Science.gov

Sample records for acetate methyl salicylate

  1. Methyl salicylate overdose

    MedlinePlus

    Deep heating rubs overdose; Oil of wintergreen overdose ... These products contain methyl salicylate: Deep-heating creams used to relieve sore muscles and joints (Ben Gay, Icy Hot) Oil of wintergreen Solutions for vaporizers Other products may also ...

  2. Simultaneous Determination of Salicylic Acid, Jasmonic Acid, Methyl Salicylate, and Methyl Jasmonate from Ulmus pumila Leaves by GC-MS.

    PubMed

    Huang, Zhi-Hong; Wang, Zhi-Li; Shi, Bao-Lin; Wei, Dong; Chen, Jian-Xin; Wang, Su-Li; Gao, Bao-Jia

    2015-01-01

    Salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate are important phytohormones and defensive signaling compounds, so it is of great importance to determine their levels rapidly and accurately. The study uses Ulmus pumila leaves infected by Tetraneura akinire Sasaki at different stages as materials; after extraction with 80% methanol and ethyl acetate and purification with primary secondary amine (PSA) and graphitized carbon blacks (GCB), the contents of signal compounds salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate were determined by GC-MS. The results showed that the level of salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate increased remarkably in U. pumila once infected by T. akinire Sasaki, but the maximums of these four compounds occurred at different times. Salicylic acid level reached the highest at the early stage, and jasmonic acid level went to the maximum in the middle stage; by contrast, change of content of methyl salicylate and methyl jasmonate was the quite opposite. PMID:26457083

  3. Simultaneous Determination of Salicylic Acid, Jasmonic Acid, Methyl Salicylate, and Methyl Jasmonate from Ulmus pumila Leaves by GC-MS

    PubMed Central

    Huang, Zhi-hong; Wang, Zhi-li; Shi, Bao-lin; Wei, Dong; Chen, Jian-xin; Wang, Su-li; Gao, Bao-jia

    2015-01-01

    Salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate are important phytohormones and defensive signaling compounds, so it is of great importance to determine their levels rapidly and accurately. The study uses Ulmus pumila leaves infected by Tetraneura akinire Sasaki at different stages as materials; after extraction with 80% methanol and ethyl acetate and purification with primary secondary amine (PSA) and graphitized carbon blacks (GCB), the contents of signal compounds salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate were determined by GC-MS. The results showed that the level of salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate increased remarkably in U. pumila once infected by T. akinire Sasaki, but the maximums of these four compounds occurred at different times. Salicylic acid level reached the highest at the early stage, and jasmonic acid level went to the maximum in the middle stage; by contrast, change of content of methyl salicylate and methyl jasmonate was the quite opposite. PMID:26457083

  4. Safety assessment of Salicylic Acid, Butyloctyl Salicylate, Calcium Salicylate, C12-15 Alkyl Salicylate, Capryloyl Salicylic Acid, Hexyldodecyl Salicylate, Isocetyl Salicylate, Isodecyl Salicylate, Magnesium Salicylate, MEA-Salicylate, Ethylhexyl Salicylate, Potassium Salicylate, Methyl Salicylate, Myristyl Salicylate, Sodium Salicylate, TEA-Salicylate, and Tridecyl Salicylate.

    PubMed

    2003-01-01

    Salicylic Acid is an aromatic acid used in cosmetic formulations as a denaturant, hair-conditioning agent, and skin-conditioning agent--miscellaneous in a wide range of cosmetic products at concentrations ranging from 0.0008% to 3%. The Calcium, Magnesium, and MEA salts are preservatives, and Potassium Salicylate is a cosmetic biocide and preservative, not currently in use. Sodium Salicylate is used as a denaturant and preservative (0.09% to 2%). The TEA salt of Salicylic Acid is used as an ultraviolet (UV) light absorber (0.0001% to 0.75%). Several Salicylic Acid esters are used as skin conditioning agents--miscellaneous (Capryloyl, 0.1% to 1%; C12-15 Alkyl, no current use; Isocetyl, 3% to 5%; Isodecyl, no current use; and Tridecyl, no current use). Butyloctyl Salicylate (0.5% to 5%) and Hexyldodecyl Salicylate (no current use) are hair-conditioning agents and skin-conditioning agents--miscellaneous. Ethylhexyl Salicylate (formerly known as Octyl Salicylate) is used as a fragrance ingredient, sunscreen agent, and UV light absorber (0.001% to 8%), and Methyl Salicylate is used as a denaturant and flavoring agent (0.0001% to 0.6%). Myristyl Salicylate has no reported function. Isodecyl Salicylate is used in three formulations, but no concentration of use information was reported. Salicylates are absorbed percutaneously. Around 10% of applied salicylates can remain in the skin. Salicylic Acid is reported to enhance percutaneous penetration of some agents (e.g., vitamin A), but not others (e.g., hydrocortisone). Little acute toxicity (LD(50) in rats; >2 g/kg) via a dermal exposure route is seen for Salicylic Acid, Methyl Salicylate, Tridecyl Salicylate, and Butyloctyl Salicylate. Short-term oral, inhalation, and parenteral exposures to salicylates sufficient to produce high blood concentrations are associated primarily with liver and kidney damage. Subchronic dermal exposures to undiluted Methyl Salicylate were associated with kidney damage. Chronic oral exposure to

  5. Safety assessment of Salicylic Acid, Butyloctyl Salicylate, Calcium Salicylate, C12-15 Alkyl Salicylate, Capryloyl Salicylic Acid, Hexyldodecyl Salicylate, Isocetyl Salicylate, Isodecyl Salicylate, Magnesium Salicylate, MEA-Salicylate, Ethylhexyl Salicylate, Potassium Salicylate, Methyl Salicylate, Myristyl Salicylate, Sodium Salicylate, TEA-Salicylate, and Tridecyl Salicylate.

    PubMed

    2003-01-01

    Salicylic Acid is an aromatic acid used in cosmetic formulations as a denaturant, hair-conditioning agent, and skin-conditioning agent--miscellaneous in a wide range of cosmetic products at concentrations ranging from 0.0008% to 3%. The Calcium, Magnesium, and MEA salts are preservatives, and Potassium Salicylate is a cosmetic biocide and preservative, not currently in use. Sodium Salicylate is used as a denaturant and preservative (0.09% to 2%). The TEA salt of Salicylic Acid is used as an ultraviolet (UV) light absorber (0.0001% to 0.75%). Several Salicylic Acid esters are used as skin conditioning agents--miscellaneous (Capryloyl, 0.1% to 1%; C12-15 Alkyl, no current use; Isocetyl, 3% to 5%; Isodecyl, no current use; and Tridecyl, no current use). Butyloctyl Salicylate (0.5% to 5%) and Hexyldodecyl Salicylate (no current use) are hair-conditioning agents and skin-conditioning agents--miscellaneous. Ethylhexyl Salicylate (formerly known as Octyl Salicylate) is used as a fragrance ingredient, sunscreen agent, and UV light absorber (0.001% to 8%), and Methyl Salicylate is used as a denaturant and flavoring agent (0.0001% to 0.6%). Myristyl Salicylate has no reported function. Isodecyl Salicylate is used in three formulations, but no concentration of use information was reported. Salicylates are absorbed percutaneously. Around 10% of applied salicylates can remain in the skin. Salicylic Acid is reported to enhance percutaneous penetration of some agents (e.g., vitamin A), but not others (e.g., hydrocortisone). Little acute toxicity (LD(50) in rats; >2 g/kg) via a dermal exposure route is seen for Salicylic Acid, Methyl Salicylate, Tridecyl Salicylate, and Butyloctyl Salicylate. Short-term oral, inhalation, and parenteral exposures to salicylates sufficient to produce high blood concentrations are associated primarily with liver and kidney damage. Subchronic dermal exposures to undiluted Methyl Salicylate were associated with kidney damage. Chronic oral exposure to

  6. The Synthesis of Methyl Salicylate: Amine Diazotization.

    ERIC Educational Resources Information Center

    Zanger, Murray; McKee, James R.

    1988-01-01

    Notes that this experiment takes safety and noncarcinogenic reactants into account. Demonstrates the use of diazonium salts for the replacement of an aromatic amine group by a phenolic hydroxyl. Involves two pleasant-smelling organic compounds, methyl anthranilate (grape) and methyl salicylate (oil of wintergreen). (MVL)

  7. Potential dangers from topical preparations containing methyl salicylate.

    PubMed

    Chan, T Y

    1996-09-01

    Methyl salicylate (oil of wintergreen) is widely available in many over-the-counter liniments, ointments, lotions or medicated oils for the relief of musculoskeletal aches and pains. Ingestion of methyl salicylate poses the threat of severe, rapid-onset salicylate poisoning because of its liquid, concentrated form and lipid solubility. Excessive usage of these preparations in patients receiving warfarin may result in adverse interactions and bleedings. Methyl salicylate in topical analgesic preparations may cause irritant or allergic contact dermatitis and anaphylactic reactions. Physicians should fully appreciate the potential dangers from topical preparations containing methyl salicylate.

  8. Are one or two dangerous? Methyl salicylate exposure in toddlers.

    PubMed

    Davis, Jonathan E

    2007-01-01

    Serious toxicity can result from exposure to small amounts of methyl salicylate. Methyl salicylate is widely available as a component in many over-the-counter brands of creams, ointments, lotions, liniments and medicated oils intended for topical application to relieve musculoskeletal aches and pains. Among the most potent forms of methyl salicylate is oil of wintergreen (98% methyl salicylate). Other products with varying concentrations of methyl salicylate are ubiquitous throughout many parts of the world, including a number of products marketed as Asian herbal remedies. The toxic potential of all of these formulations is often underestimated by health care providers and the general public. A comprehensive review of the existing medical literature on methyl salicylate poisoning was performed, and data compiled over the past two decades by the American Association of Poison Control Centers (AAPCC) was examined. Methyl salicylate continues to be a relatively common source of pediatric exposures. Persistent reports of life-threatening and fatal toxicity were found. In children less than 6 years of age, a teaspoon (5 mL) or less of oil of wintergreen has been implicated in several well-documented deaths. More needs to be done to educate both health care providers and the general public regarding the dangers of these widely available formulations.

  9. Acute methyl salicylate toxicity complicating herbal skin treatment for psoriasis.

    PubMed

    Bell, Anthony J; Duggin, Geoffrey

    2002-06-01

    We present an interesting case of salicylism arising from the use of methyl salicylate as part of a herbal skin cream for the treatment of psoriasis. A 40-year-old man became quite suddenly and acutely unwell after receiving treatment from an unregistered naturopath. Methyl salicylate (Oil of Wintergreen) is widely available in many over the counter topical analgesic preparations and Chinese medicated oils. Transcutaneous absorption of the methyl salicylate was enhanced in this case due to the abnormal areas of skin and use of an occlusive dressing. The presence of tinnitus, vomiting, tachypnoea and typical acid/base disturbance allowed a diagnosis of salicylate toxicity to be made. Our patient had decontaminated his skin prior to presentation, limiting the extent of toxicity and was successfully treated with rehydration and establishment of good urine flow.

  10. Acute methyl salicylate toxicity complicating herbal skin treatment for psoriasis.

    PubMed

    Bell, Anthony J; Duggin, Geoffrey

    2002-06-01

    We present an interesting case of salicylism arising from the use of methyl salicylate as part of a herbal skin cream for the treatment of psoriasis. A 40-year-old man became quite suddenly and acutely unwell after receiving treatment from an unregistered naturopath. Methyl salicylate (Oil of Wintergreen) is widely available in many over the counter topical analgesic preparations and Chinese medicated oils. Transcutaneous absorption of the methyl salicylate was enhanced in this case due to the abnormal areas of skin and use of an occlusive dressing. The presence of tinnitus, vomiting, tachypnoea and typical acid/base disturbance allowed a diagnosis of salicylate toxicity to be made. Our patient had decontaminated his skin prior to presentation, limiting the extent of toxicity and was successfully treated with rehydration and establishment of good urine flow. PMID:12147116

  11. The fluorescence behaviour of methyl and phenyl salicylate

    NASA Astrophysics Data System (ADS)

    Ford, D.; Thistlethwaite, P. J.; Woolfe, G. J.

    1980-01-01

    Fluorcsccnce lifetimes tor the 450 nm emission of methyl and phenyl salicylate in various solvents have been measured. Qucnching studics on the 340 nm fluorescence of these molecules point to the existence of three distinct ground state conformers.

  12. Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl salicylate (MeSA) is a volatile plant secondary metabolite that is an important contributor to taste and scent of many fruits and flowers. It is synthesized from salicylic acid (SA), a phytohormone that contributes to plant pathogen defense. MeSA is synthesized by members of a family of O-met...

  13. IR, Raman and SERS studies of methyl salicylate

    NASA Astrophysics Data System (ADS)

    Varghese, Hema Tresa; Yohannan Panicker, C.; Philip, Daizy; Mannekutla, James R.; Inamdar, S. R.

    2007-04-01

    The IR and Raman spectra of methyl salicylate (MS) were recorded and analysed. Surface enhanced Raman scattering (SERS) spectrum was recorded in silver colloid. The vibrational wave numbers of the compound have been computed using the Hartree-Fock/6-31G * basis and compared with the experimental values. SERS studies suggest a flat orientation of the molecule at the metal surface.

  14. Mobility and molecular ions of dimethyl methyl phosphonate, methyl salicylate and acetone

    NASA Astrophysics Data System (ADS)

    Nowak, D. M.

    1983-06-01

    The mobilities of positive and negative reactant ions are reported for (H2O)nH(+); (H2O)2O2 and (H2O)2CO3(-) ion clusters. The formation of positive DMMP monomer and dimer is reported, and equilbria molecular reactions are reported. Acetone is reported as forming a dimer at 81 ppb with a reduced mobility (K sub o) of 1.82, Methyl salicylate is shown to form a protonated and hydrated positive monomer. Mixtures of DMMP and methyl salicylate with acetone showed a substantial change in DMMP ion clustering and little or no change in the methyl salicylate mobility spectra. Negative ions were not observed for DMMP, methyl salicylate, acetone and the mixtures under the conditions reported.

  15. Energetics and Vibrational Analysis of Methyl Salicylate Isomers

    NASA Astrophysics Data System (ADS)

    Massaro, Richard D.; Dai, Yafei; Blaisten-Barojas, Estela

    2009-08-01

    Energetics and vibrational analysis study of six isomers of methyl salicylate in their singlet ground state and first excited triple state is put forward in this work at the density functional theory level and large basis sets. The ketoB isomer is the lowest energy isomer, followed by its rotamer ketoA. For both ketoB and ketoA their enolized tautomers are found to be stable as well as their open forms that lack the internal hydrogen bond. The calculated vibrational spectra are in excellent agreement with IR experiments of methyl salicylate in the vapor phase. It is demonstrated that solvent effects have a weak influence on the stability of these isomers. The ionization reaction from ketoB to ketoA shows a high barrier of 0.67 eV ensuring that thermal and chemical equilibria yield systems containing mostly the ketoB isomer at normal conditions.

  16. Detection of methyl salicylate using bi-enzyme electrochemical sensor consisting salicylate hydroxylase and tyrosinase.

    PubMed

    Fang, Yi; Bullock, Hannah; Lee, Sarah A; Sekar, Narendran; Eiteman, Mark A; Whitman, William B; Ramasamy, Ramaraja P

    2016-11-15

    Volatile organic compounds have been recognized as important marker chemicals to detect plant diseases caused by pathogens. Methyl salicylate has been identified as one of the most important volatile organic compounds released by plants during a biotic stress event such as fungal pathogen infection. Advanced detection of these marker chemicals could help in early identification of plant diseases and has huge significance for agricultural industry. This work describes the development of a novel bi-enzyme based electrochemical biosensor consisting of salicylate hydroxylase and tyrosinase enzymes immobilized on carbon nanotube modified electrodes. The amperometric detection using the bi-enzyme platform was realized through a series of cascade reactions that terminate in an electrochemical reduction reaction. Electrochemical measurements revealed that the sensitivity of the bi-enzyme sensor was 30.6±2.7µAcm(-2)µM(-1) and the limit of detection and limit of quantification were 13nM (1.80ppb) and 39nM (5.39ppb) respectively. Interference studies showed no significant interference from the other common plant volatile compounds. Synthetic analyte studies revealed that the bi-enzyme based biosensor can be used to reliably detect methyl salicylate released by unhealthy plants. PMID:27236726

  17. Theoretical investigation of the photophysics of methyl salicylate isomers

    NASA Astrophysics Data System (ADS)

    Massaro, Richard D.; Blaisten-Barojas, Estela

    2011-10-01

    The photophysics of methyl salicylate (MS) isomers has been studied using time-dependent density functional theory and large basis sets. First electronic singlet and triplet excited states energies, structure, and vibrational analysis were calculated for the ketoB, enol, and ketoA isomers. It is demonstrated that the photochemical pathway involving excited state intramolecular proton transfer (ESIPT) from the ketoB to the enol tautomer agrees well with the dual fluorescence in near-UV (from ketoB) and blue (from enol) wavelengths obtained from experiments. Our calculation confirms the existence of a double minimum in the excited state pathway along the O-H-O coordinate corresponding to two preferred energy regions: (1) the hydrogen belongs to the OH moiety and the structure of methyl salicylate is ketoB; (2) the hydrogen flips to the closest carboxyl entailing electronic rearrangement and tautomerization to the enol structure. This double well in the excited state is highly asymmetric. The Franck-Condon vibrational overlap is calculated and accounts for the broadening of the two bands. It is suggested that forward and backward ESIPT through the barrier separating the two minima is temperature-dependent and affects the intensity of the fluorescence as seen in experiments. When the enol fluoresces and returns to its ground state, a barrier-less back proton transfer repopulates the ground state of methyl salicylate ketoB. It is also demonstrated that the rotamer ketoA is not stable in an excited state close to the desired emission wavelength. This observation eliminates the conjecture that the near-UV emission of the dual fluorescence originates from the ketoA rotamer. New experimental results for pure MS in the liquid state are reported and theoretical results compared to them.

  18. Photodegradation of methyl salicylate in poly(methylmethacrylate)

    SciTech Connect

    Renschler, C.L.

    1984-01-01

    Methyl salicylate (MS) has been found to undergo photo-induced decarboxylation to form phenol. The process is first order and has a reaction quantum yield of ca. 8 x 10/sup -5/ and an activation energy of 1.2 kcal./mol (5.0 kJ/mol). Kinetic data were used in computer simulations of photodegradation of MS in poly(methylmethacrylate) (PMMA) solar lenses. It was predicted that typical MS concentrations would provide effective uv screening protection for less than 2 years.

  19. Radiation chemistry of salicylic and methyl substituted salicylic acids: Models for the radiation chemistry of pharmaceutical compounds

    NASA Astrophysics Data System (ADS)

    Ayatollahi, Shakiba; Kalnina, Daina; Song, Weihua; Turks, Maris; Cooper, William J.

    2013-11-01

    Salicylic acid and its derivatives are components of many medications and moieties found in numerous pharmaceutical compounds. They have been used as models for various pharmaceutical compounds in pharmacological studies, for the treatment of pharmaceuticals and personal care products (PPCPs), and, reactions with natural organic matter (NOM). In this study, the radiation chemistry of benzoic acid, salicylic acid and four methyl substituted salicylic acids (MSA) is reported. The absolute bimolecular reaction rate constants for hydroxyl radical reaction with benzoic and salicylic acids as well as 3-methyl-, 4-methyl-, 5-methyl-, and 6-methyl-salicylic acid were determined (5.86±0.54)×109, (1.07±0.07)×1010, (7.48±0.17)×109, (7.31±0.29)×109, (5.47±0.25)×109, (6.94±0.10)×109 (M-1 s-1), respectively. The hydrated electron reaction rate constants were measured (3.02±0.10)×109, (8.98±0.27)×109, (5.39±0.21)×109, (4.33±0.17)×109, (4.72±0.15)×109, (1.42±0.02)×109 (M-1 s-1), respectively. The transient absorption spectra for the six model compounds were examined and their role as model compounds for the radiation chemistry of pharmaceuticals investigated.

  20. Simultaneous determination of salicylic, 3-methyl salicylic, 4-methyl salicylic, acetylsalicylic and benzoic acids in fruit, vegetables and derived beverages by SPME-LC-UV/DAD.

    PubMed

    Aresta, Antonella; Zambonin, Carlo

    2016-03-20

    Salicylic and benzoic acid are phenolic acids occurring in plant cells, thus they can be present in fruit and vegetables at various levels. They possess anti-inflammatory and antimicrobial properties, however they may induce symptoms and health problems in a small percentage of the population. Therefore, a low phenolic acid diet may be of clinical benefit to such individuals. In order to achieve this goal, the concentration of these substances in different food and beverages should be assessed. The present work describes for the first time a new method, based on solid phase microextraction (polydimethylsiloxane-divinylbenzene fiber) coupled to liquid chromatography with UV diode array detection, for the simultaneous determination of salicylic acid, 3-methyl salicylic acid, 4-methyl salicylic acid, acetylsalicylic acid and benzoic acid in selected fruit, vegetables and beverages. All the aspects influencing fiber adsorption (time, temperature, pH, salt addition) and desorption (desorption and injection time, desorption solvent mixture composition) of the analytes have been investigated. An isocratic separation was performed using an acetonitrile-phosphate buffer (pH 2.8; 2 mM) mixture (70:30, v/v) as the mobile phase. The estimated LOD and LOQ values (μg/mL) were in the range 0.002-0.028 and 0.007-0.095. The within-day and day-to-day precision values (RSD%) were between 4.7-6.1 and 6.6-9.4, respectively. The method has been successfully applied to the analysis of fava beans, blueberries, kiwi, tangerines, lemons, oranges and fruit juice (lemon and blueberry) samples. The major advantage of the method is that it only requires simple homogenization and/or centrifugation and dilution steps prior to SPME and injection in the LC system. PMID:26775020

  1. Photorotamerization of methyl salicylate and related compounds in cryogenic matrices

    SciTech Connect

    Orton, E.; Morgan, M.A.; Pimentel, G.C. )

    1990-10-04

    Spectroscopic studies of methyl salicylate (MS), salicylamide (SAM), and o-hydroxyacetophenone (OHAP) isolated in 12 K matrices of, variously, SF{sub 6}, Ar, Kr, or Xe are presented. Irradiation in the S{sub 1} electronic absorption bands of the normal intramolecularly hydrogen bonded conformers generates matrix-stabilized rotamers. Ground-state photorotamer conformations deduced from infrared spectra are correlated with steady-state electronic absorption, excitation, and emission spectra, as well as with emission lifetime data. Matrix-isolated SAM and OHAP photolyze to yield phosphorescent, nonintramolecularly hydrogen bonded rotamers via photochemically reversible pathways. In contrast, irradiation of MS in SF{sub 6} proceeds via a photochemically irreversible pathway to generate a rotamer with a weak intramolecular hydrogen bond between the phenol hydrogen and the methoxy oxygen of the ester moiety. The MS photorotamer exhibits both UV fluorescence and visible phosphorescence.

  2. Detection of methyl salicylate using polymer-filled chemicapacitors.

    PubMed

    Patel, Sanjay V; Hobson, Stephen T; Cemalovic, Sabina; Mlsna, Todd E

    2008-08-15

    Methyl salicylate (MeS) is used as a chemical warfare agent simulant to test chemical protective garments and other individual personal protective gear. The accurate and real-time detection of this analyte is advantageous for various testing regimes. This paper reports the results of MeS vapor exposures on polymer-filled capacitance-based sensors at temperatures ranging from 15 degrees C to 50 degrees C under dry and humid conditions. Multiple capacitors were arranged in an array on a silicon chip each having a different sorptive polymer. The sensors used parallel-plate electrode geometry to measure the dielectric permittivity changes of each polymer when exposed to water and MeS vapor. Of the four polymers tested against MeS, the optimal polymer displayed near or sub-parts-per-million detection limits at 35 degrees C (0-80%RH).

  3. Embedded Piezoresistive Microcantilever Sensors Functionalized for the Detection of Methyl Salicylate

    SciTech Connect

    Porter, Timothy L.; Venedam, Richard J.

    2013-03-01

    Sensors designed to detect the presence of methyl salicylate (MeS) have been tested. These sensors use a sensor platform based on the embedded piezoresistive microcantilever (EPM) design. Sensing materials tested in this study included the polymer poly (ethylene vinyl acetate), or PEVA as well as a composite sensing material consisting of the enzyme SA-binding protein 2, or SABP-2. The SABP-2 was immobilized within a biocompatible Hypol gel matrix. The PEVA-based sensors exhibited slower but reversible responses to MeS vapors, recovering fully to their initial state after the analyte was removed. SABP-2 sensors exhibited faster overall response to the introduction of MeS, responding nearly instantly. These sensors, however, do not recover after exposures have ended. Sensors using the SABP-2 sensing materials act instead as integrating sensors, measuring irreversibly the total MeS dose obtained.

  4. Gas Chromatographic Determination of Methyl Salicylate in Rubbing Alcohol: An Experiment Employing Standard Addition.

    ERIC Educational Resources Information Center

    Van Atta, Robert E.; Van Atta, R. Lewis

    1980-01-01

    Provides a gas chromatography experiment that exercises the quantitative technique of standard addition to the analysis for a minor component, methyl salicylate, in a commercial product, "wintergreen rubbing alcohol." (CS)

  5. Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera: Aphididae) in soybean agroecosystems.

    PubMed

    Mallinger, Rachel E; Hogg, David B; Gratton, Claudio

    2011-02-01

    Methyl salicylate, an herbivore-induced plant volatile, has been shown to attract natural enemies and affect herbivore behavior. In this study, methyl salicylate was examined for its attractiveness to natural enemies of the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), and for its direct effects on soybean aphid population growth rates. Methyl salicylate lures were deployed in plots within organic soybean [Glycine max (L.) Merr.] fields. Sticky card traps adjacent to and 1.5 m from the lure measured the relative abundance of natural enemies, and soybean aphid populations were monitored within treated and untreated plots. In addition, exclusion cage studies were conducted to determine methyl salicylate's effect on soybean aphid population growth rates in the absence of natural enemies. Significantly greater numbers of syrphid flies (Diptera: Syrphidae) and green lacewings (Neuroptera: Chrysopidae) were caught on traps adjacent to the methyl salicylate lure, but no differences in abundance were found at traps 1.5 m from the lure. Furthermore, abundance of soybean aphids was significantly lower in methyl salicylate-treated plots. In exclusion cage studies, soybean aphid numbers were significantly reduced on treated soybean plants when all plants were open to natural enemies. When plants were caged, however, soybean aphid numbers and population growth rates did not differ between treated and untreated plants suggesting no effect of methyl salicylate on soybean aphid reproduction and implicating the role of natural enemies in depressing aphid populations. Although aphid populations were reduced locally around methyl salicylate lures, larger scale studies are needed to assess the technology at the whole-field scale.

  6. Environmental persistence and toxicity of dimethyl malonate and methyl salicylate

    SciTech Connect

    Fellows, R.J.; Harvey, S.D.; Ligotke, M.W.; Cataldo, D.A.; Li, S.W.; Van Voris, P. ); Wentsel, R.S. )

    1991-03-01

    To determine the potential environmental persistence and toxic effects of agent simulants Diethyl Malonate (DEM) and Methyl Salicylate (MS), plants, soils, earthworms, and oil microbial populations were exposed to projected aerosolized simulant concentrations of {approximately}100 (low) and {approximately}1000 (high) mg/m{sup 3}. Both simulants exhibited biphasic residence times on foliar and soil surfaces following aerosol exposure. Half-times of DEM on soil and foliar surfaces were 1 to 3 h and 5 to 22 H, respectively, and 2 to 2 h and 5 to 31 h for the MS, respectively. Persistence was longer on the foliar surfaces than that of the soils. Both simulants proved phytotoxic to vegetation with a lower threshold of 1 to 2 {mu}m/cm{sup 2} for the MS versus that of 10 {mu}g/cm{sup 2} for the DEM. However, neither significantly affected chloroplast electron transport in vitro at concentrations of up to 100 {mu}g/mL. Results from in vitro testing of DEM indicated concentrations below 500 {mu}g/g dry soil generally did not adversely impact soil microbial activity, while the theshold was 100 {mu}g/g dry soil for MS. Earthworm bioassays indicated survival rates of 66% at soil doses of 204 {mu}g DEM/cm{sup 2} soil and 86% at soil doses of 331 {mu}g MS/cm{sup 2}. 8 refs., 1 fig., 8 tabs.

  7. Transition-Metal-Catalyzed Carbonylation of Methyl Acetate.

    ERIC Educational Resources Information Center

    Polichnowski, S. W.

    1986-01-01

    Presents a study of the rhodium-catalyzed, ioding-promoted carbonylation of methyl acetate. This study provides an interesting contrast between the carbonylation of methyl acetate and the carbonylation of methanol when similar rhodium/iodine catalyst systems are used. (JN)

  8. Biosynthesis and emission of insect-induced methyl salicylate and methyl benzoate from rice

    SciTech Connect

    Zhao, Nan; Guan, Ju; Ferrer, Jean-Luc; Engle, Nancy L; Chern, Mawsheng; Ronald, Pamela; Tschaplinski, Timothy J; Chen, Feng

    2010-01-01

    Two benzenoid esters, methyl salicylate (MeSA) and methyl benzoate (MeBA), were detected from insect-damaged rice plants. By correlating metabolite production with gene expression analysis, five candidate genes encoding putative carboxyl methyltransferases were identified. Enzymatic assays with Escherichia coli-expressed recombinant proteins demonstrated that only one of the five candidates, OsBSMT1, has salicylic acid (SA) methyltransferase (SAMT) and benzoic acid (BA) methyltransferase (BAMT) activities for producing MeSA and MeBA, respectively. Whereas OsBSMT1 is phylogenetically relatively distant from dicot SAMTs, the three-dimensional structure of OsBSMT1, which was determined using homology-based structural modeling, is highly similar to those of characterized SAMTs. Analyses of OsBSMT1 expression in wild-type rice plants under various stress conditions indicate that the jasmonic acid (JA) signaling pathway plays a critical role in regulating the production and emission of MeSA in rice. Further analysis using transgenic rice plants overexpressing NH1, a key component of the SA signaling pathway in rice, suggests that the SA signaling pathway also plays an important role in governing OsBSMT1 expression and emission of its products, probably through a crosstalk with the JA signaling pathway. The role of the volatile products of OsBSMT1, MeSA and MeBA, in rice defense against insect herbivory is discussed.

  9. Acute environmental toxicity and persistence of methyl salicylate: A chemical agent simulant. Final report

    SciTech Connect

    Cataldo, D.A.; Ligotke, M.W.; Harvey, S.D.; Fellows, R.J.; Li, S.W.

    1994-06-01

    The interactions of methyl salicylate with plant foliage and soils were assessed using aerosol/vapor exposure methods. Measurements of deposition velocity and residence times for soils and foliar surfaces are reported. Severe plant contact toxicity was observed at foliar mass-loading levels above 4 {mu}g/cm{sup 2} leaf; however, recovery was noted after four to fourteen days. Methyl salicylate has a short-term effect on soil dehydrogenase activity, but not phosphatase activity. Results of the earthworm bioassay indicated only minimal effects on survival.

  10. Treatment of post-electroconvulsive therapy headache with topical methyl salicylate.

    PubMed

    Logan, Christopher J; Stewart, Jonathan T

    2012-06-01

    Headache after administration of electroconvulsive therapy (ECT) is common, affecting approximately half of patients treated. Post-ECT headache is typically treated with acetaminophen or nonsteroidal anti-inflammatory drugs but occasionally requires agents such as sumatriptan, opioids, or β-blockers. We report on a patient whose severe post-ECT headaches responded completely to methyl salicylate ointment, applied to the area of his temporalis and masseter muscles. Topical methyl salicylate is generally well tolerated and may be a viable option for some patients with post-ECT headache. PMID:22622298

  11. Rotational Spectrum of the Methyl Salicylate-Water Complex: the Missing Conformer and the Tunneling Motions

    NASA Astrophysics Data System (ADS)

    Ghosh, Supriya; Thomas, Javix; Xu, Yunjie; Jäger, Wolfgang

    2015-06-01

    Methyl salicylate is a naturally occurring organic ester produced by wintergreen and other plants. It is also found in many over-the-counter remedies, such as muscle ache creams. The rotational spectrum of the methyl salicylate monomer was reported previously, where the most stable, dominant conformer was identified. The methyl salicylate-water complex was first studied using fluorescence-detected infrared spectroscopy; only one monohydrate conformer was found in that work. In the present study, we employed both broadband chirped and cavity based Fourier transform microwave spectroscopy to examine the competition between intra- and intermolecular hydrogen-bonding interactions and possible large amplitude motions associated with the methyl group and the water subunit. In contrast to the previous infrared study, two monohydrate conformers were identified, with carbonyl O or hydroxyl O as the hydrogen bond acceptors. Detailed analyses of the observed hyperfine structures will be presented, as well as our efforts to extend the study to larger methyl salicylate hydration clusters. S. Melandri, B. M. Giuliano, A. Maris, L. B. Favero, P. Ottaviani, B. Velino, W. Caminati, J. Phys. Chem. A. 2007, 111, 9076. A. Mitsuzuka, A. Fujii, T. Ebata, N. Mikami, J. Phys. Chem. A 1998, 102, 9779.

  12. Gas scavenging of insoluble vapors: Condensation of methyl salicylate vapor onto evaporating drops of water

    NASA Astrophysics Data System (ADS)

    Seaver, Mark; Peele, J. R.; Rubel, Glenn O.

    We have observed the evaporation of acoustically levitated water drops at 0 and 32% relative humidity in a moving gas stream which is nearly saturated with methyl salicylate vapor. The initial evaporation rate is characteristic of a pure water drop and gradually slows until the evaporation rate becomes that of pure methyl salicylate. The quantity of condensed methyl salicylate exceeds its Henry's law solubility in water by factors of more than 30-50. This apparent violation of Henry's law agrees with the concentration enhancements in the liquid phase found by glotfelty et al. (1987, Nature235, 602-605) during their field measurements of organophorus pesticides in fog water. Under our conditions, visual evidence demonstrates the presence of two liquid phases, thus invalidating the use of Henry's law. A continuum evaporation-condensation model for an immiscible two-component system which accounts for evaporative self-cooling of the drop correctly predicts the amount of methyl salicylate condensed onto the water drops.

  13. Effect of Methyl Salicylate-Based Lures on Beneficial and Pest Arthropods in Strawberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl salicylate (MeSA) is a common herbivore-induced plant volatile that, when applied to crops, has the potential to enhance natural enemy abundance and pest control. The impacts of MeSA in the strawberry system were unknown and examined in this study. Strawberry plots contained no lures (contr...

  14. 40 CFR 180.1189 - Methyl salicylate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD... biochemical pesticide methyl salicylate is exempt from the requirement of a tolerance for residues in or on food or feed when used as an insect repellant in food packaging and animal feed packaging at...

  15. 40 CFR 180.1189 - Methyl salicylate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD... biochemical pesticide methyl salicylate is exempt from the requirement of a tolerance for residues in or on food or feed when used as an insect repellant in food packaging and animal feed packaging at...

  16. 40 CFR 180.1189 - Methyl salicylate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD... biochemical pesticide methyl salicylate is exempt from the requirement of a tolerance for residues in or on food or feed when used as an insect repellant in food packaging and animal feed packaging at...

  17. 40 CFR 180.1189 - Methyl salicylate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD... biochemical pesticide methyl salicylate is exempt from the requirement of a tolerance for residues in or on food or feed when used as an insect repellant in food packaging and animal feed packaging at...

  18. 40 CFR 180.1189 - Methyl salicylate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD... biochemical pesticide methyl salicylate is exempt from the requirement of a tolerance for residues in or on food or feed when used as an insect repellant in food packaging and animal feed packaging at...

  19. Search for Deuterated methyl acetate in the ISM

    NASA Astrophysics Data System (ADS)

    Gorai, Prasanta; Chakrabarti, Sandip Kumar; Das, Ankan; Majumdar, Liton; Sahu, Dipen; Sivaraman, Bhalamurugan

    2016-07-01

    Methyl acetate (CH_3COOCH_3 ) has been recently observed by IRAM 30 m radio telescope in Orion. But the existence of its deuterated form are yet to be confirmed. Here, we study the properties of methyl acetate and its singly deuterated forms (CH_3COOCH_3, CH_2DCOOCH_3 and CH_3COOCH_2D). Our simulation results reveal that deuterated forms of methyl acetate could efficiently be produced both in gas as well as in ice phase. Production of methyl acetate could follow radical-radical reaction between acetyl (CH_3CO) and methoxy (CH_3O) radicals. To predict abundances of CH_3COOCH_3 along with its two singly deuterated isotopomers and its two isomers (ethyl formate and hydroxy acetone), we prepare a large gas-grain chemical network to study chemical evolution of these molecules. Since gas phase rate coefficients of our newly adopted network for methyl acetate and its related species were unknown, in our simulation, either we consider similar rate coefficients for similar types of reactions (by following existing data bases) or we carry out quantum chemical calculations to estimate the unknown rate coefficients. For the surface reactions, we use adsorption energies of reactants from some earlier studies. Moreover, we perform quantum chemical calculations to find out various spectral properties of various forms of methyl acetate in infrared, ultraviolet and sub-millimeter regions. We prepare two catalog files for the rotational transitions of CH_2DCOOCH_3 and CH_3COOCH_2D in JPL format, which might be useful for its detection in regions of interstellar media where CH_3COOCH_3 has already been observed.

  20. Natural abundance 2H-ERETIC-NMR authentication of the origin of methyl salicylate.

    PubMed

    Le Grand, Flore; George, Gerard; Akoka, Serge

    2005-06-29

    Methyl salicylate is a compound currently used in the creation of many flavors. It can be obtained by synthesis or from two natural sources: essential oil of wintergreen and essential oil of sweet birch bark. Deuterium site-specific natural isotope abundance (A(i)) determination by NMR spectroscopy with the method of reference ERETIC ((2)H-ERETIC-NMR) has been applied to this compound. A(i) measurements have been performed on 19 samples of methyl salicylate from different origins, natural/synthetic and commercial/extracted. This study demonstrates that appropriate treatment performed on the data allows discrimination between synthetic and natural samples. Moreover, the representation of intramolecular ratios R(6/5) as a function of R(3/2) distinguishes between synthetics, wintergreen oils, and sweet birch bark oils.

  1. Spectroscopy and intramolecular relaxation of methyl salicylate in its first excited singlet state

    NASA Astrophysics Data System (ADS)

    Kuper, Jerry W.; Perry, David S.

    1984-05-01

    High resolution fluorescence excitation experiments are reported for the blue emitting rotamer of methyl salicylate in its first excited singlet state. These experiments employ moderate expansions of methyl salicylate seeded in argon ( P0D=5-8 Torr cm) to achieve rotational and vibrational cooling in a pulsed supersonic jet. The rotational contour of the electronic origin at 30 055.3 cm-1 is shown to be consistent with a geometrically distorted π-π* excited state, partially polarized along the A axis and with a rotational temperature of 5-7 K. A noticeable broadening of the spectral features beyond the rotational contour begins at 500 cm-1 above the origin and then increases rapidly above 900 cm-1 reaching a width of 12 cm-1 near 1200 cm-1. The constancy of fluorescence decay lifetimes in this region indicate that intramolecular vibrational relaxation in the S1 manifold is the broadening mechanism.

  2. A novel bi-enzyme electrochemical biosensor for selective and sensitive determination of methyl salicylate.

    PubMed

    Fang, Yi; Umasankar, Yogeswaran; Ramasamy, Ramaraja P

    2016-07-15

    An amperometric sensor based on a bi-enzyme modified electrode was fabricated to detect methyl salicylate, a volatile organic compound released by pathogen-infected plants via systemic response. The detection is based on cascadic conversion reactions that result in an amperometric electrochemical signal. The bi-enzyme electrode is made of alcohol oxidase and horseradish peroxidase enzymes immobilized on to a carbon nanotube matrix through a molecular tethering method. Methyl salicylate undergoes hydrolysis to form methanol, which is consumed by alcohol oxidase to form formaldehyde while simultaneously reducing oxygen to hydrogen peroxide. The hydrogen peroxide will be further reduced to water by horseradish peroxidase, which results in an amperometric signal via direct electron transfer. The bi-enzyme biosensor was evaluated by cyclic voltammetry and constant potential amperometry using hydrolyzed methyl salicylate as the analyte. The sensitivity of the bi-enzyme biosensor as determined by cyclic voltammetry and constant potential amperometry were 112.37 and 282.82μAcm(-2)mM(-1) respectively, and the corresponding limits of detection were 22.95 and 0.98μM respectively. Constant potential amperometry was also used to evaluate durability, repeatability and interference from other compounds. Wintergreen oil was used for real sample study to establish the application of the bi-enzyme sensor for selective determination of plant pathogen infections.

  3. A novel bi-enzyme electrochemical biosensor for selective and sensitive determination of methyl salicylate.

    PubMed

    Fang, Yi; Umasankar, Yogeswaran; Ramasamy, Ramaraja P

    2016-07-15

    An amperometric sensor based on a bi-enzyme modified electrode was fabricated to detect methyl salicylate, a volatile organic compound released by pathogen-infected plants via systemic response. The detection is based on cascadic conversion reactions that result in an amperometric electrochemical signal. The bi-enzyme electrode is made of alcohol oxidase and horseradish peroxidase enzymes immobilized on to a carbon nanotube matrix through a molecular tethering method. Methyl salicylate undergoes hydrolysis to form methanol, which is consumed by alcohol oxidase to form formaldehyde while simultaneously reducing oxygen to hydrogen peroxide. The hydrogen peroxide will be further reduced to water by horseradish peroxidase, which results in an amperometric signal via direct electron transfer. The bi-enzyme biosensor was evaluated by cyclic voltammetry and constant potential amperometry using hydrolyzed methyl salicylate as the analyte. The sensitivity of the bi-enzyme biosensor as determined by cyclic voltammetry and constant potential amperometry were 112.37 and 282.82μAcm(-2)mM(-1) respectively, and the corresponding limits of detection were 22.95 and 0.98μM respectively. Constant potential amperometry was also used to evaluate durability, repeatability and interference from other compounds. Wintergreen oil was used for real sample study to establish the application of the bi-enzyme sensor for selective determination of plant pathogen infections. PMID:26918616

  4. 40 CFR 721.10448 - Acetic acid, hydroxy- methoxy-, methyl ester, reaction products with substituted alkylamine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ester, reaction products with substituted alkylamine (generic). 721.10448 Section 721.10448 Protection... Acetic acid, hydroxy- methoxy-, methyl ester, reaction products with substituted alkylamine (generic). (a... generically as acetic acid, hydroxymethoxy-, methyl ester, reaction products with substituted alkylamine...

  5. A novel methyltransferase from the intracellular pathogen Plasmodiophora brassicae methylates salicylic acid.

    PubMed

    Ludwig-Müller, Jutta; Jülke, Sabine; Geiß, Kathleen; Richter, Franziska; Mithöfer, Axel; Šola, Ivana; Rusak, Gordana; Keenan, Sandi; Bulman, Simon

    2015-05-01

    The obligate biotrophic pathogen Plasmodiophora brassicae causes clubroot disease in Arabidopsis thaliana, which is characterized by large root galls. Salicylic acid (SA) production is a defence response in plants, and its methyl ester is involved in systemic signalling. Plasmodiophora brassicae seems to suppress plant defence reactions, but information on how this is achieved is scarce. Here, we profile the changes in SA metabolism during Arabidopsis clubroot disease. The accumulation of SA and the emission of methylated SA (methyl salicylate, MeSA) were observed in P. brassicae-infected Arabidopsis 28 days after inoculation. There is evidence that MeSA is transported from infected roots to the upper plant. Analysis of the mutant Atbsmt1, deficient in the methylation of SA, indicated that the Arabidopsis SA methyltransferase was not responsible for alterations in clubroot symptoms. We found that P. brassicae possesses a methyltransferase (PbBSMT) with homology to plant methyltransferases. The PbBSMT gene is maximally transcribed when SA production is highest. By heterologous expression and enzymatic analyses, we showed that PbBSMT can methylate SA, benzoic and anthranilic acids.

  6. Formation of molecular complexes of salicylic acid, acetylsalicylic acid, and methyl salicylate in a mixture of supercritical carbon dioxide with a polar cosolvent

    NASA Astrophysics Data System (ADS)

    Petrenko, V. E.; Antipova, M. L.; Gurina, D. L.; Odintsova, E. G.

    2015-08-01

    The solvate structures formed by salicylic acid, acetylsalicylic acid, and methyl salicylate in supercritical (SC) carbon dioxide with a polar cosolvent (methanol, 0.03 mole fractions) at a density of 0.7 g/cm3 and a temperature of 318 K were studied by the molecular dynamics method. Salicylic and acetylsalicylic acids were found to form highly stable hydrogen-bonded complexes with methanol via the hydrogen atom of the carboxyl group. For methyl salicylate in which the carboxyl hydrogen is substituted by a methyl radical, the formation of stable hydrogen bonds with methanol was not revealed. The contribution of other functional groups of the solute to the interactions with the cosolvent was much smaller. An analysis of correlations between the obtained data and the literature data on the cosolvent effect on the solubility of the compounds in SC CO2 showed that the dissolving ability of SC CO2 with respect to a polar organic substance in the presence of a cosolvent increased only when stable hydrogen-bonded complexes are formed between this substance and the cosolvent.

  7. Effect of methyl salicylate and methyl jasmonate pre-treatment on the volatile profile in tomato fruit subjected to chilling temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato fruits exposed to chilling temperatures suffer aroma loss prior to visual chilling injury (CI) symptoms. Methyl salicylate (MeSA) and methyl jasmonate (MeJA) treatments were reported to alleviate the development of visual CI, however, it is unknown if the treatments alleviate internal CI in t...

  8. Dual fluorescence excitation spectra of methyl salicylate in a free jet

    NASA Astrophysics Data System (ADS)

    Heimbrook, Lou Ann; Kenny, Jonathan E.; Kohler, Bryan E.; Scott, Gary W.

    1981-11-01

    Separate fluorescence excitation spectra of the blue- and UV-emitting forms of methyl salicylate cooled in a free-jet expansion are reported. This study represents the first observation of the detailed vibrational structure of these transitions. The two excitation spectra have no features in common, and their intensity patterns are very different. Many individual lines are ˜2 cm-1 wide (nearly laser limited), although in the excitation spectrum of the UV emission, spectral congestion persists at high energies despite the high degree of cooling. (AIP)

  9. DISCOVERY OF METHYL ACETATE AND GAUCHE ETHYL FORMATE IN ORION

    SciTech Connect

    Tercero, B.; Cernicharo, J.; Lopez, A.; Caro, G. M. Munoz; Kleiner, I.; Nguyen, H. V. L. E-mail: jcernicharo@cab.inta-csic.es E-mail: munozcg@cab.inta-csic.es E-mail: nguyen@pc.rwth-aachen.de

    2013-06-10

    We report on the discovery of methyl acetate, CH{sub 3}COOCH{sub 3}, through the detection of a large number of rotational lines from each one of the spin states of the molecule: AA species (A{sub 1} or A{sub 2}), EA species (E{sub 1}), AE species (E{sub 2}), and EE species (E{sub 3} or E{sub 4}). We also report, for the first time in space, the detection of the gauche conformer of ethyl formate, CH{sub 3}CH{sub 2}OCOH, in the same source. The trans conformer is also detected for the first time outside the Galactic center source SgrB2. From the derived velocity of the emission of methyl acetate, we conclude that it arises mainly from the compact ridge region with a total column density of (4.2 {+-} 0.5) Multiplication-Sign 10{sup 15} cm{sup -2}. The derived rotational temperature is 150 K. The column density for each conformer of ethyl formate, trans and gauche, is (4.5 {+-} 1.0) Multiplication-Sign 10{sup 14} cm{sup -2}. Their abundance ratio indicates a kinetic temperature of 135 K for the emitting gas and suggests that gas-phase reactions could participate efficiently in the formation of both conformers in addition to cold ice mantle reactions on the surface of dust grains.

  10. Heterogeneous catalyst for the production of acetic anhydride from methyl acetate

    SciTech Connect

    Ramprasad, Dorai; Waller, Francis Joseph

    1999-01-01

    This invention relates to a process for producing acetic anhydride by the reaction of methyl acetate, carbon monoxide, and hydrogen at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that contains an insoluble polymer having pendant quaternized phosphine groups, some of which phosphine groups are ionically bonded to anionic Group VIII metal complexes, the remainder of the phosphine groups being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled for consecutive runs without loss in activity. Bifunctional catalysts for use in carbonylating dimethyl ether are also provided.

  11. Heterogeneous catalyst for the production of acetic anhydride from methyl acetate

    SciTech Connect

    Ramprasad, D.; Waller, F.J.

    1999-04-06

    This invention relates to a process for producing acetic anhydride by the reaction of methyl acetate, carbon monoxide, and hydrogen at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that contains an insoluble polymer having pendant quaternized phosphine groups, some of which phosphine groups are ionically bonded to anionic Group VIII metal complexes, the remainder of the phosphine groups being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled for consecutive runs without loss in activity. Bifunctional catalysts for use in carbonylating dimethyl ether are also provided.

  12. Vacuum ultraviolet and infrared spectra of condensed methyl acetate on cold astrochemical dust analogs

    SciTech Connect

    Sivaraman, B.; Nair, B. G.; Mason, N. J.; Lo, J.-I.; Cheng, B.-M.; Kundu, S.; Davis, D.; Prabhudesai, V.; Krishnakumar, E.; Raja Sekhar, B. N.

    2013-12-01

    Following the recent report of the first identification of methyl acetate (CH{sub 3}COOCH{sub 3}) in the interstellar medium (ISM), we have carried out vacuum ultraviolet (VUV) and infrared (IR) spectroscopy studies on methyl acetate from 10 K until sublimation in an ultrahigh vacuum chamber simulating astrochemical conditions. We present the first VUV and IR spectra of methyl acetate relevant to ISM conditions. Spectral signatures clearly showed molecular reorientation to have started in the ice by annealing the amorphous ice formed at 10 K. An irreversible phase change from amorphous to crystalline methyl acetate ice was found to occur between 110 K and 120 K.

  13. Evaluation of methyl salicylate lures on populations of Typhlodromus pyri (Acari: Phytoseiidae) and other natural enemies in vineyards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl salicylate (MeSA), an herbivore induced plant volatile, can potentially elicit control of pests through attraction of beneficial arthropods. This study evaluates the effect of synthetic MeSA lures (PredaLure) on arthropod populations during the 2009 and 2010 seasons in two Oregon vineyards (...

  14. Field responses of predaceous arthropods to methyl salicylate: a meta-analysis and case study in cranberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl salicylate (MeSA) is an herbivore-induced plant volatile (HIPV) that has shown potential in attracting natural enemies. Here, we conducted a meta-analysis to evaluate the magnitude of natural enemy response to MeSA in the field, and tested its attractiveness to insect predators in commercial...

  15. Consumption study and identification of methyl salicylate in spicy cassava chips

    SciTech Connect

    Nirjana, Marlene Anggadiredja, Kusnandar; Damayanti, Sophi

    2015-09-30

    Spicy cassava chips is a popular snack. However, some news in electronic media reported addition of balsam which is a banned food additives in that product to give extra spicy flavor. This study aimed to determine ITB students’ pattern of consumption, health problems caused by spicy chips consumption, and knowledge about illicit use of food additives in that product, and identify the main content of balsam namely methyl salicylate in 10 samples of spicy cassava chips taken from inside and outside about ITB campus. A total of 300 questionnaires distributed to ITB students then data processing was performed. Spicy cassava chips sample macerated in 50 mL of methanol for 24 hours at room temperature, filtered and analyzed using gas chromatography capillary column with OV-1, nitrogen carrier gas and flame ionization detector. Based on questionnaires, 292 (97%) of 300 respondents had consumed spicy chips. A total of 247 (85%) from 292 respondents spicy chips consumed less than 3 times a week. A total of 195 respondents (67%) had experienced health problems after eating spicy chips. There were 137 (47%) of the 292 respondents who knew about the illicit addition of food additives into spicy chips; only 35 respondents (12%) who knew about balsam’s addition. There were 126 respondents (43%) who did not pay attention to their health because they will keep eating spicy chips despite the addition of banned food additives. Through the verification of the standard addition method in gas chromatography system with a hydrogen pressure of 1.5 bar, injector temperature 200 °C, detector temperature 230 °C, oven temperature 60 °C for 2 minutes and then increased to 230 °C with rate 6 °C/menit; linearity, limit of detection, limit of quantitation, accuracy, precision, and specificity parameters met the acceptance limits. From 10 spicy cassava chips samples which were analyzed, they did not reveal any content of methyl salicylate. Methyl salicylate contained in the positive

  16. Consumption study and identification of methyl salicylate in spicy cassava chips

    NASA Astrophysics Data System (ADS)

    Nirjana, Marlene; Anggadiredja, Kusnandar; Damayanti, Sophi

    2015-09-01

    Spicy cassava chips is a popular snack. However, some news in electronic media reported addition of balsam which is a banned food additives in that product to give extra spicy flavor. This study aimed to determine ITB students' pattern of consumption, health problems caused by spicy chips consumption, and knowledge about illicit use of food additives in that product, and identify the main content of balsam namely methyl salicylate in 10 samples of spicy cassava chips taken from inside and outside about ITB campus. A total of 300 questionnaires distributed to ITB students then data processing was performed. Spicy cassava chips sample macerated in 50 mL of methanol for 24 hours at room temperature, filtered and analyzed using gas chromatography capillary column with OV-1, nitrogen carrier gas and flame ionization detector. Based on questionnaires, 292 (97%) of 300 respondents had consumed spicy chips. A total of 247 (85%) from 292 respondents spicy chips consumed less than 3 times a week. A total of 195 respondents (67%) had experienced health problems after eating spicy chips. There were 137 (47%) of the 292 respondents who knew about the illicit addition of food additives into spicy chips; only 35 respondents (12%) who knew about balsam's addition. There were 126 respondents (43%) who did not pay attention to their health because they will keep eating spicy chips despite the addition of banned food additives. Through the verification of the standard addition method in gas chromatography system with a hydrogen pressure of 1.5 bar, injector temperature 200 °C, detector temperature 230 °C, oven temperature 60 °C for 2 minutes and then increased to 230 °C with rate 6 °C/menit; linearity, limit of detection, limit of quantitation, accuracy, precision, and specificity parameters met the acceptance limits. From 10 spicy cassava chips samples which were analyzed, they did not reveal any content of methyl salicylate. Methyl salicylate contained in the positive control

  17. Optimization and validation of liquid chromatography and headspace-gas chromatography based methods for the quantitative determination of capsaicinoids, salicylic acid, glycol monosalicylate, methyl salicylate, ethyl salicylate, camphor and l-menthol in a topical formulation.

    PubMed

    Pauwels, Jochen; D'Autry, Ward; Van den Bossche, Larissa; Dewever, Cédric; Forier, Michel; Vandenwaeyenberg, Stephanie; Wolfs, Kris; Hoogmartens, Jos; Van Schepdael, Ann; Adams, Erwin

    2012-02-23

    Capsaicinoids, salicylic acid, methyl and ethyl salicylate, glycol monosalicylate, camphor and l-menthol are widely used in topical formulations to relieve local pain. For each separate compound or simple mixtures, quantitative analysis methods are reported. However, for a mixture containing all above mentioned active compounds, no assay methods were found. Due to the differing physicochemical characteristics, two methods were developed and optimized simultaneously. The non-volatile capsaicinoids, salicylic acid and glycol monosalicylate were analyzed with liquid chromatography following liquid-liquid extraction, whereas the volatile compounds were analyzed with static headspace-gas chromatography. For the latter method, liquid paraffin was selected as compatible dilution solvent. The optimized methods were validated in terms of specificity, linearity, accuracy and precision in a range of 80% to 120% of the expected concentrations. For both methods, peaks were well separated without interference of other compounds. Linear relationships were demonstrated with R² values higher than 0.996 for all compounds. Accuracy was assessed by performing replicate recovery experiments with spiked blank samples. Mean recovery values were all between 98% and 102%. Precision was checked at three levels: system repeatability, method precision and intermediate precision. Both methods were found to be acceptably precise at all three levels. Finally, the method was successfully applied to the analysis of some real samples (cutaneous sticks). PMID:22094014

  18. Detection of Methyl Salicylate Transforted by Honeybees (Apis mellifera) Using Solid Phase Microextration (SPME) Fibers

    SciTech Connect

    BENDER, SUSAN FAE ANN; RODACY, PHILIP J.; BARNETT, JAMES L.; BENDER, GARY L.

    2001-12-01

    The ultimate goal of many environmental measurements is to determine the risk posed to humans or ecosystems by various contaminants. Conventional environmental monitoring typically requires extensive sampling grids covering several media including air, water, soil and vegetation. A far more efficient, innovative and inexpensive tactic has been found using honeybees as sampling mechanisms. Members from a single bee colony forage over large areas ({approx}2 x 10{sup 6} m{sup 2}), making tens of thousands of trips per day, and return to a fixed location where sampling can be conveniently conducted. The bees are in direct contact with the air, water, soil and vegetation where they encounter and collect any contaminants that are present in gaseous, liquid and particulate form. The monitoring of honeybees when they return to the hive provides a rapid method to assess chemical distributions and impacts (1). The primary goal of this technology is to evaluate the efficiency of the transport mechanism (honeybees) to the hive using preconcentrators to collect samples. Once the extent and nature of the contaminant exposure has been characterized, resources can be distributed and environmental monitoring designs efficiently directed to the most appropriate locations. Methyl salicylate, a chemical agent surrogate was used as the target compound in this study.

  19. Identification of methyl salicylate as the principal volatile component in the methanol extract of root bark of Securidaca longepedunculata Fers.

    PubMed

    Jayasekara, T K; Stevenson, P C; Belmain, S R; Farman, D I; Hall, D R

    2002-06-01

    Securidaca longepedunculata Fers (Polygalaceae) is commonly used as a medicine in many parts of Africa and shows promise for protecting stored grain against insect pests. Analysis of a methanol extract of the root bark by gas chromatography linked to mass spectrometry (GC/MS) showed a major component accounting for over 90% of the volatile material. This was identified as methyl 2-hydroxybenzoate (methyl salicylate) by comparison of the GC retention times and mass spectrum with those of synthetic standards. This conflicts with an earlier report that the major component is methyl 4-hydroxybenzoate. Two minor components had mass spectra characteristic of 2-hydroxybenzoate esters and were identified as methyl 2-hydroxy-6-methoxybenzoate and its benzyl analogue, again conflicting with an earlier report. PMID:12112739

  20. Evaluation of the acaricide effect of thymol, menthol, salicylic acid, and methyl salicylate on Boophilus microplus (Canestrini 1887) (Acari: Ixodidae) larvae.

    PubMed

    da Silveira Novelino, Adriana Maria; Daemon, Erik; Soares, Geraldo Luiz Gonçalves

    2007-08-01

    The tick Boophilus microplus is the principal species of ectoparasite that impairs dairy cattle productivity in Brazil. Its control is mainly by using synthetic chemical products during its parasitic phase. The purpose of this study is to evaluate the acaricide activity of four products of natural origin. Depending on solubility, tests were conducted with solutions in distilled water or emulsified in aqueous DMSO at 1% of the following products: thymol, menthol, methyl salicylate, and salicylic acid. Each of these was tested at three concentrations (0.25, 0.5, and 1.0%) with five repetitions. The "larval packet test" was performed on approximately 100 larvae of B. microplus at around 15 days of age. After applying the test substances, the envelopes were kept at 27 degrees C and UR >80% and opened after 24 h to count the living and dead larvae. Of the four products tested, only thymol caused significant (up to 100%) mortality of B. microplus larvae. The mortality caused by the other products varied from 0.52 to 9.76%. Hence, thymol can be considered a potential agent to control bovine ticks.

  1. Salicylic acid and methyl jasmonate improve chilling tolerance in cold-stored lemon fruit (Citrus limon).

    PubMed

    Siboza, Xolani Irvin; Bertling, Isa; Odindo, Alfred Oduor

    2014-11-15

    Chilling injury (CI) is associated with the degradation of membrane integrity which can be aligned to phenolic oxidation activated by polyphenol oxidase (PPO) and peroxidase (POD), enzymes responsible for tissue browning. Phenylalanine ammonia-lyase (PAL) is a further enzyme prominent in the phenolic metabolism that is involved in acclimation against chilling stress. It was hypothesized that treatment with methyl jasmonate (MJ) and salicylic acid (SA) may enhance chilling tolerance in lemon fruit by increasing the synthesis of total phenolics and PAL by activating the key enzyme regulating the shikimic acid pathway whilst inhibiting the activity of POD and PPO. Lemon fruit were treated with 10μM MJ, 2mM SA or 10μM MJ plus 2mM SA, waxed, stored at -0.5, 2 or 4.5°C for up to 28 days plus 7 days at 23°C. Membrane integrity was studied by investigating membrane permeability and the degree of membrane lipid peroxidation in lemon flavedo following cold storage. The 10μM MJ plus 2mM SA treatment was most effective in enhancing chilling tolerance of lemon fruit, significantly reducing chilling-induced membrane permeability and membrane lipid peroxidation of lemon flavedo tissue. This treatment also increased total phenolics and PAL activity in such tissue while inhibiting POD activity, the latter possibly contributing to the delay of CI manifestation. PPO activity was found to be a poor biochemical marker of CI. Treatment with 10μM MJ plus 2mM SA resulted in an alteration of the phenolic metabolism, enhancing chilling tolerance, possibly through increased production of total phenolics and the activation of PAL and inhibition of POD.

  2. Batch salicylic acid nitration by nitric acid/acetic acid mixture under isothermal, isoperibolic and adiabatic conditions.

    PubMed

    Andreozzi, R; Canterino, M; Caprio, V; Di Somma, I; Sanchirico, R

    2006-12-01

    Runaway phenomena and thermal explosions can originate during the nitration of salicylic acid by means of a nitric acid/acetic acid mixture when the thermal control is lost, mainly as a result of the formation and thermal decomposition of picric acid. The prediction of the behaviour of this system is thus of great importance in view of possible industrial applications and the need to avoid the occurrence of unwanted dangerous events. During a previous investigation a model was developed to simulate its behaviour when the starting concentration of the substrate is too low, thus, preventing the precipitation of poor soluble intermediates. In this work this model is extended to deal with more concentrated systems even in case of a solid phase separating during the process. To this purpose the previously assessed dependence of the solubility of 3-nitro and 5-nitrosalicylic acids upon temperature and nitric acid concentration is included in the model. It is assumed that when 3-nitro and 5-nitrosalicylic acids are partially suspended in the reacting medium a kinetic regime of "dissolution with reaction" is established; that is, the redissolution of these species is a fast process compared to the successive nitration to give dinitroderivatives. Good results are obtained in the comparison of the experimental data with those calculated both in isoperibolic and adiabatic conditions when the revised model is used.

  3. [Acute salicylate poisoning].

    PubMed

    Reingardiene, Dagmara; Lazauskas, Robertas

    2006-01-01

    Although aspirin (acetylsalicylic acid) has become widely available without prescription, cases of self-poisoning due to overdose of salicylates are quite uncommon, with a low reported mortality. However, severe poisoning with these preparations is life threatening. Besides the aspirin, there are other sources of salicylate poisoning, such as an excessive application of topical agents, ingestion of salicylate containing ointments, use of keratolytic agents or agents containing methyl salicylate (e.g. oil of wintergreen). Most of these preparations are liquid, highly concentrated and lipid soluble, and, therefore, they are able to provoke a severe, rapid salicylate poisoning. On the basis of clinical and metabolic features or salicylate concentration in plasma it is very important to diagnose severe poisoning with salicylates in time and prescribe an adequate treatment. In the present review article various aspects of salicylate poisoning and its treatment are discussed: epidemiology, pharmacokinetics and pharmacodynamics of salicylates, clinical manifestations of their toxicity, management, enhanced elimination and prognosis.

  4. Hair analysis as a useful procedure for detection of vapour exposure to chemical warfare agents: simulation of sulphur mustard with methyl salicylate.

    PubMed

    Spiandore, Marie; Piram, Anne; Lacoste, Alexandre; Josse, Denis; Doumenq, Pierre

    2014-06-01

    Chemical warfare agents (CWA) are highly toxic compounds which have been produced to kill or hurt people during conflicts or terrorist attacks. Despite the fact that their use is strictly prohibited according to international convention, populations' exposure still recently occurred. Development of markers of exposure to CWA is necessary to distinguish exposed victims from unexposed ones. We present the first study of hair usage as passive sampler to assess contamination by chemicals in vapour form. This work presents more particularly the hair adsorption capacity for methyl salicylate used as a surrogate of the vesicant sulphur mustard. Chemical vapours toxicity through the respiratory route has historically been defined through Haber's law's concentration-time (Ct) product, and vapour exposure of hair to methyl salicylate was conducted with various times or doses of exposure in the range of incapacitating and lethal Ct products corresponding to sulphur mustard. Following exposure, extraction of methyl salicylate from hair was conducted by simple soaking in dichloromethane. Methyl salicylate could be detected on hair for vapour concentration corresponding to about one fifth of the sulphur mustard concentration that would kill 50% of exposed individuals (LCt50). The amount of methyl salicylate recovered from hair increased with time or dose of exposure. It showed a good correlation with the concentration-time product, suggesting that hair could be used like a passive sampler to assess vapour exposure to chemical compounds. It introduces great perspectives concerning the use of hair as a marker of exposure to CWA.

  5. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acetic acid, , 1-methyl hexyl ester... Substances § 721.304 Acetic acid, , 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as acetic acid, -, 1-methylhexyl ester (PMN...

  6. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acetic acid, , 1-methyl hexyl ester... Substances § 721.304 Acetic acid, , 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as acetic acid, -, 1-methylhexyl ester (PMN...

  7. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acetic acid, , 1-methyl hexyl ester... Substances § 721.304 Acetic acid, , 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as acetic acid, -, 1-methylhexyl ester (PMN...

  8. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acetic acid, , 1-methyl hexyl ester... Substances § 721.304 Acetic acid, , 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as acetic acid, -, 1-methylhexyl ester (PMN...

  9. Methyl Acetate and Its Singly Deuterated Isotopomers in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Das, Ankan; Majumdar, Liton; Sahu, Dipen; Gorai, Prasanta; Sivaraman, B.; Chakrabarti, Sandip K.

    2015-07-01

    Methyl acetate ({{CH}}3{{COOCH}}3) has been recently observed by the IRAM 30 m radio telescope in Orion, though the presence of its deuterated isotopomers is yet to be confirmed. We therefore study the properties of various forms of methyl acetate, namely, {{CH}}3{{COOCH}}3, {{CH}}2{{DCOOCH}}3, and {{CH}}3{{COOCH}}2{{D}}. Our simulation reveals that these species could be produced efficiently in both gas and ice phases. Production of methyl acetate could follow radical-radical reaction between acetyl ({{CH}}3{CO}) and methoxy ({{CH}}3{{O}}) radicals. To predict abundances of {{CH}}3{{COOCH}}3 along with its two singly deuterated isotopomers and its two isomers (ethyl formate and hydroxyacetone), we prepare a gas-grain chemical network to study the chemical evolution of these molecules. Since gas-phase rate coefficients for methyl acetate and its related species are unknown, either we consider similar rate coefficients for similar types of reactions (by following existing databases) or we carry out quantum chemical calculations to estimate the unknown rate coefficients. For the surface reactions, we use adsorption energies of reactants from some earlier studies. Moreover, we perform quantum chemical calculations to obtain spectral properties of methyl acetate in infrared and sub-millimeter regions. We prepare two catalog files for the rotational transitions of {{CH}}2{{DCOOCH}}3 and {{CH}}3{{COOCH}}2{{D}} in JPL format, which could be useful for their detection in regions of interstellar media where {{CH}}3{{COOCH}}3 has already been observed.

