Science.gov

Sample records for acetamide phosphonic acid

  1. Isopropyl methyl phosphonic acid (IMPA)

    Integrated Risk Information System (IRIS)

    Isopropyl methyl phosphonic acid ( IMPA ) ; CASRN 1832 - 54 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assess

  2. A plausibly prebiotic synthesis of phosphonic acids.

    PubMed

    de Graaf, R M; Visscher, J; Schwartz, A W

    1995-11-30

    The insolubility of calcium phosphate in water is a significant stumbling block in the chemistry required for the origin of life. The discovery of alkyl phosphonic acids in the Murchison meteorite suggests the possibility of delivery of these water-soluble, phosphorus-containing molecules by meteorites or comets to the early Earth. This could have provided a supply of organic phosphorus for the earliest stages of chemical evolution; although probably not components of early genetic systems, phosphonic acids may have been precursors to the first nucleic acids. Here we report the synthesis of several phosphonic acids, including the most abundant found in the Murchison meteorite, by ultraviolet irradiation of orthophosphorous acid in the presence of formaldehyde, primary alcohols, or acetone. We argue that similar reactions might explain the presence of phosphonic acids in Murchison, and could also have occurred on the prebiotic Earth.

  3. Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Cooper, George W.; Onwo, Wilfred M.; Cronin, John R.

    1992-01-01

    Homologous series of alkyl phosphonic acids and alkyl sulfonic acids, along with inorganic orthophosphate and sulfate, are identified in water extracts of the Murchison meteorite after conversion to their t-butyl dimethylsilyl derivatives. The methyl, ethyl, propyl, and butyl compounds are observed in both series. Five of the eight possible alkyl phosphonic acids and seven of the eight possible alkyl sulfonic acids through C4 are identified. Abundances decrease with increasing carbon number as observed of other homologous series indigenous to Murchison. Concentrations range downward from approximately 380 nmol/gram in the alkyl sulfonic acid series, and from 9 nmol/gram in the alkyl phosphonic acid series.

  4. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1995-09-12

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  5. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1995-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  6. Hydrophosphorylation of substituted alkynes by phosphonic acids

    SciTech Connect

    Nifant'ev, E.F.; Solovetskaya, L.A.; Maslennikova, V.I.; Sergeev, N.M.

    1987-08-20

    Hydrophosphorylation of functionally substituted alkynes by phosphonic acids can be a convenient method for synthesis of functionally substituted mono- and diphosphine oxides. The ease of hydrophosphorylation is determined by the strength of the negative inductive effect of the substituents on the triple bond and the steric factor. The structure of the bis-adducts was confirmed by elementary analysis and the /sup 31/P and /sup 13/C NMR spectra. The /sup 31/P NMR spectrum is an AB two-spin system. The values of the chemical shifts and spin-spin interaction constants /sup 3/J/sub PP/ are in agreement with the data in the literature for similar compounds.

  7. Developmental Toxicity of Perfluorinated Phosphonic Acids in Mice

    EPA Science Inventory

    Perfluorinated phosphonic acids (PFPAs) are a third member of the perfluoroalkyl acid (PFAA) family, and are structurally similar to the perfluoroalkyl sulfonates and perfluoroalkyl carboxylates. PFPAs are used primarily as a surfactant defoaming agent in pesticide production. Re...

  8. Reaction of perfluoroalkyl grignard reagents with phosphorus trihalides: a new route to perfluoroalkyl-phosphonous and -phosphonic acids.

    PubMed

    Hosein, Adil I; Le Goff, Xavier F; Ricard, Louis; Caffyn, Andrew J M

    2011-02-21

    The reaction of perfluoroalkyl Grignard reagents with phosphorus(III) halides was explored. In the process a new convenient, one-pot, high yield method for the synthesis of (perfluoroalkyl)phosphonic acids has been developed. Perfluoroalkyl Grignard reagents react with phosphorus trichloride or phosphorus tribromide to form (perfluoroalkyl)phosphonous dihalides. Hydrolysis gives the corresponding (perfluoroalkyl)phosphonous acids. Oxidation of the phosphonous acids with H(2)O(2) produces (perfluoroalkyl)phosphonic acids in 60-78% overall yields, based on the corresponding perfluoroalkyl iodide. The X-ray crystal structures of the toluidinium salts, [MeC(6)H(4)NH(3)](2)[C(2)F(5)PO(3)] and [MeC(6)H(4)NH(3)][C(8)F(17)P(O)(2)OH], are reported.

  9. 40 CFR 721.10412 - Phosphonic acid ester (generic) (P-07-706).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphonic acid ester (generic) (P-07... Specific Chemical Substances § 721.10412 Phosphonic acid ester (generic) (P-07-706). (a) Chemical substance... phosphonic acid ester (PMN P-07-706) is subject to reporting under this section for the significant new...

  10. 40 CFR 721.10412 - Phosphonic acid ester (generic) (P-07-706).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphonic acid ester (generic) (P-07... Specific Chemical Substances § 721.10412 Phosphonic acid ester (generic) (P-07-706). (a) Chemical substance... phosphonic acid ester (PMN P-07-706) is subject to reporting under this section for the significant new...

  11. 40 CFR 721.10412 - Phosphonic acid ester (generic) (P-07-706).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphonic acid ester (generic) (P-07... Specific Chemical Substances § 721.10412 Phosphonic acid ester (generic) (P-07-706). (a) Chemical substance... phosphonic acid ester (PMN P-07-706) is subject to reporting under this section for the significant new...

  12. Synthesis and characterization of phosphonate ester and phosphonic acid containing polymers and blends

    NASA Astrophysics Data System (ADS)

    Tamber, Harinder Singh

    1997-12-01

    Vinylbenzylphosphonate ester (VBP) was homopolymerized and copolymerized with methyl methacrylate and the reactivity ratio of this pair of monomers was calculated from Finneman-Ross and Kelen-Tudos methods. These methods provided identical values, which are rsb1 (VBP) = 1.23 and rsb2(MMA) = 0.43. The phosphonate ester group, -P = O(OEt)sb2; in VBP and poly(VBP-MMA) copolymers was hydrolysed to phosphonic acid, -P = O(OH)sb2; at room temperature to obtain vinylbenzylphosphonic acid (VBPa) and poly(VBPa-MMA) copolymers. sp1H, sp{13}C & sp{31}P NMR spectroscopy, DSC and FTIR were used to monitor the hydrolysis of these phosphorylated monomers and polymers. The glass transition temperature of PVBP was 13sp°C as compared to 198sp°C of PVBPa. The phosphoryl group in the parent polymers acts as a self plasticizing agent resulting in lower glass transition temperature, on the other hand inter and intra hydrogen bonding results in broad and high Tsbg in these hydrolysed polymers. VBP was also polymerized with BisGMA or TEGDM to low conversions. These oligomers were tested in vitro as potential adhesive materials for dental/enamel and composite resins. The phosphonate esters containing polymers show substantial capacity to dissolve the heavy metal salts, e.g., UOsb2(NO)sb3.6Hsb2O and thus provides radiopaque polymers. Excessive sorption of water lead to phase separation and, hence, loss of radiopacity. Thus, an alternate method of synthesis of radiopaque polymers is also described in which radiopacifying agent is covalently linked to polymer backbone. Styryldiphenylbismuth was prepared by the reaction of diphenylbismuthchloride and Grignard of p-bromostyrene, but some other by-products such as triphenylbismuth, distyrylphenyl bismoth were also obtained as revealed by reverse phase HPLC and the yield of the reaction was low. Iodinated monomers VBTIsb3 and IEMIsb3 were prepared by reacting VBC or IEM to triiodophenol in high yields. Decomposition kinetic analysis was done by

  13. Phosphonic Acid-Functionalized Polyurethane Dispersions with Improved Adhesion Properties.

    PubMed

    Breucker, Laura; Landfester, Katharina; Taden, Andreas

    2015-11-11

    A facile route to phosphorus-functionalized polyurethane dispersions (P-PUDs) with improved adhesion properties is presented. (Bis)phosphonic acid moieties serve as adhesion promoting sites that are covalently attached via an end-capping reaction to isocyanate-reactive polyurethane particles under aqueous conditions. The synthetic approach circumvents solubility issues, offers great flexibility in terms of polyurethane composition, and allows for the synthesis of semicrystalline systems with thermomechanical response due to reversible physical cross-linking. Differential scanning calorimetry (DSC) is used to investigate the effect of functionalization on the semicrystallinity. The end-capping conversion was determined via inductively-coupled plasma optical emission spectroscopy (ICP-OES) and was surprisingly found to be almost independent of the stoichiometry of reaction, suggesting an adsorption-dominated process. Particle charge detection (PCD) experiments reveal that a dense surface coverage of phosphonic acid groups can be attained and that, at high functionalization degrees, the phosphonic adhesion moieties are partially dragged inside the colloidal P-PUD particle. Quartz crystal microbalance with dissipation (QCMD) investigations conducted with hydroxyapatite (HAP) and stainless steel sensors as model surfaces show a greatly enhanced affinity of the aqueous P-PUDs and furthermore indicate polymer chain rearrangements and autonomous film formation under wet conditions. Due to their facile synthesis, significantly improved adhesion, and variable film properties, P-PUD systems such as the one described here are believed to be of great interest for multiple applications, e.g., adhesives, paints, anticorrosion, or dentistry.

  14. 40 CFR 721.10370 - Phosphonic acid, p-octyl-, lanthanum (3+) salt (2:1).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphonic acid, p-octyl-, lanthanum... New Uses for Specific Chemical Substances § 721.10370 Phosphonic acid, p-octyl-, lanthanum (3+) salt... substance identified as phosphinic acid, p-octyl-, lanthanum (3+) salt (2:1) (PMN P-10-99; CAS No....

  15. 40 CFR 721.10370 - Phosphonic acid, p-octyl-, lanthanum (3+) salt (2:1).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphonic acid, p-octyl-, lanthanum... New Uses for Specific Chemical Substances § 721.10370 Phosphonic acid, p-octyl-, lanthanum (3+) salt... substance identified as phosphinic acid, p-octyl-, lanthanum (3+) salt (2:1) (PMN P-10-99; CAS No....

  16. 40 CFR 721.10370 - Phosphonic acid, p-octyl-, lanthanum (3+) salt (2:1).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphonic acid, p-octyl-, lanthanum... New Uses for Specific Chemical Substances § 721.10370 Phosphonic acid, p-octyl-, lanthanum (3+) salt... substance identified as phosphinic acid, p-octyl-, lanthanum (3+) salt (2:1) (PMN P-10-99; CAS No....

  17. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1996-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  18. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1994-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene disphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  19. 40 CFR 721.10243 - Phosphonic acid, P-[2-[bis(2-hydroxyethyl)amino]ethyl]-, bis(2-chloroethyl) ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphonic acid, P- ethyl]-, bis(2... Specific Chemical Substances § 721.10243 Phosphonic acid, P- ethyl]-, bis(2-chloroethyl) ester. (a... phosphonic acid, P- ethyl]-, bis(2-chloroethyl) ester (PMN P-09-193; CAS No. 55088-28-3) is subject...

  20. 40 CFR 721.10243 - Phosphonic acid, P-[2-[bis(2-hydroxyethyl)amino]ethyl]-, bis(2-chloroethyl) ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphonic acid, P- ethyl]-, bis(2... Specific Chemical Substances § 721.10243 Phosphonic acid, P- ethyl]-, bis(2-chloroethyl) ester. (a... phosphonic acid, P- ethyl]-, bis(2-chloroethyl) ester (PMN P-09-193; CAS No. 55088-28-3) is subject...

  1. 40 CFR 721.10243 - Phosphonic acid, P-[2-[bis(2-hydroxyethyl)amino]ethyl]-, bis(2-chloroethyl) ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphonic acid, P- ethyl]-, bis(2... Specific Chemical Substances § 721.10243 Phosphonic acid, P- ethyl]-, bis(2-chloroethyl) ester. (a... phosphonic acid, P- ethyl]-, bis(2-chloroethyl) ester (PMN P-09-193; CAS No. 55088-28-3) is subject...

  2. Kinetic resolution of racemic carboxylic acids through asymmetric protolactonization promoted by chiral phosphonous acid diester.

    PubMed

    Sakuma, Masayuki; Sakakura, Akira; Ishihara, Kazuaki

    2013-06-07

    Chiral phosphonium salts induce the kinetic resolution of racemic α-substituted unsaturated carboxylic acids through asymmetric protolactonization. Both the lactones and the recovered carboxylic acids are obtained with high enantioselectivities and high S (= kfast/kslow) values. Asymmetric protolactonization also leads to the desymmetrization of achiral carboxylic acids. Notably, chiral phosphonous acid diester not only induced the enantioselectivity but also promoted protolactonization.

  3. Effects of Perfluorinated Phosphonic Acid Exposure during pregnancy in the mouse

    EPA Science Inventory

    Perfluorinated phosphonic acids (PFPAs) are a member of the perfluoroalkyl acid (PFAA) family, and are structurally similar to the perfluoroalkyl sulfonates and perfluoroalkyl carboxylates. These chemicals have recently been detected in the environment, particularly in surface wa...

  4. Preliminary assessment of developmental toxicity of Perfluorinated Phosphonic Acid in mice

    EPA Science Inventory

    Perfluorinated phosphonic acids (PFPAs) are a third member of the perfluoroalkyl acid (PFAA) family, and are structurally similar to the perfluoroalkyl sulfonates and perfluoroalkyl carboxylates. These emerging chemicals have recently been detected in the environment, particularl...

  5. Graphene phosphonic acid as an efficient flame retardant.

    PubMed

    Kim, Min-Jung; Jeon, In-Yup; Seo, Jeong-Min; Dai, Liming; Baek, Jong-Beom

    2014-03-25

    We report the preparation of graphene phosphonic acid (GPA) via a simple and versatile method and its use as an efficient flame retardant. In order to covalently attach phosphorus to the edges of graphene nanoplatelets, graphite was ball-milled with red phosphorus. The cleavage of graphitic C-C bonds during mechanochemical ball-milling generates reactive carbon species, which react with phosphorus in a sealed ball-mill crusher to form graphene phosphorus. Subsequent opening of the crusher in air moisture leads to violent oxidation of graphene phosphorus into GPA (highest oxidation state). The GPA is readily dispersible in many polar solvents, including neutral water, allowing for solution (spray) coating for high-performance, nontoxic flame-retardant applications.

  6. Determination of perfluoroalkyl carboxylic, sulfonic, and phosphonic acids in food.

    PubMed

    Ullah, Shahid; Alsberg, Tomas; Vestergren, Robin; Berger, Urs

    2012-11-01

    A sensitive and accurate method was developed and validated for simultaneous analysis of perfluoroalkyl carboxylic acids, sulfonic acids, and phosphonic acids (PFPAs) at low picograms per gram concentrations in a variety of food matrices. The method employed extraction with acetonitrile/water and cleanup on a mixed-mode co-polymeric sorbent (C8 + quaternary amine) using solid-phase extraction. High-performance liquid chromatographic separation was achieved on a C18 column using a mobile phase gradient containing 5 mM 1-methyl piperidine for optimal chromatographic resolution of PFPAs. A quadrupole time-of-flight high-resolution mass spectrometer operating in negative ion mode was used as detector. Method detection limits were in the range of 0.002 to 0.02 ng g(-1) for all analytes. Sample preparation (extraction and cleanup) recoveries at a spiking level of 0.1 ng g(-1) to a baby food composite were in the range of 59 to 98 %. A strong matrix effect was observed in the analysis of PFPAs in food extracts, which was tentatively assigned to sorption of PFPAs to the injection vial in the solvent-based calibration standard. The method was successfully applied to a range of different food matrices including duplicate diet samples, vegetables, meat, and fish samples.

  7. Nanocomposites of phosphonic-acid-functionalized polyethylenes with inorganic quantum dots.

    PubMed

    Rünzi, Thomas; Baier, Moritz C; Negele, Carla; Krumova, Marina; Mecking, Stefan

    2015-01-01

    Insertion of diethyl vinyl phosphonates and free vinyl phosphonic acid, respectively, into [(P^O)Pd(Me)(dmso)] ((P^O) = κ(2)-P,O-Ar2PC6H4SO2O with Ar = 2-MeOC6H4) (1-dmso) occurs in a 2,1- as well as 1,2-fashion, to form a four-and a five-membered chelate [(P^O)Pd{κ(2)-C,O-CH(P(O)(OR)2)CH2CH3}] and [(P^O)Pd{κ(2)-C,O-CH2CH(P(O)(OR)2)CH3}] (R = H, Et). No decomposition or other reactions of 1 by free phosphonic acid moieties occur. Copolymerization in a pressure reactor by 1-dmso yields linear random poly(ethylene-co-diethyl vinyl phosphonate) and poly(ethylene-co-vinyl phosphonic acid). In these copolymerizations, reversible coordination of the phosphonate moieties of free monomer as well as chelate formation by incorporated monomer retards chain growth as also evidenced by relative binding studies of diethyl phosphonate towards 1. Post-polymerization emulsification of poly(ethylene-co-vinyl phosphonic acid) together with CdSe/CdS quantum dots (QDs) yields submicron (ca. 50 nm from dynamic light scattering (DLS) and transmission electron microscopy (TEM)) polymer particles with the QDs embedded in the functionalized polyethylene in a nonaggregated fashion. This embedding benefits the fluorescence behavior in terms of continuous emission and life-time as revealed by wide-field fluorescence measurements. These composite particle dispersions are employed as a ″masterbatch" together with an aqueous high density polyethylene (HDPE) dispersion to generate thin films (by spin-coating) and bulk materials (from the melt), respectively, in which the inorganic nanoparticles remain highly disperse.

  8. Layered Calcium Structures of p-Phosphonic Acid O-Methyl-Calix[6]arene

    PubMed Central

    Clark, Thomas E.; Martin, Adam; Makha, Mohamed; Sobolev, Alexandre N.; Su, Dian; Rohrs, Henry W.; Gross, Michael L.; Raston, Colin L.

    2010-01-01

    Hexamethoxy-calix[6]arene has been fully functionalized with p-phosphonic acid groups on the upper rim in 57% yield over three steps, and has been authenticated in the solid state by X-ray diffraction as either a nitrate salt or one of two calcium complexes. The latter differ by the ratio of calcium ions per calixarene, either 3:1 or 4:1. In both structures the coordination sphere of the calcium ions is made up of oxygen atoms from the phosphonic acid groups and from water of crystallization, as part of extended polymeric layers in the extended 3D packing. Hirshfeld surface analysis shows extensive O…H and O…Ca interactions for the phosphonic acid moieties in both calcium structures. MALDI-TOF MS of the hexaphosphonic acid shows nano-arrays consisting of up to a maximum of 28 calixarene units. PMID:20657793

  9. Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes.

    PubMed

    Ju, Kou-San; Gao, Jiangtao; Doroghazi, James R; Wang, Kwo-Kwang A; Thibodeaux, Christopher J; Li, Steven; Metzger, Emily; Fudala, John; Su, Joleen; Zhang, Jun Kai; Lee, Jaeheon; Cioni, Joel P; Evans, Bradley S; Hirota, Ryuichi; Labeda, David P; van der Donk, Wilfred A; Metcalf, William W

    2015-09-29

    Although natural products have been a particularly rich source of human medicines, activity-based screening results in a very high rate of rediscovery of known molecules. Based on the large number of natural product biosynthetic genes in microbial genomes, many have proposed "genome mining" as an alternative approach for discovery efforts; however, this idea has yet to be performed experimentally on a large scale. Here, we demonstrate the feasibility of large-scale, high-throughput genome mining by screening a collection of over 10,000 actinomycetes for the genetic potential to make phosphonic acids, a class of natural products with diverse and useful bioactivities. Genome sequencing identified a diverse collection of phosphonate biosynthetic gene clusters within 278 strains. These clusters were classified into 64 distinct groups, of which 55 are likely to direct the synthesis of unknown compounds. Characterization of strains within five of these groups resulted in the discovery of a new archetypical pathway for phosphonate biosynthesis, the first (to our knowledge) dedicated pathway for H-phosphinates, and 11 previously undescribed phosphonic acid natural products. Among these compounds are argolaphos, a broad-spectrum antibacterial phosphonopeptide composed of aminomethylphosphonate in peptide linkage to a rare amino acid N(5)-hydroxyarginine; valinophos, an N-acetyl l-Val ester of 2,3-dihydroxypropylphosphonate; and phosphonocystoximate, an unusual thiohydroximate-containing molecule representing a new chemotype of sulfur-containing phosphonate natural products. Analysis of the genome sequences from the remaining strains suggests that the majority of the phosphonate biosynthetic repertoire of Actinobacteria has been captured at the gene level. This dereplicated strain collection now provides a reservoir of numerous, as yet undiscovered, phosphonate natural products.

  10. 40 CFR 721.10244 - Phosphonic acid, P-[2-[bis(2-hydroxyethyl)amino]ethyl]-, 2-[bis(2- chloroethoxy)phosphinyl]ethyl...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphonic acid, P- ethyl]-, 2- ethyl... New Uses for Specific Chemical Substances § 721.10244 Phosphonic acid, P- ethyl]-, 2- ethyl 2... substance identified as phosphonic acid, P- ethyl]-, 2- ethyl 2-chloroethyl ester (PMN P-09-195; CAS...

  11. 40 CFR 721.10244 - Phosphonic acid, P-[2-[bis(2-hydroxyethyl)amino]ethyl]-, 2-[bis(2- chloroethoxy)phosphinyl]ethyl...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphonic acid, P- ethyl]-, 2- ethyl... New Uses for Specific Chemical Substances § 721.10244 Phosphonic acid, P- ethyl]-, 2- ethyl 2... substance identified as phosphonic acid, P- ethyl]-, 2- ethyl 2-chloroethyl ester (PMN P-09-195; CAS...

  12. 40 CFR 721.10244 - Phosphonic acid, P-[2-[bis(2-hydroxyethyl)amino]ethyl]-, 2-[bis(2- chloroethoxy)phosphinyl]ethyl...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphonic acid, P- ethyl]-, 2- ethyl... New Uses for Specific Chemical Substances § 721.10244 Phosphonic acid, P- ethyl]-, 2- ethyl 2... substance identified as phosphonic acid, P- ethyl]-, 2- ethyl 2-chloroethyl ester (PMN P-09-195; CAS...

  13. Intermediate temperature proton conductors for PEM fuel cells based on phosphonic acid as protogenic group: a progress report.

    PubMed

    Steininger, H; Schuster, M; Kreuer, K D; Kaltbeitzel, A; Bingöl, B; Meyer, W H; Schauff, S; Brunklaus, G; Maier, J; Spiess, H W

    2007-04-21

    The melting behaviour and transport properties of straight chain alkanes mono- and difunctionalized with phosphonic acid groups have been investigated as a function of their length. The increase of melting temperature and decrease of proton conductivity with increasing chain length is suggested to be the consequence of an increasing ordering of the alkane segments which constrains the free aggregation of the phosphonic acid groups. However, the proton mobility is reduced to a greater extent than the proton diffusion coefficient indicating an increasing cooperativity of proton transport with increasing length of the alkane segment. The results clearly indicate that the "spacer concept", which had been proven successful in the optimization of the proton conductivity of heterocycle based systems, fails in the case of phosphonic acid functionalized polymers. Instead, a very high concentration of phosphonic acid functional groups forming "bulky" hydrogen bonded aggregates is suggested to be essential for obtaining very high proton conductivity. Aggregation is also suggested to reduce condensation reactions generally observed in phosphonic acid containing systems. On the basis of this understanding, the proton conductivities of poly(vinyl phosphonic acid) and poly(meta-phenylene phosphonic acid) are discussed. Though both polymers exhibit a substantial concentration of phosphonic acid groups, aggregation seems to be constrained to such an extent that intrinsic proton conductivity is limited to values below sigma = 10(-3) S cm(-1) at T = 150 degrees C. The results suggest that different immobilization concepts have to be developed in order to minimize the conductivity reduction compared to the very high intrinsic proton conductivity of neat phosphonic acid under quasi dry conditions. In the presence of high water activities, however, (as usually present in PEM fuel cells) the very high ion exchange capacities (IEC) possible for phosphonic acid functionalized ionomers (IEC

  14. Fluorescent carboxylic and phosphonic acids: comparative photophysics from solution to organic nanoparticles.

    PubMed

    Faucon, Adrien; Lenk, Romaric; Hémez, Julie; Gautron, Eric; Jacquemin, Denis; Le Questel, Jean-Yves; Graton, Jérôme; Brosseau, Arnaud; Ishow, Eléna

    2013-08-14

    Phosphonic and carboxylic fluorescent nanoparticles have been fabricated by direct reprecipitation in water. Their fluorescence properties strongly differ from those of the corresponding esters where strong H-bonding formation is prohibited. Comparative experiments between the two acid derivatives, differing only in their acid functions while keeping the same alkyl chain, have evidenced the peculiar behavior of the phosphonic acid derivative compared to its carboxylic analog. A dramatic emission quenching for the phosphonic acid in aprotic toluene could be observed while a fivefold increase in the fluorescence signal was observed for molecules assembled as nanoparticles. Such properties have been attributed on the theoretical basis to the formation of folded conformers in solution, leading to deactivation of the radiative excited state through intramolecular H-bonding. These studies evidence for the first time through time-resolved fluorescence measurements the stronger H-donating character of phosphonic acids compared to the carboxylic ones, and provide information on the degree of structural heterogeneity within the nanoparticles. They should pave the way for the rational fabrication of chelating acid fluorophores, able to complex metal oxides to yield stiff hybrid magnetofluorescent nanoparticles which are attracting considerable attention in the growing fields of bimodal imaging and vectorization applications.

  15. Thermal phase diagram of acetamide-benzoic acid and benzoic acid-phthalimide binary systems for solar thermal applications

    NASA Astrophysics Data System (ADS)

    Kumar, Rohitash; Kumar, Ravindra; Dixit, Ambesh

    2016-05-01

    Thermal properties of Acetamide (AM) - Benzoic acid (BA) and Benzoic acid (BA) - Phthalimide (PM) binary eutectic systems are theoretically calculated using thermodynamic principles. We found that the binary systems of AM-BA at 67.6 : 32.4 molar ratio, BA-PM at 89.7 : 10.3 molar ratio form eutectic mixtures with melting temperatures ~ 54.5 °C and 114.3 °C respectively. Calculated latent heat of fusion for these eutectic mixtures are 191 kJ/kg and 146.5 kJ/kg respectively. These melting temperatures and heat of fusions of these eutectic mixtures make them suitable for thermal energy storage applications in solar water heating and solar cooking systems.

  16. 40 CFR 721.6075 - Phosphonic acid, 1,1-methylenebis-tetrakis(1-methylethyl) ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-tetrakis(1-methylethyl) ester. 721.6075 Section 721.6075 Protection of Environment ENVIRONMENTAL PROTECTION...-methylethyl) ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as phosphonic acid, 1,1-methylenebis-tetrakis(1-methylethyl) ester (PMN P-95-168)...

  17. 40 CFR 721.6075 - Phosphonic acid, 1,1-methylenebis-tetrakis(1-methylethyl) ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-tetrakis(1-methylethyl) ester. 721.6075 Section 721.6075 Protection of Environment ENVIRONMENTAL PROTECTION...-methylethyl) ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as phosphonic acid, 1,1-methylenebis-tetrakis(1-methylethyl) ester (PMN P-95-168)...

  18. 40 CFR 721.6075 - Phosphonic acid, 1,1-methylenebis-tetrakis(1-methylethyl) ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-tetrakis(1-methylethyl) ester. 721.6075 Section 721.6075 Protection of Environment ENVIRONMENTAL PROTECTION...-methylethyl) ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as phosphonic acid, 1,1-methylenebis-tetrakis(1-methylethyl) ester (PMN P-95-168)...

  19. 40 CFR 721.6075 - Phosphonic acid, 1,1-methylenebis-tetrakis(1-methylethyl) ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-tetrakis(1-methylethyl) ester. 721.6075 Section 721.6075 Protection of Environment ENVIRONMENTAL PROTECTION...-methylethyl) ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as phosphonic acid, 1,1-methylenebis-tetrakis(1-methylethyl) ester (PMN P-95-168)...

  20. 40 CFR 721.6075 - Phosphonic acid, 1,1-methylenebis-tetrakis(1-methylethyl) ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-tetrakis(1-methylethyl) ester. 721.6075 Section 721.6075 Protection of Environment ENVIRONMENTAL PROTECTION...-methylethyl) ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as phosphonic acid, 1,1-methylenebis-tetrakis(1-methylethyl) ester (PMN P-95-168)...

  1. Synthesis of phosphonic analogues of carnitine and gamma-amino-beta-hydroxybutyric acid.

    PubMed

    Tadeusiak, Elzbieta J

    2004-12-01

    The involvement of carnitine and gamma-amino-beta-hydroxybutyric acid in the biology of mammalian cells, the physiology of the human body, and some important aspects of medicinal treatment has induced many research groups to develop their pharmacologically potent analogues. Among them are the very important phosphonic analogues: phosphocarnitine and gamma-amino-beta-hydroxypropylphosphonic acid. This mini-review describes the various methodologies used for the synthesis of these compounds.

  2. In situ chemical functionalization of gallium nitride with phosphonic acid derivatives during etching.

    PubMed

    Wilkins, Stewart J; Greenough, Michelle; Arellano, Consuelo; Paskova, Tania; Ivanisevic, Albena

    2014-03-04

    In situ functionalization of polar (c plane) and nonpolar (a plane) gallium nitride (GaN) was performed by adding (3-bromopropyl) phosphonic acid or propyl phosphonic acid to a phosphoric acid etch. The target was to modulate the emission properties and oxide formation of GaN, which was explored through surface characterization with atomic force microscopy, X-ray photoelectron spectroscopy, photoluminescence (PL), inductively coupled plasma-mass spectrometry, and water contact angle. The use of (3-bromopropyl) phosphonic acid and propyl phosphonic acid in phosphoric acid demonstrated lower amounts of gallium oxide formation and greater hydrophobicity for both sample sets, while also improving PL emission of polar GaN samples. In addition to crystal orientation, growth-related factors such as defect density in bulk GaN versus thin GaN films residing on sapphire substrates were investigated as well as their responses to in situ functionalization. Thin nonpolar GaN layers were the most sensitive to etching treatments due in part to higher defect densities (stacking faults and threading dislocations), which accounts for large surface depressions. High-quality GaN (both free-standing bulk polar and bulk nonpolar) demonstrated increased sensitivity to oxide formation. Room-temperature PL stands out as an excellent technique to identify nonradiative recombination as observed in the spectra of heteroepitaxially grown GaN samples. The chemical methods applied to tune optical and physical properties of GaN provide a quantitative framework for future novel chemical and biochemical sensor development.

  3. Spatially Modulating Interfacial Properties of Transparent Conductive Oxides: Patterning Work Function with Phosphonic Acid Self-Assembled Monolayers

    SciTech Connect

    Knesting, Kristina M.; Hotchkiss, Peter J.; MacLeod, Bradley A.; Marder, Seth R.; Ginger, David S.

    2011-09-29

    The interface between an organic semiconductor and a transparent conducting oxide is crucial to the performance of organic optoelectronics. We use microcontact printing to pattern pentafluorobenzyl phosphonic acid self-assembled monolayers (SAMs) on indium tin oxide (ITO). We obtain high-fidelity patterns with sharply defined edges and with large work function contrast (comparable to that obtained from phosphonic acid SAMs deposited from solution).

  4. Flower-like supramolecular self-assembly of phosphonic acid appended naphthalene diimide and melamine

    PubMed Central

    Bhosale, Rajesh S; Al Kobaisi, Mohammad; Bhosale, Sidhanath V.; Bhargava, Suresh; Bhosale, Sheshanath V.

    2015-01-01

    Diverse supramolecular assemblies ranging from nanometres to micrometers of small aromatic π-conjugated functional molecules have attracted enormous research interest in light of their applications in optoelectronics, chemosensors, nanotechnology, biotechnology and biomedicines. Here we study the mechanism of the formation of a flower-shaped supramolecular structure of phosphonic acid appended naphthalene diimide with melamine. The flower-shaped assembly formation was visualised by scanning electron microscope (SEM) and transmission electron microscopy (TEM) imaging, furthermore, XRD and DLS used to determined mode of aggregation. Characteristically, phosphonic acid-substituted at imide position of NDIs possess two important properties resulting in the formation of controlled flower-like nanostructures: (i) the aromatic core of the NDI which is designed to optimize the dispersive interactions (π-π stacking and van der Waals interactions) between the cores within a construct and (ii) phosphonic acid of NDI interact with malamine through molecular recognition i.e. strong hydrogen-bonding (H-bonding). We believe such arrangements prevent crystallization and favour the directional growth of flower-like nanostructure in 3D fashion. These works demonstrate that complex self-assembly can indeed be attained through hierarchical non-covalent interactions of two components. Furthermore, flower-like structures built from molecular recognition by these molecules indicate their potential in other fields if combined with other chemical entities. PMID:26416382

  5. Atomistic Simulations of Perfluoro Phosphonic and Phosphinic Acid Membranes and Comparisons to Nafion

    SciTech Connect

    Idupulapati, Nagesh B.; Devanathan, Ramaswami; Dupuis, Michel

    2011-03-31

    We used classical molecular dynamics (MD) simulations to investigate the nanoscale morphology and proton transport properties of perfluoro phosphonic (FPA) and phosphinic acid (FPA-I) membranes as they are being considered for use in low temperature fuel cells. We systematically investigated these properties as a function of the hydration level. The changes in nanostructure, in transport dynamics of water and hydronium ions, and in water network percolation were extracted from MD simulations and compared with Nafion. Phosphonic and phosphinic acid moieties in FPA and FPA-I, have lower acidity than sulfonic acid in Nafion, yet the diffusion of water was observed to be faster in FPA and FPA-I than in Nafion, particularly at low hydration levels. However this did not give rise to notable differences in hydronium ion diffusion and water network percolation for these membranes over Nafion. Similar observations were also reported by our group recently in a study of perfluoro-sulfonyl imide membranes carrying stronger super-acids than sulfonic acid of Nafion. These findings together suggest no strong apparent correlation between the acidity strength of the functional acid groups and the dynamics of water and hydronium ions in hydrated polymer electrolyte membranes (PEMs) with similar fluorocarbon backbones and acidic group-carrying side chains. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  6. Novel alpha-hydroxy phosphonic acids via castor oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydroxy fatty acids (HFAs) have found a number of uses in today’s market, with uses ranging from materials to pharmaceuticals. Castor oil has served as a versatile HFA; its principle component, ricinoleic acid, can be isolated from castor oil and has been modified extensively for a number of applica...

  7. Poly(vinylidene fluoride) Containing Phosphonic Acid as Anticorrosion Coating for Steel.

    PubMed

    Banerjee, Sanjib; Wehbi, Mohammad; Manseri, Abdellatif; Mehdi, Ahmad; Alaaeddine, Ali; Hachem, Ali; Ameduri, Bruno

    2017-02-22

    Vinylidene fluoride (VDF)-based copolymers bearing pendant phosphonic acid function for potential application as anticorrosion coatings were synthesized via free radical copolymerization of VDF with a new phosphorus containing 2-trifluoromethacrylate monomer, (dimethoxyphosphoryl)methyl 2-(trifluoromethyl)acrylate (MAF-DMP). MAF-DMP was prepared from 2-trifluoromethacrylic acid in 60% overall yield. Radical copolymerizations of VDF with MAF-DMP initiated by tert-amyl peroxy-2-ethylhexanoate at varying ([VDF]0/[MAF-DMP]0) feed ratios led to several poly(VDF-co-MAF-DMP) copolymers having different molar percentages of VDF (79-96%) and number-average molecular weights (Mn's) up to ca. 10 000 g mol(-1) in fair yields (47-53%). Determination of the composition and microstructure of all the synthesized copolymers was done by (1)H and (19)F NMR spectroscopies. The monomer reactivity ratios of this new VDF/MAF-DMP pair were also determined (rVDF = 0.76 ± 0.34 and rMAF-DMP = 0 at 74 °C). The resulting poly(VDF-co-MAF-DMP) copolymers exhibited high melting temperature (162-171 °C, with respect to the VDF content), and the degree of crystallinity reached up to 51%. Finally, the pendant dimethyl phosphonate ester groups of the synthesized poly(VDF-co-MAF-DMP) copolymer were quantitatively hydrolyzed, giving rise to novel phosphonic acid-functionalized PVDF (PVDF-PA). In comparison to hydrophobic poly(VDF-co-MAF-DMP) copolymers (the water contact angle, WCA, was 98°), the hydrophilic character of the PVDF-PA was found to be surprisingly rather pronounced, exhibiting low WCA (15°). Finally, steel plates coated with PVDF-PA displayed satisfactory anticorrosion properties under simulated seawater environment.

  8. New water-soluble metal working fluids additives from phosphonic acid derivatives for aluminum alloy materials.

    PubMed

    Kohara, Ichitaro; Tomoda, Hideyuki; Watanabe, Shoji

    2007-01-01

    Water-soluble metal working fluids are used for processing of aluminum alloy materials. This short paper describes properties of new additives for water-soluble cutting fluids for aluminum alloy materials. Some alkyldiphosphonic acids were prepared with known method. Amine salts of these phosphonic acids showed anti-corrosion property for aluminum alloy materials. However, they have no hard water tolerance. Monoesters of octylphosphonic acid were prepared by the reaction of octylphosphonic acid dichloride with various alcohols in the presence of triethylamine. Amine salts of monoester of octylphosphonic acid with diethyleneglycol monomethyl ether, ethyleneglycol monomethyl ether and triethyleneglycol monomethyl ether showed both of a good anti-corrosion property for aluminum alloy materials and hard water tolerance.

  9. Characterizing mixed phosphonic acid ligand capping on CdSe/ZnS quantum dots using ligand exchange and NMR spectroscopy.

    PubMed

    Davidowski, Stephen K; Lisowski, Carmen E; Yarger, Jeffery L

    2016-03-01

    The ligand capping of phosphonic acid functionalized CdSe/ZnS core-shell quantum dots (QDs) was investigated with a combination of solution and solid-state (31) P nuclear magnetic resonance (NMR) spectroscopy. Two phosphonic acid ligands were used in the synthesis of the QDs, tetradecylphosphonic acid and ethylphosphonic acid. Both alkyl phosphonic acids showed broad liquid and solid-state (31) P NMR resonances for the bound ligands, indicative of heterogeneous binding to the QD surface. In order to quantify the two ligand populations on the surface, ligand exchange facilitated by phenylphosphonic acid resulted in the displacement of the ethylphosphonic acid and tetradecylphosphonic acid and allowed for quantification of the free ligands using (31) P liquid-state NMR. After washing away the free ligand, two broad resonances were observed in the liquids' (31) P NMR corresponding to the alkyl and aromatic phosphonic acids. The washed samples were analyzed via solid-state (31) P NMR, which confirmed the ligand populations on the surface following the ligand exchange process. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Exciton-blocking phosphonic acid-treated anode buffer layers for organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Zimmerman, Jeramy D.; Song, Byeongseop; Griffith, Olga; Forrest, Stephen R.

    2013-12-01

    We demonstrate significant improvements in power conversion efficiency of bilayer organic photovoltaics by replacing the exciton-quenching MoO3 anode buffer layer with an exciton-blocking benzylphosphonic acid (BPA)-treated MoO3 or NiO layer. We show that the phosphonic acid treatment creates buffers that block up to 70% of excitons without sacrificing the hole extraction efficiency. Compared to untreated MoO3 anode buffers, BPA-treated NiO buffers exhibit a ˜ 25% increase in the near-infrared spectral response in diphenylanilo functionalized squaraine (DPSQ)/C60-based bilayer devices, increasing the power conversion efficiency under 1 sun AM1.5G simulated solar illumination from 4.8 ± 0.2% to 5.4 ± 0.3%. The efficiency can be further increased to 5.9 ± 0.3% by incorporating a highly conductive exciton blocking bathophenanthroline (BPhen):C60 cathode buffer. We find similar increases in efficiency in two other small-molecule photovoltaic systems, indicating the generality of the phosphonic acid-treated buffer approach to enhance exciton blocking.

  11. The antiviral activity of tetrazole phosphonic acids and their analogues.

    PubMed Central

    Hutchinson, D W; Naylor, M

    1985-01-01

    5-(Phosphonomethyl)-1H-tetrazole and a number of related tetrazoles have been prepared and their effects on the replication of Herpes Simplex Viruses-1 and -2 have been investigated as well as their abilities to inhibit the DNA polymerases induced by these viruses and the RNA transcriptase activity of influenza virus A. Contrary to an earlier report, 5-(phosphonomethyl)-1H-tetrazole was not an efficient inhibitor of the replication of HSV-1 and HSV-2 in tissue culture. Analogues of 5-(phosphonomethyl)-1H-tetrazole were also devoid of significant antiviral activity. Only 5-(phosphonomethyl)-1H-tetrazole and 5-(thiophosphonomethyl)-1H-tetrazole inhibited the influenza virus transcriptase, and both were more effective as inhibitors than phosphonoacetic acid under the same conditions. The DNA polymerases induced by HSV-1 and HSV-2 were inhibited slightly by 5-(phosphonomethyl)-1H-tetrazole and to a lesser extent by its N-ethyl analogue and 3-(phosphonomethyl)-1H-1,2,4-triazole. None of these compounds were as effective as phosphonoacetic acid. 5-(Thiophosphonomethyl)-1H-tetrazole was a better inhibitor of the DNA polymerase induced by HSV-1 than 5-(phosphonomethyl)-1H-tetrazole. PMID:2417198

  12. Screening of nerve agent markers with hollow fiber-chemosorption of phosphonic acids.

    PubMed

    Holmgren, Karin Höjer; Gustafsson, Tomas; Östin, Anders

    2016-10-15

    This report describes a method developed for extracting nerve gas markers such as phosphonic acids from urine and other aqueous samples. It involves single-step microextraction with chemosorption to hollow fibers that have been pre-soaked in a solution containing a derivatization reagent (3,5 triflouro methyl benzene diazomethane). The derivatives it forms with phosphonic acids can be sensitively detected by mass spectrometric detectors operating in negative chemical ionization (NCI) mode. Limits of quantification obtained in analyses of water and urine extracts by GC/MS in negative chemical ionization and selected ion monitoring mode were 0.1-10 and 0.5-10ng/mL, respectively. Pentaflourophenyl diazomethane can also be used as a derivatization reagent, and the micro-extracts (which generate low background signals) can be sensitively analyzed by GC-MS/MS in NCI selected reaction monitoring (SRM) mode, using two specific transitions for both reagents. Thus, this sensitive approach can be flexibly modified to obtain confirmatory information, or address potential problems caused by interferences in some samples.

  13. Conserved biosynthetic pathways for phosalacine, bialaphos and newly discovered phosphonic acid natural products

    PubMed Central

    Blodgett, Joshua A. V; Zhang, Jun Kai; Yu, Xiaomin; Metcalf, William W.

    2015-01-01

    Natural products containing phosphonic or phosphinic acid functionalities often display potent biological activities with applications in medicine and agriculture. The herbicide phosphinothricin-tripeptide (PTT) was the first phosphinate natural product discovered, yet despite numerous studies, questions remain surrounding key transformations required for its biosynthesis. In particular, the enzymology required to convert phosphonoformate to carboxyphosphonoenolpyruvate and the mechanisms underlying phosphorus-methylation remain poorly understood. In addition, the model for NRPS assembly of the intact tripeptide product has undergone numerous revisions that have yet to be experimentally tested. To further investigate the biosynthesis of this unusual natural product, we completely sequenced the PTT biosynthetic locus from Streptomyces hygroscopicus and compared it to the orthologous cluster from Streptomyces viridochromogenes. We also sequenced and analysed the closely related phosalacine (PAL) biosynthetic locus from Kitasatospora phosalacinea. Using data drawn from the comparative analysis of the PTT and PAL pathways, we also evaluate three related recently discovered phosphonate biosynthetic loci from Streptomyces sviceus, Streptomyces sp. WM6386 and Frankia alni. Our observations address long-standing biosynthetic questions related to PTT and PAL production and suggest that additional members of this pharmacologically important class await discovery. PMID:26328935

  14. Conserved biosynthetic pathways for phosalacine, bialaphos and newly discovered phosphonic acid natural products.

    PubMed

    Blodgett, Joshua A V; Zhang, Jun Kai; Yu, Xiaomin; Metcalf, William W

    2016-01-01

    Natural products containing phosphonic or phosphinic acid functionalities often display potent biological activities with applications in medicine and agriculture. The herbicide phosphinothricin-tripeptide (PTT) was the first phosphinate natural product discovered, yet despite numerous studies, questions remain surrounding key transformations required for its biosynthesis. In particular, the enzymology required to convert phosphonoformate to carboxyphosphonoenolpyruvate and the mechanisms underlying phosphorus methylation remain poorly understood. In addition, the model for non-ribosomal peptide synthetase assembly of the intact tripeptide product has undergone numerous revisions that have yet to be experimentally tested. To further investigate the biosynthesis of this unusual natural product, we completely sequenced the PTT biosynthetic locus from Streptomyces hygroscopicus and compared it with the orthologous cluster from Streptomyces viridochromogenes. We also sequenced and analyzed the closely related phosalacine (PAL) biosynthetic locus from Kitasatospora phosalacinea. Using data drawn from the comparative analysis of the PTT and PAL pathways, we also evaluate three related recently discovered phosphonate biosynthetic loci from Streptomyces sviceus, Streptomyces sp. WM6386 and Frankia alni. Our observations address long-standing biosynthetic questions related to PTT and PAL production and suggest that additional members of this pharmacologically important class await discovery.

  15. Directed Regulation of Multienzyme Complexes of 2-Oxo Acid Dehydrogenases Using Phosphonate and Phosphinate Analogs of 2-Oxo Acids.

    PubMed

    Artiukhov, A V; Graf, A V; Bunik, V I

    2016-12-01

    2-Oxo acid dehydrogenase complexes are important metabolic checkpoints functioning at the intercept of sugar and amino acid degradation. This review presents a short summary of architectural, catalytic, and regulatory principles of the complexes structure and function, based on recent advances in studies of well-characterized family members. Special attention is given to use of synthetic phosphonate and phosphinate analogs of 2-oxo acids as selective and efficient inhibitors of the cognate complexes in biological systems of bacterial, plant, and animal origin. We summarize our own results concerning the application of synthetic analogs of 2-oxo acids in situ and in vivo to reveal functional interactions between 2-oxo acid dehydrogenase complexes and other components of metabolic networks specific to different cells and tissues. Based on our study of glutamate excitotoxicity in cultured neurons, we show how a modulation of metabolism by specific inhibition of its key reaction may be employed to correct pathologies. This approach is further developed in our study on the action of the phosphonate analog of 2-oxoglutarate in animals. The study revealed that upregulation of 2-oxoglutarate dehydrogenase complex is involved in animal stress response and may provide increased resistance to damaging effects, underlying so-called preconditioning. The presented analysis of published data suggests synthetic inhibitors of metabolic checkpoints as promising tools to solve modern challenges of systems biology, metabolic engineering, and medicine.

  16. Phosphonic Acid Functionalized Asymmetric Phthalocyanines: Synthesis, Modification of Indium Tin Oxide (ITO), and Charge Transfer

    SciTech Connect

    Polaske, Nathan W.; Lin, Hsiao-Chu; Tang, Anna; Mayukh, Mayank; Oquendo, Luis E.; Green, John; Ratcliff, Erin L.; Armstrong, Neal R.; Saavedra, S. Scott; McGrath, Dominic V.

    2011-12-20

    Metalated and free-base A₃B-type asymmetric phthalocyanines (Pcs) bearing, in the asymmetric quadrant, a flexible alkyl linker of varying chain lengths terminating in a phosphonic acid (PA) group have been synthesized. Two parallel series of asymmetric Pc derivatives bearing aryloxy and arylthio substituents are reported, and their synthesis and characterization through NMR, combustion analysis, and MALDI-MS are described. We also demonstrate the modification of indium tin oxide (ITO) substrates using the PA functionalized asymmetric Pc derivatives and monitoring their electrochemistry. The PA functionalized asymmetric Pcs were anchored to the ITO surface through chemisorption and their electrochemical properties characterized using cyclic voltammetry to investigate the effects of PA structure on the thermodynamics and kinetics of charge transfer. Ionization energies of the modified ITO surfaces were measured using ultraviolet photoemission spectroscopy.

  17. A report on emergent uranyl binding phenomena by an amidoxime phosphonic acid co-polymer

    SciTech Connect

    Abney, C. W.; Das, S.; Mayes, R. T.; Kuo, L. -J.; Wood, J.; Gill, G.; Piechowicz, M.; Lin, Z.; Lin, W.; Dai, S.

    2016-01-01

    The development of technology to harvest the uranium dissolved in seawater would enable access to vast quantities of this critical metal for nuclear power generation. Amidoxime polymers are the most promising platforms for achieving this separation, yet the design of advanced adsorbents is hindered by uncertainty regarding the uranium binding mode. In this work we use XAFS to investigate the uranium coordination environment in an amidoxime–phosphonic acid copolymer adsorbent. In contrast to the binding mode predicted computationally and from small molecule studies, a cooperative chelating model is favoured, attributable to emergent behavior resulting from inclusion of amidoxime in the polymer. Samples exposed to seawater also display a feature consistent with a μ2-oxo-bridged transition metal, suggesting the formation of an in situ specific binding site. These findings challenge long held assumptions and provide new opportunities for the design of advanced adsorbent materials.

  18. A report on emergent uranyl binding phenomena by an amidoxime phosphonic acid co-polymer

    DOE PAGES

    Abney, C. W.; Das, S.; Mayes, R. T.; ...

    2016-08-01

    Development of technology to harvest the uranium dissolved in seawater would enable access to vast quantities of this critical metal for nuclear power generation. Amidoxime polymers are the most promising platform for achieving this separation, yet design of advanced adsorbents is hindered by uncertainty regarding the uranium binding mode. In this work we use XAFS to investigate the uranium coordination environment in an amidoxime-phosphonic acid copolymer adsorbent. In contrast to the binding mode predicted computationally and from small molecule studies, a cooperative chelating model is favoured, attributable to emergent behavior resulting from inclusion of amidoxime in a polymer. Samples exposedmore » to seawater also display a feature consistent with a 2-oxo-bridged transition metal, suggesting formation of an in situ specific binding site. As a result, these findings challenge long held assumptions and provide new opportunities for the design of advanced adsorbent materials.« less

  19. A report on emergent uranyl binding phenomena by an amidoxime phosphonic acid co-polymer

    SciTech Connect

    Abney, C. W.; Das, S.; Mayes, R. T.; Kuo, L. -J.; Wood, J.; Gill, G.; Piechowicz, M.; Lin, Z.; Lin, W.; Dai, S.

    2016-08-01

    Development of technology to harvest the uranium dissolved in seawater would enable access to vast quantities of this critical metal for nuclear power generation. Amidoxime polymers are the most promising platform for achieving this separation, yet design of advanced adsorbents is hindered by uncertainty regarding the uranium binding mode. In this work we use XAFS to investigate the uranium coordination environment in an amidoxime-phosphonic acid copolymer adsorbent. In contrast to the binding mode predicted computationally and from small molecule studies, a cooperative chelating model is favoured, attributable to emergent behavior resulting from inclusion of amidoxime in a polymer. Samples exposed to seawater also display a feature consistent with a 2-oxo-bridged transition metal, suggesting formation of an in situ specific binding site. As a result, these findings challenge long held assumptions and provide new opportunities for the design of advanced adsorbent materials.

  20. Bacterial carbon-phosphorus lyase: products, rates, and regulation of phosphonic and phosphinic acid metabolism.

    PubMed Central

    Wackett, L P; Shames, S L; Venditti, C P; Walsh, C T

    1987-01-01

    Carbon-phosphorus bond cleavage activity, found in bacteria that utilize alkyl- and phenylphosphonic acids, has not yet been obtained in a cell-free system. Given this constraint, a systematic examination of in vivo C-P lyase activity has been conducted to develop insight into the C-P cleavage reaction. Six bacterial strains were obtained by enrichment culture, identified, and characterized with respect to their phosphonic acid substrate specificity. One isolate, Agrobacterium radiobacter, was shown to cleave the carbon-phosphorus bond of a wide range of substrates, including fosfomycin, glyphosate, and dialkyl phosphinic acids. Furthermore, this organism processed vinyl-, propenyl-, and propynylphosphonic acids, a previously uninvestigated group, to ethylene, propene, and propyne, respectively. A determination of product stoichiometries revealed that both C-P bonds of dimethylphosphinic acid are cleaved quantitatively to methane and, furthermore, that the extent of C-P bond cleavage correlated linearly with the specific growth rate for a range of substrates. The broad substrate specificity of Agrobacterium C-P lyase and the comprehensive characterization of the in vivo activity make this an attractive system for further biochemical and mechanistic experiments. In addition, the failure to observe the activity in a group of gram-positive bacteria holds open the possibility that a periplasmic component may be required for in vivo expression of C-P lyase activity. PMID:3804975

  1. Effects of radiation, acid, and base on the extractant dihexyl-(diethylcarbamoyl)methyl) phosphonate

    SciTech Connect

    Bahner, C.T.; Shoun, R.R.; McDowell, W.J.

    1981-11-01

    The effects of exposure to gamma radiation (/sup 60/Co) and of contact with acidic and basic aqueous solutions on dihexyl((diethylcarbamoyl)methyl)phosphonate (DHDECMP) were studied. Gamma radiation decomposes DHDECMP into a variety of products. The most troublesome of those are the acidic compounds that cause problems in stripping the actinides and lanthanides from the extractant at low acid concentrations. The rate of degradation of DHDECMP by radiation is about the same or only slightly higher than that of tri-n-butyl phosphate (TBP). It is relatively easy to remove the radiation-produced impurities by equilibration (scrubbing) with sodium carbonate or sodium hydroxide or by column chromatographic methods. The hydrolysis of DHDECMP in contact with aqueous solutions containing less than 3 M HNO/sub 3/ is not more severe than that of TBP under the same conditions but is significant above that acid concentration. Hydrolysis of DHDECMP in contact with aqueous sodium hydroxide solution does occur, but it should not pose an important problem with the short contact times such as those anticipated for the removal of the radiation-induced degradation products by caustic scrubbing. Results of various chromatographic tests to characterize the degradation products of DHDECMP are also given.

  2. Substituted ethan phosphonic acid esters as reagents for the separation of molybdenum from rhenium by solvent extraction.

    PubMed

    Jordanov, N; Mareva, S; Borisov, G; Jordanov, B

    1968-02-01

    New esters of the ethan phosphonic acids have been synthesized and their extraction properties studied with respect to Mo(VI), Re(VII), Fe(III),Au(III),Tl(III) and Sb(V). A possibility is shown for the analytical separation of molybdenum from rhenium (beta = 700). The state of these new extraction agents in carbon tetrachloride solution, and the mechanism of the extraction processes, have been investigated by means of infrared spectra.

  3. Determination of polyfluoroalkyl phosphoric acid diesters, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, perfluoroalkyl carboxylic acids, and perfluoroalkane sulfonic acids in lake trout from the Great Lakes region.

    PubMed

    Guo, Rui; Reiner, Eric J; Bhavsar, Satyendra P; Helm, Paul A; Mabury, Scott A; Braekevelt, Eric; Tittlemier, Sheryl A

    2012-11-01

    A comprehensive method to extract perfluoroalkyl carboxylic acids, perfluoroalkane sulfonic acids, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, and polyfluoroalkyl phosphoric acid diesters simultaneously from fish samples has been developed. The recoveries of target compounds ranged from 78 % to 121 %. The new method was used to analyze lake trout (Salvelinus namaycush) from the Great Lakes region. The results showed that the total perfluoroalkane sulfonate concentrations ranged from 0.1 to 145 ng/g (wet weight) with perfluorooctane sulfonate (PFOS) as the dominant contaminant. Concentrations in fish between lakes were in the order of Lakes Ontario ≈ Erie > Huron > Superior ≈ Nipigon. The total perfluoroalkyl carboxylic acid concentrations ranged from 0.2 to 18.2 ng/g wet weight. The aggregate mean perfluorooctanoic acid (PFOA) concentration in fish across all lakes was 0.045 ± 0.023 ng/g. Mean concentrations of PFOA were not significantly different (p > 0.1) among the five lakes. Perfluoroalkyl phosphinic acids were detected in lake trout from Lake Ontario, Lake Erie, and Lake Huron with concentration ranging from non-detect (ND) to 0.032 ng/g. Polyfluoroalkyl phosphoric acid diesters were detected only in lake trout from Lake Huron, at levels similar to perfluorooctanoic acid.

  4. Phosphonic acid functionalized poly(pentafluorostyrene) as polyelectrolyte membrane for fuel cell application

    NASA Astrophysics Data System (ADS)

    Atanasov, Vladimir; Oleynikov, Andrey; Xia, Jiabing; Lyonnard, Sandrine; Kerres, Jochen

    2017-03-01

    In this paper we introduce polyelectrolyte membranes based on phosphonated poly(pentafluorostyrene) (PPFS) and their performances in a fuel cell. The polyelectrolytes were obtained via partial phosphonation of PPFS varying the phosphonation degree from 17 to 66%. These membranes showed a high resistance to temperature (Tdecomp. = 355-381 °C) and radical attack (96-288 h in Fenton's test). A blend membrane consisting of 82 wt% fully phosphonated PPFS and 18 wt% poly(benzimidazole) is compared to the 66% phosphonated membrane having similar ion-conductivity (σ = 57 mS cm-1 at 120 °C, 90% RH). In the fuel cell the blend showed the best performance reaching 0.40 W cm-2 against 0.34 W cm-2 for the 42 wt% phosphonated membrane and 0.35 W cm-2 for Nafion 212. Furthermore, the blend maintained its operation at potentiostatic regime (0.5 V) for 620 h without declining in its performance. The highest power density of 0.78 W cm-2 was reached for the blend with a thickness of 15 μm using humidified oxygen (RH > 90%) at the cathode side. The switch from humidified to dry gasses during operation reduced the current density down to 0.6 A cm-2, but the cell maintained under operation for 66 h.

  5. Tailored control and optimisation of the number of phosphonic acid termini on phosphorus-containing dendrimers for the ex-vivo activation of human monocytes.

    PubMed

    Rolland, Olivier; Griffe, Laurent; Poupot, Mary; Maraval, Alexandrine; Ouali, Armelle; Coppel, Yannick; Fournié, Jean-Jacques; Bacquet, Gérard; Turrin, Cédric-Olivier; Caminade, Anne-Marie; Majoral, Jean-Pierre; Poupot, Rémy

    2008-01-01

    The syntheses of a series of phosphonic acid-capped dendrimers is described. This collection is based on a unique set of dendritic structural parameters-cyclo(triphosphazene) core, benzylhydrazone branches and phosphonic acid surface-and was designed to study the influence of phosphonate (phosphonic acid) surface loading towards the activation of human monocytes ex vivo. Starting from the versatile hexachloro-cyclo(triphosphazene) N(3)P(3)Cl(6), six first-generation dendrimers were obtained, bearing one to six full branches, that lead to 4, 8, 12, 16, 20 and 24 phosphonate termini, respectively. The surface loading was also explored at the limit of dense packing by means of a first-generation dendrimer having a cyclo(tetraphosphazene) core and bearing 32 termini, and with a first-generation dendrimer based on a AB(2)/CD(5) growing pattern and bearing 60 termini. Human monocyte activation by these dendrimers confirms the requirement of the whole dendritic structure for bioactivity and identifies the dendrimer bearing four branches, thus 16 phosphonate termini, as the most bioactive.

  6. A Metabolically-Stabilized Phosphonate Analog of Lysophosphatidic Acid Attenuates Collagen-Induced Arthritis

    PubMed Central

    Sevastou, Ioanna; Sirioti, Ivi; Samiotaki, Martina; Madan, Damian; Prestwich, Glenn D.; Aidinis, Vassilis

    2013-01-01

    Rheumatoid arthritis (RA) is a destructive arthropathy with systemic manifestations, characterized by chronic synovial inflammation. Under the influence of the pro-inflammatory milieu synovial fibroblasts (SFs), the main effector cells in disease pathogenesis become activated and hyperplastic while releasing a number of signals that include pro-inflammatory factors and tissue remodeling enzymes. Activated RA SFs in mouse or human arthritic joints express significant quantities of autotaxin (ATX), a lysophospholipase D responsible for the majority of lysophosphatidic acid (LPA) production in the serum and inflamed sites. Conditional genetic ablation of ATX from SFs resulted in attenuation of disease symptoms in animal models, an effect attributed to diminished LPA signaling in the synovium, shown to activate SF effector functions. Here we show that administration of 1-bromo-3(S)-hydroxy-4-(palmitoyloxy)butyl-phosphonate (BrP-LPA), a metabolically stabilized analog of LPA and a dual function inhibitor of ATX and pan-antagonist of LPA receptors, attenuates collagen induced arthritis (CIA) development, thus validating the ATX/LPA axis as a novel therapeutic target in RA. PMID:23923032

  7. Transcriptional and cellular responses of the green alga Chlamydomonas reinhardtii to perfluoroalkyl phosphonic acids.

    PubMed

    Sanchez, David; Houde, Magali; Douville, Mélanie; De Silva, Amila O; Spencer, Christine; Verreault, Jonathan

    2015-03-01

    Perfluoroalkyl phosphonic acids (PFPAs), a new class of perfluoroalkyl substances used primarily in the industrial sector as surfactants, were recently detected in surface water and wastewater treatment plant effluents. Toxicological effects of PFPAs have as yet not been investigated in aquatic organisms. The objective of the present study was to evaluate the effects of perfluorooctylphosphonic acid (C8-PFPA) and perfluorodecylphosphonic acid (C10-PFPA) exposure (31-250μg/L) on Chlamydomonas reinhardtii using genomic (qRT-PCR), biochemical (reactive oxygen species production (ROS) and lipid peroxidation), and physiological (cellular viability) indicators. After 72h of exposure, no differences were observed in cellular viability for any of the two perfluorochemicals. However, increase in ROS concentrations (36% and 25.6% at 125 and 250μg/L, respectively) and lipid peroxidation (35.5% and 35.7% at 125 and 250μg/L, respectively) was observed following exposure to C10-PFPA. C8-PFPA exposure did not impact ROS production and lipid peroxidation in algae. To get insights into the molecular response and modes of action of PFPA toxicity, qRT-PCR-based assays were performed to analyze the transcription of genes related to antioxidant responses including superoxide dismutase (SOD-1), glutathione peroxidase (GPX), catalase (CAT), glutathione S-transferase (GST), and ascorbate peroxidase (APX I). Genomic analyses revealed that the transcription of CAT and APX I was up-regulated for all the C10-PFPA concentrations. In addition, PFPAs were quantified in St. Lawrence River surface water samples and detected at concentrations ranging from 250 to 850pg/L for C8-PFPA and 380 to 650pg/L for C10-PFPA. This study supports the prevalence of PFPAs in the aquatic environment and suggests potential impacts of PFPA exposure on the antioxidant defensive system in C. reinhardtii.

  8. Effect of Time and Deposition Method on Quality of Phosphonic Acid Modifier Self-Assembled Monolayers on Indium Zinc Oxide

    SciTech Connect

    Sang, Lingzi; Knesting, Kristina M.; Bulusu, Anuradha; Sigdel, Ajaya K.; Giordano, Anthony J.; Marder, Seth R.; Berry, Joseph J.; Graham, Samuel; Ginger, David S.; Pemberton, Jeanne E.

    2016-12-15

    Phosphonic acid (PA) self-assembled monolayers (SAMs) are utilized at critical interfaces between transparent conductive oxides (TCO) and organic active layers in organic photovoltaic devices (OPVs). The effects of PA deposition method and time on the formation of close-packed, high-quality monolayers is investigated here for SAMs fabricated by solution deposition, micro-contact printing, and spray coating. The solution deposition isotherm for pentafluorinated benzylphosphonic acid (F5BnPA) on indium-doped zinc oxide (IZO) is studied using polarization modulation-infrared reflection-absorption spectroscopy (PM-IRRAS) at room temperature as a model PA/IZO system. Fast surface adsorption occurs within the first min; however, well-oriented high-quality SAMs are reached only after -48 h, presumably through a continual process of molecular adsorption/desorption and monolayer filling accompanied by molecular reorientation. Two other rapid, soak-free deposition techniques, micro-contact printing and spray coating, are also explored. SAM quality is compared for deposition of phenyl phosphonic acid (PPA), F13-octylphosphonic acid (F13OPA), and pentafluorinated benzyl phosphonic acid (F5BnPA) by solution deposition, micro-contact printing and spray coating using PM-IRRAS. In contrast to micro-contact printing and spray coating techniques, 48-168 h solution deposition at both room temperature and 70 degrees C result in contamination- and surface etch-free close-packed monolayers with good reproducibility. SAMs fabricated by micro-contact printing and spray coating are much less well ordered.

  9. Effect of time and deposition method on quality of phosphonic acid modifier self-assembled monolayers on indium zinc oxide

    NASA Astrophysics Data System (ADS)

    Sang, Lingzi; Knesting, Kristina M.; Bulusu, Anuradha; Sigdel, Ajaya K.; Giordano, Anthony J.; Marder, Seth R.; Berry, Joseph J.; Graham, Samuel; Ginger, David S.; Pemberton, Jeanne E.

    2016-12-01

    Phosphonic acid (PA) self-assembled monolayers (SAMs) are utilized at critical interfaces between transparent conductive oxides (TCO) and organic active layers in organic photovoltaic devices (OPVs). The effects of PA deposition method and time on the formation of close-packed, high-quality monolayers is investigated here for SAMs fabricated by solution deposition, micro-contact printing, and spray coating. The solution deposition isotherm for pentafluorinated benzylphosphonic acid (F5BnPA) on indium-doped zinc oxide (IZO) is studied using polarization modulation-infrared reflection-absorption spectroscopy (PM-IRRAS) at room temperature as a model PA/IZO system. Fast surface adsorption occurs within the first min; however, well-oriented high-quality SAMs are reached only after ∼48 h, presumably through a continual process of molecular adsorption/desorption and monolayer filling accompanied by molecular reorientation. Two other rapid, soak-free deposition techniques, micro-contact printing and spray coating, are also explored. SAM quality is compared for deposition of phenyl phosphonic acid (PPA), F13-octylphosphonic acid (F13OPA), and pentafluorinated benzyl phosphonic acid (F5BnPA) by solution deposition, micro-contact printing and spray coating using PM-IRRAS. In contrast to micro-contact printing and spray coating techniques, 48-168 h solution deposition at both room temperature and 70 °C result in contamination- and surface etch-free close-packed monolayers with good reproducibility. SAMs fabricated by micro-contact printing and spray coating are much less well ordered.

  10. Synthesis of highly phosphonic acid functionalized benzene-bridged periodic mesoporous organosilicas for use as efficient dye adsorbents.

    PubMed

    Deka, Juti Rani; Liu, Chia-Ling; Wang, Tzu-Hua; Chang, Wei-Chieh; Kao, Hsien-Ming

    2014-08-15

    Periodic mesoporous organosilicas (PMOs) with benzene bridging groups in the silica wall were functionalized with a tunable content of phosphonic acid groups. These bifunctional materials were synthesized by co-condensation of two different organosilane precursors, that is, 1,4-bis(triethoxysilyl)benzene (BTEB) and sodium 3-(trihydroxysilyl)propyl methyl phosphate (SPMP), under acidic conditions using nonionic surfactant Brij-S10 as template. The materials exhibited well-ordered mesostructures and were characterized by X-ray diffraction, nitrogen sorption, TEM, TGA, FTIR, and solid-state NMR measurements. The materials thus obtained were employed as adsorbents to remove different types of dyes, for example, cationic dyes methylene blue and phenosafranine, anionic orange II, and amphoteric rhodamine B, from aqueous solutions. The materials exhibited a remarkably high adsorption capacity than activated carbon due to their ordered mesostructures, a large number of phosphonic acid groups, and high surface areas. The adsorption was mainly governed by electrostatic interaction, but also involved π-π stacking interaction as well as hydrogen bonding. The adsorption kinetics can be better fitted by the pseudo-second order model. The adsorption process was controlled by the mechanisms of external mass transfer and intraparticle diffusion. The materials retained more than 97% dye removal efficiency after use for five consecutive cycles.

  11. Sol-gel synthesis of tantalum oxide and phosphonic acid-modified carbon nanotubes composite coatings on titanium surfaces.

    PubMed

    Maho, Anthony; Detriche, Simon; Delhalle, Joseph; Mekhalif, Zineb

    2013-07-01

    Carbon nanotubes used as fillers in composite materials are more and more appreciated for the outstanding range of accessible properties and functionalities they generate in numerous domains of nanotechnologies. In the framework of biological and medical sciences, and particularly for orthopedic applications and devices (prostheses, implants, surgical instruments, …), titanium substrates covered by tantalum oxide/carbon nanotube composite coatings have proved to constitute interesting and successful platforms for the conception of solid and biocompatible biomaterials inducing the osseous regeneration processes (hydroxyapatite growth, osteoblasts attachment). This paper describes an original strategy for the conception of resistant and homogeneous tantalum oxide/carbon nanotubes layers on titanium through the introduction of carbon nanotubes functionalized by phosphonic acid moieties (-P(=O)(OH)2). Strong covalent C-P bonds are specifically inserted on their external sidewalls with a ratio of two phosphonic groups per anchoring point. Experimental results highlight the stronger "tantalum capture agent" effect of phosphonic-modified nanotubes during the sol-gel formation process of the deposits compared to nanotubes bearing oxidized functions (-OH, -C=O, -C(=O)OH). Particular attention is also paid to the relative impact of the rate of functionalization and the dispersion degree of the carbon nanotubes in the coatings, as well as their wrapping level by the tantalum oxide matrix material. The resulting effect on the in vitro growth of hydroxyapatite is also evaluated to confirm the primary osseous bioactivity of those materials. Chemical, structural and morphological features of the different composite deposits described herein are assessed by X-ray photoelectron spectroscopy (XPS), scanning (SEM) and transmission (TEM) electronic microscopies, energy dispersive X-rays analysis (EDX) and peeling tests.

  12. Synthesis of novel castor oil phosphonates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Castor oil has served as a versatile hydroxy fatty acid (HFA); its principle component, ricinoleic acid, can be isolated from castor oil and has been modified extensively for a number of applications. Additionally, phosphonates and their corresponding phosphonic acids are a functional moiety that ha...

  13. Covalent attachment of diamondoid phosphonic acid dichlorides to tungsten oxide surfaces.

    PubMed

    Li, Fei Hua; Fabbri, Jason D; Yurchenko, Raisa I; Mileshkin, Alexander N; Hohman, J Nathan; Yan, Hao; Yuan, Hongyuan; Tran, Ich C; Willey, Trevor M; Bagge-Hansen, Michael; Dahl, Jeremy E P; Carlson, Robert M K; Fokin, Andrey A; Schreiner, Peter R; Shen, Zhi-Xun; Melosh, Nicolas A

    2013-08-06

    Diamondoids (nanometer-sized diamond-like hydrocarbons) are a novel class of carbon nanomaterials that exhibit negative electron affinity (NEA) and strong electron-phonon scattering. Surface-bound diamondoid monolayers exhibit monochromatic photoemission, a unique property that makes them ideal electron sources for electron-beam lithography and high-resolution electron microscopy. However, these applications are limited by the stability of the chemical bonding of diamondoids on surfaces. Here we demonstrate the stable covalent attachment of diamantane phosphonic dichloride on tungsten/tungsten oxide surfaces. X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared (FTIR) spectroscopy revealed that diamondoid-functionalized tungsten oxide films were stable up to 300-350 °C, a substantial improvement over conventional diamondoid thiolate monolayers on gold, which dissociate at 100-200 °C. Extreme ultraviolet (EUV) light stimulated photoemission from these diamondoid phosphonate monolayers exhibited a characteristic monochromatic NEA peak with 0.2 eV full width at half-maximum (fwhm) at room temperature, showing that the unique monochromatization property of diamondoids remained intact after attachment. Our results demonstrate that phosphonic dichloride functionality is a promising approach for forming stable diamondoid monolayers for elevated temperature and high-current applications such as electron emission and coatings in micro/nano electromechanical systems (MEMS/NEMS).

  14. Gallium(III) complexes of NOTA-bis (phosphonate) conjugates as PET radiotracers for bone imaging.

    PubMed

    Holub, Jan; Meckel, Marian; Kubíček, Vojtěch; Rösch, Frank; Hermann, Petr

    2015-01-01

    Ligands with geminal bis(phosphonic acid) appended to 1,4,7-triazacyclonone-1,4-diacetic acid fragment through acetamide (NOTAM(BP) ) or methylenephosphinate (NO2AP(BP) ) spacers designed for (68) Ga were prepared. Ga(III) complexation is much faster for ligand with methylenephosphinate spacer than that with acetamide one, in both chemical (high reactant concentrations) and radiolabeling studies with no-carrier-added (68) Ga. For both ligands, formation of Ga(III) complex was slower than that with NOTA owing to the strong out-of-cage binding of bis(phosphonate) group. Radiolabeling was efficient and fast only above 60 °C and in a narrow acidity region (pH ~3). At higher temperature, hydrolysis of amide bond of the carboxamide-bis(phosphonate) conjugate was observed during complexation reaction leading to Ga-NOTA complex. In vitro sorption studies confirmed effective binding of the (68) Ga complexes to hydroxyapatite being comparable with that found for common bis(phosphonate) drugs such as pamindronate. Selective bone uptake was confirmed in healthy rats by biodistribution studies ex vivo and by positron emission tomography imaging in vivo. Bone uptake was very high, with SUV (standardized uptake value) of 6.19 ± 1.27 for [(68) Ga]NO2AP(BP) ) at 60 min p.i., which is superior to uptake of (68) Ga-DOTA-based bis(phosphonates) and [(18) F]NaF reported earlier (SUV of 4.63 ± 0.38 and SUV of 4.87 ± 0.32 for [(68) Ga]DO3AP(BP) and [(18) F]NaF, respectively, at 60 min p.i.). Coincidently, accumulation in soft tissue is generally low (e.g. for kidneys SUV of 0.26 ± 0.09 for [(68) Ga]NO2AP(BP) at 60 min p.i.), revealing the new (68) Ga complexes as ideal tracers for noninvasive, fast and quantitative imaging of calcified tissue and for metastatic lesions using PET or PET/CT.

  15. A comparative analysis of pharmacokinetics properties of diagnostic bone-seeking radiopharmaceuticals on the basis of phosphonic acids and technetium-99m

    NASA Astrophysics Data System (ADS)

    Tishchenko, V. K.; Petriev, V. M.; Smoryzanova, O. A.; Zavestovskaya, I. N.

    2017-01-01

    This work is devoted to comparative research of pharmacokinetics properties of four bone-seeking radiopharmaceuticals (RPP) on the basis of bi- tetra- and penta-phosphonic acids. Biodistribution studies were performed in intact rats after intravenous injections of 99mTc-hydroxyethylidenediphosphonic acid (99mTc-HEDP), 99mTc-oxabiphor (99mTc-OXB), 99mTc-ethylenediaminetetramethylenephosphonic acid (99mTc-EDTMP) or 99mTc-diethylenetriaminopentakis(methylphosphonic acid) (99mTc-PPA). In the structure of the HEDP contains two phosphonic groups, OENTMP and EDTMP – four phosphonic groups, PPA – five phosphonic groups. Radiochemical yield of labeled 99mTc HEDP, OENTMP, EDTMP, PPA is not less than 95%, the radiochemical impurities does not exceed 5%. The investigated compounds have high stability in vivo and selective accumulation in osseous tissue. The highest concentrations of labeled compounds is reached in 3–24 hours after their intravenous injections. The investigated compounds are rapidly excreted from blood and soft organs and tissues mainly through the urinary routes. So present study has showed that these RPP have properties, which making them promising candidates as a diagnostic pharmaceuticals of bone metastases.

