Huang, Zhi-hong; Wang, Zhi-li; Shi, Bao-lin; Wei, Dong; Chen, Jian-xin; Wang, Su-li; Gao, Bao-jia
2015-01-01
Salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate are important phytohormones and defensive signaling compounds, so it is of great importance to determine their levels rapidly and accurately. The study uses Ulmus pumila leaves infected by Tetraneura akinire Sasaki at different stages as materials; after extraction with 80% methanol and ethyl acetate and purification with primary secondary amine (PSA) and graphitized carbon blacks (GCB), the contents of signal compounds salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate were determined by GC-MS. The results showed that the level of salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate increased remarkably in U. pumila once infected by T. akinire Sasaki, but the maximums of these four compounds occurred at different times. Salicylic acid level reached the highest at the early stage, and jasmonic acid level went to the maximum in the middle stage; by contrast, change of content of methyl salicylate and methyl jasmonate was the quite opposite. PMID:26457083
Huang, Zhi-Hong; Wang, Zhi-Li; Shi, Bao-Lin; Wei, Dong; Chen, Jian-Xin; Wang, Su-Li; Gao, Bao-Jia
2015-01-01
Salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate are important phytohormones and defensive signaling compounds, so it is of great importance to determine their levels rapidly and accurately. The study uses Ulmus pumila leaves infected by Tetraneura akinire Sasaki at different stages as materials; after extraction with 80% methanol and ethyl acetate and purification with primary secondary amine (PSA) and graphitized carbon blacks (GCB), the contents of signal compounds salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate were determined by GC-MS. The results showed that the level of salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate increased remarkably in U. pumila once infected by T. akinire Sasaki, but the maximums of these four compounds occurred at different times. Salicylic acid level reached the highest at the early stage, and jasmonic acid level went to the maximum in the middle stage; by contrast, change of content of methyl salicylate and methyl jasmonate was the quite opposite.
Data Fusion Analysis For Test Validation System
2009-11-16
triethyl phosphate (TEP), methyl salicylate (MeS), and acetic acid (AA). A total of 29 release scenarios were conducted: fifteen TEP releases of 30...N2 - north second. bA - 2, 3, 6, 7, 10, and 11; B - 1 through 12; NA - not available. cTEP - triethyl phosphate; MeS - methyl salicylate ; AA
Apple Fool! An Introduction to Artificial Flavors.
ERIC Educational Resources Information Center
Journal of Chemical Education, 2003
2003-01-01
Presents a science activity on consumer chemistry in which students explore artificial flavors that are commonly used in foods, such as isoamyl acetate and methyl salicylate. Includes instructor information and a student worksheet. (YDS)
Hong, Tae-Kyun; Perumalsamy, Haribalan; Jang, Kyoung-Hwa; Na, Eun-Shik; Ahn, Young-Joon
2018-02-01
Bradysia procera is a serious insect pest of Panax ginseng plants. This study was conducted to determine the toxicity and mechanism of action of three phenylpropanoids, three terpenoids, and a ketone from Syzygium aromaticum bud methanol extract and hydrodistillate against third-instar larvae and eggs of B. procera. In a filter-paper mortality bioassay, methyl salicylate (LC 50 , 5.26μg/cm 2 ) was the most toxic compound, followed by 2-nonanone, eugenol, and eugenyl acetate (8.77-15.40μg/cm 2 ). These compounds were significantly less toxic than either thiamethoxam, clothianidin, or cypermethrin. Egg hatching was inhibited by 97, 85, and 40% at 11.7μg/cm 2 of methyl salicylate, 2-nonanone, and eugenol, respectively. The egg-hatching inhibition of these insecticides was between 90 and 94% at 0.09μg/cm 2 . These constituents were consistently more toxic in closed versus open containers, indicating that toxicity was achieved mainly through the action of vapor. The mechanism of larvicidal action of methyl salicylate, eugenol, and eugenyl acetate might be primarily due to interference with the octopaminergic system. 2-Heptyl acetate and 2-nonanone might act on both acetylcholinesterase and the octopaminergic receptor. 2-Heptanone might act primarily on acetylcholinesterase. Further studies will warrant possible applications of S. aromaticum bud-derived products as potential larvicides and ovicides for the control of B. procera. Copyright © 2018. Published by Elsevier Inc.
USDA-ARS?s Scientific Manuscript database
The known members of the plant methyl esterase (MES) family catalyze hydrolysis of a C-O ester linkage of methyl esters of several phytohormones including indole-3-acetic acid, salicylic acid, and jasmonic acid. The genome of grapevine (Vitis vinifera) was found to contain 15 MES genes, designated V...
2003-01-01
Salicylic Acid is an aromatic acid used in cosmetic formulations as a denaturant, hair-conditioning agent, and skin-conditioning agent--miscellaneous in a wide range of cosmetic products at concentrations ranging from 0.0008% to 3%. The Calcium, Magnesium, and MEA salts are preservatives, and Potassium Salicylate is a cosmetic biocide and preservative, not currently in use. Sodium Salicylate is used as a denaturant and preservative (0.09% to 2%). The TEA salt of Salicylic Acid is used as an ultraviolet (UV) light absorber (0.0001% to 0.75%). Several Salicylic Acid esters are used as skin conditioning agents--miscellaneous (Capryloyl, 0.1% to 1%; C12-15 Alkyl, no current use; Isocetyl, 3% to 5%; Isodecyl, no current use; and Tridecyl, no current use). Butyloctyl Salicylate (0.5% to 5%) and Hexyldodecyl Salicylate (no current use) are hair-conditioning agents and skin-conditioning agents--miscellaneous. Ethylhexyl Salicylate (formerly known as Octyl Salicylate) is used as a fragrance ingredient, sunscreen agent, and UV light absorber (0.001% to 8%), and Methyl Salicylate is used as a denaturant and flavoring agent (0.0001% to 0.6%). Myristyl Salicylate has no reported function. Isodecyl Salicylate is used in three formulations, but no concentration of use information was reported. Salicylates are absorbed percutaneously. Around 10% of applied salicylates can remain in the skin. Salicylic Acid is reported to enhance percutaneous penetration of some agents (e.g., vitamin A), but not others (e.g., hydrocortisone). Little acute toxicity (LD(50) in rats; >2 g/kg) via a dermal exposure route is seen for Salicylic Acid, Methyl Salicylate, Tridecyl Salicylate, and Butyloctyl Salicylate. Short-term oral, inhalation, and parenteral exposures to salicylates sufficient to produce high blood concentrations are associated primarily with liver and kidney damage. Subchronic dermal exposures to undiluted Methyl Salicylate were associated with kidney damage. Chronic oral exposure to Methyl Salicylate produced bone lesions as a function of the level of exposure in 2-year rat studies; liver damage was seen in dogs exposed to 0.15 g/kg/day in one study; kidney and liver weight increases in another study at the same exposure; but no liver or kidney abnormalities in a study at 0.167 g/kg/day. Applications of Isodecyl, Tridecyl, and Butyloctyl Salicylate were not irritating to rabbit skin, whereas undiluted Ethylhexyl Salicylate produced minimal to mild irritation. Methyl Salicylate at a 1% concentration with a 70% ethanol vehicle were irritating, whereas a 6% concentration in polyethylene glycol produced little or no irritation. Isodecyl Salicylate, Methyl Salicylate, Ethylhexyl (Octyl) Salicylate, Tridecyl Salicylate, and Butyloctyl Salicylate were not ocular irritants. Although Salicylic Acid at a concentration of 20% in acetone was positive in the local lymph node assay, a concentration of 20% in acetone/olive oil was not. Methyl Salicylate was negative at concentrations up to 25% in this assay, independent of vehicle. Maximization tests of Methyl Salicylate, Ethylhexyl Salicylate, and Butyloctyl Salicylate produced no sensitization in guinea pigs. Neither Salicylic Acid nor Tridecyl Salicylate were photosensitizers. Salicylic Acid, produced when aspirin is rapidly hydrolyzed after absorption from the gut, was reported to be the causative agent in aspirin teratogenesis in animals. Dermal exposures to Methyl Salicylate, oral exposures to Salicylic Acid, Sodium Salicylate, and Methyl Salicylate, and parenteral exposures to Salicylic Acid, Sodium Salicylate, and Methyl Salicylate are all associated with reproductive and developmental toxicity as a function of blood levels reached as a result of exposure. An exposure assessment of a representative cosmetic product used on a daily basis estimated that the exposure from the cosmetic product would be only 20% of the level seen with ingestion of a "baby" aspirin (81 mg) on a daily basis. Studies of the genotoxic potential of Salicylic Acid, Sodium Salicylate, Isodecyl Salicylate, Methyl Salicylate, cosmetic product would be only 20% of the level seen with ingestion of a "baby" aspirin (81 mg) on a daily basis. Studies of the genotoxic potential of Salicylic Acid, Sodium Salicylate, Isodecyl Salicylate, Methyl Salicylate, Ethylhexyl (Octyl) Salicylate, Tridecyl Salicylate, and Butyloctyl Salicylate were generally negative. Methyl Salicylate, in a mouse skin-painting study, did not induce neoplasms. Likewise, Methyl Salicylate was negative in a mouse pulmonary tumor system. In clinical tests, Salicylic Acid (2%) produced minimal cumulative irritation and slight or no irritation(1.5%); TEA-Salicylate (8%) produced no irritation; Methyl Salicylate (>12%) produced pain and erythema, a 1% aerosol produced erythema, but an 8% solution was not irritating; Ethylhexyl Salicylate (4%) and undiluted Tridecyl Salicylate produced no irritation. In atopic patients, Methyl Salicylate caused irritation as a function of concentration (no irritation at concentrations of 15% or less). In normal skin, Salicylic Acid, Methyl Salicylate, and Ethylhexyl (Octyl) Salicylate are not sensitizers. Salicylic Acid is not a photosensitizer, nor is it phototoxic. Salicylic Acid and Ethylhexyl Salicylate are low-level photoprotective agents. Salicylic Acid is well-documented to have keratolytic action on normal human skin. Because of the possible use of these ingredients as exfoliating agents, a concern exists that repeated use may effectively increase exposure of the dermis and epidermis to UV radiation. It was concluded that the prudent course of action would be to advise the cosmetics industry that there is a risk of increased UV radiation damage with the use of any exfoliant, including Salicylic Acid and the listed salicylates, and that steps need to be taken to formulate cosmetic products with these ingredients as exfoliating agents so as not to increase sun sensitivity, or when increased sun sensitivity would be expected, to include directions for the daily use of sun protection. The available data were not sufficient to establish a limit on concentration of these ingredients, or to identify the minimum pH of formulations containing these ingredients, such that no skin irritation would occur, but it was recognized that it is possible to formulate cosmetic products in a way such that significant irritation would not be likely, and it was concluded that the cosmetics industry should formulate products containing these ingredients so as to be nonirritating. Although simultaneous use of several products containing Salicylic Acid could produce exposures greater than would be seen with use of baby aspirin (an exposure generally considered to not present a reproductive or developmental toxicity risk), it was not considered likely that consumers would simultaneously use multiple cosmetic products containing Salicylic Acid. Based on the available information, the Cosmetic Ingredient Review Expert Panel reached the conclusion that these ingredients are safe as used when formulated to avoid skin irritation and when formulated to avoid increasing the skin's sun sensitivity, or, when increased sun sensitivity would be expected, directions for use include the daily use of sun protection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, Timothy L.; Venedam, Richard J.
2013-03-01
Sensors designed to detect the presence of methyl salicylate (MeS) have been tested. These sensors use a sensor platform based on the embedded piezoresistive microcantilever (EPM) design. Sensing materials tested in this study included the polymer poly (ethylene vinyl acetate), or PEVA as well as a composite sensing material consisting of the enzyme SA-binding protein 2, or SABP-2. The SABP-2 was immobilized within a biocompatible Hypol gel matrix. The PEVA-based sensors exhibited slower but reversible responses to MeS vapors, recovering fully to their initial state after the analyte was removed. SABP-2 sensors exhibited faster overall response to the introduction ofmore » MeS, responding nearly instantly. These sensors, however, do not recover after exposures have ended. Sensors using the SABP-2 sensing materials act instead as integrating sensors, measuring irreversibly the total MeS dose obtained.« less
Vapor Pressure of Methyl Salicylate and n-Hexadecane
2014-01-01
VAPOR PRESSURE OF METHYL SALICYLATE AND N-HEXADECANE ECBC-TR-1184 David E. Tevault Leonard C. Buettner...REPORT TYPE Final 3. DATES COVERED (From - To) Mar 2000-Dec 2001 4. TITLE AND SUBTITLE Vapor Pressure of Methyl Salicylate and n-Hexadecane 5a...ABSTRACT Vapor pressure data are reported for O-hydroxybenzoic acid, methyl ester, more commonly known as methyl salicylate (MeS), and n-hexadecane in
Methyl salicylate (oil of wintergreen) is a chemical that smells like wintergreen. It is used in many over- ... muscle ache creams. It is related to aspirin. Methyl salicylate overdose occurs when someone swallows a dangerous amount ...
Plant methyl salicylate induces defense responses in the rhizobacterium Bacillus subtilis.
Kobayashi, Kazuo
2015-04-01
Bacillus subtilis is a rhizobacterium that promotes plant growth and health. Cultivation of B. subtilis with an uprooted weed on solid medium produced pleat-like architectures on colonies near the plant. To test whether plants emit signals that affect B. subtilis colony morphology, we examined the effect of plant-related compounds on colony morphology. Bacillus subtilis formed mucoid colonies specifically in response to methyl salicylate, which is a plant-defense signal released in response to pathogen infection. Methyl salicylate induced mucoid colony formation by stimulating poly-γ-glutamic acid biosynthesis, which formed enclosing capsules that protected the cells from exposure to antimicrobial compounds. Poly-γ-glutamic acid synthesis depended on the DegS-DegU two-component regulatory system, which activated DegSU-dependent gene transcription in response to methyl salicylate. Bacillus subtilis did not induce plant methyl salicylate production, indicating that the most probable source of methyl salicylate in the rhizosphere is pathogen-infected plants. Methyl salicylate induced B. subtilis biosynthesis of the antibiotics bacilysin and fengycin, the latter of which exhibited inhibitory activity against the plant pathogenic fungus Fusarium oxysporum. We propose that B. subtilis may sense plants under pathogen attack via methyl salicylate, and express defense responses that protect both B. subtilis and host plants in the rhizosphere. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
USDA-ARS?s Scientific Manuscript database
Methyl salicylate (MeSA) is a volatile plant secondary metabolite that is an important contributor to taste and scent of many fruits and flowers. It is synthesized from salicylic acid (SA), a phytohormone that contributes to plant pathogen defense. MeSA is synthesized by members of a family of O-met...
Data Fusion Analysis for Range Test Validation System
2010-07-14
simulants were released during the RTVS ’08 test series: triethyl phosphate (TEP), methyl salicylate (MeS), and acetic acid (AA). A total of 29 release...the combination of a grid of point sensors at ground level and a standoff FTIR system monitoring above ground areas proved effective in detecting the...presence of simulants over the test grid. A Dempster-Shafer approach for data fusion was selected as the most effective strategy for RTVS data fusion
Modification of Poly(vinyl butyral) Coatings Using Bis-silanes (Postprint)
2010-04-01
parent coating to 2-chloroethyl ethyl sulfide (2-CEES), dimethyl methylphosphonate (DMMP), diisopropyl methylphosphonate, and methyl salicylate ; the...methylphosphonate (DMMP), diisopropyl methylphos- phonate, and methyl salicylate ; the most significant reduction was observed for 2-CEES and DMMP at...dimethyl methylphosphonate (DMMP), diisopropyl methylphosphonate (DIMP), dibutyltin dilaurate (DBTDL), and methyl salicylate (MS)wereobtained
Majdi, Mohammad; Abdollahi, Mohammad Reza; Maroufi, Asad
2015-11-01
Up-regulation of germacrene A synthase and down-regulation of parthenolide hydroxylase genes play key role in parthenolide accumulation of feverfew plants treated with methyl jasmonate and salicylic acid. Parthenolide is an important sesquiterpene lactone due to its anti-migraine and anti-cancer properties. Parthenolide amount was quantified by high-performance liquid chromatography after foliar application of methyl jasmonate (100 µM) or salicylic acid (1.0 mM) on feverfew leaves in time course experiment (3-96 h). Results indicate that exogenous application of methyl jasmonate or salicylic acid activated parthenolide biosynthesis. Parthenolide content reached its highest amount at 24 h after methyl jasmonate or salicylic acid treatments, which were 3.1- and 1.96-fold higher than control plants, respectively. Parthenolide transiently increased due to methyl jasmonate or salicylic acid treatments until 24 h, but did not show significant difference compared with control plants at 48 and 96 h time points in both treatments. Also, the transcript levels of early pathway (upstream) genes of terpene biosynthesis including 3-hydroxy-3-methylglutaryl-coenzyme A reductase, 1-deoxy-D-xylulose-5-phosphate reductoisomerase and hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase and the biosynthetic genes of parthenolide including germacrene A synthase, germacrene A oxidase, costunolide synthase and parthenolide synthase were increased by methyl jasmonate and salicylic acid treatments, but with different intensity. The transcriptional levels of these genes were higher in methyl jasmonate-treated plants than salicylic acid-treated plants. Parthenolide content measurements along with expression pattern analysis of the aforementioned genes and parthenolide hydroxylase as side branch gene of parthenolide suggest that the expression patterns of early pathway genes were not directly consistent with parthenolide accumulation pattern; hence, parthenolide accumulation is probably further modulated by the expression of its biosynthetic genes, especially germacrene A synthase and also its side branch gene, parthenolide hydroxylase.
NASA Astrophysics Data System (ADS)
Ayatollahi, Shakiba; Kalnina, Daina; Song, Weihua; Turks, Maris; Cooper, William J.
2013-11-01
Salicylic acid and its derivatives are components of many medications and moieties found in numerous pharmaceutical compounds. They have been used as models for various pharmaceutical compounds in pharmacological studies, for the treatment of pharmaceuticals and personal care products (PPCPs), and, reactions with natural organic matter (NOM). In this study, the radiation chemistry of benzoic acid, salicylic acid and four methyl substituted salicylic acids (MSA) is reported. The absolute bimolecular reaction rate constants for hydroxyl radical reaction with benzoic and salicylic acids as well as 3-methyl-, 4-methyl-, 5-methyl-, and 6-methyl-salicylic acid were determined (5.86±0.54)×109, (1.07±0.07)×1010, (7.48±0.17)×109, (7.31±0.29)×109, (5.47±0.25)×109, (6.94±0.10)×109 (M-1 s-1), respectively. The hydrated electron reaction rate constants were measured (3.02±0.10)×109, (8.98±0.27)×109, (5.39±0.21)×109, (4.33±0.17)×109, (4.72±0.15)×109, (1.42±0.02)×109 (M-1 s-1), respectively. The transient absorption spectra for the six model compounds were examined and their role as model compounds for the radiation chemistry of pharmaceuticals investigated.
Boba, Aleksandra; Kostyn, Kamil; Kostyn, Anna; Wojtasik, Wioleta; Dziadas, Mariusz; Preisner, Marta; Szopa, Jan; Kulma, Anna
2017-01-01
Flax (Linum usitatissimum) is a crop plant valued for its oil and fiber. Unfortunately, large losses in cultivation of this plant are caused by fungal infections, with Fusarium oxysporum being one of its most dangerous pathogens. Among the plant's defense strategies, changes in the expression of genes of the shikimate/phenylpropanoid/benzoate pathway and thus in phenolic contents occur. Among the benzoates, salicylic acid, and its methylated form methyl salicylate play an important role in regulating plants' response to stress conditions. Upon treatment of flax plants with the fungus we found that methyl salicylate content increased (4.8-fold of the control) and the expression profiles of the analyzed genes suggest that it is produced most likely from cinnamic acid, through the β-oxidative route. At the same time activation of some genes involved in lignin and flavonoid biosynthesis was observed. We suggest that increased methyl salicylate biosynthesis during flax response to F. oxysporum infection may be associated with phenylpropanoid pathway activation. PMID:28163709
... are: Chlorhexidine gluconate Ethanol (ethyl alcohol) Hydrogen peroxide Methyl salicylate ... amounts of alcohol (drunkenness). Swallowing large amounts of methyl salicylate and hydrogen peroxide may also cause serious stomach ...
Thermodynamics of cosolvent action: phenacetin, salicylic acid and probenecid.
Peña, M A; Escalera, B; Reíllo, A; Sánchez, A B; Bustamante, P
2009-03-01
The solubility of phenacetin, salicylic acid, and probenecid in ethanol-water and ethanol-ethyl acetate mixtures at several temperatures (15-40 degrees C) was measured. The solubility profiles are related to medium polarity changes. The apparent thermodynamic magnitudes and enthalpy-entropy relationships are related to the cosolvent action. Salicylic acid and probenecid show a single peak against the solubility parameter delta(1) of both solvent mixtures, at 40% (delta(1) = 21.70 MPa(1/2)) and 30% (delta(1) = 20.91 MPa(1/2)) ethanol in ethyl acetate, respectively. Phenacetin displays two peaks at 60% ethanol in ethyl acetate (23.30 MPa(1/2)) and 90% ethanol in water (delta(1) = 28.64 MPa(1/2)). The apparent enthalpies of solution display a maximum at 30% (phenacetin and salicylic acid) and 40% (probenecid) ethanol in water, respectively. Two different mechanisms, entropy at low ethanol ratios, and enthalpy at high ethanol ratios control the solubility enhancement in the aqueous mixture. In the nonaqueous mixture (ethanol-ethyl acetate) enthalpy is the driving force throughout the whole solvent composition for salicylic acid and phenacetin. For probenecid, the dominant mechanism shifts from entropy to enthalpy as the ethanol in ethyl acetate concentration increases. The enthalpy-entropy compensation plots corroborate the different mechanisms involved in the solubility enhancement by cosolvents. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association
Development of the 2007 Chemical Decontaminant Source Document
2009-03-01
Chemical Agent Simulant Specific DEM diethyl malonate MeS methyl salicylate PEG200 Polyethylene glycol 200 TEP triethyl phosphate Group 6...simulants • H-agent simulants o Methyl salicylate (MeS) o Chloroethyl phenyl sulfide (CEPS) o Chloroethyl ethyl sulfide (CEES) • VX simulants... Methyl bromide Ethyl phosphonothioic dichloride Sulfur dioxide Methyl chloroformate Ethyl phosphonic dichloride Sulfuric acid Methyl chlorosilane
Ameye, Maarten; Audenaert, Kris; De Zutter, Nathalie; Steppe, Kathy; Van Meulebroek, Lieven; Vanhaecke, Lynn; De Vleesschauwer, David; Haesaert, Geert; Smagghe, Guy
2015-01-01
Priming refers to a mechanism whereby plants are sensitized to respond faster and/or more strongly to future pathogen attack. Here, we demonstrate that preexposure to the green leaf volatile Z-3-hexenyl acetate (Z-3-HAC) primed wheat (Triticum aestivum) for enhanced defense against subsequent infection with the hemibiotrophic fungus Fusarium graminearum. Bioassays showed that, after priming with Z-3-HAC, wheat ears accumulated up to 40% fewer necrotic spikelets. Furthermore, leaves of seedlings showed significantly smaller necrotic lesions compared with nonprimed plants, coinciding with strongly reduced fungal growth in planta. Additionally, we found that F. graminearum produced more deoxynivalenol, a mycotoxin, in the primed treatment. Expression analysis of salicylic acid (SA) and jasmonic acid (JA) biosynthesis genes and exogenous methyl salicylate and methyl jasmonate applications showed that plant defense against F. graminearum is sequentially regulated by SA and JA during the early and later stages of infection, respectively. Interestingly, analysis of the effect of Z-3-HAC pretreatment on SA- and JA-responsive gene expression in hormone-treated and pathogen-inoculated seedlings revealed that Z-3-HAC boosts JA-dependent defenses during the necrotrophic infection stage of F. graminearum but suppresses SA-regulated defense during its biotrophic phase. Together, these findings highlight the importance of temporally separated hormone changes in molding plant health and disease and support a scenario whereby the green leaf volatile Z-3-HAC protects wheat against Fusarium head blight by priming for enhanced JA-dependent defenses during the necrotrophic stages of infection. PMID:25713338
NASA Astrophysics Data System (ADS)
Ghosh, Supriya; Thomas, Javix; Xu, Yunjie; Jäger, Wolfgang
2015-06-01
Methyl salicylate is a naturally occurring organic ester produced by wintergreen and other plants. It is also found in many over-the-counter remedies, such as muscle ache creams. The rotational spectrum of the methyl salicylate monomer was reported previously, where the most stable, dominant conformer was identified. The methyl salicylate-water complex was first studied using fluorescence-detected infrared spectroscopy; only one monohydrate conformer was found in that work. In the present study, we employed both broadband chirped and cavity based Fourier transform microwave spectroscopy to examine the competition between intra- and intermolecular hydrogen-bonding interactions and possible large amplitude motions associated with the methyl group and the water subunit. In contrast to the previous infrared study, two monohydrate conformers were identified, with carbonyl O or hydroxyl O as the hydrogen bond acceptors. Detailed analyses of the observed hyperfine structures will be presented, as well as our efforts to extend the study to larger methyl salicylate hydration clusters. S. Melandri, B. M. Giuliano, A. Maris, L. B. Favero, P. Ottaviani, B. Velino, W. Caminati, J. Phys. Chem. A. 2007, 111, 9076. A. Mitsuzuka, A. Fujii, T. Ebata, N. Mikami, J. Phys. Chem. A 1998, 102, 9779.
Collective Protection (ColPro) Field Testing
2011-09-28
It is recommended that methyl salicylate (MeS) or similar simulants that are not difficult to decontaminate should be used for this purpose. 4.4.3...ce nt ra tio n (m g/ m 3 ) Figure 3. Analysis of ppbRAE® and Solid Sorbent Tube (SST) Data, Methyl Salicylate (MeS) Challenge to the Interior of...the Vehicle. Figure 4. Gasmet™ Analysis of the Methyl Salicylate (MeS) Challenge in the Simulant- Exposure Area (SEA). TOP 08-2-198 28 September
The Synthesis of Methyl Salicylate: Amine Diazotization.
ERIC Educational Resources Information Center
Zanger, Murray; McKee, James R.
1988-01-01
Notes that this experiment takes safety and noncarcinogenic reactants into account. Demonstrates the use of diazonium salts for the replacement of an aromatic amine group by a phenolic hydroxyl. Involves two pleasant-smelling organic compounds, methyl anthranilate (grape) and methyl salicylate (oil of wintergreen). (MVL)
USDA-ARS?s Scientific Manuscript database
Tomato fruits exposed to chilling temperatures suffer aroma loss prior to visual chilling injury (CI) symptoms. Methyl salicylate (MeSA) and methyl jasmonate (MeJA) treatments were reported to alleviate the development of visual CI, however, it is unknown if the treatments alleviate internal CI in t...
USDA-ARS?s Scientific Manuscript database
Soybean (Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyzes the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heter...
Braun, Norbert A; Kohlenberg, Birgit; Sim, Sherina; Meier, Manfred; Hammerschmidt, Franz-Josef
2009-09-01
Jasminum flexile flower absolute from the south of India and the corresponding vacuum headspace (VHS) sample of the absolute were analyzed using GC and GC-MS. Three other commercially available Indian jasmine absolutes from the species: J. sambac, J. officinale subsp. grandiflorum, and J. auriculatum and the respective VHS samples were used for comparison purposes. One hundred and twenty-one compounds were characterized in J. flexile flower absolute, with methyl linolate, benzyl salicylate, benzyl benzoate, (2E,6E)-farnesol, and benzyl acetate as the main constituents. A detailed olfactory evaluation was also performed.
Event Record for the Joint Chemical Agent Detector (JCAD) Increment 2 Chamber Upgrades
2009-05-27
trials began. The simulants [ methyl salicylate (MeS) and dimethyl methyl phosphate (DMMP)] were chosen for their similarity to CWA evaporation...rate and the measured con- centration. 2. The temperature in the evaporation zone was controlled at 150ºC. Figure 2. Methyl Salicylate (MeS
Topical Pain Relievers May Cause Burns
... and joint pain relievers containing the active ingredients menthol, methyl salicylate and capsaicin. These cases were uncovered ... of people who purchase these products, Tan notes. Menthol, methyl salicylate and capsaicin create sensations of local ...
NASA Astrophysics Data System (ADS)
Petrenko, V. E.; Antipova, M. L.; Gurina, D. L.; Odintsova, E. G.
2015-08-01
The solvate structures formed by salicylic acid, acetylsalicylic acid, and methyl salicylate in supercritical (SC) carbon dioxide with a polar cosolvent (methanol, 0.03 mole fractions) at a density of 0.7 g/cm3 and a temperature of 318 K were studied by the molecular dynamics method. Salicylic and acetylsalicylic acids were found to form highly stable hydrogen-bonded complexes with methanol via the hydrogen atom of the carboxyl group. For methyl salicylate in which the carboxyl hydrogen is substituted by a methyl radical, the formation of stable hydrogen bonds with methanol was not revealed. The contribution of other functional groups of the solute to the interactions with the cosolvent was much smaller. An analysis of correlations between the obtained data and the literature data on the cosolvent effect on the solubility of the compounds in SC CO2 showed that the dissolving ability of SC CO2 with respect to a polar organic substance in the presence of a cosolvent increased only when stable hydrogen-bonded complexes are formed between this substance and the cosolvent.
USDA-ARS?s Scientific Manuscript database
Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in s...
Effect of elicitors on the production of gossypol and methylated gossypol in cotton hairy roots
USDA-ARS?s Scientific Manuscript database
The effect of two-chemical elicitors, salicylic acid and methyl jasmonate, on the production of gossypol, 6-methoxy gossypol, and 6,6'-dimethoxy gossypol in Gossypium barbadense hairy roots was examined. Methyl jasmonate, but not salicylic acid, was found to increase the production of gossypol and ...
ERIC Educational Resources Information Center
Van Atta, Robert E.; Van Atta, R. Lewis
1980-01-01
Provides a gas chromatography experiment that exercises the quantitative technique of standard addition to the analysis for a minor component, methyl salicylate, in a commercial product, "wintergreen rubbing alcohol." (CS)
Feeding by emerald ash borer larvae induces systemic changes in black ash foliar chemistry.
Chen, Yigen; Whitehill, Justin G A; Bonello, Pierluigi; Poland, Therese M
2011-11-01
The exotic wood-boring pest, emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), has been threatening North American ash (Fraxinus spp.) resources, this being recognized since its first detection in Michigan, USA and Ontario, Canada in 2002. Ash trees are killed by larval feeding in the cambial region, which results in disruption of photosynthate and nutrient translocation. In this study, changes in volatile and non-volatile foliar phytochemicals of potted 2-yr-old black ash, Fraxinus nigra Marshall, seedlings were observed in response to EAB larval feeding in the main stem. EAB larval feeding affected levels of six compounds [hexanal, (E)-2-hexenal, (Z)-3-hexenyl acetate, (E)-β-ocimene, methyl salicylate, and (Z,E)-α-farnesene] with patterns of interaction depending upon compounds of interest and time of observation. Increased methyl salicylate emission suggests similarity in responses induced by EAB larval feeding and other phloem-feeding herbivores. Overall, EAB larval feeding suppressed (Z)-3-hexenyl acetate emission, elevated (E)-β-ocimene emission in the first 30days, but emissions leveled off thereafter, and generally increased the emission of (Z,E)-α-farnesene. Levels of carbohydrates and phenolics increased overall, while levels of proteins and most amino acids decreased in response to larval feeding. Twenty-three amino acids were consistently detected in the foliage of black ash. The three most abundant amino acids were aspartic acid, glutamic acid, glutamine, while the four least abundant were α-aminobutyric acid, β-aminoisobutyric acid, methionine, and sarcosine. Most (16) foliar free amino acids and 6 of the 9 detected essential amino acids decreased with EAB larval feeding. The ecological consequences of these dynamic phytochemical changes on herbivores harbored by ash trees and potential natural enemies of these herbivores are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Spiandore, Marie; Piram, Anne; Lacoste, Alexandre; Josse, Denis; Doumenq, Pierre
2014-06-01
Chemical warfare agents (CWA) are highly toxic compounds which have been produced to kill or hurt people during conflicts or terrorist attacks. Despite the fact that their use is strictly prohibited according to international convention, populations' exposure still recently occurred. Development of markers of exposure to CWA is necessary to distinguish exposed victims from unexposed ones. We present the first study of hair usage as passive sampler to assess contamination by chemicals in vapour form. This work presents more particularly the hair adsorption capacity for methyl salicylate used as a surrogate of the vesicant sulphur mustard. Chemical vapours toxicity through the respiratory route has historically been defined through Haber's law's concentration-time (Ct) product, and vapour exposure of hair to methyl salicylate was conducted with various times or doses of exposure in the range of incapacitating and lethal Ct products corresponding to sulphur mustard. Following exposure, extraction of methyl salicylate from hair was conducted by simple soaking in dichloromethane. Methyl salicylate could be detected on hair for vapour concentration corresponding to about one fifth of the sulphur mustard concentration that would kill 50% of exposed individuals (LCt50). The amount of methyl salicylate recovered from hair increased with time or dose of exposure. It showed a good correlation with the concentration-time product, suggesting that hair could be used like a passive sampler to assess vapour exposure to chemical compounds. It introduces great perspectives concerning the use of hair as a marker of exposure to CWA. Copyright © 2014 John Wiley & Sons, Ltd.
Coelho, Euricléia Gomes; Amaral, Ana Claudia F; Ferreira, José Luiz P; dos Santos, Adriane G; Pinheiro, Maria Lúcia B; Silva, Jefferson Rocha de A
2007-03-01
The species of the genus Palicourea (Rubiaceae family) is well-known for its toxicity towards animals, particularly livestock. This work reports the occurrence of skin irritation during the manipulation of Palicourea longiflora, considering the prevalence of the monofluoracetic acid (MFAA) and another toxic compound: methyl salicylate. The MFAA was identified by 19F-NMR and methyl salicylate by gas chromatography linked to mass spectrometry (GC/MS) analysis. Additionally, an anatomical study of leaves had been used to explain the mechanism of penetration of the toxic principles.
Functionalized Nano and Micro Structured Composite Coatings
2011-06-01
created. Contact angles for water, hexadecane and warfare simulants (tributyl phosphate (TBP), methyl salicylate (MS) and 2-chloroethyl ethyl sulfide... methyl salicylate PAA-POEGMA polyacrylic acid-co-poly(oligoethylene glycol methacrylate) PBMA poly(butyl methacrylate) PD-TDES commercial mixture of...polymerized radically (according to a procedure published elsewhere1) to give PGMA, Mn = 300,000 kDa, PDI = 2. The polymerization was carried out in methyl
JSTO Science and Technology Update. Volume 1, Number 2, Winter 2011
2011-01-01
Figure 2. Passage of methyl salicylate simulant through an expanded Teflon control (blue), the open IPN (black) and the closed IPN (pink). The...membrane (blue). ET is used in breathable sports clothing. The materials were challenged using vapor from the CW agent simulant methyl salicylate (MS). The...was challenged with vapor from chloroethyl ethyl sulfide (a mus- tard gas simulant), benzene, and liquid with dissolved methyl parathion (a V-agent
Induction of a Pregnancy-Like Mammary Gland Differentiation by Docosapentaenoic Omega-3 Fatty Acid
2008-09-01
xylenes, and stored in methyl salicylate . Morphological Assessment of Mammary Gland—Whole inguinal mammary glands were removed from virgin control as...respectively, defatted in xylenes, and stored in methyl salicylate . Quantitative RT-PCR analyses RNA was isolated and subjected to real time PCR analysis... methylation , and fatty acid analysis were performed as previously described [28,48]. Briefly, an ali- quot of mammary tissue homogenate in a glass
40 CFR 180.1189 - Methyl salicylate; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... food or feed when used as an insect repellant in food packaging and animal feed packaging at an application rate that does not exceed 0.2 mg of methyl salicylate per square inch of packaging materials. [62... AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD...
40 CFR 180.1189 - Methyl salicylate; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... food or feed when used as an insect repellant in food packaging and animal feed packaging at an application rate that does not exceed 0.2 mg of methyl salicylate per square inch of packaging materials. [62... AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD...
USDA-ARS?s Scientific Manuscript database
Methyl salicylate (MeSA), an herbivore induced plant volatile, can potentially elicit control of pests through attraction of beneficial arthropods. This study evaluates the effect of synthetic MeSA lures (PredaLure) on arthropod populations during the 2009 and 2010 seasons in two Oregon vineyards (...
Effect of Methyl Salicylate-Based Lures on Beneficial and Pest Arthropods in Strawberry
USDA-ARS?s Scientific Manuscript database
Methyl salicylate (MeSA) is a common herbivore-induced plant volatile that, when applied to crops, has the potential to enhance natural enemy abundance and pest control. The impacts of MeSA in the strawberry system were unknown and examined in this study. Strawberry plots contained no lures (contr...
40 CFR 180.1189 - Methyl salicylate; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2012 CFR
2012-07-01
... food or feed when used as an insect repellant in food packaging and animal feed packaging at an application rate that does not exceed 0.2 mg of methyl salicylate per square inch of packaging materials. [62... AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD...
40 CFR 180.1189 - Methyl salicylate; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2014 CFR
2014-07-01
... food or feed when used as an insect repellant in food packaging and animal feed packaging at an application rate that does not exceed 0.2 mg of methyl salicylate per square inch of packaging materials. [62... AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD...
40 CFR 180.1189 - Methyl salicylate; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2013 CFR
2013-07-01
... food or feed when used as an insect repellant in food packaging and animal feed packaging at an application rate that does not exceed 0.2 mg of methyl salicylate per square inch of packaging materials. [62... AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD...
USDA-ARS?s Scientific Manuscript database
Methyl jasmonate (MeJA) and salicylic acid (SA) have been reported to enhance yield and protect crop plants and products against abiotic stresses and diseases. The effect of these compounds on sugarbeets, however, is unknown. Research was initiated in 2014 to investigate the effects of an early seas...
Kuś, Piotr M; Okińczyc, Piotr; Jakovljević, Martina; Jokić, Stela; Jerković, Igor
2018-05-25
The supercritical CO 2 (SC-CO 2 ) extraction process of black poplar (Populus nigra L.) buds was optimized (pressure, temperature) based on the yields of major phytochemicals (volatiles and non-volatiles). The optimal settings were 30 MPa/60 °C. Major volatiles determined by GC-MS in the optimized SC-CO 2 extract (mg of benzyl salicylate equivalent (BSE) per 100 g of buds) were: pinostrobin chalcone (1574.2), β-eudesmol (640.8), α-eudesmol (581.9), 2-methyl-2-butenyl-p-coumarate (289.9), pentyl-p-coumarate (457.0), γ-eudesmol (294.4), and benzyl salicylate (289.2). Partial qualitative similarity was observed between SC-CO 2 extracts and corresponding hydrodistilled essential oil dominated by sesquiterpenes, but with lower yields. Major compounds (mg per 100 g of buds) identified by UHPLC-DAD-QqTOF-MS in the optimized SC-CO 2 extract were: pinostrobin (751.7), pinocembrin (485.6), 3-O-pinobanksin acetate and methyl-butenyl-p-coumarate (290.2; 144.9 of pinobanksin and p-coumaric acid equivalents, respectively). SC-CO 2 extraction was found useful for green, efficient and simultaneous extraction of both volatile/non-volatile, bioactive phytochemicals of poplar buds - precursors of poplar-type propolis. Copyright © 2018 Elsevier B.V. All rights reserved.
NtPDR3, an iron-deficiency inducible ABC transporter in Nicotiana tabacum.
Ducos, Eric; Fraysse, Staffan; Boutry, Marc
2005-12-19
In plants, the ABC transporter PDR (pleiotropic drug resistance) subfamily is composed of approximately 15 genes, few of which have been analyzed. We have identified NtPDR3, a Nicotiana tabacum PDR gene belonging to a cluster for which no functional data was previously available. NtPDR3 was found to be induced in suspension cells treated with methyl jasmonate, salicylic acid, 1-naphthalene acetic acid, or cembrene, a macrocyclic diterpene. In agreement with the identification of a putative iron deficiency element in the NtPDR3 transcription promoter region, we found that iron deficiency in the culture medium induced NtPDR3 expression, thus suggesting a new function of the PDR transporter family.
USDA-ARS?s Scientific Manuscript database
Flavor, which is comprised of aroma and taste, is an important tomato characteristic. Methyl salicylate (MeSA), acting as a critical mobile signal, plays an important role in tomato stress responses and ripening processes. However, less is studied on the impact of its application at early ripening s...
USDA-ARS?s Scientific Manuscript database
Methyl salicylate (MeSA) is an herbivore-induced plant volatile (HIPV) that has shown potential in attracting natural enemies. Here, we conducted a meta-analysis to evaluate the magnitude of natural enemy response to MeSA in the field, and tested its attractiveness to insect predators in commercial...
USDA-ARS?s Scientific Manuscript database
Methyl jasmonate (MeJA) and salicylic acid (SA) have been reported to enhance yield and protect crop plants and products against abiotic stresses and diseases. The effect of these compounds on sugarbeets, however, is unknown. Research was conducted in 2015 and 2016 to investigate the effects of an e...
USDA-ARS?s Scientific Manuscript database
Methyl jasmonate (MeJA) and salicylic acid (SA) have been reported to enhance yield and protect crop plants and products against abiotic stresses and diseases. The effect of these compounds on sugarbeets, however, is unknown. Research was conducted in 2016 and 2017 to investigate the effects of an e...
USDA-ARS?s Scientific Manuscript database
The use of synthetic herbivore-induced plant volatiles (HIPV) to attract natural enemies has received interest as a tool to enhance conservation biological control (CBC). Methyl salicylate (MeSA) is a HIPV that is attractive to several key predators of two-spotted spider mite, Tetranychus urticae K...
USDA-ARS?s Scientific Manuscript database
The use of synthetic herbivore-induced plant volatiles (HIPV) to attract natural enemies has received interest as a tool to enhance conservation biological control (CBC). Methyl salicylate (MeSA) is a HIPV that is attractive to several key predators of two-spotted spider mite, Tetranychus urticae K...
21 CFR 369.20 - Drugs; recommended warning and caution statements.
Code of Federal Regulations, 2014 CFR
2014-04-01
..., INCLUDING ASPIRIN AND SALICYLAMIDE (EXCEPT METHYL SALICYLATE, EFFERVESCENT SALICYLATE PREPARATIONS, AND... out of reach of children.” If the article is an aspirin preparation, it should bear the first of the... aspirin tablets, but such a statement is not required on the labels of other salicylates clearly offered...
21 CFR 369.20 - Drugs; recommended warning and caution statements.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., INCLUDING ASPIRIN AND SALICYLAMIDE (EXCEPT METHYL SALICYLATE, EFFERVESCENT SALICYLATE PREPARATIONS, AND... out of reach of children.” If the article is an aspirin preparation, it should bear the first of the... aspirin tablets, but such a statement is not required on the labels of other salicylates clearly offered...
21 CFR 369.20 - Drugs; recommended warning and caution statements.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., INCLUDING ASPIRIN AND SALICYLAMIDE (EXCEPT METHYL SALICYLATE, EFFERVESCENT SALICYLATE PREPARATIONS, AND... out of reach of children.” If the article is an aspirin preparation, it should bear the first of the... aspirin tablets, but such a statement is not required on the labels of other salicylates clearly offered...
21 CFR 369.20 - Drugs; recommended warning and caution statements.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., INCLUDING ASPIRIN AND SALICYLAMIDE (EXCEPT METHYL SALICYLATE, EFFERVESCENT SALICYLATE PREPARATIONS, AND... out of reach of children.” If the article is an aspirin preparation, it should bear the first of the... aspirin tablets, but such a statement is not required on the labels of other salicylates clearly offered...
Effect of several environmental parameters on carbon metabolism in histosols.
Tate, R L
1980-12-01
High specific activity(14)C-labeled glucose, succinate, acetate, salicylate, and amino acids were used to examine carbon metabolism by the microbial community of Pahokee muck (aLithic medisaprist), a drained, cultivated soil of the Florida Everglades. Variations in carbon oxidation were observed from the end of the wet season through the dry season in a fallow (bare) field. Evolution of(14)CO2 varied with the substrate added and time. Calculation of(14)CO2 evolution for each substrate as a proportion of total respiration of the microbial community which was measured by succinate oxidation (relative oxidation) allowed for determination of the proportion of metabolic activity contributed by the oxidation of each carbon source. Except for the May sample when an approximate 30% decline in relative salicylate oxidation activity was observed, the proportion of total catabolic activity contributed by salicylate oxidation and acetate degradation was constant with time. Relative oxidation of glucose and amino acids ranged from 0.12 to 0.52 and 0.10 to 0.23, respectively. At two times during the dry season, the effect of depth of soil and crop on the carbon oxidation was examined. Relative acetate and amino acid oxidation were constant with depth whereas statistically significant variation was observed in glucose and salicylate oxidation. Generally, with the latter substrates, the activity declined with increased soil depth. Greatest effect of crop on these metabolic activities was noted with oxidation of salicylate in soils from a St. Augustinegrass [Stenatophrum secundatum (Walt.) Kuntz] pasture. In these soils, oxidation of salicylate was nearly double that of the fallow field or of soil planted with sugarcane (Saccharum sp.).
USDA-ARS?s Scientific Manuscript database
Methyl jasmonate (MeJA) and salicylic acid (SA) are well-known activators of chemical defenses in plants. The SA pathway is involved in citrus response to infection by Candidatus Liberibacter asiaticus (CLas); less is known about the role of jasmonates in citrus defense response. We examined the eff...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Jianzhuang; Xu, Qin; Chen, Feng
2010-01-01
Salicylic acid methyltransferases (SAMTs) synthesize methyl salicylate (MeSA) using salicylate as the substrate. MeSA synthesized in plants may function as an airborne signal to activate the expression of defense-related genes and could also be a critical mobile signaling molecule that travels from the site of plant infection to establish systemic immunity in the induction of disease resistance. Here the results of QM/MM free energy simulations for the methyl transfer process in Clarkia breweri SAMT (CbSAMT) are reported to determine the origin of the substrate specificity of SAMTs. The free energy barrier for the methyl transfer from S-adenosyl-l-methionine (AdoMet) to 4-hydroxybenzoatemore » in CbSAMT is found to be about 5 kcal/mol higher than that from AdoMet to salicylate, consistent with the experimental observations. It is suggested that the relatively high efficiency for the methylation of salicylate compared to 4-hydroxybenzoate is due, at least in part, to the reason that a part of the stabilization of the transition state (TS) configuration is already reflected in the reactant complex, presumably, through the binding. The results seem to indicate that the creation of the substrate complex (e.g., through mutagenesis and substrate modifications) with its structure closely resembling TS might be fruitful for improving the catalytic efficiency for some enzymes. The results show that the computer simulations may provide important insights into the origin of the substrate specificity for the SABATH family and could be used to help experimental efforts in generating engineered enzymes with altered substrate specificity.« less
Aresta, Antonella; Zambonin, Carlo
2016-03-20
Salicylic and benzoic acid are phenolic acids occurring in plant cells, thus they can be present in fruit and vegetables at various levels. They possess anti-inflammatory and antimicrobial properties, however they may induce symptoms and health problems in a small percentage of the population. Therefore, a low phenolic acid diet may be of clinical benefit to such individuals. In order to achieve this goal, the concentration of these substances in different food and beverages should be assessed. The present work describes for the first time a new method, based on solid phase microextraction (polydimethylsiloxane-divinylbenzene fiber) coupled to liquid chromatography with UV diode array detection, for the simultaneous determination of salicylic acid, 3-methyl salicylic acid, 4-methyl salicylic acid, acetylsalicylic acid and benzoic acid in selected fruit, vegetables and beverages. All the aspects influencing fiber adsorption (time, temperature, pH, salt addition) and desorption (desorption and injection time, desorption solvent mixture composition) of the analytes have been investigated. An isocratic separation was performed using an acetonitrile-phosphate buffer (pH 2.8; 2 mM) mixture (70:30, v/v) as the mobile phase. The estimated LOD and LOQ values (μg/mL) were in the range 0.002-0.028 and 0.007-0.095. The within-day and day-to-day precision values (RSD%) were between 4.7-6.1 and 6.6-9.4, respectively. The method has been successfully applied to the analysis of fava beans, blueberries, kiwi, tangerines, lemons, oranges and fruit juice (lemon and blueberry) samples. The major advantage of the method is that it only requires simple homogenization and/or centrifugation and dilution steps prior to SPME and injection in the LC system. Copyright © 2016 Elsevier B.V. All rights reserved.
Kurouchi, Hiroaki; Sumita, Akinari; Otani, Yuko; Ohwada, Tomohiko
2014-07-07
We found that phenethylcarbamates that bear ortho-salicylate as an ether group (carbamoyl salicylates) dramatically accelerate OC bond dissociation in strong acid to facilitate generation of isocyanate cation (N-protonated isocyanates), which undergo subsequent intramolecular aromatic electrophilic cyclization to give dihydroisoquinolones. To generate isocyanate cations from carbamates in acidic media as electrophiles for aromatic substitution, protonation at the ether oxygen, the least basic heteroatom, is essential to promote CO bond cleavage. However, the carbonyl oxygen of carbamates, the most basic site, is protonated exclusively in strong acids. We found that the protonation site can be shifted to an alternative basic atom by linking methyl salicylate to the ether oxygen of carbamate. The methyl ester oxygen ortho to the phenolic (ether) oxygen of salicylate is as basic as the carbamate carbonyl oxygen, and we found that monoprotonation at the methyl ester oxygen in strong acid resulted in the formation of an intramolecular cationic hydrogen bond (>CO(+) H⋅⋅⋅O<) with the phenolic ether oxygen. This facilitates OC bond dissociation of phenethylcarbamates, thereby promoting isocyanate cation formation. In contrast, superacid-mediated diprotonation at the methyl ester oxygen of the salicylate and the carbonyl oxygen of the carbamate afforded a rather stable dication, which did not readily undergo CO bond dissociation. This is an unprecedented and unknown case in which the monocation has greater reactivity than the dication. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Filgueiras, Camila Cramer; Willett, Denis S.; Junior, Alcides Moino; Pareja, Martin; Borai, Fahiem El; Dickson, Donald W.; Stelinski, Lukasz L.; Duncan, Larry W.
2016-01-01
Plant defense pathways play a critical role in mediating tritrophic interactions between plants, herbivores, and natural enemies. While the impact of plant defense pathway stimulation on natural enemies has been extensively explored aboveground, belowground ramifications of plant defense pathway stimulation are equally important in regulating subterranean pests and still require more attention. Here we investigate the effect of aboveground stimulation of the salicylic acid pathway through foliar application of the elicitor methyl salicylate on belowground recruitment of the entomopathogenic nematode, Steinernema diaprepesi. Also, we implicate a specific root-derived volatile that attracts S. diaprepesi belowground following aboveground plant stimulation by an elicitor. In four-choice olfactometer assays, citrus plants treated with foliar applications of methyl salicylate recruited S. diaprepesi in the absence of weevil feeding as compared with negative controls. Additionally, analysis of root volatile profiles of citrus plants receiving foliar application of methyl salicylate revealed production of d-limonene, which was absent in negative controls. The entomopathogenic nematode S. diaprepesi was recruited to d-limonene in two-choice olfactometer trials. These results reinforce the critical role of plant defense pathways in mediating tritrophic interactions, suggest a broad role for plant defense pathway signaling belowground, and hint at sophisticated plant responses to pest complexes. PMID:27136916
Phenolic lipid ingredients from cashew nuts.
Suo, Maorong; Isao, Hasegawa; Ishida, Yoshihiro; Shimano, Yasoku; Bi, Changxiao; Kato, Hikaru; Takano, Fumihide; Ohta, Tomihisa
2012-01-01
Five new phenolic lipids, 2-(8"Z-eicosenoyl)-6-(8'Z-pentadecenyl) salicylic acid (3), 2-(9"Z-hexadecenoyl)-6-(8'Z, 11'Z-pentadecadienyl) methyl salicylate (5), 2-(10"Z, 13"Z-nonadecadienoyl)-6-(8'Z, 11'Z-pentadecadienyl) salicylic acid (6), 2-(16"Z-pentacosenoyl)-6-(8'Z-pentadecenyl) salicylic acid (7) and 2-(9"Z-octadecenoyl)-6-(8'Z, 11'Z-pentadecadienyl) methyl salicylate (8), and three known compounds, cardols (1), anacardic acid (2) and cardanols (4), were isolated from the nuts of the cashew, Anacardium occidentale L. The structures were established on the basis of detailed MS and NMR spectroscopic analyses. Compound 1 highly enhanced both Th-1 (IL-2, IFN-γ) and Th-2 (IL-4, IL-5) cytokine production, and compounds 7 and 8 highly increased cytokine IL-2 and IFN-γ production in response to concanavalin A in cultured murine Peyer's patch cells ex vivo. The isolated compounds showed moderate inhibitory activities on cytochrome CYP3A4 enzyme.
SALICYLATE PROCESS FOR THORIUM SEPARATION FROM RARE EARTHS
Cowan, G.A.
1959-08-25
The separation of thorium from rare earths is accomplished by forming an aqueous solution of salts of thorium and rare earths and sufficient acetate buffer to provide a pH of between 2 and 5, adding an ammonium salicylate to the aqueous buffered solution, contacting the resultant solution with a substantially water-immiscible organic solvent mixture of an ether and an ester, and separating the solvent extract phase containing thorium salicylate from the aqueous phase containing the rare earths.
Legaz, M E; Acitores, E; Valverde, F
1992-12-01
A high performance liquid chromatography (HPLC) method has been developed for measuring salicylic acid in the plasma and saliva of children with juvenile chronic arthritis (JCA). Samples were extracted with diethyl ether and, after drying, redissolved in methanol to be chromatographed. Quantitation of salicylic acid was performed by reverse phase HPLC on a spherisorb ODS-2 column, using methanol: water: acetic acid as mobile phase. Phenolic was monitored by absorbance at 237 nm. Linearity between the amount of mass injected and the response in the detector was determined. This method was applied to compare concentrations of salivary and plasma salicylic acid. The method also permitted the quantitation of salivary salicylate as a non-invasive, indirect method for monitoring the concentration of plasma salicylate in patients with JCA.
Inhibition of Xenobiotic-Degrading Hydrolases by Organophosphinates
1985-07-01
transient increase in the salicylic acid hydrolysis product was observed. Pretreatment with 4-nitrophenyl methyl(phenyl)phosphinate had no significant...h. Hydroly- sis of aspirin was not reduced in pretreated mice, although a transient increase in the salicylic acid hydrolysis product was observed...26 Figure 1. Pathways of aspirin metabolism in mammals: CE is carboxylester hydrolase, SA is salicylic acid, SU is salicyluric
Yu, Xiaopeng; Mi, Xueyang; He, Zhihui; Meng, Minjia; Li, Hongji; Yan, Yongsheng
2017-01-01
Highly selective cellulose acetate (CA)/poly (vinyl alcohol) (PVA)/titanium dioxide (TiO2) imprinted membranes were synthesized by phase inversion and dip coating technique. The CA blend imprinted membrane was synthesized by phase inversion technique with CA as membrane matrix, polyethyleneimine (PEI) as the functional polymer, and the salicylic acid (SA) as the template molecule. The CA/PVA/TiO2 imprinted membranes were synthesized by dip coating of CA blend imprinted membrane in PVA and different concentration (0.05, 0.1, 0.2, 0.4 wt %) of TiO2 nanoparticles aqueous solution. The SEM analysis showed that the surface morphology of membrane was strongly influenced by the concentration of TiO2 nanoparticles. Compared with CA/PVA-TiO2(0.05, 0.1, 0.2%)-MIM, the CA/PVA-TiO2(0.4%)-MIM possessed higher membrane flux, kinetic equilibrium adsorption amount, binding capacity and better selectivity for SA. It was found that the pseudo-second-order kinetic model was studied to describe the kinetic of CA/PVA-TiO2(0.2%)-MIM judging by multiple regression analysis. Adsorption isotherm analysis indicated that the maximum adsorption capacity for SA were 24.43 mg g−1. Moreover, the selectivity coefficients of CA/PVA-TiO2 (0.2%)-MIM for SA relative to p-hydroxybenzoic acid (p-HB) and methyl salicylate (MS) were 3.87 and 3.55, respectively. PMID:28184369
[Effects of azadirachtin on rice plant volatiles induced by Nilaparvata lugens].
Lu, Hai-Yan; Liu, Fang; Zhu, Shu-De; Zhang, Qing
2010-01-01
With the method of solid phase microextraction (SPME), a total of twenty-five volatiles were collected from rice plants induced by Nilaparvata lugens, and after applying azadirachtin fourteen of them were qualitatively identified by gas chromatography coupled by mass spectrometry (GC-MS), mainly of nine kinds of sesquiterpenes. Comparing with healthy rice plants, the plants attacked by N. lugens had more kinds of volatiles, including limonene, linalool, methyl salicylate, unknown 6, unknown 7, zingiberene, nerolidol, and hexadecane. Applying azadirachtin did not result in the production of new kind volatiles, but affected the relative concentrations of the volatiles induced by N. lugens. The proportions of limonene, linalool, methyl salicylate, unknown 6, zingiberene, and hexadecane changed obviously with the concentration of applied azadirachtin, while those of methyl salicylate, unknown 6, unknown 7, zingiberene, and nerolidol changed significantly with the days after azadirachtin application. Azadirachtin concentration, rice variety, and N. lugens density had significant interactions on the relative concentrations of all test N. lugens-induced volatiles.
Glowacz, Marcin; Roets, Nico; Sivakumar, Dharini
2017-11-01
Development of anthracnose disease caused by Colletotrichum gloeosporioides Penz. is one of the major issues within the avocado supply chain. Exposure to methyl jasmonate (MeJA) and methyl salicylate (MeSA) vapours at 10 and 100µmoll -1 was investigated as an alternative solution to commercial fungicide - prochloraz® that is currently being used by the industry. The incidence of anthracnose disease was found to be significantly reduced in 'Hass' avocado fruit treated with MeJA or MeSA vapours, especially at 100μmoll -1 . The mechanism involved enhanced activity of defence related enzymes, i.e. chitinase, β-1,3-glucanase and PAL, and higher content of epicatechin. Copyright © 2017. Published by Elsevier Ltd.
Supporting technology for the development of Controlled Ecological Life Support Systems (CELSS)
NASA Technical Reports Server (NTRS)
Li, Ku-Yen; Yaws, Carl L.; Simon, William E.; Mei, Harry T.
1995-01-01
To support the development of Controlled Ecological Life Support Systems (CELSS) in the space program, a metabolic simulator has been selected for use in a closed chamber to test functions of the CELSS. This metabolic simulator is a catalytic reactor which oxidizes the methyl acetate to produce carbon dioxide and water vapor. In this project, kinetic studies of catalytic oxidation of methyl acetate were conducted using monolithic and pellet catalysts with 0.5% (by weight) platinum (Pt) on aluminum oxide (Al2O3). The reaction was studied at a pressure of one atmosphere and at temperatures varying from 160 C to 420 C. By-products were identified at the exit of the preheater and reactor. For the kinetic study with the monolithic catalyst, a linear regression method was used to correlate the kinetic data with zero-order, first-order and Langmuir-Hinshelwood models. Results indicate that the first-order model represents the data adequately at low concentrations of methyl acetate. For higher concentrations of methyl acetate, the Langmuir-Hinshelwood model best represents the kinetic data. Both rate constant and adsorption equilibrium constants were estimated from the regression. A Taguchi orthogonal array (L(sub 9)) was used to investigate the effects of temperature, flow rate, and concentration on the catalytic oxidation of methyl acetate. For the monolithic catalyst, temperature exerts the most significant effect, followed by concentration of methyl acetate. For the pellet catalyst, reaction temperature is the most significant factor, followed by gas flow rate and methyl acetate concentration. Concentrations of either carbon dioxide or oxygen were seen to have insignificant effect on the methyl acetate conversion process. Experimental results indicate that the preheater with glass beads can accomplish thermal cracking and catalytic reaction of methyl acetate to produce acetic acid, methanol, methyl formate, and 1-propanol. The concentration of all by-products was measured in ppmv (parts per million by volume). At higher temperatures, greater amounts of these products are produced, as expected. In all cases, methanol was the predominant concentration detected, followed by methyl formate. At temperatures lower than 320 C for the P-type monolithic catalyst, methanol, acetic acid, and acetone were detected, whereas, for the E-type monolithic catalyst, only methanol was detected at 160 C. Both P and E types of the monolithic catalyst were specified with the same substrates (ceramic), washcoat (Al2O3), and promoter (Pt). However, the manufacturing and treatment procedures were quite different. It was therefore concluded that the performance of the E-type monolithic catalyst is superior to that of the P-type for oxidation of methyl acetate. At higher reaction temperatures, e.g., above 420 C, all reactants and byproducts were completely oxidized using these two types of monolithic catalyst to produce carbon dioxide and water vapor. A complex heterogenous catalytic reaction mechanism was proposed to explain the formation of the byproducts (methanol, acetic acid, and methyl formate) as the methyl acetate traveled through the preheater packed with glass beads. The by-product, 1-propanol, may be formed only through a homogeneous reaction, since it is difficult to develop a reasonable sequence of heterogeneous reaction steps to explain its formation. The homogeneous thermal decomposition of methyl acetate to form free radicals was proposed to explain the formation of 1-propanol, and also methanol, in the preheater. A dual-site catalytic reaction mechanism was proposed for the oxidation of methyl acetate over Pt/Al2O3 monolithic catalyst. The dual-site mechanism describes the chemisorption of oxygen molecules as well as a physical adsorption of methyl acetate on the active sites. On the active sites, methyl acetate is oxidized rapidly to form carbon dioxide and water vapor. A rate equation derived from this mechanism gives the Langmuir-Hinshelwood rate formula which has been observed from the experimental data obtained in this project for high methyl acetate concentration (greater than 1000 ppmv) over a monolithic catalyst. If the oxygen concentration is very high and methyl acetate concentration is very low, the reaction rate equation is then reduced to a first-order with respect to methyl acetate concentration. The first-order model has also been observed from the experimental data obtained in this project for low methyl acetate concentration (less than 1000 ppmv).
Dong, Yu; Zhao, Yuan-zheng; Zhang, Yi-na
2002-05-01
The contents of aspirin and free salicylic acid in lysinipirine injection were determined by high performance liquid chromatography (HPLC). A Hypersil BDS C18 column was used with the mobile phase of methanol-water-acetic acid (35:65:3, volume ratio) and the detection wavelength of 280 nm. The average recoveries of aspirin and salicylic acid added were 99.27% (RSD = 0.8%) and 99.61%(RSD = 1.3%), respectively. The calibration curves had good linearity in the range of 0.028 g/L -0.141 mg/L and 0.77 mg/L -3.85 mg/L, and the correlation coefficients were 0.9999 and 0.9998 for aspirin and salicylic acid respectively.
Farobie, Obie; Matsumura, Yukihiko
2017-10-01
In this study, biodiesel production by using supercritical methyl acetate in a continuous flow reactor was investigated for the first time. The aim of this study was to elucidate the reaction kinetics of biodiesel production by using supercritical methyl. Experiments were conducted at various reaction temperatures (300-400°C), residence times (5-30min), oil-to-methyl acetate molar ratio of 1:40, and a fixed pressure of 20MPa. Reaction kinetics of biodiesel production with supercritical methyl acetate was determined. Finally, biodiesel yield obtained from this method was compared to that obtained with supercritical methanol, ethanol, and MTBE (methyl tertiary-butyl ether). The results showed that biodiesel yield with supercritical methyl acetate increased with temperature and time. The developed kinetic model was found to fit the experimental data well. The reactivity of supercritical methyl acetate was the lowest, followed by that of supercritical MTBE, ethanol, and methanol, under the same conditions. Copyright © 2017. Published by Elsevier Ltd.
Yang, Tianbao; Peng, Hui; Whitaker, Bruce D; Jurick, Wayne M
2013-07-01
Calcium has been shown to enhance stress tolerance, maintain firmness and reduce decay in fruits. Previously we reported that seven tomato SlSRs encode calcium/calmodulin-regulated proteins, and that their expressions are developmentally regulated during fruit development and ripening, and are also responsive to ethylene. To study their expressions in response to stresses encountered during postharvest handling, tomato fruit at the mature-green stage was subjected to chilling and wounding injuries, infected with Botrytis cinerea and treated with salicylic acid or methyl jasmonate. Gene expression studies revealed that the seven SlSRs differentially respond to different stress signals. SlSR2 was the only gene upregulated by all the treatments. SlSR4 acted as a late pathogen-induced gene; it was upregulated by salicylic acid and methyl jasmonate, but downregulated by cold treatment. SlSR3L was cold- and wound-responsive and was also induced by salicylic acid. SlSR1 and SlSR1L were repressed by cold, wounding and pathogen infection, but were upregulated by salicylic acid and methyl jasmonate. Overall, results of these expression studies indicate that individual SlSRs have distinct roles in responses to the specific stress signals, and SlSRs may act as a coordinator(s) connecting calcium-mediated signaling with other stress signal transduction pathways during fruit ripening and storage. © 2013 Scandinavian Plant Physiology Society.
Salicylate toxicity from ingestion of traditional massage oil
Muniandy, Rajesh Kumar; Sinnathamby, Vellan
2012-01-01
A 16-month-old child developed a brief generalised tonic–clonic fitting episode and vomiting at home, after accidental ingestion of traditional massage oil. As the patient presented with clinical features of salicylate toxicity, appropriate management was instituted. He was admitted to the intensive care unit for multiorgan support. The child was discharged well 1 week after the incident. Methyl-salicylate is a common component of massage oils which are used for topical treatment of joint and muscular pains. However, these massage oils may be toxic when taken orally. Early recognition of the salicylate toxicity is very important in producing a good patient outcome. PMID:22922924
Chaiprasongsuk, Minta; Zhang, Chi; Qian, Ping; Chen, Xinlu; Li, Guanglin; Trigiano, Robert N; Guo, Hong; Chen, Feng
2018-05-01
Indole-3-acetic acid (IAA), gibberellins (GAs), salicylic acid (SA) and jasmonic acid (JA) exist in methyl ester forms in plants in addition to their free acid forms. The enzymes that catalyze methylation of these carboxylic acid phytohormones belong to a same protein family, the SABATH methyltransferases. While the genes encoding these enzymes have been isolated from a small number of flowering plants, little is known about their occurrence and evolution in non-flowering plants. Here, we report the systematic characterization of the SABATH family from Norway spruce (Picea abies), a gymnosperm. The Norway spruce genome contains ten SABATH genes (PaSABATH1-10). Full-length cDNA for each of the ten PaSABATH genes was cloned and expressed in Escherichia coli. Recombinant PaSABATHs were tested for activity with IAA, GA, SA, and JA. Among the ten PaSABATHs, five had activity with one or more of the four substrates. PaSABATH1 and PaSABATH2 had the highest activities with IAA and SA, respectively. PaSABATH4, PaSABATH5 and PaSABATH10 all had JA as a preferred substrate but with notable differences in biochemical properties. The structural basis of PaSABATHs in discriminating various phytohormone substrates was inferred based on structural models of the enzyme-substrate complexes. The phylogeny of PaSABATHs with selected SABATHs from other plants implies that the enzymes methylating IAA are conserved in seed plants whereas the enzymes methylating JA and SA have independent evolution in gymnosperms and angiosperms. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pauwels, Jochen; D'Autry, Ward; Van den Bossche, Larissa; Dewever, Cédric; Forier, Michel; Vandenwaeyenberg, Stephanie; Wolfs, Kris; Hoogmartens, Jos; Van Schepdael, Ann; Adams, Erwin
2012-02-23
Capsaicinoids, salicylic acid, methyl and ethyl salicylate, glycol monosalicylate, camphor and l-menthol are widely used in topical formulations to relieve local pain. For each separate compound or simple mixtures, quantitative analysis methods are reported. However, for a mixture containing all above mentioned active compounds, no assay methods were found. Due to the differing physicochemical characteristics, two methods were developed and optimized simultaneously. The non-volatile capsaicinoids, salicylic acid and glycol monosalicylate were analyzed with liquid chromatography following liquid-liquid extraction, whereas the volatile compounds were analyzed with static headspace-gas chromatography. For the latter method, liquid paraffin was selected as compatible dilution solvent. The optimized methods were validated in terms of specificity, linearity, accuracy and precision in a range of 80% to 120% of the expected concentrations. For both methods, peaks were well separated without interference of other compounds. Linear relationships were demonstrated with R² values higher than 0.996 for all compounds. Accuracy was assessed by performing replicate recovery experiments with spiked blank samples. Mean recovery values were all between 98% and 102%. Precision was checked at three levels: system repeatability, method precision and intermediate precision. Both methods were found to be acceptably precise at all three levels. Finally, the method was successfully applied to the analysis of some real samples (cutaneous sticks). Copyright © 2011 Elsevier B.V. All rights reserved.
Transition-Metal-Catalyzed Carbonylation of Methyl Acetate.
ERIC Educational Resources Information Center
Polichnowski, S. W.
1986-01-01
Presents a study of the rhodium-catalyzed, ioding-promoted carbonylation of methyl acetate. This study provides an interesting contrast between the carbonylation of methyl acetate and the carbonylation of methanol when similar rhodium/iodine catalyst systems are used. (JN)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivaraman, B.; Nair, B. G.; Mason, N. J.