  10. A shock tube laser schlieren study of methyl acetate dissociation in the fall-off regime.

    PubMed

    Annesley, Christopher J; Franklin Goldsmith, C; Tranter, Robert S

    2014-04-28

    The pyrolysis of methyl acetate, 2% and 4% dilute in krypton, was investigated in a diaphragmless shock tube (DFST) using laser schlieren densitometry (LS). Experiments were performed at 122 ± 3 and 63 ± 2 Torr over the temperature range of 1492-2266 K. Master equation models for the four main dissociation paths of methyl acetate based on a prior study by Peukert et al. [S. Peukert, R. Sivaramakrishnan, M. Su and J. Michael, Combust. Flame, 2012, 159, 2312-2323] were refined and formed the basis for simulating the LS experiments. The density gradient profiles from the LS experiments indicate that the initial dissociation proceeds predominantly by breakage of the C-O bond leading ultimately to two methyl radicals and CO2, accounting for 83-88% of the methyl acetate loss over this temperature range. Rate coefficients for dissociation of methyl acetate were satisfactorily simulated with a master equation model, with modelled rate coefficients of k120 Torr = 9.06 × 10(81) × T(-19.07) × exp(-61 600K/T) s(-1), k60 Torr = 3.71 × 10(82) × T(-19.34) × exp(-61 200K/T) s(-1), and of k∞ = 1.97 × 10(30) × T(-3.80) × exp(-47 900K/T) s(-1) for the major channel, based on fitting to 120 Torr and 60 Torr data taken in this study. The model also captures the pressure dependency of methyl acetate dissociation and resolves an earlier discrepancy concerning the mechanism of dissociation of methyl acetate. PMID:24608752

  11. [Effects of wheat-oilseed rape intercropping and methyl salicylate application on the spatial distributions of Sitobion avenae and its main natural enemies].

    PubMed

    Dong, Jie; Liu, Ying-Jie; Wang, Guang; Liu, Yong

    2012-07-01

    A field investigation was conducted on the spatial distributions of Sitobion avenae and its main natural enemies under wheat-oilseed rape intercropping and methyl salicylate application. With the development of wheat plant, an alternation from aggregation to uniform was observed in the spatial distribution of S. avenae under the intercropping and methyl salicylate application, being more obvious under the interaction of the two practices. The spatial distribution of S. avenae natural enemies was in accordance with that of the aphid. These results could be used for the reference of sampling investigation and forecast of wheat aphid and its natural enemies in field.

  12. Calcium oxalate crystals and methyl salicylate as toxic principles of the fresh leaves from Palicourea longiflora, an endemic species in the Amazonas state.

    PubMed

    Coelho, Euricléia Gomes; Amaral, Ana Claudia F; Ferreira, José Luiz P; dos Santos, Adriane G; Pinheiro, Maria Lúcia B; Silva, Jefferson Rocha de A

    2007-03-01

    The species of the genus Palicourea (Rubiaceae family) is well-known for its toxicity towards animals, particularly livestock. This work reports the occurrence of skin irritation during the manipulation of Palicourea longiflora, considering the prevalence of the monofluoracetic acid (MFAA) and another toxic compound: methyl salicylate. The MFAA was identified by 19F-NMR and methyl salicylate by gas chromatography linked to mass spectrometry (GC/MS) analysis. Additionally, an anatomical study of leaves had been used to explain the mechanism of penetration of the toxic principles.

  13. Preliminary evaluation of military, commercial and novel skin decontamination products against a chemical warfare agent simulant (methyl salicylate).

    PubMed

    Matar, Hazem; Guerreiro, Antonio; Piletsky, Sergey A; Price, Shirley C; Chilcott, Robert P

    2016-01-01

    Rapid decontamination is vital to alleviate adverse health effects following dermal exposure to hazardous materials. There is an abundance of materials and products which can be utilised to remove hazardous materials from the skin. In this study, a total of 15 products were evaluated, 10 of which were commercial or military products and five were novel (molecular imprinted) polymers. The efficacies of these products were evaluated against a 10 µl droplet of (14)C-methyl salicylate applied to the surface of porcine skin mounted on static diffusion cells. The current UK military decontaminant (Fuller's earth) performed well, retaining 83% of the dose over 24 h and served as a benchmark to compare with the other test products. The five most effective test products were Fuller's earth (the current UK military decontaminant), Fast-Act® and three novel polymers [based on itaconic acid, 2-trifluoromethylacrylic acid and N,N-methylenebis(acrylamide)]. Five products (medical moist-free wipes, 5% FloraFree™ solution, normal baby wipes, baby wipes for sensitive skin and Diphotérine™) enhanced the dermal absorption of (14)C-methyl salicylate. Further work is required to establish the performance of the most effective products identified in this study against chemical warfare agents. PMID:26339920

  14. Preliminary evaluation of military, commercial and novel skin decontamination products against a chemical warfare agent simulant (methyl salicylate).

    PubMed

    Matar, Hazem; Guerreiro, Antonio; Piletsky, Sergey A; Price, Shirley C; Chilcott, Robert P

    2016-01-01

    Rapid decontamination is vital to alleviate adverse health effects following dermal exposure to hazardous materials. There is an abundance of materials and products which can be utilised to remove hazardous materials from the skin. In this study, a total of 15 products were evaluated, 10 of which were commercial or military products and five were novel (molecular imprinted) polymers. The efficacies of these products were evaluated against a 10 µl droplet of (14)C-methyl salicylate applied to the surface of porcine skin mounted on static diffusion cells. The current UK military decontaminant (Fuller's earth) performed well, retaining 83% of the dose over 24 h and served as a benchmark to compare with the other test products. The five most effective test products were Fuller's earth (the current UK military decontaminant), Fast-Act® and three novel polymers [based on itaconic acid, 2-trifluoromethylacrylic acid and N,N-methylenebis(acrylamide)]. Five products (medical moist-free wipes, 5% FloraFree™ solution, normal baby wipes, baby wipes for sensitive skin and Diphotérine™) enhanced the dermal absorption of (14)C-methyl salicylate. Further work is required to establish the performance of the most effective products identified in this study against chemical warfare agents.

  15. Salt effect on the isobaric vapor-liquid equilibrium of the methyl acetate + methanol system

    SciTech Connect

    Iliuta, M.C.; Thyrion, F.C.; Landauer, O.M.

    1996-07-01

    The effect of sodium thiocyanate at constant salt mole fraction from 0.01 to 0.05 and at saturation on the vapor-liquid equilibrium (VLE) of methyl acetate + methanol has been studied at 101.32 kPa using a modified Othmer equilibrium still. The salt exhibited both salting-in and salting-out effects on the methyl acetate, the azeotrope being eliminated at saturation. The results were correlated using the extended UNIQUAC model of Sander et al. and the electrolytic NRTL model of Mock et al.

  16. Evaluation of airborne methyl salicylate for improved conservation biological control of two-spotted spider mites and hop aphid in Oregon hop yards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of synthetic herbivore-induced plant volatiles (HIPV) to attract natural enemies has received interest as a tool to enhance conservation biological control (CBC). Methyl salicylate (MeSA) is a HIPV that is attractive to several key predators of two-spotted spider mite, Tetranychus urticae K...

  17. Evaluation of airborne methyl salicylate for improved conservation biological control of two-spotted spider mite and hop aphid in Oregon hop yards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of synthetic herbivore-induced plant volatiles (HIPV) to attract natural enemies has received interest as a tool to enhance conservation biological control (CBC). Methyl salicylate (MeSA) is a HIPV that is attractive to several key predators of two-spotted spider mite, Tetranychus urticae K...

  18. Selective methylation of kaempferol via benzylation and deacetylation of kaempferol acetates.

    PubMed

    Mei, Qinggang; Wang, Chun; Yuan, Weicheng; Zhang, Guolin

    2015-01-01

    A strategy for selective mono-, di- and tri-O-methylation of kaempferol, predominantly on the basis of selective benzylation and controllable deacetylation of kaempferol acetates, was developed. From the selective deacetylation and benzylation of kaempferol tetraacetate (1), 3,4',5,-tri-O-acetylkaempferol (2) and 7-O-benzyl-3,4'5,-tri-O-acetylkaempferol (8) were obtained, respectively. By controllable deacetylation and followed selective or direct methylation of these two intermediates, eight O-methylated kaempferols were prepared with 51-77% total yields from kaempferol. PMID:25815082

  19. Effect of methyl salicylate (MeSA), an elicitor on growth, physiology and pathology of resistant and susceptible rice varieties

    PubMed Central

    Kalaivani, Kandaswamy; Kalaiselvi, Marimuthu Maruthi; Senthil-Nathan, Sengottayan

    2016-01-01

    Methyl salicylate (MeSA) is a volatile organic compound synthesized from salicylic acid (SA) a plant hormone that helps to fight against plant disease. Seed treatment with MeSA, is an encouraging method to the seed industry to produce more growth and yield. The aim of our study is to find out the growth, development and disease tolerance of rice seed treated with different concentrations of MeSA. Also the seed treatments were studied to determine whether they directly influenced seedling emergence and growth in rice (Oryza sativa L) cultivars ‘IR 20, IR 50, IR 64, ASD 16, ASD 19 and ADT 46’ under greenhouse condition. MeSA seed treatments at 25, 50, 75 and 100 mg/L significantly increased seedling emergence. Effects were stronger in IR 50, and IR 64 and the effects were dose dependent, although the relationship between dose and effect was not always linear. MeSA seed treated rice plant against bacterial blight were analyzed. Bacterial blight was more effectively controlled by the seed treated with 100 mg/L than others. These results suggest that seed treatment with MeSA alters plant physiology in ways that may be useful for crop production as well as protection. PMID:27725719

  20. Enhanced glucosinolates in root exudates of Brassica rapa ssp. rapa mediated by salicylic acid and methyl jasmonate.

    PubMed

    Schreiner, Monika; Krumbein, Angelika; Knorr, Dietrich; Smetanska, Iryna

    2011-02-23

    Elicitation studies with salicylic acid (SA) and methyl jasmonate (MJ) inducing a targeted rhizosecretion of high levels of anticarcinogenic glucosinolates in Brassica rapa ssp. rapa plants were conducted. Elicitor applications not only led to an accumulation of individual indole glucosinolates and the aromatic 2-phenylethyl glucosinolate in the turnip organs but also in turnip root exudates. This indicates an extended systemic response, which comprises the phyllosphere with all aboveground plant organs and the rhizosphere including the belowground root system and also root exudates. Both elicitor applications induced a doubling in 2-phenylethyl glucosinolate in root exudates, whereas application of MJ enhanced rhizosecreted indole glucosinolates up to 4-fold. In addition, the time course study revealed that maximal elicitation was observed on the 10th day of SA and MJ treatment. This study may provide an essential contribution using these glucosinolates as bioactive additives in functional foods and nutraceuticals.

  1. Optical bar code recognition of methyl salicylate (MES) for environmental monitoring using fluorescence resonance energy transfer (FRET) on thin films

    NASA Astrophysics Data System (ADS)

    Smith, Clint; Tatineni, Balaji; Anderson, John; Tepper, Gary

    2006-10-01

    Fluorescence resonance energy transfer (FRET) is a process in which energy is transferred nonradiatively from one fluorophore (the donor) in an excited electron state to another, the chromophore (the acceptor). FRET is distinctive in its ability to reveal the presence of specific recognition of select targets such as the nerve agent stimulant Methyl Salicylate (MES) upon spectroscopic excitation. We introduce a surface imprinted and non-imprinted thin film that underwent AC-Electrospray ionization for donor-acceptor pair(s) bound to InGaP quantum dots and mesoporous silicate nanoparticles. The donor-acceptor pair used in this investigation included MES (donor) and 6-(fluorescein-5-(and-6)- carboxamido) hexanoic acid, succinimidyl ester bound to InGaP quantum dots (acceptor). MES was then investigated as a donor to various acceptor fluorophore: InGaP: mesoporous silicate nanoparticle layers.

  2. Preclinical pharmacokinetic evaluation and metabolites identification of methyl salicylate-2-O-β-d-lactoside in rats using LC-MS/MS and Q-TOF-MS methods.

    PubMed

    Zhang, Dan; Huang, Chao; Xin, Wenyu; Ma, Xiaowei; Zhang, Weiku; Zhang, Tiantai; Du, Guanhua

    2015-05-10

    Methyl salicylate-2-O-β-d-lactoside (MSL) is a natural salicylate derivative from the traditional Chinese medicine of Gaultheria yunnanensis (Franch.) Rehder (G. yunnanensis). As a non-steroidal anti-inflammatory drug (NSAID), MSL exerts a significant anti-arthritis effect but hardly has any gastrointestinal toxicity. In this paper, the pharmacokinetics, distribution, excretion and identification of MSL and its metabolites are described following rat oral and intravenous administration. The biological samples were quantified by UPLC-MS/MS and the metabolites in urine and feces were identified by using Q-TOF-MS. These results will support future investigations leading to clinical development of this drug. PMID:25746501

  3. Fragrance material review on 1-phenyl-3-methyl-3-pentyl acetate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 1-phenyl-3-methyl-3-pentyl acetate when used as a fragrance ingredient is presented. 1-Phenyl-3-methyl-3-pentyl acetate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1-phenyl-3-methyl-3-pentyl acetate were evaluated, then summarized, and includes physical properties, acute toxicity, skin irritation, and skin sensitization data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  4. Fragrance material review on 2-methyl-4-phenyl-2-butyl acetate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 2-methyl-4-phenyl-2-butyl acetate when used as a fragrance ingredient is presented. 2-Methyl-4-phenyl-2-butyl acetate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2-methyl-4-phenyl-2-butyl acetate were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, skin sensitization, and elicitation data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  5. Fragrance material review on 1,3-benzodioxole-5-propanol, α-methyl-, 5-acetate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 1,3-benzodioxole-5-propanol, α-methyl-, 5-acetate when used as a fragrance ingredient is presented. 1,3-Benzodioxole-5-propanol, α-methyl-, 5-acetate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1,3-benzodioxole-5-propanol, α-methyl-, 5-acetate were evaluated, then summarized, and includes physical properties. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  6. Fragrance material review on 1-phenyl-3-methyl-3-pentyl acetate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 1-phenyl-3-methyl-3-pentyl acetate when used as a fragrance ingredient is presented. 1-Phenyl-3-methyl-3-pentyl acetate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1-phenyl-3-methyl-3-pentyl acetate were evaluated, then summarized, and includes physical properties, acute toxicity, skin irritation, and skin sensitization data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances. PMID:22406574

  7. Crystal structure of 2,5-di-methyl-anilinium salicylate.

    PubMed

    Mani, A; Kumar, P Praveen; Chakkaravarthi, G

    2015-09-01

    The title mol-ecular salt, C8H12N(+)·C7H5O3 (-) arose from the proton-transfer reaction between 2,5-xylidine and salicylic acid. In the anion, the dihedral angle between the planes of the aromatic ring and the -CO2 (-) group is 11.08 (8)°; this near planarity is consolidated by an intra-molecular O-H⋯O hydrogen bond. In the crystal, the components are connected by N-H⋯O hydrogen bonds, with all three O atoms in the anion acting as acceptors; the result is a [100] chain. The structure also features weak C-H⋯O bonds and aromatic π-π stacking [centroid-to-centroid distance = 3.7416 (10) Å] inter-actions, which lead to a three-dimensional network. PMID:26396881

  8. Preparation of 1-methyl-3-propylimidazolium acetate and its application in dye sensitized solar cells

    SciTech Connect

    Zhang, Zhihai; Wu, Yucheng; Ge, Qian; Sun, Songquan; Shi, Chengwu

    2010-03-15

    In this paper, we reported the preparation of 1-methyl-3-propylimidazolium acetate (MPIAc), which proceeded via the metathesis of 1-methyl-3-propylimidazolium iodide (MPII) and lead acetate or potassium acetate. The apparent diffusion coefficients of triiodide and iodide in binary ionic liquids, MPIAc and MPII with various weight ratios, were demonstrated by cyclic voltammetry using a Pt ultramicroelectrode. It was found that the apparent diffusion coefficients of triiodide increased and those of iodide slightly increased with the weight ratio increase of MPIAc and MPII. The dye sensitized solar cells with the electrolyte, which was composed of 0.13 M I{sub 2}, 0.10 M LiI, 0.50 M 4-tert-butylpyrdine in the binary ionic liquid electrolyte of MPIAc (employing potassium acetate) and MPII (weight ratio 0.2), gave short circuit photocurrent density of 9.40 mA cm{sup -2}, open circuit voltage of 0.62 V, and fill factor of 0.57, corresponding to the photoelectric conversion efficiency of 3.34% at the illumination (air mass 1.5, 100 mW cm{sup -2}). (author)

  9. Adsorption and Thermal Processing of Glycolaldehyde, Methyl Formate, and Acetic Acid on Graphite at 20 K.

    PubMed

    Burke, Daren J; Puletti, Fabrizio; Woods, Paul M; Viti, Serena; Slater, Ben; Brown, Wendy A

    2015-07-01

    We present the first detailed comparative study of the adsorption and thermal processing of the three astrophysically important C2O2H4 isomers glycolaldehyde, methyl formate, and acetic acid adsorbed on a graphitic grain analogue at 20 K. The ability of the individual molecule to form intermolecular hydrogen bonds is extremely important, dictating the growth modes of the ice on the surface and the measured desorption energies. Methyl formate forms only weak intermolecular bonds and hence wets the graphite surface, forming monolayer, bilayer, and multilayer ices, with the multilayer having a desorption energy of 35 kJ mol(-1). In contrast, glycolaldehyde and acetic acid dewet the surface, forming clusters even at the very lowest coverages. The strength of the intermolecular hydrogen bonding for glycolaldehyde and acetic acid is reflected in their desorption energies (46.8 and 55 kJ mol(-1), respectively), which are comparable to those measured for other hydrogen-bonded species such as water. Infrared spectra show that all three isomers undergo structural changes as a result of thermal processing. In the case of acetic acid and glycolaldehyde, this can be assigned to the formation of well-ordered, crystalline, structures where the molecules form chains of hydrogen-bonded moieties. The data reported here are of relevance to astrochemical studies of hot cores and star-forming regions and can be used to model desorption from interstellar ices during the warm up phase with particular importance for complex organic molecules.

  10. Effective photosensitized energy transfer of nonanuclear terbium clusters using methyl salicylate derivatives.

    PubMed

    Omagari, Shun; Nakanishi, Takayuki; Seki, Tomohiro; Kitagawa, Yuichi; Takahata, Yumie; Fushimi, Koji; Ito, Hajime; Hasegawa, Yasuchika

    2015-03-12

    The photophysical properties of the novel nonanuclear Tb(III) clusters Tb-L1 and Tb-L2 involving the ligands methyl 4-methylsalicylate (L1) and methyl 5-methylsalicylate (L2) are reported. The position of the methyl group has an effect on their photophysical properties. The prepared nonanuclear Tb(III) clusters were identified by fast atom bombardment mass spectrometry and powder X-ray diffraction. Characteristic photophysical properties, including photoluminescence spectra, emission lifetimes, and emission quantum yields, were determined. The emission quantum yield of Tb-L1 (Φ(ππ*) = 31%) was found to be 13 times larger than that of Tb-L2 (Φ(ππ*) = 2.4%). The photophysical characterization and DFT calculations reveal the effect of the methyl group on the electronic structure of methylsalicylate ligand. In this study, the photophysical properties of the nonanuclear Tb(III) clusters are discussed in relation to the methyl group on the aromatic ring of the methylsalicylate ligand. PMID:25671396

  11. Response of anaerobes to methyl fluoride, 2-bromoethanesulfonate and hydrogen during acetate degradation.

    PubMed

    Hao, Liping; Lü, Fan; Li, Lei; Shao, Liming; He, Pinjing

    2013-05-01

    To use the selective inhibition method for quantitative analysis of acetate metabolism in methanogenic systems, the responses of microbial communities and metabolic activities, which were involved in anaerobic degradation of acetate, to the addition of methyl fluoride (CH3F), 2-bromoethanesulfonate (BES) and hydrogen were investigated in a thermophilic batch experiment. Both the methanogenic inhibitors, i.e., CH3F and BES, showed their effectiveness on inhibiting CH4 production, whereas acetate metabolism other than acetoclastic methanogenesis was stimulated by BES, as reflected by the fluctuated acetate concentration. Syntrophic acetate oxidation was thermodynamically blocked by hydrogen (H2), while H2-utilizing reactions as hydrogenotrophic methanogenesis and homoacetogenesis were correspondingly promoted. Results of PCR-DGGE fingerprinting showed that, CH3F did not influence the microbial populations significantly. However, the BES and hydrogen notably altered the bacterial community structures and increased the diversity. BES gradually changed the methanogenic community structure by affecting the existence of different populations to different levels, whilst H2 greatly changed the abundance of different methanogenic populations, and induced growth of new species.

  12. Methyl 2-(2-methyl-4-nitro-1H-imidazol-1-yl)acetate

    PubMed Central

    Zama, Sana; Bouraiou, Abdelmalek; Bouacida, Sofiane; Roisnel, Thierry; Belfaitah, Ali

    2013-01-01

    In the crystal of the title compound, C7H9N3O4, mol­ecules are linked by weak C—H⋯O hydrogen bonds into chains along the a-axis direction. The dihedral angle between the ring and the nitro group is 3.03 (6), while that between the ring and the acetate group is 85.01 (3)°. PMID:23795026

  13. Fumigant Activity of 6 Selected Essential Oil Compounds and Combined Effect of Methyl Salicylate And Trans-Cinnamaldehyde Against Culex pipiens pallens.

    PubMed

    Ma, Wei-Bin; Feng, Jun-Tao; Jiang, Zhi-Li; Zhang, Xing

    2014-09-01

    We studied the knockdown activity and lethal toxicity of 6 essential oil compounds-methyl salicylate, linalool, 2-phenethyl alcohol, eugenol, β-citronellol, and trans-cinnamaldehyde-as fumigants against adult female Culex pipiens pallens in the laboratory. Of the 6 products tested, trans-cinnamaldehyde was the most toxic (LC50  =  0.26 µl/l air, 24 h) with a slow knockdown time (KT95  =  176.5 min at 0.5 µl/l air). Methyl salicylate displayed a lower toxicity (LC50  =  1.17 µl/l air, 24 h) but the fastest knockdown activity (KT95  =  16.8 min) at the sublethal concentration 0.5 µl/l air. Furthermore, the binary mixture of methyl salicylate and trans-cinnamaldehyde exhibited a combined effect of fast knockdown activity and high toxicity against Cx. p. pallens adults, showing potential for development as natural fumigants for mosquito control. PMID:25843095

  14. Probing the Methyl Torsional Barriers of the E and Z Isomers of Butadienyl Acetate by Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jabri, Atef; Nguyen, Ha Vinh Lam; Kleiner, Isabelle; Van, Vinh; Stahl, Wolfgang

    2016-06-01

    The Fourier transform microwave spectra of the E and the Z isomer of butadienyl acetate have been measured in the frequency range from 2 to 26.5 GHz under molecular beam conditions. The most stable conformer of each isomer, in which all heavy atoms are located in a symmetry plane, was identified after analyzing the spectrum by comparison with results from quantum chemical calculations. The barrier to internal rotation of the acetyl methyl group was found to be 149.1822(20) cm-1 and 150.2128(48) cm-1 for the E and the Z isomer, respectively, which are similar to that of vinyl acetate. A comparison between two theoretical approaches treating internal rotations, the rho axis method (using the program BELGI-Cs) and combined axis method (using the program XIAM), is also performed. Since several years we study the barriers to internal rotation of the acetyl methyl group in acetates, CH3-COOR. Currently, we assume that all acetates can be divided into three classes. Class I contains α,β saturated acetates, where the torsional barrier is always close to 100 cm-1. Examples are a series of alkyl acetates such as methyl acetate and ethyl acetate. Class II contains α,β-unsaturated acetates where the C=C double bond is located in the COO plane. This is the case of vinyl acetate and butadienyl acetate. Finally, in class III with isopropenyl acetate and phenyl acetate as two representatives, α,β-unsaturated acetates, in which the double bond is not located in the COO plane, are collected. There, we observed a barrier height around 135 cm-1. This observation will be discussed in details. B. Velino, A. Maris, S. Melandri, W. Caminati, J. Mol. Spectrosc. 2009, 256, 228 H. V. L. Nguyen, A. Jabri, V. Van, and W. Stahl, J. Phys. Chem. A, 2014, 118, 12130.

  15. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.304 Acetic acid, , 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as acetic acid, -, 1-methylhexyl ester (PMN...

  16. Glycolaldehyde, methyl formate and acetic acid adsorption and thermal desorption from interstellar ices

    NASA Astrophysics Data System (ADS)

    Burke, Daren J.; Puletti, Fabrizio; Brown, Wendy A.; Woods, Paul M.; Viti, Serena; Slater, Ben

    2015-02-01

    We have undertaken a detailed investigation of the adsorption, desorption and thermal processing of the astrobiologically significant isomers glycolaldehyde, acetic acid and methyl formate. Here, we present the results of laboratory infrared and temperature programmed desorption (TPD) studies of the three isomers from model interstellar ices adsorbed on a carbonaceous dust grain analogue surface. Laboratory infrared data show that the isomers can be clearly distinguished on the basis of their infrared spectra, which has implications for observations of interstellar ice spectra. Laboratory TPD data also show that the three isomers can be distinguished on the basis of their thermal desorption behaviour. In particular, TPD data show that the isomers cannot be treated the same way in astrophysical models of desorption. The desorption of glycolaldehyde and acetic acid from water-dominated ices is very similar, with desorption being mainly dictated by water ice. However, methyl formate also desorbs from the surface of the ice, as a pure desorption feature, and therefore desorbs at a lower temperature than the other two isomers. This is more clearly indicated by models of the desorption on astrophysical time-scales corresponding to the heating rate of 25 and 5 M⊙ stars. For a 25 M⊙ star, our model shows that a proportion of the methyl formate can be found in the gas phase at earlier times compared to glycolaldehyde and acetic acid. This has implications for the observation and detection of these molecules, and potentially explains why methyl formate has been observed in a wider range of astrophysical environments than the other two isomers.

  17. Phospholipidic signaling and vanillin production in response to salicylic acid and methyl jasmonate in Capsicum chinense J. cells.

    PubMed

    Altúzar-Molina, Alma R; Muñoz-Sánchez, J Armando; Vázquez-Flota, Felipe; Monforte-González, Miriam; Racagni-Di Palma, Graciela; Hernández-Sotomayor, S M Teresa

    2011-02-01

    The phospholipidic signal transduction system involves generation of second messengers by hydrolysis or changes in phosphorylation state. Several studies have shown that the signaling pathway forms part of plant response to phytoregulators such as salicylic acid (SA) and methyl jasmonate (MJ), which have been widely used to stimulate secondary metabolite production in cell cultures. An evaluation was made of the effect of SA and MJ on phospholipidic signaling and capsaicinoid production in Capsicum chinense Jacq. suspension cells. Treatment with SA inhibited phospholipase C (PLC) (EC: 3.1.4.3) and phospholipase D (PLD) (EC: 3.1.4.4) activities in vitro, but increased lipid kinase activities in vitro at different SA concentrations. Treatment with MJ produced increases in PLC and PLD activities, while lipid kinase activities were variable and dose-dependent. The production of vanillin, a precursor of capsaicinoids, increased at specific SA or MJ doses. Preincubation with neomycin, a phospholipase inhibitor, before SA or MJ treatment inhibits increase in vanillin production which suggests that phospholipidic second messengers may participate in the observed increase in vanillin production.

  18. The plastidial retrograde signal methyl erythritol cyclopyrophosphate is a regulator of salicylic acid and jasmonic acid crosstalk

    PubMed Central

    Lemos, Mark; Xiao, Yanmei; Bjornson, Marta; Wang, Jin-zheng; Hicks, Derrick; de Souza, Amancio; Wang, Chang-Quan; Yang, Panyu; Ma, Shisong; Dinesh-Kumar, Savithramma; Dehesh, Katayoon

    2016-01-01

    The exquisite harmony between hormones and their corresponding signaling pathways is central to prioritizing plant responses to simultaneous and/or successive environmental trepidations. The crosstalk between jasmonic acid (JA) and salicylic acid (SA) is an established effective mechanism that optimizes and tailors plant adaptive responses. However, the underlying regulatory modules of this crosstalk are largely unknown. Global transcriptomic analyses of mutant plants (ceh1) with elevated levels of the stress-induced plastidial retrograde signaling metabolite 2-C-methyl-D-erythritol cyclopyrophosphate (MEcPP) revealed robustly induced JA marker genes, expected to be suppressed by the presence of constitutively high SA levels in the mutant background. Analyses of a range of genotypes with varying SA and MEcPP levels established the selective role of MEcPP-mediated signal(s) in induction of JA-responsive genes in the presence of elevated SA. Metabolic profiling revealed the presence of high levels of the JA precursor 12-oxo-phytodienoic acid (OPDA), but near wild type levels of JA in the ceh1 mutant plants. Analyses of coronatine-insensitive 1 (coi1)/ceh1 double mutant plants confirmed that the MEcPP-mediated induction is JA receptor COI1 dependent, potentially through elevated OPDA. These findings identify MEcPP as a previously unrecognized central regulatory module that induces JA-responsive genes in the presence of high SA, thereby staging a multifaceted plant response within the environmental context. PMID:26733689

  19. Low concentrations of salicylic acid delay methyl jasmonate-induced leaf senescence by up-regulating nitric oxide synthase activity.

    PubMed

    Ji, Yingbin; Liu, Jian; Xing, Da

    2016-09-01

    In plants, extensive efforts have been devoted to understanding the crosstalk between salicylic acid (SA) and jasmonic acid (JA) signaling in pathogen defenses, but this crosstalk has scarcely been addressed during senescence. In this study, the effect of SA application on methyl jasmonate (MeJA)-induced leaf senescence was assessed. We found that low concentrations of SA (1-50 μM) played a delayed role against the senescence promoted by MeJA. Furthermore, low concentrations of SA enhanced plant antioxidant defenses and restricted reactive oxygen species (ROS) accumulation in MeJA-treated leaves. When applied simultaneously with MeJA, low concentrations of SA triggered a nitric oxide (NO) burst, and the elevated NO levels were linked to the nitric oxide associated 1 (NOA1)-dependent pathway via nitric oxide synthase (NOS) activity. The ability of SA to up-regulate plant antioxidant defenses, reduce ROS accumulation, and suppress leaf senescence was lost in NO-deficient Atnoa1 plants. In a converse manner, exogenous addition of NO donors increased the plant antioxidant capacity and lowered the ROS levels in MeJA-treated leaves. Taken together, the results indicate that SA at low concentrations counteracts MeJA-induced leaf senescence through NOA1-dependent NO signaling and strengthening of the antioxidant defense. PMID:27440938

  20. Neuropeptide Receptors NPR-1 and NPR-2 Regulate Caenorhabditis elegans Avoidance Response to the Plant Stress Hormone Methyl Salicylate

    PubMed Central

    Luo, Jintao; Xu, Zhaofa; Tan, Zhiping; Zhang, Zhuohua; Ma, Long

    2015-01-01

    Methyl salicylate (MeSa) is a stress hormone released by plants under attack by pathogens or herbivores . MeSa has been shown to attract predatory insects of herbivores and repel pests. The molecules and neurons underlying animal response to MeSa are not known. Here we found that the nematode Caenorhabditis elegans exhibits a strong avoidance response to MeSa, which requires the activities of two closely related neuropeptide receptors NPR-1 and NPR-2. Molecular analyses suggest that NPR-1 expressed in the RMG inter/motor neurons is required for MeSa avoidance. An NPR-1 ligand FLP-18 is also required. Using a rescuing npr-2 promoter to drive a GFP transgene, we identified that NPR-2 is expressed in multiple sensory and interneurons. Genetic rescue experiments suggest that NPR-2 expressed in the AIZ interneurons is required for MeSa avoidance. We also provide evidence that the AWB sensory neurons might act upstream of RMGs and AIZs to detect MeSa. Our results suggest that NPR-2 has an important role in regulating animal behavior and that NPR-1 and NPR-2 act on distinct interneurons to affect C. elegans avoidance response to MeSa. PMID:25527285

  1. Identification of methyl coenzyme M as an intermediate in methanogenesis from acetate in Methanosarcina spp.

    PubMed Central

    Lovley, D R; White, R H; Ferry, J G

    1984-01-01

    The transfer of the methyl group of acetate to coenzyme M (2-mercaptoethanesulfonic acid; HS-CoM) during the metabolism of acetate to methane was investigated in cultures of Methanosarcina strain TM-1. The organism metabolized CD3COO- to 83% CD3H and 17% CD2H2 and produced no CDH3 or CH4. The isotopic composition of coenzyme M in cells grown on CD3COO- was analyzed with a novel gas chromatography-mass spectrometry technique. The cells contained CD3-D-CoM and CD2H-S-CoM) in a proportion similar to that of CD3H to CD2H2. These results, in conjunction with a report (J.K. Nelson and J.G. Ferry, J. Bacteriol. 160:526-532, 1984) that extracts of acetate-grown strain TM-1 contain high levels of CH3-S-CoM methylreductase, indicate that CH3-S-CoM is an intermediate in the metabolism of acetate to methane in this organism. PMID:6438056

  2. Aqueous-phase oxidation of green leaf volatiles by hydroxyl radical as a source of SOA: Product identification from methyl jasmonate and methyl salicylate oxidation

    NASA Astrophysics Data System (ADS)

    Hansel, Amie K.; Ehrenhauser, Franz S.; Richards-Henderson, Nicole K.; Anastasio, Cort; Valsaraj, Kalliat T.

    2015-02-01

    Green leaf volatiles (GLVs) are a group of biogenic volatile organic compounds (BVOCs) released into the atmosphere by vegetation. BVOCs produce secondary organic aerosol (SOA) via gas-phase reactions, but little is known of their aqueous-phase oxidation as a source of SOA. GLVs can partition into atmospheric water phases, e.g., fog, mist, dew or rain, and be oxidized by hydroxyl radicals (˙OH). These reactions in the liquid phase also lead to products that have higher molecular weights, increased polarity, and lower vapor pressures, ultimately forming SOA after evaporation of the droplet. To examine this process, we investigated the aqueous, ˙OH-mediated oxidation of methyl jasmonate (MeJa) and methyl salicylate (MeSa), two GLVs that produce aqueous-phase SOA. High performance liquid chromatography/electrospray ionization mass spectrometry (HPLC-ESI-MS) was used to monitor product formation. The oxidation products identified exhibit higher molecular mass than their parent GLV due to either dimerization or the addition of oxygen and hydroxyl functional groups. The proposed structures of potential products are based on mechanistic considerations combined with the HPLC/ESI-MS data. Based on the structures, the vapor pressure and the Henry's law constant were estimated with multiple methods (SPARC, SIMPOL, MPBPVP, Bond and Group Estimations). The estimated vapor pressures of the products identified are significantly (up to 7 orders of magnitude) lower than those of the associated parent compounds, and therefore, the GLV oxidation products may remain as SOA after evaporation of the water droplet. The contribution of the identified oxidation products to SOA formation is estimated based on measured HPLC-ESI/MS responses relative to previous aqueous SOA mass yield measurements.

  3. XAS and RIXS study of acetic acid and methyl formate in liquid

    NASA Astrophysics Data System (ADS)

    Takahashi, O.; Nishida, N.; Kanai, S.; Horikawa, Y.; Tokushima, T.

    2016-05-01

    Structure of acetic acid (AA) and methyl formate (MF) in the liquid phase is studied using X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES) experimentally and theoretically. Two distinct XES spectra are observed by tuning photon energy for both molecules. Model structure in the liquid phase is constructed using the classical and first principle molecular dynamics simulations, and XES spectra are calculated using density functional theory. Calculated XES spectra are consistent with experimental ones. The effect of core-hole induced excited state molecular dynamics are discussed.

  4. Experimental Determination of Densities and Isobaric Vapor-Liquid Equilibria of Methyl Acetate and Ethyl Acetate with Alcohols (C3 and C4) at 0.3 MPa

    NASA Astrophysics Data System (ADS)

    Susial, Pedro; Estupiñan, Esteban J.; Castillo, Victor D.; Rodríguez-Henríquez, José J.; Apolinario, José C.

    2013-10-01

    The densities and excess volumes were determined at 298.15 K for the methyl acetate + 1-propanol, methyl acetate + 1-butanol, and ethyl acetate + 1-butanol mixtures. The vapor-liquid equilibria data at 0.3 MPa for these binary systems were obtained using a stainless steel equilibrium still. The activity coefficients were obtained from the experimental data using the Hayden and O’Connell method and the Yen and Woods equation. The binary systems in this study showed positive deviations from ideality. The experimental VLE data were verified with the point-to-point test of van Ness using the Barker routine and the Fredenslund criterion. The different versions of the UNIFAC and the ASOG group contribution models were applied.

  5. New Microwave Spectrum and Global Fit of Methyl Acetate Ground State

    NASA Astrophysics Data System (ADS)

    Kleiner, I.; Tudorie, M.; Hougen, J. T.; Melandri, S.; Stahl, W.; Sutikdja, L.

    2010-06-01

    Last year, we presented a newly written program to calculate and fit torsion-rotation transitions in molecules containing two inequivalent C3v methyl tops and a plane of symmetry, based on the Hamiltonian described by Ohashi et al., which in turn was based on earlier theoretical models cited in their references. We applied this code to refit microwave data for the methyl acetate molecule published in 1980. Two sets of new measurements for this molecule were obtained, one using the Fourier transform microwave (FTMW) instrument in Aachen (4-18 GHz) with a measurement uncertainty of 5 kHz, the other using the millimeter wave (MMW) instrument in Bologna, (60-150 GHz) with a measurement uncertainty of 50 kHz. In the absence of top-top interactions, each asymmetric-top energy level splits into AA, AE, EA and EE components where the individual letters A and E indicate the symmetry species of the wave function with respect to internal rotation of one of the methyl tops. The new data for methyl acetate were assigned up to J=10 and put in the program. For the moment, almost all the 50 kHz measurements fit to experimental error, but we are still having trouble with the FTMW lines, which only fit to 7 kHz. By the time of the conference we hope to have found a better set of parameters, i.e., a set that describes more precisely the physical couplings occurring in this molecule. N. Ohashi, J. T. Hougen, R. D. Suenram, F.J. Lovas, Y. Kawashima, M. Fujitake and J. Pyka, J. Mol. Spectrosc., 227, 28-42 (2004) J. Sheridan, W. Bossert and A. Bauder, J. Mol. Spectrosc., 80, 1-11 (1980) Project partly supported by the ANR-08-BLAN-0054 contract (France).

  6. 5-Methyl Salicylic Acid-Induced Thermo Responsive Reversible Transition in Surface Active Ionic Liquid Assemblies: A Spectroscopic Approach.

    PubMed

    Roy, Arpita; Dutta, Rupam; Banerjee, Pavel; Kundu, Sangita; Sarkar, Nilmoni

    2016-07-19

    This article describes the formation of stable unilamellar vesicles involving surface active ionic liquid (SAIL), 1-hexadecyl-3-methylimidazolium chloride (C16mimCl), and 5-methyl salicylic acid (5mS). Turbidity, dynamic light scattering (DLS), transmission electron microscopy (TEM), and viscosity measurements suggest that C16mimCl containing micellar aggregates are transformed to elongated micelle and finally into vesicular aggregates with the addition of 5mS. Besides, we have also investigated the photophysical aspects of a hydrophobic (coumarin 153, C153) and a hydrophilic molecule (rhodamine 6G (R6G) perchlorate) during 5mS-induced micelle to vesicle transition. The rotational motion of C153 becomes slower, whereas faster motion is observed for R6G during micelle to vesicle transition. Moreover, the fluorescence correlation spectroscopy (FCS) measurements suggest that the translational diffusion of hydrophobic probe becomes slower in C16mimCl-5mS aggregates in comparison to C16mimCl micelle. However, a reverse trend in translational diffusion motion of hydrophilic molecule has been observed in C16mimCl-5mS aggregates. Moreover, we have also found that the C16mimCl-5mS containing vesicles are transformed into micelles upon enhanced temperature, and it is further confirmed by turbidity, DLS measurements that this transition is a reversible one. Finally, temperature-induced rotational motion of C153 and R6G has been monitored in C16mimCl-5mS aggregates to get a complete scenario regarding the temperature-induced vesicle to micelle transition. PMID:27345738

  7. Ab Initio Kinetics of Hydrogen Abstraction from Methyl Acetate by Hydrogen, Methyl, Oxygen, Hydroxyl, and Hydroperoxy Radicals.

    PubMed

    Tan, Ting; Yang, Xueliang; Krauter, Caroline M; Ju, Yiguang; Carter, Emily A

    2015-06-18

    The kinetics of hydrogen abstraction by five radicals (H, O((3)P), OH, CH3, and HO2) from methyl acetate (MA) is investigated theoretically in order to gain further understanding of certain aspects of the combustion chemistry of biodiesels, such as the effect of the ester moiety. We employ ab initio quantum chemistry methods, coupled cluster singles and doubles with perturbative triples correction (CCSD(T)) and multireference averaged coupled pair functional theory (MRACPF2), to predict chemically accurate reaction energetics. Overall, MRACPF2 predicts slightly higher barrier heights than CCSD(T) for MA + H/CH3/O/OH, but slightly lower barrier heights for hydrogen abstraction by HO2. Based on the obtained reaction energies, we also report high-pressure-limit rate constants using transition state theory (TST) in conjunction with the separable-hindered-rotor approximation, the variable reaction coordinate TST, and the multi-structure all-structure approach. The fitted modified Arrhenius expressions are provided over a temperature range of 250 to 2000 K. The predictions are in good agreement with available experimental results. Abstractions from both of the methyl groups in MA are expected to contribute to consumption of the fuel as they exhibit similar rate coefficients. The reactions involving the OH radical are predicted to have the highest rates among the five abstracting radicals, while those initiated by HO2 are expected to be the lowest. PMID:25974050

  8. Effect of Pd surface structure on the activation of methyl acetate

    SciTech Connect

    Xu, Lijun; Xu, Ye

    2011-01-01

    The activation of methyl acetate (CH3COOCH3; MA) has been studied using periodic density functional theory calculations to probe the effect of Pd surface structure on the selectivity in MA activation. The adsorption of MA, dehydrogenated derivatives, enolate (CH2COOCH3; ENL) and methylene acetate (CH3COOCH2; MeA), and several dissociation products (including acetate, acetyl, ketene, methoxy, formaldehyde, CO, C, O, and H); and C-H and C-O (mainly in the RCO-OR position) bond dissociation in MA, ENL, and MeA, are calculated on Pd(111) terrace, step, and kink; and on Pd(100) terrace and step. The adsorption of most species is not strongly affected between (111)- to (100)-type surfaces, but is clearly enhanced by step/kink compared to the corresponding terrace. Going from terrace to step edge and from (111)- to (100)-type surfaces both stabilize the transition states of C-O bond dissociation steps. Going from terrace to step edge also stabilizes the transition states of C-H bond dissociation steps, but going from (111)- to (100)-type surfaces does not clearly do so. We propose that compared to the Pd(111) terrace, the Pd(100) terrace is more selective for C-O bond dissociation that is desirable for alcohol formation, whereas the Pd step edges are more selective for C-H bond dissociation.

  9. Structure and Rotational Dynamics of Isoamyl Acetate and Methyl Propionate Studied by Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Stahl, W.; Nguyen, H. V. L.; Sutikdja, L. W.; Jelisavac, D.; Mouhib, H.; Kleiner, I.

    2012-06-01

    The microwave spectra of a number of organic aliphatic esters have been recorded for the first time in the 3-26.5 GHz frequency range, using the molecular beam Fourier-transform microwave (MB-FTMW) spectrometer in Aachen, with an instrumental uncertainty of a few kHz for unblended lines. The combined use of ab initio quantum chemical calculations and spectral analysis allowed us to determine the spectroscopic parameters and potential barriers to internal rotation of the methyl groups for the lowest energy conformers. We will compare here the results from ab initio calculations and from two different hamiltonian methods (the XIAM and BELGI codes) for isoamyl acetate H3C-COO-(CH2)2-CH(CH3)2, an one-top internal rotor molecule with a C1 symmetry and for methyl propionate CH3CH2COOCH3 containing two inequivalent methyl tops (C3v), with different barrier heights. This study is part of a larger project which aims at determining the structures of the lowest energy conformers for a serie of organic esters and ketones which are of interest for flavour or perfume applications.

  10. Antiproliferative activity, cell-cycle dysregulation, and cellular differentiation: salicyl- and catechol-derived acyclic 5-fluorouracil O,N-acetals against breast cancer cells.

    PubMed

    Marchal, Juan A; Rodríguez-Serrano, Fernando; Caba, Octavio; Aránega, Antonia; Gallo, Miguel A; Espinosa, Antonio; Campos, Joaquín M

    2007-12-01

    Herein we report the preparation and biological activity of three compounds with the general formula 1-[2-(5-substituted-2-hydroxybenzyloxy)-1-methoxyethyl]-5-fluorouracil. A catechol-derived compound such as 1-[3-(2-hydroxyphenoxy)-1-methoxypropyl]-5-fluorouracil and two salicyl-derived compounds such as (Z)-1-[4-(2-hydroxyphenyl)-1-methoxybut-3-enyl]-5-fluorouracil [(Z)-11] and its dihydrogenated derivative 1-[4-(2-hydroxyphenyl)-1-methoxybutyl]-5-fluorouracil were prepared to complete the set of six O,N-acetals. The most active compound against the MCF-7 breast cancer cell line was (Z)-11: IC(50)=9.40+/-0.64 microM. Differentiated breast cancer cells generate fat deposits in the cytoplasm. MCF-7 cells treated with (Z)-11 underwent an increase in lipid content relative to control cells after three days of treatment. Our results suggest that there may be significant potential advantages in the use of this new differentiating agent for the treatment of breast cancer.

  11. Macroscopic and microscopic study of 1-ethyl-3-methyl-imidazolium acetate-water mixtures.

    PubMed

    Hall, Craig A; Le, Kim A; Rudaz, Cyrielle; Radhi, Asanah; Lovell, Christopher S; Damion, Robin A; Budtova, Tatiana; Ries, Michael E

    2012-10-25

    Mixtures of 1-ethyl-3-methyl-imidazolium acetate ([C2mim][OAc]) and water across the entire composition range, from pure [C2mim][OAc] to pure water, have been investigated using density, viscosity, and NMR spectroscopy, relaxometry, and diffusion measurements. These results have been compared to ideal mixing laws for the microscopic data obtained from the NMR results and macroscopic data through the viscosity and density. It was also found that the mixing of the two fluids is exothermal. The proton spectra indicate though that [C2mim][OAc] and water are interacting without the formation of new compounds. The maximal deviations of experimental data from theoretical mixing rules were all found to occur within the range 0.74 ± 0.06 mol fraction of water, corresponding to approximately three water molecules per [C2mim][OAc] molecule. PMID:23020276

  12. Efficient scavenging of β-carotene radical cations by antiinflammatory salicylates.

    PubMed

    Cheng, Hong; Liang, Ran; Han, Rui-Min; Zhang, Jian-Ping; Skibsted, Leif H

    2014-02-01

    The radical cation generated during photobleaching of β-carotene is scavenged efficiently by the anion of methyl salicylate from wintergreen oil in a second-order reaction approaching the diffusion limit with k2 = 3.2 × 10(9) L mol(-1) s(-1) in 9 : 1 v/v chloroform-methanol at 23 °C, less efficiently by the anion of salicylic acid with 2.2 × 10(8) L mol(-1) s(-1), but still of possible importance for light-exposed tissue. Surprisingly, acetylsalicylate, the aspirin anion, reacts with an intermediate rate in a reaction assigned to the anion of the mixed acetic-salicylic acid anhydride formed through base induced rearrangements. The relative scavenging rate of the β-carotene radical cation by the three salicylates is supported by DFT-calculations.

  13. Occurrence and Sources of Triterpenoid Methyl Ethers and Acetates in Sediments of the Cross-River System, Southeast Nigeria

    PubMed Central

    Oyo-Ita, Orok E.; Ekpo, Bassey O.; Oros, Daniel R.; Simoneit, Bernd R. T.

    2010-01-01

    Pentacyclic triterpenol methyl ethers (PTMEs), germanicol methyl ether (miliacin), 3-methoxyfern-9(11)-ene (arundoin), β-amyrin methyl ether (iso-sawamilletin), and 3-methoxytaraxer-14-ene (sawamilletin or crusgallin) were characterized in surface sediments of the Cross-River system using gas chromatography-mass spectrometry (GC-MS). Triterpenol esters (mainly α- and β-amyrinyl acetates and hexanoates, and lupeyl acetate and hexanoate) were also found. These distinct compounds are useful for assessing diagenesis that can occur during river transport of organic detritus. Poaceae, mainly Gramineae and Elaeis guineensis higher plant species, are proposed as primary sources for the PTMEs and esters in the sediments. PTMEs are biomarkers of specific higher plant subspecies, while the triterpenol esters are indicators of early diagenetic alteration of higher plant detritus. PMID:20414350

  14. Acyclonucleosides, modified seco-nucleosides, and salicyl- or catechol-derived acyclic 5-fluorouracil O,N-acetals: antiproliferative activities, cellular differentiation and apoptosis.

    PubMed

    Marchal, Juan A; Núñez, María C; Aránega, Antonia; Gallo, Miguel A; Espinosa, Antonio; Campos, Joaquín M

    2009-01-01

    The goal of cancer chemotherapy with classical drugs - the destruction of the tumor cells - is often complicated by significant toxicity. As an alternative, induced differentiation modulates the cell programme by transforming malignant cells into mature cells with no proliferative potential. Our data demonstrate that (+/-)-1-{[3-(2-hydroxyethoxy)-1-isopropoxy]propyl}-5-fluorouracil inhibits proliferation, induces myogenic differentiation, increases the expression of proteins specifically present in normally differentiated skeletal muscle cells, and modifies the adhesion capacity of these cells against the rhabdomyosarcoma cell line RD. From a designing point of view, a benzene ring was fused to the side chain in order to increase the lipophilicity and anticancer activity of our molecules. Herein we report the preparation and biological activity of three compounds having the general formula (+/-)-1-[2-(5-substituted-2-hydroxybenzyloxy)-1-methoxyethyl]-5-fluorouracils. A catechol-derived compound such as (+/-)-1-[3-(2-hydroxyphenoxy)-1-methoxypropyl]-5-fluorouracil and two salicyl-derived compounds such as (+/-)-(Z)-1-[4-(2-hydroxyphenyl)-1-methoxy-but-3-enyl]-5-fluorouracil [(Z)-43] and its dihydrogenated derivative (+/-)-1-[4-(2-hydroxyphenyl)-1-methoxybutyl]-5-fluorouracil were prepared to complete the set of six O,N-acetals. The most active compound against the MCF-7 breast cancer cell line was (+/-)-(Z)-43 with an IC(50) = 9.40 +/- 0.64 microM. Differentiated breast cancer cells generate fat deposits within the cytoplasm. The MCF-7 cells trea-ed with (+/-)-(Z)-43 caused an increase in the lipid content over control cells after 3 days of treatment. Our results suggest that there may be significant potential advantages in the use of this new differentiating agent for the treatment of breast cancer.

  15. Adsorption of methyl orange and salicylic acid on a nano-transition metal composite: Kinetics, thermodynamic and electrochemical studies.

    PubMed

    Arshadi, M; Mousavinia, F; Amiri, M J; Faraji, A R

    2016-12-01

    In this work synthesis of Mn-nanoparticles (MnNPs) supported on the Schiff base modified nano-sized SiO2Al2O3 mixed-oxides (Si/Al) and its implementation as an adsorbent for the removal of organic pollutions such as methyl orange (MO) and salicylic acid (SA) was investigated. Si/Al were functionalized by grafting Schiff base ligand and in the next step, MnNPs were prepared over the modified nano sol-gel Si/Al. Structures and adsorption characteristics of the obtained organometallic-modified SiO2/Al2O3 mixed oxide were studied by several methods such as elemental analysis, diffuse reflectance UV-vis spectroscopy, FT-IR spectroscopy, nitrogen adsorption/desorption, scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray (EDX), inductively coupled plasma (ICP-AES), Electron Paramagnetic Resonance (EPR), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). EPR data of the immobilized manganese ions resulted that the transition state of active sites in the nano-adsorbent are in the form of Mn(II) ions at the surface. The adsorption properties of heterogeneous Mn(II) ions showed that this nano-adsorbent has very good potential to remove MO and SA ions from aqueous solution. The removal efficiency of the SAPAS@MnNPs towards MO reached out to 89.3 and 29.1% and for SA approached to 54.6 and 18.9% at 150 and 500mg/dm(3) initial organic pollution concentrations, respectively. To investigate the adsorption kinetic of Mn(II) ions onto the nano-sized support, pseudo first and pseudo second order kinetics, and the Freundlich, Langmuir and Langmuir-Freundlich isotherm models have also been applied to the equilibrium adsorption data. The contact time to obtain equilibrium for maximum adsorption capacity was 45min. The adsorption process was spontaneous and endothermic in nature and it was well explained with pseudo-second-order kinetic model. No remarkable loss of removal capacity even after 8th times regeneration

  16. Barriers to rotation adjacent to double bonds. 3. The C-O barrier in formic acid, methyl formate, acetic acid, and methyl acetate. The origin of ester and amide resonance

    SciTech Connect

    Wiberg, K.B.; Laidig, K.E.

    1987-09-30

    The structures of the rotamers about the C-O bonds of formic acid, methyl formate, acetic acid, and methyl acetate were calculated by using the 6-31G* basis set and complete geometrical relaxation. Large basis sets (6-311+G**) and correction for electron correlation were needed in order to obtain calculated barriers that were in good agreement with the available experimental data. The factors that control the geometry at a carbonyl group are considered, and it is shown that an analysis in terms of bond path angles leads to a direct connection with electronegativity. The nature of the interaction between an amino group and a carbonyl, as in an amide, is examined and shown not to involve charge transfer from the nitrogen to the carbonyl oxygen, but rather it involves charge transfer between carbon and nitrogen. The origin of the rotational barrier in esters and of the difference in energy between the E and Z conformers is discussed.

  17. Coil-globule transition of poly(methyl methacrylate) in isoamyl acetate

    NASA Astrophysics Data System (ADS)

    Nakata, Mitsuo; Nakagawa, Tomohide

    1997-09-01

    The coil-globule transition was studied by static light scattering measurements on poly(methyl methacrylate) with the molecular weight Mw×10-6=2.35 and 4.4 in isoamyl acetate. Since the phase separation of the dilute solution occurred very slowly, the measurements could be made in the broad temperature range from near the Θ temperature 61 °C to 0 °C 30 min after a quench of the solution. The observed expansion factor α2 for the radius of gyration was represented as a function only of τM1/2 and showed a constant value at large -τM1/2 with τ being 1-Θ/T. A quantitative comparison between a recent theory for a contracted coil and the data of α2 revealed the coil-globule crossover phenomena. The behavior of plot of 1/α3 versus -τM1/2 was distinctly different in the three ranges, i.e., coil range, globule range, and range of a constant α. The plot of the observed second virial coefficient A2 against temperature yielded a minimum as predicted from a theory of A2 below the Θ temperature.

  18. Coil-globule transition of poly(methyl methacrylate) in isoamyl acetate

    SciTech Connect

    Nakata, M.; Nakagawa, T.

    1997-09-01

    The coil-globule transition was studied by static light scattering measurements on poly(methyl methacrylate) with the molecular weight M{sub w}{times}10{sup {minus}6}=2.35 and 4.4 in isoamyl acetate. Since the phase separation of the dilute solution occurred very slowly, the measurements could be made in the broad temperature range from near the {Theta} temperature 61{degree}C to 0{degree}C 30 min after a quench of the solution. The observed expansion factor {alpha}{sup 2} for the radius of gyration was represented as a function only of {tau}M{sup 1/2} and showed a constant value at large {minus}{tau}M{sup 1/2} with {tau} being 1{minus}{Theta}/T. A quantitative comparison between a recent theory for a contracted coil and the data of {alpha}{sup 2} revealed the coil-globule crossover phenomena. The behavior of plot of 1/{alpha}{sup 3} versus {minus}{tau}M{sup 1/2} was distinctly different in the three ranges, i.e., coil range, globule range, and range of a constant {alpha}. The plot of the observed second virial coefficient A{sub 2} against temperature yielded a minimum as predicted from a theory of A{sub 2} below the {Theta} temperature. {copyright} {ital 1997} {ital The American Physical Society}

  19. Kinetics of chain aggregation of poly(methyl methacrylate) in isoamyl acetate

    NASA Astrophysics Data System (ADS)

    Nakata, Mitsuo; Nakagawa, Tomohide; Nakamura, Yoshiki; Wakatsuki, Syogo

    1999-02-01

    For dilute solutions of poly(methyl methacrylate) in isoamyl acetate with the molecular weight Mw=2.35×106, the phase separation process was observed as an aggregation process of polymer chains by light-scattering measurements. The aggregation process was measured for a period of hours at four polymer concentrations and at about 15 K below the phase separation temperature. The light-scattering data analysis by Guinier plot yielded the average molecular weight w and radius z1/2 for polymer aggregates as a function of time t and revealed the exponential growth of w˜egt and z˜eht. The coefficients g and h were proportional to the polymer concentration. A shape of the observed scattering function was independent of the concentration and time. The fractal dimension for zD/2 was determined to be D=2.86±0.03. These characteristic features of the polymer aggregation were represented by the Smoluchowski equation for cluster-cluster aggregation with the collision kernel (i+j) for imer and jmer. The observed scattering function and fractal dimension were analyzed by the Smoluchowski equation with the assumed value D=3 for monodisperse clusters.

  20. Purification and properties of methyl coenzyme M methylreductase from acetate-grown Methanosarcina thermophila.

    PubMed Central

    Jablonski, P E; Ferry, J G

    1991-01-01

    Methyl coenzyme M methylreductase from acetate-grown Methanosarcina thermophila TM-1 was purified 16-fold from a cell extract to apparent homogeneity as determined by native polyacrylamide gel electrophoresis. Ninety-four percent of the methylreductase activity was recovered in the soluble fraction of cell extracts. The estimated native molecular weight of the enzyme was between 132,000 (standard deviation [SD], 1,200) and 141,000 (SD, 1,200). Denaturing polyacrylamide gel electrophoresis revealed three protein bands corresponding to molecular weights of 69,000 (SD, 1,200), 42,000 (SD, 1,200), and 33,000 (SD, 1,200) and indicated a subunit configuration of alpha 1 beta 1 gamma 1. As isolated, the enzyme was inactive but could be reductively reactivated with titanium (III) citrate or reduced ferredoxin. ATP stimulated enzyme reactivation and was postulated to be involved in a conformational change of the inactive enzyme from an unready state to a ready state that could be reductively reactivated. The temperature and pH optima for enzyme activity were 60 degrees C and between 6.5 and 7.0, respectively. The active enzyme contained 1 mol of coenzyme F430 per mol of enzyme (Mr, 144,000). The Kms for 2-(methylthio)ethane-sulfonate and 7-mercaptoheptanoylthreonine phosphate were 3.3 mM and 59 microM, respectively. Images PMID:2013570

  1. The effect of materials selection on metals reduction in propylene glycol methyl ether acetate, PGMEA

    NASA Astrophysics Data System (ADS)

    Entezarian, Majid; Geiger, Bob

    2016-03-01

    The trend in microelectronics fabrication is to produce nano-features measuring down to 10 nm and finer. The PPT levels of organic and inorganic contaminants in the photoresist, solvent and cleaning solutions are becoming a major processing variable affecting the process capability and defectivity. The photoresist usually contains gels, metals, and particulates that could interfere with the lithography process and cause microbridging defects. Nano filters of 5 nm polypropylene, 5 nm polyethylene, and 10 nm natural nylon were used to filter propylene glycol methyl ether acetate PGMEA containing 50 ppb of Na, Mg, Al, Ca, Cr, Mn, Fe, Cu, Zn, and Pb. All filters were effective in removing trivalent Al, Cr, and Fe metals indicating the mechanism for their removal as mechanical sieving. However, the nylon was also very effective in removing the divalent metals showing adsorptive properties. Furthermore, the metal removal of the nylon membrane was studied as a function of surface chemistry. Natural and charged 40 nm nylon membranes were tested and found that charged nylon is more effective for metal removal.

  2. Purification and properties of methyl coenzyme M methylreductase from acetate-grown Methanosarcina thermophila.

    PubMed

    Jablonski, P E; Ferry, J G

    1991-04-01

    Methyl coenzyme M methylreductase from acetate-grown Methanosarcina thermophila TM-1 was purified 16-fold from a cell extract to apparent homogeneity as determined by native polyacrylamide gel electrophoresis. Ninety-four percent of the methylreductase activity was recovered in the soluble fraction of cell extracts. The estimated native molecular weight of the enzyme was between 132,000 (standard deviation [SD], 1,200) and 141,000 (SD, 1,200). Denaturing polyacrylamide gel electrophoresis revealed three protein bands corresponding to molecular weights of 69,000 (SD, 1,200), 42,000 (SD, 1,200), and 33,000 (SD, 1,200) and indicated a subunit configuration of alpha 1 beta 1 gamma 1. As isolated, the enzyme was inactive but could be reductively reactivated with titanium (III) citrate or reduced ferredoxin. ATP stimulated enzyme reactivation and was postulated to be involved in a conformational change of the inactive enzyme from an unready state to a ready state that could be reductively reactivated. The temperature and pH optima for enzyme activity were 60 degrees C and between 6.5 and 7.0, respectively. The active enzyme contained 1 mol of coenzyme F430 per mol of enzyme (Mr, 144,000). The Kms for 2-(methylthio)ethane-sulfonate and 7-mercaptoheptanoylthreonine phosphate were 3.3 mM and 59 microM, respectively. PMID:2013570

  3. 2-Amino-4-methyl­pyridinium trifluoro­acetate

    PubMed Central

    Hemamalini, Madhukar; Fun, Hoong-Kun

    2010-01-01

    The asymmetric unit of the title compound, C6H9N2 +·C2F3O2 −, contains two independent 2-amino-4-methyl­pyridinium cations and two independent trifluoro­acetate anions. The F atoms of both anions are disordered over two sets of sites, with site occupancies of 0.50 (3) and 0.50 (3) in one of the anions, and 0.756 (9) and 0.244 (9) in the other. In the crystal, the cations and anions are linked into chains along the b axis by N—H⋯O hydrogen bonds and these chains are cross-linked by C—H⋯O hydrogen bonds, forming a two-dimensional network lying parallel to (101). The crystal structure is further stabilized by π–π inter­actions between the pyridinium rings [centroid–centroid distances = 3.5842 (13) and 3.5665 (16) Å]. PMID:21580622

  4. HC-Pro viral suppressor from tobacco vein banding mosaic virus interferes with DNA methylation and activates the salicylic acid pathway.

    PubMed

    Yang, Liping; Xu, Yanan; Liu, Yuqing; Meng, Dawei; Jin, Taicheng; Zhou, Xiaofu

    2016-10-01

    Salicylic acid (SA) is an important signalling molecule that is synthesized by plants and induces the expression of resistance genes. The SA pathway is typically activated by DNA viruses as well as RNA viruses. Here, we demonstrated that heper-component protease (HC-Pro) encoded by tobacco vein banding mosaic virus (TVBMV) decreases in DNA methylation at the promoters of the regulators ACD6 and NPR1 in the SA pathway. We found that the overexpression of HC-Pro increases the expression of components in the SA pathway in plants. The results revealed that HC-Pro interferes in DNA methylation and activates the SA pathway in the HC-Pro transgenic plants and TVBMV-infected plants. We further found that the accumulation of siRNAs derived from the promoter repeats of ACD6 and NPR1 is greatly reduced in the HC-Pro plants. Our results suggested that HC-Pro-mediated interference with DNA methylation is likely caused by a reduction in accumulation of siRNAs. PMID:27497186

  5. The Vasodilator Effect of a Cream Containing 10% Menthol and 15% Methyl Salicylate on Random-Pattern Skin Flaps in Rats

    PubMed Central

    Dölen, Utku Can; Sungur, Nezih; Koca, Gökhan; Ertunç, Onur; Bağcı Bosi, Ayşe Tülay; Koçer, Uğur

    2015-01-01

    Background It is still difficult to prevent partial or full-thickness flap necrosis. In this study, the effects of a cream containing menthol and methyl salicylate on the viability of randompattern skin flaps were studied. Methods Forty female Sprague-Dawley rats were divided into two equal groups. Caudally based dorsal random-pattern skin flaps were elevated, including the panniculus carnosus. In the study group, 1.5 mL of a cream containing menthol and methyl salicylate was applied to the skin of the flap, and saline solution (0.9%) was used in the control group. Upon completion of the experiment, flap necrosis was analyzed with imaging software and radionuclide scintigraphy. Histopathological measurements were made of the percentage of viable flaps, the number of vessels, and the width of the panniculus carnosus muscle. Results According to the photographic analysis, the mean viable flap surface area in the study group was larger than that in the control group (P=0.004). According to the scintigrams, no change in radioactivity uptake was seen in the study group (P>0.05). However, a significant decrease was observed in the control group (P=0.006). No statistically significant differences were observed between the groups in terms of the percentage of viable flaps, the number of vessels, or the width of the panniculus carnosus muscle (P>0.05). Conclusions Based on these results, it is certain that the cream did not reduce the viability of the flaps. Due to its vasodilatory effect, it can be used as a component of the dressing in reconstructive operations where skin perfusion is compromised. PMID:26618115

  6. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in s...

  7. VvMJE1 of the grapevine (Vitis vinifera) VvMES methylesterase family encodes for methyl jasmonate esterase and has a role in stress response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The known members of the plant methyl esterase (MES) family catalyze hydrolysis of a C-O ester linkage of methyl esters of several phytohormones including indole-3-acetic acid, salicylic acid, and jasmonic acid. The genome of grapevine (Vitis vinifera) was found to contain 15 MES genes, designated V...

