralleled with higher risks of breast cancer. High adiposity increases leptin secretion from adipose tissue, which in turn increases cancer cell proliferation. The interplay between leptin and estrogen is one of the mechanisms through which leptin influences breast carcinogenesis. An unbalanced estrogen metabolism increases the formations of catechol estrogen quinones, DNA adducts, and cancer mutations. This study aims to investigate the effect of leptin on some estrogen metabolic enzymes and DNA adduction in breast cancer cells. Methods: High performance liquid chromatography (HPLC) was performed to analyze the DNA adducts 4-OHE1[E2]-1-N3 adenine and 4-OHE1[E2]-1-N7 guanine. Reporter gene assay, real time reverse transcription polymerase chain reaction (real time RT-PCR), and Western blot were used to assess the expression of estrogen metabolizing genes and enzymes: Cytochrome P-450 1B1 (CYP1B1), Nicotinamide adenine dinucleotide phosphate-quinone oxidoreductase1 (NQO1), and Catechol-O-methyl transferase (COMT). Results: Leptin significantly increased the DNA adducts 4-OHE1[E2]-1-N3 adenine and 4-OHE1[E2]-1-N7 guanine. Furthermore, leptin significantly upregulated CYP1B1 promoter activity and protein expression. The luciferase promoter activities of NQO1 and mRNA levels were significantly reduced. Moreover, leptin greatly reduced the reporter activities of the COMT-P1 and COMT-P2 promoters and diminished the protein expression of COMT. Conclusions: Leptin increases DNA adduct levels in breast cancer cells partly by affecting key genes and enzymes involved in estrogen metabolism. Thus, increased focus should be directed toward leptin and its effects on the estrogen metabolic pathway as an effective approach against breast cancer. PMID:28154783

  14. Organochloride pesticides modulated gut microbiota and influenced bile acid metabolism in mice.

    PubMed

    Liu, Qian; Shao, Wentao; Zhang, Chunlan; Xu, Cheng; Wang, Qihan; Liu, Hui; Sun, Haidong; Jiang, Zhaoyan; Gu, Aihua

    2017-07-01

    Organochlorine pesticides (OCPs) can persistently accumulate in body and threaten human health. Bile acids and intestinal microbial metabolism have emerged as important signaling molecules in the host. However, knowledge on which intestinal microbiota and bile acids are modified by OCPs remains unclear. In this study, adult male C57BL/6 mice were exposed to p, p'-dichlorodiphenyldichloroethylene (p, p'-DDE) and β-hexachlorocyclohexane (β-HCH) for 8 weeks. The relative abundance and composition of various bacterial species were analyzed by 16S rRNA gene sequencing. Bile acid composition was analyzed by metabolomic analysis using UPLC-MS. The expression of genes involved in hepatic and enteric bile acids metabolism was measured by real-time PCR. Expression of genes in bile acids synthesis and transportation were measured in HepG2 cells incubated with p, p'-DDE and β-HCH. Our findings showed OCPs changed relative abundance and composition of intestinal microbiota, especially in enhanced Lactobacillus with bile salt hydrolase (BSH) activity. OCPs affected bile acid composition, enhanced hydrophobicity, decreased expression of genes on bile acid reabsorption in the terminal ileum and compensatory increased expression of genes on synthesis of bile acids in the liver. We demonstrated that chronic exposure of OCPs could impair intestinal microbiota; as a result, hepatic and enteric bile acid profiles and metabolism were influenced. The findings in this study draw our attention to the hazards of chronic OCPs exposure in modulating bile acid metabolism that might cause metabolic disorders and their potential to cause related diseases in human. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. An improved biosensor for acetaldehyde determination using a bienzymatic strategy at poly(neutral red) modified carbon film electrodes.

    PubMed

    Ghica, Mariana Emilia; Pauliukaite, Rasa; Marchand, Nicolas; Devic, Eric; Brett, Christopher M A

    2007-05-15

    Improved biosensors for acetaldehyde determination have been developed using a bienzymatic strategy, based on a mediator-modified carbon film electrode and co-immobilisation of NADH oxidase and aldehyde dehydrogenase. Modification of the carbon film electrode with poly(neutral red) mediator resulted in a sensitive, low-cost and reliable NADH detector. Immobilisation of the enzymes was performed using encapsulation in a sol-gel matrix or cross-linking with glutaraldehyde. The bienzymatic biosensors were characterized by studying the influence of pH, applied potential and co-factors. The sol-gel and glutaraldehyde biosensors showed a linear response up to 60 microM and 100 microM, respectively, with detection limits of 2.6 microM and 3.3 microM and sensitivities were 1.7 microA mM(-1) and 5.6 microA mM(-1). The optimised biosensors showed good stability and good selectivity and have been tested for application for the determination of acetaldehyde in natural samples such as wine.

  16. Reactive processing of formaldehyde and acetaldehyde in aqueous aerosol mimics: surface tension depression and secondary organic products

    NASA Astrophysics Data System (ADS)

    Li, Z.; Schwier, A. N.; Sareen, N.; McNeill, V. F.

    2011-07-01

    The reactive uptake of carbonyl-containing volatile organic compounds (cVOCs) by aqueous atmospheric aerosols is a likely source of particulate organic material. The aqueous-phase secondary organic products of some cVOCs are surface-active. Therefore, cVOC uptake can lead to organic film formation at the gas-aerosol interface and changes in aerosol surface tension. We examined the chemical reactions of two abundant cVOCs, formaldehyde and acetaldehyde, in water and aqueous ammonium sulfate (AS) solutions mimicking tropospheric aerosols. Secondary organic products were identified using Aerosol Chemical Ionization Mass Spectrometry (Aerosol-CIMS), and changes in surface tension were monitored using pendant drop tensiometry. Hemiacetal oligomers and aldol condensation products were identified using Aerosol-CIMS. A hemiacetal sulfate ester was tentatively identified in the formaldehyde-AS system. Acetaldehyde depresses surface tension to 65(±2) dyn cm-1 in pure water and 62(±1) dyn cm-1 in AS solutions. Surface tension depression by formaldehyde in pure water is negligible; in AS solutions, a 9 % reduction in surface tension is observed. Mixtures of these species were also studied in combination with methylglyoxal in order to evaluate the influence of cross-reactions on surface tension depression and product formation in these systems. We find that surface tension depression in the solutions containing mixed cVOCs exceeds that predicted by an additive model based on the single-species isotherms.

  17. Reactive processing of formaldehyde and acetaldehyde in aqueous aerosol mimics: surface tension depression and secondary organic products

    NASA Astrophysics Data System (ADS)

    Li, Z.; Schwier, A. N.; Sareen, N.; McNeill, V. F.

    2011-11-01

    The reactive uptake of carbonyl-containing volatile organic compounds (cVOCs) by aqueous atmospheric aerosols is a likely source of particulate organic material. The aqueous-phase secondary organic products of some cVOCs are surface-active. Therefore, cVOC uptake can lead to organic film formation at the gas-aerosol interface and changes in aerosol surface tension. We examined the chemical reactions of two abundant cVOCs, formaldehyde and acetaldehyde, in water and aqueous ammonium sulfate (AS) solutions mimicking tropospheric aerosols. Secondary organic products were identified using Aerosol Chemical Ionization Mass Spectrometry (Aerosol-CIMS), and changes in surface tension were monitored using pendant drop tensiometry. Hemiacetal oligomers and aldol condensation products were identified using Aerosol-CIMS. Acetaldehyde depresses surface tension to 65(±2) dyn cm-1 in pure water (a 10% surface tension reduction from that of pure water) and 62(±1) dyn cm-1 in AS solutions (a 20.6% reduction from that of a 3.1 M AS solution). Surface tension depression by formaldehyde in pure water is negligible; in AS solutions, a 9% reduction in surface tension is observed. Mixtures of these species were also studied in combination with methylglyoxal in order to evaluate the influence of cross-reactions on surface tension depression and product formation in these systems. We find that surface tension depression in the solutions containing mixed cVOCs exceeds that predicted by an additive model based on the single-species isotherms.

  18. The role of nest surface temperatures and the brain in influencing ant metabolic rates.

    PubMed

    Andrew, Nigel R; Ghaedi, Behnaz; Groenewald, Berlizé

    2016-08-01

    Thermal limits of insects can be influenced by recent thermal history: here we used thermolimit respirometry to determine metabolic rate responses and thermal limits of the dominant meat ant, Iridomyrmex purpureus. Firstly, we tested the hypothesis that nest surface temperatures have a pervasive influence on thermal limits. Metabolic rates and activity of freshly field collected individuals were measured continuously while ramping temperatures from 44°C to 62°C at 0.25°C/minute. At all the stages of thermolimit respirometry, metabolic rates were independent of nest surface temperatures, and CTmax did not differ between ants collected from nest with different surface temperatures. Secondly, we tested the effect of brain control on upper thermal limits of meat ants via ant decapitation experiments ('headedness'). Decapitated ants exhibited similar upper critical temperature (CTmax) results to living ants (Decapitated 50.3±1.2°C: Living 50.1±1.8°C). Throughout the temperature ramping process, 'headedness' had a significant effect on metabolic rate in total (Decapitated V̇CO2 140±30µlCO2mg(-1)min(-1): Living V̇CO2 250±50 CO2mg(-1)min(-1)), as well as at temperatures below and above CTmax. At high temperatures (>44°C) pre- CTmax the relationships between I. purpureus CTmax values and mass specific metabolic rates for living ants exhibited a negative slope whilst decapitated ants exhibited a positive slope. The decapitated ants also had a significantly higher Q10:25-35°C when compared to living ants (1.91±0.43 vs. 1.29±0.35). Our findings suggest that physiological responses of ants may be able to cope with increasing surface temperatures, as shown by metabolic rates across the thermolimit continuum, making them physiologically resilient to a rapidly changing climate. We also demonstrate that the brain plays a role in respiration, but critical thermal limits are independent of respiration levels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Vanadate Influence on Metabolism of Sugar Phosphates in Fungus Phycomyces blakesleeanus

    PubMed Central

    Žižić, Milan; Živić, Miroslav; Maksimović, Vuk; Stanić, Marina; Križak, Strahinja; Antić, Tijana Cvetić; Zakrzewska, Joanna

    2014-01-01

    The biological and chemical basis of vanadium action in fungi is relatively poorly understood. In the present study, we investigate the influence of vanadate (V5+) on phosphate metabolism of Phycomyces blakesleeanus. Addition of V5+ caused increase of sugar phosphates signal intensities in 31P NMR spectra in vivo. HPLC analysis of mycelial phosphate extracts demonstrated increased concentrations of glucose 6 phosphate, fructose 6 phosphate, fructose 1, 6 phosphate and glucose 1 phosphate after V5+ treatment. Influence of V5+ on the levels of fructose 2, 6 phosphate, glucosamine 6 phosphate and glucose 1, 6 phosphate (HPLC), and polyphosphates, UDPG and ATP (31P NMR) was also established. Increase of sugar phosphates content was not observed after addition of vanadyl (V4+), indicating that only vanadate influences its metabolism. Obtained results from in vivo experiments indicate catalytic/inhibitory vanadate action on enzymes involved in reactions of glycolysis and glycogenesis i.e., phosphoglucomutase, phosphofructokinase and glycogen phosphorylase in filamentous fungi. PMID:25036378

  20. The Genetics of Alcohol Metabolism: Role of Alcohol Dehydrogenase and Aldehyde Dehydrogenase Variants

    PubMed Central

    Edenberg, Howard J.

    2007-01-01

    The primary enzymes involved in alcohol metabolism are alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). Both enzymes occur in several forms that are encoded by different genes; moreover, there are variants (i.e., alleles) of some of these genes that encode enzymes with different characteristics and which have different ethnic distributions. Which ADH or ALDH alleles a person carries influence his or her level of alcohol consumption and risk of alcoholism. Researchers to date primarily have studied coding variants in the ADH1B, ADH1C, and ALDH2 genes that are associated with altered kinetic properties of the resulting enzymes. For example, certain ADH1B and ADH1C alleles encode particularly active ADH enzymes, resulting in more rapid conversion of alcohol (i.e., ethanol) to acetaldehyde; these alleles have a protective effect on the risk of alcoholism. A variant of the ALDH2 gene encodes an essentially inactive ALDH enzyme, resulting in acetaldehyde accumulation and a protective effect. It is becoming clear that noncoding variants in both ADH and ALDH genes also may influence alcohol metabolism and, consequently, alcoholism risk; the specific nature and effects of these variants still need further study. PMID:17718394

  1. Gene cloning, expression, and characterization of a novel acetaldehyde dehydrogenase from Issatchenkia terricola strain XJ-2.

    PubMed

    Yao, Zhengying; Zhang, Chong; Lu, Fengxia; Bie, Xiaomei; Lu, Zhaoxin

    2012-03-01

    Acetaldehyde is a known mutagen and carcinogen. Active aldehyde dehydrogenase (ALDH) represents an important mechanism for acetaldehyde detoxification. A yeast strain XJ-2 isolated from grape samples was found to produce acetaldehyde dehydrogenase with a high activity of 2.28 U/mg and identified as Issatchenkia terricola. The enzyme activity was validated by oxidizing acetaldehyde to acetate with NAD(+) as coenzyme based on the headspace gas chromatography analysis. A novel acetaldehyde dehydrogenase gene (ist-ALD) was cloned by combining SiteFinding-PCR and self-formed adaptor PCR. The ist-ALD gene comprised an open reading frame of 1,578 bp and encoded a protein of 525 amino acids. The predicted protein of ist-ALD showed the highest identity (73%) to ALDH from Pichia angusta. The ist-ALD gene was expressed in Escherichia coli, and the gene product (ist-ALDH) presented a productivity of 442.3 U/mL cells. The purified ist-ALDH was a homotetramer of 232 kDa consisting of 57 kDa-subunit according to the SDS-PAGE and native PAGE analysis. Ist-ALDH exhibited the optimal activity at pH 9.0 and 40°C, respectively. The activity of ist-ALDH was enhanced by K(+), NH4(+), dithiothreitol, and 2-mercaptoethanol but strongly inhibited by Ag(+), Hg(2+), Cu(2+), and phenylmethyl sulfonylfluoride. In the presence of NAD(+), ist-ALDH could oxidize many aliphatic, aromatic, and heterocyclic aldehydes, preferably acetaldehyde. Kinetic study revealed that ist-ALDH had a k (cat) value of 27.71/s and a k (cat)/K (m) value of 26.80 × 10(3)/(mol s) on acetaldehyde, demonstrating ist-ALDH, a catalytically active enzyme by comparing with other ALDHs. These studies indicated that ist-ALDH was a potential enzymatic product for acetaldehyde detoxification.

  2. Acetaldehyde: A Small Organic Molecule with Big Impact on Organocatalytic Reactions.

    PubMed

    Kim, Sun Min; Kim, Young Sug; Kim, Dong Wan; Rios, Ramon; Yang, Jung Woon

    2016-02-12

    Stereocontrolled formation of carbon-carbon and carbon-heteroatom bonds through asymmetric organocatalysis is a formidable challenge for modern synthetic chemistry. Among the most significant contributions to this field are the transformations involving the use of acetaldehyde or α-heteroatom-substituted acetaldehydes for constructing valuable synthons (e.g., amino acid derivatives and hydroxycarbonyl). In this Minireview, versatile (enantioselective) organocatalytic transformations are discussed.

  3. Kinetic involvement of acetaldehyde substrate inhibition on the rate equation of yeast aldehyde dehydrogenase.

    PubMed

    Eggert, Matthew W; Byrne, Mark E; Chambers, Robert P

    2012-10-01

    In order to evaluate the effectiveness of aldehyde dehydrogenase (ALDH) from Saccharomyces cerevisiae as a catalyst for the conversion of acetaldehyde into its physiologically and biologically less toxic acetate, the kinetics over broad concentrations were studied to develop a suitable kinetic rate expression. Even with literature accounts of the binding complexations, the yeast ALDH currently lacks a quantitative kinetic rate expression accounting for simultaneous inhibition parameters under higher acetaldehyde concentrations. Both substrate acetaldehyde and product NADH were observed as individual sources of inhibition with the combined effect of a ternary complex of acetaldehyde and the coenzyme leading to experimental rates as little as an eighth of the expected activity. Furthermore, the onset and strength of inhibition from each component were directly affected by the concentration of the co-substrate NAD. While acetaldehyde inhibition of ALDH is initiated below concentrations of 0.05 mM in the presence of 0.5 mM NAD or less, the acetaldehyde inhibition onset shifts to 0.2 mM with as much as 1.6 mM NAD. The convenience of the statistical software package JMP allowed for effective determination of experimental kinetic constants and simplification to a suitable rate expression: v = Vmax(AB)/(K(ia)K(b) + K(b)A + K(a)B + AB + B(2)/K(I-Ald) + B(2)Q/K(I-Ald-NADH) + BQ/K(I-NADH)) where the last three terms represent the inhibition complex terms for acetaldehyde, acetaldehyde-NADH, and NADH, respectively. The corresponding values of K(I-Ald), K(I-Ald-NADH), and K(I-NADH) for yeast ALDH are 2.55, 0.0269, and 0.162 mM at 22 °C and pH 7.8.

  4. Biological production of acetaldehyde from ethanol using non-growing Pichia pastoris whole cells

    SciTech Connect

    Chiang, Heien-Kun; Foutch, G.L.; Fish, W.W.

    1991-12-31

    Acetaldehyde has been produced biologically using whole-cell Pichia Pass in a semibatch fermentor. Ethanol and air were fed continuously, and the product, acetaldehyde, was removed by the air stream. Operation of the reactor exceeded 100 h, maintaining high alcohol oxidase activity. Low cell-mass concentration (9.9 g/L) minimized product inhibition. Ethanol concentration in the broth, oxygen concentration in the air, and pH were evaluated for their effects on the fermentation process.

  5. Malondialdehyde-acetaldehyde-adducted protein inhalation causes lung injury.

    PubMed

    Wyatt, Todd A; Kharbanda, Kusum K; McCaskill, Michael L; Tuma, Dean J; Yanov, Daniel; DeVasure, Jane; Sisson, Joseph H

    2012-02-01

    In addition to cigarette smoking, alcohol exposure is also associated with increased lung infections and decreased mucociliary clearance. However, little research has been conducted on the combination effects of alcohol and cigarette smoke on lungs. Previously, we have demonstrated in a mouse model that the combination of cigarette smoke and alcohol exposure results in the formation of a very stable hybrid malondialdehyde-acetaldehyde (MAA)-adducted protein in the lung. In in vitro studies, MAA-adducted protein stimulates bronchial epithelial cell interleukin-8 (IL-8) via the activation of protein kinase C epsilon (PKCɛ). We hypothesized that direct MAA-adducted protein exposure in the lungs would mimic such a combination of smoke and alcohol exposure leading to airway inflammation. To test this hypothesis, C57BL/6J female mice were intranasally instilled with either saline, 30μL of 50μg/mL bovine serum albumin (BSA)-MAA, or unadducted BSA for up to 3 weeks. Likewise, human lung surfactant proteins A and D (SPA and SPD) were purified from human pulmonary proteinosis lung lavage fluid and successfully MAA-adducted in vitro. Similar to BSA-MAA, SPD-MAA was instilled into mouse lungs. Lungs were necropsied and assayed for histopathology, PKCɛ activation, and lung lavage chemokines. In control mice instilled with saline, normal lungs had few inflammatory cells. No significant effects were observed in unadducted BSA- or SPD-instilled mice. However, when mice were instilled with BSA-MAA or SPD-MAA for 3 weeks, a significant peribronchiolar localization of inflammatory cells was observed. Both BSA-MAA and SPD-MAA stimulated increased lung lavage neutrophils and caused a significant elevation in the chemokine, keratinocyte chemokine, which is a functional homologue to human IL-8. Likewise, MAA-adducted protein stimulated the activation of airway and lung slice PKCɛ. These data support that the MAA-adducted protein induces a proinflammatory response in the lungs and

  6. Influence of metabolic genotypes on biomarkers of exposure to 1,3-butadiene in humans.

    PubMed

    Fustinoni, Silvia; Soleo, Leonardo; Warholm, Margareta; Begemann, Petra; Rannug, Agneta; Neumann, Hans-G; Swenberg, James A; Vimercati, Luigi; Colombi, Antonio

    2002-10-01

    Carcinogenicity of 1,3-butadiene (BD) has been linked to its metabolic activation of genotoxic epoxides. The inherited variations in the activity of BD-metabolizing enzymes may be responsible for individual differences that modulate the effects of BD exposure. In this study, 40 Italian subjects (30 BD-exposed workers and 10 clerks) were investigated to evaluate the role of genetic polymorphism of cytochromes P450 2E1, microsomal epoxide hydrolase, glutathione transferases GSTM1, GSTP1, GSTT1, and alcohol dehydrogenase, on urinary N-acetyl-S-(3,4-hydroxybutyl)-L-cysteine (MI) and hemoglobin N-(2,3,4-trihydroxybutyl)-valine adducts (THBVal). Median urinary MI and THBVal levels were 1.71 mg/g creatinine and 37.0 pmol/g globin in BD-exposed workers (exposure range, 4-201 microg/m(3)) and 1.42 mg/g creatinine and 35.3 pmol/g globin in unexposed subjects. No difference between the two groups was observed. Among all subjects, MI and THBVal levels were significantly correlated (r = 0.333). Smoking positively influenced the formation of THBVal. Higher THBVal levels were found in subjects with GSTM1 null and GSTT1 null genotypes; borderline influences were also noticed for CYP2E1(G(-35)T). An additive effect of combined polymorphisms for CYP2E1, GSTM1, and GSTT1 genes on the THBVal levels was suggested. A multiple linear regression analysis, where each factor contributed significantly, correlated THBVal levels with smoking, CYP2E1(G(-35)T), GSTT1, and GSTM1 genotypes (r = 0.698). Our results indicate that the THBVal level is influenced by genotypes, and that the analysis of combined polymorphisms may be the key to a better understanding of the role played by polymorphism of BD-metabolizing enzymes.

  7. Influence of metal concentrations, percent salinity, and length of exposure on the metabolic rate of fathead minnows (Pimephales promelas).

    PubMed

    Pistole, David H; Peles, John D; Taylor, Kelly

    2008-07-01

    Understanding the effects of chemical toxicants on energetic processes is an important aspect of ecotoxicology. However, the influence of toxicant concentration and time of exposure on metabolism in aquatic organisms is still poorly understood. The purpose of this investigation was to determine the influence of increasing levels of three stressors (Cu, Cd, percent salinity) and exposure time (24 h and 96 h) on the metabolic rate of fathead minnows (Pimephales promelas). In all 24-h exposures, there existed a threshold concentration, above which metabolic rate decreased significantly compared to the control and lower concentrations. In contrast, the metabolic rate of fish exposed for 96 h increased significantly in all concentrations compared to fish from the control. We suggest fathead minnows exhibit a consistent pattern of metabolic response to stressors, regardless of the physiological mechanisms involved, and that this response differs as a function of time of exposure.

  8. Effect of rinsing with ethanol-containing mouthrinses on the production of salivary acetaldehyde.

    PubMed

    Moazzez, Rebecca; Thompson, Hayley; Palmer, Richard M; Wilson, Ron F; Proctor, Gordon B; Wade, William G

    2011-12-01

    It has been suggested that the use of alcohol-containing mouthrinses could lead to the presence of acetaldehyde in saliva. In this cross-over study, salivary acetaldehyde levels and microbial profiles were determined before and after rinsing with ethanol-containing mouthrinses with essential oils (EO) and cetyl pyridinium chloride (CPC) as the active ingredients, and with 21.6% ethanol and water controls. After rinsing with all ethanol-containing rinses, acetaldehyde was detected in saliva after 30 s but declined to low levels after 5 min. The highest peak levels were seen with the ethanol control (median = 82.9 μM at 2 min) and were significantly higher than those seen at the same time after rinsing with the EO rinse (43.1 μM). There was no correlation between microbial counts or plaque scores and acetaldehyde levels, although dividing the subjects on the basis of a peak acetaldehyde salivary concentration of > 90.8 μM after the ethanol rinse revealed that the high responders were highly significantly more likely to harbour salivary yeasts than were the low responders. Rinsing with ethanol-containing mouthrinses causes a rapid, but transient, increase in salivary acetaldehyde levels. © 2011 Eur J Oral Sci.

  9. Protective role of ALDH2 against acetaldehyde-derived DNA damage in oesophageal squamous epithelium.

    PubMed

    Amanuma, Yusuke; Ohashi, Shinya; Itatani, Yoshiro; Tsurumaki, Mihoko; Matsuda, Shun; Kikuchi, Osamu; Nakai, Yukie; Miyamoto, Shin'ichi; Oyama, Tsunehiro; Kawamoto, Toshihiro; Whelan, Kelly A; Nakagawa, Hiroshi; Chiba, Tsutomu; Matsuda, Tomonari; Muto, Manabu

    2015-09-16

    Acetaldehyde is an ethanol-derived definite carcinogen that causes oesophageal squamous cell carcinoma (ESCC). Aldehyde dehydrogenase 2 (ALDH2) is a key enzyme that eliminates acetaldehyde, and impairment of ALDH2 increases the risk of ESCC. ALDH2 is produced in various tissues including the liver, heart, and kidney, but the generation and functional roles of ALDH2 in the oesophagus remain elusive. Here, we report that ethanol drinking increased ALDH2 production in the oesophagus of wild-type mice. Notably, levels of acetaldehyde-derived DNA damage represented by N(2)-ethylidene-2'-deoxyguanosine were higher in the oesophagus of Aldh2-knockout mice than in wild-type mice upon ethanol consumption. In vitro experiments revealed that acetaldehyde induced ALDH2 production in both mouse and human oesophageal keratinocytes. Furthermore, the N(2)-ethylidene-2'-deoxyguanosine levels increased in both Aldh2-knockout mouse keratinocytes and ALDH2-knockdown human keratinocytes treated with acetaldehyde. Conversely, forced production of ALDH2 sharply diminished the N(2)-ethylidene-2'-deoxyguanosine levels. Our findings provide new insight into the preventive role of oesophageal ALDH2 against acetaldehyde-derived DNA damage.