2013-12-01
Following the recent report of the first identification of methyl acetate (CH{sub 3}COOCH{sub 3}) in the interstellar medium (ISM), we have carried out vacuum ultraviolet (VUV) and infrared (IR) spectroscopy studies on methyl acetate from 10 K until sublimation in an ultrahigh vacuum chamber simulating astrochemical conditions. We present the first VUV and IR spectra of methyl acetate relevant to ISM conditions. Spectral signatures clearly showed molecular reorientation to have started in the ice by annealing the amorphous ice formed at 10 K. An irreversible phase change from amorphous to crystalline methyl acetate ice was found to occur between 110more » K and 120 K.« less
Photoelectron spectroscopy of a series of acetate and propionate esters
NASA Astrophysics Data System (ADS)
Śmiałek, Małgorzata A.; Guthmuller, Julien; MacDonald, Michael A.; Zuin, Lucia; Delwiche, Jacques; Hubin-Franskin, Marie-Jeanne; Lesniewski, Tadeusz; Mason, Nigel J.; Limão-Vieira, Paulo
2017-10-01
The electronic state and photoionization spectroscopy of a series of acetate esters: methyl acetate, isopropyl acetate, butyl acetate and pentyl acetate as well as two propionates: methyl propionate and ethyl propionate, have been determined using vacuum-ultraviolet photoelectron spectroscopy. These experimental investigations are complemented by ab initio calculations. The measured first adiabatic and vertical ionization energies were determined as: 10.21 and 10.45 eV for methyl acetate, 9.99 and 10.22 eV for isopropyl acetate, 10.07 and 10.26 eV for butyl acetate, 10.01 and 10.22 eV for pentyl acetate, 10.16 and 10.36 eV for methyl propionate and 9.99 and 10.18 eV for ethyl propionate. For the four smaller esters vibrational transitions were calculated and compared with those identified in the photoelectron spectrum, revealing the most distinctive ones to be a Csbnd O stretch combined with a Cdbnd O stretch. The ionization energies of methyl and ethyl esters as well as for a series of formates and acetates were compared showing a clear dependence of the value of the ionization energy on the size of the molecule with very little influence of its conformation.
Methyl salicylate differently affects benzenoid and terpenoid volatile emissions in Betula pendula.
Liu, Bin; Kaurilind, Eve; Jiang, Yifan; Niinemets, Ülo
2018-06-20
Methyl salicylate (MeSA) is a long-distance signal transduction chemical that plays an important role in plant responses to abiotic stress and herbivore and pathogen attacks. However, it is unclear how photosynthesis and elicitation of plant volatile organic compounds (VOC) from different metabolic pathways respond to the dose of MeSA. We applied different MeSA concentrations (0-50 mM) to study how exogenous MeSA alters VOC profiles of silver birch (Betula pendula Roth) leaves from application through recovery (0.5-23 h). Methyl salicylate application significantly reduced net assimilation rate in 10 mM and 20 mM MeSA-treated plants. No significant effects of MeSA were observed on the stomatal conductance at any MeSA concentration. Methyl salicylate elicited emissions of benzenoids (BZ), monoterpenes (MT) and fatty acid derived compounds (LOX products). Emission rates of BZ were positively, but emission rates of MT were negatively correlated with MeSA concentration. Total emission of LOX products was not influenced by MeSA concentration. Emission rate of MT was negatively correlated with BZ and the share of MT in the total emission blend decreased and the share of BZ increased with increasing MeSA concentration. Although the share of LOX products was similar across MeSA treatments, some LOX products responded differently to MeSA concentration, ultimately resulting in unique VOC blends. Overall, this study demonstrates inverse responses of MT and BZ to different MeSA doses such that plant defense mechanisms induced by lower MeSA doses mainly lead to enhanced MT synthesis, whereas greater MeSA doses trigger BZ-related defense mechanisms. Our results will contribute to improving the understanding of birch defenses induced upon regular herbivore attacks and pathogen infections in boreal forests.
Chen, Yigen; Ulyshen, Michael D; Poland, Therese M
2016-10-01
Many natural enemies employ plant- and/or herbivore-derived signals for host/prey location. The larval parasitoid Tetrastichus planipennisi Yang (Hymenoptera: Eulophidae) is 1 of 3 biocontrol agents currently being released in an effort to control the emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coloeptera: Burprestidae) in North America. To enhance its efficiency, allelochemicals that attract it need to be assessed. In this study, ash phloem volatile organic compounds (VOCs) of black, green, and white ash, and EAB larval frass were compared. Foraging behavior of T. planipennisi females in response to VOCs of white ash or frass from EAB larvae feeding on white ash phloem was tested using a Y-tube olfactometer. Results indicated that the 3 ash species had similar VOC profiles. EAB larval frass generally contained greater levels of VOCs than phloem. Factor analysis indicated that the 11 VOCs could be broadly divided into 2 groups, with α-bisabolol, β-caryophyllene, (E)-2-hexenal, (Z)-3-hexenal, limonene, methyl benzoate, methyl indole-3-acetic acid, methyl jasmonate, methyl salicylate as the first group and the rest (i.e., methyl linoleate and methyl linolenate) as a second. Abundance of VOCs in white ash phloem tissue and frass, nevertheless, did not attract T. planipennisi females. The concealed feeding of EAB larvae might explain the selection for detectable and reliable virbrational signals, instead of undetectable and relatively unreliable VOC cues from phloem and frass, in short-range foraging by T. planipennisi. Alternatively, it is possible that T. planipennisi is not amenable to the Y-tube olfactometer assay employed. © 2015 Institute of Zoology, Chinese Academy of Sciences.
SALICYLATE INCREASES THE GAIN OF THE CENTRAL AUDITORY SYSTEM
Sun, W.; Lu, J.; Stolzberg, D.; Gray, L.; Deng, A.; Lobarinas, E.; Salvi, R. J.
2009-01-01
High doses of salicylate, the anti-inflammatory component of aspirin, induce transient tinnitus and hearing loss. Systemic injection of 250 mg/kg of salicylate, a dose that reliably induces tinnitus in rats, significantly reduced the sound evoked output of the rat cochlea. Paradoxically, salicylate significantly increased the amplitude of the sound-evoked field potential from the auditory cortex (AC) of conscious rats, but not the inferior colliculus (IC). When rats were anesthetized with isoflurane, which increases GABA-mediated inhibition, the salicylate-induced AC amplitude enhancement was abolished, whereas ketamine, which blocks N-methyl-d-aspartate receptors, further increased the salicylate-induced AC amplitude enhancement. Direct application of salicylate to the cochlea, however, reduced the response amplitude of the cochlea, IC and AC, suggesting the AC amplitude enhancement induced by systemic injection of salicylate does not originate from the cochlea. To identify a behavioral correlate of the salicylate-induced AC enhancement, the acoustic startle response was measured before and after salicylate treatment. Salicylate significantly increased the amplitude of the startle response. Collectively, these results suggest that high doses of salicylate increase the gain of the central auditory system, presumably by down-regulating GABA-mediated inhibition, leading to an exaggerated acoustic startle response. The enhanced startle response may be the behavioral correlate of hyperacusis that often accompanies tinnitus and hearing loss. Published by Elsevier Ltd on behalf of IBRO. PMID:19154777
Srivastava, Smita; Srivastava, A K
2014-02-01
The present study involved strategies for enhancement in in vitro azadirachtin (commercially used biopesticide) production by hairy root cultivation of Azadirachta indica. Improvement in the azadirachtin production via triggering its biosynthetic pathway in plant cells was carried out by the exogenous addition of precursors and elicitors in the growth medium. Among the different abiotic stress inducers (Ag(+), Hg(+2), Co(+2), Cu(+2)) and signal molecules (methyl jasmonate and salicylic acid) tested, salicylic acid at 15 mg l(-1) of concentration was found to enhance the azadirachtin yield in the hairy roots to the maximum (up to 4.95 mg g(-1)). Similarly, among the different biotic elicitors tested (filter-sterilized fungal culture filtrates of Phoma herbarium, Alternaria alternata, Myrothecium sp., Fusarium solani, Curvularia lunata, and Sclerotium rolfsii; yeast extract; and yeast extract carbohydrate fraction), addition of filter-sterilized fungal culture filtrate of C. lunata (1 % v/v) resulted in maximum azadirachtin yield enhancement in hairy root biomass (up to 7.1 mg g(-1)) with respect to the control (3.3 mg g(-1)). Among all the biosynthetic precursors studied (sodium acetate, cholesterol, squalene, isopentynyl pyrophosphate, mavalonic acid lactone, and geranyl pyrophosphate), the overall azadirachtin production (70.42 mg l(-1) in 25 days) was found to be the highest with cholesterol (50 mg l(-1)) addition as an indirect precursor in the medium.
Microbial Activity in Organic Soils as Affected by Soil Depth and Crop †
Tate, Robert L.
1979-01-01
The microbial activity of Pahokee muck, a lithic medisaprist, and the effect of various environmental factors, such as position in the profile and type of plant cover, were examined. Catabolic activity for [7-14C]salicylic acid, [1,4-14C]succinate, and [1,2-14C]acetate remained reasonably constant in surface (0 to 10 cm) soil samples from a fallow (bare) field from late in the wet season (May to September) through January. Late in January, the microbial activity toward all three compounds decreased approximately 50%. The microbial activity of the soil decreased with increasing depth of soil. Salicylate catabolism was the most sensitive to increasing moisture deep in the soil profile. At the end of the wet season, a 90% decrease in activity between the surface and the 60- to 70-cm depth occurred. Catabolism of acetate and succinate decreased approximately 75% in the same samples. Little effect of crop was observed. Variation in the microbial activity, as measured by the catabolism of labeled acetate, salicylate, or succinate, was not significant between a sugarcane (Saccharum officinarum L.) field and a fallow field. The activity with acetate was insignificantly different in a St. Augustine grass [Stenotaphrum secundatum (Walt) Kuntz] field, whereas the catabolism of the remaining substrates was elevated in the grass field. These results indicate that the total carbon evolved from the different levels of the soil profile by the microbial community oxidizing the soil organic matter decreased as the depth of the soil column increased. However, correction of the amount of carbon yielded at each level for the bulk density of that level reveals that the microbial contribution to the soil subsidence is approximately equivalent throughout the soil profile above the water table. PMID:16345393
Microbial activity in organic soils as affected by soil depth and crop.
Tate, R L
1979-06-01
The microbial activity of Pahokee muck, a lithic medisaprist, and the effect of various environmental factors, such as position in the profile and type of plant cover, were examined. Catabolic activity for [7-C]salicylic acid, [1,4-C]succinate, and [1,2-C]acetate remained reasonably constant in surface (0 to 10 cm) soil samples from a fallow (bare) field from late in the wet season (May to September) through January. Late in January, the microbial activity toward all three compounds decreased approximately 50%. The microbial activity of the soil decreased with increasing depth of soil. Salicylate catabolism was the most sensitive to increasing moisture deep in the soil profile. At the end of the wet season, a 90% decrease in activity between the surface and the 60- to 70-cm depth occurred. Catabolism of acetate and succinate decreased approximately 75% in the same samples. Little effect of crop was observed. Variation in the microbial activity, as measured by the catabolism of labeled acetate, salicylate, or succinate, was not significant between a sugarcane (Saccharum officinarum L.) field and a fallow field. The activity with acetate was insignificantly different in a St. Augustine grass [Stenotaphrum secundatum (Walt) Kuntz] field, whereas the catabolism of the remaining substrates was elevated in the grass field. These results indicate that the total carbon evolved from the different levels of the soil profile by the microbial community oxidizing the soil organic matter decreased as the depth of the soil column increased. However, correction of the amount of carbon yielded at each level for the bulk density of that level reveals that the microbial contribution to the soil subsidence is approximately equivalent throughout the soil profile above the water table.
Metabolic Diversity for Degradation, Detection, and Synthesis of Nitro Compounds and Toxins
2012-07-08
Figure 24. p-Hydroxycinnamic acid methyl ester (HCAME) accumulated transiently in cultures provided with CPhos as the sole carbon, nitrogen...and salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans (22% amino acid identity). The enzymes share a conserved histidine pair serving...to anchor Fe2+ and a conserved domain. 5NSA dioxygenase is active against salicylate , 5-chlorosalicylate, and 5-bromosalicylate; and inhibited by
Mechanisms of Decreased Moisture Uptake in ortho- Methylated Di(Cyanate Esters)
2014-10-01
Distribution A: Approved for public release; distribution is unlimited. 1 Mechanisms of Decreased Moisture Uptake in ortho- Methylated Di(Cyanate...when analogous networks containing a single methyl group ortho- to each aryl- cyanurate linkage were prepared by reduction and acid-catalyzed coupling...of salicylic acid followed by treatment with cyanogen bromide and subsequent cyclotrimerization. The differences in water uptake were observed
Matar, Hazem; Guerreiro, Antonio; Piletsky, Sergey A; Price, Shirley C; Chilcott, Robert P
2015-08-13
Rapid decontamination is vital to alleviate adverse health effects following dermal exposure to hazardous materials. There is an abundance of materials and products which can be utilised to remove hazardous materials from the skin. In this study, a total of 15 products were evaluated, 10 of which were commercial or military products and five were novel (molecular imprinted) polymers. The efficacies of these products were evaluated against a 10 µl droplet of 14 C-methyl salicylate applied to the surface of porcine skin mounted on static diffusion cells. The current UK military decontaminant (Fuller's earth) performed well, retaining 83% of the dose over 24 h and served as a benchmark to compare with the other test products. The five most effective test products were Fuller's earth (the current UK military decontaminant), Fast-Act® and three novel polymers [based on itaconic acid, 2-trifluoromethylacrylic acid and N,N-methylenebis(acrylamide)]. Five products (medical moist-free wipes, 5% FloraFree™ solution, normal baby wipes, baby wipes for sensitive skin and Diphotérine™) enhanced the dermal absorption of 14 C-methyl salicylate. Further work is required to establish the performance of the most effective products identified in this study against chemical warfare agents.
Matar, Hazem; Guerreiro, Antonio; Piletsky, Sergey A; Price, Shirley C; Chilcott, Robert P
2016-01-01
Rapid decontamination is vital to alleviate adverse health effects following dermal exposure to hazardous materials. There is an abundance of materials and products which can be utilised to remove hazardous materials from the skin. In this study, a total of 15 products were evaluated, 10 of which were commercial or military products and five were novel (molecular imprinted) polymers. The efficacies of these products were evaluated against a 10 µl droplet of (14)C-methyl salicylate applied to the surface of porcine skin mounted on static diffusion cells. The current UK military decontaminant (Fuller's earth) performed well, retaining 83% of the dose over 24 h and served as a benchmark to compare with the other test products. The five most effective test products were Fuller's earth (the current UK military decontaminant), Fast-Act® and three novel polymers [based on itaconic acid, 2-trifluoromethylacrylic acid and N,N-methylenebis(acrylamide)]. Five products (medical moist-free wipes, 5% FloraFree™ solution, normal baby wipes, baby wipes for sensitive skin and Diphotérine™) enhanced the dermal absorption of (14)C-methyl salicylate. Further work is required to establish the performance of the most effective products identified in this study against chemical warfare agents.
Murungi, Lucy K; Kirwa, Hillary; Coyne, Danny; Teal, Peter E A; Beck, John J; Torto, Baldwyn
2018-06-25
The root knot nematode, Meloidogyne incognita (Kofoid and White) Chitwood, is a serious pest of tomato (Solanum lycopersicum) and spinach (Spinacea oleracea) in sub-Saharan Africa. In East Africa these two crops are economically important and are commonly intercropped by smallholder farmers. The role of host plant volatiles in M. incognita interactions with these two commodities is currently unknown. Here, we investigate the olfactory basis of attraction of tomato and spinach roots by the infective second stage juveniles (J2s) of M. incognita. In olfactometer assays, J2s were attracted to root volatiles from both crops over moist sand (control), but in choice tests using the two host plants, volatiles of tomato roots were more attractive than those released by spinach. Root volatiles sampled by solid phase micro-extraction (SPME) fiber and analysed by gas chromatography/mass spectrometry (GC/MS) identified a total of eight components, of which five (2-isopropyl-3-methoxypyrazine, 2-(methoxy)-3-(1-methylpropyl)pyrazine, tridecane, and α- and β-cedrene) occurred in the root-emitted volatiles of both plants, with three (δ-3-carene, sabinene and methyl salicylate) being specific to tomato root volatiles. In a series of bioassays, methyl salicylate contributed strongly to the attractiveness of tomato, whereas 2-isopropyl-3-methoxypyrazine and tridecane contributed to the attractiveness of spinach. M. incognita J2s were also more attracted to natural spinach root volatiles when methyl salicylate was combined, than to spinach volatiles alone, indicating that the presence of methyl salicylate in tomato volatiles strongly contributes to its preference over spinach. Our results indicate that since both tomato and spinach roots are attractive to M. incognita, identifying cultivars of these two plant species that are chemically less attractive can be helpful in the management of root knot nematodes.
Consumption study and identification of methyl salicylate in spicy cassava chips
NASA Astrophysics Data System (ADS)
Nirjana, Marlene; Anggadiredja, Kusnandar; Damayanti, Sophi
2015-09-01
Spicy cassava chips is a popular snack. However, some news in electronic media reported addition of balsam which is a banned food additives in that product to give extra spicy flavor. This study aimed to determine ITB students' pattern of consumption, health problems caused by spicy chips consumption, and knowledge about illicit use of food additives in that product, and identify the main content of balsam namely methyl salicylate in 10 samples of spicy cassava chips taken from inside and outside about ITB campus. A total of 300 questionnaires distributed to ITB students then data processing was performed. Spicy cassava chips sample macerated in 50 mL of methanol for 24 hours at room temperature, filtered and analyzed using gas chromatography capillary column with OV-1, nitrogen carrier gas and flame ionization detector. Based on questionnaires, 292 (97%) of 300 respondents had consumed spicy chips. A total of 247 (85%) from 292 respondents spicy chips consumed less than 3 times a week. A total of 195 respondents (67%) had experienced health problems after eating spicy chips. There were 137 (47%) of the 292 respondents who knew about the illicit addition of food additives into spicy chips; only 35 respondents (12%) who knew about balsam's addition. There were 126 respondents (43%) who did not pay attention to their health because they will keep eating spicy chips despite the addition of banned food additives. Through the verification of the standard addition method in gas chromatography system with a hydrogen pressure of 1.5 bar, injector temperature 200 °C, detector temperature 230 °C, oven temperature 60 °C for 2 minutes and then increased to 230 °C with rate 6 °C/menit; linearity, limit of detection, limit of quantitation, accuracy, precision, and specificity parameters met the acceptance limits. From 10 spicy cassava chips samples which were analyzed, they did not reveal any content of methyl salicylate. Methyl salicylate contained in the positive control was 1.273 mg/mL.
NIOSH Manual of Analytical Methods (third edition). Fourth supplement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-08-15
The NIOSH Manual of Analytical Methods, 3rd edition, was updated for the following chemicals: allyl-glycidyl-ether, 2-aminopyridine, aspartame, bromine, chlorine, n-butylamine, n-butyl-glycidyl-ether, carbon-dioxide, carbon-monoxide, chlorinated-camphene, chloroacetaldehyde, p-chlorophenol, crotonaldehyde, 1,1-dimethylhydrazine, dinitro-o-cresol, ethyl-acetate, ethyl-formate, ethylenimine, sodium-fluoride, hydrogen-fluoride, cryolite, sodium-hexafluoroaluminate, formic-acid, hexachlorobutadiene, hydrogen-cyanide, hydrogen-sulfide, isopropyl-acetate, isopropyl-ether, isopropyl-glycidyl-ether, lead, lead-oxide, maleic-anhydride, methyl-acetate, methyl-acrylate, methyl-tert-butyl ether, methyl-cellosolve-acetate, methylcyclohexanol, 4,4'-methylenedianiline, monomethylaniline, monomethylhydrazine, nitric-oxide, p-nitroaniline, phenyl-ether, phenyl-ether-biphenyl mixture, phenyl-glycidyl-ether, phenylhydrazine, phosphine, ronnel, sulfuryl-fluoride, talc, tributyl-phosphate, 1,1,2-trichloro-1,2,2-trifluoroethane, trimellitic-anhydride, triorthocresyl-phosphate, triphenyl-phosphate, and vinyl-acetate.
Sánchez-Romera, Beatriz; Ruiz-Lozano, Juan Manuel; Zamarreño, Ángel María; García-Mina, José María; Aroca, Ricardo
2016-02-01
Hormonal regulation and symbiotic relationships provide benefits for plants to overcome stress conditions. The aim of this study was to elucidate the effects of exogenous methyl jasmonate (MeJA) application on root hydraulic conductivity (L) of Phaseolus vulgaris plants which established arbuscular mycorrhizal (AM) symbiosis under two water regimes (well-watered and drought conditions). The variation in endogenous contents of several hormones (MeJA, JA, abscisic acid (ABA), indol-3-acetic acid (IAA), salicylic acid (SA)) and the changes in aquaporin gene expression, protein abundance and phosphorylation state were analyzed. AM symbiosis decreased L under well-watered conditions, which was partially reverted by the MeJA treatment, apparently by a drop in root IAA contents. Also, AM symbiosis and MeJA prevented inhibition of L under drought conditions, most probably by a reduction in root SA contents. Additionally, the gene expression of two fungal aquaporins was upregulated under drought conditions, independently of the MeJA treatment. Plant aquaporin gene expression could not explain the behaviour of L. Conversely, evidence was found for the control of L by phosphorylation of aquaporins. Hence, MeJA addition modified the response of L to both AM symbiosis and drought, presumably by regulating the root contents of IAA and SA and the phosphorylation state of aquaporins.
Temperature Dependence of Positron Annihilation in beta-Cyclodextrin and beta-Cyclodextrin Complexes
NASA Astrophysics Data System (ADS)
Hu, Y.; Hsu Hadley, F. H., Jr.; Trinh, T.
1996-11-01
The effects of temperature on positron annihilation in beta-cyclodextrin and beta-cyclodextrin complexed with benzyl salicylate, benzyl acetate, ethyl salicylate, geraniol, linalool and nerol were studied. Samples were prepared by slurry, air-dried and freeze-dried methods. Lifetime spectra were measured as a function of temperature for each sample. Comparison of the annihilation rate and intensity of the longer-lived component showed that positronium formation was affected by guest molecules, preparation methods and temperature variations. Results can be used to explain beta-cyclodextrin complex formation with different guest molecules.
27 CFR 21.151 - List of denaturants authorized for denatured spirits.
Code of Federal Regulations, 2012 CFR
2012-04-01
....A. 38-B, 38-F. Cinchonidine S.D.A. 39-A. Cinchonidine sulfate, N.F.IX S.D.A. 39-A. Cinnamic aldehyde... ketone C.D.A. 18, 19; S.D.A. 1, 23-H. Methyl n-butyl ketone C.D.A. 18, 19; S.D.A. 1. Methyl salicylate, N...
27 CFR 21.151 - List of denaturants authorized for denatured spirits.
Code of Federal Regulations, 2014 CFR
2014-04-01
....A. 38-B, 38-F. Cinchonidine S.D.A. 39-A. Cinchonidine sulfate, N.F.IX S.D.A. 39-A. Cinnamic aldehyde... ketone C.D.A. 18, 19; S.D.A. 1, 23-H. Methyl n-butyl ketone C.D.A. 18, 19; S.D.A. 1. Methyl salicylate, N...
27 CFR 21.151 - List of denaturants authorized for denatured spirits.
Code of Federal Regulations, 2013 CFR
2013-04-01
....A. 38-B, 38-F. Cinchonidine S.D.A. 39-A. Cinchonidine sulfate, N.F.IX S.D.A. 39-A. Cinnamic aldehyde... ketone C.D.A. 18, 19; S.D.A. 1, 23-H. Methyl n-butyl ketone C.D.A. 18, 19; S.D.A. 1. Methyl salicylate, N...
Identification of mosquito repellent odours from Ocimum forskolei.
Dekker, Teun; Ignell, Rickard; Ghebru, Maedot; Glinwood, Robert; Hopkins, Richard
2011-09-22
Native mosquito repellent plants have a good potential for integrated mosquito control in local settings. Ocimum forskolei, Lamiaceae, is used in Eritrea as a spatial mosquito repellent inside houses, either through crushing fresh plants or burning dry plants. We verified whether active repellent compounds could be identified using gas-chromatography coupled electroantennogram recordings (GC-EAD) with headspace extracts of crushed plants. EAD active compounds included (R)-(-)-linalool, (S)-(+)-1-octen-3-ol, trans-caryophyllene, naphthalene, methyl salicylate, (R)-(-)-α-copaene, methyl cinnamate and (E)-ocimene. Of these compounds (R)-(-)-linalool, methyl cinnamate and methyl salicylate reduced landing of female Aedes aegypti on human skin-odor baited tubes. The latter two are novel mosquito repellent compounds. The identification of mosquito repellent compounds contributes to deciphering the mechanisms underlying repulsion, supporting the rational design of novel repellents. The three mosquito repellent compounds identified in this study are structurally dissimilar, which may indicate involvement of different sensory neurons in repulsion. Repulsion may well be enhanced through combining different repellent plants (or their synthetic mimics), and can be a locally sustainable part in mosquito control efforts.
Identification of mosquito repellent odours from Ocimum forskolei
2011-01-01
Background Native mosquito repellent plants have a good potential for integrated mosquito control in local settings. Ocimum forskolei, Lamiaceae, is used in Eritrea as a spatial mosquito repellent inside houses, either through crushing fresh plants or burning dry plants. We verified whether active repellent compounds could be identified using gas-chromatography coupled electroantennogram recordings (GC-EAD) with headspace extracts of crushed plants. Results EAD active compounds included (R)-(-)-linalool, (S)-(+)-1-octen-3-ol, trans-caryophyllene, naphthalene, methyl salicylate, (R)-(-)-α-copaene, methyl cinnamate and (E)-ocimene. Of these compounds (R)-(-)-linalool, methyl cinnamate and methyl salicylate reduced landing of female Aedes aegypti on human skin-odor baited tubes. The latter two are novel mosquito repellent compounds. Conclusions The identification of mosquito repellent compounds contributes to deciphering the mechanisms underlying repulsion, supporting the rational design of novel repellents. The three mosquito repellent compounds identified in this study are structurally dissimilar, which may indicate involvement of different sensory neurons in repulsion. Repulsion may well be enhanced through combining different repellent plants (or their synthetic mimics), and can be a locally sustainable part in mosquito control efforts. PMID:21936953
Lin, Jingyu; Mazarei, Mitra; Zhao, Nan; ...
2016-05-23
Soybean ( Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyses the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heterodera glycines Ichinohe. In this study, we produced transgenic soybean overexpressing GmSAMT1 and characterized their response to various SCN races. Transgenic plants conferred a significant reduction in the development of SCN HG type 1.2.5.7 (race 2), HG type 0 (race 3) and HG type 2.5.7 (race 5). Among transgenic lines, GmSAMT1 expression in roots was positively associated with SCNmore » resistance. In some transgenic lines, there was a significant decrease in salicylic acid titer relative to control plants. No significant seed yield differences were observed between transgenics and control soybean plants grown in one greenhouse with 22 °C day/night temperature, whereas transgenic soybean had higher yield than controls grown a warmer greenhouse (27 °C day/23 °C night) temperature. In a 1-year field experiment in Knoxville, TN, there was no significant difference in seed yield between the transgenic and nontransgenic soybean under conditions with negligible SCN infection. We hypothesize that GmSAMT1 expression affects salicylic acid biosynthesis, which, in turn, attenuates SCN development, without negative consequences to soybean yield or other morphological traits. Furthermore, we conclude that GmSAMT1 overexpression confers broad resistance to multiple SCN races, which would be potentially applicable to commercial production.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jingyu; Mazarei, Mitra; Zhao, Nan
Soybean ( Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyses the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heterodera glycines Ichinohe. In this study, we produced transgenic soybean overexpressing GmSAMT1 and characterized their response to various SCN races. Transgenic plants conferred a significant reduction in the development of SCN HG type 1.2.5.7 (race 2), HG type 0 (race 3) and HG type 2.5.7 (race 5). Among transgenic lines, GmSAMT1 expression in roots was positively associated with SCNmore » resistance. In some transgenic lines, there was a significant decrease in salicylic acid titer relative to control plants. No significant seed yield differences were observed between transgenics and control soybean plants grown in one greenhouse with 22 °C day/night temperature, whereas transgenic soybean had higher yield than controls grown a warmer greenhouse (27 °C day/23 °C night) temperature. In a 1-year field experiment in Knoxville, TN, there was no significant difference in seed yield between the transgenic and nontransgenic soybean under conditions with negligible SCN infection. We hypothesize that GmSAMT1 expression affects salicylic acid biosynthesis, which, in turn, attenuates SCN development, without negative consequences to soybean yield or other morphological traits. Furthermore, we conclude that GmSAMT1 overexpression confers broad resistance to multiple SCN races, which would be potentially applicable to commercial production.« less
Spiandore, Marie; Souilah-Edib, Mélanie; Piram, Anne; Lacoste, Alexandre; Josse, Denis; Doumenq, Pierre
2018-01-01
Chemical warfare agents have been used to incapacitate, injure or kill people, in a context of war or terrorist attack. It has previously been shown that hair could trap the sulphur mustard simulants methyl salicylate and 2-chloroethyl ethyl sulphide. In order to investigate simulants persistency in hair after intense vapour exposure, their desorption kinetics were studied by using two complementary methods: hair residual content measurement and desorbed vapour monitoring. Results showed that both simulants were detected in air and could be recovered from hair 2 h after the end of exposure. Longer experiments with methyl salicylate showed that it could still be recovered from hair after 24 h. Our data were fitted with several kinetic models and best correlation was obtained with a bimodal first-order equation, suggesting a 2-step desorption kinetics model: initial fast regime followed by a slower desorption. 2-chloroethyl ethyl sulphide was also detected in the immediate environment after hair exposure for 2 h, and hair simulant content decreased by more than 80%. Our results showed that hair ability to release formerly trapped chemical toxics could lead to health hazard. Their persistency however confirmed the potentiality of hair analysis as a tool for chemical exposure assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.
2009-08-01
the BoNT/A protease activity were selected. Database search queries of the best candidate hit [7-((4-nitro- anilino)(phenyl) methyl )-8-quinolinol (NSC...therapeutic challenges. Trends Mol. Med. 9:291–299. 18. Gershon, H., and R. Parmegiani. 1963. Antimicrobial activity of 8-quinoli- nol, its salts with salicylic ...Parmegiani. 1962. Antimicrobial activity of 8-quinoli- nols, salicylic acids, hydroxynaphthoic acids, and salts of selected quinolinols with selected
NASA Astrophysics Data System (ADS)
Richards-Henderson, Nicole K.; Hansel, Amie K.; Valsaraj, Kalliat T.; Anastasio, Cort
2014-10-01
Green leaf volatiles (GLVs) are a class of oxygenated hydrocarbons released from vegetation, especially during mechanical stress or damage. The potential for GLVs to form secondary organic aerosol (SOA) via aqueous-phase reactions is not known. Fog events over vegetation will lead to the uptake of GLVs into water droplets, followed by aqueous-phase reactions with photooxidants such as the hydroxyl radical (OH). In order to determine if the aqueous oxidation of GLVs by OH can be a significant source of secondary organic aerosol, we studied the partitioning and reaction of five GLVs: cis-3-hexen-1-ol, cis-3-hexenyl acetate, methyl salicylate, methyl jasmonate, and 2-methyl-3-butene-2-ol. For each GLV we measured the kinetics of aqueous oxidation by OH, and the corresponding SOA mass yield. The second-order rate constants for GLVs with OH were all near diffusion controlled, (5.4-8.6) × 109 M-1 s-1 at 298 K, and showed a small temperature dependence, with an average activation energy of 9.3 kJ mol-1 Aqueous-phase SOA mass yields ranged from 10 to 88%, although some of the smaller values were not statistically different from zero. Methyl jasmonate was the most effective aqueous-phase SOA precursor due to its larger Henry's law constant and high SOA mass yield (68 ± 8%). While we calculate that the aqueous-phase SOA formation from the five GLVs is a minor source of aqueous-phase SOA, the availability of other GLVs, other oxidants, and interfacial reactions suggest that GLVs overall might be a significant source of SOA via aqueous reactions.
Nagraj, Nandini; Slocik, Joseph M; Phillips, David M; Kelley-Loughnane, Nancy; Naik, Rajesh R; Potyrailo, Radislav A
2013-08-07
Peptide-capped AYSSGAPPMPPF gold nanoparticles were demonstrated for highly selective chemical vapor sensing using individual multivariable inductor-capacitor-resistor (LCR) resonators. Their multivariable response was achieved by measuring their resonance impedance spectra followed by multivariate spectral analysis. Detection of model toxic vapors and chemical agent simulants, such as acetonitrile, dichloromethane and methyl salicylate, was performed. Dichloromethane (dielectric constant εr = 9.1) and methyl salicylate (εr = 9.0) were discriminated using a single sensor. These sensing materials coupled to multivariable transducers can provide numerous opportunities for tailoring the vapor response selectivity based on the diversity of the amino acid composition of the peptides, and by the modulation of the nature of peptide-nanoparticle interactions through designed combinations of hydrophobic and hydrophilic amino acids.
The physostigmine depolarization potentiating effect of salicylate in frog skeletal muscle.
Varga, E; Kovács, L; Szücs, G; Illés, B
1975-01-01
1) The frog's sartorius muscle was depolarized depending on the degree of concentration 2--4 times more intensely by physostigmine salicylate than by physostigmine sulphate. 2) In normal Ringer's solution, 1 mM physostigmine salicylate decreased the sensitivity of the membrane to potassium depolarization by about 90%. Under similar experimental conditions, physostigmine sulphate and Na salicylate, respectively, decrease the sensitivity of the membrane to potassium depolarization by about 30%. 3) The difference manifested in the depolarizing effect of salicylate and other physostigmine salts (chloride, sulphate, phosphate, formiate, acetate, monochloracetate, benzoate and para-oxy-benzoate) is expressed already at 1 mM concentration (about 10-fold), if the muscle had been equilibrated in chloride-free glucuronate or sulphate milieu. 4) The depolarization develops slowly. It takes 30--60 minutes for the new steady state to develop even in the superficial sartorius fibres. If depolarization has reached its maximum on an average 100 mV, the membrane potential remains unchanged for hours. 5) Depolarization ensues at an unchanged degree in the presence of Na-free (choline) Ringer as well as in the presence of 2X10(-8) g/ml tetrodotoxin; therefore, it is not a Na-dependent process. 6) Under the influence of 1 mM physostigmine salicylate the membrane's resistance to the inward potassium current increased about twofold, while the increase was only 15% to the outward potassium current. It is assumed that the salicylate anion is characteristically capable of potentiating the decreasing effect of physostigmine on potassium permeability, though the role of the metabolic effect of salicylate cannot be excluded.
Sports creams are creams or ointments used to treat aches and pains. Sports cream overdose can occur if someone uses this ... Two ingredients in sports creams that can be poisonous are: Menthol Methyl salicylate
Vergara Martínez, Víctor M.; Estrada-Soto, Samuel E.; Arellano-García, José de Jesús; Rivera-Leyva, Julio C.; Castillo-España, Patricia; Flores, Angélica Flores; Cardoso-Taketa, Alexandre T.; Perea-Arango, Irene
2017-01-01
Background: The production of triterpenes from plants for pharmacological purposes varies in concentration, due to genetic and environmental factors. In vitro culture enables the control and increase of these bioactive molecules. Objective: To evaluate the effect of plant growth regulators and elicitors in the induction of calli and the production of ursolic acid (UA) and oleanolic acid (OA) in Lepechinia caulescens. Materials and Methods: Leaf explants were exposed for the induction of calli at different concentrations and combinations of 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzylaminopurine (BAP). Methyl jasmonate (MJ) and salicylic acid were used as elicitors. High-performance liquid chromatography method was used to quantify UA and OA content in each treatment. Results: Treatment with 3.0 mg/L of 2,4-D and 0.1 mg/L of BAP produced the best results for calli induction and production of UA (1.57 mg/g dry weight [DW]) and OA (1.13 mg/g DW). Both elicitors facilitated the accumulation of triterpenes. Conclusion: The combination of auxins and cytokinins showed favorable results for the induction of calli. Variation concerning the accumulation of UA and OA was observed between treatments. MJ increased the production of triterpenes five times after 8 h of exposure, compared to control treatment. There is a greater accumulation of UA (16.58 mg/g DW) and OA (1.94 mg/g DW) in leaves of wild plants. SUMMARY Callus cultures of Lepechinia caulescens were obtained from leaf explants treated with 2,4-dichlorophenoxyacetic acid and 6-bencylaminopurineResulting cultures were elicited with methyl jasmonate (MJ) and salicylic acid to increase the production of the triterpenes, ursolic acid (UA), and oleanolic acid (OA)The cultures elicited with MJ increased the production of UA and OA five times, as compared to the control. Abbreviations used: 2,4-D: 2,4-dichlorophenoxyacetic acid, BAP: 6-benzylaminopurine, DW: Dry weight, MJ: Methyl jasmonate, OA: Oleanolic acid, PGRs: Plant growth regulators, UA: Ursolic acid, SA: Salicylic acid. PMID:29491649
Consumption study and identification of methyl salicylate in spicy cassava chips
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nirjana, Marlene, E-mail: marlenenirjana@gmail.com; Anggadiredja, Kusnandar; Damayanti, Sophi
Spicy cassava chips is a popular snack. However, some news in electronic media reported addition of balsam which is a banned food additives in that product to give extra spicy flavor. This study aimed to determine ITB students’ pattern of consumption, health problems caused by spicy chips consumption, and knowledge about illicit use of food additives in that product, and identify the main content of balsam namely methyl salicylate in 10 samples of spicy cassava chips taken from inside and outside about ITB campus. A total of 300 questionnaires distributed to ITB students then data processing was performed. Spicy cassavamore » chips sample macerated in 50 mL of methanol for 24 hours at room temperature, filtered and analyzed using gas chromatography capillary column with OV-1, nitrogen carrier gas and flame ionization detector. Based on questionnaires, 292 (97%) of 300 respondents had consumed spicy chips. A total of 247 (85%) from 292 respondents spicy chips consumed less than 3 times a week. A total of 195 respondents (67%) had experienced health problems after eating spicy chips. There were 137 (47%) of the 292 respondents who knew about the illicit addition of food additives into spicy chips; only 35 respondents (12%) who knew about balsam’s addition. There were 126 respondents (43%) who did not pay attention to their health because they will keep eating spicy chips despite the addition of banned food additives. Through the verification of the standard addition method in gas chromatography system with a hydrogen pressure of 1.5 bar, injector temperature 200 °C, detector temperature 230 °C, oven temperature 60 °C for 2 minutes and then increased to 230 °C with rate 6 °C/menit; linearity, limit of detection, limit of quantitation, accuracy, precision, and specificity parameters met the acceptance limits. From 10 spicy cassava chips samples which were analyzed, they did not reveal any content of methyl salicylate. Methyl salicylate contained in the positive control was 1.273 mg/mL.« less
NASA Astrophysics Data System (ADS)
Thomas, B.; Arthur, M. A.; Freeman, K. H.
2007-12-01
Stable isotopic measurements of methane and carbon dioxide are routinely applied to environmental samples to assess the relative importance of methane production by either aceticlastic or hydrogenotrophic methanogenesis. Such estimates rely upon assumptions about isotopic fractionation during methane production and oxidation. Rigorous isotope-based pathway estimates require knowledge of the carbon isotopic composition of both carbon dioxide and acetate. In practice, technical barriers have limited measurements of the isotopic composition of whole acetate in natural samples. Yet, the estimate of whole acetate isotopic values, even when available, may not represent accurately the composition of the methyl carbon, which is, in fact, the precursor to methane. It is exceedingly rare to find carbon isotopic measurements of acetate-methyl in the literature, and, to our knowledge, the d13C of the acetate-methyl precursor to methane has never before been reported from peatland porewater samples. Extremely 13C-depleted methane, -70 permil VPDB, and 13C-enriched carbon dioxide from acidic northern peat bogs are typically interpreted as signatures of hydrogenotrophic methanogenesis. The hypothesized dominance of methane production from hydrogen in acidic bogs contrasts with the vast majority of freshwater wetlands in which aceticlastic methanogenesis dominates. Using a new technique for the online analysis of the intramolecular carbon isotopic composition of acetate in natural samples, we find the acetate-methyl in peat porewaters can be significantly depleted relative to bulk organic matter. In porewater profiles from both winter and summer, acetate is as much as 15 permil depleted relative to bulk carbon. We hypothesize that acetate- methyl isotopic depletion results from conditions that favor autotrophic acetogenesis and subsequent acetate consumption by aceticlastic methanogens. Porewater depth profiles during winter and summer illustrate depth- dependent increases in the fraction of methane derived from carbon dioxide, with deeper peat dominated by hydrogenotrophic methanogenesis, but shallow peat dominated by aceticlastic methanogens. Significant aceticlastic methane production from autotrophically produced acetate challenges the ability of hydrogen isotopic measurements of methane to represent the pathway of methanogenesis. Supplementing our field observations, intramolecular acetate measurements of incubation experiments confirm that an aceticlastic methanogen can facilitate significant acetate-carboxyl exchange with DIC. This novel technique confirms two caveats associated with whole acetate carbon isotopic data: 1, the carboxyl carbon isotopic composition may not accurately reflect the composition of the parent molecule, and 2, the acetate methyl may be derived from inorganic carbon or the fractionation effect of fermentation in acidic porewaters may be significant.
Lin, Jingyu; Mazarei, Mitra; Zhao, Nan; Hatcher, Catherine N; Wuddineh, Wegi A; Rudis, Mary; Tschaplinski, Timothy J; Pantalone, Vincent R; Arelli, Prakash R; Hewezi, Tarek; Chen, Feng; Stewart, Charles Neal
2016-11-01
Soybean (Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyses the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heterodera glycines Ichinohe. In this study, we produced transgenic soybean overexpressing GmSAMT1 and characterized their response to various SCN races. Transgenic plants conferred a significant reduction in the development of SCN HG type 1.2.5.7 (race 2), HG type 0 (race 3) and HG type 2.5.7 (race 5). Among transgenic lines, GmSAMT1 expression in roots was positively associated with SCN resistance. In some transgenic lines, there was a significant decrease in salicylic acid titer relative to control plants. No significant seed yield differences were observed between transgenics and control soybean plants grown in one greenhouse with 22 °C day/night temperature, whereas transgenic soybean had higher yield than controls grown a warmer greenhouse (27 °C day/23 °C night) temperature. In a 1-year field experiment in Knoxville, TN, there was no significant difference in seed yield between the transgenic and nontransgenic soybean under conditions with negligible SCN infection. We hypothesize that GmSAMT1 expression affects salicylic acid biosynthesis, which, in turn, attenuates SCN development, without negative consequences to soybean yield or other morphological traits. Thus, we conclude that GmSAMT1 overexpression confers broad resistance to multiple SCN races, which would be potentially applicable to commercial production. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Shonouda, Mourad L.
The antennal response of adult syrphid flies to selected plant volatile chemical compounds was investigated in the present study. The main chemical classes and their chemical compounds were aldehydes (nonanal and benzaldehyde), monoterpene-alcohols (linalool and alpha-terpineol), ketones (6-methyl-5-heptene-2-one and 2-undecanone), hydrocarbons (tetradecane) and benzoids (methyl salicylate). Electroantennogram (EAG) records showed that the syrphid antennae were strongly responded to linalool, 6-methyl-5-heptene-2-one and methyl salicylate even at low concentrations, in addition to the high dose concentration of nonanal comparably to the other chemical compounds. The antennae of old syrphid adults were more responsive and elicited higher levels of responses to all compounds rather than young syrphid adults. The antennal sensitivity may differ from one compound to another according to the sex. The difference in responses could be attributed to the sensitivity of olfactory receptors and/or the characterization of binding protein(s). The quality of biocontrol agent could be improved if the chemical interaction between beneficial natural enemies and the surrounding environment is intensively studied and we clearly understand the chemical ecology of each natural enemy.
Garg, Neeraj K; Mangal, Sharad; Sahu, Tejram; Mehta, Abhinav; Vyas, Suresh P; Tyagi, Rajeev K
2011-01-01
Objective To evaluate the anti-apoptotic and radical scavenging activities of dietary phenolics, namely ascorbic acid,α-tocopherol acetate, citric acid, salicylic acid, and estimate H2O2-induced apoptosis in renal cell carcinoma cells. Methods The intracellular antioxidant potency of antioxidants was investigated. H2O2-induced apoptosis in RCC-26 was assayed with the following parameters: cell viability (% apoptosis), nucleosomal damage and DNA fragmentation, bcl-2 levels and flow cytometery analysis (ROS production evaluation). Results The anticancer properties of antioxidants such as ascorbic acid, α-tocopherol acetate, citric acid, salicylic acid with perdurable responses were investigated. It was observed that these antioxidants had protective effect (anti-apoptotic activity) against hydrogen peroxide (H2O2) in renal cell carcinoma (RCC-26) cell line. Conclusions This study reveals and proves the anticancer properties. However, in cancer cell lines anti-apoptotic activity can indirectly reflect the cancer promoter activity through radicals scavenging, and significantly protect nucleus and bcl-2. PMID:23569726
Li, Jing; Chaytor, Jennifer L; Findlay, Brandon; McMullen, Lynn M; Smith, David C; Vederas, John C
2015-03-25
Daikon radish (Raphanus sativus) fermented with lactic acid bacteria, especially Leuconostoc or Lactobacillus spp., can be used to make kimchi, a traditional Korean fermented vegetable. Commercial Leuconostoc/radish root ferment filtrates are claimed to have broad spectrum antimicrobial activity. Leuconostoc kimchii fermentation products are patented as preservatives for cosmetics, and certain strains of this organism are reported to produce antimicrobial peptides (bacteriocins). We examined the antimicrobial agents in commercial Leuconostoc/radish root ferment filtrates. Both activity-guided fractionation with Amberlite XAD-16 and direct extraction with ethyl acetate gave salicylic acid as the primary agent with activity against Gram-negative bacteria. Further analysis of the ethyl acetate extract revealed that a didecyldimethylammonium salt was responsible for the Gram-positive activity. The structures of these compounds were confirmed by a combination of (1)H- and (13)C NMR, high-performance liquid chromatography, high-resolution mass spectrometry, and tandem mass spectrometry analyses. Radiocarbon dating indicates that neither compound is a fermentation product. No antimicrobial peptides were detected.
Mann, Rajinder S.; Ali, Jared G.; Hermann, Sara L.; Tiwari, Siddharth; Pelz-Stelinski, Kirsten S.; Alborn, Hans T.; Stelinski, Lukasz L.
2012-01-01
Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las), affects host preference behavior of its psyllid (Diaphorina citri Kuwayama) vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of specific headspace volatiles and plant nutritional contents. Furthermore, we show in a laboratory setting that this apparent pathogen-mediated manipulation of vector behavior may facilitate pathogen spread. PMID:22457628
Mann, Rajinder S; Ali, Jared G; Hermann, Sara L; Tiwari, Siddharth; Pelz-Stelinski, Kirsten S; Alborn, Hans T; Stelinski, Lukasz L
2012-01-01
Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las), affects host preference behavior of its psyllid (Diaphorina citri Kuwayama) vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of specific headspace volatiles and plant nutritional contents. Furthermore, we show in a laboratory setting that this apparent pathogen-mediated manipulation of vector behavior may facilitate pathogen spread.
Anderson, Ashleigh; McConville, Aaron; Fanthorpe, Laura; Davis, James
2017-01-01
The pain relief capabilities of methyl salicylate are well established and a multitude of over-the-counter products populate pharmacy shelves. Over-application of the topical preparation containing the drug, or its accidental ingestion, invariably result in salicylate poisoning and in severe cases can be fatal. The drug has been a regular feature of the US National Poison Database Survey over the past decade and continues to pose a risk to children and adults alike. The aim of the review has been to cast a spotlight on the drug and assess why its use remains problematic, how technology could offer more efficacious delivery regimes, and minimise the possibility of accidental or intentional misuse. PMID:28930263
Anderson, Ashleigh; McConville, Aaron; Fanthorpe, Laura; Davis, James
2017-06-30
The pain relief capabilities of methyl salicylate are well established and a multitude of over-the-counter products populate pharmacy shelves. Over-application of the topical preparation containing the drug, or its accidental ingestion, invariably result in salicylate poisoning and in severe cases can be fatal. The drug has been a regular feature of the US National Poison Database Survey over the past decade and continues to pose a risk to children and adults alike. The aim of the review has been to cast a spotlight on the drug and assess why its use remains problematic, how technology could offer more efficacious delivery regimes, and minimise the possibility of accidental or intentional misuse.
Salicylate poisoning: an evidence-based consensus guideline for out-of-hospital management.
Chyka, Peter A; Erdman, Andrew R; Christianson, Gwenn; Wax, Paul M; Booze, Lisa L; Manoguerra, Anthony S; Caravati, E Martin; Nelson, Lewis S; Olson, Kent R; Cobaugh, Daniel J; Scharman, Elizabeth J; Woolf, Alan D; Troutman, William G
2007-01-01
A review of U.S. poison center data for 2004 showed over 40,000 exposures to salicylate-containing products. A guideline that determines the conditions for emergency department referral and pre-hospital care could potentially optimize patient outcome, avoid unnecessary emergency department visits, reduce health care costs, and reduce life disruption for patients and caregivers. An evidence-based expert consensus process was used to create the guideline. Relevant articles were abstracted by a trained physician researcher. The first draft of the guideline was created by the lead author. The entire panel discussed and refined the guideline before distribution to secondary reviewers for comment. The panel then made changes based on the secondary review comments. The objective of this guideline is to assist poison center personnel in the appropriate out-of-hospital triage and initial out-of-hospital management of patients with a suspected exposure to salicylates by 1) describing the process by which a specialist in poison information should evaluate an exposure to salicylates, 2) identifying the key decision elements in managing cases of salicylate exposure, 3) providing clear and practical recommendations that reflect the current state of knowledge, and 4) identifying needs for research. This guideline is based on an assessment of current scientific and clinical information. The expert consensus panel recognizes that specific patient care decisions may be at variance with this guideline and are the prerogative of the patient and the health professionals providing care, considering all of the circumstances involved. This guideline does not substitute for clinical judgment. Recommendations are in chronological order of likely clinical use. The grade of recommendation is in parentheses: 1) Patients with stated or suspected self-harm or who are the victims of a potentially malicious administration of a salicylate, should be referred to an emergency department immediately. This referral should be guided by local poison center procedures. In general, this should occur regardless of the dose reported (Grade D). 2) The presence of typical symptoms of salicylate toxicity such as hematemesis, tachypnea, hyperpnea, dyspnea, tinnitus, deafness, lethargy, seizures, unexplained lethargy, or confusion warrants referral to an emergency department for evaluation (Grade C). 3) Patients who exhibit typical symptoms of salicylate toxicity or nonspecific symptoms such as unexplained lethargy, confusion, or dyspnea, which could indicate the development of chronic salicylate toxicity, should be referred to an emergency department (Grade C). 4) Patients without evidence of self-harm should have further evaluation, including determination of the dose, time of ingestion, presence of symptoms, history of other medical conditions, and the presence of co-ingestants. The acute ingestion of more than 150 mg/kg or 6.5 g of aspirin equivalent, whichever is less, warrants referral to an emergency department. Ingestion of greater than a lick or taste of oil of wintergreen (98% methyl salicylate) by children under 6 years of age and more than 4 mL of oil of wintergreen by patients 6 years of age and older could cause systemic salicylate toxicity and warrants referral to an emergency department (Grade C). 5) Do not induce emesis for ingestions of salicylates (Grade D). 6) Consider the out-of-hospital administration of activated charcoal for acute ingestions of a toxic dose if it is immediately available, no contraindications are present, the patient is not vomiting, and local guidelines for its out-of-hospital use are observed. However, do not delay transportation in order to administer activated charcoal (Grade D). 7) Women in the last trimester of pregnancy who ingest below the dose for emergency department referral and do not have other referral conditions should be directed to their primary care physician, obstetrician, or a non-emergent health care facility for evaluation of maternal and fetal risk. Routine referral to an emergency department for immediate care is not required (Grade C). 8) For asymptomatic patients with dermal exposures to methyl salicylate or salicylic acid, the skin should be thoroughly washed with soap and water and the patient can be observed at home for development of symptoms (Grade C). 9) For patients with an ocular exposure of methyl salicylate or salicylic acid, the eye(s) should be irrigated with room-temperature tap water for 15 minutes. If after irrigation the patient is having pain, decreased visual acuity, or persistent irritation, referral for an ophthalmological examination is indicated (Grade D). 10) Poison centers should monitor the onset of symptoms whenever possible by conducting follow-up calls at periodic intervals for approximately 12 hours after ingestion of non-enteric-coated salicylate products, and for approximately 24 hours after the ingestion of enteric-coated aspirin (Grade C).
40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester. 721.304 Section 721.304 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.304 Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1...
Tan, Kok Tat; Lee, Keat Teong; Mohamed, Abdul Rahman
2010-02-01
In this study, fatty acid methyl esters (FAME) have been successfully produced from transesterification reaction between triglycerides and methyl acetate, instead of alcohol. In this non-catalytic supercritical methyl acetate (SCMA) technology, triacetin which is a valuable biodiesel additive is produced as side product rather than glycerol, which has lower commercial value. Besides, the properties of the biodiesel (FAME and triacetin) were found to be superior compared to those produced from conventional catalytic reactions (FAME only). In this study, the effects of various important parameters on the yield of biodiesel were optimized by utilizing Response Surface Methodology (RSM) analysis. The mathematical model developed was found to be adequate and statistically accurate to predict the optimum yield of biodiesel. The optimum conditions were found to be 399 degrees C for reaction temperature, 30 mol/mol of methyl acetate to oil molar ratio and reaction time of 59 min to achieve 97.6% biodiesel yield.
Jiménez-Díaz, I; Molina-Molina, J M; Zafra-Gómez, A; Ballesteros, O; Navalón, A; Real, M; Sáenz, J M; Fernández, M F; Olea, N
2013-10-01
UV-filters are widely used in many personal care products and cosmetics. Recent studies indicate that some organic UV-filters can accumulate in biota and act as endocrine disruptors, but there are few studies on the occurrence and fate of these compounds in humans. In the present work, a new liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to assess the presence of six UV-filters in current use (benzyl salicylate, phenyl salicylate, octyl salicylate, homosalate, 3-(4-methylbenzylidene) camphor, and 3-benzylidene camphor) in human placental tissue is proposed. The method involves the extraction of the analytes from the samples using ethyl acetate, followed by a clean-up step using centrifugation prior to their quantification by LC-MS/MS using an atmospheric pressure chemical ionization (APCI) interface. Bisphenol A-d16 was used as surrogate for the determination of benzyl salicylate, phenyl salicylate, octyl salicylate and homosalate in negative mode and benzophenone-d10, was used as surrogate for the determination of 3-(4-methylbenzylidene) camphor and 3-benzylidene camphor in positive mode. The found limits of detection ranged from 0.4 to 0.6ngg(-1) and the limits of quantification ranged from 1.3 to 2.0ngg(-1), while variability was under 13.7%. Recovery rates for spiked samples ranged from 97% to 104%. Moreover, the interactions of these compounds with the human estrogen receptor alpha (hERα) and androgen receptor (hAR), using two in vitro bioassays based on reporter gene expression and cell proliferation assessment, were also investigated. All tested compounds, except benzyl salicylate and octyl salicylate, showed estrogenic activity in the E-Screen bioassay whereas only homosalate and 3-(4-methylbenzylidene) camphor were potent hAR antagonists. Although free salicylate derivatives and free camphor derivatives were not detected in the human placenta samples analyzed, the observed estrogenic and anti-androgenic activities of some of these compounds support the analysis of their occurrence and their role as endocrine disrupters in humans. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jabri, Atef; Nguyen, Ha Vinh Lam; Kleiner, Isabelle; Van, Vinh; Stahl, Wolfgang
2016-06-01
The Fourier transform microwave spectra of the E and the Z isomer of butadienyl acetate have been measured in the frequency range from 2 to 26.5 GHz under molecular beam conditions. The most stable conformer of each isomer, in which all heavy atoms are located in a symmetry plane, was identified after analyzing the spectrum by comparison with results from quantum chemical calculations. The barrier to internal rotation of the acetyl methyl group was found to be 149.1822(20) cm-1 and 150.2128(48) cm-1 for the E and the Z isomer, respectively, which are similar to that of vinyl acetate. A comparison between two theoretical approaches treating internal rotations, the rho axis method (using the program BELGI-Cs) and combined axis method (using the program XIAM), is also performed. Since several years we study the barriers to internal rotation of the acetyl methyl group in acetates, CH3-COOR. Currently, we assume that all acetates can be divided into three classes. Class I contains α,β saturated acetates, where the torsional barrier is always close to 100 cm-1. Examples are a series of alkyl acetates such as methyl acetate and ethyl acetate. Class II contains α,β-unsaturated acetates where the C=C double bond is located in the COO plane. This is the case of vinyl acetate and butadienyl acetate. Finally, in class III with isopropenyl acetate and phenyl acetate as two representatives, α,β-unsaturated acetates, in which the double bond is not located in the COO plane, are collected. There, we observed a barrier height around 135 cm-1. This observation will be discussed in details. B. Velino, A. Maris, S. Melandri, W. Caminati, J. Mol. Spectrosc. 2009, 256, 228 H. V. L. Nguyen, A. Jabri, V. Van, and W. Stahl, J. Phys. Chem. A, 2014, 118, 12130.
Effects of salicylate on 3,4-methylenedioxymethamphetamine (MDMA)-induced neurotoxicity in rats.
Yeh, S Y
1997-11-01
The drug 3,4-methylenedioxymethamphetamine (MDMA) is a serotonergic neurotoxicant that causes hyperthermia and depletion of serotonin (5-HT) and 5-hydroxy-indole-3-acetic acid (5-HIAA) in the central nervous system. Formation of neurotoxic metabolites of MDMA, e.g., 2,4,5-trihydroxy-methamphetamine and 2,4,5-trihydroxyamphetamine, involves hydroxyl and/or superoxide free radicals. The present study was designed to determine whether the hydroxyl free-radical-trapping agent salicylate could provide protection against MDMA neurotoxicity in rats. In the acute studies, sodium salicylate (12.5-400 mg/kg, calculated as free acid) was injected interperitoneally (i.p.) 1 h before subcutaneous (s.c.) injections of MDMA (20 mg/kg as base). In the chronic studies, sodium salicylate (3.1-100 mg/kg) was injected i.p. 1 h before repeated s.c. injections of MDMA (10 mg/kg as base, twice daily, at 0830 and 1730 h for 4 consecutive days). Repeated MDMA administration depleted contents of 5-HT and 5-HIAA in the frontal cortex, hippocampus and striatum. Coadministration of salicylate plus MDMA did not significantly alter MDMA-induced depletion of 5-HT and 5-HIAA in these tissues. Thus, salicylate, a hydroxyl free-radical-trapping agent, does not protect against MDMA-induced hyperthermia and depletion of 5-HT and 5-HIAA. These observations suggest that MDMA-induced neurotoxicity may occur mainly through the production of superoxide or other radicals rather than hydroxyl free radicals. Salicylate actually potentiated MDMA-induced hyperthermia and lethality, findings that might be of clinical relevance.
40 CFR 180.551 - Fluthiacet-methyl; tolerances for residues.
Code of Federal Regulations, 2013 CFR
2013-07-01
... residues of the herbicide, fluthiacet-methyl, acetic acid [[2-chloro-4-fluoro-5-[(tetrahydro-3-oxo-1H,3H-[1... established for the combined residues of the herbicide fluthiacet-methyland its acid metabolite: acetic acid...
40 CFR 180.551 - Fluthiacet-methyl; tolerances for residues.
Code of Federal Regulations, 2011 CFR
2011-07-01
... residues of the herbicide, fluthiacet-methyl, acetic acid [[2-chloro-4-fluoro-5-[(tetrahydro-3-oxo-1H,3H-[1... established for the combined residues of the herbicide fluthiacet-methyland its acid metabolite: acetic acid...
40 CFR 180.551 - Fluthiacet-methyl; tolerances for residues.
Code of Federal Regulations, 2014 CFR
2014-07-01
... residues of the herbicide, fluthiacet-methyl, acetic acid [[2-chloro-4-fluoro-5-[(tetrahydro-3-oxo-1H,3H-[1... established for the combined residues of the herbicide fluthiacet-methyland its acid metabolite: acetic acid...
40 CFR 180.551 - Fluthiacet-methyl; tolerances for residues.
Code of Federal Regulations, 2010 CFR
2010-07-01
... residues of the herbicide, fluthiacet-methyl, acetic acid [[2-chloro-4-fluoro-5-[(tetrahydro-3-oxo-1H,3H-[1... established for the combined residues of the herbicide fluthiacet-methyland its acid metabolite: acetic acid...
40 CFR 180.551 - Fluthiacet-methyl; tolerances for residues.
Code of Federal Regulations, 2012 CFR
2012-07-01
... residues of the herbicide, fluthiacet-methyl, acetic acid [[2-chloro-4-fluoro-5-[(tetrahydro-3-oxo-1H,3H-[1... established for the combined residues of the herbicide fluthiacet-methyland its acid metabolite: acetic acid...
Rai, Krishna Kumar; Rai, Nagendra; Rai, Shashi Pandey
2018-07-01
Salicylic acid (SA) and sodium nitroprusside (SNP, NO donor) modulates plant growth and development processes and recent findings have also revealed their involvement in the regulation of epigenetic factors under stress condition. In the present study, some of these factors were comparatively studied in hyacinth bean plants subjected to high temperature (HT) environment (40-42 °C) with and without exogenous application of SA and SNP under field condition. Exogenous application of SA and SNP substantially modulated the growth and biophysical process of hyacinth bean plants under HT environment. Exogenous application of SA and SNP also remarkably regulated the activities of antioxidant enzymes, modulated mRNA level of certain enzymes, improves plant water relation, enhance photosynthesis and thereby increasing plant defence under HT. Coupled restriction enzyme digestion-random amplification (CRED-RA) technique revealed that many methylation changes were "dose dependent" and HT significantly increased DNA damages as evidenced by both increase and decrease in bands profiles, methylation and de-methylation pattern. Thus, the result of the present study clearly shows that exogenous SA and SNP regulates DNA methylation pattern, modulates stress-responsive genes and can impart transient HT tolerance by synchronizing growth and physiological acclimatization of plants, thus narrowing the gaps between physio-biochemical and molecular events in addressing HT tolerance. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
40 CFR 180.595 - Flufenpyr-ethyl; tolerances for residues.
Code of Federal Regulations, 2013 CFR
2013-07-01
... residues of the herbicide, flufenpyr-ethyl; acetic acid, [2-chloro-4-fluoro-5-[5-methyl-6-oxo-4... established for residues of the herbicide flufenpyr-ethyl; acetic acid, [2-chloro-4-fluoro-5-[5-methyl-6-oxo-4...
40 CFR 180.595 - Flufenpyr-ethyl; tolerances for residues.
Code of Federal Regulations, 2012 CFR
2012-07-01
... residues of the herbicide, flufenpyr-ethyl; acetic acid, [2-chloro-4-fluoro-5-[5-methyl-6-oxo-4... established for residues of the herbicide flufenpyr-ethyl; acetic acid, [2-chloro-4-fluoro-5-[5-methyl-6-oxo-4...
40 CFR 180.595 - Flufenpyr-ethyl; tolerances for residues.
Code of Federal Regulations, 2014 CFR
2014-07-01
... residues of the herbicide, flufenpyr-ethyl; acetic acid, [2-chloro-4-fluoro-5-[5-methyl-6-oxo-4... established for residues of the herbicide flufenpyr-ethyl; acetic acid, [2-chloro-4-fluoro-5-[5-methyl-6-oxo-4...
40 CFR 180.595 - Flufenpyr-ethyl; tolerances for residues.
Code of Federal Regulations, 2011 CFR
2011-07-01
... residues of the herbicide, flufenpyr-ethyl; acetic acid, [2-chloro-4-fluoro-5-[5-methyl-6-oxo-4... established for residues of the herbicide flufenpyr-ethyl; acetic acid, [2-chloro-4-fluoro-5-[5-methyl-6-oxo-4...
40 CFR 180.595 - Flufenpyr-ethyl; tolerances for residues.
Code of Federal Regulations, 2010 CFR
2010-07-01
... residues of the herbicide, flufenpyr-ethyl; acetic acid, [2-chloro-4-fluoro-5-[5-methyl-6-oxo-4... established for residues of the herbicide flufenpyr-ethyl; acetic acid, [2-chloro-4-fluoro-5-[5-methyl-6-oxo-4...
Generation of Free Radicals during Cold Injury and Rewarming
1988-01-01
a mixture of sodium citrate (0.05 M) and sodium acetate (0.03 M) (pH 4.5); 50 ; 1 of 70% perchloric acid was then added to the mixture. The resultant...products of salicylic acid were eluted with buffer (degassed and filtered) containing 0.03 M sodium acetate and 0.05 M sodium citrate 6 (pH 4.5) at a...Malonaldehyde was measured as an index for lipid peroxidation. Plasma (0.5 ml) was added to 0.5 ml ice-cold perchloric acid (15%) and then treated with
Mhlongo, M I; Tugizimana, F; Piater, L A; Steenkamp, P A; Madala, N E; Dubery, I A
2017-01-22
To counteract biotic stress factors, plants employ multilayered defense mechanisms responsive to pathogen-derived elicitor molecules, and regulated by different phytohormones and signaling molecules. Here, lipopolysaccharide (LPS), a microbe-associated molecular pattern (MAMP) molecule, was used to induce defense responses in Nicotiana tabacum cell suspensions. Intracellular metabolites were extracted with methanol and analyzed using a liquid chromatography-mass spectrometry (UHPLC-qTOF-MS/MS) platform. The generated data were processed and examined with multivariate and univariate statistical tools. The results show time-dependent dynamic changes and accumulation of glycosylated signaling molecules, specifically those of azelaic acid, salicylic acid and methyl-salicylate as contributors to the altered metabolomic state in LPS-treated cells. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matera, I.; Ferraroni, M.; Bürger, S.
2006-06-01
Salicylate 1,2-dioxygenase, a new ring-fission dioxygenase from the naphthalenesulfonate-degrading strain P. salicylatoxidans, which oxidizes salicylate to 2-oxohepta-3,5-dienedioic acid by a novel ring-fission mechanism, has been crystallized. The crystals obtained give diffraction data to 2.9 Å resolution which could assist in the elucidation of the catalytic mechanism of this peculiar dioxygenase. Salicylate 1,2-dioxygenase, a new ring-fission dioxygenase from the naphthalenesulfonate-degrading strain Pseudaminobacter salicylatoxidans which oxidizes salicylate to 2-oxohepta-3,5-dienedioic acid by a novel ring-fission mechanism, has been crystallized. Diffraction-quality crystals of salicylate 1,2-dioxygenase were obtained using the sitting-drop vapour-diffusion method at 277 K from a solution containing 10%(w/v) ethanol, 6%(w/v) PEG 400,more » 0.1 M sodium acetate pH 4.6. Crystals belong to the primitive tetragonal space group P4{sub 3}2{sub 1}2 or P4{sub 1}2{sub 1}2, with unit-cell parameters a = 133.3, c = 191.51 Å. A complete data set at 100 K extending to a maximum resolution of 2.9 Å was collected at a wavelength of 0.8423 Å. Molecular replacement using the coordinates of known extradiol dioxygenases structures as a model has so far failed to provide a solution for salicylate 1,2-dioxygenase. Attempts are currently being made to solve the structure of the enzyme by MAD experiments using the anomalous signal of the catalytic Fe{sup II} ions. The salicylate 1,2-dioxygenase structural model will assist in the elucidation of the catalytic mechanism of this ring-fission dioxygenase from P. salicylatoxidans, which differs markedly from the known gentisate 1,2-dioxygenases or 1-hydroxy-2-naphthoate dioxygenases because of its unique ability to oxidatively cleave salicylate, gentisate and 1-hydroxy-2-naphthoate with high catalytic efficiency.« less
RALLI, M.; TROIANI, D.; PODDA, M.V.; PACIELLO, F.; ERAMO, S.L.M.; DE CORSO, E.; SALVI, R.; PALUDETTI, G.; FETONI, A.R.
2014-01-01
SUMMARY Short-term tinnitus develops shortly after the administration of a high dose of salicylate. Since salicylate selectively potentiates N-methyl- D-aspartate (NMDA) currents in spiral ganglion neurons, it may play a vital role in tinnitus by amplifying NMDA-mediated neurotransmission. The aim of this study was to determine whether systemic treatment with a NMDA channel blocker, memantine, could prevent salicylate-induced tinnitus in animals. Additional experiments were performed to evaluate the effect of memantine on the auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE) to test for changes in hearing function. Thirty-six rats were divided into 3 groups and treated daily for four consecutive days. One group (n = 12) was injected with salicylate (300 mg/kg/d, IP), the second (n = 12) was treated with memantine (5 mg/kg/d, IP) and the third group (n = 12) was injected with salicylate and memantine. All rats were tested for tinnitus and hearing loss at 2, 24, 48 and 72 h after the first drug administration and 24 h post treatment; tinnituslike behaviour was assessed with gap prepulse inhibition of acoustic startle (GPIAS), and hearing function was measured with DPOAE, ABR and noise burst prepulse inhibition of acoustic startle (NBPIAS). Rats in the salicylate group showed impaired GPIAS indicative of transient tinnitus-like behaviour near 16 kHz that recovered 24 h after the last salicylate treatment. Memantine did not cause a significant change in GPIAS. Combined injection of salicylate and memantine significantly attenuated GPIAS tinnitus-like behaviour at 48 hours after the first injection. None of the treatments induced permanent threshold shifts in the ABR and DPOAE, which recovered completely within one day post treatment. Animals treated with salicylate plus memantine showed results comparable to animals treated with salicylate alone, confirming that there is no effect of memantine on DPOAE which reflects OHC function. The present study confirms the role of cochlear NMDA receptors in the induction of salicylate-induced tinnitus. PMID:24882929
Glowacz, Marcin; Bill, Malick; Tinyane, Peter P; Sivakumar, Dharini
2017-12-01
Low temperatures are often used to reduce metabolic processes and extend the storage life of fruit; however, in the case of avocado, a temperature below 3 °C will often result in the development of physiological disorders associated with chilling injury. The objective of this study was to investigate the ability of methyl jasmonate (MeJA) and methyl salicylate (MeSA) vapours to alleviate chilling injury in 'Hass' avocado fruit kept at 2 °C for 21 days followed by 6-7 days of shelf-life at 20 °C, simulating supply chain conditions. The incidence and severity of chilling injury were significantly reduced in MeJA- and MeSA-exposed fruit, especially at 100 µmol L -1 . The mechanism involved improved membrane integrity via alteration of the fatty acid content and composition, down-regulation of LOX gene expression and reduced activity of lipoxygenase. MeJA and MeSA have the potential for being used with 'Hass' avocado fruit shipped at low temperature to reduce its susceptibility to chilling injury. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Zhu, Feng; Xi, De-Hui; Yuan, Shu; Xu, Fei; Zhang, Da-Wei; Lin, Hong-Hui
2014-06-01
Systemic resistance is induced by pathogens and confers protection against a broad range of pathogens. Recent studies have indicated that salicylic acid (SA) derivative methyl salicylate (MeSA) serves as a long-distance phloem-mobile systemic resistance signal in tobacco, Arabidopsis, and potato. However, other experiments indicate that jasmonic acid (JA) is a critical mobile signal. Here, we present evidence suggesting both MeSA and methyl jasmonate (MeJA) are essential for systemic resistance against Tobacco mosaic virus (TMV), possibly acting as the initiating signals for systemic resistance. Foliar application of JA followed by SA triggered the strongest systemic resistance against TMV. Furthermore, we use a virus-induced gene-silencing-based genetics approach to investigate the function of JA and SA biosynthesis or signaling genes in systemic response against TMV infection. Silencing of SA or JA biosynthetic and signaling genes in Nicotiana benthamiana plants increased susceptibility to TMV. Genetic experiments also proved the irreplaceable roles of MeSA and MeJA in systemic resistance response. Systemic resistance was compromised when SA methyl transferase or JA carboxyl methyltransferase, which are required for MeSA and MeJA formation, respectively, were silenced. Moreover, high-performance liquid chromatography-mass spectrometry analysis indicated that JA and MeJA accumulated in phloem exudates of leaves at early stages and SA and MeSA accumulated at later stages, after TMV infection. Our data also indicated that JA and MeJA could regulate MeSA and SA production. Taken together, our results demonstrate that (Me)JA and (Me)SA are required for systemic resistance response against TMV.
