Sample records for acetate pma-stimulated neutrophils

  1. Ceruloplasmin inhibits carbonyl formation in endogenous proteins in phorbol myristate acetate (PMA)-stimulated neutrophils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krsek-Staples, J.; Webster, R.O.

    1991-03-11

    The respiratory burst of stimulated neutrophils can cause oxidative modifications of endogenous neutrophil proteins as measured by increased carbonyl formation. Ceruloplasmin is an acute phase protein and may act as an antioxidant during inflammation. Therefore, the role of ceruloplasmin in preventing oxidative damage of endogenous neutrophil proteins was investigated. Protein carbonyl content was determined spectrophotometrically using 2,4-dinitrophenylhydrazine. Ceruloplasmin, at a concentration present during inflammation significantly inhibited carbonyl formation in endogenous proteins of PMA-stimulated neutrophils. In order to determine if oxidative damage was occurring to the ceruloplasmin upon incubation with stimulated neutrophils, carbonyl formation in the ceruloplasmin in the presence andmore » absence of stimulated neutrophils. This data suggests that ceruloplasmin may play a role in regulating oxidative damage to proteins and that ceruloplasmin itself may act as a target for these modifications.« less

  2. The stimulation of superoxide anion production in guinea-pig peritoneal macrophages and neutrophils by phorbol myristate acetate, opsonized zymosan and IgG2-containing soluble immune complexes.

    PubMed Central

    Baxter, M A; Leslie, R G; Reeves, W G

    1983-01-01

    The kinetics of superoxide anion production in guinea-pig peritoneal macrophages and neutrophils were determined following in vitro stimulation with phorbol myristate acetate (PMA), opsonized zymosan (OZ) and soluble immune complexes of guinea-pig IgG2 (SIC). Superoxide production was recorded as chemiluminescence (CL) arising from the reductive cleavage of lucigenin. With PMA, both macrophages and neutrophils displayed a two-phase response consisting of a rapid initial burst of CL, which preceded ligand ingestion, followed by a plateau in the CL response which persisted for more than 30 min. By contrast, OZ induced a slow progressive increase in CL in both phagocytes which was consistent with the development of an oxidative burst concomitant with ingestion. The phagocytes differed in their responses to SIC, the macrophages displaying CL kinetics similar to those observed with PMA, whereas the neutrophils responded in the manner observed with OZ. The relationship between disparity in the patterns of macrophage and neutrophil CL responses to SIC and differences in their expression of Fc receptors for IgG2 (Coupland & Leslie, 1983) is discussed. PMID:6299935

  3. Autophagy Primes Neutrophils for Neutrophil Extracellular Trap Formation during Sepsis.

    PubMed

    Park, So Young; Shrestha, Sanjeeb; Youn, Young-Jin; Kim, Jun-Kyu; Kim, Shin-Yeong; Kim, Hyun Jung; Park, So-Hee; Ahn, Won-Gyun; Kim, Shin; Lee, Myung Goo; Jung, Ki-Suck; Park, Yong Bum; Mo, Eun-Kyung; Ko, Yousang; Lee, Suh-Young; Koh, Younsuck; Park, Myung Jae; Song, Dong-Keun; Hong, Chang-Won

    2017-09-01

    Neutrophils are key effectors in the host's immune response to sepsis. Excessive stimulation or dysregulated neutrophil functions are believed to be responsible for sepsis pathogenesis. However, the mechanisms regulating functional plasticity of neutrophils during sepsis have not been fully determined. We investigated the role of autophagy in neutrophil functions during sepsis in patients with community-acquired pneumonia. Neutrophils were isolated from patients with sepsis and stimulated with phorbol 12-myristate 13-acetate (PMA). The levels of reactive oxygen species generation, neutrophil extracellular trap (NET) formation, and granule release, and the autophagic status were evaluated. The effect of neutrophil autophagy augmentation was further evaluated in a mouse model of sepsis. Neutrophils isolated from patients who survived sepsis showed an increase in autophagy induction, and were primed for NET formation in response to subsequent PMA stimulation. In contrast, neutrophils isolated from patients who did not survive sepsis showed dysregulated autophagy and a decreased response to PMA stimulation. The induction of autophagy primed healthy neutrophils for NET formation and vice versa. In a mouse model of sepsis, the augmentation of autophagy improved survival via a NET-dependent mechanism. These results indicate that neutrophil autophagy primes neutrophils for increased NET formation, which is important for proper neutrophil effector functions during sepsis. Our study provides important insights into the role of autophagy in neutrophils during sepsis.

  4. Involvement of adhesion molecules (CD11a-ICAM-1) in vascular endothelial cell injury elicited by PMA-stimulated neutrophils.

    PubMed

    Fujita, H; Morita, I; Murota, S

    1991-06-14

    Protective effect of anti-CD11a and anti-ICAM-1 antibodies on the cytotoxicity induced by PMA-stimulated neutrophils was studied using cultured endothelial cells isolated from bovine carotid artery. Anti-CD11a antibody and anti-ICAM-1 antibody inhibited the endothelial cell injury induced by the activated neutrophils in a dose dependent manner. On the other hand, both antibodies themselves had no effect on either the luminol chemiluminescence released out of the activated neutrophils or the adhesion of the neutrophils to the endothelial cell monolayer. These data suggest that these adhesion molecules play some important roles in the vascular endothelial cell injury elicited by activated neutrophils.

  5. Evaluation of Antiradical and Anti-Inflammatory Activities of Ethyl Acetate and Butanolic Subfractions of Agelanthus dodoneifolius (DC.) Polhill & Wiens (Loranthaceae) Using Equine Myeloperoxidase and Both PMA-Activated Neutrophils and HL-60 Cells

    PubMed Central

    Boly, Rainatou; Franck, Thierry; Kohnen, Stephan; Lompo, Marius; Guissou, Innocent Pierre; Dubois, Jacques; Serteyn, Didier; Mouithys-Mickalad, Ange

    2015-01-01

    The ethyl acetate and n-butanolic subfractions of Agelanthus dodoneifolius were investigated for their antioxidant and antimyeloperoxidase (MPO) activities. The reactive oxygen species (ROS) generation was assessed by lucigenin-enhanced chemiluminescence (CL) and dichlorofluorescein- (DCF-) induced fluorescence techniques from phorbol myristate acetate- (PMA-) stimulated equine neutrophils and human myeloid cell line HL-60, respectively. In parallel, the effects of the tested subfractions were evaluated on the total MPO release by stimulated neutrophils and on the specific MPO activity by means of immunological assays. The results showed the potent activity of the butanolic subfraction, at least in respect of the chemiluminescence test (IC50 = 0.3 ± 0.1 µg/mL) and the ELISA and SIEFED assays (IC50 = 2.8 ± 1.2 µg/mL and 1.3 ± 1.0 µg/mL), respectively. However, the ethyl acetate subfraction was found to be the most potent in the DCF assay as at the highest concentration, DCF fluorescence intensity decreases of about 50%. Moreover, we demonstrated that the ethyl acetate subfraction was rich in catechin (16.51%) while it was not easy to identify the main compounds in the butanolic subfraction using the UPLC-MS/MS technique. Nevertheless, taken together, our results provide evidence that Agelanthus dodoneifolius subfractions may represent potential sources of natural antioxidants and of antimyeloperoxidase compounds. PMID:25821497

  6. Biomaterial associated impairment of local neutrophil function.

    PubMed

    Kaplan, S S; Basford, R E; Kormos, R L; Hardesty, R L; Simmons, R L; Mora, E M; Cardona, M; Griffith, B L

    1990-01-01

    The effect of biomaterials on neutrophil function was studied in vitro to determine if these materials activated neutrophils and to determine the subsequent response of these neutrophils to further stimulation. Two biomaterials--polyurethane, a commonly used substance, and Velcro pile (used in the Jarvik 7 heart)--were evaluated. Two control substances, polyethylene and serum-coated polystyrene, were used for comparison. Neutrophil superoxide release was measured following incubation with these materials for 10, 30, and 120 min in the absence of additional stimulation and after stimulation with formylmethionylleucylphenylalanine (fMLP) or phorbol myristate acetate (PMA). The authors observed that the incubation of neutrophils on both polyurethane and Velcro resulted in substantially increased superoxide release that was greater after the 10 min than after the 30 or 120 min association. These activated neutrophils exhibited a poor additional response to fMLP but responded well to PMA. The effect of implantation of the Novacor left ventricular assist device on peripheral blood neutrophil function was also evaluated. The peripheral blood neutrophils exhibited normal superoxide release and chemotaxis. These studies suggest that biomaterials may have a profound local effect on neutrophils, which may predispose the patient to periprosthetic infection, but that the reactivity of circulating neutrophils is unimpaired.

  7. Stimulation of progesterone production by phorbol-12-myristate 13-acetate (PMA) in cultured Leydig tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhary, L.R.; Raju, V.S.; Stocco, D.M.

    1987-05-01

    It has been shown that addition of hCG or c-AMP to cultured Leydig tumor cells (MA-10) increases synthesis of progesterone as the major steroid. To investigate the possible involvement of protein kinase C (PK-C) in the regulation of steroid synthesis, the authors have studied the effect of PMA, an activator of PK-C, on progesterone production in MA-10 cells. The addition of PMA (100 ng/ml) stimulated steroid production whereas 4 -phorbol-12,13-didecanoate, an inactive phorbol ester, did not have any effects. Like hCG and c-AMP, PMA-stimulated progesterone production was inhibited by cycloheximide. hCG-stimulated steroid synthesis was inhibited by PMA. The addition ofmore » PMA to MA-10 Leydig cells further increased the c-AMP-stimulated progesterone production. To determine whether c-AMP has a obligatory role in the regulation of steroid production, the effect of adenylate cyclase inhibitor, 9-(tetrahydro-2-furyl)adenine (TFA), was studied on progesterone production in the presence of hCG. At lower dose (17 ng/ml) hCG-stimulated intracellular c-AMP levels and steroid production were inhibited by TFA (300 M). At higher dose of hCG (34 ng/ml) TFA did not inhibit the hCG-stimulated intracellular c-AMP levels, however, progesterone production was inhibited. Results suggest that the action of hCG, c-AMP and PMA in controlling steroidogenesis might be regulated by similar but different mechanisms.« less

  8. Stimulus specific effect of ibuprofen on chemiluminescence of sheep neutrophils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tahamont, M.V.; Margiotta, M.; Gee, M.H.

    1986-03-05

    The authors have shown that pretreatment with ibuprofen inhibits free radical release from complement stimulated neutrophils. To further examine the effect of ibuprofen on neutrophil free radical release, they stimulated neutrophils with the synthetic peptide, FMLP, phorbol myristate acetate (PMA), or zymosan-activated plasma (ZAP). Pure (>95%), viable (>95%) sheep neutrophils (2 x 10/sup 6/) were placed in HEPES buffer, luminol, drug or vehicle and stimulated in the luminometer with one of the stimuli. The chemiluminescence (CL) response was recorded and the drug treated samples were compared to vehicle treated controls. Ibuprofen had a dose dependent effect on CL in ZAPmore » stimulated neutrophils. At the highest dose (10/sup -2/M) these cells produced only 37 +/- 7% of the CL response observed in the control cells. In contrast, at the same dose, ibuprofen did not significantly attenuate CL seen in FMLP stimulated cells, with these cells producing 79 +/- 7% of the control cells; nor did ibuprofen effect PMA stimulated CL, as these cells produced a CL response that was 85 +/- 8% of the control cells. Ibuprofen appears to have a stimulus specific effect on free radical release in activated neutrophils. It is also apparent that ibuprofen inhibits complement stimulated free radical release by some mechanism independent of its cyclooxygenase inhibitory effect.« less

  9. Iron-chelating agent, deferasirox, inhibits neutrophil activation and extracellular trap formation.

    PubMed

    Kono, Mari; Saigo, Katsuyasu; Yamamoto, Shiori; Shirai, Kohei; Iwamoto, Shuta; Uematsu, Tomoko; Takahashi, Takayuki; Imoto, Shion; Hashimoto, Makoto; Minami, Yosuke; Wada, Atsushi; Takenokuchi, Mariko; Kawano, Seiji

    2016-10-01

    Iron-chelating agents, which are frequently prescribed to transfusion-dependent patients, have various useful biological effects in addition to chelation. Reactive oxygen species (ROS) produced by neutrophils can cause pulmonary endothelial cell damage, which can lead to acute lung injury (ALI). We previously reported that deferasirox (DFS), an iron-chelating agent, inhibits phorbol myristate acetate (PMA) or formyl-methionyl-leucyl-phenylalanine (fMLP)-induced ROS production in neutrophils, in vitro. Here, we investigate whether DFS inhibits vacuolization in neutrophils and neutrophil extracellular trap (NET) formation. Human neutrophils were incubated with DFS and stimulated with PMA or fMLP. Human neutrophils were separated from heparinized peripheral blood using density gradient centrifugation, and subsequently incubated with DFS. After 10 minutes, neutrophils were stimulated by PMA or fMLP. Vacuole formation was observed by electron microscopy. For observing NET formations using microscopes, immunohistological analyses using citrullinated histone H3 and myeloperoxidase antibodies, and SYTOX Green (an impermeable DNA detection dye) staining, were conducted. NET formation was measured as the quantity of double-stranded DNA (dsDNA), using the AccuBlue Broad Range dsDNA Quantitation Kit. DFS (50 μmol/L) inhibited vacuole formation in the cytoplasm and NET formation. Additionally, 5-100 μmol/L concentration of DFS inhibited the release of dsDNA in a dose-independent manner. We demonstrate that DFS inhibits not only ROS production but also vacuolization and NET formation in neutrophils. These results suggest the possibility of protective effects of DFS against NET-related adverse effects, including ALI and thrombosis. © 2016 John Wiley & Sons Australia, Ltd.