  10. Adsorption of acetaldehyde on ice as seen from computer simulation and infrared spectroscopy measurements.

    PubMed

    Darvas, Mária; Lasne, Jérôme; Laffon, Carine; Parent, Philippe; Picaud, Sylvain; Jedlovszky, Pál

    2012-03-06

    Detailed investigation of the adsorption of acetaldehyde on I(h) ice is performed under tropospheric conditions by means of grand canonical Monte Carlo computer simulations and compared to infrared spectroscopy measurements. The experimental and simulation results are in a clear accordance with each other. The simulations indicate that the adsorption process follows Langmuir behavior in the entire pressure range of the vapor phase of acetaldehyde. Further, it was found that the adsorption layer is strictly monomolecular, and the adsorbed acetaldehyde molecules are bound to the ice surface by only one hydrogen bond, typically formed with the dangling H atoms at the ice surface, in agreement with the experimental results. Besides this hydrogen bonding, at high surface coverages dipolar attraction between neighboring acetaldehyde molecules also contributes considerably to the energy gain of the adsorption. The acetaldehyde molecules adopt strongly tilted orientations relative to the ice surface, the tilt angle being scattered between 50° and 90° (i.e., perpendicular orientation). The range of the preferred tilt angles narrows, and the preference for perpendicular orientation becomes stronger upon saturation of the adsorption layer. The CH(3) group of the acetaldehyde molecules points as straight away from the ice surface within the constraint imposed by the tilt angle adopted by the molecule as possible. The heat of adsorption at infinitely low coverage is found to be -36 ± 2 kJ/mol from the infrared spectroscopy measurement, which is in excellent agreement with the computer simulation value of -34.1 kJ/mol.

  11. Protective effect of sodium ferulate on acetaldehyde-treated precision-cut rat liver slices.

    PubMed

    Guo, Yu; Wu, Xiao-Qian; Zhang, Chun; Liao, Zhang-Xiu; Wu, Yong; Wang, Hui

    2012-06-01

    Activated hepatic stellate cells (HSCs) play a key role in hepatic fibrogenesis, and inhibition of HSC activation may prevent liver fibrosis. Acetaldehyde, the most deleterious metabolite of alcohol, triggers HSC activation in alcoholic liver injury. In the present study, we investigated the protective effect of sodium ferulate (SF), a sodium salt of ferulic acid that is rich in fruits and vegetables, on acetaldehyde-stimulated HSC activation using precision-cut liver slices (PCLSs). Rat PCLSs were co-incubated with 350 μM acetaldehyde and different concentrations of SF. Hepatotoxicity was assessed by measuring enzyme leakage and malondialdehyde content in tissue. α-Smooth muscle actin, transforming growth factor-β(1), and hydroxyproline were determined to assess the activation of HSCs. In addition, matrix metalloproteinase (MMP)-1 and the tissue inhibitor of metalloproteinase (TIMP-1) were determined to evaluate collagen degradation. SF prominently prevented the enzyme leakage in acetaldehyde-treated slices and also inhibited HSC activation and collagen production stimulated by acetaldehyde. In addition, SF increased MMP-1 expression and decreased TIMP-1 expression. These results showed that SF protected PCLSs from acetaldehyde-stimulated HSC activation and liver injury, which may be associated with the attenuation of oxidative injury and acceleration of collagen degradation.

  12. An original method for producing acetaldehyde and diacetyl by yeast fermentation.

    PubMed

    Rosca, Irina; Petrovici, Anca Roxana; Brebu, Mihai; Stoica, Irina; Minea, Bogdan; Marangoci, Narcisa

    In this study a natural culture medium that mimics the synthetic yeast peptone glucose medium used for yeast fermentations was designed to screen and select yeasts capable of producing high levels of diacetyl and acetaldehyde. The presence of whey powder and sodium citrate in the medium along with manganese and magnesium sulfate enhanced both biomass and aroma development. A total of 52 yeasts strains were cultivated in two different culture media, namely, yeast peptone glucose medium and yeast acetaldehyde-diacetyl medium. The initial screening of the strains was based on the qualitative reaction of the acetaldehyde with Schiff's reagent (violet color) and diacetyl with Brady's reagent (yellow precipitate). The fermented culture media of 10 yeast strains were subsequently analyzed by gas chromatography to quantify the concentration of acetaldehyde and diacetyl synthesized. Total titratable acidity values indicated that a total titratable acidity of 5.5°SH, implying culture medium at basic pH, was more favorable for the acetaldehyde biosynthesis using strain D15 (Candida lipolytica; 96.05mgL(-1) acetaldehyde) while a total titratable acidity value of 7°SH facilitated diacetyl flavor synthesis by strain D38 (Candida globosa; 3.58mgL(-1) diacetyl). Importantly, the results presented here suggest that this can be potentially used in the baking industry.

  13. The total margin of exposure of ethanol and acetaldehyde for heavy drinkers consuming cider or vodka.

    PubMed

    Lachenmeier, Dirk W; Gill, Jan S; Chick, Jonathan; Rehm, Jürgen

    2015-09-01

    Heavy drinkers in Scotland may consume 1600 g ethanol per week. Due to its low price, cider may be preferred over other beverages. Anecdotal evidence has linked cider to specific health hazards beyond other alcoholic beverages. To examine this hypothesis, nine apple and pear cider samples were chemically analysed for constituents and contaminants. None of the products exceeded regulatory or toxicological thresholds, but the regular occurrence of acetaldehyde in cider was detected. To provide a quantitative risk assessment, two collectives of exclusive drinkers of cider and vodka were compared and the intake of acetaldehyde was estimated using probabilistic Monte-Carlo type analysis. The cider consumers were found to ingest more than 200-times the amount of acetaldehyde consumed by vodka consumers. The margins of exposure (MOE) of acetaldehyde were 224 for the cider and over 220,000 for vodka consumers. However, if the effects of ethanol were considered in a cumulative assessment of the combined MOE, the effect of acetaldehyde was minor and the combined MOE for both groups was 0.3. We suggest that alcohol policy priority should be given on reducing ethanol intake by measures such as minimum pricing, rather than to focus on acetaldehyde. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Adsorption, polymerization and decomposition of acetaldehyde on clean and carbon-covered Rh(111) surfaces

    NASA Astrophysics Data System (ADS)

    Kovács, Imre; Farkas, Arnold Péter; Szitás, Ádám; Kónya, Zoltán; Kiss, János

    2017-10-01

    The adsorption and dissociation of acetaldehyde were investigated on clean and carbon-covered Rh(111) single crystal surfaces by electron energy loss spectroscopy (EELS), temperature programmed desorption (TPD), high-resolution electron energy loss spectroscopy (HREELS) and work function (∆φ) measurements. Acetaldehyde is a starting material for the catalytic production of many important chemicals and investigation of its reactions motivated by environmental purposes too. The adsorption of acetaldehyde on clean Rh(111) surface produced various types of adsorption forms. η1-(O)-CH3CHOa and η2-(O,C)-CH3CHOa are developing and characterized by HREELS. η1-CH3CHOa partly desorbed at Tp = 150 K, another part of these species are incorporated in trimer and linear 2D polimer species. The desorption of trimers (at amu 132) were observed in TPD with a peak maximum at Tp = 225 K. Above this temperature acetaldehyde either desorbed or bonded as a stable surface intermediate (η2-CH3CHOa) on the rhodium surface. The molecules decomposed to adsorbed products, and only hydrogen and carbon monoxide were analyzed in TPD. Surface carbon decreased the uptake of adsorbed acetaldehyde, inhibited the formation of polymers, nevertheless, it induced the Csbnd O bond scission and CO formation with 40-50 K lower temperature after higher acetaldehyde exposure.

  15. Protective Effect of Sodium Ferulate on Acetaldehyde-Treated Precision-Cut Rat Liver Slices

    PubMed Central

    Guo, Yu; Wu, Xiao-Qian; Zhang, Chun; Liao, Zhang-Xiu; Wu, Yong

    2012-01-01

    Abstract Activated hepatic stellate cells (HSCs) play a key role in hepatic fibrogenesis, and inhibition of HSC activation may prevent liver fibrosis. Acetaldehyde, the most deleterious metabolite of alcohol, triggers HSC activation in alcoholic liver injury. In the present study, we investigated the protective effect of sodium ferulate (SF), a sodium salt of ferulic acid that is rich in fruits and vegetables, on acetaldehyde-stimulated HSC activation using precision-cut liver slices (PCLSs). Rat PCLSs were co-incubated with 350 μM acetaldehyde and different concentrations of SF. Hepatotoxicity was assessed by measuring enzyme leakage and malondialdehyde content in tissue. α-Smooth muscle actin, transforming growth factor-β1, and hydroxyproline were determined to assess the activation of HSCs. In addition, matrix metalloproteinase (MMP)-1 and the tissue inhibitor of metalloproteinase (TIMP-1) were determined to evaluate collagen degradation. SF prominently prevented the enzyme leakage in acetaldehyde-treated slices and also inhibited HSC activation and collagen production stimulated by acetaldehyde. In addition, SF increased MMP-1 expression and decreased TIMP-1 expression. These results showed that SF protected PCLSs from acetaldehyde-stimulated HSC activation and liver injury, which may be associated with the attenuation of oxidative injury and acceleration of collagen degradation. PMID:22404575

  16. Methanol, acetaldehyde, and acetone in the surface waters of the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Beale, Rachael; Dixon, Joanna L.; Arnold, Steve R.; Liss, Peter S.; Nightingale, Philip D.

    2013-10-01

    Oceanic methanol, acetaldehyde, and acetone concentrations were measured during an Atlantic Meridional Transect (AMT) cruise from the UK to Chile (49°N to 39°S) in 2009. Methanol (48-361 nM) and acetone (2-24 nM) varied over the track with enrichment in the oligotrophic Northern Atlantic Gyre. Acetaldehyde showed less variability (3-9 nM) over the full extent of the transect. These oxygenated volatile organic compounds (OVOCs) were also measured subsurface, with methanol and acetaldehyde mostly showing homogeneity throughout the water column. Acetone displayed a reduction below the mixed layer. OVOC concentrations did not consistently correlate with primary production or chlorophyll-a levels in the surface Atlantic Ocean. However, we did find a novel and significant negative relationship between acetone concentration and bacterial leucine incorporation, suggesting that acetone might be removed by marine bacteria as a source of carbon. Microbial turnover of both acetone and acetaldehyde was confirmed. Modeled atmospheric data are used to estimate the likely air-side OVOC concentrations. The direction and magnitude of air-sea fluxes vary for all three OVOCs depending on location. We present evidence that the ocean may exhibit regions of acetaldehyde under-saturation. Extrapolation suggests that the Atlantic Ocean represents an overall source of these OVOCs to the atmosphere at 3, 3, and 1 Tg yr-1 for methanol, acetaldehyde, and acetone, respectively.

  17. Protective role of ALDH2 against acetaldehyde-derived DNA damage in oesophageal squamous epithelium

    PubMed Central

    Amanuma, Yusuke; Ohashi, Shinya; Itatani, Yoshiro; Tsurumaki, Mihoko; Matsuda, Shun; Kikuchi, Osamu; Nakai, Yukie; Miyamoto, Shin’ichi; Oyama, Tsunehiro; Kawamoto, Toshihiro; Whelan, Kelly A.; Nakagawa, Hiroshi; Chiba, Tsutomu; Matsuda, Tomonari; Muto, Manabu

    2015-01-01

    Acetaldehyde is an ethanol-derived definite carcinogen that causes oesophageal squamous cell carcinoma (ESCC). Aldehyde dehydrogenase 2 (ALDH2) is a key enzyme that eliminates acetaldehyde, and impairment of ALDH2 increases the risk of ESCC. ALDH2 is produced in various tissues including the liver, heart, and kidney, but the generation and functional roles of ALDH2 in the oesophagus remain elusive. Here, we report that ethanol drinking increased ALDH2 production in the oesophagus of wild-type mice. Notably, levels of acetaldehyde-derived DNA damage represented by N2-ethylidene-2′-deoxyguanosine were higher in the oesophagus of Aldh2-knockout mice than in wild-type mice upon ethanol consumption. In vitro experiments revealed that acetaldehyde induced ALDH2 production in both mouse and human oesophageal keratinocytes. Furthermore, the N2-ethylidene-2′-deoxyguanosine levels increased in both Aldh2-knockout mouse keratinocytes and ALDH2-knockdown human keratinocytes treated with acetaldehyde. Conversely, forced production of ALDH2 sharply diminished the N2-ethylidene-2′-deoxyguanosine levels. Our findings provide new insight into the preventive role of oesophageal ALDH2 against acetaldehyde-derived DNA damage. PMID:26374466

  18. Atmospheric chemistry of toxic contaminants 2. Saturated aliphatics: Acetaldehyde, dioxane, ethylene glycol ethers, propylene oxide

    SciTech Connect

    Grosjean, D. )

    1990-11-01

    Detailed mechanisms are outlined for the chemical reactions that contribute to in-situ formation and atmospheric removal of the saturated aliphatic contaminants acetaldehyde, dioxane, ethylene glycol ethers (methyl, ethyl, n-butyl) and propylene oxide. In-situ formation is of major importance for acetaldehyde. In-situ removal involves reaction with OH (all compounds) and, for acetaldehyde, photolysis and reaction with NO{sub 3}. Acetaldehyde, dioxane, and the ethers are rapidly removed (half-lives of less than one day), leading to PAN (acetaldehyde) and to 2-oxodioxane and formaldehyde (dioxane). Reaction products of the glycol ethers include a large number of hydroxyesters, hydroxyacids, and hydroxycarbonyls. Propylene oxide reacts only slowly with OH, with an atmospheric half-life of 3 - 10 days, to yeild formaldehyde, acetaldehyde, and PAN. Uncertainties in the reaction mechanisms for dioxane, the glycol ethers, and propylene oxide are discussed and include C-C vs C-O bond scission in alkoxy radicals as well as alkoxy radical unimolecular decomposition vs reaction with oxygen.

  19. Acetaldehyde disrupts tight junctions in Caco-2 cell monolayers by a protein phosphatase 2A-dependent mechanism.

    PubMed

    Dunagan, Mitzi; Chaudhry, Kamaljit; Samak, Geetha; Rao, R K

    2012-12-15

    Acetaldehyde is accumulated at high concentrations in the colonic lumen following ethanol administration. Previous studies demonstrated that acetaldehyde disrupts intestinal epithelial tight junctions and increases paracellular permeability. In the present study, we investigated the role of PP2A in the acetaldehyde-induced disruption of intestinal epithelial tight junctions. Caco-2 cell monolayers were exposed to 200-600 μM acetaldehyde for varying times, and the epithelial barrier function was evaluated by measuring transepithelial electrical resistance and inulin permeability. Acetaldehyde treatment resulted in a time-dependent increase in inulin permeability and redistribution of occludin and ZO-1 from the intercellular junctions. Treatment of cells with fostriecin (a PP2A-selective inhibitor) or knockdown of PP2A by siRNA blocked acetaldehyde-induced increase in inulin permeability and redistribution of occludin and ZO-1. The effects of fostriecin and acetaldehyde were confirmed in mouse intestine ex vivo. Acetaldehyde-induced tight junction disruption and barrier dysfunction were also attenuated by a PP2A-specific inhibitory peptide, TPDYFL. Coimmunoprecipitation studies showed that acetaldehyde increased the interaction of PP2A with occludin and induced dephosphorylation of occludin on threonine residues. Fostriecin and TPDYFL significantly reduced acetaldehyde-induced threonine dephosphorylation of occludin. Acetaldehyde failed to change the level of the methylated form of PP2A-C subunit. However, genistein (a tyrosine kinase inhibitor) blocked acetaldehyde-induced association of PP2A with occludin and threonine dephosphorylation of occludin. These results demonstrate that acetaldehyde-induced disruption of tight junctions is mediated by PP2A translocation to tight junctions and dephosphorylation of occludin on threonine residues.

  20. Acetaldehyde disrupts tight junctions in Caco-2 cell monolayers by a protein phosphatase 2A-dependent mechanism

    PubMed Central

    Dunagan, Mitzi; Chaudhry, Kamaljit; Samak, Geetha

    2012-01-01

    Acetaldehyde is accumulated at high concentrations in the colonic lumen following ethanol administration. Previous studies demonstrated that acetaldehyde disrupts intestinal epithelial tight junctions and increases paracellular permeability. In the present study, we investigated the role of PP2A in the acetaldehyde-induced disruption of intestinal epithelial tight junctions. Caco-2 cell monolayers were exposed to 200–600 μM acetaldehyde for varying times, and the epithelial barrier function was evaluated by measuring transepithelial electrical resistance and inulin permeability. Acetaldehyde treatment resulted in a time-dependent increase in inulin permeability and redistribution of occludin and ZO-1 from the intercellular junctions. Treatment of cells with fostriecin (a PP2A-selective inhibitor) or knockdown of PP2A by siRNA blocked acetaldehyde-induced increase in inulin permeability and redistribution of occludin and ZO-1. The effects of fostriecin and acetaldehyde were confirmed in mouse intestine ex vivo. Acetaldehyde-induced tight junction disruption and barrier dysfunction were also attenuated by a PP2A-specific inhibitory peptide, TPDYFL. Coimmunoprecipitation studies showed that acetaldehyde increased the interaction of PP2A with occludin and induced dephosphorylation of occludin on threonine residues. Fostriecin and TPDYFL significantly reduced acetaldehyde-induced threonine dephosphorylation of occludin. Acetaldehyde failed to change the level of the methylated form of PP2A-C subunit. However, genistein (a tyrosine kinase inhibitor) blocked acetaldehyde-induced association of PP2A with occludin and threonine dephosphorylation of occludin. These results demonstrate that acetaldehyde-induced disruption of tight junctions is mediated by PP2A translocation to tight junctions and dephosphorylation of occludin on threonine residues. PMID:23064762

  1. Influence of CYP2D6 and CYP2C19 genotypes on venlafaxine metabolic ratios and stereoselective metabolism in forensic autopsy cases.

    PubMed

    Karlsson, L; Zackrisson, A-L; Josefsson, M; Carlsson, B; Green, H; Kugelberg, F C

    2015-04-01

    We investigated whether polymorphisms in the CYP2D6 and CYP2C19 genes influence the metabolic ratios and enantiomeric S/R ratios of venlafaxine (VEN) and its metabolites O-desmethylvenlafaxine (ODV), N-desmethylvenlafaxine (NDV) and N,O-didesmethylvenlafaxine (DDV) in blood from forensic autopsy cases. In all, 94 postmortem cases found positive for VEN during toxicological screening were included. The CYP2D6 genotype was shown to significantly influence the ODV/VEN (P=0.003), DDV/NDV (P=0.010) and DDV/ODV (P=0.034) ratios. The DDV/ODV (P=0.013) and DDV/VEN (P=0.021) ratios were significantly influenced by the CYP2C19 genotype. The S/R ratios of VEN were significantly influenced by both CYP2D6 and CYP2C19 genotypes. CYP2D6 poor metabolizers (PMs) had lower S/R VEN ratios and CYP2C19 PMs had high S/R ratios of VEN in comparison. Our results show that the CYP2D6 genotype influences the O-demethylation whereas CYP2C19 influences the N-demethylation of VEN and its metabolites. In addition, we show a stereoselective metabolism where CYP2D6 favours the R-enantiomer whereas CYP2C19 favours the S-enantiomer.

  2. Photodissociation of Acetaldehyde and the Photoionization Cross Section of HCO

    NASA Astrophysics Data System (ADS)

    Shubert, V. Alvin; Pratt, Stephen T.

    2010-06-01

    Acetaldehyde was photodissociated with near UV laser light, and the methyl (CH_3) and formyl (HCO) radical fragments were photoionized with vacuum ultraviolet (VUV) light. The fragments were detected by using both time of flight mass spectrometry and velocity ion map imaging. With the former technique, simultaneous detection of both fragments provided the intensity of HCO+ relative to CH_3+ with I(HCO+)/I(CH_3+) ≈ 0.8. Because the absolute photoionization cross section of the CH_3 radical has been characterized (≈ 5 Mb) at the VUV energies of interest, the absolute photoionization cross section of HCO could be determined from the intensity ratio, yielding an HCO cross section of ≈ 4 Mb at 10.3 eV. However, because some of the HCO fragments could be formed with enough internal energy to undergo secondary dissociation, velocity ion map imaging was employed to determine the extent of any secondary dissociation that occurred. The translational energy distributions obtained for both the CH_3 and HCO fragments are nearly identical, indicating that no HCO fragments underwent secondary dissociation. A surprising result was the smaller photoionization cross section of HCO relative to CH_3. Comparison to the isoelectronic species of NO will be discussed and a potential explanation will be offered for this observation. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under contract No. DE-AC02-06CH11357.

  3. Acetaldehyde-induced mitochondrial dysfunction sensitizes hepatocytes to oxidative damage.

    PubMed

    Farfán Labonne, Blanca Eugenia; Gutiérrez, Mario; Gómez-Quiroz, Luis Enrique; Konigsberg Fainstein, Mina; Bucio, Leticia; Souza, Verónica; Flores, Oscar; Ortíz, Victor; Hernández, Elizabeth; Kershenobich, David; Gutiérrez-Ruíz, María Concepción

    2009-12-01

    Acetaldehyde (Ac), the main metabolite of ethanol oxidation, is a very reactive compound involved in alcohol-induced liver damage. In the present work, we studied the effect of Ac in mitochondria functionality. Mitochondria from Wistar rats were isolated and treated with Ac. Ac decreased respiratory control by 50% which was associated with a decrease in adenosine triphosphate content (28.5%). These results suggested that Ac could be inducing changes in cell redox status. We determined protein oxidation, superoxide dismutase (SOD) activity, and glutathione ratio, indicating that Ac induced an enhanced oxidation of proteins and a decrease in SOD activity (90%) and glutathione/oxidized GSH ratio (36%). The data suggested that Ac-induced oxidative stress mediated by mitochondria dysfunction can lead to cell sensitization and to a second oxidative challenge. We pretreated hepatocytes with Ac followed by treatment with antimycin A, and this experiment revealed a noticeable decrease in cell viability, determined by neutral red assay, in comparison with cells treated with Ac alone. Our data demonstrate that Ac impairs mitochondria functionality generating oxidative stress that sensitizes cells to a second damaging signal contributing to the development of alcoholic liver disease.

  4. Relative reactivities of histamine and indoleamines with acetaldehyde.

    PubMed

    Ohya, Takeshi; Niitsu, Masaru

    2003-08-01

    Relative reactivities of histamine and indoleamines such as tryptamine, 5-hydroxytryptamine and 5-methoxytryptamine with acetaldehyde (AA) under physiological conditions were investigated. AA was found to have much higher reactivity towards histamine than towards indoleamines. For example, when a reaction mixture of AA (1 mM) and histamine or tryptamine (5 mM) in 0.1 M phosphate buffer (pH 7.4) was incubated at 37 degrees C for 24 h, AA decreased by 11% in the case of tryptamine, while in the case of histamine, it decreased 88%. In addition, the reaction product of AA with histamine was investigated. Mixtures of a fixed amount of histamine (5 mM) and various amounts of AA (1-20 mM) in phosphate buffer (pH 7.4) were incubated for 5 h at 37 degrees C. In all cases, only one product, 4-methylspinaceamine (4-MSPA), was observed. The yield of 4-MSPA was in approximate agreement with the losses of histamine and AA, indicating that the loss of histamine caused by the reaction of AA was quantatively converted to 4-MSPA. These results show that the reaction of AA with histamine easily takes place to produce 4-MSPA in an aqueous medium close to physiological conditions.

  5. Nutritional Influences on Skatole Formation and Skatole Metabolism in the Pig

    PubMed Central

    Wesoly, Raffael; Weiler, Ulrike

    2012-01-01

    Summary Skatole is a tryptophan metabolite with fecal odor. Skatole and the testicular steroid androstenone are regarded as the main compounds leading to ‘boar taint,’ a sex-specific odor from pork taken from entire males, as elevated concentrations of both substances may be found in adipose boars tissue. High skatole concentrations in adipose tissue are the result of a complex process, which includes microbial formation in the colon, absorption, metabolism and accretion in fat. Several of these steps leading to high skatole concentrations are influenced by feed components and additives. The present paper discusses the mechanisms by which effective feeding strategies and feed additives exert their influence in the prevention of high skatole concentrations in adipose pig tissue. PMID:26486918

  6. The fungicide triadimefon affects beer flavor and composition by influencing Saccharomyces cerevisiae metabolism

    PubMed Central

    Kong, Zhiqiang; Li, Minmin; An, Jingjing; Chen, Jieying; Bao, Yuming; Francis, Frédéric; Dai, Xiaofeng

    2016-01-01

    Despite the fact that beer is produced on a large scale, the effects of pesticide residues on beer have been rarely investigated. In this study, we used micro-brewing settings to determine the effect of triadimefon on the growth of Saccharomyces cerevisiae and beer flavor. The yeast growth in medium was significantly inhibited (45%) at concentrations higher than 5 mg L−1, reaching 80% and 100% inhibition at 10 mg L−1 and 50 mg L−1, respectively. There were significant differences in sensory quality between beer samples fermented with and without triadimefon based on data obtained with an electronic tongue and nose. Such an effect was most likely underlain by changes in yeast fermentation activity, including decreased utilization of maltotriose and most amino acids, reduced production of isobutyl and isoamyl alcohols, and increased ethyl acetate content in the fungicide treated samples. Furthermore, yeast metabolic profiling by phenotype microarray and UPLC/TOF-MS showed that triadimefon caused significant changes in the metabolism of glutathione, phenylalanine and sphingolipids, and in sterol biosynthesis. Thus, triadimefon negatively affects beer sensory qualities by influencing the metabolic activity of S. cerevisiae during fermentation, emphasizing the necessity of stricter control over fungicide residues in brewing by the food industry. PMID:27629523

  7. The fungicide triadimefon affects beer flavor and composition by influencing Saccharomyces cerevisiae metabolism

    NASA Astrophysics Data System (ADS)

    Kong, Zhiqiang; Li, Minmin; An, Jingjing; Chen, Jieying; Bao, Yuming; Francis, Frédéric; Dai, Xiaofeng

    2016-09-01

    Despite the fact that beer is produced on a large scale, the effects of pesticide residues on beer have been rarely investigated. In this study, we used micro-brewing settings to determine the effect of triadimefon on the growth of Saccharomyces cerevisiae and beer flavor. The yeast growth in medium was significantly inhibited (45%) at concentrations higher than 5 mg L-1, reaching 80% and 100% inhibition at 10 mg L-1 and 50 mg L-1, respectively. There were significant differences in sensory quality between beer samples fermented with and without triadimefon based on data obtained with an electronic tongue and nose. Such an effect was most likely underlain by changes in yeast fermentation activity, including decreased utilization of maltotriose and most amino acids, reduced production of isobutyl and isoamyl alcohols, and increased ethyl acetate content in the fungicide treated samples. Furthermore, yeast metabolic profiling by phenotype microarray and UPLC/TOF-MS showed that triadimefon caused significant changes in the metabolism of glutathione, phenylalanine and sphingolipids, and in sterol biosynthesis. Thus, triadimefon negatively affects beer sensory qualities by influencing the metabolic activity of S. cerevisiae during fermentation, emphasizing the necessity of stricter control over fungicide residues in brewing by the food industry.