NASA Astrophysics Data System (ADS)
Szeleszczuk, Łukasz; Gubica, Tomasz; Zimniak, Andrzej; Pisklak, Dariusz M.; Dąbrowska, Kinga; Cyrański, Michał K.; Kańska, Marianna
2017-10-01
A convenient method for the indirect crystal structure verification of methyl glycosides was demonstrated. Single-crystal X-ray diffraction structures for methyl glycoside acetates were deacetylated and subsequently subjected to DFT calculations under periodic boundary conditions. Solid-state NMR spectroscopy served as a guide for calculations. A high level of accuracy of the modelled crystal structures of methyl glycosides was confirmed by comparison with published results of neutron diffraction study using RMSD method.
2011-01-01
Background Neuroinflammation has been known to play a critical role in the pathogenesis of Alzheimer's disease (AD). Activation of microglia and astrocytes is a characteristic of brain inflammation. Epidemiological studies have shown that long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) delays the onset of AD and suppresses its progression. Methyl salicylate-2-O-β-D-lactoside (DL0309) is a new molecule chemically related to salicylic acid. The present study aimed to evaluate the anti-inflammatory effects of DL0309. Findings Our studies show that DL0309 significantly inhibits lipopolysaccharide (LPS)-induced release of the pro-inflammatory cytokines IL-6, IL-1β, and TNF-α; and the expression of the inflammation-related proteins iNOS, COX-1, and COX-2 by microglia and astrocytes. At a concentration of 10 μM, DL0309 prominently inhibited LPS-induced activation of NF-κB in glial cells by blocking phosphorylation of IKK and p65, and by blocking IκB degradation. Conclusions We demonstrate here for the first time that DL0309 exerts anti-inflammatory effects in glial cells by suppressing different pro-inflammatory cytokines and iNOS/NO. Furthermore, it also regulates the NF-κB signaling pathway by blocking IKK and p65 activation and IκB degradation. DL0309 also acts as a non-selective COX inhibitor in glial cells. These studies suggest that DL0309 may be effective in the treatment of neuroinflammatory disorders, including AD. PMID:21831328
2017-06-27
of the simulants paraoxon, methyl salicylate, dimethyl methylphosphate, and diisopropyl fluorophosphates following treatment of contaminated surfaces...Biological Defense Program (CBDP) seeks to provide protection of forces in a contaminated environment including contamination avoidance, individual
TSCA Environmental Release Application (TERA) for Modified Pseudomonas Fluorescens
TERA submitted by Micro Systems Technologies, LLC and given the tracking designations of R-02-0001. The microorganism has been genetically modified to contain a bioluminescent gene that is activated upon metabolism of naphthalene and/or methyl salicylate.
Jones, Rheinallt M.; Pagmantidis, Vassilis; Williams, Peter A.
2000-01-01
A 5-kbp region upstream of the are-ben-cat genes was cloned from Acinetobacter sp. strain ADP1, extending the supraoperonic cluster of catabolic genes to 30 kbp. Four open reading frames, salA, salR, salE, and salD, were identified from the nucleotide sequence. Reverse transcription-PCR studies suggested that these open reading frames are organized into two convergent transcription units, salAR and salDE. The salE gene, encoding a protein of 239 residues, was ligated into expression vector pET5a. Its product, SalE, was shown to have esterase activity against short-chain alkyl esters of 4-nitrophenol but was also able to hydrolyze ethyl salicylate to ethanol and salicylic acid. A mutant of ADP1 with a Kmr cassette introduced into salE had lost the ability to utilize only ethyl and methyl salicylates of the esters tested as sole carbon sources, and no esterase activity against ethyl salicylate could be detected in cell extracts. SalE was induced during growth on ethyl salicylate but not during growth on salicylate itself. salD encoded a protein of undetermined function with homologies to the Escherichia coli FadL membrane protein, which is involved in facilitating fatty acid transport, and a number of other proteins detected during aromatic catabolism, which may also function in hydrocarbon transport or uptake processes. A Kmr cassette insertion in salD deleteriously affected cell growth and viability. The salA and salR gene products closely resemble two Pseudomonas proteins, NahG and NahR, respectively encoding salicylate hydroxylase and the LysR family regulator of both salicylate and naphthalene catabolism. salA was cloned into pUC18 together with salR and salE, and its gene product showed salicylate-inducible hydroxylase activity against a range of substituted salicylates, with the same relative specific activities as found in wild-type ADP1 grown on salicylate. Mutations involving insertion of Kmr cassettes into salA and salR eliminated expression of salicylate hydroxylase activity and the ability to grow on either salicylate or ethyl salicylate. Studies of mutants with disruptions of genes of the β-ketoadipate pathway with or without an additional salE mutation confirmed that ethyl salicylate and salicylate were channeled into the β-ketoadipate pathway at the level of catechol and thence dissimilated by the cat gene products. SalR appeared to regulate expression of salA but not salE. PMID:10715011
New Approaches for Prostate Cancer Combination Therapy
2009-04-01
promoter methylation have been frequently observed in several types of human cancer (60, 61). In conclusion, the ability of NSAIDs to induce apoptosis...drug. Clin Pharmacokinet 1999; 36:115–26. 31. Yin MJ, Yamamoto Y, Gaynor RB. The anti- inflammatory agents aspirin and salicylate inhibit the activity...expression of the growth inhibitory gene GADD45g, in human pituitary adenomas, is asso- ciated with CpG island methylation . Oncogene 2004;23: 936–44. 61
Mobility and Molecular Ions of Dimethyl Methyl Phosphonate, Methyl Salicylate, and Acetone.
1983-06-01
MICRCOP REOUIO.ET1HR NICOCOPY BRESOUIO EST CHAR T AD .-..., CHEMICOL f.. SYSTEMS US Army Armament 11..: LABORATORY Research and Development Command _NTR...ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK Commnde, Cemicl Sstes LaoraoryAREA & WORK U NIT’NUMBERS CommNder DARCemia Systems Laborato...Chemical Systems Laboratory, ATTN: DRDAR-CLJ-IR, Aberdeen Proving Ground, Maryland 21010. However, the Defense Technical Information Center and National
Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; Zhao, Nan; Chen, Feng; Yang, Xiaohan; Guo, Hong
2015-09-01
Although one of an enzyme's hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. It is known that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. Here we report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Our results demonstrate that this enzyme may use substrate-assisted catalysis involving the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta
Although one of an enzyme’s hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. We know that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. We report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Finally, our results demonstrate that this enzyme may use substrate-assisted catalysis involvingmore » the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.« less
Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; ...
2015-08-05
Although one of an enzyme’s hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. We know that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. We report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Finally, our results demonstrate that this enzyme may use substrate-assisted catalysis involvingmore » the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.« less
Salicylate-induced changes in immediate-early genes in the hippocampal CA1 area
WU, HAO; XU, FENG-LEI; YIN, YONG; DA, PENG; YOU, XIAO-DONG; XU, HUI-MIN; TANG, YAN
2015-01-01
Studies have suggested that salicylate affects neuronal function via interactions with specific membrane channels/receptors. However, the effect of salicylate on activity and synaptic morphology of the hippocampal Cornu Ammonis (CA) 1 area remains to be elucidated. The activation of immediate-early genes (IEGs) was reported to correlate with neuronal activity, in particular activity-regulated cytoskeleton-associated protein and early growth response gene 1. The aim of the present study was to evaluate the expression of these IEGs, as well that of N-methyl D-aspartate (NMDA) receptor subunit 2B in rats following acute and chronic salicylate treatment. Protein and messenger RNA levels of all three genes were increased in rats following chronic administration of salicylate (300 mg/kg for 10 days), returning to baseline levels 14 days post-cessation of treatment. The transient upregulation of gene expression following treatment was accompanied by ultrastructural alterations in hippocampal CA1 area synapses. An increase in synaptic interface curvature was observed as well as an increased number of presynaptic vesicles; in addition, postsynaptic densities thickened and lengthened. In conclusion, the results of the present study indicated that chronic exposure to salicylate may lead to structural alteration of hippocampal CA1 neurons, and it was suggested that this process occurs through induced expression of IEGs via NMDA receptor activation. PMID:25873216
Wahidullah, Solimabi; Naik, Deepak N.; Devi, Prabha
2013-01-01
As part of a proactive approach to environmental protection, emerging issues with potential impact on the environment is the subject of ongoing investigation. One emerging area of environmental research concerns pharmaceuticals like salicylic acid, which is the main metabolite of various analgesics including aspirin. It is a common component of sewage effluent and also an intermediate in the degradation pathway of various aromatic compounds which are introduced in the marine environment as pollutants. In this study, biotransformation products of salicylic acid by seaweed, Bryopsis plumosa, associated marine bacterium, Moraxella spp. MB1, have been investigated. Phenol, conjugates of phenol and hydroxy cinnamic acid derivatives (coumaroyl, caffeoyl, feruloyl and trihydroxy cinnamyl) with salicylic acid (3–8) were identified as the bioconversion products by electrospray ionization mass spectrometry. These results show that the microorganism do not degrade phenolic acid but catalyses oxygen dependent transformations without ring cleavage. The degradation of salicylic acid is known to proceed either via gentisic acid pathway or catechol pathway but this is the first report of biotransformation of salicylic acid into cinnamates, without ring cleavage. Besides cinnamic acid derivatives (9–12), metabolites produced by the bacterium include antimicrobial indole (13) and β-carbolines, norharman (14), harman (15) and methyl derivative (16), which are beneficial to the host and the environment. PMID:24391802
Nonaqueous polypyrrole colloids
Armes, Steven P.; Aldissi, Mahmoud
1991-01-01
Processable conductive polymers including an oxidized, polymerized aromatic heterocyclic monomer, e.g., pyrrole, an stabilizing effective amount of a poly(vinyl acetate) and dopant anions, and a process of preparing said processable conductive polymers directly in a nonaqueous medium such as methyl acetate, methyl formate, ethyl formate, and propyl formate are disclosed.
Floral benzenoid carboxyl methyltransferases: From in vitro to in planta function
Effmert, Uta; Saschenbrecker, Sandra; Ross, Jeannine; Negre, Florence; Fraser, Chris M.; Noel, Joseph P.; Dudareva, Natalia; Piechulla, Birgit
2010-01-01
Benzenoid carboxyl methyltransferases synthesize methyl esters (e.g., methyl benzoate and methyl salicylate), which are constituents of aromas and scents of many plant species and play important roles in plant communication with the surrounding environment. Within the past five years, eleven such carboxyl methyltransferases were isolated and most of them were comprehensively investigated at the biochemical, molecular and structural level. Two types of enzymes can be distinguished according to their substrate preferences: the SAMT-type enzymes isolated from Clarkia breweri, Stephanotis floribunda, Antirrhinum majus, Hoya carnosa, and Petunia hybrida, which have a higher catalytic efficiency and preference for salicylic acid, while BAMT-type enzymes from A. majus, Arabidopsis thaliana, Arabidopsis lyrata, and Nicotiana suaveolens prefer benzoic acid. The elucidation of C. breweri SAMT’s three-dimensional structure allowed a detailed modelling of the active sites of the carboxyl methyltransferases and revealed that the SAM binding pocket is highly conserved among these enzymes while the methyl acceptor binding site exhibits some variability, allowing a classification into SAMT-type and BAMT-type enzymes. The analysis of expression patterns coupled with biochemical characterization showed that these carboxyl methyltransferases are involved either in floral scent biosynthesis or in plant defense responses. While the latter can be induced by biotic or abiotic stress, the genes responsible for floral scent synthesis exhibit developmental and rhythmic expression pattern. The nature of the product and efficiency of its formation in planta depend on the availability of substrates, the catalytic efficiency of the enzyme toward benzoic acid and/or salicylic acid, and the transcriptional, translational, and post-translational regulation at the enzyme level. The biochemical properties of benzenoid carboxyl methyltransferases suggest that the genes involved in plant defenses might represent the ancestor for the presently existing floral genes which during evolution gained different expression profiles and encoded enzymes with the ability to accept structurally similar substrates. PMID:15946712
Hwang, Juen-Haur; Chen, Jin-Cherng; Chan, Yin-Ching
2013-01-01
Effects of C-phycocyanin (C-PC), the active component of Spirulina platensis water extract on the expressions of N-methyl D-aspartate receptor subunit 2B (NR2B), tumor necrosis factor–α (TNF-α), interleukin-1β (IL-1β), and cyclooxygenase type 2 (COX-2) genes in the cochlea and inferior colliculus (IC) of mice were evaluated after tinnitus was induced by intraperitoneal injection of salicylate. The results showed that 4-day salicylate treatment (unlike 4-day saline treatment) caused a significant increase in NR2B, TNF-α, and IL-1β mRNAs expression in the cochlea and IC. On the other hand, dietary supplementation with C-PC or Spirulina platensis water extract significantly reduced the salicylate-induced tinnitus and down-regulated the mRNAs expression of NR2B, TNF-α, IL-1β mRNAs, and COX-2 genes in the cochlea and IC of mice. The changes of protein expression levels were generally correlated with those of mRNAs expression levels in the IC for above genes. PMID:23533584
Onuwe, H A; Amadi, K; Odeh, S O
2013-12-20
This study was designed to compare the efficacy of double-modality therapy, phonophoresis and cryotherapy in the management of pain among subjects who suffered from musculoskeletal injuries (MSIs).Sixty (60) subjects were assigned randomly to one of three groups: DMT group (n=20) received cryotherapy and 15% methyl salicylate phonophoresis, PHONO group (n=20) received 15% methyl salicylate phonophoresis and CRYO group (n=20) received cryotherapy and "sham‟ phonophoresis. Ultrasound at an intensity of 1.5 W/cm² and frequency of 1MHz was used to apply methyl salicylate while intermittent cryotherapy was the mode of application. Subjects‟ pre- and post-treatment pain perception scores (PPS) using visual analogue scale (VAS) were assessed and the sessions of treatment in all groups were recorded. Treatment was administered on alternate days and discharges were made in all groups when subjects were pain free. A total of 275 treatment sessions was recorded - 72 (26.2%) in DMT, 105 (38.2%) in PHONO and 98 (35.6%) in CRYO group respectively which indicated no significant difference (P>0.05). Nineteen (19), thirteen (13) and twelve (12) subjects were pain free in DMT, CRYO or PHONO groups respectively after 1 to 5 treatments. The difference in the severity of pain was significant (P<0.05) in each group post-treatment which suggests that DMT, phonophoresis and cryotherapy were equally effective. The study has demonstrated therapeutic efficacy of DMT, but it was not superior to the single treatment protocol of phonophoresis or cryotherapy. However, it might take fewer sessions in the DMT group to treat and make more than 90% of the subjects pain free and fit to return to active performance.
Electron impact dissociation of amorphous cis-methyl acetate ice analogs
NASA Astrophysics Data System (ADS)
Sivaraman, B.; Mukherjee, R.; Subramanian, K. P.; Banerjee, S. B.
2014-08-01
We have carried out, for the first time, electron irradiation on methyl acetate (CH3COOCH3) ices grown, under astrochemical condition, at 85 K and the chemical changes were probed by FTIR spectroscopy in the mid-IR region (4000-500 cm-1). Carbon dioxide (CO2), carbon monoxide (CO) molecules were found to be the major products indicating a competing dissociation pathway along with the by-products ethane (C2H6) and dimethyl ether (CH3OCH3), respectively. CH3OH (methyl alcohol) formation showed the possibility of acetate to alcohol conversion by keV electron irradiation. In addition irradiation induced aggregation of CH3COOCH3 molecules is also proposed.
Ament, Kai; Kant, Merijn R.; Sabelis, Maurice W.; Haring, Michel A.; Schuurink, Robert C.
2004-01-01
The tomato (Lycopersicon esculentum) mutant def-1, which is deficient in induced jasmonic acid (JA) accumulation upon wounding or herbivory, was used to study the role of JA in the direct and indirect defense responses to phytophagous mites (Tetranychus urticae). In contrast to earlier reports, spider mites laid as many eggs and caused as much damage on def-1 as on wild-type plants, even though def-1 lacked induction of proteinase inhibitor activity. However, the hatching-rate of eggs on def-1 was significantly higher, suggesting that JA-dependent direct defenses enhanced egg mortality or increased the time needed for embryonic development. As to gene expression, def-1 had lower levels of JA-related transcripts but higher levels of salicylic acid (SA) related transcripts after 1 d of spider mite infestation. Furthermore, the indirect defense response was absent in def-1, since the five typical spider mite-induced tomato-volatiles (methyl salicylate [MeSA], 4,8,12-trimethyltrideca-1,3,7,11-tetraene [TMTT], linalool, trans-nerolidol, and trans-β-ocimene) were not induced and the predatory mite Phytoseiulus persimilis did not discriminate between infested and uninfested def-1 tomatoes as it did with wild-type tomatoes. Similarly, the expression of the MeSA biosynthetic gene salicylic acid methyltransferase (SAMT) was induced by spider mites in wild type but not in def-1. Exogenous application of JA to def-1 induced the accumulation of SAMT and putative geranylgeranyl diphosphate synthase transcripts and restored MeSA- and TMTT-emission upon herbivory. JA is therefore necessary to induce the enzymatic conversion of SA into MeSA. We conclude that JA is essential for establishing the spider mite-induced indirect defense response in tomato. PMID:15310835
A new route to synthesize aryl acetates from carbonylation of aryl methyl ethers
Yang, Youdi; Li, Shaopeng; Han, Buxing
2018-01-01
Ether bond activation is very interesting because the synthesis of many valuable compounds involves conversion of ethers. Moreover, C–O bond cleavage is also very important for the transformation of biomass, especially lignin, which abundantly contains ether bonds. Developing efficient methods to activate aromatic ether bonds has attracted much attention. However, this is a challenge because of the inertness of aryl ether bonds. We proposed a new route to activate aryl methyl ether bonds and synthesize aryl acetates by carbonylation of aryl methyl ethers. The reaction could proceed over RhCl3 in the presence of LiI and LiBF4, and moderate to high yields of aryl acetates could be obtained from transformation of various aryl methyl ethers with different substituents. It was found that LiBF4 could assist LiI to cleave aryl methyl ether bonds effectively. The reaction mechanism was proposed by a combination of experimental and theoretical studies. PMID:29795781
40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.304 Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The...
Li, Jingfen; Yin, Yong; Wang, Lisheng; Liang, Pengyun; Li, Menghua; Liu, Xu; Wu, Lichuan; Yang, Hua
2016-11-23
In this study, a new series of 16 methyl salicylate derivatives bearing a piperazine moiety were synthesized and characterized. The in vivo anti-inflammatory activities of target compounds were investigated against xylol-induced ear edema and carrageenan-induced paw edema in mice. The results showed that all synthesized compounds exhibited potent anti-inflammatory activities. Especially, the anti-inflammatory activities of compounds M15 and M16 were higher than that of aspirin and even equal to that of indomethacin at the same dose. In addition, the in vitro cytotoxicity activities and anti-inflammatory activities of four target compounds were performed in RAW264.7 macrophages, and compound M16 was found to significantly inhibit the release of lipopolysaccharide (LPS)-induced interleukin (IL)-6 and tumor necrosis factor (TNF)-α in a dose-dependent manner. In addition, compound M16 was found to attenuate LPS induced cyclooxygenase (COX)-2 up-regulation. The current preliminary study may provide information for the development of new and safe anti-inflammatory agents.
A reagent-assisted method in SERS detection of methyl salicylate
NASA Astrophysics Data System (ADS)
Li, Yali; Li, Qianwen; Wang, Yanan; Oh, Joohee; Jin, Sila; Park, Yeonju; Zhou, Tieli; Zhao, Bing; Ruan, Weidong; Jung, Young Mee
2018-04-01
With the explosive application of methyl salicylate (MS) molecules in food and cosmetics, the further detection of MS molecules becomes particularly important. Here we investigated the detection of MS molecules based on surface-enhanced Raman scattering (SERS) in a novel molecule/assistant/metal system constructed with MS, 4,4‧-(hexafluoroisopropylidene) bis (benzoic acid) and Ag nanoparticles (AgNPs). The minimum detection concentration is 10-4 M. To explore the function of assisted reagent, we also referred another system without assistant molecules. The result demonstrates that SERS signals were not acquired, which proves that the assistant molecules are critical for the capture of MS molecules. Two possible mechanisms of MS/assistant/AgNPs system were speculated through two patterns of hydrogen bonds. The linker molecules acted as the role of the bridge between metallic substrates and target molecules through the molecular recognition. This strategy is very beneficial to the expanding of MS detection techniques and other hydrogen bond based coupling detections with SERS.
Xu, Wei; Wang, Ting; Xu, Shaoxin; Li, Fanghua; Deng, Chenguang; Wu, Lijun; Wu, Yuejin; Bian, Po
2016-08-01
Plant stress responses at the epigenetic level are expected to allow more permanent changes of gene expression and potentially long-term adaptation. While it has been reported that plants subjected to adverse environments initiate various stress responses in their neighboring plants, little is known regarding epigenetic responses to external stresses mediated by plant-plant communication. In this study, we show that DNA repetitive elements of Arabidopsis thaliana, whose expression is inhibited epigenetically by transcriptional gene silencing (TGS) mechanism, are activated by UV-C irradiation through airborne plant-plant and plant-plant-plant communications, accompanied by DNA demethylation at CHH sites. Moreover, the TGS is alleviated by direct treatments with exogenous methyl jasmonate (MeJA) and methyl salicylate (MeSA). Further, the plant-plant and plant-plant-plant communications are blocked by mutations in the biosynthesis or signaling of jasmonic acid (JA) or salicylic acid (SA), indicating that JA and SA pathways are involved in the interplant communication for epigenetic responses. For the plant-plant-plant communication, stress cues are relayed to the last set of receiver plants by promoting the production of JA and SA signals in relaying plants, which exhibit upregulated expression of genes for JA and SA biosynthesis and enhanced emanation of MeJA and MeSA. Copyright © 2016 Elsevier B.V. All rights reserved.
40 CFR 60.489 - List of chemicals produced by affected facilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Resorcylic acid. 69-72-7 Salicylic acid. 127-09-3 Sodium acetate. 532-32-1 Sodium benzoate. 9004-32-4 Sodium... Benzoyl chloride. 100-51-6 Benzyl alcohol. 100-46-9 Benzylamine. 120-51-4 Benzyl benzoate. 100-44-7 Benzyl... 2-ethylhexanol. 122-51-0 Ethyl orthoformate. 95-92-1 Ethyl oxalate. 41892-71-1 Ethyl sodium...
40 CFR 60.489 - List of chemicals produced by affected facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Resorcylic acid. 69-72-7 Salicylic acid. 127-09-3 Sodium acetate. 532-32-1 Sodium benzoate. 9004-32-4 Sodium... Benzoyl chloride. 100-51-6 Benzyl alcohol. 100-46-9 Benzylamine. 120-51-4 Benzyl benzoate. 100-44-7 Benzyl... 2-ethylhexanol. 122-51-0 Ethyl orthoformate. 95-92-1 Ethyl oxalate. 41892-71-1 Ethyl sodium...
40 CFR 60.489 - List of chemicals produced by affected facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Resorcylic acid. 69-72-7 Salicylic acid. 127-09-3 Sodium acetate. 532-32-1 Sodium benzoate. 9004-32-4 Sodium... Benzoyl chloride. 100-51-6 Benzyl alcohol. 100-46-9 Benzylamine. 120-51-4 Benzyl benzoate. 100-44-7 Benzyl... 2-ethylhexanol. 122-51-0 Ethyl orthoformate. 95-92-1 Ethyl oxalate. 41892-71-1 Ethyl sodium...
Dadgar, D; Climax, J; Lambe, R; Darragh, A
1985-08-09
The liniment used is a topical analgesic and anti-inflammatory preparation containing two active constituents, 3-phenylpropylsalicylate and ethyl-5-methoxysalicylate, in solution in isobutyl decanoate. It is known that 3-phenylpropylsalicylate is metabolised to salicylic acid and salicyluric acid and ethyl-5-methoxysalicylate is metabolised to 5-methoxysalicylic acid and gentisic acid. In the present study the separation of the salicylates and their metabolites was carried out on a Waters mu Bondapak C18 column using two different mobile phases, methanol-water (80:20) for the parent drugs and methanol-5% aqueous acetic acid (27:73) for their metabolites. The salicylates and their metabolites were detected by absorption at 310 nm. The limits of detection for parent drugs and metabolites were respectively 0.2 and 0.1 microgram/ml in plasma, using a 1-ml plasma sample and a 20-microliter injection from a reconstituted volume of 250 microliter. Mean percentage coefficients of variation for intra-assay and inter-assay precision were between 3.3 +/- 1.9% to 9.1 +/- 3.7% and 6.8 +/- 2.2% to 15.7 +/- 10.1%, respectively. Linearity, as measured by the correlation coefficient of intra-assay linear regression curves, was better than 0.998 in all cases.
Bosco, Renato; Daeseleire, Els; Van Pamel, Els; Scariot, Valentina; Leus, Leen
2014-07-09
This paper describes a method to detect and quantitate the endogenous plant hormones (±)-2-cis-4-trans-abscisic acid, (-)-jasmonic acid, and salicylic acid by means of ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) in hybrid rose leaf matrices. Deuterium-labeled [(2)H6] (+)-2-cis-4-trans-abscisic acid, [(2)H6] (±)-jasmonic acid, and [(2)H4]-salicylic acid were used as internal standards. Rose samples (10 mg) were extracted with methanol/water/acetic acid (10:89:1) and subsequently purified on an Oasis MCX 1 cm(3) Vac SPE cartridge. Performance characteristics were validated according to Commission Decision 2002/657/EC. Recovery, repeatability, and within-laboratory reproducibility were acceptable for all phytohormones tested at three different concentrations. The decision limit and detection capability for (±)-2-cis-4-trans-abscisic acid, (-)-jasmonic acid, and salicylic acid were 0.0075 and 0.015 μg/g, 0.00015 and 0.00030 μg/g, and 0.0089 and 0.018 μg/g, respectively. Matrix effects (signal suppression or enhancement) appeared to be high for all substances considered, implying the need for quantitation based on matrix-matched calibration curves.
Activation of methyl acetate on Pd(111)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Lijun; Xu, Ye
2010-01-01
The absorption and activation of methyl acetate (CH{sub 3}COOCH{sub 3}), one of the simplest carboxylic esters, on Pd(111) have been studied using self-consistent periodic density functional theory calculations. Methyl acetate adsorbs weakly through the carbonyl oxygen. Its activation occurs via dehydrogenation, instead of direct C-O bond dissociation, on clean Pd(111): It is much more difficult to dissociate the C--O bonds ({epsilon}{sub a} ? 2.0 eV for the carbonyl and acetate-methyl bonds; {epsilon}{sub a} = 1.0 eV for the acetyl-methoxy bond) than to dissociate the C-H bonds to produce enolate (CH{sub 2}COOCH{sub 3}; {epsilon}{sub a} = 0.74 eV) or methylene acetatemore » (CH{sub 3}COOCH{sub 2}; {epsilon}{sub a} = 0.82 eV). The barriers for C-H and C-O bond dissociation are directly calculated for enolate and methylene acetate, and estimated for further dehydrogenated derivatives (CH{sub 3}COOCH, CH{sub 2}COOCH{sub 2}, and CHCOOCH{sub 3}) based on the Bronsted-Evans-Polanyi linear energy relations formed by the calculated steps. The enolate pathway leads to successive dehydrogenation to CCOOCH{sub 3}, whereas methylene acetate readily dissociates to yield acetyl. The selectivity for dissociating the acyl-alkoxy C-O bond, which is desired for alcohol formation, is therefore fundamentally limited by the facility of dehydrogenation under vacuum/low-pressure conditions on Pd(111).« less
The Analysis of Cyanide and Its Breakdown Products in Biological Samples
2010-01-01
simultaneous GC-mass spectrometric (MS) analysis of cyanide and thiocyanate, and Funazo et al. (53) quantita- tively methylated cyanide and thiocyanate for...selective membrane electrode for thiocyanate ion based on a bis-taurine- salicylic binuclear copper(II) complex as ionophore. Chinese Journal of Chemistry
Cattopadhyay, Kalicharan; Recio, Antonio; Tunge, Jon A
2012-09-14
We report the palladium-catalyzed, pyrrolidine-mediated α-benzylation of enamines generated from aldehydes and ketones. The method allows for direct coupling of medicinally relevant coumarin moieties with aldehydes and ketones in good yield under mild conditions. The reaction is believed to proceed via a Pd-π-benzyl complex generated from (coumarinyl)methyl acetates.
TSCA Environmental Release Application (TERA) for Pseudomonas fluorescens strains HK44 and 5RL
TERAs submitted by the University of Tennessee and Micro Systems Technologies, LLC and given the tracking designation of R-04-01 and R-04-02. The strain will be tested to examine its ability to detect and monitor naphthalene and methyl salicylate.
Attraction of Plecia nearctica (dipter:bibionidae) to floral lures containing phenylacetaldehyde
USDA-ARS?s Scientific Manuscript database
We observed that the floral odorant, phenylacetaldehyde (PAA), was attractive to both sexes of adult lovebugs (Plecia nearctica, Diptera: Bibionidae) in central and southern Florida. The addition of ß-myrcene and methyl salicylate to PAA did not improve the numbers of P. nearctica caught in delta tr...
Khandelia, Himanshu; Witzke, Sarah; Mouritsen, Ole G.
2010-01-01
We investigate the effects of two structurally similar small cyclic molecules: salicylic acid and perillic acid on a zwitterionic model lipid bilayer, and show that both molecules might have biological activity related to membrane thinning. Salicylic acid is a nonsteroidal antiinflammatory drug, some of the pharmacological properties of which arise from its interaction with the lipid bilayer component of the plasma membrane. Prior simulations show that salicylate orders zwitterionic lipid membranes. However, this is in conflict with Raman scattering and vesicle fluctuation analysis data, which suggest the opposite. We show using extensive molecular dynamics simulations, cumulatively >2.5 μs, that salicylic acid indeed disorders membranes with concomitant membrane thinning and that the conflict arose because prior simulations suffered from artifacts related to the sodium-ion induced condensation of zwitterionic lipids modeled by the Berger force field. Perillic acid is a terpenoid plant extract that has antiinfective and anticancer properties, and is extensively used in eastern medicine. We found that perillic acid causes large-scale membrane thinning and could therefore exert its antimicrobial properties via a membrane-lytic mechanism reminiscent of antimicrobial peptides. Being more amphipathic, perillic acid is more potent in disrupting lipid headgroup packing, and significantly modifies headgroup dipole orientation. Like salicylate, the membrane thinning effect of perillic acid is masked by the presence of sodium ions. As an alternative to sodium cations, we advocate the straightforward solution of using larger countercations like potassium or tetra-methyl-ammonium that will maintain electroneutrality but not interact strongly with, and thus not condense, the lipid bilayer. PMID:21156130
An improvement of LLNA:DA to assess the skin sensitization potential of chemicals.
Zhang, Hongwei; Shi, Ying; Wang, Chao; Zhao, Kangfeng; Zhang, Shaoping; Wei, Lan; Dong, Li; Gu, Wen; Xu, Yongjun; Ruan, Hongjie; Zhi, Hong; Yang, Xiaoyan
2017-01-01
We developed a modified local lymph node assay based on ATP (LLNA:DA), termed the Two-Stage LLNA:DA, to further reduce the animal numbers in the identification of sensitizers. In the Two-Stage LLNA:DA procedure, 13 chemicals ranging from non-sensitizers to extreme sensitizers were selected. The first stage used reduced LLNA:DA (rLLNA:DA) to screen out sensitive chemicals. The second stage used LLNA:DA based on OECD 442 (A) to classify those potential sensitizers screened out in the first stage. In the first stage, the SIs of the methyl methacrylate, salicylic acid, methyl salicylate, ethyl salicylate, isopropanol and propanediol were below 1.8 and need not to be tested in the second step. Others continued to be tested by LLNA:DA. In the second stage, sodium lauryl sulphate and xylene were classified as weak sensitizers. a-hexyl cinnamic aldehyde and eugenol were moderate sensitizers. Benzalkonium chloride and glyoxal were strong sensitizers, and phthalic anhydride was an extreme sensitizer. The 9/9, 11/12, 10/11, and 8/13 (positive or negative only) categories of the Two-Stage LLNA:DA were consistent with those from the other methods (LLNA, LLNA:DA, GPMT/BT and HMT/HPTA), suggesting that Two-Stage LLNA:DA have a high coincidence rate with reported data. In conclusion, The Two-Stage LLNA:DA is in line with the "3R" rules, and can be a modification of LLNA:DA but needs more study.
NASA Astrophysics Data System (ADS)
Rachid, Marina G.; Faquine, Karla; Pilling, S.
2017-12-01
The C2H4O2 isomers methyl formate (HCOOCH3), acetic acid (CH3COOH) and glycoaldehyde (HOCH2CHO) have been detected in molecular clouds in the interstellar medium, as well as, hot cores, hot corinos and around protostellar objects. However, their abundances are very different, being methyl formate more abundant than the other two isomers. This fact may be related to the different destruction by ionizing radiation of these molecules. The goal of this work is experimentally study the photodissociation processes of methyl formate and acetic acid ices when exposed to broadband soft X-ray from 6 up to 2000 eV. The experiments were performed coupled to the SGM beamline in the Brazilian Synchrotron Light Source (LNLS/CNPEM) at Campinas, Brazil. The simulated astrophysical ices (12 K) were monitored throughout the experiment using infrared vibrational spectroscopy (FTIR). The analysis of processed ices allowed the determination of the effective destruction cross sections of the parent molecules as well as the effective formation cross section of daughter molecular species such as CO, CO2, H2O, CH4 and H2CO (only for methyl formate) and the hydrocarbons C2H6 and C5H10 (only for acetic acid). The half-lives of molecules at ices toward young stellar objects (YSOs) and inside molecular clouds (e.g. Sgr B2 and W51) due to the presence of incoming soft X-rays were estimated. We determined the effective formation rate and the branching ratios for assigned daughter species after the establishment of a chemical equilibrium. The main product from photodissociation of both methyl formate and acetic acid is CO, that can be formed by recombination of ions, formed during the photodissociation, in the ice surface. The relative abundance between methyl formate and acetic acid (NCH3COOH/NHCOOCH3) in different astronomical scenarios and their column density evolution in the presence of X-rays were calculated. Our results suggest that such radiation field can be one of the factors that explain the difference in the C2H4O2 isomers abundances.
Ding, Hsiou-Yu
2011-01-01
The 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity of the fruits of Rubus chingii was studied in vitro. Ethanolic extract, ethyl acetate and n-butanol fractions from dried R. chingii fruits revealed strong DPPH free radical scavenging activity with IC50 values of 17.9, 3.4 and 4.0 μg/mL, respectively. The ethyl acetate and n-butanol fractions were further purified by a combination of silica gel chromatography, Lobar RP-8 chromatography, and high-pressure liquid chromatography (HPLC). Nine compounds were isolated, where methyl (3-hydroxy-2-oxo-2,3-dihydroindol-3-yl)-acetate (2), vanillic acid (5), kaempferol (7), and tiliroside (9) showed stronger DPPH free radical scavenging activity than that of ascorbic acid (131.8 μM) with IC50 values of 45.2, 34.9, 78.5, and 13.7 μM, respectively. In addition, rubusine (1) is a new compound discovered in the present study and methyl (3-hydroxy-2-oxo-2,3-dihydroindol-3-yl)-acetate (2), methyl dioxindole-3-acetate (3), and 2-oxo-1,2-dihydroquinoline-4-carboxylic acid (4) were isolated from the fruits for the first time. PMID:21747716
Heterogeneous catalyst for the production of acetic anhydride from methyl acetate
Ramprasad, D.; Waller, F.J.
1999-04-06
This invention relates to a process for producing acetic anhydride by the reaction of methyl acetate, carbon monoxide, and hydrogen at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that contains an insoluble polymer having pendant quaternized phosphine groups, some of which phosphine groups are ionically bonded to anionic Group VIII metal complexes, the remainder of the phosphine groups being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled for consecutive runs without loss in activity. Bifunctional catalysts for use in carbonylating dimethyl ether are also provided.
Heterogeneous catalyst for the production of acetic anhydride from methyl acetate
Ramprasad, Dorai; Waller, Francis Joseph
1999-01-01
This invention relates to a process for producing acetic anhydride by the reaction of methyl acetate, carbon monoxide, and hydrogen at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that contains an insoluble polymer having pendant quaternized phosphine groups, some of which phosphine groups are ionically bonded to anionic Group VIII metal complexes, the remainder of the phosphine groups being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled for consecutive runs without loss in activity. Bifunctional catalysts for use in carbonylating dimethyl ether are also provided.
Bioinspired Surface Treatments for Improved Decontamination: Commercial Products
2017-07-28
simulants paraoxon, methyl salicylate, dimethyl methylphosphate, and diisopropyl fluorophosphates following treatment of contaminated surfaces with a...treatment of contaminated surfaces with a soapy water solution is reported along with droplet diffusion on the surfaces and wetting angles...Defense Program (CBDP) seeks to provide protection of forces in a contaminated environment including contamination avoidance, individual protection
ERIC Educational Resources Information Center
Hartel, Aaron M.; Hanna, James M., Jr.
2009-01-01
A single-pot procedure for the preparation of methyl salicylate (oil of wintergreen) from commercial aspirin tablets has been developed. The synthesis proceeds via a tandem transesterification-Fischer esterification using acidic methanol and can be carried out using either conventional or microwave heating. The experiment helps demonstrate acyl…
Mumm, Roland; Poelman, Erik H.; Yang, Yue; Pichersky, Eran; Dicke, Marcel
2010-01-01
The indirect defense mechanisms of plants comprise the production of herbivore-induced plant volatiles that can attract natural enemies of plant attackers. One of the often emitted compounds after herbivory is methyl salicylate (MeSA). Here, we studied the importance of this caterpillar-induced compound in the attraction of the parasitoid wasp Diadegma semiclausum by using a mutant Arabidopsis line. Pieris rapae infested AtBSMT1-KO mutant Arabidopsis plants, compromised in the biosynthesis of MeSA, were more attractive to parasitoids than infested wild-type plants. This suggests that the presence of MeSA has negative effects on parasitoid host-finding behavior when exposed to wild-type production of herbivore-induced Arabidopsis volatiles. Furthermore, in line with this, we recorded a positive correlation between MeSA dose and repellence of D. semiclausum when supplementing the headspace of caterpillar-infested AtBSMT1-KO plants with synthetic MeSA. Electronic supplementary material The online version of this article (doi:10.1007/s10886-010-9787-1) contains supplementary material, which is available to authorized users. PMID:20407809
Spiandore, Marie; Piram, Anne; Lacoste, Alexandre; Prevost, Philippe; Maloni, Pascal; Torre, Franck; Asia, Laurence; Josse, Denis; Doumenq, Pierre
2017-04-01
Chemical warfare agents are an actual threat and victims' decontamination is a main concern when mass exposure occurs. Skin decontamination with current protocols has been widely documented, as well as surface decontamination. However, considering hair ability to trap chemicals in vapour phase, we investigated hair decontamination after exposure to sulphur mustard simulants methyl salicylate and 2-chloroethyl ethyl sulphide. Four decontamination protocols were tested on hair, combining showering and emergency decontamination (use of Fuller's earth or Reactive Skin Decontamination Lotion RSDL ® ). Both simulants were recovered from hair after treatment, but contents were significantly reduced (42-85% content allowance). Showering alone was the least efficient protocol. Concerning 2-chloroethyl ethyl sulphide, protocols did not display significant differences in decontamination efficacy. For MeS, use of emergency decontaminants significantly increased showering efficacy (10-20% rise), underlining their usefulness before thorough decontamination. Our results highlighted the need to extensively decontaminate hair after chemical exposure. Residual amounts after decontamination are challenging, as their release from hair could lead to health issues. Copyright © 2016. Published by Elsevier B.V.
Postharvest biology and technology of pomegranate.
Pareek, Sunil; Valero, Daniel; Serrano, María
2015-09-01
Pomegranate is a subtropical and tropical fruit of great importance from a health point of view. Despite increasing consumer awareness of the health benefits of pomegranate, consumption of the fruit is still limited owing to poor postharvest handling, storage recommendations, short shelf life and quality deterioration during transportation, storage and marketing. The occurrence of physiological disorders such as husk scald, splitting and chilling injury is another challenge reducing marketability and consumer acceptance. Recently, notable work on postharvest biology and technology has been done. Pomegranate is highly sensitive to low-oxygen (<5 kPa) atmospheres, chilling injury and decay. One of the major problems associated with pomegranate fruit is excessive weight loss, which may result in hardening of the husk and browning of the rind and arils. To reduce chilling injury incidence and to extend storability and marketing of pomegranates, good results were obtained with polyamine, heat, salicylic acid, methyl jasmonate or methyl salicylate treatments prior to cold storage. This article reviews the maturity indices, changes during maturation and ripening, postharvest physiology and technology of pomegranate fruit as well as the various postharvest treatments for maintaining fruit quality. © 2015 Society of Chemical Industry.
Okamura, Hiroyuki; Abe, Hajime; Hasegawa-Baba, Yasuko; Saito, Kenji; Sekiya, Fumiko; Hayashi, Shim-Mo; Mirokuji, Yoshiharu; Maruyama, Shinpei; Ono, Atsushi; Nakajima, Madoka; Degawa, Masakuni; Ozawa, Shogo; Shibutani, Makoto; Maitani, Tamio
2015-01-01
Using the procedure devised by the Joint FAO/WHO Expert Committee on Food Additives (JECFA), we performed safety evaluations on five acetal flavouring substances uniquely used in Japan: acetaldehyde 2,3-butanediol acetal, acetoin dimethyl acetal, hexanal dibutyl acetal, hexanal glyceryl acetal and 4-methyl-2-pentanone propyleneglycol acetal. As no genotoxicity study data were available in the literature, all five substances had no chemical structural alerts predicting genotoxicity. Using Cramer's classification, acetoin dimethyl acetal and hexanal dibutyl acetal were categorised as class I, and acetaldehyde 2,3-butanediol acetal, hexanal glyceryl acetal and 4-methyl-2-pentanone propyleneglycol acetal as class III. The estimated daily intakes for all five substances were within the range of 1.45-6.53 µg/person/day using the method of maximised survey-derived intake based on the annual production data in Japan from 2001, 2005, 2008 and 2010, and 156-720 µg/person/day using the single-portion exposure technique (SPET), based on the average use levels in standard portion sizes of flavoured foods. The daily intakes of the two class I substances were below the threshold of toxicological concern (TTC) - 1800 μg/person/day. The daily intakes of the three class III substances exceeded the TTC (90 μg/person/day). Two of these, acetaldehyde 2,3-butanediol acetal and hexanal glyceryl acetal, were expected to be metabolised into endogenous products after ingestion. For 4-methyl-2-pentanone propyleneglycol acetal, one of its metabolites was not expected to be metabolised into endogenous products. However, its daily intake level, based on the estimated intake calculated by the SPET method, was about 1/15 000th of the no observed effect level. It was thus concluded that all five substances raised no safety concerns when used for flavouring foods at the currently estimated intake levels. While no information on in vitro and in vivo toxicity for all five substances was available, their metabolites were judged as raising no safety concerns at the current levels of intake.
Rasmussen, D. B.; Christensen, J. M.; Temel, B.; ...
2017-01-23
The reaction mechanism of dimethyl ether carbonylation to methyl acetate over mordenite was studied theoretically with periodic density functional theory calculations including dispersion forces and experimentally in a fixed bed flow reactor at pressures between 10 and 100 bar, dimethyl ether concentrations in CO between 0.2 and 2.0%, and at a temperature of 438 K. The theoretical study showed that the reaction of CO with surface methyl groups, the rate-limiting step, is faster in the eight-membered side pockets than in the twelve-membered main channel of the zeolite; the subsequent reaction of dimethyl ether with surface acetyl to form methyl acetatemore » was demonstrated to occur with low energy barriers in both the side pockets and in the main channel. Here, the present analysis has thus identified a path, where the entire reaction occurs favourably on a single site within the side pocket, in good agreement with previous experimental studies. The experimental study of the reaction kinetics was consistent with the theoretically derived mechanism and in addition revealed that the methyl acetate product inhibits the reaction – possibly by sterically hindering the attack of CO on the methyl groups in the side pockets.« less
Methylation analysis of polysaccharides: Technical advice.
Sims, Ian M; Carnachan, Susan M; Bell, Tracey J; Hinkley, Simon F R
2018-05-15
Glycosyl linkage (methylation) analysis is used widely for the structural determination of oligo- and poly-saccharides. The procedure involves derivatisation of the individual component sugars of a polysaccharide to partially methylated alditol acetates which are analysed and quantified by gas chromatography-mass spectrometry. The linkage positions for each component sugar can be determined by correctly identifying the partially methylated alditol acetates. Although the methods are well established, there are many technical aspects to this procedure and both careful attention to detail and considerable experience are required to achieve a successful methylation analysis and to correctly interpret the data generated. The aim of this article is to provide the technical details and critical procedural steps necessary for a successful methylation analysis and to assist researchers (a) with interpreting data correctly and (b) in providing the comprehensive data required for reviewers to fully assess the work. Copyright © 2018 Elsevier Ltd. All rights reserved.
Palladium-catalyzed substitution of (coumarinyl)methyl acetates with C-, N-, and S-nucleophiles
Chattopadhyay, Kalicharan; Fenster, Erik; Grenning, Alexander J
2012-01-01
Summary The palladium-catalyzed nucleophilic substitution of (coumarinyl)methyl acetates is described. The reaction proceeds though a palladium π-benzyl-like complex and allows for many different types of C-, N-, and S-nucleophiles to be regioselectively added to the biologically active coumarin motif. This new method was utilized to prepare a 128-membered library of aminated coumarins for biological screening. PMID:23019448
Song, Yoon S; Koontz, John L; Juskelis, Rima O; Zhao, Yang
2013-01-01
The migration of low molecular weight organic compounds through polyethylene terephthalate (PET) films was determined by using a custom permeation cell assembly. Fatty food simulant (Miglyol 812) was added to the receptor chamber, while the donor chamber was filled with 1% and 10% (v/v) migrant compounds spiked in simulant. The permeation cell was maintained at 40°C, 66°C, 100°C or 121°C for up to 25 days of polymer film exposure time. Migrants in Miglyol were directly quantified without a liquid-liquid extraction step by headspace-GC-MS analysis. Experimental diffusion coefficients (DP) of toluene, benzyl alcohol, ethyl butyrate and methyl salicylate through PET film were determined. Results from Limm's diffusion model showed that the predicted DP values for PET were all greater than the experimental values. DP values predicted by Piringer's diffusion model were also greater than those determined experimentally at 66°C, 100°C and 121°C. However, Piringer's model led to the underestimation of benzyl alcohol (Áp = 3.7) and methyl salicylate (Áp = 4.0) diffusion at 40°C with its revised "upper-bound" Áp value of 3.1 at temperatures below the glass transition temperature (Tg) of PET (<70°C). This implies that input parameters of Piringer's model may need to be revised to ensure a margin of safety for consumers. On the other hand, at temperatures greater than the Tg, both models appear too conservative and unrealistic. The highest estimated Áp value from Piringer's model was 2.6 for methyl salicylate, which was much lower than the "upper-bound" Áp value of 6.4 for PET. Therefore, it may be necessary further to refine "upper-bound" Áp values for PET such that Piringer's model does not significantly underestimate or overestimate the migration of organic compounds dependent upon the temperature condition of the food contact material.
Plant extracts affect in vitro rumen microbial fermentation.
Busquet, M; Calsamiglia, S; Ferret, A; Kamel, C
2006-02-01
Different doses of 12 plant extracts and 6 secondary plant metabolites were incubated for 24 h in diluted ruminal fluid with a 50:50 forage:concentrate diet. Treatments were: control (no additive), plant extracts (anise oil, cade oil, capsicum oil, cinnamon oil, clove bud oil, dill oil, fenugreek, garlic oil, ginger oil, oregano oil, tea tree oil, and yucca), and secondary plant metabolites (anethol, benzyl salicylate, carvacrol, carvone, cinnamaldehyde, and eugenol). Each treatment was supplied at 3, 30, 300, and 3,000 mg/L of culture fluid. At 3,000 mg/L, most treatments decreased total volatile fatty acid concentration, but cade oil, capsicum oil, dill oil, fenugreek, ginger oil, and yucca had no effect. Different doses of anethol, anise oil, carvone, and tea tree oil decreased the proportion of acetate and propionate, which suggests that these compounds may not be nutritionally beneficial to dairy cattle. Garlic oil (300 and 3,000 mg/L) and benzyl salicylate (300 and 3,000 mg/L) reduced acetate and increased propionate and butyrate proportions, suggesting that methane production was inhibited. At 3,000 mg/L, capsicum oil, carvacrol, carvone, cinnamaldehyde, cinnamon oil, clove bud oil, eugenol, fenugreek, and oregano oil resulted in a 30 to 50% reduction in ammonia N concentration. Careful selection and combination of these extracts may allow the manipulation of rumen microbial fermentation.
24 CFR Appendix I to Subpart C of... - Specific Hazardous Substances
Code of Federal Regulations, 2011 CFR
2011-04-01
... Isopropyl Alcohol Jet Fuel and Kerosene Methyl Alcohol Methyl Amyl Alcohol Methyl Cellosolve Methyl Ethyl... Hazardous Operations Handling Conventional Fuels or Chemicals of an Explosive or Flammable Nature Pt. 51... (Petroleum) Cumene Cyclohexane No. 2 Diesel Fuel Ethyl Acetate Ethyl Acrylate Ethyl Alcohol Ethyl Benzene...
24 CFR Appendix I to Subpart C of... - Specific Hazardous Substances
Code of Federal Regulations, 2012 CFR
2012-04-01
... Isopropyl Alcohol Jet Fuel and Kerosene Methyl Alcohol Methyl Amyl Alcohol Methyl Cellosolve Methyl Ethyl... Hazardous Operations Handling Conventional Fuels or Chemicals of an Explosive or Flammable Nature Pt. 51... (Petroleum) Cumene Cyclohexane No. 2 Diesel Fuel Ethyl Acetate Ethyl Acrylate Ethyl Alcohol Ethyl Benzene...
24 CFR Appendix I to Subpart C of... - Specific Hazardous Substances
Code of Federal Regulations, 2014 CFR
2014-04-01
... Isopropyl Alcohol Jet Fuel and Kerosene Methyl Alcohol Methyl Amyl Alcohol Methyl Cellosolve Methyl Ethyl... Hazardous Operations Handling Conventional Fuels or Chemicals of an Explosive or Flammable Nature Pt. 51... (Petroleum) Cumene Cyclohexane No. 2 Diesel Fuel Ethyl Acetate Ethyl Acrylate Ethyl Alcohol Ethyl Benzene...
24 CFR Appendix I to Subpart C of... - Specific Hazardous Substances
Code of Federal Regulations, 2013 CFR
2013-04-01
... Isopropyl Alcohol Jet Fuel and Kerosene Methyl Alcohol Methyl Amyl Alcohol Methyl Cellosolve Methyl Ethyl... Hazardous Operations Handling Conventional Fuels or Chemicals of an Explosive or Flammable Nature Pt. 51... (Petroleum) Cumene Cyclohexane No. 2 Diesel Fuel Ethyl Acetate Ethyl Acrylate Ethyl Alcohol Ethyl Benzene...
Zukerman-Schpector, Julio; Caracelli, Ignez; Stefani, Hélio A; Shamim, Anwar; Tiekink, Edward R T
2015-01-01
In the title compound, C12H15IO7, the 3,4-di-hydro-2H-pyran ring is in a distorted half-boat conformation with the atom bearing the acet-yloxy group adjacent to the C atom bearing the methyl-acetate group lying 0.633 (6) Å above the plane of the remaining ring atoms (r.m.s. deviation = 0.0907 Å). In the crystal, mol-ecules are linked into a supra-molecular chain along the a axis through two C-H⋯O inter-actions to the same acceptor carbonyl O atom; these chains pack with no specific inter-molecular inter-actions between them.
75 FR 37795 - Certain New Chemicals; Receipt and Status Information
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-30
...-methyl-, polymer with alkyl 2- propenoates, ethenyl acetate and methyl-2- methyl-2-propenoate P-10-0389...), polymers with cycloaliphatic diamine, alkyldiisocyanate, alpha-hydro-omega- hydroxy(alkyldiyl) and... dicarboxylic acid, polymer with cycloaliphatic diamine, aliphatic diisocyanate, aliphatic dicarboxylic acid...
Hu, S.S.; Mei, L.; Chen, J.Y.; Huang, Z.W.; Wu, H.
2014-01-01
Tinnitus could be associated with neuronal hyperactivity in the auditory center. As a neuronal activity marker, immediate-early gene (IEG) expression is considered part of a general neuronal response to natural stimuli. Some IEGs, especially the activity-dependent cytoskeletal protein (Arc) and the early growth response gene-1 (Egr-1), appear to be highly correlated with sensory-evoked neuronal activity. We hypothesize, therefore, an increase of Arc and Egr-1 will be observed in a tinnitus model. In our study, we used the gap prepulse inhibition of acoustic startle (GPIAS) paradigm to confirm that salicylate induces tinnitus-like behavior in rats. However, expression of the Arc gene and Egr-1 gene were decreased in the inferior colliculus (IC) and auditory cortex (AC), in contradiction of our hypothesis. Expression of N-methyl D-aspartate receptor subunit 2B (NR2B) was increased and all of these changes returned to normal 14 days after treatment with salicylate ceased. These data revealed long-time administration of salicylate induced tinnitus markedly but reversibly and caused neural plasticity changes in the IC and the AC. Decreased expression of Arc and Egr-1 might be involved with instability of synaptic plasticity in tinnitus. PMID:24704997
Anti-inflammatory drugs interacting with Zn(II), Cd(II) and Pt(II) metal ions.
Dendrinou-Samara, C; Tsotsou, G; Ekateriniadou, L V; Kortsaris, A H; Raptopoulou, C P; Terzis, A; Kyriakidis, D A; Kessissoglou, D P
1998-09-01
Complexes of Zn(II), Cd(II) and Pt(II) metal ions with the anti-inflammatory drugs, 1-methyl-5-(p-toluoyl)-1H-pyrrole-2-acetic acid (Tolmetin), alpha-methyl-4-(2-methylpropyl)benzeneacetic acid (Ibuprofen), 6-methoxy-alpha-methylnaphthalene-2-acetic acid (Naproxen) and 1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indole-3-acetic acid (indomethacin) have been synthesized and characterized. In the structurally characterized Cd(naproxen)2 complex the anti-inflammatory drugs acts as bidentate chelate ligand coordinatively bound to metal ions through the deprotonated carboxylate group. Crystal data for 1: [C32H26O8Cd], orthorhombic, space group P22(1)2(1), a = 5.693(2) (A), b = 8.760(3) (A), c = 30.74(1) (A), V = 1533(1) A3, Z = 2. Antibacterial and growth inhibitory activity is higher than that of the parent ligands or the platinum(II) diamine compounds.
Charging Effects on Fluid Stream Droplets for Momentum Exchange Between Spacecraft
2009-01-01
DC705 have similar density; 1070 kg/m 3 for DC704 and 1097 kg/m 3 for DC705. The fluids differ chemically by a single methyl group, which is replaced...measured as a function of photon energy. The relative light intensity was monitored by the fluorescence of Sodium Salicylate . Division of the current by
Liquid Droplet Thrusters to Provide Constant Momentum Exchange Between Formation Flying Spacecraft
2010-03-01
density; 1070 kg/m3 for DC704 and 1097 kg/m3 for DC705. The fluids differ chemically by a single methyl group, which is replaced by a fifth Benzene...of photon energy. The relative light intensity was monitored by the fluorescence of Sodium Salicylate . Division of the current by the intensity of
USDA-ARS?s Scientific Manuscript database
The response of Typhlodromus pyri, a key predator of grapevine rust mite (Calepitrimerus vitis), to MeSA was tested using a Y-tube olfactometer in laboratory bioassays. Six doses ranging from 200 to 0.002 µg of diluted MeSA were tested. Significantly higher proportions of T. pyri preferred MeSA at ...
Creamer, Kaitlin E.; Ditmars, Frederick S.; Basting, Preston J.; Kunka, Karina S.; Hamdallah, Issam N.; Bush, Sean P.; Scott, Zachary; He, Amanda; Penix, Stephanie R.; Gonzales, Alexandra S.; Eder, Elizabeth K.; Camperchioli, Dominic W.; Berndt, Adama; Clark, Michelle W.; Rouhier, Kerry A.
2016-01-01
ABSTRACT Escherichia coli K-12 W3110 grows in the presence of membrane-permeant organic acids that can depress cytoplasmic pH and accumulate in the cytoplasm. We conducted experimental evolution by daily diluting cultures in increasing concentrations of benzoic acid (up to 20 mM) buffered at external pH 6.5, a pH at which permeant acids concentrate in the cytoplasm. By 2,000 generations, clones isolated from evolving populations showed increasing tolerance to benzoate but were sensitive to chloramphenicol and tetracycline. Sixteen clones grew to stationary phase in 20 mM benzoate, whereas the ancestral strain W3110 peaked and declined. Similar growth occurred in 10 mM salicylate. Benzoate-evolved strains grew like W3110 in the absence of benzoate, in media buffered at pH 4.8, pH 7.0, or pH 9.0, or in 20 mM acetate or sorbate at pH 6.5. Genomes of 16 strains revealed over 100 mutations, including single-nucleotide polymorphisms (SNPs), large deletions, and insertion knockouts. Most strains acquired deletions in the benzoate-induced multiple antibiotic resistance (Mar) regulon or in associated regulators such as rob and cpxA, as well as the multidrug resistance (MDR) efflux pumps emrA, emrY, and mdtA. Strains also lost or downregulated the Gad acid fitness regulon. In 5 mM benzoate or in 2 mM salicylate (2-hydroxybenzoate), most strains showed increased sensitivity to the antibiotics chloramphenicol and tetracycline; some strains were more sensitive than a marA knockout strain. Thus, our benzoate-evolved strains may reveal additional unknown drug resistance components. Benzoate or salicylate selection pressure may cause general loss of MDR genes and regulators. IMPORTANCE Benzoate is a common food preservative, and salicylate is the primary active metabolite of aspirin. In the gut microbiome, genetic adaptation to salicylate may involve loss or downregulation of inducible multidrug resistance systems. This discovery implies that aspirin therapy may modulate the human gut microbiome to favor salicylate tolerance at the expense of drug resistance. Similar aspirin-associated loss of drug resistance might occur in bacterial pathogens found in arterial plaques. PMID:27793830
Effect of oil substitution in chiral microemulsion electrokinetic chromatography.
Mertzman, Melissa D; Foley, Joe P
2004-02-01
In a previous publication (Pascoe, R., Foley, J. P., Analyst 2002, 127, 710-714), a novel chiral microemulsion based on 1.0% w/v dodecoxycarbonylvaline (DDCV), 0.50% v/v ethyl acetate and 1.2% v/v 1-butanol, was shown to provide rapid enantiomeric separations of various pharmaceutical compounds. The two deficiencies noted with this method were that the peak shapes obtained were asymmetric and the efficiencies were lower than those previously obtained using DDCV micelles (Peterson, A. G., Ahuja, E. S., Foley, J. P., J. Chromatogr. B 1996, 683, 15-28). This study examines the use of three alternative low-interfacial-tension oils (methyl acetate, methyl propionate, and methyl formate), in combination with DDCV, to characterize their effect on the elution range, efficiency, resolution, and enantioselectivity of various pharmaceutical enantiomers. The oils were evaluated in both the same volume percentage and the same molar concentration as ethyl acetate in the original DDCV microemulsion system. Including ethyl acetate, a total of seven microemulsion systems were examined. For the compounds that were separated, average enantioselectivities ranged from 1.09 to 1.28, with corresponding efficiencies of 14,000-20,000. While some interesting differences were observed, ethyl acetate still proved to be the most advantageous in terms of enantioselectivity, resolution, and elution range.
Influence of 13C isotopic labeling location of 13C DNP of acetate using TEMPO free radical
NASA Astrophysics Data System (ADS)
Parish, Christopher; Niedbalski, Peter; Lumata, Lloyd
2015-03-01
Dynamic nuclear polarization (DNP) via the dissolution method enhances the liquid-state magnetic resonance (NMR or MRI) signals of insensitive nuclear spins by at least 10,000-fold. The basis for all these signal enhancements at room temperature is the polarization transfer from the electrons to nuclear spins at cryogenic temperature and high magnetic field. In this work, we have studied the influence of the location of 13C isotopic labeling on the DNP of sodium acetate at 3.35 T and 1.4 K using a wide ESR linewidth free radical 4-oxo-TEMPO. The carbonyl [1-13C]acetate spins produced a polarization level that is almost twice that of the methyl [2-13C]acetate spins. On the other hand, the polarization of the methyl 13C spins doubled to reach the level of [1-13C]acetate when the methyl group was deuterated. Meanwhile, the solid-state nuclear relaxation of these samples are the same and do not correlate with the polarization levels. These behavior implies that the nuclear relaxation for these samples is dominated by the contribution from the free radicals and the polarization levels can be explained by a thermodynamic picture of DNP.
Catalytic conversion of lactic acid and its derivatives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kokitkar, P.B.; Langford, R.; Miller, D.J.
1993-12-31
The catalytic upgrading of lactic acid and methyl lactate is being investigated. With the commercialization of inexpensive starch fermentation technologies, US production of lactic acid is undergoing a surge. Dropping cost and increased availability offer a major opportunity to develop lactic acid as a renewable feedstock for chemicals production. IT can be catalytically converted into several important chemical intermediates currently derived from petroleum including acrylic acid, propanoic acid, and 2,3-pentanedione. The process can expand the potential of biomass as a substitute feedstock for petroleum and can benefit both the US chemical process industry and US agriculture via increased production ofmore » high-value, non-food products from crops and crop byproducts. Reaction studies of lactic acid and its ester are conducted in fixed bed reactors at 250-380{degrees}C and 0.1-0.5 MPa (1-5 atm) using salt catalysts on low surface area supports. Highest selectivities achieved are 42% to acrylic acid and 55% to 2,3-pentanedione from lactic acid over NaNO{sub 3} catalyst on low surface area silica support. High surface area (microporous) or highly acidic supports promote fragmentation to acetaldehyde and thus reduce yields of desirable products. The support acidity gives rice to lactic acid from neat methyl lactate feed but the lactic acid yield goes down after the nitrate salt is impregnated on the support. Both lactic acid and methyl lactate form 2,3-pentanedione. Methyl lactate reactions are more complex since it forms all the products obtained from lactic acid as well as many corresponding esters of the acids obtained from lactic acid (mainly methyl acrylate, methyl propionate, methyl acetate). At high temperatures, methyl acetate and acetic acid yields become significant from methyl lactate whereas lactic acid gives significant amount of acetol at high temperatures.« less
ERIC Educational Resources Information Center
D'Amelia, Ronald P.; Chiang, Stephanie; Pollut, Stephanie; Nirode, William F.
2014-01-01
The formation and the hydrolysis of organic salts produced by the titration of a 0.1 M solution of the following amines: methyl-, dimethyl-, trimethyl-, ethyl-, diethyl-, and triethylamine with a 0.1 M solution of acetic, chloroacetic, and dichloracetic acids are studied. The pK[subscript b] of the amine and the pH at the end point were determined…
Pak, K.-R.; Bartha, R.
1998-01-01
Cocultures of Desulfovibrio desulfuricans and Methanococcus maripaludis grew on sulfate-free lactate medium while vigorously methylating Hg2+. Individually, neither bacterium could grow or methylate mercury in this medium. Similar synergistic growth of sulfidogens and methanogens may create favorable conditions for Hg2+ methylation in low-sulfate anoxic freshwater sediments. PMID:9603804
Hao, Liping; Lü, Fan; Li, Lei; Shao, Liming; He, Pinjing
2013-05-01
To use the selective inhibition method for quantitative analysis of acetate metabolism in methanogenic systems, the responses of microbial communities and metabolic activities, which were involved in anaerobic degradation of acetate, to the addition of methyl fluoride (CH3F), 2-bromoethanesulfonate (BES) and hydrogen were investigated in a thermophilic batch experiment. Both the methanogenic inhibitors, i.e., CH3F and BES, showed their effectiveness on inhibiting CH4 production, whereas acetate metabolism other than acetoclastic methanogenesis was stimulated by BES, as reflected by the fluctuated acetate concentration. Syntrophic acetate oxidation was thermodynamically blocked by hydrogen (H2), while H2-utilizing reactions as hydrogenotrophic methanogenesis and homoacetogenesis were correspondingly promoted. Results of PCR-DGGE fingerprinting showed that, CH3F did not influence the microbial populations significantly. However, the BES and hydrogen notably altered the bacterial community structures and increased the diversity. BES gradually changed the methanogenic community structure by affecting the existence of different populations to different levels, whilst H2 greatly changed the abundance of different methanogenic populations, and induced growth of new species.
Song, Rui-Biao; Lou, Wei-Hua
2015-01-01
This study investigated the effects of monosialotetrahexosylganglioside (GM1) on the expression of N-methyl-D-aspartate receptor subunit 2B (NR2B) and phosphorylated (p)-cyclic AMP response element-binding protein (CREB) in the auditory cortex of rats with tinnitus. Tinnitus-like behavior in rats was tested with the gap prepulse inhibition of acoustic startle paradigm. We then investigated the NR2B mRNA and protein and p-CREB protein levels in the auditory cortex of tinnitus rats compared with normal rats. Rats treated for 4 days with salicylate exhibited tinnitus. NR2B mRNA and protein and p-CREB protein levels were upregulated in these animals, with expression returning to normal levels 14 days after cessation of treatment; baseline levels of NR2B and p-CREB were also restored by GM1 administration. These data suggest that chronic salicylate administration induces tinnitus via upregulation of p-CREB and NR2B expression, and that GM1 can potentially be used to treat tinnitus.
USDA-ARS?s Scientific Manuscript database
Huanglongbing or citrus greening is a destructive disease that threatens citrus production worldwide; it is putatively caused by the phloem-limited bacterium Candidatus Liberibacter asiaticus (Las). Currently the disease is untreatable and control efforts focus on intensive insecticide use to contro...
Lin, Yongwen; Qasim, Muhammad; Hussain, Mubasher; Akutse, Komivi Senyo; Avery, Pasco Bruce; Dash, Chandra Kanta; Wang, Liande
2017-01-01
Some herbivore-induced-plant volatiles (HIPVs) compounds are vital for the functioning of an ecosystem, by triggering multi-trophic interactions for natural enemies, plants and herbivores. However, the effect of these chemicals, which play a crucial role in regulating the multi-trophic interactions between plant-herbivore-entomopathogenic fungi, is still unknown. To fill this scientific gap, we therefore investigated how these chemicals influence the entomopathogenic fungi growth and efficacy. In this study, Lipaphis erysimi induced Arabidopsis thaliana HIPVs were collected using headspace system and detected with GC-MS, and then analyzed the effects of these HIPVs chemicals on Lecanicillium lecanii strain V3450. We found that the HIPVs menthol and methyl salicylate at 1 and 10 nmol·ml−1 improved many performance aspects of the fungus, such as germination, sporulation, appressorial formation as well as its pathogenicity and virulence. These findings are not only important for understanding the multi-trophic interactions in an ecosystem, but also would contribute for developing new and easier procedures for conidial mass production as well as improve the pathogenicity and virulence of entomopathogenic fungi in biological pest management strategies. PMID:28079180
NASA Astrophysics Data System (ADS)
Lin, Yongwen; Qasim, Muhammad; Hussain, Mubasher; Akutse, Komivi Senyo; Avery, Pasco Bruce; Dash, Chandra Kanta; Wang, Liande
2017-01-01
Some herbivore-induced-plant volatiles (HIPVs) compounds are vital for the functioning of an ecosystem, by triggering multi-trophic interactions for natural enemies, plants and herbivores. However, the effect of these chemicals, which play a crucial role in regulating the multi-trophic interactions between plant-herbivore-entomopathogenic fungi, is still unknown. To fill this scientific gap, we therefore investigated how these chemicals influence the entomopathogenic fungi growth and efficacy. In this study, Lipaphis erysimi induced Arabidopsis thaliana HIPVs were collected using headspace system and detected with GC-MS, and then analyzed the effects of these HIPVs chemicals on Lecanicillium lecanii strain V3450. We found that the HIPVs menthol and methyl salicylate at 1 and 10 nmol·ml-1 improved many performance aspects of the fungus, such as germination, sporulation, appressorial formation as well as its pathogenicity and virulence. These findings are not only important for understanding the multi-trophic interactions in an ecosystem, but also would contribute for developing new and easier procedures for conidial mass production as well as improve the pathogenicity and virulence of entomopathogenic fungi in biological pest management strategies.