  10. Dengue Virus Serotype-2 Interferes with the Formation of Neutrophil Extracellular Traps.

    PubMed

    Moreno-Altamirano, Maria Maximina B; Rodríguez-Espinosa, Oscar; Rojas-Espinosa, Oscar; Pliego-Rivero, Bernardo; Sánchez-García, Francisco J

    2015-01-01

    Neutrophils play an important role in the control of pathogens through several mechanisms, including phagocytosis and the formation of neutrophil extracellular traps (NETs). The latter consists of DNA as a backbone with embedded antimicrobial peptides, histones, and proteases, providing a matrix to entrap and in some cases to kill microbes. Some metabolic requirements for NET formation have recently been described. The virus-induced formation of NETs and the role of these traps in viral infections remain scarcely reported. Here, we analyzed whether dengue virus serotype-2 (DENV-2) induces NET formation and the DENV-2 effect on phorbol myristate acetate (PMA)-induced NETs. Peripheral blood-derived neutrophils were exposed in vitro to DENV-2 or exposed to DENV-2 and then stimulated with PMA. NET formation was assessed by fluorescence microscopy. Cell membrane Glut-1, glucose uptake, and reactive oxygen species (ROS) production were assessed. DENV-2 does not induce the formation of NETs. Moreover, DENV-2 inhibits PMA-induced formation of NETs by about 80%. This effect is not related to the production of ROS. The mechanism seemingly accountable for this inhibitory effect is the DENV-2-mediated inhibition of PMA-induced glucose uptake by neutrophils. Our results suggest that DENV-2 inhibits glucose uptake as a metabolism-based way to avoid the formation of NETs. © 2015 S. Karger AG, Basel.

  11. Neutrophil extracellular traps formation by bacteria causing endometritis in the mare.

    PubMed

    Rebordão, M R; Carneiro, C; Alexandre-Pires, G; Brito, P; Pereira, C; Nunes, T; Galvão, A; Leitão, A; Vilela, C; Ferreira-Dias, G

    2014-12-01

    Besides the classical functions, neutrophils (PMNs) are able to release DNA in response to infectious stimuli, forming neutrophil extracellular traps (NETs) and killing pathogens. The pathogenesis of endometritis in the mare is not completely understood. The aim was to evaluate the in vitro capacity of equine PMNs to secrete NETs by chemical activation, or stimulated with Streptococcus equi subspecies zooepidemicus (Szoo), Escherichia coli (Ecoli) or Staphylococcus capitis (Scap) strains obtained from mares with endometritis. Ex vivo endometrial mucus from mares with bacterial endometritis were evaluated for the presence of NETs. Equine blood PMNs were used either without or with stimulation by phorbol-myristate-acetate (PMA), a strong inducer of NETs, for 1-3h. To evaluate PMN ability to produce NETs when phagocytosis was impaired, the phagocytosis inhibitor cytochalasin (Cyt) was added after PMA. After the addition of bacteria, a subsequent 1-h incubation was carried out in seven groups. NETs were visualized by 4',6-diamidino-2-phenylindole (DAPI) and anti-histone. Ex vivo samples were immunostained for myeloperoxidase and neutrophil elastase. A 3-h incubation period of PMN + PMA increased NETs (p < 0.05). Bacteria + 25 nM PMA and bacteria + PMA + Cyt increased NETs (p<0.05). Szoo induced fewer NETs than Ecoli or Scap (p < 0.05). Ex vivo NETs were present in mares with endometritis. Scanning electron microscopy showed the spread of NETs formed by smooth fibers and globules that can be aggregated in thick bundles. Formation of NETs and the subsequent entanglement of bacteria suggest that equine NETs might be a complementary mechanism in fighting some of the bacteria causing endometritis in the mare. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Streptococcus suis DNase SsnA contributes to degradation of neutrophil extracellular traps (NETs) and evasion of NET-mediated antimicrobial activity.

    PubMed

    de Buhr, Nicole; Neumann, Ariane; Jerjomiceva, Natalja; von Köckritz-Blickwede, Maren; Baums, Christoph G

    2014-02-01

    Streptococcus suis is an important cause of different pathologies in pigs and humans, most importantly fibrinosuppurative meningitis. Tissue infected with this pathogen is substantially infiltrated with neutrophils, but the function of neutrophil extracellular traps (NETs) - a more recently discovered antimicrobial strategy of neutrophils - in host defence against Strep. suis has not been investigated. The objective of this work was to investigate the interaction of Strep. suis with NETs in vitro. Strep. suis induced NET formation in porcine neutrophils and was entrapped but not killed by those NETs. As the amount of NETs decreased over time, we hypothesized that a known extracellular DNase of Strep. suis degrades NETs. Though this nuclease was originally designated Strep. suis-secreted nuclease A (SsnA), this work demonstrated surface association in accordance with an LPXTG cell wall anchor motif and partial release into the supernatant. Confirming our hypothesis, an isogenic ssnA mutant was significantly attenuated in NET degradation and in protection against the antimicrobial activity of NETs as determined in assays with phorbol myristate acetate (PMA)-stimulated human neutrophils. Though assays with PMA-stimulated porcine neutrophils suggested that SsnA also degrades porcine NETs, phenotypic differences between wt and the isogenic ssnA mutant were less distinct. As SsnA expression was crucial for neither growth in vitro nor for survival in porcine or human blood, the results indicated that SsnA is the first specific NET evasion factor to be identified in Strep. suis.

  13. Hypochlorous acid regulates neutrophil extracellular trap release in humans

    PubMed Central

    Palmer, L J; Cooper, P R; Ling, M R; Wright, H J; Huissoon, A; Chapple, I L C

    2012-01-01

    Neutrophil extracellular traps (NETs) comprise extracellular chromatin and granule protein complexes that immobilize and kill bacteria. NET release represents a recently discovered, novel anti-microbial strategy regulated non-exclusively by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase generation of reactive oxygen intermediates (ROIs), particularly hydrogen peroxide. This study aimed to characterize the role of ROIs in the process of NET release and to identify the dominant ROI trigger. We employed various enzymes, inhibitors and ROIs to record their effect fluorometrically on in vitro NET release by human peripheral blood neutrophils. Treatment with exogenous superoxide dismutase (SOD) supported the established link between hydrogen peroxide and NET production. However, treatment with myeloperoxidase inhibitors and direct addition of hypochlorous acid (HOCl; generated in situ from sodium hypochlorite) established that HOCl was a necessary and sufficient ROI for NET release. This was confirmed by the ability of HOCl to stimulate NET release in chronic granulomatous disease (CGD) patient neutrophils which, due to the lack of a functional NADPH oxidase, also lack the capacity for NET release in response to classical stimuli. Moreover, the exogenous addition of taurine, abundantly present within the neutrophil cytosol, abrogated NET production stimulated by phorbol myristate acetate (PMA) and HOCl, providing a novel mode of cytoprotection by taurine against oxidative stress by taurine. PMID:22236002

  14. Autoantibodies developing to myeloperoxidase and proteinase 3 in systemic vasculitis stimulate neutrophil cytotoxicity toward cultured endothelial cells.

    PubMed Central

    Savage, C. O.; Pottinger, B. E.; Gaskin, G.; Pusey, C. D.; Pearson, J. D.

    1992-01-01

    The ability of vasculitis-associated anti-neutrophil cytoplasm antibodies (ANCA) to activate neutrophils and mediate release of radiolabel from 111Indium-labeled cultured human umbilical vein endothelial cells (HUVEC) was determined as a measure of the potential cytotoxicity of ANCA-activated neutrophils against vascular endothelium. Priming of neutrophils with low doses of phorbol 12-myristate 13-acetate (PMA) (1 ng/ml) and ionomycin (0.1 mumol/1) was required, together with pretreatment of endothelial cells with BCNU (1,3-bis-[2-chloroethyl]-1-nitrosourea; 0.26 mmol/l). Under these conditions and using a 4-hour serum-free assay system, mouse monoclonal antibodies (MAb) to the target autoantigens proteinase-3 (Pr-3) and myeloperoxidase (MPO) mediated enhanced release of 111Indium from HUVEC compared with control MAb. Human IgG Fab2 C-ANCA (recognizing Pr-3) and P-ANCA (recognizing MPO) did likewise. Preactivation of HUVEC with TNF (50 U/ml, 4 hr) enhanced the release of 111Indium from HUVEC generated by neutrophils activated with anti-Pr-3 and anti-MPO MAb. These data support the suggestion that activation of neutrophils by ANCA within the vascular lumen may contribute to endothelial cell injury. PMID:1323218

  15. Decreased activity of neutrophils in the presence of diferuloylmethane (curcumin) involves protein kinase C inhibition.

    PubMed

    Jancinová, Viera; Perecko, Tomás; Nosál, Radomír; Kostálová, Daniela; Bauerová, Katarína; Drábiková, Katarína

    2009-06-10

    Diferuloylmethane (curcumin) has been shown to act beneficially in arthritis, particularly through downregulated expression of proinflammatory cytokines and collagenase as well as through the modulated activities of T lymphocytes and macrophages. In this study its impact on activated neutrophils was investigated both in vitro and in experimental arthritis. Formation of reactive oxygen species in neutrophils was recorded on the basis of luminol- or isoluminol-enhanced chemiluminescence. Phosphorylation of neutrophil protein kinases C alpha and beta II was assessed by Western blotting, using phosphospecific antibodies. Adjuvant arthritis was induced in Lewis rats by heat-killed Mycobacterium butyricum. Diferuloylmethane or methotrexate was administered over a period of 28 days after arthritis induction. Under in vitro conditions, diferuloylmethane (1-100 microM) reduced dose-dependently oxidant formation both at extra- and intracellular level and it effectively reduced protein kinase C activation. Adjuvant arthritis was accompanied by an increased number of neutrophils in blood and by a more pronounced spontaneous as well as PMA (phorbol myristate acetate) stimulated chemiluminescence. Whereas the arthritis-related alterations in neutrophil count and in spontaneous chemiluminescence were not modified by diferuloylmethane, the increased reactivity of neutrophils to PMA was less evident in diferuloylmethane-treated animals. The effects of diferuloylmethane were comparable with those of methotrexate. Diferuloylmethane was found to be a potent inhibitor of neutrophil functions both in vitro and in experimental arthritis. As neutrophils are considered to be cells with the greatest capacity to inflict damage within diseased joints, the observed effects could represent a further mechanism involved in the antirheumatic activity of diferuloylmethane.

  16. Comparison of neutrophil functions between two strains of inbred mice.

    PubMed

    Zhang, Xiaohuan; Zhao, Sainan; Sun, Luping; Li, Wenqing; Glogauer, Michael; Hu, Yan

    2016-12-01

    In this study, differences between two strains of inbred mice in aspects of neutrophil function, namely Rac1 expression, chemotaxis, nicotinamide adenine dinucleotide phosphate oxidase activity and formation of neutrophil extracellular traps (NETs), were determined. Neutrophils from CBA/CaH mice exhibited weaker Rac1 expression and a slower chemotactic gradient than BALB/c mice. Furthermore, PMA- or fMLP-stimulated neutrophils from CBA/CaH mice generated much less superoxide and NETs than similarly stimulated neutrophils from BALB/c mice. These findings suggest that neutrophils from BALB/c mice are functionally more efficient than those from CBA/CaH mice. © 2016 The Societies and John Wiley & Sons Australia, Ltd.

  17. Differential Signalling and Kinetics of Neutrophil Extracellular Trap Release Revealed by Quantitative Live Imaging.

    PubMed

    van der Linden, Maarten; Westerlaken, Geertje H A; van der Vlist, Michiel; van Montfrans, Joris; Meyaard, Linde

    2017-07-26

    A wide variety of microbial and inflammatory factors induce DNA release from neutrophils as neutrophil extracellular traps (NETs). Consensus on the kinetics and mechanism of NET release has been hindered by the lack of distinctive methods to specifically quantify NET release in time. Here, we validate and refine a semi-automatic live imaging approach for quantification of NET release. Importantly, our approach is able to correct for neutrophil input and distinguishes NET release from neutrophil death by other means, aspects that are lacking in many NET quantification methods. Real time visualization shows that opsonized S. aureus rapidly induces cell death by toxins, while actual NET formation occurs after 90 minutes, similar to the kinetics of NET release by immune complexes and PMA. Inhibition of SYK, PI3K and mTORC2 attenuates NET release upon challenge with physiological stimuli but not with PMA. In contrast, neutrophils from chronic granulomatous disease patients show decreased NET release only in response to PMA. With this refined method, we conclude that NET release in primary human neutrophils is dependent on the SYK-PI3K-mTORC2 pathway and that PMA stimulation should be regarded as mechanistically distinct from NET formation induced by natural triggers.