  8. Phenolic metabolism in grafted versus nongrafted cherry tomatoes under the influence of water stress.

    PubMed

    Sánchez-Rodríguez, Eva; Ruiz, Juan Manuel; Ferreres, Federico; Moreno, Diego A

    2011-08-24

    Use of grafts using rootstocks capable of palliating the effects of water stress can be a possible solution to reduce yield losses. For response to stress, plants can induce the metabolism of phenylpropanoids. The aim of the present work is to determine the response of reciprocal grafts made between one tolerant cherry tomato cultivar, Zarina, and a more sensitive cultivar, Josefina. The analysis of the phenylpropanoids pathway was carried out both enzymatically and metabolically. DAHP synthase, shikimate dehydrogenase, phenylalanine ammonium-lyase, cinnamate 4-hydroxylase, and 4-coumarate CoA ligase activities were determined, and characteristic metabolites from the pathway were measured by means of HPLC-MS. Growth in the grafts JosxZar and ZarxJos was not appreciably affected by stress. JosxZar had increased concentrations of phenolic compounds after water stress. This could be correlated with the greater activity of synthesis enzymes as well as a decrease in phenol-degrading enzymes. Phenolic metabolism is more influenced by the aerial part, and therefore it is concluded that the capacity of inducing tolerance in rootstocks depends on the genotype of the shoot.

  9. Metabolic Influence of Psychrophilic Diatoms on Travertines at the Huanglong Natural Scenic District of China

    PubMed Central

    Sun, Shiyong; Dong, Faqin; Ehrlich, Hermann; Zhao, Xueqing; Liu, Mingxue; Dai, Qunwei; Li, Qiongfang; An, Dejun; Dong, Hailiang

    2014-01-01

    Diatoms are a highly diversified group of algae that are widely distributed in aquatic ecosystems, and various species have different nutrient and temperature requirements for optimal growth. Here, we describe unusual psychrophilic diatoms of Cymbella in a travertine deposition environment in southwestern China in winter season. Travertine surfaces are colonized by these psychrophilic diatoms, which form biofilms of extracellular polysaccharide substances (EPS) with active metabolic activities in extremely cold conditions. The travertine in Huanglong, is a typical single crystalline calcite with anisotropic lattice distortions of unit cell parameters along axes of a and c, and this structure is suggestive of some level of metabolic mediation on mineralization. Near-edge X-ray absorption fine structure spectroscopy (NEXAFS) results further confirmed the occurrence of biogenic distortion of the crystal lattice of travertine calcite. Overall, our results imply that the metabolic influence of psychrophilic diatoms may be particularly important for promoting formation and dissolution of travertine in extremely cold environments of Huanglong. The EPS of psychrophilic diatoms will protect travertine from HCO3− etching and provide template for forming travertine when water re-flowing, in warm season. PMID:25522049

  10. Metabolic influence of psychrophilic diatoms on travertines at the Huanglong Natural Scenic District of China.

    PubMed

    Sun, Shiyong; Dong, Faqin; Ehrlich, Hermann; Zhao, Xueqing; Liu, Mingxue; Dai, Qunwei; Li, Qiongfang; An, Dejun; Dong, Hailiang

    2014-12-01

    Diatoms are a highly diversified group of algae that are widely distributed in aquatic ecosystems, and various species have different nutrient and temperature requirements for optimal growth. Here, we describe unusual psychrophilic diatoms of Cymbella in a travertine deposition environment in southwestern China in winter season. Travertine surfaces are colonized by these psychrophilic diatoms, which form biofilms of extracellular polysaccharide substances (EPS) with active metabolic activities in extremely cold conditions. The travertine in Huanglong, is a typical single crystalline calcite with anisotropic lattice distortions of unit cell parameters along axes of a and c, and this structure is suggestive of some level of metabolic mediation on mineralization. Near-edge X-ray absorption fine structure spectroscopy (NEXAFS) results further confirmed the occurrence of biogenic distortion of the crystal lattice of travertine calcite. Overall, our results imply that the metabolic influence of psychrophilic diatoms may be particularly important for promoting formation and dissolution of travertine in extremely cold environments of Huanglong. The EPS of psychrophilic diatoms will protect travertine from HCO3- etching and provide template for forming travertine when water re-flowing, in warm season.

  11. Influence of gel and powdered formulations of coenzyme Q10 on metabolic parameters in rats.

    PubMed

    Preuss, Harry G; Echard, Bobby; Bagchi, Debasis; Clouatre, Dallas; Perricone, Nicholas V

    2010-07-01

    The healthful benefits of two commercially available formulations of coenzyme Q10 (Co Q10), one in gel and the other in a powdered form, on a variety of metabolic parameters in Sprague-Dawley rats (SD) were compared to control. The principal metabolic parameters examined were systolic blood pressure (SBP), DNA fragmentation, and free radical formation in hepatic and renal tissues. Compared to control, the powdered formulation significantly decreased SBP in the normotensive SD, whereas both commercial formulations lowered hepatic and renal DNA fragmentation and free radical formation. The gel-formulation lowered hepatic DNA fragmentation more than the powdered-formulation. In conclusion, both gel- and powdered-formulations of Co Q10 significantly influenced the metabolic parameters assessed in a favorable fashion, with the powdered-formulation more effective on SBP and the gel-formulation more effective on overcoming hepatic DNA fragmentation. From the data, we conclude that the choice of the formulation containing Co Q10 to be used should be based on the desired healthful benefits.

  12. Disentangling the relative influence of bacterioplankton phylogeny and metabolism on lysogeny in reservoirs and lagoons

    PubMed Central

    Maurice, Corinne F; Mouillot, David; Bettarel, Yvan; De Wit, Rutger; Sarmento, Hugo; Bouvier, Thierry

    2011-01-01

    Previous studies indicate that lysogeny is preponderant when environmental conditions are challenging for the bacterial communities and when their metabolism is reduced. Furthermore, it appears that lysogeny is more frequent within certain bacterial phylogenetic groups. In this comparative study from 10 freshwater reservoirs and 10 coastal lagoons, we aim to disentangle the influence of these different factors. In eight reservoirs and four lagoons, lysogeny was detected by induction assays with mitomycin C, and induction significantly modified the bacterial community composition (BCC), whereas community composition remained constant in ecosystems in which lysogeny was not observed. Among the phylogenetic groups studied, the most abundant ones were Bacteroidetes and α-proteobacteria in lagoons, and β-proteobacteria and Bacteroidetes in reservoirs. These dominant groups comprised the highest proportions of inducible lysogens. In order to unravel the effects of bacterial metabolism from phylogeny on lysogeny, we measured bacterial community physiology and the specific activities of selected phylogenetic groups. The proportion of inducible lysogens within the α- and the β-proteobacteria decreased with increasing group-specific metabolism in lagoons and reservoirs, respectively. In contrast, this relationship was not observed for the other lysogen-containing groups. Hence, both host physiology and phylogeny are critical for the establishment of lysogeny. This study illustrates the importance of lysogeny among the most abundant phylogenetic groups, and further suggests its strong structuring impact on BCC. PMID:21124489

  13. Disentangling the relative influence of bacterioplankton phylogeny and metabolism on lysogeny in reservoirs and lagoons.

    PubMed

    Maurice, Corinne F; Mouillot, David; Bettarel, Yvan; De Wit, Rutger; Sarmento, Hugo; Bouvier, Thierry

    2011-05-01

    Previous studies indicate that lysogeny is preponderant when environmental conditions are challenging for the bacterial communities and when their metabolism is reduced. Furthermore, it appears that lysogeny is more frequent within certain bacterial phylogenetic groups. In this comparative study from 10 freshwater reservoirs and 10 coastal lagoons, we aim to disentangle the influence of these different factors. In eight reservoirs and four lagoons, lysogeny was detected by induction assays with mitomycin C, and induction significantly modified the bacterial community composition (BCC), whereas community composition remained constant in ecosystems in which lysogeny was not observed. Among the phylogenetic groups studied, the most abundant ones were Bacteroidetes and α-proteobacteria in lagoons, and β-proteobacteria and Bacteroidetes in reservoirs. These dominant groups comprised the highest proportions of inducible lysogens. In order to unravel the effects of bacterial metabolism from phylogeny on lysogeny, we measured bacterial community physiology and the specific activities of selected phylogenetic groups. The proportion of inducible lysogens within the α- and the β-proteobacteria decreased with increasing group-specific metabolism in lagoons and reservoirs, respectively. In contrast, this relationship was not observed for the other lysogen-containing groups. Hence, both host physiology and phylogeny are critical for the establishment of lysogeny. This study illustrates the importance of lysogeny among the most abundant phylogenetic groups, and further suggests its strong structuring impact on BCC.

  14. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments.

    PubMed

    Li, Dong; Sharp, Jonathan O; Drewes, Jörg E

    2016-01-01

    To reveal the variation of microbial community functions during water filtration process in river sediments, which has been utilized widely in natural water treatment systems, this study investigates the influence of municipal wastewater discharge to streams on the phylotype and metabolic potential of the microbiome in upstream and particularly various depths of downstream river sediments. Cluster analyses based on both microbial phylogenetic and functional data collectively revealed that shallow upstream sediments grouped with those from deeper subsurface downstream regions. These sediment samples were distinct from those found in shallow downstream sediments. Functional genes associated with carbohydrate, xenobiotic, and certain amino acid metabolisms were overrepresented in upstream and deep downstream samples. In contrast, the more immediate contact with wastewater discharge in shallow downstream samples resulted in an increase in the relative abundance of genes associated with nitrogen, sulfur, purine and pyrimidine metabolisms, as well as restriction-modification systems. More diverse bacterial phyla were associated with upstream and deep downstream sediments, mainly including Actinobacteria, Planctomycetes, and Firmicutes. In contrast, in shallow downstream sediments, genera affiliated with Betaproteobacteria and Gammaproteobacteria were enriched with putative functions that included ammonia and sulfur oxidation, polyphosphate accumulation, and methylotrophic bacteria. Collectively, these results highlight the enhanced capabilities of microbial communities residing in deeper stream sediments for the transformation of water contaminants and thus provide a foundation for better design of natural water treatment systems to further improve the removal of contaminants.

  15. The influence of metabolic heat production on body temperature of a small lizard, Anolis carolinensis.

    PubMed

    Brown, Richard P; Au, Timothy

    2009-06-01

    Little is known about the impact of increased metabolism on body temperatures of small ectotherms. We found that postprandial metabolic rates of 5 g Anolis carolinensis lizards were elevated by factorial increases of 2.3+/-1.0 (mean+/-S.E.) at 26 degrees C and 3.8+/-2.1 at 30 degrees C over their fasting rates. Cloacal body temperatures exceeded environmental temperatures by a small amount in fasted individuals (26 degrees C: 0.3+/-0.02 degrees C, 30 degrees C: 0.3+/-0.02 degrees C), and by a significantly larger amount in fed individuals (26 degrees C: 1.0+/-0.06 degrees C, 30 degrees C: 0.8+/-0.08 degrees C). We conclude that an increased metabolic rate due to specific dynamic action leads to a small but significant elevation of body temperature in this species. Comparisons with thermal increments reported for a large (750 g) varanid lizard suggest that body size has only a minor influence on body-air temperature differentials of ectotherms. This is consistent with theoretical predictions. Finally, endogenous heat production could help elevate body temperatures in the wild and therefore play a minor role in thermoregulation.

  16. The fungicide triadimefon affects beer flavor and composition by influencing Saccharomyces cerevisiae metabolism.

    PubMed

    Kong, Zhiqiang; Li, Minmin; An, Jingjing; Chen, Jieying; Bao, Yuming; Francis, Frédéric; Dai, Xiaofeng

    2016-09-15

    Despite the fact that beer is produced on a large scale, the effects of pesticide residues on beer have been rarely investigated. In this study, we used micro-brewing settings to determine the effect of triadimefon on the growth of Saccharomyces cerevisiae and beer flavor. The yeast growth in medium was significantly inhibited (45%) at concentrations higher than 5 mg L(-1), reaching 80% and 100% inhibition at 10 mg L(-1) and 50 mg L(-1), respectively. There were significant differences in sensory quality between beer samples fermented with and without triadimefon based on data obtained with an electronic tongue and nose. Such an effect was most likely underlain by changes in yeast fermentation activity, including decreased utilization of maltotriose and most amino acids, reduced production of isobutyl and isoamyl alcohols, and increased ethyl acetate content in the fungicide treated samples. Furthermore, yeast metabolic profiling by phenotype microarray and UPLC/TOF-MS showed that triadimefon caused significant changes in the metabolism of glutathione, phenylalanine and sphingolipids, and in sterol biosynthesis. Thus, triadimefon negatively affects beer sensory qualities by influencing the metabolic activity of S. cerevisiae during fermentation, emphasizing the necessity of stricter control over fungicide residues in brewing by the food industry.

  17. Influence of mitochondrial genome rearrangement on cucumber leaf carbon and nitrogen metabolism

    PubMed Central

    Jastrzębska, Agata; Kulka, Marek; Leśniak, Karolina; Podgórska, Anna; Pärnik, Tiit; Ivanova, Hiie; Keerberg, Olav; Gardeström, Per; Rychter, Anna M.

    2010-01-01

    The MSC16 cucumber (Cucumis sativus L.) mitochondrial mutant was used to study the effect of mitochondrial dysfunction and disturbed subcellular redox state on leaf day/night carbon and nitrogen metabolism. We have shown that the mitochondrial dysfunction in MSC16 plants had no effect on photosynthetic CO2 assimilation, but the concentration of soluble carbohydrates and starch was higher in leaves of MSC16 plants. Impaired mitochondrial respiratory chain activity was associated with the perturbation of mitochondrial TCA cycle manifested, e.g., by lowered decarboxylation rate. Mitochondrial dysfunction in MSC16 plants had different influence on leaf cell metabolism under dark or light conditions. In the dark, when the main mitochondrial function is the energy production, the altered activity of TCA cycle in mutated plants was connected with the accumulation of pyruvate and TCA cycle intermediates (citrate and 2-OG). In the light, when TCA activity is needed for synthesis of carbon skeletons required as the acceptors for NH4+ assimilation, the concentration of pyruvate and TCA intermediates was tightly coupled with nitrate metabolism. Enhanced incorporation of ammonium group into amino acids structures in mutated plants has resulted in decreased concentration of organic acids and accumulation of Glu. PMID:20830597

  18. Influence of vitamin E on polyamine metabolism in ozone-exposed rat lungs

    SciTech Connect

    Elsayed, N.M.

    1987-06-01

    The influence of vitamin E (E) on lung polyamine metabolism of rats exposed to ozone (O/sub 3/) was examined. Rats fed diets either E-deficient or supplemented with 1000 IU E/kg were exposed to 0.5 +/- 0.05 ppm O/sub 3/ or filtered room air continuously for 5 days. They were then sacrificed and their lungs were analyzed for biochemical changes. Lung E content was strongly associated with the dietary level, and increased (36%, P less than 0.05) after O/sub 3/ exposure only in E-supplemented rats. Lung polyamine metabolism was not affected in the air-control rats by E level, but increased after O/sub 3/ exposure in both dietary groups. The activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase were elevated above air controls. However, the increases were significant only for E-deficient rats when compared to E-supplemented rats. After O/sub 3/ exposure, putrescine increased significantly in both dietary groups; spermidine increased but was significantly higher only in the E-deficient group; and spermine remained unchanged in both dietary groups. Elevated E content of supplemented rat lungs after O/sub 3/ exposure may represent its mobilization under oxidant stress. Increased polyamine metabolism of E-deficient rats suggests either a greater sensitivity to injury by O/sub 3/ or a possible antioxidant function for polyamines compensating for E deficiency.

  19. 1H NMR-based metabonomic applications to decipher gut microbial metabolic influence on mammalian health.

    PubMed

    Martin, François-Pierre J; Collino, Sebastiano; Rezzi, Serge

    2011-12-01

    Recent advances in molecular biology and microbiology have increased awareness on the importance of the gut microbiota to the overall mammalian host's health status. There is therefore increasing interest in nutrition research to characterise the molecular foundations of the gut microbial mammalian crosstalk at both physiological and biochemical pathway levels. Tackling these challenges can be achieved through systems biology strategies based on the measurement of metabolites to assess the highly complex metabolic exchanges between diverse biological compartments, including organs, biofluids and microbial symbionts. By opening a direct biochemical window into the metabolome, metabonomics is uniquely suited for the identification of biomarkers providing better understanding of these complex metabolic processes. Recent applications of top-down system biology based on (1)H NMR spectroscopy coupled to advanced chemometric modelling approaches provided compelling evidence that system-wide and organ-specific changes in biochemical processes may be finely tuned by gut microbial activities. This review aims at describing current advances in NMR-based metabonomics where the main objective is to discern the molecular pathways and biochemical mechanisms under the influence of the gut microbiota. Furthermore, emphasis is given on nutritional approaches, where the quest for homeostatic balance is dependent not only on the host but also on the nutritional modulation of the gut microbiota-host metabolic interactions, using, for instance, probiotics and prebiotics. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Investigation of carbohydrate and protein metabolism in the digestive organs of the rabbit under the combined influence of vibration, acceleration and irradiation

    NASA Technical Reports Server (NTRS)

    Yuy, R. I.

    1975-01-01

    During spaceflight, the organism is subjected to the influence of various extremal factors such as acceleration, vibration, irradiation, etc. The study of the influence of these factors on metabolism, especially carbohydrate and protein metabolism, in young rabbits is of great significance in simulation experiments. Dynamic factors and irradiation, depending on dose and duration, lead to reduced RNA and protein metabolism.

  1. Investigation of carbohydrate and protein metabolism in the digestive organs of the rabbit under the combined influence of vibration, acceleration and irradiation

    NASA Technical Reports Server (NTRS)

    Yuy, R. I.

    1975-01-01

    During spaceflight, the organism is subjected to the influence of various extremal factors such as acceleration, vibration, irradiation, etc. The study of the influence of these factors on metabolism, especially carbohydrate and protein metabolism, in young rabbits is of great significance in simulation experiments. Dynamic factors and irradiation, depending on dose and duration, lead to reduced RNA and protein metabolism.

  2. Uptake, translocation, and metabolism of oxabetrinil and CGA-133205 in grain sorghum (Sorghum bicolor) and their influence on metolachlor metabolism

    SciTech Connect

    Yenne, S.P.; Hatzios, K.K.; Meredith, S.A. )

    1990-10-01

    The uptake, translocation, and metabolism of the oxime ether safeners oxabetrinil and CGA-133205 in grain sorghum (Sorghum bicolor (L.) Moench, var. Funk G-522-DR) were investigated. Following application of ({sup 14}C)oxabetrinil and ({sup 14}C)CGA-133205 to imbibed seeds, it appears that the safeners are conferring protection to grain sorghum by increasing the rate of metolachlor metabolism.

  3. Influence of metabolic hormones and nutrition on ovarian follicle development in cattle: practical implications.

    PubMed

    Gong, J G

    2002-07-01

    Nutrition has long been known to have a profound influence on reproductive performance of female cattle, but the underlying mechanism remains poorly understood. Whilst early investigations focused on the modulation of nutrition on hypothalamic-pituitary axis, more recent studies have tested the hypothesis that metabolic hormones as nutritional signals exert a direct effect at the ovarian level. In cattle, treatment with recombinant bovine somatotrophin (rGH) significantly increases the population of small ovarian follicles. This is associated with increases in circulating concentrations of insulin and insulin-like growth factor-I (IGF-I). Subsequent studies, both in vitro and in vivo, have highlighted the importance of IGF-I and/or insulin acting in synergy with FSH and LH. More recently, we demonstrated that feeding heifers with 200% maintenance requirements for a short period significantly increases circulating insulin concentrations and population of small ovarian follicles. Based on these findings, our recent work has aimed at addressing some practical problems in cattle production. Firstly, we showed that both rGH pretreatment and increased dietary intake significantly enhance the response to standard superovulatory regimes. Secondly, we have demonstrated that feeding a diet to increase circulating insulin concentrations during the early lactation can advance the first ovulation postpartum and increase conception rate to the first service in dairy cows. In summary, nutrition influences ovarian follicle development in cattle possibly through changes in metabolic hormones. These interactions can be manipulated to improve reproductive performance.

  4. Mitochondria influence postmortem metabolism and pH in an in vitro model.

    PubMed

    Scheffler, Tracy L; Matarneh, Sulaiman K; England, Eric M; Gerrard, David E

    2015-12-01

    Our objective was to determine the influence of mitochondria on metabolites and pH decline using an in vitro model of postmortem muscle metabolism. Mitochondria were isolated from porcine longissimus lumborum and added (0, 0.5, or 2.0mg) to powdered muscle in reaction media containing either a combination of inhibitors for mitochondria complexes (I, IV, and V) or diluent (without inhibitors). In the absence of inhibitors, adding mitochondria (0.5 and 2.0mg) reduced ATP loss from 30 to 120 min, but did not alter glycogen or lactate during this time. In reactions with mitochondria, inhibitors decreased ATP levels by 30 min and increased glycogen degradation by 60 min. Regardless of mitochondria content, inhibitors enhanced lactate accumulation from 15 to 240 min, and decreased pH from 15 min to 1440 min. In the in vitro model, mitochondria influence the maintenance of ATP, and inhibition of mitochondria enzyme activity contributes to accelerated metabolism and pH decline.

  5. [The influence of migration background and parental education on childhood obesity and the metabolic syndrome].

    PubMed

    Dannemann, A; Ernert, A; Rücker, P; Babitsch, B; Wiegand, S

    2011-05-01

    Obesity and metabolic syndrome are important risk factors for cardiovascular diseases. In this study, the influence of migration background and parental education on the degree of obesity and the presence of the metabolic syndrome (MS) in children and adolescents (N=492) requiring sociopediatric care were investigated. Two regression models were computed with the dependent variables BMI-SDS and MS, respectively. Age, gender, migration background, and parental education were used as independent variables. When controlling for age and gender, higher BMI-SDS were found among Turkish patients (β=0.21; p=0.002) and patients with other migration backgrounds (β=0.11; p=0.085) compared to German patients. The BMI-SDS values were also higher among patients from families with a low parental education level compared to those with a higher education level (β=0.31; p<0.001). The key risk factor for MS is the BMI-SDS (OR: 8.9; p=0.011). No influence could be determined for migration background and parental education, when controlling for age, gender, and BMI-SDS. Obesity therapy should be increasingly tailored to the needs of identified risk groups. This will also allow for a targeted prevention of comorbidities.

  6. Influence of vitamin B auxotrophy on nitrogen metabolism in eukaryotic phytoplankton

    PubMed Central

    Bertrand, Erin M.; Allen, Andrew E.

    2012-01-01

    While nitrogen availability is known to limit primary production in large parts of the ocean, vitamin starvation amongst eukaryotic phytoplankton is becoming increasingly recognized as an oceanographically relevant phenomenon. Cobalamin (B12) and thiamine (B1) auxotrophy are widespread throughout eukaryotic phytoplankton, with over 50% of cultured isolates requiring B12 and 20% requiring B1. The frequency of vitamin auxotrophy in harmful algal bloom species is even higher. Instances of colimitation between nitrogen and B vitamins have been observed in marine environments, and interactions between these nutrients have been shown to impact phytoplankton species composition. This review surveys available data, including relevant gene expression patterns, to evaluate the potential for interactive effects of nitrogen and vitamin B12 and B1 starvation in eukaryotic phytoplankton. B12 plays essential roles in amino acid and one-carbon metabolism, while B1 is important for primary carbohydrate and amino acid metabolism and likely useful as an anti-oxidant. Here we will focus on three potential metabolic interconnections between vitamin, nitrogen, and sulfur metabolism that may have ramifications for the role of vitamin and nitrogen scarcities in driving ocean productivity and species composition. These include: (1) B12, B1, and N starvation impacts on osmolyte and antioxidant production, (2) B12 and B1 starvation impacts on polyamine biosynthesis, and (3) influence of B12 and B1 starvation on the diatom urea cycle and amino acid recycling through impacts on the citric acid cycle. We evaluate evidence for these interconnections and identify oceanographic contexts in which each may impact rates of primary production and phytoplankton community composition. Major implications include that B12 and B1 deprivation may impair the ability of phytoplankton to recover from nitrogen starvation and that changes in vitamin and nitrogen availability may synergistically impact harmful

  7. Genetic influences on type 2 diabetes and metabolic syndrome related quantitative traits in Mauritius

    PubMed Central

    Jowett, Jeremy B.; Diego, Vincent P.; Kotea, Navaratnam; Kowlessur, Sudhir; Chitson, Pierrot; Dyer, Thomas D.; Zimmet, Paul; Blangero, John

    2009-01-01

    Epidemiological studies report a high prevalence of type 2 diabetes and metabolic syndrome in the island nation of Mauritius. The Mauritius Family Study was initiated to examine heritable factors that contribute to these high rates of prevalence and consists of 400 individuals in 24 large extended multigenerational pedigrees. Anthropometric and biochemical measurements relating to the metabolic syndrome were undertaken in addition to family and lifestyle based information for each individual. Variance components methods were used to determine the heritability of the type 2 diabetes and metabolic syndrome related quantitative traits. The cohort was made up of 218 females (55%) and 182 males with 22% diagnosed with type 2 diabetes and a further 30% having impaired glucose tolerance or impaired fasting glucose. Notably BMI was not significantly increased in those with type 2 diabetes (P=0.119), however a significant increase in waist circumference was observed in these groups (P=0.02). The heritable proportion of trait variance was substantial and greater than values previously published for hip circumference, LDL and total cholesterol, diastolic and systolic blood pressure and serum creatinine. Height, weight and BMI heritabilities were all in the upper range of those previously reported. The phenotypic characteristics of the Mauritius Family cohort are similar to those previously reported in the Mauritian population with a high observed prevalence rate of type 2 diabetes. A high heritability for key type 2 diabetes and metabolic syndrome related phenotypes (range 0.23 to 0.68), suggest the cohort will have utility in identifying genes that influence these quantitative traits. PMID:19210179

  8. Consequences of complex environments: Temperature and energy intake interact to influence growth and metabolic rate.

    PubMed

    Stahlschmidt, Zachary R; Jodrey, Alicia D; Luoma, Rachel L

    2015-09-01

    The field of comparative physiology has a rich history of elegantly examining the effects of individual environmental factors on performance traits linked to fitness (e.g., thermal performance curves for locomotion). However, animals live in complex environments wherein multiple environmental factors co-vary. Thus, we investigated the independent and interactive effects of temperature and energy intake on the growth and metabolic rate of juvenile corn snakes (Pantherophis guttatus) in the context of shifts in complex environments. Unlike previous studies that imposed constant or fluctuating temperature regimes, we manipulated the availability of preferred thermal microclimates (control vs. relatively warm regimes) for eight weeks and allowed snakes to behaviorally thermoregulate among microclimates. By also controlling for energy intake, we demonstrate an interactive effect of temperature and energy on growth-relevant temperature shifts had no effect on snakes' growth when energy intake was low and a positive effect on growth when energy intake was high. Thus, acclimation to relatively warm thermal options can result in increased rates of growth when food is abundant in a taxon in which body size confers fitness advantages. Temperature and energy also interactively influenced metabolic rate-snakes in the warmer temperature regime exhibited reduced metabolic rate (O2 consumption rate at 25 °C and 30 °C) if they had relatively high energy intake. Although we advocate for continued investigation into the effects of complex environments on other traits, our results indicate that warming may actually benefit important life history traits in some taxa and that metabolic shifts may underlie thermal acclimation. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Interactions between Heterogeneous Uptake and Adsorption of Sulfur Dioxide and Acetaldehyde on Hematite.