  8. Kinetics of coil-globule transition of poly(methyl methacrylate) in isoamyl acetate

    NASA Astrophysics Data System (ADS)

    Nakata, Mitsuo; Nakagawa, Tomohide

    1999-02-01

    The kinetics of coil-globule transition was studied by static light scattering measurements on poly(methyl methacrylate) with the molecular weight Mw×10-6=8.4 and 12.2 in isoamyl acetate. Since the phase separation of the solution occurred very slowly, the mean-square radius of gyration of the polymer could be determined for a long time after quench to far below the θ-temperature 61 °C. The expansion factor α2 observed 30 min after quench to below the coil-globule crossover point, deviated largely from theoretical predictions, and was found to be a transient one. Chain collapse processes were measured in the time range from 30 min to a few thousand min after the quenches to 30 °C and 45 °C for Mw=12.2×106 and to 30 °C for Mw=8.4×106. The expansion factor in each process approached a constant value αeq2 in the time range. The collapse process was expressed as a function of time t(min) by α2=α∞2+{b/(t+c)}p, where b, c, p, and α∞2 were constant, independent of time. In all the three processes the constants had values near p˜0.5, b˜0.4, c˜0.6, and α∞2 was slightly smaller than αeq2. The constant c was introduced to satisfy the initial condition of α2=1 at t=0. This behavior of α2(t) and a comparison with kinetic theories of chain collapse concluded that the chain collapse occurred in a single stage process without formation of chain knots.

  9. Methyl salicylate lactoside inhibits inflammatory response of fibroblast-like synoviocytes and joint destruction in collagen-induced arthritis in mice

    PubMed Central

    Xin, Wenyu; Huang, Chao; Zhang, Xue; Xin, Sheng; Zhou, Yiming; Ma, Xiaowei; Zhang, Dan; Li, Yongjie; Zhou, Sibai; Zhang, Dongming; Zhang, Tiantai; Du, Guanhua

    2014-01-01

    BACKGROUND AND PURPOSE Methyl salicylate 2-O-β-d-lactoside (MSL), whose chemical structure is similar to that of salicylic acid, is a natural product derivative isolated from a traditional Chinese herb. The aim of this study was to investigate the therapeutic effect of MSL in mice with collagen-induced arthritis (CIA) and explore its underlying mechanism. EXPERIMENTAL APPROACH The anti-arthritic effects of MSL were evaluated on human rheumatoid fibroblast-like synoviocytes (FLS) in vitro and CIA in mice in vivo by obtaining clinical scores, measuring hind paw thickness and inflammatory cytokine levels, radiographic evaluations and histopathological assessments. KEY RESULTS Treatment with MSL after the onset of arthritis significantly prevented the progression and development of rheumatoid arthritis (RA) in CIA mice without megascopic gastric mucosa damage. In addition, MSL inhibited the production of pro-inflammatory mediators, the phosphorylation and translocation of NF-κB, and cell proliferation induced by TNF-α in FLS. MSL non-selectively inhibited the activity of COX in vitro, but was a more potent inhibitor of COX-2 than COX-1. MSL also inhibited the phosphorylation of inhibitor of NF-κB kinase, IκBα and p65, thus blocking the nuclear translocation of NF-κB in TNF-α-stimulated FLS. CONCLUSION AND IMPLICATIONS MSL exerts therapeutic effects on CIA mice, suppressing the inflammatory response and joint destruction by non-selectively inhibiting the activity of COX and suppressing activation of the NF-κB signalling pathway, but without damaging the gastric mucosa. Therefore, MSL has great potential to be developed into a novel therapeutic agent for the treatment of RA. PMID:24712652

  10. Photooxidation of Acetone on TiO2(110): Conversion to Acetate via Methyl Radical Ejection

    SciTech Connect

    Henderson, Michael A.

    2005-06-23

    It is generally held that radicals form and participate in heterogeneous photocatalytic processes on oxide surfaces, although understanding the mechanistic origins and fates of such species is difficult. In this study, photodesorption and thermal desorption techniques show that acetone is converted into acetate on the surface of TiO(110) in a two step process that involves, first, a thermal reaction between acetone and coadsorbed oxygen to make a surface acetone-oxygen complex, followed second by a photochemical reaction that ejects a methyl radical from the surface and converts the acetone-oxygen complex into acetate. Designation of the photodesorption species to methyl radicals was confirmed using isotopically labeled acetone. The yield of photodesorbed methyl radicals correlates well with the amount depleted of acetone and with the yield of acetate left on the surface, both gauged using post-irradiation temperature programmed desorption (TPD). The thermal reaction between adsorbed acetone and oxygen to form the acetone-oxygen complex exhibits an approximate activation barrier of about 10 kJ/mol. A prerequisite to this reaction is the presence of surface Ti?? sites that enable O? adsorption. Creation of these sites by vacuum reduction of the surface prior to acetone and oxygen co-adsorption results in an initial spike in the photodecomposition rate, but replenishment of these sites by photolytic means (i.e., by trapping excited electrons at the surface) appears to be a slow step a sustained reaction. Evidence in this study for the ejection of organic radicals from the surface during photo-oxidation catalysis on TiO provides support for mechanistic pathways that involve both adsorbed and non-adsorbed species.

  11. Paramagnetic metal effect on the ligand localized S/sub 1/. -->. T/sub 1/ intersystem crossing in the rare-earth-metal complexes and methyl salicylate

    SciTech Connect

    Tobita, S.; Arakawa, M.; Tanaka, I.

    1985-01-01

    The electronic relaxation processes in the chelates of La/sup 3 +/, Gd/sup 3 +/, Tb/sup 3 +/, and Lu/sup 3 +/ with methyl salicylate have been investigated by measurements of picosecond fluorescence, nanosecond transient absorptions, and quantum yields. The quantum yields of the S/sub 1/ ..-->.. T/sub 1/ intersystem crossing are not appreciably altered by a change in the central metal ions. However, the fluorescence lifetimes are decreased dramatically in the paramagnetic Gd/sup 3 +/ (240 ps) and Tb/sup 3 +/ (<10 ps) complexes compared with those in the diamagnetic La/sup 3 +/ (2.2 ns) and Lu/sup 3 +/ (2.4 ns) complexes. The rate constants derived from these results for the S/sub 1/ ..-->.. T/sub 1/ intersystem crossing, k/sub TM/, in ligands are 5.5 x 10/sup 7/, 7.5 x 10/sup 8/, and 7.9 x 10/sup 7/ s/sup -1/ for the La/sup 3 +/, Gd/sup 3 +/, and Lu/sup 3 +/ complexes, respectively. A large increase of k/sub TM/ is observed in the paramagnetic Gd/sup 3 +/ complexes, which can be attributed to the electron exchange mechanism with ligand ..pi.. electrons. 27 references, 8 figures, 3 tables.

  12. Methyl salicylate-induced arginine catabolism is associated with up-regulation of polyamine and nitric oxide levels and improves chilling tolerance in cherry tomato fruit.

    PubMed

    Zhang, Xinhua; Shen, Lin; Li, Fujun; Meng, Demei; Sheng, Jiping

    2011-09-14

    The effects of methyl salicylate (MeSA) on chilling injury (CI) and gene expression levels, enzyme activities, and metabolites related to arginine catabolism in cherry tomato fruit were investigated. Freshly harvested fruits were treated with 0.05 mM MeSA vapor at 20 °C for 12 h and then stored at 2 °C for up to 28 days. MeSA reduced CI and enhanced the accumulation of putrescine, spermidine, and spermine, which was associated with increased gene expression levels and activities of arginase, arginine decarboxylase, and ornithine decarboxylase at most sampling times. MeSA also increased nitric oxide synthase activity, which at least partly contributed to the increased nitric oxide content. The results indicate that MeSA activates the different pathways of arginine catabolism in cold-stored fruit and that the reduction in CI by MeSA may be due to the coordinated metabolism of arginine and the increase in polyamines and nitric oxide levels. PMID:21790190

  13. Dynamics of the enhanced emissions of monoterpenes and methyl salicylate, and decreased uptake of formaldehyde, by Quercus ilex leaves after application of jasmonic acid.

    PubMed

    Filella, Iolanda; Peñuelas, Josep; Llusià, Joan

    2006-01-01

    Jasmonic acid (JA) is a signalling compound with a key role in both stress and development in plants, and is reported to elicit the emission of volatile organic compounds (VOCs). Here we studied the dynamics of such emissions and the linkage with photosynthetic rates and stomatal conductance. We sprayed JA on leaves of the Mediterranean tree species Quercus ilex and measured the photosynthetic rates, stomatal conductances, and emissions and uptake of VOCs using proton transfer reaction mass spectrometry and gas chromatography after a dark-light transition. Jasmonic acid treatment delayed the induction of photosynthesis and stomatal conductance by approx. 20 min, and decreased them 24 h after spraying. Indications were found of both stomatal and nonstomatal limitations of photosynthesis. Monoterpene emissions were enhanced (20-30%) after JA spraying. Jasmonic acid also increased methyl salicylate (MeSa) emissions (more than twofold) 1 h after treatment, although after 24 h this effect had disappeared. Formaldehyde foliar uptake decreased significantly 24 h after JA treatment. Both biotic and abiotic stresses can thus affect plant VOC emissions through their strong impact on JA levels. Jasmonic acid-mediated increases in monoterpene and MeSa emissions might have a protective role when confronting biotic and abiotic stresses. PMID:16390425

  14. Synthesis of aspartame precursor: alpha-L-aspartyl-L-phenylalanine methyl ester in ethyl acetate using thermolysin entrapped in polyurethane.

    PubMed

    Yang, C P; Su, C S

    1988-08-20

    Cross-linked polyurethane (PU) was prepared for entrapping thermolysin. Using the immobilized thermolysin (IT), Z-L-aspartic acid (ZA) was reacted with -Lphenylalanine methyl ester (L-PM) in water-saturated ethyl acetate to give only alpha-Z-L-aspartylL-phenylalanine methyl ester (alpha-ZAPM). Ninety-four percent conversion of alpha-ZAPM was obtained for 30 h of reaction at 40 degrees C when 46 mg of enzyme was entrapped. PU support prepared from polypropylene glycol (#2000) showed better properties than from polypropylene (#1000) and polyethylene (#1000). Addition of polyol could increase the gel fraction of PU. The IT PU-ll-G-3, prepared from 1/2 mole ratio of PPG (#2000)/glycerin, gave the highest gel fraction and best swelling, and 89.0% of residual activity was obtained after four times of reuse (72 h). The stability of immobilized thermolysin was good; the activity loss resulting from degradatin and leak of enzyme in each time of reuse were found only about 2%. The kinetics of immobilized thermolysin-catalyzed condensation reaction of ZA with L-PM in water-saturated ethyl acetate was found to be first order in L-PM and the Lineweaver-Burk plot of 1/V against 1/[ZA] yields a straight line, showing that the reaction involves consecutive reactions of ZA and L-PM with the immobilized enzyme and with the ZA-immobilized enzyme complex, with the second reaction being the rate determining step.

  15. Discovery of 3-methyl-2-buten-1-yl acetate, a new alarm component in the sting apparatus of Africanized honeybees.

    PubMed

    Hunt, Greg J; Wood, Karl V; Guzmán-Novoa, Ernesto; Lee, Hsiupu D; Rothwell, Arlene P; Bonham, Connie C

    2003-02-01

    We analyzed the alarm pheromone components from five colonies of Africanized honeybees and three colonies of European honeybees collected in Mexico. Analyses revealed a novel alarm pheromone component that was only present in appreciable quantities in the Africanized bee samples. Analysis of the mass spectrum and subsequent synthesis confirmed that this compound is 3-methyl-2-buten-1-yl acetate (3M2BA), an unsaturated derivative of IPA. In Africanized honeybees, sampling from stings of guards showed that 3M2BA was present at levels of 0-38% the amount of isoamyl acetate (IPA). Behavioral assays from three colonies each of Africanized and European bees showed that 3M2BA recruited worker bees from hives of both Africanized bees and European bees at least as efficiently as isopentyl acetate IPA, a compound widely reported to have the highest activity for releasing alarm and stinging behavior in honeybees. However, a mixture of of 3M2BA and IPA (1:2) recruited bees more efficiently than either of the compounds alone. None of the compounds differed in their efficacy for inducing bees to pursue the observers. PMID:12737269

  16. Ketene as a Reaction Intermediate in the Carbonylation of Dimethyl Ether to Methyl Acetate over Mordenite.

    PubMed

    Rasmussen, Dominik B; Christensen, Jakob M; Temel, Burcin; Studt, Felix; Moses, Poul Georg; Rossmeisl, Jan; Riisager, Anders; Jensen, Anker D

    2015-06-15

    Unprecedented insight into the carbonylation of dimethyl ether over Mordenite is provided through the identification of ketene (CH2CO) as a reaction intermediate. The formation of ketene is predicted by detailed DFT calculations and verified experimentally by the observation of doubly deuterated acetic acid (CH2DCOOD), when D2O is introduced in the feed during the carbonylation reaction. PMID:25967363

  17. Methyl 2-(5-chloro-1-methyl-2-oxo-2,3-di­hydro-1H-indol-3-ylidene)acetate

    PubMed Central

    Kannan, Piskala Subburaman; Yuvaraj, PanneerSelvam; Manivannan, Karthikeyan; Reddy, Boreddy S. R.; SubbiahPandi, A.

    2013-01-01

    The title compound, C12H10ClNO3, the indoline ring system is essentially planar, with a maximum deviation of 0.009 Å for the N atom. The indoline ring and acetate group are essentially coplanar, with a maximum deviation of 0.086 Å for the O atom. The mean plane through the methoxy­carbonyl­methyl group forms a dihedral angle of 3.68 (5)° with the plane of the indoline ring system. The mol­ecular structure is stabilized by an intra­molecular C—H⋯O hydrogen-bond inter­action. In the crystal, π–π stacking inter­actions [centroid–centroid distance = 3.7677 (8) Å] occur between benzene rings, forming a chain running along the c-axis direction. PMID:23795040

  18. Salicylic acids

    PubMed Central

    Hayat, Shamsul; Irfan, Mohd; Wani, Arif; Nasser, Alyemeni; Ahmad, Aqil

    2012-01-01

    Salicylic acid is well known phytohormone, emerging recently as a new paradigm of an array of manifestations of growth regulators. The area unleashed yet encompassed the applied agriculture sector to find the roles to strengthen the crops against plethora of abiotic and biotic stresses. The skipped part of integrated picture, however, was the evolutionary insight of salicylic acid to either allow or discard the microbial invasion depending upon various internal factors of two interactants under the prevailing external conditions. The metabolic status that allows the host invasion either as pathogenesis or symbiosis with possible intermediary stages in close systems has been tried to underpin here. PMID:22301975

  19. Vapor-liquid equilibrium measurements at 101. 32 kPa for binary mixtures of methyl acetate + ethanol or 1-propanol

    SciTech Connect

    Ortega, J.: Susial, P.; de Alfonso, C. )

    1990-07-01

    This paper reports on isobaric vapor-liquid equilibrium data at 101.32 {plus minus} 0.02 kPa for methyl acetate (1) + ethane (2) or + 1-propanol (2). The results are compared with those predicted by the UNIFAC and ASOG methods. The methyl acetate (1) + ethanol (2) system forms an azeotrope at 329.8 K and a molar concentration of x{sub 1} = 0.958. Both methods predict the vapor-phase compositions equally well, with overall mean errors of less than 5%.

  20. The extent to which methyl salicylate is required for signaling systemic acquired resistance is dependent on exposure to light after infection.

    PubMed

    Liu, Po-Pu; von Dahl, Caroline C; Klessig, Daniel F

    2011-12-01

    Systemic acquired resistance (SAR) is a state of heightened defense to a broad spectrum of pathogens that is activated throughout a plant following local infection. Development of SAR requires the translocation of one or more mobile signals from the site of infection through the vascular system to distal (systemic) tissues. The first such signal identified was methyl salicylate (MeSA) in tobacco (Nicotiana tabacum). Subsequent studies demonstrated that MeSA also serves as a SAR signal in Arabidopsis (Arabidopsis thaliana) and potato (Solanum tuberosum). By contrast, another study suggested that MeSA is not required for SAR in Arabidopsis and raised questions regarding its signaling role in tobacco. Differences in experimental design, including the developmental age of the plants, the light intensity, and/or the strain of bacterial pathogen, were proposed to explain these conflicting results. Here, we demonstrate that the length of light exposure that plants receive after the primary infection determines the extent to which MeSA is required for SAR signaling. When the primary infection occurred late in the day and as a result infected plants received very little light exposure before entering the night/dark period, MeSA and its metabolizing enzymes were essential for SAR development. In contrast, when infection was done in the morning followed by 3.5 h or more of exposure to light, SAR developed in the absence of MeSA. However, MeSA was generally required for optimal SAR development. In addition to resolving the conflicting results concerning MeSA and SAR, this study underscores the importance of environmental factors on the plant's response to infection.

  1. Membrane-bound guaiacol peroxidases from maize (Zea mays L.) roots are regulated by methyl jasmonate, salicylic acid, and pathogen elicitors.

    PubMed

    Mika, Angela; Boenisch, Marike Johanne; Hopff, David; Lüthje, Sabine

    2010-03-01

    Plant peroxidases are involved in numerous cellular processes in plant development and stress responses. Four plasma membrane-bound peroxidases have been identified and characterized in maize (Zea mays L.) roots. In the present study, maize seedlings were treated with different stresses and signal compounds, and a functional analysis of these membrane-bound class III peroxidases (pmPOX1, pmPOX2a, pmPOX2b, and pmPOX3) was carried out. Total guaiacol peroxidase activities from soluble and microsomal fractions of maize roots were compared and showed weak changes. By contrast, total plasma membrane and washed plasma membrane peroxidase activities, representing peripheral and integral membrane proteins, revealed strong changes after all of the stresses applied. A proteomic approach using 2D-PAGE analysis showed that pmPOX3 was the most abundant class III peroxidase at plasma membranes of control plants, followed by pmPOX2a >pmPOX2b >pmPOX1. The molecular mass (63 kDa) and the isoelectric point (9.5) of the pmPOX2a monomer were identified for the first time. The protein levels of all four enzymes changed in response to multiple stresses. While pmPOX2b was the only membrane peroxidase down-regulated by wounding, all four enzymes were differentially but strongly stimulated by methyl jasmonate, salicylic acid, and elicitors (Fusarium graminearum and Fusarium culmorum extracts, and chitosan) indicating their function in pathogen defence. Oxidative stress applied as H(2)O(2) treatment up-regulated pmPOX2b >pmPOX2a, while pmPOX3 was down-regulated. Treatment with the phosphatase inhibitor chantharidin resulted in distinct responses.

  2. Leaf and root glucosinolate profiles of Chinese cabbage (Brassica rapa ssp. pekinensis) as a systemic response to methyl jasmonate and salicylic acid elicitation*

    PubMed Central

    Zang, Yun-xiang; Ge, Jia-li; Huang, Ling-hui; Gao, Fei; Lv, Xi-shan; Zheng, Wei-wei; Hong, Seung-beom; Zhu, Zhu-jun

    2015-01-01

    Glucosinolates (GSs) are an important group of defensive phytochemicals mainly found in Brassicaceae. Plant hormones jasmonic acid (JA) and salicylic acid (SA) are major regulators of plant response to pathogen attack. However, there is little information about the interactive effect of both elicitors on inducing GS biosynthesis in Chinese cabbage (Brassica rapa ssp. pekinensis). In this study, we applied different concentrations of methyl jasmonate (MeJA) and/or SA onto the leaf and root of Chinese cabbage to investigate the time-course interactive profiles of GSs. Regardless of the site of the elicitation and the concentrations of the elicitors, the roots accumulated much more GSs and were more sensitive and more rapidly responsive to the elicitors than leaves. Irrespective of the elicitation site, MeJA had a greater inducing and longer lasting effect on GS accumulation than SA. All three components of indole GS (IGS) were detected along with aliphatic and aromatic GSs. However, IGS was a major component of total GSs that accumulated rapidly in both root and leaf tissues in response to MeJA and SA elicitation. Neoglucobrassicin (neoGBC) did not respond to SA but to MeJA in leaf tissue, while it responded to both SA and MeJA in root tissue. Conversion of glucobrassicin (GBC) to neoGBC occurred at a steady rate over 3 d of elicitation. Increased accumulation of 4-methoxy glucobrassicin (4-MGBC) occurred only in the root irrespective of the type of elicitors and the site of elicitation. Thus, accumulation of IGS is a major metabolic hallmark of SA- and MeJA-mediated systemic response systems. SA exerted an antagonistic effect on the MeJA-induced root GSs irrespective of the site of elicitation. However, SA showed synergistic and antagonistic effects on the MeJA-induced leaf GSs when roots and leaves are elicitated for 3 d, respectively. PMID:26238545

  3. Leaf and root glucosinolate profiles of Chinese cabbage (Brassica rapa ssp. pekinensis) as a systemic response to methyl jasmonate and salicylic acid elicitation.

    PubMed

    Zang, Yun-xiang; Ge, Jia-li; Huang, Ling-hui; Gao, Fei; Lv, Xi-shan; Zheng, Wei-wei; Hong, Seung-beom; Zhu, Zhu-jun

    2015-08-01

    Glucosinolates (GSs) are an important group of defensive phytochemicals mainly found in Brassicaceae. Plant hormones jasmonic acid (JA) and salicylic acid (SA) are major regulators of plant response to pathogen attack. However, there is little information about the interactive effect of both elicitors on inducing GS biosynthesis in Chinese cabbage (Brassica rapa ssp. pekinensis). In this study, we applied different concentrations of methyl jasmonate (MeJA) and/or SA onto the leaf and root of Chinese cabbage to investigate the time-course interactive profiles of GSs. Regardless of the site of the elicitation and the concentrations of the elicitors, the roots accumulated much more GSs and were more sensitive and more rapidly responsive to the elicitors than leaves. Irrespective of the elicitation site, MeJA had a greater inducing and longer lasting effect on GS accumulation than SA. All three components of indole GS (IGS) were detected along with aliphatic and aromatic GSs. However, IGS was a major component of total GSs that accumulated rapidly in both root and leaf tissues in response to MeJA and SA elicitation. Neoglucobrassicin (neoGBC) did not respond to SA but to MeJA in leaf tissue, while it responded to both SA and MeJA in root tissue. Conversion of glucobrassicin (GBC) to neoGBC occurred at a steady rate over 3 d of elicitation. Increased accumulation of 4-methoxy glucobrassicin (4-MGBC) occurred only in the root irrespective of the type of elicitors and the site of elicitation. Thus, accumulation of IGS is a major metabolic hallmark of SA- and MeJA-mediated systemic response systems. SA exerted an antagonistic effect on the MeJA-induced root GSs irrespective of the site of elicitation. However, SA showed synergistic and antagonistic effects on the MeJA-induced leaf GSs when roots and leaves are elicitated for 3 d, respectively.

  4. [Ecological effects of wheat-oilseed rape intercropping combined with methyl salicylate release on Sitobion avenae and its main natural enemies].

    PubMed

    Dong, Jie; Liu, Ying-Jie; Li, Pei-Ling; Lin, Fang-Jing; Chen, Ju-Lian; Liu, Yong

    2012-10-01

    In order to explore the effects of wheat-oilseed rape intercropping in combining with methyl salicylate (MeSA) release on Sitobion avenae and its main natural enemies, a field experiment was conducted at the Tai'an Experimental Station of Shandong Agricultural University in East China from October 2008 to June 2010 to study the temporal dynamics of S. avenae and its main natural enemies as well as the ecological control effect on the aphid. In the plots of intercropping combined with MeSA release, the S. avenae apterae population reached a peak about 12 d in advance of the control, but the peak value was significantly lower than that of the control. The average annual number of S. avenae apterae per 100 wheat tillers decreased in the order of wheat monoculture > wheat-oilseed rape intercropping > MeSA release > wheat-oilseed rape intercropping combined with MeSA release. Moreover, the total number of ladybeetles was the highest in the plots of intercropping combined with MeSA release. The population densities of aphid parasitoids reached a peak about 10 d in advance of the control, which could play a significant role in controlling S. avenae at the filling stage of wheat. Taking the biological control index (BCI) as a quantitative indicator, and with the ladybeetles and parasitoids as the dominant control factors in fields, it was observed that wheat-oilseed rape intercropping combined with MeSA release could suppress the population increase of S. avenae apterae effectively from the heading to filling stages of wheat.

  5. Extension of the measurement, assignment, and fit of the rotational spectrum of the two-top molecule methyl acetate

    NASA Astrophysics Data System (ADS)

    Nguyen, Ha Vinh Lam; Kleiner, Isabelle; Shipman, Steven T.; Mae, Yoshiaki; Hirose, Kazue; Hatanaka, Shota; Kobayashi, Kaori

    2014-05-01

    New and previous spectroscopic data were recorded for the two-top molecule methyl acetate using five spectrometers in four different labs: a room temperature chirped-pulse Fourier transform microwave (FTMW) spectrometer in the frequency range from 8.7 to 26.5 GHz, two molecular beam FTMW spectrometers (2-40 GHz), a free jet absorption Stark-modulated spectrometer (60-78 GHz), and a room temperature millimeter-wave spectrometer (44-68 GHz). Approximately 800 new lines with J up to 40 and K up to 16 were assigned. In total, 1603 lines were fitted with 34 parameters using an internal rotation Hamiltonian in the Rho Axis Method (RAM) and the program BELGI-Cs-2tops to standard deviations close to the experimental uncertainties. More precise determinations of the top-top interaction and the J, K dependent parameters were carried out.

  6. Crystal structure of 3-acet-oxy-2-methyl-benzoic acid.

    PubMed

    Saranya, Matheswaran; Subashini, Annamalai; Arunagiri, Chidambaram; Muthiah, Packianathan Thomas

    2015-07-01

    In the title mol-ecule, C10H10O4, the carb-oxy-lic acid group is twisted by 11.37 (15)° from the plane of the benzene ring and the acet-oxy group is twisted from this plane by 86.60 (17)°. In the crystal, mol-ecules are linked by pairs of O-H⋯O hydrogen bonds, forming inversion dimers with the expected R 2 (2)(8) graph-set motif. PMID:26279915

  7. First European Report of Social Wasps Trapped in Response to Acetic acid, Isobutanol, 2-Methyl-2-propanol, and Heptyl butyrate in Tests Conducted in Hungary

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Five species of social wasps were captured in trapping tests in Hungary that evaluated the attractiveness of acetic acid, isobutanol, 2-methyl-2-propanol, and heptyl butyrate to social wasps. Both Vespula vulgaris (L.) and Vespula germanica (Fabr.), were captured in traps baited with isobutanol, t...

  8. Trapping hop looper moths, Hypena humuli Harris (Lepidoptera: Erebidae), in hop yards in Washington State with acetic acid and 3-methyl-1-butanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hop looper moths, Hypena humuli Harris, in commercial hop yards (Humulus lupulus L.) were captured in traps baited with a combination of acetic acid plus 3-methyl-1-butanol (AAMB). The two chemicals were synergistic in attracting hop looper moths; in a comparison of the lure chemicals, most moths we...

  9. Macroscopic and microscopic study of 1-ethyl-3-methyl-imidazolium acetate-DMSO mixtures.

    PubMed

    Radhi, Asanah; Le, Kim Anh; Ries, Michael E; Budtova, Tatiana

    2015-01-29

    Macroscopic (steady-state viscosity, density) and microscopic (NMR chemical shifts, (1)H NMR relaxation times, and diffusion) properties of the 1-ethyl-3-methylimidazolium acetate ([EMIM][OAc])-dimethyl sulfoxide (DMSO) mixture were studied in detail as a function of DMSO molar fraction at various temperatures. Temperature dependencies were used to calculate the activation energies. NMR results indicate that at low molar fraction of DMSO (<0.4), it weakly associates with the cation and in doing so disrupts the strong ion-ion association that exists in the pure ionic liquid. Stokes-Einstein equation, which linearly correlates the diffusion coefficient of a spherical molecule and macroscopic viscosity, was shown to work well for the [EMIM][OAc]-DMSO mixture. The influence of DMSO on the "anomalous" diffusion in [EMIM][OAc] ("quick" cation vs "slow" anion) was investigated; it was demonstrated that DMSO makes the cation diffusion slower. All parameters studied showed relatively small deviations from the ideal mixing rule behavior (from 20% to 50% difference between experimental and theoretically predicted results), confirming weak interactions between the components. PMID:25565058

  10. Expression and regulation of pear 1-aminocyclopropane-1-carboxylic acid synthase gene (PpACS1a) during fruit ripening, under salicylic acid and indole-3-acetic acid treatment, and in diseased fruit.

    PubMed

    Shi, Hai-Yan; Zhang, Yu-Xing

    2014-06-01

    In plants, the level of ethylene is determined by the activity of the key enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS). A gene encoding an ACC synthase protein was isolated from pear (Pyrus pyrifolia). This gene designated PpACS1a (GenBank accession no. KC632526) was 1488 bp in length with an open reading frame (ORF) encoding a protein of 495 amino acids that shared high similarity with other pear ACC synthase proteins. The PpACS1a was grouped into type-1 subfamily of plant ACS based on its conserved domain and phylogenetic status. Real-time quantitative PCR indicated that PpACS1a was differentially expressed in pear tissues and predominantly expressed in anthers. The expression signal of PpACS1a was also detected in fruit and leaves, but no signal was detected in shoots and petals. Furthermore, the PpACS1a expression was regulated during fruit ripening. In addition, the PpACS1a gene expression was regulated by salicylic acid (SA) and indole-3-acetic acid (IAA) in fruit. Moreover, the expression of the PpACS1a was up-regulated in diseased pear fruit. These results indicated that PpACS1a might be involved in fruit ripening and response to SA, IAA and disease.

  11. Diffusion of 1-ethyl-3-methyl-imidazolium acetate in glucose, cellobiose, and cellulose solutions.

    PubMed

    Ries, Michael E; Radhi, Asanah; Keating, Alice S; Parker, Owen; Budtova, Tatiana

    2014-02-10

    Solutions of glucose, cellobiose and microcrystalline cellulose in the ionic liquid 1-ethyl-3-methyl-imidazolium ([C2mim][OAc]) have been examined using pulsed-field gradient (1)H NMR. Diffusion coefficients of the cation and anion across the temperature range 20-70 °C have been determined for a range of concentrations (0-15% w/w) of each carbohydrate in [C2mim][OAc]. These systems behave as an "ideal mixture" of free ions and ions that are associated with the carbohydrate molecules. The molar ratio of carbohydrate OH groups to ionic liquid molecules, α, is the key parameter in determining the diffusion coefficients of the ions. Master curves for the diffusion coefficients of cation, anion and their activation energies are generated upon which all our data collapses when plotted against α. Diffusion coefficients are found to follow an Arrhenius type behavior and the difference in translational activation energy between free and associated ions is determined to be 9.3 ± 0.9 kJ/mol. PMID:24405090

  12. Diffusion of 1-Ethyl-3-methyl-imidazolium Acetate in Glucose, Cellobiose, and Cellulose Solutions

    PubMed Central

    2014-01-01

    Solutions of glucose, cellobiose and microcrystalline cellulose in the ionic liquid 1-ethyl-3-methyl-imidazolium ([C2mim][OAc]) have been examined using pulsed-field gradient 1H NMR. Diffusion coefficients of the cation and anion across the temperature range 20–70 °C have been determined for a range of concentrations (0–15% w/w) of each carbohydrate in [C2mim][OAc]. These systems behave as an “ideal mixture” of free ions and ions that are associated with the carbohydrate molecules. The molar ratio of carbohydrate OH groups to ionic liquid molecules, α, is the key parameter in determining the diffusion coefficients of the ions. Master curves for the diffusion coefficients of cation, anion and their activation energies are generated upon which all our data collapses when plotted against α. Diffusion coefficients are found to follow an Arrhenius type behavior and the difference in translational activation energy between free and associated ions is determined to be 9.3 ± 0.9 kJ/mol. PMID:24405090

  13. Kinetic Study of Methyl Acetate Oxidation in a Pt/Al2O3 Fixed-Bed Reactor

    NASA Technical Reports Server (NTRS)

    Hoy, Michael; Li, K. Y.; Li, Jeffrey S.; Chen, S. M.; Yaws, C. L.; Chu, H. W.; Simon, W. E.

    1994-01-01

    To support technology development for future long-term missions, a metabolic simulator will be used in a closed chamber to test the functions of a Controlled Ecological Life Support System (CELSS). Methyl acetate (MA) was selected as the fuel because its metabolic respiratory quotient is near that of humans. A kinetic study of the catalytic oxidation of MA over Pt/Al203 was then conducted to support the design and operation of the simulator. Kinetic data were obtained as a conversion percentage of MA versus retention time. The reaction was studied at one atmosphere and temperatures from 220 to 340 deg. C. The inlet MA concentration was varied from 100 to 2000 ppm with retention times from 0.01 to 10 sec. A first-order rate law and a Langmuir-Hinshelwood rate equation were tested by nonlinear regression of the kinetic data to estimate rate constants in the rate law. Regression results of the L-H equation explain the kinetic data better than the results of the first-order rate law. A Taguchi experimental design was used to study the effects of temperature, retention time, and concentrations of MA, CO2, and O2 on the conversion of MA. Results indicate that temperature has greatest effect, followed by retention time, and finally MA concentration. It was further determined that the effects of CO2 and O2 concentrations, and the cross effects, are negligible.

  14. Undergraduate Analytical Chemistry Experiment: The Determination of Formation Constants for Acetate and Mono-and Dichloroacetate Salts of Primary, Secondary, and Tertiary Methyl-and Ethylamines

    ERIC Educational Resources Information Center

    D'Amelia, Ronald P.; Chiang, Stephanie; Pollut, Stephanie; Nirode, William F.

    2014-01-01

    The formation and the hydrolysis of organic salts produced by the titration of a 0.1 M solution of the following amines: methyl-, dimethyl-, trimethyl-, ethyl-, diethyl-, and triethylamine with a 0.1 M solution of acetic, chloroacetic, and dichloracetic acids are studied. The pK[subscript b] of the amine and the pH at the end point were determined…

  15. Anti-inflammation effect of methyl salicylate 2-O-β-D-lactoside on adjuvant induced-arthritis rats and lipopolysaccharide (LPS)-treated murine macrophages RAW264.7 cells.

    PubMed

    Zhang, Xue; Sun, Jialin; Xin, Wenyu; Li, Yongjie; Ni, Lin; Ma, Xiaowei; Zhang, Dan; Zhang, Dongming; Zhang, Tiantai; Du, Guanhua

    2015-03-01

    Methyl salicylate 2-O-β-D-lactoside (MSL) is a derivative of natural salicylate isolated from Gaultheria yunnanensis (Franch.) Rehder, which is widely used for treating rheumatoid arthritis (RA), swelling and pain. The aim of the present study was to investigate the effect of MSL on the progression of adjuvant-induced arthritis (AIA) in rat in vivo and explore the anti-inflammatory effects and mechanism of MSL in lipopolysaccharide (LPS)-treated murine macrophages RAW264.7 cells in vitro. Our results showed that MSL significantly inhibited the arthritis progression in AIA rats, decreasing the right hind paw swelling and ankle diameter, attenuating histopathological changes and suppressing the plasma levels of TNF-α and IL-1β in AIA rats. Besides, MSL had potent anti-inflammatory effects on the LPS-activated RAW264.7. MSL dose-dependently inhibited the activity of COX-1, and COX-2. Moreover, MSL prominently inhibited LPS-induced activation of MAPK in RAW264.7 cells by blocking phosphorylation of p38 and ERK. Our study suggests that MSL may be effective in the treatment of inflammatory diseases by inhibiting the pro-inflammatory cytokine production and regulating the MAPK signal pathway. PMID:25637446

  16. Acetaldehyde partial oxidation on the Au(111) model catalyst surface: C-C bond activation and formation of methyl acetate as an oxidative coupling product

    NASA Astrophysics Data System (ADS)

    Karatok, Mustafa; Vovk, Evgeny I.; Shah, Asad A.; Turksoy, Abdurrahman; Ozensoy, Emrah

    2015-11-01

    Partial oxidation of acetaldehyde (CH3CHO) on the oxygen pre-covered Au(111) single crystal model catalyst was investigated via Temperature Programmed Desorption (TPD) and Temperature Programmed Reaction Spectroscopy (TPRS) techniques, where ozone (O3) was utilized as the oxygen delivery agent providing atomic oxygen to the reacting surface. We show that for low exposures of O3 and small surface oxygen coverages, two partial oxidation products namely, methyl acetate (CH3COOCH3) and acetic acid (CH3COOH) can be generated without the formation of significant quantities of carbon dioxide. The formation of methyl acetate as the oxidative coupling reaction product implies that oxygen pre-covered Au(111) single crystal model catalyst surface can activate C-C bonds. In addition to the generation of these products; indications of the polymerization of acetaldehyde on the gold surface were also observed as an additional reaction route competing with the partial and total oxidation pathways. The interplay between the partial oxidation, total oxidation and polymerization pathways reveals the complex catalytic chemistry associated with the interaction between the acetaldehyde and atomic oxygen on catalytic gold surfaces.

  17. Methyl Acetate Synthesis by Esterification on the Modified Ferrierite: Correlation of Acid Sites Measured by Pyridine IR and NH3-TPD for Steady-State Activity.

    PubMed

    Park, Jae Hyun; Pang, Changhyun; Chung, Chan-Hwa; Bae, Jong Wook

    2016-05-01

    The amounts of Brønsted acid sites on K, P, and Zr-modified microporous Ferrierite zeolite were investigated through pyridine FT-IR and NH3-TPD analyses. P-modified Ferrierite showed a superior catalytic activity for methyl acetate synthesis by esterification of methanol and acetic acid. The catalytic activity at steady-state with the acidic properties of as-prepared catalysts was well correlated with the results of pyridine FT-IR (intensity ratio of Brønsted acid sites to total acid sites) compared with that of NH3-TPD. The results can suggest the proper and simple method to estimate the esterification activity at steady-state using the measured acid sites on the as-prepared zeolites. PMID:27483801

  18. Crystal structure of (1,3-di-methyl-thio-urea-κS)tris-(tri-phenyl-phosphane-κP)silver(I) acetate.

    PubMed

    Wattanakanjana, Yupa; Nimthong, Arunpatcha; Darasuriyong, Chanokphat

    2014-09-01

    In the mononuclear title salt, [Ag(C3H8N2S)(C18H15P)3](CH3COO), the Ag(I) ion exhibits a distorted tetra-hedral coordination sphere defined by three P atoms from three tri-phenyl-phosphane ligands and one S atom from a 1,3-di--methyl-thio-urea ligand. In the crystal, the acetate anion is linked with the complex cation via duplex N-H⋯O hydrogen bonds [graph-set motif R (2) 2(8)]. PMID:25309189

  19. Priming of seeds with methyl jasmonate induced resistance to hemi-biotroph Fusarium oxysporum f.sp. lycopersici in tomato via 12-oxo-phytodienoic acid, salicylic acid, and flavonol accumulation.

    PubMed

    Król, P; Igielski, R; Pollmann, S; Kępczyńska, E

    2015-05-01

    Methyl jasmonate (MeJA) was tested by seed treatment for its ability to protect tomato seedlings against fusarium wilt caused by the soil-borne fungal pathogen Fusarium oxysporum f.sp. lycopersici. Isolated from Solanum lycopersicon L. seeds, cv. Beta fungus was identified as F. oxysporum f.sp. lycopersici Race 3 fungus by using phytopathological and molecular methods. MeJA applied at 0.01, 0.1 and 1 mM reduced spore germination and mycelial growth in vitro. Soaking of tomato seeds in MeJA solution at 0.1 mM for 1 h significantly enhanced the resistance level against the tested fungus in tomato seedlings 4 weeks after inoculation. The extracts from leaves of 15-day-old seedlings obtained from previously MeJA soaked seeds had the ability to inhibit in vitro spore germination of tested fungus. In these seedlings a significant increase in the levels phenolic compounds such as salicylic acid (SA), kaempferol and quercetin was observed. Up-regulation of phenylalanine ammonia-lyase (PAL5) and benzoic acid/salicylic acid carboxyl methyltransferase (BSMT) genes and down-regulation of the isochorysmate synthase (ICS) gene in response to exogenous MeJA application indicate that the phenylalanine ammonia-lyase (PAL), not the isochorismate (IC) pathway, is the primary route for SA production in tomato. Moreover, the increased accumulation of the flavonols quercetin and kaempferol appears closely related to the increase of PAL5, chalcone synthase (CHS) and flavonol synthase/flavanone 3-hydroxylase-like (FLS) genes. Elevated levels of salicylic acid in seedlings raised from MeJA-soaked seeds were simultaneously accompanied by a decrease of jasmonic acid, the precursor of MeJA, and an increase of 12-oxo-phytodienoic acid (OPDA), the precursor of jasmonic acid. The present results indicate that the priming of tomato seeds with 0.1mM MeJA before sowing enables the seedlings grown from these seeds to reduce the attack of the soil-borne fungal pathogen F. oxysporum f.sp. lycopersici

  20. Priming of seeds with methyl jasmonate induced resistance to hemi-biotroph Fusarium oxysporum f.sp. lycopersici in tomato via 12-oxo-phytodienoic acid, salicylic acid, and flavonol accumulation.

    PubMed

    Król, P; Igielski, R; Pollmann, S; Kępczyńska, E

    2015-05-01

    Methyl jasmonate (MeJA) was tested by seed treatment for its ability to protect tomato seedlings against fusarium wilt caused by the soil-borne fungal pathogen Fusarium oxysporum f.sp. lycopersici. Isolated from Solanum lycopersicon L. seeds, cv. Beta fungus was identified as F. oxysporum f.sp. lycopersici Race 3 fungus by using phytopathological and molecular methods. MeJA applied at 0.01, 0.1 and 1 mM reduced spore germination and mycelial growth in vitro. Soaking of tomato seeds in MeJA solution at 0.1 mM for 1 h significantly enhanced the resistance level against the tested fungus in tomato seedlings 4 weeks after inoculation. The extracts from leaves of 15-day-old seedlings obtained from previously MeJA soaked seeds had the ability to inhibit in vitro spore germination of tested fungus. In these seedlings a significant increase in the levels phenolic compounds such as salicylic acid (SA), kaempferol and quercetin was observed. Up-regulation of phenylalanine ammonia-lyase (PAL5) and benzoic acid/salicylic acid carboxyl methyltransferase (BSMT) genes and down-regulation of the isochorysmate synthase (ICS) gene in response to exogenous MeJA application indicate that the phenylalanine ammonia-lyase (PAL), not the isochorismate (IC) pathway, is the primary route for SA production in tomato. Moreover, the increased accumulation of the flavonols quercetin and kaempferol appears closely related to the increase of PAL5, chalcone synthase (CHS) and flavonol synthase/flavanone 3-hydroxylase-like (FLS) genes. Elevated levels of salicylic acid in seedlings raised from MeJA-soaked seeds were simultaneously accompanied by a decrease of jasmonic acid, the precursor of MeJA, and an increase of 12-oxo-phytodienoic acid (OPDA), the precursor of jasmonic acid. The present results indicate that the priming of tomato seeds with 0.1mM MeJA before sowing enables the seedlings grown from these seeds to reduce the attack of the soil-borne fungal pathogen F. oxysporum f.sp. lycopersici

  1. Exposure of JB-6 mouse epidermal cells to 12-O-tetradecanoyl-phorbol-13-acetate is not accompanied by a significant change in total DNA-cytosine methylation.

    PubMed

    Bondy, G P; Denhardt, D T

    1983-12-01

    The extent of methylation of the cytosine bases in DNA is believed to be a major factor influencing gene expression in eukaryotic cells. We have asked whether the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) alters the amount of 5-methylcytosine in DNA. The amount and relative distribution of 5-methylcytosine in the DNA of two subclones of the JB-6 mouse epidermal cell line were determined respectively by high performance liquid chromatography and digestion with the restriction enzymes MspI and HpaII. Exposure to TPA for up to several cell generations had no detectable effect on the degree of DNA methylation (3.9% of the total cytosine) in the two JB-6 lines or Friend erythroleukemia cells. Reduced methylation was readily detected in DNA extracted from cells exposed to 5-azacytidine. The data suggest that tumor promotion (at least that induced by TPA) is likely not the consequence of a generalized elevation or reduction in the amount of 5-methyl-cytosine in the DNA.

  2. Allergic contact dermatitis from ethylhexyl salicylate and other salicylates.

    PubMed

    Mortz, Charlotte Gotthard; Thormann, Henrik; Goossens, An; Andersen, Klaus Ejner

    2010-01-01

    Allergic contact dermatitis (ACD) from salicylates present in topical products is uncommon. Most publications about ACD from salicylates are case reports describing only a few patients. Cross-reactivity between salicylates is not commonly reported. This article describes allergic contact dermatitis from ethylhexyl salicylate used as an ultraviolet filter and fragrance compound and reviews the published literature on contact allergy to salicylates.

  3. Potentiation by salicylate and salicyl alcohol of cadmium toxicity and accumulation in Escherichia coli

    SciTech Connect

    Rosner, J.L.; Aumercier, M. )

    1990-12-01

    The toxicity of Cd{sub 2+} in Escherichia coli K-12 was potentiated by salicylate and several related compounds. The efficiency of plating on Luria broth plates was reduced by more than 10(5)-fold when 10 mM salicylate and 200 microM CdCl{sub 2} were present simultaneously but was unaffected when either compound was present by itself. Synergistic effects were found at pH 7.4 with certain other weak acids (acetyl salicylate (aspirin), benzoate, and cinnamate) and with a nonacidic salicylate analog, salicyl alcohol, but not with acetate or p-hydroxy benzoate. Thus, the synergism with Cd{sub 2+} is determined by the structure of the compounds and not merely by their acidity. The kinetics of {sup 109}Cd{sub 2+} uptake by cells grown and assayed in broth indicated the presence of two uptake systems with Kms of 1 and 52 microM Cd{sub 2+} and Vmaxs of 0.059 and 1.5 mumol of Cd{sub 2+} per min per g of cells, respectively. The kinetics of uptake for cells grown and assayed with 20 mM salicyl alcohol showed 2.5-fold increases in the Vmaxs of both systems but no change in the Kms. Salicylate-grown cells also exhibited increased rates of {sup 109}Cd{sub 2+} uptake by both systems. Thus, enhanced uptake of Cd{sub 2+} may be responsible for the potentiation of Cd{sub 2+} toxicity by salicylate and salicyl alcohol.

  4. DC conduction mechanism and dielectric properties of Poly (methyl methacrylate)/Poly (vinyl acetate) blends doped and undoped with malachite green

    NASA Astrophysics Data System (ADS)

    Abd-El Kader, F. H.; Osman, W. H.; Hafez, R. S.

    2013-01-01

    Cast thin films of Poly (methyl methacrylate)/Poly (vinyl acetate) blends of different concentrations undoped and doped with malachite green have been prepared and subjected to both dc electrical conduction and dielectric spectroscopy measurements. The analysis of dc electrical conduction data showed that the space charge limited current mechanism has been dominant for Poly (vinyl acetate) while Schottky-Richardson conduction mechanism prevailed for the Poly (methyl methacrylate) and blended samples. The values of field lowering constant β and the thermal activation energy ΔE involved in the dc conduction were reported, which provide another support for the suggested Schottky-Richardson mechanism. The increase in current for the blend sample doped with malachite green has been attributed to the formation of charge transfer complexes inside the polyblend matrix. The dielectric constant as a function of temperature for all samples have been calculated which are affected by the composition ratio and the addition of dye. The relaxation peak that appeared in the dielectric loss curve at 347 K for the doped blend sample is related to local dipoles that are present in the dye material. The obtained relaxation process spectra present in the investigated samples were analyzed with the well-known model of Havriliak-Negami.

  5. Corrosion resistance of siloxane-poly(methyl methacrylate) hybrid films modified with acetic acid on tin plate substrates: Influence of tetraethoxysilane addition

    NASA Astrophysics Data System (ADS)

    Kunst, S. R.; Cardoso, H. R. P.; Oliveira, C. T.; Santana, J. A.; Sarmento, V. H. V.; Muller, I. L.; Malfatti, C. F.

    2014-04-01

    The aim of this paper is to study the corrosion resistance of hybrid films. Tin plate was coated with a siloxane-poly (methyl methacrylate) (PMMA) hybrid film prepared by sol-gel route with covalent bonds between the organic (PMMA) and inorganic (siloxane) phases obtained by hydrolysis and polycondensation of 3-(trimethoxysilylpropyl) methacrylate (TMSM) and polymerization of methyl methacrylate (MMA) using benzoyl peroxide (BPO) as a thermic initiator. Hydrolysis reactions were catalyzed by acetic acid solution avoiding the use of chlorine or stronger acids in the film preparation. The effect of the addition of tetraethoxysilane (TEOS) on the protective properties of the film was evaluated. The hydrophobicity of the film was determined by contact angle measurements, and the morphology was evaluated by scanning electron microscopy (SEM) and profilometry. The local nanostructure was investigated by Fourier transform infrared spectroscopy (FT-IR). The electrochemical behavior of the films was assessed by open circuit potential monitoring, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements in a 0.05 M NaCl solution. The mechanical behavior was evaluated by tribology. The results highlighted that the siloxane-PMMA hybrid films modified with acetic acid are promising anti-corrosive coatings that acts as an efficient diffusion barrier, protecting tin plates against corrosion. However, the coating properties were affected by the TEOS addition, which contributed for the thickness increase and irregular surface coverage.

  6. Crystal structure of ethyl 2-[2-(4-methyl-benzo-yl)-5-p-tolyl-1H-imidazol-1-yl]acetate.

    PubMed

    Prabha, E Arockia Jeya Yasmi; Kumar, S Suresh; Padala, Anil K; Ahmed, Qazi Naveed; Athimoolam, S

    2016-03-01

    In the title compound, C22H22N2O3, the plane of the five-membered ring is oriented at dihedral angles of 45.4 (1) and 52.5 (1)° to the phenyl rings. Furthermore, this ring makes an angle of 85.2 (2)° with the plane of the ethyl acetate substituent. The mol-ecular structure is affected by an intra-molecular C-H⋯O hydrogen bond between an H atom from the p-tolyl group and the carbonyl O atom of the acetate. The methyl group of the ethyl acetate residue is disordered over two sites with equal occupancies. The crystal structure features inter-molecular C-H⋯O and C-H⋯N inter-actions. One of the C-H⋯O hydrogen bonds forms a C(5) chain motif extending along the a axis. In addition, C-H⋯N contacts form inversion dimers with R 2 (2)(12) ring motifs, linking the imidazole ring system to the benzene ring of the p-tolyl substituent. PMID:27006805

  7. Crystal structure of ethyl 2-[2-(4-methyl­benzo­yl)-5-p-tolyl-1H-imidazol-1-yl]acetate

    PubMed Central

    Prabha, E. Arockia Jeya Yasmi; Kumar, S. Suresh; Padala, Anil K.; Ahmed, Qazi Naveed; Athimoolam, S.

    2016-01-01

    In the title compound, C22H22N2O3, the plane of the five-membered ring is oriented at dihedral angles of 45.4 (1) and 52.5 (1)° to the phenyl rings. Furthermore, this ring makes an angle of 85.2 (2)° with the plane of the ethyl acetate substituent. The mol­ecular structure is affected by an intra­molecular C—H⋯O hydrogen bond between an H atom from the p-tolyl group and the carbonyl O atom of the acetate. The methyl group of the ethyl acetate residue is disordered over two sites with equal occupancies. The crystal structure features inter­molecular C—H⋯O and C—H⋯N inter­actions. One of the C—H⋯O hydrogen bonds forms a C(5) chain motif extending along the a axis. In addition, C—H⋯N contacts form inversion dimers with R 2 2(12) ring motifs, linking the imidazole ring system to the benzene ring of the p-tolyl substituent. PMID:27006805

  8. SALICYLATE PROCESS FOR THORIUM SEPARATION FROM RARE EARTHS

    DOEpatents

    Cowan, G.A.

    1959-08-25

    The separation of thorium from rare earths is accomplished by forming an aqueous solution of salts of thorium and rare earths and sufficient acetate buffer to provide a pH of between 2 and 5, adding an ammonium salicylate to the aqueous buffered solution, contacting the resultant solution with a substantially water-immiscible organic solvent mixture of an ether and an ester, and separating the solvent extract phase containing thorium salicylate from the aqueous phase containing the rare earths.

  9. Methyl salicylate 2-O-β-d-lactoside alleviates the pathological progression of pristane-induced systemic lupus erythematosus-like disease in mice via suppression of inflammatory response and signal transduction

    PubMed Central

    He, Yang-Yang; Yan, Yu; Zhang, Hui-Fang; Lin, Yi-Huang; Chen, Yu-Cai; Yan, Yi; Wu, Ping; Fang, Jian-Song; Yang, Shu-Hui; Du, Guan-Hua

    2016-01-01

    Systemic lupus erythematosus (SLE), with a high incidence rate and insufficient therapy worldwide, is a complex disease involving multiple organs characterized primarily by inflammation due to deposition of immunocomplexes formed by production of autoantibodies. The mechanism of SLE remains unclear, and the disease still cannot be cured. We used pristane to induce SLE in female BALB/c mice. Methyl salicylate 2-O-β-d-lactoside (MSL; 200, 400, and 800 mg/kg) was orally administered 45 days after pristane injection for 4.5 months. The results showed that MSL antagonized the increasing levels of multiple types of antibodies and cytokines in lupus mice. MSL was found to suppress joint swelling and have potent inhibitory effect on arthritis-like symptoms. MSL also significantly decreased the spleen index and expression of inflammatory markers in the lupus mice. MSL protected the kidneys of lupus mice from injury through inhibiting the expression of inflammatory cytokines and reducing the IgG and C3 immunocomplex deposits. Further Western blot assays revealed that the downregulation of the intracellular inflammatory signals of NFκB and JAK/STAT3 might be the potential molecular mechanisms of the pharmacological activity of MSL against SLE in vivo. These findings may demonstrate that MSL has the potential to be a useful and highly effective treatment for SLE. PMID:27729775

  10. Facile "living" radical polymerization of methyl methacrylate in the presence of iniferter agents: homogeneous and highly efficient catalysis from copper(II) acetate.

    PubMed

    Jiang, Hongjuan; Zhang, Lifen; Jiang, Xiaowu; Bao, Xiaoguang; Cheng, Zhenping; Zhu, Xiulin

    2014-08-01

    A facile homogeneous polymerization system involving the iniferter agent 1-cyano-1-methylethyl diethyldithiocarbamate (MANDC) and copper(II) acetate (Cu(OAc)2 ) is successfully developed in bulk using methyl methacylate (MMA) as a model monomer. The detailed polymerization kinetics with different molar ratios (e.g., [MMA]0 /[MANDC]0 /[Cu(OAc)2 ]0 = 500/1/x (x = 0.1, 0.2, 0.5, 1.0)) demonstrate that this system has the typical "living"/controlled features of "living" radical polymerization, even with ppm level catalyst Cu(OAc)2 , first order polymerization kinetics, a linear increase in molecular weight with monomer conversion and narrow molecular weight distributions for the resultant PMMA. (1) H NMR spectra and chain-extension experiments further confirm the "living" characteristics of this process. A plausible mechanism is discussed.

  11. Photolytic degradation of chlorophenols from industrial wastewaters by organic oxidants peroxy acetic acid, para nitro benzoic acid and methyl ethyl ketone peroxide: identification of reaction products.

    PubMed

    Sharma, Swati; Mukhopadhyay, Mausumi; Murthy, Zagabathuni Venkata Panchakshari

    2014-01-01

    In this investigation, chlorophenol (CP) containing industrial wastewater was remediated by ultraviolet irradiation in conjunction with organic oxidants, peroxy acetic acid (PAA); para nitro benzoic acid (PNBA); and methyl ethyl ketone peroxide (MEKP). CP mineralization was studied with regard to chemical oxygen demand (COD) and chloride ion release under identical test conditions. COD depletion to the extent of 81% by PAA, 66% by PNBA, and 67% by MEKP was noted along with an upwardly mobile trend of chloride ion release upon irradiation of samples at 254 nm. A 90-99% decrease in CP concentration (as per high pressure liquid chromatography (HPLC) analysis) was achieved with an additional 15.0 ml of organic oxidant in all cases. Gas chromatography high resolution mass spectroscopy (GC-HRMS) results also indicated the formation of such reaction products as are free from chlorine substitutions. This treatment also leads to total decolorization of the collected samples. PMID:24647192

  12. Salicylates in saliva.

    PubMed

    Pohto, P

    1976-01-01

    The possible excretion of acetylsalicylic acid and salicylic acid into human whole-mouth saliva was studied after the ingestion of 1.0 g of acetylsalicylic acid in gelatine capsules. In addition, the oral clearance of both salicylates was determined after a sham intake of acetylsalicylic acid in solution. No acetylsalicylic acid was excreted in saliva. The maximum concentration of 1.2 mug/ml of the metabolite, salicylic acid, was excreted after 3 hours. Considerable concentrations of both salicylates were retained from 2 to 3 hours in the mouth after the sham intake of the drug in solution. During the retention period, part of the acetylsalicylic acid was hydrolyzed to salicylic acid. In vitro, at low concentration levels about 50% of salicylic acid was bound to salivary proteins. The degree of binding was dependent on the drug concentration. The reason for the absence of excreted acetylsalicylic acid from the saliva was evidently its hydrolysis in the body. Protein binding in the oral cavity may explain the slow clearance of locally applied salicylates. Retention of salicylates in the mouth after the use of drug solutions or effervescent preparations should be considered in, e.g. evaluations of local analgesic effects or bleeding disorders. PMID:1067733

  13. Salicylic Acid Topical

    MedlinePlus

    ... skin blemishes in people who have acne. Topical salicylic acid is also used to treat skin conditions that involve scaling or overgrowth of skin ... water for 15 minutes.Do not apply topical salicylic acid to skin that is broken, red, swollen, irritated, or infected. ...

  14. Salicylate toxicity from ingestion of traditional massage oil

    PubMed Central

    Muniandy, Rajesh Kumar; Sinnathamby, Vellan

    2012-01-01

    A 16-month-old child developed a brief generalised tonic–clonic fitting episode and vomiting at home, after accidental ingestion of traditional massage oil. As the patient presented with clinical features of salicylate toxicity, appropriate management was instituted. He was admitted to the intensive care unit for multiorgan support. The child was discharged well 1 week after the incident. Methyl-salicylate is a common component of massage oils which are used for topical treatment of joint and muscular pains. However, these massage oils may be toxic when taken orally. Early recognition of the salicylate toxicity is very important in producing a good patient outcome. PMID:22922924

  15. Candy flavoring as a source of salicylate poisoning.

    PubMed

    Howrie, D L; Moriarty, R; Breit, R

    1985-05-01

    Methyl salicylate (oil of wintergreen) in the form of candy flavoring was ingested by a 21-month-old male infant who subsequently developed vomiting, lethargy, and hyperpnea. A "swallow" of the solution resulted in a serum salicylate concentration of 81 mg/dL six hours after ingestion. The infant was treated with parenteral fluids and sodium bicarbonate and he recovered rapidly. Hazards associated with salicylate use in this form include lack of parental awareness of the substance's toxic potential, the attractiveness of the candy-like odor, and the availability of the liquid in non-child-resistant packaging containing potentially lethal quantities.

  16. The adsorption of methyl methacrylate and vinyl acetate polymers on α-quartz surface: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Yan, Lijing; Yang, Yan; Jiang, Hui; Zhang, Bingjian; Zhang, Hui

    2016-01-01

    The molecular dynamics simulation was used to investigate the adsorption of polymethyl methacrylate (PMMA) and polyvinyl acetate (PVA), the commonly used surface coating materials, on α-quartz surface. The objective is to understand the interactions between quartz surface and polymers. The results clearly show adsorption of both polymers onto the quartz surface. Carbonyl group plays a significant role in the adsorption process. The adsorption energies of PMMA and PVA on α-quartz surface did not show significant difference, however, more hydrogen bonds were observed on the PVA/quartz system than PMMA/quartz. These observations might offer some insights on the polymer-quartz adhesion and its failure mechanism.

  17. Fragrance material review on (3aalpha,4alpha,6alpha,7alpha,7aalpha)-3a,4,5,6,7,7a-hexahydro-3-methyl-5-methylene-4,7-methano-1H-inden-6-yl acetate.

    PubMed

    Bhatia, S P; Jones, L; Letizia, C S; Api, A M

    2008-12-01

    A toxicologic and dermatologic review of (3aalpha,4alpha,6alpha,7alpha,7aalpha)-3a,4,5,6,7,7a-hexahydro-3-methyl-5-methylene-4,7-methano-1H-inden-6-yl acetate when used as a fragrance ingredient is presented.

  18. Thermodynamics of cosolvent action: phenacetin, salicylic acid and probenecid.

    PubMed

    Peña, M A; Escalera, B; Reíllo, A; Sánchez, A B; Bustamante, P

    2009-03-01

    The solubility of phenacetin, salicylic acid, and probenecid in ethanol-water and ethanol-ethyl acetate mixtures at several temperatures (15-40 degrees C) was measured. The solubility profiles are related to medium polarity changes. The apparent thermodynamic magnitudes and enthalpy-entropy relationships are related to the cosolvent action. Salicylic acid and probenecid show a single peak against the solubility parameter delta(1) of both solvent mixtures, at 40% (delta(1) = 21.70 MPa(1/2)) and 30% (delta(1) = 20.91 MPa(1/2)) ethanol in ethyl acetate, respectively. Phenacetin displays two peaks at 60% ethanol in ethyl acetate (23.30 MPa(1/2)) and 90% ethanol in water (delta(1) = 28.64 MPa(1/2)). The apparent enthalpies of solution display a maximum at 30% (phenacetin and salicylic acid) and 40% (probenecid) ethanol in water, respectively. Two different mechanisms, entropy at low ethanol ratios, and enthalpy at high ethanol ratios control the solubility enhancement in the aqueous mixture. In the nonaqueous mixture (ethanol-ethyl acetate) enthalpy is the driving force throughout the whole solvent composition for salicylic acid and phenacetin. For probenecid, the dominant mechanism shifts from entropy to enthalpy as the ethanol in ethyl acetate concentration increases. The enthalpy-entropy compensation plots corroborate the different mechanisms involved in the solubility enhancement by cosolvents.

  19. 1-(2-Methyl-5-nitro-1H-imidazol-1-yl)propan-2-yl acetate.

    PubMed

    Shahid, Hafiz Abdullah; Hussain, Ejaz; Jahangir, Sajid; Yousuf, Sammer

    2014-03-01

    In the title compound, C9H13N3O4, an ester of the anti-infection drug secnidazole, the dihedral angle between the nitro-imidazole mean plane (r.m.s. deviation = 0.028 Å) and the pendant acetate group is 43.17 (11)°. In the crystal, inversion dimers linked by pairs of C-H⋯O inter-actions generate R 2 (2)(10) loops and further C-H⋯O hydrogen bonds link the dimers into [100] chains. Weak aromatic π-π stacking inter-actions with a centroid-centroid distance of 3.7623 (11) Å are also observed. PMID:24765001

  20. 1-(2-Methyl-5-nitro-1H-imidazol-1-yl)propan-2-yl acetate

    PubMed Central

    Shahid, Hafiz Abdullah; Hussain, Ejaz; Jahangir, Sajid; Yousuf, Sammer

    2014-01-01

    In the title compound, C9H13N3O4, an ester of the anti-infection drug secnidazole, the dihedral angle between the nitro­imidazole mean plane (r.m.s. deviation = 0.028 Å) and the pendant acetate group is 43.17 (11)°. In the crystal, inversion dimers linked by pairs of C—H⋯O inter­actions generate R 2 2(10) loops and further C—H⋯O hydrogen bonds link the dimers into [100] chains. Weak aromatic π–π stacking inter­actions with a centroid–centroid distance of 3.7623 (11) Å are also observed. PMID:24765001

  1. Biosynthesis and metabolism of salicylic acid

    SciTech Connect

    Lee, H.; Leon, J.; Raskin, I.

    1995-05-09

    Pathways of salicylic acid (SA) biosynthesis and metabolism in tobacco have been recently identified. SA, an endogenous regulator of disease resistance, is a product of phenylpropanoid metabolism formed via decarboxylation of trans-cinnamic acid to benzoic acid and its subsequent 2-hydroxylation to SA. In tobacco mosaic virus-inoculated tobacco leaves, newly synthesized SA is rapidly metabolized to SA O-{beta}-D-glucoside and methyl salicylate. Two key enzymes involved in SA biosynthesis and metabolism: benzoic acid 2-hydroxylase, which converts benzoic acid to SA, and UDPglucose:SA glucosyltransferase (EC 2.4.1.35), which catalyzes conversion of SA to SA glucoside have been partially purified and characterized. Progress in enzymology and molecular biology of SA biosynthesis and metabolism will provide a better understanding of signal transduction pathway involved in plant disease resistance. 62 refs., 1 fig.

  2. Mechanism of gas permeation through polymer membranes. Part I. Pure gases. Comprehensive progress report. [Polybutadiene, poly(vinyl acetate), poly(methyl acrylate)

    SciTech Connect

    Stern, S.A.; Kulkarni, S.S.; Mauze, G.R.

    1982-07-01

    The objective of this study is to assess the validity of a free-volume model of gas permeation through nonporous polymer membranes. This model provides a formalism for the prediction of permeability coefficients for pure gaseous penetrants and their mixtures as a function of both pressure and temperature. Such information is of great importance for the development of new, energy-efficient membrane processes for the separation of gas mixtures. Diffusion and solubility coefficients for Ar, CO/sub 2/, CH/sub 4/, C/sub 2/H/sub 4/, C/sub 3/H/sub 8/, and SF/sub 6/ in polyethylene membranes and rods have been measured in the temperature range from 5/sup 0/ to 50/sup 0/C and at pressures up to 40 atm. under isothermal-isobaric conditions. It was found that the dependence of the diffusion and permeability coefficients on penetrant gas pressure and on temperature is satisfactorily represented by Fujita's free-volume model for the transport of small molecules in polymers and by its extension to gas permeation. The free-volume model of gas permeation relates permeability coefficients for gases in polymers to three thermodynamic variables, namely, temperature, pressure, and penetrant concentration, and to three characteristic parameters denoted A/sub d/, B/sub d/, and ..gamma... Semi-empirical correlations were developed for these parameters as a function of physicochemical properties of the penetrant and the polymer. These correlations were obeyed by the gas-polyethylene systems studied in the present work. A generalized correlation was found for B/sub d/ values of penetrants of various molecular sizes in polyethylene, polybutadiene, poly(vinyl acetate), poly(methyl acrylate), silicone rubber, and natural rubber.

  3. Using physiologically based pharmacokinetic modeling to address nonlinear kinetics and changes in rodent physiology and metabolism due to aging and adaptation in deriving reference values for propylene glycol methyl ether and propylene glycol methyl ether acetate.

    SciTech Connect

    Kirman, C R.; Sweeney, Lisa M.; Corley, Rick A.; Gargas, M L.