  16. 1-Ammonio-1-phosphono-pentane-1-phospho-nic acid.

    PubMed

    Bon, V V; Dudko, A V; Kozachkova, A N; Pekhnyo, V I

    2008-11-26

    The title compound, C(5)H(15)NO(6)P(2), was obtained by the reaction of penta-nenitrile with PCl(3) followed by the dropwise addition of water. The asymmetric unit contains one mol-ecule, which exists as a zwitterion with a positive charge on the -NH(3) group and a negative charge on one of the phospho-nic O atoms. The crystal structure displays N-H⋯O and O-H⋯O hydrogen bonding, which creates a three-dimensional network.

  17. Molecular dynamics simulations of phosphonic acid-aluminum oxide self-organization and their evolution into ordered monolayers.

    PubMed

    Dietrich, H; Schmaltz, T; Halik, M; Zahn, D

    2017-02-15

    We outline an unprejudiced molecular dynamics simulation approach to study the mechanisms of self-organization encompassing the evolution of surfactant-surface interactions to the growth of self-assembled monolayers (SAMs). Therein, the time-length scale problem is tackled by combining an efficient docking-type procedure for implementing surfactant-by-surfactant association with detailed molecular simulations to explore structural relaxation. For this, nanosecond-scale molecular dynamics simulations unravel ordering processes during the gradual assembly of the monolayer. Along this line, different packing motifs of octadecyl phosphonic acid (ODPA) on the (0001) surface of α-alumina and implications for the final density and ordering of the resulting monolayers are elucidated. Moreover, the role of the solvent is discriminated by comparing SAM formation in 2-propanol, hexane and in a vacuum.

  18. Influence of complexation phenomena with multivalent cations on the analysis of glyphosate and aminomethyl phosphonic acid in water.

    PubMed

    Freuze, Ingrid; Jadas-Hecart, Alain; Royer, Alain; Communal, Pierre-Yves

    2007-12-21

    Experimental and theoretical influence of multivalent cations on the analysis of glyphosate and aminomethyl phosphonic acid (AMPA) was studied in pure water and in one surface water. The procedure chosen, based on derivatization with FMOC-Cl, HPLC separation, and fluorescence detection, appears highly affected at cations concentrations current in natural waters. A detailed speciation study performed with the VMINTEQ software strongly suggests that the complexes formed between analytes and cations do not dissociate during the reaction and do not react with the derivatization agent, so that only the free forms are derivatized. These results point out the necessity of a pre-treatment to prevent these interferences, even in low salinity waters. The different ways conceivable are discussed in terms of kinetic and thermodynamic considerations.

  19. Improve the Strength of PLA/HA Composite Through the Use of Surface Initiated Polymerization and Phosphonic Acid Coupling Agent

    PubMed Central

    Wang, Tongxin; Chow, Laurence C.; Frukhtbeyn, Stanislav A.; Ting, Andy Hai; Dong, Quanxiao; Yang, Mingshu; Mitchell, James W.

    2011-01-01

    Bioresorbable composite made from degradable polymers, e.g., polylactide (PLA), and bioactive calcium phosphates, e.g., hydroxyapatite (HA), are clinically desirable for bone fixation, repair and tissue engineering because they do not need to be removed by surgery after the bone heals. However, preparation of PLA/HA composite from non-modified HA usually results in mechanical strength reductions due to a weak interface between PLA and HA. In this study, a calcium-phosphate/phosphonate hybrid shell was developed to introduce a greater amount of reactive hydroxyl groups onto the HA particles. Then, PLA was successfully grafted on HA by surface-initiated polymerization through the non-ionic surface hydroxyl groups. Thermogravimetric analysis indiated that the amount of grafted PLA on HA can be up to 7 %, which is about 50 % greater than that from the literature. PLA grafted HA shows significantly different pH dependent ζ-potential and particle size profiles from those of uncoated HA. By combining the phosphonic acid coupling agent and surface initiated polymerization, PLA could directly link to HA through covalent bond so that the interfacial interaction in the PLA/HA composite can be significantly improved. The diametral tensile strength of PLA/HA composite prepared from PLA-grafted HA was found to be over twice that of the composite prepared from the non-modified HA. Moreover, the tensile strength of the improved composite was 23 % higher than that of PLA alone. By varying additional variables, this approach has the potential to produce bioresorbable composites with improved mechanical properties that are in the range of natural bones, and can have wide applications for bone fixation and repair in load-bearing areas. PMID:22399838

  20. Analysis of Phosphonic Acids: Validation of Semi-Volatile Analysis by HPLC-MS/MS by EPA Method MS999

    SciTech Connect

    Owens, J; Vu, A; Koester, C

    2008-10-31

    The Environmental Protection Agency's (EPA) Region 5 Chicago Regional Laboratory (CRL) developed a method titled Analysis of Diisopropyl Methylphosphonate, Ethyl Hydrogen Dimethylamidophosphate, Isopropyl Methylphosphonic Acid, Methylphosphonic Acid, and Pinacolyl Methylphosphonic Acid in Water by Multiple Reaction Monitoring Liquid Chromatography/Tandem Mass Spectrometry: EPA Version MS999. This draft standard operating procedure (SOP) was distributed to multiple EPA laboratories and to Lawrence Livermore National Laboratory, which was tasked to serve as a reference laboratory for EPA's Environmental Reference Laboratory Network (ERLN) and to develop and validate analytical procedures. The primary objective of this study was to validate and verify the analytical procedures described in EPA Method MS999 for analysis of the listed phosphonic acids and surrogates in aqueous samples. The gathered data from this validation study will be used to: (1) demonstrate analytical method performance; (2) generate quality control acceptance criteria; and (3) revise the SOP to provide a validated method that would be available for use during a homeland security event. The data contained in this report will be compiled, by EPA CRL, with data generated by other EPA Regional laboratories so that performance metrics of EPA Method MS999 can be determined.

  1. Bioavailability and bioconcentration potential of perfluoroalkyl-phosphinic and -phosphonic acids in zebrafish (Danio rerio): Comparison to perfluorocarboxylates and perfluorosulfonates.

    PubMed

    Chen, Fangfang; Gong, Zhiyuan; Kelly, Barry C

    2016-10-15

    Currently, information regarding bioavailability and bioconcentration potential of perfluoroalkyl phosphinic acids (PFPiAs) in aquatic organisms does not exist. The main objective of the present study was to assess uptake and elimination kinetics of PFPiAs in zebrafish (Danio rerio) following aqueous exposure. The results showed that PFPiA exposure can result in very high steady-state bioconentration factors (BCFss), compared to perfluorocarboxylates and perfluorosulfonates.C6/C10 PFPiA exhibited the highest BCFss, ranging between 10(7) and 10(10), orders of magnitude higher than those for long-chain perfluorocarboxylates. Strong positive relationships were observed between BCFss versus the membrane-water distribution coefficient (Dmw) and the protein-water partition coefficient (Kpw) of the studied perfluoroalkyl substances. However, BCFss exhibited a substantial drop for the very hydrophobic PFPiAs (C8/C10 and C6/C12 PFPiAs). The reduced BCFss of these long-chain PFPiAs (perfluoroalkyl chain length=18; Dmw=10(9)) is likely the result of reduced bioavailability due to interaction with solute molecules/organic matter present in the water phase and/or reduced gill membrane permeability. While PFPiAs can be metabolized to perfluoroalkyl phosphonic acids, the metabolic transformation rate seems insufficient to counteract the high degree of uptake across gill membranes. These findings help to better understand exposure pathways and bioaccumulation behavior of these important perfluorinated acids in aquatic systems.

  2. Hybrid porous tin(IV) phosphonate: an efficient catalyst for adipic acid synthesis and a very good adsorbent for CO2 uptake.

    PubMed

    Dutta, Arghya; Pramanik, Malay; Patra, Astam K; Nandi, Mahasweta; Uyama, Hiroshi; Bhaumik, Asim

    2012-07-07

    A new porous organic-inorganic hybrid tin phosphonate material has been synthesized hydrothermally, which shows a Brunauer-Emmett-Teller surface area of 723 m(2) g(-1) and it adsorbs 4.8 mmol g(-1) CO(2) at 273 K and 5 bar pressure. The material also shows remarkable catalytic activity in one-pot liquid phase oxidation of cyclohexanone to adipic acid under eco-friendly conditions.

  3. Americium(III) capture using phosphonic acid-functionalized silicas with different mesoporous morphologies: adsorption behavior study and mechanism investigation by EXAFS/XPS.

    PubMed

    Zhang, Wen; He, Xihong; Ye, Gang; Yi, Rong; Chen, Jing

    2014-06-17

    Efficient capture of highly toxic radionuclides with long half-lives such as Americium-241 is crucial to prevent radionuclides from diffusing into the biosphere. To reach this purpose, three different types of mesoporous silicas functionalized with phosphonic acid ligands (SBA-POH, MCM-POH, and BPMO-POH) were synthesized via a facile procedure. The structure, surface chemistry, and micromorphology of the materials were fully characterized by (31)P/(13)C/(29)Si MAS NMR, XPS, and XRD analysis. Efficient adsorption of Am(III) was realized with a fast rate to reach equilibrium (within 10 min). Influences including structural parameters and functionalization degree on the adsorption behavior were investigated. Slope analysis of the equilibrium data suggested that the coordination with Am(III) involved the exchange of three protons. Moreover, extended X-ray absorption fine structure (EXAFS) analysis, in combination with XPS survey, was employed for an in-depth probe into the binding mechanism by using Eu(III) as a simulant due to its similar coordination behavior and benign property. The results showed three phosphonic acid ligands were coordinated to Eu(III) in bidentate fashion, and Eu(P(O)O)3(H2O) species were formed with the Eu-O coordination number of 7. These phosphonic acid-functionalized mesoporous silicas should be promising for the treatment of Am-containing radioactive liquid waste.

  4. Synthesis and biological evaluation of a series of liver-selective phosphonic acid thyroid hormone receptor agonists and their prodrugs.

    PubMed

    Boyer, Serge H; Jiang, Hongjian; Jacintho, Jason D; Reddy, Mali Venkat; Li, Haiqing; Li, Wenyu; Godwin, Jennifer L; Schulz, William G; Cable, Edward E; Hou, Jinzhao; Wu, Rongrong; Fujitaki, James M; Hecker, Scott J; Erion, Mark D

    2008-11-27

    Phosphonic acid (PA) thyroid hormone receptor (TR) agonists were synthesized to exploit the poor distribution of PA-based drugs to extrahepatic tissues and thereby to improve the therapeutic index. Nine PAs showed excellent TR binding affinities (TRbeta(1), K(i) < 10 nM), and most of them demonstrated significant cholesterol lowering effects in a cholesterol-fed rat (CFR) model. Unlike the corresponding carboxylic acid analogue and T(3), PA 22c demonstrated liver-selective effects by inducing maximal mitochondrial glycerol-3-phosphate dehydrogenase activity in rat liver while having no effect in the heart. Because of the low oral bioavailability of PA 22c, a series of prodrugs was synthesized and screened for oral efficacy in the CFR assay. The liver-activated cyclic 1-(3-chlorophenyl)-1,3-propanyl prodrug (MB07811) showed potent lipid lowering activity in the CFR (ED(50) 0.4 mg/kg, po) and good oral bioavailability (40%, rat) and was selected for development for the treatment of hypercholesterolemia.

  5. Quantitative Determination and Comparison of the Surface Binding of Phosphonic Acid, Carboxylic Acid, and Catechol Ligands on TiO2 Nanoparticles.

    PubMed

    Zeininger, Lukas; Portilla, Luis; Halik, Marcus; Hirsch, Andreas

    2016-09-12

    The adsorption, desorption, co-adsorption, and exchange behavior of phosphonic acid, carboxylic acid, and catechol derivatives on the surface of titanium oxide (anatase) nanoparticles are investigated. Thermogravimetric analysis provides a facile and fast-track quantitative determination of the wet-chemical monolayer adsorption constants and grafting densities of ten adsorbates, all under neutral pH conditions. This characterization protocol allows straightforward quantification of the relevant thermodynamic data of ligand adsorption and a comparison of ligand adsorption strengths. The reported procedure is proposed as a universal tool and it should be applicable to many other colloidal metal oxide materials. Moreover, the determined values for the adsorption constants and the monolayer grafting densities provide a toolbox for the assessment of the adsorbates' behavior in desorption, exchange, and co-adsorption equilibria. This versatile evaluation procedure will help to identify optimal monolayer-surface combinations and to evaluate critical parameters, such as monolayer robustness, ligand exchange rates, or targeted mixed assembly of functionalities.

  6. 40 CFR 721.285 - Acetamide, N-[4-(pentyloxy)phenyl]-, acetamide, N-[2-nitro-4-(pentyloxy)phenyl]-, and acetamide...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acetamide, N- -, acetamide, N- -, and acetamide, N- -. 721.285 Section 721.285 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.285 Acetamide, N- -, acetamide, N- -, and acetamide, N- -. (a)...

  7. 40 CFR 721.285 - Acetamide, N-[4-(pentyloxy)phenyl]-, acetamide, N-[2-nitro-4-(pentyloxy)phenyl]-, and acetamide...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acetamide, N- -, acetamide, N- -, and acetamide, N- -. 721.285 Section 721.285 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.285 Acetamide, N- -, acetamide, N- -, and acetamide, N- -. (a)...

  8. Investigation of vinyl phosphonic acid/hydroxylated α-Al 2O 3( 0 0 0 1 ) reaction enthalpies

    NASA Astrophysics Data System (ADS)

    Hector, L. G., Jr.; Opalka, S. M.; Nitowski, G. A.; Wieserman, L.; Siegel, D. J.; Yu, H.; Adams, J. B.

    2001-11-01

    The eleven ion vinyl phosphonic acid (VPA) molecule consists of a phosphorus ion that serves as a cationic anchor for two electron-rich functional groups, viz., a tripodal oxygen-rich base and vinyl hydrocarbon tail. Recent inelastic tunneling experiments have implied that VPA binds in a tridentate coordination though its base leaving the vinyl tail free to react with a resin in adhesive bonding applications. Using first-principles total energy calculations, the reaction enthalpies for bonding of a single VPA molecule to selected threefold sites on hydroxylated α-Al 2O 3(0 0 0 1) are investigated. Tridentate, bidentate and unidentate coordinations, both with and without liberated water molecules, are examined to determine if the tridentate coordination is favored over the others and the extent to which the VPA molecule is sensitive to surface site geometry. The electron localization function is used to examine the extent of covalent character between the P-O bonds that anchor the VPA fragment to the oxide surface. Some comments on the entropic contributions of the VPA and H 2O molecules to the binding energetics are offered, along with a discussion of the effects of H 2O placement on the oxide surface and aluminum alloying agents.

  9. Anhydrous proton-conducting electrolyte membranes based on hyperbranched polymer with phosphonic acid groups for high-temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Itoh, Takahito; Hirai, Keita; Tamura, Masashi; Uno, Takahiro; Kubo, Masataka; Aihara, Yuichi

    The two different molecular weight hyperbranched polymers (HBP(L)-PA-Ac and HBP(H)-PA-Ac) with both phosphonic acid group as a functional group and acryloyl group as a cross-linker at the chain ends were successfully synthesized as a new thermally stable proton-conducting electrolyte. The cross-linked electrolyte membranes (CL-HBP-PA) were prepared by their thermal polymerizations using benzoyl peroxide and their ionic conductivities under dry condition and thermal properties were investigated. The ionic conductivities of the low molecular weight CL-HBP(L)-PA membrane and the high molecular weight CL-HBP(H)-PA membrane were found to be 1.2 × 10 -5 and 2.6 × 10 -6 S cm -1, respectively, at 150 °C under dry condition, and showed the Vogel-Tamman-Fulcher (VTF) type temperature dependence. Both membranes were thermally stable up to 300 °C, and they had suitable thermal stability as electrolyte membranes for the high-temperature fuel cells under dry condition. Fuel cell measurements using a single membrane electrode assembly cell with both cross-linked membranes were successfully performed.

  10. Characterization of an Indole-3-Acetamide Hydrolase from Alcaligenes faecalis subsp. parafaecalis and Its Application in Efficient Preparation of Both Enantiomers of Chiral Building Block 2,3-Dihydro-1,4-Benzodioxin-2-Carboxylic Acid.

    PubMed

    Mishra, Pradeep; Kaur, Suneet; Sharma, Amar Nath; Jolly, Ravinder S

    2016-01-01

    Both the enantiomers of 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid are valuable chiral synthons for enantiospecific synthesis of therapeutic agents such as (S)-doxazosin mesylate, WB 4101, MKC 242, 2,3-dihydro-2-hydroxymethyl-1,4-benzodioxin, and N-[2,4-oxo-1,3-thiazolidin-3-yl]-2,3-dihydro-1,4-benzodioxin-2-carboxamide. Pharmaceutical applications require these enantiomers in optically pure form. However, currently available methods suffer from one drawback or other, such as low efficiency, uncommon and not so easily accessible chiral resolving agent and less than optimal enantiomeric purity. Our interest in finding a biocatalyst for efficient production of enantiomerically pure 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid lead us to discover an amidase activity from Alcaligenes faecalis subsp. parafaecalis, which was able to kinetically resolve 2,3-dihydro-1,4-benzodioxin-2-carboxyamide with E value of >200. Thus, at about 50% conversion, (R)-2,3-dihydro-1,4-benzodioxin-2-carboxylic acid was produced in >99% e.e. The remaining amide had (S)-configuration and 99% e.e. The amide and acid were easily separated by aqueous (alkaline)-organic two phase extraction method. The same amidase was able to catalyse, albeit at much lower rate the hydrolysis of (S)-amide to (S)-acid without loss of e.e. The amidase activity was identified as indole-3-acetamide hydrolase (IaaH). IaaH is known to catalyse conversion of indole-3-acetamide (IAM) to indole-3-acetic acid (IAA), which is phytohormone of auxin class and is widespread among plants and bacteria that inhabit plant rhizosphere. IaaH exhibited high activity for 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which was about 65% compared to its natural substrate, indole-3-acetamide. The natural substrate for IaaH indole-3-acetamide shared, at least in part a similar bicyclic structure with 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which may account for high activity of enzyme towards this un-natural substrate. To the best of

  11. Characterization of an Indole-3-Acetamide Hydrolase from Alcaligenes faecalis subsp. parafaecalis and Its Application in Efficient Preparation of Both Enantiomers of Chiral Building Block 2,3-Dihydro-1,4-Benzodioxin-2-Carboxylic Acid

    PubMed Central

    Mishra, Pradeep; Kaur, Suneet; Sharma, Amar Nath; Jolly, Ravinder S.

    2016-01-01

    Both the enantiomers of 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid are valuable chiral synthons for enantiospecific synthesis of therapeutic agents such as (S)-doxazosin mesylate, WB 4101, MKC 242, 2,3-dihydro-2-hydroxymethyl-1,4-benzodioxin, and N-[2,4-oxo-1,3-thiazolidin-3-yl]-2,3-dihydro-1,4-benzodioxin-2-carboxamide. Pharmaceutical applications require these enantiomers in optically pure form. However, currently available methods suffer from one drawback or other, such as low efficiency, uncommon and not so easily accessible chiral resolving agent and less than optimal enantiomeric purity. Our interest in finding a biocatalyst for efficient production of enantiomerically pure 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid lead us to discover an amidase activity from Alcaligenes faecalis subsp. parafaecalis, which was able to kinetically resolve 2,3-dihydro-1,4-benzodioxin-2-carboxyamide with E value of >200. Thus, at about 50% conversion, (R)-2,3-dihydro-1,4-benzodioxin-2-carboxylic acid was produced in >99% e.e. The remaining amide had (S)-configuration and 99% e.e. The amide and acid were easily separated by aqueous (alkaline)-organic two phase extraction method. The same amidase was able to catalyse, albeit at much lower rate the hydrolysis of (S)-amide to (S)-acid without loss of e.e. The amidase activity was identified as indole-3-acetamide hydrolase (IaaH). IaaH is known to catalyse conversion of indole-3-acetamide (IAM) to indole-3-acetic acid (IAA), which is phytohormone of auxin class and is widespread among plants and bacteria that inhabit plant rhizosphere. IaaH exhibited high activity for 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which was about 65% compared to its natural substrate, indole-3-acetamide. The natural substrate for IaaH indole-3-acetamide shared, at least in part a similar bicyclic structure with 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which may account for high activity of enzyme towards this un-natural substrate. To the best of

  12. Improvement of catalytic activity of Candida rugosa lipase in the presence of calix[4]arene bearing iminodicarboxylic/phosphonic acid complexes modified iron oxide nanoparticles.

    PubMed

    Ozyilmaz, Elif; Bayrakci, Mevlut; Yilmaz, Mustafa

    2016-04-01

    In the present study, iron oxide magnetite nanoparticles, prepared through a co-precipitation method, were coated with phosphonic acid or iminodicarboxylic acid derivatives of calix[4]arene to modulate their surfaces with different acidic groups. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through sol-gel encapsulation. The catalytic activities and enantioselectivities of the two encapsulated lipases in the hydrolysis reaction of (R/S)-naproxen methyl ester and (R/S)-2-phenoxypropionic acid methyl ester were assessed. The results showed that the activity and enantioselectivity of the lipase were improved when the lipase was encapsulated in the presence of calixarene-based additives; the encapsulated lipase with the phosphonic acid derivative of calix[4]arene had an excellent rate of enantioselectivity against the (R/S)-naproxen methyl and (R/S)-2-phenoxypropionic acid methyl esters, with E=350 and 246, respectively, compared to the free enzyme. The encapsulated lipases (Fe-Calix-N(COOH)) and (Fe-Calix-P) showed good loading ability and little loss of enzyme activity, and the stability of the catalyst was very good; they only lost 6-11% of the enzyme's activity after five batches.

  13. Discovery of the antibiotic phosacetamycin via a new mass spectrometry-based method for phosphonic acid detection.

    PubMed

    Evans, Bradley S; Zhao, Changming; Gao, Jiangtao; Evans, Courtney M; Ju, Kou-San; Doroghazi, James R; van der Donk, Wilfred A; Kelleher, Neil L; Metcalf, William W

    2013-05-17

    Naturally occurring phosphonates such as phosphinothricin (Glufosinate, a commercially used herbicide) and fosfomycin (Monurol, a clinically used antibiotic) have proved to be potent and useful biocides. Yet this class of natural products is still an under explored family of secondary metabolites. Discovery of the biosynthetic pathways responsible for the production of these compounds has been simplified by using gene based screening approaches, but detection and identification of the natural products the genes produce have been hampered by a lack of high-throughput methods for screening potential producers under various culture conditions. Here, we present an efficient mass-spectrometric method for the selective detection of natural products containing phosphonate and phosphinate functional groups. We have used this method to identify a new phosphonate metabolite, phosacetamycin, whose structure, biological activity, and biosynthetic gene cluster are reported.

  14. Discovery of the antibiotic phosacetamycin via a new mass spectrometry-based method for phosphonic acid detection

    PubMed Central

    Evans, Bradley S.; Zhao, Changming; Gao, Jiangtao; Evans, Courtney M.; Ju, Kou-San; Doroghazi, James R.; van der Donk, Wilfred A.; Kelleher, Neil L.; Metcalf, William W.

    2013-01-01

    Naturally occurring phosphonates such as phosphinothricin (Glufosinate, a commercially used herbicide) and fosfomycin (Monurol, a clinically used antibiotic) have proved to be potent and useful biocides. Yet this class of natural products is still an under explored family of secondary metabolites. Discovery of the biosynthetic pathways responsible for the production of these compounds has been simplified by using gene based screening approaches, but detection and identification of the natural products the genes produce has been hampered by a lack of high-throughput methods for screening potential producers under various culture conditions. Here we present an efficient mass-spectrometric method for the selective detection of natural products containing phosphonate and phosphinate functional groups. We have used this method to identify a new phosphonate metabolite, phosacetamycin, whose structure, biological activity, and biosynthetic gene cluster are reported. PMID:23474169

  15. Epoxy Phosphonate Crosslinkers for Providing Flame Resistance to Cotton Textiles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two new monomers (2-methyl-oxiranylmethyl)-phosphonic acid dimethyl ester (3) and [2-(dimethoxy-phosphorylmethyl)-oxyranylmethyl]-phosphonic acid dimethyl ester (6) were prepared and used with dicyandiamide (7) and citric acid (8) to impart flame resistance to cotton plain weave, twill, and 80:20-co...

  16. Inclusion of 1-naphthylacetic acid and 2-(1-naphthyl)acetamide into three typical multiresidue methods for LC/MS/MS analysis of tomatoes and zucchini.

    PubMed

    Lozano, Ana; Pérez-Parada, Andrés; Heinzen, Horacio; Fernández-Alba, Amadeo R

    2012-01-01

    In spite of high plant growth regulator application rates, little has been reported in the literature on determination of their residues in fruits and vegetables. This would be useful in monitoring good manufacturing practices and overall safety through the enforcement of maximum residue levels (MRLs). The present work describes method validation for the determination of 1-naphthylacetic acid (NAA) and 2(1-naphthyl)acetamide (NAAm) in tomato and zucchini using the mini-Luke, ethyl acetate (EtOAc) and acetate-buffered quick, easy, cheap, effective, rugged, and safe (QuEChERS) methods. Samples were spiked at two different levels: 50 and 100 pg/kg for NAA and 20 and 100 pg/kg for NAAm. These compounds were analyzed within the same chromatographic run with LC coupled to triple quadrupole MS (LC/(QqQ)MS/MS) in positive and negative electrospray ionization [ESI(+) and ESI(-)] modes for NAAm and NAA, respectively. For analyte confirmation, LC/ESI(-)QTOF-MS was also investigated given that NAA has only one multiple reaction monitoring transition (185.1-*140.9 m/z). These three common methods were used to determine linearity, recoveries, precision (RSD), matrix effects, repeatability, and reproducibility (n = 5) for the selected matrixes. In terms of the Directorate-General for Health and Consumers (DG-SANCO) guidelines, only insignificant differences were found for the multiresidue methods tested, regardless of the commodity. Matrix-matched calibration was used, and LODs were below 10.1 pg/kg for NAA and 6.0 pg/kg for NAAm, which were lower than the MRLs established in current European Union legislation for these compounds. Obtained recoveries for NAA ranged from 87 to 107% with RSD values below 10% for mini-Luke, 83 to 107% with RSD <11% for EtOAc, and 76 to 85% with RSD <7% for QuEChERS. NAAm recoveries ranged from 74 to 102% with RSD 5 15% for mini-Luke, 76 to 97% with RSD <4% for EtOAc, and 76 to 93% with RSD < 5% for QuEChERS. The linearity of the response over two

  17. Phosphonic acids aid composition adjustment in the synthesis of Cu2+ x Zn1- x SnSe4- y nanoparticles

    NASA Astrophysics Data System (ADS)

    Ibáñez, Maria; Berestok, Taisiia; Dobrozhan, Oleksandr; LaLonde, Aaron; Izquierdo-Roca, Victor; Shavel, Alexey; Pérez-Rodríguez, Alejandro; Snyder, G. Jeffrey; Cabot, Andreu

    2016-08-01

    The functional properties of quaternary I2-II-IV-VI4 nanomaterials, with potential interest in various technological fields, are highly sensitive to compositional variations, which is a challenging parameter to adjust. Here we demonstrate the presence of phosphonic acids to aid controlling the reactivity of the II element monomer to be incorporated in quaternary Cu2ZnSnSe4 nanoparticles and thus to provide a more reliable way to adjust the final nanoparticle metal ratios. Furthermore, we demonstrate the composition control in such multivalence nanoparticles to allow modifying charge carrier concentrations in nanomaterials produced from the assembly of these building blocks.

  18. Grafting of bifunctional phosphonic and carboxylic acids on Phynox: Impact of induction heating

    NASA Astrophysics Data System (ADS)

    Devillers, S.; Lanners, L.; Delhalle, J.; Mekhalif, Z.

    2011-05-01

    Phynox, a cobalt-chromium alloy, exhibits interesting mechanical properties making it a valuable material for a number of applications. However, its applications (especially biomedical ones) often require specific surface properties that can be imparted via suitable surface functionalizations. Based on Faraday's law of induction, induction heating is a widely used method to heat metallic substrates directly and contactless. The aim of this work is to compare the influence of induction heating and a conventional heating method on the functionalization of Phynox surfaces with bifunctional (6-phosphonohexanoic and 11-phosphoundecanoic acids) monolayers in order to create a platform for a large variety of post-grafting chemical reactions, e.g. with alcohols and amines, to modify and control the surface properties. In a first part, we assess the influence of the heating method on the interaction between the two terminal moieties of the 6-phosphonohexanoic and 11-phosphoundecanoic acids and the Phynox surface by studying the grafting of n-dodecylphosphonic acid and n-dodecanoic acid separately. The suitability of such bifunctional molecules for post-grafting chemical reactions has then been assessed by studying the post-grafting of a fluorinated alcohol by the Steglich esterification reaction between the carboxylic end of the grafted bifunctional molecules and the alcohol function of the post-grafted molecule. It has been shown that induction heating can lead to a much more selective adsorption of bifunctional molecules on the surface of Phynox, leaving a higher amount of free carboxylic acid functions to react during the second modification step.

  19. Phosphonate utilization by bacteria.

    PubMed Central

    Cook, A M; Daughton, C G; Alexander, M

    1978-01-01

    Bacteria able to use at least one of 13 ionic alkylphosphonates of O-alkyl or O,O-dialkyl alkylphosphonates as phosphorus sources were isolated from sewage and soil. Four of these isolates used 2-aminoethylphosphonic acid (AEP) as a sole carbon, nitrogen, and phosphorus source. None of the other phosphonates served as a carbon source for the organisms. One isolate, identified as Pseudomonas putida, grew with AEP as its sole carbon, nitrogen, and phosphorus source and released nearly all of the organic phosphorus as orthophosphate and 72% of the AEP nitrogen as ammonium. This is the first demonstration of utilization of a phosphonoalkyl moiety as a sole carbon source. Cell-free extracts of P. putida contained an inducible enzyme system that required pyruvate and pyridoxal phosphate to release orthophosphate from AEP; acetaldehyde was tentatively identified as a second product. Phosphite inhibited the enzyme system. PMID:618850

  20. Fate of malathion and a phosphonic acid in activated sludge with varying solids retention times.

    PubMed

    Janeczko, Allen K; Walters, Edward B; Schuldt, Steven J; Magnuson, Matthew L; Willison, Stuart A; Brown, Lisa M; Ruiz, Oscar N; Felker, Daniel L; Racz, LeeAnn

    2014-06-15

    This study examined the ability of activated sludge (AS) to sorb and biodegrade ethylmethylphosphonic acid (EMPA) and malathion, a degradation product and surrogate, respectively, for an organophosphate chemical warfare agent. Sorption equilibrium isotherm experiments indicate that sorption of EMPA and malathion to AS is negligible. EMPA at a concentration of 1 mg L(-1) degraded by approximately 30% with apparent first-order kinetics, possibly via co-metabolism from nitrification. Heterotrophic bacteria and abiotic mechanisms, however, are largely responsible for malathion degradation also with apparent first-order kinetics. EMPA did not inhibit chemical oxygen demand (COD) oxidation or nitrification activity, although malathion did appear to induce a stress response resulting in inhibition of COD oxidation. The study also included a 30-day experiment in which malathion, at a concentration of 5 mg L(-1), was repeatedly fed to AS in bench-scale sequencing batch reactors (SBRs) operating at different solids retention times (SRTs). Peak malathion concentrations occurred at day 4.5, with the longer SRTs yielding greater peak malathion concentrations. The AS reduced the malathion concentrations to nearly zero by day 10 for all SRTs, even when the malathion concentration in the influent increased to 20.8 mg L(-1). The data suggest a biodegradation pathway for malathion involving an oxygenase. Phylogenetic analyses revealed that all samples had an abundance of Zoogloea, though there was greater bacterial diversity in the SBR with the SRT of 50 days. The SBR with an SRT of 9.5 days had an apparent reduction in the diversity of the bacterial community.

  1. Effective methylation of phosphonic acids related to chemical warfare agents mediated by trimethyloxonium tetrafluoroborate for their qualitative detection and identification by gas chromatography-mass spectrometry.

    PubMed

    Valdez, Carlos A; Leif, Roald N; Alcaraz, Armando

    2016-08-24

    The effective methylation of phosphonic acids related to chemical warfare agents (CWAs) employing trimethyloxonium tetrafluoroborate (TMO·BF4) for their qualitative detection and identification by gas chromatography-mass spectrometry (GC-MS) is presented. The methylation occurs in rapid fashion (1 h) and can be conveniently carried out at ambient temperature, thus providing a safer alternative to the universally employed diazomethane-based methylation protocols. Optimization of the methylation parameters led us to conclude that methylene chloride was the ideal solvent to carry out the derivatization, and that even though methylated products can be observed surfacing after only 1 h, additional time was not found to be detrimental but beneficial to the process particularly when dealing with analytes at low concentrations (∼10 μg mL(-1)). Due to its insolubility in methylene chloride, TMO·BF4 conveniently settles to the bottom during the reaction and does not produce additional interfering by-products that may further complicate the GC-MS analysis. The method was demonstrated to successfully methylate a variety of Schedule 2 phosphonic acids, including their half esters, resulting in derivatives that were readily detected and identified using the instrument's spectral library. Most importantly, the method was shown to simultaneously methylate a mixture of the organophosphorus-based nerve agent hydrolysis products: pinacolyl methylphosphonate (PMPA), cyclohexyl methylphosphonate (CyMPA) and ethyl methylphosphonate (EMPA) (at a 10 μg mL(-1) concentration each) in a fatty acid ester-rich organic matrix (OPCW-PT-O3) featured in the 38th Organisation for the Prohibition of Chemical Weapons (OPCW) Proficiency Test. In addition, the protocol was found to effectively methylate N,N-diethylamino ethanesulfonic acid and N,N-diisopropylamino ethanesulfonic acid that are products arising from the oxidative degradation of the V-series agents VR and VX respectively. The

  2. Template-free synthesis of a porous organic-inorganic hybrid tin(IV) phosphonate and its high catalytic activity for esterification of free fatty acids.

    PubMed

    Dutta, Arghya; Patra, Astam K; Uyama, Hiroshi; Bhaumik, Asim

    2013-10-23

    Here we have synthesized an organic-inorganic hybrid mesoporous tin phosphonate monolith (MLSnP-1) with crystalline pore walls by a template-free sol-gel route. N2 sorption analysis shows Brunauer-Emmett-Teller (BET) surface area of 347 m2 g(-1). Wide-angle powder X-ray diffraction (PXRD) pattern shows few broad diffraction peaks indicating crystalline pore wall of the material. High-resolution transmission electron microscopic (HR TEM) image further reveals the crystal fringes on the pore wall. Framework bonding and local environment around phosphorus and carbon were examined by Fourier transform infrared (FT IR) spectroscopy and solid-state MAS NMR spectroscopy. The material exhibits remarkable catalytic activity for esterification of long chain fatty acids under mild reaction conditions at room temperature.

  3. DEGRADATION OF NITRILOTRIS (METHYLENEPHOSPHONIC ACID) AND RELATED (AMINO) PHOSPHONATE CHELATING AGENTS IN THE PRESENCE OF MANGANESE AND MOLECULAR OXYGEN. (R826376)

    EPA Science Inventory

    Phosphonates are used in an increasing variety of industrial and household
    applications including cooling waters systems, oil production, textile industry,
    and detergents. Phosphonates are not biodegraded during wastewater treatment but
    instead are removed by adsor...

  4. Phosphonated chelates for nuclear imaging.

    PubMed

    Abada, Sabah; Lecointre, Alexandre; Christine, Câline; Ehret-Sabatier, Laurence; Saupe, Falk; Orend, Gertraud; Brasse, David; Ouadi, Ali; Hussenet, Thomas; Laquerrière, Patrice; Elhabiri, Mourad; Charbonnière, Loïc J

    2014-12-21

    A series of bis-, tris- and tetra-phosphonated pyridine ligands is presented. In view of their potential use as chelates for radiopharmaceutical applications, the physico-chemical properties of the ligands and of their Co(II), Ni(II), Cu(II), and Zn(II) complexes were studied by means of potentiometry and UV-Vis absorption spectroscopy. The pKa values of the ligands and of the complexes, as well as the stability constants for the formation of the complexes, are presented. The kinetic aspects of the formation of Cu(II) complexes and of their dissociation in acidic media were studied by means of stopped flow experiments, and the stability of the Cu(II) complex toward reduction to Cu(I) was investigated by cyclic voltammetry and by titration with different reducing agents. The different thermodynamic and kinetic aspects of the polyphosphonated ligands were compared with regard to the impact of the number of phosphonic acid functions. Considering the very promising properties for complexation, preliminary SPECT/CT imaging experiments were carried out on mice with (99m)Tc using the bis- and tetra-phosphonated ligands L(2) and L(1). Finally, a bifunctional version of chelate L(1), L*, was used to label MTn12, a rat monoclonal antibody with both specificity and relatively high affinity for murine tenascin-C. The labeling was monitored by MALDI/MS spectrometry and the affinity of the labeled antibody was checked by immunostaining experiments. After chelation with (99m)Tc, the (99m)Tc-L*-MTn12 antibody was injected into a transgenic mouse with breast cancer and the biodistribution of the labeled antibody was followed by SPECT/CT imaging.

  5. Actinide phosphonate complexes in aqueous solutions

    SciTech Connect

    Nash, K.L.

    1993-10-01

    Complexes formed by actinides with carboxylic acids, polycarboxylic acids, and aminopolycarboxylic acids play a central role in both the basic and process chemistry of the actinides. Recent studies of f-element complexes with phosphonic acid ligands indicate that new ligands incorporating doubly ionizable phosphonate groups (-PO{sub 3}H{sub 2}) have many properties which are unique chemically, and promise more efficient separation processes for waste cleanup and environmental restoration. Simple diphosphonate ligands form much stronger complexes than isostructural carboxylates, often exhibiting higher solubility as well. In this manuscript recent studies of the thermodynamics and kinetics of f-element complexation by 1,1 and 1,2 diphosphonic acid ligands are described.

  6. Poly(arlyene ether sulfone) based semi-interpenetrating polymer network membranes containing cross-linked poly(vinyl phosphonic acid) chains for fuel cell applications at high temperature and low humidity conditions

    NASA Astrophysics Data System (ADS)

    Kim, Kihyun; Heo, Pilwon; Ko, Taeyun; Kim, Ki-hyun; Kim, Sung-Kon; Pak, Chanho; Lee, Jong-Chan

    2015-10-01

    Semi-interpenetrating polymer network (semi-IPN) membranes are prepared by in-situ casting and thermal-initiated radical polymerization of vinyl phosphonic acid (VPA) and bis(2-(methacryloyloxy)ethyl) phosphate (BMAEP) in N,N-dimethylacetamide solutions of sulfonated poly(arylene ether sulfone) (SPAES). The incorporation of VPA units into the SPAES membranes improves proton conductivity especially at high temperature and low humidity conditions. In addition the cross-linker, BMAEP, prevents the decrease of the mechanical and chemical stabilities by the aliphatic linear poly(vinyl phosphonic acid) chains in the semi-IPN membranes, and furthermore the phosphonic acid group in BMAEP can prevent the decrease of the proton conductivity by the formation of cross-linked structures. Therefore, the resulting semi-IPN membranes show high proton conductivities up to 15 mS cm-1 at 120 °C and 40% RH. The fuel cell performance (187 mW cm-2 at 120 °C and 40% RH) of membrane-electrode assembly (MEA) from the semi-IPN membrane is found to be superior to that (145 mW cm-2 at 120 °C and 40% RH) of MEA from the SPAES membrane. The durability test result at the operating conditions indicates that the semi-IPN membrane is electrochemically very stable maintaining the low hydrogen cross-over and high power densities.

  7. Diametric Stereocontrol in Dynamic Catalytic Reduction of Racemic Acyl Phosphonates: Divergence from α-Keto Ester Congeners

    PubMed Central

    Corbett, Michael T.; Johnson, Jeffrey S.

    2013-01-01

    An unexpected dichotomy was observed in the Ru-catalyzed asymmetric transfer hydrogenation of acyl phosphonates: reduction proceeded from the opposite face relative to that observed in the analogous reduction of α-keto esters. The first highly selective catalytic hydrogenation of acyl phosphonates was utilized in the dynamic kinetic resolution of α-aryl acyl phosphonates providing β-stereogenic α-hydroxy phosphonic acid derivatives. PMID:23297694

  8. Biodistribution and pharmacokinetics of variously sized molecular radiolabelled polyethyleneiminomethyl phosphonic acid as a selective bone seeker for therapy in the normal primate model.

    PubMed

    Dormehl, I C; Louw, W K; Milner, R J; Kilian, E; Schneeweiss, F H

    2001-01-01

    An ideal radiopharmaceutical for the treatment of neoplastic and inflammatory (benign) bone disease would be a radiolabelled compound that predominantly accumulates in bone lesions with limited access to normal bone and other organs. Neoplastic tissue's abnormal blood supply (increased permeability) and lack of lymphatics will selectively accumulate radiolabelled macromolecules. This enhanced permeability and retention effect forms the basis of this study, using various molecular sizes of the radiolabelled macromolecule polyethyleneiminomethyl phosphonic acid (PEI-MP) for increased selectivity of the bone-seeking radiopharmaceutical. PEI-MP was synthesized by condensation of polyethyleneimine, phosphonic acid and formaldehyde, followed by fractionation into different molecular sizes by membrane ultrafiltration. Labelling efficiency to 99mTc (as radiotracer) was approximately 99% with complexes stable for 24 h. The pharmacokinetics and biodistribution of various 99mTc-PEI-MP fractions were investigated using 4 experimental baboons (Papio ursinus) per fraction. Scintigraphy was performed on the baboons under general anaesthesia of pentobarbital i.v. After an i.v. bolus of 99mTc-PEI-MP (approximately 185 MBq) both dynamic studies (30 x 1 min frames), and static studies (2 min acquisition every hour for 4 h) were done, as well as blood samples and urine collected. From the results macromolecules with sizes ranging between 30-300 kDa were characterized by excessive liver (21%-57% retained activity) and kidney (40% retained activity) uptake and accompanying long residing times (t1/2 up to 24 h). The percentage bone uptake averaged at 8% for these particles excluding sizes 100-300 kDa where very little bone uptake was seen (< 1%). In this case the blood clearance was also slow (t1/2 approximately 2 h). The fraction size 10-30 kDa had comparatively low accumulation and short residence times in the liver and kidneys (resp. 20%, t1/2 = 22 +/- 4 min; 17.5%, t1/2 = 20 +/- 3

  9. Effects of steroidal allenic phosphonic acid derivatives on the parasitic protists Leishmania donovani, Leishmania mexicana mexicana, and Pneumocystis carinii carinii.

    PubMed Central

    Beach, D H; Chen, F; Cushion, M T; Macomber, R S; Krudy, G A; Wyder, M A; Kaneshiro, E S

    1997-01-01

    Several pathogenic fungi and protozoa are known to have sterols distinct from those of their mammalian hosts. Of particular interest as targets for drug development are the biosyntheses of the sterols of important parasites such as the kinetoplastid flagellates and the AIDS-associated opportunistic protist Pneumocystis carinii. These pathogens synthesize sterols with an alkyl group at C-24, and some have a double bond at C-22 of the side chain. Humans and other mammalian hosts are incapable of C-24 alkylation and C-22 desaturation. In the present study, three steroidal compounds with side chains substituted by phosphonyl-linked groups were synthesized and tested for their effects on Leishmania donovani and L. mexicana mexicana culture growth. The compounds inhibited organism proliferation at concentrations in micrograms per milliliter. The most potent inhibitors of this group of compounds were characterized by two ethyl groups at the phosphate function. Leishmania organisms treated with 17-[2-(diethylphosphonato) ethylidienyl]3-methoxy-19-norpregna-1,3,5-triene exhibited reduced growth after transfer into inhibitor-free medium. Because there are currently no axenic methods available for the continuous subcultivation of P. carinii, the effects of these drugs on this organism were evaluated by two alternative screening methods. The same two diethyl phosphonosteroid compounds that inhibited Leishmania proliferation were also the most active against P. carinii as determined by the potent effect they had on reducing cellular ATP content. Cystic as well as trophic forms responded to the drug treatments, as evaluated by a dual fluorescent staining live-dead assay. Other modifications of steroidal phosphonates may lead to the development of related drugs with increased activity and specificity for the pathogens. PMID:8980773

  10. Binding modes of phosphonic acid derivatives adsorbed on TiO2 surfaces: Assignments of experimental IR and NMR spectra based on DFT/PBC calculations

    NASA Astrophysics Data System (ADS)

    Geldof, D.; Tassi, M.; Carleer, R.; Adriaensens, P.; Roevens, A.; Meynen, V.; Blockhuys, F.

    2017-01-01

    A DFT study on the adsorption of a series of phosphonic acids (PAs) on the TiO2 anatase (101) and (001) surfaces was performed. The adsorption energies and geometries of the most stable binding modes were compared to literature data and the effect of the inclusion of dispersion forces in the energy calculations was gauged. As the (101) surface is the most exposed surface of TiO2 anatase, the calculated chemical shifts and vibrational frequencies of PAs adsorbed on this surface were compared to experimental 31P and 17O NMR and IR data in order to assign the two possible binding modes (mono- and bidentate) to peaks and bands in these spectra; due to the corrugated nature of anatase (101) tridentate binding is not possible on this surface. Analysis of the calculated and experimental 31P chemical shifts indicates that both monodentate and bidentate binding modes are present. For the reactive (001) surface, the results of the calculations indicate that both bi- and tridentate binding modes result in stable systems. Due to the particular sensitivity of 17O chemical shifts to hydrogen bonding and solvent effects, the model used is insufficient to assign these spectra at present. Comparison of calculated and experimental IR spectra leads to the conclusion that IR spectroscopy is not suitable for the characterization of the different binding modes of the adsorption complexes.

  11. [Phosphonate esterase activity in human serum (author's transl)].

    PubMed

    Labadie, M; Laplaud, P M; Lachatre, G; Breton, J C

    1980-02-01

    A simple methodology for the spectrophotometric assay of phosphonate esterase activity in human serum samples is described, featuring incubation at 30 degrees C in a medium containing p-nitrophenol and phenyl-phosphonic acid ester. Reproducibility of the method as well a mean values in normal patients vs age and sex are reported. Serum activity appears to be increased almost exclusively during pregnancy or administration of estrogenic drugs (as oral contraceptives or in prostate neoplasms).

  12. Tuning the Band Bending and Controlling the Surface Reactivity at Polar and Nonpolar Surfaces of ZnO through Phosphonic Acid Binding.

    PubMed

    McNeill, Alexandra R; Hyndman, Adam R; Reeves, Roger J; Downard, Alison J; Allen, Martin W

    2016-11-16

    ZnO is a prime candidate for future use in transparent electronics; however, development of practical materials requires attention to factors including control of its unusual surface band bending and surface reactivity. In this work, we have modified the O-polar (0001̅), Zn-polar (0001), and m-plane (101̅0) surfaces of ZnO with phosphonic acid (PA) derivatives and measured the effect on the surface band bending and surface sensitivity to atmospheric oxygen. Core level and valence band synchrotron X-ray photoemission spectroscopy was used to measure the surface band bending introduced by PA modifiers with substituents of opposite polarity dipole moment: octadecylphosphonic acid (ODPA) and 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctylphosphonic acid (F13OPA). Both PAs act as surface electron donors, increasing the downward band bending and the strength of the two-dimensional surface electron accumulation layer on all of the ZnO surfaces investigated. On the O-polar (0001̅) and m-plane (101̅0) surfaces, the ODPA modifier produced the largest increase in downward band bending relative to the hydroxyl-terminated unmodified surface of 0.55 and 0.35 eV, respectively. On the Zn-polar (0001) face, the F13OPA modifier gave the largest increase (by 0.50 eV) producing a total downward band bending of 1.00 eV, representing ∼30% of the ZnO band gap. Ultraviolet (UV) photoinduced surface wettability and photoconductivity measurements demonstrated that the PA modifiers are effective at decreasing the sensitivity of the surface toward atmospheric oxygen. Modification with PA derivatives produced a large increase in the persistence of UV-induced photoconductivity and a large reduction in UV-induced changes in surface wettability.

  13. Comparison of silatrane, phosphonic acid, and carboxylic acid functional groups for attachment of porphyrin sensitizers to TiO2 in photoelectrochemical cells.

    PubMed

    Brennan, Bradley J; Llansola Portolés, Manuel J; Liddell, Paul A; Moore, Thomas A; Moore, Ana L; Gust, Devens

    2013-10-21

    A tetra-arylporphyrin dye was functionalized with three different anchoring groups used to attach molecules to metal oxide surfaces. The physical, photophysical and electrochemical properties of the derivatized porphyrins were studied, and the dyes were then linked to mesoporous TiO2. The anchoring groups were β-vinyl groups bearing either a carboxylate, a phosphonate or a siloxy moiety. The siloxy linkages were made by treatment of the metal oxide with a silatrane derivative of the porphyrin. The surface binding and lability of the anchored molecules were studied, and dye performance was compared in a dye-sensitized solar cell (DSSC). Transient absorption spectroscopy was used to study charge recombination processes. At comparable surface concentration, the porphyrin showed comparable performance in the DSSC, regardless of the linker. However, the total surface coverage achievable with the carboxylate was about twice that obtainable with the other two linkers, and this led to higher current densities for the carboxylate DSSC. On the other hand, the carboxylate-linked dyes were readily leached from the metal oxide surface under alkaline conditions. The phosphonates were considerably less labile, and the siloxy-linked porphyrins were most resistant to leaching from the surface. The use of silatrane proved to be a practical and convenient way to introduce the siloxy linkages, which can confer greatly increased stability on dye-sensitized electrodes with photoelectrochemical performance comparable to that of the other linkers.

  14. Mn2+ complexes of 1-oxa-4,7-diazacyclononane based ligands with acetic, phosphonic and phosphinic acid pendant arms: stability and relaxation studies.

    PubMed

    Drahoš, Bohuslav; Pniok, Miroslav; Havlíčková, Jana; Kotek, Jan; Císařová, Ivana; Hermann, Petr; Lukeš, Ivan; Tóth, Eva

    2011-10-21

    A new class of macrocyclic ligands based on 1-oxa-4,7-diazacyclononane was synthesized and their Mn(2+) complexes were investigated with respect to stability and relaxation properties. Each ligand has two pendant arms involving carboxylic (H(2)L(1)--1-oxa-4,7-diazacyclononane-4,7-diacetic acid), phosphonic (H(4)L(2)--1-oxa-4,7-diazacyclononane-4,7-bis(methylenephosphonic acid)), phosphinic (H(2)L(3)--1-oxa-4,7-diazacyclononane-4,7-bis(methylenephosphinic acid)) or phenylphosphinic (H(2)L(4)--1-oxa-4,7-diazacyclononane-4,7-bis[methylene(phenyl)phosphinic acid]) acid moieties. H(2)L(3) and H(2)L(4) were synthesized for the first time. The crystal structure of the Mn(2+) complex with H(2)L(4) confirmed a coordination number of 6 for Mn(2+). The protonation constants of all ligands and the stability constants of their complexes with Mn(2+) and some biologically or biomedically relevant metal ions were determined by potentiometry. The protonation sequence of H(2)L(3) was followed by (1)H and (31)P NMR titration and the second protonation step was attributed to the second macrocyclic nitrogen atom. The potentiometric data revealed a relatively low thermodynamic stability of the Mn(2+) complexes with all ligands investigated. For H(2)L(3) and H(2)L(4), full Mn(2+) complexation cannot be achieved even with 100% ligand excess. The transmetallation of MnL(1) and MnL(2) with Zn(2+) was too fast to be followed at pH 6. Variable temperature (1)H NMRD and (17)O NMR measurements have been performed on MnL(1) and MnL(2) to provide information on water exchange and rotational dynamics. The (17)O chemical shifts indicate hydration equilibrium between mono- and bishydrated species for MnL(1), while MnL(2) is monohydrated. The water exchange is considerably faster on MnL(1) (k(ex)(298) = 1.2 × 10(9) s(-1)) than on MnL(2) (k(ex)(298) = 1.2 × 10(7) s(-1)). Small endogenous anions (phosphate, carbonate, citrate) do not replace the coordinated water in either of the complexes, but they

  15. A New Epoxy Bis-Phosphonate Crosslinker for Durable Fire Retardancy on Cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new epoxy bis-phosphonate crosslinker for cotton [2-(dimethoxy-phosphorylmethyl)-oxiranylmethyl]-phosphonic acid dimethyl ester was prepared in two steps from 3-chloro-2-chloromethylpropene in 55% yield. The new monomer was characterized by proton and carbon NMR and GC-mass spectrometry. This cro...

  16. Novel self-assembled phosphonic acids monolayers applied in N-channel perylene diimide (PDI) organic field effect transistors

    NASA Astrophysics Data System (ADS)

    Cheng, Heng; Huai, Jinyue; Cao, Li; Li, Zhefeng

    2016-08-01

    Phosphoric acid (PA) self-assembled monolayers (SAMs) have been developed for applications in organic field-effect transistors (OFETs). This efficient interface modification is helpful for semiconductor layer to form crystal thin film during vapor deposition. Results show that the PDI-i8C based OFETs with PA SAMs exhibit field-effect mobilities up to 0.014 cm2 V-1 s-1 (with ODPA as SAMs), which is over 500 times higher than the device without SAMs. Also, transistors with Naph6PA as SAMs show up to 1.5 × 10-3 cm2 V-1 s-1. By studying the morphology of semiconductor layer and SAMs surface, it is found that ODPA bilayer structure plays a key role in inducing PDI-i8C to form orderly crystal thin film.

  17. Studies on the Labeling of Ethylenediaminetetramethylene Phosphonic Acid, Methylene Diphosphonate, Sodium Pyrophosphate and Hydroxyapatite with Lutetium-177 for use in Nuclear Medicine

    PubMed Central

    Abbasi, Imtiaz Ahmed

    2015-01-01

    For the treatment of skeletal metastasis, a therapeutic radionuclide tagged with a bone seeking ligand is required, while for radiation synovectomy (RS), a therapeutic radionuclide irreversibly attached to pre-formed particles of appropriate size is required. Radio lanthanides are mostly therapeutic, and ligands containing phosphate groups are predominantly bone seekers. Exploiting these facts, number of new therapeutic radiopharmaceuticals could be developed. Labeling of four phosphate containing materials was pursued in the present study. It was hypothesized that various 177Lu-labeled bone-seeking complexes such as 177Lu-ethylenediaminetetramethylene phosphonic acid (EDTMP), 177Lu-methylene diphosphonate (MDP) and 177Lu-pyrophosphate (PYP) could be developed as agents for palliative radiotherapy of bone pain due to skeletal metastases, and 177Lu-Hydroxyapatite (HA) could be developed as an agent for radiosynovectomy of small joints. Lyophilized kit vials of EDTMP, MDP and sodium pyrophosphate (Na-PYP) were formulated. HA particles were synthesized locally and purity was checked by high-performance liquid chromatography (HPLC). 177Lu was labeled with EDTMP, MDP, PYP, and HA and the behavior of all was studied by radio-thin layer chromatography (TLC) radio-HPLC and radio-electrophoresis. Radio-TLC confirmed the labeling. HPLC analysis too verified the labeling. Radio-electrophoresis results depicted peaks for 177Lu-MDP, 177Lu-EDTMP and 177Lu-PYP at 3.37 ± 0.06 cm, 5.53 ± 0.15 cm and 7.03 ± 0.06 cm respectively confirming negative charge on each specie as all migrated toward positive anode. All 3 methods verified the labeling. The study demonstrated that EDTMP, MDP and PYP form stable complexes with 177Lu in injectable solution form. HA particulates could too be labeled with 177Lu with high radiochemical yields (>98%) in suspension form. Former three could be utilized as bone-pain palliation agents for the treatment of bone metastases, and the later could be

  18. Studies on the Labeling of Ethylenediaminetetramethylene Phosphonic Acid, Methylene Diphosphonate, Sodium Pyrophosphate and Hydroxyapatite with Lutetium-177 for use in Nuclear Medicine.

    PubMed

    Abbasi, Imtiaz Ahmed

    2015-01-01

    For the treatment of skeletal metastasis, a therapeutic radionuclide tagged with a bone seeking ligand is required, while for radiation synovectomy (RS), a therapeutic radionuclide irreversibly attached to pre-formed particles of appropriate size is required. Radio lanthanides are mostly therapeutic, and ligands containing phosphate groups are predominantly bone seekers. Exploiting these facts, number of new therapeutic radiopharmaceuticals could be developed. Labeling of four phosphate containing materials was pursued in the present study. It was hypothesized that various (177)Lu-labeled bone-seeking complexes such as (177)Lu-ethylenediaminetetramethylene phosphonic acid (EDTMP), (177)Lu-methylene diphosphonate (MDP) and (177)Lu-pyrophosphate (PYP) could be developed as agents for palliative radiotherapy of bone pain due to skeletal metastases, and (177)Lu-Hydroxyapatite (HA) could be developed as an agent for radiosynovectomy of small joints. Lyophilized kit vials of EDTMP, MDP and sodium pyrophosphate (Na-PYP) were formulated. HA particles were synthesized locally and purity was checked by high-performance liquid chromatography (HPLC). (177)Lu was labeled with EDTMP, MDP, PYP, and HA and the behavior of all was studied by radio-thin layer chromatography (TLC) radio-HPLC and radio-electrophoresis. Radio-TLC confirmed the labeling. HPLC analysis too verified the labeling. Radio-electrophoresis results depicted peaks for (177)Lu-MDP, (177)Lu-EDTMP and (177)Lu-PYP at 3.37 ± 0.06 cm, 5.53 ± 0.15 cm and 7.03 ± 0.06 cm respectively confirming negative charge on each specie as all migrated toward positive anode. All 3 methods verified the labeling. The study demonstrated that EDTMP, MDP and PYP form stable complexes with (177)Lu in injectable solution form. HA particulates could too be labeled with (177)Lu with high radiochemical yields (>98%) in suspension form. Former three could be utilized as bone-pain palliation agents for the treatment of bone metastases, and

  19. Design of a metal primer containing a dithiooctanoate monomer and a phosphonic acid monomer for bonding of prosthetic light-curing resin composite to gold, dental precious and non-precious metal alloys.

    PubMed

    Ikemura, Kunio; Fujii, Toshihide; Negoro, Noriyuki; Endo, Takeshi; Kadoma, Yoshinori

    2011-01-01

    The effect of metal primers on adhesion of a resin composite to dental metal alloys was investigated. Experimental primers containing a dithiooctanoate monomer [10-methacryloyloxydecyl 6,8-dithiooctanoate (10-MDDT) or 6-methacryloyloxyhexyl 6,8-dithiooctanoate (6-MHDT)] and a phosphonic acid monomer [6-methacryloyloxyhexyl phosphonoacetate (6-MHPA) or 6-methacryloyloxyhexyl 3-phosphonopropionate (6-MHPP)] were prepared. After treating Au, Au alloy, Ag alloy, Au-Ag-Pd alloy, and Ni-Cr alloy with the experimental primers, their shear bond strengths (SBSs) with a prosthetic light-curing resin composite (Solidex, Shofu Inc., Japan) were measured after 1-day storage followed by 5,000 thermal cycles. The SBSs between Solidex and the primer-treated metals which were incubated in air at 50°C for 2 months were further measured. Results showed that the SBSs [mean (SD)] of all metal adherends treated with primer DT-PA-1 (5.0 wt% 10-MDDT, 1.0 wt% 6-MHPA) ranged between 31.2 (5.2) and 34.5 (5.8) MPa. The SBSs of the primer-treated metals did not degrade after 2-month incubation at 50°C. Therefore, a combined primer application consisting of a dithiooctanoate monomer and a phosphonic acid monomer provided efficacious bonding to Au as well as precious and non-precious metal alloys.

  20. Metabolic properties of phosphonate esters.

    PubMed

    Somogyi, G; Buchwald, P; Bodor, N

    2004-05-01

    The object of the present work was to investigate the difference in the metabolism of the phosphonate derivatives of primary or secondary hydroxyl groups. To study the phosphorolytic cleavage of such P-O bonds, zidovudine (AZT) hexanoyloxymethyl-methylphosphonate (HOM-AZT-P), an ester of a primary OH functionality, and methyl-pivaloyloxymethyl-testosterylphosphonate (POM-T-P), an ester of a secondary OH functionality, were prepared. The actions of pure enzymes such as alkaline phosphatase and phosphodiesterase on the corresponding phosphonate compounds (AZT-P and T-P) were investigated at various pH values. The phosphonate derivative of the secondary hydroxyl group of testosterone proved completely resistant to such phosphorolytic attacks, and release of free testosterone could not be detected. The phosphonate derivative of the primary hydroxyl group of zidovudine proved resistant to phosphodiesterase, but not to alkaline phosphatase, and in this second case, release of free zidovudine could be detected.

  1. New structural forms in molecular metal phosphonates: novel tri- and hexanuclear zinc(II) cages containing phosphonate and pyrazole ligands.

    PubMed

    Chandrasekhar, Vadapalli; Kingsley, Savariraj; Rhatigan, Brian; Lam, Matthew K; Rheingold, Arnold L

    2002-03-11

    The reaction of ZnCl(2) with tert-butylphosphonic acid and 3,5-dimethylpyrazole in the presence of triethylamine as a hydrogen chloride scavenger affords a trinuclear molecular zinc phosphonate [Zn(3)Cl(2)(3,5-Me(2)Pz)(4)(t-BuPO(3))(2)]. The structure of this compound contains a planar trizinc assembly containing two bicapping mu(3) [t-BuPO(3)](2-) ligands and terminal pyrazole and chloride ligands. In contrast an analogous reaction of ZnCl(2) with phenylphosphonic acid and 3,5-dimethylpyrazole affords a hexanuclear zinc phosphonate [Zn(6)Cl(4)(3,5-Me(2)PzH)(8)(PhPO(3))(4)]. The six zinc centers are arranged in a chairlike conformation. The four phosphonates in this complex also act as bridging tripodal mu(3) [RPO(3)](2-) ligands.

  2. An insight into the photophysical properties of amide hydrogen bonded N-(benzo[d]thiazol-2-yl) acetamide crystals

    NASA Astrophysics Data System (ADS)

    Balijapalli, Umamahesh; Udayadasan, Sathiskumar; Panyam Muralidharan, Vivek; Sukumarapillai, Dileep Kumar; Shanmugam, Easwaramoorthi; Paduthapillai Gopal, Aravindan; S. Rathore, Ravindranath; Kulathu Iyer, Sathiyanarayanan

    2017-02-01

    Three distinct, hydrogen bond associated N-(benzo[d]thiazol-2-yl) acetamides were synthesized by refluxing benzothiazoles with acetic acid. The nature of the assemblies was characteristic to the substituent in the benzothiazole moiety. In N-(benzo[d]thiazol-2-yl)acetamide, water acts as a bridge for forming three hydrogen bonds, as an acceptor to amide Nsbnd H, and donors to carbonyl of amide and thiazole nitrogen assembles of three different N-(benzo[d]thiazol-2-yl)acetamide molecules. The N-(6-methylbenzo[d]thiazol-2-yl)acetamide formed a (amide) N-H…N (thiazole) bonded R22(8) molecular dimers by two homo-intermolecular hydrogen bonding interactions. N-(6-methoxybenzo[d]thiazol-2-yl)acetamide formed (amide)N-H…O (acid) & (acid)O-H…N (thiazole) interactions with the acetic acid, forming a R22(8) hydrogen-bonded ring by two hetero-intermolecular hydrogen bonding interactions.

  3. 3D-QSAR studies and molecular docking on [5-(4-amino-1 H-benzoimidazol-2-yl)-furan-2-yl]-phosphonic acid derivatives as fructose-1,6-biphophatase inhibitors

    NASA Astrophysics Data System (ADS)

    Lan, Ping; Xie, Mei-Qi; Yao, Yue-Mei; Chen, Wan-Na; Chen, Wei-Min

    2010-12-01

    Fructose-1,6-biphophatase has been regarded as a novel therapeutic target for the treatment of type 2 diabetes mellitus (T2DM). 3D-QSAR and docking studies were performed on a series of [5-(4-amino-1 H-benzoimidazol-2-yl)-furan-2-yl]-phosphonic acid derivatives as fructose-1,6-biphophatase inhibitors. The CoMFA and CoMSIA models using thirty-seven molecules in the training set gave r cv 2 values of 0.614 and 0.598, r 2 values of 0.950 and 0.928, respectively. The external validation indicated that our CoMFA and CoMSIA models possessed high predictive powers with r 0 2 values of 0.994 and 0.994, r m 2 values of 0.751 and 0.690, respectively. Molecular docking studies revealed that a phosphonic group was essential for binding to the receptor, and some key features were also identified. A set of forty new analogues were designed by utilizing the results revealed in the present study, and were predicted with significantly improved potencies in the developed models. The findings can be quite useful to aid the designing of new fructose-1,6-biphophatase inhibitors with improved biological response.

  4. Interaction of potassium phosphonate fungicide in laterite soil.

    PubMed

    Kumar, R Anil; Velayudhan, K T; Vasu, K; Ramachandran, V; Bhai, R Susheela; Unnikrishnan, G

    2005-10-01

    Potassium phosphonate is a fungicide widely used to control Phytophthora fungi species in many crops all over the world. In this paper, an attempt has been made to study the interaction of potassium phosphonate with soil under varying pH and calcium level. Several reports available in literature indicate that the phosphonate in organic form adsorb strongly on almost all mineral surfaces and natural materials like soil and sediments. The present study conducted on laterite soil of Kerala using 2 mm sieved sample indicated that phosphonate obeys Freundlich adsorption isotherm. Though at lower concentrations, Langmuir model equally fits well, deviation was observed at higher concentrations. pH and calcium content of the soil had striking influence on the interaction of the chemical with the soil. The calcium source also appeared to influence the adsorption phenomenon. Since potassium phosphonate is extensively used to control Phytophthora fungi species in black pepper (Piper nigrum) plantations in India and liming is a standard practice followed as soil amendment in acid soils to increase the soil pH, this study may help to maintain good soil quality.

  5. Acetamide herbicides and their degradation products in ground water and surface water of the United States, 1993-2003

    USGS Publications Warehouse

    Scribner, Elisabeth A.; Dietze, Julie E.; Thurman, Michael

    2004-01-01

    During 1993 through 2003, the U.S. Geological Survey conducted a number of studies to investigate and document the occurrence, fate, and transport of acetamide herbicides and their degradation products in ground and surface water. As part of these studies, approximately 5,100 water samples were collected and analyzed for the acetamide parent herbicides acetochlor, alachlor, dimethenamid, flufenacet, and metolachlor and their degradation products ethanesulfonic acid, oxanilic acid, and sulfinyl acetic acid. During this period, various analytical methods were developed to detect and measure concentrations of acetamide herbicides and their degradation products in ground water and surface water. Results showed that the degradation products of acetamide herbicides in ground water were detected more frequently and occurred at higher concentrations than their parent compounds. Further study showed that the acetamide herbicides and their degradation products were detected more frequently in surface water than in ground water. In general, the parent compounds were detected at similar or greater frequencies than the degradation products in surface water. The developed methods and data were valuable for acquiring information about the occurrence, fate, and transport of the herbicides and their degradation products and the importance of analyzing for both parent compounds and their degradate products in water-quality studies.

  6. Synthesis of biologically active phosphonates from Lesquerella oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bisphosphonates and vinyl phosphonates are two classes of compounds that have much potential, namely as pharmaceutical agents and synthetic building blocks. Previous studies have shown success in synthesizing these compounds from hydroxy fatty acids (HFAs) found in Ricinus communis, commonly known a...

  7. Removal of Heavy Metals from Aqueous Solution Using Novel Nanoengineered Sorbents: Self-Assembled Carbamoylphosphonic Acids on Mesoporous Silica

    SciTech Connect

    Yantasee, Wassana; Lin, Yuehe; Fryxell, Glen E.; Busche, Brad J.; Birnbaum, Jerome C.

    2003-08-01

    Self-assembled monolayers of carbamoylphosphonic acids (acetamide phosphonic acid and propionamide phosphonic acid) on mesoporous silica supports were studied as potential absorbents for heavy and transition metal ions in aqueous wastes. The adsorption capacity, selectivity, and kinetics of the materials in sequestering metal ions, including Cd2+, Co2+, Cu2+, Cr3+, Pb2+, Ni2+, Zn2+, and Mn2+, were measured in batch experiments with excess sodium ion. The solution pH ranged from 2.2 to 5.5. The kinetics study shows that the adsorption reached equilibrium in seconds, indicating that there is little resistance to mass transfer, intraparticle diffusion, and surface chemical reaction. The competitive adsorption study found the phosphonic acid-SAMMS to have an affinity for divalent metal ions in decreasing order of Pb2+ > Cu2+ > Mn2+ > Cd2+ > Zn2+ > Co2+ > Ni2+. The measured Cd2+ adsorption isotherm was of the Langmuirian type and had a saturation binding capacity of 0.32 mmol/g.

  8. Novel isocyanide-based three-component one-pot synthesis of cyanophenylamino-acetamide derivatives.

    PubMed

    Shaabani, Ahmad; Maleki, Ali; Mofakham, Hamid; Khavasi, Hamid Reza

    2008-01-01

    A one-pot multicomponent synthesis of a novel class of cyanophenylamino-acetamides through the conversion of primary amides to the corresponding nitriles, starting from simple and readily available inputs including 2-aminobenzamide, an aldehyde, and an isocyanide in the presence of p-toluenesulfonic acid as a catalyst, in excellent yields at room temperature in ethanol as a green reaction medium is described.

  9. Palladium-catalyzed difluoroalkylation of aryl boronic acids: a new method for the synthesis of aryldifluoromethylated phosphonates and carboxylic acid derivatives.

    PubMed

    Feng, Zhang; Min, Qiao-Qiao; Xiao, Yu-Lan; Zhang, Bo; Zhang, Xingang

    2014-02-03

    The palladium-catalyzed difluoroalkylation of aryl boronic acids with bromodifluoromethylphosphonate, bromodifluoroacetate, and further derivatives has been developed. This method provides a facile and useful access to a series of functionalized difluoromethylated arenes (ArCF2 PO(OEt)2 , ArCF2 CO2 Et, and ArCF2 CONR(1) R(2) ) that have important applications in drug discovery and development. Preliminary mechanistic studies reveal that a single electron transfer (SET) pathway may be involved in the catalytic cycle.

  10. Phosphonate-hydroxyapatite hybrid compounds prepared by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Agougui, H.; Aissa, A.; Maggi, S.; Debbabi, M.

    2010-12-01

    Calcium hydroxyapatite (CaHAp) was prepared in the presence of two alkylphosphonates, the tert-butyl phosphonic acid TBPOH and the 2-carboxyletylphosphonic acid 2-CEPA, by hydrothermal method at 120 °C for 15 h. The modification of hydroxyapatite by grafting organic moieties is confirmed by IR and NMR MAS ( 1H and 31P) spectroscopy and chemical analysis. X-ray powder diffraction patterns show that the incorporation of organic moieties induces a significant loss of the material crystallinity and a clear increase of the unit cell lattice parameter a as function of 2-CEPA grafting rate. The specific surface area (SSA) increases with increasing phosphonate amount especially for 2-CEPA. All techniques show the lower reactivity of TBPOH due to the steric effects of tert-butyl, whereas the 2-CEPA with a linear chain and double acidic functions is more reactive and can replace the OH - groups of the apatitic structure.

  11. Molecular Basis for Resistance Against Phosphonate Antibiotics and Herbicides

    PubMed Central

    Chekan, Jonathan R.; Cogan, Dillon P.; Nair, Satish K.

    2015-01-01

    Research in recent years have illuminated data on the mechanisms and targets of phosphonic acid antibiotics and herbicides, including fosfomycin, glyphosate, fosmidomycin and FR900098. Here we review the current state of knowledge of the structural and biochemical characterization of resistance mechanisms against these bioactive natural products. Advances in the understanding of these resistance determinants have spurred knowledge-based campaigns aimed towards the design of derivatives that retain biological activity but are less prone to tolerance. PMID:26811741

  12. Crystal structures of the apo form and a complex of human LMW-PTP with a phosphonic acid provide new evidence of a secondary site potentially related to the anchorage of natural substrates.

    PubMed

    Fonseca, Emanuella M B; Trivella, Daniela B B; Scorsato, Valéria; Dias, Mariana P; Bazzo, Natália L; Mandapati, Kishore R; de Oliveira, Fábio L; Ferreira-Halder, Carmen V; Pilli, Ronaldo A; Miranda, Paulo C M L; Aparicio, Ricardo

    2015-08-01

    Low molecular weight protein tyrosine phosphatases (LMW-PTP, EC 3.1.3.48) are a family of single-domain enzymes with molecular weight up to 18 kDa, expressed in different tissues and considered attractive pharmacological targets for cancer chemotherapy. Despite this, few LMW-PTP inhibitors have been described to date, and the structural information on LMW-PTP druggable binding sites is scarce. In this study, a small series of phosphonic acids were designed based on a new crystallographic structure of LMW-PTP complexed with benzylsulfonic acid, determined at 2.1Å. In silico docking was used as a tool to interpret the structural and enzyme kinetics data, as well as to design new analogs. From the synthesized series, two compounds were found to act as competitive inhibitors, with inhibition constants of 0.124 and 0.047 mM. We also report the 2.4Å structure of another complex in which LMW-PTP is bound to benzylphosphonic acid, and a structure of apo LMW-PTP determined at 2.3Å resolution. Although no appreciable conformation changes were observed, in the latter structures, amino acid residues from an expression tag were found bound to a hydrophobic region at the protein surface. This regions is neighbored by positively charged residues, adjacent to the active site pocket, suggesting that this region might be not a mere artefact of crystal contacts but an indication of a possible anchoring region for the natural substrate-which is a phosphorylated protein.

  13. Synthesis of Li-Al layered double hydroxide intercalated with amino tris(methylene phosphonic acid) and kinetic and equilibrium studies of the uptake of Nd3+ and Sr2+ ions

    NASA Astrophysics Data System (ADS)

    Kameda, Tomohito; Shinmyou, Tetsu; Yoshioka, Toshiaki

    2016-03-01

    A Li-Al layered double hydroxide intercalated with amino tris(methylene phosphonic acid) (AMP·Li-Al LDH) was synthesized by the drop-wise addition of an Al-containing solution to a Li-AMP solution at a constant pH of 8.0. The AMP·Li-Al LDH was found to take up Nd3+ and Sr2+ ions from aqueous solutions; this phenomenon was attributable to the metal-chelating functionality of the AMP ions in the interlayers of the AMP·Li-Al LDH. Further, the AMP·Li-Al LDH was found to take up Nd3+ ions preferentially than Sr2+ ions. This was attributable to the stability of the Nd-AMP complex being higher than that of the Sr-AMP complex. The mass-transfer-controlled shrinking-core model could describe the uptake behavior better than the surface-reaction-control model. The AMP ions in the AMP·Li-Al LDH interlayers rapidly formed chelate complexes with the Nd3+ or Sr2+ ions. As a result, the transfer of Nd3+ and Sr2+ ions through the product layer was the rate-limiting step. Furthermore, this reaction could be explained by a Langmuir-type adsorption mechanism, indicating that it involved chemical adsorption; this was consistent with the formation of chelate complexes between Nd3+ and Sr2+ ions and the AMP ions in the interlayers of the AMP·Li-Al LDH.