    PubMed

    Zhao, Xi; Kong, Lingdong; Sun, Zhenyu; Ding, Xiaoxiao; Cheng, Tiantao; Yang, Xin; Chen, Jianmin

    2015-04-30

    Sulfur dioxide and organic aldehydes in the atmosphere are ubiquitous and often correlated with mineral dust aerosols. Heterogeneous uptake and adsorption of one of these species on mineral aerosols can potentially change the properties of the particles and further affect the subsequent heterogeneous reactions of the other species on the coating particles. In this study, the interactions between heterogeneous uptake and adsorption of sulfur dioxide and acetaldehyde on hematite are investigated by using in situ diffuse-reflectance infrared Fourier-transform spectroscopy (DRIFTS) at room temperature. It is found that the preadsorption of SO2 on α-Fe2O3 can significantly hinder the subsequent heterogeneous oxidation of CH3CHO to acetate, while the preadsorption of CH3CHO significantly suppresses the heterogeneous reaction of large amounts of SO2 on the surface of α-Fe2O3 and has a little influence on the uptake of small amount of SO2. The heterogeneous reactions of SO2 on α-Fe2O3 preadsorbed by CH3CHO change the existing acetate on the particle surface into chemisorbed acetic acid, for the enhancement of surface acidity after the uptake of SO2. During these processes, different surface hydroxyl groups showed different reactivities. Atmospheric implications of this study are discussed.

  10. Thz Spectroscopy of Acetaldehyde and Search of 13C Species in Orion

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Motiyenko, R. A.; Ilyushin, V. V.; Tercero, B.; Cernicharo, J.; Guillemin, J.-C.

    2012-06-01

    Acetaldehyde (CH_3CHO) is one of the high priority complex organic molecules for the astrophysical community. There is a lack of data concerning the 13C species since the measurements are limited to 40 GHz up to date. This molecule displays a large amplitude motion: the hindered rotation of the methyl group with respect to the rest of the molecule. The analysis is performed with RAM36 code which used the Rho Axis Method. Last year we presented the analysis of the millimeterwave spectra of the 13CH_3CHO species. We extended the analysis to the THz range of the vibrational ground state for both species. We are also analyzing the first torsional state (≈140 cm-1) for two reasons: first, this permits to remove correlation between parameters. Second, this state contribute to the partition function even at ISM temperature (100--150 K) since there is an influence on the column density determined in case of detection. The searches of these isotopomers are in progress in ORION. This work was supported by the CNES and the Action sur Projets de l'INSU, PCMI. This work was also done under the ANR-08-BLAN-0054. Kilb, R.W.; Lin, C.C.; and Wilson, E.B. J. Chem. Phys. 26, (1957) 1695 Ilyushin, V.V. et al J. Mol. Spectrosc. 259, (2010) 26 Margules, L. et al. FA07, 66th International Symposium on Molecular Spectroscopy (2011)

  11. The structure of wheat bread influences the postprandial metabolic response in healthy men.

    PubMed

    Eelderink, Coby; Noort, Martijn W J; Sozer, Nesli; Koehorst, Martijn; Holst, Jens J; Deacon, Carolyn F; Rehfeld, Jens F; Poutanen, Kaisa; Vonk, Roel J; Oudhuis, Lizette; Priebe, Marion G

    2015-10-01

    Postprandial high glucose and insulin responses after starchy food consumption, associated with an increased risk of developing several metabolic diseases, could possibly be improved by altering food structure. We investigated the influence of a compact food structure; different wheat products with a similar composition were created using different processing conditions. The postprandial glucose kinetics and metabolic response to bread with a compact structure (flat bread, FB) was compared to bread with a porous structure (control bread, CB) in a randomized, crossover study with ten healthy male volunteers. Pasta (PA), with a very compact structure, was used as the control. The rate of appearance of exogenous glucose (RaE), endogenous glucose production, and glucose clearance rate (GCR) was calculated using stable isotopes. Furthermore, postprandial plasma concentrations of glucose, insulin, several intestinal hormones and bile acids were analyzed. The structure of FB was considerably more compact compared to CB, as confirmed by microscopy, XRT analysis (porosity) and density measurements. Consumption of FB resulted in lower peak glucose, insulin and glucose-dependent insulinotropic polypeptide (ns) responses and a slower initial RaE compared to CB. These variables were similar to the PA response, except for RaE which remained slower over a longer period after PA consumption. Interestingly, the GCR after FB was higher than expected based on the insulin response, indicating increased insulin sensitivity or insulin-independent glucose disposal. These results demonstrate that the structure of wheat bread can influence the postprandial metabolic response, with a more compact structure being more beneficial for health. Bread-making technology should be further explored to create healthier products.

  12. The influence of hydrologic connectivity on ecosystem metabolism and nitrate uptake in an active beaver meadow

    NASA Astrophysics Data System (ADS)

    Wegener, P.; Covino, T. P.; Wohl, E.; Kampf, S. K.; Lacy, S.

    2015-12-01

    Wetlands have been widely demonstrated to provide important watershed services, such as the sequestration of carbon (C) and removal of nitrate (NO3-) from through-flowing water. Hydrologic connectivity (degree of water and associated material exchange) between floodplain water bodies (e.g., side channels, ponds) and the main channel influence rates of C accumulation and NO3- uptake, and the degree to which wetlands contribute to enhanced water quality at the catchment scale. However, environmental engineers have largely ignored the role of hydrologic connectivity in providing essential ecosystem services, and constructed wetlands are commonly built using compacted clay and berms that result in less groundwater and surface water exchange than observed in natural wetlands. In a study of an active beaver meadow (multithreaded, riparian wetland) in Rocky Mountain National Park, CO, we show how shifts in hydrology (connectivity, residence times, flow paths) from late spring snowmelt (high connectivity) to autumn/winter baseflow (low connectivity) influence ecosystem metabolism metrics (e.g., gross primary production, ecosystem respiration, and net ecosystem productivity) and NO3- uptake rates. We use a combination of mixing analyses, tracer tests, and hydrometric methods to evaluate shifts in surface and subsurface hydrologic connections between floodplain water bodies from snowmelt to baseflow. In the main channel and three floodplain water bodies, we quantify metabolism metrics and NO3- uptake kinetics across shifting flow regimes. Results from our research indicate that NO3- uptake and metabolism dynamics respond to changing levels of hydrologic connectivity to the main channel, emphasizing the importance of incorporating connectivity in wetland mitigation practices that seek to enhance water quality at the catchment scale.

  13. The Influence of Dam Discharge Regime and Canyon Orientation on Ecosystem Metabolism in the Colorado River

    NASA Astrophysics Data System (ADS)

    Kennedy, T. A.; Tietjen, T.; Wright, S.

    2005-05-01

    Since the closure of Glen Canyon Dam and the beginning of flow regulation of the Colorado River in Grand Canyon in 1963, considerable efforts have been directed toward understanding the aquatic ecology of this altered ecosystem. Understanding what controls resource availability has been a central focus of these efforts because the Colorado River supports populations of sport fish and endangered humpback chub, both of which appear to be strongly resource limited. There is evidence that dam discharge regime and canyon orientation influence algal standing crop due to their effects on water velocity (scour) and solar insolation, respectively. We explored whether these physical factors influenced rates of primary production and ecosystem respiration, two different metrics of resource availability, in the clear tailwater section of the Colorado River by conducting whole system metabolism measurements across a range of discharge regimes and in reaches with different orientation (i.e. N-S vs. E-W). We found that while both discharge regime and canyon orientation influence rates of primary production, seasonal changes in light availability appear to have a far stronger influence on rates of primary production in the Colorado River. Water temperature appeared to be the main driver of ecosystem respiration.

  14. Acetaldehyde self-administration by a two-bottle choice paradigm: consequences on emotional reactivity, spatial learning, and memory.

    PubMed

    Plescia, Fulvio; Brancato, Anna; Venniro, Marco; Maniaci, Giuseppe; Cannizzaro, Emanuele; Sutera, Flavia Maria; De Caro, Viviana; Giannola, Libero Italo; Cannizzaro, Carla

    2015-03-01

    Acetaldehyde, the first alcohol metabolite, is responsible for many pharmacological effects that are not clearly distinguishable from those exerted by its parent compound. It alters motor performance, induces reinforced learning and motivated behavior, and produces different reactions according to the route of administration and the relative accumulation in the brain or in the periphery. The effective activity of oral acetaldehyde represents an unresolved field of inquiry that deserves further investigation. Thus, this study explores the acquisition and maintenance of acetaldehyde drinking behavior in adult male rats, employing a two-bottle choice paradigm for water and acetaldehyde solution (from 0.9% to 3.2% v/v), over 8 weeks. The behavioral consequences exerted by chronic acetaldehyde intake are assessed by a set of different tests: trials in an open-field arena and elevated-plus maze provided information on both general motor and explorative activity, and anxiety-driven behavioral responses. The Morris water maze allowed the exploration of cognitive processes such as spatial learning and memory. Determination of acetaldehyde levels in the brain was carried out at the end of the drinking paradigm. Our results indicate that rats exposed for the first time to acetaldehyde at 0.9% displayed a regular and stable daily drinking pattern that reached higher values and a "peaks and drops" shaped-trend when acetaldehyde concentration was increased to 3.2%. Accordingly, an increase in acetaldehyde levels in the brain was determined compared to non-acetaldehyde drinking rats. Acetaldehyde intake during the free-choice paradigm exerted an anxiogenic response in the open-field arena and elevated-plus maze, which in turn correlates with an enhancement in cognitive flexibility and spatial orientation skills, when an adaptive response to a stressful environmental challenge was required. These findings further support the idea that acetaldehyde is indeed a centrally active and

  15. Quantification by SIFT-MS of acetaldehyde released by lung cells in a 3D model.

    PubMed

    Rutter, Abigail V; Chippendale, Thomas W E; Yang, Ying; Španěl, Patrik; Smith, David; Sulé-Suso, Josep

    2013-01-07

    Our previous studies have shown that both lung cancer cells and non-malignant lung cells release acetaldehyde in vitro. However, data from other laboratories have produced conflicting results. Furthermore, all these studies have been carried out in 2D models which are less physiological cell growth systems when compared to 3D models. Therefore, we have carried out further work on the release of acetaldehyde by lung cells in 3D collagen hydrogels. Lung cancer cells CALU-1 and non-malignant lung cells NL20 were seeded in these hydrogels at different cell concentrations and the release of acetaldehyde was measured with the Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) technique. The data obtained showed that the amount of acetaldehyde released by both cell types grown in a 3D model is higher when compared to that of the same cells grown in 2D models. More importantly, acetaldehyde from the headspace of lung cancer cells could be measured even at a low cell concentration (10(5) cells per hydrogel). The differential of acetaldehyde release could be, depending on the cell concentration, more than 3 fold higher for cancer cells when compared to non-malignant lung cells. This pilot study is the first to study acetaldehyde emission from albeit only two cell types cultured in 3D scaffolds. Clearly, from such limited data the behaviour of other cell types and of tumour cells in vivo cannot be predicted with confidence. Nevertheless, this work represents another step in the search for volatile biomarkers of tumour cells, the ultimate goal of which is to exploit volatile compounds in exhaled breath and other biological fluids as biomarkers of tumours in vivo.

  16. The Role of Acetaldehyde in the Increased Acceptance of Ethanol after Prenatal Ethanol Exposure

    PubMed Central

    Gaztañaga, Mirari; Angulo-Alcalde, Asier; Spear, Norman E.; Chotro, M. Gabriela

    2017-01-01

    Recent studies show that acetaldehyde, the first metabolite in the oxidation of ethanol, can be responsible for both, the appetitive and the aversive effects produced by ethanol intoxication. More specifically, it has been hypothesized that acetaldehyde produced in the periphery by the liver is responsible for the aversive effects of ethanol, while the appetitive effects relate to the acetaldehyde produced centrally through the catalase system. On the other hand, from studies in our and other laboratories, it is known that ethanol exposure during the last gestational days (GD) consistently enhances the postnatal acceptance of ethanol when measured during early ontogeny in the rat. This increased liking of ethanol is a conditioned appetitive response acquired by the fetus by the association of ethanol’s flavor and an appetitive reinforcer. Although this reinforcer has not yet been fully identified, one possibility points to acetaldehyde produced centrally in the fetus as a likely candidate. This hypothesis is supported by data showing that very early in the rat’s ontogeny brain catalases are functional, while the liver’s enzymatic system is still immature. In this study, rat dams were administered on GD 17–20 with water or ethanol, together with an acetaldehyde-sequestering agent (D-penicillamine). The offspring’s responses to ethanol was then assessed at different postnatal stages with procedures adequate for each developmental stage: on day 1, using the “odor crawling locomotion test” to measure ethanol’s odor attractiveness; on day 5, in an operant conditioning procedure with ethanol as the reinforcer; and on day 14 in an ethanol intake test. Results show that the absence of acetaldehyde during prenatal ethanol exposure impeded the observation of the increased acceptance of ethanol at any age. This seems to confirm the crucial role of acetaldehyde as a reinforcer in the appetitive learning occurring during prenatal ethanol exposure. PMID:28197082

  17. The Role of Acetaldehyde in the Increased Acceptance of Ethanol after Prenatal Ethanol Exposure.

    PubMed

    Gaztañaga, Mirari; Angulo-Alcalde, Asier; Spear, Norman E; Chotro, M Gabriela

    2017-01-01

    Recent studies show that acetaldehyde, the first metabolite in the oxidation of ethanol, can be responsible for both, the appetitive and the aversive effects produced by ethanol intoxication. More specifically, it has been hypothesized that acetaldehyde produced in the periphery by the liver is responsible for the aversive effects of ethanol, while the appetitive effects relate to the acetaldehyde produced centrally through the catalase system. On the other hand, from studies in our and other laboratories, it is known that ethanol exposure during the last gestational days (GD) consistently enhances the postnatal acceptance of ethanol when measured during early ontogeny in the rat. This increased liking of ethanol is a conditioned appetitive response acquired by the fetus by the association of ethanol's flavor and an appetitive reinforcer. Although this reinforcer has not yet been fully identified, one possibility points to acetaldehyde produced centrally in the fetus as a likely candidate. This hypothesis is supported by data showing that very early in the rat's ontogeny brain catalases are functional, while the liver's enzymatic system is still immature. In this study, rat dams were administered on GD 17-20 with water or ethanol, together with an acetaldehyde-sequestering agent (D-penicillamine). The offspring's responses to ethanol was then assessed at different postnatal stages with procedures adequate for each developmental stage: on day 1, using the "odor crawling locomotion test" to measure ethanol's odor attractiveness; on day 5, in an operant conditioning procedure with ethanol as the reinforcer; and on day 14 in an ethanol intake test. Results show that the absence of acetaldehyde during prenatal ethanol exposure impeded the observation of the increased acceptance of ethanol at any age. This seems to confirm the crucial role of acetaldehyde as a reinforcer in the appetitive learning occurring during prenatal ethanol exposure.

  18. Determination of acetaldehyde in saliva by gas-diffusion flow injection analysis.

    PubMed

    Ramdzan, Adlin N; Mornane, Patrick J; McCullough, Michael J; Mazurek, Waldemar; Kolev, Spas D

    2013-07-05

    The consumption of ethanol is known to increase the likelihood of oral cancer. In addition, there has been a growing concern about possible association between long term use of ethanol-containing mouthwashes and oral cancer. Acetaldehyde, known to be a carcinogen, is the first metabolite of ethanol and it can be produced in the oral cavity after consumption or exposure to ethanol. This paper reports on the development of a gas-diffusion flow injection method for the online determination of salivary acetaldehyde by its colour reaction with 3-methyl-2-benzothiazolinone hydrazone (MBTH) and ferric chloride. Acetaldehyde samples and standards (80 μL) were injected into the donor stream containing NaCl from which acetaldehyde diffused through the hydrophobic Teflon membrane of the gas-diffusion cell into the acceptor stream containing the two reagents mentioned above. The resultant intense green coloured dye was monitored spectrophotometrically at 600 nm. Under the optimum working conditions the method is characterized by a sampling rate of 9h(-1), a linear calibration range of 0.5-15 mg L(-1) (absorbance=5.40×10(-2) [acetaldehyde, mg L(-1)], R(2)=0.998), a relative standard deviation (RSD) of 1.90% (n=10, acetaldehyde concentration of 2.5 mg L(-1)), and a limit of detection (LOD) of 12.3 μg L(-1). The LOD and sampling rate of the proposed method are superior to those of the conventional gas chromatographic (GC) method (LOD=93.0 μg L(-1) and sampling rate=4 h(-1)). The reliability of the proposed method was illustrated by the fact that spiked with acetaldehyde saliva samples yielded excellent recoveries (96.6-101.9%), comparable to those obtained by GC (96.4-102.3%) and there was no statistically significant difference at the 95% confidence level between the two methods when non-spiked saliva samples were analysed.

  19. Sex differences, alcohol dehydrogenase, acetaldehyde burst, and aversion to ethanol in the rat: a systems perspective.

    PubMed

    Quintanilla, María Elena; Tampier, Lutske; Sapag, Amalia; Gerdtzen, Ziomara; Israel, Yedy

    2007-08-01

    Individuals who carry the most active alcohol dehydrogenase (ADH) isoforms are protected against alcoholism. This work addresses the mechanism by which a high ADH activity leads to low ethanol intake in animals. Male and female ethanol drinker rats (UChB) were allowed access to 10% ethanol for 1 h. Females showed 70% higher hepatic ADH activity and displayed 60% lower voluntary ethanol intake than males. Following ethanol administration (1 g/kg ip), females generated a transient blood acetaldehyde increase ("burst") with levels that were 2.5-fold greater than in males (P < 0.02). Castration of males led to 1) an increased ADH activity (+50%, P < 0.001), 2) the appearance of an acetaldehyde burst (3- to 4-fold vs. sham), and 3) a reduction of voluntary ethanol intake comparable with that of naïve females. The ADH inhibitor 4-methylpyrazole blocked the appearance of arterial acetaldehyde and increased ethanol intake. Since the release of NADH from the ADH.NADH complex constitutes the rate-limiting step of ADH (but not of ALDH2) activity, endogenous NADH oxidizing substrates present at the time of ethanol intake may contribute to the acetaldehyde burst. Sodium pyruvate given at the time of ethanol administration led to an abrupt acetaldehyde burst and a greatly reduced voluntary ethanol intake. Overall, a transient surge of arterial acetaldehyde occurs upon ethanol administration due to 1) high ADH levels and 2) available metabolites that can oxidize hepatic NADH. The acetaldehyde burst is strongly associated with a marked reduction in ethanol intake.

  20. Two-carbon metabolites, polyphenols and vitamins influence yeast chronological life span in winemaking conditions

    PubMed Central

    2012-01-01

    Background Viability in a non dividing state is referred to as chronological life span (CLS). Most grape juice fermentation happens when Saccharomyces cerevisiae yeast cells have stopped dividing; therefore, CLS is an important factor toward winemaking success. Results We have studied both the physical and chemical determinants influencing yeast CLS. Low pH and heat shorten the maximum wine yeast life span, while hyperosmotic shock extends it. Ethanol plays an important negative role in aging under winemaking conditions, but additional metabolites produced by fermentative metabolism, such as acetaldehyde and acetate, have also a strong impact on longevity. Grape polyphenols quercetin and resveratrol have negative impacts on CLS under winemaking conditions, an unexpected behavior for these potential anti-oxidants. We observed that quercetin inhibits alcohol and aldehyde dehydrogenase activities, and that resveratrol performs a pro-oxidant role during grape juice fermentation. Vitamins nicotinic acid and nicotinamide are precursors of NAD+, and their addition reduces mean longevity during fermentation, suggesting a metabolic unbalance negative for CLS. Moreover, vitamin mix supplementation at the end of fermentation shortens CLS and enhances cell lysis, while amino acids increase life span. Conclusions Wine S. cerevisiae strains are able to sense changes in the environmental conditions and adapt their longevity to them. Yeast death is influenced by the conditions present at the end of wine fermentation, particularly by the concentration of two-carbon metabolites produced by the fermentative metabolism, such as ethanol, acetic acid and acetaldehyde, and also by the grape juice composition, particularly its vitamin content. PMID:22873488

  1. Influence of oxygen therapy on glucose-lactate metabolism after diffuse brain injury.

    PubMed

    Reinert, Michael; Schaller, Benoit; Widmer, Hans Rudolf; Seiler, Rolf; Bullock, Ross

    2004-08-01

    O2 influences dialysate glucose and lactate levels in injured brain tissue. Using an FiO2 of 1 influences brain metabolism in such a way that lactate is significantly reduced and glucose significantly increased. No changes in dialysate glucose and lactate values were found in the noninjured brain.

  2. Influence of coral and algal exudates on microbially mediated reef metabolism.

    PubMed

    Haas, Andreas F; Nelson, Craig E; Rohwer, Forest; Wegley-Kelly, Linda; Quistad, Steven D; Carlson, Craig A; Leichter, James J; Hatay, Mark; Smith, Jennifer E

    2013-01-01

    Benthic primary producers in tropical reef ecosystems can alter biogeochemical cycling and microbial processes in the surrounding seawater. In order to quantify these influences, we measured rates of photosynthesis, respiration, and dissolved organic carbon (DOC) exudate release by the dominant benthic primary producers (calcifying and non-calcifying macroalgae, turf-algae and corals) on reefs of Mo'orea French Polynesia. Subsequently, we examined planktonic and benthic microbial community response to these dissolved exudates by measuring bacterial growth rates and oxygen and DOC fluxes in dark and daylight incubation experiments. All benthic primary producers exuded significant quantities of DOC (roughly 10% of their daily fixed carbon) into the surrounding water over a diurnal cycle. The microbial community responses were dependent upon the source of the exudates and whether the inoculum of microbes included planktonic or planktonic plus benthic communities. The planktonic and benthic microbial communities in the unamended control treatments exhibited opposing influences on DO concentration where respiration dominated in treatments comprised solely of plankton and autotrophy dominated in treatments with benthic plus plankon microbial communities. Coral exudates (and associated inorganic nutrients) caused a shift towards a net autotrophic microbial metabolism by increasing the net production of oxygen by the benthic and decreasing the net consumption of oxygen by the planktonic microbial community. In contrast, the addition of algal exudates decreased the net primary production by the benthic communities and increased the net consumption of oxygen by the planktonic microbial community thereby resulting in a shift towards net heterotrophic community metabolism. When scaled up to the reef habitat, exudate-induced effects on microbial respiration did not outweigh the high oxygen production rates of benthic algae, such that reef areas dominated with benthic primary

  3. Influence of coral and algal exudates on microbially mediated reef metabolism

    PubMed Central

    Nelson, Craig E.; Rohwer, Forest; Wegley-Kelly, Linda; Quistad, Steven D.; Carlson, Craig A.; Leichter, James J.; Hatay, Mark; Smith, Jennifer E.

    2013-01-01

    Benthic primary producers in tropical reef ecosystems can alter biogeochemical cycling and microbial processes in the surrounding seawater. In order to quantify these influences, we measured rates of photosynthesis, respiration, and dissolved organic carbon (DOC) exudate release by the dominant benthic primary producers (calcifying and non-calcifying macroalgae, turf-algae and corals) on reefs of Mo‘orea French Polynesia. Subsequently, we examined planktonic and benthic microbial community response to these dissolved exudates by measuring bacterial growth rates and oxygen and DOC fluxes in dark and daylight incubation experiments. All benthic primary producers exuded significant quantities of DOC (roughly 10% of their daily fixed carbon) into the surrounding water over a diurnal cycle. The microbial community responses were dependent upon the source of the exudates and whether the inoculum of microbes included planktonic or planktonic plus benthic communities. The planktonic and benthic microbial communities in the unamended control treatments exhibited opposing influences on DO concentration where respiration dominated in treatments comprised solely of plankton and autotrophy dominated in treatments with benthic plus plankon microbial communities. Coral exudates (and associated inorganic nutrients) caused a shift towards a net autotrophic microbial metabolism by increasing the net production of oxygen by the benthic and decreasing the net consumption of oxygen by the planktonic microbial community. In contrast, the addition of algal exudates decreased the net primary production by the benthic communities and increased the net consumption of oxygen by the planktonic microbial community thereby resulting in a shift towards net heterotrophic community metabolism. When scaled up to the reef habitat, exudate-induced effects on microbial respiration did not outweigh the high oxygen production rates of benthic algae, such that reef areas dominated with benthic primary

  4. A Novel Antifungal Is Active against Candida albicans Biofilms and Inhibits Mutagenic Acetaldehyde Production In Vitro

    PubMed Central

    Nieminen, Mikko T.; Novak-Frazer, Lily; Rautemaa, Vilma; Rajendran, Ranjith; Sorsa, Timo; Ramage, Gordon; Bowyer, Paul; Rautemaa, Riina

    2014-01-01

    The ability of C. albicans to form biofilms is a major virulence factor and a challenge for management. This is evident in biofilm-associated chronic oral-oesophageal candidosis, which has been shown to be potentially carcinogenic in vivo. We have previously shown that most Candida spp. can produce significant levels of mutagenic acetaldehyde (ACH). ACH is also an important mediator of candidal biofilm formation. We have also reported that D,L-2-hydroxyisocaproic acid (HICA) significantly inhibits planktonic growth of C. albicans. The aim of the present study was to investigate the effect of HICA on C. albicans biofilm formation and ACH production in vitro. Inhibition of biofilm formation by HICA, analogous control compounds or caspofungin was measured using XTT to measure biofilm metabolic activity and PicoGreen as a marker of biomass. Biofilms were visualised by scanning electron microscopy (SEM). ACH levels were measured by gas chromatography. Transcriptional changes in the genes involved in ACH metabolism were measured using RT-qPCR. The mean metabolic activity and biomass of all pre-grown (4, 24, 48 h) biofilms were significantly reduced after exposure to HICA (p<0.05) with the largest reductions seen at acidic pH. Caspofungin was mainly active against biofilms pre-grown for 4 h at neutral pH. Mutagenic levels (>40 µM) of ACH were detected in 24 and 48 h biofilms at both pHs. Interestingly, no ACH production was detected from D-glucose in the presence of HICA at acidic pH (p<0.05). Expression of genes responsible for ACH catabolism was up-regulated by HICA but down-regulated by caspofungin. SEM showed aberrant hyphae and collapsed hyphal structures during incubation with HICA at acidic pH. We conclude that HICA has potential as an antifungal agent with ability to inhibit C. albicans cell growth and biofilm formation. HICA also significantly reduces the mutagenic potential of C. albicans biofilms, which may be important when treating bacterial-fungal biofilm

  5. A novel antifungal is active against Candida albicans biofilms and inhibits mutagenic acetaldehyde production in vitro.