Lin, Yongwen; Qasim, Muhammad; Hussain, Mubasher; Akutse, Komivi Senyo; Avery, Pasco Bruce; Dash, Chandra Kanta; Wang, Liande
2017-01-12
Some herbivore-induced-plant volatiles (HIPVs) compounds are vital for the functioning of an ecosystem, by triggering multi-trophic interactions for natural enemies, plants and herbivores. However, the effect of these chemicals, which play a crucial role in regulating the multi-trophic interactions between plant-herbivore-entomopathogenic fungi, is still unknown. To fill this scientific gap, we therefore investigated how these chemicals influence the entomopathogenic fungi growth and efficacy. In this study, Lipaphis erysimi induced Arabidopsis thaliana HIPVs were collected using headspace system and detected with GC-MS, and then analyzed the effects of these HIPVs chemicals on Lecanicillium lecanii strain V3450. We found that the HIPVs menthol and methyl salicylate at 1 and 10 nmol·ml -1 improved many performance aspects of the fungus, such as germination, sporulation, appressorial formation as well as its pathogenicity and virulence. These findings are not only important for understanding the multi-trophic interactions in an ecosystem, but also would contribute for developing new and easier procedures for conidial mass production as well as improve the pathogenicity and virulence of entomopathogenic fungi in biological pest management strategies.
Wu, Yan-Wen; Sun, Su-Qin; Zhou, Qun; Leung, Hei-Wun
2008-02-13
Honghua Oil (HHO), a traditional Chinese medicine (TCM) oil preparation, is a mixture of several plant essential oils. In this text, the extended ranges of Fourier transform mid-infrared (FT-MIR) and near infrared (FT-NIR) were recorded for 48 commercially available HHOs of different batches from nine manufacturers. The qualitative and quantitative analysis of three marker components, alpha-pinene, methyl salicylate and eugenol, in different HHO products were performed rapidly by the two vibrational spectroscopic methods, i.e. MIR with horizontal attenuated total reflection (HATR) accessory and NIR with direct sampling technique, followed by partial least squares (PLS) regression treatment of the set of spectra obtained. The results indicated that it was successful to identify alpha-pinene, methyl salicylate and eugenol in all of the samples by simple inspection of the MIR-HATR spectra. Both PLS models established with MIR-HATR and NIR spectral data using gas chromatography (GC) peak areas as calibration reference showed a good linear correlation for each of all three target substances in HHO samples. The above spectroscopic techniques may be the promising methods for the rapid quality assessment/quality control (QA/QC) of TCM oil preparations.
NASA Astrophysics Data System (ADS)
Delsy, E. V. Y.; Irmanto; Kazanah, F. N.
2017-02-01
Pineapple leaves are agricultural waste from the pineapple that the fibers can be utilized as raw material in cellulose acetate membranes. First, made pineapple leaf fibers into pulp and then converted into cellulose acetate by acetylation process in four stages consisting of activation, acetylation, hydrolysis and purification. Cellulose acetate then used as the raw material to manufacture composite membrane with addition of polystyrene and poly (ethylene glycol) as porogen. Composite membrane is made using phase inversion method with dichloromethane-acetone as a solvent. The result of FTIR analysis (Fourier transform infra-red) showed that the absorption of the carbonyl group (C=O) is at 1643.10 cm-1 and acetyl group (C-O ) at 1227.01 cm-1, with a molecular weight of 8.05 x 104 g/mol and the contents (rate) of acetyl is 37.31%. PS-PEG-CA composite membrane had also been characterized by measuring the water flux values and its application to decrease methyl orange content (level) in batik waste. The results showed that the water flux value is of 25.62 L/(m2.hour), and the decrease percentage of methyl orange content in batik waste is 71.53%.
Methyl salicylate: a reactive chemical warfare agent surrogate to detect reaction with hypochlorite.
Salter, W Bruce; Owens, Jeffery R; Wander, Joseph D
2011-11-01
Methyl salicylate (MeS) has a rich history as an inert physical simulant for the chemical warfare agents sulfur mustard and soman, where it is used extensively for liquid- and vapor-permeation testing. Here we demonstrate possible utility of MeS as a reactivity simulant for chlorine-based decontaminants. In these experiments MeS was reacted with sodium hypochlorite varying stoichiometry, temperature, reaction time, and pH. No colored oxidation products were observed; however, chlorination of the aromatic ring occurred ortho (methyl 3-chlorosalicylate) and para (methyl 5-chlorosalicylate) to the position bearing the -OH group in both the mono- and disubstituted forms. The monosubstituted para product accumulated initially, and the ortho and 3,5-dichloro products formed over the next several hours. Yields from reactions conducted below pH 11 declined rapidly with decreasing pH. Reactions run at 40 °C produced predominantly para substitution, while those run at 0 °C produced lower yields of ortho- and para-substituted products. Reactions were also carried out on textile substrates of cotton, 50/50 nylon-cotton, and a meta aramid. The textile data broadly reproduced reaction times and stoichiometry observed in the liquid phase, but are complicated by physical and possibly chemical interactions with the fabric. These data indicate that, for hypochlorite-containing neutralizing agents operating at strongly alkaline pH, one can expect MeS to react stoichiometrically with the hypochlorite it encounters. This suggests utility of MeS in lieu of such highly hazardous surrogates as monochloroalkyl sulfides as a simulant for threat scenarios involving the stoichiometric decomposition of sulfur mustard. Specifically, the extent of coverage of the simulant on a fabric by the neutralizing agent can be directly measured. Similar reactivity toward other halogen oxidizing agents is likely but remains to be demonstrated.
Houjun, Tian; Lin, Shuo; Chen, Yong; Chen, Yixin; Zhao, Jianwei; Gu, Xiaojun; Wei, Hui
2018-05-28
The diamondback moth (DBM), Plutella xylostella (L.) (Lepidoptera: Plutellidae), is the main destructive insect pest of brassica vegetables around the world, and has developed resistance to numerous insecticides. Although host plant volatiles are important in pest control, the mechanism of low-level insecticide resistance in P. xylostella due to plant volatiles has not been examined. Here, electroantennograms (EAGs) were used to compare the responses of adult male and female DBMs of a susceptible strain (S-strain) and a derived resistant strain, Fen-R-strain (6.52-fold more resistant than the S-strain), to different concentrations of nine plant volatiles. We found significantly different relative EAG responses between S-strain and Fen-R-strain males to different concentrations of methyl jasmonate, methyl salicylate, and octanal. The relative EAG responses of S-strain and Fen-R-strain females to different concentrations of β-myrcene, methyl jasmonate, methyl salicylate, and allyl isothiocyanate were significantly different. Fen-R-strain females showed lower EAG responses to most of the tested plant volatiles (at concentrations of 1:10) than males, except for allyl isothiocyanate. A larger difference in relative EAG response to α-farnesene and β-myrcene was found between S-strain and Fen-R-strain females than between males of the two strains. A larger difference in relative EAG response to octanal, nonanal, and octan-1-ol was found between S-strain and Fen-R-strain males than between females of the two strains. These results illustrate the relationship between the function of plant volatiles and resistance in an insect pest species, and provide a scientific basis for resistance evolutionary theory in pest management research.
NASA Astrophysics Data System (ADS)
Hansel, Amie K.; Ehrenhauser, Franz S.; Richards-Henderson, Nicole K.; Anastasio, Cort; Valsaraj, Kalliat T.
2015-02-01
Green leaf volatiles (GLVs) are a group of biogenic volatile organic compounds (BVOCs) released into the atmosphere by vegetation. BVOCs produce secondary organic aerosol (SOA) via gas-phase reactions, but little is known of their aqueous-phase oxidation as a source of SOA. GLVs can partition into atmospheric water phases, e.g., fog, mist, dew or rain, and be oxidized by hydroxyl radicals (˙OH). These reactions in the liquid phase also lead to products that have higher molecular weights, increased polarity, and lower vapor pressures, ultimately forming SOA after evaporation of the droplet. To examine this process, we investigated the aqueous, ˙OH-mediated oxidation of methyl jasmonate (MeJa) and methyl salicylate (MeSa), two GLVs that produce aqueous-phase SOA. High performance liquid chromatography/electrospray ionization mass spectrometry (HPLC-ESI-MS) was used to monitor product formation. The oxidation products identified exhibit higher molecular mass than their parent GLV due to either dimerization or the addition of oxygen and hydroxyl functional groups. The proposed structures of potential products are based on mechanistic considerations combined with the HPLC/ESI-MS data. Based on the structures, the vapor pressure and the Henry's law constant were estimated with multiple methods (SPARC, SIMPOL, MPBPVP, Bond and Group Estimations). The estimated vapor pressures of the products identified are significantly (up to 7 orders of magnitude) lower than those of the associated parent compounds, and therefore, the GLV oxidation products may remain as SOA after evaporation of the water droplet. The contribution of the identified oxidation products to SOA formation is estimated based on measured HPLC-ESI/MS responses relative to previous aqueous SOA mass yield measurements.
Klutsch, Jennifer G; Shamoun, Simon Francis; Erbilgin, Nadir
2017-01-01
Conifers have complex defense responses to initial attacks by insects and pathogens that can have cascading effects on success of subsequent colonizers. However, drought can affect a plant's ability to respond to biotic agents by potentially altering the resources needed for the energetically costly production of induced defense chemicals. We investigated the impact of reduced water on induced chemical defenses of jack pine (Pinus banksiana) seedlings from initial attack by biotic agents and resistance to subsequent challenge inoculation with a pathogenic fungal associate of mountain pine beetle (Dendroctonus ponderosae), Grosmannia clavigera. Applications of phytohormones (methyl salicylate and methyl jasmonate) and G. clavigera were used for initial induction of defenses. Monoterpene concentrations varied with initial induction from fungal and phytohormone application while watering treatment had no effect. Seedlings treated with G. clavigera and methyl jasmonate had the greatest monoterpene concentrations compared to the control and methyl salicylate-treated seedlings. However, the monoterpene response to the challenge inoculation varied with watering treatments, not with prior induction treatments, with lower monoterpene concentrations in fungal lesions on seedlings in the low to moderate watering treatments compared to normal watering treatment. Furthermore, prior induction from phytohormones resulted in systemic cross-induction of resistance to G. clavigera under normal watering treatment but susceptibility under low watering treatment. Seedlings stressed by low water conditions, which also had lower stomatal conductance than seedlings in the normal watering treatment, likely allocated resources to initial defense response but were left unable to acquire further resources for subsequent responses. Our results demonstrate that drought can affect interactions among tree-infesting organisms through systemic cross-induction of susceptibility.
Shamoun, Simon Francis; Erbilgin, Nadir
2017-01-01
Conifers have complex defense responses to initial attacks by insects and pathogens that can have cascading effects on success of subsequent colonizers. However, drought can affect a plant’s ability to respond to biotic agents by potentially altering the resources needed for the energetically costly production of induced defense chemicals. We investigated the impact of reduced water on induced chemical defenses of jack pine (Pinus banksiana) seedlings from initial attack by biotic agents and resistance to subsequent challenge inoculation with a pathogenic fungal associate of mountain pine beetle (Dendroctonus ponderosae), Grosmannia clavigera. Applications of phytohormones (methyl salicylate and methyl jasmonate) and G. clavigera were used for initial induction of defenses. Monoterpene concentrations varied with initial induction from fungal and phytohormone application while watering treatment had no effect. Seedlings treated with G. clavigera and methyl jasmonate had the greatest monoterpene concentrations compared to the control and methyl salicylate-treated seedlings. However, the monoterpene response to the challenge inoculation varied with watering treatments, not with prior induction treatments, with lower monoterpene concentrations in fungal lesions on seedlings in the low to moderate watering treatments compared to normal watering treatment. Furthermore, prior induction from phytohormones resulted in systemic cross-induction of resistance to G. clavigera under normal watering treatment but susceptibility under low watering treatment. Seedlings stressed by low water conditions, which also had lower stomatal conductance than seedlings in the normal watering treatment, likely allocated resources to initial defense response but were left unable to acquire further resources for subsequent responses. Our results demonstrate that drought can affect interactions among tree-infesting organisms through systemic cross-induction of susceptibility. PMID:29216258
In vitro anticancer activity of methyl caffeate isolated from Solanum torvum Swartz. fruit.
Balachandran, C; Emi, N; Arun, Y; Yamamoto, Y; Ahilan, B; Sangeetha, B; Duraipandiyan, V; Inaguma, Yoko; Okamoto, Akinao; Ignacimuthu, S; Al-Dhabi, N A; Perumal, P T
2015-12-05
The present study was undertaken to investigate the anticancer activity of methyl caffeate isolated from Solanum torvum Swartz. fruit and to explore the molecular mechanisms of action in MCF-7 cells. Cytotoxic properties of hexane, ethyl acetate and methanol extracts were carried out against MCF-7 cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Ethyl acetate extract showed good cytototoxic activities compared to hexane and methanol extracts. Methyl caffeate was isolated from the ethyl acetate extract using column chromatography. Cytotoxic properties of methyl caffeate was investigated against MCF-7, A549, COLO320, HepG-2 and Vero cells. The compound showed potent cytotoxic properties against MCF-7 cells compared to A549, COLO320 and HepG-2 cells. Methyl caffeate significantly reduced cell proliferation and increased formation of fragmented DNA and apoptotic body in MCF-7 cells. Bcl-2, Bax, Bid, p53, caspase-3, PARP and cytochrome c release were detected by western blot analysis. The activities of caspases-3 and PARP gradually increased after the addition of isolated compound. Bcl-2 protein was down regulated; Bid and Bax were up regulated after the treatment with methyl caffeate. Molecular docking studies showed that the compound bound stably to the active sites of poly (ADP-ribose) polymerase-1 (PARP1), B cell CLL/lymphoma-2 (BCL-2), E3 ubiquitin-protein ligase (MDM2) and tubulin. The results strongly suggested that methyl caffeate induced apoptosis in MCF-7 cells via caspase activation through cytochrome c release from mitochondria. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
27 CFR 21.117 - Methyl isobutyl ketone.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Methyl isobutyl ketone. 21.117 Section 21.117 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....117 Methyl isobutyl ketone. (a) Acidity (as acetic acid). 0.02 percent by weight, maximum. (b) Color...
27 CFR 21.117 - Methyl isobutyl ketone.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Methyl isobutyl ketone. 21.117 Section 21.117 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....117 Methyl isobutyl ketone. (a) Acidity (as acetic acid). 0.02 percent by weight, maximum. (b) Color...
40 CFR 180.554 - Kresoxim-methyl; tolerances for residues.
Code of Federal Regulations, 2011 CFR
2011-07-01
... glucose conjugated); and (E)-2-[2-(4-hydroxy-2-methylphenoxy)-methyl]phenyl-2-(methoxyimido)acetic acid (free and glucose conjugated) in or on the following commodities: Commodity Parts per million Apple, dry...
40 CFR 180.554 - Kresoxim-methyl; tolerances for residues.
Code of Federal Regulations, 2010 CFR
2010-07-01
... glucose conjugated); and (E)-2-[2-(4-hydroxy-2-methylphenoxy)-methyl]phenyl-2-(methoxyimido)acetic acid (free and glucose conjugated) in or on the following commodities: Commodity Parts per million Apple, dry...
INVESTIGATION OF CE/LIF AS A TOOL IN THE ...
The investigation of emerging contaminant issues is a proactive effort in environmental analysis. As a part of this effort, sewage effluent is of current analytical interest because of the presence of pharmaceuticals and their metabolites and personal care products The environmental impact of these components is still under investigation but their constant perfusion into receiving waters and their potential effect on biota is of concern. This paper examines a tool for the characterization of sewage effluent using capillary electrophoresis/laser-induced fluorescence (CE/LIF) with a frequency-doubled laser operated in the ultraviolet (UV). Fluorescent acidic analytes are targeted because they present special problems for techniques such as gas chromatography/mass spectrometry (GC/MS) but are readily accessible to CE/LIF. As an example of the application of this tool, salicylic acid is determined near the 100 ng/L level in sewage effluent. Salicylic acid is a metabolite of various analgesics Relatively stable in the environment, it is a common contaminant of municipal sewage systems. Salicylic acid was recovered from freshly collected samples of the effluent by liquid-liquid extraction as part of a broad characterization effort. Confirmation of identity was by electron ionization GC/MS after conversion of the salicylic acid to the methyl ester by means of trimethylsilyidiazomethane CE/LIF in the UV has revealed more than 50 individual peaks in the extract and a bac
[Chemical Constituents from Ethyl Acetate Extract of Psidium guajava Leaves (II)].
Ouyang, Wen; Zhu, Xiao-ai; He, Cui-xia; Chen, Xue-xiang; Ye, Shu-min; Peng, Shan; Cao, Yong
2015-08-01
To study the chemical constituents from ethyl acetate extract of Psidium guajava leaves. The constituents were separated and purified by silica gel and Sephadex LH-20 column chromatography and their structures were identified on the basis of physicochemical properties and spectral data. Eleven compounds were isolated and identified as 6,10,14-trimethyl-2-pentadecanone (1), phytyl-acetate (2), cubenol (3), eucalyptin (4), n-docosanoic acid-p-hydroxy-phenethylol ester (5),8-methyl-5,7- dihydroxy-flavonone (6), 6-methyl-5,7-dihydroxy-flavonone (7), betulinic acid (8), carnosol (9), quercetin (10), and 2,4,6-tirhydroxy- 3,5-dimethyl-diphenylketone-4-O-(6'"-O-galloyl)-β-D-glucoside (11). Compounds 1-9 are isolated from this plant for the first time.
Król, P; Igielski, R; Pollmann, S; Kępczyńska, E
2015-05-01
Methyl jasmonate (MeJA) was tested by seed treatment for its ability to protect tomato seedlings against fusarium wilt caused by the soil-borne fungal pathogen Fusarium oxysporum f.sp. lycopersici. Isolated from Solanum lycopersicon L. seeds, cv. Beta fungus was identified as F. oxysporum f.sp. lycopersici Race 3 fungus by using phytopathological and molecular methods. MeJA applied at 0.01, 0.1 and 1 mM reduced spore germination and mycelial growth in vitro. Soaking of tomato seeds in MeJA solution at 0.1 mM for 1 h significantly enhanced the resistance level against the tested fungus in tomato seedlings 4 weeks after inoculation. The extracts from leaves of 15-day-old seedlings obtained from previously MeJA soaked seeds had the ability to inhibit in vitro spore germination of tested fungus. In these seedlings a significant increase in the levels phenolic compounds such as salicylic acid (SA), kaempferol and quercetin was observed. Up-regulation of phenylalanine ammonia-lyase (PAL5) and benzoic acid/salicylic acid carboxyl methyltransferase (BSMT) genes and down-regulation of the isochorysmate synthase (ICS) gene in response to exogenous MeJA application indicate that the phenylalanine ammonia-lyase (PAL), not the isochorismate (IC) pathway, is the primary route for SA production in tomato. Moreover, the increased accumulation of the flavonols quercetin and kaempferol appears closely related to the increase of PAL5, chalcone synthase (CHS) and flavonol synthase/flavanone 3-hydroxylase-like (FLS) genes. Elevated levels of salicylic acid in seedlings raised from MeJA-soaked seeds were simultaneously accompanied by a decrease of jasmonic acid, the precursor of MeJA, and an increase of 12-oxo-phytodienoic acid (OPDA), the precursor of jasmonic acid. The present results indicate that the priming of tomato seeds with 0.1mM MeJA before sowing enables the seedlings grown from these seeds to reduce the attack of the soil-borne fungal pathogen F. oxysporum f.sp. lycopersici, so it can be applied in practice. Copyright © 2015 Elsevier GmbH. All rights reserved.
Thermometric titration studies of mixed ligand complexes of thorium.
Kugler, G C; Carey, G H
1970-10-01
Mixed-ligand chelates consisting of two different multidentate ligands linked to a central thorium(IV) ion have been prepared in aqueous solution and their heats of formation studied thermo metrically. Pyrocatechol, tiron, chromotropic acid, potassium hydrogen phthalate, 8-hydroxyquinoline-S-sulphonic acid, iminodiacetic acid, 5-sulphosalicylic acid and salicylic acid were used as the secondary ligands, while ethylenediaminetetra-acetate and 1, 2-diaminocyclohexane-N,N,N',N'-tetra-acetate were used as primary ligands. DeltaH values for the overall reactions are given, and where possible, the DeltaH and DeltaS values for the specific secondary ligand addition were calculated. The overall stability of the mixed-ligand chelates and the enhanced stability of EDTA mixed chelates relative to the analogous DCTA chelates were found to be due to entropy rather than enthalpy effects.
Surface-Streamline Flow Visualization
NASA Technical Reports Server (NTRS)
Langston, L.; Boyle, M.
1985-01-01
Matrix of ink dots covers matte surface of polyester drafting film. Film placed against wind-tunnel wall. Layer of methyl salicylate (oil of wintergreen) sprayed over dotted area. Ink dot streaklines show several characteristics of flow, including primary saddle point of separations, primary horseshoe vortex and smaller vortex at cylinder/ endwall junction. Surface streamline flow visualization technique suitable for use in low-speed windtunnels or other low-speed gas flows.
2017-07-20
methyl salicylate, dimethyl methylphosphate, and diisopropyl fluorophosphates following treatment of contaminated surfaces with a soapy water solution...and diisopropyl fluorophosphate following treatment of contaminated surfaces with a soapy water solution is reported along with droplet diffusion on...SURFACES (SLIPS) INTRODUCTION The DoD Chemical and Biological Defense Program (CBDP) seeks to provide protection of forces in a contaminated
Use of Methyl Salicylates As a Trialing Chemical Agent Simulant
1990-05-01
phocomelia of the hind-limbs were frequently seen after injection on day 11. Hydronephrosis , ectoplc kidneys, and exencephaly were occasionally observed...Oapparent hydronephrosis " late in gestition. This apparent abnormality decreases by steady lengthening of the renal papilla with advancing fetal anw...treated fetuses at weaning., This persistent condition, suggestive, of hydronephrosis or hypoplasia, was not noted in control fetuses. Monie (1970
2011-05-01
DMeS11,12 (tR = 14.83 min). The 3,5- DMeS crystallized spontaneously11 as colorless needles, melting point 143 146 C; 1HNMRdata: δ 7.785, 1Hd, J = 2.6 Hz, H...dichloro-phenol. Figure 2 shows two possible mecha- nisms, both promoted by the phenolic oxygen center— tautomerization to a β- keto acid and β
Bioinspired Surface Treatments for Improved Decontamination: Icephobic Surfaces
2017-06-26
standing droplets of water (left) and methyl salicylate (right) immediately following liquid application (top) and 5 min after liquid application...average of nine measurements for each liquid ). Geometric surface energy was calculated based on the water and ethylene glycol interactions using software...supporting platform angle was gradually increased up to 60°. Sliding angles for each of the liquids were identified as the angle for which movement
27 CFR 21.118 - Methyl n-butyl ketone.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Methyl n-butyl ketone. 21.118 Section 21.118 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....118 Methyl n-butyl ketone. (a) Acidity (as acetic acid). 0.02 percent by weight, maximum. (b) Color...
27 CFR 21.118 - Methyl n-butyl ketone.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Methyl n-butyl ketone. 21.118 Section 21.118 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....118 Methyl n-butyl ketone. (a) Acidity (as acetic acid). 0.02 percent by weight, maximum. (b) Color...
Creamer, Kaitlin E; Ditmars, Frederick S; Basting, Preston J; Kunka, Karina S; Hamdallah, Issam N; Bush, Sean P; Scott, Zachary; He, Amanda; Penix, Stephanie R; Gonzales, Alexandra S; Eder, Elizabeth K; Camperchioli, Dominic W; Berndt, Adama; Clark, Michelle W; Rouhier, Kerry A; Slonczewski, Joan L
2017-01-15
Escherichia coli K-12 W3110 grows in the presence of membrane-permeant organic acids that can depress cytoplasmic pH and accumulate in the cytoplasm. We conducted experimental evolution by daily diluting cultures in increasing concentrations of benzoic acid (up to 20 mM) buffered at external pH 6.5, a pH at which permeant acids concentrate in the cytoplasm. By 2,000 generations, clones isolated from evolving populations showed increasing tolerance to benzoate but were sensitive to chloramphenicol and tetracycline. Sixteen clones grew to stationary phase in 20 mM benzoate, whereas the ancestral strain W3110 peaked and declined. Similar growth occurred in 10 mM salicylate. Benzoate-evolved strains grew like W3110 in the absence of benzoate, in media buffered at pH 4.8, pH 7.0, or pH 9.0, or in 20 mM acetate or sorbate at pH 6.5. Genomes of 16 strains revealed over 100 mutations, including single-nucleotide polymorphisms (SNPs), large deletions, and insertion knockouts. Most strains acquired deletions in the benzoate-induced multiple antibiotic resistance (Mar) regulon or in associated regulators such as rob and cpxA, as well as the multidrug resistance (MDR) efflux pumps emrA, emrY, and mdtA Strains also lost or downregulated the Gad acid fitness regulon. In 5 mM benzoate or in 2 mM salicylate (2-hydroxybenzoate), most strains showed increased sensitivity to the antibiotics chloramphenicol and tetracycline; some strains were more sensitive than a marA knockout strain. Thus, our benzoate-evolved strains may reveal additional unknown drug resistance components. Benzoate or salicylate selection pressure may cause general loss of MDR genes and regulators. Benzoate is a common food preservative, and salicylate is the primary active metabolite of aspirin. In the gut microbiome, genetic adaptation to salicylate may involve loss or downregulation of inducible multidrug resistance systems. This discovery implies that aspirin therapy may modulate the human gut microbiome to favor salicylate tolerance at the expense of drug resistance. Similar aspirin-associated loss of drug resistance might occur in bacterial pathogens found in arterial plaques. Copyright © 2016 American Society for Microbiology.
SUPERCRITICAL WATER OXIDATION MODEL DEVELOPMENT FOR SELECTED EPA PRIORITY POLLUTANTS
Supercritical Water Oxidation (SCWO) evaluated for five compounds: acetic acid, 2,4-dichlorophenol, pentachlorophenol, pyridine, 2,4-dichlorophenoxyacetic acid (methyl ester). inetic models were developed for acetic acid, 2,4-dichlorophenol, and pyridine. he test compounds were e...
Thermal Decomposition of Potential Ester Biofuels. Part I: Methyl Acetate and Methyl Butanoate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porterfield, Jessica P.; Bross, David H.; Ruscic, Branko
2017-06-09
Two methyl esters have been examined as models for the pyrolysis of biofuels. Dilute samples (0.06 - 0.13%) of methyl acetate (CH 3COOCH 3) and methyl butanoate (CH 3CH 2CH 2COOCH 3) were entrained in (He, Ar) carrier gas and decomposed in a set of flash-pyrolysis micro-reactors. The pyrolysis products resulting from the methyl esters were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by matrix infrared absorption spectroscopy. Pyrolysis pressures in the pulsed micro-reactor were roughly 20 Torr and residence times through the reactors were approximately 25 - 150 µs. Reactor temperatures ofmore » 300 – 1600 K were explored. Decomposition of CH 3COOCH 3 commences at 1000 K and the initial products are (CH 2=C=O and CH 3OH). As the micro-reactor is heated to 1300 K, a mixture of (CH 2=C=O and CH 3OH, CH 3, CH 2=O, H, CO, CO 2) appears. The thermal cracking of CH 3CH 2CH 2COOCH 3 begins at 800 K with the formation of (CH 3CH 2CH=C=O, CH 3OH). By 1300 K, the pyrolysis of methyl butanoate yields a complex mixture of (CH 3CH 2CH=C=O, CH 3OH, CH 3, CH 2=O, CO, CO 2, CH 3CH=CH 2, CH 2CHCH 2, CH 2=C=CH 2, HCCCH 2, CH 2=C=C=O, CH 2=CH 2, HCΞCH, CH 2=C=O). Based on the results from the thermal cracking of methyl acetate and methyl butanoate, we predict several important decomposition channels for the pyrolysis of fatty acid methyl esters, R CH 2-COOCH 3. The lowest energy fragmentation will be a 4-center elimination of methanol to form the ketene, RCH=C=O. At higher temperatures, concerted fragmentation to radicals will ensue to produce a mixture of species: (RCH 2 + CO 2 + CH 3) and (RCH 2 + CO + CH 2=O + H). Thermal cracking of the β C-C bond of the methyl ester will generate the radicals (R and H) as well as CH 2=C=O + CH 2=O. The thermochemistry of methyl acetate and its fragmentation products have been obtained via the Active Thermochemical Tables (ATcT) approach, resulting in Δ fH 298(CH 3COOCH 3) = -98.7 ± 0.2 kcal mol -1, Δ fH 298(CH 3CO 2) = -45.7 ± 0.3 kcal mol -1, and Δ fH 298(COOCH 3) = -38.3 ± 0.4 kcal mol -1.« less
Volatile constituents of Trichothecium roseum.
Vanhaelen, M; Vanhaelen-Fastre, R; Geeraerts, J
1978-06-01
In the course of investigation of Trichothecium roseum (Fungi Imperfecti) for its attractancy against Tyrophagus putrescentiae (cheese mite), the twenty following volatile compounds produced at a very low concentration by the microfungus were identified by gc, gc/ms, gc/c.i.ms and tlc: 3-methyl-1-butanol, 3-octanone, 1-octen-3-one, 3-octanol, octa-1,5-dien-3 one, 1-octen-3-ol, 6-methyl-5-hepten-2-ol, octa-1,5-dien-3 ol, furfural, linalool, linalyl acetate, terpineol (alpha and beta) citronellyl acetate, nerol, citronellol, phenylacetaldehyde, benzyl alcohol geranyl acetate, 1-phenyl ethanol and nerolidol. Octa-1,5-dien-3-ol and octa-1,5-dien-3-one have not been previously isolated from fungi; octa-1,5-dien-3-ol is the most potent attractant amount the volatile compounds detected by gc.
40 CFR 439.16 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2014 CFR
2014-07-01
... Xylenes 3.0 0.7 n-Heptane 3.0 0.7 n-Hexane 3.0 0.7 Methylene chloride 3.0 0.7 Chloroform 0.1 0.03 1,2... 1 Ammonia (as N) 2 84.1 29.4 Acetone 20.7 8.2 4-methyl-2-pentanone 20.7 8.2 Isobutyraldehyde 20.7 8.2 n-Amyl acetate 20.7 8.2 n-Butyl acetate 20.7 8.2 Ethyl acetate 20.7 8.2 Isopropyl acetate 20.7 8.2...
40 CFR 439.16 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2013 CFR
2013-07-01
... Xylenes 3.0 0.7 n-Heptane 3.0 0.7 n-Hexane 3.0 0.7 Methylene chloride 3.0 0.7 Chloroform 0.1 0.03 1,2... 1 Ammonia (as N) 2 84.1 29.4 Acetone 20.7 8.2 4-methyl-2-pentanone 20.7 8.2 Isobutyraldehyde 20.7 8.2 n-Amyl acetate 20.7 8.2 n-Butyl acetate 20.7 8.2 Ethyl acetate 20.7 8.2 Isopropyl acetate 20.7 8.2...
40 CFR 439.16 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2012 CFR
2012-07-01
... Xylenes 3.0 0.7 n-Heptane 3.0 0.7 n-Hexane 3.0 0.7 Methylene chloride 3.0 0.7 Chloroform 0.1 0.03 1,2... 1 Ammonia (as N) 2 84.1 29.4 Acetone 20.7 8.2 4-methyl-2-pentanone 20.7 8.2 Isobutyraldehyde 20.7 8.2 n-Amyl acetate 20.7 8.2 n-Butyl acetate 20.7 8.2 Ethyl acetate 20.7 8.2 Isopropyl acetate 20.7 8.2...
NASA Astrophysics Data System (ADS)
Treadaway, Victoria; Heikes, Brian G.; McNeill, Ashley S.; Silwal, Indira K. C.; O'Sullivan, Daniel W.
2018-04-01
A chemical ionization mass spectrometry (CIMS) method utilizing a reagent gas mixture of O2, CO2, and CH3I in N2 is described and optimized for quantitative gas-phase measurements of hydrogen peroxide (H2O2), methyl peroxide (CH3OOH), formic acid (HCOOH), and the sum of acetic acid (CH3COOH) and hydroxyacetaldehyde (HOCH2CHO; also known as glycolaldehyde). The instrumentation and methodology were designed for airborne in situ field measurements. The CIMS quantification of formic acid, acetic acid, and hydroxyacetaldehyde used I- cluster formation to produce and detect the ion clusters I-(HCOOH), I-(CH3COOH), and I-(HOCH2CHO), respectively. The CIMS also produced and detected I- clusters with hydrogen peroxide and methyl peroxide, I-(H2O2) and I-(CH3OOH), though the sensitivity was lower than with the O2- (CO2) and O2- ion clusters, respectively. For that reason, while the I- peroxide clusters are presented, the focus is on the organic acids. Acetic acid and hydroxyacetaldehyde were found to yield equivalent CIMS responses. They are exact isobaric compounds and indistinguishable in the CIMS used. Consequently, their combined signal is referred to as the acetic acid equivalent sum
. Within the resolution of the quadrupole used in the CIMS (1 m/z), ethanol and 1- and 2-propanol were potential isobaric interferences to the measurement of formic acid and the acetic acid equivalent sum, respectively. The CIMS response to ethanol was 3.3 % that of formic acid and the response to either 1- or 2-propanol was 1 % of the acetic acid response; therefore, the alcohols were not considered to be significant interferences to formic acid or the acetic acid equivalent sum. The multi-reagent ion system was successfully deployed during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) in 2014. The combination of FRAPPÉ and laboratory calibrations allowed for the post-mission quantification of formic acid and the acetic acid equivalent sum observed during the Deep Convective Clouds and Chemistry Experiment in 2012.
Ultrasound assisted intensification of biodiesel production using enzymatic interesterification.
Subhedar, Preeti B; Gogate, Parag R
2016-03-01
Ultrasound assisted intensification of synthesis of biodiesel from waste cooking oil using methyl acetate and immobilized lipase obtained from Thermomyces lanuginosus (Lipozyme TLIM) as a catalyst has been investigated in the present work. The reaction has also been investigated using the conventional approach based on stirring so as to establish the beneficial effects obtained due to the use of ultrasound. Effect of operating conditions such as reactant molar ratio (oil and methyl acetate), temperature and enzyme loading on the yield of biodiesel has been investigated. Optimum conditions for the conventional approach (without ultrasound) were established as reactant molar ratio of 1:12 (oil:methyl acetate), enzyme loading of 6% (w/v), temperature of 40 °C and reaction time of 24 h and under these conditions, 90.1% biodiesel yield was obtained. The optimum conditions for the ultrasound assisted approach were oil to methyl acetate molar ratio of 1:9, enzyme loading of 3% (w/v), and reaction time of 3 h and the biodiesel yield obtained under these conditions was 96.1%. Use of ultrasound resulted in significant reduction in the reaction time with higher yields and lower requirement of the enzyme loading. The obtained results have clearly established that ultrasound assisted interesterification was a fast and efficient approach for biodiesel production giving significant benefits, which can help in reducing the costs of production. Reusability studies for the enzyme were also performed but it was observed that reuse of the catalyst under the optimum experimental condition resulted in reduced enzyme activity and biodiesel yield. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gaona-Colmán, Elizabeth; Blanco, María B.; Teruel, Mariano A.
2017-07-01
Rate coefficients for the reactions of hydroxyl radicals and chlorine atoms with two biogenic volatile organic compounds as (E)-2-hexenyl acetate and 4-methyl-3-penten-2-one have been determined at 298 K and atmospheric pressure. The decay of the organics was followed using a chromatograph with a flame ionization detector (GC-FID) and the rate constants were determined using a relative rate method. Rate coefficients are found to be (in cm3 molecule-1 s-1): k1(OH + (E)-2-hexenyl acetate) = (6.88 ± 1.41) × 10-11, k2(Cl + (E)-2-hexenyl acetate) = (3.10 ± 1.13) × 10-10, k3(OH + 4-methyl-3-penten-2-one) = (1.02 ± 0.20) × 10-10 and k4(Cl + 4-methyl-3-penten-2-one) = (2.66 ± 0.90) × 10-10 at 298 K. This is the first kinetic experimental study for these reactions studied under atmospheric pressure. The rate coefficients are compared with previous determinations for other unsaturated and oxygenated compounds and reactivity trends are presented. Products identification studies were performed using solid-phase microextraction (SPME) method employing on-fiber products derivatization with o-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine hydrochloride using gas chromatograph with a mass spectrometer detector (GC-MS) for the reactions studied. In addition, atmospheric lifetimes of the unsaturated compounds studied are estimated and compared with other tropospheric sinks for these compounds.
Yao, Youli; Danna, Cristian H.; Zemp, Franz J.; Titov, Viktor; Ciftci, Ozan Nazim; Przybylski, Roman; Ausubel, Frederick M.; Kovalchuk, Igor
2011-01-01
We have previously shown that local exposure of plants to stress results in a systemic increase in genome instability. Here, we show that UV-C–irradiated plants produce a volatile signal that triggers an increase in genome instability in neighboring nonirradiated Arabidopsis thaliana plants. This volatile signal is interspecific, as UV-C–irradiated Arabidopsis plants transmit genome destabilization to naive tobacco (Nicotiana tabacum) plants and vice versa. We report that plants exposed to the volatile hormones methyl salicylate (MeSA) or methyl jasmonate (MeJA) exhibit a similar level of genome destabilization as UV-C–irradiated plants. We also found that irradiated Arabidopsis plants produce MeSA and MeJA. The analysis of mutants impaired in the synthesis and/or response to salicylic acid (SA) and/or jasmonic acid showed that at least one other volatile compound besides MeSA and MeJA can communicate interplant genome instability. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (npr1) mutant, defective in SA signaling, is impaired in both the production and the perception of the volatile signals, demonstrating a key role for NPR1 as a central regulator of genome stability. Finally, various forms of stress resulting in the formation of necrotic lesions also generate a volatile signal that leads to genomic instability. PMID:22028460
DOE Office of Scientific and Technical Information (OSTI.GOV)
BENDER, SUSAN FAE ANN; RODACY, PHILIP J.; BARNETT, JAMES L.
The ultimate goal of many environmental measurements is to determine the risk posed to humans or ecosystems by various contaminants. Conventional environmental monitoring typically requires extensive sampling grids covering several media including air, water, soil and vegetation. A far more efficient, innovative and inexpensive tactic has been found using honeybees as sampling mechanisms. Members from a single bee colony forage over large areas ({approx}2 x 10{sup 6} m{sup 2}), making tens of thousands of trips per day, and return to a fixed location where sampling can be conveniently conducted. The bees are in direct contact with the air, water, soilmore » and vegetation where they encounter and collect any contaminants that are present in gaseous, liquid and particulate form. The monitoring of honeybees when they return to the hive provides a rapid method to assess chemical distributions and impacts (1). The primary goal of this technology is to evaluate the efficiency of the transport mechanism (honeybees) to the hive using preconcentrators to collect samples. Once the extent and nature of the contaminant exposure has been characterized, resources can be distributed and environmental monitoring designs efficiently directed to the most appropriate locations. Methyl salicylate, a chemical agent surrogate was used as the target compound in this study.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Nan; Guan, Ju; Ferrer, Jean-Luc
Two benzenoid esters, methyl salicylate (MeSA) and methyl benzoate (MeBA), were detected from insect-damaged rice plants. By correlating metabolite production with gene expression analysis, five candidate genes encoding putative carboxyl methyltransferases were identified. Enzymatic assays with Escherichia coli-expressed recombinant proteins demonstrated that only one of the five candidates, OsBSMT1, has salicylic acid (SA) methyltransferase (SAMT) and benzoic acid (BA) methyltransferase (BAMT) activities for producing MeSA and MeBA, respectively. Whereas OsBSMT1 is phylogenetically relatively distant from dicot SAMTs, the three-dimensional structure of OsBSMT1, which was determined using homology-based structural modeling, is highly similar to those of characterized SAMTs. Analyses of OsBSMT1more » expression in wild-type rice plants under various stress conditions indicate that the jasmonic acid (JA) signaling pathway plays a critical role in regulating the production and emission of MeSA in rice. Further analysis using transgenic rice plants overexpressing NH1, a key component of the SA signaling pathway in rice, suggests that the SA signaling pathway also plays an important role in governing OsBSMT1 expression and emission of its products, probably through a crosstalk with the JA signaling pathway. The role of the volatile products of OsBSMT1, MeSA and MeBA, in rice defense against insect herbivory is discussed.« less
Wang, Chongbin; Zou, Tonglei; Xu, Nianjun; Sun, Xue
2017-01-01
Culturing the economically important macroalga Gracilariopsis lemaneiformis (Rhodophyta) is limited due to the high temperatures in the summertime on the southern Chinese coast. Previous studies have demonstrated that two phytohormones, salicylic acid (SA) and methyl jasmonate (MJ), can alleviate the adverse effects of high-temperature stress on Gp. lemaneiformis. To elucidate the molecular mechanisms underlying SA- and MJ-mediated heat tolerance, we performed comprehensive analyses of transcriptome-wide gene expression profiles using RNA sequencing (RNA-seq) technology. A total of 14,644 unigenes were assembled, and 10,501 unigenes (71.71%) were annotated to the reference databases. In the SA, MJ and SA/MJ treatment groups, 519, 830, and 974 differentially expressed unigenes were detected, respectively. Unigenes related to photosynthesis and glycometabolism were enriched by SA, while unigenes associated with glycometabolism, protein synthesis, heat shock and signal transduction were increased by MJ. A crosstalk analysis revealed that 216 genes were synergistically regulated, while 18 genes were antagonistically regulated by SA and MJ. The results indicated that the two phytohormones could mitigate the adverse effects of heat on multiple pathways, and they predominantly acted synergistically to resist heat stress. These results will provide new insights into how SA and MJ modulate the molecular mechanisms that counteract heat stress in algae. PMID:28464018
Growth Media Affect Assessment of Antimicrobial Activity of Plant-Derived Polyphenols.
Xu, Xin; Ou, Zhen M; Wu, Christine D
2018-01-01
This study aimed to investigate the effects of different microbial growth media on the laboratory assessment of antimicrobial activity of natural polyphenolic compounds. The inhibition of the tea polyphenol EGCG on growth of selected oral microorganisms was evaluated in complex media and a protein-free chemically defined medium (CDM). Other antimicrobial agents (polyphenolic grape seed extract, plant alkaloid berberine, methyl salicylate, and chlorhexidine gluconate) were also tested in the study. The presence of proteins and their effects on the antimicrobial activity of EGCG were investigated by the addition of BSA to the CDM. The MICs of EGCG against test oral microorganisms were 4 to 64 times higher in complex media than in CDM. The polyphenolic grape seed extract exhibited similar discrepancies. However, the MICs of the nonpolyphenolic compounds (berberine, methyl salicylate, and chlorhexidine) were not significantly different between the two growth media. The MIC of EGCG against S. mutans UA159 in CDM with added BSA was 16 times higher than that in CDM alone. Therefore, nonproteinaceous CDM should be used to avoid interference of proteins with the active ingredients when testing the antimicrobial activity of plant-derived polyphenolic compounds against microorganisms. This will also minimize the discrepancies noted in results obtained by different investigators.
Luo, Jintao; Xu, Zhaofa; Tan, Zhiping; Zhang, Zhuohua; Ma, Long
2015-01-01
Methyl salicylate (MeSa) is a stress hormone released by plants under attack by pathogens or herbivores . MeSa has been shown to attract predatory insects of herbivores and repel pests. The molecules and neurons underlying animal response to MeSa are not known. Here we found that the nematode Caenorhabditis elegans exhibits a strong avoidance response to MeSa, which requires the activities of two closely related neuropeptide receptors NPR-1 and NPR-2. Molecular analyses suggest that NPR-1 expressed in the RMG inter/motor neurons is required for MeSa avoidance. An NPR-1 ligand FLP-18 is also required. Using a rescuing npr-2 promoter to drive a GFP transgene, we identified that NPR-2 is expressed in multiple sensory and interneurons. Genetic rescue experiments suggest that NPR-2 expressed in the AIZ interneurons is required for MeSa avoidance. We also provide evidence that the AWB sensory neurons might act upstream of RMGs and AIZs to detect MeSa. Our results suggest that NPR-2 has an important role in regulating animal behavior and that NPR-1 and NPR-2 act on distinct interneurons to affect C. elegans avoidance response to MeSa. PMID:25527285
Bhardwaj, Pardeep Kumar; Kaur, Jagdeep; Sobti, Ranbir Chander; Ahuja, Paramvir Singh; Kumar, Sanjay
2011-09-01
Lipoxygenase (LOX) catalyses oxygenation of free polyunsaturated fatty acids into oxylipins, and is a critical enzyme of the jasmonate signaling pathway. LOX has been shown to be associated with biotic and abiotic stress responses in diverse plant species, though limited data is available with respect to low temperature and the associated cues. Using rapid amplification of cDNA ends, a full-length cDNA (CjLOX) encoding lipoxygenase was cloned from apical buds of Caragana jubata, a temperate plant species that grows under extreme cold. The cDNA obtained was 2952bp long consisting of an open reading frame of 2610bp encoding 869 amino acids protein. Multiple alignment of the deduced amino acid sequence with those of other plants demonstrated putative LH2/ PLAT domain, lipoxygenase iron binding catalytic domain and lipoxygenase_2 signature sequences. CjLOX exhibited up- and down-regulation of gene expression pattern in response to low temperature (LT), abscisic acid (ABA), methyl jasmonate (MJ) and salicylic acid (SA). Among all the treatments, a strong up-regulation was observed in response to MJ. Data suggests an important role of jasmonate signaling pathway in response to LT in C. jubata. Copyright © 2011 Elsevier B.V. All rights reserved.
Toske, Steven G; McConnell, Jennifer B; Brown, Jaclyn L; Tuten, Jennifer M; Miller, Erin E; Phillips, Monica Z; Vazquez, Etienne R; Lurie, Ira S; Hays, Patrick A; Guest, Elizabeth M
2017-03-01
A trace processing impurity found in certain methamphetamine exhibits was isolated and identified as trans-N-methyl-4-methyl-5-phenyl-4-penten-2-amine hydrochloride (1). It was determined that this impurity was produced via reductive amination of trans-4-methyl-5-phenyl-4-penten-2-one (4), which was one of a cluster of related ketones generated during the synthesis of 1-phenyl-2-propanone (P2P) from phenylacetic acid and lead (II) acetate. This two-step sequence resulted in methamphetamine containing elevated levels of 1. In contrast, methamphetamine produced from P2P made by other methods produced insignificant (ultra-trace or undetectable) amounts of 1. These results confirm that 1 is a synthetic marker compound for the phenylacetic acid and lead (II) acetate method. Analytical data for 1 and 4, and a postulated mechanism for the production of 4, are presented. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Ethanol and other oxygenateds from low grade carbonaceous resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joo, O.S.; Jung, K.D.; Han, S.H.
1995-12-31
Anhydrous ethanol and other oxygenates of C2 up can be produced quite competitively from low grade carbonaceous resources in high yield via gasification, methanol synthesis, carbonylation of methanol an hydrogenation consecutively. Gas phase carbonylation of methanol to form methyl acetate is the key step for the whole process. Methyl acetate can be produced very selectively in one step gas phase reaction on a fixed bed column reactor with GHSV over 5,000. The consecutive hydrogenation of methyl or ethyl acetate produce anhydrous ethanol in high purity. It is also attempted to co-produce methanol and DME in IGCC, in which low grademore » carbonaceous resources are used as energy sources, and the surplus power and pre-power gas can be stored in liquid form of methanol and DME during base load time. Further integration of C2 up oxygenate production with IGCC can improve its economics. The attempt of above extensive technology integration can generate significant industrial profitability as well as reduce the environmental complication related with massive energy consumption.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Ethylene Glycol MonobutylEther Acetate Chloroprene. Ethylene Glycol MonomethylEther Acetate Cumene (isopropylbenzene). Ethylene Glycol Dimethyl Ether Dibromoethane 1,2. Hexachlorobenzene Dichlorobenzene 1,4.... Ethylbenzene. Ethylene Oxide. Ethylene Dibromide. Hexachlorobutadiene. Hexachloroethane. Hexane-n. Methyl...
Farag, Mohamed A; Al-Mahdy, Dalia A; Meyer, Achim; Westphal, Hildegard; Wessjohann, Ludger A
2017-04-05
The effects of six biotic and abiotic elicitors, i.e. MeJA (methyl jasmonate), SA (salicylic acid), ZnCl 2 , glutathione and β-glucan BG (fungal elicitor), and wounding, on the secondary metabolite accumulation in the soft coral Sarcophyton ehrenbergi were assessed. Upon elicitation, metabolites were extracted and analysed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Except for MeJA, no differences in photosynthetic efficiency were observed after treatments, suggesting the absence of a remarkable stress on primary production. Chemometric analyses of UPLC-MS data showed clear segregation of SA and ZnCl 2 elicited samples at 24 and 48 h post elicitation. Levels of acetylated diterpene and sterol viz., sarcophytonolide I and cholesteryl acetate, was increased in ZnCl 2 and SA groups, respectively, suggesting an activation of specific acetyl transferases. Post elicitation, sarcophytonolide I level increased 132 and 17-folds at 48 h in 0.1 mM SA and 1 mM ZnCl 2 groups, respectively. Interestingly, decrease in sarcophine, a major diterpene was observed only in response to ZnCl 2 , whereas no change was observed in sesquiterpene content following treatments. To the best of our knowledge, this study provides the first documentation for elicitation effects on a soft corals secondary metabolome and suggests that SA could be applied to increase diterpenoid levels in corals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solimo, H.N.; Martinez, H.E.; Riggio, R.
1989-04-01
Experimental mutual solubility and tie-line data were determined for three ternary liquid-liquid systems containing water, ethanol, and amyl acetate, benzyl alcohol, and methyl isobutyl ketone at 298.15{Kappa} in order to obtain their complete phase diagrams and to determine which is the most suitable solvent for extraction of ethanol from aqueous solutions. Tie lines were determined correlating the density of the binodal curve as a function of composition and the plait points using the Othmer and Tobias method. The experimental data were also correlated with the UNIFAC group contribution method. A qualitative agreement was obtained. Experimental results show that amyl acetatemore » is a better solvent than methyl isobutyl ketone and benzyl alcohol.« less
[Catalytic stability in wet air oxidation of carboxylic acids over ZnFe0.25Al1.75 O4 catalyst].
Xu, Ai-hua; Yang, Min; Du, Hong-zhang; Peng, Fu-yong; Sun, Cheng-lin
2007-07-01
Oxalic, formic and acetic acid are main intermediate products in catalytic wet air oxidation process (CWAO). The catalytic activity and stability in CWAO of the three short-chain organic acids over ZnFe0.25Al1.75O4 catalyst were studied. Oxalic acid is the only oxidizable intermediate and the largest amount of Fe leaching is 9.5 mg L(-1) at 160 degrees C during CWAO process. Formic and acetic acid have little influence on Fe leaching. Due to the strong reducible ability of oxalic acid, the amount of Fe leaching is larger in nitrogen atmosphere than that in oxygen atmosphere. Salicylic acid can be also degraded by ZnFe0.25Al1.75O4 catalyst with a high catalytic activity and stability.
ERIC Educational Resources Information Center
Rajabzadeh, Massy
2012-01-01
In this experiment, students learn how to find the unknown concentration of sodium acetate using both the graphical treatment of standard addition and the standard addition equation. In the graphical treatment of standard addition, the peak area of the methyl peak in each of the sodium acetate standard solutions is found by integration using…
Zacchei, A G; Wishousky, T I
1976-01-01
The physiological disposition of a new saluretic-uricosuric agent, (6,7-dichloro-2-methyl-1-oxo-2-phenyl-5-indanyloxy)acetic acid (MK-196), was studied in the rat, dog, and monkey. MK-196 was well absorbed and showed minimal metabolism in these species. Peak plasma levels of radioactivity and drug occurred 0.5-2 hr after oral administration at a dose of 2.5 mg/kg. Essentially all of the radioactivity present in the plasma during the first day was intact MK-196. Following a single dose, a long terminal half-life for plasma radioactivity was observed in the dog (approximately 68 hr) and monkey (approximately 105 hr). The chronic administration of MK-196 to dogs resulted in a dose-related plasma profile and showed no tendency to increase or decrease with dosing. However, upon repeated drug administration to monkeys, the plasma levels of drug increased and then decreased, possibly due to hypochloremia and secondary metabolic alkalosis. Fecal excretion was the predominant route of tracer elimination in the dog (approximately 80%) and rat (approximately 94%), whereas the monkey eliminated the majority of the dose (approximately 60%) via the urine. Minimal metabolism was noted in the three lower species; most of the urinary, plasma, and fecal radioactivity was accounted for as intact drug and its glucuronide conjugate. Three minor metabolites, which were present in dog bile, plasma, and urine, were characterized as: (l,7-dichloro-1alpha-hydroxy-2-methyl-2-phenyl-5-indanyloxy)acetic acid, I; (6,7-dichloro-2-(4-hydroxyphenyl)-2-methyl-2-oxo-5-indanyloxy)acetic acid, II; and 2-methyl-2-phenyl-5-hydroxy-6,7-dichloro-1-indanone, III. The monkey urine and plasma also contained small amounts of II.
40 CFR 268.48 - Universal treatment standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... aldehyde 7421-93-4 0.025 0.13 EPTC 6 759-94-4 0.042 1.4 Ethyl acetate 141-78-6 0.34 33 Ethyl benzene 100-41...-chloroaniline) 101-14-4 0.50 30 Methylene chloride 75-09-2 0.089 30 Methyl ethyl ketone 78-93-3 0.28 36 Methyl isobutyl ketone 108-10-1 0.14 33 Methyl methacrylate 80-62-6 0.14 160 Methyl methanesulfonate 66-27-3 0.018...
40 CFR 268.48 - Universal treatment standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... aldehyde 7421-93-4 0.025 0.13 EPTC 6 759-94-4 0.042 1.4 Ethyl acetate 141-78-6 0.34 33 Ethyl benzene 100-41...-chloroaniline) 101-14-4 0.50 30 Methylene chloride 75-09-2 0.089 30 Methyl ethyl ketone 78-93-3 0.28 36 Methyl isobutyl ketone 108-10-1 0.14 33 Methyl methacrylate 80-62-6 0.14 160 Methyl methanesulfonate 66-27-3 0.018...
Novel Acetone Metabolism in a Propane-Utilizing Bacterium, Gordonia sp. Strain TY-5▿
Kotani, Tetsuya; Yurimoto, Hiroya; Kato, Nobuo; Sakai, Yasuyoshi
2007-01-01
In the propane-utilizing bacterium Gordonia sp. strain TY-5, propane was shown to be oxidized to 2-propanol and then further oxidized to acetone. In this study, the subsequent metabolism of acetone was studied. Acetone-induced proteins were found in extracts of cells induced by acetone, and a gene cluster designated acmAB was cloned on the basis of the N-terminal amino acid sequences of acetone-induced proteins. The acmA and acmB genes encode a Baeyer-Villiger monooxygenase (BVMO) and esterase, respectively. The BVMO encoded by acmA was purified from acetone-induced cells of Gordonia sp. strain TY-5 and characterized. The BVMO exhibited NADPH-dependent oxidation activity for linear ketones (C3 to C10) and cyclic ketones (C4 to C8). Escherichia coli expressing the acmA gene oxidized acetone to methyl acetate, and E. coli expressing the acmB gene hydrolyzed methyl acetate. Northern blot analyses revealed that polycistronic transcription of the acmAB gene cluster was induced by propane, 2-propanol, and acetone. These results indicate that the acmAB gene products play an important role in the metabolism of acetone derived from propane oxidation and clarify the propane metabolism pathway of strain TY-5 (propane → 2-propanol → acetone → methyl acetate → acetic acid + methanol). This paper provides the first evidence for BVMO-dependent acetone metabolism. PMID:17071761
Pal, Kaushik; Mallick, Suman; Koner, Apurba L
2015-06-28
Host-guest complexation of dapoxyl sodium sulphonate (DSS), an intramolecular charge transfer dye with water-soluble and non-toxic macrocycle γ-cyclodextrin (γ-CD), has been investigated in a wide pH range. Steady-state absorption, fluorescence and time-resolved fluorescence measurements confirm the positioning of DSS into the hydrophobic cavity of γ-CD. A large fluorescence enhancement ca. 30 times, due to 1 : 2 complex formation and host-assisted guest-protonation have been utilised for developing a method for the utilisation of CD based drug-delivery applications. A simple fluorescence-displacement based approach is implemented at physiological pH for the assessment of binding strength of pharmaceutically useful small drug molecules (ibuprofen, paracetamol, methyl salicylate, salicylic acid, aspirin, and piroxicam) and six important antibiotic drugs (resazurin, thiamphenicol, chloramphenicol, ampicillin, kanamycin, and sorbic acid) with γ-CD.
Glycosidation of Methanol with Ribose: An Interdisciplinary Undergraduate Laboratory Experiment
ERIC Educational Resources Information Center
Simon, Erin; Cook, Katie; Pritchard, Meredith R.; Stripe, Wayne; Bruch, Martha; Bendinskas, Kestutis
2010-01-01
This exercise provides students hands-on experience with the topics of glycosidation, hemiacetal and acetal formation, proton nuclear magnetic resonance ([superscript 1]H NMR) spectroscopy, and kinetic and thermodynamic product formation. In this laboratory experiment, the methyl acetal of ribose is synthesized, and the kinetic and thermodynamic…
Chemical Agent Monitor (CAM) Follow-On Operational Test and Evaluation Simulant Test Strategy
1990-06-01
the CAM’s follow-on test and evaluation. 5 Blank CONTENTS Page 1. INTRODUCTION .................................................... 9 1.1 Purpose...SIMULANT TEST STRATEGY 1. INTRODUCTION 1.1 Purpose. The purpose of this report is to provide methyl salicylate (MS) and dipropylene glycol monomethyl...Syringe Hamilton, 50 pL 10 Hamilton Dispenser Model# PB 600 2 Syringe Needle 26 jauge 20 MS ** 30 gallons DPGME ** 40 gallons Ethanol ** 10 gallons * Item
21 CFR 182.60 - Synthetic flavoring substances and adjuvants.
Code of Federal Regulations, 2014 CFR
2014-04-01
... aldehyde). N-Butyric acid (butanoic acid). d- or l-Carvone (carvol). Cinnamaldehyde (cinnamic aldehyde... aldehyde, caprinaldehyde, aldehyde C-10). Ethyl acetate. Ethyl butyrate. 3-Methyl-3-phenyl glycidic acid ethyl ester (ethyl-methyl-phenyl-glycidate, so-called strawberry aldehyde, C-16 aldehyde). Ethyl...
Avula, B; Dentali, S; Khan, I A
2007-08-01
A HPLC method has been developed which permits the quantification of methyl paraben, benzethonium chloride and triclosan in various samples of grapefruit seed extract (GSE). The best results were obtained with a Phenomenex Gemini C18 column using gradient mobile phase of water (0.1% acetic acid) and acetonitrile (0.1% acetic acid) with a flow rate of 1.0 mL per minute. The detection wavelength was 254 nm for methyl paraben, and 275 nm for benzethonium chloride and triclosan. The main synthetic antimicrobial agent identified in commercial GSE samples was benzethonium chloride in concentrations from 0.29-21.84%. Positive ion electrospray MS of a commercial GSE sample showed a molecular ion at m/z 412 [M+], which matched that of a standard of benzethonium chloride. Triclosan was detected in two samples at 0.009 and 1.13%concentrations; while methyl paraben was not detected in the samples analyzed.
Moreira, Cleci M.; Meira, Eduardo F.; Vestena, Luis; Stefanon, Ivanita; Vassallo, Dalton V.; Padilha, Alessandra S.
2012-01-01
OBJECTIVES: Tension cost, the ratio of myosin ATPase activity to tension, reflects the economy of tension development in the myocardium. To evaluate the mechanical advantage represented by the tension cost, we studied papillary muscle contractility and the activity of myosin ATPase in the left ventricles in normal and pathophysiological conditions. METHODS: Experimental protocols were performed using rat left ventricles from: (1) streptozotocin-induced diabetic and control Wistar rats; (2) N-nitro-L-arginine methyl ester (L-NAME) hypertensive and untreated Wistar rats; (3) deoxycorticosterone acetate (DOCA) salt-treated, nephrectomized and salt- and DOCA-treated rats; (4) spontaneous hypertensive rats (SHR) and Wistar Kyoto (WKY) rats; (5) rats with myocardial infarction and sham-operated rats. The isometric force, tetanic tension, and the activity of myosin ATPase were measured. RESULTS: The results obtained from infarcted, diabetic, and deoxycorticosterone acetate-salt-treated rats showed reductions in twitch and tetanic tension compared to the control and sham-operated groups. Twitch and tetanic tension increased in the N-nitro-L-arginine methyl ester-treated rats compared with the Wistar rats. Myosin ATPase activity was depressed in the infarcted, diabetic, and deoxycorticosterone acetate salt-treated rats compared with control and sham-operated rats and was increased in N-nitro-L-arginine methyl ester-treated rats. These parameters did not differ between SHR and WKY rats. In the studied conditions (e.g., post-myocardial infarction, deoxycorticosterone acetate salt-induced hypertension, chronic N-nitro-L-arginine methyl ester treatment, and streptozotocin-induced diabetes), a positive correlation between force or plateau tetanic tension and myosin ATPase activity was observed. CONCLUSION: Our results suggest that the myocardium adapts to force generation by increasing or reducing the tension cost to maintain myocardial contractility with a better mechanical advantage. PMID:22666794
Usai, E M; Gualdi, E; Solinas, V; Battistel, E
2010-10-01
In the presence of methyl acetate triglycerides such as vegetable oils are transformed simultaneously into the corresponding fatty acid methyl esters and triacetyl glycerol (triacetin). The reaction, catalyzed by lipases, was studied as a function of some critical parameters, such as type of catalyst, enzyme hydration and immobilization support. The aim of the work was to achieve a conversion of the triglyceride as high as possible and to maximize the yield of the triacetin, the reaction end point. It was found that by using the immobilized lipase from Candida antarctica yields as high as 80% of both fatty acid esters and triacetin could be achieved. These results were obtained by carefully controlling the amount of water present in the reaction medium and the hydration level of the enzyme macromolecule. Copyright © 2010 Elsevier Ltd. All rights reserved.
An enantioselective route to alpha-methyl carboxylic acids via metal and enzyme catalysis.
Norinder, Jakob; Bogár, Krisztián; Kanupp, Lisa; Bäckvall, Jan-E
2007-11-22
Dynamic kinetic resolution of allylic alcohols to allylic acetates followed by copper-catalyzed allylic substitution gave alkenes in high yields and high optical purity. Subsequent oxidative C-C double bond cleavage afforded pharmaceutically important alpha-methyl substituted carboxylic acids in high ee.
Lithium-Ion Electrolytes with Fluoroester Co-Solvents
NASA Technical Reports Server (NTRS)
Smart, Marshall C. (Inventor); Smith, Kiah (Inventor); Bhalla, Pooja (Inventor); Bugga, Ratnakumar V. (Inventor); Prakash, G. K. Surya (Inventor)
2014-01-01
An embodiment lithium-ion battery comprising a lithium-ion electrolyte of ethylene carbonate; ethyl methyl carbonate; and at least one solvent selected from the group consisting of trifluoroethyl butyrate, ethyl trifluoroacetate, trifluoroethyl acetate, methyl pentafluoropropionate, and 2,2,2-trifluoroethyl propionate. Other embodiments are described and claimed.
Ch, Muhammad Ishtiaq; Wen, Yang F; Cheng, YiYu
2007-01-01
This paper describes a simple and novel on-column derivatization procedure used with gas chromatography/mass spectrometry (GC/MS) for the analysis of essential oil of Houttuynia cordata Thunb (HCT), a traditional Chinese medicine. In the procedure, the essential oil was obtained by hydrodistillation, and the fatty acid components were derivatized with tetramethylammonium acetate (TMAA) at 250 degrees C and identified by GC/MS. Methylation improved the determination of both the fatty acids and the other components in the essential oil of HCT. To obtain optimum methylation conditions, several important factors were investigated with pentadecane as the internal standard and a GC inlet temperature of 250 degres C. Tetramethylammonium hydroxide (TMAH) and TMAA were compared as the derivatization agent, and a 2:1 ratio of TMAA to capric acid was evaluated. Fatty acid methyl esters produced good chromatographic peak shapes and did not interfere with the determination of dodecanal and caryophyllene. TMAA is a neutral methylation reagent, and it yielded no side reactions during derivatization. It was found that the fatty acid content of the essential oil was about 81%; among the methylated fatty acids found were capric acid, methyl (43.66%), methyl laurate (16.15%), methyl hexadecanoate (9.27%), undecanoic acid, methyl (5.62%), methyl oleate (1.98%), and methyl linoleate (1.40%). Other major constituents were (-)-beta-pinene (1.02%), beta-myrcene (1.62%), 1-terpinen-4-ol (1.59%), decanal (1.49%), and 2-undecanone (1.47%). The results obtained demonstrated good efficiency for the procedure. Pure chromatograms allowed quantitation, which was obtained by total volume integration. The on-column derivatization procedure was simple to perform, and it improved the sensitivity, the peak resolution, and the selectivity of the GC/MS determination.
Oleas, Gabriela; Callegari, Eduardo; Sepúlveda, Romina; Eyzaguirre, Jaime
2017-04-18
The lignocellulolytic fungus, Penicillium purpurogenum, grows on a variety of natural carbon sources, among them sugar beet pulp. Culture supernatants of P. purpurogenum grown on sugar beet pulp were partially purified and the fractions obtained analyzed for esterase activity by zymograms. The bands with activity on methyl umbelliferyl acetate were subjected to mass spectrometry to identify peptides. The peptides obtained were probed against the proteins deduced from the genome sequence of P. purpurogenum. Eight putative esterases thus identified were chosen for future work. Their cDNAs were expressed in Pichia pastoris. The supernatants of the recombinant clones were assayed for esterase activity, and five of the proteins were active against one or more substrates: methyl umbelliferyl acetate, indoxyl acetate, methyl esterified pectin and fluorescein diacetate. Three of those enzymes were purified, further characterized and subjected to a BLAST search. Based on their amino acid sequence and properties, they were identified as follows: RAE1, pectin acetyl esterase (CAZy family CE 12); FAEA, feruloyl esterase (could not be assigned to a CAZy family) and EAN, acetyl esterase (former CAZy family CE 10). Copyright © 2017 Elsevier Ltd. All rights reserved.
Oleas, Gabriela; Callegari, Eduardo; Sepúlveda, Romina; Eyzaguirre, Jaime
2017-01-01
The lignocellulolytic fungus, Penicillium purpurogenum, grows on a variety of natural carbon sources, among them sugar beet pulp. Culture supernatants of P. purpurogenum grown on sugar beet pulp were partially purified and the fractions obtained analyzed for esterase activity by zymograms. The bands with activity on methyl umbelliferyl acetate were subjected to mass spectrometry to identify peptides. The peptides obtained were probed against the proteins deduced from the genome sequence of P. purpurogenum. Eight putative esterases thus identified were chosen for future work. Their cDNAs were expressed in Pichia pastoris. The supernatants of the recombinant clones were assayed for esterase activity, and five of the proteins were active against one or more substrates: methyl umbelliferyl acetate, indoxyl acetate, methyl esterified pectin and fluorescein diacetate. Three of those enzymes were purified, further characterized and subjected to a BLAST search. Based on their amino acid sequence and properties, they were identified as follows: RAE1, pectin acetyl esterase (CAZy family CE 12); FAEA, feruloyl esterase (could not be assigned to a CAZy family) and EAN, acetyl esterase (former CAZy family CE 10). PMID:28342968
Amphiphilic conjunct of methyl cellulose and well-defined polyvinyl acetate.
Xiao, Congming; Xia, Cunping
2013-01-01
Tailor-made conjunct of methyl cellulose (MC) and polyvinyl acetate (PVAc) was synthesized through the combination of reversible addition-fragmentation chain transfer (RAFT) polymerization and thiol-ene click reaction. MC was firstly transferred into unsaturated MC (UMC), and then covalently connected with well-defined PVAc obtained by RAFT polymerization of vinyl acetate. The structure of the conjunct polymer (MCV) was confirmed with Fourier transform infrared spectra (FTIR) and proton nuclear magnetic resonance ((1)H NMR). Well-defined MCV was amphiphilic and able to self-assemble into size controllable micelles, which was verified with transmission electron microscopy (TEM) and size distribution analysis. It was found that the mean diameters of the micelles in aqueous solution were 105.6, 96.0 and 75.9 nm when the number average molecular weights of PVAc segments of MCV were 49,300, 32,500 and 18,200, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Huff, Anna; Smith, CJ; Mackenzie, Becca; Leopold, Ken
2017-06-01
Sulfur trioxide and acetic acid are shown to react under supersonic jet conditions to form acetic sulfuric anhydride, CH_{3}COOSO_{2}OH. Rotational spectra of the parent, ^{34}S, methyl ^{13}C, and fully deuterated isotopologues have been observed by chirped-pulse and conventional cavity microwave spectroscopy. A and E internal rotation states have been observed for each isotopologue studied and the methyl group internal rotation barriers have been determined (241.043(65) \\wn for the parent species). The reaction is analogous to that of our previous report on the reaction of sulfur trioxide and formic acid. DFT and CCSD calculations are also presented which indicate that the reaction proceeds via a π_{2} + π_{2} + σ_{2} cycloaddition reaction. These results support our previous conjecture that the reaction of SO_{3} with carboxylic acids is both facile and general. Possible implications for atmospheric aerosol formation are discussed.
Hydration of AN Acid Anhydride: the Water Complex of Acetic Sulfuric Anhydride
NASA Astrophysics Data System (ADS)
Smith, CJ; Huff, Anna; Mackenzie, Becca; Leopold, Ken
2017-06-01
The water complex of acetic sulfuric anhydride (ASA, CH_{3}COOSO_{2}OH) has been observed by pulsed nozzle Fourier transform microwave spectroscopy. ASA is formed in situ in the supersonic jet via the reaction of SO_{3} and acetic acid and subsequently forms a complex with water during the expansion. Spectra of the parent and fully deuterated form, as well as those of the species derived from CH_{3}^{13}COOH, have been observed. The fitted internal rotation barrier of the methyl group is 219.599(21), \\wn indicating the complexation with water lowers the internal rotation barrier of the methyl group by 9% relative to that of free ASA. The observed species is one of several isomers identified theoretically in which the water inserts into the intramolecular hydrogen bond of the ASA. Aspects of the intermolecular potential energy surface are discussed.