  14. Oxidation Reactivity Channels for 2-(Pyridin-2-yl)-N,N-diphenyl-acetamides

    SciTech Connect

    Pailloux, Sylvie; Binyamin, Iris; Kim, Sung-jun; Deck, Lorraine M.; Rapko, Brian M.; Hay, Benjamin; Duesler, Eileen N.; Paine, Robert T.

    2007-11-01

    Synthetic routes to 2-(pyridin-2-yl)-N,N-diphenylacetamide and 2-(6-methylpyridin-2-yl)-N,N-diphenyl-acetamide are described along with results from the chemical oxidation of these compounds with peracetic acid, m-chloroperbenzoic acid, and OXONE. In each case, oxidations generate four products in varying amounts depending on the oxidant and reaction conditions. Each product has been characterized by spectroscopic methods and the molecular structures of several of the new compounds have been confirmed by X-ray crystallography.

  15. Nanolayer formation on titanium by phosphonated gelatin for cell adhesion and growth enhancement

    PubMed Central

    Zhou, Xiaoyue; Park, Shin-Hye; Mao, Hongli; Isoshima, Takashi; Wang, Yi; Ito, Yoshihiro

    2015-01-01

    Phosphonated gelatin was prepared for surface modification of titanium to stimulate cell functions. The modified gelatin was synthesized by coupling with 3-aminopropylphosphonic acid using water-soluble carbodiimide and characterized by 31P nuclear magnetic resonance and gel permeation chromatography. Circular dichroism revealed no differences in the conformations of unmodified and phosphonated gelatin. However, the gelation temperature was changed by the modification. Even a high concentration of modified gelatin did not form a gel at room temperature. Time-of-flight secondary ion mass spectrometry showed direct bonding between the phosphonated gelatin and the titanium surface after binding. The binding behavior of phosphonated gelatin on the titanium surface was quantitatively analyzed by a quartz crystal microbalance. Ellipsometry showed the formation of a several nanometer layer of gelatin on the surface. Contact angle measurement indicated that the modified titanium surface was hydrophobic. Enhancement of the attachment and spreading of MC-3T3L1 osteoblastic cells was observed on the phosphonated gelatin-modified titanium. These effects on cell adhesion also led to growth enhancement. Phosphonation of gelatin was effective for preparation of a cell-stimulating titanium surface. PMID:26366080

  16. Nanolayer formation on titanium by phosphonated gelatin for cell adhesion and growth enhancement.

    PubMed

    Zhou, Xiaoyue; Park, Shin-Hye; Mao, Hongli; Isoshima, Takashi; Wang, Yi; Ito, Yoshihiro

    2015-01-01

    Phosphonated gelatin was prepared for surface modification of titanium to stimulate cell functions. The modified gelatin was synthesized by coupling with 3-aminopropylphosphonic acid using water-soluble carbodiimide and characterized by (31)P nuclear magnetic resonance and gel permeation chromatography. Circular dichroism revealed no differences in the conformations of unmodified and phosphonated gelatin. However, the gelation temperature was changed by the modification. Even a high concentration of modified gelatin did not form a gel at room temperature. Time-of-flight secondary ion mass spectrometry showed direct bonding between the phosphonated gelatin and the titanium surface after binding. The binding behavior of phosphonated gelatin on the titanium surface was quantitatively analyzed by a quartz crystal microbalance. Ellipsometry showed the formation of a several nanometer layer of gelatin on the surface. Contact angle measurement indicated that the modified titanium surface was hydrophobic. Enhancement of the attachment and spreading of MC-3T3L1 osteoblastic cells was observed on the phosphonated gelatin-modified titanium. These effects on cell adhesion also led to growth enhancement. Phosphonation of gelatin was effective for preparation of a cell-stimulating titanium surface.

  17. Orientational Jumps in (Acetamide + Electrolyte) Deep Eutectics: Anion Dependence.

    PubMed

    Das, Suman; Biswas, Ranjit; Mukherjee, Biswaroop

    2015-08-27

    All-atom molecular dynamics simulations have been carried out to investigate orientation jumps of acetamide molecules in three different ionic deep eutectics made of acetamide (CH3CONH2) and lithium salts of bromide (Br(–)), nitrate (NO3(–)) and perchlorate (ClO4(–)) at approximately 80:20 mole ratio and 303 K. Orientational jumps have been dissected into acetamide–acetamide and acetamide–ion catagories. Simulated jump characteristics register a considerable dependence on the anion identity. For example, large angle jumps are relatively less frequent in the presence of NO3(–) than in the presence of the other two anions. Distribution of jump angles for rotation of acetamide molecules hydrogen bonded (H-bonded) to anions has been found to be bimodal in the presence of Br(–) and is qualitatively different from the other two cases. Estimated energy barrier for orientation jumps of these acetamide molecules (H-bonded to anions) differ by a factor of ∼2 between NO3(–) and ClO4(–), the barrier height for the latter being lower and ∼0.5kBT. Relative radial and angular displacements during jumps describe the sequence ClO(4)– > NO3(–) > Br(–) and follow a reverse viscosity trend. Jump barrier for acetamide–acetamide pairs reflects weak dependence on anion identity and remains closer to the magnitude (∼0.7kBT) found for orientation jumps in molten acetamide. Jump time distributions exhibit a power law dependence of the type, P(tjump) ∝ A(tjump/τ)(−β), with both β and τ showing substantial anion dependence. The latter suggests the presence of dynamic heterogeneity in these systems and supports earlier conclusions from time-resolved fluorescence measurements.

  18. Hollow cobalt phosphonate spherical hybrid as high-efficiency Fenton catalyst

    NASA Astrophysics Data System (ADS)

    Zhu, Yun-Pei; Ren, Tie-Zhen; Yuan, Zhong-Yong

    2014-09-01

    Organic-inorganic hybrid of cobalt phosphonate hollow nanostructured spheres were prepared in a water-ethanol system through a mild hydrothermal process in the absence of any templates using diethylenetriamine penta(methylene phosphonic acid) as bridging molecule. SEM, TEM and N2 sorption characterization confirmed a hollow spherical micromorphology with well-defined porosity. The structure and chemical states of the hybrid materials were investigated by FT-IR, XPS and thermogravimetric analysis, revealing the homogeneous integrity of inorganic and organic units inside the network. As a heterogeneous catalyst, hollow cobalt phosphonate material exhibited considerable catalytic oxidizing decomposition of methylene blue with sulfate radicals as compared to cobalt phosphonate nanoparticles synthesized in single water system, which could be attributed to enhanced mass transfer and high surface area for the hollow material. Some operational parameters, including pH and reaction temperature, were found to influence the oxidation process. The present results suggest that cobalt phosphonate material can perform as an efficient heterogeneous catalyst for the degradation of organic contaminants, providing insights into the rational design and development of alternative catalysts for wastewater treatment.Organic-inorganic hybrid of cobalt phosphonate hollow nanostructured spheres were prepared in a water-ethanol system through a mild hydrothermal process in the absence of any templates using diethylenetriamine penta(methylene phosphonic acid) as bridging molecule. SEM, TEM and N2 sorption characterization confirmed a hollow spherical micromorphology with well-defined porosity. The structure and chemical states of the hybrid materials were investigated by FT-IR, XPS and thermogravimetric analysis, revealing the homogeneous integrity of inorganic and organic units inside the network. As a heterogeneous catalyst, hollow cobalt phosphonate material exhibited considerable

  19. Synthesis and Structural Studies of Calcium and Magnesium Phosphinate and Phosphonate Compounds

    NASA Astrophysics Data System (ADS)

    Bampoh, Victoria Naa Kwale

    The work presented herein describes synthetic methodologies leading to the design of a wide array of magnesium and calcium based phosphinate and phosphonates with possible applications as bone scaffolding materials or additives to bone cements. The challenge to the chemistry of the alkaline earth phosphonate target compounds includes poor solubility of compounds, and poorly understood details on the control of the metal's coordination environment. Hence, less is known on phosphonate based alkaline earth metal organic frameworks as compared to transition metal phosphonates. Factors governing the challenges in obtaining crystalline, well-defined magnesium and calcium solids lie in the large metal diameters, the absence of energetically available d-orbitals to direct metal geometry, as well as the overall weakness of the metal-ligand bonds. A significant part of this project was concerned with the development of suitable reaction conditions to obtain X-ray quality crystals of the reaction products to allow for structural elucidation of the novel compounds. Various methodologies to aid in crystal growth including hydrothermal methods and gel crystallization were employed. We have used phosphinate and phosphonate ligands with different number of phosphorus oxygen atoms as well as diphosphonates with different linker lengths to determine their effects on the overall structural features. An interesting correlation is observed between the dimensionality of products and the increasing number of donor oxygen atoms in the ligands as we progress from phosphinic acid to the phosphorous acids. As an example, monophosphinate ligand only yielded one-dimensional compounds, whereas the phosphonates crystallize as one and two-dimensional compounds, and the di- and triphosphonate based compounds display two or three-dimensional geometries. This thesis provides a selection of calcium and magnesium compounds with one-dimensional geometry, as represented in a calcium phosphinate to novel

  20. Simultaneous Detection of Cadmium, Copper, and Lead using A Carbon Paste Electrode Modified with Carbamoylphosphonic Acid Self-Assembled Monolayer on Mesoporous Silica (SAMMS)

    SciTech Connect

    Yantasee, Wassana ); Lin, Yuehe ); Fryxell, Glen E. ); Busche, Brad J. )

    2004-01-30

    A new sensor was developed for simultaneous detection of cadmium (Cd2+), copper (Cu2+), and lead (Pb2+), based on the voltammetric response at a carbon paste electrode modified with carbamoylphosphonic acid (acetamide phosphonic acid) self-assembled monolayer on mesoporous silica (Ac-Phos SAMMS). The adsorptive stripping voltammetry technique involves preconcentration of the metal ions onto Ac-Phos SAMMS under an open circuit, then electrolysis of the preconcentrated species, followed by a square wave potential sweep towards positive values. Factors affecting the preconcentration process were investigated. The voltammetric responses increased linearly with the preconcentration time from 1 to 30 minutes or with metal ion concentrations ranging from 10 to 200 ppb. The responses also evolved in the same fashion as adsorption isotherm in the pH range of 2-6. The metal detection limits were 10 ppb after 2 minutes preconcentration and improved to 0.5 ppb after 20 minutes preconcentration.

  1. Changes in concentrations of triazine and acetamide herbicides by bank filtration, ozonation, and chlorination in a public water supply

    USGS Publications Warehouse

    Verstraeten, Ingrid M.; Thurman, E.M.; Lindsey, M.E.; Lee, E.C.; Smith, R.D.

    2002-01-01

    The changes in triazine and acetamide concentrations in water during natural and artificial treatment by bank filtration, ozonation, filtration, and chlorination were measured at the well field and drinking water treatment plant of Lincoln, Nebraska, USA. The city's groundwater supply is affected by induced infiltration and transport of triazines and acetamide herbicides from the Platte River in late spring and early summer. The objective of the study was to evaluate the effect of infiltration and treatment on the presence of triazines and acetamides in drinking water. Samples of river water, well water, and public supply water at various stages of water treatment were collected from 1997-1999 during spring-runoff when the presence of herbicides in the Platte River is largest. In 1999, parent compounds were reduced by 76% of the concentration present in river water (33% by bank filtration, 41% by ozonation, and 1.5% by chlorination). Metabolites of herbicides for which analytical techniques existed were reduced by 21% (plus 26% by bank filtration, minus 23% by ozonation, and minus 24% by chlorination). However, increases in concentrations of specific metabolite compounds were identified after bank filtration and ozonation. After bank filtration, increases in cyanazine amide, cyanazine acid, and deethylcyanazine acid were identified. After ozonation, concentrations of deisopropylatrazine, deethylatrazine, didealkylatrazine, atrazine amide-I, hydroxydeethylatrazine, hydroxydeisopopylatrazine, deethylcyanazine acid, and deethylcyanazine increased. Concentrations of cyanazine acid and ethanesulfonic and oxanilic acids of acetamides decreased during ozonation. Our findings suggest that bank filtration and ozonation of water in part can shift the assessment of risk to human health associated with the consumption of the water from the parent compounds to their degradation products.

  2. Acetamide hydrolyzing activity of Bacillus megaterium F-8 with bioremediation potential: optimization of production and reaction conditions.

    PubMed

    Sogani, Monika; Bakre, Prakash P; Mathur, Nupur; Sharma, Pratibha; Bhatnagar, Pradeep

    2014-01-01

    Bacillus megaterium F-8 exhibited an intracellular acetamide hydrolyzing activity (AHA) when cultivated in modified nutrient broth with 3% tryptone, 1.5% yeast extract, and 0.5% sodium chloride, at pH 7.2, 45 °C for 24 h. Maximum AHA was recorded in the culture containing 0.1 M of sodium phosphate buffer, (pH 7.5) at 45 °C for 20 min with 0.2 % of acetonitrile and resting cells of B. megaterium F-8 equivalent to 0.2 ml culture broth. This activity was stable up to 55 °C and was completely inactivated at or above 60 °C. Maximum acyl transferase activity (ATA) was recorded in the reaction medium containing 0.1 M of potassium phosphate buffer, (pH 8.0) at 55 °C for 5 min with 0.85 mM of acetamide as acyl donor and hydroxylamine hydrochloride as acyl acceptor and resting cells of B. megaterium F-8 equivalent to 0.94 mg cells (dry weight basis). This activity was stable up to 60 °C and a rapid decline in enzyme activity was recorded above it. Under the optimized conditions, this organism hydrolyzed various nitriles and amides such as propionitrile, propionamide, caprolactam, acetamide, and acrylamide to corresponding acids. Acyl group transfer capability of this organism was used for the production of acetohydroxamic acid. ATA of B. megaterium F-8 showed broad substrate specificity such as for acetamide followed by propionamide, acrylamide, and lactamide. This amide hydrolyzing and amidotransferase activity of B. megaterium F-8 has potential applications in enzymatic synthesis of hydroxamic acids and bioremediation of nitriles and amides contaminated soil and water system.

  3. Solution-phase parallel synthesis of acyclic nucleoside libraries of purine, pyrimidine, and triazole acetamides.

    PubMed

    Pathak, Ashish K; Pathak, Vibha; Reynolds, Robert C

    2014-09-08

    Molecular diversity plays a pivotal role in modern drug discovery against phenotypic or enzyme-based targets using high throughput screening technology. Under the auspices of the Pilot Scale Library Program of the NIH Roadmap Initiative, we produced and report herein a diverse library of 181 purine, pyrimidine, and 1,2,4-triazole-N-acetamide analogues which were prepared in a parallel high throughput solution-phase reaction format. A set of assorted amines were reacted with several nucleic acid N-acetic acids utilizing HATU as the coupling reagent to produce diverse acyclic nucleoside N-acetamide analogues. These reactions were performed using 24 well reaction blocks and an automatic reagent-dispensing platform under inert atmosphere. The targeted compounds were purified on an automated purification system using solid sample loading prepacked cartridges and prepacked silica gel columns. All compounds were characterized by NMR and HRMS, and were analyzed for purity by HPLC before submission to the Molecular Libraries Small Molecule Repository (MLSMR) at NIH. Initial screening through the Molecular Libraries Probe Production Centers Network (MLPCN) program, indicates that several analogues showed diverse and interesting biological activities.

  4. Preparation, characterization, and modeling of α-zirconium phosphonates with ether-functional surfaces

    PubMed Central

    Furman, Benjamin R.; Wellinghoff, Stephen T.; Thompson, Paul M.; Beall, Gary W.; Laine, Richard M.; Rawls, H. Ralph

    2009-01-01

    Layered α-zirconium(IV) phosphonates were prepared from novel ether-terminal alkyl phosphonic acids, providing nanoplatelets with brush-like polar surfaces. The precursor materials were characterized by NMR, mass spectrometry, and elemental analysis. The derived nanoparticles were examined by XRD, TEM, TGA, and elemental analysis. The experimental compositions were slightly rich in organophosphorus content. In general, the layered materials had good crystallinity, with layer reflections appearing up to (005) and d-spacings consistent with the anticipated α-phase structure. Computer simulations suggest that tailored surface chemistries, including ether functionalities, will offer favorable thermodynamic interactions with polyester polymer matrices. PMID:20090854

  5. Synthesis, characterization and fuel cell performance tests of boric acid and boron phosphate doped, sulphonated and phosphonated poly(vinyl alcohol) based composite membranes

    NASA Astrophysics Data System (ADS)

    Şahin, Alpay; Ar, İrfan

    2015-08-01

    The aim of this study is to synthesize a composite membrane having high proton conductivity, ion exchange capacity and chemical stability. In order to achieve this aim, poly(vinyl alcohol) (PVA) based composite membranes are synthesized by using classic sol-gel method. Boric acid (H3BO3) and boron phosphate (BPO4) are added to the membrane matrix in different ratios in order to enhance the membrane properties. Characterization tests, i.e; FT-IR analysis, mechanical strength tests, water hold-up capacities, swelling properties, ion exchange capacities, proton conductivities and fuel cell performance tests of synthesized membranes are carried out. As a result of performance experiments highest performance values are obtained for the membrane containing 15% boron phosphate at 0.6 V and 750 mA/cm2. Water hold-up capacity, swelling ratio, ion exchange capacity and proton conductivity of this membrane are found as 56%, 8%, 1.36 meq/g and 0.37 S/cm, respectively. These values are close to the values obtained ones for perfluorosulphonic acid membranes. Therefore this membrane can be regarded as a promising candidate for usage in fuel cells.

  6. Evaluation of N-benzyl-N-[11C]methyl-2- (7-methyl-8-oxo-2-phenyl-7,8-dihydro-9H-purin-9-yl)acetamide ([11C]DAC) as a novel translocator protein (18 kDa) radioligand in kainic acid-lesioned rat.

    PubMed

    Yanamoto, Kazuhiko; Yamasaki, Tomoteru; Kumata, Katsushi; Yui, Joji; Odawara, Chika; Kawamura, Kazunori; Hatori, Akiko; Inoue, Osamu; Yamaguchi, Masatoshi; Suzuki, Kazutoshi; Zhang, Ming-Rong

    2009-11-01

    The aim of this study was to evaluate N-benzyl-N-[11C]methyl-2-(7-methyl-8-oxo-2-phenyl-7,8-dihydro-9H-purin-9-yl)acetamide ([11C]DAC) as a new translocator protein (18 kDa) [TSPO, formerly known as the peripheral-type benzodiazepine receptor (PBR)] positron emission tomography (PET) ligand in normal mice and unilateral kainic acid (KA)-lesioned rats. DAC is a derivative of AC-5216, which is a potent and selective PET ligand for the clinical investigation of TSPO. The binding affinity and selectivity of DAC for TSPO were similar to those of AC-5216, and DAC was less lipophilic than AC-5216. The distribution pattern of [11C]DAC was in agreement with TSPO distribution in rodents. No radioactive metabolite of [11C]DAC was found in the mouse brain, although it was metabolized rapidly in mouse plasma. Using small-animal PET, we examined the in vivo binding of [11C]DAC for TSPO in KA-lesioned rats. [11C]DAC and [11C]AC-5216 exhibited similar brain uptake in the lesioned and nonlesioned striatum, respectively. The binding of [11C]DAC to TSPO was increased significantly in the lesioned striatum, and [(11)C]DAC showed good contrast between the lesioned and nonlesioned striatum (the maximum ratio was about threefold). In displacement experiments, the uptake of [11C]DAC in the lesioned striatum was eventually blocked using an excess of either unlabeled DAC or PK11195 injected. [11C]DAC had high in vivo specific binding to TSPO in the injured rat brain. Therefore, [11C]DAC is a useful PET ligand for TSPO imaging, and its specific binding to TSPO is suitable as a new biomarker for brain injury.

  7. Flame Resistant Cotton Durability and Antimicrobial Resistance Properties by using a Novel Epoxy Phosphonate Monomers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently we showed the design, synthesis, characterization, and usefulness of 2-(dimethoxy-phosphorylmethyl)-oxiranylmethyl]-phosphonic acid dimethyl ester that was generated from 3-chloro-2-chloromethylpropene (Polymer Preprints 2005, 46(1), 583-584). This monomer was grafted onto cotton fabrics (...

  8. A dual-task design of corrosion-controlling and osteo-compatible hexamethylenediaminetetrakis- (methylene phosphonic acid) (HDTMPA) coating on magnesium for biodegradable bone implants application.

    PubMed

    Zhao, Sheng; Chen, Yingqi; Liu, Bo; Chen, Meiyun; Mao, Jinlong; He, Hairuo; Zhao, Yuancong; Huang, Nan; Wan, Guojiang

    2015-05-01

    Magnesium as well as its alloys appears increasingly as a revolutionary bio-metal for biodegradable implants application but the biggest challenges exist in its too fast bio-corrosion/degradation. Both corrosion-controllable and bio-compatible Mg-based bio-metal is highly desirable in clinic. In present work, hexamethylenediaminetetrakis (methylenephosphonic acid) [HDTMPA, (H2 O3 P-CH2 )2 -N-(CH2 )6 -N-(CH2 -PO3 H2 )2 ], as a natural and bioactive organic substance, was covalently immobilized and chelating-deposited onto Mg surface by means of chemical conversion process and dip-coating method, to fullfill dual-task performance of corrosion-protective and osteo-compatible functionalities. The chemical grafting of HDTMPA molecules, by participation of functional groups on pretreated Mg surface, ensured a firmly anchored base layer, and then sub-sequential chelating reactions of HDTMPA molecules guaranteed a homogenous and dense HDTMPA coating deposition on Mg substrate. Electrochemical corrosion and immersion degradation results reveal that the HDTMPA coated Mg provides a significantly better controlled bio-corrosion/degradation behavior in phosphate buffer saline solution as compared with untreated Mg from perspective of clinic requirement. Moreover, the HDTMPA coated Mg exhibits osteo-compatible in that it induces not only bioactivity of bone-like apatite precipitation but also promotes osteoblast cells adhesion and proliferation. Our well-controlled biodegradable and biocompatible HDTMPA modified Mg might bode well for next generation bone implant application.

  9. Mesoporous cerium phosphonate nanostructured hybrid spheres as label-free Hg²⁺ fluorescent probes.

    PubMed

    Zhu, Yun-Pei; Ma, Tian-Yi; Ren, Tie-Zhen; Yuan, Zhong-Yong

    2014-09-24

    Porous phosphonate-based organic-inorganic hybrid materials have been shown to have novel and amazing physicochemical properties due to the integration of superiorities from both inorganic components and organic moieties. Herein, mesoporous cerium phosphonate nanostructured hybrid spheres are prepared with the assistance of cationic surfactant cetyltrimethylammonium bromide while using ethylene diamine tetra(methylene phosphonic acid) as the coupling molecule. The resulting hybrid is constructed from the cerium phosphonate nanoparticles, accompanied by high specific surface area of 455 m(2) g(-1). The uniform incorporation of rare-earth element cerium and organophosphonic functionalities endows mesoporous cerium phosphonate with excellent fluorescence properties for the development of an optical sensor for selective Hg(2+) detection on the basis of the fluorescence-quenching mechanism. The signal response of mesoporous cerium phosphonate against the Hg(2+) concentration is linear over the range from 0.05 to 1.5 μmol L(-1), giving a limit of detection of 16 nmol L(-1) (at a signal-to-noise ratio of 3). Most of the common physiologically relevant cations and anions did not interfere with the detection of Hg(2+). This label-free system provides a promising platform for further use in bioimaging and biomedical fields.

  10. Synthesis of N-(6-Arylbenzo[d]thiazole-2-acetamide Derivatives and Their Biological Activities: An Experimental and Computational Approach.

    PubMed

    Gull, Yasmeen; Rasool, Nasir; Noreen, Mnaza; Altaf, Ataf Ali; Musharraf, Syed Ghulam; Zubair, Muhammad; Nasim, Faiz-Ul-Hassan; Yaqoob, Asma; DeFeo, Vincenzo; Zia-Ul-Haq, Muhammad

    2016-02-25

    A new series of N-(6-arylbenzo[d]thiazol-2-yl)acetamides were synthesized by C-C coupling methodology in the presence of Pd(0) using various aryl boronic pinacol ester/acids. The newly synthesized compounds were evaluated for various biological activities like antioxidant, haemolytic, antibacterial and urease inhibition. In bioassays these compounds were found to have moderate to good activities. Among the tested biological activities screened these compounds displayed the most significant activity for urease inhibition. In urease inhibition, all compounds were found more active than the standard used. The compound N-(6-(p-tolyl)benzo[d]thiazol-2-yl)acetamide was found to be the most active. To understand this urease inhibition, molecular docking studies were performed. The in silico studies showed that these acetamide derivatives bind to the non-metallic active site of the urease enzyme. Structure-activity studies revealed that H-bonding of compounds with the enzyme is important for its inhibition.

  11. Development of Oseltamivir Phosphonate Congeners as Anti-Influenza Agents

    PubMed Central

    Cheng, Ting-Jen R.; Weinheimer, Steven; Tarbet, E. Bart; Jan, Jia-Tsrong; Cheng, Yih-Shyun E.; Shie, Jiun-Jie; Chen, Chun-Lin; Chen, Chih-An; Hsieh, Wei-Che; Huang, Pei-Wei; Lin, Wen-Hao; Wang, Shi-Yun; Fang, Jim-Min; Hu, Oliver Yoa-Pu; Wong, Chi-Huey

    2012-01-01

    Oseltamivir phosphonic acid (tamiphosphor, 3a), its monoethyl ester (3c), guanidino-tamiphosphor (4a) and its monoethyl ester (4c) are potent inhibitors of influenza neuraminidases. They inhibit the replication of influenza viruses, including the oseltamivir-resistant H275Y strain, at low nM to pM levels, and significantly protect mice from infection with lethal doses of influenza viruses when orally administered with 1 mg/kg or higher doses. These compounds are stable in simulated gastric fluid, liver microsomes and human blood, and are largely free from binding to plasma proteins. Pharmacokinetic properties of these inhibitors are thoroughly studied in dogs, rats and mice. The absolute oral bioavailability of these compounds was lower than 12%. No conversion of monoester 4c to phosphonic acid 4a was observed in rats after intravenous administration, but partial conversion of 4c was observed with oral administration. Advanced formulation may be investigated to develop these new anti-influenza agents for better therapeutic use. PMID:23009169

  12. Chiral hydroxy phosphonates: synthesis, configuration and biological properties

    NASA Astrophysics Data System (ADS)

    Kolodiazhnyi, Oleg I.

    2006-03-01

    Published data on the synthesis, absolute configurations and biological properties of chiral hydroxy phosphonates are generalised and described systematically. Examples of asymmetric synthesis of hydroxy phosphonates by the phospho-aldol reaction, reduction of keto phosphonates, chemo-enzymatic approach, and so on are discussed. Methods for determination of the optical purity and absolute configuration of hydroxy phosphonates using modification by chiral reagents, NMR, circular dichroism, GLC and HPLC on columns with chiral sorbents are considered. The significance of hydroxy phosphonates as promising compounds for the development of new drugs and bioregulators is demonstrated.

  13. Metal phosphonate hybrid mesostructures: environmentally friendly multifunctional materials for clean energy and other applications.

    PubMed

    Ma, Tian-Yi; Yuan, Zhong-Yong

    2011-10-17

    The synthesis of porous hybrid materials has been extended to mesoporous non-silica-based organic-inorganic hybrid materials, in which mesoporous metal phosphonates represent an important family. By using organically bridged polyphosphonic acids as coupling molecules, the homogeneous incorporation of a considerable number of organic functional groups into the metal phosphonate hybrid framework has been realized. Small amounts of organic additives and the pH value of the reaction solution have a large impact on the morphology and textural properties of the resultant hybrid mesoporous metal phosphonate solids. Cationic and nonionic surfactants can be used as templates for the synthesis of ordered mesoporous metal phosphonates. The materials are used as efficient adsorbents for heavy metal ions, CO₂, and aldehydes, as well as in the separation of polycyclic aromatic hydrocarbons. They are also useful photocatalysts under UV and simulated solar light irradiation for organic dye degradation. Further functionalization of the synthesized mesoporous hybrids makes them oxidation and acid catalysts, both with impressive performances in the fields of sustainable energy and environment.

  14. Mechanistic understanding of calcium-phosphonate solid dissolution and scale inhibitor return behavior in oilfield reservoir: formation of middle phase.

    PubMed

    Zhang, Ping; Shen, Dong; Ruan, Gedeng; Kan, Amy T; Tomson, Mason B

    2016-08-03

    Phosphonates are an important class of mineral scale inhibitors used for oilfield scale control. By injecting the phosphonate into an oilfield reservoir, calcium-phosphonate precipitate will form and subsequently release the phosphonate into produced water for scale control. In this study, a systematic procedure is developed to mechanistically characterize an acidic calcium-phosphonate amorphous material that is later developed into a middle phase and eventually a crystalline phase. The phosphonate used in this study is diethylenetriamine pentakis (methylene phosphonic acid) (DTPMP). An amorphous calcium-DTPMP solid is precipitated by mixing a calcium-containing solution with a DTPMP solution. The stoichiometry of this initially formed solid can be experimentally confirmed via a static dissolution test. Following another dynamic development test, two additional Ca-DTPMP solid phases, i.e., a middle phase and a crystalline phase have been observed. Electron microscopy and X-ray diffraction were employed to characterize the morphology and crystallinity of different Ca-DTPMP solids of interest. Evidently, the dynamic brine flushing of the Ca-DTPMP solid developed the initially amorphous material into a middle phase solid with an amorphous/microcrystalline structure and eventually into a crystalline material. Furthermore, a dissolution characterization study was carried out to determine the solubility product of the middle phase solid at different conditions. The obtained mechanistic understanding of the Ca-DTPMP solid related to precipitation chemistry, dissolution behavior and phase transition is critical to elucidate oilfield DTPMP return data and more importantly, can optimize the oilfield scale squeeze design to achieve an extended squeeze lifetime.

  15. Hydrothermal synthesis and structural characterization of ammonium ion-templated lanthanide(III) carboxylate-phosphonates

    PubMed Central

    Ayi, Ayi A.; Kinnibrugh, Tiffany L.; Clearfield, Abraham

    2014-01-01

    Using N-(phosphonomethyl) iminodiacetic acid (H4PMIDA), as a complexing agent, two new complexes, (NH4)La(PMIDA)(H2O)•H2O, 1 and (NH4)Yb(PMIDA), 2 have been synthesized hydrothermally. In both compounds, the metal ions are trapped by a three five-membered chelate rings by the chelating PMIDA anions giving a tricapped trigonal prismatic LaO8N and monocapped trigonal prismatic YbO6N geometries for 1 and 2, respectively. The structure of 1 consists of La(PMIDA)(H2O) chelating units, linked together by the phosphonate oxygen atoms O1 and O3 to form a chain along the c-axis. The chains are then connected together by the bridging phosphonate oxygen O2 to form a 2D layered structure with alternating 4- and 8-membered apertures. The structure of 2 consists Yb(PMIDA) chelating units, which are connected by alternating bridging carboxylate and phosphonate groups along the [010] direction forming chains with a corrugated pattern. The third phosphonate oxygen bridges the chains together along the [001] direction to build the two-dimensional layer with 4- and 6-membered apertures in the bc-plane. Under excitation of 330 nm, compound 2 shows a broad emission band at λmax = 460 nm. This emission is essentially in the blue luminescent region, which corresponds to ligand centered fluorescence. PMID:25414845

  16. 40 CFR 721.10067 - Ether amine phosphonate salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ether amine phosphonate salt (generic... Specific Chemical Substances § 721.10067 Ether amine phosphonate salt (generic). (a) Chemical substances... ether amine phosphonate salt (PMNs P-05-57, P-05-58, P-05-59, P-05-61, P-05-62, P-05-63, P-05-64, and...

  17. 40 CFR 721.10067 - Ether amine phosphonate salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Ether amine phosphonate salt (generic... Specific Chemical Substances § 721.10067 Ether amine phosphonate salt (generic). (a) Chemical substances... ether amine phosphonate salt (PMNs P-05-57, P-05-58, P-05-59, P-05-61, P-05-62, P-05-63, P-05-64, and...

  18. 40 CFR 721.10067 - Ether amine phosphonate salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Ether amine phosphonate salt (generic... Specific Chemical Substances § 721.10067 Ether amine phosphonate salt (generic). (a) Chemical substances... ether amine phosphonate salt (PMNs P-05-57, P-05-58, P-05-59, P-05-61, P-05-62, P-05-63, P-05-64, and...

  19. 40 CFR 721.10067 - Ether amine phosphonate salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Ether amine phosphonate salt (generic... Specific Chemical Substances § 721.10067 Ether amine phosphonate salt (generic). (a) Chemical substances... ether amine phosphonate salt (PMNs P-05-57, P-05-58, P-05-59, P-05-61, P-05-62, P-05-63, P-05-64, and...

  20. 40 CFR 721.10067 - Ether amine phosphonate salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Ether amine phosphonate salt (generic... Specific Chemical Substances § 721.10067 Ether amine phosphonate salt (generic). (a) Chemical substances... ether amine phosphonate salt (PMNs P-05-57, P-05-58, P-05-59, P-05-61, P-05-62, P-05-63, P-05-64, and...

  1. Catalytic asymmetric synthesis of {alpha}-amino phosphonates using lanthanoid-potassium-BINOL complexes

    SciTech Connect

    Sasai, Hiroaki; Arai, Shigeru; Shibasaki, Masakatsu

    1995-10-20

    {alpha}-Amino phosphonic acids 3 are interesting compounds in the design of enzyme inhibitors. The concept of mimicking tetrahedral transition states of enzyme-medicated peptide bond hydrolysis previously led to the successful design and synthesis of phosphonamide-containing peptides as a promising new class of proteinase inhibitors. It is not surprising that the absolute configuration of the {alpha}-carbon strongly influences the biological properties of 3. Several methods for the synthesis of optically active {alpha}-aminophosphonic acids have been published. The authors report here the first example of a catalytic asymmetric hydrophosphonylation to imines using lanthanoid-potassium-BINOL heterobimetallic complexes (LnPB, Ln = lanthanoid metal), which gives optically active {alpha}-amino phosphonates in modest to high enantiometric excess. 17 refs., 1 tab.

  2. Preparation and use of crystalline bis-monoorganic phosphonate and phosphate salts of tetravalent metals

    DOEpatents

    Maya, L.

    1980-06-26

    A method of preparing and using the crystalline organic derivatives of the tetravalent metal phosphates and phosphonates provides for the contacting of an aqueous solution of a metal nitrate, with a solution of an organophosphorus acid for a period of time at room temperature that is sufficient for the formation of a metal phosphate product, and thereafter recovering said product. According to the invention, the product of the disclosed process is used in effecting analytical separations, such as ion exchange and chromatography.

  3. Low adhesion, non-wetting phosphonate self-assembled monolayer films formed on copper oxide surfaces.

    PubMed

    Hoque, E; DeRose, J A; Bhushan, B; Hipps, K W

    2009-07-01

    Self-assembled monolayer (SAM) films have been formed on oxidized copper (Cu) substrates by reaction with 1H,1H,2H,2H-perfluorodecylphosphonic acid (PFDP), octadecylphosphonic acid (ODP), decylphosphonic acid (DP), and octylphosphonic acid (OP) and then investigated by X-ray photoelectron spectroscopy (XPS), contact angle measurement (CAM), and atomic force microscopy (AFM). The presence of alkyl phosphonate molecules, PFDP, ODP, DP, and OP, on Cu were confirmed by CAM and XPS analysis. No alkyl phosphonate molecules were seen by XPS on unmodified Cu as a control. The PFDP/Cu and ODP/Cu SAMs were found to be very hydrophobic having water sessile drop static contact angles of more than 140 degrees , while DP/Cu and OP/Cu have contact angles of 119 degrees and 76 degrees , respectively. PFDP/Cu, ODP/Cu, DP/Cu, and OP/Cu SAMs were studied by friction force microscopy, a derivative of AFM, to better understand their micro/nanotribological properties. PFDP/Cu, ODP/Cu, and DP/Cu had comparable adhesive force, which is much lower than that for unmodified Cu. ODP/Cu had the lowest friction coefficient followed by PFDP/Cu, DP/Cu, and OP/Cu while unmodified Cu had the highest. XPS data gives some indication that a bidentate bond forms between the alkyl phosphonate molecules and the oxidized Cu surface. Hydrophobic phosphonate SAMs could be useful as corrosion inhibitors in micro/nanoelectronic devices and/or as promoters for anti-wetting, low adhesion surfaces.

  4. Distorted cubic tetranuclear vanadium(IV) phosphonate cages: double-four-ring (D4R) containing transition metal ion phosphonate cages.

    PubMed

    Chandrasekhar, Vadapalli; Dey, Atanu; Senapati, Tapas; Sañudo, E Carolina

    2012-01-21

    The reaction of VCl(3) with 3,5-dimethylpyrazole (3,5-Me(2)PzH) and trichloromethylphosphonic/tert-butylphosphonic acid in the presence of triethylamine as a hydrogen chloride scavenger afforded the tetranuclear V(IV) assemblies, [(VO)(4)(3,5-Me(2)PzH)(8)(CCl(3)PO(3))(4)] (1) and [(VO)(4)(3,5-Me(2)PzH)(4)(t-BuPO(3))(4)] (2). Both of these compounds possess a distorted cubic framework structures containing V(IV) ions and phosphorus atoms in the alternate corners of the cube. The edges of the cube contain oxygen atoms derived from the phosphonate ligand. The phosphonate ligand in both of these compounds is dianionic and helps to bind to three V(IV) centers. The faces of the cubic ensembles contain puckered V(2)P(2)O(4) eight-membered rings. The V(IV) center in 1 is six-coordinate in a distorted octahedral geometry while in 2 it is five-coordinate in a distorted square-pyramidal geometry. Magnetic studies carried out on 1 and 2 reveal that the V(IV) centers are anti-ferromagnetically coupled to each other, albeit weakly, through the mediation of the phosphonate ligands.

  5. Adsorbed States of phosphonate derivatives of N-heterocyclic aromatic compounds, imidazole, thiazole, and pyridine on colloidal silver: comparison with a silver electrode.

    PubMed

    Podstawka, Edyta; Olszewski, Tomasz K; Boduszek, Bogdan; Proniewicz, Leonard M

    2009-09-03

    Here, we report a systematic surface-enhanced Raman spectroscopy (SERS) study of the structures of phosphonate derivatives of the N-heterocyclic aromatic compounds imidazole (ImMeP ([hydroxy(1H-imidazol-5-yl)methyl]phosphonic acid) and (ImMe)(2)P (bis[hydroxy-(1H-imidazol-4-yl)-methyl]phosphinic acid)), thiazole (BAThMeP (butylaminothiazol-2-yl-methyl)phosphonic acid) and BzAThMeP (benzylaminothiazol-2-yl-methyl)phosphonic acid)), and pyridine ((PyMe)(2)P (bis[(hydroxypyridin-3-yl-methyl)]phosphinic acid)) adsorbed on nanometer-sized colloidal particles. We compared these structures to those on a roughened silver electrode surface to determine the relationship between the adsorption strength and the geometry. For example, we showed that all of these biomolecules interact with the colloidal surface through aromatic rings. However, for BzAThMeP, a preferential interaction between the benzene ring and the colloidal silver surface is observed more so than that between the thiazole ring and this substrate. The PC(OH)C fragment does not take part in the adsorption process, and the phosphonate moiety of ImMeP and (ImMe)(2)P, being removed from the surface, only assists in this process.

  6. 40 CFR 721.6070 - Alkyl phosphonate ammonium salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl phosphonate ammonium salts. 721... Substances § 721.6070 Alkyl phosphonate ammonium salts. (a) Chemical substances and significant new uses... salts (PMNs P-93-725 and P-93-726) are subject to reporting under this section for the significant...

  7. 40 CFR 721.6070 - Alkyl phosphonate ammonium salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl phosphonate ammonium salts. 721... Substances § 721.6070 Alkyl phosphonate ammonium salts. (a) Chemical substances and significant new uses... salts (PMNs P-93-725 and P-93-726) are subject to reporting under this section for the significant...

  8. Diversity and abundance of phosphonate biosynthetic genes in nature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphonates, molecules containing direct C-P bonds, comprise a structurally diverse class of natural products with interesting and useful biological properties. Although their synthesis in protozoa was discovered more than fifty years ago, the extent and diversity of phosphonate production in natur...

  9. 40 CFR 721.6070 - Alkyl phosphonate ammonium salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl phosphonate ammonium salts. 721... Substances § 721.6070 Alkyl phosphonate ammonium salts. (a) Chemical substances and significant new uses... salts (PMNs P-93-725 and P-93-726) are subject to reporting under this section for the significant...

  10. 40 CFR 721.6070 - Alkyl phosphonate ammonium salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl phosphonate ammonium salts. 721... Substances § 721.6070 Alkyl phosphonate ammonium salts. (a) Chemical substances and significant new uses... salts (PMNs P-93-725 and P-93-726) are subject to reporting under this section for the significant...

  11. 40 CFR 721.6070 - Alkyl phosphonate ammonium salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl phosphonate ammonium salts. 721... Substances § 721.6070 Alkyl phosphonate ammonium salts. (a) Chemical substances and significant new uses... salts (PMNs P-93-725 and P-93-726) are subject to reporting under this section for the significant...

  12. 40 CFR 721.10677 - Alkyl phosphonate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10677 Alkyl phosphonate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl phosphonate (PMN...

  13. Biosynthesis of murein lipoprotein in Escherichia coli: effects of 3,4-dihydroxybutyl-1-phosphonate.

    PubMed Central

    Chattopadhyay, P K; Engel, R; Tropp, B E; Wu, H C

    1979-01-01

    The effects of 3,4-dihydroxybutyl-1-phosphonate, a four-carbon analog of sn-glycerol 3-phosphate, on the biosynthesis of the glyceryl moiety in murein lipoprotein of Escherichia coli were studied. The compound at a concentration of 55 microM strong inhibits in the incorporation of [2-3H]glycerol radioactivity into lipoprotein by virtue of its inhibition of the synthesis of phosphatidylglycerol. On the other hand, the incorporation of prelabeled [2-3H]glycerol radioactivity into lipoprotein was only partially inhbited by 3,4-dihydroxybutyl-1-phosphonate even at a much higher concentration (1 mM). These data were consistent with the postulated pathway for the biosynthesis of the lipid moiety in lipoportein: cysteine-lipoprotein + phosphatidylglycerol leads to glycerylcystein-lipoprotein + phosphatidic acid. PMID:378946

  14. Physico-chemical studies and emulsifying properties of N-propyl-N-methylene phosphonic chitosan.

    PubMed

    Albertengo, Liliana; Farenzena, Sonia; Debbaudt, Adriana; Zuñiga, Adriana; Schulz, Pablo; Rodriguez, Maria Susana

    2013-02-15

    Chitosan is a modified, natural carbohydrate polymer derived by deacetylation of chitin. Due to the presence of two functional groups can undergo many chemical modifications. In a previous work we described the synthetic strategy and characterization of a novel soluble derivative: N-propyl-N-methylene phosphonic chitosan (PNMPC). In the study of some physicochemical properties, results showed that this modified chitosan aggregates in several steps when the concentration is increased. By addition of NaOH the initially coiled molecules stretch exposing more phosphonic acid groups to neutralization and finally give a cooperative reaction with OH((). PNMPC has emulsifying properties and gives O/W emulsions with quasi-monodisperse small droplets. Emulsions with 0.18% PNMPC and 30:70 o:w ratio exhibited the best emulsifying properties within the test range. This emulsion ratio showed high stability to long time storage and several successive freeze/thaw and heating/cooling cycles.

  15. Silylated derivatives OF N-(2-hydroxyphenyl)acetamide: Synthesis and structure

    NASA Astrophysics Data System (ADS)

    Nikonov, Alexey Yu.; Sterkhova, Irina V.; Lazarev, Igor M.; Albanov, Alexander I.; Lazareva, Natalya F.

    2016-10-01

    The N-(2-(trimethylsilyloxy)phenyl)acetamide 1 was synthesized via reaction of N-(2-hydroxyphenyl)acetamide with chlorotrimethylsilane. Transsilylation of new compound 1 by chloro(chloromethyl)dimethylsilane leads to 4-acetyl-2,2-dimethyl-3,4-dihydro-2H-1,4,2-benzoxazasiline 3. The structures of the new compounds were investigated by 1H, 13C and 29Si NMR spectroscopy, X-ray single-crystal analysis, FTIR spectroscopy and DFT methods.

  16. Diversity and abundance of phosphonate biosynthetic genes in nature

    PubMed Central

    Yu, Xiaomin; Doroghazi, James R.; Janga, Sarath C.; Zhang, Jun Kai; Circello, Benjamin; Griffin, Benjamin M.; Labeda, David P.; Metcalf, William W.

    2013-01-01

    Phosphonates, molecules containing direct carbon–phosphorus bonds, compose a structurally diverse class of natural products with interesting and useful biological properties. Although their synthesis in protozoa was discovered more than 50 y ago, the extent and diversity of phosphonate production in nature remains poorly characterized. The rearrangement of phosphoenolpyruvate (PEP) to phosphonopyruvate, catalyzed by the enzyme PEP mutase (PepM), is shared by the vast majority of known phosphonate biosynthetic pathways. Thus, the pepM gene can be used as a molecular marker to examine the occurrence and abundance of phosphonate-producing organisms. Based on the presence of this gene, phosphonate biosynthesis is common in microbes, with ∼5% of sequenced bacterial genomes and 7% of genome equivalents in metagenomic datasets carrying pepM homologs. Similarly, we detected the pepM gene in ∼5% of random actinomycete isolates. The pepM-containing gene neighborhoods from 25 of these isolates were cloned, sequenced, and compared with those found in sequenced genomes. PEP mutase sequence conservation is strongly correlated with conservation of other nearby genes, suggesting that the diversity of phosphonate biosynthetic pathways can be predicted by examining PEP mutase diversity. We used this approach to estimate the range of phosphonate biosynthetic pathways in nature, revealing dozens of discrete groups in pepM amplicons from local soils, whereas hundreds were observed in metagenomic datasets. Collectively, our analyses show that phosphonate biosynthesis is both diverse and relatively common in nature, suggesting that the role of phosphonate molecules in the biosphere may be more important than is often recognized. PMID:24297932

  17. Phase Behavior and Conductivity of Phosphonated Block Copolymers Containing Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Jung, Ha Young; Kim, Sung Yeon; Park, Moon Jeong

    2015-03-01

    As the focus on proton exchange fuel cells continues to escalate in the era of alternative energy systems, the rational design of sulfonated polymers has emerged as a key technique for enhancing device efficiency. While the sulfonic acid group guarantees high proton conductivity of membranes under humidified conditions, the growing need for high temperature operation has discouraged their practical uses in fuel cells. In this respect, phosphonated polymers have drawn intensive attention in recent years owing to their self-dissociation ability. In this study, we have synthesized a set of phosphonated block copolymers, poly(styrenephosphonate-methylbutylene) (PSP- b - PMB), by varying phosphonation level (PL). A wide variety of self-assembled morphologies, i.e., disordered, lamellar, hexagonally perforated lamellae and hexagonally packed cylindrical phases, were observed with PL. Remarkably, upon comparing the morphology of PSP- b-PMB and that of sulfonated analog, we found distinctly dissimilar domain sizes at the same molecular weight and composition. A range of ionic liquids (ILs) were incorporated into the PSP- b-PMB block copolymers and their ion transport properties were examined. It has been revealed that the degree of confinement of ionic phases (domain size) impacts the ion mobility and proton dissociation efficiency of IL-containing polymers.

  18. Structure of the Escherichia coli Phosphonate Binding Protein PhnD and Rationally Optimized Phosphonate Biosensors

    PubMed Central

    Alicea, Ismael; Marvin, Jonathan S.; Miklos, Aleksandr E.; Ellington, Andrew D.; Looger, Loren L.; Schreiter, Eric R.

    2012-01-01

    The phnD gene of Escherichia coli encodes the periplasmic binding protein of the phosphonate uptake and utilization pathway. We have crystallized and determined structures of E. coli PhnD (EcPhnD) in the absence of ligand and in complex with the environmentally abundant 2-aminoethylphosphonate (2AEP). Similar to other bacterial periplasmic binding proteins, 2AEP binds near the center of mass of EcPhnD in a cleft formed between two lobes. Comparison of the open, unliganded structure with the closed 2AEP-bound structure shows that the two lobes pivot around a hinge by ~70° between the two states. Extensive hydrogen bonding and electrostatic interactions stabilize 2AEP, which binds to EcPhnD with low nanomolar affinity. These structures provide insight into phosphonate uptake by bacteria and facilitated the rational design of high signal-to-noise phosphonate biosensors based both on coupled small molecule dyes and autocatalytic fluorescent proteins. PMID:22019591

  19. A HPLC method for the quantification of butyramide and acetamide at ppb levels in hydrogeothermal waters

    SciTech Connect

    Gracy Elias; Earl D. Mattson; Jessica E. Little

    2012-01-01

    A quantitative analytical method to determine butyramide and acetamide concentrations at the low ppb levels in geothermal waters has been developed. The analytes are concentrated in a preparation step by evaporation and analyzed using HPLC-UV. Chromatographic separation is achieved isocratically with a RP C-18 column using a 30 mM phosphate buffer solution with 5 mM heptane sulfonic acid and methanol (98:2 ratio) as the mobile phase. Absorbance is measured at 200 nm. The limit of detection (LOD) for BA and AA were 2.0 {mu}g L{sup -1} and 2.5 {mu}g L{sup -1}, respectively. The limit of quantification (LOQ) for BA and AA were 5.7 {mu}g L{sup -1} and 7.7 {mu}g L{sup -1}, respectively, at the detection wavelength of 200 nm. Attaining these levels of quantification better allows these amides to be used as thermally reactive tracers in low-temperature hydrogeothermal systems.

  20. Chemoselective recognition with phosphonate cavitands: the ephedrine over pseudoephedrine case.

    PubMed

    Biavardi, Elisa; Ugozzoli, Franco; Massera, Chiara

    2015-02-25

    Complete discrimination of ephedrine and pseudoephedrine, both in solution and in the solid state, was achieved with a phosphonate cavitand receptor. The molecular origin of the epimer discrimination was revealed by the crystal structure of the respective complexes.

  1. Betulin Phosphonates; Synthesis, Structure, and Cytotoxic Activity.

    PubMed

    Chrobak, Elwira; Bębenek, Ewa; Kadela-Tomanek, Monika; Latocha, Małgorzata; Jelsch, Christian; Wenger, Emmanuel; Boryczka, Stanisław

    2016-08-26

    Betulin derivatives are a widely studied group of compounds of natural origin due to their wide spectrum of biological activities. This paper describes new betulin derivatives, containing a phosphonate group. The allyl-vinyl isomerization and synthesis of acetylenic derivatives have been reported. Structural identification of products as E and Z isomers has been carried out using ¹H-, (13)C-, (31)P-NMR, and crystallographic analysis. The crystal structure in the orthorhombic space group and analysis of crystal packing contacts for 29-diethoxyphosphoryl-28-cyclopropylpropynoyloxy-lup-20E(29)-en-3β-ol 8a are reported. All new compounds were tested in vitro for their antiproliferative activity against human T47D (breast cancer), SNB-19 (glioblastoma), and C32 (melanoma) cell lines.

  2. Synthesis of phosphonate and phostone analogues of ribose-1-phosphates

    PubMed Central

    Nasomjai, Pitak; Slawin, Alexandra M Z

    2009-01-01

    Summary The synthesis of phosphonate analogues of ribose-1-phosphate and 5-fluoro-5-deoxyribose-1-phosphate is described. Preparations of both the α- and β-phosphonate anomers are reported for the ribose and 5-fluoro-5-deoxyribose series and a synthesis of the corresponding cyclic phostones of each α-ribose is also reported. These compounds have been prepared as tools to probe the details of fluorometabolism in S. cattleya. PMID:19777136

  3. Photoinduced intermolecular dynamics and subsequent fragmentation in VUV-ionized acetamide clusters

    NASA Astrophysics Data System (ADS)

    Tarkanovskaja, Marta; Kooser, Kuno; Levola, Helena; Nõmmiste, Ergo; Kukk, Edwin

    2016-09-01

    Photofragmentation of small gas-phase acetamide clusters (CH3CONH2)n (n ≤ 10) produced by a supersonic expansion source has been studied using time-of-flight ion mass spectroscopy combined with tunable vacuum-ultraviolet (VUV) synchrotron radiation. Fragmentation channels of acetamide clusters under VUV photoionization resulting in protonated and ammoniated clusters formation were identified with the discussion about the preceding intramolecular rearrangements. Acetamide-2,2,2-d3 clusters were also studied in an experiment with a gas discharge lamp as a VUV light source; comparison with the main experiment gave insights into the mechanism of formation of protonated acetamide clusters, indicating that proton transfer from amino group plays a dominant role in that process. Geometry of the acetamide dimer was discussed and the most stable arrangement was concluded to be achieved when subunits of the dimer are connected via two N—H⋯O —C hydrogen bonds. Also, the influence of the photon energy on the stability of the clusters and their fragmentation channels has been examined.

  4. A new chiral uranyl phosphonate framework consisting of achiral building units generated from ionothermal reaction: structure and spectroscopy characterizations.

    PubMed

    Zheng, Tao; Gao, Yang; Chen, Lanhua; Liu, Zhiyong; Diwu, Juan; Chai, Zhifang; Albrecht-Schmitt, Thomas E; Wang, Shuao

    2015-11-07

    The ionothermal reactions of uranyl nitrate and 1,3-pbpH4 (1,3-pbpH4 = 1,3-phenylenebis(phosphonic acid) ligand in ionic liquids of [C4mim][Dbp], [C4mpyr][Br], and [Etpy][Br], respectively, afforded three new uranyl phosphonates, namely [C4mim][(UO2)2(1,3-pbpH)(1,3-pbpH)·Hmim] (1), [UO2(1,3-pbpH2)H2O·mpr] (2), and [Etpy][UO2(1,3-pbpH2)F] (3). Compound 1 exhibits a rare example of a chiral uranyl phosphonate 3D framework structure built from achiral building units of tetragonal bipyramidal uranium polyhedra and 1,3-pbp ligands. The structure adopts a network with channels extending along the b axis, which are filled with C4mim(+) and protonated 1-methylimidazole. In sharp contrast, compounds 2 & 3 both show pillared topology composed of uranyl pentagonal bipyramid polyhedra and phosphonate ligands. The layers are neutral in compound 2 with N-methylpyrrole molecules in the interlayer space, while compound 3 adopts anionic layer, and the charge is compensated with N-ethyl-pyridinium cations between the layers. Although compounds 1, 2, and 3 were synthesized under identical conditions with sole variation of the ionic liquid species, the resulting structures show a rich diversity in the local coordination environment of uranyl ions, the protonation of the phosphonate ligand, the conformation of ionic liquid ions, and the overall arrangement of the structure. All compounds were characterized by absorption, temperature dependent fluorescence, as well as infrared and Raman spectroscopies.

  5. Sorption of Perfluoroalkyl Phosphonates and Perfluoroalkyl Phosphinates in Soils.

    PubMed

    Lee, Holly; Mabury, Scott Andrew

    2017-02-22

    Perfluoroalkyl phosphonates (PFPAs) and perfluoroalkyl phosphinates (PFPiAs) are recently discovered perfluoroalkyl acids (PFAAs) that have been widely detected in house dust, aquatic biota, surface water, and wastewater environments. The sorption of C6, C8, and C10 monoalkylated PFPAs and C6/C6, C6/C8, and C8/C8 dialkylated PFPiAs was investigated in seven soils of varying geochemical parameters. Mean distribution coefficients, logKd*, ranged from 0.2 to 2.1 for the PFPAs and PFPiAs and were generally observed to increase with perfluoroalkyl chain length. The logKd* of PFPiAs calculated here (1.6-2.1) were similar to those previously measured for the longer-chain perfluorodecane sulfonate (1.9, PFDS) and perfluoroundecanoate (1.7, PFUnA) in sediments, but overall when compared as a class, were greater than those for the perfluoroalkane sulfonates (-0.8-1.9, PFSAs), perfluoroalkyl carboxylates (-0.4-1.7, PFCAs), and PFPAs (0.2-1.5). No single soil-specific parameter, such as pH and organic carbon content, was observed to control the sorption of PFPAs and PFPiAs, the lack of which may be attributed to competing interferences in the naturally heterogeneous soils. The PFPAs were observed to desorb to a greater extent and likely circulate as aqueous contaminants in the environment, while the more sorptive PFPiAs would be preferentially retained by environmental solid phases.

  6. Differential effects of phosphonic analogues of GABA on GABA(B) autoreceptors in rat neocortical slices.

    PubMed

    Ong, J; Marino, V; Parker, D A; Kerr, D I

    1998-04-01

    The effects of five phosphonic derivatives of GABA on the release of [3H]-GABA from rat neocortical slices, preloaded with [3H]-GABA, were investigated. Phaclofen and 4-aminobutylphosphonic acid (4-ABPA) increased the overflow of [3H] evoked by electrical stimulation (2 Hz) in a concentration-dependent manner, with similar potencies (phaclofen EC50=0.3 mmol/l, 4-ABPA EC50=0.4 mmol/l). At 3 mmol/l, phaclofen increased the release of [3H]-GABA by 82.6+/-8.6%, and 4-ABPA increased the release by 81.3+/-9.0%. 2-Amino-ethylphosphonic acid (2-AEPA) increased the overflow of [3H] by 46.8+/-10.9% at the highest concentration tested (3 mmol/l). In contrast, the lower phosphonic homologue 3-aminopropylphosphonic acid (3-APPA), and 2-amino-2-(p-chlorophenyl)-ethylphosphonic acid (2-CPEPA), a baclofen analogue, did not modify the stimulated overflow. These results suggest that phaclofen, 4-ABPA and 2-AEPA are antagonists at GABA(B) autoreceptors, the latter being the weakest antagonist, whilst neither 3-APPA nor 2-CPEPA are active at these receptors. Since phaclofen, 4-ABPA and 2-CPEPA are antagonists and 3-APPA a partial agonist/antagonist on GABA(B) heteroreceptors, the lack of effect of 3-APPA and 2-CPEPA on [3H]-GABA release in this study suggests that GABA(B) autoreceptors may be pharmacologically distinct from the heteroreceptors.

  7. Tunneling Spectroscopy Studies of Urea, Thiourea, and Selected Phosphonate Molecules Adsorbed on Aluminum Oxide

    NASA Astrophysics Data System (ADS)

    Crowder, Charles D.

    Experimental and calculated inelastic electron tunneling intensities were compared for several of the vibrational modes of thiourea adsorbed on aluminum oxide. The partial charge model of Kirtley, Scalapino, and Hansma was used to compute the theoretical intensities of each mode. The required partial charges were determined using a method developed by Momany. Essentially, the Coulomb potential resulting from point charges located at atom sites was fitted to the quantum mechanical electrostatic potential of a molecule calculated from Hartree-Fock theory. The effect of a vibrational mode pattern on the electrostatic potential of a molecule was investigated. This effect could not be acceptably modeled with a single point charge located on each atom, so one charge was used to represent the positive nucleus of each atom and a second charge was used to represent the valence cloud. The valence charge was allowed to move independently of the nuclear charge during a molecular vibration, and the motions of the two charges were found to be very different for hydrogen atoms. This model gave very reasonable agreement between the theoretical and observed relative intensities for the in plane vibrational modes of thiourea. An acceptable set of out of plane force constants could not be found. This caused problems in the interpretation of the out of plane relative intensities. Based on the in plane modes, it was concluded that thiourea bonded to aluminum oxide with the sulfur atom near the oxide and the sulfur-carbon bond perpendicular to the aluminum oxide surface. Quantum mechanical electrostatic potentials were also calculated for urea, phosphoric acid (PA), methylphosphonic acid (MPA), hydroxymethylphosphonic acid (HMP), and nitrotrismethylphosphonic acid (NTMP). Electron tunneling spectra were taken for PA, HMP and NTMP, and the observed frequencies were compared to values obtained from Fourier transform infrared, infrared and Raman spectroscopy. Upward shifts in the P=O and P

  8. Density functional theory study of the local molecular properties of acetamide derivatives as anti-HIV drugs

    PubMed Central

    Oftadeh, M.; Mahani, N. Madadi; Hamadanian, M.

    2013-01-01

    Accurate quantum chemical computations based on density functional theory (DFT) were performed on the series of 2-(4-(naphthalen-2-yl)-1,2,3-thiadiazol-5-ylthio)-N-acetamide (TTA) derivatives. The local reactivity of the acetamide derivatives as anti-HIV drugs were studied in terms of Fukui functions in the framework of DFT. The results based on the basis set superposition error (BSSE) corrections showed that the mechanism of bond formation between the acetamide derivatives and tyrosine as a biological molecule occurs mainly through nitrogen atoms. The intramolecular interaction energies between the acetamide derivatives and tyrosine were calculated and the nature of the intermolecular interaction was revealed by natural bond orbital charge (NBO) analysis. The results suggest that acetamide derivatives with bromophenyl and nitrophenyl substitutions are the most potent as anti-HIV drugs. PMID:24082898

  9. Asymmetric hydrogenation of alpha,beta-unsaturated phosphonates with Rh-BisP* and Rh-MiniPHOS catalysts: scope and mechanism of the reaction.

    PubMed

    Gridnev, Ilya D; Yasutake, Masaya; Imamoto, Tsuneo; Beletskaya, Irina P

    2004-04-13

    Optically active 1,2-bis(alkylmethylphosphino)ethanes and bis(alkylmethylphosphino)methanes are unique diphosphine ligands combining the simple molecular structure and P-stereogenic asymmetric environment. This work shows that these ligands exhibit excellent enantioselectivity in rhodium-catalyzed asymmetric hydrogenation of alpha,beta-unsaturated phosphonic acid derivatives. The enantioselective hydrogenation mechanism elucidated by NMR study is also described.

  10. A layered mixed zirconium phosphate/phosphonate with exposed carboxylic and phosphonic groups: X-ray powder structure and proton conductivity properties.

    PubMed

    Donnadio, Anna; Nocchetti, Morena; Costantino, Ferdinando; Taddei, Marco; Casciola, Mario; da Silva Lisboa, Fábio; Vivani, Riccardo

    2014-12-15

    A novel mixed zirconium phosphate/phosphonate based on glyphosine, of formula Zr2(PO4)H5(L)2·H2O [L = (O3PCH2)2NCH2COO], was synthesized in mild conditions. The compound has a layered structure that was solved ab initio from laboratory PXRD data. It crystallizes in the monoclinic C2/c space group with the following cell parameters: a = 29.925(3), b = 8.4225(5), c = 9.0985(4) Å, and β = 98.474(6)°. Phosphate groups are placed inside the sheets and connect the zirconium atoms in a tetradentate fashion, while uncoordinated carboxylate and P-OH phosphonate groups are exposed on the layer surface. Due to the presence of these acidic groups, the compound showed remarkable proton conductivity properties, which were studied in a wide range of temperature and relative humidity (RH). The conductivity is strongly dependent on RH and reaches 1 × 10(-3) S cm(-1) at 140 °C and 95% RH. At this RH, the activation energy of conduction is 0.15 eV in the temperature range 80-140 °C. The similarities of this structure with related structures already reported in the literature were also discussed.

  11. 40 CFR 721.275 - Halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated-N-(2-propenyl)-N... New Uses for Specific Chemical Substances § 721.275 Halogenated-N-(2-propenyl)-N-(substituted phenyl... identified generically as halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide (P-83-1085) is...

  12. 40 CFR 721.275 - Halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Halogenated-N-(2-propenyl)-N... New Uses for Specific Chemical Substances § 721.275 Halogenated-N-(2-propenyl)-N-(substituted phenyl... identified generically as halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide (P-83-1085) is...

  13. 40 CFR 721.275 - Halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Halogenated-N-(2-propenyl)-N... New Uses for Specific Chemical Substances § 721.275 Halogenated-N-(2-propenyl)-N-(substituted phenyl... identified generically as halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide (P-83-1085) is...

  14. 40 CFR 721.225 - 2-Chloro-N-methyl-N-substituted acetamide (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false 2-Chloro-N-methyl-N-substituted... Specific Chemical Substances § 721.225 2-Chloro-N-methyl-N-substituted acetamide (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance...

  15. 40 CFR 721.225 - 2-Chloro-N-methyl-N-substituted acetamide (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 2-Chloro-N-methyl-N-substituted... Specific Chemical Substances § 721.225 2-Chloro-N-methyl-N-substituted acetamide (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance...

  16. 40 CFR 721.275 - Halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Halogenated-N-(2-propenyl)-N... New Uses for Specific Chemical Substances § 721.275 Halogenated-N-(2-propenyl)-N-(substituted phenyl... identified generically as halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide (P-83-1085) is...

  17. 40 CFR 721.225 - 2-Chloro-N-methyl-N-substituted acetamide (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 2-Chloro-N-methyl-N-substituted... Specific Chemical Substances § 721.225 2-Chloro-N-methyl-N-substituted acetamide (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance...

  18. 40 CFR 721.225 - 2-Chloro-N-methyl-N-substituted acetamide (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false 2-Chloro-N-methyl-N-substituted... Specific Chemical Substances § 721.225 2-Chloro-N-methyl-N-substituted acetamide (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance...

  19. 40 CFR 721.275 - Halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Halogenated-N-(2-propenyl)-N... New Uses for Specific Chemical Substances § 721.275 Halogenated-N-(2-propenyl)-N-(substituted phenyl... identified generically as halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide (P-83-1085) is...

  20. Anti-HIV Nucleoside Phosphonate GS-9148 and Its Prodrug GS-9131: Scale Up of a 2'-F Modified Cyclic Nucleoside Phosphonate and Synthesis of Selected Amidate Prodrugs.

    PubMed

    Mackman, Richard L

    2014-03-26

    Nucleoside phosphonate analogs are an important class of antiviral drugs for the treatment of HIV and HBV. The most recent nucleoside phosphonate to progress to clinical development is GS-9131, a cyclic nucleoside phosphonate (CNP). This unit contains procedures for the synthesis of the parent CNP 2'-Fd4AP (GS-9148) and selected monoamidate and bisamidate prodrugs, including the monoamidate clinical prodrug GS-9131. The first basic protocol of this unit details improved procedures for the preparation of 2'-Fd4AP and related phosphonate esters by introduction of a hydroxylmethyl phosphonate ester regioselectively and stereoselectively onto a furanose core via a glycal intermediate. The method described is believed to be robust and flexible, allowing for a variety of analogs with other nucleobases or furanose 2'-ring substitutions to be prepared. The preparation of monoamidate and bisamidate prodrugs either on the phosphonate diacid or its monophenyl ester is then described in the second and third basic protocols of this unit.

  1. Phosphonate Analogs of 2-Oxoglutarate Perturb Metabolism and Gene Expression in Illuminated Arabidopsis Leaves

    PubMed Central

    Araújo, Wagner L.; Tohge, Takayuki; Nunes-Nesi, Adriano; Daloso, Danilo M.; Nimick, Mhairi; Krahnert, Ina; Bunik, Victoria I.; Moorhead, Greg B. G.; Fernie, Alisdair R.

    2012-01-01

    Although the role of the 2-oxoglutarate dehydrogenase complex (2-OGDHC) has previously been demonstrated in plant heterotrophic tissues its role in photosynthetically active tissues remains poorly understood. By using a combination of metabolite and transcript profiles we here investigated the function of 2-OGDHC in leaves of Arabidopsis thaliana via use of specific phosphonate inhibitors of the enzyme. Incubation of leaf disks with the inhibitors revealed that they produced the anticipated effects on the in situ enzyme activity. In vitro experiments revealed that succinyl phosphonate (SP) and a carboxy ethyl ester of SP are slow-binding inhibitors of the 2-OGDHC. Our results indicate that the reduced respiration rates are associated with changes in the regulation of metabolic and signaling pathways leading to an imbalance in carbon-nitrogen metabolism and cell homeostasis. The inducible alteration of primary metabolism was associated with altered expression of genes belonging to networks of amino acids, plant respiration, and sugar metabolism. In addition, by using isothermal titration calorimetry we excluded the possibility that the changes in gene expression resulted from an effect on 2-oxoglutarate (2OG) binding to the carbon/ATP sensing protein PII. We also demonstrated that the 2OG degradation by the 2-oxoglutarate dehydrogenase strongly influences the distribution of intermediates of the tricarboxylic acid (TCA) cycle and the GABA shunt. Our results indicate that the TCA cycle activity is clearly working in a non-cyclic manner upon 2-OGDHC inhibition during the light period. PMID:22876250

  2. Paclitaxel-loaded phosphonated calixarene nanovesicles as a modular drug delivery platform

    PubMed Central

    Mo, Jingxin; Eggers, Paul K.; Yuan, Zhi-xiang; Raston, Colin L.; Lim, Lee Yong

    2016-01-01

    A modular p-phosphonated calix[4]arene vesicle (PCV) loaded with paclitaxel (PTX) and conjugated with folic acid as a cancer targeting ligand has been prepared using a thin film-sonication method. It has a pH-responsive capacity to trigger the release of the encapsulated PTX payload under mildly acidic conditions. PTX-loaded PCV conjugated with alkyne-modified PEG-folic acid ligands prepared via click ligation (fP-PCVPTX) has enhanced potency against folate receptor (FR)-positive SKOV-3 ovarian tumour cells over FR-negative A549 lung tumour cells. Moreover, fP-PCVPTX is also four times more potent than the non-targeting PCVPTX platform towards SKOV-3 cells. Overall, as a delivery platform the PCVs have the potential to enhance efficacy of anticancer drugs by targeting a chemotherapeutic payload specifically to tumours and triggering the release of the encapsulated drug in the vicinity of cancer cells. PMID:27009430

  3. Adsorption and removal kinetics of phosphonate from water using natural adsorbents.

    PubMed

    Kumar, R Anil; Velayudhan, K T; Ramachandran, V; Bhai, R Susheela; Unnikrishnan, G; Vasu, K

    2010-01-01

    The removal of phosphonate from water was studied using some natural adsorbents. Potassium phosphonate is a fungicide used for the control of Phytophthora capsici, which is prevalent in black pepper (Piper nigrum L.). Batch adsorption kinetic experiments were conducted on the adsorption of phosphonate onto the adsorbents. The concentration of phosphonate was measured on a high-performance liquid chromatograph fitted with a conductivity detector. The percentage removal of phosphonate by powdered laterite stone (PLS) from water was 40.4%, within a residence time of 15 minutes. The mechanisms of the rate of adsorption were analyzed and compared using the pseudo-second-order, Elovich, and intraparticle diffusion models. The experimental data was found to correlate well with the pseudo-second-order kinetic model, indicating adsorption as a chemisorption process. A possible reaction in the phosphonate-PLS system also has been proposed. The PLS can be used as a low-cost natural adsorbent for phosphonate removal from water.

  4. Development of an extractive spectrophotometric method for estimation of uranium in ore leach solutions using 2-ethylhexyl phosphonic acid-mono-2-ethylhexyl ester (PC88A) and tri-n-octyl phosphine oxide (TOPO) mixture as extractant and 2-(5-bromo-2-pyridylozo)-5-diethyl aminophenol (Br-PADAP) as chromophore.

    PubMed

    Biswas, Sujoy; Pathak, P N; Roy, S B

    2012-06-01

    An extractive spectrophotometric analytical method has been developed for the determination of uranium in ore leach solution. This technique is based on the selective extraction of uranium from multielement system using a synergistic mixture of 2-ethylhexyl phosphonic acid-mono-2-ethylhexyl ester (PC88A) and tri-n-octyl phosphine oxide (TOPO) in cyclohexane and color development from the organic phase aliquot using 2-(5-Bromo-2-pyridylazo)-5-diethyl aminophenol (Br-PADAP) as chromogenic reagent. The absorption maximum (λ(max)) for UO(2)(2+)-Br-PADAP complex in organic phase samples, in 64% (v/v) ethanol containing buffer solution (pH 7.8) and 1,2-cyclohexylenedinitrilotetraacetic acid (CyDTA) complexing agent, has been found to be at 576 nm (molar extinction coefficient, ɛ: 36,750 ± 240 L mol(-1)cm(-1)). Effects of various parameters like stability of complex, ethanol volume, ore matrix, interfering ions etc. on the determination of uranium have also been evaluated. Absorbance measurements as a function of time showed that colored complex is stable up to > 24h. Presence of increased amount of ethanol in colored solution suppresses the absorption of a standard UO(2)(2+)-Br-PADAP solution. Analyses of synthetic standard as well as ore leach a solution show that for 10 determination relative standard deviation (RSD) is < 2%. The accuracy of the developed method has been checked by determining uranium using standard addition method and was found to be accurate with a 98-105% recovery rate. The developed method has been applied for the analysis of a number of uranium samples generated from uranium ore leach solutions and results were compared with standard methods like inductively coupled plasma emission spectrometry (ICPAES). The determined values of uranium concentrations by these methods are within ± 2%. This method can be used to determine 2.5-250 μg mL(-1) uranium in ore leach solutions with high accuracy and precision.

  5. Flame retardant properties of triazine phosphonates derivative with cotton fabric

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The flame retardant behavior of a cotton fabric treated with phosphorus-nitrogen containing triazine compound was evaluated. It was found that cyanuric chloride (2,4,6-trichloro-1,3,5-triazine) is an excellent starting material for the preparation of phosphonates flame retardants that interacts wel...

  6. Solid state {sup 31}P NMR study of phosphonate binding sites in guanidine-functionalized, molecular imprinted silica xerogels

    SciTech Connect

    Sasaki, D.Y.; Alam, T.D.

    2000-01-03

    Phosphonate binding sites in guanidine and ammonium surface-functionalized silica xerogels were prepared via the molecular imprinting technique and characterized using solid state {sup 31}P MAS NMR. One-point, two-point, and non-specific host-guest interactions between phenylphosphonic acid (PPA) and the functionalized gels were distinguished by characteristic chemical shifts of the observed absorption peaks. Using solid state as well as solution phase NMR analyses, absorptions observed at 15.5 ppm and 6.5 ppm were identified as resulting from the 1:1 (one-point) and 2:1 (two-point) guanidine to phosphonate interactions, respectively. Similar absorptions were observed with the ammonium functionalized gels. By examining the host-guest interactions within the gels, the efficiency of the molecular imprinting procedure with regard to the functional monomer-to-template interaction could be readily assessed. Template removal followed by substrate adsorption studies conducted on the guanidine functionalized gels provided a method to evaluate the binding characteristics of the receptor sites to a phosphonate substrate. During these experiments, {sup 29}Si and {sup 31}P MAS NMR acted as diagnostic monitors to identify structural changes occurring in the gel matrix and at the receptor site from solvent mediated processes.

  7. Preparation and characterization of N-methylene phosphonic and quaternized chitosan composite membranes for electrolyte separations.

    PubMed

    Saxena, Arunima; Kumar, Arvind; Shahi, Vinod K

    2006-11-15

    Chitosan was functionalized either by introducing a phosphonic acid group or by quaternization of existing primary ammonium groups in order to make it a water-soluble material. Functionalized chitosans and poly(vinyl alcohol) (PVA)-based nanoporous charged membranes were prepared in aqueous media and gelated in methanol at 10 degrees C to tailor their pore structure. These membranes were extensively characterized for their physicochemical, electrochemical, and permeation characteristics using FTIR, TGA, DSC, water content, ion-exchange capacity, ionic transport properties, and membrane permeability studies. N-Methylene phosphonic chitosan (NMPC)/PVA-based membranes exhibited mild cation selectivity and quaternized chitosan (QC)/PVA composite membranes had mild anion selectivity, while a blend of NMPC-QC/PVA membranes exhibited weak cation selectivity because of formation of zwitterionic structure. Viscosity measurements and interaction studies for individual and mixed solutions of NMPC and QC were carried out for the prediction of charge interactions between -PO3H2 and -N+(CH3)3 groups and effect on molecular weight due to functionalization. Elaborate electrochemical and permeation experiments were conducted in order to predict suitability of these membranes for the separation of mono- and bivalent electrolytes based on their hydrated ionic radius, and it was found that among all the synthesized membranes, PC/QC-30 had the highest relative permeability, which may extend its suitability for electrolyte separations. Observations were correlated with equivalent pore radius of the different membranes as estimated by membrane permeability measurements.