    PubMed

    Nieminen, Mikko T; Novak-Frazer, Lily; Rautemaa, Wilma; Rajendran, Ranjith; Sorsa, Timo; Ramage, Gordon; Bowyer, Paul; Rautemaa, Riina

    2014-01-01

    The ability of C. albicans to form biofilms is a major virulence factor and a challenge for management. This is evident in biofilm-associated chronic oral-oesophageal candidosis, which has been shown to be potentially carcinogenic in vivo. We have previously shown that most Candida spp. can produce significant levels of mutagenic acetaldehyde (ACH). ACH is also an important mediator of candidal biofilm formation. We have also reported that D,L-2-hydroxyisocaproic acid (HICA) significantly inhibits planktonic growth of C. albicans. The aim of the present study was to investigate the effect of HICA on C. albicans biofilm formation and ACH production in vitro. Inhibition of biofilm formation by HICA, analogous control compounds or caspofungin was measured using XTT to measure biofilm metabolic activity and PicoGreen as a marker of biomass. Biofilms were visualised by scanning electron microscopy (SEM). ACH levels were measured by gas chromatography. Transcriptional changes in the genes involved in ACH metabolism were measured using RT-qPCR. The mean metabolic activity and biomass of all pre-grown (4, 24, 48 h) biofilms were significantly reduced after exposure to HICA (p<0.05) with the largest reductions seen at acidic pH. Caspofungin was mainly active against biofilms pre-grown for 4 h at neutral pH. Mutagenic levels (>40 μM) of ACH were detected in 24 and 48 h biofilms at both pHs. Interestingly, no ACH production was detected from D-glucose in the presence of HICA at acidic pH (p<0.05). Expression of genes responsible for ACH catabolism was up-regulated by HICA but down-regulated by caspofungin. SEM showed aberrant hyphae and collapsed hyphal structures during incubation with HICA at acidic pH. We conclude that HICA has potential as an antifungal agent with ability to inhibit C. albicans cell growth and biofilm formation. HICA also significantly reduces the mutagenic potential of C. albicans biofilms, which may be important when treating bacterial-fungal biofilm

  6. A novel antifungal is active against Candida albicans biofilms and inhibits mutagenic acetaldehyde production in vitro.

    PubMed

    Nieminen, Mikko T; Novak-Frazer, Lily; Rautemaa, Vilma; Rajendran, Ranjith; Sorsa, Timo; Ramage, Gordon; Bowyer, Paul; Rautemaa, Riina

    2014-01-01

    The ability of C. albicans to form biofilms is a major virulence factor and a challenge for management. This is evident in biofilm-associated chronic oral-oesophageal candidosis, which has been shown to be potentially carcinogenic in vivo. We have previously shown that most Candida spp. can produce significant levels of mutagenic acetaldehyde (ACH). ACH is also an important mediator of candidal biofilm formation. We have also reported that D,L-2-hydroxyisocaproic acid (HICA) significantly inhibits planktonic growth of C. albicans. The aim of the present study was to investigate the effect of HICA on C. albicans biofilm formation and ACH production in vitro. Inhibition of biofilm formation by HICA, analogous control compounds or caspofungin was measured using XTT to measure biofilm metabolic activity and PicoGreen as a marker of biomass. Biofilms were visualised by scanning electron microscopy (SEM). ACH levels were measured by gas chromatography. Transcriptional changes in the genes involved in ACH metabolism were measured using RT-qPCR. The mean metabolic activity and biomass of all pre-grown (4, 24, 48 h) biofilms were significantly reduced after exposure to HICA (p<0.05) with the largest reductions seen at acidic pH. Caspofungin was mainly active against biofilms pre-grown for 4 h at neutral pH. Mutagenic levels (>40 µM) of ACH were detected in 24 and 48 h biofilms at both pHs. Interestingly, no ACH production was detected from D-glucose in the presence of HICA at acidic pH (p<0.05). Expression of genes responsible for ACH catabolism was up-regulated by HICA but down-regulated by caspofungin. SEM showed aberrant hyphae and collapsed hyphal structures during incubation with HICA at acidic pH. We conclude that HICA has potential as an antifungal agent with ability to inhibit C. albicans cell growth and biofilm formation. HICA also significantly reduces the mutagenic potential of C. albicans biofilms, which may be important when treating bacterial-fungal biofilm

  7. Measurement of acetaldehyde in exhaled breath using a laser absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Kamat, Pratyuma C.; Roller, Chad B.; Namjou, Khosrow; Jeffers, James D.; Faramarzalian, Ali; Salas, Rodolfo; McCann, Patrick J.

    2007-07-01

    A high-resolution liquid-nitrogen-free mid-infrared tunable diode laser absorption spectroscopy (TDLAS) system was used to perform real-time measurement of acetaldehyde concentrations in human exhaled breath following ingestion of an alcoholic beverage. Acetaldehyde absorption features were measured near 5.79 μm (1727 cm-1) using a IV-VI semiconductor laser, a 100 m long path optical gas cell, and second- harmonic detection coupled with wavelength modulation. Acetaldehyde levels were measured with a minimum detection limit of 80 ppb for 5 s integration time. The variations in exhaled acetaldehyde levels over time were analyzed prior to and following ingestion of two different amounts of white wine. A method to calibrate acetaldehyde measurements internally using water vapor absorption lines was investigated to eliminate the need for system calibration with gas standards. The potential of a TDLAS system to be used as a noninvasive clinical tool for measurements of large volatile compounds with possible applications in cancer detection is demonstrated.

  8. Theoretical study of the mechanism of cycloaddition reaction between dichloro-germylidene and acetaldehyde

    NASA Astrophysics Data System (ADS)

    Lu, Xiuhui; Han, Junfeng; Xu, Yuehua; Shi, Leyi; Lian, Zhenxia

    2010-06-01

    The mechanism of the cycloadditional reaction between singlet dichloro-germylidene(R1) and (acetaldehyde(R2) has been investigated with MP2/6-31G* method, including geometry optimization, vibrational analysis and energies for the involved stationary points on the potential energy surface. From the potential energy profile, we predict that the cycloaddition reaction between singlet dichloro-germylidene and acetaldehyde has two competitive dominant reaction pathways. Going with the formation of two side products (INT3 and INT4), simultaneously. The two competitive reactions both consist of two steps: (1) two reactants firstly form a three-membered ring intermediate (INT1) and a twisted four-membered ring intermediate (INT2), respectively, both of which are barrier-free exothermic reactions of 44.5 and 63.0 kJ/mol; (2) then INT1 and INT2 further isomerize to a four-membered ring product (P1) and a chlorine-transfer product (P2) via transitions (TS1 and TS2), respectively, with the barriers of 9.3 and 1.0 kJ/mol; simultaneously, P1 and INT2 react further with acetaldehyde(R2) to give two side products (INT3 and INT4), respectively, which are also barrier-free exothermic reaction of 65.4 and 102.7 kJ/mol.

  9. Dissociative electron attachments to ethanol and acetaldehyde: A combined experimental and simulation study

    SciTech Connect

    Wang, Xu-Dong; Xuan, Chuan-Jin; Feng, Wen-Ling; Tian, Shan Xi

    2015-02-14

    Dissociation dynamics of the temporary negative ions of ethanol and acetaldehyde formed by the low-energy electron attachments is investigated by using the anion velocity map imaging technique and ab initio molecular dynamics simulations. The momentum images of the dominant fragments O{sup −}/OH{sup −} and CH{sub 3}{sup −} are recorded, indicating the low kinetic energies of O{sup −}/OH{sup −} for ethanol while the low and high kinetic energy distributions of O{sup −} ions for acetaldehyde. The CH{sub 3}{sup −} image for acetaldehyde also shows the low kinetic energy. With help of the dynamics simulations, the fragmentation processes are qualitatively clarified. A new cascade dissociation pathway to produce the slow O{sup −} ion via the dehydrogenated intermediate, CH{sub 3}CHO{sup −} (acetaldehyde anion), is proposed for the dissociative electron attachment to ethanol. After the electron attachment to acetaldehyde molecule, the slow CH{sub 3}{sup −} is produced quickly in the two-body dissociation with the internal energy redistributions in different aspects before bond cleavages.

  10. Adsorption and Reaction of Acetaldehyde on Stoichiometric and Defective SrTiO₃(100) Surfaces

    SciTech Connect

    Wang, Li Q.; Ferris, Kim F.; Azad, Samina; Engelhard, Mark H.; Peden, Charles HF.

    2004-02-05

    The adsorption and reaction of acetaldehyde (CH{sub 3}CHO), on stoichiometric (TiO{sub 2}-terminated) and reduced SrTiO{sub 3}(100) surfaces, have been investigated using temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). Acetaldehyde adsorbs molecularly on the stoichiometric SrTiO{sub 3}(100) surface that contains predominantly Ti{sup 4+} cations. The Ti{sup 4+} sites on the stoichiometric SrTiO{sub 3}(100) surface are not sufficiently active for surface reactions such as aldol condensation, as opposed to the Ti{sup 4+} ions on the TiO{sub 2}(001) surface. However, decomposition and redox reactions of acetaldehyde occur in the presence of surface defects created by Ar{sup +} sputtering. The decomposition products following reactions of acetaldehyde on the defective surface include H{sub 2}, C{sub 2}H{sub 4}, CO, C{sub 4}H{sub 6}, and C{sub 4}H{sub 8}. Reductive coupling, to produce C{sub 2}H{sub 4} and C{sub 4}H{sub 8} is the main reaction pathway for decomposition of acetaldehyde on the sputter reduced SrTiO{sub 3}(100) surface.

  11. Formaldehyde and acetaldehyde associated with the use of natural gas as a fuel for light vehicles

    NASA Astrophysics Data System (ADS)

    Corrêa, Sérgio M.; Arbilla, Graciela

    Data collected from 1998 to 2001 clearly show that formaldehyde levels in ambient air of the city of Rio de Janeiro increased in 2001 (Corrêa et al., 2003, Atmospheric Environment 37, 23-29). In order to continue this study, samples were collected at the same site in the period from 2001 to 2002. In this work, we present the observed trends for formaldehyde and acetaldehyde levels from 1998 to 2002. Mean formaldehyde levels increased from 20 ppb in 1998 to 80 ppb in 2002, while acetaldehyde concentrations remained nearly unchanged. The formaldehyde/acetaldehyde ratio increased from 1.0 to 4.5 in the same period of time. These results may be explained by the increasing use of compressed natural gas by the vehicular fleet, in substitution of ethanol and gasohol (a mixture of gasoline and ethanol, 24% v/v). In order to confirm this hypothesis, some experiments were carried out to estimate the formaldehyde and acetaldehyde emissions from 20 automobiles powered by natural gas. The results showed a mean formaldehyde/acetaldehyde emission ratio of 3.42 for natural gas-fueled vehicles and of 0.24 when the same vehicles are fueled with gasohol. These high levels of formaldehyde may be attributed to the incomplete combustion of methane (80-90% of the natural gas) that is catalytically converted to formaldehyde in the exhaust pipe.

  12. Measurement of acetaldehyde in exhaled breath using a laser absorption spectrometer.

    PubMed

    Kamat, Pratyuma C; Roller, Chad B; Namjou, Khosrow; Jeffers, James D; Faramarzalian, Ali; Salas, Rodolfo; McCann, Patrick J

    2007-07-01

    A high-resolution liquid-nitrogen-free mid-infrared tunable diode laser absorption spectroscopy (TDLAS) system was used to perform real-time measurement of acetaldehyde concentrations in human exhaled breath following ingestion of an alcoholic beverage. Acetaldehyde absorption features were measured near 5.79 mum (1727 cm(-1)) using a IV-VI semiconductor laser, a 100 m long path optical gas cell, and second- harmonic detection coupled with wavelength modulation. Acetaldehyde levels were measured with a minimum detection limit of 80 ppb for 5 s integration time. The variations in exhaled acetaldehyde levels over time were analyzed prior to and following ingestion of two different amounts of white wine. A method to calibrate acetaldehyde measurements internally using water vapor absorption lines was investigated to eliminate the need for system calibration with gas standards. The potential of a TDLAS system to be used as a noninvasive clinical tool for measurements of large volatile compounds with possible applications in cancer detection is demonstrated.

  13. Influence of dietary saturated fat content on adiposity, macrophage behavior, inflammation, and metabolism: composition matters.

    PubMed

    Enos, Reilly T; Davis, J Mark; Velázquez, Kandy T; McClellan, Jamie L; Day, Stani D; Carnevale, Kevin A; Murphy, E Angela

    2013-01-01

    We examined the effects of three high-fat diets (HFD), differing in the percentage of total calories from saturated fat (SF) (6%, 12%, and 24%) but identical in total fat (40%), on body composition, macrophage behavior, inflammation, and metabolic dysfunction in mice. Diets were administered for 16 weeks. Body composition and metabolism [glucose, insulin, triglycerides, LDL-cholesterol (LDL-C), HDL-cholesterol (HDL-C), total cholesterol (TC)] were examined monthly. Adipose tissue (AT) expression of marker genes for M1 and M2 macrophages and inflammatory mediators [Toll-like receptor (TLR)-2, TLR-4, MCP-1, tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-10, suppressor of cytokine signaling (SOCS)1, IFN-γ] was measured along with activation of nuclear factor kappa-B (NFκB), c-Jun N-terminal kinase (JNK), and p38- mitogen-activated protein kinase (MAPK). AT macrophage infiltration was examined using immunohistochemistry. Circulating MCP-1, IL-6, adiponectin, and leptin were also measured. SF content, independent of total fat, can profoundly affect adiposity, macrophage behavior, inflammation, and metabolic dysfunction. In general, the 12%-SF diet, most closely mimicking the standard American diet, led to the greatest adiposity, macrophage infiltration, and insulin resistance (IR), whereas the 6%-SF and 24%-SF diets produced lower levels of these variables, with the 24%-SF diet resulting in the least degree of IR and the highest TC/HDL-C ratio. Macrophage behavior, inflammation, and IR following HFD are heavily influenced by dietary SF content; however, these responses are not necessarily proportional to the SF percentage.

  14. Influence of dietary saturated fat content on adiposity, macrophage behavior, inflammation, and metabolism: composition matters

    PubMed Central

    Enos, Reilly T.; Davis, J. Mark; Velázquez, Kandy T.; McClellan, Jamie L.; Day, Stani D.; Carnevale, Kevin A.; Murphy, E. Angela

    2013-01-01

    We examined the effects of three high-fat diets (HFD), differing in the percentage of total calories from saturated fat (SF) (6%, 12%, and 24%) but identical in total fat (40%), on body composition, macrophage behavior, inflammation, and metabolic dysfunction in mice. Diets were administered for 16 weeks. Body composition and metabolism [glucose, insulin, triglycerides, LDL-cholesterol (LDL-C), HDL-cholesterol (HDL-C), total cholesterol (TC)] were examined monthly. Adipose tissue (AT) expression of marker genes for M1 and M2 macrophages and inflammatory mediators [Toll-like receptor (TLR)-2, TLR-4, MCP-1, tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-10, suppressor of cytokine signaling (SOCS)1, IFN-γ] was measured along with activation of nuclear factor kappa-B (NFκB), c-Jun N-terminal kinase (JNK), and p38- mitogen-activated protein kinase (MAPK). AT macrophage infiltration was examined using immunohistochemistry. Circulating MCP-1, IL-6, adiponectin, and leptin were also measured. SF content, independent of total fat, can profoundly affect adiposity, macrophage behavior, inflammation, and metabolic dysfunction. In general, the 12%-SF diet, most closely mimicking the standard American diet, led to the greatest adiposity, macrophage infiltration, and insulin resistance (IR), whereas the 6%-SF and 24%-SF diets produced lower levels of these variables, with the 24%-SF diet resulting in the least degree of IR and the highest TC/HDL-C ratio. Macrophage behavior, inflammation, and IR following HFD are heavily influenced by dietary SF content; however, these responses are not necessarily proportional to the SF percentage. PMID:23103474

  15. Influence of Resistance Training on Blood Pressure in Patients with Metabolic Syndrome and Menopause

    PubMed Central

    Cardoso, Glêbia Alexa; Silva, Alexandre Sérgio; de Souza, Alesandra Araújo; dos Santos, Marcos Antônio Pereira; da Silva, Raquel Suelen Brito; de Lacerda, Lavoisiana Mateus; Motae, Maria Paula

    2014-01-01

    This study investigated the chronic and acute influence of resistance exercise on blood pressure in women with metabolic syndrome before and after climacteric. Twenty sedentary women, nine non-menopausal (RNM) and 11 menopausal (RM), performed training for 12 weeks. Meanwhile, 23 controls, 11 not menopausal (CNM) and 12 menopausal (CM), remained sedentary. Blood pressure was measured before and after the training period in conditions of rest and after a session of exercise. Training promoted variations in blood pressure at rest from 116±13 to 118±10 mmHg (p=0.73) and from 128±12 mmHg to 120±11mmHg (p=0.12) in RNM and RM, respectively. CNM and CM varied from 115±11 to 116±12 mmHg (p=0.9) and from 115±14 mmHg to 116±13 mmHg (p=0.74). Blood pressure values in one acute session did not differ between groups (p>0.05). Resistance training did not improve blood pressure in women with metabolic syndrome, regardless of climacteric. PMID:25713648

  16. Rain influences the physiological and metabolic responses to exercise in hot conditions.

    PubMed

    Ito, Ryo; Yamashita, Naoyuki; Suzuki, Eiko; Matsumoto, Takaaki

    2015-01-01

    Outdoor exercise often proceeds in rainy conditions. However, the cooling effects of rain on human physiological responses have not been systematically studied in hot conditions. The present study determined physiological and metabolic responses using a climatic chamber that can precisely simulate hot, rainy conditions. Eleven healthy men ran on a treadmill at an intensity of 70% VO2max for 30 min in the climatic chamber at an ambient temperature of 33°C in the presence (RAIN) or absence (CON) of 30 mm · h(-1) of precipitation and a headwind equal to the running velocity of 3.15 ± 0.19 m · s(-1). Oesophageal temperature, mean skin temperature, heart rate, rating of perceived exertion, blood parameters, volume of expired air and sweat loss were measured. Oesophageal and mean skin temperatures were significantly lower from 5 to 30 min, and heart rate was significantly lower from 20 to 30 min in RAIN than in CON (P < 0.05 for all). Plasma lactate and epinephrine concentrations (30 min) and sweat loss were significantly lower (P < 0.05) in RAIN compared with CON. Rain appears to influence physiological and metabolic responses to exercise in heat such that heat-induced strain might be reduced.

  17. Influence of dietary arginine on sexual dimorphism of arginine metabolism in mice.

    PubMed

    Ruzafa, Carolina; Monserrat, Francisco; Cremades, Asunción; Peñafiel, Rafael

    2003-06-01

    We have studied the influence of dietary arginine on tissue arginine content, and arginine metabolism in CD1 mice. Dietary arginine restriction produced by feeding mice with a low arginine diet (0.06%) produced a marked decrease in arginine concentrations in the plasma, skeletal muscle and kidney of female mice (72%, 67% and 54%, respectively) while in male mice the decreases were smaller (58% in blood and 18% in the skeletal muscle). This diet abolished not only the sexual dimorphism in arginine content observed in mice fed with the diet containing 1% arginine, but also reduced renal activities of arginase and nitric oxide synthase in the female mice and ornithine decarboxylase and the decarboxylation of arginine in the male mice. Urinary putrescine excretion was dramatically reduced by arginine restriction in the male mice whereas orotic acid excretion increased about 30 fold in both sexes; urea and creatinine excretion did not change. Taken together our results indicate that dietary arginine plays a relevant role in the maintenance of the sexual dimorphism in arginine content and arginine metabolism in CD1 mice, and that this may have physiological significance because of the important effects that arginine-derived products exert on a variety of cellular processes.

  18. The relative influence of nutrients and habitat on stream metabolism in agricultural streams

    USGS Publications Warehouse

    Frankforter, J.D.; Weyers, H.S.; Bales, J.D.; Moran, P.W.; Calhoun, D.L.

    2010-01-01

    Stream metabolism was measured in 33 streams across a gradient of nutrient concentrations in four agricultural areas of the USA to determine the relative influence of nutrient concentrations and habitat on primary production (GPP) and respiration (CR-24). In conjunction with the stream metabolism estimates, water quality and algal biomass samples were collected, as was an assessment of habitat in the sampling reach. When data for all study areas were combined, there were no statistically significant relations between gross primary production or community respiration and any of the independent variables. However, significant regression models were developed for three study areas for GPP (r 2 = 0.79-0.91) and CR-24 (r 2 = 0.76-0.77). Various forms of nutrients (total phosphorus and area-weighted total nitrogen loading) were significant for predicting GPP in two study areas, with habitat variables important in seven significant models. Important physical variables included light availability, precipitation, basin area, and in-stream habitat cover. Both benthic and seston chlorophyll were not found to be important explanatory variables in any of the models; however, benthic ash-free dry weight was important in two models for GPP. ?? 2009 The Author(s).

  19. Obesity-associated metabolic changes influence resting and peak heart rate in women and men.

    PubMed

    Strandheim, Astrid; Halland, Hilde; Saeed, Sahrai; Cramariuc, Dana; Hetland, Trude; Lønnebakken, Mai Tone; Gerdts, Eva

    2015-01-01

    To study the relationship between obesity and heart rate (HR) in women and men. We studied 241 overweight and obese subjects without known heart disease. All subjects underwent ergospirometry during maximal exercise testing on treadmill and recording of body composition, electrocardiogram and clinic and ambulatory blood pressure. Women (n = 132) were slightly older and had higher fat mass, but lower weight, blood pressure and prevalence of metabolic syndrome (MetS) than men (n = 109) (all p < 0.05), while prevalences of obesity and hypertension did not differ. A significant interaction between sex and HR was demonstrated (p < 0.05). In multivariate analysis, female sex (β = 0.99, p < 0.01) predicted higher resting HR independent of confounders. Higher resting HR was particularly associated with presence of MetS, hypertension, higher insulin resistance and lower relative muscle mass in men (all p < 0.05). Female sex also predicted higher peak exercise HR (β = 0.48, p < 0.01) independent of confounders. Higher peak exercise HR was particularly associated with higher exercise capacity and lower age and self-reported physical activity in men, while lower HbA1c and absence of obesity were the main covariates in women in multivariate analyses (all p < 0.05). In our study population, obesity and obesity-associated metabolic changes influenced both resting and peak exercise HR.

  20. Influence of phenolic constituents from Yucca schidigera bark on arachidonate metabolism in vitro.

    PubMed

    Wenzig, Eva M; Oleszek, Wieslaw; Stochmal, Anna; Kunert, Olaf; Bauer, Rudolf

    2008-10-08

    Yucca schidigera Roezl. (Agavaceae) has been traditionally used to treat a variety of diseases including arthritis and rheumatism. Phenolic constituents isolated from yucca bark, such as resveratrol, trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene, and the yuccaols, have been shown to possess various activities in vitro, such as antioxidant, radical scavenging, iNOS expression inhibitory, and platelet aggregation inhibitory effects. In the present study, the influence of a phenolic-rich fraction from yucca bark and of its main phenolic constituents on key enzymes of arachidonate metabolism was investigated. The fraction and the pure phenolics were shown to inhibit COX-1, COX-2, and LTB 4 formation by 5-LOX in vitro to different extents. The degree of COX-1 inhibition was found to be strongly dependent on the substitution pattern of ring B of the stilbenic moiety. The same trend was observed for the COX-2 inhibitory potential, which was, however, in general much lower for the yuccaols as compared with resveratrol. Resveratrol was also the only compound possessing an LTB 4 formation inhibitory activity. The inhibitory activity on key enzymes of arachidonate metabolism observed in this study might contribute to the explanation of the anti-inflammatory and antiplatelet effects observed for Y. schidigera and its phenolic constituents.

  1. [Influence of calcic and magnesic sulphurous thermal water on the metabolism of lipoproteins in the rat].

    PubMed

    Toussaint, C; Peuchant, E; Nguyen, B C; Jensen, R; Canellas, J

    1986-06-01

    We have studied in rats fed hypercholesterolemic diet the action of calcic and magnesic sulphurous water from Capvern on the modification of the lipoproteins metabolism caused by hypercholesterolemia. The rats subjected to a hypercholesterolemic diet with thermal water of Capvern was found to have a plasma level of cholesterol significantly less increased (P less than 0.01) compared to those subjected to the same diet with ordinary drinking water (25%). We demonstrated after 105 days of experimentation on tested rats that thermal water may affect the cholesterol catabolism by increased level of cholesterol HDL (52%) and stabilizing level of cholesterol LDL comparatively to the controls. These data suggest that the thermal water from Capvern enhanced the transformation of cholesterol to biliary acids and their biliary secretion. A possible relationship between the influence of the thermal water and the metabolism of lipoproteins would be explained by a possible increase of hepatic receptors which identify apolipoproteins B (LDL) and E (HDLc) on cholesterol fed rats, suggesting a great synthesis of nascent apolipoproteins HDL which are antiatherogenic.

  2. Influence of metabolic stress on the inheritance of cell determination in the moss, Pottia intermedia.

    PubMed

    Lobachevska, O; Kyjak, N; Khorkavtsiv, O; Dovgalyuk, A; Kit, N; Klyuchivska, O; Stoika, R; Ripetsky, R; Cove, D

    2005-03-01

    Epigenetically-determined apogamy in aposporous regenerants of the moss Pottia intermedia persists during vegetative propagation, the capacity of apogamy being inherited by individual aposporous protonemal cells. To test Bauer-Lazarenko's proposal that stable apogamy in mosses may be due to some self-replicating cytoplasmic factor, the effects of different metabolic stress treatments on the expression of apogamy have been tested. Chronic metabolic stress caused by long-term growth of autotrophic aposporous protonema on mineral medium with 0.25% of casamino acids and on Murashiga-Skoog (MS) medium with sucrose and phytohormones, as well as by transitory action of high kinetin concentration, have a much stronger influence on the expression of apogamy, than short-term stress treatments with RNase and Pb(2+). Apogamy has been found to be lost stably, after prolonged growth on MS medium containing kinetin and ABA. The proposal that the capacity for apogamy is related to the release of aposporous protonemal cells from a putative factor for apogamy is discussed.