  18. Dual Stimulus-Dependent Effect of Oenothera paradoxa Extract on the Respiratory Burst in Human Leukocytes: Suppressing for Escherichia coli and Phorbol Myristate Acetate and Stimulating for Formyl-Methionyl-Leucyl-Phenylalanine

    PubMed Central

    Burzynska-Pedziwiatr, Izabela; Bukowiecka-Matusiak, Malgorzata; Wojcik, Marzena; Machala, Waldemar; Bienkiewicz, Malgorzata; Spolnik, Grzegorz; Danikiewicz, Witold; Wozniak, Lucyna Alicja

    2014-01-01

    Although a growing body of evidence suggests that plant polyphenols can modulate human immune responses, their simultaneous action on monocyte and neutrophil oxidative burst is currently poorly understood. Based on the hypothesis that various polyphenols contained in plant extracts might affect the oxidative burst of phagocytes, we evaluated the effects of ethanolic O. paradoxa extract polyphenols on monocyte and neutrophil oxidative burst in vitro activated by different stimuli, including opsonized bacteria E. coli, phorbol 12-myristate 13-acetate (PMA), and formyl-methionyl-leucyl-phenylalanine (fMLP). Samples were analyzed by the dihydrorhodamine flow cytometry assay. Our results showed that the extract repressed significantly and dose-dependently reactive oxygen species production in both cell types stimulated with E. coli and PMA (P < 0.05) and its inhibitory efficiency was stimulus- and cell-type-dependent. Interestingly, there was significant stimulatory effect of the extract on bursting phagocytes induced by fMLP (P < 0.05). Additionally, several flavonoids and phenolic compounds as well as penta-galloyl-β-(D)-glucose (PGG), the representative of hydrolyzable tannins, were identified in the 60% extract by high-performance liquid chromatography (HPLC) coupled to electrospray ionization in negative ion mode. In summary, the ethanolic O. paradoxa extract, rich in flavonoids and phenolic compounds, exhibits dual stimulus-dependent effect on the respiratory burst in human leukocytes; hence, it might affect immune responses in humans. PMID:25298860

  19. Dual stimulus-dependent effect of Oenothera paradoxa extract on the respiratory burst in human leukocytes: suppressing for Escherichia coli and phorbol myristate acetate and stimulating for formyl-methionyl-leucyl-phenylalanine.

    PubMed

    Burzynska-Pedziwiatr, Izabela; Bukowiecka-Matusiak, Malgorzata; Wojcik, Marzena; Machala, Waldemar; Bienkiewicz, Malgorzata; Spolnik, Grzegorz; Danikiewicz, Witold; Wozniak, Lucyna Alicja

    2014-01-01

    Although a growing body of evidence suggests that plant polyphenols can modulate human immune responses, their simultaneous action on monocyte and neutrophil oxidative burst is currently poorly understood. Based on the hypothesis that various polyphenols contained in plant extracts might affect the oxidative burst of phagocytes, we evaluated the effects of ethanolic O. paradoxa extract polyphenols on monocyte and neutrophil oxidative burst in vitro activated by different stimuli, including opsonized bacteria E. coli, phorbol 12-myristate 13-acetate (PMA), and formyl-methionyl-leucyl-phenylalanine (fMLP). Samples were analyzed by the dihydrorhodamine flow cytometry assay. Our results showed that the extract repressed significantly and dose-dependently reactive oxygen species production in both cell types stimulated with E. coli and PMA (P < 0.05) and its inhibitory efficiency was stimulus- and cell-type-dependent. Interestingly, there was significant stimulatory effect of the extract on bursting phagocytes induced by fMLP (P < 0.05). Additionally, several flavonoids and phenolic compounds as well as penta-galloyl-β-(D)-glucose (PGG), the representative of hydrolyzable tannins, were identified in the 60% extract by high-performance liquid chromatography (HPLC) coupled to electrospray ionization in negative ion mode. In summary, the ethanolic O. paradoxa extract, rich in flavonoids and phenolic compounds, exhibits dual stimulus-dependent effect on the respiratory burst in human leukocytes; hence, it might affect immune responses in humans.

  20. Transforming Growth Factor-β-Activated Kinase 1 Is Required for Human FcγRIIIb-Induced Neutrophil Extracellular Trap Formation.

    PubMed

    Alemán, Omar Rafael; Mora, Nancy; Cortes-Vieyra, Ricarda; Uribe-Querol, Eileen; Rosales, Carlos

    2016-01-01

    Neutrophils (PMNs) are the most abundant leukocytes in the blood. PMN migrates from the circulation to sites of infection where they are responsible for antimicrobial functions. PMN uses phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs) to kill microbes. Several stimuli, including bacteria, fungi, and parasites, and some pharmacological compounds, such as Phorbol 12-myristate 13-acetate (PMA), are efficient inducers of NETs. Antigen-antibody complexes are also capable of inducing NET formation. Recently, it was reported that FcγRIIIb cross-linking induced NET formation similarly to PMA stimulation. Direct cross-linking of FcγRIIA or integrins did not promote NET formation. FcγRIIIb-induced NET formation presented different kinetics from PMA-induced NET formation, suggesting differences in signaling. Because FcγRIIIb also induces a strong activation of extracellular signal-regulated kinase (ERK) and nuclear factor Elk-1, and the transforming growth factor-β-activated kinase 1 (TAK1) has recently been implicated in ERK signaling, in the present report, we explored the role of TAK1 in the signaling pathway activated by FcγRIIIb leading to NET formation. FcγRIIIb was stimulated by specific monoclonal antibodies, and NET formation was evaluated in the presence or absence of pharmacological inhibitors. The antibiotic LL Z1640-2, a selective inhibitor of TAK1 prevented FcγRIIIb-induced, but not PMA-induced NET formation. Both PMA and FcγRIIIb cross-linking induced phosphorylation of ERK. But, LL Z1640-2 only inhibited the FcγRIIIb-mediated activation of ERK. Also, only FcγRIIIb, similarly to transforming growth factor-β-induced TAK1 phosphorylation. A MEK (ERK kinase)-specific inhibitor was able to prevent ERK phosphorylation induced by both PMA and FcγRIIIb. These data show for the first time that FcγRIIIb cross-linking activates TAK1, and that this kinase is required for triggering the MEK/ERK signaling pathway to NETosis.

  1. Neutrophil Extracellular Traps in the Amniotic Cavity of Women with Intra-Amniotic Infection: A New Mechanism of Host Defense.

    PubMed

    Gomez-Lopez, Nardhy; Romero, Roberto; Xu, Yi; Miller, Derek; Unkel, Ronald; Shaman, Majid; Jacques, Suzanne M; Panaitescu, Bogdan; Garcia-Flores, Valeria; Hassan, Sonia S

    2017-08-01

    Neutrophil extracellular traps (NETs) control microbial infections through their antimicrobial activities attributed to DNA, histones, granules, and cytoplasmic proteins (eg, elastase). Intra-amniotic infection is characterized by the influx of neutrophils into the amniotic cavity; therefore, the aim of this study was to determine whether amniotic fluid neutrophils form NETs in this inflammatory process. Amniotic fluid samples from women with intra-amniotic infection (n = 15) were stained for bacteria detection using fluorescent dyes. Amniotic fluid neutrophils were purified by filtration. As controls, neutrophils from maternal blood samples (n = 3) were isolated by density gradients. Isolated neutrophils were plated onto glass cover slips for culture with and without 100 nM of phorbol-12-myristate-13-acetate (PMA). NET formation was assessed by 4',6-diamidino-2-phenylindole (DAPI) staining and scanning electron microscopy. Different stages of NET formation were visualized using antibodies against elastase and histone H3, in combination with DAPI staining, by confocal microscopy. Finally, maternal or neonatal neutrophils were added to amniotic fluid samples from women without intra-amniotic infection (n = 4), and NET formation was evaluated by DAPI staining. (1) NETs were present in the amniotic fluid of women with intra-amniotic infection; (2) all of the amniotic fluid samples had detectable live and dead bacteria associated with the presence of NETs; (3) in contrast to neutrophils from the maternal circulation, amniotic fluid neutrophils did not require PMA stimulation to form NETs; (4) different stages of NET formation were observed by co-localizing elastase, histone H3, and DNA in amniotic fluid neutrophils; and (5) neither maternal nor neonatal neutrophils form NETs in the amniotic fluid of women without intra-amniotic infection. NETs are detectable in the amniotic fluid of women with intra-amniotic infection.

  2. Genome-wide immunity studies in the rabbit: transcriptome variations in peripheral blood mononuclear cells after in vitro stimulation by LPS or PMA-Ionomycin.

    PubMed

    Jacquier, Vincent; Estellé, Jordi; Schmaltz-Panneau, Barbara; Lecardonnel, Jérôme; Moroldo, Marco; Lemonnier, Gaëtan; Turner-Maier, Jason; Duranthon, Véronique; Oswald, Isabelle P; Gidenne, Thierry; Rogel-Gaillard, Claire

    2015-01-23

    Our purpose was to obtain genome-wide expression data for the rabbit species on the responses of peripheral blood mononuclear cells (PBMCs) after in vitro stimulation by lipopolysaccharide (LPS) or phorbol myristate acetate (PMA) and ionomycin. This transcriptome profiling was carried out using microarrays enriched with immunity-related genes, and annotated with the most recent data available for the rabbit genome. The LPS affected 15 to 20 times fewer genes than PMA-Ionomycin after both 4 hours (T4) and 24 hours (T24), of in vitro stimulation, in comparison with mock-stimulated PBMCs. LPS induced an inflammatory response as shown by a significant up-regulation of IL12A and CXCL11 at T4, followed by an increased transcription of IL6, IL1B, IL1A, IL36, IL37, TNF, and CCL4 at T24. Surprisingly, we could not find an up-regulation of IL8 either at T4 or at T24, and detected a down-regulation of DEFB1 and BPI at T24. A concerted up-regulation of SAA1, S100A12 and F3 was found upon stimulation by LPS. PMA-Ionomycin induced a very early expression of Th1, Th2, Treg, and Th17 responses by PBMCs at T4. The Th1 response increased at T24 as shown by the increase of the transcription of IFNG and by contrast to other cytokines which significantly decreased from T4 to T24 (IL2, IL4, IL10, IL13, IL17A, CD69) by comparison to mock-stimulation. The granulocyte-macrophage colony-stimulating factor (CSF2) was by far the most over-expressed gene at both T4 and T24 by comparison to mock-stimulated cells, confirming a major impact of PMA-Ionomycin on cell growth and proliferation. A significant down-regulation of IL16 was observed at T4 and T24, in agreement with a role of IL16 in PBMC apoptosis. We report new data on the responses of PBMCs to LPS and PMA-Ionomycin in the rabbit species, thus enlarging the set of mammalian species for which such reports exist. The availability of the rabbit genome assembly together with high throughput genomic tools should pave the way for more

  3. Niacinamide mitigated the acute lung injury induced by phorbol myristate acetate in isolated rat's lungs

    PubMed Central

    2012-01-01

    Background Phorbol myristate acetate (PMA) is a strong neutrophil activator and has been used to induce acute lung injury (ALI). Niacinamide (NAC) is a compound of B complex. It exerts protective effects on the ALI caused by various challenges. The purpose was to evaluate the protective effects of niacinamide (NAC) on the PMA-induced ALI and associated changes. Methods The rat's lungs were isolated in situ and perfused with constant flow. A total of 60 isolated lungs were randomized into 6 groups to received Vehicle (DMSO 100 μg/g), PMA 4 μg/g (lung weight), cotreated with NAC 0, 100, 200 and 400 mg/g (lung weight). There were 10 isolated lungs in each group. We measured the lung weight and parameters related to ALI. The pulmonary arterial pressure and capillary filtration coefficient (Kfc) were determined in isolated lungs. ATP (adenotriphosphate) and PARP [poly(adenosine diphophate-ribose) polymerase] contents in lung tissues were detected. Real-time PCR was employed to display the expression of inducible and endothelial NO synthases (iNOS and eNOS). The neutrophil-derived mediators in lung perfusate were determined. Results PMA caused increases in lung weight parameters. This agent produced pulmonary hypertension and increased microvascular permeability. It resulted in decrease in ATP and increase in PARP. The expression of iNOS and eNOS was upregulated following PMA. PMA increased the neutrophil-derived mediators. Pathological examination revealed lung edema and hemorrhage with inflammatory cell infiltration. Immunohistochemical stain disclosed the presence of iNOS-positive cells in macrophages and endothelial cells. These pathophysiological and biochemical changes were diminished by NAC treatment. The NAC effects were dose-dependent. Conclusions Our results suggest that neutrophil activation and release of neutrophil-derived mediators by PMA cause ALI and associated changes. NO production through the iNOS-producing cells plays a detrimental role in the PMA