Nahar, Kamrun; Kyndt, Tina; De Vleesschauwer, David; Höfte, Monica; Gheysen, Godelieve
2011-01-01
Complex defense signaling pathways, controlled by different hormones, are involved in the reaction of plants to a wide range of biotic and abiotic stress factors. We studied the ability of salicylic acid, jasmonate (JA), and ethylene (ET) to induce systemic defense in rice (Oryza sativa) against the root knot nematode Meloidogyne graminicola. Exogenous ET (ethephon) and JA (methyl jasmonate) supply on the shoots induced a strong systemic defense response in the roots, exemplified by a major up-regulation of pathogenesis-related genes OsPR1a and OsPR1b, while the salicylic acid analog BTH (benzo-1,2,3-thiadiazole-7-carbothioic acid S-methyl ester) was a less potent systemic defense inducer from shoot to root. Experiments with JA biosynthesis mutants and ET-insensitive transgenics showed that ET-induced defense requires an intact JA pathway, while JA-induced defense was still functional when ET signaling was impaired. Pharmacological inhibition of JA and ET biosynthesis confirmed that JA biosynthesis is needed for ET-induced systemic defense, and quantitative real-time reverse transcription-polymerase chain reaction data revealed that ET application onto the shoots strongly activates JA biosynthesis and signaling genes in the roots. All data provided in this study point to the JA pathway to play a pivotal role in rice defense against root knot nematodes. The expression of defense-related genes was monitored in root galls caused by M. graminicola. Different analyzed defense genes were attenuated in root galls caused by the nematode at early time points after infection. However, when the exogenous defense inducers ethephon and methyl jasmonate were supplied to the plant, the nematode was less effective in counteracting root defense pathways, hence making the plant more resistant to nematode infection. PMID:21715672
1989-03-01
PVA, CTBN , PBAA, PMMA, etc. As a test of this predictability, we dissolved a vinyl acetate polymer in THF, and then added PMVT, and did succeed in...Polyvinyl acetate CTBN Carboxy terminated butadiene acrylonitrile PBAA Polybutadiene acrylic acid PMMA Polymethyl. methacrylate THF Tetrahydrofuran NMR
NASA Astrophysics Data System (ADS)
Anisuzzaman, S. M.; Abang, S.; Bono, A.; Krishnaiah, D.; Karali, R.; Safuan, M. K.
2017-06-01
Wax precipitation and deposition is one of the most significant flow assurance challenges in the production system of the crude oil. Wax inhibitors are developed as a preventive strategy to avoid an absolute wax deposition. Wax inhibitors are polymers which can be known as pour point depressants as they impede the wax crystals formation, growth, and deposition. In this study three formulations of wax inhibitors were prepared, ethylene vinyl acetate, ethylene vinyl acetate co-methyl methacrylate (EVA co-MMA) and ethylene vinyl acetate co-diethanolamine (EVA co-DEA) and the comparison of their efficiencies in terms of cloud point¸ pour point, performance inhibition efficiency (%PIE) and viscosity were evaluated. The cloud point and pour point for both EVA and EVA co-MMA were similar, 15°C and 10-5°C, respectively. Whereas, the cloud point and pour point for EVA co-DEA were better, 10°C and 10-5°C respectively. In conclusion, EVA co-DEA had shown the best % PIE (28.42%) which indicates highest percentage reduction of wax deposit as compared to the other two inhibitors.
NASA Astrophysics Data System (ADS)
Senthil, R.; Silambarasan, R.; Pranesh, G.
2017-05-01
There is a major drawback while using biodiesel as a alternate fuel for compression ignition diesel engine due to lower heating value, higher viscosity, higher density and higher oxides of nitrogen emission. To minimize these drawbacks, fuel additives can contribute towards engine performance and exhaust emission reduction either directly or indirectly. In this current work, the test was conducted to investigate the effect of antioxidant additive (A-tocopherol acetate) on oxidation stability and NOx emission in a of Annona methyl ester oil (MEAO) fueled diesel engine. The A-tocopherol acetate is mixed in different concentrations such as 0.01, 0.02, 0.03 and 0.04% with 100% by vol MEAO. It is concluded that the antioxidant additive very effective in increasing the oxidation stability and in controlling the NOx emission. Further, the addition of antioxidant additive is slight increase the HC, CO and smoke emissions. Hence, A-tocopherol acetate is very effective in controlling the NOx emission with MEAO operated diesel engine without any major modification.
Bioinspired Surface Treatments for Improved Decontamination: Fluoro-Plasma Treatment
2017-07-21
methyl salicylate (right) immediately following liquid application (top) and 5 min after liquid application (bottom): painted coupon (A), C2F6, 50 W...applied at 0° after which the supporting platform angle was gradually increased up to 60°. Sliding angles for each of the liquids were identified as the...angle for which movement of the droplet was identified. Shedding angles for each liquid were determined using 12 µL droplets initiated 2.5 cm above
He, Yang-Yang; Yan, Yu; Zhang, Hui-Fang; Lin, Yi-Huang; Chen, Yu-Cai; Yan, Yi; Wu, Ping; Fang, Jian-Song; Yang, Shu-Hui; Du, Guan-Hua
2016-01-01
Systemic lupus erythematosus (SLE), with a high incidence rate and insufficient therapy worldwide, is a complex disease involving multiple organs characterized primarily by inflammation due to deposition of immunocomplexes formed by production of autoantibodies. The mechanism of SLE remains unclear, and the disease still cannot be cured. We used pristane to induce SLE in female BALB/c mice. Methyl salicylate 2-O-β-d-lactoside (MSL; 200, 400, and 800 mg/kg) was orally administered 45 days after pristane injection for 4.5 months. The results showed that MSL antagonized the increasing levels of multiple types of antibodies and cytokines in lupus mice. MSL was found to suppress joint swelling and have potent inhibitory effect on arthritis-like symptoms. MSL also significantly decreased the spleen index and expression of inflammatory markers in the lupus mice. MSL protected the kidneys of lupus mice from injury through inhibiting the expression of inflammatory cytokines and reducing the IgG and C3 immunocomplex deposits. Further Western blot assays revealed that the downregulation of the intracellular inflammatory signals of NFκB and JAK/STAT3 might be the potential molecular mechanisms of the pharmacological activity of MSL against SLE in vivo. These findings may demonstrate that MSL has the potential to be a useful and highly effective treatment for SLE. PMID:27729775
Hijosa-Valsero, M; Matamoros, V; Sidrach-Cardona, R; Pedescoll, A; Martín-Villacorta, J; García, J; Bayona, J M; Bécares, E
2011-01-01
The ability of several mesocosm-scale and full-scale constructed wetlands (CWs) to remove pharmaceuticals and personal care products (PPCPs) from urban wastewater was assessed. The results of three previous works were considered as a whole to find common patterns in PPCP removal. The experiment took place outdoors under winter and summer conditions. The mesocosm-scale CWs differed in some design parameters, namely the presence of plants, the vegetal species chosen (Typha angustifolia versus Phragmites australis), the flow configuration (surface flow versus subsurface flow), the primary treatment (sedimentation tank versus HUSB), the feeding regime (batch flow versus continuous saturation) and the presence of gravel bed. The full-scale CWs consisted of a combination of various subsystems (ponds, surface flow CWs and subsurface flow CWs). The studied PPCPs were ketoprofen, naproxen, ibuprofen, diclofenac, salicylic acid, carbamazepine, caffeine, methyl dihydrojasmonate, galaxolide and tonalide. The performance of the evaluated treatment systems was compound dependent and varied as a function of the CW-configuration. In addition, PPCP removal efficiencies were lower during winter. The presence of plants favoured naproxen, ibuprofen, diclofenac, salicylic acid, caffeine, methyl dihydrojasmonate, galaxolide and tonalide removal. Significant positive correlations were observed between the removal of most PPCPs and temperature or redox potential. Accordingly, microbiological pathways appear to be the most likely degradation route for the target PPCPs in the CWs studied.
Javier Benitez, F; Real, Francisco J; Acero, Juan L; Casas, Francisco
2017-10-01
Three emerging contaminants (amitriptyline hydrochloride (AH), methyl salicylate (MS) and 2-phenoxyethanol (PE)) frequently found in wastewaters were selected to be individually degraded in ultra-pure water by the advanced oxidation process (AOP) constituted by the combination of UV radiation and chlorine. The influence of pH, initial chlorine concentration and nature of the contaminants was firstly explored. The trend for the reactivity of the selected compounds was deduced: AH > MS > PE. A later kinetic study was carried out focused on the evaluation of the first-order rate constants and the determination of the partial contribution to the global reaction of the direct photochemical pathway and the radical pathway. In a second stage, the simultaneous oxidation of mixtures of the selected contaminants in several types of water was also performed by the same combination UV/Cl 2 . The efficiency of this combined system UV/Cl 2 was compared to other oxidants such as the UV/[Formula: see text] and UV/H 2 O 2 AOPs, and the influence of the operating variables was discussed. Results confirmed that the UV/Cl 2 system provides higher elimination efficiencies among the AOPs tested. The presence of dissolved organic matter and bicarbonate ions in the water matrix caused a decrease in the treatment efficiency.
De Boer, Jetske G; Dicke, Marcel
2004-02-01
Many carnivorous arthropods use herbivore-induced plant volatiles to locate their prey. These plant volatiles are blends of up to hundreds of compounds. It is often unknown which compounds in such a complex volatile blend represent the signal to the foraging carnivore. We studied the role of methyl salicylate (MeSA) as part of the volatile blend in the foraging behavior of the predatory mite Phytoseiulus persimilis by using a Y-tube olfactometer. MeSA is one of the compounds released by lima bean, infested with Tetranychus urticae--a prey species of the predatory mite. MeSA attracted satiated predatory mites in a dose-dependent way with optimum attraction at a dose of 0.2 microg. Predatory mites did not discriminate between a prey-induced lima bean volatile blend (that contains MeSA) and a prey-induced volatile blend to which an extra amount of synthetic MeSA had been added. However, they preferred a MeSA-containing volatile blend (induced by T. urticae) to an otherwise similar but MeSA-free blend (induced by jasmonic acid). Adding synthetic MeSA to the MeSA-free blend significantly increased the mites' choice for this odor, suggesting an important role for MeSA. This study is a new step toward unraveling the role of herbivore-induced plant volatiles in the foraging behavior of predatory arthropods.
Expression of Allene Oxide Synthase Determines Defense Gene Activation in Tomato1
Sivasankar, Sobhana; Sheldrick, Bay; Rothstein, Steven J.
2000-01-01
Allene oxide synthase (AOS; hydroperoxide dehydratase; EC 4.2.1.92) catalyzes the first step in the biosynthesis of jasmonic acid from lipoxygenase-derived hydroperoxides of free fatty acids. Using the AOS cDNA from tomato (Lycopersicon esculentum), in which the role of jasmonic acid in wound-induced defense gene activation has been best described, we examined the kinetics of AOS induction in response to wounding and elicitors, in parallel with that of the wound-inducible PIN II (proteinase inhibitor II) gene. AOS was induced in leaves by wounding, systemin, 12-oxophytodienoic acid, and methyl jasmonate. The levels of AOS mRNA started declining by 4 h after induction, whereas the levels of PIN II mRNA continued to increase up to 20 h after induction. Salicylic acid inhibited AOS and PIN II expression, and the addition of 12-oxophytodienoic acid or methyl jasmonate did not prevent the inhibition of PIN II expression in the presence of salicylic acid. Ethylene induced the expression of AOS, but the presence of ethylene alone did not produce an optimal induction of PIN II. The addition of silver thiosulfate, an ethylene action inhibitor, prevented the wound-induced expression of both AOS and PIN II. Products of hydroperoxide lyase affected neither AOS nor PIN II, but induced expression of prosystemin. Based on these results, we propose an updated model for defense gene activation in tomato. PMID:10759530
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starikova, O.F.; Gurvich, Y.A.; Kumok, S.T.
1985-12-20
The authors explain how di(hydroxydialkylaryl) derivatives of methane play an important role in the inhibition of oxidation processes in polymers, oils, fuels, and other organic materials. They investigate the reaction of 4-methyl-2-tert-butylphenol with dimethoxymethane, and established that the reaction mass contained 2-methoxymethyl-4-6-tert-butylphenol. The formation and the transformations of 2-methoxymethyl-4-methyl-6-tert-butylphenol do not have a significant effect on the synthesis of di(2-hydroxy-5-methyl-3-tert-butylphenyl) methane from 4-methyl-2-tert-butyl-phenol and dimethoxymethane.
NASA Astrophysics Data System (ADS)
Man, Isabela-Costinela; Soriga, Stefan Gabriel; Parvulescu, Vasile
2017-01-01
Density functional theory (DFT) calculations were carried out to study the activation of methyl acetate and methanol on MgO(100) and MgO(501) surfaces and integrated in the context of transesterification, interesterification and glycerolysis reactions used in biodiesel industry. First results indicate the importance of including of dispersion forces in the calculations. On MgO(100) the reverse reactions steps of Csbnd O and Csbnd H dissociations and on MgO(501) the same reverse reaction step of Csbnd H dissociations of methyl acetate are energetically favorable, while the dissociation of Csbnd O bond into methoxide and acetate fragments on the edge of MgO(501) was found to be exothermic with a low activation energy. For methanol, the dissociation of Osbnd H bond on MgO(100) surface in the presence of the second coadsorbed methanol molecule becomes more energetically favoured compared to the isolated molecule, due to the fact that the methoxide fragment is stabilized by intermolecular hydrogen bonding. This is reflected by the decrease of the activation energy of the forward reaction step and the increase of the activation energy of the backward reaction step, increasing the probability to have dissociated molecules among the undissociated ones. These results represent a step forward for better understanding from atomistic point of view the paths of these reactions on these surfaces for the corresponding catalytic processes.
Denmark, Scott E; Chung, Won-Jin
2008-06-20
A catalytic system involving silicon tetrachloride and a chiral, Lewis basic bisphosphoramide catalyst is effective for the addition of glycolate-derived silyl ketene acetals to aldehydes. It was found that the sense of diastereoselectivity could be modulated by changing the size of the substituents on the silyl ketene acetals. In general, the trimethylsilyl ketene acetals derived from methyl glycolates with a large protecting group on the alpha-oxygen provide enantiomerically enriched alpha,beta-dihydroxy esters with high syn-diastereoselectivity, whereas the tert-butyldimethylsilyl ketene acetals derived from bulky esters of alpha-methoxyacetic acid provide enantiomerically enriched alpha,beta-dihydroxy esters with high anti-diastereoselecitvity.
Optimization in the formaldehyde determination at sub-ppm level from acetals by HPLC-DAD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medvedovici, A.; David, V.; David, F.
1999-02-01
Carbonylic compounds are mainly monitored as atmospheric pollutants, due to their major contribution to the formation of free radicals and ozone, by means of photolysis. Determination of formaldehyde at sub-ppm level as impurity in acetals using HPLC-DAD is described. Automated on-line precolumn derivatization reaction with 2,4-dinitrophenylhydrazine has been used. Breakdown rates of some industrial scale used acetals (Methylal, Ethylal) to formaldehyde by hydrolysis in aqueous media, according to pH, are described.
Viscosity of nonelectrolyte liquid mixtures. IV. Binary mixtures containing p-Dioxane
NASA Astrophysics Data System (ADS)
Oswal, S. L.; Oswal, P.; Phalak, R. P.
1996-11-01
Measurements of the viscosity η and density p are reported for eight binary mixtures of p-dioxane with methylcyclohexane, l-chlorohexane, l-bromohexane, p-xylene, propylbenzene, methyl acetate, butyl acetate. anyl acetate at 303.15 K. The viscosity data haw been correlated with the equations of Grunbeng Nissan. of McAllister, and of Auslaendcr. The relation among the excess viscosity Δ In η, excess Gibbs energy of activation ΔG* E of viscous flow. and intermolecular interaction in these mixtures is discussed.
40 CFR 439.15 - New source performance standards (NSPS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 250.0 102.0 Phenol 0.05 0.02 Benzene 0.05 0.02 Toluene 0.06 0.02 Xylenes 0.03 0.01 n-Hexane 0.03 0.02... average 1 BOD5 267 111 TSS 472 166 COD 1675 856 Ammonia (as N) 84.1 29.4 Acetone 0.5 0.2 4-methyl-2-pentanone 0.5 0.2 Isobutyraldehyde 1.2 0.5 n-Amyl acetate 1.3 0.5 n-Butyl acetate 1.3 0.5 Ethyl acetate 1.3...
Activity of influenza C virus O-acetylesterase with O-acetyl-containing compounds.
Garcia-Sastre, A; Villar, E; Manuguerra, J C; Hannoun, C; Cabezas, J A
1991-01-01
Influenza C virus (strain C/Johannesburg/1/66) was grown, harvested, purified and used as source for the enzyme O-acetylesterase (N-acyl-O-acetylneuraminate O-acetylhydrolase; EC 3.1.1.53). This activity was studied and characterized with regard to some new substrates. The pH optimum of the enzyme is around 7.6, its stability at different pH values shows a result similar to that of the pH optimum, and its activity is well maintained in the pH range from 7.0 to 8.5 (all these tests were performed with 4-nitrophenyl acetate as substrate). Remarkable differences were found in the values of both Km and Vmax, with the synthetic substrates 4-nitrophenyl acetate, 2-nitrophenyl acetate, 4-methylumbelliferyl acetate, 1-naphthyl acetate and fluorescein diacetate. The use of 4-nitrophenyl acetate, 4-methylumbelliferyl acetate or 1-naphthyl acetate as substrate seems to be convenient for routine work, but it is better to carry out the measurements in parallel with those on bovine submandibular gland mucin (the latter is a natural and commercially available substrate). It was found that 4-acetoxybenzoic acid, as well as the methyl ester of 2-acetoxybenzoic acid, but not 2-acetoxybenzoic acid itself, are cleaved by this enzyme. Triacetin, di-O-acetyladenosine, tri-O-acetyladenosine, and di-O-acetyl-N-acetyladenosine phosphate, hitherto unreported as substrates for this viral esterase, are hydrolysed at different rates by this enzyme. We conclude that the O-acetylesterase from influenza C virus has a broad specificity towards both synthetic and natural non-sialic acid-containing substrates. Zn2+, Mn2+ and Pb2+ (as their chloride salts), N-acetylneuraminic acid, 4-methyl-umbelliferone and 2-acetoxybenzoic acid (acetylsalicylic acid) did not act as inhibitors. Images Fig. 1. PMID:1991039
A New Method for the Characterisation of Solutes and Solvent Phases Using Solvatochromic Parameters
1991-01-01
phenylbenzoic acid 0.429 0.002 2 0.43 3 -nitrobeazoic acid 0.609 0.004 2 0.61 4-nitrobenzoic acid 0.544 0.028 11 0.54 3 -cyanobenzoic acid 0.636...0.00 0.65 0.00 0.48 3.670 1.111 4.30 2 -octanone 0.00 0.65 0.00 0.48 4.257 1.252 4.71 5- methyl - 3 -heptanone 0.00 0.65 0.00 0.48 4.200 1.251 4.51 5... 2 -Xylene Methyl acetate equation (5). 3 -Xylene n.Propyl acetate 4-Xylene Ethyl propanoate T/K c r q a I SD R Ethylbeaizene
1982-12-01
generation FDA Food and Drug Administration (U.S.A.) FEMA Flavoring Extract Manufacturer’s Associatic. FID Flame ionization detector FPD Flame...medicinally in the form of local analgesic or anti-inflammatory ointmer,ts or liniments S (Collins et al., 1971). It was given GRAS status by the Flavor ...methyl salicylate is considered safe for use as a flavoring agent in various foods when added in low concentrations, it has been found to be acutely
2011-01-01
Background Changes in the gene expressions for tumor necrosis factor-α (TNF-α) and/or interleukin-1β (IL-1β) during tinnitus have not been previously reported. We evaluated tinnitus and mRNA expression levels of TNF-α, IL-1β, and N-methyl D-aspartate receptor subunit 2B (NR2B) genes in cochlea and inferior colliculus (IC) of mice after intraperitoneal injections of salicylate. Methods Forty-eight 3-month-old male SAMP8 mice were randomly and equally divided into two groups: salicylate-treated and saline-treated. All mice were trained to perform an active avoidance task for 5 days. Once conditioned, an active avoidance task was performed 2 hours after daily intraperitoneal injections of saline, either alone or containing 300 mg/kg sodium salicylate. Total numbers of times (tinnitus score) the mice climbed during the inter-trial silent period for 10 trials were recorded daily for 4 days (days 7 to 10), and then mice were euthanized for determination of mRNA expression levels of TNF-α, IL-1β, and NR2B genes in cochlea and IC at day 10. Results Tinnitus scores increased in response to daily salicylate treatments. The mRNA expression levels of TNF-α increased significantly for the salicylate-treated group compared to the control group in both cochlea (1.89 ± 0.22 vs. 0.87 ± 0.07, P < 0.0001) and IC (2.12 ± 0.23 vs. 1.73 ± 0.22, p = 0.0040). mRNA expression levels for the IL-1β gene also increased significantly in the salicylate group compared to the control group in both cochlea (3.50 ± 1.05 vs. 2.80 ± 0.28, p < 0.0001) and IC (2.94 ± 0.51 versus 1.24 ± 0.52, p = 0.0013). Linear regression analysis revealed a significant positive association between tinnitus scores and expression levels of TNF-α, IL-1β, and NR2B genes in cochlea and IC. In addition, expression levels of the TNF-α gene were positively correlated with those of the NR2Bgene in both cochlea and IC; whereas, the expression levels of the IL-1β gene was positively correlated with that of the NR2B gene in IC, but not in cochlea. Conclusion We conclude that salicylate treatment resulting in tinnitus augments expression of the TNF-α and IL-1β genes in cochlea and IC of mice, and we suggest that these proinflammatory cytokines might lead to tinnitus directly or via modulating the NMDA receptor. PMID:21477330
Characterizing workplace exposures in Vietnamese women working in California nail salons.
Quach, Thu; Gunier, Robert; Tran, Alisha; Von Behren, Julie; Doan-Billings, Phuong-An; Nguyen, Kim-Dung; Okahara, Linda; Lui, Benjamin Yee-Bun; Nguyen, Mychi; Huynh, Jessica; Reynolds, Peggy
2011-12-01
We engaged Vietnamese nail salon workers in a community-based participatory research (CBPR) study to measure personal and area concentrations of solvents in their workplace. We measured average work-shift concentrations of toluene, ethyl acetate, and isopropyl acetate among 80 workers from 20 salons using personal air monitors. We also collected area samples from 3 salons using summa canisters. For personal measurements, the arithmetic mean was 0.53 parts per million (range = 0.02-5.50) for ethyl acetate, 0.04 parts per million (range = 0.02-0.15) for isopropyl acetate, and 0.15 parts per million (range = 0.02-1.0) for toluene. Area measurements were lower in comparison, but we detected notable levels of methyl methacrylate, a compound long banned from nail products. Predictors of solvent levels included different forms of ventilation and whether the salon was located in an enclosed building. Using a CBPR approach that engaged community members in the research process contributed to the successful recruitment of salon workers. Measured levels of toluene, methyl methacrylate, and total volatile organic compounds were higher than recommended guidelines to prevent health symptoms such as headaches, irritations, and breathing problems, which were frequently reported in this workforce.
Efficient synthesis of anacardic acid analogues and their antibacterial activities.
Mamidyala, Sreeman K; Ramu, Soumya; Huang, Johnny X; Robertson, Avril A B; Cooper, Matthew A
2013-03-15
Anacardic acid derivatives exhibit a broad range of biological activities. In this report, an efficient method for the synthesis of anacardic acid derivatives was explored, and a small set of salicylic acid variants synthesised retaining a constant hydrophobic element (a naphthyl tail). The naphthyl side chain was introduced via Wittig reaction and the aldehyde installed using directed ortho-metalation reaction of the substituted o-anisic acids. The failure of ortho-metalation using unprotected carboxylic acid group compelled us to use directed ortho-metalation in which a tertiary amide was used as a strong ortho-directing group. In the initial route, tertiary amide cleavage during final step was challenging, but cleaving the tertiary amide before Wittig reaction was beneficial. The Wittig reaction with protected carboxylic group (methyl ester) resulted in side-products whereas using sodium salt resulted in higher yields. The novel compounds were screened for antibacterial activity and cytotoxicity. Although substitution on the salicylic head group enhanced antibacterial activities they also enhanced cytotoxicity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Jolad, Shivanand D; Lantz, R Clark; Chen, Guan Jie; Bates, Robert B; Timmermann, Barbara N
2005-07-01
Using techniques previously employed to identify ginger constituents in fresh organically grown Hawaiian white and yellow ginger varieties, partially purified fractions derived from the silica gel column chromatography and HPLC of a methylene chloride extract of commercially processed dry ginger, Zingiber officinale Roscoe, Zingiberaceae, which demonstrated remarkable anti-inflammatory activity, were investigated by gas chromatography-mass spectrometry. In all, 115 compounds were identified, 88 with retention times (R(t)) >21 min and 27 with <21 min. Of those 88 compounds, 45 were previously reported by us from fresh ginger, 12 are cited elsewhere in the literature and the rest (31) are new: methyl [8]-paradol, methyl [6]-isogingerol, methyl [4]-shogaol, [6]-isoshogaol, two 6-hydroxy-[n]-shogaols (n=8 and 10), 6-dehydro-[6]-gingerol, three 5-methoxy-[n]-gingerols (n=4, 8 and 10), 3-acetoxy-[4]-gingerdiol, 5-acetoxy-[6]-gingerdiol (stereoisomer), diacetoxy-[8]-gingerdiol, methyl diacetoxy-[8]-gingerdiol, 6-(4'-hydroxy-3'-methoxyphenyl)-2-nonyl-2-hydroxytetrahydropyran, 3-acetoxydihydro-[6]-paradol methyl ether, 1-(4'-hydroxy-3'-methoxyphenyl)-2-nonadecen-1-one and its methyl ether derivative, 1,7-bis-(4'-hydroxy-3'-methoxyphenyl)-5-methoxyheptan-3-one, 1,7-bis-(4'-hydroxy-3'-methoxyphenyl)-3-hydroxy-5-acetoxyheptane, acetoxy-3-dihydrodemethoxy-[6]-shogaol, 5-acetoxy-3-deoxy-[6]-gingerol, 1-hydroxy-[6]-paradol, (2E)-geranial acetals of [4]- and [6]-gingerdiols, (2Z)-neral acetal of [6]-gingerdiol, acetaldehyde acetal of [6]-gingerdiol, 1-(4-hydroxy-3-methoxyphenyl)-2,4-dehydro-6-decanone and the cyclic methyl orthoesters of [6]- and [10]-gingerdiols. Of the 27 R(t)<21 min compounds, we had found 5 from fresh ginger, 20 others were found elsewhere in the literature, and two are new: 5-(4'-hydroxy-3'-methoxyphenyl)-pent-2-en-1-al and 5-(4'-hydroxy-3'-methoxyphenyl)-3-hydroxy-1-pentanal. Most of the short R(t) compounds are probably formed by thermal degradation during GC (which mimics cooking) and/or commercial drying. The concentrations of gingerols, the major constituents of fresh ginger, were reduced slightly in dry ginger, while the concentrations of shogaols, the major gingerol dehydration products, increased.
[Study on chemical constituents from ethyl acetate extract of Myricaria bracteata].
Zhang, Ying; Yuan, Yi; Cui, Baosong; Li, Shuai
2011-04-01
To study the chemical constituents from the ethyl acetate extract of Myricaria bracteata. The chemical constituents were isolated and purified by chromatographic techniques, and their structures were identified by physical characters and spectroscopic analysis. Sixteen compounds were isolated from the ethyl acetate portion of the 95% ethanolic extract of Myricaria bracteata, and identified as myricarin (1), myricarin B (2), 3alpha-hydroxytaraxer-14-en-28-oic acid (3), myricadiol (4), trans-ferulic acid 22-hydroxydocosanoic acid ester (5), docosyl-3, 4-dihydroxy-trans-cinnamate (6), dillenetin (7), 3, 5, 4'-trihydroxy-7-methoxyflavone (8), 3, 5, 4'-trihydroxy-7, 3'-dimethoxyflavone (9), methyl 3, 5-dihydroxy-4-methoxybenzoate (10), 3-hydroxy-4-methoxy cinnamic acid (11), sinapaldehyde (12), vanillin (13), syringaldehyde (14), 3, 3', 4'-trimethoxyellagic acid (15), methyl p-hyroxybenzoate (16). Compounds 5, 6, 12-16 were isolated from the genus Myricaria for the fist time, all of the compounds were isolated from this plant for the fist time, except for 8 and 9.
Resonance electron attachment to plant hormones and its likely connection with biochemical processes
NASA Astrophysics Data System (ADS)
Pshenichnyuk, Stanislav A.; Modelli, Alberto
2014-01-01
Gas-phase formation of temporary negative ion states via resonance attachment of low-energy (0-6 eV) electrons into vacant molecular orbitals of salicylic acid (I) and its derivatives 3-hydroxy- (II) and 4-hydroxybenzoic acid (III), 5-cloro salicylic acid (IV) and methyl salicylate (V) was investigated for the first time by electron transmission spectroscopy. The description of their empty-level structures was supported by density functional theory and Hartree-Fock calculations, using empirically calibrated linear equations to scale the calculated virtual orbital energies. Dissociative electron attachment spectroscopy (DEAS) was used to measure the fragment anion yields generated through dissociative decay channels of the parent molecular anions of compounds I-V, detected with a mass filter as a function of the incident electron energy in the 0-14 eV energy range. The most intense negative fragment produced by DEA to isomers I-III is the dehydrogenated molecular anion [M-H]-, mainly formed at incident electron energies around 1 eV. The vertical and adiabatic electron affinities were evaluated at the B3LYP/6-31+G(d) level as the anion/neutral total energy difference. The same theoretical method was also used for evaluation of the thermodynamic energy thresholds for production of the negative fragments observed in the DEA spectra. The gas-phase DEAS data can provide support for biochemical reaction mechanisms in vivo.
Salicylic acid regulates basal resistance to Fusarium head blight in wheat.
Makandar, Ragiba; Nalam, Vamsi J; Lee, Hyeonju; Trick, Harold N; Dong, Yanhong; Shah, Jyoti
2012-03-01
Fusarium head blight (FHB) is a destructive disease of cereal crops such as wheat and barley. Previously, expression in wheat of the Arabidopsis NPR1 gene (AtNPR1), which encodes a key regulator of salicylic acid (SA) signaling, was shown to reduce severity of FHB caused by Fusarium graminearum. It was hypothesized that SA signaling contributes to wheat defense against F. graminearum. Here, we show that increased accumulation of SA in fungus-infected spikes correlated with elevated expression of the SA-inducible pathogenesis-related 1 (PR1) gene and FHB resistance. In addition, FHB severity and mycotoxin accumulation were curtailed in wheat plants treated with SA and in AtNPR1 wheat, which is hyper-responsive to SA. In support of a critical role for SA in basal resistance to FHB, disease severity was higher in wheat expressing the NahG-encoded salicylate hydroxylase, which metabolizes SA. The FHB-promoting effect of NahG was overcome by application of benzo (1,2,3), thiadiazole-7 carbothioic acid S-methyl ester, a synthetic functional analog of SA, thus confirming an important role for SA signaling in basal resistance to FHB. We further demonstrate that jasmonate signaling has a dichotomous role in wheat interaction with F. graminearum, constraining activation of SA signaling during early stages of infection and promoting resistance during the later stages of infection.
Yang, Fu; Kapil, Gaurav; Zhang, Putao; Hu, Zhaosheng; Kamarudin, Muhammad Akmal; Ma, Tingli; Hayase, Shuzi
2018-05-16
High-efficiency perovskite solar cells (PSCs) need to be fabricated in the nitrogen-filled glovebox by the atmosphere-controlled crystallization process. However, the use of the glovebox process is of great concern for mass level production of PSCs. In this work, notable efficient CH 3 NH 3 PbI 3 solar cells can be obtained in high humidity ambient atmosphere (60-70% relative humidity) by using acetate as the antisolvent, in which dependence of methyl, ethyl, propyl, and butyl acetate on the crystal growth mechanism is discussed. It is explored that acetate screens the sensitive perovskite intermediate phases from water molecules during perovskite film formation and annealing. It is revealed that relatively high vapor pressure and high water solubility of methyl acetate (MA) leads to the formation of highly dense and pinhole free perovskite films guiding to the best power conversion efficiency (PCE) of 16.3% with a reduced hysteresis. The devices prepared using MA showed remarkable shelf life stability of more than 80% for 360 h in ambient air condition, when compared to the devices fabricated using other antisolvents with low vapor pressure and low water solubility. Moreover, the PCE was still kept at 15.6% even though 2 vol % deionized water was added in the MA for preparing the perovskite layer.
Lemos, Mark; Xiao, Yanmei; Bjornson, Marta; Wang, Jin-zheng; Hicks, Derrick; de Souza, Amancio; Wang, Chang-Quan; Yang, Panyu; Ma, Shisong; Dinesh-Kumar, Savithramma; Dehesh, Katayoon
2016-01-01
The exquisite harmony between hormones and their corresponding signaling pathways is central to prioritizing plant responses to simultaneous and/or successive environmental trepidations. The crosstalk between jasmonic acid (JA) and salicylic acid (SA) is an established effective mechanism that optimizes and tailors plant adaptive responses. However, the underlying regulatory modules of this crosstalk are largely unknown. Global transcriptomic analyses of mutant plants (ceh1) with elevated levels of the stress-induced plastidial retrograde signaling metabolite 2-C-methyl-D-erythritol cyclopyrophosphate (MEcPP) revealed robustly induced JA marker genes, expected to be suppressed by the presence of constitutively high SA levels in the mutant background. Analyses of a range of genotypes with varying SA and MEcPP levels established the selective role of MEcPP-mediated signal(s) in induction of JA-responsive genes in the presence of elevated SA. Metabolic profiling revealed the presence of high levels of the JA precursor 12-oxo-phytodienoic acid (OPDA), but near wild type levels of JA in the ceh1 mutant plants. Analyses of coronatine-insensitive 1 (coi1)/ceh1 double mutant plants confirmed that the MEcPP-mediated induction is JA receptor COI1 dependent, potentially through elevated OPDA. These findings identify MEcPP as a previously unrecognized central regulatory module that induces JA-responsive genes in the presence of high SA, thereby staging a multifaceted plant response within the environmental context. PMID:26733689
Martini, Xavier; Willett, Denis S; Kuhns, Emily H; Stelinski, Lukasz L
2016-05-01
Plant pathogens can manipulate the odor of their host; the odor of an infected plant is often attractive to the plant pathogen vector. It has been suggested that this odor-mediated manipulation attracts vectors and may contribute to spread of disease; however, this requires further broad demonstration among vector-pathogen systems. In addition, disruption of this indirect chemical communication between the pathogen and the vector has not been attempted. We present a model that demonstrates how a phytophathogen (Candidatus Liberibacter asiaticus) can increase its spread by indirectly manipulating the behavior of its vector (Asian citrus psyllid, Diaphorina citri Kuwayama). The model indicates that when vectors are attracted to pathogen-infected hosts, the proportion of infected vectors increases, as well as, the proportion of infected hosts. Additionally, the peak of infected host populations occurs earlier as compared with controls. These changes in disease dynamics were more important during scenarios with higher vector mortality. Subsequently, we conducted a series of experiments to disrupt the behavior of the Asian citrus psyllid. To do so, we exposed the vector to methyl salicylate, the major compound released following host infection with the pathogen. We observed that during exposure or after pre-exposure to methyl salicylate, the host preference can be altered; indeed, the Asian citrus psyllids were unable to select infected hosts over uninfected counterparts. We suggest mechanisms to explain these interactions and potential applications of disrupting herbivore host preference with plant volatiles for sustainable management of insect vectors.
Lin, Yongwen; Lin, Sheng; Akutse, Komivi S; Hussain, Mubasher; Wang, Liande
2016-01-01
Transmission of plant pathogens through insect vectors is a complex biological process involving interactions between the host plants, insects, and pathogens. Simultaneous impact of the insect damage and pathogenic bacteria in infected host plants induce volatiles that modify not only the behavior of its insect vector but also of their natural enemies, such as parasitoid wasps. Therefore, it is essential to understand how insects such as the predator ladybird beetle responds to volatiles emitted from a host plant and how the disease transmission alters the interactions between predators, vector, pathogens, and plants. In this study, we investigated the response of Propylaea japonica to volatiles from citrus plants damaged by Diaphorina citri and Candidatus Liberibacter asiaticus through olfactometer bioassays. Synthetic chemical blends were also used to determine the active compounds in the plant volatile. The results showed that volatiles emitted by healthy plants attracted more P. japonica than other treatments, due to the presence of high quantities of D-limonene and beta-ocimene, and the lack of methyl salicylate. When using synthetic chemicals in the olfactory tests, we found that D-limonene attracted P. japonica while methyl salicylate repelled the predator. However, beta-ocimene attracted the insects at lower concentrations but repelled them at higher concentrations. These results indicate that P. japonica could not efficiently search for its host by using volatile cues emitted from psyllids- and Las bacteria-infected citrus plants.
Lim, Yeon-Mi; Moon, Seong-Joon; An, Su-Sun; Lee, Soo-Jin; Kim, Seo-Young; Chang, Ih-Seop; Park, Kui-Lea; Kim, Hyoung-Ah; Heo, Yong
2008-04-01
Worldwide restrictions in animal use for research have driven efforts to develop alternative methods. The study aimed to test the efficacy of the macrophage inflammatory protein-1beta (MIP-1beta) assay for testing chemicals' skin-sensitizing capacity. The assay was performed using 9 chemicals judged to be sensitizing and 7 non-sensitizing by the standard in vivo assays. THP-1 cells were cultured in the presence or absence of 4 doses, 0.01x, 0.1x, 0.5x, or 1x IC(50) (50% inhibitory concentration for THP-1 cell proliferation) of these chemicals for 24 hr, and the MIP-1beta level in the supernatants was determined. Skin sensitization by the test chemicals was determined by MIP-1beta production rates. The MIP-1beta production rate was expressed as the relative increase in MIP-1beta production in response to chemical treatment compared with vehicle treatment. When the threshold MIP-1beta production rate used was 100% or 105% of dimethyl sulfoxide, all the sensitizing chemicals tested (dinitrochlorobenzene, hexyl cinnamic aldehyde, eugenol, hydroquinone, dinitrofluorobenzene, benzocaine, nickel, chromium, and 5-chloro-2-methyl-4-isothiazolin-3-one) were positive, and all the non-sensitizing chemicals (methyl salicylate, benzalkonium chloride, lactic acid, isopropanol, and salicylic acid), with the exception of sodium lauryl sulfate, were negative for MIP-1beta production. These results indicate that MIP-1beta could be a biomarker for classification of chemicals as sensitizers or non-sensitizers.
Ji, Yingbin; Liu, Jian; Xing, Da
2016-09-01
In plants, extensive efforts have been devoted to understanding the crosstalk between salicylic acid (SA) and jasmonic acid (JA) signaling in pathogen defenses, but this crosstalk has scarcely been addressed during senescence. In this study, the effect of SA application on methyl jasmonate (MeJA)-induced leaf senescence was assessed. We found that low concentrations of SA (1-50 μM) played a delayed role against the senescence promoted by MeJA. Furthermore, low concentrations of SA enhanced plant antioxidant defenses and restricted reactive oxygen species (ROS) accumulation in MeJA-treated leaves. When applied simultaneously with MeJA, low concentrations of SA triggered a nitric oxide (NO) burst, and the elevated NO levels were linked to the nitric oxide associated 1 (NOA1)-dependent pathway via nitric oxide synthase (NOS) activity. The ability of SA to up-regulate plant antioxidant defenses, reduce ROS accumulation, and suppress leaf senescence was lost in NO-deficient Atnoa1 plants. In a converse manner, exogenous addition of NO donors increased the plant antioxidant capacity and lowered the ROS levels in MeJA-treated leaves. Taken together, the results indicate that SA at low concentrations counteracts MeJA-induced leaf senescence through NOA1-dependent NO signaling and strengthening of the antioxidant defense. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Crystal structure of azilsartan methyl ester ethyl acetate hemisolvate.
Li, Zhengyi; Liu, Rong; Zhu, Meilan; Chen, Liang; Sun, Xiaoqiang
2015-02-01
The title compound, C26H22N4O5 (systematic name: methyl 2-eth-oxy-1-{4-[2-(5-oxo-4,5-di-hydro-1,2,4-oxa-diazol-3-yl)phenyl]benz-yl}-1H-1,3-benzo-diazole-7-carboxyl-ate ethyl acetate hemisolvate), was obtained via cyclization of methyl (Z)-2-eth-oxy-1-{(2'-(N'-hy-droxy-carbamimido-yl)-[1,1'-biphen-yl]-4-yl)meth-yl}-1H-benzo[d]imidazole-7-carboxyl-ate with diphen-yl carbonate. There are two independent mol-ecules (A and B) with different conformations and an ethyl acetate solvent mol-ecule in the asymmetric unit. In mol-ecule A, the dihedral angle between the benzene ring and its attached oxa-diazole ring is 59.36 (17); the dihedral angle between the benzene rings is 43.89 (15) and that between the benzene ring and its attached imidazole ring system is 80.06 (11)°. The corres-ponding dihedral angles in mol-ecule B are 58.45 (18), 50.73 (16) and 85.37 (10)°, respectively. The C-O-C-Cm (m = meth-yl) torsion angles for the eth-oxy side chains attached to the imidazole rings in mol-ecules A and B are 93.9 (3) and -174.6 (3)°, respectively. In the crystal, the components are linked by N-H⋯N and C-H⋯O hydrogen bonds, generating a three-dimensional network. Aromatic π-π stacking inter-actions [shortest centroid-centroid separation = 3.536 (3)Å] are also observed.
Low temperature double-layer capacitors
NASA Technical Reports Server (NTRS)
Brandon, Erik J. (Inventor); West, William C. (Inventor); Smart, Marshall C. (Inventor)
2011-01-01
Double-layer capacitors capable of operating at extremely low temperatures (e.g., as low as -75.degree. C.) are disclosed. Electrolyte solutions combining a base solvent (e.g., acetonitrile) and a cosolvent are employed to lower the melting point of the base electrolyte. Example cosolvents include methyl formate, ethyl acetate, methyl acetate, propionitrile, butyronitrile, and 1,3-dioxolane. An optimized concentration (e.g., 0.10 M to 0.75 M) of salt, such as tetraethylammonium tetrafluoroborate, is dissolved into the electrolyte solution. In some cases (e.g., 1,3-dioxolane cosolvent) additives, such as 2% by volume triethylamine, may be included in the solvent mixture to prevent polymerization of the solution. Conventional device form factors and structural elements (e.g., porous carbon electrodes and a polyethylene separator) may be employed.
Carotti, A; Altomare, C; Cellamare, S; Monforte, A; Bettoni, G; Loiodice, F; Tangari, N; Tortorella, V
1995-04-01
The HPLC resolution of a series of racemic alpha-substituted alpha-aryloxy acetic acid methyl esters I on a pi-acid N,N'-(3,5-dinitrobenzoyl)-trans-1,2-diaminocyclohexane as chiral selector was modelled by linear free energy-related (LFER) equations and comparative molecular field analysis (CoMFA). Our results indicate that the retention process mainly depends on solute lipophilicity and steric properties, whereas enantioselectivity is primarily influenced by electrostatic and steric interactions. CoMFA provided additional information with respect to the LFER study, allowed the mixing of different subsets of I and led to a quantitative 3D model of steric and electrostatic factors responsible for chiral recognition.
Low Temperature Double-Layer Capacitors Using Asymmetric and Spiro-Type Quaternary Ammonium Salts
NASA Technical Reports Server (NTRS)
Smart, Marshall C. (Inventor); Brandon, Erik J. (Inventor); West, William C. (Inventor)
2014-01-01
Double-layer capacitors capable of operating at extremely low temperatures (e.g., as low as -80.degree. C.) are disclosed. Electrolyte solutions combining a base solvent (e.g., acetonitrile) and a cosolvent are employed to lower the melting point of the base electrolyte. Example cosolvents include methyl formate, ethyl acetate, methyl acetate, propionitrile, butyronitrile, and 1,3-dioxolane. A quaternary ammonium salt including at least one of triethylmethylammonium tetrafluoroborate (TEMATFB) and spiro-(1,1')-bipyrrolidium tetrafluoroborate (SBPBF.sub.4), is used in an optimized concentration (e.g., 0.10 M to 0.75 M), dissolved into the electrolyte solution. Conventional device form factors and structural elements (e.g., porous carbon electrodes and a polyethylene separator) may be employed.
Oh, Jungmin; Sreedhar, Balamurali; Donaldson, Megan E; Frank, Timothy C; Schultz, Alfred K; Bommarius, Andreas S; Kawajiri, Yoshiaki
2016-09-30
Reactive chromatography using an anion exchange resin is proposed for a transesterification reaction of propylene glycol methyl ether (DOWANOL™ PM) with ethyl acetate to produce propylene glycol methyl ether acetate (DOWANOL™ PMA). This reaction is studied in batch and chromatographic reactors catalyzed by an anion exchange resin. Several anion exchange resins are tested and compared based on the performance of resin as an adsorbent and a catalyst. A chromatographic column is packed with a selected catalyst, AMBERLITE™ IRA904, and both reaction and chromatographic elution are studied at different temperatures and feed concentrations. The resulting chromatograms are fitted to a mathematical model to obtain adsorption equilibrium and reaction kinetic parameters by the inverse method. Compared to esterification investigated in a previous study, transesterification has advantages such as a higher conversion at lower temperature and easy removal of the byproduct which may lead to higher productivity. Deactivation of anion exchange resins is observed and potential solutions are suggested. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tabassum, Sumaiya; Suresha Kumara, T. H.; Jasinski, Jerry P.; Millikan, Sean P.; Yathirajan, H. S.; Sujan Ganapathy, P. S.; Sowmya, H. B. V.; More, Sunil S.; Nagendrappa, Gopalpur; Kaur, Manpreet; Jose, Gilish
2014-07-01
In this study, a series of nine novel 2-chloroquinolin-3-yl ester derivatives have been synthesized via a two-step protocol from 2-chloroquinoline-3-carbaldehyde. The structures of all these compounds were confirmed by spectral data. The single crystal X-ray structure of two derivatives, (2-chloroquinolin-3-yl)methyl acetate [6a] and (2-chloro-6-methylquinolin-3-yl)methyl acetate [6e] have also been determined. The synthesized compounds were further evaluated for their ABTS radical-scavenging activity and antimicrobial activities. Amongst all the tested compounds, 6a exhibited maximum scavenging activity with ABTS. Concerning antibacterial and antifungal activities, compound (2-chloro-6-methoxyquinolin-3-yl)methyl 2,4-dichlorobenzoate [6i] was found to be the most active in the series against B. subtilis, S. aureus, E. coli, K. pneumonia, C. albicans and A. niger species. The structure-antimicrobial activity relationship of these derivatives were studied using Autodock.
Solubility and dissolution thermodynamics of phthalic anhydride in organic solvents at 283-313 K
NASA Astrophysics Data System (ADS)
Wang, Long; Zhang, Fang; Gao, Xiaoqiang; Luo, Tingliang; Xu, Li; Liu, Guoji
2017-08-01
The solubility of phthalic anhydride was measured at 283-313 K under atmospheric pressure in ethyl acetate, n-propyl acetate, methyl acetate, acetone, 1,4-dioxane, n-hexane, n-butyl acetate, cyclohexane, and dichloromethane. The solubility of phthalic anhydride in all solvents increased with the increasing temperature. The Van't Hoff equation, modified Apelblat equation, λ h equation, and Wilson model were used to correlate the experimental solubility data. The standard dissolution enthalpy, the standard entropy, and the standard Gibbs energy were evaluated based on the Van't Hoff analysis. The experimental data and model parameters would be useful for optimizing of the separation processes involving phthalic anhydride.
Acid-catalyzed rearrangements of flavans to novelbenzofuran derivatives
Richard W. Hemingway; Weiling Peng; Anthony H. Conner; Petrus J. Steynberg; Jan P. Steynberg
1998-01-01
The objective of this work was to define reactions that occur when proanthocyanidins and their derivatives are reacted in the presence of acid catalysts. Pure compounds (either as the free phenols, the methyl ether, or the methyl ether-acetate derivatives) were isolated by a variety of chromatographic methods. Proof of their structure was based mainly on 2D-NMR, as...
Cattopadhyay, Kalicharan; Recio, Antonio; Tunge, Jon A.
2012-01-01
We report the palladium-catalyzed, pyrrolidine-mediated α-benzylation of enamines generated from aldehydes and ketones. The method allows for direct coupling of medicinally relevant coumarin moieties with aldehydes and ketones in good yield under mild conditions. The reaction is believed to proceed via a Pd-π-benzyl complex generated from (coumarinyl)methyl acetates. PMID:22832549
NASA Astrophysics Data System (ADS)
Stahl, W.; Nguyen, H. V. L.; Sutikdja, L. W.; Jelisavac, D.; Mouhib, H.; Kleiner, I.
2012-06-01
The microwave spectra of a number of organic aliphatic esters have been recorded for the first time in the 3-26.5 GHz frequency range, using the molecular beam Fourier-transform microwave (MB-FTMW) spectrometer in Aachen, with an instrumental uncertainty of a few kHz for unblended lines. The combined use of ab initio quantum chemical calculations and spectral analysis allowed us to determine the spectroscopic parameters and potential barriers to internal rotation of the methyl groups for the lowest energy conformers. We will compare here the results from ab initio calculations and from two different hamiltonian methods (the XIAM and BELGI codes) for isoamyl acetate H3C-COO-(CH2)2-CH(CH3)2, an one-top internal rotor molecule with a C1 symmetry and for methyl propionate CH3CH2COOCH3 containing two inequivalent methyl tops (C3v), with different barrier heights. This study is part of a larger project which aims at determining the structures of the lowest energy conformers for a serie of organic esters and ketones which are of interest for flavour or perfume applications.
Synthesis of ZnO-CuO/MCM-48 photocatalyst for the degradation of organic pollutions.
Duan, Yongzheng; Shen, Yulian
2017-07-01
The photocatalytic properties of ZnO-CuO catalysts supported on siliceous MCM-48 (Mobil Composition of Matter No. 48) for the degradation of organic pollutions such as methylene blue and salicylic acid under UV light irradiation were investigated. These catalysts were prepared by impregnation of MCM-48 with a mixed aqueous solution of copper acetate and zinc acetate. X-ray diffraction, N 2 -physisorption, high resolution transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and photoluminescence were used to characterize these samples. Results from characterizations showed that the addition of ZnO to CuO/MCM-48 could markedly improve the photocatalytic degradation properties. The enhanced photocatalytic behaviors of ZnO-CuO/MCM-48 may be due to the formation of p-n heterojunctions between ZnO and CuO, resulting in the effective separation of photogenerated electron-hole pairs. Moreover, the photocatalysts were easily recovered and reused for five cycles without considerable loss of activity.
DISCOVERY OF METHYL ACETATE AND GAUCHE ETHYL FORMATE IN ORION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tercero, B.; Cernicharo, J.; Lopez, A.
2013-06-10
We report on the discovery of methyl acetate, CH{sub 3}COOCH{sub 3}, through the detection of a large number of rotational lines from each one of the spin states of the molecule: AA species (A{sub 1} or A{sub 2}), EA species (E{sub 1}), AE species (E{sub 2}), and EE species (E{sub 3} or E{sub 4}). We also report, for the first time in space, the detection of the gauche conformer of ethyl formate, CH{sub 3}CH{sub 2}OCOH, in the same source. The trans conformer is also detected for the first time outside the Galactic center source SgrB2. From the derived velocity ofmore » the emission of methyl acetate, we conclude that it arises mainly from the compact ridge region with a total column density of (4.2 {+-} 0.5) Multiplication-Sign 10{sup 15} cm{sup -2}. The derived rotational temperature is 150 K. The column density for each conformer of ethyl formate, trans and gauche, is (4.5 {+-} 1.0) Multiplication-Sign 10{sup 14} cm{sup -2}. Their abundance ratio indicates a kinetic temperature of 135 K for the emitting gas and suggests that gas-phase reactions could participate efficiently in the formation of both conformers in addition to cold ice mantle reactions on the surface of dust grains.« less
NASA Astrophysics Data System (ADS)
Montero, J. M.; Isaacs, M. A.; Lee, A. F.; Lynam, J. M.; Wilson, K.
2016-04-01
An in situ XPS study of water, methanol and methyl acetate adsorption over as-synthesised and calcined MgO nanocatalysts is reported with a view to gaining insight into the surface adsorption of key components relevant to fatty acid methyl esters (biodiesel) production during the transesterification of triglycerides with methanol. High temperature calcined NanoMgO-700 adsorbed all three species more readily than the parent material due to the higher density of electron-rich (111) and (110) facets exposed over the larger crystallites. Water and methanol chemisorb over the NanoMgO-700 through the conversion of surface O2 - sites to OH- and coincident creation of Mg-OH or Mg-OCH3 moieties respectively. A model is proposed in which the dissociative chemisorption of methanol occurs preferentially over defect and edge sites of NanoMgO-700, with higher methanol coverages resulting in physisorption over weakly basic (100) facets. Methyl acetate undergoes more complex surface chemistry over NanoMgO-700, with C-H dissociation and ester cleavage forming surface hydroxyl and acetate species even at extremely low coverages, indicative of preferential adsorption at defects. Comparison of C 1s spectra with spent catalysts from tributyrin transesterification suggest that ester hydrolysis plays a key factor in the deactivation of MgO catalysts for biodiesel production.
Individual Protection Testing (Task 5 - Qualitative Fit Test Simulants)
1990-04-01
2- octanol 0 .00026(b) 506,000 * 2- octanone 248 4 A n-octylacetate 0.21 2,500 A Paracresol 0.001 D Pelargonic acid .00084(b) 164,000 * n-pentane 990...77 Unpleasant [107-92-6] Cinnamaldehyde-CgH80 2.5 53,000 -- 246 ---- [104-55-2] Methyl salicylate-C8H803 0.58 113,400 -- 224 99 -- [119-36-8] 2- octanol ...of the literature assessment are summarized in Table 2. Bromoacetone was eliminated because of its high acute toxicity. The candidate, 2- octanol , was
He, Yangyang; Yan, Yu; Zhang, Tiantai; Ma, Yinzhong; Zhang, Wen; Wu, Ping; Song, Junke; Wang, Shuang; Du, Guanhua
2015-04-22
Methyl salicylate-2-O-β-d-lactoside (MSL) is one of the main active components isolated from Gaultheria yunnanensis, which is a traditional Chinese medicine used to treat arthritis and various aches and pains. Pharmacological researches showed that MSL had various effective activities in both in vivo and in vitro experiments. However, the pharmacokinetics features and oral bioavailability of MSL in primates were not studied up to now. To study the pharmacokinetics of different doses of MSL in rhesus monkeys and investigate the absolute bioavailability of MSL after oral administration. Male and female rhesus monkeys were either orally administrated with MSL 200, 400 and 800 mg/kg or received an intravenous dose of 20mg/kg randomly. The levels of MSL and salicylic acid (SA) in plasma were simultaneous measured by a simple, sensitive and reproducible high performance liquid chromatography method. Mean peak plasma concentration values for groups treated with 200, 400 and 800 mg/kg doses ranged from 48.79 to 171.83 μg/mL after single-dose oral administration of MSL, and mean area under the concentration-time curve values ranged from 195.16 to 1107.76 μg/mL h. Poor linearity of the kinetics of SA after oral administration of MSL was observed in the regression analysis of the Cmax-dose plot (r(2)=0.812), CL-dose plot (r(2)=0.225) and AUC(0-t)-dose plot (r(2)=0.938). Absolute bioavailability of MSL was assessed to be 118.89 ± 57.50, 213.54 ± 58.98 and 168.72 ± 76.58%, respectively. Bioavailability of MSL after oral administration in rhesus monkeys was measured for the first time. Pharmacokinetics parameters did not appear to be dose proportional among the three oral doses of treatments, and MSL showed an apparent absolute bioavailability in excess of 100% in rhesus monkeys based on the present study. In addition, a rapid, sensitive and reliable HPLC method was established and demonstrated for the research of traditional Chinese medicine in this study. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Characterizing Workplace Exposures in Vietnamese Women Working in California Nail Salons
Gunier, Robert; Tran, Alisha; Von Behren, Julie; Doan-Billings, Phuong-An; Nguyen, Kim-Dung; Okahara, Linda; Lui, Benjamin Yee-Bun; Nguyen, Mychi; Huynh, Jessica; Reynolds, Peggy
2011-01-01
Objectives. We engaged Vietnamese nail salon workers in a community-based participatory research (CBPR) study to measure personal and area concentrations of solvents in their workplace. Methods. We measured average work-shift concentrations of toluene, ethyl acetate, and isopropyl acetate among 80 workers from 20 salons using personal air monitors. We also collected area samples from 3 salons using summa canisters. Results. For personal measurements, the arithmetic mean was 0.53 parts per million (range = 0.02–5.50) for ethyl acetate, 0.04 parts per million (range = 0.02–0.15) for isopropyl acetate, and 0.15 parts per million (range = 0.02–1.0) for toluene. Area measurements were lower in comparison, but we detected notable levels of methyl methacrylate, a compound long banned from nail products. Predictors of solvent levels included different forms of ventilation and whether the salon was located in an enclosed building. Conclusions. Using a CBPR approach that engaged community members in the research process contributed to the successful recruitment of salon workers. Measured levels of toluene, methyl methacrylate, and total volatile organic compounds were higher than recommended guidelines to prevent health symptoms such as headaches, irritations, and breathing problems, which were frequently reported in this workforce. PMID:21551383
Ma, Jiani; Rea, Adam C; An, Huiying; Ma, Chensheng; Guan, Xiangguo; Li, Ming-De; Su, Tao; Yeung, Chi Shun; Harris, Kyle T; Zhu, Yue; Nganga, Jameil L; Fedoryak, Olesya D; Dore, Timothy M; Phillips, David Lee
2012-01-01
Abstract Photoremovable protecting groups (PPGs) when conjugated to biological effectors forming “caged compounds” are a powerful means to regulate the action of physiologically active messengers in vivo through 1-photon excitation (1PE) and 2-photon excitation (2PE). Understanding the photodeprotection mechanism is important for their physiological use. We compared the quantum efficiencies and product outcomes in different solvent and pH conditions for the photolysis reactions of (8-chloro-7-hydroxyquinolin-2-yl)methyl acetate (CHQ-OAc) and (8-bromo-7-hydroxyquinolin-2-yl)methyl acetate (BHQ-OAc), representatives of the quinoline class of phototriggers for biological use, and conducted nanosecond time-resolved spectroscopic studies using transient emission (ns-EM), transient absorption (ns-TA), transient resonance Raman (ns-TR2), and time-resolved resonance Raman (ns-TR3) spectroscopies. The results indicate differences in the photochemical mechanisms and product outcomes, and reveal that the triplet excited state is most likely on the pathway to the product and that dehalogenation competes with release of acetate from BHQ-OAc, but not CHQ-OAc. A high fluorescence quantum yield and a more efficient excited-state proton transfer (ESPT) in CHQ-OAc compared to BHQ-OAc explain the lower quantum efficiency of CHQ-OAc relative to BHQ-OAc. PMID:22511356
Anaerobic biodegradation of methyl esters by Acetobacterium woodii and Eubacterium limosum
Liu, Shi; Suflita, Joseph M.
1994-01-01
The ability ofAcetobacterium woodii andEubacterium limosum to degrade methyl esters of acetate, propionate, butyrate, and isobutyrate was examined under growing and resting-cell conditions. Both bacteria hydrolyzed the esters to the corresponding carboxylates and methanol under either condition. Methanol was further oxidized to formate under growing but not resting conditions. Unlike the metabolism of phenylmethylethers, no H2 requirement was evident for ester biotransformation. The hydrolysis of methyl carboxylates is thermodynamically favorable under standard conditions and the mixotrophic metabolism of ester/CO2 allowed for bacterial growth. These results suggest that the degradation of methyl carboxylates may be a heretofore unrecognized nutritional option for acetogenic bacteria.
New isochromophilones VII and VIII produced by Penicillium sp. FO-4164.
Yang, D J; Tomoda, H; Tabata, N; Masuma, R; Omura, S
1996-03-01
New isochromophilones VII and VIII were isolated from the culture broth of Penicillium sp. FO-4164. The structures were elucidated as 6H-2-benzopyran-6,8(7H)-dione, 5-chloro-3-(3',5'-dimethyl-1',3'-heptadienyl)-1,7,8a-trihydro-7, 8a-dihydroxy-7-methyl-7-acetate for isochromophilone VII and 6H-2-benzopyran-6-one,5-chloro-3-(3',5'-dimethyl-1', 3'-heptadienyl)-1,7,8,8a-tetrahydro-7,8-dihydroxy-7-methyl-8-acetate for isochromophilone VIII. Isochromophilones VII and VIII inhibited diacylglycerol acyltransferase activity with IC50 values of 20.0 and 127 microM and acyl-CoA: cholesterol acyltransferase activity with IC50 values of 24.5 and 47.0 microM, respectively.
Jabli, Hind; Kandri Rodi, Y; Ladeira, Sonia; Essassi, El Mokhtar; Ng, Seik Weng
2009-12-12
The reaction of 1,5-dibenzyl-3-propargyl-1,5-benzodiazepine-2,4-dione with ethyl azido-acetate in the presence of copper sulfate pentahydrate and sodium ascorbate leads to the formation of the title regioisomer, C(30)H(29)N(5)O(4), which features a phenyl-ene ring fused with a seven-membered diazepinyl ring. The latter ring adopts a boat conformation (with the methyl-triazolylacetate-bearing C atom as the prow and the fused-ring C atoms as the stern). The benzyl groups connected to the diazepinyl ring jprotrude from the sides; the methyl-triazolylacetate substituent occupies an axial position.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeMark, B.R.; Klein, P.D.
1981-01-01
The ammonia chemical ionization mass spectra of 28 methyl ester acetate derivatives of bile acids and related compounds have been determined by gas-liquid chromatography-mass spectrometry. Advantages of ammonia ionization over the previously studied isobutane ionization include a 130 to 270% enhancement in the sensitivity of base peak monitoring, and direct determination of molecular weight from the base peak (M + NH/sub 4//sup +/) in the mass spectrum of any of the derivatives. Minor ions in the ammonia spectra also allow selective detection of 3-keto compounds and can indicate unsaturation or double bond conjugation in the molecule. The significance of thesemore » studies for the detection and quantitation of bile acids is discussed. 2 tables.« less
USDA-ARS?s Scientific Manuscript database
Solid Mallet TMR (trimedlure [TML], methyl eugenol [ME], raspberry ketone [RK]) wafers and Mallet CMR (ceralure, ME, RK, benzyl acetate) wafers impregnated with DDVP insecticide were evaluated in traps as potential detection and male annihilation devices. Comparisons were made with 1) liquid lure a...
[Pharmacological approaches to control of body temperature].
Soto Ruiz, M Nelia; Ezquerro Rodríguez, Esther; Marín Fernández, Blanca
2012-05-01
The main antipyretic drugs belong to two different therapeutic groups: non-steroidal anti-inflammatory and antirheumatic; and analgesic and antipyretic. In some cases, both groups are included in the NSAID group (analgesics antipyretics and NSAID). Most of the chemical compounds included in this group have three actions, but the relative performance of each of them can be different, as well as the incidence of adverse effects. For this reason its clinical use will depend on effectiveness and relative toxicity. When there is fever, NSAID normalizes the action of the thermoregulatory center in the hypothalamus, decreasing production of prostaglandins by inhibiting enzymes cyclooxygenase. But not all are capable of controlling the temperature which increases in adaptative physiological situations, as in heat stroke, intense exercise or by increasing the temperature. The classification is based on chemical characteristics and can be grouped into nine classes: 1) Salicylates, 2) Para-aminophenol derivatives, 3) Derivatives of pyrazolone, 4) Acetic acid derivatives, 5) Derivatives propionic acid, 6) Anthranilic derivatives, 7) Oxicam derivatives, 8) COX-2 inhibitors, 9) Other NSAID. This article describes the indications, mechanism of action, clinical presentation, routes of administration, adverse reactions, contraindications, precautions and drug interactions of the most commonly used (Derivatives of Salicylic Acid, Paracetamol, Metamizole, Ibuprofen, Drantoleno).
rgs-CaM Detects and Counteracts Viral RNA Silencing Suppressors in Plant Immune Priming
Jeon, Eun Jin; Tadamura, Kazuki; Murakami, Taiki; Inaba, Jun-ichi; Kim, Bo Min; Sato, Masako; Atsumi, Go; Kuchitsu, Kazuyuki; Masuta, Chikara
2017-01-01
ABSTRACT Primary infection of a plant with a pathogen that causes high accumulation of salicylic acid in the plant typically via a hypersensitive response confers enhanced resistance against secondary infection with a broad spectrum of pathogens, including viruses. This phenomenon is called systemic acquired resistance (SAR), which is a plant priming for adaption to repeated biotic stress. However, the molecular mechanisms of SAR-mediated enhanced inhibition, especially of virus infection, remain unclear. Here, we show that SAR against cucumber mosaic virus (CMV) in tobacco plants (Nicotiana tabacum) involves a calmodulin-like protein, rgs-CaM. We previously reported the antiviral function of rgs-CaM, which binds to and directs degradation of viral RNA silencing suppressors (RSSs), including CMV 2b, via autophagy. We found that rgs-CaM-mediated immunity is ineffective against CMV infection in normally growing tobacco plants but is activated as a result of SAR induction via salicylic acid signaling. We then analyzed the effect of overexpression of rgs-CaM on salicylic acid signaling. Overexpressed and ectopically expressed rgs-CaM induced defense reactions, including cell death, generation of reactive oxygen species, and salicylic acid signaling. Further analysis using a combination of the salicylic acid analogue benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) and the Ca2+ ionophore A23187 revealed that rgs-CaM functions as an immune receptor that induces salicylic acid signaling by simultaneously perceiving both viral RSS and Ca2+ influx as infection cues, implying its autoactivation. Thus, secondary infection of SAR-induced tobacco plants with CMV seems to be effectively inhibited through 2b recognition and degradation by rgs-CaM, leading to reinforcement of antiviral RNA silencing and other salicylic acid-mediated antiviral responses. IMPORTANCE Even without an acquired immune system like that in vertebrates, plants show enhanced whole-plant resistance against secondary infection with pathogens; this so-called systemic acquired resistance (SAR) has been known for more than half a century and continues to be extensively studied. SAR-induced plants strongly and rapidly express a number of antibiotics and pathogenesis-related proteins targeted against secondary infection, which can account for enhanced resistance against bacterial and fungal pathogens but are not thought to control viral infection. This study showed that enhanced resistance against cucumber mosaic virus is caused by a tobacco calmodulin-like protein, rgs-CaM, which detects and counteracts the major viral virulence factor (RNA silencing suppressor) after SAR induction. rgs-CaM-mediated SAR illustrates the growth versus defense trade-off in plants, as it targets the major virulence factor only under specific biotic stress conditions, thus avoiding the cost of constitutive activation while reducing the damage from virus infection. PMID:28724770
Hall, R L; Wood, E J; Kamberling, J P; Gerwig, G J; Vliegenthart, F G
1977-01-01
In addition to the already knownonosaccharides fucose, xylose, mannose, galactose, glucose, N-acetylgalactosamine and N-acetylglucosamine, the carbohydrate part of the haemocyanin from Helix pomatia (Roman snail) contains 3-O-methylgalactose, and that from Lymnaea stagnalis (a freshwater snail) 3-O-methylgalactose and 3-O-methylmannose. The 3-O-methyl sugars were identified by g.l.c.-mas spectrometry of the corresponding trimethylsilyl methyl glycosides and the alditol acetates, and by co-chromatography with the synthetic reference substances. PMID:889564
NASA Astrophysics Data System (ADS)
Gövert, D.; Conrad, R.
2009-04-01
During the anaerobic degradation of organic matter in anoxic sediments and soils acetate is the most important substrate for the final step in production of CO2 and/or CH4. Sulfate-reducing bacteria (SRB) and methane-producing archaea both compete for the available acetate. Knowledge about the fractionation of 13C/12C of acetate carbon by these microbial groups is still limited. Therefore, we determined carbon isotope fractionation in different cultures of acetate-utilizing SRB (Desulfobacter postgatei, D. hydrogenophilus, Desulfobacca acetoxidans) and methanogens (Methanosarcina barkeri, M. acetivorans). Including literature values (e.g., Methanosaeta concilii), isotopic enrichment factors (epsilon) ranged between -35 and +2 permil, possibly involving equilibrium isotope effects besides kinetic isotope effects. The values of epsilon were dependent on the acetate-catabolic pathway of the particular microorganism, the methyl or carboxyl position of acetate, and the relative availability or limitation of the substrate acetate. Patterns of isotope fractionation in anoxic lake sediments and rice field soil seem to reflect the characteristics of the microorganisms actively involved in acetate catabolism. Hence, it might be possible using environmental isotopic information to determine the type of microbial metabolism converting acetate to CO2 and/or CH4.
Attractants from Bartlett pear for codling moth, Cydia pomonella (L.), larvae
NASA Astrophysics Data System (ADS)
Knight, Alan L.; Light, Douglas M.
2001-08-01
The alkyl ethyl and methyl esters of (2 E,4 Z)-2,4-decadienoic acid found in head-space samples of ripe Bartlett pear ( Pyrus communis L.) stimulated a response from neonate larvae of the codling moth (CM), Cydia pomonella (L.), in both static-air Petri-plate and in upwind Y-tube and straight-tube olfactometer bioassays. In comparison with the known CM neonate attractant, ( E,E)-α-farnesene, ethyl (2 E,4 Z)-2,4-decadienoate was attractive at 10-fold and 1,000-fold lower threshold dosages in the Petri-plate and in the Y-tube bioassays, respectively. Methyl (2 E,4 Z)-2,4-decadienoate was attractive to CM neonates in these bioassays at much higher doses than ethyl (2 E,4 Z)-2,4-decadienoate. Other principal head-space volatiles from ripe pear fruit and pear leaves, including butyl acetate, hexyl acetate, ( Z)-3-hexenyl acetate, and ( E)-β-ocimene, were not attractive to CM neonates. The potential uses of these pear kairomones for monitoring and control of CM in walnuts and apple are discussed.