  8. Biosynthesis of rhizocticins, antifungal phosphonate oligopeptides produced by Bacillus subtilis ATCC6633

    PubMed Central

    Borisova, Svetlana A.; Circello, Benjamin T.; Zhang, Jun Kai; van der Donk, Wilfred A.; Metcalf, William W.

    2010-01-01

    Summary Rhizocticins are phosphonate oligopeptide antibiotics containing the C-terminal non-proteinogenic amino acid (Z)-l-2-amino-5-phosphono-3-pentenoic acid (APPA). Here we report the identification and characterization of the rhizocticin biosynthetic gene cluster (rhi) in Bacillus subtilis ATCC6633. Rhizocticin B was heterologously produced in the non-producer strain Bacillus subtilis 168. A biosynthetic pathway is proposed based on bioinformatics analysis of the rhi genes. One of the steps during the biosynthesis of APPA is an unusual aldol reaction between phosphonoacetaldehyde and oxaloacetate catalyzed by an aldolase homolog RhiG. Recombinant RhiG was prepared and the product of an in vitro enzymatic conversion was characterized. Access to this intermediate allows for biochemical characterization of subsequent steps in the pathway. PMID:20142038

  9. Indole-3-Acetic Acid Biosynthesis in Colletotrichum gloeosporioides f. sp. aeschynomene

    PubMed Central

    Robinson, M.; Riov, J.; Sharon, A.

    1998-01-01

    We characterized the biosynthesis of indole-3-acetic acid by the mycoherbicide Colletotrichum gloeosporioides f. sp. aeschynomene. Auxin production was tryptophan dependent. Compounds from the indole-3-acetamide and indole-3-pyruvic acid pathways were detected in culture filtrates. Feeding experiments and in vitro assay confirmed the presence of both pathways. Indole-3-acetamide was the major pathway utilized by the fungus to produce indole-3-acetic acid in culture. PMID:9835603

  10. Amino and Acetamide Functional Group Effects on the Ionization and Fragmentation of Sugar Chains in Positive-Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Yamagaki, Tohru; Sugahara, Kohtaro; Watanabe, Takehiro

    2014-01-01

    To elucidate the influence of amino (-NH2) and acetamide (-NHCOCH3, -NAc) groups in sugar chains on their ionization and fragmentation, cycloamyloses (cyclodextrins, CyDs) and lacto-oligosaccharide are analyzed by MALDI TOF/TOF and ESI Q-TOF mass spectrometry. CyD derivatives substituted by amino or acetamide groups are ideal analytes to extract the function group effects, which are amino-CyD with one hexosamine (HexNH2) and acetamide-CyD with one N-acetyl hexosamine (HexNAc). Interestingly, the relative ion intensities and isotope-like patterns in their product ion spectra depend on the functional groups and ion forms of sugar chains. Consequently, the results indicate that a proton (H+) localizes on the amino group of the amino sugar, and that the proton (H+) induces their fragmentation. Sodium cation (Na+) attachment is independent from amino group and exerts no influence on their fragmentation patterns in amino group except for mono- and disaccharide fragment ions because there is the possibility of the reducing end effect. In contrast, a sodium cation localizes much more frequently on the acetamide group in acetamide-CyDs because the chemical species with HexNAc are stable. Thus, their ions with HexNAc are abundant. These results are consistent with the fragmentation of lacto-neo- N-tetraose and maltotetraose, suggesting that a sodium cation generally localizes much more frequently on the acetamide group in sugar chains.

  11. Discovery of phenyl acetamides as potent and selective GPR119 agonists.

    PubMed

    Zhu, Cheng; Wang, Liping; Zhu, Yuping; Guo, Zack Zhiqiang; Liu, Ping; Hu, Zhiyong; Szewczyk, Jason W; Kang, Ling; Chicchi, Gary; Ehrhardt, Anka; Woods, Andrea; Seo, Toru; Woods, Morgan; van Heek, Margaret; Dingley, Karen H; Pang, Jianmei; Salituro, Gino M; Powell, Joyce; Terebetski, Jenna L; Hornak, Viktor; Campeau, Louis-Charles; Orr, Robert K; Ujjainwalla, Feroze; Miller, Michael; Stamford, Andrew; Wood, Harold B; Kowalski, Timothy; Nargund, Ravi P; Edmondson, Scott D

    2017-03-01

    The paper describes the SAR/SPR studies that led to the discovery of phenoxy cyclopropyl phenyl acetamide derivatives as potent and selective GPR119 agonists. Based on a cis cyclopropane scaffold discovered previously, phenyl acetamides such as compound 17 were found to have excellent GPR119 potency and improved physicochemical properties. Pharmacokinetic data of compound 17 in rat, dog and rhesus will be described. Compound 17 was suitable for QD dosing based on its predicted human half-life, and its projected human dose was much lower than that of the recently reported structurally-related benzyloxy compound 2. Compound 17 was selected as a tool compound candidate for NHP (Non-Human Primate) efficacy studies.

  12. Synthesis and evaluation of 3-ylideneoxindole acetamides as potent anticancer agents.

    PubMed

    Chiou, Chun-Tang; Lee, Wei-Chun; Liao, Jiahn-Haur; Cheng, Jing-Jy; Lin, Lie-Chwen; Chen, Chih-Yu; Song, Jen-Shin; Wu, Ming-Hsien; Shia, Kak-Shan; Li, Wen-Tai

    2015-06-15

    Indirubin, an active component in the traditional Chinese medicine formula Danggui Longhui Wan, shows promising anticancer effects. Meisoindigo is an analog derived from indirubin, which is less toxic and appears to be even more potent against cancer. In considering meisoindigo as a structural template for the development of new drugs, we designed and synthesized a series of 3-ylideneoxindole acetamides as novel anticancer agents. The acetamides were then evaluated for in vitro and in vivo anticancer activities. The 3-ylideneoxindole acetamides were found to have better anticancer activity than was indirubin-3'-oxime in several cancer cell lines and also displayed a spectrum of activity similar to that of the drug candidate roscovitine, a CDK inhibitor. Among the 3-ylideneoxindole acetamides, compound 10 showed particularly good efficacy. Cell cycle analysis further revealed that compound 10 arrested cells in the G1 phase and caused an increase in the sub-G1 population, indicating that the apoptosis pathway had been induced. In addition, exposure of cells to compound 10 led to the upregulation of the cell-cycle regulator cyclin D1, which was sustained at a high level. In contrast, the same compound induced a short-term elevation in the level of cyclin E, which was followed by a rapid decrease and the attenuation of Rb phosphorylation. Furthermore, a docking model suggests that compound 10 binds to the active site of CDK4. In testing the therapeutic potency of compound 10 on CT26-xenografted BALB/c mice, a significant reduction in tumor size comparable to that of cisplatin was found when administrated via the i.p. route. The mice presented no loss of body weight, indicating that this compound possesses low toxicity. In the future, we are planning in vivo investigations of these new active anticancer agents to better elucidate active mechanisms at the cellular level and thus benefit the development of anticancer therapies.

  13. Structure of the Escherichia coli Phosphonate Binding Protein PhnD and Rationally Optimized Phosphonate Biosensors

    SciTech Connect

    Alicea, Ismael; Marvin, Jonathan S.; Miklos, Aleksandr E.; Ellington, Andrew D.; Looger, Loren L.; Schreiter, Eric R.

    2012-09-17

    The phnD gene of Escherichia coli encodes the periplasmic binding protein of the phosphonate (Pn) uptake and utilization pathway. We have crystallized and determined structures of E. coli PhnD (EcPhnD) in the absence of ligand and in complex with the environmentally abundant 2-aminoethylphosphonate (2AEP). Similar to other bacterial periplasmic binding proteins, 2AEP binds near the center of mass of EcPhnD in a cleft formed between two lobes. Comparison of the open, unliganded structure with the closed 2AEP-bound structure shows that the two lobes pivot around a hinge by {approx}70{sup o} between the two states. Extensive hydrogen bonding and electrostatic interactions stabilize 2AEP, which binds to EcPhnD with low nanomolar affinity. These structures provide insight into Pn uptake by bacteria and facilitated the rational design of high signal-to-noise Pn biosensors based on both coupled small-molecule dyes and autocatalytic fluorescent proteins.

  14. Layered zirconium phosphonate with inorganic–organic hybrid structure: Preparation and its assembly with DNA

    SciTech Connect

    Liu, Li-Min; Lu, Guo-Yuan; Jiang, Li-Ping; Zhu, Jun-Jie

    2014-07-01

    An aminoethoxy-functionalized zirconium phosphonate (Zr(O{sub 3}POCH{sub 2}CH{sub 2}NH{sub 2}){sub 2}·3H{sub 2}O), abbreviated as ZrRP (R=OCH{sub 2}CH{sub 2}NH{sub 2}), with layered structure has been synthesized. This layered compound possesses the characteristic of inorganic–organic hybrid, due to the covalently linked aminoethoxy in the host layer. The anion exchanged property of this zirconium phosphonate is suitable for the direct intercalation of negatively charged DNA, which is different from these reported zirconium phosphates or zirconium phosphonates. As a precursor, this prepared zirconium phosphonate was utilized to fabricate a novel DNA/ZrRP binary hybrid via a delamination-reassembly procedure. The release behavior of DNA from the DNA/ZrRP composite was investigated at different medium pH, because the combination between zirconium phosphonate sheets and DNA was pH-dependent sensitively. Moreover, the helical conformation of DNA was almost retained after the intercalation and release process. These properties of the DNA/ZrRP composite suggested the potential application of layered zirconium phosphonate as a non-viral vector in gene delivery. - Graphical abstract: The intercalation of DNA into zirconium phosphonate and the release of DNA from the interlayer of zirconium phosphonate. - Highlights: ●A layered aminoethoxy-functionalized zirconium phosphonate has been synthesized. ●DNA was intercalated directly into the prepared zirconium phosphonate. ●A novel zirconium phosphonate/DNA binary hybrid was fabricated. ●DNA can be reversibly released from the interlayer of zirconium phosphonate. ●The intercalation/release processes do not induce the denaturalization of DNA.

  15. Synthesis of lesquerella a-hydroxy phosphonates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydroxy fatty acids (HFAs) have found a number of uses in today’s market, with uses ranging from industrial materials to pharmaceuticals. Castor oil, which is obtained from castor seeds, has served as a source of a versatile HFA; its principle component, ricinoleic acid, can be isolated from castor ...

  16. 40 CFR 180.155 - 1-Naphthaleneacetic acid; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... established for the combined residues of the plant growth regulator 1-naphthaleneacetic acid and its... ammonium, sodium, or potassium salts, ethyl ester, and acetamide in or on food commodities as...

  17. Genomics-Enabled Discovery of Phosphonate Natural Products and their Biosynthetic Pathways

    PubMed Central

    Ju, Kou-San; Doroghazi, James R.; Metcalf, William W.

    2014-01-01

    Phosphonate natural products have proven to be a rich source of useful pharmaceutical, agricultural and biotechnology products, whereas study of their biosynthetic pathways has revealed numerous intriguing enzymes that catalyze unprecedented biochemistry. Here we review the history of phosphonate natural product discovery, highlighting technological advances that have played a key role in the recent advances in their discovery. Central to these developments has been the application of genomics, which allowed discovery and development of a global phosphonate metabolic framework to guide research efforts. This framework suggests that the future of phosphonate natural products remains bright, with many new compounds and pathways yet to be discovered. PMID:24271089

  18. Multicomponent reactions: A simple and efficient route to heterocyclic phosphonates

    PubMed Central

    2016-01-01

    Summary Multicomponent reactions (MCRs) are one of the most important processes for the preparation of highly functionalized organic compounds in modern synthetic chemistry. As shown in this review, they play an important role in organophosphorus chemistry where phosphorus reagents are used as substrates for the synthesis of a wide range of phosphorylated heterocycles. In this article, an overview about multicomponent reactions used for the synthesis of heterocyclic compounds bearing a phosphonate group on the ring is given. PMID:27559377

  19. Morphology and Proton Transport in Humidified Phosphonated Peptoid Block Copolymers

    PubMed Central

    2016-01-01

    Polymers that conduct protons in the hydrated state are of crucial importance in a wide variety of clean energy applications such as hydrogen fuel cells and artificial photosynthesis. Phosphonated and sulfonated polymers are known to conduct protons at low water content. In this paper, we report on the synthesis phosphonated peptoid diblock copolymers, poly-N-(2-ethyl)hexylglycine-block-poly-N-phosphonomethylglycine (pNeh-b-pNpm), with volume fractions of pNpm (ϕNpm) values ranging from 0.13 to 0.44 and dispersity (Đ) ≤ 1.0003. The morphologies of the dry block copolypeptoids were determined by transmission electron microscopy and in both the dry and hydrated states by synchrotron small-angle X-ray scattering. Dry samples with ϕNpm > 0.13 exhibited a lamellar morphology. Upon hydration, the lowest molecular weight sample transitioned to a hexagonally packed cylinder morphology, while the others maintained their dry morphologies. Water uptake of all of the ordered samples was 8.1 ± 1.1 water molecules per phosphonate group. In spite of this, the proton conductivity of the ordered pNeh-b-pNpm copolymers ranged from 0.002 to 0.008 S/cm. We demonstrate that proton conductivity is maximized in high molecular weight, symmetric pNeh-b-pNpm copolymers. PMID:27134312

  20. Morphology and Proton Transport in Humidified Phosphonated Peptoid Block Copolymers.

    PubMed

    Sun, Jing; Jiang, Xi; Siegmund, Aaron; Connolly, Michael D; Downing, Kenneth H; Balsara, Nitash P; Zuckermann, Ronald N

    2016-04-26

    Polymers that conduct protons in the hydrated state are of crucial importance in a wide variety of clean energy applications such as hydrogen fuel cells and artificial photosynthesis. Phosphonated and sulfonated polymers are known to conduct protons at low water content. In this paper, we report on the synthesis phosphonated peptoid diblock copolymers, poly-N-(2-ethyl)hexylglycine-block-poly-N-phosphonomethylglycine (pNeh-b-pNpm), with volume fractions of pNpm (ϕNpm) values ranging from 0.13 to 0.44 and dispersity (Đ) ≤ 1.0003. The morphologies of the dry block copolypeptoids were determined by transmission electron microscopy and in both the dry and hydrated states by synchrotron small-angle X-ray scattering. Dry samples with ϕNpm > 0.13 exhibited a lamellar morphology. Upon hydration, the lowest molecular weight sample transitioned to a hexagonally packed cylinder morphology, while the others maintained their dry morphologies. Water uptake of all of the ordered samples was 8.1 ± 1.1 water molecules per phosphonate group. In spite of this, the proton conductivity of the ordered pNeh-b-pNpm copolymers ranged from 0.002 to 0.008 S/cm. We demonstrate that proton conductivity is maximized in high molecular weight, symmetric pNeh-b-pNpm copolymers.

  1. Phosphonate Biosynthesis and Catabolism: A Treasure Trove of Unusual Enzymology

    PubMed Central

    Peck, Spencer C.

    2013-01-01

    Natural product biosynthesis has proven a fertile ground for the discovery of novel chemistry. Herein we review the progress made in elucidating the biosynthetic pathways of phosphonate and phosphinate natural products such as the antibacterial compounds dehydrophos and fosfomycin, the herbicidal phosphinothricin-containing peptides, and the antimalarial compound FR-900098. In each case, investigation of the pathway has yielded unusual, and often unprecedented, biochemistry. Likewise, recent investigations have uncovered novel ways to cleave the C-P bond to yield phosphate under phosphorus starvation conditions. These include the discovery of novel oxidative cleavage of the C-P bond catalyzed by PhnY and PhnZ as well as phosphonohydrolases that liberate phosphate from phosphonoacetate. Perhaps the crown jewel of phosphonate catabolism has been the recent resolution of the longstanding problem of the C-P lyase responsible for reductively cleaving the C-P bond of a number of different phosphonates to release phosphate. Taken together, the strides made on both metabolic and catabolic fronts illustrate an array of fascinating biochemistry. PMID:23870698

  2. Specific detection and properties of enzyme hydrolyzing phosphonate ester in serum.

    PubMed

    Han, G Y; Fan, X H; Jin, X B; Wang, D P

    1992-03-01

    An enzyme capable of hydrolyzing 4-methylumbelliferyl phenylphosphonate to 4-methylumbelliferone and phenylphosphonic acid has been detected in human serum. It has a Km value of 1.72 x 10(-4) mol/L, has an optimum pH of 8.8-9.1 in Tris buffer, and shows maximum activity at 60 degrees C (30 min). The enzymic activity can be inhibited by Na3PO4, EDTA, and cysteine. We saw no effect of CuSO4, adenosine, thymidine, NaN3, diethyl p-nitrophenyl phosphate, p-chloromercuribenzoate, isopropyl fluorophosphate, or eserine on the enzymic activity. The enzyme cannot hydrolyze substrates of phosphodiesterase I or alkaline phosphatase. The enzyme is considered a phosphonate esterase.

  3. Synthesis and Use of a Phosphonate-amidine to Generate an Anti-phosphoarginine Specific Antibody

    PubMed Central

    Subramanian, Venkataraman

    2015-01-01

    Protein arginine phosphorylation is a post-translational modification (PTM) that is important for bacterial growth and virulence. Despite its biological relevance, the intrinsic acid lability of phosphoarginine (pArg) have impaired studies of this novel PTM. Herein, we report for the first time the development of phosphonate-amidines and sulfonate-amidines as isosteres of pArg and then use these mimics as haptens to develop the first high affinity sequence independent anti-pArg specific antibody. Employing this anti-pArg antibody, we further showed that arginine phosphorylation is induced in Bacillus subtilis during oxidative stress. Overall, we expect this antibody to see widespread use in analyzing the biological significance of arginine phosphorylation. Additionally, the chemistry reported here will facilitate the generation of pArg mimetics as highly potent inhibitors of the enzymes that catalyze arginine phosphorylation/dephosphorylation. PMID:26458230

  4. Relative binding affinity of carboxylate-, phosphonate-, and bisphosphonate-functionalized gold nanoparticles targeted to damaged bone tissue

    NASA Astrophysics Data System (ADS)

    Ross, Ryan D.; Cole, Lisa E.; Roeder, Ryan K.

    2012-10-01

    Functionalized Au NPs have received considerable recent interest for targeting and labeling cells and tissues. Damaged bone tissue can be targeted by functionalizing Au NPs with molecules exhibiting affinity for calcium. Therefore, the relative binding affinity of Au NPs surface functionalized with either carboxylate ( l-glutamic acid), phosphonate (2-aminoethylphosphonic acid), or bisphosphonate (alendronate) was investigated for targeted labeling of damaged bone tissue in vitro. Targeted labeling of damaged bone tissue was qualitatively verified by visual observation and backscattered electron microscopy, and quantitatively measured by the surface density of Au NPs using field-emission scanning electron microscopy. The surface density of functionalized Au NPs was significantly greater within damaged tissue compared to undamaged tissue for each functional group. Bisphosphonate-functionalized Au NPs exhibited a greater surface density labeling damaged tissue compared to glutamic acid- and phosphonic acid-functionalized Au NPs, which was consistent with the results of previous work comparing the binding affinity of the same functionalized Au NPs to synthetic hydroxyapatite crystals. Targeted labeling was enabled not only by the functional groups but also by the colloidal stability in solution. Functionalized Au NPs were stabilized by the presence of the functional groups, and were shown to remain well dispersed in ionic (phosphate buffered saline) and serum (fetal bovine serum) solutions for up to 1 week. Therefore, the results of this study suggest that bisphosphonate-functionalized Au NPs have potential for targeted delivery to damaged bone tissue in vitro and provide motivation for in vivo investigation.

  5. Precision Morphology in Sulfonic, Phosphonic, Boronic, and Carboxylic Acid Polyolefins

    DTIC Science & Technology

    2013-11-15

    S. Aitken, C. Francisco Buitrago , Jason D. Heffley, Minjae Lee, Harry W. Gibson, Karen I. Winey, Kenneth B. Wagener. Precision Ionomers: Synthesis...Seitz, C. Francisco Buitrago , Karen I. Winey, Kathleen L. Opper, Travis W. Baughman, Kenneth B. Wagener, Todd M. Alam. The impact of zinc

  6. Asymmetric hydrogenation of α,β-unsaturated phosphonates with Rh-BisP* and Rh-MiniPHOS catalysts: Scope and mechanism of the reaction

    PubMed Central

    Gridnev, Ilya D.; Yasutake, Masaya; Imamoto, Tsuneo; Beletskaya, Irina P.

    2004-01-01

    Optically active 1,2-bis(alkylmethylphosphino)ethanes and bis(alkylmethylphosphino)methanes are unique diphosphine ligands combining the simple molecular structure and P-stereogenic asymmetric environment. This work shows that these ligands exhibit excellent enantioselectivity in rhodium-catalyzed asymmetric hydrogenation of α,β-unsaturated phosphonic acid derivatives. The enantioselective hydrogenation mechanism elucidated by NMR study is also described. PMID:15024119

  7. Synthesis, crystal structure and DFT studies of N-(4-acetyl-5,5-dimethyl-4,5-dihydro-1,3,4-thiadiazol-2-yl)acetamide

    NASA Astrophysics Data System (ADS)

    Gautam, P.; Gautam, D.; Chaudhary, R. P.

    2013-12-01

    The title compound N-(4-acetyl-5,5-dimethyl-4,5-dihydro-1,3,4-thiadiazol-2-yl)acetamide ( III) was obtained from the reaction of 2-(propan-2-ylidene)hydrazinecarbothioamide ( II) with acetic anhydride instead of formation of the desired thiosemcarbazide derivative of Meldrum acid. The structures of II and III were established by elemental analysis, IR, NMR, Mass and X-ray crystallographic studies. II crystallizes in triclinic system, sp. gr. Z = 2; III crystallizes in the monoclinic system, sp. gr. P21/ c, Z = 8. Density functional theory (DFT) calculations have been carried out for III. 1H and 13C NMR of III has been calculated and correlated with experimental results.

  8. Synthesis, crystal structure and DFT studies of N-(4-acetyl-5,5-dimethyl-4,5-dihydro-1,3,4-thiadiazol-2-yl)acetamide

    SciTech Connect

    Gautam, P.; Gautam, D.; Chaudhary, R. P.

    2013-12-15

    The title compound N-(4-acetyl-5,5-dimethyl-4,5-dihydro-1,3,4-thiadiazol-2-yl)acetamide (III) was obtained from the reaction of 2-(propan-2-ylidene)hydrazinecarbothioamide (II) with acetic anhydride instead of formation of the desired thiosemcarbazide derivative of Meldrum acid. The structures of II and III were established by elemental analysis, IR, NMR, Mass and X-ray crystallographic studies. II crystallizes in triclinic system, sp. gr. P-bar1 Z = 2; III crystallizes in the monoclinic system, sp. gr. P2{sub 1}/c, Z = 8. Density functional theory (DFT) calculations have been carried out for III. {sup 1}H and {sup 13}C NMR of III has been calculated and correlated with experimental results.

  9. Synthesis, characterization and biological screening of N-substituted derivatives of 5-benzyl-1,3,4-oxadiazole-2yl-2"-sulfanyl acetamide.

    PubMed

    Siddiqui, Sabahat Zahra; Rehman, Azizur; Abbasi, Muhammad Athar; Abbas, Nadia; Khan, Khalid Mohammed; Ashraf, Muhammad; Ejaz, Syeda Abida

    2013-05-01

    A series of new N-substituted derivatives of 5-benzyl-1, 3, 4-oxadiazole-2yl-2"-sulfanyl acetamide (6a-n) were synthesized in three phases. The first phase involved the sequentially converting phenyl acetic acid into ester, hydrazide and finally cyclized in the presence of CS2 to afford 5-benzyl-1, 3, 4-oxadiazole-2-thiol. In the second phase N-substituted-2-bromoacetamides were prepared by reacting substituted amines with bromoacetyl bromide in basic media. In the third phase, 5-benzyl-1,3,4-oxadiazole-2-thiol was stirred with N-substituted-2-bromoacetamides in the presence of N,N-dimethyl formamide (DMF) and sodium hydride (NaH) to get the target compounds. Spectral techniques were used to confirm the structures of synthesized compounds. Synthesized compounds were screened against butyrylcho linesterase (BChE), acetylcholinesterase (AChE), and lipoxygenase enzymes (LOX) and were found to be relatively more active against acetylcholinesterase.

  10. New water soluble phosphonate and polycarboxylate complexants for enhanced f element separations

    SciTech Connect

    Nash, K.L.; Rickert, P.G.; Lessmann, E.P.; Mendoza, M.D.; Feil, J.F.; Sullivan, J.C.

    1994-08-01

    While lipophilic extractant molecules and ion exchange polymeric materials are clearly essential to efficient separation of metal ions by solvent extraction or ion exchange, the most difficult separations often could not be accomplished without the use of water soluble complexants. This report focuses on recent developments in design, synthesis and characterization of phosphonic acid and polycarboxylic acid ligands for enhanced f element separations. Emphasis is on the basic solution chemistry and crystal structures of complexes of the f elements with selected amino-derivatives of methanediphosphonic acid and with tetrahydrofuran-2,3,4,5-tetracarboxylic acid. The former series of compounds exhibit high affinity for lanthanides and actinides in acidic solutions. The latter ligand exhibits an unusual (and very useful) ``anti-selectivity`` for uranyl ion in a solvent extraction process, which permits efficient separation of uranyl from more radioactive components of nuclear wastes. Most of the observed effects can be explained through examination of the structure of the ligand, and comparison of the spectroscopic and thermodynamic parameters for complexation of various metal ions.

  11. Phosphonate removal from discharged circulating cooling water using iron-carbon micro-electrolysis.

    PubMed

    Zhou, Zhen; Qiao, Weimin; Lin, Yangbo; Shen, Xuelian; Hu, Dalong; Zhang, Jianqiao; Jiang, Lu-Man; Wang, Luochun

    2014-01-01

    Phosphonate is a commonly used corrosion and scale inhibitor for a circulating cooling water (CCW) system. Its discharge could cause eutrophication of receiving waters. The iron-carbon (Fe/C) micro-electrolysis technology was used to degrade and remove phosphonate from discharged CCW. The influences of initial pH, Fe/C ratio (FCR) and temperature on phosphonate removal were investigated in a series of batch tests and optimized by response surface methodology. The quadratic model of phosphonate removal was obtained with satisfactory degrees of fitness. The optimum conditions with total phosphorus removal efficiency of 95% were obtained at pH 7.0, FCR of 1.25, and temperature of 45 °C. The phosphonate removal mechanisms were also studied. Phosphonate removal occurred predominantly via two consecutive reactive phases: the degradation of phosphonate complexes (Ca-phosphonate) and the precipitation of Fe/C micro-electrolysis products (PO₄(3-), Ca²⁺ and Fe³⁺).

  12. Step by Step Assembly of Polynuclear Lanthanide Complexes with a Phosphonated Bipyridine Ligand.

    PubMed

    Souri, Nabila; Tian, Pingping; Lecointre, Alexandre; Lemaire, Zoé; Chafaa, Salah; Strub, Jean-Marc; Cianférani, Sarah; Elhabiri, Mourad; Platas-Iglesias, Carlos; Charbonnière, Loïc J

    2016-12-19

    The synthesis of the octadentate ligand L (LH8 = ((([2,2'-bipyridine]-6,6'-diylbis(methylene))bis(azanetriyl))tetrakis(methylene))tetrakis(phosphonic acid)) is reported. The coordination of L with various lanthanide cations was monitored by absorption and luminescence spectrophotometric titration experiments (Ln = Tb, Yb), potentiometry (Ln = La, Eu, Lu), and mass spectrometry (Ln = Tb). It was found that L forms very stable mononuclear (LnL) species in aqueous solutions (log K = 19.80(5), 19.5(2), and 19.56(5) for La, Eu, and Lu, respectively) with no particular trend along the series. Spectroscopic data showed the Ln cations to be enclosed in the cavity formed by the octadentate ligand, thereby shielding the metal from interactions with water molecules in the first coordination sphere. When more than one equivalent of cations is added, the formation of polynuclear [(LnL)2Lnx] complexes (x = 1-3) can be observed, the presence of which could be confirmed by electrospray and MALDI mass spectrometry experiments. DFT modeling of the mononuclear (LnL) complexes indicated that the coordination of the cation in the cavity of the ligand results in a very asymmetric charge distribution, with a region of small negative electrostatic potential on the hemisphere composed of the chromophoric bipyridyl moiety and an electron-rich domain at the opposite hemisphere around the four phosphonate functions. DFT further showed that this polarization is most likely at the origin of the strong interactions between the (LnL) complexes and the incoming additional cations, leading to the formation of the polynuclear species. (1)H and (31)P NMR were used to probe the possible exchange of the lanthanide complexed in the cavity of the ligand in D2O, revealing no detectable exchange after 4 weeks at 80 °C and neutral pD, therefore pointing out an excellent kinetic inertness.

  13. N-[4-(2-Propyn-1-yl-oxy)phen-yl]acetamide.

    PubMed

    Belay, Yonas H; Kinfe, Henok H; Muller, Alfred

    2012-11-01

    The title compound, C(11)H(11)NO(2), was synthesized by chemoselective N-acetyl-ation of 4-amino-phenol followed by reaction with propargyl bromide in the presence of K(2)CO(3). the acetamide and propyn-1-yloxy substituents form dihedral angles of 18.31 (6) and 7.01 (10)°, respectively, with the benzene ring. In the crystal, mol-ecules are linked by N-H⋯O hydrogen bonds into chains along [010]. C-H⋯O and C-H⋯π inter-actions also occur.

  14. Peptide bond formation through gas-phase reactions in the interstellar medium: formamide and acetamide as prototypes

    SciTech Connect

    Redondo, Pilar; Barrientos, Carmen; Largo, Antonio

    2014-09-20

    A theoretical study of the reactions of NH{sub 4}{sup +} with formaldehyde and CH{sub 5}{sup +} with formamide is carried out. The viability of these gas-phase ion-molecule reactions as possible sources of formamide and acetamide under the conditions of interstellar medium is evaluated. We report a theoretical estimation of the reaction enthalpies and an analysis of their potential energy surfaces. Formation of protonated formamide from the reaction between ammonium cation and formaldehyde is an exothermic process, but all the channels located on the potential energy surface leading to this product present net activation energies. For the reaction between methanium and formamide, different products are possible from a thermodynamic point of view. An analysis of its potential energy surface showed that formation of protonated acetamide and amino acetaldehyde takes place through barrier-free paths. Therefore, this reaction could be a feasible source of acetamide and amino acetaldehyde in space.

  15. Peptide Bond Formation through Gas-phase Reactions in the Interstellar Medium: Formamide and Acetamide as Prototypes

    NASA Astrophysics Data System (ADS)

    Redondo, Pilar; Barrientos, Carmen; Largo, Antonio

    2014-09-01

    A theoretical study of the reactions of NH_4+ with formaldehyde and CH_5+ with formamide is carried out. The viability of these gas-phase ion-molecule reactions as possible sources of formamide and acetamide under the conditions of interstellar medium is evaluated. We report a theoretical estimation of the reaction enthalpies and an analysis of their potential energy surfaces. Formation of protonated formamide from the reaction between ammonium cation and formaldehyde is an exothermic process, but all the channels located on the potential energy surface leading to this product present net activation energies. For the reaction between methanium and formamide, different products are possible from a thermodynamic point of view. An analysis of its potential energy surface showed that formation of protonated acetamide and amino acetaldehyde takes place through barrier-free paths. Therefore, this reaction could be a feasible source of acetamide and amino acetaldehyde in space.

  16. Surface-enhanced Raman scattering studies on the interaction of phosphonate derivatives of imidazole, thiazole, and pyridine with a silver electrode in aqueous solution.

    PubMed

    Podstawka, Edyta; Kudelski, Andrzej; Olszewski, Tomasz K; Boduszek, Bogdan

    2009-07-23

    Surface-enhanced Raman scattering (SERS) spectra from phosphonate derivatives of N-heterocyclic aromatic compounds immobilized on an electrochemically roughened silver electrode surface are reported and compared to Raman spectra of the corresponding solid species. The tested compounds contain imidazole [ImMeP ([hydroxy-(1H-imidazol-5-yl)-methyl]-phosphonic acid) and (ImMe)2P (bis[hydroxy-(1H-imidazol-4-yl)-methyl]-phosphinic acid)]; thiazole [BAThMeP ((butylamino-thiazol-2-yl-methyl)-phosphonic acid) and BzAThMeP ((benzylamino-thiazol-2-yl-methyl)-phosphonic acid)]; and pyridine ((PyMe)2P (bis[(hydroxy-pyridin-3-yl-methyl)]-phosphinic acid) aromatic rings. Changes in wavenumber, broadness, and the enhancement of N-heterocyclic aromatic ring bands upon adsorption are consistent with the adsorption primarily occurring through the N lone pair of electrons with the ring arranged in a largely edge-on manner for ImMeP and BzAThMeP or in a slightly inclined orientation to the silver electrode surface at an intermediate angle from the surface normal for (ImMe)2P, BAThMeP, and (PyMe)2P. A strong enhancement of a roughly 1500 cm(-1) SERS signal for ImMeP and (PyMe)2P is also observed. This phenomenon is attributed to the formation of a localized C=C bond, which is accompanied by a decrease in the ring-surface pi-electrons' overlap. In addition, more intense SERS bands due to the benzene ring in BzAThMeP are observed than those observed for the thiazole ring, which suggests a preferential adsorption of benzene. Some interaction of a phosphonate unit is also suggested but with moderate strength between biomolecules. The strength of the P=O coordination to the silver electrode is highest for ImMeP but lowest for BzAThMeP. For all studied biomolecules, the contribution of the structural components to their ability to interact with their receptors was correlated with the SERS patterns.

  17. Phosphonate utilization by the globally important marine diazotroph Trichodesmium.

    PubMed

    Dyhrman, S T; Chappell, P D; Haley, S T; Moffett, J W; Orchard, E D; Waterbury, J B; Webb, E A

    2006-01-05

    The factors that control the growth and nitrogen fixation rates of marine diazotrophs such as Trichodesmium have been intensively studied because of the role that these processes have in the global cycling of carbon and nitrogen, and in the sequestration of carbon to the deep sea. Because the phosphate concentrations of many ocean gyres are low, the bioavailability of the larger, chemically heterogeneous pool of dissolved organic phosphorus could markedly influence Trichodesmium physiology. Here we describe the induction, by phosphorus stress, of genes from the Trichodesmium erythraeum IMS101 genome that are predicted to encode proteins associated with the high-affinity transport and hydrolysis of phosphonate compounds by a carbon-phosphorus lyase pathway. We show the importance of these genes through expression analyses with T. erythraeum from the Sargasso Sea. Phosphonates are known to be present in oligotrophic marine systems, but have not previously been considered to be bioavailable to marine diazotrophs. The apparent absence of genes encoding a carbon-phosphorus lyase pathway in the other marine cyanobacterial genomes suggests that, relative to other phytoplankton, Trichodesmium is uniquely adapted for scavenging phosphorus from organic sources. This adaptation may help to explain the prevalence of Trichodesmium in low phosphate, oligotrophic systems.

  18. [Study of the enzymatic hydrolysis of a phosphonic ester using microcalorimetry].

    PubMed

    Labadie, M; Debord, J; Breton, J C

    1979-01-01

    A "Batch" microcalorimeter is used at 30 degrees C for the study of the hydrolysis of 4-nitro-phenylphenylphosphonate with a calf-intestinal phosphonate esterase, in a tris buffer, pH 8. The yield of enzymatic hydrolysis is estimated by spectrophotometric determination of the p--nitrophenol evolved; we have then calculated the apparent molar enthalph of the reaction. (delta Happ = -72,2 kj. mol-1). Phenylphosphonic acid, the second reaction product, is not transphosphonylated on tris. The second acidity of phenylphosphonic acid was studied at 30 degrees C by sodium hydroxide electrotitration (pKa2 = 7,13) and by "Flow" microcalorimetry (delta Hionization = 19,8 kj.mol-1). In the same manner at 30 degrees C, we measured the heat of ionization of p-nitrophenol (delta Hionization = 26,75 kj.mol-1). These findings allow a calculation for the actual heat of hydrolysis of 4-nitro-phenyl-phenylphosphonate (delta Hrho = -29,7 kj.mol-1).

  19. Methods of Analysis by the U.S. Geological Survey Organic Geochemistry Research Group?Determination of acetamide herbicides and their degradation products in water using online solid-phase extraction and liquid chromatography/mass spectrometry

    USGS Publications Warehouse

    Lee, E.A.; Strahan, A.P.

    2003-01-01

    An analytical method for the determination of 6 acetamide herbicides (acetochlor, alachlor, dimethenamid, flufenacet, metolachlor, and propachlor) and 16 of their degradation products in natural water samples using solid-phase extraction and liquid chromatography/mass spectrometry is described in this report. Special consideration was given during the development of the method to prevent the formation of degradation products during the analysis. Filtered water samples were analyzed using octadecylsilane as the solid-phase extraction media on online automated equipment followed by liquid chromatography/mass spectrometry. The method uses only 10 milliliters of sample per injection. Three different water-sample matrices, a reagent-water, a ground-water, and a surface-water sample spiked at 0.10 and 1.0 microgram per liter, were analyzed to determine method performance. Method detection limits ranged from 0.004 to 0.051 microgram per liter for the parent acetamide herbicides and their degradation products. Mean recoveries for the acetamide compounds in the ground- and surface-water samples ranged from 62.3 to 117.4 percent. The secondary amide of acetochlor/metolachlor ethanesulfonic acid (ESA) was recovered at an average rate of 43.5 percent. The mean recoveries for propachlor and propachlor oxanilic acid (OXA) were next lowest, ranging from 62.3 to 95.5 percent. Mean recoveries from reagent-water samples ranged from 90.3 to 118.3 percent for all compounds. Overall the mean of the mean recoveries of all compounds in the three matrices spiked at 0.10 and 1.0 microgram per liter ranged from 89.9 to 100.7 percent, including the secondary amide of acetochlor/metolachlor ESA and the propachlor compounds. The acetamide herbicides and their degradation products are reported in concentrations ranging from 0.05 to 2.0 micrograms per liter. The upper concentration limit is 2.0 micrograms per liter for all compounds without dilution. With the exception of the secondary amide of

  20. Growth and characterization of new organic nonlinear optical crystal (R)-2-cyano-N-(1-phenylethyl) acetamide

    SciTech Connect

    Hemaraju, B. C.; Gnana Prakash, A. P.; Madhukar, B. S.; Bhadregowda, D. G.

    2014-04-24

    (R)-2-Cyano-N-(1-phenylethyl) acetamide (RCNPA) single crystals were grown by slow evaporation of the aqueous solution at room temperature (300K) using ethanol. The grown crystals were characterized by single crystal X-ray diffraction, powder X-ray diffraction, FTIR, UV-Vis-NIR transmittance, scanning electron microscopy (SEM) and powder second harmonic generation (SHG)

  1. Probing the interaction of U(VI) with phosphonate-functionalized mesoporous silica using solid-state NMR spectroscopy

    DOE PAGES

    Uribe, Eva C.; Mason, Harris E.; Shusterman, Jennifer A.; ...

    2016-05-30

    The fundamental interaction of U(VI) with diethylphosphatoethyl triethoxysilane functionalized SBA-15 mesoporous silica is studied by macroscopic batch experiments and solid-state NMR spectroscopy. DPTS-functionalized silica has been shown to extract U(VI) from nitric acid solutions at or above pH 3. Extraction is dependent on pH and ionic strength. Single-pulse 31P NMR on U(VI) contacted samples revealed that U(VI)only interacts with a fraction of the ligands present on the surface. At pH 4 the U(VI) extraction capacity of the material is limited to 27–37% of the theoretical capacity, based on ligand loading. We combined single pulse 31P NMR on U(VI)-contacted samples withmore » batch studies to measure a ligand-to-metal ratio of approximately 2 : 1 at pH 3 and 4. Batch studies and cross-polarization NMR measurements reveal that U(VI) binds to deprotonated phosphonate and/or silanol sites. We use 31P–31P DQ-DRENAR NMR studies to compare the average dipolar coupling between phosphorus spins for both U(VI)-complexed and non-complexed ligand environments. Furthermore, these measurements reveal that U(VI) extraction is not limited by inadequate surface distribution of ligands, but rather by low stability of the surface phosphonate complex.« less

  2. Probing the interaction of U(vi) with phosphonate-functionalized mesoporous silica using solid-state NMR spectroscopy.

    PubMed

    Uribe, Eva C; Mason, Harris E; Shusterman, Jennifer A; Bruchet, Anthony; Nitsche, Heino

    2016-06-21

    The fundamental interaction of U(vi) with diethylphosphatoethyl triethoxysilane functionalized SBA-15 mesoporous silica is studied by macroscopic batch experiments and solid-state NMR spectroscopy. DPTS-functionalized silica has been shown to extract U(vi) from nitric acid solutions at or above pH 3. Extraction is dependent on pH and ionic strength. Single-pulse (31)P NMR on U(vi) contacted samples revealed that U(vi) only interacts with a fraction of the ligands present on the surface. At pH 4 the U(vi) extraction capacity of the material is limited to 27-37% of the theoretical capacity, based on ligand loading. We combined single pulse (31)P NMR on U(vi)-contacted samples with batch studies to measure a ligand-to-metal ratio of approximately 2 : 1 at pH 3 and 4. Batch studies and cross-polarization NMR measurements reveal that U(vi) binds to deprotonated phosphonate and/or silanol sites. We use (31)P-(31)P DQ-DRENAR NMR studies to compare the average dipolar coupling between phosphorus spins for both U(vi)-complexed and non-complexed ligand environments. These measurements reveal that U(vi) extraction is not limited by inadequate surface distribution of ligands, but rather by low stability of the surface phosphonate complex.

  3. The Microwave Spectrum of Monodeuterated Acetamide CH_2DC(=O)NH_2

    NASA Astrophysics Data System (ADS)

    Konov, I. A.; Coudert, L. H.; Gutle, C.; Huet, T. R.; Margulès, L.; Motiyenko, R. A.; Møllendal, H.; Guillemin, J.-C.

    2014-06-01

    Acetamide is an oblate asymmetric top displaying almost free internal rotation of its methyl group. The microwave spectrum of the normal species (CH_3C(=O)NH_2) has already been studied and a value of only 25 wn was retrieved for the height of the potential barrier hindering the internal rotation. No spectroscopic results are available about the monodeutared species with a partially deuterated CH_2D methyl group which will be the subject of the present talk. The effects of deuteration on the hindering potential will be investigated first. They lead to qualitative changes of the hindering potential no longer resembling that of the normal species and displaying several inequivalent minima. A determination of the torsional potential will be attempted through an analysis of the microwave spectrum of the monodeuterated species in which torsion-rotation energies are calculated with the approach developed for monodeuterated methanol, accounting for the torsion-rotation Coriolis coupling and for the dependence of the inertia tensor on the torsional angle. A low temperature spectrum, recorded with the MB-FTMW spectrometer in Lille, has already been analyzed and 14 transitions could be assigned up to J=6. Room temperature spectra have also been recorded in the 7-91 and 150-165 GHz frequency ranges and more than 100 transitions have been assigned up to J=16 for the ground torsional state. In the paper, deuteration effects will be discussed and we hope to assign a sufficient number of microwave transitions in order to obtain the first quantitative information about the hindering potential of monodeuterated acetamide. Ilyushin, Alekseev, Dyubko, Kleiner, and Hougen, J. Molec. Spectrosc. 227 (2004) 115 Lauvergnat, Coudert, Klee, and Smirnov, J. Molec. Spectrosc. 256 (2009) 204 Margulès, Coudert, Møllendal, Guillemin, Huet and Janečková, J. Molec. Spectrosc. 254 (2009) 55 Coudert, Zemouli, Motiyenko, Margulès, and Klee, J. Chem. Phys. 140 (2014) 064307

  4. A Novel Multi-Phosphonate Surface Treatment of Titanium Dental Implants: A Study in Sheep

    PubMed Central

    von Salis-Soglio, Marcella; Stübinger, Stefan; Sidler, Michéle; Klein, Karina; Ferguson, Stephen J.; Kämpf, Käthi; Zlinszky, Katalin; Buchini, Sabrina; Curno, Richard; Péchy, Péter; Aronsson, Bjorn-Owe; von Rechenberg, Brigitte

    2014-01-01

    The aim of the present study was to evaluate a new multi-phosphonate surface treatment (SurfLink®) in an unloaded sheep model. Treated implants were compared to control implants in terms of bone to implant contact (BIC), bone formation, and biomechanical stability. The study used two types of implants (rough or machined surface finish) each with either the multi-phosphonate Wet or Dry treatment or no treatment (control) for a total of six groups. Animals were sacrificed after 2, 8, and 52 weeks. No adverse events were observed at any time point. At two weeks, removal torque showed significantly higher values for the multi-phosphonate treated rough surface (+32% and +29%, Dry and Wet, respectively) compared to rough control. At 52 weeks, a significantly higher removal torque was observed for the multi-phosphonate treated machined surfaces (+37% and 23%, Dry and Wet, respectively). The multi-phosphonate treated groups showed a positive tendency for higher BIC with time and increased new-old bone ratio at eight weeks. SEM images revealed greater amounts of organic materials on the multi-phosphonate treated compared to control implants, with the bone fracture (from the torque test) appearing within the bone rather than at the bone to implant interface as it occurred for control implants. PMID:25215424

  5. Substituted 2-[(2-Oxo-2H-[1,2,4]triazino [2,3-c]quinazolin-6-yl)thio]acetamides with Thiazole and Thiadiazole Fragments: Synthesis, Physicochemical Properties, Cytotoxicity, and Anticancer Activity

    PubMed Central

    Kovalenko, Sergey I.; Nosulenko, Inna S.; Voskoboynik, Alexey Yu.; Berest, Galina G.; Antypenko, Lyudmyla N.; Antypenko, Alexey N.; Katsev, Andrey M.

    2012-01-01

    The series of novel N-R-2-[(3-R-2-oxo-2H-[1,2,4]triazino[2,3-c]quinazolin-6-yl)thio]acetamides with thiazole and thiadiazole fragments in a molecule were obtained by alkylation of potassium salts 1.1–1.4 by N-hetaryl-2-chloroacetamides and by aminolysis of activated acids 2.1–2.4 with N,N’-carbonyldiimidazole (CDI). The structures of compounds were determined by IR, 1H NMR, MS, and EI-MS analysis. The results of cytotoxicity evaluated by the bioluminescence inhibition of bacterium Photobacterium leiognathi, Sh1 showed that the compounds have considerable cytotoxicity. The synthesized compounds were tested for anticancer activity in NCI against 60 cell lines. Among the highly active compounds 3.1, 3.2, and 6.5, 2-[(3-methyl-2-oxo-2H-[1,2,4]triazino[2,3-c]quinazolin-6-yl)thio]-N-(1,3-thiazol-2-yl)acetamide (3.1) was found to be the most active anticancer agent against the cell lines of colon cancer (GI50 at 0.41–0.69 μM), melanoma (GI50 0.48–13.50 μM), and ovarian cancer (GI50 0.25–5.01 μM). The structure-activity relationship (SAR-analysis) was discussed. PMID:23264935

  6. Synthesis and in vitro reactivation study of isonicotinamide derivatives of 2-(hydroxyimino)-N-(pyridin-3-yl)acetamide as reactivators of Sarin and VX inhibited human acetylcholinesterase (hAChE).

    PubMed

    Karade, Hitendra N; Raviraju, G; Acharya, B N; Valiveti, Aditya Kapil; Bhalerao, Uma; Acharya, Jyotiranjan

    2016-09-15

    Previously (Karade et al., 2014), we have reported the synthesis and in vitro evaluation of bis-pyridinium derivatives of pyridine-3-yl-(2-hydroxyimino acetamide), as reactivators of sarin and VX inhibited hAChE. Few of the molecules showed superior in vivo protection efficacy (mice model) (Kumar et al., 2014; Swami et al., 2016) in comparison to 2-PAM against DFP and sarin poisoning. Encouraged by these results, herein we report the synthesis and in vitro evaluation of isonicotinamide derivatives of pyridine-3-yl-(2-hydroxyimino acetamide) (4a-4d) against sarin and VX inhibited erythrocyte ghost hAChE. Reactivation kinetics of these compounds was studied and the determined kinetic parameters were compared with that of commercial reactivators viz. 2-PAM and obidoxime. In comparison to 2-PAM and obidoxime, oxime 4a and 4b exhibited enhanced reactivation efficacy toward sarin inhibited hAChE while oxime 4c showed far greater reactivation efficacy toward VX inhibited hAChE. The acid dissociation constant and IC50 values of these oximes were determined and correlated with the observed reactivation potential.

  7. Probing the influence of phosphonate bonding modes to uranium(VI) on structural topology and stability: a complementary experimental and computational investigation.

    PubMed

    Zheng, Tao; Wu, Qun-Yan; Gao, Yang; Gui, Daxiang; Qiu, Shiwen; Chen, Lanhua; Sheng, Daopeng; Diwu, Juan; Shi, Wei-Qun; Chai, Zhifang; Albrecht-Schmitt, Thomas E; Wang, Shuao

    2015-04-20

    Systematic control of the reactions between U(VI) and 1,4-phenylenebis(methylene))bis(phosphonic acid) (pmbH4) allows for alterations in the bonding between these constituents and affords three uranyl phosphonate compounds with chiral one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) structures, namely, [TPA][UO2(pmbH3)(pmbH2)H2O]·2H2O (1), [NH4]2[UO2(pmb)] (2), UO2(pmbH2) (3), and the first uranyl mixed phosphite/phosphonate compound [TMA]2[(UO2)2(pmb)(HPO3)] (4) (TPA = NPr4+, TMA = NMe4+). These compounds crystallize in the space groups P212121, P1̅, P21/c, and Cmcm, respectively. Further investigation of the local uranyl coordination environment reveals that in 1 only oxygen atoms from P=O moieties ligate the uranium centers; whereas in 2 only P-O(-) oxygen atoms are involved in bonding and yield a layered topology. Compound 3 differs sharply from the first two in that conjugated P=O and P-O(-) oxygen atoms chelate the uranium centers resulting in a 3D framework. In compound 4, a phosphonate group bridges three uranyl centers further coordinated with a phosphite ligand HPO32–, which is a product of pmbH4 decomposing, forming a 2D layered structure. Compounds 3 and 4 also contain a different coordination environment for U(VI) than that found in 1 or 2. In this case, tetragonal bipyramidal UO6 units occur instead of the far more common UO7 pentagonal bipyramids found in 1 and 2. Interestingly, 1 converts to 3 at elevated reaction temperatures, indicating that the formation of 1 is likely under kinetic control. This is supported by thermal analysis, which reveals that 3 has higher thermal stability than 1 or 2. UV-vis-near-IR absorption and fluorescence spectroscopy show that the absorption and photoluminescence intensity increases from 1 to 4. Density functional theory electronic structure calculations provide insight into the nature of the interactions between U(VI) and the phosphonate ligands.

  8. Rhodium carbene routes to oxazoles and thiazoles. Catalyst effects in the synthesis of oxazole and thiazole carboxylates, phosphonates, and sulfones.

    PubMed

    Shi, Baolu; Blake, Alexander J; Lewis, William; Campbell, Ian B; Judkins, Brian D; Moody, Christopher J

    2010-01-01

    Dirhodium tetraacetate catalyzed reaction of alpha-diazo-beta-keto-carboxylates and -phosphonates with arenecarboxamides gives 2-aryloxazole-4-carboxylates and 4-phosphonates by carbene N-H insertion and cyclodehydration. In stark contrast, dirhodium tetrakis(heptafluorobutyramide) catalysis results in a dramatic change of regioselectivity to give oxazole-5-carboxylates and 5-phosphonates. Alpha-diazo-beta-ketosulfones behave similarly and give 5-sulfonyloxazoles upon dirhodium tetrakis(heptafluorobutyramide) catalyzed reaction with carboxamides. The analogous reactions of thiocarboxamides give the corresponding thiazole-5-carboxylates, -phosphonates, and -sulfones.

  9. Adsorption of phosphonate antiscalant from reverse osmosis membrane concentrate onto granular ferric hydroxide.

    PubMed

    Boels, Luciaan; Keesman, Karel J; Witkamp, Geert-Jan

    2012-09-04

    Adsorptive removal of antiscalants offers a promising way to improve current reverse osmosis (RO) concentrate treatment processes and enables the reuse of the antiscalant in the RO desalination process. This work investigates the adsorption and desorption of the phosphonate antiscalant nitrilotris(methylenephosphonic acid) (NTMP) from RO membrane concentrate onto granular ferric hydroxide (GFH), a material that consists predominantly of akaganéite. The kinetics of the adsorption of NTMP onto GFH was predicted fairly well with two models that consider either combined film-pore or combined film-surface diffusion as the main mechanism for mass transport. It is also demonstrated that NTMP is preferentially adsorbed over sulfate by GFH at pH 7.85. The presence of calcium causes a transformation in the equilibrium adsorption isotherm from a Langmuir type to a Freundlich type with much higher adsorption capacities. Furthermore, calcium also increases the rate of adsorption substantially. GFH is reusable after regeneration with sodium hydroxide solution, indicating that NTMP can be potentially recovered from the RO concentrate. This work shows that GFH is a promising adsorbent for the removal and recovery of NTMP antiscalant from RO membrane concentrates.

  10. Rapid Synthesis and Antiviral Activity of (Quinazolin-4-Ylamino)Methyl-Phosphonates Through Microwave Irradiation

    PubMed Central

    Luo, Hui; Hu, Deyu; Wu, Jian; He, Ming; Jin, Linhong; Yang, Song; Song, Baoan

    2012-01-01

    This study describes the simple synthesis of new (quinazolin-4-ylamino) methylphosphonates via microwave irradiation. Substituted-2-aminobenzonitrile reacted with 1,1-dimethoxy-N,N-dimethylmethanamine at a reflux condition to obtain N′-(substituted-2-cyanophenyl)-N,N-dimethylformamidine (1). The subsequent reaction of this intermediate product with α-aminophosphonate (2) in a solution containing glacial acetic acid in 2-propanol through microwave irradiation resulted in the formation of (quinazolin-4-ylamino)methyl-phosphonate derivatives 3a to 3x, which were unequivocally characterized by the spectral data and elemental analysis. The influence of the reaction conditions on the yield of 3a was investigated to optimize the synthetic conditions. The relative optimal conditions for the synthesis of 3a include a 1:1 molar ratio of N′-(2-cyanophenyl)-N,N-dimethylformamidine to diethyl amino(phenyl)methylphosphonate and a 4:1 volume ratio of isopropanol to HOAc in the solvent mixture, at a reaction temperature of 150 °C, with a microwave power of 100 W and a corresponding pressure of 150 psi for 20 min in the microwave synthesizer. The yield of 3a was approximately 79%, whereas those of 3b to 3x were approximately 77% to 86%. Some of the synthesized compounds displayed weak to good anti-Tobacco mosaic virus (TMV) activity. PMID:22837660

  11. Diastereoselectivity in the Mukaiyama-Michael Reaction Employing alpha-Acyl beta,gamma-Unsaturated Phosphonates.

    PubMed

    Telan, Leila A.; Poon, Chi-Duen; Evans, Slayton A.

    1996-10-18

    The unique electronic and structural nature of the alpha-acylphosphonate functional group affords both dimeric and chelated complexes of diethyl crotonyl phosphonate (1; DECP) with stannic chloride (SnCl(4)). The dimeric complex, SnCl(4).(DECP)(2) (5) results from the coordination of two DECP molecules, ligated via the phosphoryl oxygens to the tin atom. The chelated complex, SnCl(4).(DECP) (6), is best represented with both phosphoryl and carbonyl oxygens coordinated to the metal center. Both metal ligated and chelated complexes have unique (13)C (31)P, and (119)Sn NMR spectra. In complex 5, the (13)C NMR resonances attributed to the carbonyl carbons were shifted upfield of free DECP. A monocoordinating Lewis acid, BF(3).OEt(2), produced a similar chemical shift trend in both the (13)C and (31)P NMR spectra of the BF(3).DECP complex. Essentially quantitative yields and moderate diastereomeric excesses favoring anti (or trans) diethyl 6-phenyl-4,5-dimethyl-6-(trimethylsilyloxy)-2-dihydropyranphosphonate (3) and diethyl 5-phenyl-3,4-dimethyl-1,5-dioxopentanephosphonate (4) were obtained from both chelated and dimeric SnCl(4).(DECP)(n) (n = 1, 2) when treated with either diastereomeric (Z)- or (E)-1-phenyl-1-(trimethylsilyloxy)-1-propene 2. Diethyl crotonylphosphonate (1), 3, and 4 were fully characterized.

  12. Highly Ordered Mesostructured Vanadium Phosphonate toward Electrode Materials for Lithium-Ion Batteries.

    PubMed

    Mei, Peng; Pramanik, Malay; Lee, Jaewoo; Ide, Yusuke; Alothman, Zeid Abdullah; Kim, Jung Ho; Yamauchi, Yusuke

    2017-03-28

    Highly ordered mesostructured vanadium phosphonates (VP) have been synthesized in the presence of cetyltrimethylammonium bromide (CTAB) as a structure-directing agent. Nitrilotris(methylene)triphosphonic acid (NMPA) and (ammonium/sodium) metavanadate (NH4 VO3 /NaVO3 ) have been used for the construction of pore walls. The CTAB templates are removed from the materials by an extraction process without destroying the parent mesostructure. The formation mechanism for the ordered mesoporous structure and its impact on electrochemical application in lithium ion batteries (LIBs) are explained by considering the structural and electrochemical stability of the framework. The results demonstrate that the counter cations (NH4(+) /Na(+) ) of the metavanadate precursors have a crucial role in stabilizing the mesoporous structure of the mesoporous VP materials. Mesoporous VP materials with highly ordered structure have great applicability as high-performance electrode materials in LIBs due to the advantages of their large contact area with electrolyte and short transport paths for lithium ions. Mesoporous VP electrodes exhibit high reversible specific capacity with superb cycling stability (100 cycles) and excellent retention of capacity (92 %).

  13. Versatile (bio)functionalization of bromo-terminated phosphonate-modified porous aluminum oxide.

    PubMed

    Debrassi, Aline; Roeven, Esther; Thijssen, Selina; Scheres, Luc; de Vos, Willem M; Wennekes, Tom; Zuilhof, Han

    2015-05-26

    Porous aluminum oxide (PAO) is a nanoporous material used for various (bio)technological applications, and tailoring its surface properties via covalent modification is a way to expand and refine its application. Specific and complex chemical modification of the PAO surface requires a stepwise approach in which a secondary reaction on a stable initial modification is necessary to achieve the desired terminal molecular architecture and reactivity. We here show that the straightforward initial modification of the bare PAO surface with bromo-terminated phosphonic acid allows for the subsequent preparation of PAO with a wide scope of terminal reactive groups, making it suitable for (bio)functionalization. Starting from the initial bromo-terminated PAO, we prepared PAO surfaces presenting various terminal functional groups, such as azide, alkyne, alkene, thiol, isothiocyanate, and N-hydroxysuccinimide (NHS). We also show that this wide scope of easily accessible tailored reactive PAO surfaces can be used for subsequent modification with (bio)molecules, including carbohydrate derivatives and fluorescently labeled proteins.

  14. Structural basis of allosteric and synergistic activation of AMPK by furan-2-phosphonic derivative C2 binding

    PubMed Central

    Langendorf, Christopher G.; Ngoei, Kevin R. W.; Scott, John W.; Ling, Naomi X. Y.; Issa, Sam M. A.; Gorman, Michael A.; Parker, Michael W.; Sakamoto, Kei; Oakhill, Jonathan S.; Kemp, Bruce E.

    2016-01-01

    The metabolic stress-sensing enzyme AMP-activated protein kinase (AMPK) is responsible for regulating metabolism in response to energy supply and demand. Drugs that activate AMPK may be useful in the treatment of metabolic diseases including type 2 diabetes. We have determined the crystal structure of AMPK in complex with its activator 5-(5-hydroxyl-isoxazol-3-yl)-furan-2-phosphonic acid (C2), revealing two C2-binding sites in the γ-subunit distinct from nucleotide sites. C2 acts synergistically with the drug A769662 to activate AMPK α1-containing complexes independent of upstream kinases. Our results show that dual drug therapies could be effective AMPK-targeting strategies to treat metabolic diseases. PMID:26952388

  15. A Novel Side-Bridged Hybrid Phosphonate/Acetate Pendant Cyclam: Synthesis, Characterization, and 64Cu Small Animal PET Imaging

    PubMed Central

    Boswell, C. Andrew; Regino, Celeste A. S.; Baidoo, Kwamena E.; Wong, Karen J.; Milenic, Diane E.; Kelley, James A.; Lai, Christopher C.; Brechbiel, Martin W.

    2008-01-01

    Copper-64 (t½ = 12.7 hr; β+: 0.653 MeV, 17.4%; β−: 0.578 MeV, 39%) is produced in a biomedical cyclotron and has applications in both imaging and therapy. Macrocyclic chelators are widely used as bifunctional chelators to bind copper radionuclides to antibodies and peptides owing to their relatively high kinetic stability. A novel side-bridged cyclam featuring both pendant acetate and phosphonate groups was synthesized using a Kabachnik-Fields approach followed by hydrobromic acid deprotection. The Cu(II) complex of the novel ligand was synthesized, radiolabeling with 64Cu was demonstrated, and in vitro (serum) stability was performed. In addition, in vivo distribution and clearance of the 64Cu-labeled complex was visualized by positron emission tomography (PET) imaging. This novel chelate may be useful in 64Cu-mediated diagnostic positron emission tomography (PET) imaging as well as targeted radiotherapeutic applications. PMID:19101152

  16. 2-(Quinolin-4-yloxy)acetamides Are Active against Drug-Susceptible and Drug-Resistant Mycobacterium tuberculosis Strains

    PubMed Central

    2016-01-01

    2-(Quinolin-4-yloxy)acetamides have been described as potent in vitro inhibitors of Mycobacterium tuberculosis growth. Herein, additional chemical modifications of lead compounds were carried out, yielding highly potent antitubercular agents with minimum inhibitory concentration (MIC) values as low as 0.05 μM. Further, the synthesized compounds were active against drug-resistant strains and were devoid of apparent toxicity to Vero and HaCat cells (IC50s ≥ 20 μM). In addition, the 2-(quinolin-4-yloxy)acetamides showed intracellular activity against the bacilli in infected macrophages with action similar to rifampin, low risk of drug–drug interactions, and no sign of cardiac toxicity in zebrafish (Danio rerio) at 1 and 5 μM. Therefore, these data indicate that this class of compounds may furnish candidates for future development to, hopefully, provide drug alternatives for tuberculosis treatment. PMID:26985307

  17. Construction of Uranyl Organic Hybrids by Phosphonate and in Situ Generated Carboxyphosphonate Ligands.

    PubMed

    Liu, Chao; Yang, Weiting; Qu, Ning; Li, Lei-Jiao; Pan, Qing-Jiang; Sun, Zhong-Ming

    2017-02-06

    The hydrothermal reaction of uranyl ions with (5-methyl-1,3-phenylene)diphosphonic acid (H4MPDP) in the presence of additives such as nitric acid, N-bearing species, and heterometal ions yielded five new uranyl organic hybrids: (H3O)[(UO2)5(H2O)4(H3DPB)2(H2DPB)(HDPB)]·2H2O (1), (Hphen)(phen)[(UO2)3(H2DPB)(HDPB)] (2), (H2dipy)[(UO2)3(MPDP)2] (3), Zn(bipy)(UO2)(MPDP) (4), and Co(bipy)(UO2)(MPDP)·H2O (5) (H5DPB = 3,5-diphosphonobenzoic acid; phen = 1,10-phenanthroline; dipy = 4,4'-bipyridine; bipy = 2,2'-bipyridine). Single-crystal X-ray diffraction (XRD) demonstrates that 1 and 2 are 3D frameworks constructed of uranyl centers and carboxyphosphonate DPB ligands; the latter were formed via the in situ oxidation of H4MPDP. In the homometallic uranyl diphosphonate 3, less common UO6 square bipyramids connected by MPDP ligands were incorporated to form the 2D assembly. A further introduction of heterometal ions produced two heterobimetallic uranyl phosphonates 4 and 5. Both of them show layered structures, formed by UO6 square bipyramids linked by MPDP ligands with heterometal-centered polyhedra decorated on the sides of the layers. It is found that the pH and heterometal ions have significant effects on the structures of the complexes. In addition to the syntheses and XRD characterization, the spectroscopic properties of these uranyl complexes were also addressed. To complement the experimental results, density functional theory calculations were carried out on several model complexes that feature a homo- or heterobimetallic molecular skeleton. Geometrical/electronic structures, IR spectra, and electronic absorptions were discussed.

  18. Phosphonate-anchored monolayers for antibody binding to magnetic nanoparticles.

    PubMed

    Benbenishty-Shamir, Helly; Gilert, Roni; Gotman, Irena; Gutmanas, Elazar Y; Sukenik, Chaim N

    2011-10-04

    Targeted delivery of magnetic iron oxide nanoparticles (IONPs) to a specific tissue can be achieved by conjugation with particular biological ligands on an appropriately functionalized IONP surface. To take best advantage of the unique magnetic properties of IONPs and to maximize their blood half-life, thin, strongly bonded, functionalized coatings are required. The work reported herein demonstrates the successful application of phosphonate-anchored self-assembled monolayers (SAMs) as ultrathin coatings for such particles. It also describes a new chemical approach to the anchoring of antibodies on the surface of SAM-coated IONPs (using nucleophilic aromatic substitution). This anchoring strategy results in stable, nonhydrolyzable, covalent attachment and allows the reactivity of the particles toward antibody binding to be activated in situ, such that prior to the activation the modified surface is stable for long-term storage. While the SAMs do not have the well-packed crystallinity of other such monolayers, their structure was studied using smooth model substrates based on an iron oxide layer on a double-side polished silicon wafer. In this way, atomic force microscopy, ellipsometry, and contact angle goniometry (tools that could not be applied to the nanoparticles' surfaces) could contribute to the determination of their monomolecular thickness and uniformity. Finally, the successful conjugation of IgG antibodies to the SAM-coated IONPs such that the antibodies retain their biological activity is verified by their complexation to a secondary fluorescent antibody.

  19. Reactions of (chloroethynyl)phosphonates with neutral nucleophiles

    SciTech Connect

    Garibina, V.A.; Leonov, A.A.; Dogadina, A.V.; Ionin, B.I.; Petrov, A.A.

    1987-12-20

    The authors studied reactions of (chloroethynyl)phosphonates with a number of neutral nucleophiles containing a primary amino group together with a second nucleophilic center. The phosphorylated benzimidazoles are crystalline substances. The chemical shift of phosphorus in these compounds, delta/sub p/ +22.0 ppm, is characteristic for compounds containing an sp/sup 3/-hybridized carbon atom attached to phosphorus. The PMR spectra of the compounds contain a characteristic signal of the protons of a methylene group attached to phosphorus, delta 2.8, /sup 2/J/sub HP/ 22.0 Hz. The /sup 13/C NMR spectrum of the compounds contain the signals of a methoxy group on phosphorus delta/sub C/(CH/sub 3/O) 49.50 ppm, J/sub CP/ 6.9 Hz; and a doublet signal of the carbon atom of the methylene group delta/sub C/ 23.16 ppm, J/sub CP/ 138.8 Hz; and a doublet of carbon of the benzimidazole ring delta/sub C/ 141.6 ppm, J/sub CP/ 8.7 Hz; the carbon atoms of the benzene ring resonate in the weak field.

  20. SF2312 is a natural phosphonate inhibitor of Enolase

    PubMed Central

    Maxwell, David; Lin, Yu-Hsi; Hammoudi, Naima; Peng, Zhenghong; Pisaneschi, Federica; Link, Todd M.; Lee, Gilbert R.; Sun, Duoli; Prasad, Basvoju A. Bhanu; Di Francesco, Maria Emilia; Czako, Barbara; Asara, John M.; Wang, Y. Alan; Bornmann, William; DePinho, Ronald A.; Muller, Florian L.

    2016-01-01

    Despite being critical for energy generation in most forms of life, few if any microbial antibiotics specifically inhibit glycolysis. To develop a specific inhibitor of the glycolytic enzyme Enolase 2 for the treatment of cancers with deletion of Enolase 1, we modeled the synthetic tool compound inhibitor, Phosphonoacetohydroxamate (PhAH) into the active site of human ENO2. A ring-stabilized analogue of PhAH, with the hydroxamic nitrogen linked to the alpha-carbon by an ethylene bridge, was predicted to increase binding affinity by stabilizing the inhibitor in a bound conformation. Unexpectedly, a structure based search revealed that our hypothesized back-bone-stabilized PhAH bears strong similarity to SF2312, a phosphonate antibiotic of unknown mode of action produced by the actinomycete Micromonospora, which is active under anaerobic conditions. Here, we present multiple lines of evidence, including a novel X-ray structure, that SF2312 is a highly potent, low nM inhibitor of Enolase. PMID:27723749

  1. Characterization and structure of DhpI, a phosphonate O-methyltransferase involved in dehydrophos biosynthesis

    SciTech Connect

    Lee, Jin-Hee; Bae, Brian; Kuemin, Michael; Circello, Benjamin T.; Metcalf, William W.; Nair, Satish K.; van der Donk, Wilfred A.

    2012-03-15

    Phosphonate natural products possess a range of biological activities as a consequence of their ability to mimic phosphate esters or tetrahedral intermediates formed in enzymatic reactions involved in carboxyl group metabolism. The dianionic form of these compounds at pH 7 poses a drawback with respect to their ability to mimic carboxylates and tetrahedral intermediates. Microorganisms producing phosphonates have evolved two solutions to overcome this hurdle: biosynthesis of monoanionic phosphinates containing two P-C bonds or esterification of the phosphonate group. The latter solution was first discovered for the antibiotic dehydrophos that contains a methyl ester of a phosphonodehydroalanine group. We report here the expression, purification, substrate scope, and structure of the O-methyltransferase from the dehydrophos biosynthetic gene cluster. The enzyme utilizes S-adenosylmethionine to methylate a variety of phosphonates including 1-hydroxyethylphosphonate, 1,2-dihydroxyethylphosphonate, and acetyl-1-aminoethylphosphonate. Kinetic analysis showed that the best substrates are tripeptides containing as C-terminal residue a phosphonate analog of alanine suggesting the enzyme acts late in the biosynthesis of dehydrophos. These conclusions are corroborated by the X-ray structure that reveals an active site that can accommodate a tripeptide substrate. Furthermore, the structural studies demonstrate a conformational change brought about by substrate or product binding. Interestingly, the enzyme has low substrate specificity and was used to methylate the clinical antibiotic fosfomycin and the antimalaria clinical candidate fosmidomycin, showing its promise for applications in bioengineering.

  2. A triclinic polymorph of N-[4-(4-methyl-benzene-sulfonamido)-phenyl-sulfon-yl]acetamide.

    PubMed

    Hayat, Khizar; Asghar, Muhammad Nadeem; Tahir, M Nawaz; Shafiq, Muhammad; Ahmad, Dildar

    2012-04-01

    In the asymmetric unit of the title compound, C(15)H(16)N(2)O(5)S(2), there are two symmetry-independent mol-ecules which adopt similar conformations, with dihedral angles between the aromatic rings of 59.30 (8) and 61.81 (8)°, and dihedral angles between acetamide group and the benzene ring of 77.08 (10) and 78.40 (10)°. Each type of mol-ecule forms similar one-dimensional polymeric structures extending along the b axis via N-H⋯O hydrogen bonds. These hydrogen bonds generate two types of centrosymmetric motifs, R(2) (2)(8) and R(2) (2)(20). Moreover C-H⋯O inter-actions assemble the mol-ecules into a three-dimensional framework. The crystal structure was determined from a non-merohedral twin [ratio of the twin components = 0.322 (4):0.678 (4)].

  3. Adamantyl carboxamides and acetamides as potent human 11β-hydroxysteroid dehydrogenase type 1 inhibitors

    PubMed Central

    Su, Xiangdong; Halem, Heather A.; Thomas, Mark P.; Moutrille, Cecile; Culler, Michael D.; Vicker, Nigel; Potter, Barry V.L.

    2012-01-01

    The modulation of 11β-HSD1 activity with selective inhibitors has beneficial effects on various metabolic disorders including insulin resistance, dyslipidemia and obesity. Here we report the discovery of a series of novel adamantyl carboxamide and acetamide derivatives as selective inhibitors of human 11β-HSD1 in HEK-293 cells transfected with the HSD11B1 gene. Optimization based on an initially identified 11β-HSD1 inhibitor (3) led to the discovery of potent inhibitors with IC50 values in the 100 nM range. These compounds are also highly selective 11β-HSD1 inhibitors with no activity against 11β-HSD2 and 17β-HSD1. Compound 15 (IC50 = 114 nM) with weak inhibitory activity against the key human cytochrome P450 enzymes and moderate stability in incubation with human liver microsomes is worthy of further development. Importantly, compound 41 (IC50 = 280 nM) provides a new lead that incorporates an adamantyl group surrogate and should enable further series diversification. PMID:23040895

  4. Adamantyl carboxamides and acetamides as potent human 11β-hydroxysteroid dehydrogenase type 1 inhibitors.

    PubMed

    Su, Xiangdong; Halem, Heather A; Thomas, Mark P; Moutrille, Cecile; Culler, Michael D; Vicker, Nigel; Potter, Barry V L

    2012-11-01

    The modulation of 11β-HSD1 activity with selective inhibitors has beneficial effects on various metabolic disorders including insulin resistance, dyslipidemia and obesity. Here we report the discovery of a series of novel adamantyl carboxamide and acetamide derivatives as selective inhibitors of human 11β-HSD1 in HEK-293 cells transfected with the HSD11B1 gene. Optimization based on an initially identified 11β-HSD1 inhibitor (3) led to the discovery of potent inhibitors with IC(50) values in the 100 nM range. These compounds are also highly selective 11β-HSD1 inhibitors with no activity against 11β-HSD2 and 17β-HSD1. Compound 15 (IC(50)=114 nM) with weak inhibitory activity against the key human cytochrome P450 enzymes and moderate stability in incubation with human liver microsomes is worthy of further development. Importantly, compound 41 (IC(50)=280 nM) provides a new lead that incorporates an adamantyl group surrogate and should enable further series diversification.

  5. Synthesis of 2-{(5-phenyl-1,3,4-Oxadiazol-2-yl)sulfanyl}-N-substituted acetamides as potential antimicrobial and hemolytic agents.

    PubMed

    Rehman, Aziz-ur; Abbasi, Muhammad Athar; Siddiqui, Sabahat Zahra; Ahmad, Irshad; Shahid, Muhammad; Subhani, Zinayyera

    2016-05-01

    A new series of N-substituted derivatives of 2-{(5-phenyl-1,3,4-Oxadiazol-2-yl)sulfanyl}acetamides was synthesized. The synthesis was carried out by converting benzoic acid (1) into ethyl benzoate (2), benzohydrazide (3) and then 5-pheny-1,3,4-Oxadiazol-2-thiol (4) step by st0ep. The target compounds 6a-p were synthesized by reaction of compound 4 with equimolar ratios of different N-alkyl/aryl substituted 2-bromoacetamide (5a-p) in the presence of DMF and sodium hydride (NaH). The spectral (EI-MS, IR, (1)H-NMR) characterization of all the synthesized compounds reveal their successful synthesis. The compounds were also screened for antimicrobial & hemolytic activity and most of them were found to be active against the selected microbial species at variable extent relative to reference standards. But 6h was the most active against the selected panel of microbes. This series showed less toxicity and may be considered for further biological screening and application trial except 6m, possessing higher cytotoxicity.