  4. Niacinamide mitigated the acute lung injury induced by phorbol myristate acetate in isolated rat's lungs.

    PubMed

    Lin, Chia-Chih; Hsieh, Nan-Kuang; Liou, Huey Ling; Chen, Hsing I

    2012-03-01

    Phorbol myristate acetate (PMA) is a strong neutrophil activator and has been used to induce acute lung injury (ALI). Niacinamide (NAC) is a compound of B complex. It exerts protective effects on the ALI caused by various challenges. The purpose was to evaluate the protective effects of niacinamide (NAC) on the PMA-induced ALI and associated changes. The rat's lungs were isolated in situ and perfused with constant flow. A total of 60 isolated lungs were randomized into 6 groups to received Vehicle (DMSO 100 μg/g), PMA 4 μg/g (lung weight), cotreated with NAC 0, 100, 200 and 400 mg/g (lung weight). There were 10 isolated lungs in each group. We measured the lung weight and parameters related to ALI. The pulmonary arterial pressure and capillary filtration coefficient (Kfc) were determined in isolated lungs. ATP (adenotriphosphate) and PARP [poly(adenosine diphophate-ribose) polymerase] contents in lung tissues were detected. Real-time PCR was employed to display the expression of inducible and endothelial NO synthases (iNOS and eNOS). The neutrophil-derived mediators in lung perfusate were determined. PMA caused increases in lung weight parameters. This agent produced pulmonary hypertension and increased microvascular permeability. It resulted in decrease in ATP and increase in PARP. The expression of iNOS and eNOS was upregulated following PMA. PMA increased the neutrophil-derived mediators. Pathological examination revealed lung edema and hemorrhage with inflammatory cell infiltration. Immunohistochemical stain disclosed the presence of iNOS-positive cells in macrophages and endothelial cells. These pathophysiological and biochemical changes were diminished by NAC treatment. The NAC effects were dose-dependent. Our results suggest that neutrophil activation and release of neutrophil-derived mediators by PMA cause ALI and associated changes. NO production through the iNOS-producing cells plays a detrimental role in the PMA-induced lung injury. ATP is beneficial

  5. Impaired neutrophil extracellular trap formation: a novel defect in the innate immune system of aged individuals

    PubMed Central

    Hazeldine, Jon; Harris, Phillipa; Chapple, Iain L; Grant, Melissa; Greenwood, Hannah; Livesey, Amy; Sapey, Elizabeth; Lord, Janet M

    2014-01-01

    Neutrophil extracellular traps (NETs) are a recently discovered addition to the defensive armamentarium of neutrophils, assisting in the immune response against rapidly dividing bacteria. Although older adults are more susceptible to such infections, no study has examined whether aging in humans influences NET formation. We report that TNF-α-primed neutrophils generate significantly more NETs than unprimed neutrophils and that lipopolysaccharide (LPS)- and interleukin-8 (IL-8)-induced NET formation exhibits a significant age-related decline. NET formation requires generation of reactive oxygen species (ROS), and this was also reduced in neutrophils from older donors identifying a mechanism for reduced NET formation. Expression of IL-8 receptors (CXCR1 and CXCR2) and the LPS receptor TLR4 was similar on neutrophils from young and old subjects, and neutrophils challenged with phorbol-12-myristate-13-acetate (PMA) showed no age-associated differences in ROS or NET production. Taken together, these data suggest a defect in proximal signalling underlies the age-related decline in NET and ROS generation. TNF-α priming involves signalling through p38 MAP kinase, but activation kinetics were comparable in neutrophils from young and old donors. In a clinical setting, we assessed the capacity of neutrophils from young and older patients with chronic periodontitis to generate NETs in response to PMA and hypochlorous acid (HOCL). Neutrophil extracellular trap generation to HOCL, but not PMA, was lower in older periodontitis patients but not in comparison with age-matched controls. Impaired NET formation is thus a novel defect of innate immunity in older adults but does not appear to contribute to the increased incidence of periodontitis in older adults. PMID:24779584

  6. Decrease of neutrophils chemiluminescence during exposure to low-power laser infrared radiation

    NASA Astrophysics Data System (ADS)

    Czuba, Zenon P.; Adamek, Mariusz; Krol, Wojciech; Sieron, Aleksander; Cieslar, Grzegorz

    1995-01-01

    The neutrophil is the cell in which phagocyting and transforming of some exogeneous agents results in marked stimulation of nonmitochondrial respiratory chain activity (respiratory burst). In our experiment we focused on determining the level of chemiluminescence (CL) of stimulated neurotrophils during and after irradiation, measuring the photon emission intensity in 6 second's intervals. We used Ga-Al-As pulsed laser (wavelength 904 nm, mean power 8,9 mW, Alpha-Electronics GmbH, Germany) which was placed over the tube containing the suspension of guinea pig peritoneal neurotrophils (2X106 cells/ml). The sensitivity range of used photomultiplier (9514s, THORN EMI, Middlesex, England) was 300-600 nm, which allowed us to measure the CL of neutrophils while being irradiated. The neutrophils were stimulated by phorbol myristate acetate (PMA) and CL intensified by luminol. The decay of luminol-dependent CL of neutrophils may be described by hyperbolic function curve. We switched the laser radiation on for 20 s, 60 s and 300 s and each time we observed the same reaction: the about 20% decrease of intensity of CL immediately after beginning the irradiation. The CL remained on decreased level during the whole period of irradiation reaching immediately the level of CL intensity characteristic for decay curve (20% increase), just after switching off the laser. Only after the longest irradiation time (300 s) we observed CL being higher and inconsistent with decay curve for several minutes. The type of reaction was always the same, regardless to the point of CL decay curve at which laser radiation was applied. The same changes of Cl we obtained irradiating the enzymatic system: horseradish peroxidase (HRP)-luminol - H2O2.

  7. Dexamethasone and interleukin-1 potently synergize to stimulate the production of granulocyte colony-stimulating factor in differentiated THP-1 cells.

    PubMed

    Wang, Y; Zhang, J J; Lei, K Y; Pike, J W

    1997-10-29

    The human monocytic leukemic cell line, THP-1, which differentiates toward macrophages in response to phorbol 12-myristate 13-acetate (PMA) was investigated for its ability to produce granulocyte colony-stimulating factor (G-CSF). G-CSF protein was neither produced during PMA-induced differentiation nor in response to dexamethasone (Dex) alone. However, when combined, PMA and Dex synergistically stimulated THP-1 cells to produce G-CSF. The synergistic interaction between PMA and Dex on G-CSF production appeared to be mediated through the production of interleukin-1 (IL-1) since neutralization of IL-1 activity completely inhibited G-CSF production. Further experiments demonstrated that in THP-1 cells pretreated with PMA, Dex potently synergized with IL-1 to stimulate G-CSF production.

  8. Impaired neutrophil extracellular trap formation: a novel defect in the innate immune system of aged individuals.

    PubMed

    Hazeldine, Jon; Harris, Phillipa; Chapple, Iain L; Grant, Melissa; Greenwood, Hannah; Livesey, Amy; Sapey, Elizabeth; Lord, Janet M

    2014-08-01

    Neutrophil extracellular traps (NETs) are a recently discovered addition to the defensive armamentarium of neutrophils, assisting in the immune response against rapidly dividing bacteria. Although older adults are more susceptible to such infections, no study has examined whether aging in humans influences NET formation. We report that TNF-α-primed neutrophils generate significantly more NETs than unprimed neutrophils and that lipopolysaccharide (LPS)- and interleukin-8 (IL-8)-induced NET formation exhibits a significant age-related decline. NET formation requires generation of reactive oxygen species (ROS), and this was also reduced in neutrophils from older donors identifying a mechanism for reduced NET formation. Expression of IL-8 receptors (CXCR1 and CXCR2) and the LPS receptor TLR4 was similar on neutrophils from young and old subjects, and neutrophils challenged with phorbol-12-myristate-13-acetate (PMA) showed no age-associated differences in ROS or NET production. Taken together, these data suggest a defect in proximal signalling underlies the age-related decline in NET and ROS generation. TNF-α priming involves signalling through p38 MAP kinase, but activation kinetics were comparable in neutrophils from young and old donors. In a clinical setting, we assessed the capacity of neutrophils from young and older patients with chronic periodontitis to generate NETs in response to PMA and hypochlorous acid (HOCL). Neutrophil extracellular trap generation to HOCL, but not PMA, was lower in older periodontitis patients but not in comparison with age-matched controls. Impaired NET formation is thus a novel defect of innate immunity in older adults but does not appear to contribute to the increased incidence of periodontitis in older adults. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  9. Relationship between age-dependent changes of bovine neutrophil functions and their intracellular Ca2+ concentrations.

    PubMed

    Higuchi, H; Nagahata, H; Hiroki, M; Noda, H

    1997-04-01

    Neutrophil functions and intracellular Ca2+ concentrations ([Ca2+]i) were evaluated in 15 Holstein cattle divided into the following 3 groups: 5 neonatal calves less than 1 week old (group 1), 5 young calves 2 to 4 weeks old (group 2) and 5 cows 2 to 3 years old (group 3). The ability of neutrophils to phagocytose Candida albicans (C. albicans) was significantly higher (p < 0.05) in neonatal and young calves than in cows, whereas the phagocytosis by neutrophils of bovine IgG-coated yeasts (IgG-yeasts) was significantly lower (p < 0.05) in neonatal and young calves than that in cows. The killing activity by neutrophils of C. albicans in neonatal and young calves was significantly lower (p < 0.05) than that in cows. Luminol dependent chemiluminescent (LDCL) responses stimulated with opsonized zymosan (OPZ), heat-aggregated IgG (H-agg.IgG) and phorbol myristate acetate (PMA) were apparently lower in neonatal and young calves than in cows. No clearly different expressions of complement receptor type 3 (CR3) on neutrophils were observed among the 3 groups of cattle, although the values due to the binding of FITC-anti-bovine IgG to neutrophils in neonatal and young calves were lower than those in group 3. The OPZ-induced [Ca2+]i of neutrophils in neonatal and young calves were significantly higher (p < 0.05) than those in cows, but they were lower in neonatal and young calves when stimulated with H-agg.IgG. These results indicate that CR3- and FcR-mediated phagocytic and killing activities of neutrophils in neonatal and young calves are different from those in cows. These phenomena may be associated with age-dependent changes in [Ca2+]i.

  10. Omega-3 fatty acids modulate Weibel-Palade body degranulation and actin cytoskeleton rearrangement in PMA-stimulated human umbilical vein endothelial cells.

    PubMed

    Bürgin-Maunder, Corinna S; Brooks, Peter R; Russell, Fraser D

    2013-11-08

    Long chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs) produce cardiovascular benefits by improving endothelial function. Endothelial cells store von Willebrand factor (vWF) in cytoplasmic Weibel-Palade bodies (WPBs). We examined whether LC n-3 PUFAs regulate WPB degranulation using cultured human umbilical vein endothelial cells (HUVECs). HUVECs were incubated with or without 75 or 120 µM docosahexaenoic acid or eicosapentaenoic acid for 5 days at 37 °C. WPB degranulation was stimulated using phorbol 12-myristate 13-acetate (PMA), and this was assessed by immunocytochemical staining for vWF. Actin reorganization was determined using phalloidin-TRITC staining. We found that PMA stimulated WPB degranulation, and that this was significantly reduced by prior incubation of cells with LC n-3 PUFAs. In these cells, WPBs had rounded rather than rod-shaped morphology and localized to the perinuclear region, suggesting interference with cytoskeletal remodeling that is necessary for complete WPB degranulation. In line with this, actin rearrangement was altered in cells containing perinuclear WPBs, where cells exhibited a thickened actin rim in the absence of prominent cytoplasmic stress fibers. These findings indicate that LC n-3 PUFAs provide some protection against WBP degranulation, and may contribute to an improved understanding of the anti-thrombotic effects previously attributed to LC n-3 PUFAs.

  11. Differential roles of PKC isoforms (PKCs) and Ca2+ in GnRH and phorbol 12-myristate 13-acetate (PMA) stimulation of p38MAPK phosphorylation in immortalized gonadotrope cells.

    PubMed

    Mugami, Shany; Kravchook, Shani; Rahamim-Ben Navi, Liat; Seger, Rony; Naor, Zvi

    2017-01-05

    We examined the role of PKCs and Ca 2+ in GnRH-stimulated p38MAPK phosphorylation in the gonadotrope derived αT3-1 and LβT2 cell lines. GnRH induced a slow and rapid increase in p38MAPK phosphorylation in αT3-1 and LβT2 cells respectively, while PMA gave a slow response. The use of dominant negatives for PKCs and peptide inhibitors for the receptors for activated C kinase (RACKs), has revealed differential role for PKCα, PKCβII, PKCδ and PKCε in p38MAPK phosphorylation in a ligand-and cell context-dependent manner. The paradoxical findings that PKCs activated by GnRH and PMA play a differential role in p38MAPK phosphorylation may be explained by differential localization of the PKCs. Basal, GnRH- and PMA- stimulation of p38MAPK phosphorylation in αT3-1 cells is mediated by Ca 2+ influx via voltage-gated Ca 2+ channels and Ca 2+ mobilization, while in the differentiated LβT2 gonadotrope cells it is mediated only by Ca 2+ mobilization. p38MAPK resides in the cell membrane and is relocated to the nucleus by GnRH (∼5 min). Thus, we have identified the PKCs and the Ca 2+ pools involved in GnRH stimulated p38MAPK phosphorylation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. PMA Induces SnoN Proteolysis and CD61 Expression through an Autocrine Mechanism

    PubMed Central

    Li, Chonghua; Peart, Natoya; Xuan, Zhenyu; Lewis, Dorothy E; Xia, Yang; Jin, Jianping

    2014-01-01

    Phorbol-12-myristate-13-acetate, also called PMA, is a small molecule that activates protein kinase C and functions to differentiate hematologic lineage cells. However, the mechanism of PMA-induced cellular differentiation is not fully understood. We found that PMA triggers global enhancement of protein ubiquitination in K562, a myelogenous leukemia cell line and one of the enhanced-ubiquitination targets is SnoN, an inhibitor of the Smad signaling pathway. Our data indicated that PMA stimulated the production of Activin A, a cytokine of the TGF-β family. Activin A then activated the phosphorylation of both Smad2 and Smad3. In consequence, SnoN is ubiquitinated by the APCCdh1 ubiquitin ligase with the help of phosphorylated Smad2. Furthermore, we found that SnoN proteolysis is important for the expression of CD61, a marker of megakaryocyte. These results indicate that protein ubiquitination promotes megakaryopoiesis via degrading SnoN, an inhibitor of CD61 expression, strengths the roles of ubiquitination in cellular differentiation. PMID:24637302

  13. Intracellular calcium rise is not a necessary step for the stimulated actin polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yassin, R.