    2005-04-01

    Reference values, including an oral reference dose (RfD) and an inhalation reference concentration (RfC), were derived for propylene glycol methyl ether (PGME), and an oral RfD was derived for its acetate (PGMEA). These values were based upon transient sedation observed in F344 rats and B6C3F1 mice during a two-year inhalation study. The dose-response relationship for sedation was characterized using internal dose measures as predicted by a physiologically based pharmacokinetic (PBPK) model for PGME and its acetate. PBPK modeling was used to account for changes in rodent physiology and metabolism due to aging and adaptation, based on data collected during weeks 1, 2, 26, 52, and 78 of a chronic inhalation study. The peak concentration of PGME in richly perfused tissues was selected as the most appropriate internal dose measure based upon a consideration of the mode of action for sedation and similarities in tissue partitioning between brain and other richly perfused tissues. Internal doses (peak tissue concentrations of PGME) were designated as either no-observed-adverse-effect levels (NOAELs) or lowest-observed-adverse-effect levels (LOAELs) based upon the presence or absence of sedation at each time-point, species, and sex in the two year study. Distributions of the NOAEL and LOAEL values expressed in terms of internal dose were characterized using an arithmetic mean and standard deviation, with the mean internal NOAEL serving as the basis for the reference values, which was then divided by appropriate uncertainty factors. Where data were permitting, chemical-specific adjustment factors were derived to replace default uncertainty factor values of ten. Nonlinear kinetics are were predicted by the model in all species at PGME concentrations exceeding 100 ppm, which complicates interspecies and low-dose extrapolations. To address this complication, reference values were derived using two approaches which differ with respect to the order in which these extrapolations

  4. A pulse radiolysis study of salicylic acid and 5-sulpho-salicylic acid in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Kishore, Kamal; Mukherjee, T.

    2006-01-01

    Reactions of H, OH, eaq- and some one-electron oxidants have been studied with salicylic acid and 5-sulpho-salicylic acid in aqueous solutions. Rate constants for the reaction of eaq- with these compounds were of the order of 10 9 dm 3 mol -1 s -1 and this reaction led to the formation of reducing radicals which could transfer electron to methyl viologen. Other one-electron reductants were not able to reduce these compounds. OH radicals reacted with these compounds by addition pathway with very high rate constants (>10 10 dm 3 mol -1 s -1) while O rad - radical anions could oxidize these molecules to give phenoxyl type of radicals. Amongst the one-electron oxidants, only N 3rad and SO 4rad - could oxidize salicylic acid while 5-sulpho-salicylic acid could be oxidized only by SO 4- radicals indicating that while one-electron reduction potential for semi-oxidized SA may be<1.33 V vs. NHE (the E o1 for N 3rad radical), it is more than 1.33 V vs. NHE for semi-oxidized SSA species.

  5. Dual emission and double proton transfer in salicylic acid

    NASA Astrophysics Data System (ADS)

    Pant, D. D.; Joshi, H. C.; Bisht, P. B.; Tripathi, H. B.

    1994-07-01

    The photophysics of salicylic acid (SA) monomer and dimer has been studied by using steady-state and time-resolved spectroscopic techniques. Dilute solution in alkanes emits at 450 nm, which as in methyl salicylate is due to intramolecular proton transfer. In concentrated solutions and in solid state, the SA dimer shows two emissions, at 370 nm and 450 nm, with some unusual behaviour in both the steady state and the time domain fluorescence. The concept of double proton transfer and the tunneling mechanism in the excited state can rationalize the observed photophysical behaviour.

  6. The risk of severe salicylate poisoning following the ingestion of topical medicaments or aspirin.

    PubMed

    Chan, T Y

    1996-02-01

    Apart from isolated reports of severe salicylate poisoning after ingesting an unusually large amount of a medicinal oil, there are no published data on the threat arising from attempted suicide with topical medicaments containing methyl salicylate or wintergreen oil compared with aspirin tablets. In this retrospective study, the admission plasma salicylate concentrations and clinical presentations were compared in 80 subjects who had taken aspirin tablets (n = 42) or topical medicaments (n = 38). The proportions of subjects being symptomatic were similar in the two groups. Although the admission plasma salicylate concentrations were generally higher in subjects who had ingested aspirin tablets, the two highest readings (4.3 and 3.5 mmol/1) belonged to two of the subjects who had taken topical medicaments. Because of its liquid, concentrated form and lipid solubility, methyl salicylate poses the threat of severe, rapid-onset salicylate poisoning. The toxic potential of topical medicaments containing methyl salicylate or wintergreen oil should be fully appreciated by both physicians and the general public.

  7. The risk of severe salicylate poisoning following the ingestion of topical medicaments or aspirin.

    PubMed Central

    Chan, T. Y.

    1996-01-01

    Apart from isolated reports of severe salicylate poisoning after ingesting an unusually large amount of a medicinal oil, there are no published data on the threat arising from attempted suicide with topical medicaments containing methyl salicylate or wintergreen oil compared with aspirin tablets. In this retrospective study, the admission plasma salicylate concentrations and clinical presentations were compared in 80 subjects who had taken aspirin tablets (n = 42) or topical medicaments (n = 38). The proportions of subjects being symptomatic were similar in the two groups. Although the admission plasma salicylate concentrations were generally higher in subjects who had ingested aspirin tablets, the two highest readings (4.3 and 3.5 mmol/1) belonged to two of the subjects who had taken topical medicaments. Because of its liquid, concentrated form and lipid solubility, methyl salicylate poses the threat of severe, rapid-onset salicylate poisoning. The toxic potential of topical medicaments containing methyl salicylate or wintergreen oil should be fully appreciated by both physicians and the general public. PMID:8871462

  8. Methane from acetate.

    PubMed

    Ferry, J G

    1992-09-01

    The general features are known for the pathway by which most methane is produced in nature. All acetate-utilizing methanogenic microorganisms contain CODH which catalyzes the cleavage of acetyl-CoA; however, the pathway differs from all other acetate-utilizing anaerobes in that the methyl group is reduced to methane with electrons derived from oxidation of the carbonyl group of acetyl-CoA to CO2. The current understanding of the methanogenic fermentation of acetate provides impressions of nature's novel solutions to problems of methyl transfer, electron transport, and energy conservation. The pathway is now at a level of understanding that will permit productive investigations of these and other interesting questions in the near future. PMID:1512186

  9. Iron-regulated salicylate synthesis by Pseudomonas spp.

    PubMed

    Visca, P; Ciervo, A; Sanfilippo, V; Orsi, N

    1993-09-01

    Two iron-regulated compounds have been found in acidified ethyl acetate extracts from culture supernatants of Pseudomonas aeruginosa and Pseudomonas cepacia type-strains. Synthesis of both compounds paralleled iron-deficient growth, and was repressed in the presence of 100 microM-FeCl3. Yields of these substances varied among different strains and attained maximum levels during stationary phase. Thin layer chromatographic analysis in five different solvent systems revealed that the slower-moving compound chromatographed as two distinct bands, and showed RF values and spectral properties similar to pyochelin. The faster-moving compound co-migrated as a single band with a standard of commercial salicylic acid in each of the chromatographic systems tested. Moreover, a molecule with an identical RF was also produced by Pseudomonas fluorescens CHA401, which is known to synthesize salicylic acid as the only siderophore during iron-limited growth. Spectrophotometric and spectrofluorometric titrations led to the identification of this iron-regulated compound as salicylic acid, in agreement with the structure deduced from 1H-NMR and mass spectroscopy. The identity of the P. cepacia siderophore azurechelin as salicylic acid was also conclusively demonstrated. Salicylic acid, like pyochelin and pyoverdin, promoted P. aeruginosa growth in an iron-depleted medium. These results are consistent with a putative siderophore activity for salicylic acid, i.e. azurechelin, as has been demonstrated for P. aeruginosa, P. fluorescens and P. cepacia. Thus, salicylic acid is likely to act as a siderophore in more than one species belonging to the genus Pseudomonas. PMID:7504066

  10. Catalysis of methyl acetate formation from methanol alone by ({mu}{sup 5}-C{sub 5}H{sub 5})(PPh{sub 3}){sub 2}RuX (X=Cl, SnCl{sub 3}, SnF{sub 3}): High activity for the SnF{sub 3} complex

    SciTech Connect

    Einaga, Hisahiro; Yamakawa, Tetsu; Shinoda, Sumio

    1994-12-31

    The authors have recently shown that the Ru(II)-Sn(II) bimetallic complex can catalyze the unprecedented one-step formation of acetic acid (or methyl acetate) with methanol used as the sole source. It was suggested that the reaction consists of sequential processes of methanol {r_arrow} formaldehyde (methyl){r_arrow}methyl formate {r_arrow} acetic acid (methyl acetate). While the Ru(II) complexes capable of catalyzing the dehydrogenation of methanol into methyl formate are known, this catalyst system is unique because of its extra ability to isomerize methyl formate to acetic acid without a CO atmosphere (usually high pressure) or an iodide promoter (often corrosive to reaction apparatus). In this communication, the authors examine the cyclopentadienyl bis(triphenylphosphine) ruthenium(II) auxilliary in view of its well defined geometry and configurational stability, and demonstrate that combination with the SnF{sub 3} ligand gives quite high catalytic ability compared to the conventional SnCl{sub 3} ligand. 12 refs., 1 fig.

  11. Using physiologically-based pharmacokinetic modeling to address nonlinear kinetics and changes in rodent physiology and metabolism due to aging and adaptation in deriving reference values for propylene glycol methyl ether and propylene glycol methyl ether acetate.

    PubMed

    Kirman, C R; Sweeney, L M; Corley, R; Gargas, M L

    2005-04-01

    Reference values, including an oral reference dose (RfD) and an inhalation reference concentration (RfC), were derived for propylene glycol methyl ether (PGME), and an oral RfD was derived for its acetate (PGMEA). These values were based on transient sedation observed in F344 rats and B6C3F1 mice during a two-year inhalation study. The dose-response relationship for sedation was characterized using internal dose measures as predicted by a physiologically-based pharmacokinetic (PBPK) model for PGME and its acetate. PBPK modeling was used to account for changes in rodent physiology and metabolism due to aging and adaptation, based on data collected during Weeks 1, 2, 26, 52, and 78 of a chronic inhalation study. The peak concentration of PGME in richly perfused tissues (i.e., brain) was selected as the most appropriate internal dose measure based on a consideration of the mode of action for sedation and similarities in tissue partitioning between brain and other richly perfused tissues. Internal doses (peak tissue concentrations of PGME) were designated as either no-observed-adverse-effect levels (NOAELs) or lowest-observed-adverse-effect levels (LOAELs) based on the presence or the absence of sedation at each time point, species, and sex in the two-year study. Distributions of the NOAEL and LOAEL values expressed in terms of internal dose were characterized using an arithmetic mean and standard deviation, with the mean internal NOAEL serving as the basis for the reference values, which was then divided by appropriate uncertainty factors. Where data were permitting, chemical-specific adjustment factors were derived to replace default uncertainty factor values of 10. Nonlinear kinetics, which was predicted by the model in all species at PGME concentrations exceeding 100 ppm, complicate interspecies, and low-dose extrapolations. To address this complication, reference values were derived using two approaches that differ with respect to the order in which these

  12. Synthesis and X-ray structural studies of the dextro-rotatory enantiomer of methyl α-5(4,5,6,7-tetrahydro(3,2- c)thieno pyridyl) (2-chlorophenyl)-acetate isopropylsulfate

    NASA Astrophysics Data System (ADS)

    Renou, Ludovic; Coste, Servane; Coquerel, Gerard

    2007-02-01

    This study resolves conflicting data on a particular salt of the enantiomer of methyl α-5(4,5,6,7-tetrahydro(3,2- c)thieno pyridyl) (2-chlorophenyl)-acetate (S(+)clopidogrel). The title compound, (C 16H 17ClNO 2S) + (C 3H 7O 4S) -, was obtained and successfully characterized by X-ray diffraction, NMR, TG/DSC/MS. This salt previously reported in the literature as a 2-propanol solvate of the hydrogensulfate salt appears to be actually an isopropylsulfate salt.

  13. Clinical pharmacokinetics of the salicylates.

    PubMed

    Needs, C J; Brooks, P M

    1985-01-01

    The use of salicylates in rheumatic diseases has been established for over 100 years. The more recent recognition of their modification of platelet and endothelial cell function has lead to their use in other areas of medicine. Aspirin (acetylsalicylic acid) is still the most commonly used salicylate. After oral administration as an aqueous solution aspirin is rapidly absorbed at the low pH of the stomach millieu. Less rapid absorption is observed with other formulations due to the rate limiting step of tablet disintegration - this latter factor being maximal in alkaline pH. The rate of aspirin absorption is dependent not only on the formulation but also on the rate of gastric emptying. Aspirin absorption follows first-order kinetics with an absorption half-life ranging from 5 to 16 minutes. Hydrolysis of aspirin to salicylic acid by nonspecific esterases occurs in the liver and, to a lesser extent, the stomach so that only 68% of the dose reaches the systemic circulation as aspirin. Both aspirin and salicylic acid are bound to serum albumin (aspirin being capable of irreversibly acetylating many proteins), and both are distributed in the synovial cavity, central nervous system, and saliva. The serum half-life of aspirin is approximately 20 minutes. The fall in aspirin concentration is associated with a rapid rise in salicylic acid concentration. Salicylic acid is renally excreted in part unchanged and the rate of elimination is influenced by urinary pH, the presence of organic acids, and the urinary flow rate. Metabolism of salicylic acid occurs through glucuronide formation (to produce salicyluric acid), and salicyl phenolic glucoronide), conjugation with glycine (to produce salicyluric acid), and oxidation to gentisic acid. The rate of formation of salicyl phenolic glucuronide and salicyluric acid are easily saturated at low salicylic acid concentrations and their formation is described by Michaelis-Menten kinetics. The other metabolic products follow first

  14. Carbon-isotopic analysis of dissolved acetate

    NASA Technical Reports Server (NTRS)

    Gelwicks, J. T.; Hayes, J. M.

    1990-01-01

    Heating of dried, acetate-containing solids together with oxalic acid dihydrate conveniently releases acetic acid for purification by gas chromatography. For determination of the carbon-isotopic composition of total acetate, the acetate-containing zone of the chromatographic effluent can be routed directly to a combustion furnace coupled to a vacuum system allowing recovery, purification, and packaging of CO2 for mass-spectrometric analysis. For analysis of methyl carbon, acetic acid can be cryogenically trapped from the chromatographic effluent, then transferred to a tube containing excess NaOH. The tube is evacuated, sealed, and heated to 500 degrees C to produce methane by pyrolysis of sodium acetate. Subsequent combustion of the methane allows determination of the 13C content at the methyl position in the parent acetate. With typical blanks, the standard deviation of single analyses is less than 0.4% for acetate samples larger than 5 micromoles. A full treatment of uncertainties is outlined.

  15. Infrared and Raman spectroscopical studies of salicylic and salicylate derivatives in aqueous solution

    NASA Astrophysics Data System (ADS)

    Humbert, B.; Alnot, M.; Quilès, F.

    1998-03-01

    The assignment of vibrations of salicylic acid, salicylate monoanion and salicylate bianion in aqueous solution are discussed with the help of Raman spectroscopy, of attenuated total reflection infrared spectroscopy and of the computational density functional theory (DFT) approach.

  16. Contact dermatitis to homomenthyl salicylate.

    PubMed

    Rietschel, R L; Lewis, C W

    1978-03-01

    Two patients with follicular dermatitis were found to have a contact sensitivity to homomenthyl salicylate, a sunscreening chemical present in a commercially available suntan lotion. One patient did not use the product, but her boyfriend did, and contact between the two individuals resulted in a follicular dermatitis developing in her. A second patient with contact dermatitis to homomenthyl salicylate also had a follicular eruption. Both patients appear to represent true allergic sensitivities.

  17. Effect of elicitors on the production of gossypol and methylated gossypol in cotton hairy roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of two-chemical elicitors, salicylic acid and methyl jasmonate, on the production of gossypol, 6-methoxy gossypol, and 6,6'-dimethoxy gossypol in Gossypium barbadense hairy roots was examined. Methyl jasmonate, but not salicylic acid, was found to increase the production of gossypol and ...

  18. The chromatin remodeler DDM1 promotes hybrid vigor by regulating salicylic acid metabolism

    PubMed Central

    Zhang, Qingzhu; Li, Yanqiang; Xu, Tao; Srivastava, Ashish Kumar; Wang, Dong; Zeng, Liang; Yang, Lan; He, Li; Zhang, Heng; Zheng, Zhimin; Yang, Dong-Lei; Zhao, Cheng; Dong, Juan; Gong, Zhizhong; Liu, Renyi; Zhu, Jian-Kang

    2016-01-01

    In plants, hybrid vigor is influenced by genetic and epigenetic mechanisms; however, the molecular pathways are poorly understood. We investigated the potential contributions of epigenetic regulators to heterosis in Arabidposis and found that the chromatin remodeler DECREASED DNA METHYLATION 1 (DDM1) affects early seedling growth heterosis in Col/C24 hybrids. ddm1 mutants showed impaired heterosis and increased expression of non-additively expressed genes related to salicylic acid metabolism. Interestingly, our data suggest that salicylic acid is a hormetic regulator of seedling growth heterosis, and that hybrid vigor arises from crosses that produce optimal salicylic acid levels. Although DNA methylation failed to correlate with differential non-additively expressed gene expression, we uncovered DDM1 as an epigenetic link between salicylic acid metabolism and heterosis, and propose that the endogenous salicylic acid levels of parental plants can be used to predict the heterotic outcome. Salicylic acid protects plants from pathogens and abiotic stress. Thus, our findings suggest that stress-induced hormesis, which has been associated with increased longevity in other organisms, may underlie specific hybrid vigor traits. PMID:27551435

  19. The chromatin remodeler DDM1 promotes hybrid vigor by regulating salicylic acid metabolism.

    PubMed

    Zhang, Qingzhu; Li, Yanqiang; Xu, Tao; Srivastava, Ashish Kumar; Wang, Dong; Zeng, Liang; Yang, Lan; He, Li; Zhang, Heng; Zheng, Zhimin; Yang, Dong-Lei; Zhao, Cheng; Dong, Juan; Gong, Zhizhong; Liu, Renyi; Zhu, Jian-Kang

    2016-01-01

    In plants, hybrid vigor is influenced by genetic and epigenetic mechanisms; however, the molecular pathways are poorly understood. We investigated the potential contributions of epigenetic regulators to heterosis in Arabidposis and found that the chromatin remodeler DECREASED DNA METHYLATION 1 (DDM1) affects early seedling growth heterosis in Col/C24 hybrids. ddm1 mutants showed impaired heterosis and increased expression of non-additively expressed genes related to salicylic acid metabolism. Interestingly, our data suggest that salicylic acid is a hormetic regulator of seedling growth heterosis, and that hybrid vigor arises from crosses that produce optimal salicylic acid levels. Although DNA methylation failed to correlate with differential non-additively expressed gene expression, we uncovered DDM1 as an epigenetic link between salicylic acid metabolism and heterosis, and propose that the endogenous salicylic acid levels of parental plants can be used to predict the heterotic outcome. Salicylic acid protects plants from pathogens and abiotic stress. Thus, our findings suggest that stress-induced hormesis, which has been associated with increased longevity in other organisms, may underlie specific hybrid vigor traits. PMID:27551435

  20. The chromatin remodeler DDM1 promotes hybrid vigor by regulating salicylic acid metabolism.

    PubMed

    Zhang, Qingzhu; Li, Yanqiang; Xu, Tao; Srivastava, Ashish Kumar; Wang, Dong; Zeng, Liang; Yang, Lan; He, Li; Zhang, Heng; Zheng, Zhimin; Yang, Dong-Lei; Zhao, Cheng; Dong, Juan; Gong, Zhizhong; Liu, Renyi; Zhu, Jian-Kang

    2016-01-01

    In plants, hybrid vigor is influenced by genetic and epigenetic mechanisms; however, the molecular pathways are poorly understood. We investigated the potential contributions of epigenetic regulators to heterosis in Arabidposis and found that the chromatin remodeler DECREASED DNA METHYLATION 1 (DDM1) affects early seedling growth heterosis in Col/C24 hybrids. ddm1 mutants showed impaired heterosis and increased expression of non-additively expressed genes related to salicylic acid metabolism. Interestingly, our data suggest that salicylic acid is a hormetic regulator of seedling growth heterosis, and that hybrid vigor arises from crosses that produce optimal salicylic acid levels. Although DNA methylation failed to correlate with differential non-additively expressed gene expression, we uncovered DDM1 as an epigenetic link between salicylic acid metabolism and heterosis, and propose that the endogenous salicylic acid levels of parental plants can be used to predict the heterotic outcome. Salicylic acid protects plants from pathogens and abiotic stress. Thus, our findings suggest that stress-induced hormesis, which has been associated with increased longevity in other organisms, may underlie specific hybrid vigor traits.

  1. Mesoxalaldehyde acetals

    SciTech Connect

    Gordeeva, G.N.; Kalashnikov, S.M.; Popov, Yu.N.; Kruglov, E.A.; Imashev, U.B.

    1987-11-10

    The treatment of methylglyoxal acetals by alkyl nitrites in the presence of the corresponding aliphatic alcohols and hydrochloric acid leads to the formation of linear mesoxalaldehyde acetals, whose structure was established by NMR spectroscopy and mass spectrometry. The major pathways for the decomposition of these molecules upon electron impact were established.

  2. Development and Validation of a Stability Indicating RP-HPLC Method for Hydrocortisone Acetate Active Ingredient, Propyl Parahydroxybenzoate and Methyl Parahydroxybenzoate Preservatives, Butylhydroxyanisole Antioxidant, and Their Degradation Products in a Rectal Gel Formulation.

    PubMed

    Ascaso, Magda; Pérez-Lozano, Pilar; García, Mireia; García-Montoya, Encarna; Miñarro, Montse; Ticó, Josep R; Fàbregas, Anna; Carrillo, Carolina; Sarrate, Rocío; Suñé-Negre, Josep M

    2015-01-01

    A stability indicating method was established through a stress study, wherein different methods of degradation (oxidation, hydrolysis, photolysis, and temperature) were studied simultaneously to determine the active ingredient hydrocortisone acetate, preservatives propyl parahydroxybenzoate, and methyl parahydroxybenzoate, antioxidant butylhydroxyanisole (BHA), and their degradation products in a semisolid dosage gel form. The proposed method was suitably validated using a Zorbax SB-Phenyl column and gradient elution. The mobile phase consisted of a mixture of methanol, acetonitrile, and water in different proportions according to a planned program at a flow rate of 1.5 mL/min. The diode array detector was set at 240 nm for the active substance and two preservatives, and 290 nm for BHA. The validation study was conducted according to International Conference on Harmonization guidelines for specificity, linearity, repeatability, precision, and accuracy. The method was used for QC of hydrocortisone acetate gel and for the stability studies with the aim of quantifying the active substance, preservatives, antioxidant, and degradation products. It has proved to be suitable as a fast and reliable method for QC.

  3. Crystal structures of 4-methyl-2-oxo-2H-chromene-7,8-diyl di­acetate and 4-methyl-2-oxo-2H-chromene-7,8-diyl bis­(pent-4-ynoate)

    PubMed Central

    Akinyemi, Akintunde; Thomas, Courtney; Marsh, Willis; Butcher, Ray J.; Jasinski, Jerry P.; Maynard-Smith, Lystranne A.

    2016-01-01

    In the structures of the two title coumarin derivatives, C14H12O6, (1), and C20H16O6, (2), one with acetate and the other with pent-4-ynoate substituents, both the coumarin rings are almost planar. In (1), both acetate substituents are significantly rotated out of the coumarin plane to minimize steric repulsions. One acetate substituent is disordered over two equivalent conformations, with occupancies of 0.755 (17) and 0.245 (17). In (2), there are two pent-4-ynoate substituents, the C C group of one being disordered over two positions with occupancies of 0.55 (2) and 0.45 (2). One of the pent-4-ynoate substituents is in an extended conformation, while the other is in a bent conformation. In this derivative, the planar part of both pent-4-ynoate substituents deviate from the coumarin plane. The packing of (1) is dominated by π–π stacking involving the coumarin rings and weak C—H⋯O contacts link the parallel stacks in the [101] direction. In contrast, in (2) the packing is dominated by R 2 2(24) hydrogen bonds, involving the acidic sp H atom and the oxo O atom, which link the mol­ecules into centrosymmetric dimers. The bent conformation of one of the pent-4-ynoate substituents prevents the coumarin rings from engaging in π–π stacking. PMID:27308023

  4. A review of toxicity from topical salicylic acid preparations.

    PubMed

    Madan, Raman K; Levitt, Jacob

    2014-04-01

    Topical salicylic acid is often used in dermatologic conditions because of its keratolytic, bacteriostatic, fungicidal, and photoprotective properties. The bioavailability of salicylic acid differs depending on the vehicle used and pH of transcellular fluids. Although rare, salicylic acid toxicity (salicylism) can occur from topical application. Physicians should be mindful of the potential for salicylism or even death from topically applied salicylic acid.

  5. Anti-inflammatory/anti-pyretic salicylic acid esters with low gastric ulcerogenic activity.

    PubMed

    Rainsford, K D; Whitehouse, M W

    1980-11-01

    The methyl and some other esters of acetylsalicylic and salicylic acids and their derivatives were found to have much lower gastric ulcerogenic activity (when assayed in the stress-sensitized rat) compared with their corresponding acids. There was little or no loss in therapeutic potencies of these salicylate esters as determined by assessment of anti-inflammatory activity (against the carrageenan-induced oedema) and antipyretic activity (against yeast-induced fever in rats. The methyl ester of acetylsalicylic acid (=AME) was almost devoid of gastric irritancy/ulcerogenicity (as observed with acetylsalicylic acid) when given orally to pigs for 10 days. AME had appreciable anti-inflammatory activity in the adjuvant-arthritis model and at high doses (200 mg/kg t.i.d.) was without the lethal effects seen with acetylsalicylic acid. Moreover, no toxic effects were seen after long-term administration of 100-1000 mg/kg/day AME for 3-4 months. The results provide further evidence for the hypothesis that the carboxylic acid moiety of salicylates is a major factor in the gastric ulcerogenic activity of these drugs. The methyl esters of these salicylates may be considered as models for the development of pro-drugs and in some cases may be therapeutic alternatives to acetylsalicylic acid or salicylate. PMID:6971045

  6. In vitro assessment of the acaricidal activity of computer-selected analogues of carvacrol and salicylic acid on Rhipicephalus (Boophilus) microplus.

    PubMed

    Concepción, Ramírez L; Froylán, Ibarra V; Herminia I, Pérez M; Norberto, Manjarrez A; Héctor J, Salgado Z; Yeniel, González C

    2013-10-01

    Rhipicephalus (Boophilus) microplus is a tick that causes huge economic losses in cattle. The indiscriminate use of acaricides has generated resistance to most compounds present on the market. This makes further investigation on other potential acaricides necessary, the in silico assay being an alternative to the design of new compounds. In the present study a biosilico assay was performed using TOMOCOMD-CARDD (TOpological MOlecular COMputer Design-Computer-Aided Rational Drug Design) and WEKA (Waikato Environment for Knowledge Analysis) software. Two carvacrol and four salicylic acid derivatives, synthesized by conventional methods and evaluated with the larval packet test on larvae of R. (B.) microplus were selected. All evaluated compounds presented acaricidal activity; however, ethyl 2-methoxybenzoate (91.8 ± 1.7 % mortality) and ethyl 2,5-dihydroxybenzoate (89.1 ± 1.6 % mortality) showed greater activity than salicylic acid. With regard to the carvacrol analogues, carvacrol acetate (67.8 ± 2.1 % mortality) and carvacrol methyl ether (71.7 ± 1.6 % mortality) also showed greater activity than carvacrol (35.9 ± 3.2 % mortality). TOMOCOMD-CARDD and WEKA software were helpful tools in the search for alternative structures with potential acaricidal activity on R. (B.) microplus. PMID:23543288

  7. Effect of gibberellic acid (GA), indole acetic acid (IAA) and benzylaminopurine (BAP) on the synthesis of essential oils and the isomerization of methyl chavicol and trans-anethole in Ocimum gratissimum L.

    PubMed

    Hazzoumi, Zakaria; Moustakime, Youssef; Amrani Joutei, Khalid

    2014-01-01

    Basil (O. gratissimum L) is a aromatic and medicinal plant widely used in traditional medicine in Morocco. The aim of this work was to study the effect of three plant growth regulators gibberellic acid (GA), indole 3-acetic acid (IAA) and benzylaminopurine (BAP) on the content and composition of essential oils of this plant, especially on the main compound (methyl chavicol) and its isomer (the trans-anethole). The results showed a wide variation on yield, content and range of the molecule constituent of oil, with a balance of appearances and/or disappearances of a few molecules. GA caused a slight decrease in the oil yield (0.2%), but it increased the diversity of compounds (17 molecules) with the appearance of four new compounds (naphthalene, camphor, germacrene-D, and ledene) and disappearance of (β cedrene, azulene). This variation also caused a very important decrease in the main compound (methyl chavicol) and increases its isomer (trans-anethole). IAA and BAP caused an increase in the yield of essential oil (0.30% and 0.32% respectively) without much influence on the main compounds, but with some change in the composition such as the appearance of (germacrene-D) and the disappearance of (aristolene). PMID:25045609

  8. Effect of gibberellic acid (GA), indole acetic acid (IAA) and benzylaminopurine (BAP) on the synthesis of essential oils and the isomerization of methyl chavicol and trans-anethole in Ocimum gratissimum L.

    PubMed

    Hazzoumi, Zakaria; Moustakime, Youssef; Amrani Joutei, Khalid

    2014-01-01

    Basil (O. gratissimum L) is a aromatic and medicinal plant widely used in traditional medicine in Morocco. The aim of this work was to study the effect of three plant growth regulators gibberellic acid (GA), indole 3-acetic acid (IAA) and benzylaminopurine (BAP) on the content and composition of essential oils of this plant, especially on the main compound (methyl chavicol) and its isomer (the trans-anethole). The results showed a wide variation on yield, content and range of the molecule constituent of oil, with a balance of appearances and/or disappearances of a few molecules. GA caused a slight decrease in the oil yield (0.2%), but it increased the diversity of compounds (17 molecules) with the appearance of four new compounds (naphthalene, camphor, germacrene-D, and ledene) and disappearance of (β cedrene, azulene). This variation also caused a very important decrease in the main compound (methyl chavicol) and increases its isomer (trans-anethole). IAA and BAP caused an increase in the yield of essential oil (0.30% and 0.32% respectively) without much influence on the main compounds, but with some change in the composition such as the appearance of (germacrene-D) and the disappearance of (aristolene).

  9. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode.

    PubMed

    Lin, Jingyu; Mazarei, Mitra; Zhao, Nan; Zhu, Junwei J; Zhuang, Xiaofeng; Liu, Wusheng; Pantalone, Vincent R; Arelli, Prakash R; Stewart, Charles N; Chen, Feng

    2013-12-01

    Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in soybean defence against soybean cyst nematode (Heterodera glycines Ichinohe, SCN). GmSAMT1 was identified as a candidate SCN defence-related gene in our previous analysis of soybean defence against SCN using GeneChip microarray experiments. The current study started with the isolation of the full-length cDNAs of GmSAMT1 from a SCN-resistant soybean line and from a SCN-susceptible soybean line. The two cDNAs encode proteins of identical sequences. The GmSAMT1 cDNA was expressed in Escherichia coli. Using in vitro enzyme assays, E. coli-expressed GmSAMT1 was confirmed to function as salicylic acid methyltransferase. The apparent Km value of GmSAMT1 for salicylic acid was approximately 46 μM. To determine the role of GmSAMT1 in soybean defence against SCN, transgenic hairy roots overexpressing GmSAMT1 were produced and tested for SCN resistance. Overexpression of GmSAMT1 in SCN-susceptible backgrounds significantly reduced the development of SCN, indicating that overexpression of GmSAMT1 in the transgenic hairy root system could confer resistance to SCN. Overexpression of GmSAMT1 in transgenic hairy roots was also found to affect the expression of selected genes involved in salicylic acid biosynthesis and salicylic acid signal transduction.

  10. 21 CFR 556.590 - Salicylic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Salicylic acid. 556.590 Section 556.590 Food and... Residues of New Animal Drugs § 556.590 Salicylic acid. A tolerance of zero is established for residues of salicylic acid in milk from dairy animals....

  11. Expression of immediate-early genes in the dorsal cochlear nucleus in salicylate-induced tinnitus.

    PubMed

    Hu, Shou-Sen; Mei, Ling; Chen, Jian-Yong; Huang, Zhi-Wu; Wu, Hao

    2016-02-01

    Spontaneous neuronal activity in dorsal cochlear nucleus (DCN) may be involved in the physiological processes underlying salicylate-induced tinnitus. As a neuronal activity marker, immediate-early gene (IEG) expression, especially activity-dependent cytoskeletal protein (Arc/Arg3.1) and the early growth response gene-1 (Egr-1), appears to be highly correlated with sensory-evoked neuronal activity. However, their relationships with tinnitus induced by salicylate have rarely been reported in the DCN. In this study, we assessed the effect of acute and chronic salicylate treatment on the expression of N-methyl D-aspartate receptor subunit 2B (NR2B), Arg3.1, and Egr-1. We also observed ultrastructural alterations in the DCN synapses in an animal model of tinnitus. Levels of mRNA and protein expression of NR2B and Arg3.1 were increased in rats that were chronically administered salicylate (200 mg/kg, twice daily for 3, 7, or 14 days). These levels returned to baseline 14 days after cessation of treatment. However, no significant changes were observed in Egr-1 gene expression in any groups. Furthermore, rats subjected to long-term salicylate administration showed more presynaptic vesicles, thicker and longer postsynaptic densities, and increased synaptic interface curvature. Alterations of Arg3.1 and NR2B may be responsible for the changes in the synaptic ultrastructure. These changes confirm that salicylate can cause neural plasticity changes at the DCN level. PMID:25636249

  12. Differential effects of some natural compounds on the transdermal absorption and penetration of caffeine and salicylic acid.

    PubMed

    Muhammad, Faqir; Riviere, Jim E

    2015-04-10

    Many natural products have the potential to modulate the dermal penetration of topically applied drugs and chemicals. We studied the effect of five natural compounds (hydroxycitronellal, limonene 1,2-epoxide, terpinyl acetate, p-coumaric acid, transferrulic acid) and ethanol on the transdermal penetration of two marker drugs ((14)C-caffeine and (14)C-salicylic acid) in a flow through in vitro porcine skin diffusion system. The parameters of flux, permeability, diffusivity, and percent dose absorbed/retained were calculated and compared. The dermal absorption of (14)C-caffeine was significantly higher with terpinyl acetate and limonene 1,2-epoxide as compared to ethanol; while dermal absorption of (14)C-salicylic acid was significantly greater with hydroxycitronellal and limonene 1,2-epoxide as compared to ethanol. A 10-fold increase in flux and permeability of caffeine with terpinyl acetate was observed while limonene increased flux of caffeine by 4-fold and permeability by 3-fold. Hydroxycitronellal and limonene increased salicylic acid's flux and permeability over 2-fold. The other natural compounds tested did not produce statistically significant effects on dermal penetration parameters for both caffeine and salicylic acid (p≥0.05). These results emphasize the differential effects of natural substances on the transdermal penetration of hydrophilic (caffeine) and hydrophobic (salicylic acid) drugs.

  13. Ethyl acetate

    Integrated Risk Information System (IRIS)

    Ethyl acetate ; CASRN 141 - 78 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  14. Phenylmercuric acetate

    Integrated Risk Information System (IRIS)

    Phenylmercuric acetate ; CASRN 62 - 38 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinog

  15. Vinyl acetate

    Integrated Risk Information System (IRIS)

    Vinyl acetate ; CASRN 108 - 05 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  16. Ammonium acetate

    Integrated Risk Information System (IRIS)

    Ammonium acetate ; CASRN 631 - 61 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  17. Thallium acetate

    Integrated Risk Information System (IRIS)

    Jump to main content . Integrated Risk Information System Recent Additions | Contact Us Search : All EPA IRIS • You are here : EPA Home • Research • Environmental Assessment • IRIS • IRIS Summaries Redirect Page As of September 30 , 2009 , the assessment summary for Thallium acetate is included in t

  18. [Determination of aspirin and free salicylic acid in lysinipirine injection by high performance liquid chromatography].

    PubMed

    Dong, Yu; Zhao, Yuan-zheng; Zhang, Yi-na

    2002-05-01

    The contents of aspirin and free salicylic acid in lysinipirine injection were determined by high performance liquid chromatography (HPLC). A Hypersil BDS C18 column was used with the mobile phase of methanol-water-acetic acid (35:65:3, volume ratio) and the detection wavelength of 280 nm. The average recoveries of aspirin and salicylic acid added were 99.27% (RSD = 0.8%) and 99.61%(RSD = 1.3%), respectively. The calibration curves had good linearity in the range of 0.028 g/L -0.141 mg/L and 0.77 mg/L -3.85 mg/L, and the correlation coefficients were 0.9999 and 0.9998 for aspirin and salicylic acid respectively.

  19. Characterization of salicylic acid-induced genes in Chinese cabbage.

    PubMed

    Park, Y-S; Min, H-J; Ryang, S-H; Oh, K-J; Cha, J-S; Kim, H Y; Cho, T-J

    2003-06-01

    Salicylic acid is a messenger molecule in the activation of defense responses in plants. In this study, we isolated four cDNA clones representing salicylic acid-induced genes in Chinese cabbage (Brassica rapa subsp. pekinensis) by subtractive hybridization. Of the four clones, the BC5-2 clone encodes a putative glucosyltransferase protein. The BC5-3 clone is highly similar to an Arabidopsis gene encoding a putative metal-binding farnesylated protein. The BC6-1 clone is a chitinase gene with similarities to a rapeseed class IV chitinase. Class IV chitinases have deletions in the chitin-binding and catalytic domains and the BC6-1 chitinase has an additional deletion in the catalytic domain. The BCP8-1 clone is most homologous to an Arabidopsis gene that contains a tandem array of two thiJ-like sequences. These four cabbage genes were barely expressed in healthy leaves, but were strongly induced by salicylic acid and benzothiadiazole. Expression of the three genes represented by the BC5-2, BC5-3 and BCP8-1 clones were also induced by Pseudomonas syringae pv. tomato, a nonhost pathogen that elicits a hypersensitive response in Chinese cabbage. None of these four genes, however, was strongly induced by methyl jasmonate or by ethylene.

  20. Stimulation of the Salicylic Acid Pathway Aboveground Recruits Entomopathogenic Nematodes Belowground.

    PubMed

    Filgueiras, Camila Cramer; Willett, Denis S; Junior, Alcides Moino; Pareja, Martin; Borai, Fahiem El; Dickson, Donald W; Stelinski, Lukasz L; Duncan, Larry W

    2016-01-01

    Plant defense pathways play a critical role in mediating tritrophic interactions between plants, herbivores, and natural enemies. While the impact of plant defense pathway stimulation on natural enemies has been extensively explored aboveground, belowground ramifications of plant defense pathway stimulation are equally important in regulating subterranean pests and still require more attention. Here we investigate the effect of aboveground stimulation of the salicylic acid pathway through foliar application of the elicitor methyl salicylate on belowground recruitment of the entomopathogenic nematode, Steinernema diaprepesi. Also, we implicate a specific root-derived volatile that attracts S. diaprepesi belowground following aboveground plant stimulation by an elicitor. In four-choice olfactometer assays, citrus plants treated with foliar applications of methyl salicylate recruited S. diaprepesi in the absence of weevil feeding as compared with negative controls. Additionally, analysis of root volatile profiles of citrus plants receiving foliar application of methyl salicylate revealed production of d-limonene, which was absent in negative controls. The entomopathogenic nematode S. diaprepesi was recruited to d-limonene in two-choice olfactometer trials. These results reinforce the critical role of plant defense pathways in mediating tritrophic interactions, suggest a broad role for plant defense pathway signaling belowground, and hint at sophisticated plant responses to pest complexes. PMID:27136916

  1. Stimulation of the Salicylic Acid Pathway Aboveground Recruits Entomopathogenic Nematodes Belowground

    PubMed Central

    Filgueiras, Camila Cramer; Willett, Denis S.; Junior, Alcides Moino; Pareja, Martin; Borai, Fahiem El; Dickson, Donald W.; Stelinski, Lukasz L.; Duncan, Larry W.

    2016-01-01

    Plant defense pathways play a critical role in mediating tritrophic interactions between plants, herbivores, and natural enemies. While the impact of plant defense pathway stimulation on natural enemies has been extensively explored aboveground, belowground ramifications of plant defense pathway stimulation are equally important in regulating subterranean pests and still require more attention. Here we investigate the effect of aboveground stimulation of the salicylic acid pathway through foliar application of the elicitor methyl salicylate on belowground recruitment of the entomopathogenic nematode, Steinernema diaprepesi. Also, we implicate a specific root-derived volatile that attracts S. diaprepesi belowground following aboveground plant stimulation by an elicitor. In four-choice olfactometer assays, citrus plants treated with foliar applications of methyl salicylate recruited S. diaprepesi in the absence of weevil feeding as compared with negative controls. Additionally, analysis of root volatile profiles of citrus plants receiving foliar application of methyl salicylate revealed production of d-limonene, which was absent in negative controls. The entomopathogenic nematode S. diaprepesi was recruited to d-limonene in two-choice olfactometer trials. These results reinforce the critical role of plant defense pathways in mediating tritrophic interactions, suggest a broad role for plant defense pathway signaling belowground, and hint at sophisticated plant responses to pest complexes. PMID:27136916

  2. Study on the kinetics and transformation products of salicylic acid in water via ozonation.

    PubMed

    Hu, Ruikang; Zhang, Lifeng; Hu, Jiangyong

    2016-06-01

    As salicylic acid is one of widely used pharmaceuticals, its residue has been found in various environmental water systems e.g. wastewater, surface water, treated water and drinking water. It has been reported that salicylic acid can be efficiently removed by advanced oxidation processes, but there are few studies on its transformation products and ozonation mechanisms during ozonation process. The objective of this study is to characterize the transformation products, investigate the degradation mechanisms at different pH, and propose the ozonation pathways of salicylic acid. The results showed that the rate of degradation was about 10 times higher at acidic condition than that at alkaline condition in the first 1 min when 1 mg L(-1) of ozone solution was added into 1 mg L(-1) of salicylic acid solution. It was proposed that ozone direct oxidation mechanism dominates at acidic condition, while indirect OH radical mechanism dominates at alkaline condition. A two stages pseudo-first order reaction was proposed at different pH conditions. Various hydroxylation products, carbonyl compounds and carboxylic acids, such as 2,5-dihydroxylbenzoic acid, 2,3-dihydroxylbenzoic acid, catechol, formaldehyde, glyoxal, acetaldehyde, maleic acid, acetic acid and oxalic acid etc. were identified as ozonation transformation products. In addition, acrylic acid was identified, for the first time, as ozonation transformation products through high resolution liquid chromatography-time of flight mass spectrometer. The information demonstrated in this study will help us to better understand the possible effects of ozonation products on the water quality. The degradation pathways of salicylic acid by ozonation in water sample were proposed. As both O3 and OH radical were important in the reactions, the degradation pathways of salicylic acid by ozonation in water sample were proposed at acidic and basic conditions. To our knowledge, there was no integrated study reported on the ozonation of

  3. Study on the kinetics and transformation products of salicylic acid in water via ozonation.

    PubMed

    Hu, Ruikang; Zhang, Lifeng; Hu, Jiangyong

    2016-06-01

    As salicylic acid is one of widely used pharmaceuticals, its residue has been found in various environmental water systems e.g. wastewater, surface water, treated water and drinking water. It has been reported that salicylic acid can be efficiently removed by advanced oxidation processes, but there are few studies on its transformation products and ozonation mechanisms during ozonation process. The objective of this study is to characterize the transformation products, investigate the degradation mechanisms at different pH, and propose the ozonation pathways of salicylic acid. The results showed that the rate of degradation was about 10 times higher at acidic condition than that at alkaline condition in the first 1 min when 1 mg L(-1) of ozone solution was added into 1 mg L(-1) of salicylic acid solution. It was proposed that ozone direct oxidation mechanism dominates at acidic condition, while indirect OH radical mechanism dominates at alkaline condition. A two stages pseudo-first order reaction was proposed at different pH conditions. Various hydroxylation products, carbonyl compounds and carboxylic acids, such as 2,5-dihydroxylbenzoic acid, 2,3-dihydroxylbenzoic acid, catechol, formaldehyde, glyoxal, acetaldehyde, maleic acid, acetic acid and oxalic acid etc. were identified as ozonation transformation products. In addition, acrylic acid was identified, for the first time, as ozonation transformation products through high resolution liquid chromatography-time of flight mass spectrometer. The information demonstrated in this study will help us to better understand the possible effects of ozonation products on the water quality. The degradation pathways of salicylic acid by ozonation in water sample were proposed. As both O3 and OH radical were important in the reactions, the degradation pathways of salicylic acid by ozonation in water sample were proposed at acidic and basic conditions. To our knowledge, there was no integrated study reported on the ozonation of

  4. Synthesis of Ethyl Salicylate Using Household Chemicals

    NASA Astrophysics Data System (ADS)

    Solomon, Sally; Hur, Chinhyu; Lee, Alan; Smith, Kurt

    1996-02-01

    Ethyl salicylate is synthesized, isolated, and characterized in a three-step process using simple equipment and household chemicals. First, acetylsalicylic acid is extracted from aspirin tablets with isopropyl alcohol, then hydrolyzed to salicylic acid with muriatic acid, and finally, the salicylic acid is esterified using ethanol and a boric acid catalyst. The experiment can be directed towards high school or university level students who have sufficient background in organic chemistry to recognize the structures and reactions that are involved.

  5. [Development of salicylic acid detector tube].

    PubMed

    Ishizawa, Fujio; Kirihara, Miho; Ishiwata, Tetsuya; Yashiki, Mikio; Namera, Akira; Nishida, Manami; Kimura, Kojiro

    2004-04-01

    A detector tube was successfully devised for the screening of salicylic acid in urine. It, named "salicylic acid detector tube", consists of glass tube in which silica gel coated with 5% (w/w) of ferric chloride is enclosed. A pipette rubber cap was attached to an end of the tube, and another end was inserted into urine sample. The sample was then introduced into the tube, the color of the reagent immediately turned purple under the condition of more than 50 microg/ml of salicylic acid in urine. This device was useful for the emergency screening of salicylic acid in acute poisoning cases with aspirin.

  6. Amelioration of Cd toxicity by pretreatment of salicylic acid in Cicer arietinum L. seedlings.

    PubMed

    Canakci, Songül; Dursun, Bahar

    2013-11-01

    In this study, the ameliorating effect of salicylic acid (SA), serving as a mediator for protecting plants, against cadmium (Cd) toxicity in Cicer arietinum was investigated. The seedlings of Cicer arietinum treated with increasing Cd concentrations (0, 25, 50, 100 microM ) inhibited seedling length, reduced fresh and dry weight, total chlorophyll, carotenoid content and fatty acid methyl ester content. Furthermore, the level of some important parameters like MDA, proline and GSH content related to oxidative stress increased in Cd treated seedlings. Leaves of seedlings pretreated with salicylic acid (0.5 mM), alleviated the toxic effects of Cd by increasing the growth parameters, photosynthetic pigments, GSH and FAME content and decreasing proline and MDA content respectively. The result of the present study reveals the protective role of salicylic acid against Cd toxicity in C. arietinum.

  7. Crystal structure of tetra­aqua­(di­methyl­formamide)­tetra­kis­(μ-N,2-dioxido­benzene-1-carboximidato)tetra­kis­(μ-tri­methyl­acetato)­tetra­manganese(III)sodiumyttrium–di­methyl­formamide–water (1/8.04/0.62)

    PubMed Central

    Travis, Jordan R.; Zeller, Matthias; Zaleski, Curtis M.

    2015-01-01

    The synthesis and crystal structure for the title compound, [YNaMn4(C7H4NO3)4(C5H9O2)4(H2O)3.76(C3H7NO)0.24]·8.04C3H7NO·0.62H2O or [YIIINa(OTMA)4[12-MCMn(III)N(shi)-4](H2O)3.76(DMF)0.24·8.04DMF·0.62H2O, where OTMA is tri­methyl­acetate, MC is metallacrown, shi3− is salicyl­hydroximate, and DMF is N,N-di­methyl­formamide, is reported. The macrocyclic metallacrown consists of an –[MnIII–N–O]4– ring repeat unit, and the metallacrown captures one YIII ion and one NaI ion in the central cavity on opposite faces of the metallacrown. Overall the metallacrown is domed towards the side of the NaI ion. Both the YIII and NaI ions are eight-coordinate, and the tri­methyl­acetate anions bridge the central YIII to each ring MnIII ion. The ring MnIII ions are six-coordinate with a tetra­gonally distorted octa­hedral geometry. PMID:26594496

  8. Glycerol Salicylate-based Pulp-Capping Material Containing Portland Cement.

    PubMed

    Portella, Fernando Freitas; Collares, Fabrício Mezzomo; Santos, Paula Dapper; Sartori, Cláudia; Wegner, Everton; Leitune, Vicente Castelo Branco; Samuel, Susana Maria Werner

    2015-01-01

    The purpose of this study was to evaluate the water sorption, solubility, pH and ability to diffuse into dentin of a glycerol salicylate-based, pulp-capping cement in comparison to a conventional calcium hydroxide-based pulp capping material (Hydcal). An experimental cement was developed containing 60% glycerol salicylate resin, 10% methyl salicylate, 25% calcium hydroxide and 5% Portland cement. Water sorption and solubility were determined based on mass changes in the samples before and after the immersion in distilled water for 7 days. Material discs were stored in distilled water for 24 h, 7 days and 28 days, and a digital pHmeter was used to measure the pH of water. The cement's ability to diffuse into bovine dentin was assessed by Raman spectroscopy. The glycerol salicylate-based cement presented higher water sorption and lower solubility than Hydcal. The pH of water used to store the samples increased for both cements, reaching 12.59 ± 0.06 and 12.54 ± 0.05 after 7 days, for Hydcal and glycerol salicylate-based cements, respectively. Both cements were able to turn alkaline the medium at 24 h and sustain its alkalinity after 28 days. Hydcal exhibited an intense diffusion into dentin up to 40 µm deep, and the glycerol salicylate-based cement penetrated 20 µm. The experimental glycerol salicylate-based cement presents good sorption, solubility, ability to alkalize the surrounding tissues and diffusion into dentin to be used as pulp capping material. PMID:26312972

  9. Study on the growth and photosynthetic characteristics of wheat seedlings under [C₄mim][OAc] (1-butyl-3-methyl-imidazolium acetate) with Cd²⁺ stress.

    PubMed

    Chen, Zhonglin; Feng, Yingying; Wang, Yan; Li, Yue; Liu, Qiang; Xu, Sunan; Guan, Wei

    2015-05-01

    In this paper, the joint effect of 0.5 mmol·L(-1) Cd(2+) and various concentrations (50-400 mg·L(-1)) of the ionic liquid 1-butyl-3-methyl-imidazolium acetate ([C4min][OAc]) on the growth and photosynthetic performance of wheat seedlings in hydroponic culture was investigated. Seedlings grown in presence of Cd(2+) and [C4min][OAc] showed significant (p < 0.05) improvement in growth (shoot and root lengths and dry weights) and photosynthetic performance (photosynthetic rate, stomatal conductance, transpiration rate, and chlorophyll a but not chlorophyll b) compared to seedlings grown in the presence of Cd(2+) but without [C4min][OAc]. However, this only happened under the lower range of [C4min][OAc] concentrations (50-200 mg·L(-1)). In addition, significant reduction in the level of Cd(2+) was also observed in the leaf tissue of wheat seedlings grown in the presence of 0.5 mmol·L(-1) Cd(2+) and 100 mg·L(-1) [C4min][OAc]. Overall, Cd(2+) exerted a stronger inhibition than [C4min][OAc] on the growth and photosynthetic performance of wheat seedlings. However, when both Cd(2+) and [C4min][OAc] were present in the culture, the toxicity of Cd(2+) could be mitigated by lower concentrations of [C4mim][OAc]. This phenomenon could be due to [C4mim][OAc] forming metal complexes with Cd(2+), thus reducing the toxicity of Cd(2+). PMID:25778420

  10. Salicylate-induced changes in immediate-early genes in the hippocampal CA1 area.

    PubMed

    Wu, Hao; Xu, Feng-Lei; Yin, Yong; Da, Peng; You, Xiao-Dong; Xu, Hui-Min; Tang, Yan

    2015-08-01

    Studies have suggested that salicylate affects neuronal function via interactions with specific membrane channels/receptors. However, the effect of salicylate on activity and synaptic morphology of the hippocampal Cornu Ammonis (CA) 1 area remains to be elucidated. The activation of immediate-early genes (IEGs) was reported to correlate with neuronal activity, in particular activity-regulated cytoskeleton-associated protein and early growth response gene 1. The aim of the present study was to evaluate the expression of these IEGs, as well that of N-methyl D-aspartate (NMDA) receptor subunit 2B in rats following acute and chronic salicylate treatment. Protein and messenger RNA levels of all three genes were increased in rats following chronic administration of salicylate (300 mg/kg for 10 days), returning to baseline levels 14 days post-cessation of treatment. The transient upregulation of gene expression following treatment was accompanied by ultrastructural alterations in hippocampal CA1 area synapses. An increase in synaptic interface curvature was observed as well as an increased number of presynaptic vesicles; in addition, postsynaptic densities thickened and lengthened. In conclusion, the results of the present study indicated that chronic exposure to salicylate may lead to structural alteration of hippocampal CA1 neurons, and it was suggested that this process occurs through induced expression of IEGs via NMDA receptor activation. PMID:25873216

  11. Salicylate-induced changes in immediate-early genes in the hippocampal CA1 area

    PubMed Central

    WU, HAO; XU, FENG-LEI; YIN, YONG; DA, PENG; YOU, XIAO-DONG; XU, HUI-MIN; TANG, YAN

    2015-01-01

    Studies have suggested that salicylate affects neuronal function via interactions with specific membrane channels/receptors. However, the effect of salicylate on activity and synaptic morphology of the hippocampal Cornu Ammonis (CA) 1 area remains to be elucidated. The activation of immediate-early genes (IEGs) was reported to correlate with neuronal activity, in particular activity-regulated cytoskeleton-associated protein and early growth response gene 1. The aim of the present study was to evaluate the expression of these IEGs, as well that of N-methyl D-aspartate (NMDA) receptor subunit 2B in rats following acute and chronic salicylate treatment. Protein and messenger RNA levels of all three genes were increased in rats following chronic administration of salicylate (300 mg/kg for 10 days), returning to baseline levels 14 days post-cessation of treatment. The transient upregulation of gene expression following treatment was accompanied by ultrastructural alterations in hippocampal CA1 area synapses. An increase in synaptic interface curvature was observed as well as an increased number of presynaptic vesicles; in addition, postsynaptic densities thickened and lengthened. In conclusion, the results of the present study indicated that chronic exposure to salicylate may lead to structural alteration of hippocampal CA1 neurons, and it was suggested that this process occurs through induced expression of IEGs via NMDA receptor activation. PMID:25873216

  12. Wet oxidation of salicylic acid solutions.

    PubMed

    Collado, Sergio; Garrido, Laura; Laca, Adriana; Diaz, Mario

    2010-11-15

    Salicylic acid is a frequent pollutant in several industrial wastewaters. Uncatalyzed wet air oxidation, which is a promising technique for the treatment of phenolic effluents, has not been analyzed yet for the removal of salicylic acid. The effect of different conditions of pH (1.3-12.3), pressure (1.0-4.1 MPa), temperature (413-443 K), and initial concentrations (1.45-14.50 mM) on the wet oxidation of salicylate/salicylic acid solutions have here been investigated. The pH value of the reaction media was found to be a key parameter for the rate of the oxidation process with an optimum at pH 3.1, when the concentrations of salicylic acid and salicylate were similar. The oxidation reaction followed pseudofirst-order kinetics with respect to salicylic acid and 0.82 order with respect to dissolved oxygen. Additionally, the evolution of the color during the wet oxidation was analyzed and discussed in relation with the formation of intermediate compounds. Then, a reaction pathway for the noncatalytic wet oxidation of the salicylic acid was proposed.

  13. Characterization of a salicylic acid- and pathogen-induced lipase-like gene in Chinese cabbage.

    PubMed

    Lee, Kyung-Ah; Cho, Tae-Ju

    2003-09-30

    A cDNA clone for a salicylic acid-induced gene in Chinese cabbage (Brassica rapa subsp. pekinensis) was isolated and characterized. The cabbage gene, designated Br-sil1 (for Brassica rapa salicylate-induced lipase-like 1 gene), encodes a putative lipase that has the family II lipase motif GDSxxDxG around the active site serine. A database search showed that plant genomes have a large number of genes that contain the family II lipase motif. The lipase-like proteins include a myrosinase-associated protein, an anther-specific proline-rich protein APG, a pollen coat protein EXL, and an early nodule-specific protein. The Br-sil1 gene is strongly induced by salicylic acid and a nonhost pathogen, Pseudomonas syringae pv. tomato, that elicits a hypersensitive response in Chinese cabbage. Treatment of the cabbage leaves with BTH, methyl jasmonate, or ethephon showed that the Br-sil1 gene expression is induced by BTH, but not by methyl jasmonate or ethylene. This indicates that the cabbage gene is activated via a salicylic acid-dependent signaling pathway. An examination of the tissue-specific expression revealed that the induction of the Br-sil1 gene expression by BTH occurs in leaves and stems, but not in roots and flowers. Without the BTH treatment, however, the Br-sil1 gene is not expressed in any of the tissues that were examined.

  14. {2-[1-(3-Methoxycarbonylmethyl-1H-indol-2-yl)-1-methyl-ethyl]-1H-indol-3-yl}-acetic Acid Methyl Ester Inhibited Hepatocellular Carcinoma Growth in Bel-7402 Cells and Its Resistant Variants by Activation of NOX4 and SIRT3

    PubMed Central

    Li, Ye; Wang, Wenjing; Xu, Xiaoxue; Sun, Shiyue; Xu, Xiaoyu; Qu, Xian-jun

    2015-01-01

    {2-[1-(3-Methoxycarbonylmethyl-1H-indol-2-yl)-1-methyl-ethyl]-1H-indol-3-yl}-acetic acid methyl ester (MIAM) is a novel indole compound, which possessed high efficacy against many cancers xenografted in mice without obvious toxicity. In this study, we aimed to investigate the effects of MIAM on human hepatocellular carcinoma (HCC) Bel-7402 cells and its resistant variants Bel-7402/5FU. MIAM inhibited the growth of HCC more potent in Bel-7402/5FU cells than its parent cells. MIAM increased cellular reactive oxygen species (ROS) levels, induced cell apoptosis, and arrested cell cycle in G0/G1 phase. MIAM might exert its action on Bel-7402/5FU cells through activation of NADPH oxidase 4 (NOX4)/p22phox, Sirtuin3 (SIRT3)/SOD2, and SIRT3/p53/p21Waf1/Cip pathways. MIAM might inhibit HCC growth through the modulation of SIRT3. When SIRT3 was silenced, the inhibitory effect of MIAM on Bel-7402/5FU was lowered, showing the characteristic of resistance against MIAM, whereas Bel-7402/5FU cells with high expression of SIRT3 by SIRT3 adenovirus infection demonstrated the high sensitivity to MIAM. These results suggested that MIAM might exert its action against Bel-7402/5FU growth through upregulation of SIRT3. We suggested that MIAM might be a promising candidate compound which could develop as a potent anticancer agent targeting NOX4 and SIRT3 activation. PMID:25961022

  15. 40 CFR 721.10448 - Acetic acid, hydroxy- methoxy-, methylester, reaction products with substituted alkylamine...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-, methylester, reaction products with substituted alkylamine (generic). 721.10448 Section 721.10448 Protection... Acetic acid, hydroxy- methoxy-, methylester, reaction products with substituted alkylamine (generic). (a... generically as acetic acid, hydroxymethoxy-, methyl ester, reaction products with substituted alkylamine...

  16. Allergic contact dermatitis from octisalate and cis-3-hexenyl salicylate.

    PubMed

    Shaw, Daniel W

    2006-09-01

    A 62-year-old woman developed allergic contact dermatitis from sunscreens containing octisalate (octyl salicylate, 2-ethylhexyl salicylate) and from a fragrance containing cis-3-hexenyl salicylate. Results of patch testing and provocative use testing confirmed that she was allergic to octisalate. Provocative use testing indicated that she was also allergic to cis-3-hexenyl salicylate.

  17. A novel prodrug of salicylic acid, salicylic acid-glycylglycine conjugate, utilizing the hydrolysis in rabbit intestinal microorganisms.

    PubMed

    Nakamura, J; Asai, K; Nishida, K; Sasaki, H

    1992-09-01

    The hydrolysis of salicylic acid-glycylglycine conjugate (salicyl-glycylglycine) following oral, intravenous, intracaecal and rectal administration (434, 72, 36 and 36 mumol kg-1, respectively: equivalent to salicylic acid) was examined in rabbits to develop a novel prodrug of salicylic acid. Salicylic acid was detected in the blood 2 h after oral administration of salicyl-glycylglycine and it reached a maximum level (55.6 micrograms mL-1) at 15 h, whereas a small amount of salicyl-glycylglycine was found in the blood. In contrast, unchanged salicyl-glycylglycine was found mainly in the blood following its intravenous administration, suggesting the involvement of presystemic deconjugation in the hydrolysis of salicyl-glycylglycine. Immediate and very extensive salicyclic acid formation in the caecum was observed following intracaecal administration of salicyl-glycylglycine, suggesting that the intestinal microorganisms were responsible for the biotransformation of this compound. In-vitro incubation of salicyl-glycylglycine with caecal content showed that salicyl-glycylglycine was hydrolysed efficiently in the caecum. Consequently, the blood concentration of salicylic acid was prolonged extensively following rectal administration of salicyl-glycylglycine, indicating the usefulness of salicyl-glycylglycine as a prodrug of salicylic acid.

  18. Inhibition of phosphoglycerate kinase by salicylates.

    PubMed

    Larsson-Raźnikiewicz, M; Wiksell, E

    1978-03-14

    A kinetic analysis has been performed on the inhibition of the yeast phosphoglycerate kinase (APT:3-phospho-D-glycerate 1-phosphotransferase, EC 2.7.2.3) reaction by 2-hydroxybenzoate (salicylate) and two of its iododerivatives, 2-hydroxy-5-iodobenzoate and 2-hydroxy-3,5-diiodobenzoate. The results give evidence that the salicylates mimic the nucleotide binding at the catalytic centre. The enzyme has an affinity for salicylate that dramatically increases for each iodine atom introduced to the benzene ring. Parabolic inhibition give evidence for two inhibitor binding sites per enzyme molecule. The two Ki values are 10 and 180 mM for salicylate, 0.60 and 13 mM for iodosalicylate and 0.064 and 0.70 mM for diiodosalicylate. The 2'-OH of the nucleotide substrate appears to be important for the catalytic events. PMID:343818

  19. VvMJE1 of the grapevine (Vitis vinifera) VvMES methylesterase family encodes for methyl jasmonate esterase and has a role in stress response.

    PubMed

    Zhao, Nan; Lin, Hong; Lan, Suque; Jia, Qidong; Chen, Xinlu; Guo, Hong; Chen, Feng

    2016-05-01

    The known members of plant methyl esterase (MES) family catalyze the hydrolysis of a C-O ester linkage of methyl esters of several phytohormones including indole-3-acetic acid, salicylic acid and jasmonic acid. The genome of grapevine (Vitis vinifera) was found to contain 15 MES genes, designated VvMES1-15. In this report, VvMES5 was selected for molecular, biochemical and structural studies. VvMES5 is most similar to tomato methyl jasmonate esterase. E. coli-expressed recombinant VvMES5 displayed methyl jasmonate (MeJA) esterase activity, it was renamed VvMJE1. Under steady-state conditions, VvMJE1 exhibited an apparent Km value of 92.9 μM with MeJA. VvMJE1 was also shown to have lower activity with methyl salicylate (MeSA), another known substrate of the MES family, and only at high concentrations of the substrate. To understand the structural basis of VvMJE1 in discriminating MeJA and MeSA, a homolog model of VvMJE1 was made using the X-ray structure of tobacco SABP2, which encodes for methyl salicylate esterase, as a template. Interestingly, two bulky residues at the binding site and near the surface of tobacco SABP2 are replaced by relatively small residues in VvMJE1. Such a change enables the accommodation of a larger substrate MeJA in VvMJE1. The expression of VvMJE1 was compared in control grape plants and grape plants treated with one of the three stresses: heat, cold and UV-B. While the expression of VvMJE1 was not affected by heat treatment, its expression was significantly up-regulated by cold treatment and UV-B treatment. This result suggests that VvMJE1 has a role in response of grape plants to these two abiotic stresses. PMID:26934101

  20. Salicylic acid protects the skin from UV damage.

    PubMed

    Mammone, Thomas; Gan, David; Goyarts, Earl; Maes, Daniel

    2006-01-01

    Aspirin(acetyl salicylate) has long been used as an analgesic. Salicylic acid has been reported to have anti-inflammatory properties. These activities include inhibiting activity of cox-1, cox-2, and NF-kb. In addition, salicylic acid has also been shown in some systems to induce Hsp70. We have demonstrated that salicylic acid inhibits UVB-induced sunburn cell formation, as well as increase the removal of UVB induced TT dimer formation in living skin equivalents. Given these protective properties of salicylic acid, we propose the use of salicylic acid as a topical therapeutic to protect the skin from sun damage.

  1. Salicylic Acid Biosynthesis and Metabolism

    PubMed Central

    Dempsey, D'Maris Amick; Vlot, A. Corina; Wildermuth, Mary C.; Klessig, Daniel F.

    2011-01-01

    Salicylic acid (SA) has been shown to regulate various aspects of growth and development; it also serves as a critical signal for activating disease resistance in Arabidopsis thaliana and other plant species. This review surveys the mechanisms involved in the biosynthesis and metabolism of this critical plant hormone. While a complete biosynthetic route has yet to be established, stressed Arabidopsis appear to synthesize SA primarily via an isochorismate-utilizing pathway in the chloroplast. A distinct pathway utilizing phenylalanine as the substrate also may contribute to SA accumulation, although to a much lesser extent. Once synthesized, free SA levels can be regulated by a variety of chemical modifications. Many of these modifications inactivate SA; however, some confer novel properties that may aid in long distance SA transport or the activation of stress responses complementary to those induced by free SA. In addition, a number of factors that directly or indirectly regulate the expression of SA biosynthetic genes or that influence the rate of SA catabolism have been identified. An integrated model, encompassing current knowledge of SA metabolism in Arabidopsis, as well as the influence other plant hormones exert on SA metabolism, is presented. PMID:22303280

  2. Expression of salicylic acid-related genes in Brassica oleracea var. capitata during Plasmodiophora brassicae infection.