  3. Differential lipid metabolism in monocytes and macrophages: influence of cholesterol loading[S

    PubMed Central

    Fernandez-Ruiz, Irene; Puchalska, Patrycja; Narasimhulu, Chandrakala Aluganti; Sengupta, Bhaswati; Parthasarathy, Sampath

    2016-01-01

    The influence of the hypercholesterolemia associated with atherosclerosis on monocytes is poorly understood. Monocytes are exposed to high concentrations of lipids, particularly cholesterol and lysophosphatidylcholine (lyso-PC). Indeed, in line with recent reports, we found that monocytes accumulate cholesteryl esters (CEs) in hypercholesterolemic mice, demonstrating the need for studies that analyze the effects of lipid accumulation on monocytes. Here we analyze the effects of cholesterol and lyso-PC loading in human monocytes and macrophages. We found that cholesterol acyltransferase and CE hydrolase activities are lower in monocytes. Monocytes also showed a different expression profile of cholesterol influx and efflux genes in response to lipid loading and a different pattern of lyso-PC metabolism. In monocytes, increased levels of CE slowed the conversion of lyso-PC into PC. Interestingly, although macrophages accumulated glycerophosphocholine, phosphocholine was the main water-soluble choline metabolite being generated in monocytes, suggesting a role for mono- and diacylglycerol in the chemoattractability of these cells. In summary, monocytes and macrophages show significant differences in lipid metabolism and gene expression profiles in response to lipid loading. These findings provide new insights into the mechanisms of atherosclerosis and suggest potentials for targeting monocyte chemotactic properties not only in atherosclerosis but also in other diseases. PMID:26839333

  4. Hydrogen isotopic profile in the characterization of sugars. Influence of the metabolic pathway.

    PubMed

    Zhang, Ben-Li; Billault, Isabelle; Li, Xiaobao; Mabon, Françoise; Remaud, Gérald; Martin, Maryvonne L

    2002-03-13

    The site-specific natural hydrogen isotope ratios of plant metabolites determined by 2H nuclear magnetic resonance (SNIF-NMR method) can provide powerful criteria for inferring mechanistic and environmental effects on biosynthetic pathways. This work examines the potential of isotopic profiles for the main constituents of carbohydrates, glucose and fructose, to distinguish different photosynthetic pathways. An appropriate analytical strategy, involving three suitable isotopic probes, has been elaborated with a view to measuring simultaneously, in conditions devoid of isotopic perturbations, all (or nearly all) of the carbon-bound hydrogen isotope ratios. It is shown that the type of photosynthetic metabolism, either C3 (sugar beet, orange, and grape), C4 (maize and sugar cane), or CAM (pineapple), and the physiological status of the precursor plant exert strong influences on the deuterium distribution in the sugar molecules. Consequently, this isotopic fingerprint may be a rich source of information for the comparison of mechanisms in metabolic pathways. In addition, it can provide complementary criteria to ethanol as a probe for the origin of sugars.

  5. The influence of altered gravity on carbohydrate metabolism in excised wheat leaves

    NASA Technical Reports Server (NTRS)

    Obenland, D. M.; Brown, C. S.

    1994-01-01

    We developed a system to study the influence of altered gravity on carbohydrate metabolism in excised wheat leaves by means of clinorotation. The use of excised leaves in our clinostat studies offered a number of advantages over the use of whole plants, most important of which were minimization of exogenous mechanical stress and a greater amount of carbohydrate accumulation during the time of treatment. We found that horizontal clinorotation of excised wheat leaves resulted in significant reductions in the accumulation of fructose, sucrose, starch and fructan relative to control, vertically clinorotated leaves. Photosynthesis, dark respiration and the extractable activities of ADP glucose pyrophosphorylase (EC 2.7.7.27), sucrose phosphate synthase (EC 2.4.4.14), sucrose sucrose fructosyltransferase (EC 2.4.1.99), and fructan hydrolase (EC 3.2.1.80) were unchanged due to altered gravity treatment.

  6. Mineral metabolism influences pulse pressure increase provoked by chronic kidney disease.

    PubMed

    Craver, L; Marco, M Paz; Sarro, F; Martin, M L; Borras, M; Valdivielso, J M; Fernández, E

    2007-08-01

    Pulse pressure (PP) increase has been associated with hypertension, ageing and chronic kidney disease. Although hyperparathyroidism and phosphate imbalance have been suspect in PP increase in hemodialysis patients, the link between these parameters and pulse pressure, in renal disease before dialysis, has not been established. 1966 chronic kidney disease (CKD) patients. ANOVA, Student's t-and Chi-square, rank correlations (Spearman) and multivariate analysis, with PP as the dependent variable, while adjusting for other covariables. There was an increase of pulse pressure parallel to renal function deterioration, and a significant influence of age, diabetes, hypertension, phosphate and PTH on pulse pressure in the whole population, as well as in patients with glomerular filtration rate < 60 ml/min. The impact of phosphate was particularly high after the age of 50. PP increase present in renal disease patients might be primarily due to the underlying mineral metabolism disturbances.

  7. The influence of altered gravity on carbohydrate metabolism in excised wheat leaves

    NASA Technical Reports Server (NTRS)

    Obenland, D. M.; Brown, C. S.

    1994-01-01

    We developed a system to study the influence of altered gravity on carbohydrate metabolism in excised wheat leaves by means of clinorotation. The use of excised leaves in our clinostat studies offered a number of advantages over the use of whole plants, most important of which were minimization of exogenous mechanical stress and a greater amount of carbohydrate accumulation during the time of treatment. We found that horizontal clinorotation of excised wheat leaves resulted in significant reductions in the accumulation of fructose, sucrose, starch and fructan relative to control, vertically clinorotated leaves. Photosynthesis, dark respiration and the extractable activities of ADP glucose pyrophosphorylase (EC 2.7.7.27), sucrose phosphate synthase (EC 2.4.4.14), sucrose sucrose fructosyltransferase (EC 2.4.1.99), and fructan hydrolase (EC 3.2.1.80) were unchanged due to altered gravity treatment.

  8. Influence of biochar addition on methane metabolism during thermophilic phase of composting.

    PubMed

    Sonoki, Tomonori; Furukawa, Toru; Jindo, Keiji; Suto, Koki; Aoyama, Masakazu; Sánchez-Monedero, Miguel Á

    2013-07-01

    CH(4) is known to be generated during the most active phase of composting, even in well-managed composting piles. In this manuscript, we studied the influence of biochar on the CH(4) metabolism during composting of cattle manure and local organic wastes. We evaluated the presence of methanogens and methanotrophs in the composting piles quantified by the level of mcrA encoding methyl coenzyme M reductase alpha subunit and pmoA encoding particulate methane monooxygenase. A decrease of methanogens (mcrA) and an increase of methanotrophs (pmoA) were measured in the composting mixture containing biochar during the most active phase of composting. During the thermophilic phase, the mcrA/pmoA ratios obtained in the composting piles with biochar were twofold lower than in the pile without biochar.

  9. Activity before exercise influences recovery metabolism in the lizard Dipsosaurus dorsalis.

    PubMed

    Scholnick, D A; Gleeson, T T

    2000-06-01

    During recovery from even a brief period of exercise, metabolic rate remains elevated above resting levels for extended periods. The intensity and duration of exercise as well as body temperature and hormone levels can influence this excess post-exercise oxygen consumption (EPOC). We examined the influence of activity before exercise (ABE), commonly termed warm-up in endotherms, on EPOC in the desert iguana Dipsosaurus dorsalis. The rate of oxygen consumption and blood lactate levels were measured in 11 female D. dorsalis (mass 41.1 +/- 3.0 g; mean +/- s.e.m.) during rest, after two types of ABE and after 5 min of exhaustive exercise followed by 60 min of recovery. ABE was either single (15 s of maximal activity followed by a 27 min pause) or intermittent (twelve 15 s periods of exercise separated by 2 min pauses). Our results indicate that both single and intermittent ABE reduced recovery metabolic rate. EPOC volumes decreased from 0.261 to 0.156 ml of oxygen consumed during 60 min of recovery when lizards were subjected to intermittent ABE. The average cost of activity (net V(O2) during exercise and 60 min of recovery per distance traveled) was almost 40 % greater in lizards that exercised without any prior activity than in lizards that underwent ABE. Blood lactate levels and removal rates were greatest in animals that underwent ABE. These findings may be of particular importance for terrestrial ectotherms that typically use burst locomotion and have a small aerobic scope and a long recovery period.

  10. Genetic and nutritional deficiencies in folate metabolism influence tumorigenicity in Apcmin/+ mice.

    PubMed

    Lawrance, Andrea K; Deng, Liyuan; Brody, Lawrence C; Finnell, Richard H; Shane, Barry; Rozen, Rima

    2007-05-01

    Epidemiological studies indicate that adequate dietary folate is protective against colon cancer, although mechanisms remain largely elusive. We investigated the effects of genetic disruptions of folate transport and metabolism and of dietary folate deficiency in a mouse model of colon cancer, the Apc(min/+) mouse. Apc(min/+) mice with heterozygous knockout of the gene for reduced folate carrier 1 (Rfc1(+/-)) developed significantly fewer adenomas compared to Rfc1(+/+)Apc(min/+) mice [30.3+/-4.6 vs. 60.4+/-9.4 on a control diet (CD) and 42.6+/-4.4 vs. 55.8+/-7.6 on a folate-deficient diet, respectively]. Rfc1(+/-)Apc(min/+) mice also carried a lower tumor load, an indicator of tumor size as well as of tumor number. In contrast, there were no differences in adenoma formation between Apc(min/+) mice carrying a knockout allele for methionine synthase (Mtr(+/-)), an enzyme that catalyzes folate-dependent homocysteine remethylation, and Mtr(+/+)Apc(min/+) mice. However, in both Mtr groups of mice, dietary folate deficiency significantly increased adenoma number (from 32.3+/-3.8 on a CD to 48.1+/-4.2 on a folate-deficient diet), increased plasma homocysteine, decreased global DNA methylation in preneoplastic intestines and increased apoptosis in tissues. There were no genotype-associated differences in these parameters in the Rfc1 group, suggesting that the protection conferred by Rfc1 deficiency is carried out through a different mechanism. In conclusion, genetic and nutritional disturbances in folate metabolism can have distinct influences on tumorigenesis in Apc(min/+) mice; altered levels of homocysteine, global DNA methylation and apoptosis may contribute mechanistically to dietary influence.

  11. Influence of testosterone on phase II metabolism and availability of soy isoflavones in male Wistar rats.

    PubMed

    Soukup, Sebastian T; Müller, Dennis R; Kurrat, Anne; Diel, Patrick; Kulling, Sabine E

    2017-04-01

    Genistein and daidzein are the main isoflavones in soy. Their potential beneficial or adverse effects in males like the prevention of prostate cancer or the impact on reproductive functions are controversially discussed. Major determinants of their bioactivity are the absorption and biotransformation of isoflavones. In this study, we focused on the influence of testosterone on plasma availability and phase II metabolism of isoflavones. Male Wistar rats, receiving an isoflavones rich diet, were randomized into three groups: Two groups were orchiectomized (ORX) at postnatal day (PND) 80 and treated for 11 days with testosterone propionate (TP) (ORX TP group) or a vehicle (ORX group) after a 7 days lasting hormonal decline. The third group served as control and remained intact. Rats were sacrificed at PND 98. ORX rats had reduced isoflavones plasma levels. Differently regulated mRNA expressions of transporters relevant for transport of phase II metabolites in liver and kidney may be responsible for this reduction, more precisely Slc10a1 and Slc21a1 in kidney as well as Slc22a8 in liver. While main phase II metabolites in intact rats were disulfates and sulfoglucuronides, the amount of sulfate conjugates was significantly diminished by ORX. In accordance with that, mRNA expression of different sulfotransferases was reduced in liver by ORX. The observed effects could be almost restored by TP treatment. In conclusion, testosterone, and likely further androgens, has a huge impact on phase II metabolism and availability of isoflavones by influencing the expression of different sulfotransferases and transporters.

  12. The ethanol metabolite acetaldehyde induces water and salt intake via two distinct pathways in the central nervous system of rats.

    PubMed

    Ujihara, Izumi; Hitomi, Suzuro; Ono, Kentaro; Kakinoki, Yasuaki; Hashimoto, Hirofumi; Ueta, Yoichi; Inenaga, Kiyotoshi

    2015-12-01

    The sensation of thirst experienced after heavy alcohol drinking is widely regarded as a consequence of ethanol (EtOH)-induced diuresis, but EtOH in high doses actually induces anti-diuresis. The present study was designed to investigate the introduction mechanism of water and salt intake after heavy alcohol drinking, focusing on action of acetaldehyde, a metabolite of EtOH and a toxic substance, using rats. The aldehyde dehydrogenase (ALDH) inhibitor cyanamide was used to mimic the effect of prolonged acetaldehyde exposure because acetaldehyde is quickly degraded by ALDH. Systemic administration of a high-dose of EtOH at 2.5 g/kg induced water and salt intake with anti-diuresis. Cyanamide enhanced the fluid intake following EtOH and acetaldehyde administration. Systemic administration of acetaldehyde with cyanamide suppressed blood pressure and increased plasma renin activity. Blockade of central angiotensin receptor AT1R suppressed the acetaldehyde-induced fluid intake and c-Fos expression in the circumventricular organs (CVOs), which form part of dipsogenic mechanism in the brain. In addition, central administration of acetaldehyde together with cyanamide selectively induced water but not salt intake without changes in blood pressure. In electrophysiological recordings from slice preparations, acetaldehyde specifically excited angiotensin-sensitive neurons in the CVO. These results suggest that acetaldehyde evokes the thirst sensation following heavy alcohol drinking, by two distinct and previously unsuspected mechanisms, independent of diuresis. First acetaldehyde indirectly activates AT1R in the dipsogenic centers via the peripheral renin-angiotensin system following the depressor response and induces both water and salt intake. Secondly acetaldehyde directly activates neurons in the dipsogenic centers and induces only water intake.

  13. Genes Encoding Enzymes Involved in Ethanol Metabolism

    PubMed Central

    Hurley, Thomas D.; Edenberg, Howard J.

    2012-01-01

    The effects of beverage alcohol (ethanol) on the body are determined largely by the rate at which it and its main breakdown product, acetaldehyde, are metabolized after consumption. The main metabolic pathway for ethanol involves the enzymes alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). Seven different ADHs and three different ALDHs that metabolize ethanol have been identified. The genes encoding these enzymes exist in different variants (i.e., alleles), many of which differ by a single DNA building block (i.e., single nucleotide polymorphisms [SNPs]). Some of these SNPs result in enzymes with altered kinetic properties. For example, certain ADH1B and ADH1C variants that are commonly found in East Asian populations lead to more rapid ethanol breakdown and acetaldehyde accumulation in the body. Because acetaldehyde has harmful effects on the body, people carrying these alleles are less likely to drink and have a lower risk of alcohol dependence. Likewise, an ALDH2 variant with reduced activity results in acetaldehyde buildup and also has a protective effect against alcoholism. In addition to affecting drinking behaviors and risk for alcoholism, ADH and ALDH alleles impact the risk for esophageal cancer. PMID:23134050

  14. Aerobic glycolysis during brain activation: adrenergic regulation and influence of norepinephrine on astrocytic metabolism.

    PubMed

    Dienel, Gerald A; Cruz, Nancy F

    2016-07-01

    Aerobic glycolysis occurs during brain activation and is characterized by preferential up-regulation of glucose utilization compared with oxygen consumption even though oxygen level and delivery are adequate. Aerobic glycolysis is a widespread phenomenon that underlies energetics of diverse brain activities, such as alerting, sensory processing, cognition, memory, and pathophysiological conditions, but specific cellular functions fulfilled by aerobic glycolysis are poorly understood. Evaluation of evidence derived from different disciplines reveals that aerobic glycolysis is a complex, regulated phenomenon that is prevented by propranolol, a non-specific β-adrenoceptor antagonist. The metabolic pathways that contribute to excess utilization of glucose compared with oxygen include glycolysis, the pentose phosphate shunt pathway, the malate-aspartate shuttle, and astrocytic glycogen turnover. Increased lactate production by unidentified cells, and lactate dispersal from activated cells and lactate release from the brain, both facilitated by astrocytes, are major factors underlying aerobic glycolysis in subjects with low blood lactate levels. Astrocyte-neuron lactate shuttling with local oxidation is minor. Blockade of aerobic glycolysis by propranolol implicates adrenergic regulatory processes including adrenal release of epinephrine, signaling to brain via the vagus nerve, and increased norepinephrine release from the locus coeruleus. Norepinephrine has a powerful influence on astrocytic metabolism and glycogen turnover that can stimulate carbohydrate utilization more than oxygen consumption, whereas β-receptor blockade 're-balances' the stoichiometry of oxygen-glucose or -carbohydrate metabolism by suppressing glucose and glycogen utilization more than oxygen consumption. This conceptual framework may be helpful for design of future studies to elucidate functional roles of preferential non-oxidative glucose utilization and glycogen turnover during brain

  15. The Sinorhizobium meliloti RNA chaperone Hfq influences central carbon metabolism and the symbiotic interaction with alfalfa

    PubMed Central

    2010-01-01

    Background The bacterial Hfq protein is able to interact with diverse RNA molecules, including regulatory small non-coding RNAs (sRNAs), and thus it is recognized as a global post-transcriptional regulator of gene expression. Loss of Hfq has an extensive impact in bacterial physiology which in several animal pathogens influences virulence. Sinorhizobium meliloti is a model soil bacterium known for its ability to establish a beneficial nitrogen-fixing intracellular symbiosis with alfalfa. Despite the predicted general involvement of Hfq in the establishment of successful bacteria-eukaryote interactions, its function in S. meliloti has remained unexplored. Results Two independent S. meliloti mutants, 2011-3.4 and 1021Δhfq, were obtained by disruption and deletion of the hfq gene in the wild-type strains 2011 and 1021, respectively, both exhibiting similar growth defects as free-living bacteria. Transcriptomic profiling of 1021Δhfq revealed a general down-regulation of genes of sugar transporters and some enzymes of the central carbon metabolism, whereas transcripts specifying the uptake and metabolism of nitrogen sources (mainly amino acids) were more abundant than in the wild-type strain. Proteomic analysis of the 2011-3.4 mutant independently confirmed these observations. Symbiotic tests showed that lack of Hfq led to a delayed nodulation, severely compromised bacterial competitiveness on alfalfa roots and impaired normal plant growth. Furthermore, a large proportion of nodules (55%-64%) elicited by the 1021Δhfq mutant were non-fixing, with scarce content in bacteroids and signs of premature senescence of endosymbiotic bacteria. RT-PCR experiments on RNA from bacteria grown under aerobic and microoxic conditions revealed that Hfq contributes to regulation of nifA and fixK1/K2, the genes controlling nitrogen fixation, although the Hfq-mediated regulation of fixK is only aerobiosis dependent. Finally, we found that some of the recently identified S. meliloti s

  16. Impact of bioethanol fuel implementation in transport based on modelled acetaldehyde concentration in the urban environment.

    PubMed

    Sundvor, Ingrid; López-Aparicio, Susana

    2014-10-15

    This study shows the results obtained from emission and air dispersion modelling of acetaldehyde in the city of Oslo and associated with the circulation of bioethanol vehicles. Two scenarios of bioethanol implementation, both realistic and hypothetical, have been considered under winter conditions; 1) realistic baseline scenario, which corresponds to the current situation in Oslo where one bus line is running with bioethanol (E95; 95% ethanol-5% petrol) among petrol and diesel vehicles; and 2) a hypothetical scenario characterized by a full implementation of high-blend bioethanol (i.e. E85) as fuel for transportation, and thus an entire bioethanol fleet. The results indicate that a full implementation of bioethanol will have a certain impact on urban air quality due to direct emissions of acetaldehyde. Acetaldehyde emissions are estimated to increase by 233% and concentration levels increase up to 650% with regard to the baseline.

  17. Redirection of the Reaction Specificity of a Thermophilic Acetolactate Synthase toward Acetaldehyde Formation.

    PubMed

    Cheng, Maria; Yoshiyasu, Hayato; Okano, Kenji; Ohtake, Hisao; Honda, Kohsuke

    2016-01-01

    Acetolactate synthase and pyruvate decarboxylase are thiamine pyrophosphate-dependent enzymes that convert pyruvate into acetolactate and acetaldehyde, respectively. Although the former are encoded in the genomes of many thermophiles and hyperthermophiles, the latter has been found only in mesophilic organisms. In this study, the reaction specificity of acetolactate synthase from Thermus thermophilus was redirected to catalyze acetaldehyde formation to develop a thermophilic pyruvate decarboxylase. Error-prone PCR and mutant library screening led to the identification of a quadruple mutant with 3.1-fold higher acetaldehyde-forming activity than the wild-type. Site-directed mutagenesis experiments revealed that the increased activity of the mutant was due to H474R amino acid substitution, which likely generated two new hydrogen bonds near the thiamine pyrophosphate-binding site. These hydrogen bonds might result in the better accessibility of H+ to the substrate-cofactor-enzyme intermediate and a shift in the reaction specificity of the enzyme.

  18. Redirection of the Reaction Specificity of a Thermophilic Acetolactate Synthase toward Acetaldehyde Formation

    PubMed Central

    Cheng, Maria; Yoshiyasu, Hayato; Okano, Kenji; Ohtake, Hisao; Honda, Kohsuke

    2016-01-01

    Acetolactate synthase and pyruvate decarboxylase are thiamine pyrophosphate-dependent enzymes that convert pyruvate into acetolactate and acetaldehyde, respectively. Although the former are encoded in the genomes of many thermophiles and hyperthermophiles, the latter has been found only in mesophilic organisms. In this study, the reaction specificity of acetolactate synthase from Thermus thermophilus was redirected to catalyze acetaldehyde formation to develop a thermophilic pyruvate decarboxylase. Error-prone PCR and mutant library screening led to the identification of a quadruple mutant with 3.1-fold higher acetaldehyde-forming activity than the wild-type. Site-directed mutagenesis experiments revealed that the increased activity of the mutant was due to H474R amino acid substitution, which likely generated two new hydrogen bonds near the thiamine pyrophosphate-binding site. These hydrogen bonds might result in the better accessibility of H+ to the substrate-cofactor-enzyme intermediate and a shift in the reaction specificity of the enzyme. PMID:26731734

  19. Improvement of visible light photocatalytic acetaldehyde decomposition of bismuth vanadate/silica nanocomposites by cocatalyst loading.

    PubMed

    Murakami, Naoya; Takebe, Naohiro; Tsubota, Toshiki; Ohno, Teruhisa

    2012-04-15

    Photocatalytic activity of bismuth vanadate (BiVO(4)) for acetaldehyde decomposition under visible light irradiation was improved by inclusion of a nanocomposition of silica as an adsorbent material and loading of platinum (Pt) or trivalent iron ion (Fe(3+)) as reduction cocatalysts. Addition of silica enhanced photocatalytic activity due to improvement of adsorption ability, but total decomposition of acetaldehyde was not observed within 24h of visible light irradiation. For further improvement of photocatalytic activity, BiVO(4) with an optimized amount of silica composition were modified with Pt or Fe(3+). Photodeposition of Pt greatly increased photocatalytic activity, and acetaldehyde was totally decomposed within 24h of visible light irradiation. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Feasibility studies of a fuel cell for cogeneration of homogeneously catalyzed acetaldehyde and electricity from ethanol

    SciTech Connect

    Malhotra, S.; Datta, R.

    1996-10-01

    The development and feasibility of a novel fuel cell for simultaneously generating electricity and homogeneously catalyzed acetaldehyde from ethanol are reported. The fuel cell is based on the supported molten-salt electrocatalysis technique that allows use of homogeneous (liquid-phase) catalysts in fuel cells for the first time. The electrocatalytic reaction combines the chemistry of the Wacker process conventionally used for acetaldehyde production from the partial oxidation of ethylene and that of the Veba-Chemie method. Nafion membranes impregnated with different electrolytic materials were used in the fuel cell as electrolytes to allow operation at reaction temperatures up to 165 C. Results obtained are comparable to those reported in the literature on partial oxidation of ethylene to acetaldehyde in a fuel cell based on conventional heterogeneous electrocatalysts.

  1. Acetaldehyde and parkinsonism: role of CYP450 2E1

    PubMed Central

    Vaglini, Francesca; Viaggi, Cristina; Piro, Valentina; Pardini, Carla; Gerace, Claudio; Scarselli, Marco; Corsini, Giovanni Umberto

    2013-01-01

    The present review update the relationship between acetaldehyde (ACE) and parkinsonism with a specific focus on the role of P450 system and CYP 2E1 isozyme particularly. We have indicated that ACE is able to enhance the parkinsonism induced in mice by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a neurotoxin able to damage the nigrostriatal dopaminergic pathway. Similarly diethyldithiocarbamate, the main metabolite of disulfiram, a drug widely used to control alcoholism, diallylsulfide (DAS) and phenylisothiocyanate also markedly enhance the toxin-related parkinsonism. All these compounds are substrate/inhibitors of CYP450 2E1 isozyme. The presence of CYP 2E1 has been detected in the dopamine (DA) neurons of rodent Substantia Nigra (SN), but a precise function of the enzyme has not been elucidated yet. By treating CYP 2E1 knockout (KO) mice with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, the SN induced lesion was significantly reduced when compared with the lesion observed in wild-type animals. Several in vivo and in vitro studies led to the conclusion that CYP 2E1 may enhance the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity in mice by increasing free radical production inside the dopaminergic neurons. ACE is a good substrate for CYP 2E1 enzyme as the other substrate-inhibitors and by this way may facilitate the susceptibility of dopaminergic neurons to toxic events. The literature suggests that ethanol and/or disulfiram may be responsible for toxic parkinsonism in human and it indicates that basal ganglia are the major targets of disulfiram toxicity. A very recent study reports that there are a decreased methylation of the CYP 2E1 gene and increased expression of CYP 2E1 mRNA in Parkinson's disease (PD) patient brains. This study suggests that epigenetic variants of this cytochrome contribute to the susceptibility, thus confirming multiples lines of evidence which indicate a link between environmental toxins and PD. PMID:23801948

  2. EPAC activation inhibits acetaldehyde-induced activation and proliferation of hepatic stellate cell via Rap1.

    PubMed

    Yang, Yan; Yang, Feng; Wu, Xiaojuan; Lv, Xiongwen; Li, Jun

    2016-05-01

    Hepatic stellate cells (HSCs) activation represents an essential event during alcoholic liver fibrosis (ALF). Previous studies have demonstrated that the rat HSCs could be significantly activated after exposure to 200 μmol/L acetaldehyde for 48 h, and the cAMP/PKA signaling pathways were also dramatically upregulated in activated HSCs isolated from alcoholic fibrotic rat liver. Exchange protein activated by cAMP (EPAC) is a family of guanine nucleotide exchange factors (GEFs) for the small Ras-like GTPases Rap, and is being considered as a vital mediator of cAMP signaling in parallel with the principal cAMP target protein kinase A (PKA). Our data showed that both cAMP/PKA and cAMP/EPAC signaling pathways were involved in acetaldehyde-induced HSCs. Acetaldehyde could reduce the expression of EPAC1 while enhancing the expression of EPAC2. The cAMP analog Me-cAMP, which stimulates the EPAC/Rap1 pathway, could significantly decrease the proliferation and collagen synthesis of acetaldehyde-induced HSCs. Furthermore, depletion of EPAC2, but not EPAC1, prevented the activation of HSC measured as the production of α-SMA and collagen type I and III, indicating that EPAC1 appears to have protective effects on acetaldehyde-induced HSCs. Curiously, activation of PKA or EPAC perhaps has opposite effects on the synthesis of collagen and α-SMA: EPAC activation by Me-cAMP increased the levels of GTP-bound (activated) Rap1 while PKA activation by Phe-cAMP had no significant effects on such binding. These results suggested that EPAC activation could inhibit the activation and proliferation of acetaldehyde-induced HSCs via Rap1.