    1986-03-01

    Stimulation of rabbit peritoneal neutrophils by many chemotactic (formyl Methionyl-Leucyl-Phenylalanine (fMLP), Leukotriene B/sub 4/ (LTB/sub 4/)) and non-chemotactic (phorbol 12-myristate, 13-acetate (PMA), platelet activating factor (PAF), and the calcium ionophore A23187) factors produces rapid and dose dependent increases in the amount of actin associated with the cytoskeleton. The stimulated increase in cytoskeletal actin does not appear to require a rise in the intracellular concentration of free calcium. The increase in cytoskeletal actin produced by A23187 is transient and does not depend on the presence of calcium in the suspending medium. In the presence of extracellular calcium, the effect of themore » ionophore is biphasic with respect to concentration. The increases in actin association with cytoskeletal produced by fMLP, LTB/sub 4/, and A23187 but not by PMA, are inhibited by hyperosmolarity and pertussis toxin pretreatment. On the other hand, the addition of hyperosmolarity or pertussis toxin has small effect on the rise in the intracellular calcium produced by A23187. The results presented here suggest that an increase in the intracellular concentration of free calcium is not necessary for the stimulated increases in cytoskeletal actin.« less

  14. Multiple receptors mobilize calcium through a pertussis toxin (PT) sensitive GTP-binding protein in human neutrophils (PMN's)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lad, P.M.; Olson, C.V.; Grewal, I.S.

    1986-03-05

    Treatment of PMN's with PT causes an abolition of chemotaxis, enzyme release, superoxide generation and aggregation caused by f-met-leu-phe (FMLP),C5a and platelet activating factor (PAF). Lectin (Con-A) induced capping and receptor induced shape change are abolished, but phagocytosis is unaltered. In whole cells, calcium mobilization induced by FMLP, PAF and Con-A inhibited by PT although the FMLP-mediated effect is more susceptible to PT's effects. Treatment of PMN's with phorbol 12-myristate 13 acetate (PMA) causes an abolition of calcium mobilization by all agents in a range which also inhibits cap formation. Investigation of calcium uptake reveals PT sensitive and insensitive components.more » Reciprocal interactions between Ns and Ni proteins are also observed since pretreatment with FMLP and PAF causes a stimulation of Ns-mediated cyclic AMP enhancement while pretreatment with Ns linked receptors (PGE/sub 1/ and beta receptor agonists) inhibits calcium mobilization. Comparative peptide mapping studies indicate substantial similarity between Ni proteins in PMN's, platelets and human erythrocytes. The authors results suggest that the Ni linked calcium mobilization sensitive to PMA is important to the regulation of the human neutrophil.« less

  15. Hypertonic Saline Suppresses NADPH Oxidase-Dependent Neutrophil Extracellular Trap Formation and Promotes Apoptosis.

    PubMed

    Nadesalingam, Ajantha; Chen, Jacky H K; Farahvash, Armin; Khan, Meraj A

    2018-01-01

    Tonicity of saline (NaCl) is important in regulating cellular functions and homeostasis. Hypertonic saline is administered to treat many inflammatory diseases, including cystic fibrosis. Excess neutrophil extracellular trap (NET) formation, or NETosis, is associated with many pathological conditions including chronic inflammation. Despite the known therapeutic benefits of hypertonic saline, its underlying mechanisms are not clearly understood. Therefore, we aimed to elucidate the effects of hypertonic saline in modulating NETosis. For this purpose, we purified human neutrophils and induced NETosis using agonists such as diacylglycerol mimetic phorbol myristate acetate (PMA), Gram-negative bacterial cell wall component lipopolysaccharide (LPS), calcium ionophores (A23187 and ionomycin from Streptomyces conglobatus ), and bacteria ( Pseudomonas aeruginosa and Staphylococcus aureus ). We then analyzed neutrophils and NETs using Sytox green assay, immunostaining of NET components and apoptosis markers, confocal microscopy, and pH sensing reagents. This study found that hypertonic NaCl suppresses nicotinamide adenine dinucleotide phosphate oxidase (NADPH2 or NOX2)-dependent NETosis induced by agonists PMA, Escherichia coli LPS (0111:B4 and O128:B12), and P. aeruginosa . Hypertonic saline also suppresses LPS- and PMA- induced reactive oxygen species production. It was determined that supplementing H 2 O 2 reverses the suppressive effect of hypertonic saline on NOX2-dependent NETosis. Many of the aforementioned suppressive effects were observed in the presence of equimolar concentrations of choline chloride and osmolytes (d-mannitol and d-sorbitol). This suggests that the mechanism by which hypertonic saline suppresses NOX2-dependent NETosis is via neutrophil dehydration. Hypertonic NaCl does not significantly alter the intracellular pH of neutrophils. We found that hypertonic NaCl induces apoptosis while suppressing NOX2-dependent NETosis. In contrast, hypertonic

  16. Phenyl mercuric acetate (PMA): mercury-bearing flexible gymnasium floors in schools--evaluation of hazards and controlled abatement.

    PubMed

    Beaulieu, Harry J; Beaulieu, Serrita; Brown, Chris

    2008-06-01

    Phenyl mercuric acetate (PMA) historically has been used as a catalyst in polyurethane systems. In the 1950s-1970s, PMA was used as a catalyst in the 3M Tartan brand polyurethane flexible floors that were installed commonly in school gymnasiums. Mercury vapor is released into air above the surface of these floors. Sampling mercury in bulk flooring material and mercury vapor in air was conducted in nine Idaho schools in the spring of 2006. These evaluations were conducted in response to concerns by school officials that the floors could contain mercury and could release the mercury vapor into the air, presenting a potential health hazard for students, staff, and visitors. Controlled abatement was conducted in one school where remodeling would impact the mercury-bearing flexible gym floors ( approximately 9,000 ft(2) total). The controlled abatement consisted of containment of the work area with negative air technology; worker protection, including mercury-specific training, use of personal protective equipment, and biological and exposure monitoring; and environmental protection, including proper disposal of mercury-bearing hazardous waste material.

  17. Probing Intracellular Element Concentration Changes during Neutrophil Extracellular Trap Formation Using Synchrotron Radiation Based X-Ray Fluorescence

    PubMed Central

    Niemiec, Maria J.; Laforce, Brecht; Garrevoet, Jan; Vergucht, Eva; De Rycke, Riet; Cloetens, Peter; Urban, Constantin F.; Vincze, Laszlo

    2016-01-01

    High pressure frozen (HPF), cryo-substituted microtome sections of 2 μm thickness containing human neutrophils (white blood cells) were analyzed using synchrotron radiation based X-ray fluorescence (SR nano-XRF) at a spatial resolution of 50 nm. Besides neutrophils from a control culture, we also analyzed neutrophils stimulated for 1–2 h with phorbol myristate acetate (PMA), a substance inducing the formation of so-called Neutrophil Extracellular Traps (or NETs), a defense system again pathogens possibly involving proteins with metal chelating properties. In order to gain insight in metal transport during this process, precise local evaluation of elemental content was performed reaching limits of detection (LODs) of 1 ppb. Mean weight fractions within entire neutrophils, their nuclei and cytoplasms were determined for the three main elements P, S and Cl, but also for the 12 following trace elements: K, Ca, Mn, Fe, Co, Ni, Cu, Zn, Se, Br, Sr and Pb. Statistical analysis, including linear regression provided objective analysis and a measure for concentration changes. The nearly linear Ca and Cl concentration changes in neutrophils could be explained by already known phenomena such as the induction of Ca channels and the uptake of Cl under activation of NET forming neutrophils. Linear concentration changes were also found for P, S, K, Mn, Fe, Co and Se. The observed linear concentration increase for Mn could be related to scavenging of this metal from the pathogen by means of the neutrophil protein calprotectin, whereas the concentration increase of Se may be related to its antioxidant function protecting neutrophils from the reactive oxygen species they produce against pathogens. We emphasize synchrotron radiation based nanoscopic X-ray fluorescence as an enabling analytical technique to study changing (trace) element concentrations throughout cellular processes, provided accurate sample preparation and data-analysis. PMID:27812122

  18. The effect of lipopolysaccharide (LPS) and phorbol 12-myristate 13-acetate (PMA) on whole blood oxidative response as assessed by luminol-amplified chemiluminescence in dairy cows

    USDA-ARS?s Scientific Manuscript database

    The differences between lipopolysaccharide (LPS) and phorbol 12-myristate 13-acetate (PMA) on whole blood oxidative response using luminol-amplified chemiluminescence (CL) are currently unknown in cattle. Luminol-dependent CL measures the amount of reactive oxygen species released from leukocytes a...

  19. Mechanics of Stimulated Neutrophils: Cell Stiffening Induces Retention in Capillaries

    NASA Astrophysics Data System (ADS)

    Worthen, G. Scott; Schwab, Bill; Elson, Elliot L.; Downey, Gregory P.

    1989-07-01

    The effect of peptide chemoattractants on neutrophil mechanical properties was studied to test the hypothesis that stimulated neutrophils (diameter, 8 micrometers) are retained in pulmonary capillaries (5.5 micrometers) as a result of a decreased ability of the cell to deform within the capillary in response to the hydrodynamic forces of the bloodstream. Increased neutrophil stiffness, actin assembly, and retention in both 5-micrometer pores and the pulmonary vasculature were seen in response to N-formylmethionyl-leucyl-phenylalanine. These changes were abolished in cells that had been incubated with 2 micromolar cytochalasin D, an agent that disrupts cellular actin organization. A monoclonal antibody directed at the CD11-CD18 adhesive glycoprotein complex did not inhibit the increase in stiffness or retention in pores. These data suggest that neutrophil stiffening may be both necessary and sufficient for the retention that is observed. Hence, neutrophil sequestration in lung and other capillaries in the acute inflammatory process may be the result of increased stiffness stimulated by chemoattractants.

  20. Suppressed neutrophil function in children with acute lymphoblastic leukemia.

    PubMed

    Tanaka, Fumiko; Goto, Hiroaki; Yokosuka, Tomoko; Yanagimachi, Masakatsu; Kajiwara, Ryosuke; Naruto, Takuya; Nishimaki, Shigeru; Yokota, Shumpei

    2009-10-01

    Infection is a major obstacle in cancer chemotherapy. Neutropenia has been considered to be the most important risk factor for severe infection; however, other factors, such as impaired neutrophil function, may be involved in susceptibility to infection in patients undergoing chemotherapy. In this study, we analyzed neutrophil function in children with acute lymphoblastic leukemia (ALL). Whole blood samples were obtained from 16 children with ALL at diagnosis, after induction chemotherapy, and after consolidation chemotherapy. Oxidative burst and phagocytic activity of neutrophils were analyzed by flow cytometry. Oxidative burst of neutrophils was impaired in ALL patients. The percentage of neutrophils with normal oxidative burst after PMA stimulation was 59.0 +/- 13.2 or 70.0 +/- 21.0% at diagnosis or after induction chemotherapy, respectively, which was significantly lower compared with 93.8 +/- 6.1% in healthy control subjects (P = 0.00004, or 0.002, respectively); however, this value was normal after consolidation chemotherapy. No significant differences were noted in phagocytic activity in children with ALL compared with healthy control subjects. Impaired oxidative burst of neutrophils may be one risk factor for infections in children with ALL, especially in the initial periods of treatment.

  1. Assessment of antioxidant activity of spray dried extracts of Psidium guajava leaves by DPPH and chemiluminescence inhibition in human neutrophils.