  6. Renal reduced nicotinamide adenine dinucleotide phosphate:cytochrome c reductase-mediated metabolism of the carcinogen N-(4-(5-nitro-2-furyl)-2-thiazolyl)acetamide

    SciTech Connect

    Mattammal, M.B.; Zenser, T.V.; Palmier, M.O.; Davis, B.B.

    1985-01-01

    N-(4-(5-Nitro-2-furyl)-2-thiazolyl)acetamide (NFTA) metabolism was examined in vitro using microsomes prepared from rat liver and renal cortex and from rabbit liver and renal cortex and outer and inner medulla. NFTA nitroreduction was observed with each tissue. Three mol of NADPH were used per mol of NFTA reduced. Substrate and inhibitor specificity suggested that the microsomal nitroreduction was due to NADPH:cytochrome c reductase. Metabolite(s) formed bound to protein, RNA, DNA, and synthetic polyribonucleotides. Maximum covalent binding was seen with polyguanylic acid. A guanosine-NFTA adduct was isolated. Binding was inhibited by sulfhydryl compounds and vitamin E. The (/sup 14/C)NFTA:glutathione or (/sup 3/H)glutathione:NFTA conjugates obtained from microsomal incubations showed identical chromatographic properties as the product obtained by the reaction of synthetic N-hydroxy-NFTA with (/sup 3/H)glutathione. Structures of synthetic N-hydroxy-NFTA and the microsomal reduction product 1-(4-(2-acetylaminothiazolyl))-3-cyano-1-propanone were established by mass spectrometry. The latter reduction product did not bind macromolecules. These results suggest that renal NADPH:cytochrome c reductase reduces NFTA to an N-hydroxy-NFTA intermediate that binds nucleophilic sites on macromolecules.

  7. 40 CFR 721.1705 - Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid, diazotized, (3-aminophenyl)phosphonic acid and... Significant New Uses for Specific Chemical Substances § 721.1705 Benzoic acid, 3-amino-, diazotized,...

  8. 40 CFR 721.1705 - Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid, diazotized, (3-aminophenyl)phosphonic acid and... Significant New Uses for Specific Chemical Substances § 721.1705 Benzoic acid, 3-amino-, diazotized,...

  9. 40 CFR 721.1705 - Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid, diazotized, (3-aminophenyl)phosphonic acid and... Significant New Uses for Specific Chemical Substances § 721.1705 Benzoic acid, 3-amino-, diazotized,...

  10. 40 CFR 721.1705 - Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid, diazotized, (3-aminophenyl)phosphonic acid and... Significant New Uses for Specific Chemical Substances § 721.1705 Benzoic acid, 3-amino-, diazotized,...

  11. 40 CFR 721.1705 - Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid, diazotized, (3-aminophenyl)phosphonic acid and... Significant New Uses for Specific Chemical Substances § 721.1705 Benzoic acid, 3-amino-, diazotized,...

  12. Dielectric Relaxations of (Acetamide + Electrolyte) Deep Eutectic Solvents in the Frequency Window, 0.2 ≤ ν/GHz ≤ 50: Anion and Cation Dependence.

    PubMed

    Mukherjee, Kallol; Das, Anuradha; Choudhury, Samiran; Barman, Anjan; Biswas, Ranjit

    2015-06-25

    Dielectric relaxation (DR) measurements in the frequency range 0.2 ≤ ν/GHz ≤ 50 have been carried out for neat molten acetamide and six different (acetamide + electrolyte) deep eutectic solvents (DESs) for investigating ion effects on DR dynamics in these ionic DESs. Electrolytes used are lithium salts of bromide (LiBr), nitrate (LiNO3), and perchlorate (LiClO4); sodium salts of perchlorate (NaClO4) and thiocyante (NaSCN); and potassium thiocyanate (KSCN). With these electrolytes acetamide forms DESs approximately at an 80:20 mol ratio. Simultaneous fits to the measured permittivity (ε′) and loss (ε″) spectra of these DESs at ∼293 K require a sum of four Debye (4-D) processes with relaxation times spread over picosecond to nanosecond regime. In contrast, DR spectra for neat molten acetamide (∼354 K) depict 2-D relaxation with time constants ∼50 ps and ∼5 ps. For both the neat and ionic systems, the undetected dispersion, ε∞ – n(D)2, remains to be ∼3–4. Upon comparison, measured DR dynamics reveal pronounced anion and cation effects. Estimated static dielectric constants (ε0) from fits for these DESs cover the range 12 < ε0 < 30 and are remarkably lower than that (ε0 ∼ 64) measured for molten acetamide at ∼354 K. Hydrodynamic effective rotation volumes (Veff) estimated from the slowest DR relaxation time constants vary with ion identity and are much smaller than the molecular volume of acetamide. This decrease of ε0 and Veff is attributed respectively to the pinning of acetamide molecules by ions and orientation jumps and undetected portion to the limited frequency coverage employed in these measurements

  13. Synthesis of (α,α-difluoropropargyl)phosphonates via aldehyde-to-alkyne homologation.

    PubMed

    Pajkert, Romana; Röschenthaler, Gerd-Volker

    2013-04-19

    An efficient synthetic methodology to a series of novel alkynes bearing a difluoromethylenephosphonate function via a Corey-Fuchs-type sequence starting from (diethoxyphosphoryl)difluoroacetic aldehyde is described. Dehydrobromination of the intermediate (3,3-dibromodifluoroallyl)phosphonate with potassium tert-butoxide gave rise to the corresponding bromoalkyne, whereas upon treatment with lithium base, the generation of ((diethoxyphosphoryl)difluoropropynyl)lithium has been achieved for the first time. The synthetic potential of this lithium reagent was further demonstrated by its reactions with selected electrophiles such as aldehydes, ketones, triflates, chlorophosphines, and chlorosilanes, leading to the corresponding propargyl phosphonates in good to excellent yields. However, in the case, of sterically hindered aldehydes, (α-fluoroallenyl)phosphonates were the solely isolated products.

  14. Photochromic Terbium Phosphonates with Photomodulated Luminescence and Metal Ion Sensitive Detection.

    PubMed

    Yang, Weiting; Tian, Hong-Rui; Li, Jian-Ping; Hui, Yuan-Feng; He, Xiang; Li, Jiyang; Dang, Song; Xie, Zhigang; Sun, Zhong-Ming

    2016-10-17

    Rational selection and modification of rare earth metal centers and photoactive organic linkers enables designable multiphotofunctionality to come to fruition in new hybrid coordination polymer materials. By using a viologen-functionalized diphosphonate linker, two terbium phosphonate compounds (Tb-1 and Tb-2) have been constructed, which display reversible photochromic reactions in response to UV light and soft X-ray irradiation. In addition, the photo-induced electron-transfer reaction can modulate the luminescent emission to thus realize photoluminescence switching behavior. Furthermore, both terbium phosphonates can serve as highly sensitive sensors to probe Cu(2+) in solution through their luminescence. Thus, they represent the first photochromic examples of lanthanide phosphonate-based materials with photomodulated luminescence and sensitive detection of metal ions.

  15. Surface engineering of SPIONs: role of phosphonate ligand multivalency in tailoring their efficacy

    NASA Astrophysics Data System (ADS)

    Lam, Tina; Avti, Pramod K.; Pouliot, Philippe; Tardif, Jean-Claude; Rhéaume, Éric; Lesage, Frederic; Kakkar, Ashok

    2016-10-01

    We report the design of scaffolds containing mono-, bis-, and tris-phosphonate coordinating groups, and a polyethylene glycol chain, for stabilizing superparamagnetic iron oxide nanoparticles (SPIONs), using simple and versatile chemistry. We demonstrate that the number of anchoring phosphonate sites on the ligand influence the colloidal stability, magnetic and biological properties of SPIONs, and the latter do not solely depend on attaching moieties that can enhance their aqueous dispersion. These parameters can be tailored by the number of conjugation sites on the ligand, as evidenced from dynamic light scattering at various salt concentrations, magnetic relaxivities and cell viability studies.

  16. [Application of phosphates and phosphonates prodrugs in drug research and development].

    PubMed

    Ji, Xun; Wang, Jiang; Zhang, Lei; Zhao, Lin-Xiang; Jiang, Hua-Liang; Liu, Hong

    2013-05-01

    Based on the character of the molecular structure, the prodrugs of phosphates and phosphonates were divided into two categories. The first is the drug which contained the phosphate group, introducing protected groups to increase lipophilicity and improve bioavailability. The other one is the drug which had no phosphate group, introducing the phosphate group into molecules to enhance the solubility, regulate the distribution coefficient and enhance the drug-like property. This review focuses on the application of phosphates and phosphonates in drug research and development based on improvement of physico-chemical property, drug safety and the pharmacokinetics.

  17. Yield Improvement and Energy Savings Uing Phosphonates as Additives in Kraft pulping

    SciTech Connect

    Ulrike W. Tschirner; Timothy Smith

    2007-03-31

    Project Objective: Develop a commercially viable modification to the Kraft process resulting in energy savings, increased yield and improved bleachability. Evaluate the feasibility of this technology across a spectrum of wood species used in North America. Develop detailed fundamental understanding of the mechanism by which phosphonates improve KAPPA number and yield. Evaluate the North American market potential for the use of phosphonates in the Kraft pulping process. Examine determinants of customer perceived value and explore organizational and operational factors influencing attitudes and behaviors. Provide an economic feasibility assessment for the supply chain, both suppliers (chemical supply companies) and buyers (Kraft mills). Provide background to most effectively transfer this new technology to commercial mills.

  18. [Factors affecting formation of THMs during dissolved organic nitrogen acetamide chlorination in drinking water].

    PubMed

    Chu, Wen-Hai; Gao, Nai-Yun; Zhao, Shi-Jia; Li, Qing-Song

    2009-05-15

    Chlorination disinfection greatly reduced bacteria and virus in drinking water. However, there is an unintended consequence of disinfection, the generation of chemical disinfection by-products (DBPs). Dissolved organic nitrogen (DON) as the important precursor of DBPs is of current concern. As acetamide (AcAm) occur in important bimolecular, we studied formation pathways for THMs during chlorination of model AcAm. The experiments are designed by Plackett-Burman and Box-Behnken methods. Factors affecting formation of THMs such as AcAm initial concentration, chlorine dosage, pH, temperature, Br(-) concentration and contact time were investigated. The results indicate that AcAm initial concentration, pH and temperature have little effects on formation of THMs. On the contrary, three other factors have important effects on formation of THMs, especially Br(-) concentration. The capacity of THMs generation varies very little when Br(-) has a constant concentration. Generation amount of THMs attach maximum under the condition that dosage of active chlorine, Br(-) concentration and contact time is 8.77 mg/L, 0.77 mg/L and 6.20 h respectively. Bromine ion plays a catalysis role on THMs formation. Controlling the concentration of bromine ion can reduce total generation amount of THMs via AcAm. Bromine partition coefficient tends to increasing along with contact time lapse. Controlling chlorination reaction time can lower the cancer risk. At last, the pathway is proposed for THMs formation via AcAm, and the catalysis mechanism of Br(-) was addressed.

  19. Transport of 3,4-dihydroxybutyl-1-phosphonate, an analogue of sn-glycerol 3-phosphate.

    PubMed Central

    Leifer, Z; Engel, R; Tropp, B E

    1977-01-01

    3,4-Dihydroxybutyl-1-phosphonate (DHBP), an analogue of glycerol 3-phosphate, is actively transported by the sn-glycerol 3-phosphate transport system of Escherichia coli strain 8. The Km for the transport of DHBP is 200 microM. PMID:400804

  20. Thermal decomposition reactions of cotton fabric treated with piperazine-phosphonates derivatives as a flame retardant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There has been a great scientific interest in exploring the great potential of the piperazine-phosphonates in flame retardant (FR) application on cotton fabric by investigating the thermal decomposition of cotton fabric treated with them. This research tries to understand the mode of action of the t...

  1. The mechanism of action of piperazine-phosphonates derivatives in cotton fabric

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Piperazine-phosphonates additives are known to be very effective flame retardants on different polymeric systems, especially cotton cellulose. In order to understand their mechanism of action, we carried out the investigation of their thermal behavior on cotton fabric by, first, employing the attenu...

  2. Understanding the mechanism of action of triazine-phosphonate derivatives as flame retardants for cotton fabrics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Countless hours of research and studies on triazine, phosphonate and their combination have provided insightful information into their flame retardant properties on polymeric systems. However, only limited number of studies shed light on the mechanism of flame retardant cotton fabrics. The purpose...

  3. Synthesis of l-lyxo-phytosphingosine and its 1-phosphonate analogue using a threitol acetal synthon.

    PubMed

    Lu, Xuequan; Byun, Hoe-Sup; Bittman, Robert

    2004-08-06

    The first synthesis of an isosteric phosphonate analogue of the aminotriol lipid phytosphingosine (3), together with an improved synthesis of (2S,3S,4S)-phytosphingosine (2), are described. A key intermediate is 3-pentylidene acetal 9, which was prepared in two steps from dimethyl 2,3-O-benzylidene-d-tartrate (7).

  4. Synthesis and characterization of phosphonates from methyl linoleate and vegetable oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphonates were synthesized on a medium scale (~200 g) from three lipids: methyl linoleate (MeLin), high-oleic sunflower oil (HOSO) and soybean oil (SBO), and three dialkyl phosphites: methyl, ethyl and n-butyl, using a radical initiator. A staged addition of the lipid and the initiator to the dia...

  5. Synthesis and characterization of phosphonates from methyl linoleate and vegetable oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphonates were synthesized on a medium scale (~200 g) from three lipids–methyl linoleate (MeLin), high-oleic sunflower oil (HOSO) and soybean oil (SBO), and three dialkyl phosphites–methyl, ethyl and n-butyl, using a radical initiator. A staged addition of the lipid and the initiator was used to ...

  6. Functionalization of SBA-15 mesoporous silica by Cu-phosphonate units: Probing of synthesis route

    SciTech Connect

    Laskowski, Lukasz; Laskowska, Magdalena

    2014-12-15

    Mesoporous silica SBA-15 containing propyl-copper phosphonate units was investigated. The structure of mesoporous samples was tested by N{sub 2} isothermal sorption (BET and BHJ analysis), TEM microscopy and X-Ray scattering. Quantitative analysis EDX has given information about proportions between component atoms in the sample. Quantitative elemental analysis has been carried out to support EDX. To examine bounding between copper atoms and phosphonic units the Raman spectroscopy was carried out. As a support of Raman scattering, the theoretical calculations were made based on density functional theory, with the B3LYP method. By comparison of the calculated vibrational spectra of the molecule with experimental results, distribution of the active units inside silica matrix has been determined. - Graphical abstract: The present study is devoted to mesoporous silica SBA-15 containing propyl-copper phosphonate units. The species were investigated to confirm of synthesis procedure correctness by the micro-Raman technique combined with DFT numerical simulations. Complementary research was carried out to test the structure of mesoporous samples. - Highlights: • SBA-15 silica functionalized with propyl-copper phosphonate units was synthesized. • Synthesis efficiency probed by Raman study supported with DFT simulations. • Homogenous distribution of active units was proved. • Synthesis route enables precise control of distance between copper ions.

  7. Seasonal Expression of the Picocyanobacterial Phosphonate Transporter Gene phnD in the Sargasso Sea.

    PubMed

    Ilikchyan, Irina N; McKay, Robert Michael L; Kutovaya, Olga A; Condon, Rob; Bullerjahn, George S

    2010-01-01

    In phosphorus-limited marine environments, picocyanobacteria (Synechococcus and Prochlorococcus spp.) can hydrolyze naturally occurring phosphonates as a P source. Utilization of 2-aminoethylphosphonate (2-AEP) is dependent on expression of the phn genes, encoding functions required for uptake, and C-P bond cleavage. Prior work has indicated that expression of picocyanobacterial phnD, encoding the phosphonate binding protein of the phosphonate ABC transporter, is a proxy for the assimilation of phosphonates in natural assemblages of Synechococcus spp. and Prochlorococcus spp (Ilikchyan et al., 2009). In this study, we expand this work to assess seasonal phnD expression in the Sargasso Sea. By RT-PCR, our data confirm that phnD expression is constitutive for the Prochlorococcus spp. detected, but in Synechococcus spp. phnD transcription follows patterns of phosphorus availability in the mixed layer. Specifically, our data suggest that phnD is repressed in the spring when P is bioavailable following deep winter mixing. In the fall, phnD expression follows a depth-dependent pattern reflecting depleted P at the surface following summertime drawdown, and elevated P at depth.

  8. Inorganic-organic hybrid compounds: Synthesis and characterization of three new metal phosphonates with similar characteristic structural features

    SciTech Connect

    Bauer, Sebastian; Stock, Norbert . E-mail: stock@ac.uni-kiel.de

    2006-01-15

    The phosphonocarboxylic acid H(HO{sub 3}PCH{sub 2}){sub 2}NH-CH{sub 2}C{sub 6}H{sub 4}-COOH (H{sub 5} L ) was synthesized and characterized by NMR- and IR-spectroscopy, thermogravimetric (TG) analysis and single-crystal X-ray diffraction. Reactions of H{sub 5} L with samarium(III) chloride and calcium(II) chloride resulted in three new compounds, Sm[(O{sub 3}PCH{sub 2}){sub 2}NH-CH{sub 2}C{sub 6}H{sub 4}-COOH].H{sub 2}O (1), Ca[H(O{sub 3}PCH{sub 2}){sub 2}NH-CH{sub 2}C{sub 6}H{sub 4}-COOH].H{sub 2}O (2), and Ca[(HO{sub 3}PCH{sub 2}){sub 2}NH-CH{sub 2}C{sub 6}H{sub 4}-COOH]{sub 2}.4H{sub 2}O (3). The single-crystal structure determination of the title compounds reveals that in H{sub 5} L as well as in compounds 1, 2, and 3 zwitterions are present. Within the M-O building units of the metal phosphonates we observed a different degree of dimensionality, depending on the oxidation state of the metal ion and the synthesis conditions. In 1, one-dimensional chains of edge-sharing SmO{sub 8} polyhedra are observed while in 2, isolated units of edge-sharing CaO{sub 6} octahedra and in 3 isolated CaO{sub 6} octahedra are observed. However, looking at the organic part, the rigid phenyl carboxylic acid moieties arrange in a 'zipper-like' fashion and hydrogen bonding plays an important role in the stabilization of the crystal structure. The title compounds were further characterized by IR spectroscopy and TG analysis. Additionally, the thermal stability of 1 was investigated by temperature-dependent X-ray diffraction. -- Graphical abstract: Hydrothermal reactions of the phosphonocarboxylic acid H(HO{sub 3}PCH{sub 2}){sub 2}NH-CH{sub 2}C{sub 6}H{sub 4}-COOH with Sm{sup 3+} and Ca{sup 2+} salts has led to three new inorganic-organic hybrid compounds. All crystal structures contain phosphonate zwitterions and have a layer-like arrangement. The rigid organic groups arrange in a 'zipper-like' fashion and hydrogen bonding plays an important role in the stabilization of the crystal

  9. Structure of complexes of nitrilo tris methylene phosphonic acid with copper, [CuN(CH{sub 2}PO{sub 3}){sub 3}(H{sub 2}O){sub 3}] and Na{sub 4}[CuN(CH{sub 2}PO{sub 3}){sub 3}]{sub 2} · 19H{sub 2}O, as bactericides and inhibitors of scaling and corrosion

    SciTech Connect

    Somov, N. V.; Chausov, F. F.

    2015-03-15

    Nitrilotris methylene phosphonate triaqua copper and octasodium bis(nitrilotris methylene phosphonate cuprate(II)) nonadecahydrate have been synthesized and investigated. [CuN(CH{sub 2}PO{sub 3}){sub 3}(H{sub 2}O){sub 3}] is crystallized in the sp. gr. P2{sub 1}/c, Z = 4, a = 9.2506(2) Å, b = 15.9815(2) Å, c = 9.5474(2) Å, β = 113.697(2)°. The copper atom is coordinated by oxygen atoms in the configuration of elongated octahedron; the ligand (of bridge type) links neighboring copper atoms. Na{sub 8}[CuN(CH{sub 2}PO{sub 3}){sub 3}]{sub 2} · 19H{sub 2}O is crystallized in the sp. gr. P2{sub 1}/c, Z = 2, a = 11.24550(10) Å, b = 17.38980(10) Å, c = 13.5852(2) Å, β = 127.8120(10)°. This complex is chelating; the copper atom closes three five-membered N-C-P-O-Cu cycles with a shared Cu-N bond. Copper is coordinated in a distorted trigonal-bipyramidal configuration.

  10. Solid state and solution dynamics of pyridine based tetraaza-macrocyclic lanthanide chelates possessing phosphonate ligating functionality (Ln-PCTMB): effect on relaxometry and optical properties.

    PubMed

    Kiefer, Garry E; Woods, Mark

    2009-12-21

    The macrocyclic ligand 3,6,9-tris(methylenebutyl phosphonic acid)-3,6,9-15-tetraazabicyclo [9.3.1]pentadeca-1(15),11,13-triene (PCTMB) was synthesized and complexes of Eu(3+), Tb(3+), and Gd(3+) studied by X-ray crystallography, luminescence, and relaxometry. In the crystal these complexes are dimeric and possess 8-coordinate Ln(3+) centers that are linked by bridging phosphonates. The rigidity introduced by the pyridyl nucleus forces the EuPCTMB and TbPCTMB to adopt a twisted snub disphenoid (TSD) coordination geometry. Examination of the (5)D(0) --> (7)F(0) luminescent transition of EuPCTMB in the solid state confirmed the existence of a single distinct Eu(3+) coordination environment, whereas two Eu(3+) coordination environments were observed in aqueous solution. Lifetime analysis of aqueous TbPCTMB solutions determined that q = 0.1 and q = 1.0 for the two coordination environments and Stern-Volmer quenching constants (K(SV)(tau) = 1101 M(-1), K(SV)(Phi) = 40780 M(-1)) support the presence of a complicated monomer/dimer equilibrium. Relaxivity studies of GdPCTMB in H(2)O/CH(3)OH exhibited a concentration dependency (0.02 mM-10.00 mM) ranging from r(1) = 7.0 mM(-1) s(-1) to 4.0 mM(-1) s(-1) consistent with the trend observed by luminescence.

  11. Synthesis and characterization of calcium hydroxy and fluoroapatite functionalized with methyl phosphonic dichloride

    NASA Astrophysics Data System (ADS)

    Agougui, Hassen; Aissa, Abdallah; Debbabi, Mongi

    2012-11-01

    The nature of apatite-organic molecule interaction was the subject of many investigations. Grafting the organic molecule onto the inorganic support may precede through either formation of covalent bonds or ionic interaction between superficial hydroxyl on the apatite surface and organic functions. The hybrid materials obtained by functionalization of apatite surfaces with phosphonate moieties are of interest for their potential applications such in catalysis, chromatography and biomedical domain. In this scope, calcium hydroxyl and fluoroapatite (CaHAp and CaFAp) were prepared in the presence of the methyl phosphonic dichloride (MPO), by contact method in organic solvent at 25 °C for 2 days. The products are rigorously characterized by chemical analysis, infrared (IR), MAS-NMR spectroscopies, powder X-ray diffraction (XRD), atomic force microscopy (AFM) and specific surface area (SSA). The X-ray powder analysis showed that the crystallinity was sensibly affected by the presence of organic moieties. The IR spectroscopy showed new vibration modes appearing related to phosphonate groups essentially at 2930, 1315, 945, 764 and 514 cm-1. The 31P MAS NMR spectrum for hydroxy and fluoroapatite exhibits a single signal at 2.8 ppm. After reaction with (MPO) the spectra show the presence of new signals, assigned to the formation of organic-inorganic bond between the superficial hydroxyl groups of the apatite (tbnd CaOH) and (tbnd POH) and methyl phosphonic dichloride. The SSA decreases with increasing phosphonate amount especially for CaHAp modified by (MPO). AFM indicated that the texture surface was changed by grafting.

  12. Monitoring 2-phenylethanamine and 2-(3-hydroxyphenyl)acetamide sulfate in doping controls.

    PubMed

    Sigmund, Gerd; Dib, Josef; Tretzel, Laura; Piper, Thomas; Bosse, Christina; Schänzer, Wilhelm; Thevis, Mario

    2015-01-01

    2-Phenylethanamine (phenethylamine, PEA) represents the core structure of numerous drugs with stimulant-like properties and is explicitly featured as so-called specified substance on the World Anti-Doping Agency (WADA) Prohibited List. Due to its natural occurrence in humans as well as its presence in dietary products, studies concerning the ability of test methods to differentiate between an illicit intake and the renal elimination of endogenously produced PEA were indicated. Following the addition of PEA to the Prohibited List in January 2015, retrospective evaluation of routine doping control data of 10 190 urine samples generated by combined gas chromatography-mass spectrometry and nitrogen phosphorus-specific detection (GC-MS/NPD) was performed. Signals for PEA at approximate concentrations > 500 ng/mL were observed in 31 cases (0.3%), which were subjected to a validated isotope-dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS) test method for accurate quantification of the target analyte. Further, using elimination study urine samples collected after a single oral administration of 250 mg of PEA hydrochloride to two healthy male volunteers, two tentatively identified metabolites of PEA were observed and evaluated concerning their utility as discriminative markers for PEA intake. The ID-LC-MS/MS approach was extended to allow for the simultaneous detection of PEA and 2-(3-hydroxyphenyl)acetamide sulfate (M1), and concentration ratios of M1 and PEA were calculated for elimination study urine samples and a total of 205 doping control urine samples that returned findings for PEA at estimated concentrations of 50-2500 ng/mL. Urine samples of the elimination study with PEA yielded concentration ratios of M1/PEA up to values of 9.4. Notably, the urinary concentration of PEA did increase with the intake of PEA only to a modest extent, suggesting a comprehensive metabolism of the orally administered substance. Conversely, doping control

  13. Synthesis and chromatographic properties of a chiral stationary phase derived from bovine serum albumin immobilized on magnesia-zirconia using phosphonate spacers.

    PubMed

    Li, Ting; Yu, Qiong-Wei; Lin, Bo; Feng, Yu-Qi

    2007-04-01

    A novel bovine serum albumin (BSA)-modified magnesia-zirconia stationary phase was prepared using the sodium salt of cis-(3-methyloxiranyl)phosphonic acid (fosfomycin) as spacer and glutaraldehyde as coupler. Baseline separation of six derivatized amino acids (DNB-Leu, Dansyl-Val, etc.) was achieved on this column using ammonium acetate buffer-isopropanol mobile phase at a flow rate of 1.0 mL/min. The effects of mobile phase composition, eluent pH value, column temperature, and flow rate on the retention and separation of chiral compounds were also investigated. The BSA chiral stationary phase (BSA-CSP) was relatively stable under experimental conditions. The coupling reaction in this method was mild, reliable, and reproducible; thus it was also suitable for the immobilization of various biopolymers with amino groups in the preparation of chromatography stationary phases.

  14. In vivo protection studies of bis-quaternary 2-(hydroxyimino)- N-(pyridin-3-yl) acetamide derivatives (HNK oximes) against tabun and soman poisoning in Swiss albino mice.

    PubMed

    Kumar, P; Swami, D; Nagar, D P; Singh, K P; Acharya, J; Karade, H N; Yadav, R

    2017-01-01

    The study reports antidotal efficacy of three HNK [ bis quaternary 2-(hydroxyimino)-N-(pyridin-3yl) acetamide derivatives] and pralidoxime (2-PAM), against soman and tabun poisoning in Swiss albino mice. Protection index (PI) was determined (treatment doses: HNK oximes, ×0.20 of their median lethal dose (LD50) and 2-PAM, 30 mg/kg, intramuscularly (im)) together with atropine (10 mg/kg, intraperitoneally). Probit log doses with difference of 0.301 log of LD50 of the nerve agents administered and inhibition of acetylcholinesterase (AChE) activity by 50% (IC50) was calculated at optimized time in brain and serum. Using various doses of tabun and soman (subcutaneously (sc)), in multiples of their IC50, AChE reactivation ability of the oximes was studied. Besides, acute toxicity (0.8× LD50, im, 24 h postexposure) of HNK-102 and 2-PAM was also compared by determining biochemical, hematological variables and making histopathological observations. Protection offered by HNK-102 against tabun poisoning was found to be four times higher compared to 2-PAM. However, nearly equal protection was noted with all the four oximes against soman poisoning. HNK-102 reactivated brain AChE activity by 1.5 times more than 2-PAM at IC50 dose of soman and tabun. Acute toxicity studies of HNK-102 and 2-PAM showed sporadic changes in urea, uric acid, aspartate aminotransferase, and so on compared to control group, however, not supported by histopathological investigations. The present investigation showed superiority of newly synthesized HNK-102 oxime over standard 2-PAM, as a better antidote, against acute poisoning of tabun (4.00 times) and soman (1.04 times), in Swiss albino mice.

  15. Crystal structures of two C,N-disubstituted acetamides: 2-(4-chloro­phen­yl)-N-(2-iodo­phen­yl)acetamide and 2-(4-chloro­phen­yl)-N-(pyrazin-2-yl)acetamide

    PubMed Central

    Narayana, Badiadka; Yathirajan, Hemmige S.; Rathore, Ravindranath; Glidewell, Christopher

    2016-01-01

    In the crystal of 2-(4-chloro­phen­yl)-N-(2-iodo­phen­yl)acetamide, C14H11ClINO, mol­ecules are linked by a combination of N—H⋯O and C—H⋯O hydrogen bonds to form a C(4)C(4)[R 2 1(7)] chain of rings and chains of this type are linked by a combination of C—Cl⋯π(arene) and C—I⋯π(arene) inter­actions to form deeply puckered twofold inter­woven sheets. In the crystal of 2-(4-chloro­phen­yl)-N-(pyrazin-2-yl)acetamide, C12H10ClN3O, mol­ecules are linked into complex sheets by N—H⋯N, C—H⋯N and C—H⋯O hydrogen bonds, and by C—H⋯π(arene) inter­actions. PMID:27920915

  16. Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same

    DOEpatents

    Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato

    2001-01-01

    A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.

  17. Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same

    DOEpatents

    Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato; Gula, Michael J.; Xue, Sui; Harvey, James T.

    2002-01-01

    A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.

  18. Regioselective formation of 2,4,5-trisubstituted oxazoles through transition-metal free heterocyclization of 1,3-diynes with N,O-bis(trimethylsiyl)acetamide.

    PubMed

    Zhang, Liang; Zhao, Xiaoming

    2015-01-16

    Transition-metal free heterocyclization reaction of 1,3-diynes with N,O-bis(trimethylsiyl)acetamide was accomplished in the presence of t-BuOK and acetonitrile at 120 °C. This method regioselectively gave 2,4,5-trisubstituted oxazoles in yields up to 97%.

  19. Current Understanding of Perfluoroalkyl Acid Toxicology

    EPA Science Inventory

    The perfluoroalkyl acids (PFAAs) are a family of organic chemicals consisting of a perfluorinated carbon backbone (4-14 carbons in length) and an anionic head group (sulfonate, carboxylate or phosphonate). These compounds have excellent surface-tension reducing properties and hav...

  20. Effect of phosphonate monolayer adsorbate on the microwave photoresponse of TiO2 nanotube membranes mounted on a planar double ring resonator

    NASA Astrophysics Data System (ADS)

    Zarifi, Mohammad H.; Farsinezhad, Samira; Wiltshire, Benjamin D.; Abdorrazaghi, Mohammad; Mahdi, Najia; Kar, Piyush; Daneshmand, Mojgan; Shankar, Karthik

    2016-09-01

    In this study, the effects of a phosphonate molecular monolayer adsorbed on the surface of a free-standing self-organized TiO2 nanotube membrane, on the microwave photoresponse of the membrane are presented. This phenomenon is monitored using planar microwave sensors. A double ring resonator is utilized to monitor the permittivity and conductivity variation on the monolayer coated membrane and the sensor environment separately. It is shown that the rise time and subsequent decay of the amplitude (A), resonance frequency (f 0) and quality factor (Q) of the resonator depend on the existence and the type of the monolayer coating the membrane. Three different monolayers of n-decylphosphonic acid (DPA), 1H, 1H‧, 2H, 2H‧-perfluorodecyl phosphonic acid (PFDPA) and 16-phosphonohexadecanoic acid adsorbed on the titania nanotube membrane are investigated while monitoring their microwave properties during the illumination time period and in the relaxation period, which demonstrate different behavior in comparison to each other and to the bare nanotube membrane layer. The effect of humidity on the TiO2 nanotube membrane with and without different monolayers is also studied and the results demonstrate distinguishable microwave responses. While each of the monolayer-coated membranes exhibited an attenuation of the photo-induced change in A, f 0 and Q with respect to the bare membrane, PFDPA-coated membranes showed the smallest relative change in the monitored microwave parameters upon ultraviolet illumination and upon the introduction of different levels of humidity. These effects are explained on the basis of surface trap passivation by the monolayers as well as the hydrophobicity of the monolayers. Our work also shows how the interactions of self-assembled monolayers with charge carriers and surface states on metal oxides may be used to indirectly sense their presence through measurement of the microwave response.

  1. Collective dynamic dipole moment and orientation fluctuations, cooperative hydrogen bond relaxations, and their connections to dielectric relaxation in ionic acetamide deep eutectics: Microscopic insight from simulations

    NASA Astrophysics Data System (ADS)

    Das, Suman; Biswas, Ranjit; Mukherjee, Biswaroop

    2016-08-01

    The paper reports a detailed simulation study on collective reorientational relaxation, cooperative hydrogen bond (H-bond) fluctuations, and their connections to dielectric relaxation (DR) in deep eutectic solvents made of acetamide and three uni-univalent electrolytes, lithium nitrate (LiNO3), lithium bromide (LiBr), and lithium perchlorate (LiClO4). Because cooperative H-bond fluctuations and ion migration complicate the straightforward interpretation of measured DR timescales in terms of molecular dipolar rotations for these conducting media which support extensive intra- and inter-species H-bonding, one needs to separate out the individual components from the overall relaxation for examining the microscopic origin of various timescales. The present study does so and finds that reorientation of ion-complexed acetamide molecules generates relaxation timescales that are in sub-nanosecond to nanosecond range. This explains in molecular terms the nanosecond timescales reported by recent giga-Hertz DR measurements. Interestingly, the simulated survival timescale for the acetamide-Li+ complex has been found to be a few tens of nanosecond, suggesting such a cation-complexed species may be responsible for a similar timescale reported by mega-Hertz DR measurements of acetamide/potassium thiocyanate deep eutectics near room temperature. The issue of collective versus single particle relaxation is discussed, and jump waiting time distributions are determined. Dependence on anion-identity in each of the cases has been examined. In short, the present study demonstrates that assumption of nano-sized domain formation is not required for explaining the DR detected nanosecond and longer timescales in these media.

  2. Collective dynamic dipole moment and orientation fluctuations, cooperative hydrogen bond relaxations, and their connections to dielectric relaxation in ionic acetamide deep eutectics: Microscopic insight from simulations.

    PubMed

    Das, Suman; Biswas, Ranjit; Mukherjee, Biswaroop

    2016-08-28

    The paper reports a detailed simulation study on collective reorientational relaxation, cooperative hydrogen bond (H-bond) fluctuations, and their connections to dielectric relaxation (DR) in deep eutectic solvents made of acetamide and three uni-univalent electrolytes, lithium nitrate (LiNO3), lithium bromide (LiBr), and lithium perchlorate (LiClO4). Because cooperative H-bond fluctuations and ion migration complicate the straightforward interpretation of measured DR timescales in terms of molecular dipolar rotations for these conducting media which support extensive intra- and inter-species H-bonding, one needs to separate out the individual components from the overall relaxation for examining the microscopic origin of various timescales. The present study does so and finds that reorientation of ion-complexed acetamide molecules generates relaxation timescales that are in sub-nanosecond to nanosecond range. This explains in molecular terms the nanosecond timescales reported by recent giga-Hertz DR measurements. Interestingly, the simulated survival timescale for the acetamide-Li(+) complex has been found to be a few tens of nanosecond, suggesting such a cation-complexed species may be responsible for a similar timescale reported by mega-Hertz DR measurements of acetamide/potassium thiocyanate deep eutectics near room temperature. The issue of collective versus single particle relaxation is discussed, and jump waiting time distributions are determined. Dependence on anion-identity in each of the cases has been examined. In short, the present study demonstrates that assumption of nano-sized domain formation is not required for explaining the DR detected nanosecond and longer timescales in these media.

  3. Deviation between the chemistry of Ce(IV) and Pu(IV) and routes to ordered and disordered heterobimetallic 4f/5f and 5f/5f phosphonates

    SciTech Connect

    Diwu, Juan; Wang, Shuao; Good, Justin J.; DiStefano, Victoria H.; Albrecht-Schmitt, Thomas E.

    2011-06-06

    The heterobimetallic actinide compound UO₂Ce(H₂O)[C₆H₄(PO₃H)₂]₂·H₂O was prepared via the hydrothermal reaction of U(VI) and Ce(IV) in the presence of 1,2-phenylenediphosphonic acid. We demonstrate that this is a kinetic product that is not stable with respect to decomposition to the monometallic compounds. Similar reactions have been explored with U(VI) and Ce(III), resulting in the oxidation of Ce(III) to Ce(IV) and the formation of the Ce(IV) phosphonate, Ce[C₆H₄(PO₃H)(PO₃H₂)][C₆H₄(PO₃H)(PO₃)]·2H₂O, UO₂Ce(H₂O)[C₆H₄(PO₃H)₂]₂·H₂O, and UO₂[C₆H₄(PO₃H)₂](H₂O)·H₂O. In comparison, the reaction of U(VI) with Np(VI) only yields Np[C₆H₄(PO₃H)₂]₂·2H₂O and aqueous U(VI), whereas the reaction of U(VI) with Pu(VI) yields the disordered U(VI)/Pu(VI) compound, (U0.9Pu0.1)O₂[C₆H₄(PO₃H)₂](H₂O)·H₂O, and the Pu(IV) phosphonate, Pu[C₆H₄(PO₃H)(PO₃H₂)][C₆H₄(PO₃H)(PO₃)]·2H₂O. The reactions of Ce(IV) with Np(VI) yield disordered heterobimetallic phosphonates with both M[C₆H₄(PO₃H)(PO₃H₂)][C₆H₄(PO₃H)(PO₃)]·2H₂O (M = Ce, Np) and M[C₆H₄(PO₃H)₂]₂·2H₂O (M = Ce, Np) structures, as well as the Ce(IV) phosphonate Ce[C₆H₄(PO₃H)(PO₃H₂)][C₆H₄(PO₃H)(PO₃)]·2H₂O. Ce(IV) reacts with Pu(IV) to yield the Pu(VI) compound, PuO₂[C₆H₄(PO₃H)₂](H₂O)·3H₂O, and a disordered heterobimetallic Pu(IV)/Ce(IV) compound with the M[C₆H₄(PO₃H)(PO₃H₂)][C₆H₄(PO₃H)(PO₃)]·2H₂O (M = Ce, Pu) structure. Mixtures of Np(VI) and Pu(VI) yield disordered heterobimetallic Np(IV)/Pu(IV) phosphonates with both the An[C₆H₄(PO₃H)(PO₃H₂)][C₆H₄(PO₃H)(PO₃)]·2H₂O (M = Np, Pu) and An[C₆H₄(PO₃H)₂]₂·2H₂O (M = Np, Pu) formulas.

  4. N-aryl 2-aryloxyacetamides as a new class of fatty acid amide hydrolase (FAAH) inhibitors.

    PubMed

    Sunduru, Naresh; Svensson, Mona; Cipriano, Mariateresa; Marwaha, Sania; Andersson, C David; Svensson, Richard; Fowler, Christopher J; Elofsson, Mikael

    2017-12-01

    Fatty acid amide hydrolase (FAAH) is a promising target for the development of drugs to treat neurological diseases. In search of new FAAH inhibitors, we identified 2-(4-cyclohexylphenoxy)-N-(3-(oxazolo[4,5-b]pyridin-2-yl)phenyl)acetamide, 4g, with an IC50 of 2.6 µM as a chemical starting point for the development of potent FAAH inhibitors. Preliminary hit-to-lead optimisation resulted in 2-(4-phenylphenoxy)-N-(3-(oxazolo[4,5-b]pyridin-2-yl)phenyl)acetamide, 4i, with an IC50 of 0.35 µM.

  5. Synthetic molecular receptors for phosphates and phosphonates in sol-gel materials

    SciTech Connect

    Sasaki, D.Y.; Alam, T.M.; Assink, R.A.

    1997-12-01

    Synthetic receptors for phosphates and phosphonates have been generated in SiO{sub 2} xerogels via a surface molecular imprinting method. The monomer 3-trimethoxy silylpropyl-1-guanidinium chloride (1) was developed to prepare receptor sites capable of binding with substrates through a combination of ionic and hydrogen bond interactions. HPLC studies and adsorption isotherms performed in water have found that molecular imprinting affords a significant improvement in K{sub a} for phosphate and phosphonate affinity over a randomly functionalized xerogel. Affinities for these materials offer about an order of magnitude improvement in affinity compared to analogous small molecule receptors reported in the literature. The xerogel matrix appears to participate in host-guest interactions through anionic charge buildup with increasing pH.

  6. Binding of phosphinate and phosphonate inhibitors to aspartic proteases: a first-principles study.

    PubMed

    Vidossich, Pietro; Carloni, Paolo

    2006-01-26

    Phosphinate and phosphonate derivatives are potent inhibitors of aspartic proteases (APs). The affinity for the enzyme might be caused by the presence of low barrier hydrogen bonds between the ligand and the catalytic Asp dyad in the cleavage site. We have used density functional theory calculations along with hybrid quantum mechanics/molecular mechanics Car-Parrinello molecular dynamics simulations to investigate the hydrogen-bonding pattern at the binding site of the complexes of human immunodeficiency virus type-1 AP and the eukaryotic endothiapepsin and penicillopepsin. Our calculations are in fair agreement with the NMR data available for endothiapepsin (Coates et al. J. Mol. Biol. 2002, 318, 1405-1415) and show that the most stable active site configuration is the diprotonated, negatively charged form. In the viral complex both protons are located at the catalytic Asp dyad, while in the eukaryotic complexes the proton shared by the closest oxygen atoms is located at the phosphinic/phosphonic group.

  7. Environmental risk assessment of phosphonates, used in domestic laundry and cleaning agents in The Netherlands.

    PubMed

    Jaworska, Joanna; Van Genderen-Takken, Helen; Hanstveit, Arnbjorn; van de Plassche, Erik; Feijtel, Tom

    2002-05-01

    In the long-term cooperative project Voluntary Plan of Action (1990) between the Dutch Soap and Detergent Association (NVZ) and the Dutch Ministry of Housing, Spatial Planning and the Environment (VROM) environmental risk assessments of several main components of laundry cleaning formulations were completed. As a part of that project the environmental risk assessment of HEDP, ATMP, EDTMP and DTPMP phosphonates used in detergent applications has been carried out according to the EU Technical Guidance Document for Environmental Risk Assessment for New and Existing Chemicals. All PEC/PNEC ratios were well below 1. Results of this assessment based on the total industry volumes from 1995 and 1998 indicate that the environmental risk of these phosphonates is low in The Netherlands with properly functioning sewage treatment plants.

  8. Comparison of the crystal structure and molecular models of N,N-dissobutyl-2-(octylphenylphosphinyl)acetamide(CMPO).

    SciTech Connect

    Rogers, R. D.; Rollins, A. N.; Gatrone, R. C.; Horwitz, E. P.; Chemistry; Northern Illinois Univ.

    1995-01-01

    The crystal structure of N,N-diisobutyl-2-(octylphenylphosphinyl)acetamide, or CMPO was recently determined. The compound crystallizes in the space group P2{sub 1}/c with a=13.446(6),b=22.280(7),c=17.217(7) Angstroms, {beta}=92.07(4) degrees, and D{sub calc}=1.05 g/cm3 for Z=8 @20 C. Molecular mechanics, molecular dynamics, and MNDO calculations were also performed on CMPO utilizing the SYBYL suite of programs. The results from these calculations are compared to the crystal structure and to similar calculations performed on CMPO using ALCHEMY. In general, the results from the calculations agree fairly well with the parameters from the crystal structure.

  9. Vibrational, spectroscopic, molecular docking and density functional theory studies on N-(5-aminopyridin-2-yl)acetamide

    NASA Astrophysics Data System (ADS)

    Asath, R. Mohamed; Rekha, T. N.; Premkumar, S.; Mathavan, T.; Benial, A. Milton Franklin

    2016-12-01

    Conformational analysis was carried out for N-(5-aminopyridin-2-yl)acetamide (APA) molecule. The most stable, optimized structure was predicted by the density functional theory calculations using the B3LYP functional with cc-pVQZ basis set. The optimized structural parameters and vibrational frequencies were calculated. The experimental and theoretical vibrational frequencies were assigned and compared. Ultraviolet-visible spectrum was simulated and validated experimentally. The molecular electrostatic potential surface was simulated. Frontier molecular orbitals and related molecular properties were computed, which reveals that the higher molecular reactivity and stability of the APA molecule and further density of states spectrum was simulated. The natural bond orbital analysis was also performed to confirm the bioactivity of the APA molecule. Antidiabetic activity was studied based on the molecular docking analysis and the APA molecule was identified that it can act as a good inhibitor against diabetic nephropathy.

  10. Thiol-ene and H-phosphonate-ene reactions for lipid modifications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The addition of H-E (E= -SR, -P(O)(OR)2 or -P(O)R2) to the carbon-carbon double bonds in lipids is a way to create new materials: lubricants, additives, polymers. In the current chapter, the radical addition of thiols (E= SR) and H-phosphonates (E= P(O)(OR)2) will be reviewed in detail. The kinetics...

  11. Novel carboranyl derivatives of nucleoside mono- and diphosphites and phosphonates: a synthetic investigation.

    PubMed

    Vyakaranam, Kamesh; Hosmane, Narayan S

    2004-01-01

    A number of nucleoside mono- and diphosphites and phosphonates containing 1,2-dicarbadodecaborane (12) (la-6b) at 5'-position of the sugar moiety have been synthesized in good yields. Experimental details along with the spectroscopic and analytical data, supporting the formation of the title compounds, are presented. These constitute a new generation of boron compounds that are envisioned to be useful in cancer treatment via Boron Neutron Capture Therapy (BNCT).

  12. Two isomeric lead(II) carboxylate-phosphonates: syntheses, crystal structures and characterizations

    NASA Astrophysics Data System (ADS)

    Lei, Chong; Mao, Jiang-Gao; Sun, Yan-Qiong

    2004-07-01

    Two isomeric layered lead(II) carboxylate-phosphonates of N-(phosphonomethyl)- N-methyl glycine ([MeN(CH 2CO 2H)(CH 2PO 3H 2)]=H 3L), namely, monoclinic Pb 3L 2·H 2O 1 and triclinic Pb 3L 2·H 2O 2, have been synthesized and structurally determined. Compound 1 synthesized by hydrothermal reaction at 150°C is monoclinic, space group C2/ c with a=19.9872(6), b=11.9333(1) and c=15.8399(4) Å, β=110.432(3)°, V=3540.3(1) Å 3, and Z=8. The structure of compound 1 features a <400> layer in which the lead(II) ions are bridged by both phosphonate and carboxylate groups. The lattice water molecules are located between the layers, forming hydrogen bonds with the non-coordinated carboxylate oxygen atoms. Compound 2 with a same empirical formula as compound 1 was synthesized by hydrothermal reaction at 170°C. It has a different layer structure from that of compound 1 due to the adoption of a different coordination mode for the ligand. It crystallizes in the triclinic system, space group P 1¯ with cell parameters of a=7.1370(6), b=11.522(1), c=11.950(1) Å, α=110.280(2), β=91.625(2), γ=95.614(2)°, V=915.3(1) Å 3 and Z=2. The structure of compound 2 features a <020> metal carboxylate-phosphonate double layer built from 1D lead(II) carboxylate chains interconnected with 1D lead(II) phosphonate double chains. XRD powder patterns of compounds 1 and 2 indicate that each compound exists as a single phase.

  13. Triethylenetetramine penta- and hexa-acetamide ligands and their ytterbium complexes as paraCEST contrast agents for MRI.

    PubMed

    Burdinski, Dirk; Lub, Johan; Pikkemaat, Jeroen A; Moreno Jalón, Diana; Martial, Sophie; Del Pozo Ochoa, Carolina

    2008-08-21

    The ligand triethylenetetramine-N,N,N',N'',N''',N'''-hexaacetamide (ttham) was synthesized with the aim of forming lanthanide complexes suitable as contrast agents for magnetic resonance imaging applications utilizing the chemical exchange-dependent saturation transfer (CEST) effect. It was designed to exclude water molecules from the first coordination sphere and provide a high number of CEST active amide protons per lanthanide ion. The ligand was characterized by its protonation behavior and its complexation properties with ytterbium ions in aqueous solution. The basicity of the ttham backbone amine protons decreases in the order N(central(1)) > N(terminal(1)) > N(terminal(2)) > N(central(2)), as deduced from NMR titration experiments and from a comparison of its protonation constants with those of two ttham derivatives, in which either a terminal (N-benzyl-triethylenetetramine-N,N',N'',N''',N'''-pentaacetamide, 1bttpam) or a central acetamide group (N'-benzyl-triethylenetetramine-N,N,N'',N''',N'''-pentaacetamide, 4bttpam) is substituted with a benzyl group. This protonation sequence results from the combined influence of inductive effects, the intramolecular hydrogen bonding network, and the Coulomb repulsion between protonated ammonium groups. The ytterbium complex of ttham, [Yb(ttham)]Cl(3), is coordinatively frustrated. Due to steric constraints, in addition to the four backbone nitrogen atoms, only three of the four symmetry-equivalent terminal acetamide donors can coordinate simultaneously to the ytterbium ion, and the dangling fourth one exchanges quickly with the other three. The ytterbium complexes of a total of five ligands (ttham, 1bttpam, 4bttpam, 2,2',2''-triaminotriethylaminehexaacetamide (ttaham), and diethylenetriamine-N,N,N',N'',N''-pentaacetamide (dtpam)) were studied with respect to their CEST properties. In solution, all of these complexes have a low symmetry. The presence of multiple magnetically different amide groups in each complex

  14. Determination of acid-base dissociation constants of amino- and guanidinopurine nucleotide analogs and related compounds by capillary zone electrophoresis.

    PubMed

    Solínová, Veronika; Kasicka, Václav; Koval, Dusan; Cesnek, Michal; Holý, Antonín

    2006-03-01

    CZE has been applied for determination of acid-base dissociation constants (pKa) of ionogenic groups of newly synthesized amino- and (amino)guanidinopurine nucleotide analogs, such as acyclic nucleoside phosphonate, acyclic nucleoside phosphonate diesters and other related compounds. These compounds bear characteristic pharmacophores contained in various important biologically active substances, such as cytostatics and antivirals. The pKa values of ionogenic groups of the above compounds were determined by nonlinear regression analysis of the experimentally measured pH dependence of their effective electrophoretic mobilities. The effective mobilities were measured by CZE performed in series of BGEs in a broad pH range (3.50-11.25), at constant ionic strength (25 mM) and temperature (25 degrees C). pKa values were determined for the protonated guanidinyl group in (amino)guanidino 9-alkylpurines and in (amino)guanidinopurine nucleotide analogs, such as acyclic nucleoside phosphonates and acyclic nucleoside phosphonate diesters, for phosphonic acid to the second dissociation degree (-2) in acyclic nucleoside phosphonates of amino and (amino)guanidino 9-alkylpurines, and for protonated nitrogen in position 1 (N1) of purine moiety in acyclic nucleoside phosphonates of amino 9-alkylpurines. Thermodynamic pKa of protonated guanidinyl group was estimated to be in the range of 7.75-10.32, pKa of phosphonic acid to the second dissociation degree achieved values of 6.64-7.46, and pKa of protonated nitrogen in position 1 of purine was in the range of 4.13-4.89, depending on the structure of the analyzed compounds.

  15. Evaluation of 2'-hydroxyl protection in RNA-synthesis using the H-phosphonate approach.

    PubMed Central

    Rozners, E; Westman, E; Strömberg, R

    1994-01-01

    A number of different protecting groups were compared with respect to their usefulness for protection of 2'-hydroxyl functions during synthesis of oligoribonucleotides using the H-phosphonate approach. The comparison was between the t-butyldimethylsilyl (t-BDMSi), the o-chlorobenzoyl (o-CIBz), the tetrahydropyranyl (THP), the 1-(2-fluorophenyl)-4-methoxypiperidin-4-yl (Fpmp), the 1-(2-chloro-4-methylphenyl)-4-methoxypiperidin-4-yl (Ctmp), and the 1-(2-chloroethoxy)ethyl (Cee) protecting groups. All these groups were tested in synthesis of dodecamers, (Up)11U and (Up)11A, using 5'-O-(4-monomethoxytrityl) or (4,4'-dimethoxytrityl) uridine H-phosphonate building blocks carrying the respective 2'-protection. The performance of the t-BDMSi and o-CIBz derivatives were also compared in synthesis of (Up)19U. The most successful syntheses were clearly those where the t-butyldimethylsilyl group was used. The o-chlorobenzoyl group also gave satisfactory results but seems somewhat limited with respect to synthesis of longer oligomers. The results with all tested acetal derivatives (Fpmp, Ctmp, Cee, THP) were much less successful due to some accompanying cleavage of internucleotidic H-phosphonate functions during removal of 5'-O-protection (DMT). PMID:8127660

  16. Synthesis and properties of ApA analogues with shortened phosphonate internucleotide linkage.

    PubMed

    Králíková, Sárka; Buděšínský, Miloš; Barvík, Ivan; Masojídková, Milena; Točík, Zdeněk; Rosenberg, Ivan

    2011-01-01

    A complete series of the 2 '-5 ' and 3 '-5 ' regioisomeric types of r(ApA) and 2 '-d(ApA) analogues with the α-hydroxy-phosphonate C3 '-O-P-CH(OH)-C4 ″ internucleotide linkage, isopolar but non-isosteric with the phosphodiester one, were synthesized and their hybridization properties with polyU studied. Due to the chirality on the 5 '-carbon atom of the modified internucleotide linkage bearing phosphorus and hydroxy moieties, each regioisomeric type of ApA dimer is split into epimeric pairs. To examine the role of the 5 '-hydroxyl of the α-hydroxy-phosphonate moiety during hybridization, the appropriate r(ApA) analogues with 3 '(2 ')-O-P-CH(2)-C4 ″ linkage lacking the 5 '-hydroxyl were synthesized. Nuclear magnetic resonance (NMR) spectroscopy study on the conformation of the modified sugar-phosphate backbone, along with the hybridization measurements, revealed remarkable differences in the stability of complexes with polyU, depending on the 5 '-carbon atom configuration. Potential usefulness of the α-hydroxy-phosphonate linkage in modified oligoribonucleotides is discussed.

  17. Which metabolic imaging, besides bone scan with 99mTc-phosphonates, for detecting and evaluating bone metastases in prostatic cancer patients? An open discussion.

    PubMed

    Bombardieri, E; Setti, L; Kirienko, M; Antunovic, L; Guglielmo, P; Ciocia, G

    2015-12-01

    Prostate cancer bone metastases occur frequently in advanced cancer and this is matter of particular attention, due to the great impact on patient's management and considering that a lot of new emerging therapeutic options have been recently introduced. Imaging bone metastases is essential to localize lesions, to establish their size and number, to study characteristics and changes during therapy. Besides radiological imaging, nuclear medicine modalities can image their features and offer additional information about their metabolic behaviour. They can be classified according to physical characteristics, type of detection, mechanism of uptake, availability for daily use. The physiopathology of metastases formation and the mechanisms of tracer uptake are essential to understand the interpretation of nuclear medicine images. Therefore, radiopharmaceuticals for bone metastases can be classified in agents targeting bone (99mTc-phosphonates, 18F-fluoride) and those targeting prostatic cancer cells (18F-fluoromethylcholine, 11C-choline, 18F-fluorodeoxyglucose). The modalities using the first group of tracers are planar bone scan, SPECT or SPECT/CT with 99mTc-diphosphonates, and 18F-fluoride PET/CT, while the modalities using the second group include 18F/11C-choline derivatives PET/CT, 18F-FDG PET/CT and PET/CT scans with several other radiopharmaceuticals described in the literature, such as 18F/11C-acetate derivatives, 18F-fluoro-5α-dihydrotestosterone (FDHT), 18F-anti-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC), 18F-2'-fluoro-5-methyl-1-β-D-arabinofuranosyluracil (FMAU) and 68Ga-labeled-prostate specific membrane antigen (PMSA) PET/TC. However, since data on clinical validation for these last novel modalities are not conclusive and/or are not still sufficient in number, at present they can be still considered as promising tools under evaluation. The present paper considers the nuclear modalities today available for the clinical routine. This overview wants

  18. A synergistic combination of tetraethylorthosilicate and multiphosphonic acid offers excellent corrosion protection to AA1100 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Dalmoro, Viviane; dos Santos, João H. Z.; Armelin, Elaine; Alemán, Carlos; Azambuja, Denise S.

    2013-05-01

    This work describes a new mechanism for the incorporation of organophosphonic acid into silane self-assembly monolayers, which has been used to protect AA1100 aluminum alloy. The protection improvement has been attributed to the fact that phosphonic structures promote the formation of strongly bonded and densely packed monolayer films, which show higher surface coverage and better adhesion than conventional silane systems. In order to evaluate the linking chemistry offered by phosphonic groups, two functionalized organophosphonic groups have been employed, 1,2-diaminoethanetetrakis methylenephosphonic acid (EDTPO) and aminotrimethylenephosphonic acid (ATMP), and combined with tetraethylorthosilicate (TEOS) films prepared by sol-gel synthesis. Results suggest that phosphonic acids may interact with the surface through a monodentate and bidentate coordination mode and, in addition, form one or more strong and stable linkages with silicon through non-hydrolysable bonds. Therefore, the incorporation of a very low concentration of phosphonic acids on TEOS solutions favors the complete coverage of the aluminum substrate during the silanization process, which is not possible using TEOS alone. The linking capacity of phosphonic acid has been investigated by FTIR-RA spectroscopy, SEM and EDX analysis, X-ray photoelectron spectroscopy (XPS), and quantum mechanical calculations. Finally, electrochemical impedance spectroscopy has been used to study the corrosion protection revealing that EDTPO-containing films afforded more protection to the AA1100 substrate than ATMP-containing films.

  19. Hydrothermal synthesis, crystal structure and properties of a novel chain coordination polymer constructed by tetrafunctional phosphonate anions and cobalt ions

    SciTech Connect

    Guan, Lei; Wang, Ying

    2015-08-15

    A novel cobalt phosphonate, [Co(HL)(H{sub 2}O){sub 3}]{sub n} (1) (L=N(CH{sub 2}PO{sub 3}H){sub 3}{sup 3−}) has been synthesized by hydrothermal reaction at 150 °C and structurally characterized by X-ray diffraction, infrared spectroscopy, elemental and thermogravimetric analysis. Complex 1 features a 1D chain structure with double-channel built from CoO{sub 6} octahedra bridged together by the phosphonate groups. Each cobalt ion is octahedrally coordinated by three phosphonate oxygen atoms and three water molecules. The coordinated water molecules can form the hydrogen bonds with the phosphonate oxygen atoms to link the 1D chains, building a 2D layered structure, further resulting in a 3D network. The luminescence spectrum indicates an emission maximum at 435 nm. The magnetic susceptibility curve exhibits a dominant antiferromagnetic behavior with a weakly ferromagnetic component at low temperatures. - Graphical abstract: The connectivity between cobalt ions and the ligands results in a chain structure with a 1D double-channel structure, which is constructed by A-type subrings and B-type subrings. - Highlights: • The tetrafunctional phosphonate ligand was used as the ligand. • A novel chain structure can be formed by A-type rings and B-type rings. • Two types of rings can form a 1D double-channel structure, along the c-axis.

  20. Distinct molecular structures and hydrogen bond patterns of α,α-diethyl-substituted cyclic imide, lactam, and acetamide derivatives in the crystalline phase

    NASA Astrophysics Data System (ADS)

    Krivoshein, Arcadius V.; Ordonez, Carlos; Khrustalev, Victor N.; Timofeeva, Tatiana V.

    2016-10-01

    α,α-Dialkyl- and α-alkyl-α-aryl-substituted cyclic imides, lactams, and acetamides show promising anticonvulsant, anxiolytic, and anesthetic activities. While a number of crystal structures of various α-substituted cyclic imides, lactams, and acetamides were reported, no in-depth comparison of crystal structures and solid-state properties of structurally matched compounds have been carried out so far. In this paper, we report molecular structure and intermolecular interactions of three α,α-diethyl-substituted compounds - 3,3-diethylpyrrolidine-2,5-dione, 3,3-diethylpyrrolidin-2-one, and 2,2-diethylacetamide - in the crystalline phase, as studied using single-crystal X-ray diffraction and IR spectroscopy. We found considerable differences in the patterns of H-bonding and packing of the molecules in crystals. These differences correlate with the compounds' melting points and are of significance to physical pharmacy and formulation development of neuroactive drugs.

  1. Complementary pharmacological and toxicological characterization data on the pharmacological profile of N-(2,6-dichlorophenyl)-2-(4-methyl-1-piperidinyl) acetamide.

    PubMed

    Déciga-Campos, Myrna; Navarrete-Vázquez, Gabriel; López-Muñoz, Francisco Javier; Librowski, Tadeusz; Sánchez-Recillas, Amanda; Yañez-Pérez, Victor; Ortiz-Andrade, Rolffy

    2016-09-01

    This text presents complementary data corresponding to pharmacological and toxicological characterization of N-(2,6-dichlorophenyl)-2-(4-methyl-1-piperidinyl)acetamide (LIA) compound. These data support our research article entitled "Pharmacological profile of N-(2,6-dichlorophenyl)-2-(4-methyl-1-piperidinyl)acetamide, a novel analog of lidocaine" Déciga-Campos M., Navarrete-Vázquez G., López-Muñoz F.J., Librowski T., Sánchez-Recillas A., Yañez-Pérez V., Ortiz-Andrade R. (2016) [1]. Toxicity was predicted through the ACD/ToxSuite software and evaluated in vivo using brine shrimp larvae (Artemia salina L.) and mice. Also, we used the micronucleus assay to determine genotoxicity. We used the platform admetSAR to predict absorption properties of LIA and lidocaine.

  2. 2-(4-Chloro-3,3,7-trimethyl-2,3-dihydro-1H-indol-2-yl-idene)-2-cyano-acetamide.

    PubMed

    Helliwell, Madeleine; Baradarani, Mehdi M; Alyari, Maryam; Afghan, Arash; Joule, John A

    2012-01-01

    Reaction of 2-(4-chloro-3,3,7-trimethyl-2,3-dihydro-1H-indol-2-yl-idene)propane-dial with hydroxyl-amine gives the title compound, C(14)H(14)ClN(3)O, in which the ring N atom is essentially planar [sum of angles around the ring N atom = 361°], indicating conjugation with the 2-cyano-acryl-amide unit. The orientation of the acetamide group arises from intra-molecular hydrogen bonding between the indole N-H and carbonyl groups. In the crystal, inversion-related acetamide groups form N-H⋯O hydrogen-bonded dimers in graph-set R(2) (2)(8) motifs, whilst dimers are also formed by pairs of amine-nitrile N-H⋯N hydrogen bonds in R(2) (2)(12) motifs. These inter-actions together generate ribbons that propagate along the b-axis direction.

  3. 2-(2,4-Dioxy-1,2,3,4-Tetrahydropyrimidin-1-yl)-N-(4-Phenoxyphenyl)-Acetamides as a Novel Class of Cytomegalovirus Replication Inhibitors

    PubMed Central

    Babkov, D. A.; Paramonova, M. P.; Ozerov, A. A.; Khandazhinskaya, A. L.; Snoeck, R.; Andrei, G.; Novikov, M. S.

    2015-01-01

    A series of novel uracil derivatives, bearing N-(4-phenoxyphenyl)acetamide moiety at N3 of a pyrimidine ring, has been synthesized. Their antiviral activity has been evaluated. It has been found that the novel compounds possess high inhibitory activity against replication of human cytomegalovirus (AD-169 and Davis strains) in HEL cell cultures. In addition, some of the derivatives proved to be inhibitory against varicella zoster virus. PMID:26798502

  4. Probing the interaction of U(VI) with phosphonate-functionalized mesoporous silica using solid-state NMR spectroscopy

    SciTech Connect

    Uribe, Eva C.; Mason, Harris E.; Shusterman, Jennifer A.; Bruchet, Anthony; Nitsche, Heino

    2016-05-30

    The fundamental interaction of U(VI) with diethylphosphatoethyl triethoxysilane functionalized SBA-15 mesoporous silica is studied by macroscopic batch experiments and solid-state NMR spectroscopy. DPTS-functionalized silica has been shown to extract U(VI) from nitric acid solutions at or above pH 3. Extraction is dependent on pH and ionic strength. Single-pulse 31P NMR on U(VI) contacted samples revealed that U(VI)only interacts with a fraction of the ligands present on the surface. At pH 4 the U(VI) extraction capacity of the material is limited to 27–37% of the theoretical capacity, based on ligand loading. We combined single pulse 31P NMR on U(VI)-contacted samples with batch studies to measure a ligand-to-metal ratio of approximately 2 : 1 at pH 3 and 4. Batch studies and cross-polarization NMR measurements reveal that U(VI) binds to deprotonated phosphonate and/or silanol sites. We use 31P–31P DQ-DRENAR NMR studies to compare the average dipolar coupling between phosphorus spins for both U(VI)-complexed and non-complexed ligand environments. Furthermore, these measurements reveal that U(VI) extraction is not limited by inadequate surface distribution of ligands, but rather by low stability of the surface phosphonate complex.

  5. Hydrothermal synthesis for new multifunctional materials: A few examples of phosphates and phosphonate-based hybrid materials

    NASA Astrophysics Data System (ADS)

    Rueff, Jean-Michel; Poienar, Maria; Guesdon, Anne; Martin, Christine; Maignan, Antoine; Jaffrès, Paul-Alain

    2016-04-01

    Novel physical or chemical properties are expected in a great variety of materials, in connection with the dimensionality of their structures and/or with their nanostructures, hierarchical superstructures etc. In the search of new advanced materials, the hydrothermal technique plays a crucial role, mimicking the nature able to produce fractal, hyperbranched, urchin-like or snow flake structures. In this short review including new results, this will be illustrated by examples selected in two types of materials, phosphates and phosphonates, prepared by this method. The importance of the synthesis parameters will be highlighted for a magnetic iron based phosphates and for hybrids containing phosphonates organic building units crystallizing in different structural types.

  6. A Sustainable and Efficient Synthesis of Benzyl Phosphonates Using PEG/KI Catalytic System

    PubMed Central

    Disale, Shamrao; Kale, Sandip; Abraham, George; Kahandal, Sandeep; Sawarkar, Ashish N.; Gawande, Manoj B.

    2016-01-01

    An efficient and expedient protocol for the synthesis of benzyl phosphonates using KI/K2CO3 as a catalytic system and PEG-400 as benign solvent has been developed. The reaction proceeds smoothly at room temperature achieving excellent selectivity and yield of the corresponding products. The combination of PEG-400, KI, and K2CO3 in this reaction avoids the need of volatile/toxic organic solvents and reactive alkali metals or metal nanoparticles/hydrides. We believe that this benign combination (PEG-400 and KI) could be used for other related organic transformations. PMID:27579301

  7. [Antiherpesviral activity of acycloguanosine H-phosphonate in experiments using laboratory animals].

    PubMed

    Andronova, V L; Galegov, G A; Ias'ko, M V; Kukhanova, M K; Kochetkov, S N; Skoblov, Iu S

    2011-01-01

    A study of the antiherpesviral activity of acycloguanosine (ACG) H-phosphonate (ACG-P) on a model of fatal herpesvirus infection in inbred BALB/c albino mice has established that ACG-P reduces death rates in the animals, considerably increases their average lifespan, and significantly decreases brain virus titers with both 60% mortality in the control and 92% mortality in the control group. There was also a significant inhibition of herpes simplex virus type 1 (HSV-1) replication in the brain tissue of animals receiving ACG-P on a model of ACG-resistant HSV-1/L2/RACG(TK-).

  8. A sustainable and efficient synthesis of benzyl phosphonates using PEG/KI catalytic system

    NASA Astrophysics Data System (ADS)

    Gawande, Manoj; Disale, Shamrao; Kale, Sandip; Abraham, George; Kahandal, Sandeep; Sawarkar, Ashish

    2016-08-01

    An efficient and expedient protocol for the synthesis of benzyl phosphonates using KI/K2CO3 as a catalytic system and PEG-400 as benign solvent has been developed. The reaction proceeds smoothly at room temperature achieving excellent selectivity and yield of the corresponding products. The combination of PEG-400, KI and K2CO3 in this reaction avoids the need of volatile/toxic organic solvents and reactive alkali metals or metal nanoparticles/hydrides. We believe that this benign combination (PEG-400 and KI) could be used for other related organic transformations.

  9. Phosphonate derivatives of tetraazamacrocycles as new inhibitors of protein tyrosine phosphatases.

    PubMed

    Kobzar, Oleksandr L; Shevchuk, Michael V; Lyashenko, Alesya N; Tanchuk, Vsevolod Yu; Romanenko, Vadim D; Kobelev, Sergei M; Averin, Alexei D; Beletskaya, Irina P; Vovk, Andriy I; Kukhar, Valery P

    2015-07-21

    α,α-Difluoro-β-ketophosphonated derivatives of tetraazamacrocycles were synthesized and found to be potential inhibitors of protein tyrosine phosphatases. N-Substituted conjugates of cyclam and cyclen with bioisosteric phosphonate groups displayed good activities toward T-cell protein tyrosine phosphatase with IC50 values in the micromolar to nanomolar range and showed selectivity over PTP1B, CD45, SHP2, and PTPβ. Kinetic studies indicated that the inhibitors can occupy the region of the active site of TC-PTP. This study demonstrates a new approach which employs tetraazamacrocycles as a molecular platform for designing inhibitors of protein tyrosine phosphatases.

  10. Metal-organic frameworks based on uranyl and phosphonate ligands.

    PubMed

    Monteiro, Bernardo; Fernandes, José A; Pereira, Cláudia C L; Vilela, Sérgio M F; Tomé, João P C; Marçalo, Joaquim; Almeida Paz, Filipe A

    2014-02-01

    Three new crystalline metal-organic frameworks have been prepared from the reaction of uranyl nitrate with nitrilotris(methylphosphonic acid) [H6nmp, N(CH2PO3H2)3], 1,4-phenylenebis(methylene)diphosphonic acid [H4pmd, C6H4(PO3H2)2], and (benzene-1,3,5-triyltris(methylene))triphosphonic acid [H6bmt, C6H3(PO3H2)3]. Compound [(UO2)2F(H3nmp)(H2O)]·4H2O (I) crystallizes in space group C2/c, showing two crystallographically independent uranyl centres with pentagonal bipyramidal coordination geometries. While one metal centre is composed of a {(UO2)O3(μ-F)}2 dimer, the other comprises an isolated {(UO2)O5} polyhedron. Compound [(UO2)(H2pmd)] (II) crystallizes in space group P21/c, showing a centrosymmetric uranyl centre with an octahedral {(UO2)O4} coordination geometry. Compound [(UO2)3(H3bmt)2(H2O)2]·14H2O (III) crystallizes in space group P\\bar 1, showing two crystallographically independent uranyl centres. One uranyl centre is a {(UO2)O5} pentagonal bipyramid similar to that in (I), while the other is a {(UO2)O4} centrosymmetric octahedron similar to that in (II). Compounds (I) and (III) contain solvent-accessible volumes accounting for ca 23.6 and 26.9% of their unit-cell volume, respectively. In (I) the cavity has a columnar shape and is occupied by disordered water molecules, while in (III) the cavity is a two-dimensional layer with more ordered water molecules. All compounds have been studied in the solid state using FT-IR spectroscopy. Topological studies show that compounds (I) and (III) are trinodal, with 3,6,6- and 4,4,6-connected networks, respectively. Compound (II) is instead a 4-connected uninodal network of the type cds.

  11. Natural bond orbital analysis, electronic structure and vibrational spectral analysis of N-(4-hydroxyl phenyl) acetamide: A density functional theory

    NASA Astrophysics Data System (ADS)

    Govindasamy, P.; Gunasekaran, S.; Ramkumaar, G. R.

    2014-09-01

    The Fourier transform infrared (FT-IR) and FT-Raman spectra of N-(4-hydroxy phenyl) acetamide (N4HPA) of painkiller agent were recorded in the region 4000-450 cm-1 and 4000-50 cm-1 respectively. Density functional theory (DFT) has been used to calculate the optimized geometrical parameter, atomic charges, and vibrational wavenumbers and intensity of the vibrational bands. The computed vibrational wave numbers were compared with the FT-IR and FT-Raman experimental data. The computational calculations at DFT/B3LYP level with 6-31G(d,p), 6-31++G(d,p), 6-311G(d,p) and 6-311++G(d,p) basis sets. The complete vibrational assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes calculated using Vibrational energy distribution analysis (VEDA 4) program. The oscillator’s strength calculated by TD-DFT and N4HPA is approach complement with the experimental findings. The NMR chemical shifts 13C and 1H were recorded and calculated using the gauge independent atomic orbital (GIAO) method. The molecular electrostatic potential (MESP) and electron density surfaces of the molecule were constructed. The Natural charges and intermolecular contacts have been interpreted using Natural Bond orbital (NBO) analysis the HOMO-LUMO energy gap has been calculated. The thermodynamic properties like entropy, heat capacity and zero vibrational energy have been calculated.

  12. Natural bond orbital analysis, electronic structure and vibrational spectral analysis of N-(4-hydroxyl phenyl) acetamide: a density functional theory.

    PubMed

    Govindasamy, P; Gunasekaran, S; Ramkumaar, G R

    2014-09-15

    The Fourier transform infrared (FT-IR) and FT-Raman spectra of N-(4-hydroxy phenyl) acetamide (N4HPA) of painkiller agent were recorded in the region 4000-450 cm(-1) and 4000-50 cm(-1) respectively. Density functional theory (DFT) has been used to calculate the optimized geometrical parameter, atomic charges, and vibrational wavenumbers and intensity of the vibrational bands. The computed vibrational wave numbers were compared with the FT-IR and FT-Raman experimental data. The computational calculations at DFT/B3LYP level with 6-31G(d,p), 6-31++G(d,p), 6-311G(d,p) and 6-311++G(d,p) basis sets. The complete vibrational assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes calculated using Vibrational energy distribution analysis (VEDA 4) program. The oscillator's strength calculated by TD-DFT and N4HPA is approach complement with the experimental findings. The NMR chemical shifts 13C and 1H were recorded and calculated using the gauge independent atomic orbital (GIAO) method. The molecular electrostatic potential (MESP) and electron density surfaces of the molecule were constructed. The Natural charges and intermolecular contacts have been interpreted using Natural Bond orbital (NBO) analysis the HOMO-LUMO energy gap has been calculated. The thermodynamic properties like entropy, heat capacity and zero vibrational energy have been calculated.