    PubMed

    Manoharan, Ranjith Kumar; Shanmugam, Ashokraj; Hwang, Indeok; Park, Jong-In; Nou, Ill-Sup

    2016-06-01

    Brassica oleracea var. capitata (cabbage) is an important vegetable crop in Asian countries such as Korea, China, and Japan. Cabbage production is severely affected by clubroot disease caused by the soil-borne plant pathogen Plasmodiophora brassicae. During clubroot development, methyl salicylate (MeSA) is biosynthesized from salicylic acid (SA) by methyltransferase. In addition, methyl salicylate esterase (MES) plays a major role in the conversion of MeSA back into free SA. The interrelationship between MES and methytransferases during clubroot development has not been fully explored. To begin to examine these relationships, we investigated the expression of MES genes in disease-susceptible and disease-resistant plants during clubroot development. We identified three MES-encoding genes potentially involved in the defense against pathogen attack. We found that SS1 was upregulated in both the leaves and roots of B. oleracea during P. brassicae infection. These results support the conclusion that SA biosynthesis is suppressed during pathogen infection in resistant plants. We also characterized the expression of a B. oleracea BSMT gene, which appears to be involved in glycosylation rather than MeSA biosynthesis. Our results provide insight into the functions and interactions of genes for MES and methyltransferase during infection. Taken together, our findings indicate that MES genes are important candidates for use to control clubroot diseases. PMID:27171821

  3. The Salicylic Acid-Mediated Release of Plant Volatiles Affects the Host Choice of Bemisia tabaci.

    PubMed

    Shi, Xiaobin; Chen, Gong; Tian, Lixia; Peng, Zhengke; Xie, Wen; Wu, Qingjun; Wang, Shaoli; Zhou, Xuguo; Zhang, Youjun

    2016-01-01

    The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) causes serious crop losses worldwide by transmitting viruses. We have previously shown that salicylic acid (SA)-related plant defenses directly affect whiteflies. In this study, we applied exogenous SA to tomato plants in order to investigate the interaction between SA-induced plant volatiles and nonviruliferous B. tabaci B and Q or B- and Q-carrying tomato yellow leaf curl virus (TYLCV). The results showed that exogenous SA caused plants to repel nonviruliferous whiteflies, but the effect was reduced when the SA concentration was low and when the whiteflies were viruliferous. Exogenous SA increased the number and quantity of plant volatiles-especially the quantity of methyl salicylate and δ-limonene. In Y-tube olfactometer assays, methyl salicylate and δ-limonene repelled the whiteflies, but the repellency was reduced for viruliferous Q. We suggest that the release of plant volatiles as mediated by SA affects the interaction between whiteflies, plants, and viruses. Further studies are needed to determine why viruliferous Q is less sensitive than nonviruliferous Q to repellent plant volatiles. PMID:27376280

  4. The Salicylic Acid-Mediated Release of Plant Volatiles Affects the Host Choice of Bemisia tabaci

    PubMed Central

    Shi, Xiaobin; Chen, Gong; Tian, Lixia; Peng, Zhengke; Xie, Wen; Wu, Qingjun; Wang, Shaoli; Zhou, Xuguo; Zhang, Youjun

    2016-01-01

    The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) causes serious crop losses worldwide by transmitting viruses. We have previously shown that salicylic acid (SA)-related plant defenses directly affect whiteflies. In this study, we applied exogenous SA to tomato plants in order to investigate the interaction between SA-induced plant volatiles and nonviruliferous B. tabaci B and Q or B- and Q-carrying tomato yellow leaf curl virus (TYLCV). The results showed that exogenous SA caused plants to repel nonviruliferous whiteflies, but the effect was reduced when the SA concentration was low and when the whiteflies were viruliferous. Exogenous SA increased the number and quantity of plant volatiles—especially the quantity of methyl salicylate and δ-limonene. In Y-tube olfactometer assays, methyl salicylate and δ-limonene repelled the whiteflies, but the repellency was reduced for viruliferous Q. We suggest that the release of plant volatiles as mediated by SA affects the interaction between whiteflies, plants, and viruses. Further studies are needed to determine why viruliferous Q is less sensitive than nonviruliferous Q to repellent plant volatiles. PMID:27376280

  5. Salicylate poisoning: an evidence-based consensus guideline for out-of-hospital management.

    PubMed

    Chyka, Peter A; Erdman, Andrew R; Christianson, Gwenn; Wax, Paul M; Booze, Lisa L; Manoguerra, Anthony S; Caravati, E Martin; Nelson, Lewis S; Olson, Kent R; Cobaugh, Daniel J; Scharman, Elizabeth J; Woolf, Alan D; Troutman, William G

    2007-01-01

    . This referral should be guided by local poison center procedures. In general, this should occur regardless of the dose reported (Grade D). 2) The presence of typical symptoms of salicylate toxicity such as hematemesis, tachypnea, hyperpnea, dyspnea, tinnitus, deafness, lethargy, seizures, unexplained lethargy, or confusion warrants referral to an emergency department for evaluation (Grade C). 3) Patients who exhibit typical symptoms of salicylate toxicity or nonspecific symptoms such as unexplained lethargy, confusion, or dyspnea, which could indicate the development of chronic salicylate toxicity, should be referred to an emergency department (Grade C). 4) Patients without evidence of self-harm should have further evaluation, including determination of the dose, time of ingestion, presence of symptoms, history of other medical conditions, and the presence of co-ingestants. The acute ingestion of more than 150 mg/kg or 6.5 g of aspirin equivalent, whichever is less, warrants referral to an emergency department. Ingestion of greater than a lick or taste of oil of wintergreen (98% methyl salicylate) by children under 6 years of age and more than 4 mL of oil of wintergreen by patients 6 years of age and older could cause systemic salicylate toxicity and warrants referral to an emergency department (Grade C). 5) Do not induce emesis for ingestions of salicylates (Grade D). 6) Consider the out-of-hospital administration of activated charcoal for acute ingestions of a toxic dose if it is immediately available, no contraindications are present, the patient is not vomiting, and local guidelines for its out-of-hospital use are observed. However, do not delay transportation in order to administer activated charcoal (Grade D). 7) Women in the last trimester of pregnancy who ingest below the dose for emergency department referral and do not have other referral conditions should be directed to their primary care physician, obstetrician, or a non-emergent health care facility for

  6. Salicylate poisoning: an evidence-based consensus guideline for out-of-hospital management.

    PubMed

    Chyka, Peter A; Erdman, Andrew R; Christianson, Gwenn; Wax, Paul M; Booze, Lisa L; Manoguerra, Anthony S; Caravati, E Martin; Nelson, Lewis S; Olson, Kent R; Cobaugh, Daniel J; Scharman, Elizabeth J; Woolf, Alan D; Troutman, William G

    2007-01-01

    . This referral should be guided by local poison center procedures. In general, this should occur regardless of the dose reported (Grade D). 2) The presence of typical symptoms of salicylate toxicity such as hematemesis, tachypnea, hyperpnea, dyspnea, tinnitus, deafness, lethargy, seizures, unexplained lethargy, or confusion warrants referral to an emergency department for evaluation (Grade C). 3) Patients who exhibit typical symptoms of salicylate toxicity or nonspecific symptoms such as unexplained lethargy, confusion, or dyspnea, which could indicate the development of chronic salicylate toxicity, should be referred to an emergency department (Grade C). 4) Patients without evidence of self-harm should have further evaluation, including determination of the dose, time of ingestion, presence of symptoms, history of other medical conditions, and the presence of co-ingestants. The acute ingestion of more than 150 mg/kg or 6.5 g of aspirin equivalent, whichever is less, warrants referral to an emergency department. Ingestion of greater than a lick or taste of oil of wintergreen (98% methyl salicylate) by children under 6 years of age and more than 4 mL of oil of wintergreen by patients 6 years of age and older could cause systemic salicylate toxicity and warrants referral to an emergency department (Grade C). 5) Do not induce emesis for ingestions of salicylates (Grade D). 6) Consider the out-of-hospital administration of activated charcoal for acute ingestions of a toxic dose if it is immediately available, no contraindications are present, the patient is not vomiting, and local guidelines for its out-of-hospital use are observed. However, do not delay transportation in order to administer activated charcoal (Grade D). 7) Women in the last trimester of pregnancy who ingest below the dose for emergency department referral and do not have other referral conditions should be directed to their primary care physician, obstetrician, or a non-emergent health care facility for

  7. Salicylate pharmacokinetics in patients with rheumatoid arthritis.

    PubMed Central

    Owen, S G; Roberts, M S; Friesen, W T; Francis, H W

    1989-01-01

    1. The pharmacokinetics of salicylic acid (SA) and its major metabolite salicyluric acid (SU) were studied in nine patients with rheumatoid arthritis following a 900 mg oral dose of acetylsalicylic acid and during 6 weeks of chronic administration of enteric coated aspirin (3,900 mg day). Response to therapy was also monitored. 2. The various pharmacokinetic parameters determined in the study were similar to those observed in other single dose salicylate studies amongst healthy volunteers but were not predictive of salicylate concentration in the chronic dose study. 3. Plasma concentrations of SA (total and unbound) were found to decline significantly over the 6 weeks and plasma SU concentrations increased. 4. During the chronic dosing study, there was a significant increase in the Vmax (total and unbound) for the formation of SU, whilst the Km and SU clearance remained constant. Also, the elimination rate constant (k) for salicylate was not significantly affected. 5. Therapeutic response to salicylate therapy was not significantly affected by the decline in SA concentrations. PMID:2590603

  8. Priming of wheat with the green leaf volatile Z-3-hexenyl acetate enhances defense against Fusarium graminearum but boosts deoxynivalenol production.

    PubMed

    Ameye, Maarten; Audenaert, Kris; De Zutter, Nathalie; Steppe, Kathy; Van Meulebroek, Lieven; Vanhaecke, Lynn; De Vleesschauwer, David; Haesaert, Geert; Smagghe, Guy

    2015-04-01

    Priming refers to a mechanism whereby plants are sensitized to respond faster and/or more strongly to future pathogen attack. Here, we demonstrate that preexposure to the green leaf volatile Z-3-hexenyl acetate (Z-3-HAC) primed wheat (Triticum aestivum) for enhanced defense against subsequent infection with the hemibiotrophic fungus Fusarium graminearum. Bioassays showed that, after priming with Z-3-HAC, wheat ears accumulated up to 40% fewer necrotic spikelets. Furthermore, leaves of seedlings showed significantly smaller necrotic lesions compared with nonprimed plants, coinciding with strongly reduced fungal growth in planta. Additionally, we found that F. graminearum produced more deoxynivalenol, a mycotoxin, in the primed treatment. Expression analysis of salicylic acid (SA) and jasmonic acid (JA) biosynthesis genes and exogenous methyl salicylate and methyl jasmonate applications showed that plant defense against F. graminearum is sequentially regulated by SA and JA during the early and later stages of infection, respectively. Interestingly, analysis of the effect of Z-3-HAC pretreatment on SA- and JA-responsive gene expression in hormone-treated and pathogen-inoculated seedlings revealed that Z-3-HAC boosts JA-dependent defenses during the necrotrophic infection stage of F. graminearum but suppresses SA-regulated defense during its biotrophic phase. Together, these findings highlight the importance of temporally separated hormone changes in molding plant health and disease and support a scenario whereby the green leaf volatile Z-3-HAC protects wheat against Fusarium head blight by priming for enhanced JA-dependent defenses during the necrotrophic stages of infection. PMID:25713338

  9. Priming of Wheat with the Green Leaf Volatile Z-3-Hexenyl Acetate Enhances Defense against Fusarium graminearum But Boosts Deoxynivalenol Production1

    PubMed Central

    Ameye, Maarten; Audenaert, Kris; De Zutter, Nathalie; Steppe, Kathy; Van Meulebroek, Lieven; Vanhaecke, Lynn; De Vleesschauwer, David; Haesaert, Geert; Smagghe, Guy

    2015-01-01

    Priming refers to a mechanism whereby plants are sensitized to respond faster and/or more strongly to future pathogen attack. Here, we demonstrate that preexposure to the green leaf volatile Z-3-hexenyl acetate (Z-3-HAC) primed wheat (Triticum aestivum) for enhanced defense against subsequent infection with the hemibiotrophic fungus Fusarium graminearum. Bioassays showed that, after priming with Z-3-HAC, wheat ears accumulated up to 40% fewer necrotic spikelets. Furthermore, leaves of seedlings showed significantly smaller necrotic lesions compared with nonprimed plants, coinciding with strongly reduced fungal growth in planta. Additionally, we found that F. graminearum produced more deoxynivalenol, a mycotoxin, in the primed treatment. Expression analysis of salicylic acid (SA) and jasmonic acid (JA) biosynthesis genes and exogenous methyl salicylate and methyl jasmonate applications showed that plant defense against F. graminearum is sequentially regulated by SA and JA during the early and later stages of infection, respectively. Interestingly, analysis of the effect of Z-3-HAC pretreatment on SA- and JA-responsive gene expression in hormone-treated and pathogen-inoculated seedlings revealed that Z-3-HAC boosts JA-dependent defenses during the necrotrophic infection stage of F. graminearum but suppresses SA-regulated defense during its biotrophic phase. Together, these findings highlight the importance of temporally separated hormone changes in molding plant health and disease and support a scenario whereby the green leaf volatile Z-3-HAC protects wheat against Fusarium head blight by priming for enhanced JA-dependent defenses during the necrotrophic stages of infection. PMID:25713338

  10. Fermentation products of solvent tolerant marine bacterium Moraxella spp. MB1 and its biotechnological applications in salicylic acid bioconversion.

    PubMed

    Wahidullah, Solimabi; Naik, Deepak N; Devi, Prabha

    2013-01-01

    As part of a proactive approach to environmental protection, emerging issues with potential impact on the environment is the subject of ongoing investigation. One emerging area of environmental research concerns pharmaceuticals like salicylic acid, which is the main metabolite of various analgesics including aspirin. It is a common component of sewage effluent and also an intermediate in the degradation pathway of various aromatic compounds which are introduced in the marine environment as pollutants. In this study, biotransformation products of salicylic acid by seaweed, Bryopsis plumosa, associated marine bacterium, Moraxella spp. MB1, have been investigated. Phenol, conjugates of phenol and hydroxy cinnamic acid derivatives (coumaroyl, caffeoyl, feruloyl and trihydroxy cinnamyl) with salicylic acid (3-8) were identified as the bioconversion products by electrospray ionization mass spectrometry. These results show that the microorganism do not degrade phenolic acid but catalyses oxygen dependent transformations without ring cleavage. The degradation of salicylic acid is known to proceed either via gentisic acid pathway or catechol pathway but this is the first report of biotransformation of salicylic acid into cinnamates, without ring cleavage. Besides cinnamic acid derivatives (9-12), metabolites produced by the bacterium include antimicrobial indole (13) and β-carbolines, norharman (14), harman (15) and methyl derivative (16), which are beneficial to the host and the environment. PMID:24391802

  11. Fermentation products of solvent tolerant marine bacterium Moraxella spp. MB1 and its biotechnological applications in salicylic acid bioconversion.

    PubMed

    Wahidullah, Solimabi; Naik, Deepak N; Devi, Prabha

    2013-01-01

    As part of a proactive approach to environmental protection, emerging issues with potential impact on the environment is the subject of ongoing investigation. One emerging area of environmental research concerns pharmaceuticals like salicylic acid, which is the main metabolite of various analgesics including aspirin. It is a common component of sewage effluent and also an intermediate in the degradation pathway of various aromatic compounds which are introduced in the marine environment as pollutants. In this study, biotransformation products of salicylic acid by seaweed, Bryopsis plumosa, associated marine bacterium, Moraxella spp. MB1, have been investigated. Phenol, conjugates of phenol and hydroxy cinnamic acid derivatives (coumaroyl, caffeoyl, feruloyl and trihydroxy cinnamyl) with salicylic acid (3-8) were identified as the bioconversion products by electrospray ionization mass spectrometry. These results show that the microorganism do not degrade phenolic acid but catalyses oxygen dependent transformations without ring cleavage. The degradation of salicylic acid is known to proceed either via gentisic acid pathway or catechol pathway but this is the first report of biotransformation of salicylic acid into cinnamates, without ring cleavage. Besides cinnamic acid derivatives (9-12), metabolites produced by the bacterium include antimicrobial indole (13) and β-carbolines, norharman (14), harman (15) and methyl derivative (16), which are beneficial to the host and the environment.

  12. Fermentation Products of Solvent Tolerant Marine Bacterium Moraxella spp. MB1 and Its Biotechnological Applications in Salicylic Acid Bioconversion

    PubMed Central

    Wahidullah, Solimabi; Naik, Deepak N.; Devi, Prabha

    2013-01-01

    As part of a proactive approach to environmental protection, emerging issues with potential impact on the environment is the subject of ongoing investigation. One emerging area of environmental research concerns pharmaceuticals like salicylic acid, which is the main metabolite of various analgesics including aspirin. It is a common component of sewage effluent and also an intermediate in the degradation pathway of various aromatic compounds which are introduced in the marine environment as pollutants. In this study, biotransformation products of salicylic acid by seaweed, Bryopsis plumosa, associated marine bacterium, Moraxella spp. MB1, have been investigated. Phenol, conjugates of phenol and hydroxy cinnamic acid derivatives (coumaroyl, caffeoyl, feruloyl and trihydroxy cinnamyl) with salicylic acid (3–8) were identified as the bioconversion products by electrospray ionization mass spectrometry. These results show that the microorganism do not degrade phenolic acid but catalyses oxygen dependent transformations without ring cleavage. The degradation of salicylic acid is known to proceed either via gentisic acid pathway or catechol pathway but this is the first report of biotransformation of salicylic acid into cinnamates, without ring cleavage. Besides cinnamic acid derivatives (9–12), metabolites produced by the bacterium include antimicrobial indole (13) and β-carbolines, norharman (14), harman (15) and methyl derivative (16), which are beneficial to the host and the environment. PMID:24391802

  13. 40 CFR 180.551 - Fluthiacet-methyl; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... residues of the herbicide, fluthiacet-methyl, acetic acid thiadiazolo pyridazin-1-ylidene)amino]phenyl]thio...-methyland its acid metabolite: acetic acid, thiadiazolo pyridazin-1-ylidene)amino]phenyl]thio]-methyl ester, and its acid metabolite, acetic acid, thiadiazolo pyridazin-1-ylidene)amino]phenyl]thio]- , in or...

  14. 40 CFR 180.551 - Fluthiacet-methyl; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... residues of the herbicide, fluthiacet-methyl, acetic acid thiadiazolo pyridazin-1-ylidene)amino]phenyl]thio...-methyland its acid metabolite: acetic acid, thiadiazolo pyridazin-1-ylidene)amino]phenyl]thio]-methyl ester, and its acid metabolite, acetic acid, thiadiazolo pyridazin-1-ylidene)amino]phenyl]thio]- , in or...

  15. 40 CFR 180.551 - Fluthiacet-methyl; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... residues of the herbicide, fluthiacet-methyl, acetic acid thiadiazolo pyridazin-1-ylidene)amino]phenyl]thio...-methyland its acid metabolite: acetic acid, thiadiazolo pyridazin-1-ylidene)amino]phenyl]thio]-methyl ester, and its acid metabolite, acetic acid, thiadiazolo pyridazin-1-ylidene)amino]phenyl]thio]- , in or...

  16. 40 CFR 180.551 - Fluthiacet-methyl; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... residues of the herbicide, fluthiacet-methyl, acetic acid thiadiazolo pyridazin-1-ylidene)amino]phenyl]thio...-methyland its acid metabolite: acetic acid, thiadiazolo pyridazin-1-ylidene)amino]phenyl]thio]-methyl ester, and its acid metabolite, acetic acid, thiadiazolo pyridazin-1-ylidene)amino]phenyl]thio]- , in or...

  17. 40 CFR 180.551 - Fluthiacet-methyl; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... residues of the herbicide, fluthiacet-methyl, acetic acid thiadiazolo pyridazin-1-ylidene)amino]phenyl]thio...-methyland its acid metabolite: acetic acid, thiadiazolo pyridazin-1-ylidene)amino]phenyl]thio]-methyl ester, and its acid metabolite, acetic acid, thiadiazolo pyridazin-1-ylidene)amino]phenyl]thio]- , in or...

  18. Salicylic Acid and Sodium Salicylate Alleviate Cadmium Toxicity to Different Extents in Maize (Zea mays L.).

    PubMed

    Gondor, Orsolya Kinga; Pál, Magda; Darkó, Éva; Janda, Tibor; Szalai, Gabriella

    2016-01-01

    The role of salicylic acid in Cd tolerance has attracted more attention recently but no information is available on the efficiency of different forms of salicylic acid. The aim was thus to investigate whether both the acid and salt forms of salicylic acid provide protection against Cd stress and to compare their mode of action. Young maize plants were grown under controlled environmental conditions. One group of 10-day-old seedlings were treated with 0.5 mM SA or NaSA for 1 day then half of the pants were treated with 0.5 mM Cd for 1 day. Another group of seedlings was treated with 0.5 mM CdSO4 for 1 day without pre-treatment with SA or NaSA, while a third group was treated simultaneously with Cd and either SA or NaSA. Both salicylic acid forms reduced the Cd accumulation in the roots. Treatment with the acidic form meliorated the Cd accumulation in the leaves, while Na-salicylate increased the phytochelatin level in the roots and the amount of salicylic acid in the leaves. Furthermore, increased antioxidant enzyme activity was mainly induced by the acid form, while glutathione-related redox changes were influenced mostly by the salt form. The acidic and salt forms of salicylic acid affected the two antioxidant systems in different ways, and the influence of these two forms on the distribution and detoxification of Cd also differed. The present results also draw attention to the fact that generalisations about the stress protective mechanisms induced by salicylic acid are misleading since different forms of SA may exert different effects on the plants via separate mechanisms. PMID:27490102

  19. Salicylic Acid and Sodium Salicylate Alleviate Cadmium Toxicity to Different Extents in Maize (Zea mays L.)

    PubMed Central

    Gondor, Orsolya Kinga; Pál, Magda; Darkó, Éva; Janda, Tibor; Szalai, Gabriella

    2016-01-01

    The role of salicylic acid in Cd tolerance has attracted more attention recently but no information is available on the efficiency of different forms of salicylic acid. The aim was thus to investigate whether both the acid and salt forms of salicylic acid provide protection against Cd stress and to compare their mode of action. Young maize plants were grown under controlled environmental conditions. One group of 10-day-old seedlings were treated with 0.5 mM SA or NaSA for 1 day then half of the pants were treated with 0.5 mM Cd for 1 day. Another group of seedlings was treated with 0.5 mM CdSO4 for 1 day without pre-treatment with SA or NaSA, while a third group was treated simultaneously with Cd and either SA or NaSA. Both salicylic acid forms reduced the Cd accumulation in the roots. Treatment with the acidic form meliorated the Cd accumulation in the leaves, while Na-salicylate increased the phytochelatin level in the roots and the amount of salicylic acid in the leaves. Furthermore, increased antioxidant enzyme activity was mainly induced by the acid form, while glutathione-related redox changes were influenced mostly by the salt form. The acidic and salt forms of salicylic acid affected the two antioxidant systems in different ways, and the influence of these two forms on the distribution and detoxification of Cd also differed. The present results also draw attention to the fact that generalisations about the stress protective mechanisms induced by salicylic acid are misleading since different forms of SA may exert different effects on the plants via separate mechanisms. PMID:27490102

  20. Salicylic Acid and Sodium Salicylate Alleviate Cadmium Toxicity to Different Extents in Maize (Zea mays L.).

    PubMed

    Gondor, Orsolya Kinga; Pál, Magda; Darkó, Éva; Janda, Tibor; Szalai, Gabriella

    2016-01-01

    The role of salicylic acid in Cd tolerance has attracted more attention recently but no information is available on the efficiency of different forms of salicylic acid. The aim was thus to investigate whether both the acid and salt forms of salicylic acid provide protection against Cd stress and to compare their mode of action. Young maize plants were grown under controlled environmental conditions. One group of 10-day-old seedlings were treated with 0.5 mM SA or NaSA for 1 day then half of the pants were treated with 0.5 mM Cd for 1 day. Another group of seedlings was treated with 0.5 mM CdSO4 for 1 day without pre-treatment with SA or NaSA, while a third group was treated simultaneously with Cd and either SA or NaSA. Both salicylic acid forms reduced the Cd accumulation in the roots. Treatment with the acidic form meliorated the Cd accumulation in the leaves, while Na-salicylate increased the phytochelatin level in the roots and the amount of salicylic acid in the leaves. Furthermore, increased antioxidant enzyme activity was mainly induced by the acid form, while glutathione-related redox changes were influenced mostly by the salt form. The acidic and salt forms of salicylic acid affected the two antioxidant systems in different ways, and the influence of these two forms on the distribution and detoxification of Cd also differed. The present results also draw attention to the fact that generalisations about the stress protective mechanisms induced by salicylic acid are misleading since different forms of SA may exert different effects on the plants via separate mechanisms.

  1. Cloning and characterization of a benzoic acid/salicylic acid carboxyl methyltransferase gene involved in floral scent production from lily (Lilium 'Yelloween').

    PubMed

    Wang, H; Sun, M; Li, L L; Xie, X H; Zhang, Q X

    2015-01-01

    In lily flowers, the volatile ester methyl benzoate is one of the major and abundant floral scent compounds; however, knowledge regarding the biosynthesis of methyl benzoate remains unknown for Lilium. In this study, we isolated a benzoic acid/salicylic acid carboxyl methyltransferase (BSMT) gene, LiBSMT, from petals of Lilium 'Yelloween'. The gene has an open reading frame of 1083 base pairs (bp) and encodes a protein of 41.05 kDa. Sequence alignment and phylogenetic analyses of LiBSMT revealed 40-50% similarity with other known benzenoid carboxyl methyltransferases in other plant species, and revealed homology to BSMT of Oryza sativa. Heterologous expression of this gene in Escherichia coli yielded an enzyme responsible for catalyzing benzoic acid and salicylic acid to methyl benzoate and methyl salicylate, respectively. Quantitative real-time polymerase chain reaction analysis showed that LiBSMT was preferentially expressed in petals. Moreover, the expression of LiBSMT in petals was developmentally regulated. These expression patterns correlate well with the emission of methyl benzoate. Our results indicate that LiBSMT plays an important role in floral scent methyl benzoate production and emission in lily flowers. PMID:26600510

  2. The atmospheric chemistry of methyl salicylate—reactions with atomic chlorine and with ozone

    NASA Astrophysics Data System (ADS)

    Canosa-Mas, Carlos E.; Duffy, Justin M.; King, Martin D.; Thompson, Katherine C.; Wayne, Richard P.

    Methyl salicylate is one of a number of semiochemicals, signal molecules, emitted by herbivore-infested plants. These signal molecules attract predators of the herbivore, and the chemicals thus act indirectly as part of the defence mechanism of the plant. Previous studies have shown that ozone damage to plants can also elicit the emission of signal molecules. The fate of these signal molecules in the atmosphere is not known. Preliminary studies have been undertaken to examine the atmospheric chemistry of methyl salicylate for the first time. Rate coefficients for the reaction of methyl salicylate with atomic chlorine and with ozone have been determined; the values are (2.8±0.3)×10 -12 and ˜4×10 -21 cm 3 molecule -1 s -1. These results suggest that neither reaction with atomic chlorine nor reaction with ozone will provide important loss routes for methyl salicylate in the atmosphere. The possible importance of photolysis of methyl salicylate in the atmosphere is considered.

  3. Effect of nonionic surfactants on percutaneous absorption of salicylic acid and sodium salicylate in the presence of dimethyl sulfoxide.

    PubMed

    Shen, W W; Danti, A G; Bruscato, F N

    1976-12-01

    Fifteen nonionic surfactants, 10% (w/w), were each incorporated into white petrolatum USP ointment base containing 10% (w/w) salicylic acid or 11.6% (w/w) sodium salicylate with 10% (w/w) dimethyl sulfoxide. Percutaneous absorption was determined from blood salicylate levels in New Zealand white rabbits at regular intervals for 8 hr following application of the ointment. Percutaneous absorption of salicylic acid was increased significantly when sorbitan monopalmitate, sorbitan trioleate, poloxamer 231, poloxamer 182, polyoxyethylene 4 lauryl ether, polyoxyethylene 2 oleyl ether, or polyoxyl 8 stearate was added to the ointment containing dimethyl sulfoxide, salicylic acid, and white petrolatum. Percutaneous absorption of sodium salicylate was increased significantly when sorbitan monolaurate, sorbitan monopalmitate, or poloxamer 182 was added to the ointment containing dimethyl sulfoxide, sodium salicylate, and white petrolatum.

  4. The microwave spectrum of n-hexyl acetate and structural aspects of n-alkyl acetates

    NASA Astrophysics Data System (ADS)

    Attig, T.; Kannengießer, R.; Kleiner, I.; Stahl, W.

    2014-04-01

    The microwave spectrum of n-hexyl acetate was recorded in the range of 10-13.5 GHz using the Aachen MB-FTMW spectrometer. The rotational constants of the most abundant conformer were determined to be A = 3.3591100(32) GHz, B = 0.39596553(53) GHz, and C = 0.36999804(31) GHz. Quantum chemical calculations for specific conformers were carried out at the MP2/6-311++G(d,p) level. The programs XIAM and BELGI were used to analyze the internal rotation of the acetyl methyl group. The observed conformer of n-hexyl acetate was compared to the lowest energy conformers of n-butyl acetate and n-pentyl acetate.

  5. Simultaneous determination of dipyridamole and salicylic acid in human plasma by high performance liquid chromatography-mass spectrometry.

    PubMed

    Wang, Na; Xu, Fengguo; Zhang, Zunjian; Yang, Cheng; Sun, Xiuhong; Li, Jinheng

    2008-02-01

    A sensitive, rapid and simple high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) method for simultaneous determination of dipyridamole and salicylic acid in human plasma has been developed and validated. After the addition of diazepam and rosiglitazone as internal standard (IS), plasma samples were prepared by liquid-liquid extraction followed by an isocratic elution with methanol:2 mM ammonium acetate buffer (pH 4.25; 70/30, v/v) on a Shimadzu VP-ODS C(18) column (5 microm, 150 x 2.0 mm I.D.). Detection was performed on a quadrupole mass spectrometer with ESI interface operating in the positive-ion mode for dipyridamole and negative-ion mode for salicylic acid. Calibration curves were linear (r(2) > 0.99) over the concentration range 10-2500 ng/mL for dipyridamole and 30-4000 ng/mL for salicylic acid with acceptable accuracy and precision, respectively. The intra- and inter-batch precisions were less than 15% of the relative standard deviation. The limits of detection of dipyridamole and salicylic acid were 1 and 15 ng/mL, respectively. The validated HPLC-ESI-MS method was successfully applied to a preliminary pharmacokinetic study of fixed-dose combination of sustained-release dipyridamole/aspirin in Chinese healthy male volunteers.

  6. Thermodynamic properties and ideal-gas enthalpies of formation for 2-aminoisobutyric acid (2-methylalanine), acetic acid, (Z)-5-ethylidene-2-norbornene, mesityl oxide (4-methyl-3-penten-2-one), 4-methylpent-1-ene, 2,2{prime}-bis(phenylthio)propane, and glycidyl phenyl ether (1,2-epoxy-3-phenoxypropane)

    SciTech Connect

    Steele, W.V.; Chirico, R.D.; Cowell, A.B.; Knipmeyer, S.E.; Nguyen, A.

    1997-11-01

    The results of a study aimed at improvement of group-contribution methodology for estimation of thermodynamic properties of organic substances are reported. Specific weaknesses where particular group-contribution terms were unknown, or estimated because of lack of experimental data, are addressed by experimental studies of enthalpies of combustion in the condensed phase, vapor-pressure measurements, and differential scanning calorimetric (DSC) heat-capacity measurements. Ideal-gas enthalpies of formation of acetic acid, (Z)-5-ethylidene-2-norbornene, mesityl oxide (4-methyl-3-penten-2-one), 4-methylpent-1-ene, glycidyl phenyl ether (1,2-epoxy-3-phenoxypropane), and 2,2{prime}-bis(phenylthio)propane are reported. An enthalpy of formation of 2-aminoisobutyric acid (2-methylalanine) in the crystalline phase was determined. Using a literature value for the enthalpy of sublimation of 2-aminoisobutyric acid, a value for the ideal-gas enthalpy of formation was derived. An enthalpy of fusion was determined for 2,2{prime}-bis(phenylthio)propane. Two-phase (solid + vapor) or (liquid + vapor) heat capacities were determined from 300 K to the critical region or earlier decomposition temperature for all the compounds except acetic acid. For mesityl oxide and 4-methylpent-1-ene, critical temperatures and critical densities were determined from the DSC results and corresponding critical pressures derived from the fitting procedures. Group-additivity parameters and ring strain energies useful in the application of group-contribution correlations were derived.

  7. Synthesis of rapeseed biodiesel using short-chained alkyl acetates as acyl acceptor.

    PubMed

    Jeong, Gwi-Taek; Park, Don-Hee

    2010-05-01

    In this study, we conducted experiments using a response surface methodology to determine the optimal reaction conditions for the enzymatic synthesis of biodiesel from rapeseed oil and short-chained alkyl acetates, such as methyl acetate or ethyl acetate, as the acyl acceptor at 40 degrees C. Based on our response surface methodology experiments, the optimal reaction conditions for the synthesis of biodiesel were as follows: methyl acetate as acyl acceptor, catalyst concentration of 16.50%, oil-to-methyl acetate molar ratio of 1:12.44, and reaction time of 19.70 h; ethyl acetate as acyl acceptor, catalyst concentration of 16.95%, oil-to-ethyl acetate molar ratio of 1:12.56, and reaction time of 19.73 h. The fatty acid ester content under the above conditions when methyl acetate and ethyl acetate were used as the acyl acceptor was 58.0% and 62.6%, respectively. The statistical method described in this study can be applied to effectively optimize the enzymatic conditions required for biodiesel production with short-chained alkyl acetates.

  8. Synthesis of rapeseed biodiesel using short-chained alkyl acetates as acyl acceptor.

    PubMed

    Jeong, Gwi-Taek; Park, Don-Hee

    2010-05-01

    In this study, we conducted experiments using a response surface methodology to determine the optimal reaction conditions for the enzymatic synthesis of biodiesel from rapeseed oil and short-chained alkyl acetates, such as methyl acetate or ethyl acetate, as the acyl acceptor at 40 degrees C. Based on our response surface methodology experiments, the optimal reaction conditions for the synthesis of biodiesel were as follows: methyl acetate as acyl acceptor, catalyst concentration of 16.50%, oil-to-methyl acetate molar ratio of 1:12.44, and reaction time of 19.70 h; ethyl acetate as acyl acceptor, catalyst concentration of 16.95%, oil-to-ethyl acetate molar ratio of 1:12.56, and reaction time of 19.73 h. The fatty acid ester content under the above conditions when methyl acetate and ethyl acetate were used as the acyl acceptor was 58.0% and 62.6%, respectively. The statistical method described in this study can be applied to effectively optimize the enzymatic conditions required for biodiesel production with short-chained alkyl acetates. PMID:19802734

  9. Maternal and fetal effects of acetaminophen and salicylates in pregnancy.

    PubMed

    Collins, E

    1981-11-01

    Salicylates have been the most widely studied of the nonnarcotic analgesics in pregnancy, and in the last 20 years evidence has accumulated indicating that their ingestion in pregnancy may have adverse effects on the mother and her child. Salicylates have been found to reduce the mean birth weight of the offspring in animal studies and in 1 human study. In the third trimester of pregnancy the maternal and fetal effects are mediated through the antiprostaglandin properties of salicylates and include prolongation of gestation and labor, increased blood loss at delivery, and increased perinatal mortality. Bleeding manifestations and withdrawal symptoms in newborn infants are associated with raised fetal blood salicylate levels. These effects of salicylates warrant routine antenatal urinary screening for salicylates in communities known to use them heavily. Adverse maternal or fetal effects form acetaminophen use in pregnancy have not been reported, but formal clinical or epidemiologic studies of its use have not been conducted.

  10. QM/MM Free Energy Simulations of Salicylic Acid Methyltransferase: Effects of Stabilization of TS-like Structures on Substrate Specificity

    SciTech Connect

    Yao, Jianzhuang; Xu, Qin; Chen, Feng; Guo, Hong

    2010-01-01

    Salicylic acid methyltransferases (SAMTs) synthesize methyl salicylate (MeSA) using salicylate as the substrate. MeSA synthesized in plants may function as an airborne signal to activate the expression of defense-related genes and could also be a critical mobile signaling molecule that travels from the site of plant infection to establish systemic immunity in the induction of disease resistance. Here the results of QM/MM free energy simulations for the methyl transfer process in Clarkia breweri SAMT (CbSAMT) are reported to determine the origin of the substrate specificity of SAMTs. The free energy barrier for the methyl transfer from S-adenosyl-l-methionine (AdoMet) to 4-hydroxybenzoate in CbSAMT is found to be about 5 kcal/mol higher than that from AdoMet to salicylate, consistent with the experimental observations. It is suggested that the relatively high efficiency for the methylation of salicylate compared to 4-hydroxybenzoate is due, at least in part, to the reason that a part of the stabilization of the transition state (TS) configuration is already reflected in the reactant complex, presumably, through the binding. The results seem to indicate that the creation of the substrate complex (e.g., through mutagenesis and substrate modifications) with its structure closely resembling TS might be fruitful for improving the catalytic efficiency for some enzymes. The results show that the computer simulations may provide important insights into the origin of the substrate specificity for the SABATH family and could be used to help experimental efforts in generating engineered enzymes with altered substrate specificity.

  11. Spectroscopic studies of solid-state forms of donepezil free base and salt forms with various salicylic acids

    NASA Astrophysics Data System (ADS)

    Brittain, Harry G.

    2014-12-01

    The polymorphic forms of donepezil free base have been studied using X-ray powder diffraction, Fourier transform infrared absorption spectroscopy, and differential scanning calorimetry. None of the free base crystal forms was observed to exhibit detectable fluorescence in the solid state under ambient conditions. Crystalline salt products were obtained by the reaction of donepezil with salicylic and methyl-substituted salicylic acids, with the salicylate and 4-methylsalicylate salts being obtained as non-solvated products, and the 3-methylsalicylate and 5-methylsalicylate salts being obtained as methanol solvated products. The intensity of solid-state fluorescence from donepezil salicylate and donepezil 4-methylsalicylate was found to be reduced relative to the fluorescence intensity of the corresponding free acids, while the solid-state fluorescence intensity of donepezil 3-methylsalicylate methanolate and donepezil 5-methylsalicylate methanolate was greatly increased relative to the fluorescence intensity of the corresponding free acids. Desolvation of the solvated salt products led to formation of glassy solids that exhibited strong green fluorescence.

  12. Preparation of vinyl acetate

    DOEpatents

    Tustin, Gerald Charles; Zoeller, Joseph Robert; Depew, Leslie Sharon

    1998-01-01

    This invention pertains to the preparation of vinyl acetate by contacting a mixture of hydrogen and ketene with a heterogeneous catalyst containing a transition metal to produce acetaldehyde, which is then reacted with ketene in the presence of an acid catalyst to produce vinyl acetate.

  13. Preparation of vinyl acetate

    DOEpatents

    Tustin, G.C.; Zoeller, J.R.; Depew, L.S.

    1998-03-24

    This invention pertains to the preparation of vinyl acetate by contacting a mixture of hydrogen and ketene with a heterogeneous catalyst containing a transition metal to produce acetaldehyde, which is then reacted with ketene in the presence of an acid catalyst to produce vinyl acetate.

  14. Direct preparation of spherically agglomerated salicylic acid crystals during crystallization.

    PubMed

    Kawashima, Y; Okumura, M; Takenaka, H; Kojima, A

    1984-11-01

    Needle-like salicylic acid crystals were transformed into a spherically shaped dense form during crystallization by the spherical crystallization technique. Agitation of a mixture of ethanol-water-chloroform containing salicylic acid yielded spherically agglomerated salicylic acid crystals. The crystallinity of the agglomerated salicylic acid the amount of ethanol in the solvent mixture was decreased. The wettability of the agglomerated crystals increased when the amount of ethanol in the solvent mixture was decreased, and this enhanced the dissolution rate of the crystals. The remarkable improvements in the flow and packing of the agglomerated crystals enabled the direct compression of the crystals.

  15. Salicylic acid content of spices and its implications.

    PubMed

    Paterson, John R; Srivastava, Rajeev; Baxter, Gwen J; Graham, Alan B; Lawrence, James R

    2006-04-19

    This work was done to determine the salicylate content of a variety of commonly used spices and to assess whether this potential dietary source of salicylate was bioavailable. Spices, Indian cooked dishes, and blood and urine samples taken after ingestion of a test meal were investigated for their salicylate content using high-performance liquid chromatography with electrochemical detection. The serum salicylic acid concentrations in samples from villagers in southern India were also measured and have been compared with typical European values. Salicylic acid was determined in all spices (up to 1.5 wt %) and cooked dishes. The salicylate content of blood and urine was shown to increase following consumption of the meal, indicating that this dietary source of salicylic acid was bioavailable. Salicylic acid levels in the serum from rural Indians were significantly (median almost 3-fold) higher than values previously measured in Western vegetarians. Chemoprotective aspirin is rapidly hydrolyzed to salicylic acid, and this phytochemical may contribute to the low cancer incidence in rural India.

  16. Quantitative genetic analysis of salicylic acid perception in Arabidopsis.

    PubMed

    Dobón, Albor; Canet, Juan Vicente; Perales, Lorena; Tornero, Pablo

    2011-10-01

    Salicylic acid (SA) is a phytohormone required for a full resistance against some pathogens in Arabidopsis, and NPR1 (Non-Expressor of Pathogenesis Related Genes 1) is the only gene with a strong effect on resistance induced by SA which has been described. There can be additional components of SA perception that escape the traditional approach of mutagenesis. An alternative to that approach is searching in the natural variation of Arabidopsis. Different methods of analyzing the variation between ecotypes have been tried and it has been found that measuring the growth of a virulent isolate of Pseudomonas syringae after the exogenous application of SA is the most effective one. Two ecotypes, Edi-0 and Stw-0, have been crossed, and their F2 has been studied. There are two significant quantitative trait loci (QTLs) in this population, and there is one QTL in each one of the existing mapping populations Col-4 × Laer-0 and Laer-0 × No-0. They have different characteristics: while one QTL is only detectable at low concentrations of SA, the other acts after the point of crosstalk with methyl jasmonate signalling. Three of the QTLs have candidates described in SA perception as NPR1, its interactors, and a calmodulin binding protein.

  17. Methylation matters

    PubMed Central

    Costello, J.; Plass, C.

    2001-01-01

    DNA methylation is not just for basic scientists any more. There is a growing awareness in the medical field that having the correct pattern of genomic methylation is essential for healthy cells and organs. If methylation patterns are not properly established or maintained, disorders as diverse as mental retardation, immune deficiency, and sporadic or inherited cancers may follow. Through inappropriate silencing of growth regulating genes and simultaneous destabilisation of whole chromosomes, methylation defects help create a chaotic state from which cancer cells evolve. Methylation defects are present in cells before the onset of obvious malignancy and therefore cannot be explained simply as a consequence of a deregulated cancer cell. Researchers are now able to detect with exquisite sensitivity the cells harbouring methylation defects, sometimes months or years before the time when cancer is clinically detectable. Furthermore, aberrant methylation of specific genes has been directly linked with the tumour response to chemotherapy and patient survival. Advances in our ability to observe the methylation status of the entire cancer cell genome have led us to the unmistakable conclusion that methylation abnormalities are far more prevalent than expected. This methylomics approach permits the integration of an ever growing repertoire of methylation defects with the genetic alterations catalogued from tumours over the past two decades. Here we discuss the current knowledge of DNA methylation in normal cells and disease states, and how this relates directly to our current understanding of the mechanisms by which tumours arise.


Keywords: methylation; cancer PMID:11333864

  18. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway.

    PubMed Central

    Penninckx, I A; Eggermont, K; Terras, F R; Thomma, B P; De Samblanx, G W; Buchala, A; Métraux, J P; Manners, J M; Broekaert, W F

    1996-01-01

    A 5-kD plant defensin was purified from Arabidopsis leaves challenged with the fungus Alternaria brassicicola and shown to possess antifungal properties in vitro. The corresponding plant defensin gene was induced after treatment of leaves with methyl jasmonate or ethylene but not with salicylic acid or 2,6-dichloroisonicotinic acid. When challenged with A. brassicicola, the levels of the plant defensin protein and mRNA rose both in inoculated leaves and in nontreated leaves of inoculated plants (systemic leaves). These events coincided with an increase in the endogenous jasmonic acid content of both types of leaves. Systemic pathogen-induced expression of the plant defensin gene was unaffected in Arabidopsis transformants (nahG) or mutants (npr1 and cpr1) affected in the salicylic acid response but was strongly reduced in the Arabidopsis mutants eln2 and col1 that are blocked in their response to ethylene and methyl jasmonate, respectively. Our results indicate that systemic pathogen-induced expression of the plant defensin gene in Arabidopsis is independent of salicylic acid but requires components of the ethylene and jasmonic acid response. PMID:8989885

  19. Lipid extraction and iontophoretic transport of leuprolide acetate through porcine epidermis.

    PubMed

    Rastogi, S K; Singh, J

    2001-03-14

    The purpose of this study was to explore the effect of lipid extraction by the simple alkyl acetates of increasing carbon chain lengths (e.g. methyl, ethyl, propyl, butyl, pentyl, hexyl, and octyl acetates) and iontophoresis on the in-vitro transport of leuprolide acetate through porcine epidermis. The extent of lipid extraction from the stratum corneum (SC) by alkyl acetates was studied by Fourier transform infrared (FT-IR) spectroscopy. Ethyl, propyl, pentyl, hexyl, and octyl acetates significantly increased (P < 0.05) the permeability of leuprolide acetate through the epidermis in comparison to the control (epidermis without alkyl acetate treatment). Iontophoresis further increased (P < 0.05) the permeability of leuprolide acetate for all the alkyl acetates studied, when compared to their corresponding passive permeability. Ethyl acetate produced the maximum passive (13.47 microg/cm(2)/h) and iontophoretic (89.79 microg/cm(2)/h) flux among all the alkyl acetates studied. The SC treated with alkyl acetates showed a decrease in peak heights and areas of asymmetric and symmetric C--H stretching absorbances in comparison to untreated SC. A greater percentage decrease in peak heights and areas was obtained by ethyl acetate. Chloroform:methanol(2:1) [C:M(2:1)] was used as a positive control for lipid extraction. Our findings provide evidence that alkyl acetates cause lipid extraction, which leads to an enhancement in the passive and iontophoretic permeability of leuprolide acetate. PMID:11250109

  20. Unexpected ring-closure products derived from 3-(2-allylanilino)-3-phenylacrylate esters: crystal and molecular structures of 3-acetyl-8-allyl-6-methyl-2-phenylquinolin-4-yl acetate and (2RS)-2,8-dimethyl-4-phenyl-1,2-dihydro-6H-pyrrolo[3,2,1-ij]quinolin-6-one.

    PubMed

    Luque, Adriana L; Sanabria, Carlos M; Palma, Alirio; Cobo, Justo; Glidewell, Christopher

    2016-08-01

    The reactions of two 3-(2-allylanilino)-3-phenylacrylate esters with acetic anhydride and with strong acids has revealed a richly diverse reactivity providing a number of unexpected products. Thus, acetylation of ethyl 3-(2-allylanilino)-3-phenylacrylate, (Ia), or ethyl 3-(2-allyl-4-methylanilino)-3-phenylacrylate, (Ib), with acetic anhydride yields not only the expected acetylated esters, (II), as the major products but also the unexpected polysubstituted quinolines 3-acetyl-8-allyl-2-phenylquinolin-4-yl acetate, (IIIa), and 3-acetyl-8-allyl-6-methyl-2-phenylquinolin-4-yl acetate, (IIIb), as minor products. Subsequent reaction of the major product ethyl 2-[(2-allyl-4-methylanilino)(phenyl)methylidene]-3-oxobutanoate, (IIb), with concentrated sulfuric acid did not provide the expected 3-acetylquinoline derivative, but instead two unexpected products, namely ethyl 4-ethyl-2-phenyl-1,4-dihydroquinoline-3-carboxylate, (IV), and ethyl 3-acetyl-4-ethyl-2-phenyl-3,4-dihydroquinoline-3-carboxylate, (V), in yields of 39 and 22%, respectively. The reaction of (Ib) with Eaton's reagent gave both the quinoline (Z)-6-methyl-2-phenyl-8-(prop-1-en-1-yl)quinolin-4(1H)-one, (VI), and the unexpected tricyclic product (2RS)-2,8-dimethyl-4-phenyl-1,2-dihydro-6H-pyrrolo[3,2,1-ij]quinolin-6-one, (VII), in yields of 71 and 12%, respectively. The products (II)-(VII) have all been fully characterized spectroscopically and the crystal structures of two of the unexpected products, i.e. (IIIb) (C23H21NO3) and (VII) (C19H17NO), are reported here. The formation of compounds (IV), (V) and (VII) all require an isomerization of the initial allyl substituent, with migration of the C=C double bond from the terminal site to the internal site. In (IIIb), the two acetyl substituents are oriented such that the intramolecular distance between the two carbonyl O atoms is only 3.243 (2) Å, and in (VII), the five-membered ring adopts a twisted half-chair conformation. The molecules of compound (IIIb

  1. Infrared and ultraviolet laser spectroscopy of jet-cooled substituted salicylic acids; substitution effects on the excited state intramolecular proton transfer in salicylic acid

    NASA Astrophysics Data System (ADS)

    Abd El-Hakam Abou El-Nasr, E.; Fujii, A.; Ebata, T.; Mikami, N.

    Substitution effects on the excited state intramolecular proton transfer (ESIPT) in the salicylic acid (SA) frame were studied by electronic and infrared spectroscopy of jet-cooled 5-methoxylsalicylic acid (5-MeOSA), 5-methylsalicylic acid (5-MeSA), 5-fluorosalicylic acid (5-FSA), 6-fluorosalicylic acid (6-FSA), and methyl salicylate (MS). Infrared spectra were measured in the 3 µm region for both the electronic ground (S0) and first excited (S1) states. The electronic excitation/emission spectra of 5-MeSA and 6-FSA showed the typical spectral features of ESIPT, which have been found in the spectra of SA. On the other hand, 5-MeOSA and 5-FSA exhibit a mirror-image relation between their excitation and emission spectra, which has been regarded as a result of the suppression of ESIPT. Despite such a remarkable difference among the electronic spectra, IR spectroscopy shows that a drastic change of the phenolic OH stretching vibration does occur upon electronic excitation of all substituted SAs, that is, the phenolic OH band of all the SAs disappears from the 3 µm region, indicating a large elongation of the phenolic O-H bond (over 0.1 Å) in S1. This result means that the intramolecular hydrogen bond strength is remarkably enhanced by electronic excitation in all the substituted SAs. Substitution effects on ESIPT in dimers are also discussed.

  2. Salicylic acid as a peeling agent: a comprehensive review

    PubMed Central

    Arif, Tasleem

    2015-01-01

    Salicylic acid has been used to treat various skin disorders for more than 2,000 years. The ability of salicylic acid to exfoliate the stratum corneum makes it a good agent for peeling. In particular, the comedolytic property of salicylic acid makes it a useful peeling agent for patients with acne. Once considered as a keratolytic agent, the role of salicylic acid as a desmolytic agent, because of its ability to disrupt cellular junctions rather than breaking or lysing intercellular keratin filaments, is now recognized and is discussed here. Salicylic acid as a peeling agent has a number of indications, including acne vulgaris, melasma, photodamage, freckles, and lentigines. The efficacy and safety of salicylic acid peeling in Fitzpatrick skin types I–III as well as in skin types V and VI have been well documented in the literature. This paper reviews the available data and literature on salicylic acid as a peeling agent and its possible indications. Its properties, efficacy and safety, the peeling procedure, and possible side effects are discussed in detail. An account of salicylism is also included. PMID:26347269

  3. Salicylic acid as a peeling agent: a comprehensive review.

    PubMed

    Arif, Tasleem

    2015-01-01

    Salicylic acid has been used to treat various skin disorders for more than 2,000 years. The ability of salicylic acid to exfoliate the stratum corneum makes it a good agent for peeling. In particular, the comedolytic property of salicylic acid makes it a useful peeling agent for patients with acne. Once considered as a keratolytic agent, the role of salicylic acid as a desmolytic agent, because of its ability to disrupt cellular junctions rather than breaking or lysing intercellular keratin filaments, is now recognized and is discussed here. Salicylic acid as a peeling agent has a number of indications, including acne vulgaris, melasma, photodamage, freckles, and lentigines. The efficacy and safety of salicylic acid peeling in Fitzpatrick skin types I-III as well as in skin types V and VI have been well documented in the literature. This paper reviews the available data and literature on salicylic acid as a peeling agent and its possible indications. Its properties, efficacy and safety, the peeling procedure, and possible side effects are discussed in detail. An account of salicylism is also included.

  4. The percutaneous absorption of salicylic acid.

    PubMed

    Takahashi, H; Ishii, T; Tanabe, K; Ikeda, H

    1976-08-01

    The present paper reports on the penetration of salicylic acid, a substance with high permeability, through swine skin. Liquid scintillation counter and autoradiographic measurements were performed, on the excised swine skin to which ointment had been applied. The results indicated that the substance penetrated mainly through transfollicular route and was deposited transiently at various levels of each follicle, resulting in zig-zag pattern on the liquid scintillation counter curve. The autoradiographic study also revealed a heavy transfollicular pattern of the substance though a slight transepidermal pattern was also noted. Whether the substance penetrates because of its lipid solubility or because of its affinity to the keratinous tissue is still open to question.

  5. Stable carbon isotope discrimination in rice field soil during acetate turnover by syntrophic acetate oxidation or acetoclastic methanogenesis

    NASA Astrophysics Data System (ADS)

    Conrad, Ralf; Klose, Melanie

    2011-03-01

    Rice fields are an important source for the greenhouse gas methane. In Italian rice field soil CH 4 is produced either by hydrogenotrophic and acetoclastic methanogenesis, or by hydrogenotrophic methanogenesis and syntrophic acetate oxidation when temperatures are below and above about 40-45 °C, respectively. In order to see whether these acetate consumption pathways differently discriminate the stable carbon isotopes of acetate, we measured the δ 13C of total acetate and acetate-methyl as well as the δ 13C of CO 2 and CH 4 in rice field soil that had been pre-incubated at 45 °C and then shifted to different temperatures between 25 and 50 °C. Acetate transiently accumulated to about 6 mM, which is about one-third of the amount of CH 4 produced, irrespective of the incubation temperature and the CH 4 production pathway involved. However, the patterns of δ 13C of the CH 4 and CO 2 produced were different at low (25, 30, 35 °C) versus high (40, 45, 50 °C) temperatures. These patterns were consistent with CH 4 being exclusively formed by hydrogenotrophic methanogenesis at high temperatures, and by a combination of acetoclastic and hydrogenotrophic methanogenesis at low temperatures. The patterns of δ 13C of total acetate and acetate-methyl were also different at high versus low temperatures, indicating the involvement of different pathways of production and consumption of acetate at the two temperature regimes. Isotope fractionation during consumption of the methyl group of acetate was more pronounced at low ( α = 1.010-1.025) than at high ( α = 1.0-1.01) temperatures indicating that acetoclastic methanogenesis exhibits a stronger isotope effect than syntrophic acetate oxidation. Small amounts of propionate also transiently accumulated and were analyzed for δ 13C. The δ 13C values slightly increased (by about 10‰) during production and consumption of propionate, but were not affected by incubation temperature. Collectively, our results showed distinct

  6. In vitro inhibition of salicylic acid derivatives on human cytosolic carbonic anhydrase isozymes I and II.

    PubMed

    Bayram, Esra; Senturk, Murat; Kufrevioglu, O Irfan; Supuran, Claudiu T

    2008-10-15

    The inhibition of two human cytosolic carbonic anhydrase (hCA, EC 4.2.1.1) isozymes, hCA I and II, with a series of salicylic acid derivatives was investigated by using the esterase method with 4-nitrophenyl acetate as substrate. IC(50) values for sulfasalazine, diflunisal, 5-chlorosalicylic acid, dinitrosalicylic acid, 4-aminosalicylic acid, 4-sulfosalicylic acid, 5-sulfosalicylic acid, salicylic acid, acetylsalicylic acid (aspirin) and 3-metylsalicylic acid were of 3.04 microM, 3.38 microM, 4.07 microM, 7.64 microM, 0.13 mM, 0.29 mM, 0.42 mM, 0.56 mM, 2.71 mM and 3.07 mM for hCA I and of 4.49 microM, 2.70 microM, 0.72 microM, 2.80 microM, 0.75 mM, 0.72 mM, 0.29 mM, 0.68 mM, 1.16 mM and 4.70 mM for hCA II, respectively. Lineweaver-Burk plots were also used for the determination of the inhibition mechanism of these substituted phenols, most of which were noncompetitive inhibitors with this substrate. Some salicylic acid derivatives investigated here showed effective hCA I and II inhibitory activity, and might be used as leads for generating enzyme inhibitors eventually targeting other isoforms which have not been assayed yet for their interactions with such agents.

  7. 27 CFR 21.117 - Methyl isobutyl ketone.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.117 Methyl isobutyl ketone. (a) Acidity (as acetic acid). 0.02 percent by weight, maximum. (b)...

  8. Salicylate-induced proximal tubular dysfunction.

    PubMed

    Tsimihodimos, Vasilis; Psychogios, Nikolaos; Kakaidi, Varvara; Bairaktari, Eleni; Elisaf, Moses

    2007-09-01

    We describe the case of a 17-year-old girl who was admitted to our clinic for drug poisoning. Twelve hours after the ingestion of 25 tablets of aspirin (12.5 g of acetylsalicylic acid), the patient had a generalized proximal tubular dysfunction characterized by glucosuria (in the face of normal serum glucose levels), proteinuria, and uric acid wasting. Further characterization of the tubular dysfunction using high-resolution proton nuclear magnetic resonance spectroscopy of the urine showed a pattern consistent with proximal tubular injury. An important characteristic of the salicylate-induced proximal tubular dysfunction in our patient was its rapid reversibility. A trend toward normalization of fractional excretion values of electrolytes was observed 2 days after ingestion. Determination of serum and urine metabolites and spectroscopy of urine 15 days later showed no evidence of tubular dysfunction. The mechanisms potentially implicated in the pathogenesis of salicylate-induced Fanconi syndrome are discussed and a brief review of the relevant literature is provided. PMID:17720526

  9. Interactions of salicylic acid derivatives with calcite crystals.

    PubMed

    Ukrainczyk, Marko; Gredičak, Matija; Jerić, Ivanka; Kralj, Damir

    2012-01-01

    Investigation of basic interactions between the active pharmaceutical compounds and calcium carbonates is of great importance because of the possibility to use the carbonates as a mineral carrier in drug delivery systems. In this study the mode and extent of interactions of salicylic acid and its amino acid derivates, chosen as pharmaceutically relevant model compounds, with calcite crystals are described. Therefore, the crystal growth kinetics of well defined rhombohedral calcite seed crystals in the systems containing salicylic acid (SA), 5-amino salicylic acid (5-ASA), N-salicyloil-l-aspartic acid (N-Sal-Asp) or N-salicyloil-l-glutamic acid (N-Sal-Glu), were investigated. The precipitation systems were of relatively low initial supersaturation and of apparently neutral pH. The data on the crystal growth rate reductions in the presence of the applied salicylate molecules were analyzed by means of Cabrera & Vermileya's, and Kubota & Mullin's models of interactions of the dissolved additives and crystal surfaces. The crystal growth kinetic experiments were additionally supported with the appropriate electrokinetic, spectroscopic and adsorption measurements. The Langmuir adsorption constants were determined and they were found to be in a good correlation with values obtained from crystal growth kinetic analyses. The results indicated that salicylate molecules preferentially adsorb along the steps on the growing calcite surfaces. The values of average spacing between the adjacent salicylate adsorption active sites and the average distance between the neighboring adsorbed salicylate molecules were also estimated. PMID:21963207

  10. Ca(2+)/calmodulin regulates salicylic-acid-mediated plant immunity.

    PubMed

    Du, Liqun; Ali, Gul S; Simons, Kayla A; Hou, Jingguo; Yang, Tianbao; Reddy, A S N; Poovaiah, B W

    2009-02-26

    Intracellular calcium transients during plant-pathogen interactions are necessary early events leading to local and systemic acquired resistance. Salicylic acid, a critical messenger, is also required for both of these responses, but whether and how salicylic acid level is regulated by Ca(2+) signalling during plant-pathogen interaction is unclear. Here we report a mechanism connecting Ca(2+) signal to salicylic-acid-mediated immune response through calmodulin, AtSR1 (also known as CAMTA3), a Ca(2+)/calmodulin-binding transcription factor, and EDS1, an established regulator of salicylic acid level. Constitutive disease resistance and elevated levels of salicylic acid in loss-of-function alleles of Arabidopsis AtSR1 suggest that AtSR1 is a negative regulator of plant immunity. This was confirmed by epistasis analysis with mutants of compromised salicylic acid accumulation and disease resistance. We show that AtSR1 interacts with the promoter of EDS1 and represses its expression. Furthermore, Ca(2+)/calmodulin-binding to AtSR1 is required for suppression of plant defence, indicating a direct role for Ca(2+)/calmodulin in regulating the function of AtSR1. These results reveal a previously unknown regulatory mechanism linking Ca(2+) signalling to salicylic acid level.

  11. Interactions of salicylic acid derivatives with calcite crystals.

    PubMed

    Ukrainczyk, Marko; Gredičak, Matija; Jerić, Ivanka; Kralj, Damir

    2012-01-01

    Investigation of basic interactions between the active pharmaceutical compounds and calcium carbonates is of great importance because of the possibility to use the carbonates as a mineral carrier in drug delivery systems. In this study the mode and extent of interactions of salicylic acid and its amino acid derivates, chosen as pharmaceutically relevant model compounds, with calcite crystals are described. Therefore, the crystal growth kinetics of well defined rhombohedral calcite seed crystals in the systems containing salicylic acid (SA), 5-amino salicylic acid (5-ASA), N-salicyloil-l-aspartic acid (N-Sal-Asp) or N-salicyloil-l-glutamic acid (N-Sal-Glu), were investigated. The precipitation systems were of relatively low initial supersaturation and of apparently neutral pH. The data on the crystal growth rate reductions in the presence of the applied salicylate molecules were analyzed by means of Cabrera & Vermileya's, and Kubota & Mullin's models of interactions of the dissolved additives and crystal surfaces. The crystal growth kinetic experiments were additionally supported with the appropriate electrokinetic, spectroscopic and adsorption measurements. The Langmuir adsorption constants were determined and they were found to be in a good correlation with values obtained from crystal growth kinetic analyses. The results indicated that salicylate molecules preferentially adsorb along the steps on the growing calcite surfaces. The values of average spacing between the adjacent salicylate adsorption active sites and the average distance between the neighboring adsorbed salicylate molecules were also estimated.

  12. Methyl Iodide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl iodide (MeI, iodomethane, CH3I) was reported as a potential alternative to the stratospheric ozone-depleting fumigant methyl bromide (MeBr) in the mid-1990s (Sims et al., 1995; Ohr et al., 1996). It has since received significant research attention to determine its environmental fate and tran...

  13. Methyl 5-(4-acet­oxy­phen­yl)-2-(2-bromo­benzyl­idine)-7-methyl-3-oxo-2,3-di­hydro-5H-1,3-thia­zolo[3,2-a]pyrimidine-6-carboxyl­ate

    PubMed Central

    Fathima, Nikhath; Nagarajaiah, H.; Begum, Noor Shahina

    2013-01-01

    In the title mol­ecule, C24H19BrN2O5S, the pyrimidine ring is in a flattened half-chair conformation and the 4-acet­oxy­phenyl group is substituted axially to this ring. The thia­zole ring is essentially planar [with a maximum deviation of 0.012 (2) Å for the N atom] and forms dihedral angles of 17.65 (13) and 88.95 (11)° with the bromo- and acet­oxy-substituted benzene rings, respectively. The dihedral angle between the benzene rings is 81.84 (13) Å. In the crystal, pairs of weak C—H⋯O hydrogen bonds lead to the formation of inversion dimers. A weak C—H⋯π inter­action and π–π stacking inter­actions with centroid–centroid distances of 3.5903 (14) Å are observed. PMID:24109346

  14. Methyl chloroform

    SciTech Connect

    Wray, T.K.

    1994-04-01

    Methyl chloroform is identified as a Class 1 ozone-depleting substance under Title VI of the CAA Amendments. On Nov. 30, 1993, EPA ordered the phaseout of Class 1 ozone-depleting substances -- chlorofluorocarbons (CFCs), halons, carbon tetrachloride and methyl chloroform -- by Jan. 1, 1996. Methyl chloroform and other Class 1 substances may be used after the dead-line if sources can be found through recycling or existing inventories. Methyl chloroform is listed as a hazardous air pollutant under CAA. It also is a SARA Title III, Sec. 313 compound with a reportable quantity of 1,000 pounds. OSHA and the American Conference of Government Industrial Hygienists have set 350 ppm as the time-weighted average airborne exposure level for methyl chloroform. NIOSH lists its immediately dangerous to life or health'' concentration as 1,000 parts per million. DOT identifies the substance as a hazardous material, Class 6.1 (poison).

  15. Oxidative carbonylation of styrene to methyl cinnamate

    SciTech Connect

    Hsu, C.Y.

    1987-04-01

    Oxidative carbonylation technology is used for making methyl cinnamate from styrene as an alternative to Claisen condensation of benzaldehyde with methyl acetate. Using this approach, the optimum yield of cinnamate is greater than 90%, with CO{sub 2}, acetophenone, and phenylsuccinate as the major by-products. The conversion of styrene and the selectivity to cinnamate depend upon the types of catalysts and reaction conditions used. A plausible reaction mechanism is proposed to account for the selective formation of cinnamate.

  16. A case of bilateral sudden hearing loss and tinnitus after salicylate intoxication.

    PubMed

    Kim, Sang Min; Jo, Joon-Man; Baek, Moo Jin; Jung, Kyu Hwan

    2013-04-01

    Salicylate, the active ingredient of aspirin can cause sensorineural hearing loss and tinnitus when plasma concentrations reach a critical level. The ototoxic mechanisms of salicylate remain unclear but hearing and tinnitus usually recovers a few days after intoxication. There have been few reports of salicylate-induced ototoxicity in Korea, and the majority is caused by a low dose of aspirin. Herein, we report a case of sudden hearing loss and tinnitus after acute salicylate intoxication and review recent updates on salicylate ototoxicity.

  17. Hydroxyl radical induced degradation of salicylates in aerated aqueous solution

    NASA Astrophysics Data System (ADS)

    Szabó, László; Tóth, Tünde; Homlok, Renáta; Rácz, Gergely; Takács, Erzsébet; Wojnárovits, László

    2014-04-01

    Ionizing radiation induced degradation of acetylsalicylic acid, its hydrolysis product salicylic acid and a salicylic acid derivative 5-sulpho-salicylic acid, was investigated in dilute aqueous solutions by UV-vis spectrophotometry, HPLC separation and diode-array or MS/MS detection, chemical oxygen demand, total organic carbon content and by Vibrio fischeri toxicity measurements. Hydroxyl radicals were shown to degrade these molecules readily, and first degradation products were hydroxylated derivatives in all cases. Due to the by-products, among them hydrogen peroxide, the toxicity first increased and then decreased with the absorbed dose. With prolonged irradiation complete mineralization was achieved.