    PubMed

    Fernandes, M R V; Azzolini, A E C S; Martinez, M L L; Souza, C R F; Lucisano-Valim, Y M; Oliveira, W P

    2014-01-01

    This work evaluated the physicochemical properties and antioxidant activity of spray dried extracts (SDE) from Psidium guajava L. leaves. Different drying carriers, namely, maltodextrin, colloidal silicon dioxide, Arabic gum, and β -cyclodextrin at concentrations of 40 and 80% relative to solids content, were added to drying composition. SDE were characterized through determination of the total phenolic, tannins, and flavonoid content. Antioxidant potential of the SDE was assessed by two assays: cellular test that measures the luminol-enhanced chemiluminescence (LumCL) produced by neutrophils stimulated with phorbol myristate acetate (PMA) and the DPPH radical scavenging (DPPH∗ method). In both assays the antioxidant activity of the SDE occurred in a concentration-dependent manner and showed no toxicity to the cells. Using the CLlum method, the IC50 ranged from 5.42 to 6.50 µg/mL. The IC50 of the SDE ranged from 7.96 to 8.11 µg/mL using the DPPH(•) method. Psidium guajava SDE presented significant antioxidant activity; thus they show high potential as an active phytopharmaceutical ingredient. Our findings in human neutrophils are pharmacologically relevant since they indicate that P. guajava SDE is a potential antioxidant and anti-inflammatory agent in human cells.

  2. NETosing Neutrophils Activate Complement Both on Their Own NETs and Bacteria via Alternative and Non-alternative Pathways

    PubMed Central

    Yuen, Joshua; Pluthero, Fred G.; Douda, David N.; Riedl, Magdalena; Cherry, Ahmed; Ulanova, Marina; Kahr, Walter H. A.; Palaniyar, Nades; Licht, Christoph

    2016-01-01

    Neutrophils deposit antimicrobial proteins, such as myeloperoxidase and proteases on chromatin, which they release as neutrophil extracellular traps (NETs). Neutrophils also carry key components of the complement alternative pathway (AP) such as properdin or complement factor P (CFP), complement factor B (CFB), and C3. However, the contribution of these complement components and complement activation during NET formation in the presence and absence of bacteria is poorly understood. We studied complement activation on NETs and a Gram-negative opportunistic bacterial pathogen Pseudomonas aeruginosa (PA01, PAKwt, and PAKgfp). Here, we show that anaphylatoxin C5a, formyl-methionyl-leucyl-phenylalanine (fMLP) and phorbol myristate acetate (PMA), which activates NADPH oxidase, induce the release of CFP, CFB, and C3 from neutrophils. In response to PMA or P. aeruginosa, neutrophils secrete CFP, deposit it on NETs and bacteria, and induce the formation of terminal complement complexes (C5b–9). A blocking anti-CFP antibody inhibited AP-mediated but not non-AP-mediated complement activation on NETs and P. aeruginosa. Therefore, NET-mediated complement activation occurs via both AP- and non AP-based mechanisms, and AP-mediated complement activation during NETosis is dependent on CFP. These findings suggest that neutrophils could use their “AP tool kit” to readily activate complement on NETs and Gram-negative bacteria, such as P. aeruginosa, whereas additional components present in the serum help to fix non-AP-mediated complement both on NETs and bacteria. This unique mechanism may play important roles in host defense and help to explain specific roles of complement activation in NET-related diseases. PMID:27148258

  3. The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps.

    PubMed

    Johnson, Chad J; Cabezas-Olcoz, Jonathan; Kernien, John F; Wang, Steven X; Beebe, David J; Huttenlocher, Anna; Ansari, Hamayail; Nett, Jeniel E

    2016-09-01

    Neutrophils release extracellular traps (NETs) in response to planktonic C. albicans. These complexes composed of DNA, histones, and proteins inhibit Candida growth and dissemination. Considering the resilience of Candida biofilms to host defenses, we examined the neutrophil response to C. albicans during biofilm growth. In contrast to planktonic C. albicans, biofilms triggered negligible release of NETs. Time lapse imaging confirmed the impairment in NET release and revealed neutrophils adhering to hyphae and migrating on the biofilm. NET inhibition depended on an intact extracellular biofilm matrix as physical or genetic disruption of this component resulted in NET release. Biofilm inhibition of NETosis could not be overcome by protein kinase C activation via phorbol myristate acetate (PMA) and was associated with suppression of neutrophil reactive oxygen species (ROS) production. The degree of impaired NET release correlated with resistance to neutrophil attack. The clinical relevance of the role for extracellular matrix in diminishing NET production was corroborated in vivo using a rat catheter model. The C. albicans pmr1Δ/Δ, defective in production of matrix mannan, appeared to elicit a greater abundance of NETs by scanning electron microscopy imaging, which correlated with a decreased fungal burden. Together, these findings show that C. albicans biofilms impair neutrophil response through an inhibitory pathway induced by the extracellular matrix.

  4. Alteration of Neutrophil Reactive Oxygen Species Production by Extracts of Devil's Claw (Harpagophytum).

    PubMed

    Muzila, Mbaki; Rumpunen, Kimmo; Wright, Helen; Roberts, Helen; Grant, Melissa; Nybom, Hilde; Sehic, Jasna; Ekholm, Anders; Widén, Cecilia

    2016-01-01

    Harpagophytum, Devil's Claw, is a genus of tuberiferous xerophytic plants native to southern Africa. Some of the taxa are appreciated for their medicinal effects and have been traditionally used to relieve symptoms of inflammation. The objectives of this pilot study were to investigate the antioxidant capacity and the content of total phenols, verbascoside, isoverbascoside, and selected iridoids, as well as to investigate the capacity of various Harpagophytum taxa in suppressing respiratory burst in terms of reactive oxygen species produced by human neutrophils challenged with phorbol myristate acetate (PMA), opsonised Staphylococcus aureus, and Fusobacterium nucleatum. Harpagophytum plants were classified into different taxa according to morphology, and DNA analysis was used to confirm the classification. A putative new variety of H. procumbens showed the highest degree of antioxidative capacity. Using PMA, three Harpagophytum taxa showed anti-inflammatory effects with regard to the PBS control. A putative hybrid between H. procumbens and H. zeyheri in contrast showed proinflammatory effect on the response of neutrophils to F. nucleatum in comparison with treatment with vehicle control. Harpagophytum taxa were biochemically very variable and the response in suppressing respiratory burst differed. Further studies with larger number of subjects are needed to corroborate anti-inflammatory effects of different taxa of Harpagophytum.

  5. Alteration of Neutrophil Reactive Oxygen Species Production by Extracts of Devil's Claw (Harpagophytum)

    PubMed Central

    Muzila, Mbaki; Wright, Helen; Roberts, Helen; Grant, Melissa; Nybom, Hilde; Sehic, Jasna; Ekholm, Anders

    2016-01-01

    Harpagophytum, Devil's Claw, is a genus of tuberiferous xerophytic plants native to southern Africa. Some of the taxa are appreciated for their medicinal effects and have been traditionally used to relieve symptoms of inflammation. The objectives of this pilot study were to investigate the antioxidant capacity and the content of total phenols, verbascoside, isoverbascoside, and selected iridoids, as well as to investigate the capacity of various Harpagophytum taxa in suppressing respiratory burst in terms of reactive oxygen species produced by human neutrophils challenged with phorbol myristate acetate (PMA), opsonised Staphylococcus aureus, and Fusobacterium nucleatum. Harpagophytum plants were classified into different taxa according to morphology, and DNA analysis was used to confirm the classification. A putative new variety of H. procumbens showed the highest degree of antioxidative capacity. Using PMA, three Harpagophytum taxa showed anti-inflammatory effects with regard to the PBS control. A putative hybrid between H. procumbens and H. zeyheri in contrast showed proinflammatory effect on the response of neutrophils to F. nucleatum in comparison with treatment with vehicle control. Harpagophytum taxa were biochemically very variable and the response in suppressing respiratory burst differed. Further studies with larger number of subjects are needed to corroborate anti-inflammatory effects of different taxa of Harpagophytum. PMID:27429708

  6. Effects of five oleanolic acid triterpenoid saponins from the rhizome of Anemone raddeana on stimulus-induced superoxide generation, phosphorylation of proteins and translocation of cytosolic compounds to cell membrane in human neutrophils.

    PubMed

    Wei, Shihu; He, Wenfei; Lu, Jincai; Wang, Zhonghuan; Yamashita, Koichi; Yokoyama, Masanori; Kodama, Hiroyuki

    2012-03-01

    Five oleanolic acid triterpenoid saponins (OTS-1, 2, 3, 4 and 5) were isolated from the rhizome of Anemone raddeana. The effect of these triterpenoid saponins on stimulus-induced superoxide generation in human neutrophils was assayed by measuring the reduction of ferricytochrome c using a dual-beam spectrophotometer. The phosphorylation of neutrophil proteins, and translocation of p67(phox), p47(phox) and Rac to plasma membrane were investigated using specific monoclonal antibodies. The five oleanolic acid triterpenoid saponins used in this experiment suppressed N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced superoxide generation in a concentration-dependent manner. OTS-1, 2 and 4 suppressed phorbol 12-myristate 13-acetate (PMA)- and arachidonic acid (AA)-induced superoxide generation in a concentration-dependent manner, but OTS-3 and 5 showed no effect. fMLP- and PMA-induced tyrosyl or serine/threonine phosphorylation, and fMLP-, PMA- and AA-induced translocation of p67(phox), p47(phox) and Rac to plasma membrane were in parallel with the suppression of the stimulus-induced superoxide generation. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Identification of glutathione adducts of α-chlorofatty aldehydes produced in activated neutrophils

    PubMed Central

    Duerr, Mark A.; Aurora, Rajeev; Ford, David A.

    2015-01-01

    α-Chlorofatty aldehydes (α-ClFALDs) are produced by hypochlorous acid targeting plasmalogens during neutrophil activation. This study investigated the reaction of the α-chlorinated carbon of α-ClFALD with the nucleophile, GSH. Utilizing ESI/MS/MS, the reaction product of GSH and the 16-carbon α-ClFALD, 2-chlorohexadecanal (2-ClHDA), was characterized. The resulting conjugate of 2-ClHDA and GSH (HDA-GSH) has an intact free aldehyde, and the chlorine at the α-carbon is ejected. Stable isotope-labeled [d4]HDA-GSH was synthesized, which further confirmed the structure, and was used to quantify natural α-ClFALD conjugates of GSH (FALD-GSH) using reverse-phase LC with detection by ESI/MS/MS using selected reaction monitoring. HDA-GSH is elevated in RAW 264.7 cells treated with physiologically relevant concentrations of exogenous 2-ClHDA. Furthermore, PMA-treated primary human neutrophils have elevated levels of HDA-GSH and the conjugate of 2-chlorooctadecanal (2-ClODA) and GSH (ODA-GSH), as well as elevated levels of 2-ClHDA and 2-ClODA. Production of both conjugates in PMA-stimulated neutrophils was reduced by 3-aminotriazole pretreatment, which also blocks endogenous α-ClFALD production. Additionally, plasma FALD-GSH levels were elevated in the K/BxN mouse arthritis model. Taken together, these studies demonstrate novel peptidoaldehydes derived from GSH and α-ClFALD in activated human neutrophils and in vivo in K/BxN mice. PMID:25814023

  8. [Establishment and evaluation of an in vitro method for neutrophil extracellular trap generation and degradation].

    PubMed

    Li, Jinlong; Zhang, Yidan; Zhou, Xin; Ji, Wenjie; Zhao, Jihong; Wei, Luqing; Li, Yuming

    2014-09-01

    To evaluate a novel method for in vitro generation and degradation of neutrophil extracellular traps (NETs), which are a newly recognized structure that is involved in the pathogenesis of autoimmune diseases and thrombosis. Neutrophils from peripheral blood of healthy donors were obtained by Ficoll-Histopaque gradient separation. NET release was initiated by phorbol myristate acetate (PMA) and validated by immunofluorescence staining and agarose gel electrophoresis. NETs degraded by DNase I and healthy human plasma were quantified by fluorescence spectrometry after staining with PicoGreen. HE staining showed that the purity of neutrophils was up to 95% after Ficoll-Histopaque gradient separation. NET immunofluorescent staining revealed that the network structure was mainly composed of DNA and histones, with molecular length more than 10 kb as demonstrated by agarose gel electrophoresis. Moreover, both DNase and healthy human plasma could induce the degradation of NETs, in varying degrees. This work established an efficient method for in vitro generation and degradation of human NETs.

  9. Identification of glutathione adducts of α-chlorofatty aldehydes produced in activated neutrophils.

    PubMed

    Duerr, Mark A; Aurora, Rajeev; Ford, David A

    2015-05-01

    α-Chlorofatty aldehydes (α-ClFALDs) are produced by hypochlorous acid targeting plasmalogens during neutrophil activation. This study investigated the reaction of the α-chlorinated carbon of α-ClFALD with the nucleophile, GSH. Utilizing ESI/MS/MS, the reaction product of GSH and the 16-carbon α-ClFALD, 2-chlorohexadecanal (2-ClHDA), was characterized. The resulting conjugate of 2-ClHDA and GSH (HDA-GSH) has an intact free aldehyde, and the chlorine at the α-carbon is ejected. Stable isotope-labeled [d4]HDA-GSH was synthesized, which further confirmed the structure, and was used to quantify natural α-ClFALD conjugates of GSH (FALD-GSH) using reverse-phase LC with detection by ESI/MS/MS using selected reaction monitoring. HDA-GSH is elevated in RAW 264.7 cells treated with physiologically relevant concentrations of exogenous 2-ClHDA. Furthermore, PMA-treated primary human neutrophils have elevated levels of HDA-GSH and the conjugate of 2-chlorooctadecanal (2-ClODA) and GSH (ODA-GSH), as well as elevated levels of 2-ClHDA and 2-ClODA. Production of both conjugates in PMA-stimulated neutrophils was reduced by 3-aminotriazole pretreatment, which also blocks endogenous α-ClFALD production. Additionally, plasma FALD-GSH levels were elevated in the K/BxN mouse arthritis model. Taken together, these studies demonstrate novel peptidoaldehydes derived from GSH and α-ClFALD in activated human neutrophils and in vivo in K/BxN mice. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  10. Inhibitory effect of midazolam on MMP-9, MMP-1 and MMP-13 expression in PMA-stimulated human chondrocytes via recovery of NF-κB signaling.