Potent microbial and tyrosinase inhibitors from stem bark of Bauhinia rufescens (Fabaceae).
Muhammad, Aminu; Sirat, Hasnah Mohd
2013-10-01
The stem bark extracts of Bauhinia rufescens Lam. (Fabaceae) yielded 6-methoxy-7-methyl-8-hydroxydibenz[b,f]oxepin, alpha-amyrin acetate, beta-sitosterol 3-O-beta-D-xylopyranoside, 4-(2'-Hydroxyphenethyl)-5-methoxy-2-methylphenol, menisdaurin and sequoyitol. Their structures were determined using spectroscopic methods and comparisons with the literature data. For the antimicrobial assay Gram-positive and Gram-negative bacterial and fungal strains were tested, while the tyrosinase inhibition assay utilized L-DOPA as a substrate for the tyrosinase enzyme. 6-Methoxy-7-methyl-8-hydroxydibenz[b,f]oxepin, a-amyrin acetate, beta-sitosterol 3-O-D-xylopyranoside, menisdaurin and sequoyitol showed weak to moderate activities with minimum inhibition concentration (MIC) values in the range of 112.5-900 microg/mL against all bacterial strains, while the MIC values for the fungal strains were in the range of 28.1-450 microg/mL. In the tyrosinase inhibition assay, a-amyrin acetate was found to be moderately active against tyrosinase with an inhibition of 62% at 0.1 mg/mL. This activity was lower than that of the positive control, kojic acid (85%).
Phenolic Profile and Antioxidant Activity of Centaurea choulettiana Pomel (Asteraceae) Extracts.
Azzouzi, Djihane; Bioud, Kenza; Demirtas, Ibrahim; Gul, Fatih; Sarri, Djamel; Benayache, Samir; Benayache, Fadila; Mekkiou, Ratiba
2016-01-01
This study aimed to quantify phenolic compounds in ethyl acetate and n-butanol extract of Centaurea choulettiana Pomel (Asteraceae) leaves and flowers; compare the antioxidant activity of their extracts, identification and quantification of their phenolic acids. Both organs extracts of Centaurea choulettiana Pomel were investigated and evaluated for their potential antioxidant properties using total phenolics and flavonoids content, DPPH radical scavenging and lipid peroxidation inhibition assays. HPLC-TOF/MS analyses were carried out to identify and quantify some phenolic acids. The amounts of phenolic and flavonoid content were higher in ethyl acetate extract of leaves (325.81 ± 0.038 mgGAE and 263.73 ± 0.004 mgQE /g of extract) respectively. Besides, this extract exhibited the most powerful effect on the DPPH radical scavenging activity with (96.54%), on lipid peroxydation inhibition (64.17%). Ethyl acetate extract of leaves and flowers were found to contain almost the same phenolic compounds, with the leaves having the highest values. Chlorogenic acid was detected in the n-butanol extract of flowers with the highest concentration 17.78 mg/kg plant. The ethyl acetate extract of leaves of Centaurea choulettiana possesses strong antioxidative properties in vitro. They are confirmed by high polyphenols and flavonoids content. The HPLC-TOF/MS analysis reveals the presence of 4-hydroxybenzoic acid, gentisic acid, chlorogenic acid, caffeic acid, vanillic acid, p-Coumaric acid, ferulic acid, salicylic acid and protocatechuic acid. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Resonance electron attachment to plant hormones and its likely connection with biochemical processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pshenichnyuk, Stanislav A., E-mail: sapsh@anrb.ru; Modelli, Alberto
Gas-phase formation of temporary negative ion states via resonance attachment of low-energy (0–6 eV) electrons into vacant molecular orbitals of salicylic acid (I) and its derivatives 3-hydroxy- (II) and 4-hydroxybenzoic acid (III), 5-cloro salicylic acid (IV) and methyl salicylate (V) was investigated for the first time by electron transmission spectroscopy. The description of their empty-level structures was supported by density functional theory and Hartree-Fock calculations, using empirically calibrated linear equations to scale the calculated virtual orbital energies. Dissociative electron attachment spectroscopy (DEAS) was used to measure the fragment anion yields generated through dissociative decay channels of the parent molecular anionsmore » of compounds I–V, detected with a mass filter as a function of the incident electron energy in the 0–14 eV energy range. The most intense negative fragment produced by DEA to isomers I–III is the dehydrogenated molecular anion [M–H]{sup −}, mainly formed at incident electron energies around 1 eV. The vertical and adiabatic electron affinities were evaluated at the B3LYP/6-31+G(d) level as the anion/neutral total energy difference. The same theoretical method was also used for evaluation of the thermodynamic energy thresholds for production of the negative fragments observed in the DEA spectra. The gas-phase DEAS data can provide support for biochemical reaction mechanisms in vivo.« less
2013-01-01
Background Volatile organic compounds (VOCs) emitted by human body offer a unique insight into biochemical processes ongoing in healthy and diseased human organisms. Unfortunately, in many cases their origin and metabolic fate have not been yet elucidated in sufficient depth, thus limiting their clinical application. The primary goal of this work was to identify and quantify volatile organic compounds being released or metabolized by HepG2 hepatocellular carcinoma cells. Methods The hepatocellular carcinoma cells were incubated in specially designed head-space 1-L glass bottles sealed for 24 hours prior to measurements. Identification and quantification of volatiles released and consumed by cells under study were performed by gas chromatography with mass spectrometric detection (GC-MS) coupled with head-space needle trap device extraction (HS-NTD) as the pre-concentration technique. Most of the compounds were identified both by spectral library match as well as retention time comparison based on standards. Results A total of nine compounds were found to be metabolised and further twelve released by the cells under study (Wilcoxon signed-rank test, p<0.05). The former group comprised 6 aldehydes (2-methyl 2-propenal, 2-methyl propanal, 2-ethylacrolein, 3-methyl butanal, n-hexanal and benzaldehyde), n-propyl propionate, n-butyl acetate, and isoprene. Amongst the released species there were five ketones (2-pentanone, 3-heptanone, 2-heptanone, 3-octanone, 2-nonanone), five volatile sulphur compounds (dimethyl sulfide, ethyl methyl sulfide, 3-methyl thiophene, 2-methyl-1-(methylthio)- propane and 2-methyl-5-(methylthio) furan), n-propyl acetate, and 2-heptene. Conclusions The emission and uptake of the aforementioned VOCs may reflect the activity of abundant liver enzymes and support the potential of VOC analysis for the assessment of enzymes function. PMID:23870484
The Rotational Spectrum and Conformational Structures of Methyl Valerate
NASA Astrophysics Data System (ADS)
Nguyen, Ha Vinh Lam; Stahl, Wolfgang
2015-06-01
Methyl valerate, C4H9COOCH3, belongs to the class of fruit esters, which play an important role in nature as odorants of different fruits, flowers, and wines. A sufficient explanation for the structure-odor relation of is not available. It is known that predicting the odor of a substance is not possible by knowing only its chemical formula. A typical example is the blueberry- or pine apple-like odor of ethyl isovalerate while its isomers ethyl valerate and isoamyl acetate smell like green apple and banana, respectively. Obviously, not only the composition but also the molecular structures are not negligible by determining the odor of a substance. Gas phase structures of fruit esters are thus important for a first step towards the determination of structure-odor relation since the sense of smell starts from gas phase molecules. For this purpose, a combination of microwave spectroscopy and quantum chemical calculations (QCCs) is an excellent tool. Small esters often have sufficient vapor pressure to be transferred easily in the gas phase for a rotational study but already contain a large number of atoms which makes them too big for classical structure determination by isotopic substitution and requires nowadays a comparison with the structures optimized by QCCs. On the other hand, the results from QCCs have to be validated by the experimental values. About the internal dynamics, the methoxy methyl group -COOCH3 of methyl acetate shows internal rotation with a barrier of 424.581(56) wn. A similar barrier height of 429.324(23) wn was found in methyl propionate, where the acetyl group is extended to the propionyl group. The investigation on methyl valerate fits well in this series of methyl alkynoates. In this talk, the structure of the most energetic favorable conformer as well as the internal rotation shown by the methoxy methyl group will be reported. It could be confirmed that the internal rotation barrier of the methoxy methyl group remains by longer alkyl chain.
Ángeles López, Yesenia Ithaí; Martínez-Gallardo, Norma Angélica; Ramírez-Romero, Ricardo; López, Mercedes G; Sánchez-Hernández, Carla; Délano-Frier, John Paul
2012-11-01
Volatile organic compounds (VOCs) emitted from plants in response to insect infestation can function as signals for the attraction of predatory/parasitic insects and/or repulsion of herbivores. VOCs also may play a role in intra- and inter-plant communication. In this work, the kinetics and composition of VOC emissions produced by tomato (Solanum lycopersicum) plants infested with the greenhouse whitefly Trialeurodes vaporariorum was determined within a 14 days period. The VOC emission profiles varied concomitantly with the duration of whitefly infestation. A total of 36 different VOCs were detected during the experiment, 26 of which could be identified: 23 terpenoids, plus decanal, decane, and methyl salicylate (MeSA). Many VOCs were emitted exclusively by infested plants, including MeSA and 10 terpenoids. In general, individual VOC emissions increased as the infestation progressed, particularly at 7 days post-infestation (dpi). Additional tunnel experiments showed that a 3 days exposure to VOC emissions from whitefly-infested plants significantly reduced infection by a biotrophic bacterial pathogen. Infection of VOC-exposed plants induced the expression of a likely tomato homolog of a methyl salicylate esterase gene, which preceded the expression of pathogenesis-related protein genes. This expression pattern correlated with reduced susceptibility in VOC-exposed plants. The observed cross-kingdom effect of plant-plant signaling via VOCs probably represents a generalized defensive response that contributes to increased plant fitness, considering that resistance responses to whiteflies and biotrophic bacterial pathogens in tomato share many common elements.
Lemos, Mark; Xiao, Yanmei; Bjornson, Marta; Wang, Jin-Zheng; Hicks, Derrick; Souza, Amancio de; Wang, Chang-Quan; Yang, Panyu; Ma, Shisong; Dinesh-Kumar, Savithramma; Dehesh, Katayoon
2016-03-01
The exquisite harmony between hormones and their corresponding signaling pathways is central to prioritizing plant responses to simultaneous and/or successive environmental trepidations. The crosstalk between jasmonic acid (JA) and salicylic acid (SA) is an established effective mechanism that optimizes and tailors plant adaptive responses. However, the underlying regulatory modules of this crosstalk are largely unknown. Global transcriptomic analyses of mutant plants (ceh1) with elevated levels of the stress-induced plastidial retrograde signaling metabolite 2-C-methyl-D-erythritol cyclopyrophosphate (MEcPP) revealed robustly induced JA marker genes, expected to be suppressed by the presence of constitutively high SA levels in the mutant background. Analyses of a range of genotypes with varying SA and MEcPP levels established the selective role of MEcPP-mediated signal(s) in induction of JA-responsive genes in the presence of elevated SA. Metabolic profiling revealed the presence of high levels of the JA precursor 12-oxo-phytodienoic acid (OPDA), but near wild type levels of JA in the ceh1 mutant plants. Analyses of coronatine-insensitive 1 (coi1)/ceh1 double mutant plants confirmed that the MEcPP-mediated induction is JA receptor COI1 dependent, potentially through elevated OPDA. These findings identify MEcPP as a previously unrecognized central regulatory module that induces JA-responsive genes in the presence of high SA, thereby staging a multifaceted plant response within the environmental context. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Rowen, Elizabeth; Gutensohn, Michael; Dudareva, Natalia; Kaplan, Ian
2017-06-01
Synthetic plant volatile lures attract natural enemies, but may have non-target effects due to the multifunctional nature of volatile signals. For example, methyl salicylate (MeSA) is used to attract predators, yet also serves as a signaling hormone involved in plant pathogen defense. We investigated the consequences of deploying MeSA lures to attract predators for tomato (Solanum lycopersicum) defense against herbivores. To understand the spatial distribution of the lure's effect, we exposed tomatoes in the field to MeSA along a linear distance gradient and induced defenses by simulating feeding by hornworm caterpillars in a fully crossed factorial design (+/- MeSA, +/- herbivory). Subsequently, we analyzed activity of several defensive proteins (protease inhibitors, polyphenol oxidase, peroxidase), development of hornworm larvae (Manduca sexta), growth of fungal pathogens (Cladosporium and Alternaria), and attractiveness to herbivores and predators. Overall, MeSA-exposed plants were more resistant to both insects and pathogens. Secondary pathogen infection was reduced by 25% in MeSA exposed plants, possibly due to elevated polyphenol oxidase activity. Interestingly, we found that lures affected plant pathogen defenses equivalently across all distances (up to 4 m away) indicating that horizontal diffusion of a synthetic volatile may be greater than previously assumed. While thrips avoided colonizing hornworm- damaged tomato plants, this induced resistance was not observed upon pre-exposure to MeSA, suggesting that MeSA suppresses the repellant effect induced by herbivory. Thus, using MeSA lures in biological control may inadvertently protect crops from pathogens, but has mixed effects on plant resistance to insect herbivores.
Control of Citrus Huanglongbing via Trunk Injection of Plant Defense Activators and Antibiotics.
Hu, J; Jiang, J; Wang, N
2018-02-01
Citrus huanglongbing (HLB) or greening is a devastating disease of citrus worldwide and no effective control measure is currently available. Plant defense activators environmentally friendly compounds capable of inducing resistance against many plant pathogens. Earlier studies showed that foliar spray of plant defense inducers could slow down HLB disease progress. In this study, eight plant defense activators and three antibiotics were evaluated in three field trials for their effect to control HLB by trunk injection of young and mature sweet orange trees. Results showed that four trunk injections of several activators, including salicylic acid, oxalic acid, acibenzolar-S-methyl, and potassium phosphate, provided significant control of HLB by suppressing 'Candidatus Liberibacter asiaticus' titer and disease progress. Trunk injection of penicillin, streptomycin, and oxytetracycline hydrochloride resulted in excellent control of HLB. In general, antibiotics were more effective in reduction of 'Ca. L. asiaticus' titer and HLB symptom expressions than plant defense activators. These treatments also resulted in increased yield and better fruit quality. Injection of both salicylic acid and acibenzolar-S-methyl led to significant induction of pathogenesis-related (PR) genes PR-1 and PR-2 genes. Meanwhile, injection of either potassium phosphate or oxalic acid resulted in significant induction of PR-2 or PR-15 gene expression, respectively. These results suggested that HLB diseased trees remained inducible for systemic acquired resistance under field conditions. In summary, this study presents information regarding controlling HLB via trunk injection of plant defense activators and antibiotics, which helps citrus growers in decision making regarding developing an effective HLB management program.
Barbosa, Ticiano P; Sousa, Suervy C O; Amorim, Francianne M; Rodrigues, Yara K S; de Assis, Priscilla A C; Caldas, John P A; Oliveira, Márcia R; Vasconcellos, Mário L A A
2011-07-15
The chalcone-like series 1a-1g was efficiently synthesized from Morita-Baylis-Hillman reaction (52-74% yields). Compounds 1a-1g were designed by molecular hybridization based on the anti-inflammatory drug methyl salicylate (3) and the antileishmanial moiety of the Morita-Baylis-Hillman adducts 2a-2g. The 1a-1g compounds were much more actives than precursor series 2a-2g, for example, IC(50)=7.65 μM on Leishmania amazonensis and 10.14 μM on Leishmania chagasi (compound 1c) when compared to IC(50)=50.08 μM on L. amazonensis and 82.29 μM on L. chagasi (compound 2c). The IC(50) values of compound 3 (228.49 μM on L. amazonensis and 261.45 μM on L. chagasi) and acryloyl salicylate 4 (108.50 μM on L. amazonensis and 118.83 μM on L. chagasi) were determined here, by the first time, on Leishmania. Copyright © 2011 Elsevier Ltd. All rights reserved.
Jasmonic Acid Signaling Modulates Ozone-Induced Hypersensitive Cell Death
Rao, Mulpuri V.; Lee, Hyung-il; Creelman, Robert A.; Mullet, John E.; Davis, Keith R.
2000-01-01
Recent studies suggest that cross-talk between salicylic acid (SA)–, jasmonic acid (JA)–, and ethylene-dependent signaling pathways regulates plant responses to both abiotic and biotic stress factors. Earlier studies demonstrated that ozone (O3) exposure activates a hypersensitive response (HR)–like cell death pathway in the Arabidopsis ecotype Cvi-0. We now have confirmed the role of SA and JA signaling in influencing O3-induced cell death. Expression of salicylate hydroxylase (NahG) in Cvi-0 reduced O3-induced cell death. Methyl jasmonate (Me-JA) pretreatment of Cvi-0 decreased O3-induced H2O2 content and SA concentrations and completely abolished O3-induced cell death. Cvi-0 synthesized as much JA as did Col-0 in response to O3 exposure but exhibited much less sensitivity to exogenous Me-JA. Analyses of the responses to O3 of the JA-signaling mutants jar1 and fad3/7/8 also demonstrated an antagonistic relationship between JA- and SA-signaling pathways in controlling the magnitude of O3-induced HR-like cell death. PMID:11006337
Jasmonic acid signaling modulates ozone-induced hypersensitive cell death.
Rao, M V; Lee, H; Creelman, R A; Mullet, J E; Davis, K R
2000-09-01
Recent studies suggest that cross-talk between salicylic acid (SA)-, jasmonic acid (JA)-, and ethylene-dependent signaling pathways regulates plant responses to both abiotic and biotic stress factors. Earlier studies demonstrated that ozone (O(3)) exposure activates a hypersensitive response (HR)-like cell death pathway in the Arabidopsis ecotype Cvi-0. We now have confirmed the role of SA and JA signaling in influencing O(3)-induced cell death. Expression of salicylate hydroxylase (NahG) in Cvi-0 reduced O(3)-induced cell death. Methyl jasmonate (Me-JA) pretreatment of Cvi-0 decreased O(3)-induced H(2)O(2) content and SA concentrations and completely abolished O(3)-induced cell death. Cvi-0 synthesized as much JA as did Col-0 in response to O(3) exposure but exhibited much less sensitivity to exogenous Me-JA. Analyses of the responses to O(3) of the JA-signaling mutants jar1 and fad3/7/8 also demonstrated an antagonistic relationship between JA- and SA-signaling pathways in controlling the magnitude of O(3)-induced HR-like cell death.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joly, J.M.; Brown, T.M.
Concentrations of (carboxyl-/sup 14/C)procaine in blood of mice were increased threefold for 27 min by exposure to O-4-nitrophenyl diphenylphosphinate 2 hr prior to (carboxyl-/sup 14/C)procaine injection ip, while there was no effect of O-4-nitrophenyl methyl(phenyl)phosphinate pretreatment. There was no effect of either organophosphinate on the primary hydrolysis of (acetyl-l-/sup 14/C)aspirin when assessed by the expiration of (/sup 14/C)carbon dioxide; however, O-4-nitrophenyl diphenylphosphinate pretreatment produced transient increases in blood concentrations of both (carboxyl-/sup 14/C)aspirin and (carboxyl-/sup 14/C)salicylic acid following administration of (carboxyl-/sup 14/C)aspirin. Liver carboxylesterase activity in O-4-nitrophenyl diphenylphosphinate pretreated mice was 11% of control activity. These results indicate the potentialmore » for drug interaction with O-4-nitrophenyl diphenylphosphinate but not with O-4-nitrophenyl methyl(phenyl)phosphinate. It appears that liver carboxylesterase activity has a minor role in hydrolysis of aspirin in vivo, but may be more important in procaine metabolism.« less
Sharma, Arun K; Sk, Ugir Hossain; He, Pengfei; Peters, Jeffrey M; Amin, Shantu
2010-07-15
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors and members of the nuclear hormone receptor superfamily. Herein, we describe an efficient synthesis of a novel isosteric selenium analog of the highly specific PPARbeta/delta ligand 2-methyl-4-((4-methyl-2-(4-trifluoromethylphenyl)-1,3-thiazol-5-yl)-methylsulfanyl)phenoxy-acetic acid (GW501516; 1). The study examined the efficiency of the novel selenium analog 2-methyl-4-((4-methyl-2-(4-trifluoromethylphenyl)-1,3-selenazol-5-yl)-methylsulfanyl)phenoxy-acetic acid (2) to activate PPARbeta/delta and the effect of ligand activation of PPARbeta/delta on cell proliferation and target gene expression in human HaCaT keratinocytes. The results showed that similar to GW501516, the Se-analog 2 increased expression of the known PPARbeta/delta target gene angiopoietin-like protein 4 (ANGPTL4); the compound 2 was comparable in efficacy as compared to GW501516. Consistent with a large body of evidence, the Se-analog inhibited cell proliferation in HaCaT keratinocytes similar to that observed with GW501516. In summary, the novel Se-analog 2 has been developed as a potent PPARbeta/delta ligand that may possess additional anti-cancer properties of selenium. 2010 Elsevier Ltd. All rights reserved.
Dihydroisocoumarins from Radix Glycyrrhizae.
Zhao, Songsong; Yan, Xinjia; Zhao, Ying; Wen, Jing; Zhao, Zhenzhen; Liu, Hongwei
2018-05-11
Radix Glycyrrhizae is the rhizome of Glycyrrhiza inflata Bat., Glycyrrhiza uralensis Fisch. or Glycyrrhiza glabra L. The present paper describes the isolation and the structural elucidation of three new dihydroisocoumarins obtained from the 70% EtOH extract of Radix Glycyrrhizae. And the cytotoxic activities of these new compounds were also evaluated using four cell lines, subsequently. A pair of new dihydroisocoumarin epimers ((3R,4S)-4,8-dihydroxy-3-methyl-1-oxoisochroman-5-yl)methyl acetate (1) and ((3R,4R)-4,8-dihydroxy-3-methyl-1-oxoisochroman-5-yl)methyl acetate (2) along with a new dihydroisocoumarin (3R,4R)-4,8-dihydroxy-3,5-dimethylisochroman-1-one (3) were isolated from Radix Glycyrrhizae. Their structures were elucidated on the basis of chemical and spectral analysis, including 1D, 2D NMR analyses, HR-ESI-MSand ECD calculation comparing with those of experimental CD spectra. Cytotoxic activities of the three compounds were evaluated using the HepG2, A549, LoVo and Hela cell lines, respectively. IC 50 values indicated compounds 1-3 exhibited moderate or less cytotoxic activity in vitro. Dihydroisocoumarin is not the common components in Radix Glycyrrhizae, a series of dihydroisocoumarin were obtained in this plant could be a supplement to the chemical study of this plant.
The effect of tailor-made additives on crystal growth of methyl paraben: Experiments and modelling
NASA Astrophysics Data System (ADS)
Cai, Zhihui; Liu, Yong; Song, Yang; Guan, Guoqiang; Jiang, Yanbin
2017-03-01
In this study, methyl paraben (MP) was selected as the model component, and acetaminophen (APAP), p-methyl acetanilide (PMAA) and acetanilide (ACET), which share the similar molecular structure as MP, were selected as the three tailor-made additives to study the effect of tailor-made additives on the crystal growth of MP. HPLC results indicated that the MP crystals induced by the three additives contained MP only. Photographs of the single crystals prepared indicated that the morphology of the MP crystals was greatly changed by the additives, but PXRD and single crystal diffraction results illustrated that the MP crystals were the same polymorph only with different crystal habits, and no new crystal form was found compared with other references. To investigate the effect of the additives on the crystal growth, the interaction between additives and facets was discussed in detail using the DFT methods and MD simulations. The results showed that APAP, PMAA and ACET would be selectively adsorbed on the growth surfaces of the crystal facets, which induced the change in MP crystal habits.
Foolad, Mahsa; Ong, Say Leong; Hu, Jiangyong
2015-11-01
Pharmaceutical and personal care products (PPCPs) and artificial sweeteners (ASs) are emerging organic contaminants (EOCs) in the aquatic environment. The presence of PPCPs and ASs in water bodies has an ecologic potential risk and health concern. Therefore, it is needed to detect the pollution sources by understanding the transport behavior of sewage molecular markers in a subsurface area. The aim of this study was to evaluate transport of nine selected molecular markers through saturated soil column experiments. The selected sewage molecular markers in this study were six PPCPs including acetaminophen (ACT), carbamazepine (CBZ), caffeine (CF), crotamiton (CTMT), diethyltoluamide (DEET), salicylic acid (SA) and three ASs including acesulfame (ACF), cyclamate (CYC), and saccharine (SAC). Results confirmed that ACF, CBZ, CTMT, CYC and SAC were suitable to be used as sewage molecular markers since they were almost stable against sorption and biodegradation process during soil column experiments. In contrast, transport of ACT, CF and DEET were limited by both sorption and biodegradation processes and 100% removal efficiency was achieved in the biotic column. Moreover, in this study the effect of different acetate concentration (0-100mg/L) as an easily biodegradable primary substrate on a removal of PPCPs and ASs was also studied. Results showed a negative correlation (r(2)>0.75) between the removal of some selected sewage chemical markers including ACF, CF, ACT, CYC, SAC and acetate concentration. CTMT also decreased with the addition of acetate, but increasing acetate concentration did not affect on its removal. CBZ and DEET removal were not dependent on the presence of acetate. Copyright © 2015 Elsevier Ltd. All rights reserved.
Xu, Liang; Liu, Haiping; Ma, Yucui; Wu, Cui; Li, Ruiqi; Chao, Zhimao
2018-06-13
The differences of volatile components in male (MFB) and female flower buds (FFB) of Populus × tomentosa were analysed and compared by HS-SPME with GC-MS for the first time. A total of 34 compounds were identified. Two clusters were clearly divided into male and female by hierarchical clustering analysis. Both the male and female flower buds showed methyl salicylate (22.83 and 24.09%, respectively) and 2-hydroxy-benzaldehyde (10.05 and 12.41%, respectively) as the main volatile constituents. The content of 2-cyclohexen-1-one, benzyl benzoate, and methyl benzoate in FFB was remarkably higher than in MFB. In contrast, the content of ethyl benzoate in MFB was greater than that in FFB. The phenomena showed the characteristic differences between MFB and FFB of P. × tomentosa, which enriched the basic studies on dioecious plant.
Dissecting the Transcriptional Response to Elicitors in Vitis vinifera Cells
Belchí-Navarro, Sarai; Bru, Roque; Martínez-Zapater, José M.; Lijavetzky, Diego; Pedreño, María A.
2014-01-01
The high effectiveness of cyclic oligosaccharides like cyclodextrins in the production of trans-resveratrol in Vitis vinifera cell cultures is enhanced in the presence of methyl jasmonate. In order to dissect the basis of the interactions among the elicitation responses triggered by these two compounds, a transcriptional analysis of grapevine cell cultures treated with cyclodextrins and methyl jasmonate separately or in combination was carried out. The results showed that the activation of genes encoding enzymes from phenylpropanoid and stilbene biosynthesis induced by cyclodextrins alone was partially enhanced in the presence of methyl jasmonate, which correlated with their effects on trans-resveratrol production. In addition, protein translation and cell cycle regulation were more highly repressed in cells treated with cyclodextrins than in those treated with methyl jasmonate, and this response was enhanced in the combined treatment. Ethylene signalling was activated by all treatments, while jasmonate signalling and salicylic acid conjugation were activated only in the presence of methyl jasmonate and cyclodextrins, respectively. Moreover, the combined treatment resulted in a crosstalk between the signalling cascades activated by cyclodextrins and methyl jasmonate, which, in turn, provoked the activation of additional regulatory pathways involving the up-regulation of MYB15, NAC and WRKY transcription factors, protein kinases and calcium signal transducers. All these results suggest that both elicitors cause an activation of the secondary metabolism in detriment of basic cell processes like the primary metabolism or cell division. Crosstalk between cyclodextrins and methyl jasmonate-induced signalling provokes an intensification of these responses resulting in a greater trans-resveratrol production. PMID:25314001
Carbon isotope effects associated with autotrophic acetogenesis
NASA Technical Reports Server (NTRS)
Gelwicks, J. T.; Risatti, J. B.; Hayes, J. M.
1989-01-01
The carbon kinetic isotope effects associated with synthesis of acetate from CO2 and H2 during autotrophic growth of Acetobacterium woodii at 30 degrees C have been measured by isotopic analyses of CO2, methyl-carbon, and total acetate. Closed systems allowing construction of complete mass balances at varying stages of growth were utilized, and the effects of the partitioning of carbon between CO2 and HCO3- were taken account. For the overall reaction, total carbonate --> total acetate, isotope effects measured in replicate experiments ranged from -59.0 +/- 0.9% to -57.2 +/- 2.3%. Taking into account all measurements, the weighted mean and standard deviation are -58.6 +/- 0.7%. There is no evidence for intramolecular ordering in the acetate. The carbon isotopic composition of sedimentary acetate, otherwise expected to be near that of sedimentary organic carbon, is likely to be depleted in environments in which autotrophic acetogenesis is occurring.
3-(Methoxycarbonylmethylene)isobenzofuran-1-imines as a new class of potential herbicides.
Araniti, Fabrizio; Mancuso, Raffaella; Ziccarelli, Ida; Sunseri, Francesco; Abenavoli, Maria Rosa; Gabriele, Bartolo
2014-06-18
A novel class of potential herbicides, the 3-(methoxycarbonylmethylene) isobenzofuran-1-imines, has been discovered. The herbicidal activity has been tested on two particular molecules, (E)-methyl 2-[3-(butylimino)isobenzofuran-1(3H)-ylidene]acetate (1) and (E)-methyl 2-phenyl-2-[3-(phenylimino)isobenzofuran-1(3H)-ylidene]acetate (2), prepared by palladium-catalyzed oxidative carbonylation of 2-alkynylbenzamides. Both compounds 1 and 2 showed a strong phytotoxic effect on both shoot and root systems of Arabidopsis thaliana. The effects observed on the shoot were similar for both molecules, but while compound 1 showed a stronger effect on root parameters (such as primary root length, root hair and density, showing lower ED50 values), compound 2 caused important malformations in root morphology. Our results indicate that these molecules are very promising synthetic herbicides.
Electrolytes for Li-Ion Cells in Low Temperature Applications
NASA Technical Reports Server (NTRS)
Smart, M. C.; Ratnakumar, B. V.; Surampudi, S.
2000-01-01
Prototype AA-size lithium-ion cells have been demonstrated to operate effectively at temperatures as low as -30 to -40 C. These improvements in low temperature cell performance have been realized by the incorporation of ethylene carbonate-based electrolytes which possess low melting, low viscosity cosolvents, such as methyl acetate, ethyl acetate, gamma-butyrolactone, and ethyl methyl carbonate. The cells containing a 0.75M LiPF6 EC+DEC+DMC+EMC (1:1:1:1) electrolyte displayed the best performance at -30 C (> 90% of the room temperature capacity at approximately C/15 rate), whereas, at -40 C the cells with the 0.75M LiPF6 EC+DEC+DMC+MA (1:1:1:1) and 0.75M LiPF6 EC+DEC+DMC+EA (1:1:1:1) electrolytes showed superior performance.
NASA Technical Reports Server (NTRS)
Yuen, G. U.; Cronin, J. R.; Blair, N. E.; Desmarais, D. J.; Chang, S.
1991-01-01
Recently, in our laboratories, samples of Murchison acetic acid were decarboxylated successfully and the carbon isotopic composition was measured for the methane released by this procedure. These analyses showed significant differences in C-13/C-12 ratios for the methyl and carboxyl carbons of the acetic acid molecule, strongly suggesting that more than one carbon source may be involved in the synthesis of the Murchison organic compounds. On the basis of this finding, laboratory model systems simulating cosmochemical synthesis are being studied, especially those processes capable of involving two or more starting carbon sources.
Yasumitsu, Hidetaro; Ozeki, Yasuhiro; Kawsar, Sarkar M A; Toda, Tosifusa; Kanaly, Robert
2010-11-01
Coomassie Brilliant Blue (CBB) protein stains are inexpensive but detect proteins at only at microgram levels. Because of acetic acid and methanol, they cause skin irritation and reduce work motivation by malodor. Recent mass spectrometric (MS) analyses demonstrated that nanogram-sensitive colloidal CBB staining resulted in in vitro methylations of proteins. We propose a rapid, inexpensive, sensitive, odorless, less harsh, and in vitro methylation-free CBB stain. CGP uses three components: citric acid, CBB G-250, and polyvinylpyrrolidone. CGP detects proteins at 12ng within 45min, and because it is nonalcohol, in principle in vitro methylation would be eliminated. Indeed, MS analysis of CGP-stained bands confirmed a lack of methylation. 2010 Elsevier Inc. All rights reserved.
Tijono, S M; Guo, K; Henare, K; Palmer, B D; Wang, L-C S; Albelda, S M; Ching, L-M
2013-01-01
Background: Species selectivity of DMXAA (5,6-dimethylxanthenone-4-acetic acid, Vadimezan) for murine cells over human cells could explain in part the recent disappointing phase III trials clinical results when preclinical studies were so promising. To identify analogues with greater human clinical potential, we compared the activity of xanthenone-4-acetic acid (XAA) analogues in murine or human cellular models. Methods: Analogues with a methyl group systematically substituted at different positions of the XAA backbone were evaluated for cytokine induction in cultured murine or human leukocytes; and for anti-vascular effects on endothelial cells on matrigel. In vivo antitumour activity and cytokine production by stromal or cancer cells was measured in human A375 and HCT116 xenografts. Results: Mono-methyl XAA analogues with substitutions at the seventh and eighth positions were the most active in stimulating human leukocytes to produce IL-6 and IL-8; and for inhibition of tube formation by ECV304 human endothelial-like cells, while 5- and 6-substituted analogues were the most active in murine cell systems. Conclusion: Xanthenone-4-acetic acid analogues exhibit extreme species selectivity. Analogues that are the most active in human systems are inactive in murine models, highlighting the need for the use of appropriate in vivo animal models in selecting clinical candidates for this class of compounds. PMID:23481185
Effect of Pd surface structure on the activation of methyl acetate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Lijun; Xu, Ye
2011-01-01
The activation of methyl acetate (CH3COOCH3; MA) has been studied using periodic density functional theory calculations to probe the effect of Pd surface structure on the selectivity in MA activation. The adsorption of MA, dehydrogenated derivatives, enolate (CH2COOCH3; ENL) and methylene acetate (CH3COOCH2; MeA), and several dissociation products (including acetate, acetyl, ketene, methoxy, formaldehyde, CO, C, O, and H); and C-H and C-O (mainly in the RCO-OR position) bond dissociation in MA, ENL, and MeA, are calculated on Pd(111) terrace, step, and kink; and on Pd(100) terrace and step. The adsorption of most species is not strongly affected between (111)-more » to (100)-type surfaces, but is clearly enhanced by step/kink compared to the corresponding terrace. Going from terrace to step edge and from (111)- to (100)-type surfaces both stabilize the transition states of C-O bond dissociation steps. Going from terrace to step edge also stabilizes the transition states of C-H bond dissociation steps, but going from (111)- to (100)-type surfaces does not clearly do so. We propose that compared to the Pd(111) terrace, the Pd(100) terrace is more selective for C-O bond dissociation that is desirable for alcohol formation, whereas the Pd step edges are more selective for C-H bond dissociation.« less
Catalytic performance of heterogeneous Rh/C3N4 for the carbonylation of methanol
NASA Astrophysics Data System (ADS)
Budiman, Anatta Wahyu; Choi, Myoung Jae; Nur, Adrian
2018-02-01
The excess of water in homogeneous the carbonylation of methanol system could increase the amount of by-products formed through water-gas shift reaction and could accelerate the rusting of equipment. Many scientists tried to decrease the content of water in the carbonylation of methanol system by using lithium and iodide promoter that results a moderate catalytic activity in the water content at 2wt%. The heterogenized catalyst offers several distinct advantages such as it was enables increased catalyst concentration in the reaction mixture, which is directly proportional to acetic acid production rate, without the addition of an alkali iodide salt promoter. The heterogeneous catalyst also results in reduced by-product formation. This study is aimed to produce a novel catalyst (Rh/C3N4) with a high selectivity of acetic acid in a relatively lower water and halide content. This novel catalyst performs high conversion and selectivity of acetic acid as the result of the strong ionic bonding of melamine and rhodium complex species that was caused by the presence of methyl iodide species. The CO2 in feed gas significantly decreases the catalytic activity of Rh-melamine because of its inert characteristics. The kinetic test was performed as that the first order kinetic equation. The kinetic tests revealed the reaction route of the the carbonylation of methanol in this system was performed trough the methyl acetate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harms, H.; Wittich, R.M.; Fortnagel, P.
The metabolism of 11 substituted dibenzofurans by the dibenzofuran-degrading Sphingomonas sp. strain HH69 was investigated. Strain HH69 utilizes 2-, 3-, and 4-acetoxydibenzofuran as well as 2-, 3-, and 4-hydroxydibenzofuran as sole sources of carbon and energy. The degradation of acetoxydibenzofurans is initiated by hydrolysis of the ester bonds, yielding the corresponding hydroxydibenzofurans and acetate. Strain HH69 grew on 2-methoxydibenzofuran only after it was adapted to the utilization of 5-methoxysalicylic acid, whereas 3- and 4-methoxydibenzofuran as well as 2- and 3-nitrodibenzofuran were only cooxidized. During the breakdown of all eight hydroxy-, methoxy-, and nitrodibenzofurans studied here, the corresponding substituted salicylic acidsmore » accumulated in the culture broth. In the cases of 2- and 3-hydroxydibenzofuran as well as 2- and 3-nitrodibenzofuran, salicylic acid was also formed. Those four dibenzofurans which did not serve as carbon sources for strain HH69 were converted to a nonutilizable salicylic acid derivative. From turnover experiments with the mutant HH69/II, which is deficient in meta-cleavage, 2,2{prime}, 3,4{prime}-tetrahydroxybiphenyl, 2,2{prime},3-trihydroxy-5{prime}-methoxybiphenyl, 2,2{prime},3-trihydroxy-5{prime}-nitrobiphenyl, and 2,2{prime},3-trihydroxy-4{prime}-nitrobiphenyl were isolated as the main products formed from 3-hydroxydibenzofuran, 2-methoxydibenzofuran, and 2- and 3-nitrodibenzo-furan, respectively. These results indicate significant regioselectivity for the dioxygenolytic cleavage of the ether bond of these monosubstituted dibenzofurans, with a preference for the nonsubstituted aromatic nucleus. Substituted trihydroxybiphenyls are converted further by meta-cleavage followed by the removal of the side chain of the resulting product. A stepwise degradation of this side chain was found to be involved in the metabolism of 2-hydroxydibenzofuran. 34 refs., 5 figs., 2 tabs.« less
Oiso, Naoki; Kawada, Akira
2011-01-01
The topical application of a medicament vehicle consisting of a compress, poultice, plaster, and tape containing a nonsteroidal anti-inflammatory drug or methyl salicylate is prevalent in Japan. The method is effective for conveying ingredients to the muscles via the skin for the relief of muscular pain. However, an ingredient in the occlusive vehicle can cause allergic and photoallergic contact dermatitis. We summarize cases reported over the past decade and discuss the current strategy for diminishing the risk of allergic and photoallergic contact dermatitis. PMID:21603165
The effects of CO2 on the negative reactant ions of IMS
NASA Technical Reports Server (NTRS)
Spangler, Glenn E.
1995-01-01
In the presence of CO2, the negative reactant ions of ion mobility spectrometry (IMS) are ion clusters of CO4(-) and CO3(-). Methyl salicylate is ionized by the CO4(-)(H2O(n))(N2(m)) reactant ions, but not by the CO3(-)(H2O(n))(N2(m)) reactant ions. While the CO4(-) ions are formed by direct association, the CO3(-) ions require additional energy to be formed. The additional energy is provided by either excited neutral gas molecules in a metastable state or UV (ultraviolet) radiation.
Robbins, Paul S.; Niedz, Randy; McCollum, Greg; Alessandro, Rocco
2018-01-01
Huanglongbing, also known as citrus greening, is a destructive disease that threatens citrus production worldwide. It is putatively caused by the phloem-limited bacterium Candidatus Liberibacter asiaticus (Las). Currently, the disease is untreatable and efforts focus on intensive insecticide use to control the vector, Asian citrus psyllid (Diaphorina citri). Emerging psyllid resistance to multiple insecticides has generated investigations into the use of exogenously applied signaling compounds to enhance citrus resistance to D. citri and Las. In the present study, we examined whether foliar applications of methyl jasmonate (MJ), a volatile signaling compound associated with the induced systemic resistance pathway, and salicylic acid, a constituent of the systemic acquired resistance pathway, would elicit the emission of defense-related volatiles in citrus foliage, and what effect this might have on the host-plant searching behavior of D. citri. Comparisons were made of volatiles emitted from growing shoots of uninfected and Las-infected ‘Valencia’ sweet orange (Citrus sinensis) trees over two consecutive sampling days. A settling behavioral assay was used to compare psyllid attraction to MJ-treated vs. Tween-treated citrus sprigs. All three main effects, Las infection status, plant signaler application, and sampling day, influenced the proportions of individual volatile compounds emitted in different treatment groups. MJ- and SA-treated trees had higher emission rates than Tween-treated trees. Methyl salicylate (MeSA) and β-caryophyllene were present in higher proportions in the volatiles collected from Las-infected + trees. On the other hand, Las-infected + MJ-treated trees emitted lower proportions of MeSA than did Las-infected + Tween-treated trees. Because MeSA is a key D. citri attractant, this result suggests that MJ application could suppress MeSA emission from Las-infected trees, an approach that could be used to discourage psyllid colonization during shoot growth. MJ application enhanced emission of E-β-ocimene, indole, volatiles attractive to many of the psyllid’s natural enemies, indicating that MJ application could be used in an ‘attract and reward’ conservation biological control strategy. Volatile emissions in SA-treated trees were dominated by MeSA. MJ application elicited aggregation behavior in D. citri. Similar numbers of psyllids settled on MJ-treated versus Tween-treated sprigs, but a significantly greater percentage of the MJ-treated sprigs had aggregations of nine or more psyllids on them. Taken together, the results of this study indicate that exogenous applications of MJ or SA could be used to influence Asian citrus psyllid settling behavior and attract its natural enemies. PMID:29596451
Patt, Joseph M; Robbins, Paul S; Niedz, Randy; McCollum, Greg; Alessandro, Rocco
2018-01-01
Huanglongbing, also known as citrus greening, is a destructive disease that threatens citrus production worldwide. It is putatively caused by the phloem-limited bacterium Candidatus Liberibacter asiaticus (Las). Currently, the disease is untreatable and efforts focus on intensive insecticide use to control the vector, Asian citrus psyllid (Diaphorina citri). Emerging psyllid resistance to multiple insecticides has generated investigations into the use of exogenously applied signaling compounds to enhance citrus resistance to D. citri and Las. In the present study, we examined whether foliar applications of methyl jasmonate (MJ), a volatile signaling compound associated with the induced systemic resistance pathway, and salicylic acid, a constituent of the systemic acquired resistance pathway, would elicit the emission of defense-related volatiles in citrus foliage, and what effect this might have on the host-plant searching behavior of D. citri. Comparisons were made of volatiles emitted from growing shoots of uninfected and Las-infected 'Valencia' sweet orange (Citrus sinensis) trees over two consecutive sampling days. A settling behavioral assay was used to compare psyllid attraction to MJ-treated vs. Tween-treated citrus sprigs. All three main effects, Las infection status, plant signaler application, and sampling day, influenced the proportions of individual volatile compounds emitted in different treatment groups. MJ- and SA-treated trees had higher emission rates than Tween-treated trees. Methyl salicylate (MeSA) and β-caryophyllene were present in higher proportions in the volatiles collected from Las-infected + trees. On the other hand, Las-infected + MJ-treated trees emitted lower proportions of MeSA than did Las-infected + Tween-treated trees. Because MeSA is a key D. citri attractant, this result suggests that MJ application could suppress MeSA emission from Las-infected trees, an approach that could be used to discourage psyllid colonization during shoot growth. MJ application enhanced emission of E-β-ocimene, indole, volatiles attractive to many of the psyllid's natural enemies, indicating that MJ application could be used in an 'attract and reward' conservation biological control strategy. Volatile emissions in SA-treated trees were dominated by MeSA. MJ application elicited aggregation behavior in D. citri. Similar numbers of psyllids settled on MJ-treated versus Tween-treated sprigs, but a significantly greater percentage of the MJ-treated sprigs had aggregations of nine or more psyllids on them. Taken together, the results of this study indicate that exogenous applications of MJ or SA could be used to influence Asian citrus psyllid settling behavior and attract its natural enemies.
Effect of antacid and ascorbic acid on serum salicylate concentration.
Hansten, P D; Hayton, W L
1980-01-01
To determine the effect of antacid or ascorbic acid administration on plateau serum salicylate concentrations, nine healthy subjects were given each of the following treatments by balanced block design: choline salicylate (equivalent to 3.76 or 5.62 Gm/day of aspirin); choline salicylate plus magnesium-aluminum hydroxide (120 ml/day); or choline salicylate plus ascorbic acid (3 Gm/day). In subjects developing a control serum salicylate level above 10 mg/dl, antacid administration produced a decrease in serum salicylate level (mean 19.8 mg/dl vs. 15.8 mg/dl) (P less than 0.01). Ascorbic acid administration was not associated with a significant change in serum salicylate. The reduction in serum salicylate following antacid appears to be due to antacid-induced alkalinization of the urine with resultant increase in renal salicylate clearance. Antacid administration should be considered a potential cause of altered serum salicylate concentration in patients receiving large doses of salicylate.
Liu, Yu-Fan; Hsieh, Chia-Wen; Chang, Yao-Sheng; Wung, Being-Sun
2017-08-01
Acetic acid is a predominant by-product of lignocellulosic biofuel process, which inhibits microbial biocatalysts. Development of bacterial strains that are tolerant to acetic acid is challenging due to poor understanding of the underlying molecular mechanisms. In this study, we generated and characterized two acetic acid-tolerant strains of Zymomonas mobilis using N-methyl-N'-nitro-N-nitrosoguanidine (NTG)-acetate adaptive breeding. Two mutants, ZMA-142 and ZMA-167, were obtained, showing a significant growth rate at a concentration of 244 mM sodium acetate, while the growth of Z. mobilis ATCC 31823 were completely inhibited in presence of 195 mM sodium acetate. Our data showed that acetate-tolerance of ZMA-167 was attributed to a co-transcription of nhaA from ZMO0117, whereas the co-transcription was absent in ATCC 31823 and ZMA-142. Moreover, ZMA-142 and ZMA-167 exhibited a converstion rate (practical ethanol yield to theorical ethanol yield) of 90.16% and 86% at 195 mM acetate-pH 5 stress condition, respectively. We showed that acid adaptation of ZMA-142 and ZMA-167 to 146 mM acetate increased ZMA-142 and ZMA-167 resulted in an increase in ethanol yield by 32.21% and 21.16% under 195 mM acetate-pH 5 stress condition, respectively. The results indicate the acetate-adaptive seed culture of acetate-tolerant strains, ZMA-142 and ZMA-167, could enhance the ethanol production during fermentation.
Zhang, Shengjuan; Xia, Wentong; Yang, Xiaohui; Zhang, Tingting
2016-05-01
To study the inhibition effect of Salvinia natans ( L. ) All. on harmful algae. With Microcystis aeruginosa as the subjects, deionized water, ethanol, acetone, ethyl acetate as solvent, four kinds of crude extracts from Salvinia natans (L.) All. were prepared, and their alga-inhibiting actions were verified, respectively. The crude extracts of Salvinia natans (L.) All. with better inhibition effect were selected. The components of algal inhibiting material through macroporous resin purification were obtained, and determined by gas chromatography-mass spectrometry (GC-MS). The algicidal effect as follows: ethyl acetate extract > acetone crude extract > ethanol crude extract > water crude extract. Meanwhile, the inhibitory substances of Salvinia natans (L.) All. may be: diacetone alcohol, methyl isobutenyl ketone, 5-methyl-2-(1-methylethyl)-1-hexanol, pentadecanal, 14-heptadecenal, cumene, butyl acetate, ascorbyl dipalmitate, 1, 2-benzenedicarboxylic acid, mono (2- ethylhexyl) ester, dibutyl phthalate and phthalic acid, butyl undecane ester. The algal inhibiting effect research of Salvinia natans (L.) All., as well as its separation and identification of allelochemicals supplys theoretical basis and practical evidence not only for algae control, but also exploitation of algal inhibiting agent.
[Anti-platelet actions of salicylates: in vivo, ex vivo and in vitro effects of choline salicylate].
Irino, O; Saitoh, K; Ohkubo, K
1985-07-01
Effects of choline salicylate, sodium salicylate, choline chloride and acetylsalicylic acid on platelet aggregation in vivo, ex vivo and in vitro in mice were studied. These drugs all inhibited adenosine diphosphate (ADP)-induced respiratory depression, which is closely related to platelet aggregation in vivo, with choline salicylate showing the strongest inhibitory effect. Choline salicylate had a tendency to reduce the mortality of animals injected intravenously with endotoxin, but the other drugs had no such effect. The inhibitory effects of these drugs on ADP-induced platelet aggregation ex vivo were in the order of choline salicylate greater than acetylsalicylic acid congruent to sodium salicylate greater than choline chloride congruent to no effect, and plasma concentrations of protein-unbound salicylic acid at 1 hr after oral administration of drugs were in the order of choline salicylate greater than acetylsalicylic acid congruent to sodium salicylate. The in vitro effects of these drugs were in the order of choline salicylate congruent to sodium salicylate greater than choline chloride congruent to acetylsalicylic acid congruent to no effect. Therefore, it was considered that salicylic acid played an important role on the in vivo, ex vivo and in vitro effects of choline salicylate and that choline increased plasma concentrations of salicylic acid and consequently enhanced the in vivo and ex vivo effects of salicylic acid. Furthermore, the ex vivo effects of choline salicylate were found when ADP-induced platelet aggregation was measured with platelet-rich plasma prepared from blood collected with heparin as anti-coagulant, but not when blood was collected with citrate.(ABSTRACT TRUNCATED AT 250 WORDS)
40 CFR 439.15 - New source performance standards (NSPS).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 250.0 102.0 Phenol 0.05 0.02 Benzene 0.05 0.02 Toluene 0.06 0.02 Xylenes 0.03 0.01 n-Hexane 0.03 0.02... monthly average 1 BOD5 267 111 TSS 472 166 COD 1675 856 Ammonia (as N) 84.1 29.4 Acetone 0.5 0.2 4-methyl-2-pentanone 0.5 0.2 Isobutyraldehyde 1.2 0.5 n-Amyl acetate 1.3 0.5 n-Butyl acetate 1.3 0.5 Ethyl...
40 CFR 439.15 - New source performance standards (NSPS).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 250.0 102.0 Phenol 0.05 0.02 Benzene 0.05 0.02 Toluene 0.06 0.02 Xylenes 0.03 0.01 n-Hexane 0.03 0.02... monthly average 1 BOD5 267 111 TSS 472 166 COD 1675 856 Ammonia (as N) 84.1 29.4 Acetone 0.5 0.2 4-methyl-2-pentanone 0.5 0.2 Isobutyraldehyde 1.2 0.5 n-Amyl acetate 1.3 0.5 n-Butyl acetate 1.3 0.5 Ethyl...
40 CFR 439.15 - New source performance standards (NSPS).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 250.0 102.0 Phenol 0.05 0.02 Benzene 0.05 0.02 Toluene 0.06 0.02 Xylenes 0.03 0.01 n-Hexane 0.03 0.02... monthly average 1 BOD5 267 111 TSS 472 166 COD 1675 856 Ammonia (as N) 84.1 29.4 Acetone 0.5 0.2 4-methyl-2-pentanone 0.5 0.2 Isobutyraldehyde 1.2 0.5 n-Amyl acetate 1.3 0.5 n-Butyl acetate 1.3 0.5 Ethyl...
NASA Astrophysics Data System (ADS)
Nguyen, Ha Vinh Lam; Kleiner, Isabelle; Shipman, Steven T.; Mae, Yoshiaki; Hirose, Kazue; Hatanaka, Shota; Kobayashi, Kaori
2014-05-01
New and previous spectroscopic data were recorded for the two-top molecule methyl acetate using five spectrometers in four different labs: a room temperature chirped-pulse Fourier transform microwave (FTMW) spectrometer in the frequency range from 8.7 to 26.5 GHz, two molecular beam FTMW spectrometers (2-40 GHz), a free jet absorption Stark-modulated spectrometer (60-78 GHz), and a room temperature millimeter-wave spectrometer (44-68 GHz). Approximately 800 new lines with J up to 40 and K up to 16 were assigned. In total, 1603 lines were fitted with 34 parameters using an internal rotation Hamiltonian in the Rho Axis Method (RAM) and the program BELGI-Cs-2tops to standard deviations close to the experimental uncertainties. More precise determinations of the top-top interaction and the J, K dependent parameters were carried out.
Preparation of reminiscent aroma mixture of Japanese soy sauce.
Bonkohara, Kaori; Fuji, Maiko; Nakao, Akito; Igura, Noriyuki; Shimoda, Mitsuya
2016-01-01
To prepare an aroma mixture of Japanese soy sauce by fewest components, the aroma concentrate of good sensory attributes was prepared by polyethylene membrane extraction, which could extract only the volatiles with diethyl ether. GC-MS-Olfactometry was done with the aroma concentrate, and 28 odor-active compounds were detected. Application of aroma extract dilution analysis to the separated fraction revealed high flavor dilution factors with respect to acetic acid, 4-hydroxy-2(or5)-ethyl-5(or2)-methyl-3(2H)-furanone (HEMF), 3-methyl-1-butanol (isoamyl alcohol), and 3-(methylsulfanyl)propanal (methional). A model aroma mixture containing above four odorants showed a good similarity with the aroma of the soy sauce itself. Consequently, the reminiscent aroma mixture of soy sauce was prepared in water. The ratio of acetic acid, HEMF, isoamyl alcohol, and methional was 2500:300:100:1.
NASA Astrophysics Data System (ADS)
Aminah, N. S.; Yulvia, A.; Tanjung, M.
2017-09-01
Two phenolic compounds namely: methyl-3,4-dihydroxybenzoate (1) and 9,10-dihydrophenanthrene-2,4,7-triol (2) had been isolated for the first time from the tuber of Dioscorea alata L. The extraction of two compounds were done by maceration method using methanol as solvent, followed by partition with n-hexane and ethyl acetate. The ethyl acetate extract was separated and purified using various chromatographic techniques yielded pure compounds. The structure of isolated compounds were determined based on spectroscopic data, including UV-Vis, 1D and 2D NMR spectra. Compounds (1), (2) and ascorbic acid as a comparator were evaluated for their antioxidant properties against DPPH, showing their IC50 were 9,41 ± 0,08; 23,52 ± 0,05; and 10,95 ± 0,08 ppm, respectively.
Biosynthetic studies on the botcinolide skeleton: new hydroxylated lactones from Botrytis cinerea.
Reino, José L; Durán-Patrón, Rosa M; Daoubi, Mourad; Collado, Isidro G; Hernández-Galán, Rosario
2006-01-20
[reaction: see text] The biosynthetic origin of the botcinolide skeleton was investigated by means of feeding 13C- and 2H-labeled precursors to Botrytis cinerea. Three new compounds, two homobotcinolide derivatives, 3-O-acetylhomobotcinolide (5) and 8-methylhomobotcinolide (6), and a new 11-membered lactone (7), were isolated. Their structures were elucidated on the basis of spectroscopic data, including one-bond and long-range 1H-13C correlations. The relative stereochemistries were determined by combined analyses of NOE data and 1H-1H coupling constants. According to the results of feeding experiments with 13C- and 2H-labeled acetate and l-S-methylmethionine, 5 is an acetate-derived polyketide whose methyl groups originate from l-S-methylmethionine. This is a rare example of the incorporation of a methyl from methionine into a supposed C3 starter unit of the polyketide synthesis.
Convenient synthesis of 6-nor-9,10-dihydrolysergic acid methyl ester.
Crider, A M; Grubb, R; Bachmann, K A; Rawat, A K
1981-12-01
6-Nor-9,10-dihydrolysergic acid methyl ester (IV) was prepared by demethylation of 9,10-dihydrolysergic acid methyl ester (II) with 2,2,2-trichloroethyl chloroformate, followed by reduction of the intermediate carbamate (III) with zinc in acetic acid. The 6-ethyl-V and 6-n-propyl-VI derivatives were prepared by alkylation of IV with the appropriate halide. All of the ergoline derivatives were evaluated for stereotyped behavior in rats, with 6-nor-6-ethyl-9,10-dihydrolysergic acid methyl ester (V) being active but much less potent than apomorphine. Compound VI was evaluated for its effect on blood pressure; at a dose of 30 mg/kg ip, it significantly lowered, diastolic pressure in normotensive rats.
Sensitive radioimmunoassay of total thyroxine (T4) in horses using a simple extraction method.
Tangyuenyong, Siriwan; Nambo, Yasuo; Nagaoka, Kentaro; Tanaka, Tomomi; Watanabe, Gen
2017-07-28
Most thyroid hormone determinations in animals are based on immunoassays adapted from those used to test human samples, which may not reflect the actual values of thyroid hormone in horses because of the presence of binding proteins. The aims of the present study were i) to establish a novel radioimmunoassay (RIA) using a more simple and convenient method to separate binding proteins for the measurement of total thyroxine (T4) in horses and ii) to validate the assay by comparing total T4 concentrations in yearling horses raised in different climates. Blood samples were collected from trained yearlings in Hokkaido (temperate climate) and Miyazaki (subtropical climate) in Japan and from adult horses in estrus and diestrus. T4 was extracted from both serum and plasma using modified acid ethanol cryo-precipitation and sodium acetate ethanol methods. Circulating total T4 concentrations were determined by RIA. T4 concentration by sodium acetate ethanol was appropriately detectable rather than sodium salicylate method and was the same as for acid ethanol method. Furthermore, this sodium acetate ethanol method required fewer extraction steps than the other methods. Circulating T4 concentrations in yearlings were 225.98 ± 20.89 ng/ml, which was higher than the previous reference values. With respect to climate, T4 levels in Hokkaido yearlings tended to be higher than those in Miyazaki yearlings throughout the study period. These results indicated that this RIA protocol using a modified sodium acetate ethanol separation technique might be an appropriate tool for specific measurement of total T4 in horses.
Dey, Sanjukta; Wenig, Marion; Langen, Gregor; Sharma, Sapna; Kugler, Karl G.; Knappe, Claudia; Hause, Bettina; Bichlmeier, Marlies; Babaeizad, Valiollah; Imani, Jafargholi; Janzik, Ingar; Stempfl, Thomas; Hückelhoven, Ralph; Kogel, Karl-Heinz; Mayer, Klaus F.X.
2014-01-01
Leaf-to-leaf systemic immune signaling known as systemic acquired resistance is poorly understood in monocotyledonous plants. Here, we characterize systemic immunity in barley (Hordeum vulgare) triggered after primary leaf infection with either Pseudomonas syringae pathovar japonica (Psj) or Xanthomonas translucens pathovar cerealis (Xtc). Both pathogens induced resistance in systemic, uninfected leaves against a subsequent challenge infection with Xtc. In contrast to systemic acquired resistance in Arabidopsis (Arabidopsis thaliana), systemic immunity in barley was not associated with NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 or the local or systemic accumulation of salicylic acid. Instead, we documented a moderate local but not systemic induction of abscisic acid after infection of leaves with Psj. In contrast to salicylic acid or its functional analog benzothiadiazole, local applications of the jasmonic acid methyl ester or abscisic acid triggered systemic immunity to Xtc. RNA sequencing analysis of local and systemic transcript accumulation revealed unique gene expression changes in response to both Psj and Xtc and a clear separation of local from systemic responses. The systemic response appeared relatively modest, and quantitative reverse transcription-polymerase chain reaction associated systemic immunity with the local and systemic induction of two WRKY and two ETHYLENE RESPONSIVE FACTOR (ERF)-like transcription factors. Systemic immunity against Xtc was further associated with transcriptional changes after a secondary/systemic Xtc challenge infection; these changes were dependent on the primary treatment. Taken together, bacteria-induced systemic immunity in barley may be mediated in part by WRKY and ERF-like transcription factors, possibly facilitating transcriptional reprogramming to potentiate immunity. PMID:25332505
Farkas, Edit; Nagel, Johannes; Waldron, Bradley P; Parker, David; Tóth, Imre; Brücher, Ernő; Rösch, Frank; Baranyai, Zsolt
2017-08-01
The development of 68 Ge/ 68 Ga generators has made the positron-emitting 68 Ga isotope widely accessible and raised interest in new chelate complexes of Ga 3+ . The hexadentate 1,4-di(acetate)-6-methyl[amino(methyl)acetate]perhydro-1,4-diazepane (DATA m ) ligand and its bifunctional analogue, 1,4-di(acetate)-6-pentanoic acid[amino(methyl)acetate]perhydro-1,4-diazepane (DATA 5m ), rapidly form complexes with 68 Ga in high radiochemical yield. The stability constants of DATA m and DATA 5m complexes formed with Ga 3+ , Zn 2+ , Cu 2+ , Mn 2+ and Ca 2+ have been determined by using pH potentiometry, spectrophotometry (Cu 2+ ) and 1 H and 71 Ga NMR spectroscopy (Ga 3+ ). The stability constants of Ga(DATA m ) and Ga(DATA 5m ) complexes are slightly higher than those of Ga(AAZTA). The species distribution calculations indicated the predominance of Ga(L)OH mixed-hydroxo complexes at physiological pH. The 1 H and 71 Ga NMR spectroscopy studies provided information about the coordinated functional groups of ligands and on the kinetics of exchange between the Ga(L) and Ga(L)OH complexes. The transmetalation reactions between the Ga(L) complexes and Cu 2+ citrate (6
Koeduka, Takao; Baiga, Thomas J.; Noel, Joseph P.; Pichersky, Eran
2009-01-01
The phenylpropene t-anethole imparts the characteristic sweet aroma of anise (Pimpinella anisum, family Apiaceae) seeds and leaves. Here we report that the aerial parts of the anise plant accumulate t-anethole as the plant matures, with the highest levels of t-anethole found in fruits. Although the anise plant is covered with trichomes, t-anethole accumulates inside the leaves and not in the trichomes or the epidermal cell layer. We have obtained anise cDNA encoding t-anol/isoeugenol synthase 1 (AIS1), an NADPH-dependent enzyme that can biosynthesize t-anol and isoeugenol (the latter not found in anise) from coumaryl acetate and coniferyl acetate, respectively. In addition, we have obtained a cDNA encoding S-[methyl-14C]adenosyl-l-methionine:t-anol/isoeugenol O-methyltransferase 1 (AIMT1), an enzyme that can convert t-anol or isoeugenol to t-anethole or methylisoeugenol, respectively, via methylation of the para-OH group. The genes encoding AIS1 and AIMT1 were expressed throughout the plant and their transcript levels were highest in developing fruits. The AIS1 protein is 59% identical to petunia (Petunia hybrida) isoeugenol synthase 1 and displays apparent Km values of 145 μm for coumaryl acetate and 230 μm for coniferyl acetate. AIMT1 prefers isoeugenol to t-anol by a factor of 2, with Km values of 19.3 μm for isoeugenol and 54.5 μm for S-[methyl-14C]adenosyl-l-methionine. The AIMT1 protein sequence is approximately 40% identical to basil (Ocimum basilicum) and Clarkia breweri phenylpropene O-methyltransferases, but unlike these enzymes, which do not show large discrimination between substrates with isomeric propenyl side chains, AIMT1 shows a 10-fold preference for t-anol over chavicol and for isoeugenol over eugenol. PMID:18987218
Koeduka, Takao; Baiga, Thomas J; Noel, Joseph P; Pichersky, Eran
2009-01-01
The phenylpropene t-anethole imparts the characteristic sweet aroma of anise (Pimpinella anisum, family Apiaceae) seeds and leaves. Here we report that the aerial parts of the anise plant accumulate t-anethole as the plant matures, with the highest levels of t-anethole found in fruits. Although the anise plant is covered with trichomes, t-anethole accumulates inside the leaves and not in the trichomes or the epidermal cell layer. We have obtained anise cDNA encoding t-anol/isoeugenol synthase 1 (AIS1), an NADPH-dependent enzyme that can biosynthesize t-anol and isoeugenol (the latter not found in anise) from coumaryl acetate and coniferyl acetate, respectively. In addition, we have obtained a cDNA encoding S-[methyl-14C]adenosyl-l-methionine:t-anol/isoeugenol O-methyltransferase 1 (AIMT1), an enzyme that can convert t-anol or isoeugenol to t-anethole or methylisoeugenol, respectively, via methylation of the para-OH group. The genes encoding AIS1 and AIMT1 were expressed throughout the plant and their transcript levels were highest in developing fruits. The AIS1 protein is 59% identical to petunia (Petunia hybrida) isoeugenol synthase 1 and displays apparent Km values of 145 microm for coumaryl acetate and 230 microm for coniferyl acetate. AIMT1 prefers isoeugenol to t-anol by a factor of 2, with Km values of 19.3 microm for isoeugenol and 54.5 microm for S-[methyl-14C]adenosyl-l-methionine. The AIMT1 protein sequence is approximately 40% identical to basil (Ocimum basilicum) and Clarkia breweri phenylpropene O-methyltransferases, but unlike these enzymes, which do not show large discrimination between substrates with isomeric propenyl side chains, AIMT1 shows a 10-fold preference for t-anol over chavicol and for isoeugenol over eugenol.
Cheel, José; Urajová, Petra; Hájek, Jan; Hrouzek, Pavel; Kuzma, Marek; Bouju, Elodie; Faure, Karine; Kopecký, Jiří
2017-02-01
Puwainaphycins are a recently described group of β-amino fatty acid cyclic lipopeptides of cyanobacterial origin that possess interesting biological activities. Therefore, the development of an efficient method for their isolation from natural sources is necessary. Following the consecutive adsorption of the crude extract on Amberlite XAD-16 and XAD-7 resins, countercurrent chromatography (CCC) was applied to separate seven puwainaphycin variants from a soil cyanobacterium (Cylindrospermum alatosporum CCALA 988). The resin-enriched extract was first fractionated by CCC into fractions I and II with use of the n-hexane-ethyl acetate-ethanol-water (1:5:1:5, v/v/v/v) system at a flow rate of 2 mL min -1 and a rotational speed of 1400 rpm. The CCC separation of fraction I, with use of the ethyl acetate-ethanol-water (5:1:5, v/v/v) system, afforded compounds 1 and 2. The CCC separation of fraction II, with use of the n-hexane-ethyl acetate-ethanol-water (1:5:1:5, v/v/v/v) system, afforded compounds 3-7. In both cases, the lower phases were used as mobile phases at a flow rate of 1 mL min -1 with a rotational speed of 1400 rpm and a temperature of 28 °C. The CCC target fractions obtained were repurified by semipreparative high-performance liquid chromatography (HPLC), leading to compounds 1-7 with purities of 95 %, 95 %, 99 %, 99 %, 95 %, 99 %, and 90 % respectively, as determined by HPLC-electrospray ionization high-resolution mass spectrometry (ESI-HRMS). The chemical identity of the isolated puwainaphycins (compounds 1-7) was confirmed by ESI-HRMS and NMR analyses. Three new puwainaphycin variants (compounds 1, 2, and 5) are reported for the first time. This study provides a new approach for the isolation of puwainaphycins from cyanobacterial biomass. Graphical Abstract Separation of cyclic lipopeptide puwainaphycins from cyanobacteria by countercurrent chromatography combined with polymeric resins and HPLC. Compounds 1 (12-hydroxy-4-methyl-Ahtea-Puw-F), 2 (11-chloro-4-methyl-Ahdoa-Puw-F), 3 (4-methyl-Ahdoa-Puw-F), 4 (4-methyl-Ahdoa-Puw-G), 5 (12-chloro-4-methyl-Ahtea-Puw-F), 6 (4-methyl-Ahtea-Puw-F) and 7 (4-methyl-Ahtea-Puw-G). Ahtea: 3-amino-2-hydroxy tetradecanoic acid. Ahdoa: 3-amino-2-hydroxy dodecanoic acid.
Natural abundances of carbon isotopes in acetate from a coastal marine sediment
NASA Technical Reports Server (NTRS)
Blair, N. E.; Martens, C. S.; Des Marais, D. J.
1987-01-01
Measurements of the natural abundances of carbon isotopes were made in acetate samples isolated from the anoxic marine sediment of Cape Lookout Bight, North Carolina. The typical value of the total acetate carbon isotope ratio (delta 13C) was -16.1 +/- 0.2 per mil. The methyl and carboxyl groups were determined to be -26.4 +/- 0.3 and -6.0 +/- 0.3 per mil, respectively, for one sample. The isotopic composition of the acetate is thought to have resulted from isotopic discriminations that occurred during the cycling of that molecule. Measurements of this type, which have not been made previously in the natural environment, may provide information about the dominant microbial pathways in anoxic sediments as well as the processes that influence the carbon isotopic composition of biogenic methane from many sources.
Westfall, Corey S.; Sherp, Ashley M.; Zubieta, Chloe; Alvarez, Sophie; Schraft, Evelyn; Marcellin, Romain; Ramirez, Loren; Jez, Joseph M.
2016-01-01
In Arabidopsis thaliana, the acyl acid amido synthetase Gretchen Hagen 3.5 (AtGH3.5) conjugates both indole-3-acetic acid (IAA) and salicylic acid (SA) to modulate auxin and pathogen response pathways. To understand the molecular basis for the activity of AtGH3.5, we determined the X-ray crystal structure of the enzyme in complex with IAA and AMP. Biochemical analysis demonstrates that the substrate preference of AtGH3.5 is wider than originally described and includes the natural auxin phenylacetic acid (PAA) and the potential SA precursor benzoic acid (BA). Residues that determine IAA versus BA substrate preference were identified. The dual functionality of AtGH3.5 is unique to this enzyme although multiple IAA-conjugating GH3 proteins share nearly identical acyl acid binding sites. In planta analysis of IAA, PAA, SA, and BA and their respective aspartyl conjugates were determined in wild-type and overexpressing lines of A. thaliana. This study suggests that AtGH3.5 conjugates auxins (i.e., IAA and PAA) and benzoates (i.e., SA and BA) to mediate crosstalk between different metabolic pathways, broadening the potential roles for GH3 acyl acid amido synthetases in plants. PMID:27849615
Engelhart, Curtis A.; Aldrich, Courtney C.