  3. Interaction of acetone, hydroxyacetone, acetaldehyde and benzaldehyde with the surface of water ice and HNO3·3H2O ice.

    PubMed

    Lasne, Jérôme; Laffon, Carine; Parent, Philippe

    2012-01-14

    Oxygenated volatile organic compounds (OVOCs) influence the oxidative properties of the atmosphere, and their transport from the ground may occur by scavenging by the HNO(3)-rich supercooled water droplets found in polluted convective air masses. With infrared spectroscopy, we have studied the interactions of four typical atmospheric OVOCs (acetone, hydroxyacetone, acetaldehyde and benzaldehyde) with model surfaces of water ice and of trihydrated nitric acid (NAT) ice. We show that these molecules weakly adsorb on water ice and NAT by hydrogen bonding. No chemical reaction occurs between the molecules and the NAT substrate, the OVOCs remaining intact when in contact with hydrated HNO(3) in atmospheric ice clouds.

  4. Mechanical, hormonal and metabolic influences on blood vessels, blood flow and bone.

    PubMed

    Prisby, Rhonda D

    2017-12-01

    Bone tissue is highly vascularized due to the various roles bone blood vessels play in bone and bone marrow function. For example, the vascular system is critical for bone development, maintenance and repair and provides O2, nutrients, waste elimination, systemic hormones and precursor cells for bone remodeling. Further, bone blood vessels serve as egress and ingress routes for blood and immune cells to and from the bone marrow. It is becoming increasingly clear that the vascular and skeletal systems are intimately linked in metabolic regulation and physiological and pathological processes. This review examines how agents such as mechanical loading, parathyroid hormone, estrogen, vitamin D and calcitonin, all considered anabolic for bone, have tremendous impacts on the bone vasculature. In fact, these agents influence bone blood vessels prior to influencing bone. Further, data reveal strong associations between vasodilator capacity of bone blood vessels and trabecular bone volume, and poor associations between estrogen status and uterine mass and trabecular bone volume. Additionally, this review highlights the importance of the bone microcirculation, particularly the vascular endothelium and NO-mediated signaling, in the regulation of bone blood flow, bone interstitial fluid flow and pressure and the paracrine signaling of bone cells. Finally, the vascular endothelium as a mediator of bone health and disease is considered. © 2017 Society for Endocrinology.

  5. Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression.

    PubMed

    Bray, Molly S; Shaw, Chad A; Moore, Michael W S; Garcia, Rodrigo A P; Zanquetta, Melissa M; Durgan, David J; Jeong, William J; Tsai, Ju-Yun; Bugger, Heiko; Zhang, Dongfang; Rohrwasser, Andreas; Rennison, Julie H; Dyck, Jason R B; Litwin, Sheldon E; Hardin, Paul E; Chow, Chi-Wing; Chandler, Margaret P; Abel, E Dale; Young, Martin E

    2008-02-01

    Virtually every mammalian cell, including cardiomyocytes, possesses an intrinsic circadian clock. The role of this transcriptionally based molecular mechanism in cardiovascular biology is poorly understood. We hypothesized that the circadian clock within the cardiomyocyte influences diurnal variations in myocardial biology. We, therefore, generated a cardiomyocyte-specific circadian clock mutant (CCM) mouse to test this hypothesis. At 12 wk of age, CCM mice exhibit normal myocardial contractile function in vivo, as assessed by echocardiography. Radiotelemetry studies reveal attenuation of heart rate diurnal variations and bradycardia in CCM mice (in the absence of conduction system abnormalities). Reduced heart rate persisted in CCM hearts perfused ex vivo in the working mode, highlighting the intrinsic nature of this phenotype. Wild-type, but not CCM, hearts exhibited a marked diurnal variation in responsiveness to an elevation in workload (80 mmHg plus 1 microM epinephrine) ex vivo, with a greater increase in cardiac power and efficiency during the dark (active) phase vs. the light (inactive) phase. Moreover, myocardial oxygen consumption and fatty acid oxidation rates were increased, whereas cardiac efficiency was decreased, in CCM hearts. These observations were associated with no alterations in mitochondrial content or structure and modest mitochondrial dysfunction in CCM hearts. Gene expression microarray analysis identified 548 and 176 genes in atria and ventricles, respectively, whose normal diurnal expression patterns were altered in CCM mice. These studies suggest that the cardiomyocyte circadian clock influences myocardial contractile function, metabolism, and gene expression.

  6. Crosslinking density influences chondrocyte metabolism in dynamically loaded photocrosslinked poly(ethylene glycol) hydrogels.

    PubMed

    Bryant, Stephanie J; Chowdhury, Tina T; Lee, David A; Bader, Dan L; Anseth, Kristi S

    2004-03-01

    In approaches to tissue engineer articular cartilage, an important consideration for in situ forming cell carriers is the impact of mechanical loading on the cell composite structure and function. Photopolymerized hydrogel scaffolds based on poly(ethylene glycol) (PEG) may be synthesized with a range of crosslinking densities and corresponding macroscopic properties. This study tests the hypothesis that changes in the hydrogel crosslinking density influences the metabolic response of encapsulated chondrocytes to an applied load. PEG hydrogels were formulated with two crosslinking densities that resulted in gel compressive moduli ranging from 60 to 670 kPa. When chondrocytes were encapsulated in these PEG gels, an increase in crosslinking density resulted in an inhibition in cell proliferation and proteoglycan synthesis. Moreover, when the gels were dynamically loaded for 48 h in unconfined compression with compressive strains oscillating from 0 to 15% at a frequency of 1 Hz, cell proliferation and proteoglycan synthesis were affected in a crosslinking-density-dependent manner. Cell proliferation was inhibited in both crosslinked gels, but was greater in the highly crosslinked gel. In contrast, dynamic loading did not influence proteoglycan synthesis in the loosely crosslinked gel, but a marked decrease in proteoglycan production was observed in the highly crosslinked gel. In summary, changes in PEG hydrogel properties greatly affect how chondrocytes respond to an applied dynamic load.

  7. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis.

    PubMed

    Trompette, Aurélien; Gollwitzer, Eva S; Yadava, Koshika; Sichelstiel, Anke K; Sprenger, Norbert; Ngom-Bru, Catherine; Blanchard, Carine; Junt, Tobias; Nicod, Laurent P; Harris, Nicola L; Marsland, Benjamin J

    2014-02-01

    Metabolites from intestinal microbiota are key determinants of host-microbe mutualism and, consequently, the health or disease of the intestinal tract. However, whether such host-microbe crosstalk influences inflammation in peripheral tissues, such as the lung, is poorly understood. We found that dietary fermentable fiber content changed the composition of the gut and lung microbiota, in particular by altering the ratio of Firmicutes to Bacteroidetes. The gut microbiota metabolized the fiber, consequently increasing the concentration of circulating short-chain fatty acids (SCFAs). Mice fed a high-fiber diet had increased circulating levels of SCFAs and were protected against allergic inflammation in the lung, whereas a low-fiber diet decreased levels of SCFAs and increased allergic airway disease. Treatment of mice with the SCFA propionate led to alterations in bone marrow hematopoiesis that were characterized by enhanced generation of macrophage and dendritic cell (DC) precursors and subsequent seeding of the lungs by DCs with high phagocytic capacity but an impaired ability to promote T helper type 2 (TH2) cell effector function. The effects of propionate on allergic inflammation were dependent on G protein-coupled receptor 41 (GPR41, also called free fatty acid receptor 3 or FFAR3), but not GPR43 (also called free fatty acid receptor 2 or FFAR2). Our results show that dietary fermentable fiber and SCFAs can shape the immunological environment in the lung and influence the severity of allergic inflammation.

  8. [The influence of the rumen fermoregulator monensin, on selected parameters of the metabolism of fattening bulls].

    PubMed

    Lober, U; Geinitz, D; Richter, G; Flachowsky, G; Hennig, A

    1986-01-01

    In two feeding experiments fattening bulls received on average a daily supplement of 170 or 200 mg Monensin. In a further 8-week experiment the daily Monensin supplement was 0; 500 or 1 000 mg per day. Ergotropic Monensin supplements (experiments 1 and 2) did not change the blood count and the Ca, P and Mg content of blood serum and the activity of AP, AST and LAP in the serum remained unchanged. Net acid base excretion and the content of Na, K and Mg in urine were not significantly influenced either. The influence of 500 mg Monensin per animal and day on the feed intake of animals previously given lower supplements was insignificant. 1 000 mg Monensin per animal and day resulted in a 40% decrease of feed intake and permanent diarrhoea. It was connected with a diminishing of the glucose content in the blood and an increase of net acid base, Na and P excretion in urine. The blood count did not change after the Monensin overdose. In conclusion one can say that the ergotropic Monensin supplement did not change the metabolism parameters.

  9. Acetaldehyde Induces Cytotoxicity of SH-SY5Y Cells via Inhibition of Akt Activation and Induction of Oxidative Stress.

    PubMed

    Yan, Tingting; Zhao, Yan; Zhang, Xia

    2016-01-01

    Excessive alcohol consumption can lead to brain tissue damage and cognitive dysfunction. It has been shown that heavy drinking is associated with an earlier onset of neurodegenerative diseases such as Alzheimer's disease. Acetaldehyde, the most toxic metabolite of ethanol, is speculated to mediate the brain tissue damage and cognitive dysfunction induced by the chronic excessive consumption of alcohol. However, the exact mechanisms by which acetaldehyde induces neurotoxicity are not totally understood. In this study, we investigated the cytotoxic effects of acetaldehyde in SH-SY5Y cells and found that acetaldehyde induced apoptosis of SH-SY5Y cells by downregulating the expression of antiapoptotic Bcl-2 and Bcl-xL and upregulating the expression of proapoptotic Bax. Acetaldehyde treatment led to a significant decrease in the levels of activated Akt and cyclic AMP-responsive element binding protein (CREB). In addition, acetaldehyde induced the activation of p38 mitogen-activated protein kinase (MAPK) while inhibiting the activation of extracellular signal-regulated kinases (ERKs, p44/p42MAPK). Meanwhile, acetaldehyde treatment caused an increase in the production of reactive oxygen species and elevated the oxidative stress in SH-SY5Y cells. Therefore, acetaldehyde induces cytotoxicity of SH-SY5Y cells via promotion of apoptotic signaling, inhibition of cell survival pathway, and induction of oxidative stress.

  10. Inhibition of intracolonic acetaldehyde production and alcoholic fermentation in rats by ciprofloxacin.

    PubMed

    Visapää, J P; Jokelainen, K; Nosova, T; Salaspuro, M

    1998-08-01

    Heavy drinking is associated with many gastrointestinal symptoms and diseases, such as rapid intestinal transit time, diarrhea, colon polyps, and colorectal cancer. Acetaldehyde produced from ethanol by intestinal microbes has recently been suggested to be one of the pathogenetic factors related to alcohol-associated gastrointestinal morbidity. Furthermore, acetaldehyde is absorbed from the colon into portal blood and may thus contribute to the development of alcoholic liver injury. The present study was aimed to investigate the significance of gut aerobic flora in intracolonic acetaldehyde formation. For this study, 58 male Wistar rats (aged 9 to 11 weeks) were used. Half of the rats received ciprofloxacin for four consecutive days. Control rats (n = 29) received standard chow. On the fifth day of treatment, 1.5 g/kg body weight of ethanol was administered intraperitoneally to 19 rats receiving ciprofloxacin and 19 control rats. Ten ciprofloxacin-treated and 10 control rats received equal volumes of physiological saline intraperitoneally. Two hours after the injection of ethanol or saline, the samples of colonic contents and blood were obtained. Acetaldehyde and ethanol levels of the samples were determined by headspace gas chromatography. The intracolonic acetaldehyde level 2 hr after ethanol administration was 483+/-169 microM (maximum: 2.7 mM). High intracolonic acetaldehyde after ethanol injection was significantly reduced by ciprofloxacin treatment. After ciprofloxacin, intracolonic acetaldehyde levels before and after the injection of ethanol were 25+/-4.8 and 23+/-15 microM, respectively. Ciprofloxacin treatment resulted also in significantly higher blood (p < 0.005) and intracolonic (p < 0.0001) ethanol levels than in the control animals. Furthermore, ciprofloxacin treatment totally abolished the formation of endogenous ethanol in the large intestine. This study demonstrates that alcoholic fermentation and intracoIonic acetaldehyde production can be

  11. Quantification of DNA adducts in lungs, liver and brain of rats exposed to acetaldehyde.

    PubMed

    Garcia, Camila C M; Batista, Guilherme L; Freitas, Florêncio P; Lopes, Fernando S; Sanchez, Angélica B; Gutz, Ivano G R; Di Mascio, Paolo; Medeiros, Marisa H G

    2014-10-01

    Air pollution is a major risk for human health. Acetaldehyde is an environmental pollutant present in tobacco smoke, vehicle exhaust and several food products. Formation of DNA adducts has been regarded as a critical factor in the mechanisms of acetaldehyde mutagenicity and carcinogenesis. Acetaldehyde reacts with 2'-deoxyguanosine in DNA to primarily form N(2)-ethylidene-2'-deoxyguanosine (N(2)-ethylidene-dGuo). The subsequent reaction of N(2)-ethylidene-dGuo with another molecule of acetaldehyde gives rise to 1,N(2)-propano-2´-deoxyguanosine (1,N(2)-propanodGuo). In this study, on-line reverse-phase high-performance liquid chromatography (HPLC) separation with tandem mass spectrometry detection was utilized for the accurate quantification of 1,N(2)-propanodGuo and 1,N(2)-etheno-2'-deoxyguanosine (1,N(2)-edGuo) in tissues of rats exposed to 12 ppb, 33 ppb and 96 ppb acetaldehyde in atmospheric air for 50 days. A significant increase in the levels of 1,N(2)-propanodGuo was observed in lung tissues of rats exposed to 12 ppb (7.8/10(8) dGuo); 33 ppb (8.9/10(8) dGuo) and 96 ppb (11.6/10(8) dGuo) compared to controls (4.2/10(8) dGuo). For comparative purposes, the levels of 1,N(2)-etheno-2'-deoxyguanosine (1,N(2)-edGuo), which is produced from a,b-unsaturated aldehydes formed during the lipid peroxidation process were also measured. Elevated levels of 1,N(2)-edGuo were observed only in lung tissues of animals exposed to 96 ppb acetaldehyde. 1,N(2)-propanodGuo also differed quantitatively in liver but not in brain. The monitoring of 1,N(2)-propanodGuo levels in tissues provides important information on acetaldehyde genotoxicity and may contribute to the elucidation of the mechanisms associated with acetaldehyde exposure and cancer risk. Supported byFAPESP:2011/10048-5, CAPES, INCT Redoxoma:573530/2008-4,NAP Redoxoma: 2011.1.9352.1.8, CEPID Redoxoma:2013/07937-8.

  12. Influence of Neonatal Hypothyroidism on Hepatic Gene Expression and Lipid Metabolism in Adulthood

    PubMed Central

    Bocos, Carlos; Henríquez-Hernández, Luis A.; Kahlon, Nusrat; Herrera, Emilio; Norstedt, Gunnar; Parini, Paolo; Flores-Morales, Amilcar; Fernández-Pérez, Leandro

    2012-01-01

    Thyroid hormones are required for normal growth and development in mammals. Congenital-neonatal hypothyroidism (CH) has a profound impact on physiology, but its specific influence in liver is less understood. Here, we studied how CH influences the liver gene expression program in adulthood. Pregnant rats were given the antithyroid drug methimazole (MMI) from GD12 until PND30 to induce CH in male offspring. Growth defects due to CH were evident as reductions in body weight and tail length from the second week of life. Once the MMI treatment was discontinued, the feed efficiency increased in CH, and this was accompanied by significant catch-up growth. On PND80, significant reductions in body mass, tail length, and circulating IGF-I levels remained in CH rats. Conversely, the mRNA levels of known GH target genes were significantly upregulated. The serum levels of thyroid hormones, cholesterol, and triglycerides showed no significant differences. In contrast, CH rats showed significant changes in the expression of hepatic genes involved in lipid metabolism, including an increased transcription of PPARα and a reduced expression of genes involved in fatty acid and cholesterol uptake, cellular sterol efflux, triglyceride assembly, bile acid synthesis, and lipogenesis. These changes were associated with a decrease of intrahepatic lipids. Finally, CH rats responded to the onset of hypothyroidism in adulthood with a reduction of serum fatty acids and hepatic cholesteryl esters and to T3 replacement with an enhanced activation of malic enzyme. In summary, we provide in vivo evidence that neonatal hypothyroidism influences the hepatic transcriptional program and tissue sensitivity to hormone treatment in adulthood. This highlights the critical role that a euthyroid state during development plays on normal liver physiology in adulthood. PMID:22666351

  13. Intrinsic and extrinsic influences on standard metabolic rates of three species of Australian otariid.

    PubMed

    Ladds, Monique A; Slip, David J; Harcourt, Robert G

    2017-01-01

    The study of marine mammal energetics can shed light on how these animals might adapt to changing environments. Their physiological potential to adapt will be influenced by extrinsic factors, such as temperature, and by intrinsic factors, such as sex and reproduction. We measured the standard metabolic rate (SMR) of males and females of three Australian otariid species (two Australian fur seals, three New Zealand fur seals and seven Australian sea lions). Mean SMR ranged from 0.47 to 1.05 l O2 min(-1), which when adjusted for mass was from 5.33 to 7.44 ml O2 min(-1) kg(-1). We found that Australian sea lion mass-specific SMR (sSMR; in millilitres of oxygen per minute per kilogram) varied little in response to time of year or moult, but was significantly influenced by sex and water temperature. Likewise, sSMR of Australian and New Zealand fur seals was also influenced by sex and water temperature, but also by time of year (pre-moult, moult or post-moult). During the moult, fur seals had significantly higher sSMR than at other times of the year, whereas there was no discernible effect of moult for sea lions. For both groups, females had higher sSMR than males, but sea lions and fur seals showed different responses to changes in water temperature. The sSMR of fur seals increased with increasing water temperature, whereas sSMR of sea lions decreased with increasing water temperature. There were no species differences when comparing animals of the same sex. Our study suggests that fur seals have more flexibility in their physiology than sea lions, perhaps implying that they will be more resilient in a changing environment.

  14. Intrinsic and extrinsic influences on standard metabolic rates of three species of Australian otariid

    PubMed Central

    Slip, David J.; Harcourt, Robert G.

    2017-01-01

    Abstract The study of marine mammal energetics can shed light on how these animals might adapt to changing environments. Their physiological potential to adapt will be influenced by extrinsic factors, such as temperature, and by intrinsic factors, such as sex and reproduction. We measured the standard metabolic rate (SMR) of males and females of three Australian otariid species (two Australian fur seals, three New Zealand fur seals and seven Australian sea lions). Mean SMR ranged from 0.47 to 1.05 l O2 min−1, which when adjusted for mass was from 5.33 to 7.44 ml O2 min−1 kg−1. We found that Australian sea lion mass-specific SMR (sSMR; in millilitres of oxygen per minute per kilogram) varied little in response to time of year or moult, but was significantly influenced by sex and water temperature. Likewise, sSMR of Australian and New Zealand fur seals was also influenced by sex and water temperature, but also by time of year (pre-moult, moult or post-moult). During the moult, fur seals had significantly higher sSMR than at other times of the year, whereas there was no discernible effect of moult for sea lions. For both groups, females had higher sSMR than males, but sea lions and fur seals showed different responses to changes in water temperature. The sSMR of fur seals increased with increasing water temperature, whereas sSMR of sea lions decreased with increasing water temperature. There were no species differences when comparing animals of the same sex. Our study suggests that fur seals have more flexibility in their physiology than sea lions, perhaps implying that they will be more resilient in a changing environment. PMID:28852504

  15. Influence of different yeast cell wall preparations and their components on broiler performance and immune and metabolic pathways

    USDA-ARS?s Scientific Manuscript database

    A study was conducted to evaluate the influence of purification of yeast cell wall (YCW) preparations on broiler performance, and immunogenic and metabolic pathways under microbial challenge. A total of 240 day-of-hatch chicks were distributed among two battery brooder units (48 pens; 5 birds/pen; ...

  16. Individual condition, standard metabolic rate, and rearing temperature influence steelhead and rainbow trout (Oncorhynchus mykiss) life histories

    Treesearch

    Matthew R. Sloat; Gordon H. Reeves

    2014-01-01

    We reared juvenile Oncorhychus mykiss with low and high standard metabolic rates (SMR) under alternative thermal regimes to determine how these proximate factors influence life histories in a partially migratory salmonid fish. High SMR significantly decreased rates of freshwater maturation and increased rates of smoltification in females, but not...

  17. Influence of obesity and metabolic disease on carotid atherosclerosis in patients with coronary artery disease (CordioPrev study)

    USDA-ARS?s Scientific Manuscript database

    Background: Recent data suggest that the presence of associated metabolic abnormalities may be important modifiers of the association of obesity with a poorer prognosis in coronary heart disease. We determined the influence of isolated overweight and obesity on carotid intima media thickness (IMT-CC...

  18. Influence of abnormally high leptin levels during pregnancy on metabolic phenotypes in progeny mice.

    PubMed

    Makarova, Elena N; Chepeleva, Elena V; Panchenko, Polina E; Bazhan, Nadezhda M

    2013-12-01

    Maternal obesity increases the risk of obesity in offspring, and obesity is accompanied by an increase in blood leptin levels. The "yellow" mutation at the mouse agouti locus (A(y)) increases blood leptin levels in C57BL preobese pregnant mice without affecting other metabolic characteristics. We investigated the influence of the A(y) mutation or leptin injection at the end of pregnancy in C57BL mice on metabolic phenotypes and the susceptibility to diet-induced obesity (DIO) in offspring. In both C57BL-A(y) and leptin-treated mice, the maternal effect was more pronounced in male offspring. Compared with males born to control mothers, males born to A(y) mothers displayed equal food intake (FI) but decreased body weight (BW) gain after weaning, equal glucose tolerance, and enhanced FI-to-BW ratios on the standard diet but the same FI and BW on the high-fat diet. Males born to A(y) mothers were less responsive to the anorectic effect of exogenous leptin and less resistant to fasting (were not hyperphagic and gained less weight during refeeding after food deprivation) compared with males born to control mothers. However, all progeny displayed equal hypothalamic expression of Agouti gene-related protein (AgRP), neuropeptide Y (NPY), and proopiomelanocortin (POMC) and equal plasma leptin and glucose levels after food deprivation. Leptin injections in C57BL mice on day 17 of pregnancy decreased BW in both male and female offspring but inhibited FI and DIO only in male offspring. Our results show that hyperleptinemia during pregnancy has sex-specific long-term effects on energy balance regulation in progeny and does not predispose offspring to developing obesity.

  19. Skeletal muscle fat metabolism after exercise in humans: influence of fat availability.

    PubMed

    Kimber, Nicholas E; Cameron-Smith, David; McGee, Sean L; Hargreaves, Mark

    2013-06-01

    The mechanisms facilitating increased skeletal muscle fat oxidation following prolonged, strenuous exercise remain poorly defined. The aim of this study was to examine the influence of plasma free fatty acid (FFA) availability on intramuscular malonyl-CoA concentration and the regulation of whole-body fat metabolism during a 6-h postexercise recovery period. Eight endurance-trained men performed three trials, consisting of 1.5 h high-intensity and exhaustive exercise, followed by infusion of saline, saline + nicotinic acid (NA; low FFA), or Intralipid and heparin [high FFA (HFA)]. Muscle biopsies were obtained at the end of exercise (0 h) and at 3 and 6 h in recovery. Ingestion of NA suppressed the postexercise plasma FFA concentration throughout recovery (P < 0.01), except at 4 h. The alteration of the availability of plasma FFA during recovery induced a significant increase in whole-body fat oxidation during the 6-h period for HFA (52.2 ± 4.8 g) relative to NA (38.4 ± 3.1 g; P < 0.05); however, this response was unrelated to changes in skeletal muscle malonyl-CoA and acetyl-CoA carboxylase (ACC)β phosphorylation, suggesting mechanisms other than phosphorylation-mediated changes in ACC activity may have a role in regulating fat metabolism in human skeletal muscle during postexercise recovery. Despite marked changes in plasma FFA availability, no significant changes in intramuscular triglyceride concentrations were detected. These data suggest that the regulation of postexercise skeletal muscle fat oxidation in humans involves factors other than the 5'AMP-activated protein kinase-ACCβ-malonyl-CoA signaling pathway, although malonyl-CoA-mediated regulation cannot be excluded completely in the acute recovery period.

  20. Influence of a Gas Exchange Correction Procedure on Resting Metabolic Rate and Respiratory Quotient in Humans.

    PubMed

    Galgani, Jose E; Castro-Sepulveda, Mauricio A

    2017-09-19

    The aim of this study was to determine the influence of a gas exchange correction protocol on resting metabolic rate (RMR) and respiratory quotient (RQ), assessed by a Vmax Encore 29n metabolic cart (SensorMedics Co., Yorba Linda, California) in overnight fasted and fed humans, and to assess the predictive power of body size for corrected and uncorrected RMR. Healthy participants (23 M/29 F; 34 ± 9 years old; 26.3 ± 3.7 kg/m(2) ) ingested two 3-hour-apart glucose loads (75 g). Indirect calorimetry was conducted before and hourly over a 6-hour period. Immediately after indirect calorimetry assessment, gas exchange was simulated through high-precision mass-flow regulators, which permitted the correction of RMR and RQ values. Uncorrected and corrected RMR and RQ were directly related at each time over the 6-hour period. However, uncorrected versus corrected RMR was 6.9% ± 0.5% higher (128 ± 7 kcal/d; P < 0.0001), while RQ was 14.0 ± 0.4% lower (-0.114 ± 0.003; P < 0.0001) when compared throughout the whole period. Body weight, sex, and age explained a larger fraction of the variance when corrected RMR was considered (adjusted R(2)  = 0.71; P < 0.0001) versus uncorrected RMR (adjusted R(2)  = 0.59; P < 0.0001). Applying a protocol to correct gas exchange in humans over a 6-hour period is feasible and provides information of improved accuracy. © 2017 The Obesity Society.