  18. Iontophoresis of Salicylic Acid From Salicylic Acid Doped Poly(p-phynylene vinylene)/ Polyacrylamide Hydrogels

    NASA Astrophysics Data System (ADS)

    Niamlang, Sumonman

    2009-03-01

    The apparent diffusion coefficients, Dapp, and the release mechanisms of salicylic acid from salicylic acid-loaded polyacrylamide hydrogels, SA-loaded PAAM, and salicylic acid-doped poly(phenylene vinylene)/polyacrylamide hydrogels, SA-doped PPV/PAAM, were investigated. In the absence of an electric field, the diffusion of SA from the SA-doped PPV/PAAM hydrogel is delayed in the first 3 hr due to the ionic interaction between the anionic drug and PPV. Beyond this period, SA can diffuse continuously into the buffer solution through the PAAM matrix. Dapp of SA-doped PPV/PAAM is higher than that of the SA-loaded PAAM, and the former increases with increasing electric field strength due to the combined mechanisms: the expansion of PPV chains inside the hydrogel; iontophoresis; and the electroporation of the matrix pore. Thus, the presence of the conductive polymer and the applied electric field can be combined to control the drug release rate at an optimal desired level.

  19. Salicylic acid induces mitochondrial injury by inhibiting ferrochelatase heme biosynthesis activity.

    PubMed

    Gupta, Vipul; Liu, Shujie; Ando, Hideki; Ishii, Ryohei; Tateno, Shumpei; Kaneko, Yuki; Yugami, Masato; Sakamoto, Satoshi; Yamaguchi, Yuki; Nureki, Osamu; Handa, Hiroshi

    2013-12-01

    Salicylic acid is a classic nonsteroidal anti-inflammatory drug. Although salicylic acid also induces mitochondrial injury, the mechanism of its antimitochondrial activity is not well understood. In this study, by using a one-step affinity purification scheme with salicylic acid-immobilized beads, ferrochelatase (FECH), a homodimeric enzyme involved in heme biosynthesis in mitochondria, was identified as a new molecular target of salicylic acid. Moreover, the cocrystal structure of the FECH-salicylic acid complex was determined. Structural and biochemical studies showed that salicylic acid binds to the dimer interface of FECH in two possible orientations and inhibits its enzymatic activity. Mutational analysis confirmed that Trp301 and Leu311, hydrophobic amino acid residues located at the dimer interface, are directly involved in salicylic acid binding. On a gel filtration column, salicylic acid caused a shift in the elution profile of FECH, indicating that its conformational change is induced by salicylic acid binding. In cultured human cells, salicylic acid treatment or FECH knockdown inhibited heme synthesis, whereas salicylic acid did not exert its inhibitory effect in FECH knockdown cells. Concordantly, salicylic acid treatment or FECH knockdown inhibited heme synthesis in zebrafish embryos. Strikingly, the salicylic acid-induced effect in zebrafish was partially rescued by FECH overexpression. Taken together, these findings illustrate that FECH is responsible for salicylic acid-induced inhibition of heme synthesis, which may contribute to its antimitochondrial and anti-inflammatory function. This study establishes a novel aspect of the complex pharmacological effects of salicylic acid.

  20. A rapid high-performance liquid chromatographic method for the simultaneous quantitation of aspirin, salicylic acid, and caffeine in effervescent tablets.

    PubMed

    Sawyer, MaryJean; Kumar, Vimal

    2003-09-01

    A rapid reversed-phase high-performance liquid chromatographic procedure is developed and validated for the simultaneous quantitation of aspirin, salicylic acid, and caffeine extracted from an effervescent tablet. The method uses a Hypersil C18 column (5 micro m, 15 cm x 4.6 mm) for an isocratic elution in a water-methanol-acetic acid mobile phase at a wavelength of 275 nm. The tablets' buffering effects and acid neutralizing capacity require an extraction solvent of methanol-formic acid. The range of linearity for aspirin is 0.5-1.25 mg/mL, caffeine 0.065-0.195 mg/mL, and salicylic acid 0.4-6.0% of aspirin. The overall recovery is 100.2%, 100.7%, and 99.2% for aspirin, caffeine, and salicylic acid, respectively. Under the conditions of the method, aspirin, caffeine, and salicylic acid are adequately resolved with proper peak symmetry in less than 7 min.

  1. Development of Inhibitors of Salicylic Acid Signaling.

    PubMed

    Jiang, Kai; Kurimoto, Tetsuya; Seo, Eun-kyung; Miyazaki, Sho; Nakajima, Masatoshi; Nakamura, Hidemitsu; Asami, Tadao

    2015-08-19

    Salicylic acid (SA) plays important roles in the induction of systemic acquired resistance (SAR) in plants. Determining the mechanism of SAR will extend our understanding of plant defenses against pathogens. We recently reported that PAMD is an inhibitor of SA signaling, which suppresses the expression of the pathogenesis-related PR genes and is expected to facilitate the understanding of SA signaling. However, PAMD strongly inhibits plant growth. To minimize the side effects of PAMD, we synthesized a number of PAMD derivatives, and identified compound 4 that strongly suppresses the expression of the PR genes with fewer adverse effects on plant growth than PAMD. We further showed that the adverse effects on plant growth were partially caused the stabilization of DELLA, which is also related to the pathogen responses. These results indicate that compound 4 would facilitate our understanding of SA signaling and its cross talk with other plant hormones.

  2. Deposition of salicylic acid into hamster sebaceous.

    PubMed

    Motwani, M R; Rhein, L D; Zatz, J L

    2004-01-01

    In an earlier paper, we identified vehicles that are miscible with sebum, using differential scanning calorimetry (DSC). In this paper, the potential of these vehicles to deliver salicylic acid (SA) into the sebum-filled follicles of hamster ears is examined. The main objective of this study is to correlate the melting transitions of a model sebum with the follicular delivery of SA, using two different types of vehicles (fatty and polar). Generally, the fatty vehicles show higher deposition than the polar vehicles. Follicular delivery of salicylic acid correlates well with its solubility in the respective vehicles. This extent of deposition also shows a relationship with the effect of the vehicle on thermal behavior of the model sebum. The nature of the relationship depends on the vehicle (polar or fatty) tested. We conclude that DSC could be used to identify appropriate vehicles for drugs whose follicular delivery depends on solubility. The results also suggest that delivery into the sebaceous glands occurs by two different mechanisms, depending upon the polarity of the vehicle and the physicochemical properties of the drug. The results of these experiments are further extended to investigate follicular delivery of SA from two different types of oil-in-water emulsion formulations. From these studies we conclude that either increasing the volume of the oil phase or changing the emulsion to a water-in-oil emulsion would increase follicular deposition. Our research highlights the role of sebum, its compatibility with drug molecules, and vehicle selection in the transport of drugs into the follicles. The overall results of these experiments provide a reasonable understanding of the mechanisms underlying the transport of drugs to, and subsequently through, the sebaceous follicle.

  3. Effects of C-phycocyanin and Spirulina on Salicylate-Induced Tinnitus, Expression of NMDA Receptor and Inflammatory Genes

    PubMed Central

    Hwang, Juen-Haur; Chen, Jin-Cherng; Chan, Yin-Ching

    2013-01-01

    Effects of C-phycocyanin (C-PC), the active component of Spirulina platensis water extract on the expressions of N-methyl D-aspartate receptor subunit 2B (NR2B), tumor necrosis factor–α (TNF-α), interleukin-1β (IL-1β), and cyclooxygenase type 2 (COX-2) genes in the cochlea and inferior colliculus (IC) of mice were evaluated after tinnitus was induced by intraperitoneal injection of salicylate. The results showed that 4-day salicylate treatment (unlike 4-day saline treatment) caused a significant increase in NR2B, TNF-α, and IL-1β mRNAs expression in the cochlea and IC. On the other hand, dietary supplementation with C-PC or Spirulina platensis water extract significantly reduced the salicylate-induced tinnitus and down-regulated the mRNAs expression of NR2B, TNF-α, IL-1β mRNAs, and COX-2 genes in the cochlea and IC of mice. The changes of protein expression levels were generally correlated with those of mRNAs expression levels in the IC for above genes. PMID:23533584

  4. Inhibition of acetate ester biosynthesis in banana (Musa sapientum L.) fruit pulp under anaerobic conditions.

    PubMed

    Wendakoon, Sumithra K; Ueda, Yoshinori; Imahori, Yoshihiro; Ishimaru, Megumi

    2004-03-24

    The effect of anaerobic conditions on acetate ester biosynthesis in ripened banana pulp was investigated. Incubation of the pulp in less than 1% O(2) resulted in a significant reduction in the formation of ethyl acetate. Regardless of the presence of a large amount of endogenous ethanol and the remaining exogenous isobutyl alcohol after complete anaerobic incubation with the pulp, the production of acetate ester decreased. The effect of addition of pyruvate, isobutyl alcohol, acetate, and methyl hexanoate on acetate ester formation in 100% N(2) was also investigated. The addition of pyruvate and isobutyl alcohol to the pulp gave lower acetate esters in N(2) than in air, whereas the pulp incubated with acetate and isobutyl alcohol produced more acetate ester in both conditions. Therefore, the lack of acetyl CoA, or more precisely acetate, in the tissue is the main reason for the inhibition of acetate ester formation under anaerobic conditions. The activity of beta-oxidation measured by incubation with methyl hexanoate was detected only in the samples incubated in air. The formation of acetyl CoA, derived from pyruvate through mitochondria and through beta-oxidation, was inhibited by anaerobic conditions, which suggests that mitochondrial activity and/or beta-oxidation are essential for ester biosynthesis.

  5. Multiple genetic control of acetate-induced olfactory responses in Drosophila melanogaster larvae.

    PubMed

    Cobb, M; Dannet, F

    1994-10-01

    Behavioural responses of Drosophila melanogaster larvae were measured in response to olfactory stimulation with an homologous series of eight aliphatic n-acetates (methyl ... octyl acetate) and with cis-vaccenyl acetate. Larvae tended to be attracted to short-chain acetates (methyl ... pentyl) and repelled by longer chain acetates (hexyl, heptyl and octyl acetate). All larvae were strongly attracted to propyl acetate, irrespective of the dose studied. Larval olfactory responses generally declined with age. Two geographical strains showed specific anosmias. Katsunuma (Japan) larvae showed no response to hexyl acetate; chromosome substitution showed this behaviour to be controlled by genes on chromosome II. Tai (Ivory Coast) larvae showed no response to pentyl acetate; chromosome substitution showed that two genetic factors were primarily involved, on the X chromosome and chromosome III. The response was modulated by chromosome II. No effect of the Y chromosome was found. Two olfactory mutants were studied, olfC (X chromosome) and Indf (chromosome III); both mutants showed abnormal responses to certain acetates. The results are discussed in terms of various models of olfactory processing and the implications of these models for the number of genes involved in olfaction. PMID:7989222

  6. Spectroscopic structural studies of salicylic acid, salicylamide and aspirin

    NASA Astrophysics Data System (ADS)

    El-Shahawy, Anwar S.

    The electronic absorption spectra of the salicylic acid and the salicylamide molecules have been studied using SCF—CL calculations. The singlet and the triplet electronic transition energies have been calculated. The state functions of eight excited states for these molecules have been calculated in addition to the oscillator strengths, charge densities, ionization potentials and electron affinities. Our calculations lead to the presence of salicylic acid and salicylamide in the β-forms in which the carboxylic hydroxyl group or the amino group is directed toward the enolic hydroxyl group. The salicylic acid and the salicylamide molecules have the Cs point group symmetry, but the aspirin molecule has the C1 point group symmetry, in which the acetyl group does not lie in the plane of the salicylic acid molecule.

  7. Hypotonic swelling of salicylate-treated cochlear outer hair cells.

    PubMed

    Zhi, Man; Ratnanather, J Tilak; Ceyhan, Elvan; Popel, Aleksander S; Brownell, William E

    2007-06-01

    The outer hair cell (OHC) is a hydrostat with a low hydraulic conductivity of Pf=3x10(-4) cm/s across the plasma membrane (PM) and subsurface cisterna that make up the OHC's lateral wall. The SSC is structurally and functionally a transport barrier in normal cells that is known to be disrupted by salicylate. The effect of sodium salicylate on Pf is determined from osmotic experiments in which isolated, control and salicylate-treated OHCs were exposed to hypotonic solutions in a constant flow chamber. The value of Pf=3.5+/-0.5x10(-4) cm/s (mean+/-s.e.m., n=34) for salicylate-treated OHCs was not significantly different from Pf=2.4+/-0.3x10(-4) cm/s (mean+/-s.e.m., n=31) for untreated OHCs (p=.3302). Thus Pf is determined by the PM and is unaffected by salicylate treatment. The ratio of longitudinal strain to radial strain epsilonz/epsilonc=-0.76 for salicylate-treated OHCs was significantly smaller (p=.0143) from -0.72 for untreated OHCs, and is also independent of the magnitude of the applied osmotic challenge. Salicylate-treated OHCs took longer to attain a steady-state volume which is larger than that for untreated OHCs and increased in volume by 8-15% prior to hypotonic perfusion unlike sodium alpha-ketoglutarate-treated OHCs. It is suggested that depolymerization of cytoskeletal proteins and/or glycogen may be responsible for the large volume increase in salicylate-treated OHCs as well as the different responses to different modes of application of the hypotonic solution. PMID:17400411

  8. Intramolecular carbon isotope distribution of acetic acid in vinegar.

    PubMed

    Hattori, Ryota; Yamada, Keita; Kikuchi, Makiko; Hirano, Satoshi; Yoshida, Naohiro

    2011-09-14

    Compound-specific carbon isotope analysis of acetic acid is useful for origin discrimination and quality control of vinegar. Intramolecular carbon isotope distributions, which are each carbon isotope ratios of the methyl and carboxyl carbons in the acetic acid molecule, may be required to obtain more detailed information to discriminate such origin. In this study, improved gas chromatography-pyrolysis-gas chromatography-combustion-isotope ratio mass spectrometry (GC-Py-GC-C-IRMS) combined with headspace solid-phase microextraction (HS-SPME) was used to measure the intramolecular carbon isotope distributions of acetic acid in 14 Japanese vinegars. The results demonstrated that the methyl carbons of acetic acid molecules in vinegars produced from plants were mostly isotopically depleted in (13)C relative to the carboxyl carbon. Moreover, isotopic differences (δ(13)C(carboxyl) - δ(13)C(methyl)) had a wide range from -0.3 to 18.2‰, and these values differed among botanical origins, C3, C4, and CAM plants.

  9. Enlarged processing window of plasticized wheat gluten using salicylic acid.

    PubMed

    Ullsten, N Henrik; Gällstedt, Mikael; Johansson, Eva; Gräslund, Astrid; Hedenqvist, Mikael S

    2006-03-01

    The temperature window for the extrusion of glycerol-plasticized wheat gluten was increased by the use of salicylic acid, a known scorch retarder and radical scavenger. It was possible to extrude 30 wt % glycerol-wheat gluten films with a die-head temperature as high as 135 degrees C, rather than 95 degrees C, by incorporating only 1 wt % salicylic acid. Small effects of shear-induced heating during extrusion at the higher temperatures suggested that the acid acted as a lubricant and viscosity reducer. The latter was suggested to originate primarily from the salicylic-acid-induced reduction in the degree of protein aggregation/cross-linking, as indicated by size-exclusion high-performance liquid chromatography and chemiluminescence. Electron paramagnetic resonance spectroscopy on extruded films indicated that the beneficial effect of salicylic acid was due to its radical scavenging effect. Tensile tests on extrudates revealed that the materials produced at the substantially higher processing temperature were still ductile. The complex shear modulus increased more slowly with increasing salicylic acid content above 110-120 degrees C, indicating that the aggregation/cross-linking rate was slower with salicylic acid, that is, that it did have a scorch-retarding effect, besides yielding a lower final degree/complexity of aggregation.

  10. Salicylic acid: a link between aspirin, diet and the prevention of colorectal cancer.

    PubMed

    Paterson, J R; Lawrence, J R

    2001-08-01

    Aspirin was introduced into clinical practice more than 100 years ago. This unique drug belongs to a family of compounds called the salicylates, the simplest of which is salicylic acid, the principal metabolite of aspirin. Salicylic acid is responsible for the anti-inflammatory action of aspirin, and may cause the reduced risk of colorectal cancer observed in those who take aspirin. Yet salicylic acid and other salicylates occur naturally in fruits and plants, while diets rich in these are believed to reduce the risk of colorectal cancer. Serum salicylic acid concentrations are greater in vegetarians than non-vegetarians, and there is overlap between concentrations in vegetarians and those taking low-dose aspirin. We propose that the cancer-preventive action of aspirin is due to its principal metabolite, salicylic acid, and that dietary salicylates can have the same effect. It is also possible that natural salicylates contribute to the other recognized benefits of a healthy diet.

  11. Formulation of salicylate-based poly(anhydride-ester) microspheres for short- and long-term salicylic acid delivery

    PubMed Central

    Rosario-Meléndez, Roselin; Ouimet, Michelle A.; Uhrich, Kathryn E.

    2013-01-01

    The formulation of salicylate-based poly(anhydride-ester) (PAE) microspheres was optimized by altering polymer concentration and homogenization speed to improve the overall morphology. The microspheres were prepared using three salicylate-based PAEs with different chemical compositions comprised of either a heteroatomic, linear aliphatic, or branched aliphatic moiety. These PAEs broadened the range of complete salicylic acid release to now include days, weeks and months. The molecular weight (Mw), polydispersity index (PDI) and glass transition temperature (Tg) of the formulated polymers were compared to the unformulated polymers. In general, the Mw and PDI exhibited decreased and increased values, respectively, after formulation, whereas the Tg changes did not follow a specific trend. Microsphere size and morphology were determined using scanning electron microscopy. These microspheres exhibited smooth surfaces, no aggregation, and size distributions ranging from 2-34 m in diameter. In vitro release studies of the chemically incorporated salicylic acid displayed widely tunable release profiles. PMID:23420391

  12. Acetate Production by Methanogenic Bacteria

    PubMed Central

    Westermann, Peter; Ahring, Birgitte K.; Mah, Robert A.

    1989-01-01

    Methanosarcina barkeri MS and 227 and Methanosarcina mazei S-6 produced acetate when grown on H2-CO2, methanol, or trimethylamine. Marked differences in acetate production by the two bacterial species were found, even though methane and cell yields were nearly the same. M. barkeri produced 30 to 75 μmol of acetate per mmol of CH4 formed, but M. mazei produced only 8 to 9 μmol of acetate per mmol of CH4. PMID:16348006

  13. Acetate dependence of tumors.

    PubMed

    Comerford, Sarah A; Huang, Zhiguang; Du, Xinlin; Wang, Yun; Cai, Ling; Witkiewicz, Agnes K; Walters, Holly; Tantawy, Mohammed N; Fu, Allie; Manning, H Charles; Horton, Jay D; Hammer, Robert E; McKnight, Steven L; Tu, Benjamin P

    2014-12-18

    Acetyl-CoA represents a central node of carbon metabolism that plays a key role in bioenergetics, cell proliferation, and the regulation of gene expression. Highly glycolytic or hypoxic tumors must produce sufficient quantities of this metabolite to support cell growth and survival under nutrient-limiting conditions. Here, we show that the nucleocytosolic acetyl-CoA synthetase enzyme, ACSS2, supplies a key source of acetyl-CoA for tumors by capturing acetate as a carbon source. Despite exhibiting no gross deficits in growth or development, adult mice lacking ACSS2 exhibit a significant reduction in tumor burden in two different models of hepatocellular carcinoma. ACSS2 is expressed in a large proportion of human tumors, and its activity is responsible for the majority of cellular acetate uptake into both lipids and histones. These observations may qualify ACSS2 as a targetable metabolic vulnerability of a wide spectrum of tumors.

  14. [Milestones of cardivascular pharmacotherapy: salicylates and aspirin].

    PubMed

    Jerie, P

    2006-01-01

    The analgesic and antipyretic effect of the bark of willow has been known in Egypt and Greece for canturies. The modem era of salicylates starts with a letter sent 1758 by Reverend Edward Stone to The Royal Society in London. He described "an account of the success of the bark of willow in the cure of agues". His report. erroneously attributed to Edmond Stone. was published five years later. The active ingredient of willow bark. "salicine". was first isolated 1828 by Joseph Buchner, then by Henri Leroux, and also prepared from the oil of wintergreen (Gaultheria) and meadowsweet (Spirea ulmaria) by J. W. Lowig 1833. and called "Spirsäure", which was already pure acetylsalicylic acid. It was also synthetised 1853 by Ch. Gerhardt and finally 1897 in Bayer's laboratoires by Felix Hoffman, who also demonstrated its antiinflammatory efficacy. After two years of clinical trials with low doses, Bayer's management decided to start the productions and launched Aspirin as an analgetic worldwide in summer 1899. The first ASPIRIN ERA bagun. A completely new epoch started when J. N. Vane and Priscilla Piner demonstrated 1971 that the main mechanism of action of aspirin-like drugs is the inhibition of prostaglandin synthesis. In later studies the potency to inhibit platelet aggregation with small doses of aspirin (30-125 mg) was demonstrated. The Physicians'Health Study 1988 confirmed this effect: aspirin significantly reduced the risk of both, fatal and non-fatal myocardial infarction. and is now used in primary and secondary prevention of atherosclerosis. However the idea was not new: The use of salicylates and aspirin was throughly discussed more than 50 years ago: Paul C. Gibson published 1949 a well-documented case report on efficacy of aspirin in patients with angina, and Kl. Weber and P. Klein in Prague used Gibson's mixture successfully for patients with acute myocardial infarction (1951). Recently, the efficacy and security, the interactions and side-effects of low

  15. DNA Methylation

    PubMed Central

    Marinus, M.G.; Løbner-Olesen, A.

    2014-01-01

    The DNA of E. coli contains 19,120 6-methyladenines and 12,045 5-methylcytosines in addition to the four regular bases and these are formed by the postreplicative action of three DNA methyltransferases. The majority of the methylated bases are formed by the Dam and Dcm methyltransferases encoded by the dam (DNA adenine methyltransferase) and dcm (DNA cytosine methyltransferase) genes. Although not essential, Dam methylation is important for strand discrimination during repair of replication errors, controlling the frequency of initiation of chromosome replication at oriC, and regulation of transcription initiation at promoters containing GATC sequences. In contrast, there is no known function for Dcm methylation although Dcm recognition sites constitute sequence motifs for Very Short Patch repair of T/G base mismatches. In certain bacteria (e.g., Vibrio cholerae, Caulobacter crescentus) adenine methylation is essential and in C. crescentus, it is important for temporal gene expression which, in turn, is required for coordinating chromosome initiation, replication and division. In practical terms, Dam and Dcm methylation can inhibit restriction enzyme cleavage; decrease transformation frequency in certain bacteria; decrease the stability of short direct repeats; are necessary for site-directed mutagenesis; and to probe eukaryotic structure and function. PMID:26442938

  16. Identification of didecyldimethylammonium salts and salicylic acid as antimicrobial compounds in commercial fermented radish kimchi.

    PubMed

    Li, Jing; Chaytor, Jennifer L; Findlay, Brandon; McMullen, Lynn M; Smith, David C; Vederas, John C

    2015-03-25

    Daikon radish (Raphanus sativus) fermented with lactic acid bacteria, especially Leuconostoc or Lactobacillus spp., can be used to make kimchi, a traditional Korean fermented vegetable. Commercial Leuconostoc/radish root ferment filtrates are claimed to have broad spectrum antimicrobial activity. Leuconostoc kimchii fermentation products are patented as preservatives for cosmetics, and certain strains of this organism are reported to produce antimicrobial peptides (bacteriocins). We examined the antimicrobial agents in commercial Leuconostoc/radish root ferment filtrates. Both activity-guided fractionation with Amberlite XAD-16 and direct extraction with ethyl acetate gave salicylic acid as the primary agent with activity against Gram-negative bacteria. Further analysis of the ethyl acetate extract revealed that a didecyldimethylammonium salt was responsible for the Gram-positive activity. The structures of these compounds were confirmed by a combination of (1)H- and (13)C NMR, high-performance liquid chromatography, high-resolution mass spectrometry, and tandem mass spectrometry analyses. Radiocarbon dating indicates that neither compound is a fermentation product. No antimicrobial peptides were detected. PMID:25779084

  17. Identification of didecyldimethylammonium salts and salicylic acid as antimicrobial compounds in commercial fermented radish kimchi.

    PubMed

    Li, Jing; Chaytor, Jennifer L; Findlay, Brandon; McMullen, Lynn M; Smith, David C; Vederas, John C

    2015-03-25

    Daikon radish (Raphanus sativus) fermented with lactic acid bacteria, especially Leuconostoc or Lactobacillus spp., can be used to make kimchi, a traditional Korean fermented vegetable. Commercial Leuconostoc/radish root ferment filtrates are claimed to have broad spectrum antimicrobial activity. Leuconostoc kimchii fermentation products are patented as preservatives for cosmetics, and certain strains of this organism are reported to produce antimicrobial peptides (bacteriocins). We examined the antimicrobial agents in commercial Leuconostoc/radish root ferment filtrates. Both activity-guided fractionation with Amberlite XAD-16 and direct extraction with ethyl acetate gave salicylic acid as the primary agent with activity against Gram-negative bacteria. Further analysis of the ethyl acetate extract revealed that a didecyldimethylammonium salt was responsible for the Gram-positive activity. The structures of these compounds were confirmed by a combination of (1)H- and (13)C NMR, high-performance liquid chromatography, high-resolution mass spectrometry, and tandem mass spectrometry analyses. Radiocarbon dating indicates that neither compound is a fermentation product. No antimicrobial peptides were detected.

  18. Comparison of Acetate Turnover in Methanogenic and Sulfate-Reducing Sediments by Radiolabeling and Stable Isotope Labeling and by Use of Specific Inhibitors: Evidence for Isotopic Exchange

    PubMed Central

    de Graaf, W.; Wellsbury, P.; Parkes, R. J.; Cappenberg, T. E.

    1996-01-01

    Acetate turnover in the methanogenic freshwater anoxic sediments of Lake Vechten, The Netherlands, and in anoxic sediments from the Tamar Estuary, United Kingdom, and the Grosser Jasmunder Bodden, Germany, the latter two dominated by sulfate reduction, was determined. Stable isotopes and radioisotopes, inhibitors (chloroform and fluoroacetate), and methane flux were used to provide independent estimates of acetate turnover. Pore water acetate pool sizes were determined by gas chromatography with a flame ionization detector, and stable isotope-labeled acetate was determined by gas chromatography-mass spectrometry. The appearance of acetates with a different isotope labeling pattern from that initially added demonstrated that isotopic exchange occurred during methanogenic acetate metabolism. The predominant exchange processes were (i) D-H exchange in the methyl group and (ii) (sup13)C-(sup12)C exchange at the carboxyl carbon. These exchanges are most probably caused by the activity of the enzyme complex carbon monoxide dehydrogenase and subsequent methyl group dehydrogenation by tetrahydromethanopterine or a related enzyme. The methyl carbon was not subject to exchange during transformation to methane, and hence acetate with the methyl carbon labeled will provide the most reliable estimate of acetate turnover to methane. Acetate turnover rate estimates with these labels were consistent with independent estimates of acetate turnover (acetate accumulation after inhibition and methane flux). Turnover rates from either radioisotope- or stable isotope-labeled methyl carbon isotopes are, however, dependent on accurate determination of the acetate pool size. The additions of large amounts of stable isotope-labeled acetate elevate the acetate pool size, stimulating acetate consumption and causing deviation from steady-state kinetics. This can, however, be overcome by the application of a non-steady-state model. Isotopic exchange in sediments dominated by sulfate reduction

  19. Assessment of salicylate derivatives for potential use in ulcerative colitis: proposal for a new action of 5-aminosalicylic acid?

    PubMed

    Roediger, W E; Deakin, E J; Walker, G; Nance, S H

    1989-01-01

    The therapeutic efficacy of salicylate drugs for ulcerative colitis in vivo is related to the capacity of each drug to suppress fatty acid oxidation in colonocytes in vitro. The suppression index of fatty acid oxidation (SIFO) was assessed with 17 salicylate drugs of either known or unknown therapeutic efficacy. The high SIFO value of 5-aminosalicylic acid (5-ASA) was reduced to zero when the amino group was replaced with a methyl, nitro, hydroxyl or bromine group. The SIFO of 3-ASA was dose-related and 2- to 3-fold greater than the SIFO of 5-ASA. The antioxidants methyl- or propyl-4-hydroxybenzoate have a high SIFO, but show a 'toxic' action towards colonocytes not observed with 3-ASA, 4-ASA or 5-ASA. A new cellular action proposed for 5-ASA is that acetylation of the amino group of 5-ASA in colonocytes releases free CoA countering sequestration of CoA observed in epithelial cells during active colitis. PMID:2511578

  20. Concurrent release of admixed antimicrobials and salicylic acid from salicylate-based poly(anhydride-esters).

    PubMed

    Johnson, Michelle L; Uhrich, Kathryn E

    2009-12-01

    A polymer blend consisting of antimicrobials (chlorhexidine, clindamycin, and minocycline) physically admixed at 10% by weight into a salicylic acid-based poly (anhydride-ester) (SA-based PAE) was developed as an adjunct treatment for periodontal disease. The SA-based PAE/antimicrobial blends were characterized by multiple methods, including contact angle measurements and differential scanning calorimetry. Static contact angle measurements showed no significant differences in hydrophobicity between the polymer and antimicrobial matrix surfaces. Notable decreases in the polymer glass transition temperature (T(g)) and the antimicrobials' melting points (T(m)) were observed indicating that the antimicrobials act as plasticizers within the polymer matrix. In vitro drug release of salicylic acid from the polymer matrix and for each physically admixed antimicrobial was concurrently monitored by high pressure liquid chromatography during the course of polymer degradation and erosion. Although the polymer/antimicrobial blends were immiscible, the initial 24 h of drug release correlated to the erosion profiles. The SA-based PAE/antimicrobial blends are being investigated as an improvement on current localized drug therapies used to treat periodontal disease.

  1. Novel neurological and immunological targets for salicylate-based phytopharmaceuticals and for the anti-depressant imipramine.

    PubMed

    Ulrich-Merzenich, G; Kelber, O; Koptina, A; Freischmidt, A; Heilmann, J; Müller, J; Zeitler, H; Seidel, M F; Ludwig, M; Heinrich, E U; Winterhoff, H

    2012-07-15

    ) showed a slower serotonin turnover (5-hydroxyindol acetic acid/serotonin (p<0.05)) depending on the dosage. Thus WB (30 mg/kg), its ethanolic fraction rich in salicyl alcohol derivatives (FR-D) (30 mg/kg) and imipramine, by being effective in the FST, modulated known and new targets relevant for neuro- and immunofunctions in rats. These findings contribute to our understanding of the link between inflammation and neurological functions and may also support the scope for the development of co-medications from salicylate-containing phytopharmaceuticals as multicomponent mixtures with single component synthetic drugs.

  2. Inhibition of cardiac mitochondrial respiration by salicylic acid and acetylsalicylate.

    PubMed

    Nulton-Persson, Amy C; Szweda, Luke I; Sadek, Hesham A

    2004-11-01

    Acetylsalicylate, the active ingredient in aspirin, has been shown to be beneficial in the treatment and prevention of cardiovascular disease. Because of the increasing frequency with which salicylates are used, it is important to more fully characterize extra- and intracellular processes that are altered by these compounds. Evidence is provided that treatment of isolated cardiac mitochondria with salicylic acid and to a lesser extent acetylsalicylate resulted in an increase in the rate of uncoupled respiration. In contrast, both compounds inhibited ADP-dependent NADH-linked (state 3) respiration to similar degrees. Under the conditions of our experiments, loss in state 3 respiration resulted from inhibition of the Krebs cycle enzyme alpha-ketoglutarate dehydrogenase (KGDH). Kinetic analysis indicates that salicylic acid acts as a competitive inhibitor at the alpha-ketoglutarate binding site. In contrast, acetylsalicylate inhibited the enzyme in a noncompetitive fashion consistent with interaction with the alpha-ketoglutarate binding site followed by enzyme-catalyzed acetylation. The effects of salicylic acid and acetylsalicylate on cardiac mitochondrial function may contribute to the known cardioprotective effects of therapeutic doses of aspirin, as well as to the toxicity associated with salicylate overdose.

  3. Methyl chloride

    Integrated Risk Information System (IRIS)

    Methyl chloride ; CASRN 74 - 87 - 3 ( 07 / 17 / 2001 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for

  4. Methyl acrylate

    Integrated Risk Information System (IRIS)

    Methyl acrylate ; CASRN 96 - 33 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  5. Methyl chlorocarbonate

    Integrated Risk Information System (IRIS)

    Methyl chlorocarbonate ; CASRN 79 - 22 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinog

  6. Methyl isocyanate

    Integrated Risk Information System (IRIS)

    Methyl isocyanate ; CASRN 624 - 83 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  7. Methyl parathion

    Integrated Risk Information System (IRIS)

    Methyl parathion ; CASRN 298 - 00 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  8. Methyl methacrylate

    Integrated Risk Information System (IRIS)

    Methyl methacrylate ; CASRN 80 - 62 - 6 ( 03 / 02 / 98 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments f

  9. Methyl iodide

    Integrated Risk Information System (IRIS)

    Methyl iodide ; CASRN 74 - 88 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effe

  10. CRYSTAL AND MOLECULAR STRUCTURE OF 6,6´-DIMETHOXY-GOSSYPOL:ACETIC ACID (1:1)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    By crystallization from dilute solutions of acetic acid (2-4%) in diethyl ether, acetone, or methyl ethyl ketone, 6,6´-dimethoxy-gossypol forms an inclusion complex with acetic acid in a one-to-one molar ratio. The compound crystallizes in the triclinic P1bar1¯space group and has unit cell dimensio...

  11. Falsely normal anion gap in severe salicylate poisoning caused by laboratory interference.

    PubMed

    Jacob, Jeena; Lavonas, Eric J

    2011-09-01

    Severe salicylate poisoning is classically associated with an anion gap metabolic acidosis. However, high serum salicylate levels can cause false increase of laboratory chloride results on some analyzers. We present 2 cases of life-threatening salicylate poisoning with an apparently normal anion gap caused by an important laboratory interference. These cases highlight that the diagnosis of severe salicylism must be considered in all patients presenting with metabolic acidosis, even in the absence of an increased anion gap.

  12. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes.

    PubMed

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; Zhao, Nan; Chen, Feng; Yang, Xiaohan; Guo, Hong

    2015-09-01

    Although one of an enzyme's hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. It is known that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. Here we report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Our results demonstrate that this enzyme may use substrate-assisted catalysis involving the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination. PMID:26244568

  13. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes

    DOE PAGES

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; Zhao, Nan; Chen, Feng; Yang, Xiaohan; Guo, Hong

    2015-08-05

    Although one of an enzyme’s hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. We know that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. We report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Finally, our results demonstrate that this enzyme may use substrate-assisted catalysis involvingmore » the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.« less

  14. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes

    SciTech Connect

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; Zhao, Nan; Chen, Feng; Yang, Xiaohan; Guo, Hong

    2015-08-05

    Although one of an enzyme’s hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. We know that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. We report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Finally, our results demonstrate that this enzyme may use substrate-assisted catalysis involving the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.

  15. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes.

    PubMed

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; Zhao, Nan; Chen, Feng; Yang, Xiaohan; Guo, Hong

    2015-09-01

    Although one of an enzyme's hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. It is known that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. Here we report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Our results demonstrate that this enzyme may use substrate-assisted catalysis involving the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.

  16. Transparent plastic scintillators for neutron detection based on lithium salicylate

    NASA Astrophysics Data System (ADS)

    Mabe, Andrew N.; Glenn, Andrew M.; Carman, M. Leslie; Zaitseva, Natalia P.; Payne, Stephen A.

    2016-01-01

    Transparent plastic scintillators with pulse shape discrimination containing 6Li salicylate have been synthesized by bulk polymerization with a maximum 6Li loading of 0.40 wt%. Photoluminescence and scintillation responses to gamma-rays and neutrons are reported herein. Plastics containing 6Li salicylate exhibit higher light yields and permit a higher loading of 6Li as compared to previously reported plastics based on lithium 3-phenylsalicylate. However, pulse shape discrimination performance is reduced in lithium salicylate plastics due to the requirement of adding more nonaromatic monomers to the polymer matrix as compared to those based on lithium 3-phenylsalicylate. Reduction in light yield and pulse shape discrimination performance in lithium-loaded plastics as compared to pulse shape discrimination plastics without lithium is interpreted in terms of energy transfer interference by the aromatic lithium salts.

  17. Cutaneous bioassay of salicylic acid as a keratolytic.

    PubMed

    Bashir, S J; Dreher, F; Chew, A L; Zhai, H; Levin, C; Stern, R; Maibach, H I

    2005-03-23

    Keratolytic efficacy of topical preparations containing salicylic acid was studied in humans utilizing adhesive tape stripping and quantifying SC removal by protein analysis. In combination with tape stripping, squamometry was used to evaluate the influence of salicylic acid on skin surface scaliness and desquamation. Furthermore, skin barrier perturbation and skin irritancy was recorded and related to the dermatopharmacological effect of the preparations. In contrast to squamometry, tape stripping combined with protein analysis was sensitive in detecting keratolytic effect of salicylic acid within hours of application. Importantly, whereas the pH of the preparations only minimally influenced efficacy, local dermatotoxicity was significantly increased at acidic pH. This indicates that the quest to increase the amount of free, non-dissociated SA is, in fact, counterproductive as the more acidic preparations resulted in skin irritation and barrier disruption.

  18. In situ detection of salicylate in Ocimum basilicum plant leaves via reverse iontophoresis.

    PubMed

    González-Sánchez, M I; Lee, P T; Guy, R H; Compton, R G

    2015-11-28

    The quantitative analysis of salicylate provides useful information for the evaluation of metabolic processes in plants. We report a simple, noninvasive method to measure salicylate in situ in Ocimum basilicum leaves using reverse iontophoresis in combination with cyclic voltammetry at disposable screen-printed electrodes and the concentration of salicylate in basil leaves was found to be 3 mM.

  19. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under...

  20. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under...

  1. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under...

  2. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under...

  3. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under...

  4. Treatment of tinea versicolor with sulfur-salicylic shampoo.

    PubMed

    Bamford, J T

    1983-02-01

    One week of nightly application of sulfur-salicylic acid shampoo as a lotion was evaluated for the treatment of tinea versicolor. One half of the randomly allocated patients used the active preparation and the other half used a bland oil-in-water lotion as a placebo. Three months after completing treatment, nineteen of twenty-two using sulfur-salicylic acid shampoo were still negative by KOH examination, whereas only one of sixteen controls was negative. Skin irritation occurred in a few patients but did not reduce the effectiveness of the treatment.

  5. The origins of atmospheric methyl mercury

    SciTech Connect

    Prestbo, E.M.; Bloom, N.S.

    1995-12-31

    Methyl Hg in precipitation shows strong regional patterns, with highest volume weighted mean values (0.4 ng/L) in the Pacific Northwest and lowest values in Florida (<0.01 ng/l). Over most of the North Central region, average values range from 0.05 to 0.2 ng/L. Several potential sources of methyl Hg to the atmosphere have been investigated, including direct anthropogenic emissions, atmospheric methylation of Hg{sup o} or Hg(II), and emissions of methyl or dimethyl Hg from natural surfaces (oceans, bogs, or forests). Direct measurements of major total Hg sources such as coal and waste combustors, and sewage treatment facilities suggest that direct anthropogenic emissions are an insignificant source of methyl Hg to the atmosphere. The gas phase reaction of methyl halides with Hg{sup o} also appears to be an insignificant source of methyl Hg to the atmosphere. Recent laboratory experiments have provided a likely mechanism for atmospheric Hg methylation via a complex reaction involving acetate, sulfite, and iron. From a series of field measurements, another source appears to be the degradation of dimethyl mercury emitted by the upwelling of deep ocean water.

  6. Negative anion gap metabolic acidosis in salicylate overdose--a zebra!

    PubMed

    Kaul, Viren; Imam, Syed Haider; Gambhir, Harvir Singh; Sangha, Arindam; Nandavaram, Sravanthi

    2013-10-01

    Salicylate poisoning classically results in an increased anion gap metabolic acidosis. We discuss a case of normal anion gap metabolic acidosis despite elevated serum salicylate concentration. This diagnostic dilemma stemmed from aberrant reading of salicylate ions by analyzer electrodes as chloride ions leading to falsely negative anion gap. On review, this phenomenon is found to be possible with a number of commonly used analyzers. In emergency department settings, high level of clinical suspicion for salicylate poisoning should be maintained, and metabolic acidosis with normal anion gap should not be used to rule out salicylate overdose. This can prevent significant avoidable morbidity and mortality.

  7. The efficacy and pharmacokinetics of sodium salicylate in post-operative dental pain.

    PubMed Central

    Seymour, R A; Rawlins, M D; Clothier, A

    1984-01-01

    Sodium salicylate, 537 mg and 1074 mg were compared in a double-blind cross-over study in 24 patients with post-operative pain following removal of impacted lower third molars. No significant analgesic effect was observed after either dose of sodium salicylate, either overall or at any time point during the 5 h investigation period. Peak plasma concentrations of salicylate after 537 mg were observed at 30 min after dosage, whereas peak plasma salicylate concentrations after 1074 mg sodium salicylate occurred at 45 min after dosage. PMID:6704286

  8. The protective effect of salicylic acid on lysozyme against riboflavin-mediated photooxidation.

    PubMed

    Li, Kun; Wang, Hongbao; Cheng, Lingli; Zhu, Hui; Wang, Mei; Wang, Shi-Long

    2011-06-01

    As a metabolite of aspirin in vivo, salicylic acid was proved to protect lysozyme from riboflavin-mediated photooxidation in this study. The antioxidative properties of salicylic acid were further studied by using time-resolved laser flash photolysis of 355 nm. It can quench the triplet state of riboflavin via electron transfer from salicylic acid to the triplet state of riboflavin with a reaction constant of 2.25×10(9) M(-1) s(-1). Mechanism of antioxidant activities of salicylic acid on lysozyme oxidation was discussed. Salicylic acid can serve as a potential antioxidant to quench the triplet state of riboflavin and reduce oxidative pressure.

  9. The protective effect of salicylic acid on lysozyme against riboflavin-mediated photooxidation

    NASA Astrophysics Data System (ADS)

    Li, Kun; Wang, Hongbao; Cheng, Lingli; Zhu, Hui; Wang, Mei; Wang, Shi-Long

    2011-06-01

    As a metabolite of aspirin in vivo, salicylic acid was proved to protect lysozyme from riboflavin-mediated photooxidation in this study. The antioxidative properties of salicylic acid were further studied by using time-resolved laser flash photolysis of 355 nm. It can quench the triplet state of riboflavin via electron transfer from salicylic acid to the triplet state of riboflavin with a reaction constant of 2.25 × 10 9 M -1 s -1. Mechanism of antioxidant activities of salicylic acid on lysozyme oxidation was discussed. Salicylic acid can serve as a potential antioxidant to quench the triplet state of riboflavin and reduce oxidative pressure.

  10. Quantum magnetic deflagration in acetate.

    PubMed

    Hernández-Mínguez, A; Hernandez, J M; Macià, F; García-Santiago, A; Tejada, J; Santos, P V

    2005-11-18

    We report controlled ignition of magnetization reversal avalanches by surface acoustic waves in a single crystal of acetate. Our data show that the speed of the avalanche exhibits maxima on the magnetic field at the tunneling resonances of Mn(12). Combined with the evidence of magnetic deflagration in Mn(12) acetate, this suggests a novel physical phenomenon: deflagration assisted by quantum tunneling. PMID:16384178

  11. Quantum magnetic deflagration in acetate.

    PubMed

    Hernández-Mínguez, A; Hernandez, J M; Macià, F; García-Santiago, A; Tejada, J; Santos, P V

    2005-11-18

    We report controlled ignition of magnetization reversal avalanches by surface acoustic waves in a single crystal of acetate. Our data show that the speed of the avalanche exhibits maxima on the magnetic field at the tunneling resonances of Mn(12). Combined with the evidence of magnetic deflagration in Mn(12) acetate, this suggests a novel physical phenomenon: deflagration assisted by quantum tunneling.

  12. Differences in Esterase Activity to Aspirin and p-Nitrophenyl Acetate among Human Serum Albumin Preparations.

    PubMed

    Tatsumi, Akitoshi; Okada, Masaya; Inagaki, Yoshihiro; Inoue, Sachiyo; Hamaguchi, Tsuneo; Iwakawa, Seigo

    2016-01-01

    Human serum albumin (HSA) has two major ligand-binding sites, sites I and II, and also hydrolyzes some compounds at both sites. In the present study, we investigated differences in esterase activity among HSA preparations, and also the effects of warfarin, indomethacin, and naproxen on the hydrolytic activities of HSA to aspirin and p-nitrophenyl acetate. The esterase activities of HSA to aspirin or p-nitrophenyl acetate were measured from the pseudo-first-order formation rate constant (kobs) of salicylic acid or p-nitrophenol by HSA. Inter-lot variations were observed in the esterase activities of HSA to aspirin and p-nitrophenyl acetate; however, the esterase activity of HSA to aspirin did not correlate with that to p-nitrophenyl acetate. The inhibitory effects of warfarin and indomethacin on the esterase activity of HSA to aspirin were stronger than that of naproxen. In contrast, the inhibitory effect of naproxen on the esterase activity of HSA to p-nitrophenyl acetate was stronger than those of warfarin and indomethacin. These results suggest that the administration of different commercial HSA preparations and the co-administration with site I or II high-affinity binding drugs may change the pharmacokinetic profiles of drugs that are hydrolyzed by HSA. PMID:27476944

  13. Transepithelial transport of salicylate by the Malpighian tubules of insects from different orders.

    PubMed

    Ruiz-Sanchez, Esau; Van Walderveen, Maria C; Livingston, Alexandra; O'Donnell, Michael J

    2007-10-01

    The organic anion salicylate is a plant secondary metabolite that protects plants against phytophagous insects. In this study, a combination of salicylate-selective microelectrodes and a radioisotope tracer technique was used to study the transepithelial transport of salicylate by the Malpighian tubules of 10 species of insects from five orders. Our results show that salicylate is transported into the lumen of the Malpighian tubules in all the species evaluated, except Rhodnius prolixus. The transepithelial transport of salicylate by the Malpighian tubules of Drosophila simulans, Drosophila erecta, Drosophila sechellia, and Acheta domesticus was saturable, Na(+)-dependent and inhibited by alpha-cyano-4-hydroxycinnamic acid. This transport system resembles that previously found in tubules of Drosophila melanogaster. In contrast, transepithelial transport of salicylate by Malpighian tubules of Tenebrio molitor, Plagiodera versicolora, Aedes aegypti, and Trichoplusia ni was unaffected by Na(+)-free bathing saline. The presence of both salicylate and salicylate metabolites in the secreted fluid samples from the Malpighian tubules of A. domesticus, R. prolixus, T. molitor, and T. ni indicates that insect Malpighian tubules may both transport and metabolize salicylate. The highest capacities to rid the hemolymph of salicylate were found in T. molitor, P. versicolora and Drosphila spp. Our results suggest that transport of salicylate by the Malpighian tubules might contribute to elimination of this organic anion from the hemolymph, particularly in some species that encounter high levels of organic anion in the diet.

  14. Zeta-crystallin displays strong selectivity for salicylic acid over aspirin.

    PubMed

    Bazzi, Mohammad D

    2002-04-26

    Interaction of camel lens zeta-crystallin with aspirin was investigated by activity and fluorescence measurements. Aspirin minimally inhibited the oxidoreductase activity of the enzyme and weakly quenched its fluorescence. However, significant fluorescence quenching of zeta-crystallin coincided with the appearance of a fluorescence signal characteristic of salicylic acid thereby raising the possibility that salicylic acid might have been the moiety responsible for inhibition and fluorescence quenching. Direct fluorescence measurements showed that zeta-crystallin had a much higher affinity for salicylic acid than aspirin (K(i) of about 24 microM for salicylic acid versus 630 microM for aspirin). Salicylic acid was also far more effective in inhibiting zeta-crystallin than aspirin (K(i) values were 23 microM versus 820 microM, respectively). Inhibition kinetics suggested that salicylic acid interacted with zeta-crystallin via a binding site that was distinct from that of NADPH. Salicylic acid also interacted with and quenched the fluorescence of camel lens alpha-crystallin suggesting a general mode of interaction with lens proteins. Within the normal therapeutic concentrations of salicylic acid or aspirin, only crystallin-salicylic acid interactions might be significant. These results showed that camel lens zeta- and alpha-crystallin exhibited remarkable selectivity for salicylic acid over aspirin, and thus, could be considered as salicylate-binding proteins.

  15. Salicylic acid is not a bacterial siderophore: a theoretical study.

    PubMed

    Chipperfield, J R; Ratledge, C

    2000-06-01

    Using a newly available program for calculating the concentrations and speciation of various ions (Pettit, LD & Powell KJ, 'SolEq' Academic Software, 1999), we have calculated that at pH 7 the amount of free Fe(III) present in an aqueous solution is 1.4 x 10(-9) M and not 10(-18) M as is usually quoted. In the presence of salicylic acid, included in the calculations at 10(-4) M, the solubility of Fe(III) is increased to only 9.8 x 10(-9) M suggesting that salicylate is unable to act as a siderophore although it is produced as an extracellular product by several bacterial genera when grown iron deficiently. In the presence of 40 mM phosphate, the soluble Fe(III) concentration is decreased by 10(4) at pH 7 and again this is hardly affected by the presence of salicylate. Thus, for microorganisms grown either in vitro or in vivo, salicylate is unlikely to function as a iron solubilizing agent. The same conclusions may also apply to 2,3-dihydroxybenzoic acid.

  16. Reye's syndrome: salicylate and mitochondrial monoamine oxidase function

    SciTech Connect

    Faraj, B.A.; Caplan, D.; Lolies, P.

    1986-03-01

    It has been suggested that aspirin is somehow linked with the onset of Reye's syndrome (RS). A general feature of Reye's syndrome is severe impairment of mitochondrial monoamine oxidase (MAO) function. The main objective of this investigation was to study the effect of salicylate on platelet mitochondrial MAO activity in three groups: group A (healthy children, n = 21) and group C (healthy adults, n = 10). Platelet MAO was measured by radio-enzymatic technique with /sup 14/C-tyramine as a substrate. The results showed that salicyclate (10 mM) had a 20 to 60 percent inhibitory effect on platelet MAO function in only 1, 3 and 2 of the subjects in group A, B and C. Furthermore, there was an association between low enzyme activity and salicylate MAO inhibitory effect in these subjects. These preliminary findings suggest that salicylate may induce deterioration in mitochondrial function in susceptible individuals and that the assessment of salicylate MAO inhibitory effect may identify those who may be at risk to develop aspirin poisoning and Reye's syndrome.

  17. 21 CFR 862.3830 - Salicylate test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Salicylate test system. 862.3830 Section 862.3830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems §...

  18. 21 CFR 862.3830 - Salicylate test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Salicylate test system. 862.3830 Section 862.3830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems §...

  19. Measurement of salicylic acid in human serum using stable isotope dilution and gas chromatography-mass spectrometry.

    PubMed

    Battezzati, A; Fiorillo, G; Spadafranca, A; Bertoli, S; Testolin, G

    2006-07-15

    A simple, highly selective, and sensitive method using stable isotope dilution and gas chromatography-mass spectrometry has been developed to quantify salicylic acid (SA) at concentrations naturally occurring in biological fluids, such as in the serum of subjects not taking aspirin. After extraction of liquid-liquid with diethyl ether and ethyl acetate and preparation of the tert-butyldimethylsilyl derivative, SA content was detected using deuterated SA as internal standard. The mean recovery of SA from serum was 85 +/- 6%. Intra- and interday precision and % relative error were <15% in all cases. With a detection limit of 0.6 ng and a quantification limit of 2 ng, the method is therefore also adequate for population studies because of the small amount of blood necessary to perform the analyses.

  20. 1-Acetylpyrene-salicylic acid: photoresponsive fluorescent organic nanoparticles for the regulated release of a natural antimicrobial compound, salicylic acid.

    PubMed

    Barman, Shrabani; Mukhopadhyay, Sourav K; Behara, Krishna Kalyani; Dey, Satyahari; Singh, N D Pradeep

    2014-05-28

    Photoresponsive 1-acetylpyrene-salicylic acid (AcPy-SA) nanoparticles (NPs) were developed for the regulated release of a natural antimicrobial compound, salicylic acid. The strong fluorescent properties of AcPy-SA NPs have been extensively used for potential in vitro cell imaging. The phototrigger capability of our newly prepared AcPy-SA NPs was utilized for the efficient release of an antimicrobial compound, salicylic acid. The photoregulated drug release of AcPy-SA NPs has been shown by the subsequent switching off and on of a visible-light source. In vitro biological studies reveal that AcPy-SA NPs of ∼68 nm size deliver the antimicrobial drug salicylic acid into the bacteria cells (Pseudomonas aeruginosa) and efficiently kill the cells upon exposure to visible light (≥410 nm). Such photoresponsive fluorescent organic NPs will be highly beneficial for targeted and regulated antimicrobial drug release because of their biocompatible nature, efficient cellular uptake, and light-induced drug release ability.

  1. Vinyl ethers containing an epoxy group. XVI. Reaction of glycidol vinyloxyethyl ether with acetals

    SciTech Connect

    Nedolya, N.A.; Khil'ko, M.Ya.; Trofimov, B.A.; Sigalov, M.V.

    1988-10-10

    In order to obtain branched acetals with epoxide groups (prospective monomers and intermediates) the authors investigated the reaction of acetaldehyde diethyl and di(1,1,3-trihydrotetrafluoropropyl) acetals with glycidol vinyloxyethyl ether. The addition of acetals to vinyl epoxy ethers was realized, and the first representative of compounds of this type, i.e., 9-glycidyloxy-6-ethoxy-4-methyl-3,7-dioxanonane, was obtained. It was also impossible to add a fluoroacetal to butyl vinyl ether (0.08-1.00 wt. % of catalyst CF/sub 3/COOH, BF/sub 3//times/ OEt/sub 2/, 20-80/degree/C, 0.5-3 h).

  2. Isotopic orientational order in acetyl salicylic acid

    NASA Astrophysics Data System (ADS)

    Schiebel, P.; Prandl, W.; Papoular, R.; Paulus, W.; Detken, A.; Haeberlen, U.; Zimmermann, H.

    2000-03-01

    Isotopically mixed methyl groups CD xH 3- x with zero averaged deuteron/hydrogen scattering length 0=< a>= xaD+(3- x) aH are expected to be invisible in a neutron diffraction experiment. We find, indeed, in the scattering length density of aspirin-CD xH 3- x, reconstructed by maximum-entropy methods, at room temperature only three very week minima. At 10 K, however, one positive and two negative extrema are visible: unique evidence for orientational isotopic order. From a combination of 1-d-Fourier and algebraic methods we deconvolute < a> and derive the orientational distribution function f( φ) which has three equivalent maxima/minima at 300 K and loses this 3 φ periodicity at 10 K. f( φ) is the basis for the determination of the hindrance potential with cos( φ) as the leading term.

  3. Effect of methylazoxymethanol acetate on bluegill sunfish cell cultures in vitro

    SciTech Connect

    Borenfreund, E.; Babich, H.; Martin-Alguacil, N.

    1989-06-01

    An epithelioid cell line derived from fin tissue of bluegill sunfish (designated BG/F) exhibited early indications of cell transformation upon exposure to methylazoxymethanol acetate (MAM acetate). Such changes included the induction of polyploidy, increased colony-forming efficiency, loss of contact inhibition, and formation of transformed foci. Unlike later transformation characteristics observed with mammalian cells, the MAM acetate-treated BG/F cells could not be propagated under conditions of anchorage independence in soft agar. Incubation of BG/F cells with N-methyl-N'-nitro-N-nitrosoguanidine, followed by exposure to 12-O-tetradecanoylphorbol-13-acetate, was not observed to cause cell transformation under the experimental conditions. The controls of a fibroblastic cell culture derived from gill tissue of bluegill sunfish showed spontaneous transformation after 6 months of passage, similar to the transformation observed in the experimental MAM acetate treated gill cultures.

  4. Lewis base activation of Lewis acids: catalytic, enantioselective addition of glycolate-derived silyl ketene acetals to aldehydes.

    PubMed

    Denmark, Scott E; Chung, Won-Jin

    2008-06-20

    A catalytic system involving silicon tetrachloride and a chiral, Lewis basic bisphosphoramide catalyst is effective for the addition of glycolate-derived silyl ketene acetals to aldehydes. It was found that the sense of diastereoselectivity could be modulated by changing the size of the substituents on the silyl ketene acetals. In general, the trimethylsilyl ketene acetals derived from methyl glycolates with a large protecting group on the alpha-oxygen provide enantiomerically enriched alpha,beta-dihydroxy esters with high syn-diastereoselectivity, whereas the tert-butyldimethylsilyl ketene acetals derived from bulky esters of alpha-methoxyacetic acid provide enantiomerically enriched alpha,beta-dihydroxy esters with high anti-diastereoselecitvity.

  5. Isotope fractionation during the anaerobic consumption of acetate by methanogenic and sulfate-reducing microorganisms

    NASA Astrophysics Data System (ADS)

    Gövert, D.; Conrad, R.

    2009-04-01

    During the anaerobic degradation of organic matter in anoxic sediments and soils acetate is the most important substrate for the final step in production of CO2 and/or CH4. Sulfate-reducing bacteria (SRB) and methane-producing archaea both compete for the available acetate. Knowledge about the fractionation of 13C/12C of acetate carbon by these microbial groups is still limited. Therefore, we determined carbon isotope fractionation in different cultures of acetate-utilizing SRB (Desulfobacter postgatei, D. hydrogenophilus, Desulfobacca acetoxidans) and methanogens (Methanosarcina barkeri, M. acetivorans). Including literature values (e.g., Methanosaeta concilii), isotopic enrichment factors (epsilon) ranged between -35 and +2 permil, possibly involving equilibrium isotope effects besides kinetic isotope effects. The values of epsilon were dependent on the acetate-catabolic pathway of the particular microorganism, the methyl or carboxyl position of acetate, and the relative availability or limitation of the substrate acetate. Patterns of isotope fractionation in anoxic lake sediments and rice field soil seem to reflect the characteristics of the microorganisms actively involved in acetate catabolism. Hence, it might be possible using environmental isotopic information to determine the type of microbial metabolism converting acetate to CO2 and/or CH4.

  6. Salicylic acid induces apoptosis in colon carcinoma cells grown in-vitro: Influence of oxygen and salicylic acid concentration

    SciTech Connect

    Zitta, Karina; Meybohm, Patrick; Bein, Berthold; Huang, Ying; Heinrich, Christin; Scholz, Jens; Steinfath, Markus; Albrecht, Martin

    2012-04-15

    In solid tumors the hypoxic environment can promote tumor progression and resistance to therapy. Recently, acetylsalicylic acid a major component of analgesic drugs and its metabolite salicylic acid (SA) have been shown to reduce the risk of colon cancer, but the mechanisms of action remain still unclear. Here we elucidate the effects of physiologically relevant concentrations of SA on colon carcinoma cells (CaCo-2) grown under normoxic and hypoxic conditions. Western blotting, caspase-3/7 apoptosis assays, MTS cell-proliferation assays, LDH cytotoxicity assays and hydrogen peroxide measurements were performed to investigate the effects of 1 and 10 {mu}M SA on CaCo-2 cells grown under normoxic conditions and cells exposed to hypoxia. Under normoxic conditions, SA did not influence cell proliferation or LDH release of CaCo-2 cells. However, caspase-3/7 activity was significantly increased. Under hypoxia, cell proliferation was reduced and LDH release and caspase-3/7 activities were increased. None of these parameters was altered by the addition of SA under hypoxic conditions. Hypoxia increased hydrogen peroxide concentrations 300-fold and SA significantly augmented the release of hydrogen peroxide under normoxic, but not under hypoxic conditions. Phosphorylation of the pro-survival kinases akt and erk1/2 was not changed by SA under hypoxic conditions, whereas under normoxia SA reduced phosphorylation of erk1/2 after 2 hours. We conclude that in colon carcinoma cells effects of SA on apoptosis and cellular signaling are dependent on the availability of oxygen. -- Highlights: Black-Right-Pointing-Pointer Effects of salicylic acid on colon carcinoma cells grown under normoxic and hypoxic conditions Black-Right-Pointing-Pointer Salicylic acid increases caspase-3/7 activity and hydrogen peroxide release under normoxia Black-Right-Pointing-Pointer Salicylic acid decreases pro-survival erk-1/2 phosphorylation under normoxia Black-Right-Pointing-Pointer Salicylic acid does

  7. Arabidopsis wat1 (walls are thin1)-mediated resistance to the bacterial vascular pathogen, Ralstonia solanacearum, is accompanied by cross-regulation of salicylic acid and tryptophan metabolism.

    PubMed

    Denancé, Nicolas; Ranocha, Philippe; Oria, Nicolas; Barlet, Xavier; Rivière, Marie-Pierre; Yadeta, Koste A; Hoffmann, Laurent; Perreau, François; Clément, Gilles; Maia-Grondard, Alessandra; van den Berg, Grardy C M; Savelli, Bruno; Fournier, Sylvie; Aubert, Yann; Pelletier, Sandra; Thomma, Bart P H J; Molina, Antonio; Jouanin, Lise; Marco, Yves; Goffner, Deborah

    2013-01-01

    Inactivation of Arabidopsis WAT1 (Walls Are Thin1), a gene required for secondary cell-wall deposition, conferred broad-spectrum resistance to vascular pathogens, including the bacteria Ralstonia solanacearum and Xanthomonas campestris pv. campestris, and the fungi Verticillium dahliae and Verticillium albo-atrum. Introduction of NahG, the bacterial salicylic acid (SA)-degrading salicylate hydroxylase gene, into the wat1 mutant restored full susceptibility to both R. solanacearum and X. campestris pv. campestris. Moreover, SA content was constitutively higher in wat1 roots, further supporting a role for SA in wat1-mediated resistance to vascular pathogens. By combining transcriptomic and metabolomic data, we demonstrated a general repression of indole metabolism in wat1-1 roots as shown by constitutive down-regulation of several genes encoding proteins of the indole glucosinolate biosynthetic pathway and reduced amounts of tryptophan (Trp), indole-3-acetic acid and neoglucobrassicin, the major form of indole glucosinolate in roots. Furthermore, the susceptibility of the wat1 mutant to R. solanacearum was partially restored when crossed with either the trp5 mutant, an over-accumulator of Trp, or Pro35S:AFB1-myc, in which indole-3-acetic acid signaling is constitutively activated. Our original hypothesis placed cell-wall modifications at the heart of the wat1 resistance phenotype. However, the results presented here suggest a mechanism involving root-localized metabolic channeling away from indole metabolites to SA as a central feature of wat1 resistance to R. solanacearum.

  8. Transcriptional and post-translational regulation of S-adenosyl-L-methionine: salicylic acid carboxyl methyltransferase (SAMT) during Stephanotis floribunda flower development.

    PubMed

    Pott, Marcella B; Effmert, Uta; Piechulla, Birgit

    2003-06-01

    Methyl salicylate (MeSA) and a number of other volatiles are primarily emitted in the evening/night by Stephanotis floribunda leading to attraction of night active pollinators. A second minor emission peak for MeSA occurs in the morning/day. To understand these emission patterns, we have studied in detail the temporal regulation of the last step of the biosynthetic pathway of MeSA, the convertion of salicylic acid (SA) to MeSA catalysed by S-adenosyl-L-methionine: salicylic acid carboxyl methyltransferase (SAMT). We observed that in young flowers a maximum in SAMT activity occurs in the night, and that in flowers which were open longer than 4 days, two SAMT activity maxima occurred per day. These maxima correlated well with dawn and dusk and the previously detected MeSA emission peaks. The SAMT mRNA levels, however, have a broad maximum during the dark phase, while the SAMT protein levels continuously increase during floral development without showing daily rhythms. Furthermore, under continuous illumination (LL) the SAMT mRNA levels and activity patterns oscillate, suggesting the involvement of a circadian clock in the regulation network. Taken together, this analysis clearly demonstrates that regulation of MeSA emission occurs both at the transcriptional and post-translational levels, indicating that control at more than one level is necessary to guarantee the precise timing of volatile emission in flowers of S. floribunda. PMID:12872485

  9. Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism.

    PubMed

    Zhang, Kewei; Halitschke, Rayko; Yin, Changxi; Liu, Chang-Jun; Gan, Su-Sheng

    2013-09-01

    The plant hormone salicylic acid (SA) plays critical roles in plant defense, stress responses, and senescence. Although SA biosynthesis is well understood, the pathways by which SA is catabolized remain elusive. Here we report the identification and characterization of an SA 3-hydroxylase (S3H) involved in SA catabolism during leaf senescence. S3H is associated with senescence and is inducible by SA and is thus a key part of a negative feedback regulation system of SA levels during senescence. The enzyme converts SA (with a Km of 58.29 µM) to both 2,3-dihydroxybenzoic acid (2,3-DHBA) and 2,5-DHBA in vitro but only 2,3-DHBA in vivo. The s3h knockout mutants fail to produce 2,3-DHBA sugar conjugates, accumulate very high levels of SA and its sugar conjugates, and exhibit a precocious senescence phenotype. Conversely, the gain-of-function lines contain high levels of 2,3-DHBA sugar conjugates and extremely low levels of SA and its sugar conjugates and display a significantly extended leaf longevity. This research reveals an elegant SA catabolic mechanism by which plants regulate SA levels by converting it to 2,3-DHBA to prevent SA overaccumulation. The research also provides strong molecular genetic evidence for an important role of SA in regulating the onset and rate of leaf senescence.

  10. Relative bioavailability of salicylic acid following dermal application of a 30% salicylic acid skin peel preparation.

    PubMed

    Fung, Wing; Orak, Deborah; Re, Thomas A; Haughey, David B

    2008-03-01

    A single-center, single-sequence, two-period crossover study was performed to compare the systemic exposure to salicylic acid (SA) following facial application of a 30% SA cosmetic skin peel formulation applied for 5 min and an oral dose of 650 mg aspirin in nine healthy male and female subjects. The mean (SD) maximum SA concentration (Cmax) was 0.81 (0.32) microg/mL and 56.4 (14.2) microg/mL. The AUC-based safety margin ratio was 50:1. A depot effect was observed during topical application of the skin peel solution as the absorption of SA continued beyond the 5-min application period. Plasma SA Cmax values were achieved from 1.4 to 3.5 h after topical application and from 0.5 to 1.5 h after oral aspirin. The plasma concentrations in the present study (30%; 5 min) were similar to that of a low concentration (2%) applied in a leave-on product to the same body surface area. In conclusion, our results suggest that the use of this SA facial peel should not pose any significant systemic health risks.

  11. Relative bioavailability of salicylic acid following dermal application of a 30% salicylic acid skin peel preparation.