2013-01-01
MbtA catalyzes the first committed step of mycobactin biosynthesis in Mycobacterium tuberculosis (Mtb) and is responsible for the incorporation of salicylic acid into the mycobactin siderophores. 5′-O-[N-(Salicyl)sulfamoyl]adenosine (Sal-AMS) is an extremely potent nucleoside inhibitor of MbtA that possesses excellent activity against whole-cell Mtb, but suffers from poor bioavailability. In an effort to improve the bioavailability, we have designed four conformationally constrained analogues of Sal-AMS that remove two rotatable bonds and the ionized sulfamate group based on computational and structural studies. Herein we describe the synthesis, biochemical, and microbiological evaluation of chromone-, quinolone-, and benzoxazinone-3-sulfonamide derivatives of Sal-AMS. We developed new chemistry to assemble these three heterocycles from common β-ketosulfonamide intermediates. The synthesis of the chromone- and quinolone-3-sulfonamide intermediates features formylation of a β-ketosulfonamide employing dimethylformamide dimethyl acetal to afford an enaminone that can react intramolecularly with a phenol or intermolecularly with a primary amine via addition-elimination reaction(s). The benzoxazinone-3-sulfonamide was prepared by nitrosation of a β-ketosulfonamide followed by intramolecular nucleophilic aromatic substitution. Mitsunobu coupling of these bicyclic sulfonamides with a protected adenosine derivative followed by global deprotection provides a concise synthesis of the respective inhibitors. PMID:23805993
Reddy, Palavai Sripal; Hotha, Kishore Kumar; Sait, Shakil
2013-01-01
A complex, sensitive, and precise high-performance liquid chromatographic method for the profiling of impurities of esomeprazole in low-dose aspirin and esomeprazole capsules has been developed, validated, and used for the determination of impurities in pharmaceutical products. Esomeprazole and its related impurities' development in the presence of aspirin was traditionally difficult due to aspirin's sensitivity to basic conditions and esomeprazole's sensitivity to acidic conditions. When aspirin is under basic, humid, and extreme temperature conditions, it produces salicylic acid and acetic acid moieties. These two byproducts create an acidic environment for the esomeprazole. Due to the volatility and migration phenomenon of the produced acetic acid and salicylic acid from aspirin in the capsule dosage form, esomeprazole's purity, stability, and quantification are affected. The objective of the present research work was to develop a gradient reversed-phase liquid chromatographic method to separate all the degradation products and process-related impurities from the main peak. The impurities were well-separated on a RP8 column (150 mm × 4.6mm, X-terra, RP8, 3.5μm) by the gradient program using a glycine buffer (0.08 M, pH adjusted to 9.0 with 50% NaOH), acetonitrile, and methanol at a flow rate of 1.0 mL min(-1) with detection wavelength at 305 nm and column temperature at 30°C. The developed method was found to be specific, precise, linear, accurate, rugged, and robust. LOQ values for all of the known impurities were below reporting thresholds. The drug was subjected to stress conditions of hydrolysis, oxidation, photolysis, and thermal degradation in the presence of aspirin. The developed RP-HPLC method was validated according to the present ICH guidelines for specificity, linearity, accuracy, precision, limit of detection, limit of quantification, ruggedness, and robustness.
2008-11-01
was purified from natural racemic gossypol. Briefly, racemic gossypol was reacted with L - phenylalanine methyl ester hydrochloride overnight at room...solution of the resolved (F)-gossypol- phenylalanine methyl ester Schiff’s base was hydrolyzed by a mixture of tetrahydro- furan, glacial acetic acid...suppression of NF-kappaB-regulated antiapoptotic and metastatic gene products. Mol Pharmacol 2007; 71: 209-19. [136]Wang L , Du F, Wang X. TNF- alpha induces
Conformation and Complexation of Tannins: NMR Spectra and Molecular Search Modeling of Flavan-3-ols
Richard W. Hemingway; Fred L. Tohiason; G. Wayne McGraw; Jan P. Steynberg
1996-01-01
Studies offlavan-3-01sin their biologically significant phenolic form show that both H-6 and C-6 resonances are downfield from H-8 and C-8. Therefore, assignments for the H atoms of the A-ring are inverse to those commonly reported. By contrast, in the methyl ether and methyl ether acetate derivatives, both H-8 and C-8 are downfield from H-6 and C-6 and assignments...
Monas, Andrea; Užarević, Krunoslav; Halasz, Ivan; Kulcsár, Marina Juribašić; Ćurić, Manda
2016-10-27
Room-temperature accelerated aging in the solid state has been applied for atom- and energy-efficient activation of either one or two C-H bonds of azobenzene and methyl orange by palladium(ii) acetate. Organopalladium complexes are prepared in quantitative reactions without potentially harmful side products. Dicyclopalladated methyl orange is water-soluble and is a selective chromogenic biothiol sensor at physiologically-relevant micromolar concentrations in buffered aqueous media.
1993-04-01
VOCs (acetone [ACET], trichlorofluoromethane [CCL3F], methyl ethyl ketone [MEK]) sporadically detected at very low concentrations (< 1 parts per billion...associated with the site includes red pine ( Pinus resinosa), hickories, cedar (Thuja occidentalis), and American elm (Ulmus americana). Grasses and weedy...cd)pyrene ICDPYR iron FE lead PB magnesium MG *manganese MN mercury HG methylene chloride CH12CL2 methyl ethyl ketone or 2-butanone MIEK
Tan, Ting; Yang, Xueliang; Krauter, Caroline M; Ju, Yiguang; Carter, Emily A
2015-06-18
The kinetics of hydrogen abstraction by five radicals (H, O((3)P), OH, CH3, and HO2) from methyl acetate (MA) is investigated theoretically in order to gain further understanding of certain aspects of the combustion chemistry of biodiesels, such as the effect of the ester moiety. We employ ab initio quantum chemistry methods, coupled cluster singles and doubles with perturbative triples correction (CCSD(T)) and multireference averaged coupled pair functional theory (MRACPF2), to predict chemically accurate reaction energetics. Overall, MRACPF2 predicts slightly higher barrier heights than CCSD(T) for MA + H/CH3/O/OH, but slightly lower barrier heights for hydrogen abstraction by HO2. Based on the obtained reaction energies, we also report high-pressure-limit rate constants using transition state theory (TST) in conjunction with the separable-hindered-rotor approximation, the variable reaction coordinate TST, and the multi-structure all-structure approach. The fitted modified Arrhenius expressions are provided over a temperature range of 250 to 2000 K. The predictions are in good agreement with available experimental results. Abstractions from both of the methyl groups in MA are expected to contribute to consumption of the fuel as they exhibit similar rate coefficients. The reactions involving the OH radical are predicted to have the highest rates among the five abstracting radicals, while those initiated by HO2 are expected to be the lowest.
Huang, R; Li, G Q; Zhang, J; Yang, L; Che, H J; Jiang, D H; Huang, H C
2011-07-01
A study was conducted to identify volatile organic compounds or volatiles produced by Candida intermedia strain C410 using gas chromatography-mass spectrometry, and to determine efficacy of the volatiles of C. intermedia in suppression of conidial germination and mycelial growth of Botrytis cinerea and control of Botrytis fruit rot of strawberry. Results showed that, among 49 volatiles (esters, alcohols, alkenes, alkanes, alkynes, organic acids, ketones, and aldehydes) identified from C. intermedia cultures on yeast extract peptone dextrose agar, two compounds, 1,3,5,7-cyclooctatetraene and 3-methyl-1-butanol, were the most abundant. Synthetic chemicals of 1,3,5,7-cyclooctatetraene; 3-methyl-1-butanol; 2-nonanone; pentanoic acid, 4-methyl-, ethyl ester; 3-methyl-1-butanol, acetate; acetic acid, pentyl ester; and hexanoic acid, ethyl ester were highly inhibitory to conidial germination and mycelial growth of B. cinerea. Inhibition of conidial germination and mycelial growth of B. cinerea by volatiles of C. intermedia was also observed. Meanwhile, results showed that incidence and severity of Botrytis fruit rot of strawberry was significantly (P < 0.01) reduced by exposure of the strawberry fruit to the volatiles from C. intermedia cultures or C. intermedia-infested strawberry fruit. These results suggest that the volatiles of C. intermedia C410 are promising biofumigants for control of Botrytis fruit rot of strawberry.
Evaluation of an ex vivo murine local lymph node assay: multiple endpoint comparison.
Piccotti, Joseph R; Knight, Stephanie A; Gillhouse, Kimberly; Lagattuta, Mark S; Bleavins, Michael R
2006-01-01
The local lymph node assay (LLNA) is used to assess the skin sensitization potential of chemicals. In the standard assay, mice are treated topically on the dorsum of both ears with test substance for 3 days. Following 2 days of rest, the initiation of the hypersensitivity response is evaluated by injecting (3)H-thymidine into a tail vein, and then measuring the levels of radioisotope incorporated into the DNA of lymph node cells draining the ears. In the current study, BALB/c mice were treated with the contact sensitizers hexylcinnamic aldehyde (HCA) and oxazolone, and the nonsensitizer methyl salicylate. The proliferative response of lymph node cells was evaluated in an ex vivo assay, in which isolated cells were cultured in vitro with (3)H-thymidine. Treatment of mice with HCA at 5-50% resulted in concentration-related increases in (3)H-thymidine incorporation, with stimulation indices ranging from 3 to 14. Low animal-to-animal variability was seen in three replicate assays testing HCA at 25%. As anticipated, the proliferative response induced by the potent sensitizer oxazolone at 0.25% was greater than HCA at all concentrations tested. Stimulation indices of 1.5 and 3 were seen in two independent experiments with methyl salicylate. These equivocal findings were likely due to the irritancy properties of the compound. Importantly, measuring ex vivo (3)H-thymidine incorporation was more sensitive than evaluating lymph node weight and cellularity, and in vitro bromodeoxyuridine incorporation. Furthermore, the results of the ex vivo LLNA were comparable to the standard assay. This study provided evidence that supports the use of an ex vivo LLNA for hazard assessment of contact hypersensitivity. Copyright 2006 John Wiley & Sons, Ltd.
Liu, Po-Pu; von Dahl, Caroline C.; Klessig, Daniel F.
2011-01-01
Systemic acquired resistance (SAR) is a state of heightened defense to a broad spectrum of pathogens that is activated throughout a plant following local infection. Development of SAR requires the translocation of one or more mobile signals from the site of infection through the vascular system to distal (systemic) tissues. The first such signal identified was methyl salicylate (MeSA) in tobacco (Nicotiana tabacum). Subsequent studies demonstrated that MeSA also serves as a SAR signal in Arabidopsis (Arabidopsis thaliana) and potato (Solanum tuberosum). By contrast, another study suggested that MeSA is not required for SAR in Arabidopsis and raised questions regarding its signaling role in tobacco. Differences in experimental design, including the developmental age of the plants, the light intensity, and/or the strain of bacterial pathogen, were proposed to explain these conflicting results. Here, we demonstrate that the length of light exposure that plants receive after the primary infection determines the extent to which MeSA is required for SAR signaling. When the primary infection occurred late in the day and as a result infected plants received very little light exposure before entering the night/dark period, MeSA and its metabolizing enzymes were essential for SAR development. In contrast, when infection was done in the morning followed by 3.5 h or more of exposure to light, SAR developed in the absence of MeSA. However, MeSA was generally required for optimal SAR development. In addition to resolving the conflicting results concerning MeSA and SAR, this study underscores the importance of environmental factors on the plant’s response to infection. PMID:22021417
Forbes, Thomas P.; Staymates, Matthew
2017-01-01
Venturi-assisted ENTrainment and Ionization (VENTI) was developed, demonstrating efficient entrainment, collection, and transport of remotely sampled vapors, aerosols, and dust particulate for real-time mass spectrometry (MS) detection. Integrating the Venturi and Coandă effects at multiple locations generated flow and analyte transport from non-proximate locations and more importantly enhanced the aerodynamic reach at the point of collection. Transport through remote sampling probes up to 2.5 m in length was achieved with residence times on the order of 10-2 s to 10-1 s and Reynolds numbers on the order of 103 to 104. The Venturi-assisted entrainment successfully enhanced vapor collection and detection by greater than an order of magnitude at 20 cm stand-off (limit of simple suction). This enhancement is imperative, as simple suction restricts sampling to the immediate vicinity, requiring close proximity to the vapor source. In addition, the overall aerodynamic reach distance was increased by approximately 3-fold over simple suction under the investigated conditions. Enhanced aerodynamic reach was corroborated and observed with laser-light sheet flow visualization and schlieren imaging. Coupled with atmospheric pressure chemical ionization (APCI), the detection of a range of volatile chemical vapors; explosive vapors; explosive, narcotic, and mustard gas surrogate (methyl salicylate) aerosols; and explosive dust particulate was demonstrated. Continuous real-time Venturi-assisted monitoring of a large room (approximately 90 m2 area, 570 m3 volume) was demonstrated for a 60-minute period without the remote sampling probe, exhibiting detection of chemical vapors and methyl salicylate at approximately 3 m stand-off distances within 2 minutes of exposure. PMID:28107830
Antiseptic mouth rinses: an update on comparative effectiveness, risks and recommendations.
Osso, Diane; Kanani, Nehal
2013-02-01
Antiseptic mouth rinses are widely recommended and marketed to improve oral health. This article summarizes current studies on the comparative effectiveness of selected antiseptic mouth rinses in controlling plaque and gingivitis, as well as risks associated with daily exposure, including salivary flow rate, oral cancer and wear of composite restorations. Electronic database searches were conducted using Google Scholar and PubMed to identify articles comparing the effectiveness of 4 commercially marketed antiseptic mouth rinses differing in active ingredients (0.12% chlorhexidine gluconate, essential oils (menthol, thymol and eucalyptol) and methyl salicylate, 0.7% cetylpyridinium chloride and 20% aloe vera gel) for controlling plaque and gingivitis. Criteria for inclusion included controlled clinical trials and systematic reviews appearing in English language publications evaluating the comparative effectiveness of the mouth rinses in controlling plaque and gingivitis, as well as risks associated with daily usage. The majority of studies have shown mouth rinses containing chlorhexidine gluconate or essential oils and methyl salicylate provide clinically significant anti-gingivitis and anti-plaque benefits. Cetylpyridinium chloride has been found to provide only limited clinical benefits compared to inactive control mouth rinse. Inadequate evidence is available to evaluate the clinical effectiveness of aloe vera gel. Chlorhexidine, essential oils and cetylpyridinium have been found to be safe. However, limited data are available on the effects of the mouth rinse on wear patterns of dental restorations. Studies reviewed reported no significant difference in salivary flow rate related to alcohol based mouth rinse. Research supports the effectiveness of antiseptic mouth rinses in reducing plaque and gingivitis as an adjunct to home care. Insufficient evidence is available to support the claim that oral antiseptics can reduce the risk of developing periodontitis or the rate of progression of periodontitis.
Singh, Varinder; Kaul, Sunil C.; Wadhwa, Renu; Pati, Pratap Kumar
2015-01-01
Quantitative real-time PCR (qRT-PCR) is now globally used for accurate analysis of transcripts levels in plants. For reliable quantification of transcripts, identification of the best reference genes is a prerequisite in qRT-PCR analysis. Recently, Withania somnifera has attracted lot of attention due to its immense therapeutic potential. At present, biotechnological intervention for the improvement of this plant is being seriously pursued. In this background, it is important to have comprehensive studies on finding suitable reference genes for this high valued medicinal plant. In the present study, 11 candidate genes were evaluated for their expression stability under biotic (fungal disease), abiotic (wounding, salt, drought, heat and cold) stresses, in different plant tissues and in response to various plant growth regulators (methyl jasmonate, salicylic acid, abscisic acid). The data as analyzed by various software packages (geNorm, NormFinder, Bestkeeper and ΔCt method) suggested that cyclophilin (CYP) is a most stable gene under wounding, heat, methyl jasmonate, different tissues and all stress conditions. T-SAND was found to be a best reference gene for salt and salicylic acid (SA) treated samples, while 26S ribosomal RNA (26S), ubiquitin (UBQ) and beta-tubulin (TUB) were the most stably expressed genes under drought, biotic and cold treatment respectively. For abscisic acid (ABA) treated samples 18S-rRNA was found to stably expressed gene. Finally, the relative expression level of the three genes involved in the withanolide biosynthetic pathway was detected to validate the selection of reliable reference genes. The present work will significantly contribute to gene analysis studies in W. somnifera and facilitate in improving the quality of gene expression data in this plant as well as and other related plant species. PMID:25769035
Forbes, Thomas P; Staymates, Matthew
2017-03-08
Venturi-assisted ENTrainment and Ionization (VENTI) was developed, demonstrating efficient entrainment, collection, and transport of remotely sampled vapors, aerosols, and dust particulate for real-time mass spectrometry (MS) detection. Integrating the Venturi and Coandă effects at multiple locations generated flow and analyte transport from non-proximate locations and more importantly enhanced the aerodynamic reach at the point of collection. Transport through remote sampling probes up to 2.5 m in length was achieved with residence times on the order of 10 -2 s to 10 -1 s and Reynolds numbers on the order of 10 3 to 10 4 . The Venturi-assisted entrainment successfully enhanced vapor collection and detection by greater than an order of magnitude at 20 cm stand-off (limit of simple suction). This enhancement is imperative, as simple suction restricts sampling to the immediate vicinity, requiring close proximity to the vapor source. In addition, the overall aerodynamic reach distance was increased by approximately 3-fold over simple suction under the investigated conditions. Enhanced aerodynamic reach was corroborated and observed with laser-light sheet flow visualization and schlieren imaging. Coupled with atmospheric pressure chemical ionization (APCI), the detection of a range of volatile chemical vapors; explosive vapors; explosive, narcotic, and mustard gas surrogate (methyl salicylate) aerosols; and explosive dust particulate was demonstrated. Continuous real-time Venturi-assisted monitoring of a large room (approximately 90 m 2 area, 570 m 3 volume) was demonstrated for a 60-min period without the remote sampling probe, exhibiting detection of chemical vapors and methyl salicylate at approximately 3 m stand-off distances within 2 min of exposure. Published by Elsevier B.V.
Mika, Angela; Boenisch, Marike Johanne; Hopff, David; Lüthje, Sabine
2010-01-01
Plant peroxidases are involved in numerous cellular processes in plant development and stress responses. Four plasma membrane-bound peroxidases have been identified and characterized in maize (Zea mays L.) roots. In the present study, maize seedlings were treated with different stresses and signal compounds, and a functional analysis of these membrane-bound class III peroxidases (pmPOX1, pmPOX2a, pmPOX2b, and pmPOX3) was carried out. Total guaiacol peroxidase activities from soluble and microsomal fractions of maize roots were compared and showed weak changes. By contrast, total plasma membrane and washed plasma membrane peroxidase activities, representing peripheral and integral membrane proteins, revealed strong changes after all of the stresses applied. A proteomic approach using 2D-PAGE analysis showed that pmPOX3 was the most abundant class III peroxidase at plasma membranes of control plants, followed by pmPOX2a >pmPOX2b >pmPOX1. The molecular mass (63 kDa) and the isoelectric point (9.5) of the pmPOX2a monomer were identified for the first time. The protein levels of all four enzymes changed in response to multiple stresses. While pmPOX2b was the only membrane peroxidase down-regulated by wounding, all four enzymes were differentially but strongly stimulated by methyl jasmonate, salicylic acid, and elicitors (Fusarium graminearum and Fusarium culmorum extracts, and chitosan) indicating their function in pathogen defence. Oxidative stress applied as H2O2 treatment up-regulated pmPOX2b >pmPOX2a, while pmPOX3 was down-regulated. Treatment with the phosphatase inhibitor chantharidin resulted in distinct responses. PMID:20032108
Essien, Emmanuel E.; Newby, Jennifer Schmidt; Walker, Tameka M.; Setzer, William N.; Ekundayo, Olusegun
2015-01-01
Bacterial resistance has been increasingly reported worldwide and is one of the major causes of failure in the treatment of infectious diseases. Natural-based products, including plant secondary metabolites (phytochemicals), can be exploited to ameliorate the problem of microbial resistance. The fruit essential oils of Alchornea cordifolia and Canthium subcordatum were obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS). The essential oils were subjected to in vitro antibacterial, antifungal and cytotoxic activity screening. Thirty-eight compounds comprising 97.7% of A. cordifolia oil and forty-six constituents representing 98.2% of C. subcordatum oil were identified. The major components in A. cordifolia oil were methyl salicylate (25.3%), citronellol (21.4%), α-phellandrene (7.4%), terpinolene (5.7%) and 1,8-cineole (5.5%). Benzaldehyde (28.0%), β-caryophyllene (15.5%), (E,E)-α-farnesene (5.3%) and methyl salicylate (4.5%) were the quantitatively significant constituents in C. subcordatum fruit essential oil. A. cordifolia essential oil demonstrated potent in vitro antibacterial activity against Staphylococcus aureus (MIC = 78 μg/mL) and marginal antifungal activity against Aspergillus niger (MIC = 156 μg/mL). C. subcordatum showed antibacterial activity against Bacillus cereus and S. aureus (MIC = 156 μg/mL) and notable antifungal activity against A. niger (MIC = 39 μg/mL). However, no appreciable cytotoxic effects on human breast carcinoma cells (Hs 578T) and human prostate carcinoma cells (PC-3) were observed for either essential oil. The antimicrobial activities of A. cordifolia and C. subcordatum fruit essential oils are a function of their distinct chemical profiles; their volatiles and biological activities are reported for the first time. PMID:28930111
Salzman, Ron A.; Brady, Jeff A.; Finlayson, Scott A.; Buchanan, Christina D.; Summer, Elizabeth J.; Sun, Feng; Klein, Patricia E.; Klein, Robert R.; Pratt, Lee H.; Cordonnier-Pratt, Marie-Michèle; Mullet, John E.
2005-01-01
We have conducted a large-scale study of gene expression in the C4 monocot sorghum (Sorghum bicolor) L. Moench cv BTx623 in response to the signaling compounds salicylic acid (SA), methyl jasmonate (MeJA), and the ethylene precursor aminocyclopropane carboxylic acid. Expression profiles were generated from seedling root and shoot tissue at 3 and 27 h, using a microarray containing 12,982 nonredundant elements. Data from 102 slides and quantitative reverse transcription-PCR data on mRNA abundance from 171 genes were collected and analyzed and are here made publicly available. Numerous gene clusters were identified in which expression was correlated with particular signaling compound and tissue combinations. Many genes previously implicated in defense responded to the treatments, including numerous pathogenesis-related genes and most members of the phenylpropanoid pathway, and several other genes that may represent novel activities or pathways. Genes of the octadecanoic acid pathway of jasmonic acid (JA) synthesis were induced by SA as well as by MeJA. The resulting hypothesis that increased SA could lead to increased endogenous JA production was confirmed by measurement of JA content. Comparison of responses to SA, MeJA, and combined SA+MeJA revealed patterns of one-way and mutual antagonisms, as well as synergistic effects on regulation of some genes. These experiments thus help further define the transcriptional results of cross talk between the SA and JA pathways and suggest that a subset of genes coregulated by SA and JA may comprise a uniquely evolved sector of plant signaling responsive cascades. PMID:15863699
Enzymatic production of biodiesel from microalgal oil using ethyl acetate as an acyl acceptor.
Alavijeh, Razieh Shafiee; Tabandeh, Fatemeh; Tavakoli, Omid; Karkhane, Aliasghar; Shariati, Parvin
2015-01-01
Microalgae have become an important source of biomass for biodiesel production. In enzymatic transesterification reaction, the enzyme activity is decreased in presence of alcohols. The use of different acyl acceptors such as methyl/ethyl acetate is suggested as an alternative and effective way to overcome this problem. In this study, ethyl acetate was used for the first time in the enzymatic production of biodiesel by using microalga, Chlorella vulgaris, as a triglyceride source. Enzymatic conversion of such fatty acids to biodiesel was catalyzed by Novozym 435 as an efficient immobilized lipase which is extensively used in biodiesel production. The best conversion yield of 66.71% was obtained at the ethyl acetate to oil molar ratio of 13:1 and Novozym 435 concentration of 40%, based on the amount of oil, and a time period of 72 h at 40℃. The results showed that ethyl acetate have no adverse effect on lipase activity and the biodiesel amount was not decreased even after seven transesterification cycles, so ethyl acetate has a great potential to be substituted for short-chain alcohols in transesterification reaction.
Coapio, Guadalupe G; Cruz-López, Leopoldo; Guerenstein, Pablo; Malo, Edi A; Rojas, Julio C
2016-12-01
Female insects have the difficult task of locating host plants that maximize the survival and success of their offspring. In this study, the oviposition preferences of the cabbage looper moth, Trichoplusia ni (Hübner), for soybean plants, Glycine max (L.), under various treatments-undamaged, mechanically damaged, damaged by T. ni or Spodoptera frugiperda (Smith) larvae or by Bemisia tabaci (Gennadius) adults, egg-free plants, and plants previously oviposited by conspecific or heterospecific females (S. frugiperda)-were investigated using two-choice tests. Additionally, the volatile compounds emitted by the plants under the different treatments were identified by gas chromatography-mass spectrometry. Our results showed that females showed no preferences for undamaged or mechanically damaged plants. However, they oviposited more often on undamaged plants than on those previously damaged by T. ni, S. frugiperda, or B. tabaci. In contrast, females preferred to oviposit on plants previously oviposited by conspecific and heterospecific females than on egg-free plants. Plants damaged by conspecific or heterospecific larvae emitted methyl salicylate, indole, and octyl butyrate, compounds not released by undamaged or mechanically damaged plants. Whitefly damage induced the release of higher quantities of Z(3)-hexenyl acetate, (R)-(+)-limonene, and (E)-β-ocimene compared to plants damaged by larvae and suppressed the emission of linalool. Egg deposition by conspecific and heterospecific moths induced the emission of (R)-(+)-limonene, octyl butyrate, and geranyl acetone but suppressed the release of linalool. This study showed that a generalist moth species can discriminate between plants of different quality, and suggests that females use volatile compounds as cues during this process. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Fraser, Ann M; Mechaber, Wendy L; Hildebrand, John G
2003-08-01
Coupled gas chromatography with electroantennographic detection (GC-EAD) using antennae of adult female Manduca sexta was employed to screen for olfactory stimulants present in headspace collections from four species of larval host plants belonging to two families: Solanaceae--Lycopersicon esculentum (tomato), Capiscum annuum (bell pepper), and Datura wrightii; and Martyniaceae--Pronboscideaparviflora. Headspace volatiles were collected from undamaged foliage of potted, living plants. GC-EAD revealed 23 EAD-active compounds, of which 15 were identified by GC-mass spectrometry. Identified compounds included aliphatic, aromatic, and terpenoid compounds bearing a range of functional groups. Nine EAD-active compounds were common to all four host plant species: (Z)-3-hexenyl acetate, nonanal, decanal, phenylacetaldehyde, methyl salicylate, benzyl alcohol, geranyl acetone, (E)-nerolidol, and one unidentified compound. Behavioral responses of female moths to an eight-component synthetic blend of selected tomato headspace volatiles were tested in a laboratory wind tunnel. Females were attracted to the blend. A comparison of responses from antennae of males and females to bell pepper headspace volatiles revealed that males responded to the same suite of volatiles as females, except for (Z)-3-hexenyl benzoate. EAD responses of males also were lower for (Z)-and (E)-nerolidol and one unidentified compound. Electroantennogram EAG dose-response curves for the 15 identified EAD-active volatiles were recorded. At the higher test doses (10-100 microg), female antennae yielded larger EAG responses to terpenoids and to aliphatic and aromatic esters. Male antennae did respond to the higher doses of (Z)-3-hexenyl benzoate, indicating that they can detect this compound. On the basis of ubiquity of the EAD-active volatiles identified to date in host plant headspace collections, we suggest that M. sexta uses a suite of volatiles to locate and identify appropriate host plants.
Bhat, Wajid Waheed; Razdan, Sumeer; Rana, Satiander; Dhar, Niha; Wani, Tariq Ahmad; Qazi, Parvaiz; Vishwakarma, Ram; Lattoo, Surrinder K
2014-09-01
Picrorhiza kurrooa Royle ex Benth. is a highly reputed medicinal herb utilised in the preparation of a number of herbal drug formulations, principally due to the presence of novel monoterpene iridoid glycosides kenned as picrosides. Phenylalanine ammonia-lyase catalyses an important rate-limiting step in phenylpropanoid pathway and supplies precursors like cinnamic acid, vanillic acid, ferulic acid, etc., to a variety of secondary metabolites including picrosides. The imperilled status of P. kurrooa coupled with lack of information regarding biogenesis of picrosides necessitates deciphering the biosynthetic pathway for picrosides. In the present study, a PAL gene, designated PkPAL1 was isolated from P. kurrooa. The cDNA is 2312 bp in length, consisting of an ORF of 2142 bp encoding for a 713 amino acid protein having a predicted molecular weight of 77.66 kDa and an isoelectric point of pH 6.82. qRT-PCR analysis of various tissues of P. kurrooa showed that PkPAL1 transcript levels were highest in the leaves, consistent with picroside accumulation pattern. Using Genome walking, a 718 bp promoter region was also isolated resulting in identification of distinct cis-regulatory elements including TGA-element, TGACG-motif, CGTCA-motif, etc. qRT-PCR indicated up-regulation of PkPAL1 by methyl jasmonate, salicylic acid, 2,4-dicholorophenoxy acetic acid and UV-B elicitations that corroborated positively with the identified cis-elements within the promoter region. Moreover, altitude was found to have a positive effect on the PkPAL1 transcript levels, driving the expression of PkPAL1 abundantly. Based on docking analysis, we identified eight residues as potentially essential for substrate binding in PkPAL1. Copyright © 2014 Elsevier B.V. All rights reserved.
Landolph, J R
1994-01-01
Carcinogenic arsenic, nickel, and chromium compounds induced morphological and neoplastic transformation but no mutation to ouabain resistance in 10T1/2 mouse embryo cells; lead chromate also did not induce mutation to ouabain or 6-thioguanine resistance in Chinese hamster ovary cells. The mechanism of metal-induced morphological transformation was likely not due to the specific base substitution mutations measured in ouabain resistance mutation assays, and for lead chromate, likely not due to this type of base substitution mutation or to frameshift mutations. Preliminary data indicate increases in steady-state levels of c-myc RNA in arsenic-, nickel-, and chromium-transformed cell lines. We also showed that carcinogenic nickel, chromium, and arsenic compounds and N-methyl-N-nitro-N-nitrosoguanidine (MNNG) induced stable anchorage independence (Al) in diploid human fibroblasts (DHF) but no focus formation or immortality. Nickel subsulfide and lead chromate induced Al but not mutation to 6-thioguanine resistance. The mechanism of induction of Al by metal salts in DHF was likely not by the type of base substitution or frameshift mutations measured in these assays. MNNG induced Al, mutation to 6-thioguanine resistance, and mutation to ouabain resistance, and might induce Al by base substitution or frameshift mutations. Dexamethasone, aspirin, and salicylic acid inhibited nickel subsulfide, MNNG, and 12-O-tetrade-canoylphorbol-13-acetate (TPA)-induced Al in DHF, suggesting that arachidonic acid metabolism and oxygen radical generation play a role in induction of Al. We propose that nickel compounds stimulate arachidonic acid metabolism, consequent oxygen radical generation, and oxygen radical attack upon DNA.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1. PMID:7843085
Simultaneous determination of piracetam and its four impurities by RP-HPLC with UV detection.
Arayne, M Saeed; Sultana, Najma; Siddiqui, Farhan Ahmed; Mirza, Agha Zeeshan; Qureshi, Faiza; Zuberi, M Hashim
2010-08-01
A simple and rapid high-performance liquid chromatographic method for the separation and determination of piracetam and its four impurities, 2-oxopyrrolidin-1-yl)acetic acid, pyrrolidin-2-one, methyl (2-oxopyrrolidin-1-yl)acetate, and ethyl (2-oxopyrrolidin-1-yl)acetate, was developed. The separation was achieved on a reversed-phase C(18) Nucleosil column (25 cm x 0.46 cm, 10 microm). The mobile phase is composed of an aqueous solution containing 0.2 g/L of triethyl amine-acetonitrile (85:15, v/v). The pH of the mobile phase was adjusted to 6.5 with phosphoric acid at a flow rate of 1 mL/min at ambient temperature and UV detection at 205 nm. The developed method was found to give good separation between the pure drug and its four related substance. The polynomial regression data for the calibration plots showed good linear relationship in the concentration range of 50-10,000 ng/mL, 25-10,000 ng/mL, 45-10,000 ng/mL, 34-10,000 ng/mL, and 55-10,000 ng/mL, respectively, with r(2) = 0.9999. The method was validated for precision, accuracy, ruggedness, and recovery. The minimum quantifiable amounts were found to be 50 ng/mL of piracetam, 25 ng/mL of 2-oxopyrrolidin-1-yl)acetic acid, 45 ng/mL of pyrrolidin-2-one, 34 ng/mL of methyl (2-oxopyrrolidin-1-yl)acetate, and 55 ng/mL of ethyl (2-oxopyrrolidin-1-yl)acetate. Statistical analysis proves that the method is reproducible and selective for the estimation of piracetam as well as its related substance. As the method could effectively separate the drug from the related substances, it can be employed as a stability-indicating one. The proposed method shows high efficiency, allowing the separation of the main component piracetam from other impurities.
Mukherjee, Chiranjit; Samanta, Tanmoy; Mitra, Adinpunya
2016-02-01
A metabolic shift in green hairy root cultures of carrot from phenylpropanoid/benzenoid biosynthesis toward volatile isoprenoids was observed when compared with the metabolite profile of normal hairy root cultures. Hairy roots cultures of Daucus carota turned green under continuous illumination, while the content of the major phenolic compound p-hydroxybenzoic acid (p-HBA) was reduced to half as compared to normal hairy roots cultured in darkness. p-Hydroxybenzaldehyde dehydrogenase (HBD) activity was suppressed in the green hairy roots. However, comparative volatile analysis of 14-day-old green hairy roots revealed higher monoterpene and sesquiterpene contents than found in normal hairy roots. Methyl salicylate content was higher in normal hairy roots than in green ones. Application of clomazone, an inhibitor of 1-deoxy-D-xylulose 5-phosphate synthase (DXS), reduced the amount of total monoterpenes and sesquiterpenes in green hairy roots compared to normal hairy roots. However, methyl salicylate content was enhanced in both green and normal hairy roots treated with clomazone as compared to their respective controls. Because methyl-erythritol 4-phosphate (MEP) and phenylpropanoid pathways, respectively, contribute to the formation of monoterpenes and phenolic acids biosynthesis, the activities of enzymes regulating those pathways were measured in terms of their in vitro activities, in both green and normal hairy root cultures. These key enzymes were 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR), an early regulatory enzyme of the MEP pathway, pyruvate kinase (PK), an enzyme of primary metabolism related to the MEP pathway, shikimate dehydrogenase (SKDH) which is involved in biosynthesis of aromatic amino acids, and phenylalanine ammonia-lyase (PAL) that catalyzes the first step of phenylpropanoid biosynthesis. Activities of DXR and PK were higher in green hairy roots as compared to normal ones, whereas the opposite trend was observed for SKDH and PAL activities. Gene expression analysis of DXR and PAL showed trends similar to those for the respective enzyme activities. Based on these observations, we suggest a possible redirection of metabolites from the primary metabolism toward isoprenoid biosynthesis, limiting the phenolic biosynthetic pathway in green hairy roots grown under continuous light.
Petrus, Rafał; Sobota, Piotr
2013-10-14
Two novel zinc alkoxides supported by chelating methyl salicylato (MesalO; MesalOH = methyl salicylate) ligands were successfully synthesized and characterized. Reaction of MesalOH with ZnEt2 (2:1) gives a tetranuclear cluster [Zn(MesalO)2]4 (1), which by addition of pyridine is transformed to the mononuclear compound [Zn(MesalO)2(py)2] (2). Compounds 1 and 2 were characterized by elemental analysis, NMR, IR, and single crystal X-ray diffraction. The catalytic activity of both compounds was tested for the ring-opening polymerization (ROP) of L-lactide (L-LA). It was found that compounds 1 and 2 are efficient initiators of the ROP of L-LA, yielding cyclic PLLA with weight average molecular weights up to 100 kDa for 2. The treatment of 2 with 1 equiv. of BnOH in toluene afforded a dimeric compound [Zn(OBn)(MesalO)(py)]2 (3). The addition of L-LA to a combination of 1 and 4 equiv. of BnOH in THF or 2 and 1 equiv. of BnOH in toluene led to the rapid and efficient generation of PLLA with end-capped BnO groups.
BnNHL18A shows a localization change by stress-inducing chemical treatments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Suk-Bae; Ham, Byung-Kook; Park, Jeong Mee
2006-01-06
The two genes, named BnNHL18A and BnNHL18B, showing sequence homology with Arabidopsis NDR1/HIN1-like (NHL) genes, were isolated from cDNA library prepared with oilseed rape (Brassica napus) seedlings treated with NaCl. The transcript level of BnNHL18A was increased by sodium chloride, ethephon, hydrogen peroxide, methyl jasmonate, or salicylic acid treatment. The coding regions of BnNHL18A and BnNHL18B contain a sarcolipin (SLN)-like sequence. Analysis of the localization of smGFP fusion proteins showed that BnNHL18A is mainly localized to endoplasmic reticulum (ER). This result suggests that the SLN-like sequence plays a role in retaining proteins in ER membrane in plants. In response tomore » NaCl, hydrogen peroxide, ethephon, and salicylic acid treatments, the protein localization of BnNHL18A was changed. Our findings suggest a common function of BnNHL18A in biotic and abiotic stresses, and demonstrate the presence of the shared mechanism of protein translocalization between the responses to plant pathogen and to osmotic stress.« less
A review of toxicity from topical salicylic acid preparations.
Madan, Raman K; Levitt, Jacob
2014-04-01
Topical salicylic acid is often used in dermatologic conditions because of its keratolytic, bacteriostatic, fungicidal, and photoprotective properties. The bioavailability of salicylic acid differs depending on the vehicle used and pH of transcellular fluids. Although rare, salicylic acid toxicity (salicylism) can occur from topical application. Physicians should be mindful of the potential for salicylism or even death from topically applied salicylic acid. Copyright © 2013 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.
Effect of Salicylate on the Elasticity, Bending Stiffness, and Strength of SOPC Membranes
Zhou, Yong; Raphael, Robert M.
2005-01-01
Salicylate is a small amphiphilic molecule which has diverse effects on membranes and membrane-mediated processes. We have utilized micropipette aspiration of giant unilamellar vesicles to determine salicylate's effects on lecithin membrane elasticity, bending rigidity, and strength. Salicylate effectively reduces the apparent area compressibility modulus and bending modulus of membranes in a dose-dependent manner at concentrations above 1 mM, but does not greatly alter the actual elastic compressibility modulus at the maximal tested concentration of 10 mM. The effect of salicylate on membrane strength was investigated using dynamic tension spectroscopy, which revealed that salicylate increases the frequency of spontaneous defect formation and lowers the energy barrier for unstable hole formation. The mechanical and dynamic tension experiments are consistent and support a picture in which salicylate disrupts membrane stability by decreasing membrane stiffness and membrane thickness. The tension-dependent partitioning of salicylate was utilized to calculate the molecular volume of salicylate in the membrane. The free energy of transfer for salicylate insertion into the membrane and the corresponding partition coefficient were also estimated, and indicated favorable salicylate-membrane interactions. The mechanical changes induced by salicylate may affect several biological processes, especially those associated with membrane curvature and permeability. PMID:15951377
CASTING SLIPS FOR FABRICATION OF REFRACTORY METAL WARE
Stoddard, S.D.; Nuckolls, D.E.; Cowan, R.E.
1962-09-01
A composition is given for slip casting tungsten metal. The composition consists essentially of tungsten metal with an average particle size of 0.9 micron, an organic vehicle such as methyl chloroform, o-xylene, n-butyl acetate, isobutyl acetate, and 1, 1, 2, 2-tetrachlorethane, and a suspending agent such as ethyl cellulose, with the approximate ratio of said vehicle to the tungsten metal being 12 cc of a solution containing from 5 to about 20 grams of said ethyl cellulose in 400 cc of said organic vehicle per 100 grams of metal. (AEC)
Replacement of ozone depleting and toxic chemicals in gravimetric analysis of non-volatile residue
NASA Technical Reports Server (NTRS)
Arnold, G. S.; Uht, J. C.; Sinsheimer, F. B.
1995-01-01
The standard tests for determining nonvolatile residue accretion on spacecraft surfaces and in clean processing facilities rely on the use of halogenated solvents that are targeted for elimination because of their toxic or ozone-depleting natures. This paper presents a literature-based screening survey for candidate replacement solvents. Potential replacements were evaluated for their vapor pressure, toxicity, and solvent properties. Three likely candidates were identified: ethyl acetate, methyl acetate, and acetone. Laboratory tests are presented that evaluate the suitability of these candidate replacement solvents.
Umesha, K. B.; Rai, K. M. L.; Harish Nayaka, M. A.
2009-01-01
Cycloaddition of nitrile imines 4 generated in situ by the catalytic dehydrogenation of diphenyl hydrazones 3 using Chloramine-T (CAT) as oxidant in glacial acetic acid with enolic form of ethyl acetoacetate 5 afforded Ethyl 3-aryl-5-methyl-1-phenyl-1H-pyrazol-4-carboxylate 6 in 80% yield. The said pyrazoles 6 refluxed with 80% hydrazine hydrate using absolute alcohol as solvent for about 2–3 hours to produce the respective 5-methyl-1,3-diphenyl-1H-pyrazole-4-carboxylic acid hydrazide 7. The alcoholic solution of pyrazole acid hydrazides on heating with ethyl acetoacetate 5 to give the 5-methyl-2-(5-methyl-1,3-diphenyl-1H-pyrazole-4-carbonyl)-2,4-dihydro-pyrazol-3-one 8. The synthesized compounds were found to exhibit good antimicrobial and antioxidant activity as evaluated by 1,1-diphenyl-2-picryl Hydrazyl (DPPH) radical scavenging, reducing power and DNA protection assays. PMID:23675159
Strain IMB-1, a novel bacterium for the removal of methyl bromide in fumigated agricultural soils
Connell, Hancock T.L.; Costello, A.M.; Lidstrom, M.E.; Oremland, R.S.
1998-01-01
A facultatively methylotrophic bacterium, strain IMB-1, that has been isolated from agricultural soil grows on methyl bromide (MeBr), methyl iodide, methyl chloride, and methylated amines, as well as on glucose, pyruvate, or acetate. Phylogenetic analysis of its 16S rRNA gene sequence indicates that strain IMB-1 classes in the alpha subgroup of the class Proteobacteria and is closely related to members of the genus Rhizobium. The ability of strain IMB-1 to oxidize MeBr to CO2 is constitutive in cells regardless of the growth substrate. Addition of cell suspensions of strain IMB-1 to soils greatly accelerates the oxidation of MeBr, as does pretreatment of soils with low concentrations of methyl iodide. These results suggest that soil treatment strategies can be devised whereby bacteria can effectively consume MeBr during field fumigations, which would diminish or eliminate the outward flux of MeBr to the atmosphere.
Molecular plant volatile communication.
Holopainen, Jarmo K; Blande, James D
2012-01-01
Plants produce a wide array of volatile organic compounds (VOCs) which have multiple functions as internal plant hormones (e.g., ethylene, methyl jasmonate and methyl salicylate), in communication with conspecific and heterospecific plants and in communication with organisms of second (herbivores and pollinators) and third (enemies of herbivores) trophic levels. Species specific VOCs normally repel polyphagous herbivores and those specialised on other plant species, but may attract specialist herbivores and their natural enemies, which use VOCs as host location cues. Attraction of predators and parasitoids by VOCs is considered an evolved indirect defence, whereby plants are able to indirectly reduce biotic stress caused by damaging herbivores. In this chapter we review these interactions where VOCs are known to play a crucial role. We then discuss the importance of volatile communication in self and nonself detection. VOCs are suggested to appear in soil ecosystems where distinction of own roots from neighbours roots is essential to optimise root growth, but limited evidence of above-ground plant self-recognition is available.
9-methoxycanthin-6-one production in elicited hairy roots culture of Eurycoma longifolia
NASA Astrophysics Data System (ADS)
Abdullah, Nazirah; Ismail, Ismanizan; Hassan, Nor Hasnida; Basherudin, Norlia
2016-11-01
Eurycoma longifolia (Tongkat Ali) is a highly sought after medicinal plant in Malaysia. Propagation of E. longifolia through tissue culture has been reported in order to cater the industry demands for planting and raw materials as well as for conservation purposes. E. longifolia hairy roots culture has been developed using Agrobacterium rhizogenes for the production of Tongkat Ali phytochemicals. Effects of three elicitors; methyl jasmonate, salicylic acid, and yeast extract at different concentrations were evaluated on the production of 9-methoxycanthin-6-one in E. longifolia hairy roots. The cultures were elicited at early exponential growth phase, followed by extraction of 9-methoxycanthin-6-one using methanol and HPLC analysis. Elicitation with methyl jasmonate at all concentrations increased 9-methoxycanthin-6-one up to 1-3 fold and treatment with (0.1 mM) was most efficient in enhancing 9-methoxycanthin-6-one production up to 3.902 mg/g dry weight after 7 days (168 hours) elicitation.
Chuntonov, Lev; Pazos, Ileana M; Ma, Jianqiang; Gai, Feng
2015-03-26
It has recently been shown that the ester carbonyl stretching vibration can be used as a sensitive probe of local electrostatic field in molecular systems. To further characterize this vibrational probe and extend its potential applications, we studied the kinetics of chemical exchange between differently hydrogen-bonded (H-bonded) ester carbonyl groups of methyl acetate (MA) and ethyl acetate (EA) in methanol. We found that, while both MA and EA can form zero, one, or two H-bonds with the solvent, the population of the 2hb state in MA is significantly smaller than that in EA. Using a combination of linear and nonlinear infrared measurements and numerical simulations, we further determined the rate constants for the exchange between these differently H-bonded states. We found that for MA the chemical exchange reaction between the two dominant states (i.e., 0hb and 1hb states) has a relaxation rate constant of 0.14 ps(-1), whereas for EA the three-state chemical exchange reaction occurs in a predominantly sequential manner with the following relaxation rate constants: 0.11 ps(-1) for exchange between 0hb and 1hb states and 0.12 ps(-1) for exchange between 1hb and 2hb states.
NASA Astrophysics Data System (ADS)
Zhao, YueYue; Mouhib, Halima; Li, Guohua; Stahl, Wolfgang; Kleiner, Isabelle
2014-06-01
The tert-Butyl acetate molecule was studied using a combination of quantum chemical calculations and molecular beam Fourier transform microwave spectroscopy in the 9 to 14 GHz range. Due to its rather rigid frame, the molecule possesses only two different conformers: one of Cs and one of C1 symmetry. According to ab initio calculations, the Cs conformer is 46 kJ/mol lower in energy and is the one observed in the supersonic jet. We report on the structure and dynamics of the most abundant conformer of tert-butyl acetate, with accurate rotational and centrifugal distortion constants. Additionally, the barrier to internal rotation of the acetyl methyl group was determined. Splittings due to the internal rotation of the methyl group of up to 1.3 GHz were observed in the spectrum. Using the programs XIAM and BELGI-Cs, we determine the barrier height to be about 113 cm-1 and compare the molecular parameters obtained from these two codes. Additionally, the experimental rotational constants were used to validate numerous quantum chemical calculations. This study is part of a larger project which aims at determining the lowest energy conformers of organic esters and ketones which are of interest for flavor or perfume synthetic applications Project partly supported by the PHC PROCOPE 25059YB.
Methyl 2-(benzenesulfonamido)acetate
Arshad, Muhammad Nadeem; Khan, Islam Ullah; Zia-ur-Rehman, Muhammad; Shafiq, Muhammad
2009-01-01
The title compound, C9H11NO4S, is of interest as a precursor to biologically active benzothiazines. The crystal structure is stabilized by intermolecular N—H⋯O and C—H⋯O interactions. PMID:21583074
Foraging behavior of the dead leaf butterfly, Kallima inachus.
Tang, Yuchong; Zhou, Chengli; Chen, Xiaoming; Zheng, Hua
2013-01-01
The behavioral responses of foraging adults of Kallima inachus (Boisduval) (Lepidoptera: Nymphalidae) to four colors and to six different fermented fruit juices were observed in order to determine the cues used by foraging adults. According to the results, adults did not show a behavioral response to red, yellow, purple, or white artificial flowers without food odors, but flowers with the fermented pear juice strongly attracted them, and they showed a behavioral response to fermented juices of the six fruits (pear, apple, banana, watermelon, orange, and persimmon) with no statistically significant preference. The fruit volatiles were collected using dynamic headspace adsorption, and the volatile components were analyzed by auto thermal-desorption gas chromatography-mass spectrometry to assess which volatiles existed in the fruits. Only alcohols, esters, and ketones were common in the volatiles of all six fermenting fruits. The five volatile components found in the six fruits, as well as two others found to be in other fermented foods by previous studies, were selected to test the behavioral and electroantennogram (EAG) responses of naive adults to estimate behavioral preference and antennal perception. In field behavioral tests, alcohols were the most attractive, followed by esters, while α-pinene, butanone, and acetic acid were much less attractive. Relative to other volatile combinations and ethanol alone, the mixture of ethyl acetate and ethanol attracted the most feeding adults. The number of adults attracted was significantly positively correlated with the concentration of both ethanol and ethyl acetate. The EAG responses of naive adults showed that the EAG responses to 3-methyl-1-butanol, isoamyl acetate, ethyl acetate, α-pinene, butanone, and acetic acid were all higher than those to ethanol (100%) at doses of either 5 µl/mL or 50 µl/mL. Sexual differences only existed in 3-methyl-1-butanol and acetic acid at particular concentrations. Sexual differences in response to chemical mixtures were not significant at 50 µl/mL. In addition, the EAG responses in the within-sex trials were not correlated to the dosage (0.01, 0.1, 1, 5, 10, and µl/mL) of either ethanol or ethyl acetate. The results showed that olfactory cues played a crucial role in the foraging of adult K. inachus, and that foraging adults can use a variety of chemical signals derived from food; however, the feeding preference to volatiles was not necessary correlated with the EAG responses.
Li, Chunping; Yang, Xiaolin; Xu, Ming; Zhang, Jinlong; Sun, Na
2013-05-01
Occupational and environmental exposures to lead (Pb) are a worldwide concern. DNA methylation plays an important role in the development of Pb toxicity. Here, we try to find out the evidence to prove that the methylation of the LINE-1 promoter may be involved in Pb toxicity. To determine whether the methylation level of the LINE-1 is associated with the risk of Pb poisoning, we first constructed a Pb acetate-treated cell model to detect the association between LINE-1 methylation and Pb exposure. A case-control study involving 53 workers from a battery plant and 57 healthy volunteers with matching age and gender distribution was carried out. We employed methylation-specific real-time PCR to determine the relationship between LINE-1 methylation level and Pb exposure. In the cell model, Pb exposure significantly decreased the level of LINE-1 methylation (p = 0.009). Significant difference in methylation frequencies was found between the exposed and control samples (p < 0.001). We also found a decreasing trend of LINE-1 methylation level with increasing blood Pb level (p < 0.001). Therefore, the LINE-1 promoter methylation might contribute to the risk of Pb poisoning and identified a possible epigenetic biomarker for Pb toxicity, especially in individuals occupationally exposed to Pb.
Peterson, R C; Reich, M F; Dunn, P E; Law, J H; Katzenellnbogen, J A
1977-05-17
A series of analogues of insect juvenile hormone (four geometric isomers of methyl epoxyfarnesenate, several para-substituted epoxygeranyl phenyl ethers, and epoxyfarnesol and its acetate and haloacetate derivatives) was prepared to investigate the binding specificity of the hemolymph juvenile hormone binding protein from the tobacco hornworm Manduct sexta. The relative binding affinities were determined by a competition assay against radiolabeled methyl (E,E)-3,11-dimethyl-7-ethyl-cis-10,11-epoxytrideca-2,6-dienoate (JH I). The ratio of dissociation constants was estimated by plotting competitor data according to a linear transformation of the dissociation equations describing competition of two ligands for a binding protein. The importance of the geometry of the sesquiterpene hydrocarbon chain is indicated by the fact that the binding affinity is decreased as Z (cis) double bonds are substituted for E (trans) double bonds in the methyl epoxyfarnesenate series; the unepoxidized analogues do not bind. A carboxylic ester function is important although its orientation can be reversed, as indicated by the good binding of epoxyfarnesyl acetate. In the monoterpene series, methyl epoxygeranoate shows no affinity for the binding protein, but substitution of a phenyl or p-carbomethoxyphenyl ether for the ester function imparts a low, but significant affinity. These data taken together with earlier results indicate that the binding site for juvenile hormone in the hemolymph binding protein is characterized by a sterically defined hydrophobic region with polar sites that recognize the epoxide and the ester functions.
Thermal Decomposition of Methyl Acetate (CH_3COOCH_3) in a Flash-Pyrolysis Micro-Reactor
NASA Astrophysics Data System (ADS)
Porterfield, Jessica P.; Bross, David H.; Ruscic, Branko; Thorpe, James H.; Nguyen, Thanh Lam; Baraban, Joshua H.; Stanton, John F.; Daily, John W.; Ellison, Barney
2017-06-01
The thermal decomposition of methyl acetate (CH_3COOCH_3) has been studied in a set of flash pyrolysis micro-reactors. Samples were diluted to (0.06 - 0.13%) in carrier gases (He, Ar) and subjected to temperatures of 300 - 1600 K at roughly 20 Torr. After residence times of approximately 25 - 150 μseconds, the unimolecular pyrolysis products were detected by vacuum ultraviolet photoionization mass spectrometry at 10.487 eV (118.2 nm). Complementary product identification was provided by matrix isolation infrared spectroscopy. Decomposition began at 1000 K with the observation of (CH_2=C=O, CH_3OH), products of a four centered rearrangement with a Δ_{rxn}H_{298} = 39.1 ± 0.2 kcal mol^{-1}. As the micro-reactor was heated to 1300 K, a mixture of (CH_2=C=O, CH_3OH, CH_3, CH_2=O, H, CO, CO_2) appeared. A new novel pathway is calculated in which both methyl groups leave behind CO_2 simultaneously, Δ_{rxn}H_{298} = 74.5 ± 0.4 kcal mol^{-1}. This pathway is in contrast to step-wise loss of methyl radical, which can go in two ways: Δ_{rxn}H_{298} (CH_3COOCH_3 → CH_3 + COOCH_3) = 95.4 ± 0.4 kcal mol^{-1}, Δ_{rxn}H_{298} (CH_3COOCH_3 → CH_3COO + CH_3) = 88.0 ± 0.3 kcal mol^{-1}.
Lovelock, David A; Šola, Ivana; Marschollek, Sabine; Donald, Caroline E; Rusak, Gordana; van Pée, Karl-Heinz; Ludwig-Müller, Jutta; Cahill, David M
2016-10-01
Salicylic acid (SA) biosynthesis, the expression of SA-related genes and the effect of SA on the Arabidopsis-Plasmodiophora brassicae interaction were examined. Biochemical analyses revealed that, in P. brassicae-infected Arabidopsis, the majority of SA is synthesized from chorismate. Real-time monitored expression of a gene for isochorismate synthase was induced on infection. SA can be modified after accumulation, either by methylation, improving its mobility, or by glycosylation, as one possible reaction for inactivation. Quantitative reverse transcription-polymerase chain reaction (qPCR) confirmed the induction of an SA methyltransferase gene, whereas SA glucosyltransferase expression was not changed after infection. Col-0 wild-type (wt) did not provide a visible phenotypic resistance response, whereas the Arabidopsis mutant dnd1, which constitutively activates the immune system, showed reduced gall scores. As dnd1 showed control of the pathogen, exogenous SA was applied to Arabidopsis in order to test whether it could suppress clubroot. In wt, sid2 (SA biosynthesis), NahG (SA-deficient) and npr1 (SA signalling-impaired) mutants, SA treatment did not alter the gall score, but positively affected the shoot weight. This suggests that SA alone is not sufficient for Arabidopsis resistance against P. brassicae. Semi-quantitative PCR revealed that wt, cpr1, dnd1 and sid2 showed elevated PR-1 expression on P. brassicae and SA + P. brassicae inoculation at 2 and 3 weeks post-inoculation (wpi), whereas NahG and npr1 showed no expression. This work contributes to the understanding of SA involvement in the Arabidopsis-P. brassicae interaction. © 2015 BSPP and John Wiley & Sons Ltd.
Dey, Sanjukta; Wenig, Marion; Langen, Gregor; Sharma, Sapna; Kugler, Karl G; Knappe, Claudia; Hause, Bettina; Bichlmeier, Marlies; Babaeizad, Valiollah; Imani, Jafargholi; Janzik, Ingar; Stempfl, Thomas; Hückelhoven, Ralph; Kogel, Karl-Heinz; Mayer, Klaus F X; Vlot, A Corina
2014-12-01
Leaf-to-leaf systemic immune signaling known as systemic acquired resistance is poorly understood in monocotyledonous plants. Here, we characterize systemic immunity in barley (Hordeum vulgare) triggered after primary leaf infection with either Pseudomonas syringae pathovar japonica (Psj) or Xanthomonas translucens pathovar cerealis (Xtc). Both pathogens induced resistance in systemic, uninfected leaves against a subsequent challenge infection with Xtc. In contrast to systemic acquired resistance in Arabidopsis (Arabidopsis thaliana), systemic immunity in barley was not associated with NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 or the local or systemic accumulation of salicylic acid. Instead, we documented a moderate local but not systemic induction of abscisic acid after infection of leaves with Psj. In contrast to salicylic acid or its functional analog benzothiadiazole, local applications of the jasmonic acid methyl ester or abscisic acid triggered systemic immunity to Xtc. RNA sequencing analysis of local and systemic transcript accumulation revealed unique gene expression changes in response to both Psj and Xtc and a clear separation of local from systemic responses. The systemic response appeared relatively modest, and quantitative reverse transcription-polymerase chain reaction associated systemic immunity with the local and systemic induction of two WRKY and two ETHYLENE RESPONSIVE FACTOR (ERF)-like transcription factors. Systemic immunity against Xtc was further associated with transcriptional changes after a secondary/systemic Xtc challenge infection; these changes were dependent on the primary treatment. Taken together, bacteria-induced systemic immunity in barley may be mediated in part by WRKY and ERF-like transcription factors, possibly facilitating transcriptional reprogramming to potentiate immunity. © 2014 American Society of Plant Biologists. All Rights Reserved.
Windham-Myers, L.; Marvin-DiPasquale, M.; Krabbenhoft, D.P.; Agee, J.L.; Cox, M.H.; Heredia-Middleton, P.; Coates, C.; Kakouros, E.
2009-01-01
We performed plant removal (devegetation) experiments across a suite of ecologically diverse wetland settings (tidal salt marshes, river floodplain, rotational rice fields, and freshwater wetlands with permanent or seasonal flooding) to determine the extent to which the presence (or absence) of actively growing plants influences the activity of the Hg(II)-methylating microbial community and the availability of Hg(II) to those microbes. Vegetated control plots were paired with neighboring devegetated plots in which photosynthetic input was terminated 4-8 months prior to measurements, through clipping aboveground biomass, severing belowground connections, and shading the sediment surface to prevent regrowth. Across all wetlands, devegetation decreased the activity of the Hg(II)-methylating microbial community (kmeth) by 38%, calculated MeHg production potential (MP) rates by 36%, and pore water acetate concentration by 78%. Decreases in MP were associated with decreases in microbial sulfate reduction in salt marsh settings. In freshwater agricultural wetlands, decreases in MP were related to indices of microbial iron reduction. Sediment MeHg concentrations were also significantly lower in devegetated than in vegetated plots in most wetland settings studied. Devegetation effects were correlated with live root density (percent volume) and were most profound in vegetated sites with higher initial pore water acetate concentrations. Densely rooted wetlands had the highest rates of microbial Hg(II)-methylation activity but often the lowest concentrations of bioavailable reactive Hg(II). We conclude that the exudation of labile organic carbon (e.g., acetate) by plants leads to enhanced microbial sulfate and iron reduction activity in the rhizosphere, which results in high rates of microbial Hg(II)-methyation and high MeHg concentrations in wetland sediment.
Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark; Krabbenhoft, David P.; Agee, Jennifer L.; Cox, Marisa H.; Heredia-Middleton, Pilar; Coates, Carolyn; Kakouros, Evangelos
2009-01-01
We performed plant removal (devegetation) experiments across a suite of ecologically diverse wetland settings (tidal salt marshes, river floodplain, rotational rice fields, and freshwater wetlands with permanent or seasonal flooding) to determine the extent to which the presence (or absence) of actively growing plants influences the activity of the Hg(II)-methylating microbial community and the availability of Hg(II) to those microbes. Vegetated control plots were paired with neighboring devegetated plots in which photosynthetic input was terminated 4–8 months prior to measurements, through clipping aboveground biomass, severing belowground connections, and shading the sediment surface to prevent regrowth. Across all wetlands, devegetation decreased the activity of the Hg(II)-methylating microbial community (kmeth) by 38%, calculated MeHg production potential (MP) rates by 36%, and pore water acetate concentration by 78%. Decreases in MP were associated with decreases in microbial sulfate reduction in salt marsh settings. In freshwater agricultural wetlands, decreases in MP were related to indices of microbial iron reduction. Sediment MeHg concentrations were also significantly lower in devegetated than in vegetated plots in most wetland settings studied. Devegetation effects were correlated with live root density (percent volume) and were most profound in vegetated sites with higher initial pore water acetate concentrations. Densely rooted wetlands had the highest rates of microbial Hg(II)-methylation activity but often the lowest concentrations of bioavailable reactive Hg(II). We conclude that the exudation of labile organic carbon (e.g., acetate) by plants leads to enhanced microbial sulfate and iron reduction activity in the rhizosphere, which results in high rates of microbial Hg(II)-methyation and high MeHg concentrations in wetland sediment.
Rapid and sensitive analytical method for monitoring of 12 organotin compounds in natural waters.
Vahčič, Mitja; Milačič, Radmila; Sčančar, Janez
2011-03-01
A rapid analytical method for the simultaneous determination of 12 different organotin compounds (OTC): methyl-, butyl-, phenyl- and octyl-tins in natural water samples was developed. It comprises of in situ derivatisation (by using NaBEt4) of OTC in salty or fresh water sample matrix adjusted to pH 6 with Tris-citrate buffer, extraction of ethylated OTC into hexane, separation of OTC in organic phase on 15 m GC column and subsequent quantitative determination of separated OTC by ICP-MS. To optimise the pH of ethylation, phosphate, carbonate and Tris-citrate buffer were investigated alternatively to commonly applied sodium acetate - acetic acid buffer. The ethylation yields in Tris-citrate buffer were found to be better for TBT, MOcT and DOcT in comparison to commonly used acetate buffer. Iso-octane and hexane were examined as organic phase for extraction of ethylated OTC. The advantage of hexane was in its ability for quantitative determination of TMeT. GC column of 15 m in length was used for separation of studied OTC under the optimised separation conditions and its performances compared to 30 m column. The analytical method developed enables sensitive simultaneous determination of 12 different OTC and appreciably shortened analysis time in larger series of water samples. LOD's obtained for the newly developed method ranged from 0.05-0.06 ng Sn L-1 for methyl-, 0.11-0.45 ng Sn L-1 for butyl-, 0.11-0.16 ng Sn L-1 for phenyl-, and 0.07-0.10 ng Sn L-1 for octyl-tins. By applying the developed analytical method, marine water samples from the Northern Adriatic Sea containing mainly butyl- and methyl-tin species were analysed to confirm the proposed method's applicability.
Solvent extraction of organic acids from stillage for its re-use in ethanol production process.
Castro, G A; Caicedo, L A; Alméciga-Díaz, C J; Sanchez, O F
2010-06-01
Stillage re-use in the fermentation stage in ethanol production is a technique used for the reduction of water and fermentation nutrients consumption. However, the inhibitory effect on yeast growth of the by-products and feed components that remains in stillage increases with re-use and reduces the number of possible recycles. Several methods such as ultrafiltration, electrodialysis and advanced oxidation processes have been used in stillage treatment prior its re-use in the fermentation stage. Nevertheless, few studies evaluating the effect of solvent extraction as a stillage treatment option have been performed. In this work, the inhibitory effect of serial stillage recycling over ethanol and biomass production was determined, using acetic acid as a monitoring compound during the fermentation and solvent extraction process. Raw palm oil methyl ester showed the highest acetic acid extraction from the aqueous phase, presenting a distribution coefficient of 3.10 for a 1:1 aqueous phase mixture:solvent ratio. Re-using stillage without treatment allowed up to three recycles with an ethanol production of 53.7 +/- 2.0 g L(-1), which was reduced 25% in the fifth recycle. Alternatively, treated stillage allowed up to five recycles with an ethanol final concentration of 54.7 +/- 1.3 g L(- 1). These results show that reduction of acetic acid concentration by an extraction process with raw palm oil methyl ester before re-using stillage improves the number of recycles without a major effect on ethanol production. The proposed process generates a palm oil methyl ester that contains organic acids, among other by-products, that could be used for product recovery and as an alternative fuel.
Landolt, Peter; Zhang, Qing-He
2016-07-01
Chemical attractants for trapping temperate social wasps have been discovered during the screening of chemicals as attractants for flies, the study of pentatomid bug pheromones, and the testing of volatiles of fermented sweet baits. Wasp attraction to these chemicals seems to be related to either food-finding or prey-finding behavior. Of these attractive chemicals, commercial lures marketed in North America for trapping wasps generally contain heptyl butyrate, or the combination of acetic acid and 2-methyl-1-butanol. Heptyl butyrate is a very good attractant for two major pest wasp species in North America and minor wasp pests in the Vespula rufa species group. The combination of acetic acid with isobutanol attracted nearly all North American pest species of social wasps, including yellowjackets (Vespula and Dolichovespula), a hornet (Vespa crabro), and several paper wasps (Polistes spp.). The testing of wasp chemical attractants in different geographic areas demonstrated responses of many wasp taxa and showed a broad potential scope for the marketing of trap lures. Comparisons of compounds structurally similar to isobutanol revealed similar activity with 2-methyl-1-butanol, which is now used commercially because of a vapor pressure that is more favorable than isobutanol for formulations and dispensers. Doses and concentrations needed for good wasp catches were determined for heptyl butyrate, acetic acid, isobutanol, and 2-methyl-1-butanol, either formulated in water or dispensed from a controlled release device. Trap designs were developed based on consumer considerations; visual appeal, ease and safety of use, and low environmental impact. The resultant lures and traps are marketed in numerous physical and on-line retail outlets throughout the United States and southern Canada.
Schaefer, J.K.; Goodwin, K.D.; McDonald, I.R.; Murrell, J.C.; Oremland, R.S.
2002-01-01
A marine methylotroph, designated strain MB2T, was isolated for its ability to grow on methyl bromide as a sole carbon and energy source. Methyl chloride and methyl iodide also supported growth, as did methionine and glycine betaine. A limited amount of growth was observed with dimethyl sulfide. Growth was also noted with unidentified components of the complex media marine broth 2216, yeast extract and Casamino acids. No growth was observed on methylated amines, methanol, formate, acetate, glucose or a variety of other substrates. Growth on methyl bromide and methyl iodide resulted in their oxidation to CO2 with stoichiometric release of bromide and iodide, respectively. Strain MB2T exhibited growth optima at NaCl and Mg2+ concentrations similar to that of seawater. Phylogenetic analysis of the 16S rDNA sequence placed this strain in the ??-Proteobacteria in proximity to the genera Ruegeria and Roseobacter. It is proposed that strain MB2T (= ATCC BAA-92T = DSM 14336T) be designated Leisingera methylohalidivorans gen. nov., sp. nov.
THE EFFECT OF SALICYLATES ON THE PRECIPITATION OF ANTIGEN WITH ANTIBODY.
Coburn, A F; Kapp, E M
1943-02-01
1. Sodium salicylate modifies the precipitation of normal rabbit serum protein by sodium tungstate, and partially inhibits the precipitation of horse serum euglobulin by rabbit antiserum. Sodium salicylate added to a system containing crystalline egg albumin and its antibody partly prevents the formation of precipitate, the degree of inhibition being related to the concentration of salicylate. 2. Precipitation in the equivalence zone is more readily prevented by salicylate than precipitation in the region of antibody excess, the immune system becoming progressively less sensitive to the action of salicylate as the excess of antibody becomes larger. 3. Formed precipitates were partly dissolved following resuspension in the presence of salicylate. 4. The salicylate effect on immune precipitation is reversible, and appears to be due to inactivation of antibody. 5. Salicylate was more effective in preventing specific precipitation than other anions of a lyotropic series tested.
THE EFFECT OF SALICYLATES ON THE PRECIPITATION OF ANTIGEN WITH ANTIBODY
Coburn, Alvin F.; Kapp, Eleanor M.
1943-01-01
1. Sodium salicylate modifies the precipitation of normal rabbit serum protein by sodium tungstate, and partially inhibits the precipitation of horse serum euglobulin by rabbit antiserum. Sodium salicylate added to a system containing crystalline egg albumin and its antibody partly prevents the formation of precipitate, the degree of inhibition being related to the concentration of salicylate. 2. Precipitation in the equivalence zone is more readily prevented by salicylate than precipitation in the region of antibody excess, the immune system becoming progressively less sensitive to the action of salicylate as the excess of antibody becomes larger. 3. Formed precipitates were partly dissolved following resuspension in the presence of salicylate. 4. The salicylate effect on immune precipitation is reversible, and appears to be due to inactivation of antibody. 5. Salicylate was more effective in preventing specific precipitation than other anions of a lyotropic series tested. PMID:19871273
Serrano, Jacqueline M; Collignon, R Maxwell; Zou, Yunfan; Millar, Jocelyn G
2018-04-01
To date, all known or suspected pheromones of click beetles (Coleoptera: Elateridae) have been identified solely from species native to Europe and Asia; reports of identifications from North American species dating from the 1970s have since proven to be incorrect. While conducting bioassays of pheromones of a longhorned beetle (Coleoptera: Cerambycidae), we serendipitously discovered that males of Cardiophorus tenebrosus L. and Cardiophorus edwardsi Horn were specifically attracted to the cerambycid pheromone fuscumol acetate, (E)-6,10-dimethylundeca-5,9-dien-2-yl acetate, suggesting that this compound might also be a sex pheromone for the two Cardiophorus species. Further field bioassays and electrophysiological assays with the enantiomers of fuscumol acetate determined that males were specifically attracted by the (R)-enantiomer. However, subsequent analyses of extracts of volatiles from female C. tenebrosus and C. edwardsi showed that the females actually produced a different compound, which was identified as (3R,6E)-3,7,11-trimethyl-6,10-dodecadienoic acid methyl ester (methyl (3R,6E)-2,3-dihydrofarnesoate). In field trials, both the racemate and the (R)-enantiomer of the pheromone attracted similar numbers of male beetles, suggesting that the (S)-enantiomer was not interfering with responses to the insect-produced (R)-enantiomer. This report constitutes the first conclusive identification of sex pheromones for any North American click beetle species. Possible reasons for the strong and specific attraction of males to fuscumol acetate, which is markedly different in structure to the actual pheromone, are discussed.