  1. The influence of high glucose on the aerobic metabolism of endothelial EA.hy926 cells.

    PubMed

    Koziel, Agnieszka; Woyda-Ploszczyca, Andrzej; Kicinska, Anna; Jarmuszkiewicz, Wieslawa

    2012-12-01

    The endothelium is considered to be relatively independent of the mitochondrial energy supply. The goals of this study were to examine mitochondrial respiratory functions in endothelial cells and isolated mitochondria and to assess the influence of chronic high glucose exposure on the aerobic metabolism of these cells. A procedure to isolate of bioenergetically active endothelial mitochondria was elaborated. Human umbilical vein endothelial cells (EA.hy926 line) were grown in medium containing either 5.5 or 25 mM glucose. The respiratory response to elevated glucose was observed in cells grown in 25 mM glucose for at least 6 days or longer. In EA.hy926 cells, growth in high glucose induced considerably lower mitochondrial respiration with glycolytic fuels, less pronounced with glutamine, and higher respiration with palmitate. The Crabtree effect was observed in both types of cells. High glucose conditions produced elevated levels of cellular Q10, increased ROS generation, increased hexokinase I, lactate dehydrogenase, acyl-CoA dehydrogenase, uncoupling protein 2 (UCP2), and superoxide dismutase 2 expression, and decreased E3-binding protein of pyruvate dehydrogenase expression. In isolated mitochondria, hyperglycaemia induced an increase in the oxidation of palmitoylcarnitine and glycerol-3-phosphate (lipid-derived fuels) and a decrease in the oxidation of pyruvate (a mitochondrial fuel); in addition, increased UCP2 activity was observed. Our results demonstrate that primarily glycolytic endothelial cells possess highly active mitochondria with a functioning energy-dissipating pathway (UCP2). High-glucose exposure induces a shift of the endothelial aerobic metabolism towards the oxidation of lipids and amino acids.

  2. CD36 Protein Influences Myocardial Ca2+ Homeostasis and Phospholipid Metabolism

    PubMed Central

    Pietka, Terri A.; Sulkin, Matthew S.; Kuda, Ondrej; Wang, Wei; Zhou, Dequan; Yamada, Kathryn A.; Yang, Kui; Su, Xiong; Gross, Richard W.; Nerbonne, Jeanne M.; Efimov, Igor R.; Abumrad, Nada A.

    2012-01-01

    Sarcolemmal CD36 facilitates myocardial fatty acid (FA) uptake, which is markedly reduced in CD36-deficient rodents and humans. CD36 also mediates signal transduction events involving a number of cellular pathways. In taste cells and macrophages, CD36 signaling was recently shown to regulate store-responsive Ca2+ flux and activation of Ca2+-dependent phospholipases A2 that cycle polyunsaturated FA into phospholipids. It is unknown whether CD36 deficiency influences myocardial Ca2+ handling and phospholipid metabolism, which could compromise the heart, typically during stresses. Myocardial function was examined in fed or fasted (18–22 h) CD36−/− and WT mice. Echocardiography and telemetry identified conduction anomalies that were associated with the incidence of sudden death in fasted CD36−/− mice. No anomalies or death occurred in WT mice during fasting. Optical imaging of perfused hearts from fasted CD36−/− mice documented prolongation of Ca2+ transients. Consistent with this, knockdown of CD36 in cardiomyocytes delayed clearance of cytosolic Ca2+. Hearts of CD36−/− mice (fed or fasted) had 3-fold higher SERCA2a and 40% lower phospholamban levels. Phospholamban phosphorylation by protein kinase A (PKA) was enhanced after fasting reflecting increased PKA activity and cAMP levels in CD36−/− hearts. Abnormal Ca2+ homeostasis in the CD36−/− myocardium associated with increased lysophospholipid content and a higher proportion of 22:6 FA in phospholipids suggests altered phospholipase A2 activity and changes in membrane dynamics. The data support the role of CD36 in coordinating Ca2+ homeostasis and lipid metabolism and the importance of this role during myocardial adaptation to fasting. Potential relevance of the findings to CD36-deficient humans would need to be determined. PMID:23019328

  3. Cereal Processing Influences Postprandial Glucose Metabolism as Well as the GI Effect

    PubMed Central

    Vinoy, Sophie; Normand, Sylvie; Meynier, Alexandra; Sothier, Monique; Louche-Pelissier, Corinne; Peyrat, Jocelyne; Maitrepierre, Christine; Nazare, Julie-Anne; Brand-Miller, Jeannie; Laville, Martine

    2013-01-01

    Objective: Technological processes may influence the release of glucose in starch. The aim of this study was to compare the metabolic response and the kinetics of appearance of exogenous glucose from 2 cereal products consumed at breakfast. Methods: Twenty-five healthy men were submitted to a randomized, open, crossover study that was divided into 2 parts: 12 of the 25 subjects were included in the “isotope part,” and the 13 other subjects were included in the “glycemic part.” On test days, subjects received biscuits (low glycemic index [GI], high slowly available glucose [SAG]) or extruded cereals (medium GI, low SAG) as part of a breakfast similar in terms of caloric and macronutrient content. The postprandial phase lasted 270 minutes. Results: The rate of appearance (RaE) of exogenous glucose was significantly lower after consumption of biscuits in the first part of the morning (90–150 minutes) than after consumption of extruded cereals (p ≤ 0.05). Conversely, at 210 minutes, it was significantly higher with biscuits (p ≤ 0.01). For the first 2 hours, plasma glucose and insulin were significantly lower after biscuits during the glycemic part. C-peptide plasma concentrations were significantly lower at 90, 120, and 150 minutes after ingestion of the biscuits (p ≤ 0.05). Conclusion: The consumption of biscuits with a high content of slowly digestible starch reduces the appearance rate of glucose in the first part of the morning and prolongs this release in the late phase of the morning (210 minutes). Our results also emphasize that modulation of glucose availability at breakfast is an important factor for metabolic control throughout the morning in healthy subjects due to the lowering of blood glucose and insulin excursions. PMID:24015715

  4. Influence of dietary nitrate supplementation on physiological and muscle metabolic adaptations to sprint interval training.

    PubMed

    Thompson, Christopher; Wylie, Lee J; Blackwell, Jamie R; Fulford, Jonathan; Black, Matthew I; Kelly, James; McDonagh, Sinead T J; Carter, James; Bailey, Stephen J; Vanhatalo, Anni; Jones, Andrew M

    2017-03-01

    We hypothesized that 4 wk of dietary nitrate supplementation would enhance exercise performance and muscle metabolic adaptations to sprint interval training (SIT). Thirty-six recreationally active subjects, matched on key variables at baseline, completed a series of exercise tests before and following a 4-wk period in which they were allocated to one of the following groups: 1) SIT and [Formula: see text]-depleted beetroot juice as a placebo (SIT+PL); 2) SIT and [Formula: see text]-rich beetroot juice (~13 mmol [Formula: see text]/day; SIT+BR); or 3) no training and [Formula: see text]-rich beetroot juice (NT+BR). During moderate-intensity exercise, pulmonary oxygen uptake was reduced by 4% following 4 wk of SIT+BR and NT+BR (P < 0.05) but not SIT+PL. The peak work rate attained during incremental exercise increased more in SIT+BR than in SIT+PL (P < 0.05) or NT+BR (P < 0.001). The reduction in muscle and blood [lactate] and the increase in muscle pH from preintervention to postintervention were greater at 3 min of severe-intensity exercise in SIT+BR compared with SIT+PL and NT+BR (P < 0.05). However, the change in severe-intensity exercise performance was not different between SIT+BR and SIT+PL (P > 0.05). The relative proportion of type IIx muscle fibers in the vastus lateralis muscle was reduced in SIT+BR only (P < 0.05). These findings suggest that BR supplementation may enhance some aspects of the physiological adaptations to SIT.NEW & NOTEWORTHY We investigated the influence of nitrate-rich and nitrate-depleted beetroot juice on the muscle metabolic and physiological adaptations to 4 wk of sprint interval training. Compared with placebo, dietary nitrate supplementation reduced the O2 cost of submaximal exercise, resulted in greater improvement in incremental (but not severe-intensity) exercise performance, and augmented some muscle metabolic adaptations to training. Nitrate supplementation may facilitate some of the physiological responses to sprint interval

  5. Influence of anionic salts on bone metabolism in periparturient dairy goats and sheep.

    PubMed

    Liesegang, A

    2008-06-01

    The purpose of the present study was to investigate the influence of diets supplemented with anionic salts on bone metabolism of dairy goats and sheep. Twelve Saanen goats and 12 Ostfrisean milk sheep (fourth lactation) were divided into 2 groups each [sheep control (SC), goat control (GC); sheep anionic salts (SA), goat anionic salts (GA)]. Each group was fed a different diet in the last 10 d of gestation. Groups SC and GC received a normal diet according to the requirements of goats and sheep in this stage of gestation. Groups SA and GA received supplemental anionic salts. The dietary cation-anion difference (DCAD) was +524 (SC) and +515 (GC) vs. -163 (SA) and -164 (GA) mEq/kg of dry matter. Blood and urine samples were collected daily until parturition. Serum Ca, P, Mg, serum crosslaps (CTX), osteocalcin, 1,25-dihydroxy-vitamin D (VITD), urinary pH, and urinary Ca concentrations were analyzed. Bone mineral density and bone mineral content were measured with peripheral quantitative computer tomography. The bone resorption marker CTX showed significant differences between the animals supplemented with anionic salts and the control animals in goats, but not in sheep. The goats receiving anionic salts had greater CTX concentrations throughout the administration of the salts. In sheep, a difference was only observed on the day of parturition. Similar observations were made in VITD concentrations, although a significant difference between the goat groups was only observed 3 d prepartum. The bone formation marker osteocalcin was lower prepartum in the animals supplemented with anionic salts. The urinary pH was lower in the SA and GA animals, whereas urinary Ca concentrations were greater. Bone mineral content and bone mineral density decreased in all groups around parturition. In conclusion, this experiment showed that the addition of anionic salts in goats led to greater bone resorption rates while on this feeding regimen. It can be concluded that the anionic salts

  6. Rerouting the metabolic pathway of (18)F-labeled peptides: the influence of prosthetic groups.

    PubMed

    Richter, Susan; Wuest, Melinda; Bergman, Cody N; Way, Jenilee D; Krieger, Stephanie; Rogers, Buck E; Wuest, Frank

    2015-02-18

    Current translational cancer research is directed to the development of high affinity peptide ligands for targeting neuropeptide receptors overexpressed in different types of cancer. Besides their desired high binding affinity to the receptor, the suitability of radiolabeled peptides as targeting vectors for molecular imaging and therapy depends on additional aspects such as high tumor-to-background ratio, favorable clearance pattern from nontarget tissue, and sufficient metabolic stability in vivo. This study reports how a switch from the prosthetic group, N-succinimidyl-4-[(18)F]fluorobenzoate ([(18)F]SFB), to 2-deoxy-2-[(18)F]fluoro-d-glucose ([(18)F]FDG) effects the metabolic pathway of an (18)F-labeled bombesin derivative, QWAV-Sar-H-FA01010-Tle-NH2. (18)F-Labeled bombesin derivatives represent potent peptide ligands for selective targeting of gastrin-releasing peptide (GRP) receptor-expressing prostate cancer. Radiosynthesis of (18)F-labeled bombesin analogues [(18)F]FBz-Ava-BBN2 and [(18)F]FDG-AOAc-BBN2 was achieved in good radiochemical yields of ~50% at a specific activity exceeding 40 GBq/μmol. Both nonradioactive compounds FBz-Ava-BBN2 and FDG-AOAc-BBN2 inhibited binding of [(125)I]Tyr(4)-bombesin(1-14) in PC3 cells with IC50 values of 9 and 16 nM, respectively, indicating high inhibitory potency. Influence of each prosthetic group was further investigated in PC3 mouse xenografts using dynamic small animal PET imaging. In comparison to [(18)F]FBz-Ava-BBN2, total tumor uptake levels were doubled after injection of [(18)F]FDG-AOAc-BBN2 while renal elimination was increased. Blood clearance and in vivo metabolic stability were similar for both compounds. The switch from [(18)F]SFB to [(18)F]FDG as the prosthetic group led to a significant reduction in lipophilicity which resulted in more favorable renal clearance and increased tumor uptake. The presented single step radiolabeling-glycosylation approach represents an innovative strategy for site

  7. ALDH2 Genotype Has No Effect on Salivary Acetaldehyde without the Presence of Ethanol in the Systemic Circulation

    PubMed Central

    Helminen, Andreas; Väkeväinen, Satu; Salaspuro, Mikko

    2013-01-01

    Background Acetaldehyde associated with alcoholic beverages was recently classified as carcinogenic (Group 1) to humans based on uniform epidemiological and biochemical evidence. ALDH2 (aldehyde dehydrogenase 2) deficient alcohol consumers are exposed to high concentrations of salivary acetaldehyde and have an increased risk of upper digestive tract cancer. However, this interaction is not seen among ALDH2 deficient non-drinkers or rare drinkers, regardless of their smoking status or consumption of edibles containing ethanol or acetaldehyde. Therefore, the aim of this study was to examine the effect of the ALDH2 genotype on the exposure to locally formed acetaldehyde via the saliva without ethanol ingestion. Methods The ALDH2 genotypes of 17 subjects were determined by PCR-RFLP. The subjects rinsed out their mouths with 5 ml of 40 vol% alcohol for 5 seconds. Salivary ethanol and acetaldehyde levels were measured by gas chromatography. Results Acetaldehyde reached mutagenic levels rapidly and the exposure continued for up to 20 minutes. The mean salivary acetaldehyde concentrations did not differ between ALDH2 genotypes. Conclusions For ALDH2 deficient subjects, an elevated exposure to endogenously formed acetaldehyde requires the presence of ethanol in the systemic circulation. Impact Our findings provide a logical explanation for how there is an increased incidence of upper digestive tract cancers among ALDH2 deficient alcohol drinkers, but not among those ALDH2 deficient subjects who are locally exposed to acetaldehyde without bloodborne ethanol being delivered to the saliva. Thus, ALDH2 deficient alcohol drinkers provide a human model for increased local exposure to acetaldehyde derived from the salivary glands. PMID:24058561

  8. Anxiogenic and stress-inducing effects of peripherally administered acetaldehyde in mice: similarities with the disulfiram-ethanol reaction.

    PubMed

    Escrig, Miguel A; Pardo, Marta; Aragon, Carlos M; Correa, Mercè

    2012-01-01

    Peripheral accumulation of acetaldehyde, the first metabolite of ethanol, produces autonomic responses in humans called "flushing". The aversive characteristics of flushing observed in some populations with an isoform of aldehyde dehydrogenase (ALDH2) less active, are the basis for treating alcoholics with disulfiram, an ALDH inhibitor. Although ethanol and centrally formed acetaldehyde have anxiolytic effects, peripheral accumulation of acetaldehyde may be aversive in part because it is anxiogenic. We investigated the effect of direct administration of acetaldehyde on behavioral measures of anxiety and on hormonal markers of stress in mice. The impact of disulfiram on the anxiolytic actions of ethanol was evaluated. Acetate (a metabolite of acetaldehyde) was also studied. CD1 male mice received acetaldehyde (0, 25, 50, 75 or 100 mg/kg) at different time intervals and were assessed in the elevated plus maze and in the dark-light box. Corticosterone release after acetaldehyde administration was also assessed. Additional experiments evaluated the impact of disulfiram on the anxiolytic effect of ethanol (0 or 1 mg/kg), and the effect of acetate on the plus maze. Direct administration of acetaldehyde (100 mg/kg) had an anxiogenic effect at 1, 11 or 26 min after IP administration. Acetaldehyde was ten times more potent than ethanol at inducing corticosterone release. Disulfiram did not affect behavior on its own, but blocked the anxiolytic effect of ethanol at doses of 30 and 60 mg/kg, and had an anxiogenic effect at the highest dose (90 mg/kg) when co-administered with ethanol. Acetate did not affect any of the anxiety parameters. Peripheral administration or accumulation of acetaldehyde produces anxiogenic effects and induces endocrine stress responses. This effect is not mediated by its metabolite acetate. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. How type of parturition and health status influence hormonal and metabolic profiles in newborn foals.

    PubMed

    Panzani, S; Comin, A; Galeati, G; Romano, G; Villani, M; Faustini, M; Veronesi, M C

    2012-04-01

    Thyroid hormones, insulin growth factor I (IGF-I) and non-esterified fatty acids (NEFA) represent important hormonal and metabolic factors associated with perinatal growth and maturation. Their action could be influenced by the type of parturition and the health status of the foal and therefore the aim of this work is to evaluate their plasma concentrations in newborn foals during the first 2 wks of life. Three groups of subjects were enrolled: 15 healthy foals born by spontaneous parturition, 24 healthy foals born by induced parturition and 26 pathologic foals. From each of the healthy foals, blood was collected at 10, 20 and 30 minutes, 3 and 12 hours from birth, daily from Day 1 to Day 7, and at Day 10 and 14 of life. In pathologic foals samples were collected twice a day from the day of admission at the hospital until the day of discharge or death. Thyroid hormones (T3 and T4) and IGF-I were analyzed by radioimmunoassay and NEFA by enzymatic-colorimetric methods. In all the three groups a declining trend of T3 and T4 plasma concentrations was detectable, with lower levels in the pathologic group compared to healthy foals. Spontaneous foals showed higher levels of T3 at 7 d compared to induced foals, while T4 levels were higher in spontaneous vs. induced foals before 6 h of life, at three and seven days. IGF-I showed increasing plasma concentrations in all three considered groups. No differences were found between healthy and pathologic foals. NEFA in spontaneous and induced healthy foals showed a declining trend with higher levels during the first hours of life. Pathologic foals presented higher levels compared to spontaneous foals only at 24 h and 10 d. These data suggest that the type of foaling could influence the reference ranges for thyroid hormones. Moreover, pathologic foals showed some hormonal and metabolic differences related to their health status. Above all changes of thyroid hormones levels, early in postnatal life, could be a cause, and not only a

  10. Influence of Niche-Specific Nutrients on Secondary Metabolism in Vibrionaceae

    PubMed Central

    Phippen, Christopher; Gotfredsen, Charlotte H.; Nielsen, Kristian Fog

    2016-01-01

    ABSTRACT Many factors, such as the substrate and the growth phase, influence biosynthesis of secondary metabolites in microorganisms. Therefore, it is crucial to consider these factors when establishing a bioprospecting strategy. Mimicking the conditions of the natural environment has been suggested as a means of inducing or influencing microbial secondary metabolite production. The purpose of the present study was to determine how the bioactivity of Vibrionaceae was influenced by carbon sources typical of their natural environment. We determined how mannose and chitin, compared to glucose, influenced the antibacterial activity of a collection of Vibrionaceae strains isolated because of their ability to produce antibacterial compounds but that in subsequent screenings seemed to have lost this ability. The numbers of bioactive isolates were 2- and 3.5-fold higher when strains were grown on mannose and chitin, respectively, than on glucose. As secondary metabolites are typically produced during late growth, potential producers were also allowed 1 to 2 days of growth before exposure to the pathogen. This strategy led to a 3-fold increase in the number of bioactive strains on glucose and an 8-fold increase on both chitin and mannose. We selected two bioactive strains belonging to species for which antibacterial activity had not previously been identified. Using ultrahigh-performance liquid chromatography–high-resolution mass spectrometry and bioassay-guided fractionation, we found that the siderophore fluvibactin was responsible for the antibacterial activity of Vibrio furnissii and Vibrio fluvialis. These results suggest a role of chitin in the regulation of secondary metabolism in vibrios and demonstrate that considering bacterial ecophysiology during development of screening strategies will facilitate bioprospecting. IMPORTANCE A challenge in microbial natural product discovery is the elicitation of the biosynthetic gene clusters that are silent when

  11. The influence of trilostane on steroid hormone metabolism in canine adrenal glands and corpora lutea-an in vitro study.

    PubMed

    Ouschan, C; Lepschy, M; Zeugswetter, F; Möstl, E

    2012-03-01

    Trilostane is widely used to treat hyperadrenocorticism in dogs. Trilostane competitively inhibits the enzyme 3-beta hydroxysteroid dehydrogenase (3β-HSD), which converts pregnenolone (P5) to progesterone (P4) and dehydroepiandrosterone (DHEA) to androstendione (A4). Although trilostane is frequently used in dogs, the molecular mechanism underlying its effect on canine steroid hormone biosynthesis is still an enigma. Multiple enzymes of 3β-HSD have been found in humans, rats and mice and their presence might explain the contradictory results of studies on the effectiveness of trilostane. We therefore investigated the influence of trilostane on steroid hormone metabolism in dogs by means of an in vitro model. Canine adrenal glands from freshly euthanized dogs and corpora lutea (CL) were incubated with increasing doses of trilostane. Tritiated P5 or DHEA were used as substrates. The resulting radioactive metabolites were extracted, separated by thin layer chromatography and visualized by autoradiography. A wide variety of radioactive metabolites were formed in the adrenal glands and in the CL, indicating high metabolic activity in both tissues. In the adrenal cortex, trilostane influences the P5 metabolism in a dose- and time-dependent manner, while DHEA metabolism and metabolism of both hormones in the CL were unaffected. The results indicate for the first time that there might be more than one enzyme of 3β-HSD present in dogs and that trilostane selectively inhibits P5 conversion to P4 only in the adrenal gland.

  12. BIOGENIC SOURCES OF FORMALDEHYDE AND ACETALDEHYDE DURING SUMMER AND WINTER CONDITIONS

    EPA Science Inventory

    Photochemical modeling estimated contributions to ambient concentrations of formaldehyde and acetaldehyde from biogenic emissions over the continental United States during January 2001 (Eos Trans. AGU, 83(47), Fall Meet. Suppl., Abstract A52B-0117). Results showed that maximum co...

  13. 40 CFR 721.10662 - Acetaldehyde, substituted-, reaction products with 2-butyne-1, 4-diol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acetaldehyde, substituted-, reaction...-, reaction products with 2-butyne-1, 4-diol (generic). (a) Chemical substance and significant new uses...-, reaction products with 2-butyne-1, 4-diol (PMN P-11-204) is subject to reporting under this section for...

  14. 40 CFR 721.10662 - Acetaldehyde, substituted-, reaction products with 2-butyne-1, 4-diol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acetaldehyde, substituted-, reaction...-, reaction products with 2-butyne-1, 4-diol (generic). (a) Chemical substance and significant new uses...-, reaction products with 2-butyne-1, 4-diol (PMN P-11-204) is subject to reporting under this section for...

  15. BIOGENIC SOURCES OF FORMALDEHYDE AND ACETALDEHYDE DURING SUMMER AND WINTER CONDITIONS

    EPA Science Inventory

    Photochemical modeling estimated contributions to ambient concentrations of formaldehyde and acetaldehyde from biogenic emissions over the continental United States during January 2001 (Eos Trans. AGU, 83(47), Fall Meet. Suppl., Abstract A52B-0117). Results showed that maximum co...

  16. Regional Sources of Atmospheric Formaldehyde and Acetaldehyde, and Implications for Atmospheric Modeling

    EPA Science Inventory

    Formaldehyde and acetaldehyde concentrations over the Eastern half of the United States are simulated with a 3-D air quality model to identify the most important chemical precursors under January and July conditions. We find that both aldehydes primarily result from photochemical...

  17. 40 CFR 80.56 - Measurement methods for formaldehyde and acetaldehyde.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ACN. Both the impinger and cartridge samples must be analyzed by HPLC without additional sample... liquid chromatograph (HPLC). Standards consisting of the hydrazone derivative of formaldehyde and acetaldehyde are used to determine the response, repeatability, and limit of quantitation of the HPLC method...

  18. Regional Sources of Atmospheric Formaldehyde and Acetaldehyde, and Implications for Atmospheric Modeling

    EPA Science Inventory

    Formaldehyde and acetaldehyde concentrations over the Eastern half of the United States are simulated with a 3-D air quality model to identify the most important chemical precursors under January and July conditions. We find that both aldehydes primarily result from photochemical...

  19. Inhibition by ethanol, acetaldehyde and trifluoroethanol of reactions catalysed by yeast and horse liver alcohol dehydrogenases.

    PubMed Central

    Dickenson, C J; Dickinson, F M

    1978-01-01

    1. Produced inhibition by ethanol of the acetaldehyde-NADH reaction, catalysed by the alcohol dehydrogenases from yeast and horse liver, was studied at 25 degrees C and pH 6-9. 2. The results with yeast alcohol dehydrogenase are generally consistent with the preferred-pathway mechanism proposed previously [Dickenson & Dickinson (1975) Biochem. J. 147, 303-311]. The observed hyperbolic inhibition by ethanol of the maximum rate of acetaldehyde reduction confirms the existence of the alternative pathway involving an enzyme-ethanol complex. 3. The maximum rate of acetaldehyde reduction with horse liver alcohol dehydrogenase is also subject to hyperbolic inhibition by ethanol. 4. The measured inhibition constants for ethanol provide some of the information required in the determination of the dissociation constant for ethanol from the active ternary complex. 5. Product inhibition by acetaldehyde of the ethanol-NAD+ reaction with yeast alcohol dehydrogenase was examined briefly. The results are consistent with the proposed mechanism. However, the nature of the inhibition of the maximum rate cannot be determined within the accessible range of experimental conditions. 6. Inhibition of yeast alcohol dehydrogenase by trifluoroethanol was studied at 25 degrees C and pH 6-10. The inhibition was competitive with respect to ethanol in the ethanol-NAD+ reaction. Estimates were made of the dissociation constant for trifluoroethanol from the enzyme-NAD+-trifluoroethanol complex in the range pH6-10. PMID:208509

  20. A review: exercise and its influence on resting energy metabolism in man.

    PubMed

    Poehlman, E T

    1989-10-01

    Daily energy expenditure is composed of three major components: 1) resting metabolic rate (RMR); 2) the thermic effect of feeding (TEF); and 3) the thermic effect of activity (TEA). RMR constitutes 60 to 75% of daily energy expenditure and is the energy associated with the maintenance of major body functions. TEF is the cumulative increase in energy expenditure after several meals and constitutes approximately 10% of daily energy expenditure. Most investigators, however, have examined the thermic effect of a single meal test (TEM). TEA is the most variable component of daily energy expenditure and can constitute 15 to 30% of 24-h energy expenditure. This component includes energy expenditure due to physical work, muscular activity, including shivering and fidgeting, as well as purposeful physical exercise. Participation in purposeful exercise (both acute and chronic) is a subcomponent of TEA and has been found to influence resting energy expenditure (RMR and TEM). Reports in the literature, however, are discrepant regarding the direction and magnitude of the effects of exercise and exercise training on RMR and TEM. Cross-sectional and longitudinal studies that have examined the effects of exercise on RMR and TEM are reviewed. Possible explanations for divergent results in the literature are discussed. The major focus of this review is directed to human studies, although pertinent animal work is included. The role of genetic variation, gender specific responses, and methodological considerations for future studies examining the relation among RMR, TEA, and TEM are considered. Although still controversial, purposeful physical exercise appears to influence resting energy expenditure in man.