    PubMed

    Wang, Jen-Jui; Huan, Steven Kuan-Hua; Hsieh, Kuo-Hsien; Chou, Hsiu-Chu; Hsiao, George; Jayakumar, Thanasekaran; Sheu, Joen-Rong

    2013-04-20

    Midazolam, a benzodiazepine, has a hypnotic effect and is widely used as an intravenous sedative. Past studies have clearly established that midazolam has beneficial effects in attenuating ischemia-reperfusion injury more than other currently used sedative drugs. However, the role of midazolam on chondroprotection via inhibition of matrix metalloproteinases (MMPs) is warrant investigation. The aim of this study was to examine the mechanisms of action of midazolam on MMP expression via nuclear factor κB (NF-κB) signaling in activated chondrosarcoma cells maintained in vitro. Chondrocytes, SW1353 cells, were stimulated with phorbol 12-myristate 13-acetate (PMA) in the absence or presence of various concentrations of midazolam (5-20 µM). Release of MMP-9 into the culture media was determined by gelatin zymography. The expressions of MMP-1, MMP-9 and MMP-13, phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinases and degradation of IκB-α were determined by western blotting assay. Midazolam significantly down-regulated PMA-induced MMP-9 protein expression at concentrations of 5, 10 and 20 µM, the values were 1.95 ±0.09 (p < 0.01), 1.71 ±0.12 (p < 0.01) and 1.35 ±0.20 (p < 0.001), respectively. At concentrations of 5, 10 and 20 µM, it was significantly inhibited the PMA-induced expressions of MMP-1 (2.27 ±0.10, 1.98 ±0.11 and 1.56 ±0.15; p < 0.001) and MMP-13 (0.89 ±0.04, 0.81 ±0.07, and 0.74 ±0.09; p < 0.001), respectively. Midazolam at concentrations of 10 and 20 µM for 15 min significantly reversed the rate of degradation (0.895 ±0.051; p < 0.05 and 0.926 ±0.060; p < 0.01, respectively) of IκB-α in PMA-chondrocyte cells. In addition, this sedative drug inhibited PMA-induced levels of phos-ERK (1.243 ±0.12, 1.108 ±0.16 and 0.903 ±0.19, respectively) and phos-p38 (1.146 ±0.10, 1.063 ±0.13 and 0.946 ±0.18, at concentrations of (5, 10 and 20 µM), respectively. These results are important for

  11. The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps

    PubMed Central

    Cabezas-Olcoz, Jonathan; Wang, Steven X.; Huttenlocher, Anna; Ansari, Hamayail; Nett, Jeniel E.

    2016-01-01

    Neutrophils release extracellular traps (NETs) in response to planktonic C. albicans. These complexes composed of DNA, histones, and proteins inhibit Candida growth and dissemination. Considering the resilience of Candida biofilms to host defenses, we examined the neutrophil response to C. albicans during biofilm growth. In contrast to planktonic C. albicans, biofilms triggered negligible release of NETs. Time lapse imaging confirmed the impairment in NET release and revealed neutrophils adhering to hyphae and migrating on the biofilm. NET inhibition depended on an intact extracellular biofilm matrix as physical or genetic disruption of this component resulted in NET release. Biofilm inhibition of NETosis could not be overcome by protein kinase C activation via phorbol myristate acetate (PMA) and was associated with suppression of neutrophil reactive oxygen species (ROS) production. The degree of impaired NET release correlated with resistance to neutrophil attack. The clinical relevance of the role for extracellular matrix in diminishing NET production was corroborated in vivo using a rat catheter model. The C. albicans pmr1Δ/Δ, defective in production of matrix mannan, appeared to elicit a greater abundance of NETs by scanning electron microscopy imaging, which correlated with a decreased fungal burden. Together, these findings show that C. albicans biofilms impair neutrophil response through an inhibitory pathway induced by the extracellular matrix. PMID:27622514

  12. Neutrophhil function after exposure to polychlorinated biphenyls in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganey, P.E.; Denison, M.; Roth, R.A.

    1993-10-01

    Polychlorinated biphenyls (PCBs) are known to be immunotoxic, yet the effects on neutrophil (PMN) function are not well characterized. We incubated PMNs isolated from rat peritoneum with a mixture of PCB congeners, Aroclor 1242, in the absence or presence of either phorbol myristate acetate (PMA) to stimulate generation of supoxide anion (O[sub 2]) or N-formyl-methionyl-leucyl-phenylalanine (fMLP) to induce degranulation (measured as release of [beta]-glucuronidase). Aroclor 1242 alone stimulated O[sub 2] production at a concentration of 10 [mu]g/ml. Significant cytotoxicity was not observed under these conditions. This concentration of Aroclor 1242 also increased O[sub 2] generation in PMNs activated with 20more » ng PMA/ml. In the presence of a concentration of PMA (2 ng/ml) that by itself did not stimulate production of O[sub 2], 1 [mu]g Aroclor 1242/ml caused significant generation of O[sub 2], indicating synergy between Aroclor 1242 and PMA. Aroclor 1242 caused release of [beta]-glucuronidase from quiescent PMNs; however, in PMNs stimulated with fMLP to undergo degranulation, Aroclor 1242 inhibited release of [beta]-glucuronidase.« less

  13. Assessment of Antioxidant Activity of Spray Dried Extracts of Psidium guajava Leaves by DPPH and Chemiluminescence Inhibition in Human Neutrophils

    PubMed Central

    Fernandes, M. R. V.; Azzolini, A. E. C. S.; Martinez, M. L. L.; Souza, C. R. F.; Lucisano-Valim, Y. M.; Oliveira, W. P.

    2014-01-01

    This work evaluated the physicochemical properties and antioxidant activity of spray dried extracts (SDE) from Psidium guajava L. leaves. Different drying carriers, namely, maltodextrin, colloidal silicon dioxide, Arabic gum, and β-cyclodextrin at concentrations of 40 and 80% relative to solids content, were added to drying composition. SDE were characterized through determination of the total phenolic, tannins, and flavonoid content. Antioxidant potential of the SDE was assessed by two assays: cellular test that measures the luminol-enhanced chemiluminescence (LumCL) produced by neutrophils stimulated with phorbol myristate acetate (PMA) and the DPPH radical scavenging (DPPH∗ method). In both assays the antioxidant activity of the SDE occurred in a concentration-dependent manner and showed no toxicity to the cells. Using the CLlum method, the IC50 ranged from 5.42 to 6.50 µg/mL. The IC50 of the SDE ranged from 7.96 to 8.11 µg/mL using the DPPH• method. Psidium guajava SDE presented significant antioxidant activity; thus they show high potential as an active phytopharmaceutical ingredient. Our findings in human neutrophils are pharmacologically relevant since they indicate that P. guajava SDE is a potential antioxidant and anti-inflammatory agent in human cells. PMID:24822200

  14. Staurosporine potentiates platelet activating factor stimulated phospholipase C activity in rabbit platelets but does not block desensitization by platelet activating factor.

    PubMed

    Morrison, W J; Dhar, A; Shukla, S D

    1989-01-01

    The possible involvement of protein kinase C activation in regulating PAF-stimulated PLC activity was studied in rabbit platelets. PAF (100 nM for 5 seconds) stimulated incorporation of 32P into proteins and caused [3H]InsP3 levels to increase about 260% of control. These responses were compared after platelets were pretreated with either PAF, phorbol 12-myristate 13-acetate (PMA) or staurosporine and also after pretreatments with staurosporine followed by PAF or PMA. Pretreating platelets with staurosporine potentiated PAF-stimulated [3H]InsP3 levels by 54% and blocked protein phosphorylation. Pretreatments with PAF and PMA caused PAF-stimulated [3H]InsP3 levels to decrease to 115 and 136%, respectively. Staurosporine pretreatment blocked the decrease caused by the PMA pretreatment but not that by PAF. This study demonstrates that PAF-stimulated PLC activity is negatively affected by protein kinase C (PKC) activation and that inhibition of PKC activity did not prevent desensitization of PLC by PAF.

  15. Oxidative phenomena are implicated in human T-cell stimulation.

    PubMed Central

    Sekkat, C; Dornand, J; Gerber, M

    1988-01-01

    Phytohaemagglutinin (PHA), phorbol myristate acetate (PMA) and PHA + PMA stimulation of T-enriched peripheral blood lymphocytes (PBL) and the Jurkat malignant T-cell line leads to oxidative-product formation, as evaluated by flow cytofluorometric studies, an increase in K+ flux across the membrane, cGMP production and a depolarization of the cell membrane. Irradiation (20 Gy), which enhances IL-2 synthesis by activated T-enriched PBL and Jurkat cells, also increases oxidative product formation, K+ flux, cGMP production, and induces cell membrane depolarization. Conversely, irradiation does not produce a rise in intracellular free Ca2+, as measured in PHA-stimulated Jurkat cells. PMA is also without effect on intracellular free Ca2+, added before or after PHA stimulation. Thus, except for the rise in intracellular free Ca2+, irradiation and stimulation exert similar effects on some of the events observed in IL-2-producing Jurkat cells, but these effects are not additive. Stimulation and irradiation effects are shown to be additive or synergistic only for cGMP production. It is proposed that irradiation may increase IL-2 synthesis by participating in an additional signal related to the oxidative metabolism of arachidonic acid (AA). PMID:3258279

  16. A Metabolic Shift toward Pentose Phosphate Pathway Is Necessary for Amyloid Fibril- and Phorbol 12-Myristate 13-Acetate-induced Neutrophil Extracellular Trap (NET) Formation*

    PubMed Central

    Azevedo, Estefania P.; Rochael, Natalia C.; Guimarães-Costa, Anderson B.; de Souza-Vieira, Thiago S.; Ganilho, Juliana; Saraiva, Elvira M.; Palhano, Fernando L.; Foguel, Debora

    2015-01-01

    Neutrophils are the main defense cells of the innate immune system. Upon stimulation, neutrophils release their chromosomal DNA to trap and kill microorganisms and inhibit their dissemination. These chromatin traps are termed neutrophil extracellular traps (NETs) and are decorated with granular and cytoplasm proteins. NET release can be induced by several microorganism membrane components, phorbol 12-myristate 13-acetate as well as by amyloid fibrils, insoluble proteinaceous molecules associated with more than 40 different pathologies among other stimuli. The intracellular signaling involved in NET formation is complex and remains unclear for most tested stimuli. Herein we demonstrate that a metabolic shift toward the pentose phosphate pathway (PPP) is necessary for NET release because glucose-6-phosphate dehydrogenase (G6PD), an important enzyme from PPP, fuels NADPH oxidase with NADPH to produce superoxide and thus induce NETs. In addition, we observed that mitochondrial reactive oxygen species, which are NADPH-independent, are not effective in producing NETs. These data shed new light on how the PPP and glucose metabolism contributes to NET formation. PMID:26198639

  17. Chamomile decoction extract inhibits human neutrophils ROS production and attenuates alcohol-induced haematological parameters changes and erythrocytes oxidative stress in rat.