  13. Elucidation of Structural Elements for Selectivity across Monoamine Transporters: Novel 2-[(Diphenylmethyl)sulfinyl]acetamide (Modafinil) Analogues

    PubMed Central

    2015-01-01

    2-[(Diphenylmethyl)sulfinyl]acetamide (modafinil, (±)-1) is a unique dopamine uptake inhibitor that binds the dopamine transporter (DAT) differently than cocaine and may have potential for the treatment of psychostimulant abuse. To further investigate structural requirements for this divergent binding mode, novel thio- and sulfinylacetamide and ethanamine analogues of (±)-1 were synthesized wherein (1) the diphenyl rings were substituted with methyl, trifluoromethyl, and halogen substituents and (2) substituents were added to the terminal amide/amine nitrogen. Halogen substitution of the diphenyl rings of (±)-1 gave several amide analogues with improved binding affinity for DAT and robust selectivity over the serotonin transporter (SERT), whereas affinity improved at SERT over DAT for the p-halo-substituted amine analogues. Molecular docking studies, using a subset of analogues with DAT and SERT homology models, and functional data obtained with DAT (A480T) and SERT (T497A) mutants defined a role for TM10 in the substrate/inhibitor S1 binding sites of DAT and SERT. PMID:24494745

  14. Synthesis of nitro(benzo)thiazole acetamides and in vitro antiprotozoal effect against amitochondriate parasites Giardia intestinalis and Trichomonas vaginalis.

    PubMed

    Navarrete-Vázquez, Gabriel; Chávez-Silva, Fabiola; Colín-Lozano, Blanca; Estrada-Soto, Samuel; Hidalgo-Figueroa, Sergio; Guerrero-Álvarez, Jorge; Méndez, Sara T; Reyes-Vivas, Horacio; Oria-Hernández, Jesús; Canul-Canché, Jaqueline; Ortiz-Andrade, Rolffy; Moo-Puc, Rosa

    2015-05-01

    We synthesized four 5-nitrothiazole (1-4) and four 6-nitrobenzothiazole acetamides (5-8) using an easy two step synthetic route. All compounds were tested in vitro against amitochondriate parasites Giardia intestinalis and Trichomonas vaginalis, showing excellent antiprotozoal effects. IC₅₀'s of the most potent compounds range from nanomolar to low micromolar order, being more active than their drugs of choice. Compound 1 (IC₅₀=122 nM), was 44-times more active than Metronidazole, and 10-fold more effective than Nitazoxanide against G. intestinalis and showed good trichomonicidal activity (IC₅₀=2.24 μM). This compound did not display in vitro cytotoxicity against VERO cells. The in vitro inhibitory effect of compounds 1-8 and Nitazoxanide against G. intestinalis fructose-1,6-biphosphate aldolase (GiFBPA) was evaluated as potential drug target, showing a clear inhibitory effect over the enzyme activity. Molecular docking of compounds 1, 4 and Nitazoxanide into the ligand binding pocket of GiFBPA, revealed contacts with the active site residues of the enzyme. Ligand efficiency metrics of 1 revealed optimal combinations of physicochemical and antiprotozoal properties, better than Nitazoxanide.

  15. Thermodynamics and Phase Behavior of Phosphonated Block Copolymers Containing Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Jung, Ha Young; Park, Moon Jeong

    Charge-containing copolymers have drawn intensive attention in recent years for their uses in wide range of electrochemical devices such as fuel cells, lithium batteries and actuators. Particularly, the creation of microphase-separated morphologies in such materials by designing them in block and graft configurations has been the subject of extensive studies, in order to establish a synergistic means of optimizing ion transport properties and mechanical integrity. Interest in this topic has been further stimulated by intriguing phase behavior from charge-containing polymers, which was not projected from conventional phase diagrams of non-ionic polymers. Herein, we investigate thermodynamics and phase behavior of a set of phosphonated block copolymers. By synthesizing low-molecular weight samples with degree of polymerization (N) <35, we observed order-disorder transition that enabled us to estimate effective Flory-Huggins interaction parameters (χ) by using random phase approximation. We further examined the systems by adding various ionic liquids, where noticeable increases in χ values and modulated microphase separation behavior were observed. The morphology-conductivity relationship has been elucidated by taking into account the segmental motion of polymer chains, volume of conducting phases, and the molecular interactions between phosphonated polymer chains and cations of ionic liquids.

  16. Linked Nickel Metallacrowns from a Phosphonate/2-Pyridyloximate Blend of Ligands: Structure and Magnetic Properties.

    PubMed

    Escuer, Albert; Mayans, Júlia; Font-Bardia, Mercè

    2016-03-21

    In the present work, four new Ni(II) clusters with nuclearities ranging between Ni4 and Na2Ni8 were synthesized, employing the versatile ligand phenylphosphonate and 6-methylpyridylaldoximate as the coligand. Crystallographic data show that the tetranuclear complex [Ni4(6-MepaoH)4(PhPO3)2(OH)2(MeOH)4](OH)2 (1) consists of two dimers linked by phosphonate bridges, whereas [Cs2Ni6(6-Mepao)6(PhPO3)3(OH)2(H2O)8] (2), Cs[Ni8(6-MepaoH)6(6-Mepao)6(PhPO3)3](ClO4)5 (3), and [Ni8Na2(BzO)6(6-Mepao)6(PhPO3)3] (4) are built from phosphonato-linked {Ni3(6-Mepao)3} metallacycles. The [9-MC(Ni(II)(6-Mepao))-3] fragments in 2-4 show the unusual coordination of additional Cs(+), Na(+), and/or Ni(II) cations. Direct-current magnetic measurements were carried in the 300-2 K range. Analysis of the experimental data revealed a complex response with strong antiferromagnetic interactions mediated by the oximato bridges and weak interactions mediated by the phosphonate ones.

  17. New cleft-like molecules and macrocycles from phosphonate substituted spirobisindanol.

    PubMed

    Consiglio, Giuseppe A; Failla, Salvatore; Finocchiaro, Paolo

    2008-03-20

    We have synthetized medium-sized cyclophanes and macrocycles containing phosphonic groups, directly linked to the aromatic rings of the phanes or as pendant arms,for use as specific receptors for the selective complexation of neutral guests or for complexing lanthanides, as luminescent sensors and for diagnostic bioassays in medicine.Furthermore, because it would be of great interest for biochemistry as well as for pharmacological studies to dispose of preorganized rigid chiral hosts for biorelevant molecules we designed inter alia, some new chiral macrocycles capable of a triple binding mode and we used them for constructing macrocycles that could also be of interest for chiral recognition and chiral separations. Thus, in this paper we shall review the salient aspects of some macrocycles synthetized in our laboratory, all possessing the phosphonate moiety and a spirobisindanol scaffold and able to act as complexing agents for cations and organic substrates. In particular, we shall describe their NMR characterization, their stereochemistry in solution and in the solid state, and their use as chiral receptors for biorelevant molecules. Chiral HPLC resolution of some of them is also reported.

  18. Covalent modification of calcium hydroxyapatite surface by grafting phenyl phosphonate moieties

    SciTech Connect

    Aissa, Abdallah; Debbabi, Mongi; Gruselle, Michel Thouvenot, Rene; Gredin, Patrick; Traksmaa, Rainer; Tonsuaadu, Kaia

    2007-08-15

    The reaction between phenyl phosphonic dichloride (C{sub 6}H{sub 5}P(O)Cl{sub 2}) and synthetic calcium hydroxy- and fluorapatite has been investigated. The presence of mono- or polymeric (C{sub 6}H{sub 5}PO) fragment bound to hydroxyapatite was evidenced by IR, and solid-state {sup 31}P NMR spectroscopy. X-ray powder analysis has shown that the apatitic structure remains unchanged during the reaction. In contrast, no reaction was found using fluorapatite. According to the results found for these two different apatites a mechanism was proposed for the formation of covalent P-O-P bonds as the result of a reaction between the C{sub 6}H{sub 5}P(O)Cl{sub 2} organic reagent and (HPO{sub 4}){sup -} and/or OH{sup -} ions of the hydroxyapatite. - Graphical abstract: Representation of the first step of the reaction between the phenyl phosphonic dichloride and the hydroxyl groups on the surface of the apatite, leading to covalent P-O-P bond with elimination of HCl.

  19. Design, synthesis and pharmacological screening of β-amino-, thiadiazole/thiadiazine-phosphonate based triazole motifs as antimicrobial/cytotoxic agents.

    PubMed

    Abdou, Wafaa M; Ganoub, Neven A; Sabry, Eman

    2014-09-01

    Three different series of phosphonate derivatives, β-amino- and fused thiadiazolo/thiadiazine-phosphonates have been synthesized using the addition and/or addition-cyclization protocol of Horner-Wadsworth-Emmons (HWE) reagents to 1,2,4-triazole-3-thiols. The design of potentially antimicrobial and anticancer phosphor esters relied on the results of computer-assisted molecular modeling. All synthesized phosphonates were evaluated for their in vitro antimicrobial activities while anticancer properties were determined for eight out of twenty new phosphonates. The tested phosphonates, except for compounds that have a nitrile moiety, exhibited moderate to significant antimicrobial activity. Nevertheless, the most active compounds were fused thiadiazole-phosphonates, which inhibited the growth of both Gram-negative and Gram-positive bacteria better than β-aminophosphonates and fused thiadiazolophosphonates. In parallel, the antitumor activity screenings of selected phosphonates from each series and substrate 1 were also done. Their antitumor properties against ten carcinoma cell lines, including breast (MCF7, MDA-MB- 231/ ATCC, MDA-MB-435, BT-549), ovarian (IGROVI, OVCAR-3, SK-OV-3), prostate (PX-3, PU-145), and liver (HEPG2), were investigated. The results showed that all synthesized compounds reflected remarkable antitumor activity against breast (especially MDA-MB-231/ATCC and BT-549), and prostate carcinoma cell lines (PC-3 and DU-145), whereas a moderate to good effect on ovarian and liver cancer cells was observed.

  20. Phosphonate-functionalized large pore 3-D cubic mesoporous (KIT-6) hybrid as highly efficient actinide extracting agent.

    PubMed

    Lebed, Pablo J; de Souza, Kellen; Bilodeau, François; Larivière, Dominic; Kleitz, Freddy

    2011-11-07

    A new type of radionuclide extraction material is reported based on phosphonate functionalities covalently anchored on the mesopore surface of 3-D cubic mesoporous silica (KIT-6). The easily prepared nanoporous hybrid shows largely superior performance in selective sorption of uranium and thorium as compared to the U/TEVA commercial resin and 2-D hexagonal SBA-15 equivalent.

  1. [Enzymatic activity of thymidine kinase of herpes simlex virus strain resistant to H-phosphonates of Acv].

    PubMed

    Gus'kova, A A; Skoblov, M Iu; Andronova, V L; Galegov, G A; Kochetkov, S N; Skoblov, Iu S

    2011-01-01

    Cloned laboratory mutants of herpes simplex virus type I resistant to acycloguanosine H-phosphonate have been investigated. For all clones were shown that mutations resulted to increasing of sensitivity to acting of sidofovir. Thymidine kinase of mutant viruses partially preserves the ability to phosphorilate thymidine, but loses the ability to phosphorilate BVDU.

  2. 40 CFR 704.95 - Phosphonic acid, [1,2-ethanediyl-bis[nitrilobis-(methylene)

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... must be submitted by: (1) Persons who manufacture or import any of the substances identified in paragraph (a) of this section. (2) Persons who propose to manufacture or propose to import any of the... cases be the organization's headquarters office in the United States. (c) What information to...

  3. 40 CFR 704.95 - Phosphonic acid, [1,2-ethanediyl-bis[nitrilobis-(methylene)

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... must be submitted by: (1) Persons who manufacture or import any of the substances identified in paragraph (a) of this section. (2) Persons who propose to manufacture or propose to import any of the... cases be the organization's headquarters office in the United States. (c) What information to...

  4. 40 CFR 704.95 - Phosphonic acid, [1,2-ethanediyl-bis[nitrilobis-(methylene)

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... must be submitted by: (1) Persons who manufacture or import any of the substances identified in paragraph (a) of this section. (2) Persons who propose to manufacture or propose to import any of the... cases be the organization's headquarters office in the United States. (c) What information to...

  5. Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although natural products have been a particularly rich source of human medicines, the rate at which new molecules are being discovered is declining precipitously. Based on the large number of natural product biosynthetic genes in microbial genomes, many have suggested “genome mining” as an approach...

  6. Hydrogen bonds and van der Waals forces as tools for the construction of a herringbone pattern in the crystal structure of hexane-1,6-diaminium hexane-1,6-diyl bis-(hydrogen phospho-nate).

    PubMed

    Reiss, Guido J; van Megen, Martin; Frank, Walter

    2017-01-01

    The asymmetric unit of the title salt, [H3N(CH2)6NH3][(HO)O2P(CH2)6PO2(OH)], consists of one half of a hexane-1,6-diaminium dication and one half of a hexane-1,6-diyl bis-(hydrogen phospho-nate) dianion. Both are located around different centres of inversion (Wyckoff sites: 2a and 2d) of the space group P21/c. The shape of the hexane-1,6-diaminium cation is best described as a double hook. Both aminium groups as well as the two attached CH2 groups are turned out from the plane of the central four C atoms. In contrast, all six C atoms of the dianion are almost in a plane. The hydrogen phospho-nate (-PO3H) groups of the anions and the aminium groups of the cations form two-dimensional O-H⋯ and O-H⋯N hydrogen-bonded networks parallel to the ac plane, built up from ten-membered and twelve-membered ring motifs with graph-set descriptors R3(3)(10) and R5(4)(12), respectively. These networks are linked by the alkyl-ene chains of the anions and cations. The resulting three-dimensional network shows a herringbone pattern, which resembles the parent structures 1,6-di-amino-hexane and hexane-1,6-di-phospho-nic acid.

  7. The in vivo melanocytotoxicity and depigmenting potency of N-2,4-acetoxyphenyl thioethyl acetamide in the skin and hair.

    PubMed

    Jimbow, M; Marusyk, H; Jimbow, K

    1995-10-01

    It has been shown previously that N-acetyl-4-S-cysteaminylphenol (N-Ac-4-S-CAP) is a tyrosinase substrate and a potent depigmenting agent of dark skin and black hair. The present study evaluated the depigmenting potency of an acetyl derivative of N-Ac-4-S-CAP, N-2,4-acetoxyphenyl thioethyl acetamide (NAP-TEA) in the skin and hair. We tested for (i) in vitro metabolites in the skin after topical application, and (ii) in vivo depigmenting potency in the skin and hair. We found that NAP-TEA was stable in water, but was converted to N-Ac-4-S-CAP after topical application to human skin. Therefore, although NAP-TEA was not a tyrosinase substrate, it could react with tyrosinase after being converted to N-Ac-4-S-CAP by O-deacetylation in vivo. NAP-TEA produced marked depigmentation of dark skin (Yucatan pig) after daily topical application. When given by intraperitoneal injection, it resulted in complete loss of hair colour (white) grown at the epilated site in adult C57 black mice after daily administration for 10 days, and incomplete loss of coat colour (silver grey) in newborn C57 black mice after a single administration. The depigmentation of the skin and hair was reversible. Split-dopa preparation and electron microscopy indicated that this depigmentation is primarily related to (i) a marked decrease in the number of functioning melanocytes and melanized melanosomes, (ii) a decrease in the number of melanosomes transferred to keratinocytes, and (iii) selective degeneration/inactivation of melanocytes, and deposition of melanin-like material in the Golgi cisternae, coated vesicles and melanosomes, where tyrosinase is reported to be located. We propose the NAP-TEA is converted in vivo to N-Ac-4-S-CAP which, via interaction with tyrosinase, causes reversible depigmentation of the skin and hair.

  8. Electrochemical characteristics of acid electrolytes for fuel cells

    NASA Astrophysics Data System (ADS)

    Gervasio, D.; Razaq, M.; Razaq, A.; Adzic, R.; Kanamura, K.; Yeager, E. B.

    1992-01-01

    The electrochemical evaluation of new perfluorinated fuel cell electrolytes provided by GRI contractors at Clemson and Iowa shows the kinetics for O2 reduction on Pt improves with these acids compared to with phosphoric acid. The improvement is mainly due to the lesser tendency of these acids to absorb on Pt. Kinetics do not have a strong dependence on pH or O2 solubility when mass transport is not involved. Concentrated sulfonyl acids were usually found to wet Teflon resulting in the flooding of Teflon-bonded gas fed electrodes and poor performance at high current densities. These perfluorinated electrolytes were, however, found to be useful as performance enhancing additives to concentrated phosphoric acid in some cases. The alpha, omega-bis-phosphonic acid with a perfluoroethylene bridge gave superior performance compared to phosphoric acid at elevated temperatures (up to 200 C) for 500 hours. Bis-phosphonic acids with higher CF2 to PO3H2 ratios dehydrated more readily at elevated temperatures, resulting in resistive voltage losses. New perfluorinated phosphonic acid containing olefins were found to be polymerizable. This suggests that with a reasonable synthetic effort, new kinds of ionomer membrames are attainable, and these may be superior to Nafion for fuel cell applications.

  9. Density relaxation and particle motion characteristics in a non-ionic deep eutectic solvent (acetamide + urea): time-resolved fluorescence measurements and all-atom molecular dynamics simulations.

    PubMed

    Das, Anuradha; Das, Suman; Biswas, Ranjit

    2015-01-21

    Temperature dependent relaxation dynamics, particle motion characteristics, and heterogeneity aspects of deep eutectic solvents (DESs) made of acetamide (CH3CONH2) and urea (NH2CONH2) have been investigated by employing time-resolved fluorescence measurements and all-atom molecular dynamics simulations. Three different compositions (f) for the mixture [fCH3CONH2 + (1 - f)NH2CONH2] have been studied in a temperature range of 328-353 K which is ∼120-145 K above the measured glass transition temperatures (∼207 K) of these DESs but much lower than the individual melting temperature of either of the constituents. Steady state fluorescence emission measurements using probe solutes with sharply different lifetimes do not indicate any dependence on excitation wavelength in these metastable molten systems. Time-resolved fluorescence anisotropy measurements reveal near-hydrodynamic coupling between medium viscosity and rotation of a dissolved dipolar solute. Stokes shift dynamics have been found to be too fast to be detected by the time-resolution (∼70 ps) employed, suggesting extremely rapid medium polarization relaxation. All-atom simulations reveal Gaussian distribution for particle displacements and van Hove correlations, and significant overlap between non-Gaussian (α2) and new non-Gaussian (γ) heterogeneity parameters. In addition, no stretched exponential relaxations have been detected in the simulated wavenumber dependent acetamide dynamic structure factors. All these results are in sharp contrast to earlier observations for ionic deep eutectics with acetamide [Guchhait et al., J. Chem. Phys. 140, 104514 (2014)] and suggest a fundamental difference in interaction and dynamics between ionic and non-ionic deep eutectic solvent systems.

  10. Density relaxation and particle motion characteristics in a non-ionic deep eutectic solvent (acetamide + urea): Time-resolved fluorescence measurements and all-atom molecular dynamics simulations

    SciTech Connect

    Das, Anuradha; Das, Suman; Biswas, Ranjit

    2015-01-21

    Temperature dependent relaxation dynamics, particle motion characteristics, and heterogeneity aspects of deep eutectic solvents (DESs) made of acetamide (CH{sub 3}CONH{sub 2}) and urea (NH{sub 2}CONH{sub 2}) have been investigated by employing time-resolved fluorescence measurements and all-atom molecular dynamics simulations. Three different compositions (f) for the mixture [fCH{sub 3}CONH{sub 2} + (1 − f)NH{sub 2}CONH{sub 2}] have been studied in a temperature range of 328-353 K which is ∼120-145 K above the measured glass transition temperatures (∼207 K) of these DESs but much lower than the individual melting temperature of either of the constituents. Steady state fluorescence emission measurements using probe solutes with sharply different lifetimes do not indicate any dependence on excitation wavelength in these metastable molten systems. Time-resolved fluorescence anisotropy measurements reveal near-hydrodynamic coupling between medium viscosity and rotation of a dissolved dipolar solute. Stokes shift dynamics have been found to be too fast to be detected by the time-resolution (∼70 ps) employed, suggesting extremely rapid medium polarization relaxation. All-atom simulations reveal Gaussian distribution for particle displacements and van Hove correlations, and significant overlap between non-Gaussian (α{sub 2}) and new non-Gaussian (γ) heterogeneity parameters. In addition, no stretched exponential relaxations have been detected in the simulated wavenumber dependent acetamide dynamic structure factors. All these results are in sharp contrast to earlier observations for ionic deep eutectics with acetamide [Guchhait et al., J. Chem. Phys. 140, 104514 (2014)] and suggest a fundamental difference in interaction and dynamics between ionic and non-ionic deep eutectic solvent systems.

  11. Asymmetric Friedel-Crafts alkylations of indoles with dialkyl 3-oxoprop-1-enylphosphonates: organocatalytic enantioselective synthesis of alpha-indolyl phosphonates.

    PubMed

    Guo, Ying-Cen; Li, Dong-Ping; Li, Yu-Ling; Wang, Hong-Mei; Xiao, Wen-Jing

    2009-08-01

    Organocatalytic enantioselective synthesis of alpha-indolyl phosphonates has been successfully carried out via asymmetric Friedel-Crafts alkylation of substituted indoles with (E)-dialkyl 3-oxoprop-1-enylphosphonates in 48-82% yield and 73-96% ee.

  12. Ether lipid-ester prodrugs of acyclic nucleoside phosphonates: activity against adenovirus replication in vitro.

    PubMed

    Hartline, Caroll B; Gustin, Kortney M; Wan, William B; Ciesla, Stephanie L; Beadle, James R; Hostetler, Karl Y; Kern, Earl R

    2005-02-01

    The acyclic nucleoside phosphonate cidofovir (CDV) and its closely related analogue (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)-adenine ([S]-HPMPA) have been reported to have activity against many adenovirus (AdV) serotypes. A new series of orally active ether lipid-ester prodrugs of CDV and of (S)-HPMPA that have slight differences in the structure of their lipid esters were evaluated, in tissue-culture cells, for activity against 5 AdV serotypes. The results indicated that, against several AdV serotypes, the most active compounds were 15-2500-fold more active than the unmodified parent compounds and should be evaluated further for their potential to treat AdV infections in humans.

  13. Tunable thermal and flame response of phosphonated oligoallylamines layer by layer assemblies on cotton.

    PubMed

    Carosio, Federico; Negrell-Guirao, Claire; Di Blasio, Alessandro; Alongi, Jenny; David, Ghislain; Camino, Giovanni

    2015-01-22

    In the present paper we have demonstrated how the change of the layer by layer deposition parameters can influence the final properties of cotton fabrics in terms of coating morphology, thermal stability and flammability. To this aim, novel synthetized oligoallylamines and phosphonated oligoallylamines have been assembled on the surface of cotton exploiting different molecular weights and pH conditions. Low molecular weights have yielded an incomplete "island growth" coating while high molecular weight resulted in a homogeneous coating which thickness was controlled by the adopted pH. Both low and high molecular weight assemblies induced a reduction of the cellulose decomposition temperatures that was, conversely, delayed by coatings assembled at pH=10. All assemblies were able to improve cotton flammability by suppressing the afterglow phenomenon; the best results in terms of flame spread and final residue have been achieved by high molecular weight assemblies.

  14. Acyclic Immucillin Phosphonates. Second-Generation Inhibitors of Plasmodium falciparum Hypoxanthine- Guanine-Xanthine Phosphoribosyltransferase

    SciTech Connect

    Hazelton, Keith Z.; Ho, Meng-Chaio; Cassera, Maria B.; Clinch, Keith; Crump, Douglas R.; Rosario Jr., Irving; Merino, Emilio F.; Almo, Steve C.; Tyler, Peter C.; Schramm, Vern L.

    2012-06-22

    We found that Plasmodium falciparum is the primary cause of deaths from malaria. It is a purine auxotroph and relies on hypoxanthine salvage from the host purine pool. Purine starvation as an antimalarial target has been validated by inhibition of purine nucleoside phosphorylase. Hypoxanthine depletion kills Plasmodium falciparum in cell culture and in Aotus monkey infections. Hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) from P. falciparum is required for hypoxanthine salvage by forming inosine 5'-monophosphate, a branchpoint for all purine nucleotide synthesis in the parasite. We present a class of HGXPRT inhibitors, the acyclic immucillin phosphonates (AIPs), and cell permeable AIP prodrugs. The AIPs are simple, potent, selective, and biologically stable inhibitors. The AIP prodrugs block proliferation of cultured parasites by inhibiting the incorporation of hypoxanthine into the parasite nucleotide pool and validates HGXPRT as a target in malaria.

  15. New synthesis of silver phosphonate complexes from polymeric silver phenylethynide as a structure-directing precursor.

    PubMed

    Xie, Yun-Peng; Mak, Thomas C W

    2013-09-28

    Three new silver(I) phosphonate complexes have been synthesized from silver phenylethynide as a structure-directing precursor. Ag2(PhPO3)(H2O) displays a layer-type coordination network, Ag(3,5-dimethylpyrazole)2(PhPO3H) contains a dimeric unit, and {Ag8(dppm)4((t)BuPO3)2(ClO4)(NO3)(0.67)(H2O)(1.33)}·(ClO4)(2.33)·(CH3OH)(6.67) features an octanuclear composite cluster. We have also isolated the pyrophenylphosphonate complex Ag2[PhPO2(O)O2PPh](CH3CN), which exhibits an infinite-chain structure.

  16. Possible use of non-flammable phosphonate ethers as pure electrolyte solvent for lithium batteries

    NASA Astrophysics Data System (ADS)

    Feng, J. K.; Ai, X. P.; Cao, Y. L.; Yang, H. X.

    Dimethyl methyl phosphonate (DMMP) was selected and tested as a non-flammable solvent for primary and secondary lithium batteries, because of its non-flammability, good solvency of lithium salts and appropriate liquidus properties. Experimental results demonstrated that DMMP can solvate considerable amount of commonly used lithium salts to form non-flammable and Li +-conducting electrolyte, which has very wide electrochemical window (>5 V vs. Li) and excellent electrochemical compatibility with metallic lithium anode and oxide cathodes. Primary Li-MnO 2 cells using DMMP-based electrolyte showed almost the same discharge performances as those using organic carbonate electrolytes, and also, Li-LiMn 2O 4 cells using DMMP electrolyte exhibited greatly improved cycleability and dischargeability, suggesting a feasible application of this new electrolyte for constructing high performance and non-flammable lithium batteries.

  17. Comparison of chiral separations of aminophosphonic acids and their aminocarboxylic acid analogs using a crown ether column.

    PubMed

    Barnhart, Wesley W; Xia, Xiaoyang; Jensen, Randy; Gahm, Kyung H

    2013-07-01

    Crown ethers are capable of complexing with primary amines and have been utilized in chromatography to separate amino acid racemates. This application has been extended to resolve (1-amino-1-phenylmethyl)phosphonic acid and (1-aminoethyl)phosphonic acid racemates, along with their aminocarboxylic acid analogs (2-phenylglycine and alanine, respectively), via a ChiroSil RCA crown ether based chiral stationary phase. Effects of the organic modifier, temperature, and acid type and concentration on retention and selectivity were also investigated. Trends in retention and selectivity varied between aminophosponic acids and their aminocarboxylic analogs. Computer modeling and (1)H NMR analyses were performed to potentially gain a better understanding of interactions of the aforementioned molecules with the ChiroSil RCA chiral stationary phase. Theoretical predictions of the most stable conformations for (R)- and (S)-enantiomers were compared to elution order; it was found that the elution order agreed with molecular modeling such that the longest retention correlated with the predicted most stable complex between the enantiomer and crown ether. (1)H NMR demonstrated interactions of aminophosphonic and aminocarboxylic racemates with (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid in solution and was utilized to determine enantiomeric excess of (1-amino-1-phenylmethyl)phosphonic acid after its enantioenrichment via crystallization through diastereomeric salt formation with the crown ether followed by filtration.

  18. Stereoselective Synthesis of 4-Substituted Cyclic Sulfamidate-5-Phosphonates by Using Rh-Catalyzed, Asymmetric Transfer Hydrogenation with Accompanying Dynamic Kinetic Resolution.

    PubMed

    Seo, Yeon Ji; Kim, Jin-ah; Lee, Hyeon-Kyu

    2015-09-04

    Dynamic kinetic resolution driven, asymmetric transfer hydrogenation of 4-substituted cyclic sulfamidate imine-5-phosphonates produces the corresponding cyclic sulfamidate-5-phosphonates. The process employs a HCO2H/Et3N mixture as the hydrogen source and the chiral Rh catalysts, (R,R)- or (S,S)-Cp*RhCl(TsDPEN), and it takes place at room temperature within 1 h with high yields and high levels of stereoselectivity.

  19. An efficient preparation of isosteric phosphonate analogues of sphingolipids by opening of oxirane and cyclic sulfamidate intermediates with alpha-lithiated alkylphosphonic esters.

    PubMed

    Sun, Chaode; Bittman, Robert

    2004-10-29

    D-erythro-(2S,3R,4E)-Sphingosine-1-phosphonate (1), the isosteric phosphonate analogue of naturally occurring sphingosine 1-phosphate (1a), and D-ribo-phytosphingosine 1-phosphonate (2), the isosteric phosphonate analogue of D-ribo-phytosphingosine-1-phosphate (2a), were synthesized starting with methyl 2,3-O-isopropylidene-d-glycerate (4) and D-ribo-phytosphingosine (3), respectively. Oxirane 12 was formed in eight steps from 4, and cyclic sulfamidate 22 was formed in five steps from 3. The phosphonate group was introduced via regioselective ring-opening reactions of oxirane 12 and cyclic sulfamidate 22 with lithium dialkyl methylphosphonate, affording 13 and 23, respectively. The synthesis of 1 was completed by S(N)2 displacement of chloromesylate intermediate 14b with azide ion, followed by conversion of the resulting azido group to a NHBoc group and deprotection. The synthesis of 2 was completed by cleavage of the acetal, N-benzyl, and alkyl phosphonate ester groups.

  20. Inhibition of β-N-acetylglucosaminidase by acetamide affects sperm motility and fertilization success of rainbow trout (Oncorhynchus mykiss) and Siberian sturgeon (Acipenser baerii).

    PubMed

    Sarosiek, B; Glogowski, J; Cejko, B I; Kujawa, R; Szczepkowski, M; Kuźmiński, H; Dobosz, S; Kowalski, R K

    2014-03-15

    β-N-Acetylglucosaminidase (β-NAGase) is an enzyme found in the sperm acrosome of numerous animal species including fish. Fish spermatozoa differ in their morphology including acrosome or acrosomeless aquasperm in chondrostean (e.g., sturgeon) and teleostean (e.g., rainbow trout). It has been shown that β-NAGase exists with high activity in both eggs and sperm of these species. The present study shows the potency of β-NAGase in fertilization. In rainbow trout, increase in sperm motility parameters (VAP and MOT) were observed in the presence of acetamide, an inhibitor for β-NAGase. In contrast, sperm motility parameters (VCL, VSL, VAP, MOT, and PRG) were reduced on the Siberian sturgeon in the presence of acetamide. The inhibition of the activity of β-NAGase in rainbow trout spermatozoa was led to a reduction in the number of fertilized eggs from 79% to 40%, whereas in sturgeon no change was observed in fertilization. Moreover, inhibition of β-NAGase in both spermatozoa and eggs of trout and sturgeon resulted in significant decrease in fertilization rate from 79% to 1% in rainbow trout and from 84% to 12% in Siberian sturgeon. Our research proves that β-NAGase can play a significant role in the fertilization process in teleosteans.

  1. Deviation between the chemistry of Ce(IV) and Pu(IV) and routes to ordered and disordered heterobimetallic 4f/5f and 5f/5f phosphonates.

    PubMed

    Diwu, Juan; Wang, Shuao; Good, Justin J; DiStefano, Victoria H; Albrecht-Schmitt, Thomas E

    2011-06-06

    The heterobimetallic actinide compound UO(2)Ce(H(2)O)[C(6)H(4)(PO(3)H)(2)](2)·H(2)O was prepared via the hydrothermal reaction of U(VI) and Ce(IV) in the presence of 1,2-phenylenediphosphonic acid. We demonstrate that this is a kinetic product that is not stable with respect to decomposition to the monometallic compounds. Similar reactions have been explored with U(VI) and Ce(III), resulting in the oxidation of Ce(III) to Ce(IV) and the formation of the Ce(IV) phosphonate, Ce[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O, UO(2)Ce(H(2)O)[C(6)H(4)(PO(3)H)(2)](2)·H(2)O, and UO(2)[C(6)H(4)(PO(3)H)(2)](H(2)O)·H(2)O. In comparison, the reaction of U(VI) with Np(VI) only yields Np[C(6)H(4)(PO(3)H)(2)](2)·2H(2)O and aqueous U(VI), whereas the reaction of U(VI) with Pu(VI) yields the disordered U(VI)/Pu(VI) compound, (U(0.9)Pu(0.1))O(2)[C(6)H(4)(PO(3)H)(2)](H(2)O)·H(2)O, and the Pu(IV) phosphonate, Pu[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O. The reactions of Ce(IV) with Np(VI) yield disordered heterobimetallic phosphonates with both M[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O (M = Ce, Np) and M[C(6)H(4)(PO(3)H)(2)](2)·2H(2)O (M = Ce, Np) structures, as well as the Ce(IV) phosphonate Ce[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O. Ce(IV) reacts with Pu(IV) to yield the Pu(VI) compound, PuO(2)[C(6)H(4)(PO(3)H)(2)](H(2)O)·3H(2)O, and a disordered heterobimetallic Pu(IV)/Ce(IV) compound with the M[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O (M = Ce, Pu) structure. Mixtures of Np(VI) and Pu(VI) yield disordered heterobimetallic Np(IV)/Pu(IV) phosphonates with both the An[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O (M = Np, Pu) and An[C(6)H(4)(PO(3)H)(2)](2)·2H(2)O (M = Np, Pu) formulas.

  2. Co₃(2-OOCC₆H₄PO₃)₂(H₂O)₃·H₂O: a layered metal phosphonate showing reversible dehydration-rehydration behavior and ferrimagnetism.

    PubMed

    Wang, Peng-Fei; Cao, Deng-Ke; Bao, Song-Song; Jin, Hao-Jun; Li, Yi-Zhi; Wang, Tian-Wei; Zheng, Li-Min

    2011-02-14

    Two isostructural metal phosphonates M₃(2-cpp)₂(H₂O)₃·H₂O [M(II) = Co (1), Zn (2), 2-cppH₃ = 2-carboxyphenylphosphonic acid] are synthesized and structurally characterized. Both exhibit layer structures in which -Co-O- "columns" are connected by the {PO₃C} linkages. The "column" consists of triangular shaped {M₃O₃} trimers, inter-linked through either corner- or edge-sharing of the {MO₆} octahedra. The phenyl groups are grafted on the two sides of the inorganic layer. Thermal analyses suggest that the layer structures of 1 and 2 are stable after removal of the lattice and coordination water. The dehydrated sample can be rehydrated reversibly in the case of compound 1. Magnetic studies reveal that antiferromagnetic interactions dominate in both 1 and 1-de, resulting in ferrimagnetic layers in both cases. The large inter-layer distance in 1 favors a ferromagnetic interaction between the layers. Hence ferrimagnetism is observed in both cases at low temperature. For 1-de, slow magnetization relaxation is also observed below ca. 2.8 K.

  3. Crystal structure and characterization of a novel layered copper-lithium phosphonate with antiferromagnetic intrachain Cu(II)···Cu(II) interactions

    NASA Astrophysics Data System (ADS)

    Abdelbaky, Mohammed S. M.; Amghouz, Zakariae; Blanco, David Martínez; García-Granda, Santiago; García, José R.

    2017-04-01

    Novel metal phosphonate [CuLi(PPA)] [H3PPA=3-phosphonopropionic acid] was synthesized hydrothermally and characterized by single-crystal X-ray diffraction, powder X-ray diffraction, scanning electron microscopy, infrared spectroscopy, and thermogravimetric analysis. It crystallizes in the space group C2/c, with cell parameters a=21.617(2) Å, b=4.9269(2) Å, c=14.342(1) Å, β=132.3(2)°, and Z=8. Its framework is built up from a main trimer, acting as a secondary building unit (SBU), which is formed by vertex-shared between two {LiO4} and one {Cu(1)O4} polyhedra. These units repeat along b-axis forming infinite inorganic chains, these chains are in turn cross-linked by corner sharing with {Cu(2)O4} polyhedra to produce inorganic layers lying in the bc-plane. The neighboring layers are connected through the PPA ligand, leading to a 3D pillared-layered structure. The topological analysis reveals that the compound exhibits 3,4,10-c net. Finally, magnetic susceptibility measurement of this compound over the temperature range of 2-300 K reveals the occurrence of weak antiferromagnetic intrachain interactions.

  4. Asymmetric Copper-Catalyzed Vinylogous Mukaiyama Michael Addition of Cyclic Dienol Silanes to Unsaturated α-Keto Phosphonates.

    PubMed

    Steinkamp, Anne-Dorothee; Frings, Marcus; Thomé, Isabelle; Schiffers, Ingo; Bolm, Carsten

    2015-05-18

    A highly stereoselective vinylogous Mukaiyama Michael reaction (VMMR) leading to α-keto phosphonate-containing γ-butenolides with two stereogenic centers is described. The presented transformation is catalyzed by a combination of a commercially available C2 -symmetric bisoxazoline (BOX) ligand and a copper salt and tolerates a variety of nucleophiles and electrophiles. The stereoselectivities of the reactions are good to excellent and the products are obtained in moderate to high yields.

  5. Structure and Mechanism of Enzymes Involved in Biosynthesis and Breakdown of the Phosphonates Fosfomycin, Dehydrophos, and Phosphinothricin

    PubMed Central

    Nair, Satish K.; van der Donk, Wilfred A.

    2011-01-01

    Recent years have seen a rapid increase in the mechanistic and structural information on enzymes that are involved in the biosynthesis and breakdown of naturally occurring phosphonates. This review focuses on these recent developments with an emphasis on those enzymes that have been characterized crystallographically in the past five years, including proteins involved in the biosynthesis of phosphinothricin, fosfomycin, and dehydrophos and proteins involved in resistance mechanisms. PMID:20854789

  6. Direct C-H difluoromethylenephosphonation of arenes and heteroarenes with bromodifluoromethyl phosphonate via visible-light photocatalysis.

    PubMed

    Wang, Lin; Wei, Xiao-Jing; Lei, Wen-Long; Chen, Han; Wu, Li-Zhu; Liu, Qiang

    2014-12-28

    This communication reports a room temperature visible-light-driven protocol for the C-H difluoromethylenephosphonation of arenes and heteroarenes. Using commercially available diethyl bromodifluoromethyl phosphonate as a precursor of difluoromethyl radical, fac-Ir(ppy)3 as a photosensitizer and a 3 W blue LED as a light source, an array of aromatic compounds containing difluoromethylenephosphonyl groups were prepared directly from the corresponding arenes and heteroarenes in excellent to moderate yields.

  7. Synthesis and kinetic evaluation of Cyclophostin and Cyclipostins phosphonate analogs as selective and potent inhibitors of microbial lipases

    PubMed Central

    Point, Vanessa; Malla, Raj K.; Diomande, Sadia; Martin, Benjamin P.; Delorme, Vincent; Carriere, Frederic; Canaan, Stephane; Rath, Nigam P.; Spilling, Christopher D.; Cavalier, Jean-François

    2012-01-01

    New series of customizable diastereomeric cis- and trans-monocyclic enol-phosphonate analogs to Cyclophostin and Cyclipostins were synthesized. Their potencies and mechanisms of inhibition toward six representative lipolytic enzymes belonging to distinct lipase families were examined. With mammalian gastric and pancreatic lipases no inhibition occurred with any of the compounds tested. Conversely, Fusarium solani Cutinase and lipases from Mycobacterium tuberculosis (Rv0183 and LipY) were all fully inactivated. Best inhibitors displayed a cis conformation (H and OMe) and exhibited higher inhibitory activities than the lipase inhibitor Orlistat towards same enzymes. Our results have revealed that chemical group at the γ-carbon of the phosphonate ring strongly impacts the inhibitory efficiency, leading to a significant improvement in selectivity toward a target lipase over another. The powerful and selective inhibition of microbial (fungal and mycobacterial) lipases suggests that these 7-membered monocyclic enol-phosphonates should provide useful leads for the development of novel and highly selective antimicrobial agents. PMID:23095026

  8. Practical and Efficient Synthesis of α-Aminophosphonic Acids Containing 1,2,3,4-Tetrahydroquinoline or 1,2,3,4-Tetrahydroisoquinoline Heterocycles.

    PubMed

    Ordóñez, Mario; Arizpe, Alicia; Sayago, Fracisco J; Jiménez, Ana I; Cativiela, Carlos

    2016-08-31

    We report here a practical and efficient synthesis of α-aminophosphonic acid incorporated into 1,2,3,4-tetrahydroquinoline and 1,2,3,4-tetrahydroisoquinoline heterocycles, which could be considered to be conformationally constrained analogues of pipecolic acid. The principal contribution of this synthesis is the introduction of the phosphonate group in the N-acyliminium ion intermediates, obtained from activation of the quinoline and isoquinoline heterocycles or from the appropriate δ-lactam with benzyl chloroformate. Finally, the hydrolysis of phosphonate moiety with simultaneous cleavage of the carbamate afforded the target compounds.

  9. A Salmonella Regulator Modulates Intestinal Colonization and Use of Phosphonoacetic Acid

    PubMed Central

    Elfenbein, Johanna R.; Knodler, Leigh A.; Schaeffer, Allison R.; Faber, Franziska; Bäumler, Andreas J.; Andrews-Polymenis, Helene L.

    2017-01-01

    Many microorganisms produce phosphonates, molecules characterized by stable carbon-phosphorus bonds that store phosphorus or act as antimicrobials. The role of phosphonates in the marine biosphere is well characterized but the role of these molecules in the intestine is poorly understood. Salmonella enterica uses its virulence factors to influence the host immune response to compete with the host and normal microflora for nutrients. Salmonella cannot produce phosphonates but encodes the enzymes to use them suggesting that it is exposed to phosphonates during its life cycle. The role of phosphonates during enteric salmonellosis is unexplored. We have previously shown that STM3602, encoding a putative regulator of phosphonate metabolism, is needed for colonization in calves. Here, we report that the necessity of STM3602 in colonization of the murine intestine results from multiple factors. STM3602 is needed for full activation of the type-3 secretion system-1 and for optimal invasion of epithelial cells. The ΔSTM3602 mutant grows poorly in phosphonoacetic acid (PA) as the sole phosphorus source, but can use 2-aminoethylphosphonate. PhnA, an enzyme required for PA breakdown, is not controlled by STM3602 suggesting an additional mechanism for utilization of PA in S. Typhimurium. Finally, the requirement of STM3602 for intestinal colonization differs depending on the composition of the microflora. Our data suggest that STM3602 has multiple regulatory targets that are necessary for survival within the microbial community in the intestine. Determination of the members of the STM3602 regulon may illuminate new pathways needed for colonization of the host. PMID:28361036

  10. Discovery and Optimization of N-(4-(3-Aminophenyl)thiazol-2-yl)acetamide as a Novel Scaffold Active against Sensitive and Resistant Cancer Cells.

    PubMed

    Millet, Antoine; Plaisant, Magali; Ronco, Cyril; Cerezo, Michaël; Abbe, Patricia; Jaune, Emilie; Cavazza, Elisa; Rocchi, Stéphane; Benhida, Rachid

    2016-09-22

    Cancer is the second cause of deaths worldwide and is forecasted to affect more that 22 million people in 2020. Despite dramatic improvement in its care over the last two decades, the treatment of resistant forms of cancer is still an unmet challenge. Thus, innovative and efficient treatments are still needed. In this context, we report herein the synthesis and the evaluation of a new class of bioactive molecules belonging to the N-(4-(3-aminophenyl(thiazol-2-yl)acetamide family. Structure-activity relationships could be driven and resulted in the discovery of lead compound 6b. The latter display high in vitro potency against both sensitive and resistant cancer cell lines on three models: melanoma, pancreatic cancer, and chronic myeloid leukemia (CML). 6b leads to cell death by concomitant induction of apoptosis and autophagy, shows good pharmacokinetic properties, and demonstrates a significant reduction of tumor growth in vivo on A375 xenograft model in mice.

  11. Some Unusual Rheological Responses of Poly(Vinylidene Fluoride-Co-Hexafluoropropylene) Solutions in Dimethyl Acetamide and Their Effects on the Electrospinning Process

    NASA Astrophysics Data System (ADS)

    Seo, Jae Sik; Lee, Ki Hyun; Kim, Byoung Chul

    2008-07-01

    The rheological properties of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) in dimethyl acetamide (DMAc) were investigated to obtain preliminary data for electrospinning. Intrinsic viscosity data suggested that solubility of PVDF-HFP was reduced with increasing temperature. Over the temperature range of 30 to 70 °C, the dynamic viscosity of the concentrated solutions was increased with increasing temperature and Bingham behavior became more noticed. In addition, increase of temperature and concentration of the solutions increased yield stress and relaxation time. Although the dynamic viscosity was increased with increasing temperature, electrospinning temperature had little effects on the resultant fiber morphology on the condition that other spinning conditions were identical.

  12. Design, synthesis, pharmacological evaluation and descriptor based similarities study of N,N-diphenyl-2-[4-(substituted phenyl)piperazin-1-yl]acetamides as potential antipsychotics.

    PubMed

    Dash, Radha Charan; Bhosale, Sharad H; Shelke, Suhas M; Suryawanshi, Mugdha R; Mahadik, Kakasaheb R

    2012-11-01

    A series of novel N,N-diphenyl-2-[4-(substituted phenyl)piperazin-1-yl]acetamides was designed, synthesized and evaluated for anti-dopaminergic activity, anti-serotonergic activity and catalepsy induction studies in mice as an approach to novel potential antipsychotic agent. Antipsychotic activity of these compounds in terms of blocking of dopaminergic transmission was evaluated by their ability to inhibit apomorphine induced climbing behavior in mice and antiserotonergic activity of synthesized compounds was assessed by studying inhibition of 5-HTP induced head twitches. All the synthesized compounds were found to exhibit anti-dopaminergic and anti-serotonergic activity in behavioral models. The compound 3f showed better antipsychotic potential among the different synthesized compounds. The descriptor based similarities study for blood brain permeation established a good similarity between the synthesized compounds with standard atypical antipsychotics.

  13. A Distributed Computing Method for Crystal Structure Prediction of Flexible Molecules:  An Application to N-(2-Dimethyl-4,5-dinitrophenyl) Acetamide.

    PubMed

    Bazterra, Victor E; Thorley, Matthew; Ferraro, Marta B; Facelli, Julio C

    2007-01-01

    In this paper, we describe a new distributed computing framework for crystal structure prediction that is capable of performing crystal structure searches for flexible molecules within any space group and with an arbitrary number of molecules in the asymmetric unit. The distributed computing framework includes a series of tightly integrated computer programs for generating the molecule's force field, sampling possible crystal structures using a distributed parallel genetic algorithm, locally minimizing these structures and classifying, sorting, and archiving the most relevant ones. As an example, we report the results of its application to the prediction of the crystal structure of the elusive N-(2-dimethyl-4,5-dinitrophenyl) acetamide, a molecule for which its crystal structure proved to be one of the most difficult cases in the last CSP2004 blind test for crystal structure prediction.

  14. Proton-Electron Double-Resonance Imaging of pH using phosphonated trityl probe

    PubMed Central

    Takahashi, Wataru; Bobko, Andrey A.; Dhimitruka, Ilirian; Hirata, Hiroshi; Zweier, Jay L.; Samouilov, Alexandre

    2014-01-01

    Variable Radio Frequency Proton-Electron Double-Resonance Imaging (VRF PEDRI) enables extracting a functional map from a limited number of images acquired at pre-selected EPR frequencies using specifically designed paramagnetic probes with high quality spatial resolution and short acquisition times. In this work we explored potential of VRF PEDRI for pH mapping of aqueous samples using recently synthesized pH-sensitive phosphonated trityl radical, pTR. The ratio of Overhauser enhancements measured at each pixel at two different excitation frequencies corresponding to the resonances of protonated and deprotonated forms of pTR probe allows for a pH map extraction. Long relaxation times of pTR allow for pH mapping at EPR irradiation power as low as 1.25 W during 130 s acquisition time with spatial resolution of about 1 mm. This is particularly important for in vivo applications enabling one to avoid sample overheating by reducing RF power deposition. PMID:25530673

  15. Hexanuclear copper(II) cages built on a central {μ3-O···H···μ3-O} moiety, 1,3-bis(dimethylamino)-2-propanolato and capping R-phosphonates: crystal structures, magnetic behavior, and DFT studies.

    PubMed

    Speed, Saskia; Vicente, Ramon; Aravena, Daniel; Ruiz, Eliseo; Roubeau, Olivier; Teat, Simon J; El Fallah, M Salah

    2012-06-18

    The syntheses, structural characterization, and magnetic behavior of two new hexanuclear copper(II) complexes derived from R-phosphonic acids and 1,3-bis(dimethylamino)-2-propanol (Hbdmap) with formulas [Cu(6)(μ-bdmap)(3)(μ(3)-Ph-PO(3))(2)(μ(3)-O···H···μ(3)-O)(ClO(4))(2)(H(2)O)]·5H(2)O (1) and [Cu(6)(μ-bdmap)(3)(μ(3)-t-Bu-PO(3))(2)(μ(3)-O···H···μ(3)-O)(μ(1,3)-dca)(dca)(H(2)O)]·6H(2)O (2) (Ph-H(2)PO(3) = phenylphosphonic acid, t-Bu-H(2)PO(3) = tert-butylphosphonic acid, dca = dicyanamide) are reported. Compounds 1 and 2 are hexanuclear 3.111 R-phosphonate(2-)/1,3-bis(dimethylamino)-2-propanolato(1-) cages including in the center the [μ(3)-O···H···μ(3)-O](3-) unit. The temperature dependence of the magnetic properties of 1 and 2 clearly indicates an overall strong antiferromagnetic coupling confirmed by DFT calculations.

  16. A COMPARISON OF THE SPECIFICITY OF INHIBITION BY PHOSPHONATE ESTERS OF THE FIRST COMPONENT OF COMPLEMENT AND THE ANTIGEN-INDUCED RELEASE OF HISTAMINE FROM GUINEA PIG LUNG

    PubMed Central

    Becker, Elmer L.; Austen, K. Frank

    1964-01-01

    The ability of a number p-nitrophenylethyl alkyl, phenyl alkyl, chloroalkyl, and aminoalkyl phosphonates to inhibit the activated first component (C'1a) of guinea pig complement, and the antigen-induced release of histamine from sliced, perfused guinea pig lung has been compared. C'1a in its reactivity with these phosphonates is distinctly more similar to trypsin than to any of the other enzymes studied previously. It is suggested that both trypsin and C'1a possess an anionic group in the active center of the respective enzyme, but the distance between the anionic and esteratic site in C'1a might be less than in trypsin. The pattern of inhibition of histamine relase by the alkyl, phenyl alkyl, and chloroalkyl phosphonates is similar to the inhibition of C'1a by these compounds, although distinct differences are apparent. The aminoalkyl phosphonates are distinctly less active inhibitors of histamine release than the corresponding alkyl phosphonates, whereas the reverse is true of the inhibition of C'1a. On the basis of these differences, it is tentatively concluded that the organophosphorus-inhibitable enzymes in the guinea pig systems studied here are similar but not identical. PMID:14212115

  17. Survey of organic acid eluents for anion chromatography

    SciTech Connect

    Book, D.E.

    1981-10-01

    Of all the potential eluents surveyed (including aromatic, sulfonic, phosphonic, among other acids), only the carboxylic acids and the nitrophenols are recommended as eluents for anion chromatography. The concentration of the eluent should be in the range 5 x 10/sup -5/ to 1 x 10/sup -3/ M. The eluent should have the same charge as inorganic anions, a higher charge than organic acid samples. Choice of eluents for separation of halides, chloride and sulfate, multivalent inorganic anions, small alkyl acids, and aromatic acids is discussed. (DLC)

  18. Polymers of sodium-N-undec-10-ene-1-oyl taurate and sodium-N-undec-10-ene-1-oyl aminoethyl-2-phosphonate as pseudostationary phases for electrokinetic chromatography.

    PubMed

    Tellman, K T; Palmer, C P

    1999-01-01

    The use of micelle polymers, a class of polysoaps with a polymerized hydrophobic interior and a charged hydrophillic exterior, as pseudostationary phases in electrokinetic chromatography has generated significant interest. Their stable structure has been shown to provide significant advantages over conventional micelles when used as pseudostationary phases. In previous studies, micelle polymers have had carboxylate and sulfate head groups. These chemistries have limitations: carboxylate micelle polymers precipitate out of solution at pH less than seven or eight and sulfate head groups are not stable to hydrolysis and are hydrolyzed during polymerization. Additionally, while the chemical selectivity of conventional micelles varies with head group chemistry, no significant differences in chemical selectivity were observed between analogous polymers with sulfate and carboxylate groups. To overcome the limitations of carboxylate and sulfate head groups, and to further investigate the chemical selectivity of micelle polymers, poly(sodium-N-undec-10-ene-1-oyl-taurate) and poly(sodium-N-undec-10-ene-1-oyl-ethyl-2-phosphonate) micellar polymers have been synthesized and characterized as pseudostationary phases. These polymers have amide functionality and stable, strongly acidic sulfonate and phosphonate head groups. These polymers did provide improved solubility at low pH, and are stable under the conditions studied. The chromatographic performance and chemical selectivity of the polymers has been studied by several methods, including linear solvation energy relationships. Poly(sodiumN-undec-10-ene-1-oyl-taurate) has greater electrophoretic mobility than other polymers of this type, and can be used for the separation of hydrophobic compounds. The polymers do exhibit unique selectivity, but the differences in selectivity are not significant for the majority of compounds studied.

  19. Indole-3-acetic acid in plant-microbe interactions.

    PubMed

    Duca, Daiana; Lorv, Janet; Patten, Cheryl L; Rose, David; Glick, Bernard R

    2014-07-01

    Indole-3-acetic acid (IAA) is an important phytohormone with the capacity to control plant development in both beneficial and deleterious ways. The ability to synthesize IAA is an attribute that many bacteria including both plant growth-promoters and phytopathogens possess. There are three main pathways through which IAA is synthesized; the indole-3-pyruvic acid, indole-3-acetamide and indole-3-acetonitrile pathways. This chapter reviews the factors that effect the production of this phytohormone, the role of IAA in bacterial physiology and in plant-microbe interactions including phytostimulation and phytopathogenesis.

  20. Acidity constant determination of novel drug precursor benzothiazolon derivatives including acyl and piperazine moieties

    NASA Astrophysics Data System (ADS)

    Sıdır, İsa; Gülseven Sıdır, Yadigar; Berber, Halil

    2013-07-01

    In this study, protonation and deprotonation behaviors of eight new drug precursor benzothiazolon derivatives in all of acidic and basic scale (super acidic, pH, super basic regions) are analyzed by using UV-visible spectrophotometric technique. Acidity constants (pKa), elucidation of the structure and protonation mechanisms of the studied molecules are obtained. Substituent effect on acidity constant values is discussed. These molecules are protonated from oxygen atom of acetamide group in the keto form. The protonation is found to be considerably contributed by the keto form.

  1. Discovery of non-competitive thrombin inhibitor derived from competitive tryptase inhibitor skeleton: Shift in molecular recognition resulted from skeletal conversion of carboxylate into phosphonate.

    PubMed

    Aoyama, Hiroshi; Ijuin, Ryosuke; Kato, Jun-ya; Urushiyama, Sarasa; Tetsuhashi, Masashi; Hashimoto, Yuichi; Yokomatsu, Tsutomu

    2015-09-01

    A novel series of terminal and internal phosphonate esters based on our previously developed aryl carboxylate-type tryptase selective inhibitor 1 was synthesized. The potency of these synthesized compounds was assessed in vitro with an enzyme inhibition assay using three available serine proteases, that is, tryptase, trypsin, and thrombin. The internal phosphonate derivative 6 showed potent thrombin inhibitory activity with an IC50 value of 1.0 μM, whereas it exhibited no or only weak tryptase and trypsin inhibition at 10 μM. The Lineweaver-Burk plot analysis indicates that the inhibition pattern of thrombin with 6 is non-competitive in spite of the fact that the lead carboxylate compound 1 is competitive inhibitor. Therefore, the skeletal conversion of the carboxylate into a phosphonate alters the mode of molecular recognition of these inhibitors by thrombin.

  2. Acyclic phosphonate nucleotides and human adenylate kinases: impact of a borano group on alpha-P position.

    PubMed

    Topalis, D; Alvarez, K; Barral, K; Munier-Lehmann, H; Schneider, B; Véron, M; Guerreiro, C; Mulard, L; El-Amri, C; Canard, B; Deville-Bonne, D

    2008-04-01

    Adenylate kinases are involved in the activation of antiviral drugs such as the acyclic phosphonates analogs PMEA and (R)PMPA. We examine the in vitro phosphorylation of PMEA and PMPA bearing a borano- or a H- group on the phosphorus atom. The alpha-borano or alpha-H on PMEA and PMPA were detrimental to the activity of recombinant human AMP kinases 1 and 2. Docking PMEA to the active site of AMP kinase 1 indicated that the borano group may prevent two conserved critical Arg interactions with the alpha-phosphate, resulting in substrate bad positioning.

  3. Proton Conduction in a Phosphonate-Based Metal-Organic Framework Mediated by Intrinsic "Free Diffusion inside a Sphere".

    PubMed

    Pili, Simona; Argent, Stephen P; Morris, Christopher G; Rought, Peter; García-Sakai, Victoria; Silverwood, Ian P; Easun, Timothy L; Li, Ming; Warren, Mark R; Murray, Claire A; Tang, Chiu C; Yang, Sihai; Schröder, Martin

    2016-05-25

    Understanding the molecular mechanism of proton conduction is crucial for the design of new materials with improved conductivity. Quasi-elastic neutron scattering (QENS) has been used to probe the mechanism of proton diffusion within a new phosphonate-based metal-organic framework (MOF) material, MFM-500(Ni). QENS suggests that the proton conductivity (4.5 × 10(-4) S/cm at 98% relative humidity and 25 °C) of MFM-500(Ni) is mediated by intrinsic "free diffusion inside a sphere", representing the first example of such a mechanism observed in MOFs.

  4. Insights into diastereoisomeric characterization of tetrahydropyridazine amino acid derivatives: crystal structures and gas phase ion chemistry.

    PubMed

    Giorgi, Gianluca; Favi, Gianfranco; Attanasi, Orazio A

    2013-08-14

    Structural, conformational properties, and gas phase reactivity of two representative diastereoisomeric members of a series of α,α-tetrahydropyridazine amino acid derivatives have been investigated by using X-ray crystallography, tandem mass spectrometry and theoretical calculations. Both diastereoisomers show an unusual screw-boat conformation of the tetrahydropyridazine ring. While protonated molecules mainly decompose in the gas phase by loss of acetamide, the main reactivity of the [M + Na](+) species consists of loss of PhNCO followed by acetamide and it is strictly dependent upon the stereochemistry of the parent compound. The most stable energy minimized structures obtained by theoretical calculations are in full agreement with the experimental data and allowed us to rationalize the gas phase reaction pathways.

  5. The Fungicide Phosphonate Disrupts the Phosphate-Starvation Response in Brassica nigra Seedlings.

    PubMed Central

    Carswell, C.; Grant, B. R.; Theodorou, M. E.; Harris, J.; Niere, J. O.; Plaxton, W. C.

    1996-01-01

    The development of Brassica nigra seedlings over 20 d of growth was disrupted by the fungicide phosphonate (Phi) in a manner inversely correlated with nutritional inorganic phosphate (Pi) levels. The growth of Pi-sufficient (1.25 mM Pi) seedlings was suppressed when 10, but not 5, mM Phi was added to the nutrient medium. In contrast, the fresh weights and root:shoot ratios of Pi-limited (0.15 mM) seedlings were significantly reduced at 1.5 mM Phi, and they progressively declined to about 40% of control values as medium Phi concentration was increased to 10 mM. Intracellular Pi levels generally decreased in Phi-treated seedlings, and Phi accumulated in leaves and roots to levels up to 6- and 16-fold that of Pi in Pi-sufficient and Pi-limited plants, respectively. Extractable activities of the Pi-starvation-inducible enzymes phosphoenolpyruvate phosphatase and inorganic pyrophosphate-dependent phosphofructokinase were unaltered in Pi-sufficient seedlings grown on 5 or 10 mM Phi. However, when Pi-limited seedlings were grown on 1.5 to 10 mM Phi (a) the induction of phosphoenolpyruvate phosphatase and inorganic pyrophosphate-dependent phosphofructokinase activities by Pi limitation was reduced by 40 to 90%, whereas (b) soluble protein concentrations and the activities of the ATP-dependent phosphofructokinase and pyruvate kinase were unaffacted. It is concluded that Phi specifically interrupts processes involved in regulation of the Pi-starvation response in B. nigra. PMID:12226174

  6. A phase I study of samarium-153 ethylenediaminetetramethylene phosphonate therapy for disseminated skeletal metastases

    SciTech Connect

    Turner, J.H.; Claringbold, P.G.; Hetherington, E.L.; Sorby, P.; Martindale, A.A. )

    1989-12-01

    Thirty-five patients with disseminated skeletal metastases from a variety of tumor types underwent clinical trial of samarium-153 ethylenediaminetetramethylene phosphonate (153Sm-EDTMP) on a day-patient basis. Individual beta radiation dosimetry was based on pharmacokinetic studies of a 20 mCi tracer dose of 153Sm-EDTMP. The retained skeletal activity varied unpredictably from 40% to 95% of the administered dose, but in all patients greater than 98% of the nonosseous activity was cleared in the urine within 6 hours. Prospective calculation of radiation dosimetry in each patient permitted an accurate dosage schedule based upon total red marrow exposure, starting at 100 cGy and escalating to 280 cGy to define the dose-limiting myelotoxicity. Pain was relieved in 22 of 34 evaluable patients (65%) for periods ranging from 4 to 35 weeks, following a single administration of 153Sm-EDTMP. Recurrence of pain responded to retreatment with 153Sm-EDTMP in five of nine patients. The dose-limiting toxicity was myelosuppression manifested particularly by delayed thrombocytopenia. Platelet counts less than 100 x 10(9)/L occurred in 42% of courses when bone marrow radiation absorbed dose exceeded 200 cGy. Myelosuppression was transient and platelet counts had recovered to pretreatment levels within 10 weeks of treatment. 153Sm-EDTMP is effective for the amelioration of pain due to disseminated skeletal metastases particularly with carcinoma of breast or prostate where 83% of patients experienced pain relief. In 15 of the 34 evaluable patients there was evidence of stabilization or regression of skeletal metastases on radiographs and follow-up technetium-99m methylene diphosphonate (99mTc-MDP) bone scans.

  7. Mn2+ complexes with 12-membered pyridine based macrocycles bearing carboxylate or phosphonate pendant arm: crystallographic, thermodynamic, kinetic, redox, and 1H/17O relaxation studies.

    PubMed

    Drahoš, Bohuslav; Kotek, Jan; Císařová, Ivana; Hermann, Petr; Helm, Lothar; Lukeš, Ivan; Tóth, Éva

    2011-12-19

    Mn(2+) complexes represent an alternative to Gd(3+) chelates which are widely used contrast agents in magnetic resonance imaging. In this perspective, we investigated the Mn(2+) complexes of two 12-membered, pyridine-containing macrocyclic ligands bearing one pendant arm with a carboxylic acid (HL(1), 6-carboxymethyl-3,6,9,15-tetraazabicyclo[9.3.1] pentadeca-1(15),11,13-triene) or a phosphonic acid function (H(2)L(2), 6-dihydroxyphosphorylmethyl-3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene). Both ligands were synthesized using nosyl or tosyl amino-protecting groups (starting from diethylenetriamine or tosylaziridine). The X-ray crystal structures confirmed a coordination number of 6 for Mn(2+) in their complexes. In aqueous solution, these pentadentate ligands allow one free coordination site for a water molecule. Potentiometric titration data indicated a higher basicity for H(2)L(2) than that for HL(1), related to the electron-donating effect of the negatively charged phosphonate group. According to the protonation sequence determined by (1)H and (31)P pH-NMR titrations, the first two protons are attached to macrocyclic amino groups whereas the subsequent protonation steps occur on the pendant arm. Both ligands form thermodynamically stable complexes with Mn(2+), with full complexation at physiological pH and 1:1 metal to ligand ratio. The kinetic inertness was studied via reaction with excess of Zn(2+) under various pHs. The dissociation of MnL(2) is instantaneous (at pH 6). For MnL(1), the dissociation is very fast (k(obs) = 1-12 × 10(3) s(-1)), much faster than that for MnDOTA, MnNOTA, or the Mn(2+) complex of the 15-membered analogue. It proceeds exclusively via the dissociation of the monoprotonated complex, without any influence of Zn(2+). In aqueous solution, both complexes are air-sensitive leading to Mn(3+) species, as evidenced by UV-vis and (1)H NMRD measurements and X-ray crystallography. Cyclic voltammetry gave low oxidation peak

  8. Theophylline-7-acetic acid derivatives with amino acids as anti-tuberculosis agents.

    PubMed

    Voynikov, Yulian; Valcheva, Violeta; Momekov, Georgi; Peikov, Plamen; Stavrakov, Georgi

    2014-07-15

    A series of amides were synthesized by condensation of theophylline-7-acetic acid and eight commercially available amino acid methyl ester hydrochlorides. Consecutive hydrolysis of six of the amido-esters resulted in the formation of corresponding amido-acids. The newly synthesized compounds were evaluated for their in vitro activity against Mycobacterium tuberculosis H37Rv. The activity varied depending on the amino acid fragments and in seven cases exerted excellent values with MICs 0.46-0.26 μM. Assessment of the cytotoxicity revealed that the compounds were not cytotoxic against the human embryonal kidney cell line HEK-293T. The theophylline-7-acetamides containing amino acid moieties appear to be promising lead compounds for the development of antimycobacterial agents.

  9. Molecular Anchors for Self-Assembled Monolayers on ZnO: A Direct Comparison of the Thiol and Phosphic Acid Moieties

    SciTech Connect

    Perkins, C. L.

    2009-01-01

    Two of the most promising schemes for attaching organic molecules to metal oxides are based on the chemistry of the thiol and phosphonic acid moieties. We have made a direct comparison of the efficacy of these two molecular anchors on zinc oxide by comparing the chemical and physical properties of n-hexane derivatives of both. The surface properties of polycrystalline ZnO thin films and ZnO(000)-O crystals modified with 1-hexanethiol and 1-hexanephosphonic acid were examined with a novel quartz crystal microbalance (QCM)-based flow cell reactor, angle-resolved and temperature-dependent photoelectron spectroscopy, and contact angle measurements. A means of using ammonium chloride as a probe of molecule-ZnO interactions is introduced and used to ascertain the relative quality of self-assembled monolayers (SAMs) based on thiols and phosphonic acids. QCM data shows that a phosphonic acid-anchored alkyl chain only six carbons long can provide significant corrosion protection for ZnO against Bronsted acids, reducing the etch rate relative to the bare ZnO surface by a factor of more than nine. In contrast, we find that monolayers from the analogous molecule hexanethiol are more defective as revealed by their higher ionic permeability and lower hydrophobicity. Substrate attenuation X-ray photoelectron spectroscopy (XPS) experiments were used to determine the thickness of SAMs formed by the two hexane derivatives and it was found that SAMs from phosphonic acids were approximately twice as thick as those formed by hexanethiol. The thermal stability of the two linking groups was also explored and we find that previous claims of highly stable alkanethiolate monolayers on ZnO are suspect. Taken as a whole, our results indicate that the phosphonic acid moiety is preferred over thiols for the attachment of short alkyl groups to ZnO.

  10. Synthesis, antidepressant evaluation and QSAR studies of novel 2-(5H-[1,2,4]triazino[5,6-b]indol-3-ylthio)-N-(substituted phenyl)acetamides.

    PubMed

    Shelke, Suhas M; Bhosale, Sharad H

    2010-08-01

    In search for novel antidepressants, a series of 2-(5H-[1,2,4]triazino[5,6-b]indol-3-ylthio)-N-(substituted phenyl)acetamides was synthesized and screened for potential antidepressant activity by tail suspension test (TST) in mice. Number of synthesized compounds exhibited impressive antidepressant activity, measured in terms of percentage decrease in immobility duration (%DID). QSAR analysis was also undertaken which correlated three parameters FOSA, PISA, and glob with biological activity.

  11. Microwave-assisted synthesis, structural elucidation and biological assessment of 2-(2-acetamidophenyl)-2-oxo-N phenyl acetamide and N-(2-(2-oxo-2(phenylamino)acetyl)phenyl)propionamide derivatives

    NASA Astrophysics Data System (ADS)

    Ghazzali, Mohamed; El-Faham, Ayman; Abdel-Megeed, Ahmed; Al-Farhan, Khalid

    2012-04-01

    A facile solid-state synthesis of 2-(2-acetamidophenyl)-2-oxo-N phenyl acetamide and N-(2-(2-oxo-2(phenylamino)acetyl)phenyl)propionamide six derivatives has been achieved by microwave promoted condensation of N-acylisatin or N-propionylisatin with various aniline derivatives. The six products were characterized by IR and NMR (H1 and C13). Only two of them, The N-[2-(4-Bromo-phenylaminooxalyl)-phenyl]-propionamide and 2-(2-Acetylamino-phenyl)-2-oxo-N-p-tolyl-acetamide molecular structures were verified by X-ray single-crystal diffraction. The Br⋯Br intermolecular interaction in the crystal structure of N-[2-(4-Bromo-phenylaminooxalyl)-phenyl]-propionamide was evaluated by DFT/B3LYP calculation. The antimicrobial activity was evaluated against eight bacterial strains and two fungal species. The N-[2-(4-Bromo-phenylaminooxalyl)-phenyl]-propionamide and 2-(2-Acetylamino-phenyl)-2-oxo-N-p-tolyl-acetamide exhibit selective high inhibitory effects against Aspergillus niger and Staphylococcus aureus, respectively.

  12. Amphiphilic siloxane phosphonate macromolecule monolayers at the air/water interface: effects of structure and temperature.

    PubMed

    Cabasso, Israel; Stesikova, Elvira

    2008-11-20

    A comprehensive study is reported of Langmuir-Blodgett (LB) films (spread at the air/water interface using the Langmuir balance technique) composed of surface active, nonionic, and OH-free amphiphilic siloxane phosphonate ester macromolecules. Analysis is made on three molecular structures in the form of linear polymer poly(diethylphosphono-benzyl-alphabeta-ethyl methylsiloxane) (PPEMS), cyclic oligomer methylphosphonobenzyl-alphabeta-ethyl cyclosiloxane (MPECS), and copolymer poly(PEMS-co-DMS). The surface pressure-surface area (pi -A) isotherms of homopolymer at 3-40 degrees C show a clear temperature-induced phase transition (plateaus at pit approximately 17-19 mN/m) below 10 degrees C. The magnitude of the transition substantially increases upon lowering the temperature (partial differential DeltaAt/ partial differential T approximately -0.1 nm2 unit(-1) deg(-1) and partial differential pi t / partial differential T approximately -0.25 mN m(-1) deg(-1)). The positive entropy and enthalpy gain infers that strong coupling with the subphase and excess hydration attributed to hydrogen bonding between the P=O bond and the subphase prevails at low temperatures. The cyclic oligomer MPECS forms a condensed monolayer at the air/water interface that does not display a similar transition in the experimental temperature range. The temperature sensitivity of MPECS film is observed only in the collapsed region. The nature of the interaction with the subphase is similar for MPECS and PPEMS, indicating that the size and thermal mobility are the controlling factors in these processes. The elasticity plot reveals two distinct states (above and below transition). This observation is supported by BAM images that show irregular spiral structures below 10 degrees C. The transition occurring in the copolymer at 20 degrees C is due to relaxation of the PDMS component. The two maxima shown in the elasticity plot indicate additive fractions of PPEMS and PDMS. The surface areas of these

  13. Novel alpha-zirconium phosphonates for the reinforcement of ductile thermoplastics

    NASA Astrophysics Data System (ADS)

    Furman, Benjamin R.

    2007-12-01

    Ductile thermoplastics are useful additives for providing fracture toughness to brittle thermosetting polymers; however, this toughening is usually accompanied by a significant decrease in elastic modulus. Therefore, alpha-zirconium phosphonates (ZrP) were developed and investigated as reinforcing nano-scale fillers that increase the yield strength and elastic modulus of a polyester thermoplastic without causing a reduction in its ductility. ZrP materials are synthetic layered compounds that are imbued with targeted organic surface functionalities and whose structural development can be carefully controlled in the laboratory. Ether-terminal alkyl ZrP materials were designed and synthesized, using a conventional ZrF62--mediated preparation, with the intent of developing strong dipole-dipole interactions between the layer surfaces and polyester macromolecules. Additionally, a general method for using lamellar lyotropic liquid crystals (LLC's) as supramolecular templates for alkyl ZrP was evaluated, whose products showed promising similarity to the conventionally prepared materials. The LLC-forming characteristics of several organophosphonate preparations were determined, showing improved mesophase stability with mixed amphiphiles and preparation with R4N + counterions. A mixed-surface octyl/methoxyundecyl ZrP was produced and combined with polycaprolactone (PCL) and polymethylmethacrylate (PMMA) in concentrations up to 50% (w/w). The mechanical properties of the ZrP/PCL nanocomposite were evaluated by tensile, flexural, and dynamic mechanical testing methods. Nanocomposites containing 5% (w/w) ZrP showed significant increases in tensile yield stress and elastic modulus without suffering any loss of ductility versus the unfilled polymer. Layer delamination from the ZrP tactoids was minimal and did not occur through an intercalative mechanism. Higher ZrP loadings resulted in the agglomeration of tactoids, leading to defect structures and loss of strength and ductility

  14. Bacterial Growth on Aminoalkylphosphonic Acids

    PubMed Central

    Harkness, Donald R.

    1966-01-01

    Harkness, Donald R. (University of Miami School of Medicine, Miami, Fla.). Bacterial growth on aminoalkylphosphonic acids. J. Bacteriol. 92:623–627. 1966.—Of 10 bacterial strains tested, 9 were found to be able to utilize the phosphorus of at least one of eight different aminoalkylphosphonic acids for growth, indicating that the ability to catabolize the carbon–phosphorus (C–P) bond is widespread among bacteria. Several organisms gave comparable growth rates as well as cell yields when an equimolar amount of either Pi or 2-aminoethylphosphonic acid (2-AEP) was added to the medium. No compounds containing C–P bonds were detected in Escherichia coli B grown on 2-AEP32-orthophosphate. No degradation of phosphonates by cell-free extracts or suspensions of dried cells was demonstrated. The direct involvement of alkaline phosphatases in cleaving the C–P bond was excluded. PMID:5922537

  15. Rare earth complexes with a novel ligand N-(naphthalen-2-yl)-N-phenyl-2-(quinolin-8-yloxy)acetamide: preparation and spectroscopic studies.

    PubMed

    Wu, Wei-Na; Tang, Ning; Yan, Lan

    2008-12-15

    Six complexes of rare earth nitrates (Ln=La, Sm, Eu, Gd, Tb, Dy) with a new amide type ligand, N-(naphthalen-2-yl)-N-phenyl-2-(quinolin-8-yloxy)acetamide (L) have been prepared and characterized by elemental analysis, conductivity measurements, IR and and 1H NMR spectra. Under excitation, Eu(III) and Sm(III) complexes exhibited strong red emissions. And the luminescence intensity of Sm(III) complex is higher than that of Eu(III) complex. Thus the Eu(III) and Sm(III) complexes are the potential light conversion agent. However, the Tb(III) and Dy(III) complexes cannot exhibit characteristic emissions of terbium and dysprosium ions, respectively. The results of phosphorescence spectrum show that the triplet-state energy level of the ligand matches better to the resonance level of Eu(III) than Tb(III) ion. In addition, the luminescence of the Eu(III) complex is also relatively strong in highly diluted tetrahydrofuran solution (2 x 10(-4)mol/L) compared with the powder. This is not only due to the solvate effects but also to the changes of the structure of the Eu(III) complex after being dissolved into the solvents. Furthermore, owing to the co-luminescence effect, the proper La(III) or Gd(III) doped Eu(III) complexes show stronger luminescence than the pure Eu(III) complex.