The chemical biology of methanogenesis
NASA Astrophysics Data System (ADS)
Ferry, James G.
2010-12-01
Two distinct pathways account for most of the CH 4 produced in the majority of the diverse and vast anaerobic environments of Earth's biosphere by microbes that are classified in the Archaea domain of life: conversion of the methyl group of acetate to CH 4 in the aceticlastic pathway and reduction of CO 2 with electrons derived from H 2, formate or CO in the CO 2 reduction pathway. Minor, albeit ecologically important, amounts of CH 4 are produced by conversion of methylotrophic substrates methanol, methylamines and methyl sulfides. Although all pathways have terminal steps in common, they deviate in the initial steps leading to CH 4 and mechanisms for synthesizing ATP for growth. Hydrogen gas is the major reductant for CO 2-reducing methanogens in the deep subsurface, although H 2 is also utilized by CO 2-reducing microbes from the Bacteria domain that produce acetate for the aceticlastic methanogens. This review presents fundamentals of the two major CH 4-producing pathways with a focus on understanding the potential for biologically-produced CH 4 on Mars.
Identification of Active Compounds in the Root of Merung (Coptosapelta tomentosa Valeton K. Heyne)
NASA Astrophysics Data System (ADS)
Fitriyana
2018-04-01
The roots of Merung (Coptosapelta tomentosa Valeton K. Heyne) are a group of shrubs usually found on the margins of secondary dryland forest. Empirically, local people have been using the roots of Merung for medical treatment. However, some researches show that the plant extract is used as a poisonous material applied on the tip of the arrow (dart). Based on the online literature study, there are less than 5 articles that provide information about the active compound of this root extract. This study aimed to give additional information more deeply about the content of active compound of Merung root extract in three fractions, n-hexane (nonpolar), ethyl acetate (semi polar) and methanol (polar). The extract was then analysed using Gas Chromatography-Mass Spectrometry (GC-MS). GC-MS analysis of root extract in n-hexane showed there were 56 compounds, with the main compound being decanoic acid, methyl ester (peak 5, 10.13%), 11-Octadecenoic acid, methyl ester (peak 15, 10.43%) and 1H-Pyrazole, 3- (4-chlorophenyl) -4, 5-dihydro-1-phenyl (peak 43, 11.25%). Extracts in ethyl acetate fraction obtained 81 compounds. The largest component is Benzoic acid (peak 19, 22.40%), whereas in methanol there are 38 compounds, of which the main component is 2-Furancarboxaldehyde, 5-(hydroxyl methyl) (peak 29, 30.46%).
Rasheed, Hafiz Majid; Khan, Taous; Wahid, Fazli; Khan, Rasool; Shah, Abdul Jabbar
2015-01-01
Rosa indica L. belongs to the family Rosaceae and is locally known as gulaab. It has different traditional uses in cardiovascular and gastrointestinal disorders but there is no scientific data available in this regard. Therefore, the basic aim of this study was to explore the chemical composition and gastrointestinal and cardiovascular effects of the essential oil obtained from R. indica. The chemical composition of the essential oil was investigated using gas chromatography-mass spectrometry (GC-MS) technique. The cardiovascular and gastrointestinal effects were investigated using electrophysiological measurements. The GC-MS analysis of the essential oil showed various chemical components including acetic acid, mercaptohexyl ester, butanoic acid, 2-methyl-5-oxo-1-cyclopentene-1-yl ester, artemiseole, methyl santonilate, isosteviol, caryophyllene oxide, pentyl phenyl acetate, dihydromyrcene, 1,5-octadecadien, octadecanoic acid, ethyl ester, palmitic acid (2-phenyl-1,3-dioxolan-4-yl methyl ester), santolina epoxide, and 9-farnesene. The electrophysiological measurements revealed that essential oil was more potent against K+ (80 mM) than phenylephrine precontractions using isolated rabbit aorta preparations. In isolated rabbit jejunum preparations, it showed more potency against high K+ induced contractions than spontaneous contractions. Considering these evidences, it can be concluded that R. indica essential oil may work as a complementary and alternative medicine in gastrointestinal and cardiovascular diseases. PMID:26357519
The dissolution of quartz in dilute aqueous solutions of organic acids at 25°C
Bennett, P.C.; Melcer, M.E.; Siegel, D.I.; Hassett, J.P.
1988-01-01
The dissolution of quartz in dilute aqueous solutions of organic acids at 25° and standard pressure was investigated by the batch dissolution method. The bulk dissolution rate of quartz in 20 mmole/Kg citrate solutions at pH 7 was 8 to 10 times faster than that in pure water. After 1750 hours the concentration of dissolved silica in the citrate solution was 167 μmole/Kg compared to 50 μmole/Kg in water and a 20 mmole/Kg solution of acetate at pH 7. Solutions of salicylic, oxalic, and humic acids also accelerated the dissolution of quartz in aqueous solution at pH 7. The rate of dissolution in organic acids decreased sharply with decreasing pH.The possibility of a silica-organic acid complex was investigated using UV-difference spectroscopy. Results suggest that dissolved silica is complexed by citrate, oxalate and pyruvate at pH 7 by an electron-donor acceptor complex, whereas no complexation occurs between silica and acetate, lactate, malonate, or succinate. Three models are proposed for the solution and surface complexation of silica by organic acid anions which result in the accelerated dissolution and increased solubility of quartz in organic rich water.
Mutational Analysis of a Role for Salicylic Acid in Iron Metabolism of Mycobacterium smegmatis
Adilakshmi, Tadepalli; Ayling, Peter D.; Ratledge, Colin
2000-01-01
The role of salicylic acid in iron metabolism was examined in two wild-type strains (mc2155 and NCIMB 8548) and three mutant strains (mc21292 [lacking exochelin], SM3 [lacking iron-dependent repressor protein IdeR] and S99 [a salicylate-requiring auxotroph derived in this study]) of Mycobacterium smegmatis. Synthesis of salicylate in SM3 was derepressed even in the presence of iron, as was synthesis of the siderophores exochelin, mycobactin, and carboxymycobactin. S99 was dependent on salicylate for growth and failed to grow with the three ferrisiderophores, suggesting that salicylate fulfills an additional function(s) other than being a precursor of mycobactin and carboxymycobactin. Salicylic acid at 100 μg/ml repressed the formation of a 29-kDa cell envelope protein (putative exochelin receptor protein) in S99 grown both iron deficiently and iron sufficiently. In contrast, synthesis of this protein was affected only under iron-limited conditions in the parent strain, mc2155, and remained unaltered in SM3, suggesting an interaction between the IdeR protein and salicylate. Thus, salicylate may also function as a signal molecule for recognition of cellular iron status. Growth of all strains and mutants with p-aminosalicylate (PAS) at 100 μg/ml increased salicylate accumulation between three- and eightfold under both iron-limited and iron-sufficient growth conditions and decreased mycobactin accumulation by 40 to 80% but increased carboxymycobactin accumulation by 50 to 55%. Thus, although PAS inhibited salicylate conversion to mycobactin, presumptively by blocking salicylate AMP kinase, PAS also interferes with the additional functions of salicylate, as its effect was heightened in S99 when the salicylate concentration was minimal. PMID:10629169
Pigmentation, anesthesia, behavioral factors, and salicylate uptake.
Jastreboff, P J; Issing, W; Brennan, J F; Sasaki, C T
1988-02-01
In four experiments, 54 pigmented rats were used to examine the time course of sodium salicylate uptake in serum, cerebrospinal fluid, and perilymph. Subjects were tested under sodium pentobarbital anesthesia or while conscious. Compared with previously reported data from albino rats, pigmented subjects generally showed increased salicylate uptake. Moreover, the data suggested two different, time-dependent clearance mechanisms in conscious animals not observed in anesthetized rats. Daily injections of salicylate did not produce an accumulation of salicylate in serum. Systematically higher levels of salicylate were observed in perilymph compared with cerebrospinal fluid. Behavioral procedures, including water deprivation and conditioned suppression of ongoing drinking levels, had no effect on salicylate levels.
Delplace, Vianney; Guégain, Elise; Harrisson, Simon; Gigmes, Didier; Guillaneuf, Yohann; Nicolas, Julien
2015-08-18
2-Methylene-4-phenyl-1,3-dioxolane (MPDL) was successfully used as a controlling comonomer in NMP with oligo(ethylene glycol) methyl ether methacrylate (MeOEGMA) to prepare well-defined and degradable PEG-based P(MeOEGMA-co-MPDL) copolymers. The level of ester group incorporation is controlled, leading to reductions in molecular weight of up to 95% on hydrolysis. Neither the polymer nor its degradation products displayed cytoxicity. The method was also successfully applied to methyl methacrylate.
Liu, Yun-Kui; Zheng, Hui; Xu, Dan-Qian; Xu, Zhen-Yuan; Zhang, Yong-Min
2006-01-01
Stereoselective transformation of Baylis-Hillman acetates 1 into corresponding (Z)-allyl iodides 2 has been achieved by treatment of 1 with samarium triiodide in THF. Remarkable rate acceleration of samarium triiodide-mediated iodination of 1 was found when ionic liquid 1-n-butyl-3-methyl-imidazolium tetrafluroborate ([bmim]BF4) was used as reaction media in stead of THF. This novel approach proceeds readily at 50 °C within a few minutes to afford (Z)-allyl iodides 2 in excellent yields. A mechanism involving stereoselective iodination of the acetates of Baylis-Hillman adducts by samarium triiodide is described, in which a six-membered ring transition state played a key role in the stereoselective formation of 2. PMID:16502505
GABAergic Neural Activity Involved in Salicylate-Induced Auditory Cortex Gain Enhancement
Lu, Jianzhong; Lobarinas, Edward; Deng, Anchun; Goodey, Ronald; Stolzberg, Daniel; Salvi, Richard J.; Sun, Wei
2011-01-01
Although high doses of sodium salicylate impair cochlear function, it paradoxically enhances sound-evoked activity in the auditory cortex (AC) and augments acoustic startle reflex responses, neural and behavioral metrics associated with hyperexcitability and hyperacusis. To explore the neural mechanisms underlying salicylate-induced hyperexcitability and “increased central gain”, we examined the effects of γ-aminobutyric acid (GABA) receptor agonists and antagonists on salicylate-induced hyperexcitability in the AC and startle reflex responses. Consistent with our previous findings, local or systemic application of salicylate significantly increased the amplitude of sound-evoked AC neural activity, but generally reduced spontaneous activity in the AC. Systemic injection of salicylate also significantly increased the acoustic startle reflex. S-baclofen or R-baclofen, GABA-B agonists, which suppressed sound-evoked AC neural firing rate and local field potentials, also suppressed the salicylate-induced enhancement of the AC field potential and the acoustic startle reflex. Local application of vigabatrin, which enhances GABA concentration in the brain, suppressed the salicylate-induced enhancement of AC firing rate. Systemic injection of vigabatrin also reduced the salicylate-induced enhancement of acoustic startle reflex. Collectively, these results suggest that the sound-evoked behavioral and neural hyperactivity induced by salicylate may arise from a salicylate-induced suppression GABAergic inhibition in the AC. PMID:21664433
Gharbi, E; Lutts, S; Dailly, H; Quinet, M
2018-06-26
Exogenous application of salicylic acid may improve tolerance to salinity. To investigate whether exogenous salicylic acid application had similar protective effects when applied as a priming agent or concomitantly with NaCl, tomato seedlings primed or not with 10 µM salicylic acid were further treated with 125 mM NaCl, 10 µM salicylic acid or combined treatments. Both priming and concomitant application of salicylic acid increased plant growth of salt-stressed plants but their positive impact was not additive. The endogenous salicylic acid concentration increased in the leaves after concomitant application but not in response to priming, suggesting that salicylic acid accumulated during priming was metabolized subsequently. Priming increased Na + and K + accumulation in leaves of salt-treated plants while concomitant application had no impact on shoot Na + and K + accumulation. Both priming and concomitant salicylic acid decreased osmotic potential values in salt-treated plants. Carbon isotope discrimination showed that combination of both salicylic acid application methods were required to maintain a good water use efficiency in salt-treated plants. Our work demonstrated that both procedures of salicylic acid application have positive impact on salt resistance but that the underlying properties sustaining these adaptations differ according to application methods.
Ototoxicity of salicylate, nonsteroidal antiinflammatory drugs, and quinine.
Jung, T T; Rhee, C K; Lee, C S; Park, Y S; Choi, D C
1993-10-01
Salicylates and most NSAIDS in high doses cause mild to moderate temporary hearing loss, either flat or greater in the high frequencies. Hearing loss is accompanied by tinnitus and suprathreshold changes. Salicylates may or may not exacerbate hearing loss and cochlear damage induced by noise. The mechanism of salicylate ototoxicity seems to be multifactorial. Morphologic studies suggest that no permanent cochlear damage occurs with salicylate ototoxicity. Electrophysiologic, morphologic, and in vitro data conclusively demonstrate that salicylate affects outer hair cells. In addition, salicylates appear to decrease cochlear blood flow. Salicylates and NSAIDs inhibit PG-forming cyclooxygenase, and recent studies suggest that abnormal levels of arachidonic acid metabolites consisting of decreased PGs and increased LTs may mediate salicylate ototoxicity. As with salicylate, quinine ototoxicity appears to be multifactorial in origin. The mechanism includes vasoconstriction and decreases in cochlear blood flow, as measured by laser Doppler flowmetry, motion photographic studies, and histologic studies. Reversible alterations of outer hair cells also appear to play an important role, as demonstrated by histology, electron microscopy, isolated hair cell studies, and cochlear potential evaluations. Unlike with salicylate, however, the role of prostaglandins in quinine ototoxicity has not been clearly demonstrated. Also, one of quinine's principal actions, antagonism of calcium-dependent potassium channels, has yet to be investigated for its potential role in ototoxicity.
Dosage of salicylates for children with juvenile rheumatoid arthritis. A preliminary report.
Mäkelä, A L; Tryänä, T; Haapasaari, J
1975-01-01
The daily dosage of salicylates is traditionally very high for patients with juvenile rheumatoid arthritis. In order to achieve the optimal therapeutic effect, serum salicylate levels are kept at 30-35 mg/100 ml (2175-2540 mumol/l). The recommended daily dosage in the textbooks is about 100 mg/kg of body weight, and the reported dosage/m2 of body surface area has been 3.2 g/m2/day. These dosages are, however, too high in clinical routine. In the present investigation, 19 children were treated with salicylates for 15 days with daily check-ups of the serum salicylate levels. Seven of these children had symptoms of salicylate intoxication which corresponded closely to the serum salicylate levels. If the daily dosage of salicylates exceeds 3 g/m2 of body surface area, intoxication can be expected.
Biosynthesis of Rishirilide B.
Schwarzer, Philipp; Wunsch-Palasis, Julia; Bechthold, Andreas; Paululat, Thomas
2018-03-07
Rishirilide B was isolated from Streptomyces rishiriensis and Streptomyces bottropensis on the basis of its inhibitory activity towards alpha-2-macroglobulin. The biosynthesis of rishirilide B was investigated by feeding experiments with different 13 C labelled precursors using the heterologous host Streptomyces albus J1074::cos4 containing a cosmid encoding of the gene cluster responsible for rishirilide B production. NMR spectroscopic analysis of labelled compounds demonstrate that the tricyclic backbone of rishirilide B is a polyketide synthesized from nine acetate units. One of the acetate units is decarboxylated to give a methyl group. The origin of the starter unit was determined to be isobutyrate.
Giridhar Reddy, P.; Ramesh, K.; Shylaja, S.; Rajanna, K. C.; Kandlikar, S.
2012-01-01
Kinetics of Ru (III) catalyzed oxidation of aliphatic ketones such as acetone, ethyl methyl ketone, diethyl ketone, iso-butylmethyl ketone by N-bromosuccinimide in the presence of Hg(II) acetate have been studied in aqueous acid medium. The order of [N-bromosuccinimide] was found to be zero both in catalyzed as well as uncatalyzed reactions. However, the order of [ketone] changed from unity to a fractional one in the presence of Ru (III). On the basis of kinetic features, the probable mechanisms are discussed and individual rate parameters evaluated. PMID:22654610
Use of ferric chloride to identify salicylate-containing poisons.
Hoffman, Robert J; Nelson, Lewis S; Hoffman, Robert S
2002-01-01
Ferric chloride (FeCl3) is used to qualitatively test the urine of patients with presumed salicylate exposure. FeCl3 testing of an unidentified poison might provide evidence of salicylate exposure in situations where FeCl3 urine testing cannot be used. Such situations include the absence of a urine sample, immediately after ingestion before urine contains a detectable quantity of salicylate, or for patients chronically using salicylatesfor which FeCl3 testing is unhelpful. This study seeks to determine if FeCl3 can be used to identify salicylate-containing products. We assessed the reactivity of FeCl3 with commercially available salicylate-containing products. We applied 0.1 mL of 10% FeCl3 solution to each of 15 various salicylate-containing products including: regular and buffered acetylsalicylic acid, bismuth subsalicylate, methylsalicylate, physostigmine salicylate, salicylic acid, trolamine salicylate, and herbal tablets with salicin-containing white willow bark (Salix sp.). These products tested were: regular and enteric-coatedpills (n = 4), powder (n = 1), topical creams (n = 5), topical liquids (n = 4), and intravenous solution (n = 1). FeCl3 was applied to crushed tablets and added directly to liquids and creams. Fifteen salicylate-free controls including liquids, pills, and creams similar in appearance to experimental samples were also tested. Three blinded physiciansfamiliar with FeCl3 testing independently observed the addition of FeCl3 to each sample and rated a positive or negative result. All salicylate-containing products were interpreted to be clearly FeCl3 positive and all control samples were interpreted to be clearly FeCl3 negative. Salicylate-containing products may be identified using FeCl33. When using FeCl3
Song, Yuhua; Guallar, Victor; Baker, Nathan A.
2008-01-01
Salicylate, an amphiphilic molecule and a popular member of non-steroidal antiinflammatory drug family, is known to affect hearing through reduction of the electromechanical coupling in the outer hair cells of the ear. This reduction of electromotility by salicylate has been widely studied but the molecular mechanism of the phenomenon is still unknown. In this study, we investigated one aspect of salicylate’s action; namely, the perturbation of electrical and mechanical membrane properties by salicylate in the absence of cytoskeletal or membrane-bound motor proteins such as prestin. In particular, we simulated the interaction of salicylate with a dipalmitoylphosphatidylcholine (DPPC) bilayer via atomically-detailed molecular dynamics simulations to observe the effect of salicylate on the microscopic and mesoscopic properties of the bilayer. The results demonstrate that salicylate interacts with the bilayer by associating at the water-DPPC interface in a nearly perpendicular orientation and penetrating more deeply into the bilayer than either sodium or chloride. This association has several affects on the membrane properties. First, binding of salicylate to the membrane displaces chloride from the bilayer-water interface. Second, salicylate influences the electrostatic potential and dielectric properties of the bilayer, with significant changes at the water-lipid bilayer interface. Third, salicylate association results in structural changes including decreased head group area per lipid and increased lipid tail order. However, salicylate does not significantly alter the mechanical properties of the DPPC bilayer; bulk compressibility, area compressibility, and bending modulus were only perturbed by small, statistically-insignificant amounts, by the presence of salicylate. The observations from these simulations are in qualitative agreement with experimental data and support the conclusion that salicylate influences the electrical but not the mechanical properties of DPPC membranes. PMID:16216066
Ear swelling test by using laser speckle imaging with a long exposure time
NASA Astrophysics Data System (ADS)
Kalchenko, Vyacheslav; Kuznetsov, Yuri; Preise, Dina; Meglinski, Igor; Harmelin, Alon
2014-06-01
Laser speckle imaging with long exposure time has been applied noninvasively to visualize the immediate reaction of cutaneous vessels in mice in response to a known primary irritant and potential allergen-methyl salicylate. The compound has been used topically on the surface of the pinna and the reaction of the vascular network was examined. We demonstrate that irritant-induced acute vascular reaction can be effectively and accurately detected by laser speckle imaging technique. The current approach holds a great promise for application in routine screening of the cutaneous vascular response induced by contact agents, screenings of mouse ear swelling test, and testing the allergenic potential of new synthetic materials and healthcare pharmaceutical products.
Development of an enumeration method for arsenic methylating bacteria from mixed culture samples.
Islam, S M Atiqul; Fukushi, Kensuke; Yamamoto, Kazuo
2005-12-01
Bacterial methylation of arsenic converts inorganic arsenic into volatile and non-volatile methylated species. It plays an important role in the arsenic cycle in the environment. Despite the potential environmental significance of AsMB, an assessment of their population size and activity remains unknown. This study has now established a protocol for enumeration of AsMB by means of the anaerobic-culture-tube, most probable number (MPN) method. Direct detection of volatile arsenic species is then done by GC-MS. This method is advantageous as it can simultaneously enumerate AsMB and acetate and formate-utilizing methanogens. The incubation time for this method was determined to be 6 weeks, sufficient time for AsMB growth.
Ahmad, Naveed; Zia-ur-Rehman, Muhammad; Siddiqui, Hamid Latif; Ullah, Muhammad Fasih; Parvez, Masood
2011-06-01
A series of 4-hydroxy-N'-[1-phenylethylidene]-2H/2-methyl, 1,2-benzothiazine-3-carbohydrazide 1,1-dioxides was synthesized from commercially available sodium saccharin. Base catalyzed ring expansion of methyl (1,1-dioxido-3-oxo-1,2-benzisothiazol-2(3H)-yl)acetate followed by ultrasound mediated hydrazinolysis and subsequent reaction with 1-phenylethanones under the influence of microwaves yielded the title compounds. Besides, microwave assisted synthesis of 1,4-dihydropyrazolo[4,3-c][1,2]benzothiazin-3-ol 5,5-dioxide and 4-methyl-1,4-dihydropyrazolo[4,3-c][1,2]benzothiazin-3-ol 5,5-dioxide is also discussed. Most of the synthesized compounds were found to possess moderate to significant anti-microbial (anti-bacterial and anti-fungal) activities. It is found that compounds with greater lipophilicity (N-methyl analogues) possessed higher anti-bacterial activities. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Liu, Zhi; Sun, Yongzhu; Chang, Haifeng; Cui, Pengcheng
2014-01-01
Objective This study was designed to establish a low dose salicylate-induced tinnitus rat model and to investigate whether central or peripheral auditory system is involved in tinnitus. Methods Lick suppression ratio (R), lick count and lick latency of conditioned rats in salicylate group (120 mg/kg, intraperitoneally) and saline group were first compared. Bilateral auditory nerves were ablated in unconditioned rats and lick count and lick latency were compared before and after ablation. The ablation was then performed in conditioned rats and lick count and lick latency were compared between salicylate group and saline group and between ablated and unablated salicylate groups. Results Both the R value and the lick count in salicylate group were significantly higher than those in saline group and lick latency in salicylate group was significantly shorter than that in saline group. No significant changes were observed in lick count and lick latency before and after ablation. After ablation, lick count and lick latency in salicylate group were significantly higher and shorter respectively than those in saline group, but they were significantly lower and longer respectively than those in unablated salicylate group. Conclusion A low dose of salicylate (120 mg/kg) can induce tinnitus in rats and both central and peripheral auditory systems participate in the generation of salicylate-induced tinnitus. PMID:25269067
Molecular Active Sites in Heterogeneous Ir-La/C-Catalyzed Carbonylation of Methanol to Acetates.
Kwak, Ja Hun; Dagle, Robert; Tustin, Gerald C; Zoeller, Joseph R; Allard, Lawrence F; Wang, Yong
2014-02-06
We report that when Ir and La halides are deposited on carbon, exposure to CO spontaneously generates a discrete molecular heterobimetallic structure, containing an Ir-La covalent bond that acts as a highly active, selective, and stable heterogeneous catalyst for the carbonylation of methanol to produce acetic acid. This catalyst exhibits a very high productivity of ∼1.5 mol acetyl/mol Ir·s with >99% selectivity to acetyl (acetic acid and methyl acetate) without detectable loss in activity or selectivity for more than 1 month of continuous operation. The enhanced activity can be mechanistically rationalized by the presence of La within the ligand sphere of the discrete molecular Ir-La heterobimetallic structure, which acts as a Lewis acid to accelerate the normally rate-limiting CO insertion in Ir-catalyzed carbonylation. Similar approaches may provide opportunities for attaining molecular (single site) behavior similar to homogeneous catalysis on heterogeneous surfaces for other industrial applications.
Barik, Mousumi; Rawani, Anjali; Laskar, Subrata; Chandra, Goutam
2018-02-19
The larvicidal potentiality of crude and ethyl acetate extracts of fruits of Acacia auriculiformis was investigated against all the larval instars of JE vector Culex vishnui. The crude extracts showed good results against all the larval instars with highest mortality at 0.09%. Highest mortality was found at 300 ppm of ethyl acetate extract. Lowest LC 50 value was obtained at 72 h for third instar larvae. Non target organisms tested, showed no to very less mortality to ethyl acetate solvent extract. Presence of N-H stretching, a C=O stretching, C=C and C-N stretching vibrations of secondary amide or amine group were confirmed from IR analysis. GC-MS analysis revealed the presence of three compounds namely Ethane 2-chloro-1,1-dimethoxy, Acetic acid, 1-methyl ether ester and [4-[1-[3,5-Dimethyl-4[(trimethylsilyl)oxy)phenyl]-1,3-dimethylbutyl)-2,6dimethylphenoxy)(trimethyl) silane, responsible for mosquito larval death.
Zhang, Jie; Guo, Rong-Bo; Qiu, Yan-Ling; Qiao, Jiang-Tao; Yuan, Xian-Zheng; Shi, Xiao-Shuang; Wang, Chuan-Shui
2015-03-01
The effect of bioaugmentation with an acetate-type fermentation bacterium in the phylum Bacteroidetes on the anaerobic digestion of corn straw was evaluated by batch experiments. Acetobacteroides hydrogenigenes is a promising strain for bioaugmentation with relatively high growth rate, hydrogen yields and acetate tolerance, which ferments a broad spectrum of pentoses, hexoses and polyoses mainly into acetate and hydrogen. During corn straw digestion, bioaugmentation with A. hydrogenigenes led to 19-23% increase of the methane yield, with maximum of 258.1 mL/g-corn straw achieved by 10% inoculation (control, 209.3 mL/g-corn straw). Analysis of lignocellulosic composition indicated that A. hydrogenigenes could increase removal rates of cellulose and hemicelluloses in corn straw residue by 12% and 5%, respectively. Further experiment verified that the addition of A. hydrogenigenes could improve the methane yields of methyl cellulose and xylan (models for cellulose and hemicelluloses, respectively) by 16.8% and 7.0%. Copyright © 2014 Elsevier Ltd. All rights reserved.
Monoterpenes Support Systemic Acquired Resistance within and between Plants
Ghirardo, Andrea; Knappe, Claudia; Koch, Kerstin; Dey, Sanjukta; Parker, Jane E.
2017-01-01
This study investigates the role of volatile organic compounds in systemic acquired resistance (SAR), a salicylic acid (SA)-associated, broad-spectrum immune response in systemic, healthy tissues of locally infected plants. Gas chromatography coupled to mass spectrometry analyses of SAR-related emissions of wild-type and non-SAR-signal-producing mutant plants associated SAR with monoterpene emissions. Headspace exposure of Arabidopsis thaliana to a mixture of the bicyclic monoterpenes α-pinene and β-pinene induced defense, accumulation of reactive oxygen species, and expression of SA- and SAR-related genes, including the SAR regulatory AZELAIC ACID INDUCED1 (AZI1) gene and three of its paralogs. Pinene-induced resistance was dependent on SA biosynthesis and signaling and on AZI1. Arabidopsis geranylgeranyl reductase1 mutants with reduced monoterpene biosynthesis were SAR-defective but mounted normal local resistance and methyl salicylate-induced defense responses, suggesting that monoterpenes act in parallel with SA. The volatile emissions from SAR signal-emitting plants induced defense in neighboring plants, and this was associated with the presence of α-pinene, β-pinene, and camphene in the emissions of the “sender” plants. Our data suggest that monoterpenes, particularly pinenes, promote SAR, acting through ROS and AZI1, and likely function as infochemicals in plant-to-plant signaling, thus allowing defense signal propagation between neighboring plants. PMID:28536145
Doornbos, Rogier F; Geraats, Bart P J; Kuramae, Eiko E; Van Loon, L C; Bakker, Peter A H M
2011-04-01
Systemically induced resistance is a promising strategy to control plant diseases, as it affects numerous pathogens. However, since induced resistance reduces one or both growth and activity of plant pathogens, the indigenous microflora may also be affected by an enhanced defensive state of the plant. The aim of this study was to elucidate how much the bacterial rhizosphere microflora of Arabidopsis is affected by induced systemic resistance (ISR) or systemic acquired resistance (SAR). Therefore, the bacterial microflora of wild-type plants and plants affected in their defense signaling was compared. Additionally, ISR was induced by application of methyl jasmonate and SAR by treatment with salicylic acid or benzothiadiazole. As a comparative model, we also used wild type and ethylene-insensitive tobacco. Some of the Arabidopsis genotypes affected in defense signaling showed altered numbers of culturable bacteria in their rhizospheres; however, effects were dependent on soil type. Effects of plant genotype on rhizosphere bacterial community structure could not be related to plant defense because chemical activation of ISR or SAR had no significant effects on density and structure of the rhizosphere bacterial community. These findings support the notion that control of plant diseases by elicitation of systemic resistance will not significantly affect the resident soil bacterial microflora.
Wang, Zheng; Tan, Xiaoli; Zhang, Zhiyan; Gu, Shoulai; Li, Guanying; Shi, Haifeng
2012-03-01
Signaling pathways mediated by salicylic acid (SA) and jasmonic acid (JA) are widely studied in various host-pathogen interactions. For oilseed rape (Brassica napus)-Sclerotinia sclerotiorum interaction, little information of the two signaling molecules has been described in detail. In this study, we showed that the level of SA and JA in B. napus leaves was increased with a distinct temporal profile, respectively, after S. sclerotiorum infection. The application of SA or methyl jasmonate enhanced the resistance to the pathogen. Furthermore, a set of SA and JA signaling marker genes were identified from B. napus and were used to monitor the signaling responses to S. sclerotiorum infection by examining the temporal expression profiles of these marker genes. The SA signaling was activated within 12h post inoculation (hpi) followed by the JA signaling which was activated around 24 hpi. In addition, SA-JA crosstalk genes were activated during this process. These results suggested that defense against S. sclerotiorum in oilseed rape is associated with a sequential activation of SA signaling and JA signaling, which provide important clues for designing strategies to curb diseases caused by S. sclerotioru. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Antiprotozoal and antimicrobial compounds from the plant pathogen Septoria pistaciarum.
Kumarihamy, Mallika; Khan, Shabana I; Jacob, Melissa; Tekwani, Babu L; Duke, Stephen O; Ferreira, Daneel; Nanayakkara, N P Dhammika
2012-05-25
Four new 1,4-dihydroxy-5-phenyl-2-pyridinone alkaloids, 17-hydroxy-N-(O-methyl)septoriamycin A (1), 17-acetoxy-N-(O-methyl)septoriamycin A (2), 13-(S)-hydroxy-N-(O-methyl)septoriamycin A (3), and 13-(R)-hydroxy-N-(O-methyl)septoriamycin A (4), together with the known compounds (+)-cercosporin (5), (+)-14-O-acetylcercosporin (6), (+)-di-O-acetylcercosporin (7), lumichrome, and brassicasterol, were isolated from an ethyl acetate extract of a culture medium of Septoria pistaciarum. Methylation of septoriamycin A (8) with diazomethane yielded three di-O-methyl analogues, two of which existed as mixtures of rotamers. We previously reported antimalarial activity of septoriamycin A. This compound also exhibited significant activity against Leishmania donovani promastigotes. Compounds 5-7 showed moderate in vitro activity against L. donovani promastigotes and chloroquine-sensitive (D6) and -resistant (W2) strains of Plasmodium falciparum, whereas compound 5 was fairly active against methicillin-sensitive and methicillin-resistant strains of Staphylococcus aureus. Compounds 5-7 also displayed moderate phytotoxic activity against both a dicot (lettuce, Lactuca sativa) and a monocot (bentgrass, Agrostis stolonifera) and cytotoxicity against a panel of cell lines.
An aziridinium ion intermediate in the nitrosation of a hexetidine model.
Loeppky, R N; Bae, J Y
1994-01-01
The nitrosation chemistry of 1,3,5-trimethyl-5-aminohexahydropyrimidine (2) has been investigated as a model for the behavior of the antimicrobial agent hexetidine (1) under similar conditions. The reaction of 2 with sodium nitrite in glacial acetic acid gives 4-methyl-4-[(methylnitrosamino)methyl]-3-nitroso-1,3-oxazolidine (4) as the major nitrosamine. This compound arises from a molecular rearrangement which proceeds through the diazotization of the primary amino group followed by intramolecular displacement of nitrogen to generate an aziridinium ion. The N-nitrosooxazolidine 4 forms from the nitrosation of an imidazolidine produced from the aziridinium ring hydrolytic opening. The N-nitrosooxazolidine 4, an isomer, 5-methyl-5-[(methylnitrosamino)methyl]-3-nitroso-1,3-oxazolidine (14), which is not formed in the nitrosation of 2, and an analog 4-methyl-4-[[(2-ethylhexyl)nitrosamino]methyl]-3-nitroso-1,3-oxazolidine (22) have been independently synthesized. The N-nitrosooxazolidine 22 which would be formed from hexetidine is not present in its nitrosation mixture, suggesting the absence of reactive aziridinium ions in that case. The dissimilar nitrosation chemistry of 2 and 1 are discussed.
USDA-ARS?s Scientific Manuscript database
In our continuing search for natural algicides with selective toxicity towards the 2-methyl- isoborneol (MIB) -producing blue-green alga Oscillatoria perornata , the ethyl acetate extract from Amyris texana leaves was investigated by bioassay-guided fractionation. A chromene amide was isolated and i...
USDA-ARS?s Scientific Manuscript database
Solid Mallet TMR (trimedlure [TML], methyl eugenol [ME], raspberry ketone [RK]) wafers and Mallet CMR (ceralure, ME, RK, benzyl acetate) wafers impregnated with DDVP insecticide were evaluated in traps as potential detection and male annihilation devices. Comparisons were made with 1) liquid lure an...
Suzuki, T; Takahashi, E
1976-01-01
1. The tRNA methyltransferase activity in vitro of leaves, cotyledons and roots of 85-day-old tea seedlings was studied. 2. The activity of extracts prepared from tea leaves with Polycar AT (insoluble polyvinylpyrrolidine) had optimum pH7.7 and was greatly influenced by thiol compounds, but only slightly by metal ions and ammonium acetate. 3. The activities of extracts, expressed per mg of protein, were as follows: roots greater than leaves greater than cotyledons. The only methylated base isolated after incubation with these preparations was 1-methyladenine. 4. The results did not support the view of involvement of methylation of nucleic acids in caffeine biosynthesis in tea plants. In contrast, it is suggested that theophylline is synthesized from the specific methylated precursor in nucleic acids, namely 1-methyladenylic acid, via 1-methylxanthine. PMID:12749
Wienhausen, Gerrit; Noriega-Ortega, Beatriz E.; Niggemann, Jutta; Dittmar, Thorsten; Simon, Meinhard
2017-01-01
Recent studies applying Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) showed that the exometabolome of marine bacteria is composed of a surprisingly high molecular diversity. To shed more light on how this diversity is generated we examined the exometabolome of two model strains of the Roseobacter group, Phaeobacter inhibens and Dinoroseobacter shibae, grown on glutamate, glucose, acetate or succinate by FT-ICR-MS. We detected 2,767 and 3,354 molecular formulas in the exometabolome of each strain and 67 and 84 matched genome-predicted metabolites of P. inhibens and D. shibae, respectively. The annotated compounds include late precursors of biosynthetic pathways of vitamins B1, B2, B5, B6, B7, B12, amino acids, quorum sensing-related compounds, indole acetic acid and methyl-(indole-3-yl) acetic acid. Several formulas were also found in phytoplankton blooms. To shed more light on the effects of some of the precursors we supplemented two B1 prototrophic diatoms with the detected precursor of vitamin B1 HET (4-methyl-5-(β-hydroxyethyl)thiazole) and HMP (4-amino-5-hydroxymethyl-2-methylpyrimidine) and found that their growth was stimulated. Our findings indicate that both strains and other bacteria excreting a similar wealth of metabolites may function as important helpers to auxotrophic and prototrophic marine microbes by supplying growth factors and biosynthetic precursors. PMID:29075248
Hu, Ting; He, Xiao-Wei; Jiang, Jian-Guo
2014-08-27
Ilex latifolia Thunb., widely distributed in China, has been used as a functional food and drunk for a long time. This study was aimed to identify the bioactive constituents with antioxidant, antitumor, and anti-inflammatory properties. I. latifolia was extracted with 95% ethanol and then partitioned into four fractions: petroleum ether fraction, ethyl acetate fraction, n-butanol fraction, and water fraction. Results showed that the ethyl acetate fraction was found to have significant ferric reducing antioxidant power activity, DPPH radical scavenging activity, and oxygen radical absorbance capacity, cytotoxicity against human cervix carcinoma HeLa cells, and inhibitory effect on NO production in macrophage RAW 264.7 cells. Five compounds were isolated from the ethyl acetate fraction, and they were identified as ethyl caffeate (1), ursolic acid (2), chlorogenic acid (3), 3,4-di-O-caffeoylquinic acid methyl ester (4), and 3,5-di-O-caffeoylquinic acid methyl ester (5), the last two of which were isolated for the first time from I. latifolia. Compounds 4 and 5 exhibited cytotoxicity actions against tumor cell line. Compound 3 showed the strongest anti-inflammatory activity of all the compounds. The results obtained in this work might contribute to the understanding of biological activities of I. latifolia and further investigation on its potential application values for food and drug.
Salicylic acid as a peeling agent: a comprehensive review
Arif, Tasleem
2015-01-01
Salicylic acid has been used to treat various skin disorders for more than 2,000 years. The ability of salicylic acid to exfoliate the stratum corneum makes it a good agent for peeling. In particular, the comedolytic property of salicylic acid makes it a useful peeling agent for patients with acne. Once considered as a keratolytic agent, the role of salicylic acid as a desmolytic agent, because of its ability to disrupt cellular junctions rather than breaking or lysing intercellular keratin filaments, is now recognized and is discussed here. Salicylic acid as a peeling agent has a number of indications, including acne vulgaris, melasma, photodamage, freckles, and lentigines. The efficacy and safety of salicylic acid peeling in Fitzpatrick skin types I–III as well as in skin types V and VI have been well documented in the literature. This paper reviews the available data and literature on salicylic acid as a peeling agent and its possible indications. Its properties, efficacy and safety, the peeling procedure, and possible side effects are discussed in detail. An account of salicylism is also included. PMID:26347269
Salicylic acid as a peeling agent: a comprehensive review.
Arif, Tasleem
2015-01-01
Salicylic acid has been used to treat various skin disorders for more than 2,000 years. The ability of salicylic acid to exfoliate the stratum corneum makes it a good agent for peeling. In particular, the comedolytic property of salicylic acid makes it a useful peeling agent for patients with acne. Once considered as a keratolytic agent, the role of salicylic acid as a desmolytic agent, because of its ability to disrupt cellular junctions rather than breaking or lysing intercellular keratin filaments, is now recognized and is discussed here. Salicylic acid as a peeling agent has a number of indications, including acne vulgaris, melasma, photodamage, freckles, and lentigines. The efficacy and safety of salicylic acid peeling in Fitzpatrick skin types I-III as well as in skin types V and VI have been well documented in the literature. This paper reviews the available data and literature on salicylic acid as a peeling agent and its possible indications. Its properties, efficacy and safety, the peeling procedure, and possible side effects are discussed in detail. An account of salicylism is also included.
Liao, James C.; Cho, Kwang Myung; Yan, Yajun; Huo, Yixin
2016-03-15
Provided herein are metabolically modified microorganisms characterized by having an increased keto-acid flux when compared with the wild-type organism and comprising at least one polynucleotide encoding an enzyme that when expressed results in the production of a greater quantity of a chemical product when compared with the wild-type organism. The recombinant microorganisms are useful for producing a large number of chemical compositions from various nitrogen containing biomass compositions and other carbon sources. More specifically, provided herein are methods of producing alcohols, acetaldehyde, acetate, isobutyraldehyde, isobutyric acid, n-butyraldehyde, n-butyric acid, 2-methyl-1-butyraldehyde, 2-methyl-1-butyric acid, 3-methyl-1-butyraldehyde, 3-methyl-1-butyric acid, ammonia, ammonium, amino acids, 2,3-butanediol, 1,4-butanediol, 2-methyl-1,4-butanediol, 2-methyl-1,4-butanediamine, isobutene, itaconate, acetoin, acetone, isobutene, 1,5-diaminopentane, L-lactic acid, D-lactic acid, shikimic acid, mevalonate, polyhydroxybutyrate (PHB), isoprenoids, fatty acids, homoalanine, 4-aminobutyric acid (GABA), succinic acid, malic acid, citric acid, adipic acid, p-hydroxy-cinnamic acid, tetrahydrofuran, 3-methyl-tetrahydrofuran, gamma-butyrolactone, pyrrolidinone, n-methylpyrrolidone, aspartic acid, lysine, cadeverine, 2-ketoadipic acid, and/or S-adenosyl-methionine (SAM) from a suitable nitrogen rich biomass.
Metabolism of Dichloromethane by the Strict Anaerobe Dehalobacterium formicoaceticum
Mägli, Andreas; Messmer, Michael; Leisinger, Thomas
1998-01-01
The metabolism of dichloromethane by Dehalobacterium formicoaceticum in cell suspensions and crude cell extracts was investigated. The organism is a strictly anaerobic gram-positive bacterium that utilizes exclusively dichloromethane as a growth substrate and ferments this compound to formate and acetate in a molar ratio of 2:1. When [13C]dichloromethane was degraded by cell suspensions, formate, the methyl group of acetate, and minor amounts of methanol were labeled, but there was no nuclear magnetic resonance signal corresponding to the carboxyl group of acetate. This finding and previously established carbon and electron balances suggested that dichloromethane was converted to methylene tetrahydrofolate, of which two-thirds was oxidized to formate while one-third gave rise to acetate by incorporation of CO2 from the medium in the acetyl coenzyme A synthase reaction. When crude desalted extracts were incubated in the presence of dichloromethane, tetrahydrofolate, ATP, methyl viologen, and molecular hydrogen, dichloromethane and tetrahydrofolate were consumed, with the concomitant formation of stoichiometric amounts of methylene tetrahydrofolate. The in vitro transfer of the methylene group of dichloromethane onto tetrahydrofolate required substoichiometric amounts of ATP. The reaction was inhibited in a light-reversible fashion by 20 μM propyl iodide, thus suggesting involvement of a Co(I) corrinoid in the anoxic dehalogenation of dichloromethane. D. formicoaceticum exhibited normal growth with 0.8 mM sodium in the medium, and crude extracts contained ATPase activity that was partially inhibited by N,N′-dicyclohexylcarbodiimide and azide. During growth with dichloromethane, the organism thus may conserve energy not only by substrate-level phosphorylation but also by a chemiosmotic mechanism involving a sodium-independent F0F1-type ATP synthase. PMID:16349505
Quantification of syntrophic acetate-oxidizing microbial communities in biogas processes
Westerholm, Maria; Dolfing, Jan; Sherry, Angela; Gray, Neil D; Head, Ian M; Schnürer, Anna
2011-01-01
Changes in communities of syntrophic acetate-oxidizing bacteria (SAOB) and methanogens caused by elevated ammonia levels were quantified in laboratory-scale methanogenic biogas reactors operating at moderate temperature (37°C) using quantitative polymerase chain reaction (qPCR). The experimental reactor was subjected to gradually increasing ammonia levels (0.8–6.9 g NH4+-N l−1), whereas the level of ammonia in the control reactor was kept low (0.65–0.90 g NH4+-N l−1) during the entire period of operation (660 days). Acetate oxidation in the experimental reactor, indicated by increased production of 14CO2 from acetate labelled in the methyl carbon, occurred when ammonia levels reached 5.5 and 6.9 g NH4+-N l−1. Syntrophic acetate oxidizers targeted by newly designed qPCR primers were Thermacetogenium phaeum, Clostridium ultunense, Syntrophaceticus schinkii and Tepidanaerobacter acetatoxydans. The results showed a significant increase in abundance of all these bacteria except T. phaeum in the ammonia-stressed reactor, coincident with the shift to syntrophic acetate oxidation. As the abundance of the bacteria increased, a simultaneous decrease was observed in the abundance of aceticlastic methanogens from the families Methanosaetaceae and Methanosarcinaceae. qPCR analyses of sludge from two additional high ammonia processes, in which methane production from acetate proceeded through syntrophic acetate oxidation (reactor SB) or through aceticlastic degradation (reactor DVX), demonstrated that SAOB were significantly more abundant in the SB reactor than in the DVX reactor. PMID:23761313
Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures.
Steinbusch, Kirsten J J; Hamelers, Hubertus V M; Schaap, Joris D; Kampman, Christel; Buisman, Cees J N
2010-01-01
Biological acetate reduction with hydrogen is a potential method to convert wet biomass waste into ethanol. Since the ethanol concentration and reaction rates are low, this research studies the feasibility of using an electrode, in stead of hydrogen, as an electron donor for biological acetate reduction in conjunction of an electron mediator. Initially, the effect of three selected mediators on metabolic flows during acetate reduction with hydrogen was explored; subsequently, the best performing mediator was used in a bioelectrochemical system to stimulate acetate reduction at the cathode with mixed cultures at an applied cathode potential of -550 mV. In the batch test, methyl viologen (MV) was found to accelerate ethanol production 6-fold and increased ethanol concentration 2-fold to 13.5 +/- 0.7 mM compared to the control. Additionally, MV inhibited n-butyrate and methane formation, resulting in high ethanol production efficiency (74.6 +/- 6%). In the bioelectrochemical system, MV addition to an inoculated cathode led directly to ethanol production (1.82 mM). Hydrogen was coproduced at the cathode (0.0035 Nm(3) hydrogen m(-2) d(-1)), so it remained unclear whether acetate was reduced to ethanol by electrons supplied by the mediator or by hydrogen. As MV reacted irreversibly at the cathode, ethanol production stopped after 5 days.
Lu, Y-G; Tang, Z-Q; Ye, Z-Y; Wang, H-T; Huang, Y-N; Zhou, K-Q; Zhang, M; Xu, T-L; Chen, L
2009-01-01
Background and purpose: Aspirin or its metabolite sodium salicylate is widely prescribed and has many side effects. Previous studies suggest that targeting neuronal receptors/ion channels is one of the pathways by which salicylate causes side effects in the nervous system. The present study aimed to investigate the functional action of salicylate on glycine receptors at a molecular level. Experimental approach: Whole-cell patch-clamp and site-directed mutagenesis were deployed to examine the effects of salicylate on the currents mediated by native glycine receptors in cultured neurones of rat inferior colliculus and by glycine receptors expressed in HEK293T cells. Key results: Salicylate effectively inhibited the maximal current mediated by native glycine receptors without altering the EC50 and the Hill coefficient, demonstrating a non-competitive action of salicylate. Only when applied simultaneously with glycine and extracellularly, could salicylate produce this antagonism. In HEK293T cells transfected with either α1-, α2-, α3-, α1β-, α2β- or α3β-glycine receptors, salicylate only inhibited the current mediated by those receptors that contained the α1-subunit. A single site mutation of I240V in the α1-subunit abolished inhibition by salicylate. Conclusions and implications: Salicylate is a non-competitive antagonist specifically on glycine receptors containing α1-subunits. This action critically involves the isoleucine-240 in the first transmembrane segment of the α1-subunit. Our findings may increase our understanding of the receptors involved in the side effects of salicylate on the central nervous system, such as seizures and tinnitus. PMID:19594751
Ueda, Setsuko; Mitsugi, Koichi; Ichige, Kazumi; Yoshida, Kenji; Sakuma, Tomoko; Ninomiya, Shin-ichi; Sudou, Tetsuji
2002-04-01
Salicylic acid is used in chemical peeling procedures. However, they have caused many side effects, even salicylism. To achieve a salicylic acid peeling that would be safer for topical use, we recently developed a new formulation consisting of 30% salicylic acid in polyethylene glycol (PEG) vehicle. In an extension of our previous research, we studied the absorption of 30% salicylic acid labeled with 14C in PEG vehicle applied topically to the intact and damaged skin of male hairless mice. An ointment containing 3 mg salicylic acid in 10 mg vehicle was applied to both groups. In animals with intact skin, 1 h after application the plasma concentration of radioactivity was 1665.1 ng eq/ml, significantly lower than the 21437.6 ng eq/ml observed in mice with damaged skin. Microautoradiograms of intact skin showed that the level of radioactivity in the cornified cell layer was similar at 6 h after application. However, in damaged skin, the overall level of radioactivity showed a decrease by 3 h after application. In the carcasses remaining after the treated intact and damaged skin had been removed, 0.09 and 11.38% of the applied radioactivity remained, respectively. These findings confirm that 30% salicylic acid in PEG vehicle is little absorbed through the intact skin of hairless mice, and suggest that salicylism related to absorption through the skin of quantities of topically applied salicylic acid is not likely to occur in humans with intact skin during chemical peeling with this preparation. This new preparation of 30% salicylic acid in PEG vehicle is believed to be safe for application as a chemical peeling agent.
Abreu, Maria Elizabeth; Munné-Bosch, Sergi
2009-01-01
Salicylic acid-deficient NahG transgenic lines and sid2 mutants were used to evaluate the role of this compound in the development of the short-lived, annual plant Arabidopsis thaliana, with a particular focus on the interplay between salicylic acid and other phytohormones. Low salicylic acid levels led to increased growth, as well as to smaller abscisic acid levels and reduced damage to PSII (as indicated by Fv/Fm ratios) during the reproductive stages in rosette leaves of NahG transgenic lines and sid2 mutants, compared with wild-type plants. Furthermore, salicylic acid deficiency highly influenced seed yield and composition. Seed production increased by 4.4-fold and 3.5-fold in NahG transgenic lines and sid2 mutants, respectively, compared to the wild type. Salicylic acid deficiency also improved seed composition in terms of antioxidant vitamin concentrations, seeds of salicylic acid-deficient plants showing higher levels of α- and γ-tocopherol (vitamin E) and β-carotene (pro-vitamin A) than seeds of wild-type plants. Seeds of salicylic acid-deficient plants also showed higher nitrogen concentrations than seeds of wild-type plants. It is concluded that (i) the sid2 gene, which encodes for isochorismate synthase, plays a central role in salicylic acid biosynthesis during plant development in A. thaliana, (ii) salicylic acid plays a role in the regulation of growth, senescence, and seed production, (iii) there is a cross-talk between salicylic acid and other phytohormones during plant development, and (iv) the concentrations of antioxidant vitamins in seeds may be influenced by the endogenous levels of salicylic acid in plants. PMID:19188277
Farthing, Don; Gehr, Lynne; Karnes, H Thomas; Sica, Domenic; Gehr, Todd; Larus, Terri; Farthing, Christine; Xi, Lei
2007-01-01
Acetyl salicylic acid (aspirin) is one of the most widely used drugs in the world. Various plasma concentrations of aspirin and its predominant metabolite, salicylic acid, are required for its antiarthritic (1.5-2.5 mM), anti-inflammatory (0.5-5.0 mM) or antiplatelet (0.18-0.36 mM) actions. A recent study demonstrated the inhibitory effects of both aspirin and salicylic acid on oxidative phosphorylation and ATP synthesis in isolated rat cardiac mitochondria in a dose-dependent manner (0-10 mM concentration range). In this context, the present study was conducted to determine the effects of salicylic acid on inosine efflux (a potential biomarker of acute cardiac ischaemia) as well as cardiac contractile function in the isolated mouse heart following 20 min of zero-flow global ischaemia. Inosine efflux was found at significantly higher concentrations in ischaemic hearts perfused with Krebs buffer fortified with 1.0 mM salicylic acid compared with those without salicylic acid (12575+/-3319 vs. 1437+/-348 ng ml(-1) min(-1), mean+/-SEM, n=6 per group, p<0.01). These results indicate that 1.0 mM salicylic acid potentiates 8.8-fold ATP nucleotide purine catabolism into its metabolites (e.g. inosine, hypoxanthine). Salicylic acid (0.1 or 1.0 mM) did not appreciably inhibit purine nucleoside phosphorylase (the enzyme converts inosine to hypoxanthine) suggesting the augmented inosine efflux was due to the salicylic acid effect on upstream elements of cellular respiration. Whereas post-ischaemic cardiac function was further depressed by 1.0 mM salicylic acid, perfusion with 0.1 mM salicylic acid led to a remarkable functional improvement despite moderately increased inosine efflux (2.7-fold). We conclude that inosine is a sensitive biomarker for detecting cardiac ischaemia and salicylic acid-induced effects on cellular respiration. However, the inosine efflux level appears to be a poor predictor of the individual post-ischaemic cardiac functional recovery in this ex vivo model.
Yi, Go-Eun; Robin, Arif Hasan Khan; Yang, Kiwoung; Park, Jong-In; Hwang, Byung Ho; Nou, Ill-Sup
2016-10-24
Glucosinolates have anti-carcinogenic properties. In the recent decades, the genetics of glucosinolate biosynthesis has been widely studied, however, the expression of specific genes involved in glucosinolate biosynthesis under exogenous phytohormone treatment has not been explored at the subspecies level in Brassica oleracea . Such data are vital for strategies aimed at selective exploitation of glucosinolate profiles. This study quantified the expression of 38 glucosinolate biosynthesis-related genes in three B. oleracea subspecies, namely cabbage, broccoli and kale, and catalogued associations between gene expression and increased contents of individual glucosinolates under methyl jasmonate (MeJA) and salicylic acid (SA) treatments. Glucosinolate accumulation and gene expression in response to phytohormone elicitation was subspecies specific. For instance, cabbage leaves showed enhanced accumulation of the aliphatic glucoiberin, progoitrin, sinigrin and indolic neoglucobrassicin under both MeJA and SA treatment. MeJA treatment induced strikingly higher accumulation of glucobrassicin (GBS) in cabbage and kale and of neoglucobrassicin (NGBS) in broccoli compared to controls. Notably higher expression of ST5a (Bol026200), CYP81F1 (Bol028913, Bol028914) and CYP81F4 genes was associated with significantly higher GBS accumulation under MeJA treatment compared to controls in all three subspecies. CYP81F4 genes, trans-activated by MYB34 genes, were expressed at remarkably high levels in all three subspecies under MeJA treatment, which also induced in higher indolic NGBS accumulation in all three subspecies. Remarkably higher expression of MYB28 (Bol036286), ST5b , ST5c , AOP2 , FMOGS-OX5 (Bol031350) and GSL-OH (Bol033373) was associated with much higher contents of aliphatic glucosinolates in kale leaves compared to the other two subspecies. The genes expressed highly could be utilized in strategies to selectively increase glucosinolate compounds in B. oleracea subspecies. These results promote efforts to develop genotypes of B. oleracea and other species with enhanced levels of desired glucosinolates.
Chattopadhyay, Pronobesh; Hazarika, Soilyadhar; Dhiman, Sunil; Upadhyay, Aadesh; Pandey, Anurag; Karmakar, Sanjeev; Singh, Lokendra
2012-01-01
Background: Vitex negundo L. (Verbenaceae) is a hardy plant widely distributed in the Indian subcontinent and used for treatment of a wide spectrum of health disorders in traditional and folk medicine, some of which have been experimentally validated. In present study, we aimed to investigate the anti-inflammatory effects of V. negundo in carrageenan-induced paw edema in rats, and to investigate the probable mechanism of anti-inflammatory action. Materials and Methods: Paw edema was produced by injecting 1% solution of carrageenan, and the paw volume was measured before and after carrageenan injection up to 5 h. V. negundo leaf oil was extracted using a Clevenger apparatus and administered by a trans-dermal route to Wistar rats and the percentage of inhibition of inflammation was observed using a Plethysmometer by comparing a compound aerosol-based formulation with 1 mg diclofinac diethylamine BP and 7 mg methyl salicylate IP/kg body weight served as a standard drug whereas paraffin oil served as the placebo group. After withdrawing of blood, serum was separated and cyclooxygenase (COX)-1 and COX-2 inhibitory activities were measured by the enzyme immuno assay (EIA) method by using a COX inhibitor screening assay kit. Results and Discussion: V. negundo leaf oil significantly (P < 0.05) reduced the carrageenan-induced paw edema as compared to the placebo group (paraffin oil) and 1 mg diclofinac diethylamine BP and 7 mg methyl salicylate IP showed the maximum inhibition of paw edema as compared to the V. negundo leaf oil treated group and the control group. Also in the present study V. negundo leaf oil showed significantly (P < 0.05) inhibits COX-1 pathways rather than COX-2 pathways as compared to the V. negundo leaf oil treated group. Conclusion: It is suggested that the V. negundo leaf oil is a potent anti-inflammatory agent and acts via inhibition of COX-2 without much interfering COX-1 pathways. PMID:22923950
Li, Jinze; Ma, Xiaowei; Wang, Yu; Chen, Chengjuan; Hu, Min; Wang, Linlin; Fu, Junmin; Shi, Gaona; Zhang, Dongming; Zhang, Tiantai
2018-01-01
Neuroinflammatory reactions mediated by microglia and astrocytes have been shown to play a key role in early progression of Alzheimer’s disease (AD). Increased evidences have demonstrated that neurons exacerbate local inflammatory reactions by producing inflammatory mediators and act as an important participant in the pathogenesis of AD. Methyl salicylate lactoside (MSL) is an isolated natural product that is part of a class of novel non-steroidal anti-inflammatory drugs (NSAID). In our previous studies, we demonstrated that MSL exhibited therapeutic effects on arthritis-induced mice and suppressed the activation of glial cells. In the current study, we investigated the effects of MSL on cognitive function and neuronal protection induced by amyloid-beta peptides (Aβ) and explored potential underlying mechanisms involved. Amyloid precursor protein (APP) and presenilin 1 (PS1) double transgenic mice were used to evaluate the effects of MSL through behavioral testing and neuronal degenerative changes. In addition, copper-injured APP Swedish mutation overexpressing SH-SY5Y cells were used to determine the transduction of cyclooxygenase (COX) and mitogen-activated protein kinase (MAPK) pathways. Our results indicated that at an early stage, MSL treatment ameliorated cognitive impairment and neurodegeneration in APP/PS1 mice. Moreover, in an in vitro AD model, MSL treatment protected injured cells by increasing cell viability, improving mitochondrial dysfunction, and decreasing oxidative damage. In addition, MSL inhibited the phosphorylated level of c-Jun N-terminal kinase (JNK) and p38 MAPK, and suppressed the expression of COX-1/2. As a novel NSAIDs and used for the treatment in early stage of AD, MSL clearly demonstrated cognitive preservation by protecting neurons via a pleiotropic anti-inflammatory effect in the context of AD-associated deficits. Therefore, early treatment of anti-inflammatory therapy may be an effective strategy for treating AD. PMID:29636677
Zang, Yun-xiang; Ge, Jia-li; Huang, Ling-hui; Gao, Fei; Lv, Xi-shan; Zheng, Wei-wei; Hong, Seung-beom; Zhu, Zhu-jun
2015-08-01
Glucosinolates (GSs) are an important group of defensive phytochemicals mainly found in Brassicaceae. Plant hormones jasmonic acid (JA) and salicylic acid (SA) are major regulators of plant response to pathogen attack. However, there is little information about the interactive effect of both elicitors on inducing GS biosynthesis in Chinese cabbage (Brassica rapa ssp. pekinensis). In this study, we applied different concentrations of methyl jasmonate (MeJA) and/or SA onto the leaf and root of Chinese cabbage to investigate the time-course interactive profiles of GSs. Regardless of the site of the elicitation and the concentrations of the elicitors, the roots accumulated much more GSs and were more sensitive and more rapidly responsive to the elicitors than leaves. Irrespective of the elicitation site, MeJA had a greater inducing and longer lasting effect on GS accumulation than SA. All three components of indole GS (IGS) were detected along with aliphatic and aromatic GSs. However, IGS was a major component of total GSs that accumulated rapidly in both root and leaf tissues in response to MeJA and SA elicitation. Neoglucobrassicin (neoGBC) did not respond to SA but to MeJA in leaf tissue, while it responded to both SA and MeJA in root tissue. Conversion of glucobrassicin (GBC) to neoGBC occurred at a steady rate over 3 d of elicitation. Increased accumulation of 4-methoxy glucobrassicin (4-MGBC) occurred only in the root irrespective of the type of elicitors and the site of elicitation. Thus, accumulation of IGS is a major metabolic hallmark of SA- and MeJA-mediated systemic response systems. SA exerted an antagonistic effect on the MeJA-induced root GSs irrespective of the site of elicitation. However, SA showed synergistic and antagonistic effects on the MeJA-induced leaf GSs when roots and leaves are elicitated for 3 d, respectively.
Kancherla, Prasad; Keesari, Srinivas; Alegete, Pallavi; Khagga, Mukkanti; Das, Parthasarathi
2018-01-01
Seven unknown impurities in Repaglinide bulk drug batches at below 0.1% (ranging from 0.05 to 0.10%) were detected by an ultra-performance liquid chromatographic (UPLC) method. These impurities were isolated from the crude sample of Repaglinide using preparative high performance liquid chromatography (prep-HPLC). Based on liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI/MS) study, the chemical structures of seven new impurities (8, 9, 10, 11, 13, 14, and 16) were presumed and characterized as 4-(cyanomethyl)-2-ethoxybenzoic acid (8), 4-(cyanomethyl)-2-ethoxy-N-(3-methyl-1-(2-(piperidin-1-yl)phenyl)butyl)benzamide (9), 4-(2-amino-2-oxoethyl)-2-ethoxy-N-(3-methyl-1-(2-(piperidin-1-yl)phenyl)butyl) benzamide (10) and 2-(3-ethoxy-4-((3-methyl-1-(2-(piperidin-1-yl)phenyl)butyl) carbamoyl) phenyl) acetic acid (11) and 4-(cyanomethyl)-N-cyclohexyl-2-ethoxybenzamide (13), 2-(4-(cyclohexylcarbamoyl)-3-ethoxyphenyl) acetic acid (14) and N-cyclohexyl-4-(2-(cyclohexylamino)-2-oxoethyl)-2-ethoxybenzamide (16). The complete spectral analysis, proton nuclear magnetic resonance ( 1 H NMR), 13 C NMR, MS, and infrared (IR) confirmed the proposed chemical structures of impurities. Identification, structural characterization, formation, and their synthesis was first reported in this study. The impurity 11 was crystallized and structure was solved by single crystal X-ray diffraction. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Diffuse polymer interfaces in lobed nanoemulsions preserved in aqueous media.
Kim, Ginam; Sousa, Alioscka; Meyers, Deborah; Shope, Marilyn; Libera, Matthew
2006-05-24
Using valence electron energy loss spectroscopy (EELS) in the cryo-scanning transmission electron microscopy (STEM), we found that the polymer-polymer interface in two-phase nanocolloids of polydimethyl siloxane (PDMS) and copolymer (methyl acrylate (MA)-methyl methacrylate (MMA)-vinyl acetate (VA)) preserved in water was diffuse despite the fact that equilibrium thermodynamics indicates it should only be on the order of a few nanometers. The diffuse interface is a result of the kinetic trapping of the copolymer within the PDMS phase, and this finding suggests new nonequilibrium pathways to control interfaces during the synthesis of multicomponent polymeric nanostructures.
The protective effect of salicylic acid on lysozyme against riboflavin-mediated photooxidation
NASA Astrophysics Data System (ADS)
Li, Kun; Wang, Hongbao; Cheng, Lingli; Zhu, Hui; Wang, Mei; Wang, Shi-Long
2011-06-01
As a metabolite of aspirin in vivo, salicylic acid was proved to protect lysozyme from riboflavin-mediated photooxidation in this study. The antioxidative properties of salicylic acid were further studied by using time-resolved laser flash photolysis of 355 nm. It can quench the triplet state of riboflavin via electron transfer from salicylic acid to the triplet state of riboflavin with a reaction constant of 2.25 × 10 9 M -1 s -1. Mechanism of antioxidant activities of salicylic acid on lysozyme oxidation was discussed. Salicylic acid can serve as a potential antioxidant to quench the triplet state of riboflavin and reduce oxidative pressure.
Salicylate enables cochlear arachidonic-acid-sensitive NMDA receptor responses.
Ruel, Jérôme; Chabbert, Christian; Nouvian, Régis; Bendris, Rim; Eybalin, Michel; Leger, Claude Louis; Bourien, Jérôme; Mersel, Marcel; Puel, Jean-Luc
2008-07-16
Currently, many millions of people treated for various ailments receive high doses of salicylate. Consequently, understanding the mechanisms by which salicylate induces tinnitus is an important issue for the research community. Behavioral testing in rats have shown that tinnitus induced by salicylate or mefenamate (both cyclooxygenase blockers) are mediated by cochlear NMDA receptors. Here we report that the synapses between the sensory inner hair cells and the dendrites of the cochlear spiral ganglion neurons express NMDA receptors. Patch-clamp recordings and two-photon calcium imaging demonstrated that salicylate and arachidonate (a substrate of cyclooxygenase) enabled the calcium flux and the neural excitatory effects of NMDA on cochlear spiral ganglion neurons. Salicylate also increased the arachidonate content of the whole cochlea in vivo. Single-unit recordings of auditory nerve fibers in adult guinea pig confirmed the neural excitatory effect of salicylate and the blockade of this effect by NMDA antagonist. These results suggest that salicylate inhibits cochlear cyclooxygenase, which increased levels of arachidonate. The increased levels of arachidonate then act on NMDA receptors to enable NMDA responses to glutamate that inner hair cells spontaneously release. This new pharmacological profile of salicylate provides a molecular mechanism for the generation of tinnitus at the periphery of the auditory system.
Mason, W D
1980-11-01
Eighteen healthy volunteers were administered single doses of commercially available solid dosage forms of aspirin, magnesium salicylate (I), and choline magnesium trisalicylate (II), equivalent to approximately 500 mg of salicylic acid, in a randomized, complete crossover design. Plasma salicylate and urine salicylurate levels were measured by high-pressure liquid chromatography at frequent intervals following dosing; the resultant profiles, areas under the curve (AUC), and percentages of dose excreted as salicylurate were statistically analyzed by an analysis of variance. The plasma salicylate levels following the two dosage forms containing I and II were virtually identical when corrected for small differences in the dose. The plasma salicylic acid level following aspirin was approximately 10% lower during the 1.5--3.0-hr interval due to a portion of unhydrolyzed aspirin, but the dose-corrected AUC for the products tested did not differ significantly (p < 0.05). During the 24 hr following dosing, 66.5 +/- 12.1 68.4 +/- 7.1, and 60.9 +/- 14.1% of the salicylic acid were excreted as urine salicylurate for aspirin, I, and II, respectively, with no significant difference (p < 0.05). Based on this study, there are no significant differences in the rate and extent of absorption of salicylate following the three dosage forms tested, and the elimination kinetics of salicylic acid are not altered by these dosage forms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemonidou, Angeliki A.; Vagia, Ekaterini C.; Lercher, Johannes A.
Reforming of acetic acid was investigated on Rh supported on CeO2-ZrO2 modified with 3 wt % La. The active catalyst converted acetic acid to H-2-rich gas and hardly formed coke. The low rate of coke formation is concluded to be related to the presence of redox-active oxygen limiting the concentration of coke precursors. Temperature-programmed O-18(2)) isotope exchange measurements showed that the La2O3 and Rh enhanced the mobility of lattice oxygen compared with that of the parent CeO2-ZrO2. Ketonization and decarboxylation of acetic acid are the dominating reactions over the latter up to 600 degrees C, whereas above 600 degrees C,more » steam reforming and water gas shift also contribute. Over 0.5 wt % Rh on La2O3/CeO2-ZrO2, reforming and water gas shift reactions dominate, even below 300 degrees C, producing mostly H-2 and CO2. Using isotope labeling, it is shown that acetic acid adsorbs dissociatively on Rh, forming acetates, which sequentially decarboxylate and form surface methyl groups. The latter are in turn converted to CO, CO2, and H-2.« less
Siderhurst, Matthew S; Jang, Eric B
2006-11-01
Coupled gas chromatography-electroantennogram detection (GC-EAD) analysis of volatiles from tropical almond fruit, Terminalia catappa L., revealed 22 compounds that were detected by antennae of oriental fruit fly females, Bactrocera dorsalis (Hendel). Both solid-phase microextraction (SPME) and Porapak Q were used for sampling odors in fruit headspace, with SPME collections producing larger EAD responses from a greater number of compounds. Geranyl acetate and methyl eugenol elicited the largest EAD responses. A synthetic blend containing SPME collected, EAD stimulatory compounds showed female-biased attraction in laboratory wind tunnel bioassays, but heavily male-biased trap captures in a larger olfactometer arena. A nine-component subset of compounds eliciting relatively small EAD responses (EAD minor) and consisting of equal parts ethanol, ethyl acetate, ethyl hexanoate, hexyl acetate, linalyl acetate, ethyl nonanate, nonyl acetate, ethyl cinnamate, and (E)-beta-farnesene, attracted mainly females. This EAD minor blend was as attractive to females and much less attractive to males when compared to torula yeast in field cage experiments using glass McPhail traps. Similar results were obtained with outdoor rotating olfactometer tests in which the EAD minor blend was almost completely inactive for males.