    PubMed

    Fung, Wing; Orak, Deborah; Re, Thomas A; Haughey, David B

    2008-03-01

    A single-center, single-sequence, two-period crossover study was performed to compare the systemic exposure to salicylic acid (SA) following facial application of a 30% SA cosmetic skin peel formulation applied for 5 min and an oral dose of 650 mg aspirin in nine healthy male and female subjects. The mean (SD) maximum SA concentration (Cmax) was 0.81 (0.32) microg/mL and 56.4 (14.2) microg/mL. The AUC-based safety margin ratio was 50:1. A depot effect was observed during topical application of the skin peel solution as the absorption of SA continued beyond the 5-min application period. Plasma SA Cmax values were achieved from 1.4 to 3.5 h after topical application and from 0.5 to 1.5 h after oral aspirin. The plasma concentrations in the present study (30%; 5 min) were similar to that of a low concentration (2%) applied in a leave-on product to the same body surface area. In conclusion, our results suggest that the use of this SA facial peel should not pose any significant systemic health risks. PMID:17694544

  12. Mutational Analysis of a Role for Salicylic Acid in Iron Metabolism of Mycobacterium smegmatis

    PubMed Central

    Adilakshmi, Tadepalli; Ayling, Peter D.; Ratledge, Colin

    2000-01-01

    The role of salicylic acid in iron metabolism was examined in two wild-type strains (mc2155 and NCIMB 8548) and three mutant strains (mc21292 [lacking exochelin], SM3 [lacking iron-dependent repressor protein IdeR] and S99 [a salicylate-requiring auxotroph derived in this study]) of Mycobacterium smegmatis. Synthesis of salicylate in SM3 was derepressed even in the presence of iron, as was synthesis of the siderophores exochelin, mycobactin, and carboxymycobactin. S99 was dependent on salicylate for growth and failed to grow with the three ferrisiderophores, suggesting that salicylate fulfills an additional function(s) other than being a precursor of mycobactin and carboxymycobactin. Salicylic acid at 100 μg/ml repressed the formation of a 29-kDa cell envelope protein (putative exochelin receptor protein) in S99 grown both iron deficiently and iron sufficiently. In contrast, synthesis of this protein was affected only under iron-limited conditions in the parent strain, mc2155, and remained unaltered in SM3, suggesting an interaction between the IdeR protein and salicylate. Thus, salicylate may also function as a signal molecule for recognition of cellular iron status. Growth of all strains and mutants with p-aminosalicylate (PAS) at 100 μg/ml increased salicylate accumulation between three- and eightfold under both iron-limited and iron-sufficient growth conditions and decreased mycobactin accumulation by 40 to 80% but increased carboxymycobactin accumulation by 50 to 55%. Thus, although PAS inhibited salicylate conversion to mycobactin, presumptively by blocking salicylate AMP kinase, PAS also interferes with the additional functions of salicylate, as its effect was heightened in S99 when the salicylate concentration was minimal. PMID:10629169

  13. Preparation and evaluation of Eudragit gels. II: In vitro release of salicylic acid, sodium salicylate, and ketoprofen from Eudragit L and S organogels.

    PubMed

    Kawata, M; Suzuki, T; Kim, N S; Ito, T; Kurita, A; Miyagoe, Y; Goto, S

    1991-11-01

    The in vitro dissolution characteristic of salicylic acid, sodium salicylate, and ketoprofen from Eudragit L and S organogels was investigated by the rotation disk method. The dissolution pattern of salicylic acid and erosion of Eudragit L polymer from the organogels followed apparent zero-order kinetics, providing strong evidence for a surface erosion mechanism and negligible diffusional release of salicylic acid. On the other hand, the dissolution of salicylic acid from Eudragit S organogels was a linear function of the square root of time. The apparent dissolution rate of salicylic acid from Eudragit S organogels increased with increasing temperature from 32 to 42 degrees C and agitation rate from 50 to 200 rpm. A linear relationship was obtained between the logarithm of apparent dissolution rate constants and the reciprocal of absolute temperatures. The activation energy for release of salicylic acid from Eudragit S organogels was in the range of 2.99 to 5.57 kcal/mol. From various experimental results, it was concluded that the release process of salicylic acid from Eudragit S organogels was diffusion controlled through the organogels matrix.

  14. Olfactoryresponse of the predatory mite Typhlodromus pyri (Acari: Phytoseiidae) to methyl salicylate in laboratory bioassays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The response of Typhlodromus pyri, a key predator of grapevine rust mite (Calepitrimerus vitis), to MeSA was tested using a Y-tube olfactometer in laboratory bioassays. Six doses ranging from 200 to 0.002 µg of diluted MeSA were tested. Significantly higher proportions of T. pyri preferred MeSA at ...

  15. Method development and validation for optimised separation of salicylic, acetyl salicylic and ascorbic acid in pharmaceutical formulations by hydrophilic interaction chromatography and response surface methodology.

    PubMed

    Hatambeygi, Nader; Abedi, Ghazaleh; Talebi, Mohammad

    2011-09-01

    This paper introduces a design of experiments (DOE) approach for method optimisation in hydrophilic interaction chromatography (HILIC). An optimisation strategy for the separation of acetylsalicylic acid, its major impurity salicylic acid and ascorbic acid in pharmaceutical formulations by HILIC is presented, with the aid of response surface methodology (RSM) and Derringer's desirability function. A Box-Behnken experimental design was used to build the mathematical models and then to choose the significant parameters for the optimisation by simultaneously taking both resolution and retention time as the responses. The refined model had a satisfactory coefficient (R²>0.92, n=27). The four independent variables studied simultaneously were: acetonitrile content of the mobile phase, pH and concentration of buffer and column temperature each at three levels. Of these, the concentration of buffer and its cross-product with pH had a significant, positive influence on all studied responses. For the test compounds, the best separation conditions were: acetonitrile/22 mM ammonium acetate, pH 4.4 (82:18, v/v) as the mobile phase and column temperature of 28°C. The methodology also captured the interaction between variables which enabled exploration of the retention mechanism involved. It would be inferred that the retention is governed by a compromise between hydrophilic partitioning and ionic interaction. The optimised method was further validated according to the ICH guidelines with respect to linearity and range, precision, accuracy, specificity and sensitivity. The robustness of the method was also determined and confirmed by overlying counter plots of responses which were derived from the experimental design utilised for method optimisation.

  16. Effect of salicylic acid on invasion of human vascular endothelial cells by Staphylococcus aureus.

    PubMed

    Park, Wan Beom; Kim, Sung-Han; Cho, Jae Hyun; Bang, Ji Hwan; Kim, Hong Bin; Kim, Nam Joong; Oh, Myoung-don; Choe, Kang Won

    2007-02-01

    Invasion of vascular endothelial cells by Staphylococcus aureus is associated with diverse complications and recurrent infection. Little is known about the effect of salicylic acid, the major metabolite of aspirin, on the interaction between S. aureus and vascular endothelial cells. We examined the adhesion of S. aureus strain 8325-4 cultured with or without salicylic acid to human umbilical vein endothelial cells (HUVECs), and the ability of the strain to invade these cells. Strain 8325-4 cells grown in salicylic acid were significantly less adherent to and invasive in HUVECs. Production of cytokine interleukin (IL)-6 was lower from the HUVECs infected with clinical isolates of S. aureus cultured in salicylic acid compared with those unexposed to salicylic acid. This study raises the possibility of using salicylic acid as an adjuvant therapeutic agent in the treatment of S. aureus bacteremia to prevent its complications or recurrence.

  17. Evaluation of salicylic acid fatty ester prodrugs for UV protection.

    PubMed

    Im, Jong Seob; Balakrishnan, Prabagar; Oh, Dong Hoon; Kim, Jung Sun; Jeon, Eun-Mi; Kim, Dae-Duk; Yong, Chul Soon; Choi, Han-Gon

    2011-07-01

    The purpose of this study was to investigate the physicochemical properties and in vitro evaluation of fatty ester prodrugs of salicylic acid for ultraviolet (UV) protection. The physicochemical properties such as lipophilicity, chemical stability and enzymatic hydrolysis were investigated with the following fatty ester prodrugs of salicylic acid: octanoyl (C8SA), nonanoyl (C9SA), decanoyl (C10SA), lauroyl (C12SA), myristoyl (C14SA) and palmitoyl oxysalicylate (C16SA). Furthermore, their skin permeation and accumulation were evaluated using a combination of common permeation enhancing techniques such as the use of a lipophilic receptor solution, removal of stratum corneum and delipidization of skin. Their k' values were proportional to the degree of carbon-carbon saturation in the side chain. All these fatty esters were highly stable in 2-propanol, acetonitrile and glycerin, but unstable in methanol and ethanol. They were relatively unstable in liver and skin homogenates. In particular, C16SA was mostly hydrolyzed to its parent compound in hairless mouse liver and skin homogenates, suggesting that it might be converted to salicylic acid after its topical administration. In the skin permeation and accumulation study, C16SA showed the poorest permeation in all skins, suggesting that it could not be permeated in the skin. Furthermore, C14SA and C16SA were less accumulated in delipidized skin compared with normal skin or stripped skin, suggesting that these esters had relatively strong affinities for lipids compared with the other prodrugs in the skin. C16SA showed significantly higher dermal accumulation in all skins compared with its parent salicylic acid. Thus, the palmitoyl oxysalicylate (C16SA) might be a potential candidate for UV protection due to its absence of skin permeation, smaller uptake in the lipid phase and relatively lower skin accumulation.

  18. The carbon isotope biogeochemistry of acetate from a methanogenic marine sediment

    NASA Technical Reports Server (NTRS)

    Blair, N. E.; Carter, W. D., Jr.

    1992-01-01

    The delta C-13 value of porewater acetate isolated from the anoxic sediments of Cape Lookout Bight (North Carolina) ranged from -17.6 percent in the sulfate reduction zone to -2.8 percent in the underlying methanogenic zone. The large C-13 enrichment in the sulfate-depleted sediments appears to be associated with the dissimilation of acetate to CH4 and CO2. Fractionation factors for that process were estimated to be 1.032 +/- 0.014 and 1.036 +/- 0.019 for the methyl and carboxyl groups. A subsurface maximum in delta C-13 of the total acetate molecule, as well as the methyl and carboxyl carbons at 10-15 cm depth within the sediment column, indicate that changes in the relative rates of acetate cycling pathways occur in the methanogenic zone. The methyl group of the acetate was depleted in C-13 by 7-14 percent relative to the carboxyl moiety. The intramolecular heterogeneity may be the result of both synthetic and catabolic isotope effects.

  19. Simultaneous determination of salicylic acid and salicylamide in biological fluids

    NASA Astrophysics Data System (ADS)

    Murillo Pulgarín, J. A.; Alañón Molina, A.; Sánchez-Ferrer Robles, I.

    2011-09-01

    A new methodology for the simultaneous determination of salicylic acid and salicylamide in biological fluids is proposed. The strong overlapping of the fluorescence spectra of both analytes makes impossible the conventional fluorimetric determination. For that reason, the use of fluorescence decay curves to resolve mixtures of analytes is proposed; this is a novel technique that provides the benefits in selectivity and sensitivity of the fluorescence decay curves. In order to assess the goodness of the proposed method, a prediction set of synthetic samples were analyzed obtaining recuperation percentages between 98.2 and 104.6%. Finally, a study of the detection limits was done using a new criterion resulting in values for the detection limits of 8.2 and 11.6 μg L -1 for salicylic acid and salicylamide respectively. The validity of the method was tested in human serum and human urine spiked with aliquots of the analytes. Recoveries obtained were 96.2 and 94.5% for salicylic acid and salicylamide respectively.

  20. Kinetics of salicylic acid adsorption on activated carbon.

    PubMed

    Polakovic, Milan; Gorner, Tatiana; Villiéras, Frédéric; de Donato, Philippe; Bersillon, Jean Luc

    2005-03-29

    The adsorption and desorption of salicylic acid from water solutions was investigated in HPLC microcolumns packed with activated carbon. The adsorption isotherm was obtained by the step-up frontal analysis method in a concentration range of 0-400 mg/L and was well fitted with the Langmuir equation. The investigation of rate aspects of salicylic acid adsorption was based on adsorption/desorption column experiments where different inlet concentrations of salicylic acid were applied in the adsorption phase and desorption was conducted with pure water. The concentration profiles of individual adsorption/desorption cycles data were fitted using several single-parameter models of the fixed-bed adsorption to assess the influence of different phenomena on the column behavior. It was found that the effects of axial dispersion and extraparticle mass transfer were negligible. A rate-determining factor of fixed-bed column dynamics was the kinetics of pore surface adsorption. A bimodal kinetic model reflecting the heterogeneous character of adsorbent pores was verified by a simultaneous fit of the column outlet concentration in four adsorption/desorption cycles. The fitted parameters were the fraction of mesopores and the adsorption rate constants in micropores and mesopores, respectively. It was shown that the former rate constant was an intrinsic one whereas the latter one was an apparent value due to the effects of pore blocking and diffusional hindrances in the micropores. PMID:15779975

  1. Viscosity and surface tension of dilute salicylic acid-cetrimide systems.

    PubMed

    Wan, L S

    1977-12-01

    The viscosity and surface tension of systems containing small amounts of salicylic acid in aqueous solutions of cetrimide were determined. An abrupt increase in viscosity was observed, and the molar ratio of salicylic acid to certrimide at which this viscosity increase occurred was 1:2. The surface tension of these systems also increased sharply after an initial lowering. The salicylic acid concentration at which this behavior was demonstrated was almost the same as that at maximum solubility in the surfactant solution.

  2. [Study on transdermal absorption of borneol-salicylic acid eutectic mixture].

    PubMed

    Cui, D X; Sugibayashi, K; Morimoto, Y; Li, F L

    1989-01-01

    Borneol is an organic drug having property to form eutectic mixture with salicylic acid. We compared the transdermal absorption rate of borneol alone with that of borneol-salicylic acid eutectic mixture in hairless rats. The results showed that the borneol-salicylic acid eutectic mixture can evidently increase the absorption rate of borneol and provided a method for manufacturing borneol preparation which can easily be absorbed transdermally.

  3. Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato.

    PubMed

    Mandal, Sudhamoy; Mallick, Nirupama; Mitra, Adinpunya

    2009-07-01

    We demonstrated that exogenous application of 200 microM salicylic acid through root feeding and foliar spray could induce resistance against Fusarium oxysporum f. sp. Lycopersici (Fol) in tomato. Endogenous accumulation of free salicylic acid in tomato roots was detected by HPLC and identification was confirmed by LC-MS/MS analysis. At 168h of salicylic acid treatment through roots, the endogenous salicylic acid level in the roots increased to 1477ngg(-1) FW which was 10 times higher than control plants. Similarly, the salicylic acid content was 1001ngg(-1) FW at 168h of treatment by foliar spray, which was 8.7 times higher than control plants. The activities of phenylalanine ammonia lyase (PAL, EC 4.3.1.5) and peroxidase (POD, EC 1.11.1.7) were 5.9 and 4.7 times higher, respectively than the control plants at 168h of salicylic acid feeding through the roots. The increase in PAL and POD activities was 3.7 and 3.3 times higher, respectively at 168h of salicylic acid treatments through foliar spray than control plants. The salicylic acid-treated tomato plants challenged with Fol exhibited significantly reduced vascular browning and leaf yellowing wilting. The mycelial growth of Fol was not significantly affected by salicylic acid. Significant increase in basal level of salicylic acid in noninoculated plants indicated that tomato root system might have the capacity to assimilate and distribute salicylic acid throughout the plant. The results indicated that the induced resistance observed in tomato against Fol might be a case of salicylic acid-dependent systemic acquired resistance.

  4. 21 CFR 173.228 - Ethyl acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the specifications of the Food Chemicals Codex, 1 (Ethyl Acetate; p. 372, 3d Ed., 1981), which are... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethyl acetate. 173.228 Section 173.228 Food and..., Lubricants, Release Agents and Related Substances § 173.228 Ethyl acetate. Ethyl acetate (CAS Reg. No....

  5. 21 CFR 173.228 - Ethyl acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the specifications of the Food Chemicals Codex, 1 (Ethyl Acetate; p. 372, 3d Ed., 1981), which are... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethyl acetate. 173.228 Section 173.228 Food and..., Lubricants, Release Agents and Related Substances § 173.228 Ethyl acetate. Ethyl acetate (CAS Reg. No....

  6. 21 CFR 73.2396 - Lead acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Lead acetate. 73.2396 Section 73.2396 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2396 Lead acetate. (a) Identity. The color additive lead acetate is the trihydrate of lead (2+) salt of acetic acid. The color additive has the chemical formula...

  7. 21 CFR 73.2396 - Lead acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Lead acetate. 73.2396 Section 73.2396 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2396 Lead acetate. (a) Identity. The color additive lead acetate is the trihydrate of lead (2+) salt of acetic acid. The color additive has the chemical formula...

  8. 21 CFR 73.2396 - Lead acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Lead acetate. 73.2396 Section 73.2396 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2396 Lead acetate. (a) Identity. The color additive lead acetate is the trihydrate of lead (2+) salt of acetic acid. The color additive has the chemical formula...

  9. 21 CFR 73.2396 - Lead acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Lead acetate. 73.2396 Section 73.2396 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2396 Lead acetate. (a) Identity. The color additive lead acetate is the trihydrate of lead (2+) salt of acetic acid. The color additive has the chemical formula...

  10. 21 CFR 73.2396 - Lead acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Lead acetate. 73.2396 Section 73.2396 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2396 Lead acetate. (a) Identity. The color additive lead acetate is the trihydrate of lead (2+) salt of acetic acid. The color additive has the chemical formula...

  11. 2-Chloro­methyl-1-methyl-1,3-benzimidazole

    PubMed Central

    Han, Jie; Zhang, Jun; Yang, Qi; Zhao, Ming-gao; Fan, Guang

    2011-01-01

    The title compound, C9H9ClN2, was prepared from the reaction of N-methyl­benzene-1,2-diamine and 2-chloro­acetic acid in boiling 6 M hydro­chloric acid. The benzimidazole unit is approximately planar, the largest deviation from the mean plane being 0.008 (1) Å. The Cl atom is displaced by 1.667 (2) Å from this plane. The methyl group is statistically disordered with equal occupancy. PMID:22091123

  12. Determination of Unknown Concentrations of Sodium Acetate Using the Method of Standard Addition and Proton NMR: An Experiment for the Undergraduate Analytical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Rajabzadeh, Massy

    2012-01-01

    In this experiment, students learn how to find the unknown concentration of sodium acetate using both the graphical treatment of standard addition and the standard addition equation. In the graphical treatment of standard addition, the peak area of the methyl peak in each of the sodium acetate standard solutions is found by integration using…

  13. In vitro enantioselective displacement of propranolol from protein binding sites by acetyl salicylic acid and salicylic acid.

    PubMed

    Rezaei, Z; Khabnadideh, S; Hemmateenejad, B; Dehghani, Z

    2007-09-01

    The influences of acetyl salicylic acid (ASA) and salicylic acid (SA) on the enantioselective binding of propranolol (PL) and its enantiomers to plasma proteins and human serum albumin (HSA) were investigated. The equilibrium dialysis was employed for protein binding studies. We observed statistically significant displacement of racemic-PL, (+)-(R)-PL, and (-)-(S)-PL (0.1-10 microM) from their protein binding sites by ASA (200 microg/ml) and SA (100 microg/ml). ASA and SA displaced PL stereoselectivly from its binding sites. We concluded that ASA and its metabolite SA could change R/S ratio of PL unbound fractions and they might affect pharmacokinetic properties of PL.

  14. Salicylate induced tinnitus: behavioral measures and neural activity in auditory cortex of awake rats.

    PubMed

    Yang, Guang; Lobarinas, Edward; Zhang, Liyan; Turner, Jeremy; Stolzberg, Daniel; Salvi, Richard; Sun, Wei

    2007-04-01

    Neurophysiological studies of salicylate-induced tinnitus have generally been carried out under anesthesia, a condition that abolishes the perception of tinnitus and depresses neural activity. To overcome these limitations, measurement of salicylate induced tinnitus were obtained from rats using schedule induced polydipsia avoidance conditioning (SIPAC) and gap pre-pulse inhibition of acoustic startle (GPIAS). Both behavioral measures indicated that tinnitus was present after treatment with 150 and 250 mg/kg of salicylate; measurements with GPIAS indicated that the pitch of the tinnitus was near 16 kHz. Chronically implanted microwire electrode arrays were used to monitor the local field potentials and spontaneous discharge rate from multiunit clusters in the auditory cortex of awake rats before and after treatment with 150 mg/kg of salicylate. The amplitude of the local field potential elicited with 60 dB SPL tone bursts increased significantly 2h after salicylate treatment particularly at 16-20 kHz; frequencies associated with the tinnitus pitch. Field potential amplitudes had largely recovered 1-2 days post-salicylate when behavioral results showed that tinnitus was absent. The mean spontaneous spike recorded from the same multiunit cluster pre- and post-salicylate decreased from 22 spikes/s before treatment to 14 spikes/s 2h post-salicylate and recovered 1 day post-treatment. These preliminary physiology data suggest that salicylate induced tinnitus is associated with sound evoked hyperactivity in auditory cortex and spontaneous hypoactivity.

  15. An evidence based flowchart to guide the management of acute salicylate (aspirin) overdose

    PubMed Central

    Dargan, P; Wallace, C; Jones, A

    2002-01-01

    Objective: To develop a flowchart to be used as a tool to guide clinicians step by step through the management of salicylate poisoning. Methods: A comprehensive literature search was carried out. Results: The evidence base was used to develop a management flowchart that guides the clinician through the three main steps in caring for the patient with salicylate poisoning: preventing further absorption, assessing the severity of poisoning and, where appropriate, increasing elimination. Conclusions: Salicylate poisoning can result in severe morbidity and mortality and this flowchart provides an evidence based guideline that will guide clinicians through the management of patients presenting to the emergency department with salicylate poisoning. PMID:11971828

  16. Salicylates of Intact Salix myrsinifolia Plantlets Do Not Undergo Rapid Metabolic Turnover1

    PubMed Central

    Ruuhola, Teija Marjaana; Julkunen-Tiitto, Maija-Riitta Kristiina

    2000-01-01

    Salicylates, the main phenolic glucosides of northern willow (Salix spp.), play an important role in plant-herbivore interactions. Salicylates are labile metabolites that are thought to undergo metabolic turnover. Salicylates are synthesized from phenylalanine (Phe) via the shikimate pathway. 2-Aminoindan-2-phosphonic acid (AIP), a strong inhibitor of Phe ammonia-lyase (EC 4.3.1.5), was used to block the biosynthesis of salicylates. The aim of this study was to investigate long-term turnover of salicylates in intact micropropagated plantlets of Salix myrsinifolia Salisb. The biosynthesis of salicylates was inhibited efficiently but not completely by 30 μm 2-aminoindan-2-phosphonic acid. Inhibitor treatment, aside from leading to a high accumulation of Phe, also led to an increase in tyrosine and tryptophan, indicating that 2-aminoindan-2-phosphonic acid may also inhibit enzymes other than Phe ammonia-lyase. Salicylates were shown to be unexpectedly stable metabolites that did not undergo marked metabolic turnover in intact plants; in leaves no significant turnover occurred, and in the stems the five salicylates studied were turned over slowly, with half-lives of 11 to 25 d. The total amount of salicylate in mature shoots decreased only 0.6% per day. PMID:10712554

  17. Altered Cultivar Resistance of Kimchi Cabbage Seedlings Mediated by Salicylic Acid, Jasmonic Acid and Ethylene

    PubMed Central

    Lee, Young Hee; Kim, Sang Hee; Yun, Byung-Wook; Hong, Jeum Kyu

    2014-01-01

    Two cultivars Buram-3-ho (susceptible) and CR-Hagwang (moderate resistant) of kimchi cabbage seedlings showed differential defense responses to anthracnose (Colletotrichum higginsianum), black spot (Alternaria brassicicola) and black rot (Xanthomonas campestris pv. campestris, Xcc) diseases in our previous study. Defense-related hormones salicylic acid (SA), jasmonic acid (JA) and ethylene led to different transcriptional regulation of pathogenesis-related (PR) gene expression in both cultivars. In this study, exogenous application of SA suppressed basal defenses to C. higginsianum in the 1st leaves of the susceptible cultivar and cultivar resistance of the 2nd leaves of the resistant cultivar. SA also enhanced susceptibility of the susceptible cultivar to A. brassicicola. By contrast, SA elevated disease resistance to Xcc in the resistant cultivar, but not in the susceptible cultivar. Methyl jasmonate (MJ) treatment did not affect the disease resistance to C. higginsianum and Xcc in either cultivar, but it compromised the disease resistance to A. brassicicola in the resistant cultivar. Treatment with 1-aminocyclopropane-1-carboxylic acid (ACC) ethylene precursor did not change resistance of the either cultivar to C. higginsianum and Xcc. Effect of ACC pretreatment on the resistance to A. brassicicola was not distinguished between susceptible and resistant cultivars, because cultivar resistance of the resistant cultivar was lost by prolonged moist dark conditions. Taken together, exogenously applied SA, JA and ethylene altered defense signaling crosstalk to three diseases of anthracnose, black spot and black rot in a cultivar-dependent manner. PMID:25289020

  18. Human GAPDH Is a Target of Aspirin's Primary Metabolite Salicylic Acid and Its Derivatives.

    PubMed

    Choi, Hyong Woo; Tian, Miaoying; Manohar, Murli; Harraz, Maged M; Park, Sang-Wook; Schroeder, Frank C; Snyder, Solomon H; Klessig, Daniel F

    2015-01-01

    The plant hormone salicylic acid (SA) controls several physiological processes and is a key regulator of multiple levels of plant immunity. To decipher the mechanisms through which SA's multiple physiological effects are mediated, particularly in immunity, two high-throughput screens were developed to identify SA-binding proteins (SABPs). Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH) from plants (Arabidopsis thaliana) was identified in these screens. Similar screens and subsequent analyses using SA analogs, in conjunction with either a photoaffinity labeling technique or surface plasmon resonance-based technology, established that human GAPDH (HsGAPDH) also binds SA. In addition to its central role in glycolysis, HsGAPDH participates in several pathological processes, including viral replication and neuronal cell death. The anti-Parkinson's drug deprenyl has been shown to suppress nuclear translocation of HsGAPDH, an early step in cell death and the resulting cell death induced by the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine. Here, we demonstrate that SA, which is the primary metabolite of aspirin (acetyl SA) and is likely responsible for many of its pharmacological effects, also suppresses nuclear translocation of HsGAPDH and cell death. Analysis of two synthetic SA derivatives and two classes of compounds from the Chinese medicinal herb Glycyrrhiza foetida (licorice), glycyrrhizin and the SA-derivatives amorfrutins, revealed that they not only appear to bind HsGAPDH more tightly than SA, but also exhibit a greater ability to suppress translocation of HsGAPDH to the nucleus and cell death.

  19. Cross-linked, biodegradable, cytocompatible salicylic acid based polyesters for localized, sustained delivery of salicylic acid: an in vitro study.

    PubMed

    Chandorkar, Yashoda; Bhagat, Rajesh K; Madras, Giridhar; Basu, Bikramjit

    2014-03-10

    In order to suppress chronic inflammation while supporting cell proliferation, there has been a continuous surge toward development of polymers with the intention of delivering anti-inflammatory molecules in a sustained manner. In the above backdrop, we report the synthesis of a novel, stable, cross-linked polyester with salicylic acid (SA) incorporated in the polymeric backbone and propose a simple synthesis route by melt condensation. The as-synthesized polymer was hydrophobic with a glass transition temperature of 1 °C, which increases to 17 °C upon curing. The combination of NMR and FT-IR spectral techniques established the ester linkages in the as-synthesized SA-based polyester. The pH-dependent degradation rate and the rate of release of salicylic acid from the as-synthesized SA-based polymer were studied at physiological conditions in vitro. The polyester underwent surface erosion and exhibited linear degradation kinetics in which a change in degradation rate is observed after 4-10 days and 24% mass loss was recorded after 4 months at 37 °C and pH 7.4. The delivery of salicylic acid also showed a similar change in slopes, with a sustained release rate of 3.5% in 4 months. The cytocompatibility studies of these polyesters were carried out with C2C12 murine myoblast cells using techniques like MTT assay and flow cytometry. Our results strongly suggest that SA-based polyester supports cell proliferation for 3 days in culture and do not cause cell death (<7%), as quantified by propidium iodide (PI) stained cells. Hence, these polyesters can be used as implant materials for localized, sustained delivery of salicylic acid and have applications in adjuvant cancer therapy, chronic wound healing, and as an alternative to commercially available polymers like poly(lactic acid) and poly(glycolic acid) or their copolymers.

  20. 21 CFR 184.1185 - Calcium acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium acetate. 184.1185 Section 184.1185 Food... GRAS § 184.1185 Calcium acetate. (a) Calcium acetate (Ca (C2H3O2)2, CAS Reg. No. 62-54-4), also known as acetate of lime or vinegar salts, is the calcium salt of acetic acid. It may be produced by...

  1. 21 CFR 184.1185 - Calcium acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium acetate. 184.1185 Section 184.1185 Food and... Substances Affirmed as GRAS § 184.1185 Calcium acetate. (a) Calcium acetate (Ca (C2H3O2)2, CAS Reg. No. 62-54-4), also known as acetate of lime or vinegar salts, is the calcium salt of acetic acid. It may...

  2. 21 CFR 184.1185 - Calcium acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium acetate. 184.1185 Section 184.1185 Food... Specific Substances Affirmed as GRAS § 184.1185 Calcium acetate. (a) Calcium acetate (Ca (C2H3O2)2, CAS Reg. No. 62-54-4), also known as acetate of lime or vinegar salts, is the calcium salt of acetic acid....

  3. 21 CFR 184.1185 - Calcium acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium acetate. 184.1185 Section 184.1185 Food... Specific Substances Affirmed as GRAS § 184.1185 Calcium acetate. (a) Calcium acetate (Ca (C2H3O2)2, CAS Reg. No. 62-54-4), also known as acetate of lime or vinegar salts, is the calcium salt of acetic acid....

  4. 21 CFR 184.1185 - Calcium acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium acetate. 184.1185 Section 184.1185 Food... Specific Substances Affirmed as GRAS § 184.1185 Calcium acetate. (a) Calcium acetate (Ca (C2H3O2)2, CAS Reg. No. 62-54-4), also known as acetate of lime or vinegar salts, is the calcium salt of acetic acid....

  5. 40 CFR 721.10001 - 2-Ethoxyethanol, 2-ethoxyethanol acetate, 2-methoxyethanol, and 2-methoxyethanol acetate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... acetate, 2-methoxyethanol, and 2-methoxyethanol acetate. 721.10001 Section 721.10001 Protection of...-ethoxyethanol acetate, 2-methoxyethanol, and 2-methoxyethanol acetate. (a) Chemical substances and significant...-80-5), 2-ethoxyethanol acetate (CAS No. 111-15-9), 2-methoxyethanol (CAS No. 109-86-4), and...

  6. Analysis of proteins responsive to acetic acid in Acetobacter: molecular mechanisms conferring acetic acid resistance in acetic acid bacteria.

    PubMed

    Nakano, Shigeru; Fukaya, Masahiro

    2008-06-30

    Acetic acid bacteria are used for industrial vinegar production because of their remarkable ability to oxidize ethanol and high resistance to acetic acid. Although several molecular machineries responsible for acetic acid resistance in acetic acid bacteria have been reported, the entire mechanism that confers acetic acid resistance has not been completely understood. One of the promising methods to elucidate the entire mechanism is global analysis of proteins responsive to acetic acid by two-dimensional gel electrophoresis. Recently, two proteins whose production was greatly enhanced by acetic acid in Acetobacter aceti were identified to be aconitase and a putative ABC-transporter, respectively; furthermore, overexpression or disruption of the genes encoding these proteins affected acetic acid resistance in A. aceti, indicating that these proteins are involved in acetic acid resistance. Overexpression of each gene increased acetic acid resistance in Acetobacter, which resulted in an improvement in the productivity of acetic acid fermentation. Taken together, the results of the proteomic analysis and those of previous studies indicate that acetic acid resistance in acetic acid bacteria is conferred by several mechanisms. These findings also provide a clue to breed a strain having high resistance to acetic acid for vinegar fermentation.

  7. Analysis of salicylic acid-dependent pathways in Arabidopsis thaliana following infection with Plasmodiophora brassicae and the influence of salicylic acid on disease.

    PubMed

    Lovelock, David A; Šola, Ivana; Marschollek, Sabine; Donald, Caroline E; Rusak, Gordana; van Pée, Karl-Heinz; Ludwig-Müller, Jutta; Cahill, David M

    2016-10-01

    Salicylic acid (SA) biosynthesis, the expression of SA-related genes and the effect of SA on the Arabidopsis-Plasmodiophora brassicae interaction were examined. Biochemical analyses revealed that, in P. brassicae-infected Arabidopsis, the majority of SA is synthesized from chorismate. Real-time monitored expression of a gene for isochorismate synthase was induced on infection. SA can be modified after accumulation, either by methylation, improving its mobility, or by glycosylation, as one possible reaction for inactivation. Quantitative reverse transcription-polymerase chain reaction (qPCR) confirmed the induction of an SA methyltransferase gene, whereas SA glucosyltransferase expression was not changed after infection. Col-0 wild-type (wt) did not provide a visible phenotypic resistance response, whereas the Arabidopsis mutant dnd1, which constitutively activates the immune system, showed reduced gall scores. As dnd1 showed control of the pathogen, exogenous SA was applied to Arabidopsis in order to test whether it could suppress clubroot. In wt, sid2 (SA biosynthesis), NahG (SA-deficient) and npr1 (SA signalling-impaired) mutants, SA treatment did not alter the gall score, but positively affected the shoot weight. This suggests that SA alone is not sufficient for Arabidopsis resistance against P. brassicae. Semi-quantitative PCR revealed that wt, cpr1, dnd1 and sid2 showed elevated PR-1 expression on P. brassicae and SA + P. brassicae inoculation at 2 and 3 weeks post-inoculation (wpi), whereas NahG and npr1 showed no expression. This work contributes to the understanding of SA involvement in the Arabidopsis-P. brassicae interaction.

  8. Analysis of salicylic acid-dependent pathways in Arabidopsis thaliana following infection with Plasmodiophora brassicae and the influence of salicylic acid on disease.

    PubMed

    Lovelock, David A; Šola, Ivana; Marschollek, Sabine; Donald, Caroline E; Rusak, Gordana; van Pée, Karl-Heinz; Ludwig-Müller, Jutta; Cahill, David M

    2016-10-01

    Salicylic acid (SA) biosynthesis, the expression of SA-related genes and the effect of SA on the Arabidopsis-Plasmodiophora brassicae interaction were examined. Biochemical analyses revealed that, in P. brassicae-infected Arabidopsis, the majority of SA is synthesized from chorismate. Real-time monitored expression of a gene for isochorismate synthase was induced on infection. SA can be modified after accumulation, either by methylation, improving its mobility, or by glycosylation, as one possible reaction for inactivation. Quantitative reverse transcription-polymerase chain reaction (qPCR) confirmed the induction of an SA methyltransferase gene, whereas SA glucosyltransferase expression was not changed after infection. Col-0 wild-type (wt) did not provide a visible phenotypic resistance response, whereas the Arabidopsis mutant dnd1, which constitutively activates the immune system, showed reduced gall scores. As dnd1 showed control of the pathogen, exogenous SA was applied to Arabidopsis in order to test whether it could suppress clubroot. In wt, sid2 (SA biosynthesis), NahG (SA-deficient) and npr1 (SA signalling-impaired) mutants, SA treatment did not alter the gall score, but positively affected the shoot weight. This suggests that SA alone is not sufficient for Arabidopsis resistance against P. brassicae. Semi-quantitative PCR revealed that wt, cpr1, dnd1 and sid2 showed elevated PR-1 expression on P. brassicae and SA + P. brassicae inoculation at 2 and 3 weeks post-inoculation (wpi), whereas NahG and npr1 showed no expression. This work contributes to the understanding of SA involvement in the Arabidopsis-P. brassicae interaction. PMID:26719902

  9. UV-C-Induced alleviation of transcriptional gene silencing through plant-plant communication: Key roles of jasmonic acid and salicylic acid pathways.

    PubMed

    Xu, Wei; Wang, Ting; Xu, Shaoxin; Li, Fanghua; Deng, Chenguang; Wu, Lijun; Wu, Yuejin; Bian, Po

    2016-08-01

    Plant stress responses at the epigenetic level are expected to allow more permanent changes of gene expression and potentially long-term adaptation. While it has been reported that plants subjected to adverse environments initiate various stress responses in their neighboring plants, little is known regarding epigenetic responses to external stresses mediated by plant-plant communication. In this study, we show that DNA repetitive elements of Arabidopsis thaliana, whose expression is inhibited epigenetically by transcriptional gene silencing (TGS) mechanism, are activated by UV-C irradiation through airborne plant-plant and plant-plant-plant communications, accompanied by DNA demethylation at CHH sites. Moreover, the TGS is alleviated by direct treatments with exogenous methyl jasmonate (MeJA) and methyl salicylate (MeSA). Further, the plant-plant and plant-plant-plant communications are blocked by mutations in the biosynthesis or signaling of jasmonic acid (JA) or salicylic acid (SA), indicating that JA and SA pathways are involved in the interplant communication for epigenetic responses. For the plant-plant-plant communication, stress cues are relayed to the last set of receiver plants by promoting the production of JA and SA signals in relaying plants, which exhibit upregulated expression of genes for JA and SA biosynthesis and enhanced emanation of MeJA and MeSA. PMID:27131397

  10. UV-C-Induced alleviation of transcriptional gene silencing through plant-plant communication: Key roles of jasmonic acid and salicylic acid pathways.

    PubMed

    Xu, Wei; Wang, Ting; Xu, Shaoxin; Li, Fanghua; Deng, Chenguang; Wu, Lijun; Wu, Yuejin; Bian, Po

    2016-08-01

    Plant stress responses at the epigenetic level are expected to allow more permanent changes of gene expression and potentially long-term adaptation. While it has been reported that plants subjected to adverse environments initiate various stress responses in their neighboring plants, little is known regarding epigenetic responses to external stresses mediated by plant-plant communication. In this study, we show that DNA repetitive elements of Arabidopsis thaliana, whose expression is inhibited epigenetically by transcriptional gene silencing (TGS) mechanism, are activated by UV-C irradiation through airborne plant-plant and plant-plant-plant communications, accompanied by DNA demethylation at CHH sites. Moreover, the TGS is alleviated by direct treatments with exogenous methyl jasmonate (MeJA) and methyl salicylate (MeSA). Further, the plant-plant and plant-plant-plant communications are blocked by mutations in the biosynthesis or signaling of jasmonic acid (JA) or salicylic acid (SA), indicating that JA and SA pathways are involved in the interplant communication for epigenetic responses. For the plant-plant-plant communication, stress cues are relayed to the last set of receiver plants by promoting the production of JA and SA signals in relaying plants, which exhibit upregulated expression of genes for JA and SA biosynthesis and enhanced emanation of MeJA and MeSA.

  11. Investigation of salicylate hepatic responses in comparison with chemical analogues of the drug.

    PubMed

    Cameron, Amy R; Logie, Lisa; Patel, Kashyap; Bacon, Sandra; Forteath, Calum; Harthill, Jean; Roberts, Adam; Sutherland, Calum; Stewart, Derek; Viollet, Benoit; Sakamoto, Kei; McDougall, Gordon; Foretz, Marc; Rena, Graham

    2016-08-01

    Anti-hyperglycaemic effects of the hydroxybenzoic acid salicylate might stem from effects of the drug on mitochondrial uncoupling, activation of AMP-activated protein kinase, and inhibition of NF-κB signalling. Here, we have gauged the contribution of these effects to control of hepatocyte glucose production, comparing salicylate with inactive hydroxybenzoic acid analogues of the drug. In rat H4IIE hepatoma cells, salicylate was the only drug tested that activated AMPK. Salicylate also reduced mTOR signalling, but this property was observed widely among the analogues. In a sub-panel of analogues, salicylate alone reduced promoter activity of the key gluconeogenic enzyme glucose 6-phosphatase and suppressed basal glucose production in mouse primary hepatocytes. Both salicylate and 2,6 dihydroxybenzoic acid suppressed TNFα-induced IκB degradation, and in genetic knockout experiments, we found that the effect of salicylate on IκB degradation was AMPK-independent. Previous data also identified AMPK-independent regulation of glucose but we found that direct inhibition of neither NF-κB nor mTOR signalling suppressed glucose production, suggesting that other factors besides these cell signalling pathways may need to be considered to account for this response to salicylate. We found, for example, that H4IIE cells were exquisitely sensitive to uncoupling with modest doses of salicylate, which occurred on a similar time course to another anti-hyperglycaemic uncoupling agent 2,4-dinitrophenol, while there was no discernible effect at all of two salicylate analogues which are not anti-hyperglycaemic. This finding supports much earlier literature suggesting that salicylates exert anti-hyperglycaemic effects at least in part through uncoupling. PMID:27130437

  12. Structural, Biochemical, and Phylogenetic Analyses Suggest That Indole-3-Acetic Acid Methyltransferase Is an Evolutionarily Ancient Member of the SABATH Family1[W][OA

    PubMed Central

    Zhao, Nan; Ferrer, Jean-Luc; Ross, Jeannine; Guan, Ju; Yang, Yue; Pichersky, Eran; Noel, Joseph P.; Chen, Feng

    2008-01-01

    The plant SABATH protein family encompasses a group of related small-molecule methyltransferases (MTs) that catalyze the S-adenosyl-l-methionine-dependent methylation of natural chemicals encompassing widely divergent structures. Indole-3-acetic acid (IAA) methyltransferase (IAMT) is a member of the SABATH family that modulates IAA homeostasis in plant tissues through methylation of IAA's free carboxyl group. The crystal structure of Arabidopsis (Arabidopsis thaliana) IAMT (AtIAMT1) was determined and refined to 2.75 Å resolution. The overall tertiary and quaternary structures closely resemble the two-domain bilobed monomer and the dimeric arrangement, respectively, previously observed for the related salicylic acid carboxyl methyltransferase from Clarkia breweri (CbSAMT). To further our understanding of the biological function and evolution of SABATHs, especially of IAMT, we analyzed the SABATH gene family in the rice (Oryza sativa) genome. Forty-one OsSABATH genes were identified. Expression analysis showed that more than one-half of the OsSABATH genes were transcribed in one or multiple organs. The OsSABATH gene most similar to AtIAMT1 is OsSABATH4. Escherichia coli-expressed OsSABATH4 protein displayed the highest level of catalytic activity toward IAA and was therefore named OsIAMT1. OsIAMT1 exhibited kinetic properties similar to AtIAMT1 and poplar IAMT (PtIAMT1). Structural modeling of OsIAMT1 and PtIAMT1 using the experimentally determined structure of AtIAMT1 reported here as a template revealed conserved structural features of IAMTs within the active-site cavity that are divergent from functionally distinct members of the SABATH family, such as CbSAMT. Phylogenetic analysis revealed that IAMTs from Arabidopsis, rice, and poplar (Populus spp.) form a monophyletic group. Thus, structural, biochemical, and phylogenetic evidence supports the hypothesis that IAMT is an evolutionarily ancient member of the SABATH family likely to play a critical role in IAA

  13. Structural, Biochemical, and Phylogenetic Analyses Suggest That Indole-3-Acetic Acid Methyltransferase Is an Evolutionarily Ancient Member of the SABATH Family

    SciTech Connect

    Zhao,N.; Ferrer, J.; Ross, J.; Guan, J.; Yang, Y.; Pichersky, E.; Noel, J.; Chen, F.

    2008-01-01

    The plant SABATH protein family encompasses a group of related small-molecule methyltransferases (MTs) that catalyze the S-adenosyl-L-methionine-dependent methylation of natural chemicals encompassing widely divergent structures. Indole-3-acetic acid (IAA) methyltransferase (IAMT) is a member of the SABATH family that modulates IAA homeostasis in plant tissues through methylation of IAA's free carboxyl group. The crystal structure of Arabidopsis (Arabidopsis thaliana) IAMT (AtIAMT1) was determined and refined to 2.75 Angstroms resolution. The overall tertiary and quaternary structures closely resemble the two-domain bilobed monomer and the dimeric arrangement, respectively, previously observed for the related salicylic acid carboxyl methyltransferase from Clarkia breweri (CbSAMT). To further our understanding of the biological function and evolution of SABATHs, especially of IAMT, we analyzed the SABATH gene family in the rice (Oryza sativa) genome. Forty-one OsSABATH genes were identified. Expression analysis showed that more than one-half of the OsSABATH genes were transcribed in one or multiple organs. The OsSABATH gene most similar to AtIAMT1 is OsSABATH4. Escherichia coli-expressed OsSABATH4 protein displayed the highest level of catalytic activity toward IAA and was therefore named OsIAMT1. OsIAMT1 exhibited kinetic properties similar to AtIAMT1 and poplar IAMT (PtIAMT1). Structural modeling of OsIAMT1 and PtIAMT1 using the experimentally determined structure of AtIAMT1 reported here as a template revealed conserved structural features of IAMTs within the active-site cavity that are divergent from functionally distinct members of the SABATH family, such as CbSAMT. Phylogenetic analysis revealed that IAMTs from Arabidopsis, rice, and poplar (Populus spp.) form a monophyletic group. Thus, structural, biochemical, and phylogenetic evidence supports the hypothesis that IAMT is an evolutionarily ancient member of the SABATH family likely to play a critical role in

  14. Postharvest chitosan-g-salicylic acid application alleviates chilling injury and preserves cucumber fruit quality during cold storage.

    PubMed

    Zhang, Youzuo; Zhang, Meiling; Yang, Huqing

    2015-05-01

    The effect of salicylic acid with and without chitosan, or a chitosan-g-salicylic acid complex, on chilling injury and post-harvest quality of cucumber stored at 2 °C for 12 days plus 2 days at 20 °C was investigated. The results showed the chitosan-g-salicylic acid coating inhibited chilling injury better than salicylic acid alone or with chitosan. Chitosan-g-salicylic acid also reduced weight loss and respiration rate, limited increases in malondialdehyde content and electrolyte leakage, and maintained higher total soluble solids, chlorophyll and ascorbic acid content. Furthermore, this coating increased the endogenous salicylic acid concentrations and antioxidant enzyme activities including superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase in cucumber during storage. Our study suggests that chitosan-g-salicylic acid alleviated chilling injury in cucumber through sustained-release of salicylic acid and the higher antioxidant enzymes concentrations.

  15. Postharvest chitosan-g-salicylic acid application alleviates chilling injury and preserves cucumber fruit quality during cold storage.

    PubMed

    Zhang, Youzuo; Zhang, Meiling; Yang, Huqing

    2015-05-01

    The effect of salicylic acid with and without chitosan, or a chitosan-g-salicylic acid complex, on chilling injury and post-harvest quality of cucumber stored at 2 °C for 12 days plus 2 days at 20 °C was investigated. The results showed the chitosan-g-salicylic acid coating inhibited chilling injury better than salicylic acid alone or with chitosan. Chitosan-g-salicylic acid also reduced weight loss and respiration rate, limited increases in malondialdehyde content and electrolyte leakage, and maintained higher total soluble solids, chlorophyll and ascorbic acid content. Furthermore, this coating increased the endogenous salicylic acid concentrations and antioxidant enzyme activities including superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase in cucumber during storage. Our study suggests that chitosan-g-salicylic acid alleviated chilling injury in cucumber through sustained-release of salicylic acid and the higher antioxidant enzymes concentrations. PMID:25529719

  16. Reductive opening of carbohydrate phenylsulfonylethylidene (PSE) acetals.

    PubMed

    Chéry, Florence; Cabianca, Elena; Tatibouët, Arnaud; De Lucchi, Ottorino; Lindhorst, Thisbe K; Rollin, Patrick

    2015-11-19

    The phenylsulfonylethylidene (PSE) acetal is a relatively new protecting group in carbohydrate chemistry. However, carbohydrate-derived phenylsulfonylethylidene (PSE) acetals show a different behavior in reductive desulfonylation than simple symmetrical acetals. Here we have investigated various SET-type reaction conditions in order to open PSE acetals regioselectively and to produce chiral ω-hydroxyethenyl ethers. Whereas sodium amalgam leads to a mixture of regioisomeric vinyl ethers besides the ethylidene acetal, samarium iodide is suited for regioselective ring opening. This is shown with seven different carbohydrate PSE acetals, both of the 1,3-dioxane and the 1,3-dioxolane type. PMID:26469209

  17. INHIBITION OF THE SECONDARY ANTIBODY RESPONSE IN VITRO BY SALICYLATE AND GENTISATE

    PubMed Central

    Ambrose, Charles Tesch

    1966-01-01

    Salicylate inhibition of the secondary antibody response initiated in vitro on day 0 has been studied in cultures of rabbit lymph node fragments. Levels of 1.25 to 1.5 mM (0.20 to 0.24 mg/ml) sodium salicylate present in serum-free medium throughout an 18- or 21-day culture period completely inhibit the secondary response. This inhibition is largely accomplished by the drug's action during the first 9 days, which corresponds to the inductive phase for this culture system. Relatively little inhibition is produced by adding the drug only after day 9, although over 90% of the antibody produced during a 21-day experiment is synthesized after day 9. Studies with media of different pH's show that this inhibition is more correctly a function of the nonionized salicylic acid concentration in the medium than of the total salicylate concentration. Arguments are presented against the possibility that salicylate at the levels used here inhibits antibody synthesis by uncoupling oxidative phosphorylation. Acetylsalicylic acid (aspirin) produces the same degree of inhibition in vitro as do equimolar concentrations of sodium salicylate. Gentisate (5-hydroxysalicylate) is 15-fold more effective in producing 50% inhibition than salicylate; its temporal pattern of inhibition is similar to that of salicylate. PMID:5922744

  18. Sodium Salicylate Reduced Insulin Resistance in the Retina of a Type 2 Diabetic Rat Model

    PubMed Central

    Jiang, Youde; Thakran, Shalini; Bheemreddy, Rajini; Coppess, William; Walker, Robert J.; Steinle, Jena J.

    2015-01-01

    Sodium salicylate has been reported to reduce markers of diabetic retinopathy in a type 1 rat model. Because rates of type 2 diabetes are on the rise, we wanted to determine whether salicylate could improve insulin resistance in a type 2 rat model, as well as improve retinal function. We treated lean and obese BBZDR/Wor type 2 diabetic rats with salicylate in their chow for 2 months. Prior to salicylate treatment, rats underwent an electroretinogram to measure retinal function. After 2 months of treatment, rats underwent an additional electroretinogram prior to sacrifice. In addition to the animal model, we also treated retinal endothelial cells (REC) and rat Müller cells with salicylate and performed the same analyses as done for the rat retinal lysates. To investigate the role of salicylate in insulin signaling, we measured TNFα and caspase 3 levels by ELISA, as well as performed Western blotting for insulin receptor substrate 1, insulin receptor, SOCS3, and pro- and anti-apoptotic markers. Data demonstrated that salicylate significantly improved retinal function, as well as reduced TNFα and SOCS3-induced insulin resistance in all samples. Overall, results suggest that salicylate is effective in reducing insulin resistance in the retina of type 2 diabetic rat models. PMID:25874611

  19. Modelling the Penetration of Salicylates through Skin Using a Silicone Membrane

    ERIC Educational Resources Information Center

    Wilkins, Andrew; Parmenter, Emily

    2012-01-01

    A diffusion cell to model the permeation of salicylate drugs through the skin using low-cost materials and a sensitive colorimetric analytical technique is described. The diffusion apparatus has been used at a further education college by a student for her AS-level Extended Project to investigate the permeation rates of salicylic acid…

  20. Involvement of phospholipase D and NADPH-oxidase in salicylic acid signaling cascade.

    PubMed

    Kalachova, Tetiana; Iakovenko, Oksana; Kretinin, Sergii; Kravets, Volodymyr

    2013-05-01

    Salicylic acid is associated with the primary defense responses to biotic stress and formation of systemic acquired resistance. However, molecular mechanisms of early cell reactions to phytohormone application are currently undisclosed. The present study investigates the participation of phospholipase D and NADPH-oxidase in salicylic acid signal transduction cascade. The activation of lipid signaling enzymes within 15 min of salicylic acid application was shown in Arabidopsis thaliana plants by measuring the phosphatidic acid accumulation. Adding of primary alcohol (1-butanol) to the incubation medium led to phosphatidylbutanol accumulation as a result of phospholipase D (PLD) action in wild-type and NADPH-oxidase RbohD deficient plants. Salicylic acid induced rapid increase in NADPH-oxidase activity in histochemical assay with nitroblue tetrazolium but the reaction was not observed in presence of 1-butanol and NADPH-oxidase inhibitor diphenylene iodide (DPI). The further physiological effect of salicylic acid and inhibitory analysis of the signaling cascade were made in the guard cell model. Stomatal closure induced by salicylic acid was inhibited by 1-butanol and DPI treatment. rbohD transgenic plants showed impaired stomatal reaction upon phytohormone effect, while the reaction to H2O2 did not differ from that of wild-type plants. Thus a key role of NADPH-oxidase D-isoform in the process of stomatal closure in response to salicylic acid has been postulated. It has enabled to predict a cascade implication of PLD and NADPH oxidase to salicylic acid signaling pathway.

  1. Betamethasone dipropionate and salicylic acid lotion for nonscalp dermatoses.

    PubMed

    Malfitan, V A

    1983-01-01

    A multicentric open study was conducted to evaluate the efficacy and safety of betamethasone dipropionate and salicylic acid lotion in 86 patients with psoriasis or other steroid-responsive dermatoses of nonscalp body areas. Medication was applied to affected areas for 14 to 31 days. Patients were evaluated weekly. Within 14 to 21 days of therapy, there were favorable results in 68/86 (79%) patients. A complete clearing or marked improvement of signs and symptoms was achieved in 78/86 (91%) patients; improvement occurred in 7/86 (8%). Treatment failed in one (1%) patient. Three transient adverse reactions were reported.

  2. Highly luminescent and color-tunable salicylate ionic liquids

    DOE PAGES

    Campbell, Paul S.; Yang, Mei; Pitz, Demian; Cybinska, Joanna; Mudring, Anja -Verena

    2014-03-11

    High quantum yields of up to 40.5 % can be achieved in salicylate-bearing ionic liquids. A range of these ionic liquids have been synthesized and their photoluminescent properties studied in detail. The differences noted can be related back to the structure of the ionic liquid cation and possible interionic interactions. It is found that shifts of emission, particularly in the pyridinium-based ionic liquids, can be related to cation–anion pairing interactions. Furthermore, facile and controlled emission color mixing is demonstrated through combining different ILs, with emission colors ranging from blue to yellow.

  3. Online Measurement of the Intramolecular Isotopic Composition of Acetate in Natural Porewater Samples

    NASA Astrophysics Data System (ADS)

    Thomas, R. B.; Arthur, M. A.; Freeman, K. H.

    2006-12-01

    Carbon dioxide and methane are traditionally considered to be the dominant end products of anaerobic metabolism while acetate is thought to be a rapidly consumed intermediate. However, in some settings, recent evidence has grown to suggest that, at least transiently, acetate can be a major metabolic end product. In natural systems, isotopic mass balances can be used to partition the flow of carbon to methane, CO2, and acetate. However, these isotopic estimates require intramolecular measurements of acetate in addition to isotopic measurements of the gaseous species, CO2 and CH4. In practice, the intramolecular isotopic composition of acetate is rarely measured because the analysis is technically challenging and traditionally requires prior separation and offline pyrolysis of purified acetate. As a result of these technical challenges, acetate methyl carbon is usually assumed to be a few permil depleted relative to the carbon isotopic composition of bulk organic matter. In environments where acetate may be produced by autotrophic acetogens this assumption can be devastatingly false. This work describes the use of an online method for the analysis of the intramolecular carbon isotopic composition of dissolved acetate from dilute surface water samples with a detection limit of injected sample down to 500uM. Preconcentration of samples via lyophilization has resulted in detection limits as low as 30uM. In 2002, at Penn State, Dias et al. (Organic Geochemistry Vol. 33, p161-168) reported a technique to examine the intramolecular isotopic composition of acetate from oil-prone source rocks using SPME extraction with an online GC-pyrolysis-IRMS. We have adapted the Dias method to be used with direct injection of dilute natural water samples. Briefly, this procedure protonates acetate with a .1M addition of oxalic acid and vaporizes the sample in the GC inlet at low temperatures. This prevents oxalic acid decomposition and provides sufficient separation of acetate from

  4. Pericarp browning and quality management of litchi fruit by antioxidants and salicylic acid during ambient storage.

    PubMed

    Kumar, Deepak; Mishra, Daya Shankar; Chakraborty, Binayak; Kumar, Prabhat

    2013-08-01

    Different antioxidants and salicylic acid were tested to overcome pericarp browning and to maintain the postharvest quality of the litchi fruits at ambient storage. It was found that 0.5% salicylic acid, 1% isoascorbic acid and 1% N-acetyl cysteine performed better over sulphur dioxide (SO2) fumigation for most of the parameters under study. Application of 0.5% salicylic acid found superior to reduce the pericarp browning, relative leakage rate, and decay percentage. It was effective in reduction of polyphenol oxidase activity and improvement of anthocyanin pigments of the fruit pericarp over other treatments. Total soluble solid, titratable acidity and ascorbic acid of the litchi fruits were recorded highest with the application of 1% isoascorbic acid followed by 0.5% salicylic acid treatment. Therefore, 0.5% salicylic acid and 1% isoascorbic could be used as an alternative of SO2 fumigation for quality retention of litchi fruits.

  5. Kinetic model of mitochondrial Krebs cycle: unraveling the mechanism of salicylate hepatotoxic effects.

    PubMed

    Mogilevskaya, Ekaterina; Demin, Oleg; Goryanin, Igor

    2006-10-01

    This paper studies the effect of salicylate on the energy metabolism of mitochondria using in silico simulations. A kinetic model of the mitochondrial Krebs cycle is constructed using information on the individual enzymes. Model parameters for the rate equations are estimated using in vitro experimental data from the literature. Enzyme concentrations are determined from data on respiration in mitochondrial suspensions containing glutamate and malate. It is shown that inhibition in succinate dehydrogenase and alpha-ketoglutarate dehydrogenase by salicylate contributes substantially to the cumulative inhibition of the Krebs cycle by salicylates. Uncoupling of oxidative phosphorylation has little effect and coenzyme A consumption in salicylates transformation processes has an insignificant effect on the rate of substrate oxidation in the Krebs cycle. It is found that the salicylate-inhibited Krebs cycle flux can be increased by flux redirection through addition of external glutamate and malate, and depletion in external alpha-ketoglutarate and glycine concentrations.

  6. Effects of topical petrolatum and salicylic acid upon skin photoreaction to UVA.

    PubMed

    Birgin, Bahar; Fetil, Emel; Ilknur, Turna; Tahsin Güneş, Ali; Ozkan, Sebnem

    2005-01-01

    Various agents which can be used in combination can also interfere with phototherapy. In this study, the effects of topical petrolatum and 20% salicylic acid in petrolatum upon skin photoreaction to UVA were investigated, in an in vivo test. Minimal phototoxic dose (MPD) test was performed on 31 volunteers and the test was repeated with thin (0.1 cc/25 cm(2)) petrolatum, thick (0.3 cc/25 cm(2)) petrolatum, thin 20% salicylic acid in petrolatum, thick 20% salicylic acid in petrolatum and sunscreen. The effect of each agent on MPD was investigated. MPD was increased with thin and thick applications of all agents. Also, MPD was increased with 20% salicylic acid in petrolatum when compared with pure petrolatum, in the same thickness. The application of petrolatum and salicylic acid in petrolatum just before PUVA therapy is not recommended because of their blocking effects.

  7. The Japan Flavour and Fragrance Materials Association's (JFFMA) safety assessment of acetal food flavouring substances uniquely used in Japan.

    PubMed

    Okamura, Hiroyuki; Abe, Hajime; Hasegawa-Baba, Yasuko; Saito, Kenji; Sekiya, Fumiko; Hayashi, Shim-Mo; Mirokuji, Yoshiharu; Maruyama, Shinpei; Ono, Atsushi; Nakajima, Madoka; Degawa, Masakuni; Ozawa, Shogo; Shibutani, Makoto; Maitani, Tamio

    2015-01-01

    Using the procedure devised by the Joint FAO/WHO Expert Committee on Food Additives (JECFA), we performed safety evaluations on five acetal flavouring substances uniquely used in Japan: acetaldehyde 2,3-butanediol acetal, acetoin dimethyl acetal, hexanal dibutyl acetal, hexanal glyceryl acetal and 4-methyl-2-pentanone propyleneglycol acetal. As no genotoxicity study data were available in the literature, all five substances had no chemical structural alerts predicting genotoxicity. Using Cramer's classification, acetoin dimethyl acetal and hexanal dibutyl acetal were categorised as class I, and acetaldehyde 2,3-butanediol acetal, hexanal glyceryl acetal and 4-methyl-2-pentanone propyleneglycol acetal as class III. The estimated daily intakes for all five substances were within the range of 1.45-6.53 µg/person/day using the method of maximised survey-derived intake based on the annual production data in Japan from 2001, 2005, 2008 and 2010, and 156-720 µg/person/day using the single-portion exposure technique (SPET), based on the average use levels in standard portion sizes of flavoured foods. The daily intakes of the two class I substances were below the threshold of toxicological concern (TTC) - 1800 μg/person/day. The daily intakes of the three class III substances exceeded the TTC (90 μg/person/day). Two of these, acetaldehyde 2,3-butanediol acetal and hexanal glyceryl acetal, were expected to be metabolised into endogenous products after ingestion. For 4-methyl-2-pentanone propyleneglycol acetal, one of its metabolites was not expected to be metabolised into endogenous products. However, its daily intake level, based on the estimated intake calculated by the SPET method, was about 1/15 000th of the no observed effect level. It was thus concluded that all five substances raised no safety concerns when used for flavouring foods at the currently estimated intake levels. While no information on in vitro and in vivo toxicity for all five substances was available

  8. Percutaneous Absorption of Salicylic Acid after Administration of Trolamine Salicylate Cream in Rats with Transcutol® and Eucalyptus Oil Pre-Treated Skin

    PubMed Central

    Sajjadi, Paniz; Khodayar, Mohammad Javad; Sharif Makhmalzadeh, Behzad; Rezaee, Saeed

    2013-01-01

    Purpose: This study was conducted to assess the effect of skin pre-treatment with Transcutol® and eucalyptus oil on systemic absorption of topical trolamine salicylate in rat. Methods: Pharmacokinetic parameters of salicylic acid following administration of trolamine salicylate on rat skin pre-treated with either Transcutol® or eucalyptus oil were determined using both non-compartmental and non-linear mixed effect modeling approaches and compared with those of control group. Results: Median (% of interquartile range/median) of salicylic acid AUC0-8hr (ng/mL/hr) values in Transcutol® or eucalyptus oil treated rats were 2522(139%) and 58976(141%), respectively as compared to the 3023(327%) of the control group. Skin pre-treatment with eucalyptus oil could significantly decrease extravascular volume of distribution (V/F) and elimination rate constant (k) of salicylic acid. Conclusion: Unlike Transcutol®, eucalyptus oil lead to enhanced transdermal absorption of trolamine salicylate through rat skin. PMID:24312851

  9. Enzyme-catalysed synthesis and reactions of benzene oxide/oxepine derivatives of methyl benzoates.

    PubMed

    Boyd, Derek R; Sharma, Narain D; Harrison, John S; Malone, John F; McRoberts, W Colin; Hamilton, John T G; Harper, David B

    2008-04-01

    A series of twelve benzoate esters was metabolised, by species of the Phellinus genus of wood-rotting fungi, to yield the corresponding benzyl alcohol derivatives and eight salicylates. The isolation of a stable oxepine metabolite, from methyl benzoate, allied to evidence of the migration and retention of a carbomethoxy group (the NIH Shift), during enzyme-catalysed ortho-hydroxylation of alkyl benzoates to form salicylates, is consistent with a mechanism involving an initial arene epoxidation step. This mechanism was confirmed by the isolation of a remarkably stable, optically active, substituted benzene oxide metabolite of methyl 2-(trifluoromethyl)benzoate, which slowly converted into the racemic form. The arene oxide was found to undergo a cycloaddition reaction with 4-phenyl-1,2,4-triazoline-3,5-dione to yield a crystalline cycloadduct whose structure and racemic nature was established by X-ray crystallography. The metabolite was also found to undergo some novel benzene oxide reactions, including epoxidation to give an anti-diepoxide, base-catalysed hydrolysis to form a trans-dihydrodiol and acid-catalysed aromatisation to yield a salicylate derivative via the NIH Shift of a carbomethoxy group.

  10. Implications of binding mode and active site flexibility for inhibitor potency against the salicylate synthase from Mycobacterium tuberculosis.

    PubMed

    Chi, Gamma; Manos-Turvey, Alexandra; O'Connor, Patrick D; Johnston, Jodie M; Evans, Genevieve L; Baker, Edward N; Payne, Richard J; Lott, J Shaun; Bulloch, Esther M M

    2012-06-19

    MbtI is the salicylate synthase that catalyzes the first committed step in the synthesis of the iron chelating compound mycobactin in Mycobacterium tuberculosis. We previously developed a series of aromatic inhibitors against MbtI based on the reaction intermediate for this enzyme, isochorismate. The most potent of these inhibitors had hydrophobic substituents, ranging in size from a methyl to a phenyl group, appended to the terminal alkene of the enolpyruvyl group. These compounds exhibited low micromolar inhibition constants against MbtI and were at least an order of magnitude more potent than the parental compound for the series, which carries a native enolpyruvyl group. In this study, we sought to understand how the substituted enolpyruvyl group confers greater potency, by determining cocrystal structures of MbtI with six inhibitors from the series. A switch in binding mode at the MbtI active site is observed for inhibitors carrying a substituted enolpyruvyl group, relative to the parental compound. Computational studies suggest that the change in binding mode, and higher potency, is due to the effect of the substituents on the conformational landscape of the core inhibitor structure. The crystal structures and fluorescence-based thermal shift assays indicate that substituents larger than a methyl group are accommodated in the MbtI active site through significant but localized flexibility in the peptide backbone. These findings have implications for the design of improved inhibitors of MbtI, as well as other chorismate-utilizing enzymes from this family. PMID:22607697

  11. Ozone decomposition in aqueous acetate solutions

    SciTech Connect

    Sehested, K.; Holcman, J.; Bjergbakke, E.; Hart, E.J.

    1987-01-01

    The acetate radical ion reacts with ozone with a rate constant of k = (1.5 +/- 0.5) x 10Z dmT mol s . The products from this reaction are CO2, HCHO, and O2 . By subsequent reaction of the peroxy radical with ozone the acetate radical ion is regenerated through the OH radical. A chain decomposition of ozone takes place. It terminates when the acetate radical ion reacts with oxygen forming the unreactive peroxy acetate radical. The chain is rather short as oxygen is developed, as a result of the ozone consumption. The inhibiting effect of acetate on the ozone decay is rationalized by OH scavenging by acetate and successive reaction of the acetate radical ion with oxygen. Some products from the bimolecular disappearance of the peroxy acetate radicals, however, react further with ozone, reducing the effectiveness of the stabilization.

  12. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium acetate. 184.1721 Section 184.1721 Food and....1721 Sodium acetate. (a) Sodium acetate (C2H3O2Na, CAS Reg. No. 127-09-3 or C2H3O2Na·3H2O, CAS Reg. No. 6131-90-4) is the sodium salt of acetic acid and occurs naturally in plant and animal tissues....