  16. Glass transition dynamics and conductivity scaling in ionic deep eutectic solvents: The case of (acetamide + lithium nitrate/sodium thiocyanate) melts

    NASA Astrophysics Data System (ADS)

    Tripathy, Satya N.; Wojnarowska, Zaneta; Knapik, Justyna; Shirota, Hideaki; Biswas, Ranjit; Paluch, Marian

    2015-05-01

    A detailed investigation on the molecular dynamics of ionic deep eutectic solvents (acetamide + lithium nitrate/sodium thiocyanate) is reported. The study was carried out employing dielectric relaxation spectroscopy covering seven decades in frequency (10-1-106 Hz) and in a wide temperature range from 373 K down to 173 K, accessing the dynamic observables both in liquid and glassy state. The dielectric response of the ionic system has been presented in the dynamic window of modulus formalism to understand the conductivity relaxation and its possible connection to the origin of localized motion. Two secondary relaxation processes appear below glass transition temperature. Our findings provide suitable interpretation on the nature of secondary Johari-Goldstein process describing the ion translation and orientation of dipoles in a combined approach using Ngai's coupling model. A nearly constant loss feature is witnessed at shorter times/lower temperatures. We also discuss the ac conductivity scaling behavior using Summerfield approach and random free energy barrier model which establish the time-temperature superposition principle. These experimental observations have fundamental importance on theoretical elucidation of the conductivity relaxation and glass transition phenomena in molten ionic conductors.

  17. Glass transition dynamics and conductivity scaling in ionic deep eutectic solvents: The case of (acetamide + lithium nitrate/sodium thiocyanate) melts

    SciTech Connect

    Tripathy, Satya N. Wojnarowska, Zaneta; Knapik, Justyna; Paluch, Marian; Shirota, Hideaki; Biswas, Ranjit

    2015-05-14

    A detailed investigation on the molecular dynamics of ionic deep eutectic solvents (acetamide + lithium nitrate/sodium thiocyanate) is reported. The study was carried out employing dielectric relaxation spectroscopy covering seven decades in frequency (10{sup −1}-10{sup 6} Hz) and in a wide temperature range from 373 K down to 173 K, accessing the dynamic observables both in liquid and glassy state. The dielectric response of the ionic system has been presented in the dynamic window of modulus formalism to understand the conductivity relaxation and its possible connection to the origin of localized motion. Two secondary relaxation processes appear below glass transition temperature. Our findings provide suitable interpretation on the nature of secondary Johari-Goldstein process describing the ion translation and orientation of dipoles in a combined approach using Ngai’s coupling model. A nearly constant loss feature is witnessed at shorter times/lower temperatures. We also discuss the ac conductivity scaling behavior using Summerfield approach and random free energy barrier model which establish the time-temperature superposition principle. These experimental observations have fundamental importance on theoretical elucidation of the conductivity relaxation and glass transition phenomena in molten ionic conductors.

  18. Crystal structure of 4-acetamido-benzoic acid monohydrate.

    PubMed

    Cai, Wen-Juan; Chi, Shao-Ming; Kou, Jun-Feng; Liu, Feng-Yi

    2014-11-01

    In the title compound, C9H9NO3·H2O, the plane of the acetamide group is oriented at 20.52 (8)° with respect to the benzene ring, whereas the plane of the carb-oxy-lic acid group is essentially coplanar with the benzene ring [maximum deviation = 0.033 (1) Å]. In the crystal, classical O-H⋯O and N-H⋯O hydrogen bonds and weak C-H⋯O hydrogen bonds link the organic mol-ecules and water mol-ecules of crystallization into a three-dimensional supra-molecular architecture.

  19. Column adsorption studies for the removal of U by phosphonated cross-linked polyethylenimine: modelling and optimization

    NASA Astrophysics Data System (ADS)

    Saad, Dalia M.; Cukrowska, Ewa; Tutu, Hlanganani

    2015-03-01

    A continuous fixed-bed adsorption study was carried out by using phosphonated cross-linked polyethylenimine as an adsorbent for the removal of uranium (U) from aqueous solutions. The effect of inlet metal ion concentration (40, 70, and 100 mg L-1), feed flow rate (1, 2, and 3 mL min-1), and polymer bed height (2.5, 3.2 and 4.5 cm) on the breakthrough characteristics of the fixed-bed adsorption system at pH 2 were studied. The results showed that the breakthrough time appeared to increase with increase of bed height but decreased with increase of both influent U concentration and flow rate. Modelling of the dynamics of the fixed-bed adsorption process was studied and the application of different models to describe the breakthrough curves showed that the Thomas and Yoon-Nelson model gave better results for the operating conditions.

  20. Design and optimization of a phosphopeptide anchor for specific immobilization of a capture protein on zirconium phosphonate modified supports.

    PubMed

    Liu, Hao; Queffélec, Clémence; Charlier, Cathy; Defontaine, Alain; Fateh, Amina; Tellier, Charles; Talham, Daniel R; Bujoli, Bruno

    2014-11-25

    The attachment of affinity proteins onto zirconium phosphonate coated glass slides was investigated by fusing a short phosphorylated peptide sequence at one extremity to enable selective bonding to the active surface via the formation of zirconium phosphate coordinate covalent bonds. In a model study, the binding of short peptides containing zero to four phosphorylated serine units and a biotin end-group was assessed by surface plasmon resonance-enhanced ellipsometry (SPREE) as well as in a microarray format using fluorescence detection of AlexaFluor 647-labeled streptavidin. Significant binding to the zirconated surface was only observed in the case of the phosphopeptides, with the best performance, as judged by streptavidin capture, observed for peptides with three or four phosphorylation sites and when spotted at pH 3. When fusing similar phosphopeptide tags to the affinity protein, the presence of four phosphate groups in the tag allows efficient immobilization of the proteins and efficient capture of their target.

  1. Synthesis, spectroscopic characterization and solution behavior of new tin tetrachloride adducts with γ-keto allyl phosphonates

    NASA Astrophysics Data System (ADS)

    Elleuch, Haitham; Sanhoury, M. A. K.; Rezgui, F.

    2017-01-01

    Four new octahedral complexes of the type [SnCl4L2] (L = γ-keto allyl phosphonate) (1-4) were prepared and characterized by multinuclear (1H, 13C, 31P and 119Sn) NMR, IR spectroscopy and elemental analysis. The NMR data show, as expected, that these complexes exist in solution as mixtures of cis and trans isomers. More importantly, the solution structure was confirmed by 119Sn NMR spectra which show two triplets corresponding to the two isomers. In addition, the solution behavior of these complexes in the presence of excess ligand was studied by variable temperature NMR using the coalescence temperature method. The metal-ligand exchange activation energies were therefore determined and found to be in the range 57-60 kJ/mol. The effect of remote substituents on the metal-ligand interaction was studied and compared with closely related tin-phosphoryl complexes.

  2. Assembly of tetra, di and mononuclear molecular cadmium phosphonates using 2,4,6-triisopropylphenylphosponic acid and ancillary ligands.

    PubMed

    Chandrasekhar, Vadapalli; Sasikumar, Palani; Boomishankar, Ramamoorthy

    2008-10-14

    The reaction of ArPO(3)H(2) (Ar = 2,4,6-iPr(3)-C(6)H(2)) with Cd(CH(3)COO)(2).2H(2)O using various co-ligands such as methanol, dimethylformamide (DMF) and 3,5-dimethylpyrazole (DMPZH) resulted in the formation of tetranuclear assemblies [Cd(4)(ArPO(3))(2)(ArPO(3)H)(4)(CH(3)OH)(4)].3(CH(3)OH) (1), [Cd(4)(ArPO(3))(2)(ArPO(3)H)(4)(DMF)(4)].3(DMF) (2) and [Cd(4)(ArPO(3))(2)(ArPO(3)H)(4)(DMF)(2)(DMPZH)(2)].2(DMF).2(H(2)O) (3). In all of these compounds the tetranuclear cadmium array, containing two five-coordinate and two six-coordinate cadmium atoms, is held together by two mu(4) capping [ArPO(3)](2-) and four anisobidentate mu(2) [ArPO(2)(OH)](-) ligands. Each cadmium atom is bound to an additional ancillary ligand. The reaction of ArPO(3)H(2) with Cd(CH(3)COO)(2).2H(2)O in the presence of the chelating ligand 2,2'-bipyridine (bipy) leads to the exclusive formation of the dinuclear assembly [Cd(2)(ArPO(3)H)(4)(bipy)(2)].(CH(3)OH)(H(2)O) (4). The latter contains an eight-membered Cd(2)P(2)O(4) inorganic ring formed as a result of the bridging coordination action of two anisobidentate mu(2) [ArPO(2)(OH)](-) ligands. Each cadmium atom is bound by one chelating bipy and one monodentate [ArPO(2)(OH)](-) ligands. Use of four equivalents of 3,5-dimethylpyrazole leads to the formation of the mononuclear derivative [Cd(ArPO(3)H)(2)(DMPZH)(4)] (5). The molecular structure of the latter comprises of a central cadmium atom surrounded by six monodentate ligands. Four of these are neutral pyrazole ligands that occupy the equatorial plane; the remaining two are anionic phosphinate ligands which are present trans to each other. The thermal analysis of 1 and 4 reveals that the char residue obtained at 600 degrees C consists predominantly of Cd(2)P(2)O(7).

  3. Synthesis of activated carbon-based amino phosphonic acid chelating resin and its adsorption properties for Ce(III) removal.

    PubMed

    Chen, Tao; Yan, Chunjie; Wang, Yixia; Tang, Conghai; Zhou, Sen; Zhao, Yuan; Ma, Rui; Duan, Ping

    2015-01-01

    This work aims to investigate the adsorption of Ce(III) onto chelating resin based on activated carbon (CRAC). The CRAC adsorbent was prepared from activated carbon (AC) followed by oxidation, silane coupling, ammoniation and phosphorylation, and characterized by Fourier transform-infrared spectrometry, nitrogen adsorption measurements and scanning electron microscopy. The effects of solution pH, adsorbent dosage and contact time were studied by batch technique. Langmuir and Freundlich isotherms were used to describe the adsorption behaviour of Ce(III) by CRAC, and the results showed that the adsorption behaviour well fitted the Langmuir model. The maximum uptake capacity (qmax) calculated by using the Langmuir equation for cerium ions was found to be 94.34 mg/g. A comparison of the kinetic models and the overall experimental data was best fitted with the type 1 pseudo second-order kinetic model. The calculated thermodynamic parameters (ΔG°, ΔH° and ΔS°) showed that the adsorption for Ce(III) was feasible, spontaneous and exothermic at 25-45 °C. The CRAC showed an excellent adsorptive selectivity towards Ce(III). Moreover, more than 82% of Ce(III) adsorbed onto CRAC could be desorbed with HCl and could be used several times.

  4. Sources of aminomethylphosphonic acid (AMPA) in urban and rural catchments in Ontario, Canada: Glyphosate or phosphonates in wastewater?

    PubMed

    Struger, J; Van Stempvoort, D R; Brown, S J

    2015-09-01

    Correlation analysis suggests that occurrences of AMPA in streams of southern Ontario are linked mainly to glyphosate in both urban and rural settings, rather than to wastewater sources, as some previous studies have suggested. For this analysis the artificial sweetener acesulfame was analyzed as a wastewater indicator in surface water samples collected from urban and rural settings in southern Ontario, Canada. This interpretation is supported by the concurrence of seasonal fluctuations of glyphosate and AMPA concentrations. Herbicide applications in larger urban centres and along major transportation corridors appear to be important sources of glyphosate and AMPA in surface water, in addition to uses of this herbicide in rural and mixed use areas. Fluctuations in concentrations of acesulfame and glyphosate residues were found to be related to hydrologic events.

  5. Perfluoroalkyl acids: recent research highlights | Science ...

    EPA Pesticide Factsheets

    Perfluorinated compounds are organic chemicals in which all hydrogen molecules of the carbon-chain are substituted by fluorine molecules. Generally, there are two types of perfluorinated compounds, the perfluoroalkanes that are primarily used clinically for oxygenation and respiratory ventilation, and the perfluoroalkyl acids (PFAAs). Environmentally relevant PFAAs are a family of about 30 chemicals that consist of a carbon backbone typically 4-14 molecules in length and a charged functional group composed of either sulfonates, carboxylates or phosphonates (and to a lesser extent, phosphinates). While many (>100) derivatives ofPFAAs (such as alcohols, amides, esters and acids) are used for industrial and consumer applications, they can be degraded or metabolized to PFAAs as end-stage products. Thus, PFAAs, rather than their intermediates or derivatives, have drawn the most public attention and research interest. The most widely known PFAAs are the eight-carbon (C8) sulfonate (perfluorooctane sulfonate, PFOS) and carboxylate (perfluorooctanoic acid, PFOA), although the C4 (perfluorobutane) and C6 (perfluorohexane) sulfonates, as well as the C4, C6 and C9 (perfluorononanoic) carboxylates have also been used in commerce. The perfluoroalkyl phosphonates (PFPAs) are fairly new entities for this class ofchemicals. They are typically used as leveling and wetting agents, and defoaming additives in the production of pesticides. They were considered biologically inert by

  6. Stereoselective Synthesis of α- and β-l-Ara4N Glycosyl H-Phosphonates and a Neoglycoconjugate Comprising Glycosyl Phosphodiester Linked β-l-Ara4N

    PubMed Central

    2016-01-01

    Stereoselective synthesis of variably protected α- and β-l-Ara4N glycosyl H-phosphonates as key intermediates in the syntheses of β-l-Ara4N-modified LPS structures and α-l-Ara4N-containing biosynthetic precursors is reported. A facile one-pot approach toward β-l-Ara4N glycosyl H-phosphonates includes anomeric deallylation of protected 4-azido β-l-Ara4N via terminal olefin isomerization followed by ozonolysis and methanolysis of formyl groups to furnish exclusively β-configured lactols that are phosphitylated with retention of configuration. The carbohydrate epitope of β-l-Ara4N-modified Lipid A, βGlcN(1→6)αGlcN(1→P←1)β-l-Ara4N, was stereoselectively synthesized and linked to maleimide-activated bovine serum albumin. PMID:28009171

  7. Surface modification of poly(D,L-lactic acid) scaffolds for orthopedic applications: a biocompatible, nondestructive route via diazonium chemistry.

    PubMed

    Mahjoubi, Hesameddin; Kinsella, Joseph M; Murshed, Monzur; Cerruti, Marta

    2014-07-09

    Scaffolds made with synthetic polymers such as polyesters are commonly used in bone tissue engineering. However, their hydrophobicity and the lack of specific functionalities make their surface not ideal for cell adhesion and growth. Surface modification of these materials is thus crucial to enhance the scaffold's integration in the body. Different surface modification techniques have been developed to improve scaffold biocompatibility. Here we show that diazonium chemistry can be used to modify the outer and inner surfaces of three-dimensional poly(D,L-lactic acid) (PDLLA) scaffolds with phosphonate groups, using a simple two-step method. By changing reaction time and impregnation procedure, we were able to tune the concentration of phosphonate groups present on the scaffolds, without degrading the PDLLA matrix. To test the effectiveness of this modification, we immersed the scaffolds in simulated body fluid, and characterized them with scanning electron microscopy, X-ray photoelectron spectroscopy, Raman, and infrared spectroscopy. Our results showed that a layer of hydroxyapatite particles was formed on all scaffolds after 2 and 4 weeks of immersion; however, the precipitation was faster and in larger amounts on the phosphonate-modified than on the bare PDLLA scaffolds. Both osteogenic MC3T3-E1 and chondrogenic ATDC5 cell lines showed increased cell viability/metabolic activity when grown on a phosphonated PDLLA surface in comparison to a control PDLLA surface. Also, more calcium-containing minerals were deposited by cultures grown on phosphonated PDLLA, thus showing the pro-mineralization properties of the proposed modification. This work introduces diazonium chemistry as a simple and biocompatible technique to modify scaffold surfaces, allowing to covalently and homogeneously bind a number of functional groups without degrading the scaffold's polymeric matrix.

  8. Crystal structures of 2-[(4,6-di­amino­pyrimidin-2-yl)sulfan­yl]-N-(3-nitro­phen­yl)acetamide monohydrate and N-(2-chloro­phen­yl)-2-[(4,6-di­amino­pyrimidin-2-yl)sulfan­yl]acetamide

    PubMed Central

    Subasri, S.; Timiri, Ajay Kumar; Barji, Nayan Sinha; Jayaprakash, Venkatesan; Vijayan, Viswanathan; Velmurugan, Devadasan

    2016-01-01

    The title compounds, C12H12N6O3S·H2O, (I), and C12H12ClN5OS, (II), are 2-[(4,6-di­amino­pyrimidin-2-yl)sulfan­yl]acetamides. Compound (I) crystallized as a monohydrate. In both compounds, the mol­ecules have a folded conformation, with the pyrimidine ring being inclined to the benzene ring by 56.18 (6)° in (I) and by 67.84 (6)° in (II). In both mol­ecules, there is an intra­molecular N—H⋯N hydrogen bond stabilizing the folded conformation. In (I), there is also a C—H⋯O intra­molecular short contact, and in (II) an intra­molecular N—H⋯Cl hydrogen bond is present. In the crystal of (I), mol­ecules are linked by a series of N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds, forming undulating sheets parallel to the (100). The sheets are linked via an N—H⋯Owater hydrogen bond, forming a three-dimensional network. In the crystal of (II), mol­ecules are linked by a series of N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds, forming slabs parallel to (001). PMID:27536406

  9. Crystal structures of 2-[(4,6-di­amino­pyrimidin-2-yl)sulfan­yl]-N-(naphthalen-1-yl)acetamide and 2-[(4,6-di­amino­pyrimidin-2-yl)sulfan­yl]-N-(4-fluoro­phen­yl)acetamide

    PubMed Central

    Subasri, S.; Kumar, Timiri Ajay; Sinha, Barij Nayan; Jayaprakash, Venkatesan; Viswanathan, Vijayan; Velmurugan, Devadasan

    2017-01-01

    The title compounds, C16H15N5OS, (I), and C12H12FN5OS, (II), are [(di­amino­pyrimidine)­sulfan­yl]acetamide derivatives. In (I), the pyrimidine ring is inclined to the naphthalene ring system by 55.5 (1)°, while in (II), the pyrimidine ring is inclined to the benzene ring by 58.93 (8)°. In (II), there is an intra­molecular N—H⋯N hydrogen bond and a short C—H⋯O contact. In the crystals of (I) and (II), mol­ecules are linked by pairs of N—H⋯N hydrogen bonds, forming inversion dimers with R 2 2(8) ring motifs. In the crystal of (I), the dimers are linked by bifurcated N—H⋯(O,O) and C—H⋯O hydrogen bonds, forming layers parallel to (100). In the crystal of (II), the dimers are linked by N—H⋯O hydrogen bonds, also forming layers parallel to (100). The layers are linked by C—H⋯F hydrogen bonds, forming a three-dimensional architecture. PMID:28217364

  10. Sulfuric acid nucleation: An experimental study of the effect of seven bases

    NASA Astrophysics Data System (ADS)

    Glasoe, W. A.; Volz, K.; Panta, B.; Freshour, N.; Bachman, R.; Hanson, D. R.; McMurry, P. H.; Jen, C.

    2015-03-01

    Nucleation of particles with sulfuric acid, water, and nitrogeneous bases was studied in a flow reactor. Sulfuric acid and water levels were set by flows over sulfuric acid and water reservoirs, respectively, and the base concentrations were determined from measured permeation rates and flow dilution ratios. Particle number distributions were measured with a nano-differential-mobility-analyzer system. Results indicate that the nucleation capability of NH3, methylamine, dimethylamine, and trimethylamine with sulfuric acid increases from NH3 as the weakest, methylamine next, and dimethylamine and trimethylamine the strongest. Three other bases were studied, and experiments with triethylamine showed that it is less effective than methylamine, and experiments with urea and acetamide showed that their capabilities are much lower than the amines with acetamide having basically no effect. When both NH3 and an amine were present, nucleation was more strongly enhanced than with just the amine present. Comparisons of nucleation rates to predictions and previous experimental work are discussed, and the sulfuric acid-base nucleation rates measured here are extrapolated to atmospheric conditions. The measurements suggest that atmospheric nucleation rates are significantly affected by synergistic interactions between ammonia and amines.

  11. Degradation of the Phosphonate Herbicide Glyphosate by Arthrobacter atrocyaneus ATCC 13752

    PubMed Central

    Pipke, Rüdiger; Amrhein, Nikolaus

    1988-01-01

    Of nine authentic Arthrobacter strains tested, only A. atrocyaneus ATCC 13752 was capable of using the herbicide glyphosate [N-(phosphonomethyl)glycine] as its sole source of phosphorus. Contrary to the previously isolated Arthrobacter sp. strain GLP-1, which degrades glyphosate via sarcosine, A. atrocyaneus metabolized glyphosate to aminomethylphosphonic acid. The carbon of aminomethylphosphonic acid was entirely converted to CO2. This is the first report on glyphosate degradation by a bacterial strain without previous selection for glyphosate utilization as a source of phosphorus. PMID:16347639

  12. A comparison of vasodilation mode among selexipag (NS-304; [2-{4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}-N-(methylsulfonyl)acetamide]), its active metabolite MRE-269 and various prostacyclin receptor agonists in rat, porcine and human pulmonary arteries.

    PubMed

    Fuchikami, Chiaki; Murakami, Kohji; Tajima, Koyuki; Homan, Junko; Kosugi, Keiji; Kuramoto, Kazuya; Oka, Michiko; Kuwano, Keiichi

    2017-01-15

    Selexipag (NS-304; [2-{4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}-N- (methylsulfonyl)acetamide]) is a novel, orally available non-prostanoid prostacyclin receptor (IP receptor) agonist that has recently been approved for the treatment of pulmonary arterial hypertension (PAH). We examined the effect of the active metabolite of selexipag, MRE-269, and IP receptor agonists that are currently available as PAH therapeutic drugs on the relaxation of rat, porcine and human pulmonary artery. cAMP formation in human pulmonary artery smooth muscle cells was induced by all test compounds (MRE-269, epoprostenol, iloprost, treprostinil and beraprost sodium) and suppressed by IP receptor antagonists (CAY10441 and 2-[4-(1H-indol-4-yloxymethyl)-benzyloxycarbonylamino]-3-phenyl-propionic acid). MRE-269 induced endothelium-independent vasodilation of rat extralobar pulmonary artery (EPA). In contrast, endothelial denudation or the addition of a nitric oxide synthase inhibitor markedly attenuated the vasodilation of EPA induced by epoprostenol, treprostinil and beraprost sodium but not iloprost. The vasorelaxant effects of MRE-269 on rat small intralobar pulmonary artery (SIPA) and EPA were the same, while the other IP receptor agonists induced less vasodilation in SIPA than in EPA. Furthermore, a prostaglandin E receptor 3 antagonist enhanced the vasodilation induced by all IP receptor agonists tested except MRE-269. We also investigated the relaxation induced by IP receptor agonists in pulmonary arteries from non-rodent species and found similar vasodilation modes in porcine and human as in rat preparations. These results suggest that MRE-269, in contrast to other IP receptor agonists, works as a selective IP receptor agonist, thus leading to pronounced vasorelaxation of rat, porcine and human pulmonary artery.

  13. Detection of a nerve agent simulant using single-walled carbon nanotube networks: dimethyl-methyl-phosphonate.

    PubMed

    Kim, Yeonju; Lee, Seunghyun; Choi, Hyang Hee; Noh, Jin-Seo; Lee, Wooyoung

    2010-12-10

    Single-walled carbon nanotube (SWNT) networks were used to detect hazardous dimethyl-methyl-phosphonate (DMMP) gas in real time, employing two different metals as electrodes. Random networks of SWNTs were simply obtained by drop-casting a SWNT-containing solution onto a surface-oxidized Si substrate. Although the electrical responses to DMMP at room temperature were reversible for both metals, the Pd-contacting SWNT network sensors exhibited a higher response and a shorter response time than those of the Au-contacting SWNT network sensors at the same DMMP concentration, due to the stronger interactions between the SWNTs and Pd surface atoms. In Pd-contacting SWNT network sensors, the response increased linearly with increasing DMMP concentration and reproducible response curves were obtained for DMMP levels as low as 1 ppm. These results indicate that SWNT networks in contact with Pd electrodes can function as good DMMP sensors at room temperature with scalable and fast response and excellent recovery.

  14. Detection of a nerve agent simulant using single-walled carbon nanotube networks: dimethyl-methyl-phosphonate

    NASA Astrophysics Data System (ADS)

    Kim, Yeonju; Lee, Seunghyun; Choi, Hyang Hee; Noh, Jin-Seo; Lee, Wooyoung

    2010-12-01

    Single-walled carbon nanotube (SWNT) networks were used to detect hazardous dimethyl-methyl-phosphonate (DMMP) gas in real time, employing two different metals as electrodes. Random networks of SWNTs were simply obtained by drop-casting a SWNT-containing solution onto a surface-oxidized Si substrate. Although the electrical responses to DMMP at room temperature were reversible for both metals, the Pd-contacting SWNT network sensors exhibited a higher response and a shorter response time than those of the Au-contacting SWNT network sensors at the same DMMP concentration, due to the stronger interactions between the SWNTs and Pd surface atoms. In Pd-contacting SWNT network sensors, the response increased linearly with increasing DMMP concentration and reproducible response curves were obtained for DMMP levels as low as 1 ppm. These results indicate that SWNT networks in contact with Pd electrodes can function as good DMMP sensors at room temperature with scalable and fast response and excellent recovery.

  15. A Molecular Dynamics Study of Tributyl Phosphate and Diamyl Amyl Phosphonate Self-Aggregation in Dodecane and Octane.

    PubMed

    Servis, Michael J; Tormey, Caleb A; Wu, David T; Braley, Jenifer C

    2016-03-17

    A molecular dynamics model for tributyl phosphate (TBP) and diamyl amyl phosphonate (DAAP) is presented using the Generalized AMBER Force Field (GAFF) and the AM1-BCC method for calculated atomic charges with a modification to the phosphorus-containing dihedral parameters. The density and average molecular dipole in a neat liquid simulation, and dimerization in dodecane and octane diluents, compare favorably to experimental values. At low extractant concentration, investigation of the dimer structure reveals the offset "head-to-head" orientation as the predominant structure over a range of TBP and DAAP concentrations with a phosphoryl oxygen separation distance between dimerized extractants of 3-5.5 Å. At high extractant concentrations, a graph analysis of extractant aggregates was used to determine concentrations of each aggregate size and the average coordination number, which gives a measure of the linearity of the aggregates. For aggregates up to 7 extractant molecules, the mean free energy of association per molecule was found to be 0.55-0.59 and 0.72 kcal/mol for TBP and DAAP, respectively. In both diluents, TBP formed large aggregates more frequently than DAAP, and those aggregates were more nonlinear than their DAAP equivalents. This finding anticipates differences in aggregation chemistry between TBP and DAAP in PUREX extraction systems.

  16. Synthesis and Application of Organic Phosphonate Salts as Draw Solutes in Forward Osmosis for Oil-Water Separation.

    PubMed

    Long, Qingwu; Shen, Liang; Chen, Rongbiao; Huang, Jiaqi; Xiong, Shu; Wang, Yan

    2016-11-01

    The development of suitable draw solution in forward osmosis (FO) process has attracted the growing attention for water treatment purpose. In this study, a series of organic phosphonate salts (OPSs) are synthesized by one-step Mannich-like reaction, confirmed by FTIR and NMR characterizations, and applied as novel draw solutes in FO applications. Their solution properties including osmotic pressures and viscosities, as well as their FO performance as a function of the solution concentration are investigated systematically. In FO process, a higher water flux of 47-54 LMH and a negligible reverse solute flux can be achieved in the PRO (AL-DS) mode (active layer faces the draw solution) using a homemade thin-film composite membrane (PSF-TFC) and deionized water as the feed solution. Among all OPS draw solutes, the tetraethylenepentamine heptakis(methylphosphonic) sodium salt (TPHMP-Na) exhibits the best FO flux at 0.5 mol/kg concentration, which is further applied for the separation of emulsified oil-water mixture. The recovery of diluted OPS solutions is carried out via a nanofiltration (NF) system with a rejection above 92%. The aforementioned features show the great potential of OPS compounds as a novel class of draw solutes for FO applications.

  17. New N-Acetyltransferase Fold in the Structure and Mechanism of the Phosphonate Biosynthetic Enzyme FrbF

    SciTech Connect

    Bae, Brian; Cobb, Ryan E.; DeSieno, Matthew A.; Zhao, Huimin; Nair, Satish K.

    2015-10-15

    The enzyme FrbF from Streptomyces rubellomurinus has attracted significant attention due to its role in the biosynthesis of the antimalarial phosphonate FR-900098. The enzyme catalyzes acetyl transfer onto the hydroxamate of the FR-900098 precursors cytidine 5'-monophosphate-3-aminopropylphosphonate and cytidine 5'-monophosphate-N-hydroxy-3-aminopropylphosphonate. Despite the established function as a bona fide N-acetyltransferase, FrbF shows no sequence similarity to any member of the GCN5-like N-acetyltransferase (GNAT) superfamily. Here, we present the 2.0 {angstrom} resolution crystal structure of FrbF in complex with acetyl-CoA, which demonstrates a unique architecture that is distinct from those of canonical GNAT-like acetyltransferases. We also utilized the co-crystal structure to guide structure-function studies that identified the roles of putative active site residues in the acetyltransferase mechanism. The combined biochemical and structural analyses of FrbF provide insights into this previously uncharacterized family of N-acetyltransferases and also provide a molecular framework toward the production of novel N-acyl derivatives of FR-900098.

  18. Clinical Potential of the Acyclic Nucleoside Phosphonates Cidofovir, Adefovir, and Tenofovir in Treatment of DNA Virus and Retrovirus Infections

    PubMed Central

    De Clercq, Erik

    2003-01-01

    The acyclic nucleoside phosphonates HPMPC (cidofovir), PMEA (adefovir), and PMPA (tenofovir) have proved to be effective in vitro (cell culture systems) and in vivo (animal models and clinical studies) against a wide variety of DNA virus and retrovirus infections: cidofovir against herpesvirus (herpes simplex virus types 1 and 2 varicella-zoster virus, cytomegalovirus [CMV], Epstein-Barr virus, and human herpesviruses 6, 7, and 8), polyomavirus, papillomavirus, adenovirus, and poxvirus (variola virus, cowpox virus, vaccinia virus, molluscum contagiosum virus, and orf virus) infections; adefovir against herpesvirus, hepadnavirus (human hepatitis B virus), and retrovirus (human immunodeficiency virus types 1 [HIV-1] and 2 [HIV-2], simian immunodeficiency virus, and feline immunodeficiency virus) infections; and tenofovir against both hepadnavirus and retrovirus infections. Cidofovir (Vistide) has been officially approved for the treatment of CMV retinitis in AIDS patients, tenofovir disoproxil fumarate (Viread) has been approved for the treatment of HIV infections (i.e., AIDS), and adefovir dipivoxil (Hepsera) has been approved for the treatment of chronic hepatitis B. Nephrotoxicity is the dose-limiting side effect for cidofovir (Vistide) when used intravenously (5 mg/kg); no toxic side effects have been described for adefovir dipivoxil and tenofovir disoproxil fumarate, at the approved doses (Hepsera at 10 mg orally daily and Viread at 300 mg orally daily). PMID:14557287

  19. Synthesis of a C-phosphonate mimic of maltose-1-phosphate and inhibition studies on Mycobacterium tuberculosis GlgE.

    PubMed

    Veleti, Sri Kumar; Lindenberger, Jared J; Ronning, Donald R; Sucheck, Steven J

    2014-02-15

    The emergence of extensively drug-resistant tuberculosis (XDR-TB) necessitates the need to identify new anti-tuberculosis drug targets as well as to better understand essential biosynthetic pathways. GlgE is a Mycobacterium tuberculosis (Mtb) encoded maltosyltransferase involved in α-glucan biosynthesis. Deletion of GlgE in Mtb results in the accumulation of M1P within cells leading to rapid death of the organism. To inhibit GlgE a maltose-C-phosphonate (MCP) 13 was designed to act as an isosteric non-hydrolysable mimic of M1P. MCP 13, the only known inhibitor of Mtb GlgE, was successfully synthesized using a Wittig olefination as a key step in transforming maltose to the desired product. MCP 13 inhibited Mtb GlgE with an IC₅₀=230 ± 24 μM determined using a coupled enzyme assay which measures orthophosphate release. The requirement of M1P for the assay necessitated the development of an expedited synthetic route to M1P from an intermediate used in the MCP 13 synthesis. In conclusion, we designed a substrate analogue of M1P that is the first to exhibit Mtb GlgE inhibition.

  20. Tribology and stability of organic monolayers on CrN: a comparison among silane, phosphonate, alkene, and alkyne chemistries.

    PubMed

    Pujari, Sidharam P; Li, Yan; Regeling, Remco; Zuilhof, Han

    2013-08-20

    The fabrication of chemically and mechanically stable monolayers on the surfaces of various inorganic hard materials is crucial to the development of biomedical/electronic devices. In this Article, monolayers based on the reactivity of silane, phosphonate, 1-alkene, and 1-alkyne moieties were obtained on the hydroxyl-terminated chromium nitride surface. Their chemical stability and tribology were systematically investigated. The chemical stability of the modified CrN surfaces was tested in aqueous media at 60 °C at pH 3, 7, and 11 and monitored by static water contact angle measurements, X-ray photoelectron spectroscopy (XPS), ellipsometry, and Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS). The tribological properties of the resulting organic monolayers with different end groups (fluorinated or nonfluorinated) were studied using atomic force microscopy (AFM). It was found that the fluorinated monolayers exhibit a dramatic reduction of adhesion and friction force as well as excellent wear resistance compared to those of nonfluorinated coatings and bare CrN substrates. The combination of remarkable chemical stability and superior tribological properties makes these fluorinated monolayers promising candidates for the development of robust high-performance devices.

  1. Low-frequency collective dynamics in deep eutectic solvents of acetamide and electrolytes: a femtosecond Raman-induced Kerr effect spectroscopic study.

    PubMed

    Biswas, Ranjit; Das, Anuradha; Shirota, Hideaki

    2014-10-07

    In this study, we have investigated the ion concentration dependent collective dynamics in two series of deep eutectic solvent (DES) systems by femtosecond Raman-induced Kerr effect spectroscopy, as well as some physical properties, e.g., shear viscosity (η), density (ρ), and surface tension (γ). The DES systems studied here are [0.75CH3CONH2 + 0.25{f KSCN + (1 - f )NaSCN}] and [0.78CH3CONH2 + 0.22{f LiBr + (1 - f )LiNO3}] with f = 0, 0.2, 0.4, 0.6, 0.8, and 1.0. γ of these DES systems shows near insensitivity to f, while ρ shows a moderate dependence on f. Interestingly, η exhibits a strong dependence on f. In the low-frequency Kerr spectra, obtained via the Fourier transform of the collected Kerr transients, a characteristic band at ∼70 cm(-1) is clear in [0.78CH3CONH2 + 0.22{f LiBr + (1 - f )LiNO3}] DES especially at the larger f. The band is attributed to the intermolecular hydrogen bond of acetamide. Because of less depolarized Raman activities of intermolecular/interionic vibrational motions, which are mostly translational (collision-induced or interaction-induced) motions, of spherical ions, the intermolecular hydrogen-bonding band is clearly observed. In contrast, the intermolecular hydrogen-bonding band is buried in the other intermolecular/interionic vibrational motions, which includes translational and reorientational (librational) motions and their cross-terms, in [0.75CH3CONH2 + 0.25{f KSCN + (1 - f )NaSCN}] system. The first moment (M1) of the intermolecular/interionic vibrational band in these DES systems is much higher than that in typical neutral molecular liquids and shows a weak but contrasting dependence on the bulk parameter √γ/ρ. The time constants for picosecond overdamped Kerr transients in both the DES systems, which are obtained on the basis of the analysis fitted by a triexponential function, are rather insensitive to f for both the DES systems, but all the three time constants (fast: ∼1-3 ps; intermediate:

  2. Carbonic anhydrase inhibitors. Interaction of isozymes I, II, IV, V, and IX with phosphates, carbamoyl phosphate, and the phosphonate antiviral drug foscarnet.

    PubMed

    Rusconi, Stefano; Innocenti, Alessio; Vullo, Daniela; Mastrolorenzo, Antonio; Scozzafava, Andrea; Supuran, Claudiu T

    2004-12-06

    A detailed inhibition study of five carbonic anhydrase (CA, EC 4.2.1.1) isozymes with inorganic phosphates, carbamoyl phosphate, the antiviral phosphonate foscarnet as well as formate is reported. The cytosolic isozyme hCA I was weakly inhibited by neutral phosphate, strongly inhibited by carbamoyl phosphate (K(I) of 9.4 microM), and activated by hydrogen- and dihydrogenphosphate, foscarnet and formate (best activator foscarnet, K(A)=12 microM). The cytosolic isozyme hCA II was weakly inhibited by all the investigated anions, with carbamoyl phosphate showing a K(I) of 0.31 mM. The membrane-associated isozyme hCA IV was the most sensitive to inhibition by phosphates/phosphonates, showing a K(I) of 84 nM for PO(4)(3-), of 9.8 microM for HPO(4)(2-), and of 9.9 microM for carbamoyl phosphate. Foscarnet was the best inhibitor of this isozyme (K(I) of 0.82 mM) highly abundant in the kidneys, which may explain some of the renal side effects of the drug. The mitochondrial isozyme hCA V was weakly inhibited by all phosphates/phosphonates, except carbamoyl phosphate, which showed a K(I) of 8.5 microM. Thus, CA V cannot be the isozyme involved in the carbamoyl phosphate synthetase I biosynthetic reaction, as hypothesized earlier. Furthermore, the relative resistance of CA V to inhibition by inorganic phosphates suggests an evolutionary adaptation of this mitochondrial isozyme to the presence of high concentrations of such anions in these energy-converting organelles, where high amounts of ATP are produced by ATP synthetase, from ADP and inorganic phosphates. The transmembrane, tumor-associated isozyme hCA IX was on the other hand slightly inhibited by all these anions.

  3. Facile preparation of acid-resistant magnetite particles for removal of Sb(Ⅲ) from strong acidic solution

    PubMed Central

    Wang, Dong; Guan, Kaiwen; Bai, Zhiping; Liu, Fuqiang

    2016-01-01

    Abstract A new facile coating strategy based on the hydrophobicity of methyl groups was developed to prevent nano-sized magnetite particles from strong acid corrosion. In this method, three steps of hydrolysis led to three layers of protection shell coating Fe3O4 nanoparticles. Filled with hydrophobic methyl groups, the middle layer mainly prevented the magnetic core from strong acid corrosion. These magnetite particles managed to resist 1 M HCl solution and 2.5 M H2SO4 solution. The acid resistant ability was higher than those reported previously. After further modification with amino-methylene-phosphonic groups, these magnetite particles successfully adsorbed Sb(III) in strong acid solution. This new strategy can also be applied to protect other materials from strong acid corrosion. PMID:27877860

  4. Proton Conduction in a Phosphonate-Based Metal–Organic Framework Mediated by Intrinsic “Free Diffusion inside a Sphere”

    PubMed Central

    2016-01-01

    Understanding the molecular mechanism of proton conduction is crucial for the design of new materials with improved conductivity. Quasi-elastic neutron scattering (QENS) has been used to probe the mechanism of proton diffusion within a new phosphonate-based metal–organic framework (MOF) material, MFM-500(Ni). QENS suggests that the proton conductivity (4.5 × 10–4 S/cm at 98% relative humidity and 25 °C) of MFM-500(Ni) is mediated by intrinsic “free diffusion inside a sphere”, representing the first example of such a mechanism observed in MOFs. PMID:27182787

  5. Surface coating from phosphonate ionic liquid electrolyte for the enhancement of the tribological performance of magnesium alloy.

    PubMed

    Jiménez, Ana Eva; Rossi, Antonella; Fantauzzi, Marzia; Espinosa, Tulia; Arias-Pardilla, Joaquin; Martínez-Nicolás, Ginés; Bermúdez, María-Dolores

    2015-05-20

    A chronoamperometric method has been applied for the growth of a surface coating on AZ31B magnesium alloy, using the imidazolium alkylphosphonate room-temperature ionic liquid 1-ethyl-3-methylimidazolium ethylphosphonate ([EMIM][EtPO3H]) as electrolyte. A surface coating layer is obtained after 4 h under a constant voltage bias of -0.8 V with respect to the standard electrode. The coating nucleation and growth process correlates well with a 3D progressive mechanism. X-ray photoelectron spectrometry (XPS) analysis of [EMIM][EtPO3H] shows new P 2p and O 1s peaks after its use as electrolyte, as a consequence of reaction between the phosphonate anion and the magnesium substrate. Angle-resolved XPS (ARXPS) analysis of [EMIM][EtPO3H] did not show any change in the composition of the surface before and after chronoamperometry, since the sampling depth (1.5 nm at the highest emission angle) is larger than the cation and anion sizes (ca. 7 and 5 Å, respectively). Characterization of the coating was made by scanning electron microscopy (SEM), focussed ion beam SEM, energy dispersive X-ray spectroscopy, XPS, and ARXPS. FIB-SEM shows that the coating presents a mean thickness of 374 (±36) nm and contains magnesium and aluminum phosphates. Linear reciprocating tribological tests under variable load show that the presence of the coating can reduce friction coefficients of the coated AZ31B against steel up to 32% and wear rates up to 90%, with respect to the uncoated alloy.

  6. Instrumental Dependent Dissociations of n-Propyl/Isopropyl Phosphonate Isomers: Evaluation of Resonant and Non-Resonant Vibrational Activations

    NASA Astrophysics Data System (ADS)

    Bennaceur, Chafia; Afonso, Carlos; Alves, Sandra; Bossée, Anne; Tabet, Jean-Claude

    2013-08-01

    Structural elucidation and distinction of isomeric neurotoxic agents remain a challenge. Tandem mass spectrometry can be used for this purpose in particular if a "diagnostic" product ion is observed. Different vibrational activation methods were investigated to enhance formation of diagnostic ions through consecutive processes from O,O-dialkyl alkylphosphonates. Resonant and non-resonant collisional activation and infrared multiphoton dissociation (IRMPD) were used with different mass spectrometers: a hybrid quadrupole Fourier transform ion cyclotron resonance (Qh-FTICR) and a hybrid linear ion trap-Orbitrap (LTQ/Orbitrap). Double resonance (DR) experiments, in ion cyclotron resonance (ICR) cell, were used for unambiguous determination of direct intermediate yielding diagnostic ions. From protonated n-propyl and isopropyl O-O-dialkyl-phosphonates, a diagnostic m/ z 83 ion characterizes the isopropyl isomer. This ion is produced through consecutive dissociation processes. Conditions to favor its formation and observation using different activation methods were investigated. It was shown that with the LTQ, consecutive experimental steps of isolation/activation with modified trapping conditions limiting the low mass cut off (LMCO) effect were required, whereas with FT-ICR by CID and IRMPD the diagnostic ion detection was provided only by one activation step. Among the different investigated activation methods it was shown that by using low-pressure conditions or using non-resonant methods, efficient and fast differentiation of isomeric neurotoxic agents was obtained. This work constitutes a unique comparison of different activation modes for distinction of isomers showing the instrumental dependence characteristic of the consecutive processes. New insights in the dissociation pathways were obtained based on double-resonance IRMPD experiments using a FT-ICR instrument with limitation at low mass values.

  7. Instrumental dependent dissociations of n-propyl/isopropyl phosphonate isomers: evaluation of resonant and non-resonant vibrational activations.

    PubMed

    Bennaceur, Chafia; Afonso, Carlos; Alves, Sandra; Bossée, Anne; Tabet, Jean-Claude

    2013-08-01

    Structural elucidation and distinction of isomeric neurotoxic agents remain a challenge. Tandem mass spectrometry can be used for this purpose in particular if a "diagnostic" product ion is observed. Different vibrational activation methods were investigated to enhance formation of diagnostic ions through consecutive processes from O,O-dialkyl alkylphosphonates. Resonant and non-resonant collisional activation and infrared multiphoton dissociation (IRMPD) were used with different mass spectrometers: a hybrid quadrupole Fourier transform ion cyclotron resonance (Qh-FTICR) and a hybrid linear ion trap-Orbitrap (LTQ/Orbitrap). Double resonance (DR) experiments, in ion cyclotron resonance (ICR) cell, were used for unambiguous determination of direct intermediate yielding diagnostic ions. From protonated n-propyl and isopropyl O-O-dialkyl-phosphonates, a diagnostic m/z 83 ion characterizes the isopropyl isomer. This ion is produced through consecutive dissociation processes. Conditions to favor its formation and observation using different activation methods were investigated. It was shown that with the LTQ, consecutive experimental steps of isolation/activation with modified trapping conditions limiting the low mass cut off (LMCO) effect were required, whereas with FT-ICR by CID and IRMPD the diagnostic ion detection was provided only by one activation step. Among the different investigated activation methods it was shown that by using low-pressure conditions or using non-resonant methods, efficient and fast differentiation of isomeric neurotoxic agents was obtained. This work constitutes a unique comparison of different activation modes for distinction of isomers showing the instrumental dependence characteristic of the consecutive processes. New insights in the dissociation pathways were obtained based on double-resonance IRMPD experiments using a FT-ICR instrument with limitation at low mass values.

  8. Mapping and molecular cloning of the phn (psiD) locus for phosphonate utilization in Escherichia coli.

    PubMed Central

    Wanner, B L; Boline, J A

    1990-01-01

    The Escherichia coli phn (psiD) locus encodes genes for phosphonate (Pn) utilization, for phn (psiD) mutations abolish the ability to use as a sole P source a Pn with a substituted C-2 or unsubstituted hydrocarbon group such as 2-aminoethylphosphonate (AEPn) or methylphosphonate (MPn), respectively. Even though the E. coli K-12 phosphate starvation-inducible (psi) phn (psiD) gene(s) shows normal phosphate (Pi) control, Pn utilization is cryptic in E. coli K-12, as well as in several members of the E. coli reference (ECOR) collection which are closely related to K-12. For these bacteria, an activating mutation near the phn (psiD) gene is necessary for growth on a Pn as the sole P source. Most E. coli strains, including E. coli B, are naturally Phn+; a few E. coli strains are Phn- and are deleted for phn DNA sequences. The Phn+ phn(EcoB) DNA was molecularly cloned by using the mini-Mu in vivo cloning procedure and complementation of an E. coli K-12 delta phn mutant. The phn(EcoB) DNA hybridized to overlapping lambda clones in the E. coli K-12 gene library (Y. Kohara, K. Akiyama, and K. Isono, Cell 50:495-508, 1987) which contain the 93-min region, thus showing that the phn (psiD) locus was itself cloned and verifying our genetic data on its map location. The cryptic phn(EcoK) DNA has an additional 100 base pairs that is absent in the naturally Phn+ phn(EcoB) sequence. However, no gross structural change was detected in independent Phn+ phn(EcoK) mutants that have activating mutations near the phn locus. Images FIG. 2 PMID:2155195

  9. Mapping and molecular cloning of the phn (psiD) locus for phosphonate utilization in Escherichia coli.

    PubMed

    Wanner, B L; Boline, J A

    1990-03-01

    The Escherichia coli phn (psiD) locus encodes genes for phosphonate (Pn) utilization, for phn (psiD) mutations abolish the ability to use as a sole P source a Pn with a substituted C-2 or unsubstituted hydrocarbon group such as 2-aminoethylphosphonate (AEPn) or methylphosphonate (MPn), respectively. Even though the E. coli K-12 phosphate starvation-inducible (psi) phn (psiD) gene(s) shows normal phosphate (Pi) control, Pn utilization is cryptic in E. coli K-12, as well as in several members of the E. coli reference (ECOR) collection which are closely related to K-12. For these bacteria, an activating mutation near the phn (psiD) gene is necessary for growth on a Pn as the sole P source. Most E. coli strains, including E. coli B, are naturally Phn+; a few E. coli strains are Phn- and are deleted for phn DNA sequences. The Phn+ phn(EcoB) DNA was molecularly cloned by using the mini-Mu in vivo cloning procedure and complementation of an E. coli K-12 delta phn mutant. The phn(EcoB) DNA hybridized to overlapping lambda clones in the E. coli K-12 gene library (Y. Kohara, K. Akiyama, and K. Isono, Cell 50:495-508, 1987) which contain the 93-min region, thus showing that the phn (psiD) locus was itself cloned and verifying our genetic data on its map location. The cryptic phn(EcoK) DNA has an additional 100 base pairs that is absent in the naturally Phn+ phn(EcoB) sequence. However, no gross structural change was detected in independent Phn+ phn(EcoK) mutants that have activating mutations near the phn locus.

  10. Recovery of phosphonate surface contaminants from glass using a simple vacuum extractor with a solid-phase microextraction fiber

    SciTech Connect

    Gary S. Groenewold; Jill R. Scott; Cathy Rae

    2011-07-01

    Recovery of chemical contaminants from fixed surfaces for analysis can be challenging particularly if it is not possible to acquire a solid sample. A simple device is described that collects semivolatile organic compounds from fixed surfaces by creating an enclosed volume over the surface, then generating a modest vacuum. A solid-phase microextraction fiber is then inserted into the evacuated volume where it functions to sorb volatilized organic contaminants. The device is based on a syringe modified with a seal that is used to create the vacuum, with a perforable plunger through which the SPME fiber is inserted. The vacuum speeds partitioning of the semivolatile compounds into the gas phase, and reduces the boundary layer around the SPME fiber, which enables a fraction of the volatilized organics to partition into the SPME fiber. After sample collection the SPME fiber is analyzed using conventional gas chromatography/mass spectrometry. The methodology has been used to collect organophosphorus compounds from glass surfaces, to provide a simple test for the functionality of the devices. Thirty minute sampling times (deltaTvac) resulted in fractional recovery efficiencies ranged from 10(-3) to > 10(-1), and in absolute terms collection of low nanograms was demonstrated. Fractional recovery values were correlated to the vapor pressure of the compounds being sampled. Fractional recovery increased with increasing deltaTvac, and displayed a roughly logarithmic profile indicating that an operational equilibrium is being approached. Fractional recovery decreased with increasing time between exposure and sampling, however recordable quantities of the phosphonates could be collected three weeks after exposure.

  11. Estimation of apparent binding constant of complexes of selected acyclic nucleoside phosphonates with β-cyclodextrin by affinity capillary electrophoresis.

    PubMed

    Šolínová, Veronika; Mikysková, Hana; Kaiser, Martin Maxmilián; Janeba, Zlatko; Holý, Antonín; Kašička, Václav

    2016-01-01

    Affinity capillary electrophoresis (ACE) has been applied to estimation of apparent binding constant of complexes of (R,S)-enantiomers of selected acyclic nucleoside phosphonates (ANPs) with chiral selector β-cyclodextrin (βCD) in aqueous alkaline medium. The noncovalent interactions of five pairs of (R,S)-enantiomers of ANPs-based antiviral drugs and their derivatives with βCD were investigated in the background electrolyte (BGE) composed of 35 or 50 mM sodium tetraborate, pH 10.0, and containing variable concentration (0-25 mM) of βCD. The apparent binding constants of the complexes of (R,S)-enantiomers of ANPs with βCD were estimated from the dependence of effective electrophoretic mobilities of (R,S)-enantiomers of ANPs (measured simultaneously by ACE at constant reference temperature 25°C inside the capillary) on the concentration of βCD in the BGE using different nonlinear and linear calculation methodologies. Nonlinear regression analysis provided more precise and accurate values of the binding constants and a higher correlation coefficient as compared to the regression analysis of the three linearized plots of the effective mobility dependence on βCD concentration in the BGE. The complexes of (R,S)-enantiomers of ANPs with βCD have been found to be relatively weak - their apparent binding constants determined by the nonlinear regression analysis were in the range 13.3-46.4 L/mol whereas the values from the linearized plots spanned the interval 12.3-55.2 L/mol.

  12. Activated phosphonated trifunctional chelates for highly sensitive lanthanide-based FRET immunoassays applied to total prostate specific antigen detection.

    PubMed

    Nchimi-Nono, Katia; Wegner, K David; Lindén, Stina; Lecointre, Alexandre; Ehret-Sabatier, Laurence; Shakir, Shakir; Hildebrandt, Niko; Charbonnière, Loïc J

    2013-10-14

    The first example of an activated phosphonated trifunctional chelate (TFC) is presented, which combines a non-macrocyclic coordination site for lanthanide coordination based on two aminobis-methylphosphonate coordinating arms, a central bispyrazolylpyridyl antenna and an N-hydroxysuccinimide ester in para position of the central pyridine as an activated function for the labeling of biomaterial. The synthesis of the TFC is presented together with photo-physical studies of the related Tb and Eu complexes. Excited state lifetime measurements in H2O and D2O confirmed an excellent shielding of the cation from water molecules with a hydration number of zero. The Tb complex provides a high photoluminescence (PL) quantum yield of 24% in aqueous solutions (0.01 M Tris-HCl, pH 7.4) and a very long luminescence lifetime of 2.6 ms. The activated ligand was conjugated to different biological compounds such as streptavidin, and a monoclonal antibody against total prostate specific antigen (TPSA). In combination with AlexaFluor647 (AF647) and crosslinked allophycocyanin (XL665) antibody (ABs) conjugates, homogeneous time-resolved Fluorescence Resonance Energy Transfer (FRET) immunoassays of TPSA were performed in serum samples. The Tb donor-dye acceptor FRET pairs provided large Förster distances of 5.3 nm (AF647) and 7.1 nm (XL665). A detailed time-resolved FRET analysis of Tb donor and dye acceptor PL decays revealed average donor-acceptor distances of 4.2 nm (AF647) and 6.3 nm (XL665) within the sandwich immunocomplex and FRET efficiencies of 0.79 and 0.68, respectively. Very low detection limits of 1.4 ng mL(-1) (43 pM) and 2.4 ng mL(-1) (74 pM) TPSA were determined using a KRYPTOR fluorescence immunoanalyzer. These results demonstrate the applicability of our novel Tb-bioconjugates for highly sensitive clinical diagnostics.

  13. Synthesis and in vitro evaluation of bis-quaternary 2-(hydroxyimino)-N-(pyridin-3-yl)acetamide derivatives as reactivators against sarin and VX inhibited human acetylcholinesterase (hAChE).

    PubMed

    Karade, Hitendra N; Valiveti, Aditya Kapil; Acharya, Jyotiranjan; Kaushik, Mahabir Parshad

    2014-05-01

    A series of bis-quaternary pyridinium derivatives 3a-3i of 2-(hydroxyimino)-N-(pyridin-3-yl)acetamide (2) have been synthesized. The synthesized pyridinium compounds have an amide group in conjugation to the oxime moiety. These compounds were evaluated in vitro for their reactivation efficacy against organophosphorus (OP) nerve agents (NAs) (sarin and VX) inhibited human erythrocyte ghost acetylcholinesterase (hAChE) and compared with the reactivation efficacy of 2-PAM and obidoxime. The pKa values of the synthesized compounds were found closer to the pKa values of 2- and 4-pyridinium oxime reactivators such as 2-PAM and obidoxime. Some of the compounds have shown better reactivation efficacy than 2-PAM, and obidoxime against sarin and VX inhibited AChE.

  14. SYNTHESIS AND BIOLOGICAL EVALUATION OF N-(SUBSTITUTED PHENYL)-2-(5H-[1,2,4]TRIAZINO[5,6-b]INDOL-3-YLSULFANYL)ACETAMIDES AS ANTIMICROBIAL, ANTIDEPRESSANT AND ANTICONVULSANT AGENTS.

    PubMed

    Shruthi, N; Poojary, Boja; Kumar, Vasantha; Prathibha, A; Hussain, Mumtaz Mohammed; Revanasiddappa, B C; Joshi, Himanshu

    2015-01-01

    A new series of N-Aryl-2-(5H-[1,2,4]triazino[5,6-b]indol-3-ylsulfanyl)acetamides were synthesized by condensation of tricyclic compound 2,5-dihydro-3H-[1,2,4]triazino[5,6-b]indole-3-thione with chloro N-phenylacetamides. The tricyclic compound was obtained by condensation of Isatin with thiosemicarbazide. Chloro N-phenylacetamides were obtained from different substituted anilines. Their structures were characterized by IR, 1H NMR, LC-MS and elemental analyses. Newly synthesized compounds were screened for antimicrobial, antidepressant and anticonvulsant activities. Preliminary results indicated that most of the compounds showed lesser MIC value than the standard drug used when tested for antimicrobial activity. Some of the compounds were endowed with very good antidepressant and anticonvulsant activity.

  15. Extensive hydrolysis of phosphonates as unexpected behaviour of the known His6-organophosphorus hydrolase.

    PubMed

    Lyagin, Ilya V; Andrianova, Mariia S; Efremenko, Elena N

    2016-07-01

    The catalytic activity of hexahistidine-tagged organophosphorus hydrolase (His6-OPH) in hydrolytic reactions of methylphosphonic acid (MPA) and its monoesters and diesters being decomposition products of R-VX was demonstrated for the first time. The catalytic constants of enzyme in such reactions were determined. The mechanism of C-P bond cleavage in the MPA by His6-OPH was proposed. Such reaction was estimated to be carried out with the soluble and nanocapsulated forms of His6-OPH. His6-OPH was demonstrated to be capable of degrading the key organophosphorus components of reaction masses (RMs) that are produced by the chemical detoxification of R-VX and RMs are multi-substrate mixtures for this enzyme. The kinetic model describing the behaviour of His6-OPH in RMs was proposed and was shown to adequately fit experimental points during degradation of the real samples of RMs.

  16. Characterization of linear alkyl phosphonate self-assembled on perovskite substrate

    NASA Astrophysics Data System (ADS)

    Lazauskas, A.; Baltrusaitis, J.; Grigaliūnas, V.; Prosyčevas, I.

    2015-07-01

    In recent years, functional material surface functionalization has grown into an expanding area of research due to the development and design of advanced systems and devices for key areas in biotechnology, smart sensing, environmental applications and manufacturing. In this work, NdNiO3 surface was functionalized with octadecylphosphonic acid (ODP) using liquid phase reaction to attain superhydrophobic properties. The resulting ODP modified surface exhibited dual-scale roughness with a stable static contact angle of 170 ± 2°. Electron microscopy micrographs of ODP crystals formed revealed a non-uniform lateral growth characteristics. The presence of ODP hydrocarbon chains was confirmed using Fourier transform infrared spectroscopy with characteristic peaks at 2924 cm-1 and 2851 cm-1.

  17. Novel cathode interlayers based on neutral alcohol-soluble small molecules with a triphenylamine core featuring polar phosphonate side chains for high-performance polymer light-emitting and photovoltaic devices.

    PubMed

    Chen, Dongcheng; Zhou, Hu; Liu, Ming; Zhao, Wei-Ming; Su, Shi-Jian; Cao, Yong

    2013-04-12

    A new family of neutral alcohol-soluble small molecular materials comprised of electron-rich triphenylamine (TPA) and fluorene featuring phosphonate side chains (FEP) is reported, namely 3TPA-FEP, 2TPA-2FEP and TPA-3FEP, which have different TPA and FEP contents. Due to their good solubility in polar solvents like alcohol, multilayer devices can be fabricated by a wet process from orthogonal solvents. Polymer light-emitting devices with these materials as a cathode interlayer and Al as the cathode show greatly enhanced efficiencies in contrast to control devices without such a cathode interlayer, and their efficiencies are comparable with or even higher than devices with the low work-function metal Ba/Al as the cathode. In addition, high-performance polymer solar cells based on the poly[N-9''-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT):[6,6]-phenyl C71 -butyric acid methyl ester (PC71 BM) system are also achieved with power conversion efficiencies of 7.21%, 6.90% and 6.89%, by utilizing 3TPA-FEP, 2TPA-2FEP and TPA-3FEP as the cathode interlayer, respectively. These efficiencies are also much higher than those for control devices without the cathode interlayer. Although TPA is well-known as a hole-transport unit, the current findings indicate that alcohol-soluble TPA-based small molecules are also a promising cathode interlayer for both electron injection and extraction.

  18. Synthesis, crystal structure and computational studies of 4-nitrobenzylphosphonic acid

    NASA Astrophysics Data System (ADS)

    Wilk, Magdalena; Jarzembska, Katarzyna N.; Janczak, Jan; Hoffmann, Józef; Videnova-Adrabinska, Veneta

    2014-09-01

    4-Nitrobenzylphosphonic acid (1a) has been synthesized and structurally characterized by vibrational spectroscopy (IR and Raman) and single-crystal X-ray diffraction. Additionally, Hirshfeld surface analysis and computational methods have been used to compare the intermolecular interactions in the crystal structures of 1a and its carboxylic analogue, 4-nitrobenzylcarboxylic acid (4-NBCA). The crystal structure analysis of 1a has revealed that the acid molecules are extended into helical chains along the b axis using one of the hydrogen bonds established between phosphonic groups. The second (P)Osbnd H⋯O(P) hydrogen bond cross-links the inversion-related chains to form a thick monolayer with phosphonic groups arranged inwards and aromatic rings outwards. The nitro groups serve to link the neighbouring monolayers by weak Csbnd H⋯O(N) hydrogen bonds. Computations have confirmed the great contribution of electrostatic interactions for the crystal lattice stability. The cohesive energy, computed for the crystal structure of 1a exceeds 200 kJ mol-1 in magnitude and is nearly twice as large as that of 4-NBCA. The calculated cohesive energy values have been further related to the results of thermal analyses.

  19. Synthesis of pyrazole containing α-amino acids via a highly regioselective condensation/aza-Michael reaction of β-aryl α,β-unsaturated ketones.

    PubMed

    Gilfillan, Lynne; Artschwager, Raik; Harkiss, Alexander H; Liskamp, Rob M J; Sutherland, Andrew

    2015-04-21

    A synthetic approach for the preparation of a new class of highly conjugated unnatural α-amino acids bearing a 5-arylpyrazole side-chain has been developed. Horner-Wadsworth-Emmons reaction of an aspartic acid derived β-keto phosphonate ester with a range of aromatic aldehydes gave β-aryl α,β-unsaturated ketones. Treatment of these with phenyl hydrazine followed by oxidation allowed the regioselective synthesis of pyrazole derived α-amino acids. As well as evaluating the fluorescent properties of the α-amino acids, their synthetic utility was also explored with the preparation of a sulfonyl fluoride derivative, a potential probe for serine proteases.

  20. A one step/one pot synthesis of N,N-bis(phosphonomethyl)amino acids and their effects on adipogenic and osteogenic differentiation of human mesenchymal stem cells.

    PubMed

    Kasser, Johanna; Nazarov, Alexey A; Hartinger, Christian G; Wdziekonski, Brigitte; Dani, Christian; Kuznetsov, Maxim L; Arion, Vladimir B; Keppler, Bernhard K

    2009-05-01

    The one pot reaction of amino acids with diethylphosphite and formaldehyde yielded N,N-bis(phosphonomethyl)amino acids. This synthetic route does not require harsh reagents to cleave the ester group. The molecular structures of the new compounds were determined by X-ray diffraction methods. By employing DFT calculations the hydrolysis of the intermediate phosphonic esters to the respective acids could be explained by the decreasing P-OEt bond strength for C(alpha)-bisalkylated amino acids. Biological evaluation on the adipogenic and osteogenic differentiation of mesenchymal stem cells revealed no modification of the adipocyte differentiation, but inhibition of osteoblast formation at concentrations without detectable cytotoxicity.

  1. Mn0.95I0.02[PO3(OH)] · 2H2O phosphate-iodate, an inorganic analogue of phosphonates

    NASA Astrophysics Data System (ADS)

    Belokoneva, E. L.; Dimitrova, O. V.; Volkov, A. S.

    2015-09-01

    The new Mn0.95I0.02[PO3(OH)] · 2H2O phosphate-iodate (space group Pnam = Pnma, D {2/h 16}) is obtained under hydrothermal conditions. The crystal structure is determined without preliminary knowledge of the chemical formula. The structure consists of layers of MnО6 octahedra connected with PO4 tetrahedra. Water molecules are located between the layers. [IO3]- groups having a typical umbrella-like coordination are statistically implanted in layers of MnО6 octahedra at a distance of 1.2 Å from Mn atoms. Their content in the crystal is minor. The structures of the phosphate-iodate coincides with the structures of phosphonates with consideration for the replacement of one (OH) vertex of the РО4 tetrahedron by the organic methyl radical СН3. In the structures of phosphonates and earlier studied phosphates, identical layers are distinguished and the cause of the existence of two MDO varieties is established based on the analysis within the OD theory. Possible hybrid structures derived from the prototypes under consideration are predicted.

  2. A new member of the alkaline phosphatase superfamily with a formylglycine nucleophile: structural and kinetic characterisation of a phosphonate monoester hydrolase/phosphodiesterase from Rhizobium leguminosarum.

    PubMed

    Jonas, Stefanie; van Loo, Bert; Hyvönen, Marko; Hollfelder, Florian

    2008-12-05

    The alkaline phosphatase superfamily comprises a large number of hydrolytic metalloenzymes such as phosphatases and sulfatases. We have characterised a new member of this superfamily, a phosphonate monoester hydrolase/phosphodiesterase from Rhizobium leguminosarum (R/PMH) both structurally and kinetically. The 1.42 A crystal structure shows structural homology to arylsulfatases with conservation of the core alpha/beta-fold, the mononuclear active site and most of the active-site residues. Sulfatases use a unique formylglycine nucleophile, formed by posttranslational modification of a cysteine/serine embedded in a signature sequence (C/S)XPXR. We provide mass spectrometric and mutational evidence that R/PMH is the first non-sulfatase enzyme shown to use a formylglycine as the catalytic nucleophile. R/PMH hydrolyses phosphonate monoesters and phosphate diesters with similar efficiency. Burst kinetics suggest that substrate hydrolysis proceeds via a double-displacement mechanism. Kinetic characterisation of active-site mutations establishes the catalytic contributions of individual residues. A mechanism for substrate hydrolysis is proposed on the basis of the kinetic data and structural comparisons with E. coli alkaline phosphatase and Pseudomonas aeruginosa arylsulfatase. R/PMH represents a further example of conservation of the overall structure and mechanism within the alkaline phosphatase superfamily.

  3. Guest molecule-responsive functional calcium phosphonate frameworks for tuned proton conductivity.

    PubMed

    Bazaga-García, Montse; Colodrero, Rosario M P; Papadaki, Maria; Garczarek, Piotr; Zoń, Jerzy; Olivera-Pastor, Pascual; Losilla, Enrique R; León-Reina, Laura; Aranda, Miguel A G; Choquesillo-Lazarte, Duane; Demadis, Konstantinos D; Cabeza, Aurelio

    2014-04-16

    We report the synthesis, structural characterization, and functionality (framework interconversions together with proton conductivity) of an open-framework hybrid that combines Ca(2+) ions and the rigid polyfunctional ligand 5-(dihydroxyphosphoryl)isophthalic acid (PiPhtA). Ca2[(HO3PC6H3COOH)2]2[(HO3PC6H3(COO)2H)(H2O)2]·5H2O (Ca-PiPhtA-I) is obtained by slow crystallization at ambient conditions from acidic (pH ≈ 3) aqueous solutions. It possesses a high water content (both Ca coordinated and in the lattice), and importantly, it exhibits water-filled 1D channels. At 75 °C, Ca-PiPhtA-I is partially dehydrated and exhibits a crystalline diffraction pattern that can be indexed in a monoclinic cell with parameters close to the pristine phase. Rietveld refinement was carried out for the sample heated at 75 °C, Ca-PiPhtA-II, using synchrotron powder X-ray diffraction data, which revealed the molecular formula Ca2[(HO3PC6H3COOH)2]2[(HO3PC6H3(COO)2H)(H2O)2]. All connectivity modes of the "parent" Ca-PiPhtA-I framework are retained in Ca-PiPhtA-II. Upon Ca-PiPhtA-I exposure to ammonia vapors (28% aqueous NH3) a new derivative is obtained (Ca-PiPhtA-NH3) containing 7 NH3 and 16 H2O molecules according to elemental and thermal analyses. Ca-PiPhtA-NH3 exhibits a complex X-ray diffraction pattern with peaks at 15.3 and 13.0 Å that suggest partial breaking and transformation of the parent pillared structure. Although detailed structural identification of Ca-PiPhtA-NH3 was not possible, due in part to nonequilibrium adsorption conditions and the lack of crystallinity, FT-IR spectra and DTA-TG analysis indicate profound structural changes compared to the pristine Ca-PiPhtA-I. At 98% RH and T = 24 °C, proton conductivity, σ, for Ca-PiPhtA-I is 5.7 × 10(-4) S·cm(-1). It increases to 1.3 × 10(-3) S·cm(-1) upon activation by preheating the sample at 40 °C for 2 h followed by water equilibration at room temperature under controlled conditions. Ca-PiPhtA-NH3 exhibits the

  4. Probing Structural Changes in a Phosphonate-based Metal-Organic Framework Exhibiting Reversible Dehydration

    SciTech Connect

    Kinnibrugh, Tiffany L.; Ayi, Ayi A.; Bakhmutov, Vladimir I.; Zo,; #324; Jerzy,; Clearfield, Abraham

    2013-08-02

    A one-step hydrothermal synthesis with small amines and 1,3,5-benzenetriphosphonic acid was used to prepare single crystals of isostructural anionic metal–organic frameworks (MOF): Zn2.5(H)0.4–0.5(C6H3O9P3)(H2O)1.9–2(NH4)0.5–0.6 and Zn2.5(H)0.75(C6H3O9P3)(H2O)2(CH3NH3)0.25. The ammonium ions are exchangeable with lithium ions. The MOF exhibits reversible dehydration, and the process was studied by two complementary methods: solid state NMR and in situ X-ray diffraction. These experiments revealed three different phases. The crystal structures of all phases have been determined, showing loss in volume of the structure due to a phase change. The ammonium ions remain in the structure and are forced to occupy the larger pores due to a reduction in free volume. The change in positions of the guest molecules in the framework has an effect on the potential conductivity properties of the materials. Changes in framework and guest molecules due to negative expansion have an effect on other physical and chemical properties and need to be explored.

  5. Phosphorous acid residues in apples after foliar fertilization: results of field trials.

    PubMed

    Malusà, E; Tosi, L

    2005-06-01

    The levels of phosphorous acid residues in apples after foliar fertilization with P fertilizers and after treatment with a phosphonate fungicide (Fosetyl-Al) were determined and compared. Two field trials and a glasshouse experiment, using different genotypes and plants of different age, were carried out and monitored over a three-year period. Phosphorous acid residues were found in apples after application of foliar P fertilizers. Concentrations of the residues ranged between 0.02 and 14 mg kg(-1) depending on the phosphorous acid content in the fertilizer used and the plant size and yield. The treatments induced an accumulation of the residue in the course of the experiments, which in some cases reached a level exceeding the maximum limit set by EU legislation. Residues were also detected in other plant organs, i.e., roots and buds. Plants treated with Fosetyl-Al contained phosphorous acid residues in their fruits and buds two years after the suspension of the treatment, suggesting a long-term persistence of the substance in plant storage organs. A second experiment, involving treatment of trees with seven foliar fertilizers of different composition, also induced accumulation of phosphorous acid residues in fruits. It is concluded that a wide array of foliar products containing phosphorous acid, even as a minor component, could mimic the residue effect of phosphonate fungicide treatments.

  6. Correlation of 3,4-dihydroxybutyl 1-phosphonate resistance with a defect in cardiolipin synthesis in Escherichia coli.

    PubMed Central

    Hwang, Y W; Engel, R; Tropp, B E

    1984-01-01

    Escherichia coli treated for 1 h with 100 microM rac-3,4-dihydroxybutyl 1-phosphonate (DBP), a glycerol-3-phosphate analog, die when sorted at 5 degrees C, whereas the viability of untreated cells is relatively unaffected. This observation formed the basis of a selection procedure that was used to isolate mutants that are partially resistant to DBP. One such mutant, strain 6204, is constitutive for DBP transport, exhibits a particularly high degree of cold resistance, has the same doubling time as the parent, and is similar to the parent strain in terms of incorporation of DBP into the lipid fraction. Glycerol-3-phosphate and phosphatidylglycerol phosphate synthetases obtained from strain 6204 and its parent were identical in terms of DBP recognition. The parent strain is killed when incubated in the presence of a combination of 70 microM rac-DBP and 0.25% deoxycholate, whereas strain 6204 continues to grow, albeit more slowly, in the presence of this combination. Strain 6204 can be distinguished from the parent strain on agar plates (low phosphate minimal medium with glucuronate as the sole carbon source) containing 15 microM rac-DBP. The insertion of Tn10 near the 6204 mutation has facilitated genetic manipulations. All phenotypic effects attributed to strain 6204 appear to be due to a single mutation. Genetic analysis indicates that Tn10, inserted near the gene responsible for DBP resistance, maps in the vicinity of 27 min. Three-factor crosses reveal a gene order of hemA-Dbpr-Tn10(zch)-trp. The only gene for phosphoglyceride metabolism known to map in this region is the gene associated with cardiolipin synthetase, cls. Genetic results suggest that the mutation responsible for DBP resistance maps in or very near cls. Analysis of the lipids isolated from untreated strain 6204 (and from each of the transductants prepared by P1 vir-mediated transfer of DBP resistance of wild-type strains) reveals that cardiolipin synthesis is defective. These results strongly

  7. Facile synthesis of SSR180575 and discovery of 7-chloro-N,N,5-trimethyl-4-oxo-3(6-[18F]fluoropyridin-2-yl)-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide, a potent pyridazinoindole ligand for PET imaging of TSPO in cancer

    PubMed Central

    Cheung, Yiu-Yin; Nickels, Michael L.; Tang, Dewei; Buck, Jason R.

    2014-01-01

    A novel synthesis of the translocator protein (TSPO) ligand 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide (SSR180575, 3) was achieved in four steps from commercially available starting materials. Focused structure−activity relationship development about the pyridazinoindole ring at the N3 position led to the discovery of 7-chloro-N,N,5-trimethyl-4-oxo-3(6-fluoropyridin-2-yl)-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide (14), a novel ligand of comparable affinity. Radiolabeling with fluorine-18 (18F) yielded 7-chloro-N,N,5-trimethyl-4-oxo-3(6-[18F]fluoropyridin-2-yl)-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide (18F-14) in high radiochemical yield and specific activity. In vivo studies of [18F]-14 revealed this agent as a promising probe for molecular imaging of glioma. PMID:25172419

  8. Phosphate-independent utilization of phosphonoacetic acid as sole phosphorus source by a psychrophilic strain of Geomyces pannorum P15.

    PubMed

    Klimek-Ochab, Magdalena

    2014-09-01

    A psychrophilic fungal strain of Geomyces pannorum P15 was screened for its ability to utilize a range of synthetic and natural organophosphonate compounds as the sole source of phosphorus, nitrogen, or carbon. Only phosphonoacetic acid served as a phosphorus source for microbial growth in phosphate-independent manner. Substrate metabolism did not lead to extracellular release of inorganic phosphate. No phosphonate metabolizing enzyme activity was detectable in cell-free extracts prepared from Geomyces biomass pregrown on 2 mmol/L phosphonoacetic acid.

  9. Biodistribution and pharmacokinetics of variously molecular sized 117mSn(II)-polyethyleneiminomethyl phosphonate complexes in the normal primate model as potential selective therapeutic bone agents.

    PubMed

    Zeevaart, Jan R; Louw, Werner K A; Kolar, Zvonimir I; Kilian, Elmaré; van Rensburg, Frederika E Jansen; Dormehl, Irene C

    2004-01-01

    In the search for a cure for metastatic bone cancer, 117mSn with its conversion electrons and low energy photons both of discrete energies shows little bone marrow toxicity, providing the opportunity to increase the administered dose. Selective accumulation in lesions would capitalise on this advantage. The 10-30 kDa fraction of the water-soluble polymer polyethyleneimine, functionalised with methyl phosphonate groups (PEI-MP) and labelled with 99mTc, has shown selective uptake into bone tumours. Furthermore using speciation calculations it was predicted that the Sn(II)-PEI-MP complex would remain intact in the blood plasma. Because of this positive indication animal experiments were carried out to test this prediction. This paper relates the labelling, biodistribution and pharmacokinetics of various fractions of 117mSn-(II) PEI-MP in the normal primate model, and points to promising therapeutic possibilities.

  10. Efficacy of the acyclic nucleoside phosphonates (S)-9-(3-fluoro-2-phosphonylmethoxypropyl)adenine (FPMPA) and 9-(2-phosphonylmethoxyethyl)adenine (PMEA) against feline immunodeficiency virus.

    PubMed

    Hartmann, K; Kuffer, M; Balzarini, J; Naesens, L; Goldberg, M; Erfle, V; Goebel, F D; De Clercq, E; Jindrich, J; Holy, A; Bischofberger, N; Kraft, W

    1998-02-01

    The acyclic nucleoside phosphonates (S)-9-(3-fluoro-2-phosphonylmethoxypropyl)adenine (FPMPA) and 9-(2-phosphonylmethoxyethyl)adenine (PMEA) were evaluated for their efficacy and side effects in a double-blind placebo-controlled trial using naturally occurring feline immunodeficiency virus (FIV)-infected cats. This natural retrovirus animal model is considered highly relevant for the pathogenesis and chemotherapy of HIV in humans. Both PMEA and FPMPA proved effective in ameliorating the clinical symptoms of FIV-infected cats, as measured by several clinical parameters including the incidence and severity of stomatitis, Karnofsky's score, immunologic parameters such as relative and absolute CD4+ lymphocyte counts, and virologic parameters including proviral DNA levels in peripheral blood mononuclear cells (PBMC) of drug-treated animals. In contrast with PMEA, FPMPA showed no hematologic side effects at a dose that was 2.5-fold higher than PMEA.

  11. Design, synthesis, and miniemulsion polymerization of new phosphonate surfmers and application studies of the resulting nanoparticles as model systems for biomimetic mineralization and cellular uptake.

    PubMed

    Sauer, Rüdiger; Froimowicz, Pablo; Schöller, Katrin; Cramer, Jens-M; Ritz, Sandra; Mailänder, Volker; Landfester, Katharina

    2012-04-23

    Heterophase polymerizations have gained increasing attention in the past decades, especially as the decoration and functionalization of the particle surface for further applications gets more and more into focus. One promising approach for the functionalization exclusively on the particle surface is the use of surfmers (surfactant and monomer). Herein, we present the synthesis of a new family of surfmers and their use for decorating nanoparticles with phosphonate groups through miniemulsion polymerization. Furthermore the synthesis of a dye-labeled functional surfmer provided an elegant manner to evaluate and get deeper insights about its copolymerization. Additionally, potential applications of the synthesized particles in biological studies as well as their use as template for biomimetic mineralization are presented.

  12. Friedel-Crafts-type reaction of pyrene with diethyl 1-(isothiocyanato)alkylphosphonates. Efficient synthesis of highly fluorescent diethyl 1-(pyrene-1-carboxamido)alkylphosphonates and 1-(pyrene-1-carboxamido)methylphosphonic acid.

    PubMed

    Wrona-Piotrowicz, Anna; Zakrzewski, Janusz; Gajda, Anna; Gajda, Tadeusz; Makal, Anna; Brosseau, Arnaud; Métivier, Rémi

    2015-01-01

    Friedel-Crafts-type reaction of pyrene with diethyl 1-(isothiocyanato)alkylphosphonates promoted by trifluoromethanosulfonic acid afforded diethyl 1-(pyrene-1-carbothioamido)alkylphosphonates in 83-94% yield. These compounds were transformed, in 87-94% yield, into the corresponding diethyl 1-(pyrene-1-carboxamido)alkylphosphonates by treatment with Oxone(®). 1-(Pyrene-1-carboxamido)methylphosphonic acid was obtained in a 87% yield by treating the corresponding diethyl phosphonate with Me3Si-Br in methanol. All of the synthesized amidophosphonates were emissive in solution and in the solid state. The presence of a phosphonato group brought about an approximately two-fold increase in solution fluorescence quantum yield in comparison with that of a model N-alkyl pyrene-1-carboxamide. This effect was tentatively explained by stiffening of the amidophosphonate lateral chain which was caused by the interaction (intramolecular hydrogen bond) of phosphonate and amide groups. The synthesized phosphonic acid was soluble in a biological aqueous buffer (PBS, 0.01 M, pH 7.35) and was strongly emissive under these conditions (λem = 383, 400 nm, τ = 18.7 ns, ΦF > 0.98). Solid-state emission of diethyl 1-(pyrene-1-carboxamido)methylphosphonate (λmax = 485 nm; ΦF = 0.25) was assigned to π-π aggregates, the presence of which was revealed by single-crystal X-ray diffraction analysis.

  13. Production of the Phytohormone Indole-3-Acetic Acid by Estuarine Species of the Genus Vibrio▿

    PubMed Central

    Gutierrez, Casandra K.; Matsui, George Y.; Lincoln, David E.; Lovell, Charles R.

    2009-01-01

    Strains of Vibrio spp. isolated from roots of the estuarine grasses Spartina alterniflora and Juncus roemerianus produce the phytohormone indole-3-acetic acid (IAA). The colorimetric Salkowski assay was used for initial screening of IAA production. Gas chromatography-mass spectroscopy (GC-MS) was then employed to confirm and quantify IAA production. The accuracy of IAA quantification by the Salkowski assay was examined by comparison to GC-MS assay values. Indole-3-acetamide, an intermediate in IAA biosynthesis by the indole-3-acetamide pathway, was also identified by GC-MS. Multilocus sequence typing of concatenated 16S rRNA, recA, and rpoA genes was used for phylogenetic analysis of environmental isolates within the genus Vibrio. Eight Vibrio type strains and five additional species-level clades containing a total of 16 environmental isolates and representing five presumptive new species were identified as IAA-producing Vibrio species. Six additional environmental isolates similar to four of the Vibrio type strains were also IAA producers. To our knowledge, this is the first report of IAA production by species of the genus Vibrio or by bacteria isolated from an estuarine environment. PMID:19218411

  14. Thermodynamics and phase behavior of acid-tethered block copolymers with ionic liquids.

    PubMed

    Jung, Ha Young; Park, Moon Jeong

    2016-12-21

    We investigate the phase behavior of acid-tethered block copolymers with and without ionic liquids. Two phosphonated block copolymers and their sulfonated analogs were synthesized by fine-tuning the degree of polymerization and the acid content. The block copolymers carrying acid groups with ionic liquids exhibited rich phase sequences, i.e., disorder-lamellae (LAM), gyroid-LAM, gyroid-hexagonal cylinder (HEX), and gyroid-A15 lattice, and the cation/anion ratio in the ionic liquid exerted profound effects on the segregation strength and topology of the self-assembled structures. Additionally, using ionic liquids with excessive cation content was found to enhance the effective Flory-Huggins interaction parameter, χeff, of the samples. However, as the anion content of the ionic liquids increased the segregation strength decreased. This is attributed to the packing frustration accompanied by the prevailing repulsive electrostatic interactions of the anions in the ionic liquid and the polymer matrix. As the hydrophobicity of the ionic liquids increased, well-defined ordered phases emerged in the phosphonated block copolymers with increased anion content, contrary to the disordered phases of the sulfonated samples. Thus, the balance between solvation energy of the anions and the electrostatic interactions is a key determinant of the thermodynamics of acid-tethered block copolymers containing ionic liquids.

  15. SOLVENT EXTRACTION PROCESS FOR THE RECOVERY OF METALS FROM PHOSPHORIC ACID

    DOEpatents

    Bailes, R.H.; Long, R.S.

    1958-11-01

    > A solvent extraction process is presented for recovering metal values including uranium, thorium, and other lanthanide and actinide elements from crude industrial phosphoric acid solutions. The process conslsts of contacting said solution with an immisclble organic solvent extractant containing a diluent and a material selected from the group consisting of mono and di alkyl phosphates, alkyl phosphonates and alkyl phosphites. The uranlum enters the extractant phase and is subsequently recovered by any of the methods known to the art. Recovery is improved if the phosphate solution is treated with a reducing agent such as iron or aluminum powder prior to the extraction step.

  16. Investigation of aggregation in solvent extraction of lanthanides by acidic extractants (organophosphorus and naphthenic acid)

    USGS Publications Warehouse

    Zhou, N.; Wu, J.; Yu, Z.; Neuman, R.D.; Wang, D.; Xu, G.

    1997-01-01

    Three acidic extractants (I) di(2-ethylhexyl) phosphoric acid (HDEHP), (II) 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (HEHPEHE) and (III) naphthenic acid were employed in preparing the samples for the characterization of the coordination structure of lanthanide-extractant complexes and the physicochemical nature of aggregates formed in the organic diluent of the solvent extraction systems. Photo correlation spectroscopy (PCS) results on the aggregates formed by the partially saponified HDEHP in n-heptane showed that the hydrodynamic radius of the aggregates was comparable to the molecular dimensions of HDEHP. The addition of 2-octanol into the diluent, by which the mixed solvent was formed, increased the dimensions of the corresponding aggregates. Aggregates formed from the lanthanide ions and HDEHP in the organic phase of the extraction systems were found very unstable. In the case of naphthenic acid, PCS data showed the formation of w/o microemulsion from the saponified naphthenic acid in the mixed solvent. The extraction of lanthanides by the saponified naphthenic acid in the mixed solvent under the given experimental conditions was a process of destruction of the w/o microemulsion. A possible mechanism of the breakdown of the w/o microemulsion droplets is discussed.

  17. Flotation performances and adsorption mechanism of α-hydroxyoctyl phosphinic acid to cassiterite

    NASA Astrophysics Data System (ADS)

    Li, Fangxu; Zhong, Hong; Zhao, Gang; Wang, Shuai; Liu, Guangyi

    2015-10-01

    In this paper, the flotation performances and adsorption mechanism of α-hydroxyoctyl phosphinic acid (HPA) to cassiterite were investigated by adsorption experiments, micro-flotation tests, zeta potential measurements, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses. The micro-flotation results indicated that compared with styrene phosphonic acid (SPA), diphosphonic acid (DPA), benzohydroxamic acid (BHA) and salicylhydroxamic acid (SHA), HPA exhibited excellent collecting power to cassiterite and superior selectivity against magnetite or hematite over a wide pH range. The results of adsorption experiments and zeta potential deduced that HPA chemisorb on cassiterite surfaces. The results of FTIR inferred HPA chemisorb onto cassiterite surfaces through its P and O atoms with the P-H and O-H bonds broken. XPS analysis further demonstrated HPA react with Sn species by formation of Sn-O-P and Sn-P bond.

  18. Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography*

    PubMed Central

    Huang, Honggang; Haar Petersen, Martin; Ibañez-Vea, Maria; Lassen, Pernille S.; Larsen, Martin R.; Palmisano, Giuseppe

    2016-01-01

    Cysteine is a rare and conserved amino acid involved in most cellular functions. The thiol group of cysteine can be subjected to diverse oxidative modifications that regulate many physio-pathological states. In the present work, a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) was synthesized to selectively label cysteine-containing peptides (Cys peptides) followed by their enrichment with titanium dioxide (TiO2) and subsequent mass spectrometric analysis. The CysPAT strategy was developed using a synthetic peptide, a standard protein and subsequently the strategy was applied to protein lysates from Hela cells, achieving high specificity and enrichment efficiency. In particular, for Cys proteome analysis, the method led to the identification of 7509 unique Cys peptides from 500 μg of HeLa cell lysate starting material. Furthermore, the method was developed to simultaneously enrich Cys peptides and phosphorylated peptides. This strategy was applied to SILAC labeled Hela cells subjected to 5 min epidermal growth factor (EGF) stimulation. In total, 10440 unique reversibly modified Cys peptides (3855 proteins) and 7339 unique phosphopeptides (2234 proteins) were simultaneously identified from 250 μg starting material. Significant regulation was observed in both phosphorylation and reversible Cys modification of proteins involved in EGFR signaling. Our data indicates that EGF stimulation can activate the well-known phosphorylation of EGFR and downstream signaling molecules, such as mitogen-activated protein kinases (MAPK1 and MAPK3), however, it also leads to substantial modulation of reversible cysteine modifications in numerous proteins. Several protein tyrosine phosphatases (PTPs) showed a reduction of the catalytic Cys site in the conserved putative phosphatase HC(X)5R motif indicating an activation and subsequent de-phosphorylation of proteins involved in the EGF signaling pathway. Overall, the CysPAT strategy is a straight forward, easy and promising

  19. Determination of the Substrate Binding Mode to the Active Site Iron of (S)-2-Hydroxypropylphosphonic Acid Epoxidase Using 17O-Enriched Substrates and Substrate Analogues†

    PubMed Central

    Yan, Feng; Moon, Sung-Ju; Liu, Pinghua; Zhao, Zongbao; Lipscomb, John D.; Liu, Aimin; Liu, Hung-wen

    2009-01-01

    (S)-2-hydroxypropylphosphonic acid epoxidase (HppE) is an O2-dependent, nonheme Fe(II)-containing oxidase that converts (S)-2-hydroxypropylphosphonic acid ((S)-HPP) to the regio-and enantiomerically specific epoxide, fosfomycin. Use of (R)-2-hydroxypropylphosphonic acid ((R)-HPP) yields the 2-keto-adduct rather than the epoxide. Here we report the chemical synthesis of a range of HPP analogs designed to probe the basis for this specificity. In past studies, NO has been used as an O2 surrogate to provide an EPR probe of the Fe(II) environment. These studies suggest that O2 binds to the iron, and substrates bind in a single orientation that strongly perturbs the iron environment. Recently, the X-ray crystal structure showed direct binding of the substrate to the iron, but both monodentate (via the phosphonate) and chelated (via the hydroxyl and phosphonate) orientations were observed. In the current study, hyperfine broadening of the homogeneous S = 3/2 EPR spectrum of the HppE-NO-HPP complex was observed when either the hydroxyl or the phosphonate group of HPP was enriched with 17O (I = 5/2). These results indicate that both functional groups of HPP bind to Fe(II) ion at the same time as NO, suggesting that the chelated substrate binding mode dominates in solution. (R)- and (S)-analog compounds that maintained the core structure of HPP but added bulky terminal groups were turned over to give products analogous to those from (R)- and (S)-HPP, respectively. In contrast, substrate analogs lacking either the phosphonate or hydroxyl group were not turned over. Elongation of the carbon chain between the hydroxyl and phosphonate allowed binding to the iron in a variety of orientations to give keto and diol products at positions determined by the hydroxyl substituent, but no stable epoxide was formed. These studies show the importance of the Fe(II)-substrate chelate structure to active antibiotic formation. This fixed orientation may align the substrate next to the iron

  20. Hydroxyapatite-phosphonoformic acid hybrid compounds prepared by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Turki, Thouraya; Othmani, Masseoud; Bantignies, Jean-Louis; Bouzouita, Khaled

    2014-01-01

    Hydroxyapatites were prepared in the presence of different amounts of phosphonoformic acid (PFA) via the hydrothermal method. The obtained powders were characterized through chemical analysis, XRD, IR, 31P MAS-NMR, TEM, and TG-TDA. The XRD showed that the PFA did not affect the apatite composition. Indeed, only a reduction of the crystallite size was noted. After grafting of PFA, the IR spectroscopy revealed the appearance of new bands belonging to HPO42- and carboxylate groups of the apatite and organic moiety, respectively. Moreover, the 31P MAS-NMR spectra exhibited a peak with a low intensity assigned to the terminal phosphonate group of the organic moiety in addition to that of the apatite. Based on these results, a reaction mechanism involving the surface hydroxyl groups (tbnd Casbnd OH) of the apatite and the carboxyl group of the acid was proposed.

  1. Adsorption kinetics of organophosphonic acids on plasma-modified oxide-covered aluminum surfaces.

    PubMed

    Giza, M; Thissen, P; Grundmeier, G

    2008-08-19

    Tailoring of oxide chemistry on aluminum by means of low-pressure water and argon plasma surface modification was performed to influence the kinetics of the self-assembly process of octadecylphosphonic acid monolayers. The plasma-induced surface chemistry was studied by in situ FTIR reflection-absorption spectroscopy (IRRAS). Ex situ IRRAS and X-ray photoelectron spectroscopy were applied for the analysis of the adsorbed self-assembled monolayers. The plasma-induced variation of the hydroxide to oxide ratio led to different adsorption kinetics of the phosphonic acid from dilute ethanol solutions as measured by means of a quartz crystal microbalance. Water plasma treatment caused a significant increase in the density of surface hydroxyl groups in comparison to that of the argon-plasma-treated surface. The hydroxyl-rich surface led to significantly accelerated adsorption kinetics of the phosphonic acid with a time of monolayer formation of less than 1 min. On the contrary, decreasing the surface hydroxyl density slowed the adsorption kinetics.

  2. Anchored [RuCl2(p-cymene)]2 in hybrid zirconium phosphate-phosphonate coated and pillared with double-stranded hydrophobic linear polystyrene as heterogeneous catalyst suitable for aqueous asymmetric transfer hydrogenation.

    PubMed

    Wang, Rui; Wan, Jingwei; Ma, Xuebing; Xu, Xiao; Liu, Liu

    2013-05-14

    A novel type of phosphonate-containing polystyrene copolymers 1a-e bearing an N'-alkylated TsDPEN chiral ligand and double-stranded polystyrene chains were prepared for the first time using simple radical copolymerization of 1-phosphonate styrene with (R,R)-N'-4'-vinylbenzyl-N-4-vinylbenzenesulfonyl-1,2-diphenylethylene-1,2-diamine. Through the coprecipitation of their supported Ru polystyrene copolymers 2a-e and NaH2PO4 with ZrOCl2, pillared hybrid zirconium phosphate-phosphonate-anchored Ru catalysts 3a-e and 4d1-d5 were obtained as heterogeneous catalysts suitable for aqueous asymmetric transfer hydrogenation. In the aqueous asymmetric transfer hydrogenation of aromatic ketones, the anchored Ru catalysts showed good catalytic activities, chemoselectivities (~100%), and enantioselectivities (73.6% ee to 95.6% ee). The Ru catalysts retained their catalytic properties even at the fifth recycle time (92.2% conv., 92.1% ee). However, corresponding supported Ru catalyst 3d' resulted in disappointing reusability because of the loss of ruthenium in every recycle process. The conversions of aromatic ketones were closely related to the o-, m- or p-positions of the substituents on the aromatic ring caused by shape-selective matching.

  3. Synthesis, crystal structures and characterization of three novel main group metal diphosphonate coordination polymers of Ca(II), Sr(II) and Pb(II) with 1-aminodiphosphonic acid

    NASA Astrophysics Data System (ADS)

    Lin, Lin; Zhang, Tian-Jiao; Fan, Yao-Ting; Ding, De-Gang; Hou, Hong-Wei

    2007-06-01

    Hydrothermal reactions of 1-aminoethylidenediphonic acid { CH 3C(NH 2)(PO 3H 2) 2, H 4aedp} with CaCl 2, Sr(NO 3) 2 and Pb(AC) 2·3H 2O resulted in three new main group metal diphosphonate coordination polymers. Namely, Ca[CH 3C(NH 3)(PO 3H) 2] 2[CH 3C(NH 3)(PO 3H)(PO 3H 2)] 2 ( 1), Sr[CH 3C(NH 2) (PO 3H) 2(H 2O)]·H 2O( 2) and Pb[CH 3C(NH 3)(PO 3H)(PO 3)]·H 2O( 3). The calcium (II) ion in complex 1 is octahedrally coordinated by six phosphonate oxygen atoms from six diphosphonate ligands, four of them in a bidentate and two in a monodentate fashion. The neighboring calcium ions are linked by pairs of P-O-P bridges, resulting in a pseudo-one-dimensional chain along the c axis. Complex 2 is the first example of the strontium phosphonate which has not been synthesized and structurally characterized before. It features a layered structure, in which strontium(II) ions are eight coordinated by an aqua ligand and seven phosphonate oxygen atoms from four diphosphonate ligands, two SrO 8 polyhedra are bridged into a demeric unit by a pair of oxygen atoms and two diphosphonate groups. And such dimers are interconnected by the P-O-P bridges and O bridges to form complicated layers parallel to the ab plane. Complex 3 also has a layered structure in which the lead (II) ions are six coordinated by six phosphonate oxygens from four equivalent diphosphonate ligands. Each pair of PbO 6 octahedra forms a dimeric unit via O-O edge-sharing and such dimeric units are interconnected via O-O edge-sharing to form a one-dimensional chain along the b-axis. These 1D chains are further bridged by the phosphonate ligands to form a complicated layer parallel to the bc plane. This type of layered structure has not been reported in other lead phosphonates.

  4. Role of Lewis acid additives in a palladium catalyzed directed C-H functionalization reaction of benzohydroxamic acid to isoxazolone.

    PubMed

    Athira, C; Sunoj, Raghavan B

    2016-12-20

    Metallic salts as well as protic additives are widely employed in transition metal catalyzed C-H bond functionalization reactions to improve the efficiency of catalytic protocols. In one such example, ZnCl2 and pivalic acid are used as additives in a palladium catalyzed synthesis of isoxazolone from a readily available benzohydroxamic acid under one pot conditions. In this article, we present some important mechanistic insights into the role of ZnCl2 and pivalic acid, gained by using density functional theory (M06) computations. Two interesting modes of action of ZnCl2 are identified in various catalytic steps involved in the formation of isoxazolone. The conventional Lewis acid coordination wherein zinc chloride (ZnCl2·(DMA)) binds to the carbonyl group is found to be more favored in the C-H activation step. However, the participation of a hetero-bimetallic Pd-Zn species is preferred in reductive elimination leading to Caryl-N bond formation. Pivalic acid helps in relay proton transfer in C-H bond activation through a cyclometallation deprotonation (CMD) process. The explicit inclusion of ZnCl2 and solvent N,N-dimethyl acetamide (DMA) stabilizes the transition state and also helps reduce the activation barrier for the C-H bond activation step. The electronic communication between the two metal species is playing a crucial role in stabilizing the Caryl-N bond formation transition state through a Pd-Zn hetero-bimetallic interaction.

  5. New method for ethephon ((2-chloroethyl)phosphonic acid) residue analysis, and detection of residual levels in the fruit and vegetables of Western Japan.

    PubMed

    Takenaka, Shigeyuki

    2002-12-18

    A new method for the detection and quantification of ethephon residues in fruit and vegetables was developed. The present study indicates that fruit and vegetables require a rapid and simple cleanup step before using gas chromatograph/mass spectrometry. The recovery and precision of the new method were evaluated by spiking the fruit and vegetable samples with 0.01-0.1 microg/g of ethephon. The amount of ethephon residue can be determined with good accuracy (recovery, 78.6-109%; coefficient variation, 2.65-6.41%), and the detection limit, defined as the amount of ethephon equivalent to three standard deviations (SD) of the noise level in observations at the baseline level of the selected ion (m/z 110), was 4 pg. The determination limit, defined as the equivalent to 8 SD of the noise level, was 11 pg. The working range was between 10 and 1000 ng/mL, and the correlation coefficient was 0.999 in the five experiments. Ethephon residues were determined between <2 and 97 ng/g in commercial pineapples from Western Japan.

  6. Synthesis of a phosphonate-linked aminoglycoside-coenzyme A bisubstrate and use in mechanistic studies of an enzyme involved in aminoglycoside resistance

    PubMed Central

    Gao, Feng; Yan, Xuxu

    2011-01-01

    Aminoglycoside N-6′-acetyltransferases (AAC(6′)s) are important determinants of antibiotic resistance. A good mechanistic understanding of these enzymes is essential to overcome aminoglycoside resistance. We have previously reported the synthesis of amide-linked and sulfonamide-linked aminoglycoside-coenzyme A conjugates which were useful mechanistic and structural probes of AAC(6′)s. We report here the synthesis of a phosphonate-linked aminoglycoside-coenzyme A variant, which is expected to be a superior mimic of the tetrahedral intermediate proposed for catalysis by AAC(6′)s. This synthetic target is especially challenging for a number of reasons including the presence of multiple functional groups, the water solubility of both starting materials, and incompatibility of P(III) chemistry with water. We have overcome these challenges by adding the expensive coenzyme A in the last step via an elegant Michael-type addition onto a vinylphosphonate in water. Overall, a single protection step was needed. The decreased inhibitory potency of this bisubstrate compared to that of the amide-linked analog suggests that Enterococcus faecium AAC(6′)-Ii may not stabilize the proposed tetrahedral intermediate, and may act mainly via proximity catalysis. PMID:19152351

  7. Acute effects of a sarin-like organophosphorus agent, bis(isopropyl methyl)phosphonate, on cardiovascular parameters in anaesthetized, artificially ventilated rats.

    PubMed

    Watanabe, Yoshimasa; Itoh, Takeo; Shiraishi, Hiroaki; Maeno, Yoshitaka; Arima, Yosuke; Torikoshi, Aiko; Namera, Akira; Makita, Ryosuke; Yoshizumi, Masao; Nagao, Masataka

    2013-10-01

    The organophosphorus compound sarin irreversibly inhibits acetylcholinesterase. We examined the acute cardiovascular effects of a sarin-like organophosphorus agent, bis(isopropyl methyl)phosphonate (BIMP), in anaesthetized, artificially ventilated rats. Intravenous administration of BIMP (0.8mg/kg; the LD50 value) induced a long-lasting increase in blood pressure and tended to increase heart rate. In rats pretreated with the non-selective muscarinic-receptor antagonist atropine, BIMP significantly increased both heart rate and blood pressure. In atropine-treated rats, hexamethonium (antagonist of ganglionic nicotinic receptors) greatly attenuated the BIMP-induced increase in blood pressure without changing the BIMP-induced increase in heart rate. In rats treated with atropine plus hexamethonium, intravenous phentolamine (non-selective α-adrenergic receptor antagonist) plus propranolol (non-selective β-adrenergic receptor antagonist) completely blocked the BIMP-induced increases in blood pressure and heart rate. In atropine-treated rats, the reversible acetylcholinesterase inhibitor neostigmine (1mg/kg) induced a transient increase in blood pressure, but had no effect on heart rate. These results suggest that in anaesthetized rats, BIMP induces powerful stimulation of sympathetic as well as parasympathetic nerves and thereby modulates heart rate and blood pressure. They may also indicate that an action independent of acetylcholinesterase inhibition contributes to the acute cardiovascular responses induced by BIMP.

  8. One-Pot Three-Component Synthesis of Novel Diethyl((2-oxo-1,2-dihydroquinolin-3-yl)(arylamino)methyl)phosphonate as Potential Anticancer Agents

    PubMed Central

    Fang, Yi-Lin; Wu, Zhi-Lin; Xiao, Meng-Wu; Tang, Yu-Ting; Li, Kang-Ming; Ye, Jiao; Xiang, Jian-Nan; Hu, Ai-Xi

    2016-01-01

    With the aim of discovering new anticancer agents, we have designed and synthesized novel α-aminophosphonate derivatives containing a 2-oxoquinoline structure using a convenient one-pot three-component method. The newly synthesized compounds were evaluated for antitumor activities against the A549 (human lung adenocarcinoma cell), HeLa (human cervical carcinoma cell), MCF-7 (human breast cancer cell), and U2OS (human osteosarcoma cell) cancer cell lines in vitro, employing a standard 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. The results of pharmacological screening indicated that many compounds exhibited moderate to high levels of antitumor activities against the tested cancer cell lines and that most compounds showed more potent inhibitory activities comparable to 5-fluorouracil (5-FU) which was used as a positive control. The mechanism of representative compound 4u (diethyl((2-oxo-1,2-dihydroquinolin-3-yl)(phenyl-amino)methyl)phosphonate) indicated that the compound mainly arrested HeLa cells in S and G2 stages and was accompanied by apoptosis in HeLa cells. This action was confirmed by acridine orange/ethidium bromide staining, Hoechst 33342 staining, and flow cytometry. PMID:27136538

  9. [Catabolism of methylphosphonic acid and its physiological regulation in Escherichia coli].

    PubMed

    Matys, S V; Laurinavichius, K S; Nesmeianova, M A

    1996-01-01

    It was found that methyl phosphonic acid (Pn) was degraded by different Escherichia coli strains, which utilized it as the sole phosphorus source with resulting methane formation. This ability was influenced by mutations in the regulatory genes of the pho regulon. Thus, Pn was not degraded by an E. coli mutant defective in the regulatory phoB gene, responsible for the induction of pho-regulon proteins during phosphorus starvation. The intensity of Pn degradation depended on the age and concentration of the inoculum. Preincubation of bacteria in the presence of Pn accelerated subsequent degradation of both methyl phosphonic acid and its esters. Cultures developing from a small amount of inoculum degraded Pn more efficiently than heavily inoculated cultures that underwent only one cell division. However, cultures heavily inoculated with adapted cells degraded Pn as efficiently as cultures developing from a small amount of inoculum. Aeration was an important factor regulating Pn degradation: Pn was degraded more efficiently under anaerobic conditions regardless of the amount of inoculum.

  10. The role of carboxylic acids in TALSQueak separations

    SciTech Connect

    Braley, Jenifer C.; Carter, Jennifer C.; Sinkov, Sergey I.; Nash, Ken L.; Lumetta, Gregg J.

    2012-04-13

    Recent reports have indicated TALSPEAK-type separations chemistry can be improved through the replacement of bis-2-ethyl(hexyl) phosphoric acid (HDEHP) and diethylenetriamine-N,N,N,N,N-pentaacetic acid (DTPA) with the weaker reagents 2-ethyl(hexyl) phosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) and N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid (HEDTA), respectively. This modified TALSPEAK has been provided with an adjusted acronym of TALSQueak (Trivalent Actinide Lanthanide Separation using Quicker Extractants and Aqueous Komplexes). Among several benefits, TALSQueak chemistry provides more rapid phase transfer kinetics, is less reliant on carboxylic acids to mediate lanthanide extraction and allows a simplified thermodynamic description of the separations process that generally requires only parameters available in the literature to describe metal transfer. This manuscript focuses on the role of carboxylic acids in aqueous ternary (M-HEDTA-carboxylate) complexes, americium/lanthanide separations, and extraction kinetics. Spectrophotometry (UV-vis) of the Nd hypersensitive band indicates the presence of aqueous ternary species (K111 = 1.83 {+-} 0.01 at 1.0 M ionic strength, Nd(HEDTA) + Lac <-> Nd(HEDTA)Lac). Varying the carboxylic acid does not have a significant impact on Ln/Am separations or extraction kinetics. TALSqueak separations come to equilibrium in five minutes at the conventional operational pH of 3.6 using only 0.1 M total lactate or citrate.

  11. Characterization of bicuculline/baclofen-insensitive (rho-like) gamma-aminobutyric acid receptors expressed in Xenopus oocytes. II. Pharmacology of gamma-aminobutyric acidA and gamma-aminobutyric acidB receptor agonists and antagonists.

    PubMed

    Woodward, R M; Polenzani, L; Miledi, R

    1993-04-01

    , phaclofen, and saclofen (1-100 microM) had no appreciable effects on the rho-like receptors. In contrast, 3-aminopropylphosphonic acid, the phosphonic acid analogue of GABA, acted as a competitive antagonist (Kb congruent to 10), and 3-aminopropylphosphinic acid and 3-aminopropyl(methyl)-phosphinic acid were moderately potent antagonists (Kb congruent to 1.7 and 0.8, respectively). delta-Aminovaleric acid was also an antagonist (Kb congruent to 20), whereas 4-aminobutylphosphonic acid, the phosphonic acid analogue of delta-aminovaleric acid, was only a weak inhibitor (Kb congruent to 600).(ABSTRACT TRUNCATED AT 400 WORDS)

  12. Porous Zirconium-Phytic Acid Hybrid: a Highly Efficient Catalyst for Meerwein-Ponndorf-Verley Reductions.

    PubMed

    Song, Jinliang; Zhou, Baowen; Zhou, Huacong; Wu, Lingqiao; Meng, Qinglei; Liu, Zhimin; Han, Buxing

    2015-08-03

    The utilization of compounds from natural sources to prepare functional materials is of great importance. Herein, we describe for the first time the preparation of organic-inorganic hybrid catalysts by using natural phytic acid as building block. Zirconium phosphonate (Zr-PhyA) was synthesized by reaction of phytic acid and ZrCl4 and was obtained as a mesoporous material with pore sizes centered around 8.5 nm. Zr-PhyA was used to catalyze the mild and selective Meerwein-Ponndorf-Verley (MPV) reduction of various carbonyl compounds, e.g., of levulinic acid and its esters into γ-valerolactone. Further studies indicated that both Zr and phosphate groups contribute significantly to the excellent performance of Zr-PhyA.

  13. Phosphonoacetic acid utilization by fungal isolates: occurrence and properties of a phosphonoacetate hydrolase in some penicillia.

    PubMed

    Forlani, Giuseppe; Klimek-Ochab, Magdalena; Jaworski, Jakub; Lejczak, Barbara; Picco, Anna M

    2006-12-01

    Among a collection of 18 fungal strains representing eight genera, only two strains (Penicillium oxalicum and P. minioluteum) were capable of growth on phosphonoacetic acid as sole phosphorous source. Enrichment liquid cultures in minimal medium with the compound as the only P-source selected four isolates, that were also identified as Penicillium spp. Phosphonoacetate metabolism did not lead to extracellular release of inorganic phosphate. In all cases phosphonoacetate hydrolase activity was detected in partially purified extracts, and a protein of the expected molecular mass reacted with polyclonal antibodies raised against the enzyme from P. oxalicum. There was no relation between phosphonoacetate hydrolase specific activity and growth rate or yield. Phosphonoacetic acid was the inducer of the hydrolase, independently of the concurrent availability of inorganic phosphate. Notwithstanding this, the utilization of the phosphonate was significantly inhibited in the presence of phosphate, suggesting an interference of the latter with phosphonoacetic acid uptake.

  14. Separation and detection of VX and its methylphosphonic acid degradation products on a microchip using indirect laser-induced fluorescence.

    PubMed

    Heleg-Shabtai, Vered; Gratziany, Natzach; Liron, Zvi

    2006-05-01

    The application of indirect LIF (IDLIF) technique for on-chip electrophoretic separation and detection of the nerve agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothiolate (VX) and its major phosphonic degradation products, ethyl methylphosphonic acid (EMPA) and methylphosphonic acid (MPA) was demonstrated. Separation and detection of MPA degradation products of VX and the nerve agent isopropyl methylphosphonofluoridate (GB) are presented. The negatively charged dye eosin was found to be a good fluorescent marker for both the negatively charged phosphonic acids and the positively charged VX, and was chosen as the IDLIF visualization fluorescent dye. Separation and detection of VX, EMPA, and MPA in a simple-cross microchip were completed within less than a minute, and consumed only a 50 pL sample volume. A characteristic system peak that appeared in all IDLIF electropherograms served as an internal standard that increased the reliability of peak identification. The negative peak of both VX and the MPAs is in agreement with indirect detection theory and with previous reports in the literature. The LOD of VX and EMPA by IDLIF was 30 and 37 microM, respectively. Despite the fact that the detection sensitivity is relatively low, the rapid simultaneous on-chip analysis of both VX and its degradation products as well as the separation and detection of the MPA degradation products of both VX and GB, increases detection reliability and may present a choice when sensitivity is not critical compared with speed and simplicity of the assay.

  15. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides.

    PubMed

    Li, Xiong; Dar, M Ibrahim; Yi, Chenyi; Luo, Jingshan; Tschumi, Manuel; Zakeeruddin, Shaik M; Nazeeruddin, Mohammad Khaja; Han, Hongwei; Grätzel, Michael

    2015-09-01

    In the past few years, organic-inorganic halide perovskites have rapidly emerged as promising materials for photovoltaic applications, but simultaneously achieving high performance and long-term stability has proved challenging. Here, we show a one-step solution-processing strategy using phosphonic acid ammonium additives that results in efficient perovskite solar cells with enhanced stability. We modify the surface of methylammonium lead triiodide (CH3NH3PbI3) perovskite by spin-coating its precursor solution in the presence of butylphosphonic acid 4-ammonium chloride. Morphological, structural and elemental analyses show that the phosphonic acid ammonium additive acts as a crosslink between neighbouring grains in the perovskite structure, through strong hydrogen bonding of the -PO(OH)2 and -NH3(+) terminal groups to the perovskite surface. The additives facilitate the incorporation of the perovskite within a mesoporous TiO2 scaffold, as well as the growth of a uniform perovskite layer at the surface, enhancing the material's photovoltaic performance from 8.8 to 16.7% as well as its resistance to moisture.

  16. Interactions of aminomethylphosphonic acid and sarcosine with montmorillonite interlayer surfaces

    NASA Astrophysics Data System (ADS)

    Rennig, Amanda; Slutter, Annette; Tribe, Lorena

    The smectite clay, montmorillonite, can be found in many soils throughout the world. In addition to its importance in agriculture and soil remediation, montmorillonite has extensive applications in industry both in its natural form and as a component of composite materials. The adsorptive properties of montmorillonite have been explored in relation to its interactions with the common herbicide glyphosate. This herbicide, when exposed to microorganisms in the soil is degraded, forming two products: aminomethylphosphonic acid (AMPA) and sarcosine. The atomic-level interactions of these compounds with the montmorillonite interlayer surfaces are studied here using molecular mechanics. The final outcomes of these calculations are analyzed in terms of the proximity of the montmorillonite surface to the moieties of the degradation products. The phosphonate moiety was found to be the most important source of interactions for AMPA, while for sarcosine there was an even distribution between the amino and carboxylic moieties, and Na+ ion mediated surface complexes.0

  17. SAR and identification of 2-(quinolin-4-yloxy)acetamides as Mycobacterium tuberculosis cytochrome bc 1 inhibitors† †The authors declare no competing interests. ‡ ‡Electronic supplementary information (ESI) available: Materials and methods, and characterisation of compounds 10a–f, 11a–x and 5, 9, 12a–12aa. See DOI: 10.1039/c6md00236f Click here for additional data file.

    PubMed Central

    Phummarin, Narisa; Boshoff, Helena I.; Tsang, Patricia S.; Dalton, James; Wiles, Siouxsie; Barry 3rd, Clifton E.

    2016-01-01

    A previous phenotypic screen by GSK identified 2-(quinolin-4-yloxy)acetamides as potent growth inhibitors of Mycobacterium tuberculosis (Mtb). We report the results of a preliminary structure–activity relationship (SAR) study of the compound class which has yielded more potent inhibitors. An Mtb cytochrome bd oxidase deletion mutant (cydKO) was found to be hypersensitive to most members of the compound library, while strains carrying single-nucleotide polymorphisms of the qcrB gene, which encodes a subunit of the menaquinol cytochrome c oxidoreductase (bc 1) complex, were resistant to the library. These results identify that the 2-(quinolin-4-yloxy)acetamide class of Mtb growth inhibitors can be added to the growing number of scaffolds that target the M. tuberculosis bc 1 complex. PMID:28337336

  18. Six-membered ring phosphates and phosphonates as model compounds for cyclic phosphate prodrugs: is the anomeric effect involved in the selective and spontaneous cleavage of cyclic phosphate prodrugs?

    PubMed

    Cruz-Gregorio, Silvano; Rodriguez-Palacios, Vicente; Höpfl, Herbert; Quintero, Leticia; Sartillo-Piscil, Fernando

    2009-01-02

    In recent years, several six-membered ring phosph(on)ates and phosphonamides have been reported as potent prodrugs against liver diseases such as hepatitis B and C and also as antitumor agents. Apparently, the success for their biological activity depends on the selective cleavage of the C4-O3 bond within the respective P-heterocyclic ring. Empirical observations have suggested that the group attached to the C4 position (aryl or pyridyl group) is responsible for the selective cleavage. In this regard, we show in the present work that the configuration at the P-atom, the conformation of the P-heterocyclic ring, and particularly, the anomeric effect are involved in the spontaneous and selective cleavage of the C4-O3 bond in cyclic phosph(on)ates. We arrived at this assumption based on the conformational and configurational study of simple model phosphates and phosphonates, where it was observed that the spontaneous conversion of unstable six-membered ring phosphates to their most stable six-membered ring phosphate (4d, 6d and 7d to 5d), by a selective C4-O3 bond cleavage, depends on both: the stereochemistry of the aryl group at C4 and the electronic nature of the substituent attached to the P-atom. Thus, we postulated that the anomeric effect weakens the C4-O3 bond within the 1,3,2-dioxaphosphorinane ring, favoring thus their selective cleavage and spontaneous conversion, similarly to the proposed mechanistic mode of action of six-membered ring P-heterocyclic prodrugs.

  19. Phospha-Michael addition reaction of maleimides employing N-heterocyclic phosphine-thiourea as a phosphonylation reagent: synthesis of 1-aryl-2,5-dioxopyrrolidine-3-yl-phosphonate derivatives.

    PubMed

    Molleti, Nagaraju; Bjornberg, Chad; Kang, Jun Yong

    2016-12-07

    N-Heterocyclic phosphine (NHP)-thiourea as a novel phosphonylation reagent has been successfully applied for the phospha-Michael reaction of maleimides under catalyst and additive free reaction conditions. This methodology enables desymmetrization of a variety of maleimide derivatives to provide 1-aryl-2,5-dioxopyrrolidine-3-yl-phosphonates in up to 92% yield. Synthetic manipulation of this Michael adduct afforded an ethylphosphonate and a phosphino lactam. Furthermore, a scale-up experiment for its practical usage as a versatile precursor in organic synthesis was readily demonstrated.

  20. Enrichment and low-level determination of glyphosate, aminomethylphosphonic acid and glufosinate in drinking water after cleanup by cation exchange resin.

    PubMed

    Küsters, Markus; Gerhartz, Michael

    2010-04-01

    For the determination of glyphosate, aminomethylphosphonic acid and glufosinate in drinking water, different procedures of enrichment and cleanup were examined using anion exchange or SPE. In many cases interactions of, e.g. alkaline earth metal ions especially calcium could be observed during enrichment and cleanup resulting in loss of analytes. For that reason, a novel cleanup and enrichment procedure for the determination of these phosphonic acid herbicides has been developed in drinking water using cation-exchange resin. In summary, the cleanup procedure with cation-exchange resin developed in this study avoids interactions as described above and is applicable to calcium-rich drinking water samples. After derivatization with 9-fluorenylmethylchloroformate followed by LC with fluorescence detection, LOD of 12, 14 and 12 ng/L and mean recoveries from real-world drinking water samples of 98+/-9, 100+/-16 and 101+/-11% were obtained for glyphosate, aminomethylphosphonic acid and glufosinate, respectively. The low LODs and the high precision permit the analysis of these phosphonic acid herbicides according to the guidelines of the European Commission.

  1. In Vitro Characterization of GS-8374, a Novel Phosphonate-Containing Inhibitor of HIV-1 Protease with a Favorable Resistance Profile ▿ †

    PubMed Central

    Callebaut, Christian; Stray, Kirsten; Tsai, Luong; Williams, Matt; Yang, Zheng-Yu; Cannizzaro, Carina; Leavitt, Stephanie A.; Liu, Xiaohong; Wang, Kelly; Murray, Bernard P.; Mulato, Andrew; Hatada, Marcos; Priskich, Tina; Parkin, Neil; Swaminathan, Swami; Lee, William; He, Gong-Xin; Xu, Lianhong; Cihlar, Tomas

    2011-01-01

    GS-8374 is a novel bis-tetrahydrofuran HIV-1 protease (PR) inhibitor (PI) with a unique diethylphosphonate moiety. It was selected from a series of analogs containing various di(alkyl)phosphonate substitutions connected via a linker to the para position of a P-1 phenyl ring. GS-8374 inhibits HIV-1 PR with high potency (Ki = 8.1 pM) and with no known effect on host proteases. Kinetic and thermodynamic analysis of GS-8374 binding to PR demonstrated an extremely slow off rate for the inhibitor and favorable contributions of both the enthalpic and entropic components to the total free binding energy. GS-8374 showed potent antiretroviral activity in T-cell lines, primary CD4+ T cells (50% effective concentration [EC50] = 3.4 to 11.5 nM), and macrophages (EC50 = 25.5 nM) and exhibited low cytotoxicity in multiple human cell types. The antiviral potency of GS-8374 was only moderately affected by human serum protein binding, and its combination with multiple approved antiretrovirals showed synergistic effects. When it was tested in a PhenoSense assay against a panel of 24 patient-derived viruses with high-level PI resistance, GS-8374 showed lower mean EC50s and lower fold resistance than any of the clinically approved PIs. Similar to other PIs, in vitro hepatic microsomal metabolism of GS-8374 was efficiently blocked by ritonavir, suggesting a potential for effective pharmacokinetic boosting in vivo. In summary, results from this broad in vitro pharmacological profiling indicate that GS-8374 is a promising candidate to be further assessed as a new antiretroviral agent with potential for clinical efficacy in both treatment-naïve and -experienced patients. PMID:21245449

  2. Acute effects of a sarin-like organophosphorus agent, bis(isopropyl methyl)phosphonate, on cardiovascular parameters in anaesthetized, artificially ventilated rats

    SciTech Connect

    Watanabe, Yoshimasa; Itoh, Takeo; Shiraishi, Hiroaki; Maeno, Yoshitaka; Arima, Yosuke; Torikoshi, Aiko; Namera, Akira; Makita, Ryosuke; Yoshizumi, Masao; Nagao, Masataka

    2013-10-01

    The organophosphorus compound sarin irreversibly inhibits acetylcholinesterase. We examined the acute cardiovascular effects of a sarin-like organophosphorus agent, bis(isopropyl methyl)phosphonate (BIMP), in anaesthetized, artificially ventilated rats. Intravenous administration of BIMP (0.8 mg/kg; the LD50 value) induced a long-lasting increase in blood pressure and tended to increase heart rate. In rats pretreated with the non-selective muscarinic-receptor antagonist atropine, BIMP significantly increased both heart rate and blood pressure. In atropine-treated rats, hexamethonium (antagonist of ganglionic nicotinic receptors) greatly attenuated the BIMP-induced increase in blood pressure without changing the BIMP-induced increase in heart rate. In rats treated with atropine plus hexamethonium, intravenous phentolamine (non-selective α-adrenergic receptor antagonist) plus propranolol (non-selective β-adrenergic receptor antagonist) completely blocked the BIMP-induced increases in blood pressure and heart rate. In atropine-treated rats, the reversible acetylcholinesterase inhibitor neostigmine (1 mg/kg) induced a transient increase in blood pressure, but had no effect on heart rate. These results suggest that in anaesthetized rats, BIMP induces powerful stimulation of sympathetic as well as parasympathetic nerves and thereby modulates heart rate and blood pressure. They may also indicate that an action independent of acetylcholinesterase inhibition contributes to the acute cardiovascular responses induced by BIMP. - Highlights: • A sarin-like agent BIMP markedly increased blood pressure in anaesthetized rats. • Muscarinic receptor blockade enhanced the BIMP-induced increase in blood pressure. • Ganglionic nicotinic receptor blockade attenuated the BIMP-induced response. • Blockade of α- as well as β-receptors attenuated the BIMP-induced response.

  3. Modulation of pro-inflammatory activation of monocytes and dendritic cells by aza-bis-phosphonate dendrimer as an experimental therapeutic agent

    PubMed Central

    2014-01-01

    Introduction Our objective was to assess the capacity of dendrimer aza-bis-phosphonate (ABP) to modulate phenotype of monocytes (Mo) and monocytes derived dendritic cells (MoDC) activated in response to toll-like receptor 4 (TLR4) and interferon γ (IFN- γ) stimulation. Methods Mo (n = 12) and MoDC (n = 11) from peripheral blood of healthy donors were prepared. Cells were preincubated or not for 1 hour with dendrimer ABP, then incubated with lipopolysaccharide (LPS; as a TLR4 ligand) and (IFN-γ) for 38 hours. Secretion of tumor necrosis factor α (TNFα), interleukin (IL) -1, IL-6, IL-12, IL-10 and IL-23 in the culture medium was measured by enzyme-linked immunosorbent assay (ELISA) and Cytokine Bead Array. Differentiation and subsequent maturation of MoDC from nine donors in the presence of LPS were analyzed by flow cytometry using CD80, CD86, CD83 and CD1a surface expression as markers. Results Mo and MoDC were orientated to a pro-inflammatory state. In activated Mo, TNFα, IL-1β and IL-23 levels were significantly lower after prior incubation with dendrimer ABP. In activated MoDC, dendrimer ABP promoted IL-10 secretion while decreasing dramatically the level of IL-12. TNFα and IL-6 secretion were significantly lower in the presence of dendrimer ABP. LPS driven maturation of MoDC was impaired by dendrimer ABP treatment, as attested by the significantly lower expression of CD80 and CD86. Conclusion Our data indicate that dendrimer ABP possesses immunomodulatory properties on human Mo and MoDC, in TLR4 + IFN-γ stimulation model, by inducing M2 alternative activation of Mo and promoting tolerogenic MoDC. PMID:24745366

  4. Mn{sub 0.95}I{sub 0.02}[PO{sub 3}(OH)] · 2H{sub 2}O phosphate–iodate, an inorganic analogue of phosphonates

    SciTech Connect

    Belokoneva, E. L. Dimitrova, O. V.; Volkov, A. S.

    2015-09-15

    The new Mn{sub 0.95}I{sub 0.02}[PO{sub 3}(OH)] · 2H{sub 2}O phosphate–iodate (space group Pnam = Pnma, D{sub 2h}{sup 16}) is obtained under hydrothermal conditions. The crystal structure is determined without preliminary knowledge of the chemical formula. The structure consists of layers of MnO{sub 6} octahedra connected with PO{sub 4} tetrahedra. Water molecules are located between the layers. [IO3]{sup –} groups having a typical umbrella-like coordination are statistically implanted in layers of MnO{sub 6} octahedra at a distance of 1.2 Å from Mn atoms. Their content in the crystal is minor. The structures of the phosphate–iodate coincides with the structures of phosphonates with consideration for the replacement of one (OH) vertex of the PO{sub 4} tetrahedron by the organic methyl radical CH{sub 3}. In the structures of phosphonates and earlier studied phosphates, identical layers are distinguished and the cause of the existence of two MDO varieties is established based on the analysis within the OD theory. Possible hybrid structures derived from the prototypes under consideration are predicted.

  5. A new approach to cyclic hydroxamic acids: Intramolecular cyclization of N-benzyloxy carbamates with carbon nucleophiles

    PubMed Central

    Liu, Yuan; Jacobs, Hollie K.

    2011-01-01

    N-Alkyl-N-benzyloxy carbamates, 2, undergo facile intramolecular cyclization with a variety of carbon nucleophiles to give functionalized 5- and 6-membered protected cyclic hydroxamic acids, 3, in good to excellent yields. This method can be extended to prepare seven-membered cyclic hydroxamic acids in moderate yields. The sulfone intermediates 3 from this study can be alkylated while the corresponding phosphonates have been shown to undergo HWE reaction. The α,β-unsaturated synthon, 8, prepared by thermal elimination of sulfoxide 3m, undergoes Michael addition with secondary amines. The usefulness of this approach to prepare polydentate chelators has been demonstrated by the synthesis of bis cyclic hydroxamic acids 12, 14, and 15. PMID:21499514

  6. Understanding Nitrilotris(methylenephosphonic acid) reactions with ferric hydroxide.

    PubMed

    Martínez, Rodrigo Javier; Farrell, James

    2017-05-01

    Phosphonate compounds are used in a wide variety of industrial and agricultural applications, and are commonly found in surface and ground waters. Adsorption to ferric hydroxide can have a significant effect on the transport and fate of phosphonate compounds in the environment. This research used density functional theory modeling to investigate the adsorption mechanisms of nitrilotris(methylenephosphonic acid) (NTMP) on ferric hydroxide. Standard Gibbs free energies of reaction (ΔGr(o)) and reaction activation barriers (Ea) were calculated for different possible adsorption mechanisms. Physical adsorption of NTMP to ferric hydroxide was promoted by negative charge assisted hydrogen bonding, and had ΔGr(o) ranging from -2.7 to -7.4 kcal/mol. NTMP was found to form three different types of inner sphere complexes, monodentate, bidentate mononuclear and bidentate binuclear. For the monodentate complexes, ΔGr(o) ranged from -8.0 to -13.7 kcal/mol, for the bidentate complexes ΔGr(o) ranged from -15.3 to -28.9 kcal/mol. Complexation with Ca(2+) decreased the energy for physical adsorption but increased the binding energies for mono- and bidentate complexes. Complexation with Ca(2+) also allowed formation of a tridentate ternary surface complex, whereby the Ca(2+) ion formed a bridge between three FeO(-) and three PO(-) groups. Physical adsorption had Ea = 0, but mono- and bidentate complex formation had Ea values ranging from 36 to 53 kcal/mol. Formation of tridentate ternary surface complexes involving Ca(2+) had the lowest activation barriers of 8 and 10 kcal/mol. The different activation barriers for different modes of adsorption may explain previous experimental observations of unusual kinetic behavior for adsorption and desorption of NTMP.

  7. Synthesis and X-ray structures of dilithium complexes of the phosphonate anions [PhP(E)(N(t)Bu)(2)](2-) (E = O, S, Se, Te) and dimethylaluminum derivatives of [PhP(E)(N(t)Bu)(NH(t)Bu)](-) (E = S, Se).

    PubMed

    Briand, Glen G; Chivers, Tristram; Krahn, Mark; Parvez, Masood

    2002-12-16

    The dilithium salts of the phosphonate dianions [PhP(E)(N(t)Bu)(2)](2-) (E = O, S, Se) are generated by the lithiation of [PhP(E)(NH(t)Bu)(2)] with n-butyllithium. The formation of the corresponding telluride (E = Te) is achieved by oxidation of [Li(2)[PhP(N(t)Bu)(2)

  8. Effect of Acid Treatment of Plant Cuticles on Sorption of Selected Auxins 1

    PubMed Central

    Shafer, Warren E.; Bukovac, Martin J.

    1987-01-01

    Sorption characteristics of 2-(1-naphthyl)acetic acid (NAA), 2-(1-naphthyl)acetamide (NAAm), and 2,4-dichlorophenoxyacetic acid (2,4-D) were determined for cuticles enzymically isolated from mature tomato (Lycopersicon esculentum Mill. cv Sprinter) and pepper (Capsicum annuum L.) fruit. Sorption equilibrium for NAA and 2,4-D by tomato cuticular membranes (CM) and dewaxed cuticular membranes (DCM) was achieved within 24 hours at 25°C. The average K (partition coefficient) values for NAA in tomato CM and DCM were 166 and 204, respectively, whereas the corresponding K values for 2,4-D were 292 and 383, respectively. Sorption equilibrium for 2,4-D and NAA in pepper cuticles was not achieved after 18 and 63 days, respectively. Sorption equilibrium for NAAm in tomato and pepper CM and DCM was attained within 48 hours. Acid pretreatment (2.0 n HCl, 10 minutes) had no effect on NAA, 2,4-D, or NAAm sorption by tomato CM and DCM, or on NAAm sorption by pepper CM and DCM. Acid pretreatment of pepper CM and DCM led to slightly lower KpH (apparent partition coefficient) values for both NAA and 2,4-D. More significantly, sorption equilibrium for NAA and 2,4-D in pepper CM and DCM was achieved within 24 hours after acid treatment. PMID:16665302

  9. Quantitative measurement of ligand exchange on iron oxides via radiolabeled oleic acid.

    PubMed

    Davis, Kathleen; Qi, Bin; Witmer, Michael; Kitchens, Christopher L; Powell, Brian A; Mefford, O Thompson

    2014-09-16

    Ligand exchange of hydrophilic molecules on the surface of hydrophobic iron oxide nanoparticles produced via thermal decomposition of chelated iron precursors is a common method for producing aqueous suspensions of particles for biomedical applications. Despite the wide use, relatively little is understood about the efficiency of ligand exchange on the surface of iron oxide nanoparticles and how much of the hydrophobic ligand is removed. To address this issue, we utilized a radiotracer technique to track the exchange of a radiolabeled (14)C-oleic acid ligand with hydrophilic ligands on the surface of magnetite nanoparticles. Iron oxide nanoparticles functionalized with (14)C-oleic acid were modified with poly(ethylene glycol) with terminal functional groups including, L-3,4-dihydroxyphenylalanine, a nitrated L-3,4-dihydroxyphenylalanine, carboxylic acid, a phosphonate, and an amine. Following ligand exchange, the nanoparticles and byproducts were analyzed using liquid scintillation counting and inductively coupled plasma mass spectroscopy. The labeled and unlabeled particles were further characterized by transmission electron microscopy and dynamic light scattering to determine particle size, hydrodynamic diameter, and zeta potential. The unlabeled particles were characterized via thermogravimetric analysis and vibrating sample magnetometry. Radioanalytical determination of the (14)C from (14)C-oleic acid was used to calculate the amount of oleic acid remaining on the surface of the particles after purification and ligand exchange. There was a significant loss of oleic acid on the surface of the particles after ligand exchange with amounts varying for the different functional binding groups on the poly(ethylene glycol). Nonetheless, all samples demonstrated some residual oleic acid associated with the particles. Quantification of the oleic acid remaining after ligand exchange reveals a binding hierarchy in which catechol derived anchor groups displace oleic acid on

  10. Current Understanding of Perfluoroalkyl Acid Toxicology ...

    EPA Pesticide Factsheets

    The perfluoroalkyl acids (PFAAs) are a family of organic chemicals consisting of a perfluorinated carbon backbone (4-14 carbons in length) and an anionic head group (sulfonate, carboxylate or phosphonate). These compounds have excellent surface-tension reducing properties and have numerous industrial and consumer applications. However, they are chemically stable, persistent in the environment, ubiquitously distributed, and present in humans and wildlife. Two issues must be considered regarding PFAA toxicology: pharmacokinetics and potency of the chemicals. The rates of PFAA clearance and their body burden accumulation are dependent on carbon-chain length and animal species. In general, the serum half-life of PFAAs increases with chain length in both rodents and humans, but the estimates in humans are markedly higher than those in laboratory animals. Recent studies with laboratory animal models have indicated a number of toxic effects of PFAAs, including tumor induction, hepatotoxicity, developmental toxicity, immunotoxicity, neurotoxicity and endocrine disruption. The modes of PFAA actions are not well understood, but are thought to involve, in part, activation of nuclear receptor signals (such as peroxisome proliferator-activated receptor-a, PPARa). Based on PPARa activation, potency of PFAAs increases with carbon-chain length, carboxylates are stronger than sulfonates, and mouse receptor is more reactive than human receptor. Adverse effects of perfluorophospho

  11. Prostate cancer derived prostatic acid phosphatase promotes an osteoblastic response in the bone microenvironment

    PubMed Central

    Larson, Sandy R.; Chin, Jessica; Zhang, Xiaotun; Brown, Lisha G.; Coleman, Ilsa M.; Lakely, Bryce; Tenniswood, Martin; Corey, Eva; Nelson, Peter S.; Vessella, Robert L.

    2014-01-01

    Approximately 90 % of patients who die of prostate cancer (PCa) have bone metastases, often promoting osteoblastic lesions. We observed that 88 % of castration-resistant PCa (CRPC) bone metastases express prostatic acid phosphatase (PAP), a soluble secreted protein expressed by prostate epithelial cells in predominately osteoblastic (n = 18) or osteolytic (n = 15) lesions. Additionally, conditioned media (CM) of an osteoblastic PCa xenograft LuCaP 23.1 contained significant levels of PAP and promoted mineralization in mouse and human calvaria-derived cells (MC3T3-E1 and HCO). To demonstrate that PAP promotes mineralization, we stimulated MC3T3-E1 cells with PAP and observed increased mineralization, which could be blocked with the specific PAP inhibitor, phosphonic acid. Furthermore, the mineralization promoted by LuCaP 23.1 CM was also blocked by phosphonic acid, suggesting PAP is responsible for the mineralization promoting activity of LuCaP 23.1. In addition, gene expression arrays comparing osteoblastic to osteolytic CRPC (n = 14) identified betacellulin (BTC) as a gene upregulated during the osteoblastic response in osteoblasts during new bone formation. Moreover, BTC levels were increased in bone marrow stromal cells in response to LuCaP 23.1 CM in vitro. Because new bone formation does occur in osteoblastic and can occur in osteolytic CRPC bone metastases, we confirmed by immunohistochemistry (n = 36) that BTC was highly expressed in osteoblasts involved in new bone formation occurring in both osteoblastic and osteolytic sites. These studies suggest a role for PAP in promoting the osteoblastic reaction in CRPC bone metastases and identify BTC as a novel downstream protein expressed in osteoblasts during new bone formation. PMID:24242705

  12. Metabolite gene regulation of the L-arabinose operon in Escherichia coli with indoleacetic acid and other indole derivatives.

    PubMed

    Kline, E L; Brown, C S; Bankaitis, V; Montefiori, D C; Craig, K

    1980-04-01

    The ability of indole derivatives to facilitate RNA polymerase transcription of the L-arabinose operon in Escherichia coli was shown to require the catabolite activator protein (CAP) as well as the araC gene product. Adenosine 3',5'-monophosphate (cAMP) was not obligatory for araBAD transcription when the cells were grown in the presence of 1 mM indole-3-acetic acid or in the presence of indole-3-acetamide, indole-3-propionic acid, indole-3-butyric acid, or 5-hydroxyindole-3-acetic acid. However, these indole derivatives were unable to circumvent the cAMP requirement for the induction of the lactose and the maltose operons. Catabolic repression occurred when glucose was added to cells grown in the presence of L-arabinose and 1 mM indoleacetic acid or 1 mM cAMP. This effect was reversed at higher concentrations of indoleacetic acid or cAMP. The induction and the catabolite repression phenomena were quantitated by measuring the differential rate of synthesis of L-arabinose isomerase (the araA gene product). These results indicated that indole metabolites from various living systems may regulate gene expression and may be involved in "metabolite gene regulation."

  13. High thermodynamic stability and extraordinary kinetic inertness of copper(II) complexes with 1,4,8,11-tetraazacyclotetradecane-1,8-bis(methylphosphonic acid): example of a rare isomerism between kinetically inert penta- and hexacoordinated copper(II) complexes.

    PubMed

    Kotek, Jan; Lubal, Premysl; Hermann, Petr; Císarová, Ivana; Lukes, Ivan; Godula, Tomás; Svobodová, Ivona; Táborský, Petr; Havel, Josef

    2003-01-03

    In an aqueous solution at room temperature, 1,4,8,11-tetraazacyclotetradecane-1,8-bis(methylphosphonic acid) (H(4)L(1)) and Cu(I) (I) form a pentacoordinated (pc) complex, pc-[Cu(L(1))](2-), exhibiting conformation I of the cyclam ring. At high temperature, the complex isomerises to a hexacoordinated isomer, trans-O,O-[Cu(L(1))](2-), with a trans-III conformation of the cyclam ring. In pc-[Cu(L(1))](2-), four ring nitrogen atoms and one phosphonate oxygen atom are arranged around Cu(I) (I) in a structure that is half-way between a trigonal bipyramid and a tetragonal pyramid, with one phosphonic acid group uncoordinated. In the trans-O,O-[Cu(L(1))](2-) isomer, the nitrogen atoms form a plane and the phosphonic acid groups are in a mutually trans configuration. A structurally very similar ligand, 4-methyl-1,4,8,11-tetraazacyclotetradecane-1,8-bis(methylphosphonic acid) (H(4)L(2)), forms an analogous pentacoordinated complex, pc-[Cu(L(2))](2-), at room temperature. However, the complex does not isomerise to the octahedral complex analogous to trans-O,O-[Cu(L(1))](2-). Because of the high thermodynamic stability of pc-[Cu(L(1))](2-), (logbeta=25.40(4), 25 degrees C, I=0.1 mol dm(-3) KNO(3)) and the formation of protonated species, Cu(I) (I) is fully complexed in acidic solution (-log [H(+)] approximately 3). Acid-assisted decomplexation of both of the isomers of [Cu(H(2)L(1))] takes place only after protonation of both uncoordinated oxygen atoms of each phosphonate moiety and at least one nitrogen atom of the cycle. The exceptional kinetic inertness of both isomers is illustrated by their half-lives tau(1/2)=19.7 min for pc-[Cu(H(2)L(1))] and tau(1/2) about seven months for trans-O,O-[Cu(H(2)L(1))] for decomplexation in 5 M HClO(4) at 25 degrees C. The mechanism of formation of pc-[Cu(L(1))](2-) is similar to those observed for other macrocyclic complexes.

  14. Zinc oxide modified with benzylphosphonic acids as transparent electrodes in regular and inverted organic solar cell structures

    SciTech Connect

    Lange, Ilja; Reiter, Sina; Kniepert, Juliane; Piersimoni, Fortunato; Brenner, Thomas; Neher, Dieter; Pätzel, Michael; Hildebrandt, Jana; Hecht, Stefan

    2015-03-16

    An approach is presented to modify the work function of solution-processed sol-gel derived zinc oxide (ZnO) over an exceptionally wide range of more than 2.3 eV. This approach relies on the formation of dense and homogeneous self-assembled monolayers based on phosphonic acids with different dipole moments. This allows us to apply ZnO as charge selective bottom electrodes in either regular or inverted solar cell structures, using poly(3-hexylthiophene):phenyl-C71-butyric acid methyl ester as the active layer. These devices compete with or even surpass the performance of the reference on indium tin oxide/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate. Our findings highlight the potential of properly modified ZnO as electron or hole extracting electrodes in hybrid optoelectronic devices.

  15. [Activated Sludge Bacteria Transforming Cyanopyridines and Amides of Pyridinecarboxylic Acids].

    PubMed

    Demakov, V A; Vasil'ev, D M; Maksimova, Yu G; Pavlova, Yu A; Ovechkina, G V; Maksimov, A Yu

    2015-01-01

    Species diversity of bacteria from the activated sludge of Perm biological waste treatment facilities capable of transformation of cyanopyridines and amides of pyridinecarboxylic acids was investigated. Enrichment cultures in mineral media with 3-cyanopyridine as the sole carbon and nitrogen source were used to obtain 32 clones of gram-negative heterotrophic bacteria exhibiting moderate growth on solid and liquid media with 3- and 4-cyanopyridine. Sequencing of the 16S rRNA gene fragments revealed that the clones with homology of at least 99% belonged to the genera Acinetobacte, Alcaligenes, Delftia, Ochrobactrum, Pseudomonas, Stenotrophomonas, and Xanthobacter. PCR analysis showed that 13 out of 32 isolates contained the sequences (-1070 bp) homologous to the nitrilase genes reported previously in Alcaligenes faecalis JM3 (GenBank, D13419.1). Nine clones were capable of nitrile and amide transformation in minimal salt medium. Acinetobacter sp. 11 h and Alcaligenes sp. osv transformed 3-cyanopyridine to nicotinamide, while most of the clones possessed amidase activity (0.5 to 46.3 mmol/(g h) for acetamide and 0.1 to 5.6 mmol/(g h) for nicotinamide). Nicotinamide utilization by strain A. faecalis 2 was shown to result in excretion of a secondary metabolite, which was identified as dodecyl acrylate at 91% probability.

  16. Semifluorinated Alkylphosphonic Acids Form High-Quality Self-Assembled Monolayers on Ag-Coated Yttrium Barium Copper Oxide Tapes and Enable Filamentization of the Tapes by Microcontact Printing.

    PubMed

    Park, Chul Soon; Lee, Han Ju; Lee, Dahye; Jamison, Andrew C; Galstyan, Eduard; Zagozdzon-Wosik, Wanda; Freyhardt, Herbert C; Jacobson, Allan J; Lee, T Randall

    2016-08-30

    A custom-designed semifluorinated phosphonic acid, (9,9,10,10,11,11,12,12,13,13,14,14,15,15,16,16,16-heptadecafluorohexadecyl)phosphonic acid (F8H8PA), and a normal hexadecylphosphonic acid (H16PA) were synthesized and used to generate self-assembled monolayers (SAMs) on commercially available yttrium barium copper oxide (YBCO) tapes. In this study, we wished to evaluate the effectiveness of these monolayer films as coatings for selectively etching YBCO. Initial films formed by solution deposition and manual stamping using a non-patterned polydimethylsiloxane stamp allowed for a comparison of the film-formation characteristics. The resulting monolayers were characterized by X-ray photoelectron spectroscopy (XPS), contact angle goniometry, and polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS). To prepare line-patterned (filamentized) YBCO tapes, standard microcontact printing (μ-CP) procedures were used. The stamped patterns on the YBCO tapes were characterized by scanning electron microscopy (SEM) before and after etching to confirm the effectiveness of the patterning process on the YBCO surface and energy-dispersive X-ray spectroscopy (EDX) to obtain the atomic composition of the exposed interface.

  17. Bioisosteres of 9-carboxymethyl-4-oxo-imidazo[1,2-a]indeno-[1,2-e]pyrazin-2-carboxylic acid derivatives. Progress towards selective, potent in vivo AMPA antagonists with longer durations of action.

    PubMed

    Jimonet, P; Bohme, G A; Bouquerel, J; Boireau, A; Damour, D; Debono, M W; Genevois-Borella, A; Hardy, J C; Hubert, P; Manfré, F; Nemecek, P; Pratt, J; Randle, J C; Ribeill, Y; Stutzmann, J M; Vuilhorgne, M; Mignani, S

    2001-01-22

    A novel series of 2- and 9-disubstituted heterocyclic-fused 4-oxo-indeno[1,2-e]pyrazin derivatives was synthesized. One of them, the 9-(1H-tetrazol-5-ylmethyl)-4-oxo-5,10-dihydroimidazo[1,2-a]indeno[1,2-e]pyrazin-2-yl phosphonic acid 4i exhibited a strong and a selective binding affinity for the AMPA receptor (IC50 = 13 nM) and demonstrated potent antagonist activity (IC50 = 6nM) at the ionotropic AMPA receptor. This compound also displayed good anticonvulsant properties against electrically-induced convulsions after ip and iv administration with ED50 values between 0.8 and 1 mg/kg. Furthermore, a strong increase in potency was observed when given iv 3 h before test (ED50 = 3.5 instead of 25.6 mg/kg for the corresponding 9-carboxymethyl-2-carboxylic acid analogue). These data confirmed that there is an advantage in replacing the classical carboxy substituents by their bioisosteres such as tetrazole or phosphonic acid groups.

  18. Primary amino acid derivatives: substitution of the 4'-N'-benzylamide site in (R)-N'-benzyl 2-amino-3-methylbutanamide, (R)-N'-benzyl 2-amino-3,3-dimethylbutanamide, and (R)-N'-benzyl 2-amino-3-methoxypropionamide provides potent anticonvulsants with pain-attenuating properties.

    PubMed

    King, Amber M; Salomé, Christophe; Salomé-Grosjean, Elise; De Ryck, Marc; Kaminski, Rafal; Valade, Anne; Stables, James P; Kohn, Harold

    2011-10-13

    Recently, we reported that select N'-benzyl 2-substituted 2-amino acetamides (primary amino acid derivatives (PAADs)) exhibited pronounced activities in established whole animal anticonvulsant (i.e., maximal electroshock seizure (MES)) and neuropathic pain (i.e., formalin) models. The anticonvulsant activities of C(2)-hydrocarbon N'-benzyl 2-amino acetamides (MES ED(50) = 13-21 mg/kg) exceeded those of phenobarbital (ED(50) = 22 mg/kg). Two additional studies defining the structure-activity relationship of PAADs are presented in this issue of the journal. In this study, we demonstrated that the anticonvulsant activities of (R)-N'-benzyl 2-amino-3-methylbutanamide and (R)-N'-benzyl 2-amino-3,3-dimethylbutanamide were sensitive to substituents at the 4'-N'-benzylamide site; electron-withdrawing groups retained activity, electron-donating groups led to a loss of activity, and incorporating either a 3-fluorobenzyloxy or 3-fluorophenoxymethyl group using a rationally designed multiple ligand approach improved activity. Additionally, we showed that substituents at the 4'-N'-benzylamide site of (R)-N'-benzyl 2-amino-3-methoxypropionamide also improved anticonvulsant activity, with the 3-fluorophenoxymethyl group providing the largest (∼4-fold) increase in activity (ED(50) = 8.9 mg/kg), a value that surpassed phenytoin (ED(50) = 9.5 mg/kg). Collectively, the pharmacological findings provided new information that C(2)-hydrocarbon PAADs represent a novel class of anticonvulsants.

  19. Zoledronic acid: monoclinic and triclinic polymorphs from powder diffraction data.

    PubMed

    Chernyshev, Vladimir V; Shkavrov, Sergey V; Paseshnichenko, Ksenia A; Puryaeva, Tamara P; Velikodny, Yurii A

    2013-03-01

    The crystal structures of the monoclinic and triclinic polymorphs of zoledronic acid, C5H10N2O7P2, have been established from laboratory powder X-ray diffraction data. The molecules in both polymorphs are described as zwitterions, namely 1-(2-hydroxy-2-phosphonato-2-phosphonoethyl)-1H-imidazol-3-ium. Strong intermolecular hydrogen bonds (with donor-acceptor distances of 2.60 Å or less) link the molecules into layers, parallel to the (100) plane in the monoclinic polymorph and to the (1-10) plane in the triclinic polymorph. The phosphonic acid groups form the inner side of each layer, while the imidazolium groups lie to the outside of the layer, protruding in opposite directions. In both polymorphs, layers related by translation along [100] interact through weak hydrogen bonds (with donor-acceptor distances greater than 2.70 Å), forming three-dimensional layered structures. In the monoclinic polymorph, there are hydrogen-bonded centrosymmetric dimers linked by four strong O-H...O hydrogen bonds, which are not present in the triclinic polymorph.

  20. Complexation of indium(III), gallium(III), iron(III), gadolinium(III), and neodymium(III) ions with amino diphosphonic acids in aqueous solution

    SciTech Connect

    Bollinger, J.E.; Roundhill, D.M. )

    1993-06-23

    The compounds (Me[sub 2]N)CH(PO[sup 3]H[sub 2])[sub 2](MAMDP) and MeC(NH[sub 2])(PO[sub 3]H[sub 2])[sub 2](AEDP) have been synthesized. These compounds have been titrated with base and the protonation constants determined. Titration data of pH against added acid or base show that AEDP acts as a ligand toward In[sup 3+] and that MAMDP binds as a ligand to In[sup 3+], Ga[sup 3+], Fe[sup 3+], Gd[sub 3+], and Nd[sub 3+]. From a least-squares fit of the pH titration curves, the stability and protonation constants have been obtained for solutions containing these ligands and these trivalent metal ions. The ligands bind to the trivalent metal ions via the phosphonate oxygens, although it is likely that hydrogen bonding occurs between water and the phosphonate ligand. For the ions In[sup 3+], Ga[sup 3+], and Fe[sup 3+], the logarithms of the stability constants log K[sub 101] and log K[sub 102] (where K[sub 101] = [ML[sup [minus