  13. 21 CFR 582.1721 - Sodium acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium acetate. 582.1721 Section 582.1721 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1721 Sodium acetate. (a) Product. Sodium acetate. (b) Conditions of use. This substance is...

  14. 21 CFR 582.1721 - Sodium acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium acetate. 582.1721 Section 582.1721 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1721 Sodium acetate. (a) Product. Sodium acetate. (b) Conditions of use. This substance is...

  15. 21 CFR 582.1721 - Sodium acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium acetate. 582.1721 Section 582.1721 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1721 Sodium acetate. (a) Product. Sodium acetate. (b) Conditions of use. This substance is...

  16. 21 CFR 582.1721 - Sodium acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium acetate. 582.1721 Section 582.1721 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1721 Sodium acetate. (a) Product. Sodium acetate. (b) Conditions of use. This substance is...

  17. 21 CFR 582.1721 - Sodium acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium acetate. 582.1721 Section 582.1721 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1721 Sodium acetate. (a) Product. Sodium acetate. (b) Conditions of use. This substance is...

  18. 21 CFR 556.380 - Melengestrol acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Melengestrol acetate. 556.380 Section 556.380 Food... Tolerances for Residues of New Animal Drugs § 556.380 Melengestrol acetate. A tolerance of 25 parts per billion is established for residues of the parent compound, melengestrol acetate, in fat of cattle....

  19. 21 CFR 582.6185 - Calcium acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium acetate. (a) Product. Calcium acetate. (b) Conditions of use. This substance is...

  20. 21 CFR 582.6185 - Calcium acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium acetate. (a) Product. Calcium acetate. (b) Conditions of use. This substance is...

  1. 21 CFR 582.6185 - Calcium acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium acetate. (a) Product. Calcium acetate. (b) Conditions of use. This substance is...

  2. 21 CFR 582.6185 - Calcium acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium acetate. (a) Product. Calcium acetate. (b) Conditions of use. This substance is...

  3. 21 CFR 582.6185 - Calcium acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium acetate. (a) Product. Calcium acetate. (b) Conditions of use. This substance is...

  4. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is...

  5. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is...

  6. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is...

  7. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is...

  8. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is...

  9. Aluminum Chloride Hexahydrate in a Salicylic Acid Gel

    PubMed Central

    Valins, Whitney

    2009-01-01

    Hyperhidrosis is a common dermatological condition that has a tremendous impact on the quality of life of affected patients. Aluminum chloride hexahydrate is considered first-line therapy for patients with mild-to-moderate hyperhidrosis. This treatment has been proven to be effective in the treatment of hyperhidrosis; however, its use has been limited by significant irritation. In many patients, the irritant dermatitis is so severe that, despite clinical efficacy, this therapy must be discontinued. There are many topical aluminum chloride therapies available. Observations from a busy hyperhidrosis practice revealed decreased irritation and increased efficacy with a novel therapy that combines 15% aluminum chloride hexahydrate with 2% salicylic acid in a gel base. This combination of 15% aluminum chloride hexahydrate with 2% salicylic acid offers patients who have failed aluminum chloride hexahydrate in the past excellent efficacy with minimal irritation. We report seven cases of patients with a history of severe irritation from aluminum chloride who maintained excellent results with this new topical without any significant irritation. PMID:20729946

  10. Identification of genes regulated by UV/salicylic acid.

    SciTech Connect

    Paunesku, T.; Chang-Liu, C.-M.; Shearin-Jones, P.; Watson, C.; Milton, J.; Oryhon, J.; Salbego, D.; Milosavljevic, A.; Woloschak, G. E.; CuraGen Corp.

    2000-02-01

    Purpose : Previous work from the authors' group and others has demonstrated that some of the effects of UV irradiation on gene expression are modulated in response to the addition of salicylic acid to irradiated cells. The presumed effector molecule responsible for this modulation is NF-kappaB. In the experiments described here, differential-display RT-PCR was used to identify those cDNAs that are differentially modulated by UV radiation with and without the addition of salicylic acid. Materials and methods : Differential-display RT-PCR was used to identify differentially expressed genes. Results : Eight such cDNAs are presented: lactate dehydrogenase (LDH-beta), nuclear encoded mitochondrial NADH ubiquinone reductase 24kDa (NDUFV2), elongation initiation factor 4B (eIF4B), nuclear dots protein SP100, nuclear encoded mitochondrial ATPase inhibitor (IF1), a cDNA similar to a subunit of yeast CCAAT transcription factor HAP5, and two expressed sequence tags (AA187906 and AA513156). Conclusions : Sequences of four of these genes contained NF-kappaB DNA binding sites of the type that may attract transrepressor p55/p55 NF-kappaB homodimers. Down-regulation of these genes upon UV irradiation may contribute to increased cell survival via suppression of p53 independent apoptosis.

  11. Photochemistry of 2-nitrobenzylidene acetals.

    PubMed

    Sebej, Peter; Solomek, Tomás; Hroudná, L'ubica; Brancová, Pavla; Klán, Petr

    2009-11-20

    Photolysis of dihydroxy compounds (diols) protected as 2-nitrobenzylidene acetals (ONBA) and subsequent acid- or base-catalyzed hydrolysis of the 2-nitrosobenzoic acid ester intermediates result in an efficient and high-yielding release of the substrates. We investigated the scope and limitations of ONBA photochemistry and expanded upon earlier described two-step procedures to show that the protected diols of many structural varieties can also be liberated in a one-pot procedure. In view of the fact that the acetals of nonsymmetrically substituted diols are converted into one of the corresponding 2-nitrosobenzoic acid ester isomers with moderate to high regioselectivity, the mechanism of their formation was studied using various experimental techniques. The experimental data were found to be in agreement with DFT-based quantum chemical calculations that showed the preferential cleavage occurs on the acetal C-O bond in the vicinity of more electron-withdrawing (or less electron-donating) groups. The study also revealed considerable complexity in the cleavage mechanism and that the structural variations in the substrate can significantly alter the reaction pathway. This deprotection strategy was found to be also applicable for 2-thioethanol when released from the corresponding monothioacetal in the presence of a reducing agent, such as ascorbic acid.

  12. Bacteria-triggered systemic immunity in barley is associated with WRKY and ETHYLENE RESPONSIVE FACTORs but not with salicylic acid.

    PubMed

    Dey, Sanjukta; Wenig, Marion; Langen, Gregor; Sharma, Sapna; Kugler, Karl G; Knappe, Claudia; Hause, Bettina; Bichlmeier, Marlies; Babaeizad, Valiollah; Imani, Jafargholi; Janzik, Ingar; Stempfl, Thomas; Hückelhoven, Ralph; Kogel, Karl-Heinz; Mayer, Klaus F X; Vlot, A Corina

    2014-12-01

    Leaf-to-leaf systemic immune signaling known as systemic acquired resistance is poorly understood in monocotyledonous plants. Here, we characterize systemic immunity in barley (Hordeum vulgare) triggered after primary leaf infection with either Pseudomonas syringae pathovar japonica (Psj) or Xanthomonas translucens pathovar cerealis (Xtc). Both pathogens induced resistance in systemic, uninfected leaves against a subsequent challenge infection with Xtc. In contrast to systemic acquired resistance in Arabidopsis (Arabidopsis thaliana), systemic immunity in barley was not associated with NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 or the local or systemic accumulation of salicylic acid. Instead, we documented a moderate local but not systemic induction of abscisic acid after infection of leaves with Psj. In contrast to salicylic acid or its functional analog benzothiadiazole, local applications of the jasmonic acid methyl ester or abscisic acid triggered systemic immunity to Xtc. RNA sequencing analysis of local and systemic transcript accumulation revealed unique gene expression changes in response to both Psj and Xtc and a clear separation of local from systemic responses. The systemic response appeared relatively modest, and quantitative reverse transcription-polymerase chain reaction associated systemic immunity with the local and systemic induction of two WRKY and two ETHYLENE RESPONSIVE FACTOR (ERF)-like transcription factors. Systemic immunity against Xtc was further associated with transcriptional changes after a secondary/systemic Xtc challenge infection; these changes were dependent on the primary treatment. Taken together, bacteria-induced systemic immunity in barley may be mediated in part by WRKY and ERF-like transcription factors, possibly facilitating transcriptional reprogramming to potentiate immunity.

  13. Development of an ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry method for the simultaneous determination of salicylic acid, jasmonic acid, and abscisic acid in rose leaves.

    PubMed

    Bosco, Renato; Daeseleire, Els; Van Pamel, Els; Scariot, Valentina; Leus, Leen

    2014-07-01

    This paper describes a method to detect and quantitate the endogenous plant hormones (±)-2-cis-4-trans-abscisic acid, (-)-jasmonic acid, and salicylic acid by means of ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) in hybrid rose leaf matrices. Deuterium-labeled [(2)H6] (+)-2-cis-4-trans-abscisic acid, [(2)H6] (±)-jasmonic acid, and [(2)H4]-salicylic acid were used as internal standards. Rose samples (10 mg) were extracted with methanol/water/acetic acid (10:89:1) and subsequently purified on an Oasis MCX 1 cm(3) Vac SPE cartridge. Performance characteristics were validated according to Commission Decision 2002/657/EC. Recovery, repeatability, and within-laboratory reproducibility were acceptable for all phytohormones tested at three different concentrations. The decision limit and detection capability for (±)-2-cis-4-trans-abscisic acid, (-)-jasmonic acid, and salicylic acid were 0.0075 and 0.015 μg/g, 0.00015 and 0.00030 μg/g, and 0.0089 and 0.018 μg/g, respectively. Matrix effects (signal suppression or enhancement) appeared to be high for all substances considered, implying the need for quantitation based on matrix-matched calibration curves.

  14. Potassium channel activator attenuates salicylate-induced cochlear hearing loss potentially ameliorating tinnitus.

    PubMed

    Sun, Wei; Liu, Jun; Zhang, Chao; Zhou, Na; Manohar, Senthilvelan; Winchester, Wendy; Miranda, Jason A; Salvi, Richard J

    2015-01-01

    High dose sodium salicylate causes moderate, reversible hearing loss and tinnitus. Salicylate-induced hearing loss is believed to arise from a reduction in the electromotile response of outer hair cells (OHCs) and/or reduction of KCNQ4 potassium currents in OHCs, which decreases the driving force for the transduction current. Therefore, enhancing OHC potassium currents could potentially prevent salicylate-induced temporary hearing loss. In this study, we tested whether opening voltage-gated potassium channels using ICA-105665, a novel small molecule that opens KCNQ2/3 and KCNQ3/5 channels, can reduce salicylate-induced hearing loss. We found that systemic application of ICA-105665 at 10 mg/kg prevented the salicylate-induced amplitude reduction and threshold shift in the compound action potentials recorded at the round window of the cochlea. ICA-105665 also prevented the salicylate-induced reduction of distortion-product otoacoustic emission. These results suggest that ICA-105665 partially compensates for salicylate-induced cochlear hearing loss by enhancing KCNQ2/3 and KCNQ3/5 potassium currents and the motility of OHCs. PMID:25904892

  15. Functional characterization of salicylate hydroxylase from the fungal endophyte Epichloë festucae

    PubMed Central

    Ambrose, Karen V.; Tian, Zipeng; Wang, Yifei; Smith, Jordan; Zylstra, Gerben; Huang, Bingru; Belanger, Faith C.

    2015-01-01

    Epichloë spp. are symbiotic fungal endophytes of many cool season grasses. The presence of the fungal endophytes often confers insect, drought, and disease tolerance to the host grasses. The presence of the fungal endophytes within the host plants does not elicit host defense responses. The molecular basis for this phenomenon is not known. Epichloë festucae, the endophyte of Festuca rubra, expresses a salicylate hydroxylase similar to NahG from the bacterium Pseudomonas putida. Few fungal salicylate hydroxylase enzymes have been reported. The in planta expression of an endophyte salicylate hydroxylase raised the possibility that degradation of plant-produced salicylic acid is a factor in the mechanism of how the endophyte avoids eliciting host plant defenses. Here we report the characterization of the E. festucae salicylate hydroxylase, designated Efe-shyA. Although the fungal enzyme has the expected activity, based on salicylic acid levels in endophyte-free and endophyte-infected plants it is unlikely that expression of the endophyte salicylate hydroxylase is a factor in the lack of a host defense response to the presence of the fungal endophyte. PMID:26055188

  16. Development of novel bepotastine salicylate salt bioequivalent to the commercial bepotastine besilate in beagle dogs.

    PubMed

    Cho, Kwan Hyung; Choi, Han-Gon

    2013-06-01

    To develop a novel salt form of bepotastine with bioequivalent to the commericial bepostastine besilate, bepostastine salicylate was prepared and its physicochemical properties were investigated. Furthermore, the bepotastine salicylate-loaded tablet was prepared by the wet granulation method, and the dissolution and bioavailability in beagle dogs were evaluated compared to the bepotastine besilate-loaded commercial product. Bepotastine salicylate improved the solubility of bepotastine, and the extent of solubility improvement by salicylate form was similar to that by besilate form. However, this novel salt exhibited negligible hygroscopicity similar to besilate form, and showed slightly higher melting point than besilate form. It was stable in various pH solutions. Furthermore, the bepotastine salicylate-loaded tablet composed of bepotastine salicylate, microcrystalline cellulose, D-mannitol, povidone, sodium starch glycolate and sodium stearyl fumarate at the weight ratio of 9.63/60.97/38/3.6/6/1.8 showed similar dissolution to the bepotastine besilate-loaded commercial product in water, pH 1.2, pH 4.0 and pH 6.8 and was bioequivalent to the commercial product in beagle dogs. Thus, this bepotastine salicylate-loaded tablet would be a promising candidate with bioequivalence to the bepotastine besilate-loaded commercial product.

  17. Preparation and investigation of acetyl salicylic acid-caffeine complex for rectal administration.

    PubMed

    Fouad, Ehab A; El-Badry, Mahmoud; Alanazi, Fars K; Arafah, Maha M; Al-Ashban, Riyadh; Alsarra, Ibrahim A

    2010-06-01

    An acetyl salicylic acid-caffeine complex was prepared and evaluated for the potential use in rectal administration. The results revealed the formation of a complex between acetyl salicylic acid and caffeine in a 1:1 molar ratio by a charge transfer mechanism. The effects of acetyl salicylic acid and complex on the rectal tissues showed destruction in the mucosal epithelium in case of acetyl salicylic acid; however, no change in the rectal tissues was noticed upon the administration of the complex. The effect of suppository bases on the release of the complex was studied using Witepsol H15 as fatty base and polyethylene glycols (PEG) 1000 and 4000 as a water soluble suppository base. The release profiles of acetyl salicylic acid and the complex were faster from PEG than from that of Witepsol H15. The percent release for the complex and acetyl salicylic acid from PEG base were 45.8, and 34.9%, respectively. However, it was 8.7 and 7.8%, respectively, from Witepsol H15 fatty base. The release kinetic was found to follow the non-Fickian diffusion model for complex from the suppository bases. It was concluded that acetyl salicylic acid caffeine complex can be used safely for rectal administration.

  18. Salicylic Acid Induction of Flavonoid Biosynthesis Pathways in Wheat Varies by Treatment

    PubMed Central

    Gondor, Orsolya K.; Janda, Tibor; Soós, Vilmos; Pál, Magda; Majláth, Imre; Adak, Malay K.; Balázs, Ervin; Szalai, Gabriella

    2016-01-01

    Salicylic acid is a promising compound for the reduction of stress sensitivity in plants. Although several biochemical and physiological changes have been described in plants treated with salicylic acid, the mode of action of the various treatments has not yet been clarified. The present work reports a detailed comparative study on the effects of different modes of salicylic acid application at the physiological, metabolomic, and transcriptomic levels. Seed soaking and hydroponic treatments were found to induce various changes in the protective mechanisms of wheat plants. The possible involvement of the flavonoid metabolism in salicylic acid-related stress signaling was also demonstrated. Different salicylic acid treatments were shown to induce different physiological and biochemical processes, with varying responses in the leaves and roots. Hydroponic treatment enhanced the level of oxidative stress, the expression of genes involved in the flavonoid metabolism and the amount of non-enzymatic antioxidant compounds, namely ortho-hydroxycinnamic acid and the flavonol quercetin in the leaves, while it decreased the ortho-hydroxycinnamic acid and flavonol contents and enhanced ascorbate peroxidase activity in the roots. In contrast, seed soaking only elevated the gene expression level of phenylalanine ammonia lyase in the roots and caused a slight increase in the amount of flavonols. These results draw attention to the fact that the effects of exogenous salicylic acid application cannot be generalized in different experimental systems and that the flavonoid metabolism may be an important part of the action mechanisms induced by salicylic acid. PMID:27733857

  19. Paper-based electroanalytical devices for in situ determination of salicylic acid in living tomato leaves.

    PubMed

    Sun, Li-Jun; Feng, Qiu-Mei; Yan, Yong-Feng; Pan, Zhong-Qin; Li, Xiao-Hui; Song, Feng-Ming; Yang, Haibing; Xu, Jing-Juan; Bao, Ning; Gu, Hai-Ying

    2014-10-15

    Detection of phytohormones in situ has gained significant attention due to their critical roles in regulating developmental processes and signaling for defenses in plants at low concentration. As one type of plant hormones, salicylic acid has recently been found to be one of pivotal signal molecules for physiological behaviors of plants. Here we report the application of paper-based electroanalytical devices for sensitively in situ detection of salicylic acid in tomato leaves with the sample volume of several microliters. Specifically, disposable working electrodes were fabricated by coating carbon tape with the mixture of multiwall carbon nanotubes and nafion. We observed that the treatment of the modified carbon tape electrodes with oxygen plasma could significantly improve electrochemical responses of salicylic acid. The tomato leaves had a punched hole of 1.5mm diameter to release salicylic acid with minor influence on continuous growth of tomatoes. By incorporating the tomato leaf with the paper-based analytical device, we were able to perform in situ determination of salicylic acid based on its electrocatalytic oxidation. Our experimental results demonstrated that the amounts of salicylic acid differed statistically in normal, phytoene desaturase (PDS) gene silent and diseased (infected by Botrytis cinerea) tomato leaves. By quantifying salicylic acid at the level of several nanograms in situ, the simple paper-based electroanalytical devices could potentially facilitate the study of defense mechanism of plants under biotic and abiotic stresses. This study might also provide a sensitive method with spatiotemporal resolution for mapping of chemicals released from living organisms.

  20. Biodegradation of cellulose acetate by Neisseria sicca.

    PubMed

    Sakai, K; Yamauchi, T; Nakasu, F; Ohe, T

    1996-10-01

    Bacteria capable of assimilating cellulose acetate, strains SB and SC, were isolated from soil on a medium containing cellulose acetate as a carbon source, and identified as Neisseria sicca. Both strains degraded cellulose acetate membrane filters (degree of substitution, DS, mixture of 2.8 and 2.0) and textiles (DS, 2.34) in a medium containing cellulose acetate (DS, 2.34) or its oligomer, but were not able to degrade these materials in a medium containing cellobiose octaacetate. Biodegradation of cellulose acetate (DS, 1.81 and 2.34) on the basis of biochemical oxygen demand reached 51 and 40% in the culture of N. sicca SB and 60 and 45% in the culture of N. sicca SC within 20 days. A decrease in the acetyl content of degraded cellulose acetate films and powder was confirmed by infrared and nuclear magnetic resonance analyses. After 10-day cultivation of N. sicca SB and SC, the number-average molecular weight of residual cellulose acetate decreased by 9 and 5%, respectively. Activities of enzymes that released acetic acid and produced reducing sugars from cellulose acetate were mainly present in the culture supernatant. Reactivity of enzymes for cellulose acetate (DS, 1.81) was higher than that for cellulose acetate (DS, 2.34).

  1. Expression of tumor necrosis factor-α and interleukin-1β genes in the cochlea and inferior colliculus in salicylate-induced tinnitus

    PubMed Central

    2011-01-01

    Background Changes in the gene expressions for tumor necrosis factor-α (TNF-α) and/or interleukin-1β (IL-1β) during tinnitus have not been previously reported. We evaluated tinnitus and mRNA expression levels of TNF-α, IL-1β, and N-methyl D-aspartate receptor subunit 2B (NR2B) genes in cochlea and inferior colliculus (IC) of mice after intraperitoneal injections of salicylate. Methods Forty-eight 3-month-old male SAMP8 mice were randomly and equally divided into two groups: salicylate-treated and saline-treated. All mice were trained to perform an active avoidance task for 5 days. Once conditioned, an active avoidance task was performed 2 hours after daily intraperitoneal injections of saline, either alone or containing 300 mg/kg sodium salicylate. Total numbers of times (tinnitus score) the mice climbed during the inter-trial silent period for 10 trials were recorded daily for 4 days (days 7 to 10), and then mice were euthanized for determination of mRNA expression levels of TNF-α, IL-1β, and NR2B genes in cochlea and IC at day 10. Results Tinnitus scores increased in response to daily salicylate treatments. The mRNA expression levels of TNF-α increased significantly for the salicylate-treated group compared to the control group in both cochlea (1.89 ± 0.22 vs. 0.87 ± 0.07, P < 0.0001) and IC (2.12 ± 0.23 vs. 1.73 ± 0.22, p = 0.0040). mRNA expression levels for the IL-1β gene also increased significantly in the salicylate group compared to the control group in both cochlea (3.50 ± 1.05 vs. 2.80 ± 0.28, p < 0.0001) and IC (2.94 ± 0.51 versus 1.24 ± 0.52, p = 0.0013). Linear regression analysis revealed a significant positive association between tinnitus scores and expression levels of TNF-α, IL-1β, and NR2B genes in cochlea and IC. In addition, expression levels of the TNF-α gene were positively correlated with those of the NR2Bgene in both cochlea and IC; whereas, the expression levels of the IL-1β gene was positively correlated with that of

  2. Human GAPDH Is a Target of Aspirin’s Primary Metabolite Salicylic Acid and Its Derivatives

    PubMed Central

    Manohar, Murli; Harraz, Maged M.; Park, Sang-Wook; Schroeder, Frank C.; Snyder, Solomon H.; Klessig, Daniel F.

    2015-01-01

    The plant hormone salicylic acid (SA) controls several physiological processes and is a key regulator of multiple levels of plant immunity. To decipher the mechanisms through which SA’s multiple physiological effects are mediated, particularly in immunity, two high-throughput screens were developed to identify SA-binding proteins (SABPs). Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH) from plants (Arabidopsis thaliana) was identified in these screens. Similar screens and subsequent analyses using SA analogs, in conjunction with either a photoaffinity labeling technique or surface plasmon resonance-based technology, established that human GAPDH (HsGAPDH) also binds SA. In addition to its central role in glycolysis, HsGAPDH participates in several pathological processes, including viral replication and neuronal cell death. The anti-Parkinson’s drug deprenyl has been shown to suppress nuclear translocation of HsGAPDH, an early step in cell death and the resulting cell death induced by the DNA alkylating agent N-methyl-N’-nitro-N-nitrosoguanidine. Here, we demonstrate that SA, which is the primary metabolite of aspirin (acetyl SA) and is likely responsible for many of its pharmacological effects, also suppresses nuclear translocation of HsGAPDH and cell death. Analysis of two synthetic SA derivatives and two classes of compounds from the Chinese medicinal herb Glycyrrhiza foetida (licorice), glycyrrhizin and the SA-derivatives amorfrutins, revealed that they not only appear to bind HsGAPDH more tightly than SA, but also exhibit a greater ability to suppress translocation of HsGAPDH to the nucleus and cell death. PMID:26606248

  3. Human GAPDH Is a Target of Aspirin's Primary Metabolite Salicylic Acid and Its Derivatives.

    PubMed

    Choi, Hyong Woo; Tian, Miaoying; Manohar, Murli; Harraz, Maged M; Park, Sang-Wook; Schroeder, Frank C; Snyder, Solomon H; Klessig, Daniel F

    2015-01-01

    The plant hormone salicylic acid (SA) controls several physiological processes and is a key regulator of multiple levels of plant immunity. To decipher the mechanisms through which SA's multiple physiological effects are mediated, particularly in immunity, two high-throughput screens were developed to identify SA-binding proteins (SABPs). Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH) from plants (Arabidopsis thaliana) was identified in these screens. Similar screens and subsequent analyses using SA analogs, in conjunction with either a photoaffinity labeling technique or surface plasmon resonance-based technology, established that human GAPDH (HsGAPDH) also binds SA. In addition to its central role in glycolysis, HsGAPDH participates in several pathological processes, including viral replication and neuronal cell death. The anti-Parkinson's drug deprenyl has been shown to suppress nuclear translocation of HsGAPDH, an early step in cell death and the resulting cell death induced by the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine. Here, we demonstrate that SA, which is the primary metabolite of aspirin (acetyl SA) and is likely responsible for many of its pharmacological effects, also suppresses nuclear translocation of HsGAPDH and cell death. Analysis of two synthetic SA derivatives and two classes of compounds from the Chinese medicinal herb Glycyrrhiza foetida (licorice), glycyrrhizin and the SA-derivatives amorfrutins, revealed that they not only appear to bind HsGAPDH more tightly than SA, but also exhibit a greater ability to suppress translocation of HsGAPDH to the nucleus and cell death. PMID:26606248

  4. Salicylate Toxicity from Genital Exposure to a Methylsalicylate-Containing Rubefacient

    PubMed Central

    Thompson, Trevonne M.; Toerne, Theodore; Erickson, Timothy B.

    2016-01-01

    Methylsalicylate-containing rubefacients have been reported to cause salicylate poisoning after ingestion, topical application to abnormal skin, and inappropriate topical application to normal skin. Many over-the-counter products contain methylsalicylate. Topical salicylates rarely produce systemic toxicity when used appropriately; however, methylsaliclyate can be absorbed through intact skin. Scrotal skin can have up to 40-fold greater absorption compared to other dermal regions. We report a unique case of salicylate poisoning resulting from the use of a methylsalicylate-containing rubefacient to facilitate masturbation in a male teenager. Saliclyate toxicity has not previously been reported from the genital exposure to methylsaliclyate. PMID:26973745

  5. Action of salicylate on membrane capacitance of outer hair cells from the guinea-pig cochlea.

    PubMed Central

    Tunstall, M J; Gale, J E; Ashmore, J F

    1995-01-01

    1. The effect of salicylate on membrane capacitance and intracellular pH has been measured in isolated outer hair cells (OHCs) during whole cell recording. Cell membrane capacitance was measured using a lock-in amplifier technique. 2. Salicylate applied in the bath reduced the fast charge movement, equivalent to a voltage-dependent membrane capacitance, present in OHCs. Simultaneous measurement of membrane capacitance and voltage-driven cell length changes showed that salicylate reduced both together. 3. A small effect of salicylate on outward currents at 0 mV was observed. Sodium salicylate (5 mM) reduced the currents by 19% and another weak acid, sodium butyrate (10 mM), reduced outward currents in OHCs by 15%. 4. The ratiometric dye 2,7-bis(2-carboxymethyl)-5,6-carboxyfluorescein (BCECF) was used to measure pHi changes in OHCs during weak acid exposure. Membrane capacitance and pHi were measured simultaneously in OHCs exposed first to 10 mM sodium butyrate and then to 5 mM sodium salicylate. Although both compounds produced a similar reduction in pHi, butyrate decreased the resting capacitance from a mean resting capacitance of 35 pF (at -30 mV) by 5.4 +/- 2.1 pF, whereas salicylate decreased it by 15.7 +/- 2.3 pF (n = 4). 5. Exposure of OHCs to 10 mM sodium benzoate, an amphiphilic anion, reduced resting membrane capacitance at -30 mV by 9.2 +/- 3.2 pF (n = 3). Outward currents, measured at 0 mV, were reduced by 0.25 +/- 0.05 nA during benzoate application, comparable with the effect of salicylate. 6. Capacitance was measured during slow bath application of salicylate. The resulting dose-capacitance curve had a Hill coefficient of 3.40 +/- 0.85 (n = 4) and a half-maximal dose of 3.95 +/- 0.34 mM. The dose-capacitance curve was not significantly voltage dependent. 7. Salicylate had no detectable effect on the resting capacitance of Deiters' cells, a non-sensory cell type of the organ of Corti. 8. It is concluded that many of the described effects of salicylate

  6. Concerted effects in the reaction of rad OH radicals with aromatics: radiolytic oxidation of salicylic acid

    NASA Astrophysics Data System (ADS)

    Albarran, G.; Schuler, R. H.

    2003-06-01

    Liquid chromatographic and capillary electrophoretic studies have been used to resolve the products produced in the radiolytic oxidation of salicylic acid in aqueous solution. These studies have shown that, as in the case of phenol, rad OH radicals preferentially add to the positions ortho and para to the OH substituent. However, in contrast to its reaction with phenol, addition at the ortho position is favored over addition at the para position. Because rad OH radical is a strong electrophile this difference suggests that the electron population at the ortho position in the salicylate anion is enhanced as a result of the hydrogen bonding in salicylic acid.

  7. Apple Fool! An Introduction to Artificial Flavors.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 2003

    2003-01-01

    Presents a science activity on consumer chemistry in which students explore artificial flavors that are commonly used in foods, such as isoamyl acetate and methyl salicylate. Includes instructor information and a student worksheet. (YDS)

  8. Effects of Trophic Status on Mercury Methylation Pathways in Peatlands

    NASA Astrophysics Data System (ADS)

    Hines, M. E.; Zhang, L.; Sampath, S.; Hu, R.; Barkay, T.

    2014-12-01

    Methyl mercury (MeHg) is a bioaccumulative toxicant. It was believed to be produced by sulfate (SO4)- and iron- reducing bacteria (SRB and FeRB), but recent studies suggest that organisms that possess the gene cluster (hgcAB) can methylate Hg, which includes other microbial groups besides SRB and FeRB. Many areas known to accumulate high levels of MeHg are freshwater wetlands that lack sufficient electron acceptors to support the production of MeHg. To test the hypothesis that oligotrophic wetlands are able to methylate Hg by pathways that are not respiratory, peat was collected from three wetland sites in Alaska and three in Massachusetts that represented a trophic gradient. We determined rates of gas (CH4, CO2, H2) and LMW organic acid (formate, acetate, propionate, butyrate) formation, and rates of Hg methylation using the short-lived radioisotope 197Hg (half life 2.67 days). Two temperate sites exhibited strong terminal respiration (methanogenesis) and syntrophy, while the Alaskan sites and an oligotrophic temperate site exhibited low rates of both. Primary fermentation was an important process in the latter sites. Hg methylation was most active at the minerotrophic sites that exhibited active syntrophy and methanogenesis. Methylation decreased greatly in the presence of a methanogenic inhibitor and was stimulated by H2 indicating that methanogens and perhaps syntrophs were primary methylators. In the oligotrophic sites, the addition of SO4 stimulated methylation while a SO4 reduction inhibitor decreased methylation. There was no evidence of SO4 reduction in these samples suggesting that methylation was conducted by SRB that were metabolizing via fermentation and not SO4 reduction. While further studies are required to decipher the role of syntrophs including SRB varieties such as Syntrophobacter sp., these results indicate that fermentative bacteria may be able to significantly methylate Hg in wetlands that do not support anaerobic respiration.

  9. Herbivore-Induced SABATH Methyltransferases of Maize That Methylate Anthranilic Acid Using S-Adenosyl-l-Methionine1[W

    PubMed Central

    Köllner, Tobias G.; Lenk, Claudia; Zhao, Nan; Seidl-Adams, Irmgard; Gershenzon, Jonathan; Chen, Feng; Degenhardt, Jörg

    2010-01-01

    Volatile methyl esters are common constituents of plant volatiles with important functions in plant defense. To study the biosynthesis of these compounds, especially methyl anthranilate and methyl salicylate, we identified a group of methyltransferases that are members of the SABATH enzyme family in maize (Zea mays). In vitro biochemical characterization after bacterial expression revealed three S-adenosyl-l-methionine-dependent methyltransferases with high specificity for anthranilic acid as a substrate. Of these three proteins, Anthranilic Acid Methyltransferase1 (AAMT1) appears to be responsible for most of the S-adenosyl-l-methionine-dependent methyltransferase activity and methyl anthranilate formation observed in maize after herbivore damage. The enzymes may also be involved in the formation of low amounts of methyl salicylate, which are emitted from herbivore-damaged maize. Homology-based structural modeling combined with site-directed mutagenesis identified two amino acid residues, designated tyrosine-246 and glutamine-167 in AAMT1, which are responsible for the high specificity of AAMTs toward anthranilic acid. These residues are conserved in each of the three main clades of the SABATH family, indicating that the carboxyl methyltransferases are functionally separated by these clades. In maize, this gene family has diversified especially toward benzenoid carboxyl methyltransferases that accept anthranilic acid and benzoic acid. PMID:20519632

  10. The Rotational Spectrum and Conformational Structures of Methyl Valerate

    NASA Astrophysics Data System (ADS)

    Nguyen, Ha Vinh Lam; Stahl, Wolfgang

    2015-06-01

    Methyl valerate, C4H9COOCH3, belongs to the class of fruit esters, which play an important role in nature as odorants of different fruits, flowers, and wines. A sufficient explanation for the structure-odor relation of is not available. It is known that predicting the odor of a substance is not possible by knowing only its chemical formula. A typical example is the blueberry- or pine apple-like odor of ethyl isovalerate while its isomers ethyl valerate and isoamyl acetate smell like green apple and banana, respectively. Obviously, not only the composition but also the molecular structures are not negligible by determining the odor of a substance. Gas phase structures of fruit esters are thus important for a first step towards the determination of structure-odor relation since the sense of smell starts from gas phase molecules. For this purpose, a combination of microwave spectroscopy and quantum chemical calculations (QCCs) is an excellent tool. Small esters often have sufficient vapor pressure to be transferred easily in the gas phase for a rotational study but already contain a large number of atoms which makes them too big for classical structure determination by isotopic substitution and requires nowadays a comparison with the structures optimized by QCCs. On the other hand, the results from QCCs have to be validated by the experimental values. About the internal dynamics, the methoxy methyl group -COOCH3 of methyl acetate shows internal rotation with a barrier of 424.581(56) wn. A similar barrier height of 429.324(23) wn was found in methyl propionate, where the acetyl group is extended to the propionyl group. The investigation on methyl valerate fits well in this series of methyl alkynoates. In this talk, the structure of the most energetic favorable conformer as well as the internal rotation shown by the methoxy methyl group will be reported. It could be confirmed that the internal rotation barrier of the methoxy methyl group remains by longer alkyl chain.

  11. Formation of hydroxyl radical from the photolysis of salicylic acid.

    PubMed

    Zhou, Can-Hua; Cheng, Shi-Bo; Yin, Hong-Ming; He, Guo-Zhong

    2011-05-26

    Photodissociation dynamics of salicylic acid (SA) in the gas phase at different photolysis wavelengths (266, 315-317 nm) is investigated by probing the nascent OH photoproduct employing the single-photon laser-induced fluorescence (LIF) technique. At all the photolysis wavelengths it is found that the nascent OH radicals are produced mostly in a vibrationally ground state (υ'' = 0) and have similar rotational state distributions. The two spin-orbit and Λ-doublet states of the OH fragment formed in the dissociation are measured to have a nonstatistical distribution at each photolysis wavelength. The LIF signal of the OH could be observed upon photolysis at 317 nm but not at 317.5 nm. The threshold of OH formation from SA photodissociation is estimated to be 98.2 ± 0.9 kcal/mol. The effect of the phenolic OH group on the dissociation of SA is discussed.

  12. The surface reaction kinetics of salicylate on alumina

    SciTech Connect

    Wang, Z.; Ainsworth, C.C.; Friedrich, D.M.; Joly, A.G.; Gassman, P.L.

    1997-12-31

    The kinetics of reaction of salicylate with colloidal alumina in aqueous suspension and with Al(III) in homogeneous aqueous solution were studied by stopped-flow laser fluorescence spectroscopy. The emission spectra confirmed the formation of both monodentate complexes and more stable bidentate chelates. Temporal evolution of the spectra indicated that the reaction was fast (within first few minutes) for both the homogeneous and heterogeneous reactions but slowed down afterwards for the latter. Reactions completed within 10 minutes in homogeneous phase at pH 3.3 but took more than 12 hours in alumina suspension. Analysis of the fluorescence intensity within first four minutes showed that in homogeneous phase the reaction followed a single pseudo-first-order kinetics. In alumina suspension log plots were nonlinear and characteristic of multiple heterogeneous reaction paths. The kinetics are interpreted in terms of the simultaneous formation of multiple species as well as subsequent conversion between species.

  13. Heterocyclic acetals from glycerol and acetaldehyde in Port wines: evolution with aging.

    PubMed

    da Silva Ferreira, Antonio Cesar; Barbe, Jean-Christophe; Bertrand, Alain

    2002-04-24

    In Port wine, isomers of glycerol and acetaldehyde acetals have been found at total contents ranging from 9.4 to 175.3 mg/L. During oxidative aging, the concentrations of the 5-hydroxy-2-methyl-1,3-dioxane and 4-hydroxymethyl-2-methyl-1,3-dioxolane isomers increased with time showing a linear correlation (r > 0.95). The flavor threshold for the mixture of the four isomers was evaluated in wine at 100 mg/L. Thus, it is expected that they contribute to "old Port wine" aroma in wines older than 30 years. Experiments with model solutions and wine clearly demonstrated that SO(2) combines with acetaldehyde and blocks the acetalization reaction. PMID:11958622

  14. Growth and properties of Lithium Salicylate single crystals

    SciTech Connect

    Zaitseva, N; Newby, J; Hull, G; Saw, C; Carman, L; Cherepy, N; Payne, S

    2009-02-13

    An attractive feature of {sup 6}Li containing fluorescence materials that determines their potential application in radiation detection is the capture reaction with slow ({approx}< 100 keV) neutrons: {sup 6}Li + n = {sup 4}He + {sup 3}H + 4.8MeV. The use of {sup 6}Li-salicylate (LiSal, LiC{sub 6}H{sub 5}O{sub 3}) for thermal neutron detection was previously studied in liquid and polycrystalline scintillators. The studies showed that both liquid and polycrystalline LiSal scintillators could be utilized in pulse shape discrimination (PSD) techniques that enable separation of neutrons from the background gamma radiation. However, it was found that the efficiency of neutron detection using LiSal in liquid solutions was severely limited by its low solubility in commonly used organic solvents like, for example, toluene or xylene. Better results were obtained with neutron detectors containing the compound in its crystalline form, such as pressed pellets, or microscopic-scale (7-14 micron) crystals dispersed in various media. The expectation drown from these studies was that further improvement of pulse height, PSD, and efficiency characteristics could be reached with larger and more transparent LiSal crystals, growth of which has not been reported so far. In this paper, we present the first results on growth and characterization of relatively large, a cm-scale size, single crystals of LiSal with good optical quality. The crystals were grown both from aqueous and anhydrous (methanol) media, mainly for neutron detection studies. However, the results on growth and structural characterization may be interesting for other fields where LiSal, together with other alkali metal salicylates, is used for biological, medical, and chemical (as catalyst) applications.

  15. Alleviation of salt stress in lemongrass by salicylic acid.

    PubMed

    Idrees, Mohd; Naeem, M; Khan, M Nasir; Aftab, Tariq; Khan, M Masroor A; Moinuddin

    2012-07-01

    Soil salinity is one of the key factors adversely affecting the growth, yield, and quality of crops. A pot study was conducted to find out whether exogenous application of salicylic acid could ameliorate the adverse effect of salinity in lemongrass (Cymbopogon flexuosus Steud. Wats.). Two Cymbopogon varieties, Krishna and Neema, were used in the study. Three salinity levels, viz, 50, 100, and 150 mM of NaCl, were applied to 30-day-old plants. Salicylic acid (SA) was applied as foliar spray at 10(-5) M concentration. Totally, six SA-sprays were carried out at 10-day intervals, following the first spray at 30 days after sowing. The growth parameters were progressively reduced with the increase in salinity level; however, growth inhibition was significantly reduced by the foliar application of SA. With the increase in salt stress, a gradual decrease in the activities of carbonic anhydrase and nitrate reductase was observed in both the varieties. SA-treatment not only ameliorated the adverse effects of NaCl but also showed a significant improvement in the activities of these enzymes compared with the untreated stressed-plants. The plants supplemented with NaCl exhibited a significant increase in electrolyte leakage, proline content, and phosphoenol pyruvate carboxylase activity. Content and yield of essential oil was also significantly decreased in plants that received salinity levels; however, SA overcame the unfavorable effects of salinity stress to a considerable extent. Lemongrass variety Krishna was found to be more adapted to salt stress than Neema, as indicated by the overall performance of the two varieties under salt conditions.

  16. Effects of methyl p-hydroxybenzoate (methyl paraben) on Ca2+ concentration and histamine release in rat peritoneal mast cells

    PubMed Central

    Fukugasako, Sanae; Ito, Shinichi; Ikemoto, Yoshimi

    2003-01-01

    Mechanisms of methyl p-hydroxybenzoate (methyl paraben) action in allergic reactions were investigated by measuring the intracellular Ca2+ concentration ([Ca2+]i) and histamine release in rat peritoneal mast cells (RPMCs). In the presence or absence of extracellular Ca2+, methyl paraben (0.1–10 mM) increased [Ca2+]i, in a concentration-dependent manner. Under both the conditions, methyl paraben alone did not evoke histamine release. In RPMCs pretreated with a protein kinase C (PKC) activator (phorbol 12-myristate 13-acetate (PMA) 3 and 10 nM), methyl paraben (0.3–3 mM) induced histamine release. However, a high concentration (10 mM) of the agent did not increase the histamine release. U73122 (0.1 and 0.5 μM), an inhibitor of phospholipase C (PLC), significantly inhibited the methyl paraben-induced histamine release in PMA-pretreated RPMCs. U73343 (0.5 μM), an inactive analogue of U73122, did not inhibit the histamine release caused by methyl paraben. In Ca2+-free solution, PLC inhibitors (U73122 0.1 and 0.5 μM, D609 1–10 μM) inhibited the methyl paraben-induced increase in [Ca2+]i, whereas U73343 (0.5 μM) did not. Xestospongin C (2–20 μM) and 2 aminoethoxydiphenyl borate (30 and 100 μM), blockers of the inositol 1,4,5-trisphosphate (IP3) receptor, inhibited the methyl paraben-induced increase in [Ca2+]i in Ca2+-free solution. In conclusion, methyl paraben causes an increase in [Ca2+]i, which may be due to release of Ca2+ from storage sites by IP3 via activation of PLC in RPMCs. In addition, methyl paraben possibly has some inhibitory effects on histamine release via unknown mechanisms. PMID:12770943

  17. Medroxyprogesterone acetate exacerbates glutamate excitotoxicity.

    PubMed

    Nilsen, Jon; Morales, Alison; Brinton, Roberta Diaz

    2006-07-01

    We previously demonstrated that progesterone functions as a neuroprotective agent whereas medroxyprogesterone acetate (MPA; Provera) does not. Moreover, MPA antagonized the neuroprotective and neurotrophic outcomes induced by 17beta-estradiol (E2). Towards developing effective hormone therapies for protection against neurodegeneration, we sought to determine whether formulation, chemical features or prevention versus treatment mode of exposure affected the outcome of MPA treatment in survival of primary hippocampal neurons. Results of these analyses indicated that both crystalline MPA and a pharmaceutical formulation (Depo-Provera) lacked neuroprotective efficacy, indicating that the effects were not dependent upon MPA formulation. Likewise, MPA in the prevention and treatment paradigms were equally ineffective at promoting neuronal survival, indicating that timing of MPA administration was not a factor. Further, the detrimental effects of MPA were not due to the presence of the acetate group, as medroxyprogesterone was as ineffective as MPA in promoting neuronal survival. Moreover, MPA pretreatment exacerbated neuron death induced by glutamate excitotoxicity as indicated by a 40% increase in neuron death determined by direct live/dead cell count and a commensurate increase in the number of positive cells by terminal deoxynucleotidyl transferase-mediated nick end-labeling. Collectively these results predict that the progestin formulation of hormone therapy will affect the vulnerability of the central nervous system to degenerative insults.

  18. FIRST ACETIC ACID SURVEY WITH CARMA IN HOT MOLECULAR CORES

    SciTech Connect

    Shiao, Y.-S. Jerry; Looney, Leslie W.; Snyder, Lewis E.; Friedel, Douglas N.; Remijan, Anthony J. E-mail: aremijan@nrao.ed

    2010-06-10

    Acetic acid (CH{sub 3}COOH) has been detected mainly in hot molecular cores where the distribution between oxygen (O) and nitrogen (N) containing molecular species is cospatial within the telescope beam. Previous work has presumed that similar cores with cospatial O and N species may be an indicator for detecting acetic acid. However, does this presumption hold as higher spatial resolution observations of large O- and N-containing molecules become available? As the number of detected acetic acid sources is still low, more observations are needed to support this postulate. In this paper, we report the first acetic acid survey conducted with the Combined Array for Research in Millimeter-wave Astronomy at 3 mm wavelengths toward G19.61-0.23, G29.96-0.02, and IRAS 16293-2422. We have successfully detected CH{sub 3}COOH via two transitions toward G19.61-0.23 and tentatively confirmed the detection toward IRAS 16293-2422 A. The determined column density of CH{sub 3}COOH is 2.0(1.0) x 10{sup 16} cm{sup -2} and the abundance ratio of CH{sub 3}COOH to methyl formate (HCOOCH{sub 3}) is 2.2(0.1) x 10{sup -1} toward G19.61-0.23. Toward IRAS 16293 A, the determined column density of CH{sub 3}COOH is {approx}1.6 x 10{sup 15} cm{sup -2} and the abundance ratio of CH{sub 3}COOH to methyl formate (HCOOCH{sub 3}) is {approx}1.0 x 10{sup -1}, both of which are consistent with abundance ratios determined toward other hot cores. Finally, we model all known line emission in our passband to determine physical conditions in the regions and introduce a new metric to better reveal weak spectral features that are blended with stronger lines or that may be near the 1{sigma}-2{sigma} detection limit.

  19. Effects of configuration around the chiral carbon atoms on the crystal properties of ephedrinium and pseudoephedrinium salicylates.

    PubMed

    Duddu, S P; Grant, D J

    1994-11-01

    The physicochemical properties and crystal structures of the crystalline salts formed by the interaction of an achiral anion, salicylate, with homochiral and racemic ephedrinium and pseudoephedrinium cations were determined. The interaction of ephedrinium or pseudoephedrinium with salicylate in aqueous solution yielded crystalline salts with the notable exception of homochiral ephedrinium. Evaporation of the solvent from solutions of homochiral ephedrine and salicyclic acid in various organic solvents, as well as grinding together solid homochiral ephedrine and solid salicylic acid, yielded viscous semisolids suggesting that homochiral ephedrinium salicylate has a low melting point and/or a high aqueous solubility. Mixing of the two viscous solids, obtained by grinding each of the opposite enantiomers of ephedrine with equimolar salicylic acid, resulted in the formation of racemic ephedrine and subsequently, upon heating, in the formation of racemic ephedrinium salicylate. While racemic ephedrinium salicylate exists as a crystalline compound (P2(1)/n space group) with an equal number of opposite enantiomers in the unit cell, its diastereomer, racemic pseudoephedrinium salicylate, exists as a conglomerate, i.e. a physical mixture, of the homochiral crystals of the opposite enantiomers (each P2(1) space group). The inability of homochiral ephedrinium to exist as a crystalline salicylate salt at 20-25 degrees C is attributed to its high energy conformation and/or to the poor packing of homochiral ephedrinium salicylate molecules in the crystal lattice.

  20. Both Central and Peripheral Auditory Systems Are Involved in Salicylate-Induced Tinnitus in Rats: A Behavioral Study

    PubMed Central

    Liu, Zhi; Sun, Yongzhu; Chang, Haifeng; Cui, Pengcheng

    2014-01-01

    Objective This study was designed to establish a low dose salicylate-induced tinnitus rat model and to investigate whether central or peripheral auditory system is involved in tinnitus. Methods Lick suppression ratio (R), lick count and lick latency of conditioned rats in salicylate group (120 mg/kg, intraperitoneally) and saline group were first compared. Bilateral auditory nerves were ablated in unconditioned rats and lick count and lick latency were compared before and after ablation. The ablation was then performed in conditioned rats and lick count and lick latency were compared between salicylate group and saline group and between ablated and unablated salicylate groups. Results Both the R value and the lick count in salicylate group were significantly higher than those in saline group and lick latency in salicylate group was significantly shorter than that in saline group. No significant changes were observed in lick count and lick latency before and after ablation. After ablation, lick count and lick latency in salicylate group were significantly higher and shorter respectively than those in saline group, but they were significantly lower and longer respectively than those in unablated salicylate group. Conclusion A low dose of salicylate (120 mg/kg) can induce tinnitus in rats and both central and peripheral auditory systems participate in the generation of salicylate-induced tinnitus. PMID:25269067

  1. Determination of Endogenous Indole-3-Acetic Acid in Plagiochila arctica (Hepaticae) 1

    PubMed Central

    Law, David M.; Basile, Dominick V.; Basile, Margaret R.

    1985-01-01

    Endogenous indole-3-acetic acid (IAA) was found in axenically cultured gametophytes of the leafy liverwort, Plagiochila arctica Bryhn and Kaal., by high-performance liquid chromatography with electrochemical detection. Identification of the methylated auxin was confirmed by gas chromatography-mass spectrometry. Addition of 57 micromolar IAA to cultures increased relative production of ethylene. This is the first definitive (gas chromatography-mass spectrometry) demonstration of the natural occurrence of IAA in a bryophyte. PMID:16664164

  2. Iron metabolism in Pseudomonas: salicylic acid, a siderophore of Pseudomonas fluorescens CHAO.

    PubMed

    Meyer, J M; Azelvandre, P; Georges, C

    1992-12-01

    Under iron-starvation conditions of growth, Pseudomonas fluorescens CHA0, a soil isolate involved in phytopathogenic fungi antagonisms, produced, together with pyoverdine, a second iron-chelating compound which was purified and identified by spectroscopy, HPLC and 1H-NMR to be salicylic acid. Mutants unable to synthesize pyoverdine overproduced this compound by a factor of 9-14. The biosynthesis of salicylic acid was under iron control; it was fully inhibited by 5 microM added iron in the growth medium. In contrast, salicylic acid of either bacterial or commercial origin facilitated labeled iron incorporation in iron-starved cells. Based on these two relationships observed with bacterial iron metabolism it is concluded that salicylic acid has a siderophore function for this strain. PMID:1292472

  3. Simultaneous determination of acetylsalicylic and salicylic acids by first derivative spectrometry in pharmaceutical preparations

    NASA Astrophysics Data System (ADS)

    Rogić, Dunja

    1993-03-01

    A multicomponent first derivative UV spectrometric procedure for determination of acetylsalicylic acid (aspirin) and salicylic acid in the solution containing 1 % (w/v) of citric acid in some pharmaceutical preparations is presented. The method is based on the use of the first derivative minimum spectrometric measurements at 286 nm for aspirin and at 318 nm for salicylic acid. Four kinds of cmmercial Aspirin tablets were assayed without a long pretreatment of the pharmaceuticals from the tablet additives. Beer's law is obeyed from 13.62-68.1 μg ml -1 of aspirin and from 2.723-13.616 μg ml -1 of salicylic acid. Detection limits at the 0.05 level of significance were calculated to be 1.24 and 0.25 μg ml -1 with relative standard deviations of 1.09 % and 1.2 % of aspirin and salicylic acid, respectively.

  4. Thermodynamics of the complexation of arabinogalactan with salicylic and p-aminobenzoic acids in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Mudarisova, R. Kh.; Badykova, L. A.

    2016-03-01

    The thermodynamics of complexation of arabinogalactan with salicylic and p-aminobenzoic acids in aqueous solutions is studied by means spectroscopy. The standard thermodynamic characteristics (Δ H°; Δ G°; Δ S°) of complexation are calculated.

  5. Total synthesis of marinomycin A using salicylate as a molecular switch to mediate dimerization

    NASA Astrophysics Data System (ADS)

    Evans, P. Andrew; Huang, Mu-Hua; Lawler, Michael J.; Maroto, Sergio

    2012-08-01

    Antibiotics play a significant role in human health because of their ability to treat life-threatening bacterial infections. The growing problems with antibiotic resistance have made the development of new antibiotics a World Health Organization priority. Marinomycin A is a member of a new class of bis-salicylate-containing polyene macrodiolides, which have potent antibiotic activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Herein, we describe a triply convergent synthesis of this agent using the salicylate as a novel molecular switch for the chemoselective construction of the macrodiolide. This strategy raises new questions regarding the biosynthetic role of the salicylate and its potential impact on the mechanism of action of these types of agents. For instance, in contrast to penicillin, which enhances the electrophilicity of the cyclic amide through ring strain, salicylates reduce the electrophilicity of the aryl ester through an intramolecular resonance-assisted hydrogen bond to provide an amide surrogate.

  6. Natural abundances of carbon isotopes in acetate from a coastal marine sediment

    NASA Technical Reports Server (NTRS)

    Blair, N. E.; Martens, C. S.; Des Marais, D. J.

    1987-01-01

    Measurements of the natural abundances of carbon isotopes were made in acetate samples isolated from the anoxic marine sediment of Cape Lookout Bight, North Carolina. The typical value of the total acetate carbon isotope ratio (delta 13C) was -16.1 +/- 0.2 per mil. The methyl and carboxyl groups were determined to be -26.4 +/- 0.3 and -6.0 +/- 0.3 per mil, respectively, for one sample. The isotopic composition of the acetate is thought to have resulted from isotopic discriminations that occurred during the cycling of that molecule. Measurements of this type, which have not been made previously in the natural environment, may provide information about the dominant microbial pathways in anoxic sediments as well as the processes that influence the carbon isotopic composition of biogenic methane from many sources.

  7. [Allosteric regulation of glucosamine synthetase activity by naphthoquinone derivatives and ethyl ester of di-(4-oxycumarinyl-3)-acetic acid].

    PubMed

    Sharaev, P N; Bogdanov, N G; Sarycheva, I K; Zhukova, E E

    1981-02-01

    The effects of derivatives of naphthoquinone, e.g. 2-methyl-3-phytyl-1,4-naphthoquinone (vitamin K1), 2-methyl-1,4-naphthoquinone (vitamin K3), 3-dihydro-2-methyl-1,4-naphthoquinone-2-sodium sulfonate (vicasol), derivatives of naphthohydroxyquinone, e.g. 2-methyl-1,4-naphthohydroxyquinone 1-monoacetate, 2-methyl-1,4-naphthohydroxyquinone 1,4-diacetate and the oxycumarine derivative di-(4-oxycumarinyl-3)-acetate ethyl ester (pelentan) on the activity of purified glutamine synthetase (EC 5.3.1.19) from rat liver were studied. The enzyme activity was increased under effects of vitamins K1 and K3 and was inhibited by pelentan. The data obtained are indicative of the allosteric effect of these compounds on the enzyme. PMID:7195738

  8. Observation of second-order kinetic damage in sodium salicylate due to soft x rays

    NASA Astrophysics Data System (ADS)

    Husk, D. E.; Tarrio, C.; Benitez, E. L.; Schnatterly, S. E.

    1991-10-01

    We have observed the dose dependence of the bulk quantum efficiency for luminescence of sodium salicylate as a function of the photon energy from 7 to 150 eV. We show that the damage is a second-order or higher kinetic process in the number of electron-hole pairs and is not reversible. We predict that the threshold for damage occurs at 7.2 eV, or twice the band gap of sodium salicylate.

  9. In vitro release of salicylic acid from lanolin alcohols-ethylcellulose films.

    PubMed

    Khan, A R; Iyer, B V; Cirelli, R A; Vasavada, R C

    1984-03-01

    Lanolin alcohols-ethylcellulose films were investigated as a potential drug delivery system for the controlled release of salicylic acid. The effects of changes in film composition, drug concentration, drug solubility, and stirrer speed on the in vitro release of salicylic acid have been examined. The drug release has been found to obey a diffusion-controlled matrix model and square root of time release profile both in the suspension and solution cases.

  10. Glucuronidation of the aspirin metabolite salicylic acid by expressed UDP-glucuronosyltransferases and human liver microsomes.

    PubMed

    Kuehl, Gwendolyn E; Bigler, Jeannette; Potter, John D; Lampe, Johanna W

    2006-02-01

    Acetylsalicylic acid (aspirin) is a common nonsteroidal anti-inflammatory drug used for treatment of pain and arthritis. In the body, acetylsalicylic acid is rapidly deacetylated to form salicylic acid. Both compounds have been proposed as anti-inflammatory agents. Major metabolites of salicylic acid are its acyl and phenolic glucuronide conjugates. Formation of these conjugates, catalyzed by UDP-glucuronosyltransferases (UGTs), decreases the amount of pharmacologically active salicylic acid present. We aimed to identify the UGTs catalyzing the glucuronidation of salicylic acid using both heterologously expressed enzymes and pooled human liver microsomes (HLMs) and to develop a liquid chromatography-tandem mass spectrometry method to quantify glucuronidation activity of UGTs 1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B15, and 2B17 Supersomes. All UGTs tested, except 1A4, 2B15, and 2B17, catalyzed salicylic acid phenolic and acyl glucuronidation. Ratios of salicylic acid phenolic to acyl glucuronide formation varied more than 12-fold from 0.5 for UGT1A6 to 6.1 for UGT1A1. These results suggest that all UGTs except 1A4, 2B15, and 2B17 might be involved in the glucuronidation of salicylic acid in vivo. From comparisons of apparent Km values determined in pooled HLMs and in expressed UGTs, UGT2B7 was suggested as a likely catalyst of salicylic acid acyl glucuronidation, whereas multiple UGTs were suggested as catalysts of phenolic glucuronidation. The results of this UGT screening may help target future evaluation of the effects of UGT polymorphisms on response to aspirin in clinical and population-based studies.

  11. Glucuronidation of the aspirin metabolite salicylic acid by expressed UDP-glucuronosyltransferases and human liver microsomes.

    PubMed

    Kuehl, Gwendolyn E; Bigler, Jeannette; Potter, John D; Lampe, Johanna W

    2006-02-01

    Acetylsalicylic acid (aspirin) is a common nonsteroidal anti-inflammatory drug used for treatment of pain and arthritis. In the body, acetylsalicylic acid is rapidly deacetylated to form salicylic acid. Both compounds have been proposed as anti-inflammatory agents. Major metabolites of salicylic acid are its acyl and phenolic glucuronide conjugates. Formation of these conjugates, catalyzed by UDP-glucuronosyltransferases (UGTs), decreases the amount of pharmacologically active salicylic acid present. We aimed to identify the UGTs catalyzing the glucuronidation of salicylic acid using both heterologously expressed enzymes and pooled human liver microsomes (HLMs) and to develop a liquid chromatography-tandem mass spectrometry method to quantify glucuronidation activity of UGTs 1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B15, and 2B17 Supersomes. All UGTs tested, except 1A4, 2B15, and 2B17, catalyzed salicylic acid phenolic and acyl glucuronidation. Ratios of salicylic acid phenolic to acyl glucuronide formation varied more than 12-fold from 0.5 for UGT1A6 to 6.1 for UGT1A1. These results suggest that all UGTs except 1A4, 2B15, and 2B17 might be involved in the glucuronidation of salicylic acid in vivo. From comparisons of apparent Km values determined in pooled HLMs and in expressed UGTs, UGT2B7 was suggested as a likely catalyst of salicylic acid acyl glucuronidation, whereas multiple UGTs were suggested as catalysts of phenolic glucuronidation. The results of this UGT screening may help target future evaluation of the effects of UGT polymorphisms on response to aspirin in clinical and population-based studies. PMID:16258079

  12. Understanding Palladium Acetate from a User Perspective.

    PubMed

    Carole, William A; Colacot, Thomas J

    2016-06-01

    The behavior of palladium acetate is reviewed with respect to its synthesis, characterization, structure (in both solution and solid state), and activation pathways. In addition, comparisons of catalytic activities between pure palladium acetate and two common byproducts, Pd3 (OAc)5 (NO2 ) and polymeric [Pd(OAc)2 ]n , typically present in commercially available material are reviewed. Hence, this minireview serves as a concise guide for the users of palladium acetate from both academia and industry. PMID:27125630

  13. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... sodium sulfate and sodium bicarbonate. (b) The ingredient meets the specifications of the Food Chemicals... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium acetate. 184.1721 Section 184.1721 Food and... Substances Affirmed as GRAS § 184.1721 Sodium acetate. (a) Sodium acetate (C2H3O2Na, CAS Reg. No. 127-09-3...

  14. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... sodium sulfate and sodium bicarbonate. (b) The ingredient meets the specifications of the Food Chemicals... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium acetate. 184.1721 Section 184.1721 Food and... Substances Affirmed as GRAS § 184.1721 Sodium acetate. (a) Sodium acetate (C2H3O2Na, CAS Reg. No. 127-09-3...

  15. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... sodium sulfate and sodium bicarbonate. (b) The ingredient meets the specifications of the Food Chemicals... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium acetate. 184.1721 Section 184.1721 Food and... Substances Affirmed as GRAS § 184.1721 Sodium acetate. (a) Sodium acetate (C2H3O2Na, CAS Reg. No. 127-09-3...

  16. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... sodium sulfate and sodium bicarbonate. (b) The ingredient meets the specifications of the Food Chemicals... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium acetate. 184.1721 Section 184.1721 Food and... Substances Affirmed as GRAS § 184.1721 Sodium acetate. (a) Sodium acetate (C2H3O2Na, CAS Reg. No. 127-09-3...

  17. Variable DNA methylation changes during differentiation of human melanoma cells.

    PubMed

    Steigerwald, S D; Pfeifer, G P

    1988-09-01

    The DNA 5-methylcytosine content has been analyzed in the human melanoma cell line M21 at several time points after induction of differentiation by a variety of inducers. 5-Aza-2'-deoxycytidine reduces DNA methylation to about 50% of the control level and this demethylation occurs prior to the establishment of the differentiated phenotype. The DNA synthesis inhibitors cytosine arabinoside, aphidicolin, and hydroxyurea exert different effects on DNA methylation in these cells. Cytosine arabinoside induces an early DNA hypermethylation, which is however reversible and drops to the original level after 24 h. Hydroxyurea induces DNA hypermethylation after a lag period of more than 48 h and the DNA polymerase alpha inhibitor aphidicolin has no effect on the DNA methylation level. Treatment of cells with phorbol 12-myristate 13-acetate, another potent inducer of melanoma cell differentiation, does not result in a change of total DNA methylation over a period of 96 h. These results indicate that differentiation of human melanoma cells can be accompanied by variable changes of the DNA methylation pattern. These changes can be neither generally related to the differentiation process itself nor related to the effects of DNA synthesis inhibition on DNA methylation, but may more likely reflect a direct or indirect particular effect of the inducer on the DNA methylation process.

  18. Comparative efficacy and bioequivalence of novel h1-antihistamine bepotastine salts (nicotinate and salicylate).

    PubMed

    Lim, Duck Soo; Youn, Yoo Seok; Kwack, Seung Jun; Kwak, Hyo Min; Lim, Seong Kwang; Kim, Ji Yun; Um, Yoon Mi; Lee, Jung Dae; Hyeon, Ji Hyeon; Kim, Yeon Joo; Kim, Hyung Sik; Lee, Byung-Mu

    2014-01-01

    Bepotastine salts (nicotinate and salicylate) were investigated for their physicochemical properties to develop novel salt forms of bepotastine, bioequivalent to the bepotastine besilate-loaded tablet (Talion). These bepotastine salts of either nicotinate- or salicylate-loaded tablets were prepared by conventional wet granulation method, and dissolution profiles and pharmacokinetics in beagle dogs were compared to those of Talion. A novel bepotastine nicotinate has a higher solubility at varying pH levels (1.2, 4, or 6.8) than salicylate-loaded or besilate-loaded salt. In addition, those bepostastine salt forms (nicotinate and salicylate) are stable in heat, light, and water. Further, the novel nicotinate- and salicylate-loaded tablets showed similar dissolution rates to Talion in several selected dissolution media and were bioequivalent to Talion in beagle dogs in terms of area under the concentration-time curve (AUC) and maximum observed concentration (Cmax). A pharmacokinetic study performed in beagle dogs demonstrated that test and reference products were found to be bioequivalent in terms of safety, efficacy, and pharmacokinetic properties. These results suggest that bepostastine nicotinate and salicylate formulations are considered applicable candidates and are well tolerated versus the conventional bepostastine besilate formulation. PMID:25343294

  19. Topical penetration of commercial salicylate esters and salts using human isolated skin and clinical microdialysis studies

    PubMed Central

    Cross, Sheree E; Anderson, Chris; Roberts, Michael S

    1998-01-01

    Aims The penetration of active ingredients from topically applied anti-inflammatory pharmaceutical products into tissues below the skin is the basis of their therapeutic efficacy. There is still controversy as to whether these agents are capable of direct penetration by diffusion through the tissues or whether redistribution in the systemic circulation is responsible for their tissue deposition below the application site. Methods The extent of direct penetration of salicylate from commercial ester and salt formulations into the dermal and subcutaneous tissue of human volunteers was determined using the technique of cutaneous microdialysis. We also examined differences in the extent of hydrolysis of the methylester of salicylate applied topically in human volunteers and in vitro skin diffusion cells using full-thickness skin and epidermal membranes. Results The present study showed that whilst significant levels of salicylate could be detected in the dermis and subcutaneous tissue of volunteers treated with the methylsalicylate formulation, negligible levels of salicylate were seen following application of the triethanolamine salicylate formulation. The tissue levels of salicylate from the methylsalicylate formulation were approx. 30-fold higher than the plasma concentrations. Conclusion The absorption and tissue concentration profiles for the commercial methylsalicylate formulation are indicative of direct tissue penetration and not solely redistribution by the systemic blood supply. PMID:9690946

  20. Transport of salicylate in proximal tubule (S2 segment) isolated from rabbit kidney.

    PubMed

    Schild, L; Roch-Ramel, F

    1988-04-01

    The secretory and reabsorptive transport of salicylate was studied in the isolated and perfused rabbit proximal tubule (S2 segment). Salicylate secretion (Jb----lsal) fulfilled the criteria for a carrier-mediated transport system: Jb----lsal was saturable, was reversibly inhibited by probenecid, and occurred against a concentration gradient. The Km and Vmax for this secretory transport were 80 microM and 3,200 fmol.min-1.mm-1, respectively. At luminal pH of 7.4 and 6.6, salicylate reabsorption (Jl----bsal) was low (100 fmol.min-1.mm-1). Jl----bsal was stimulated by increasing the bath PCO2 or by removing basolateral HCO3-; Jl----bsal was inhibited by ethoxyzolamide and by SITS in the bath. Our results indicate that salicylate reabsorption depends on H+ secretion, consistent with reabsorption by simple nonionic diffusion. When salicylate was present in the lumen only, Jl----bsal increased after inhibition of the secretory transport by adding ouabain or probenecid in the bath or by lowering the bath temperature. These results are compatible with luminal recycling of salicylate, and suggest the presence of a mediated secretory transporter located at the luminal membrane.