    PubMed

    Jabri, Mohamed-Amine; Sani, Mamane; Rtibi, Kais; Marzouki, Lamjed; El-Benna, Jamel; Sakly, Mohsen; Sebai, Hichem

    2016-03-31

    The aim of this study was to evaluate the protective effects of subacute pre-treatment with chamomile (Matricaria recutita L.) decoction extract (CDE) against stimulated neutrophils ROS production as well as ethanol (EtOH)-induced haematological changes and erythrocytes oxidative stress in rat. Neutrophils were isolated and ROS generation was measured by luminol-amplified chemiluminescence. Superoxide anion generation was detected by the cytochrome c reduction assay. Adult male wistar rats were used and divided into six groups of ten each: control, EtOH, EtOH + various doses of CDE (25, 50, and 100 mg/kg, b.w.), and EtOH+ ascorbic acid (AA). Animals were pre-treated with CDE extract during 10 days. We found that CDE inhibited (P ≤ 0.0003) luminol-amplified chemiluminescence of resting neutrophils and N-formyl methionylleucyl-phenylalanine (fMLF) or phorbolmyristate acetate (PMA) stimulated neutrophils, in a dose-dependent manner. CDE had no effect on superoxide anion, but it inhibited (P ≤ 0.0004) H2O2 production in cell free system. In vivo, CDE counteracted (P ≤ 0.0034) the effect of single EtOH administration which induced (P < 0.0001) an increase of white blood cells (WBC) and platelets (PLT) counts. Our results also demonstrated that alcohol administration significantly (P < 0.0001) induced erythrocytes lipoperoxidation increase and depletion of sulfhydryl groups (-SH) content as well as antioxidant enzyme activities as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). More importantly, we found that acute alcohol administration increased (P < 0.0001) erythrocytes and plasma hydrogen peroxide (H2O2), free iron, and calcium levels while the CDE pre-treatment reversed increased (P ≤ 0.0051) all these intracellular disturbances. These findings suggest that CDE inhibits neutrophil ROS production and protects against EtOH-induced haematologiacal parameters changes and erythrocytes oxidative stress. The haematoprotection offered

  18. Curcumin inhibits EMMPRIN and MMP-9 expression through AMPK-MAPK and PKC signaling in PMA induced macrophages.

    PubMed

    Cao, Jiatian; Han, Zhihua; Tian, Lei; Chen, Kan; Fan, Yuqi; Ye, Bozhi; Huang, Weijian; Wang, Changqian; Huang, Zhouqing

    2014-09-21

    In coronary arteries, plaque disruption, the major acute clinical manifestations of atherosclerosis, leads to a subsequent cardiac event, such as acute myocardial infarction (AMI) and unstable angina pectoris (UA). Numerous reports have shown that high expression of MMP-9 (matrix metalloproteinase-9), MMP-13 (matrix metalloproteinase-13) and EMMPRIN (extracellular matrix metalloproteinase induce) in monocyte/macrophage results in the plaque progression and destabilization. Curcumin exerts well-known anti-inflammatory and antioxidant effects and probably has a protective role in the atherosclerosis. The purpose of our study was to investigate the molecular mechanisms by which curcumin affects MMP-9, MMP13 and EMMPRIN in PMA (phorbol 12-myristate 13-acetate) induced macrophages. Human monocytic cells (THP-1 cells) were pretreated with curcumin or compound C for 1 h, and then induced by PMA for 48 h. Total RNA and proteins were collected for real-time PCR and Western blot analysis, respectively. In the present study, the exposure to curcumin resulted in attenuated JNK, p38, and ERK activation and decreased expression of MMP-9, MMP-13 and EMMPRIN in PMA induced macrophages. Moreover, we demonstrated that AMPK (AMP-activated protein kinase) and PKC (Protein Kinase C) was activated by PMA during monocyte/macrophage differentiation. Furthermore, curcumin reversed PMA stimulated PKC activation and suppressed the chronic activation of AMPK, which in turn reduced the expression of MMP-9, MMP-13 and EMMPRIN. Therefore, it is suggested that curcumin by inhibiting AMPK-MAPK (mitogen activated protein kinase) and PKC pathway may led to down-regulated EMMPRIN, MMP-9 and MMP-13 expression in PMA-induced THP-1 cells.

  19. Glycosylated and nonglycosylated recombinant human granulocyte colony-stimulating factor differently modifies actin polymerization in neutrophils.

    PubMed

    Zucca, A; Brizzi, S; Riccioni, R; Azzarà, A; Ghimenti, M; Carulli, G

    2006-01-01

    Several neutrophil functions can be modified by rhG-CSF administration. Neutrophil morphology changes in the course of treatment with Filgrastim (nonglycosylated rhG-CSF), along with impairment of chemotaxis. Both morphology and chemotaxis are not affected by treatment with Lenograstim (glycosylated rhG-CSF). Thus, we evaluated actin polymerization in neutrophils induced by treatment with the two forms of rhG-CSF. In fact, actin polymerization is crucial for neutrophil motility. We evaluated twelve healthy subjects undergoing peripheral blood stem cells (PBSC) mobilization for allogeneic transplantation to HLA-identical siblings. Neutrophils were isolated by peripheral venous blood before and after administration of either Filgrastim (six PBSC donors) or Lenograstim (six PBSC donors). Actin polymerization was investigated by a flow cytometric assay, using FITC-phalloidin as a specific probe for F-actin, and two parameters were measured: spontaneous actin polymerization in resting neutrophils; fMLP-stimulated actin polymerization. Results were expressed as relative F-actin content. Fifteen blood donors were studied as a control group. Filgrastim administration induced an increased relative F-actin content in resting neutrophils; however, no further actin polymerization was observed after fMLP stimulation. Neutrophils from subjects treated with Lenograstim showed a normal behaviour in terms of both spontaneous and stimulated actin polymerization. Glycosylated and nonglycosylated rhG-CSF differently affect actin polymerization in newly generated neutrophils. Such effects may explain some previous findings concerning both morphology and chemotactic properties and may be due to different effects of the two forms of rhG-CSF on proteins involved in neutrophil motility regulation.

  20. Commensal microbiota stimulate systemic neutrophil migration through induction of Serum amyloid A

    PubMed Central

    Kanther, Michelle; Tomkovich, Sarah; Sun, Xiaolun; Grosser, Melinda R.; Koo, Jaseol; Flynn, Edward J.; Jobin, Christian; Rawls, John F.

    2015-01-01

    Summary Neutrophils serve critical roles in inflammatory responses to infection and injury, and mechanisms governing their activity represent attractive targets for controlling inflammation. The commensal microbiota is known to regulate the activity of neutrophils and other leucocytes in the intestine, but the systemic impact of the microbiota on neutrophils remains unknown. Here we utilized in vivo imaging in gnotobiotic zebrafish to reveal diverse effects of microbiota colonization on systemic neutrophil development and function. The presence of a microbiota resulted in increased neutrophil number and myeloperoxidase expression, and altered neutrophil localization and migratory behaviours. These effects of the microbiota on neutrophil homeostasis were accompanied by an increased recruitment of neutrophils to injury. Genetic analysis identified the microbiota-induced acute phase protein serum amyloid A (Saa) as a host factor mediating microbial stimulation of tissue-specific neutrophil migratory behaviours. In vitro studies revealed that zebrafish cells respond to Saa exposure by activating NF-κB, and that Saa-dependent neutrophil migration requires NF-κB-dependent gene expression. These results implicate the commensal microbiota as an important environmental factor regulating diverse aspects of systemic neutrophil development and function, and reveal a critical role for a Saa-NF-κB signalling axis in mediating neutrophil migratory responses. PMID:24373309

  1. Proton channel HVCN1 is required for effector functions of mouse eosinophils

    PubMed Central

    2013-01-01

    Background Proton currents are required for optimal respiratory burst in phagocytes. Recently, HVCN1 was identified as the molecule required for the voltage-gated proton channel activity associated with the respiratory burst in neutrophils. Although there are similarities between eosinophils and neutrophils regarding their mechanism for respiratory burst, the role of proton channels in eosinophil functions has not been fully understood. Results In the present study, we first identified the expression of the proton channel HVCN1 in mouse eosinophils. Furthermore, using HVCN1-deficient eosinophils, we demonstrated important cell-specific effector functions for HVCN1. Similar to HVCN1-deficient neutrophils, HVCN1-deficient eosinophils produced significantly less reactive oxygen species (ROS) upon phorbol myristate acetate (PMA) stimulation compared with WT eosinophils. In contrast to HVCN1-deficient neutrophils, HVCN1-deficient eosinophils did not show impaired calcium mobilization or migration ability compared with wild-type (WT) cells. Uniquely, HVCN1-deficient eosinophils underwent significantly increased cell death induced by PMA stimulation compared with WT eosinophils. The increased cell death was dependent on NADPH oxidase activation, and correlated with the failure of HVCN1-deficient cells to maintain membrane polarization and intracellular pH in the physiological range upon activation. Conclusions Eosinophils require proton channel HVCN1 for optimal ROS generation and prevention of activation-induced cell death. PMID:23705768

  2. Effect of bacterial stimulants on release of reactive oxygen metabolites from peripheral blood neutrophils in periodontitis.

    PubMed

    Zekonis, Gediminas; Zekonis, Jonas

    2004-01-01

    The aim of the present investigation was to explore the oxidative activity of peripheral blood polymorphonuclear neutrophils of periodontitis patients and of healthy subjects stimulated with non-opsonized E. coli and lipopolysaccharide of E. coli. The leukocytes for this study were obtained from peripheral venous blood of 22 parodontitis patients and 16 healthy subjects. Oxidative activity of peripheral blood polymorphonuclear neutrophils was measured by method of the luminol-dependent chemiluminescence. The luminol-dependent chemiluminescence of stimulated neutrophils of periodontitis patients with non-opsonized E. coli increased less significantly (p<0.001) as compared to analogous chemiluminescence of control subjects (147126+/-8386 cpm and 189247+/-9134 cpm, respectively). However, the luminol-dependent chemiluminescence of stimulated neutrophils of periodontitis patients with lipopolysaccharide was five times higher than that of the subjects with intact periodontal tissues and comprised 13261+/-1251 cpm and 2627+/-638 cpm, respectively. Our study results show a complex dependence of oxidative function of peripheral polymorphonuclear neutrophils of periodontitis patients upon the nature of stimulants. Therefore further attempts should be made to evaluate its significance in the etiopathogenesis of periodontal tissue diseases of inflammatory origin.

  3. Smac mimetic enables the anticancer action of BCG-stimulated neutrophils through TNF-α but not through TRAIL and FasL.

    PubMed

    Jinesh G, Goodwin; Chunduru, Srinivas; Kamat, Ashish M

    2012-07-01

    BCG, the current gold standard immunotherapy for bladder cancer, exerts its activity via recruitment of neutrophils to the tumor microenvironment. Many patients do not respond to BCG therapy, indicating the need to understand the mechanism of action of BCG-stimulated neutrophils and to identify ways to overcome resistance to BCG therapy. Using isolated human neutrophils stimulated with BCG, we found that TNF-α is the key mediator secreted by BCG-stimulated neutrophils. RT4v6 human bladder cancer cells, which express TNFR1, CD95/Fas, CD95 ligand/FasL, DR4, and DR5, were resistant to BCG-stimulated neutrophil conditioned medium but effectively killed by the combination of conditioned medium and Smac mimetic. rhTNF-α and rhFasL, but not rhTRAIL, in combination with Smac mimetic, generated signature molecular events similar to those produced by BCG-stimulated neutrophils in combination with Smac mimetic. However, experiments using neutralizing antibodies to these death ligands showed that TNF-α secreted from BCG-stimulated neutrophils was the key mediator of anticancer action. These findings explain the mechanism of action of BCG and identified Smac mimetics as potential combination therapeutic agents for bladder cancer.

  4. Stimulation of phosphatidylcholine breakdown and diacylglycerol production by growth factors in Swiss-3T3 cells.

    PubMed Central

    Price, B D; Morris, J D; Hall, A

    1989-01-01

    The effect of a number of growth factors on phosphatidylcholine (PtdCho) turnover in Swiss-3T3 cells was studied. Phorbol 12-myristate 13-acetate (PMA), bombesin, platelet-derived growth factor (PDGF) and vasopressin rapidly stimulated PtdCho hydrolysis, diacylglycerol (DAG) production, and PtdCho synthesis. Insulin and prostaglandin F2 alpha (PGF2 alpha) stimulated PtdCho synthesis, but not its breakdown, whereas epidermal growth factor (EGF) and bradykinin were without effect. Stimulation of PtdCho hydrolysis by the above ligands resulted in increased production of phosphocholine and DAG (due to phospholipase C activity) and significant amounts of choline, suggesting activation of a phospholipase D as well. CDP-choline and glycerophosphocholine levels were unchanged. Down-regulation of protein kinase C with PMA (400 nM, 40 h) abolished the stimulation of PtdCho hydrolysis and PtdCho synthesis by PMA, bombesin, PDGF and vasopressin, but not the stimulation of PtdCho synthesis by insulin and PGF2 alpha. PtdCho hydrolysis therefore occurs predominantly by activation of protein kinase C (either by PMA or PtdIns hydrolysis) leading to elevation of DAG levels derived from non-PtdIns(4,5)P2 sources. PtdCho synthesis occurs by both a protein kinase C-dependent pathway (stimulated by PMA, PDGF, bombesin and vasopressin) and a protein kinase C-independent pathway (stimulated by insulin and PGF2 alpha). DAG production from PtdCho hydrolysis is not the primary signal to activate protein kinase C, but may contribute to long-term activation of this kinase. PMID:2690829

  5. Neutrophil kinetics of recombinant human granulocyte colony-stimulating factor-induced neutropenia in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okada, Yuji; Kawagishi, Mayumi; Kusaka, Masaru

    Single injection of recombinant human granulocyte colony-stimulating factor (rhG-CSF) immediately induced a decrease in the number of circulating neutrophils in rats. This neutropenia occurred 10 minutes after the injection but disappeared 40 minutes after injection. This transient neutropenia was dose-dependently induced by rhG-CSF and also induced by repeated injections. We studied the kinetics of circulating neutrophils in transient neutropenia. rhG-CSF markedly decreased the number of {sup 3}H-diisopropylfluorophosphate ({sup 3}H-DFP) labeled neutrophils in the circulation 10 minutes after injection but the labeled neutrophils recovered to near the control level 40 minutes after the injection. These results indicate that the neutrophil marginationmore » accounts for the neutrophenia and the marginated neutrophils return to the circulation.« less

  6. Anti-inflammatory effects of zinc in PMA-treated human gingival fibroblast cells

    PubMed Central

    Kim, Sangwoo; Jeon, Sangmi; Hui, Zheng; Kim, Young; Im, Yeonggwan; Lim, Wonbong; Kim, Changsu; Choi, Hongran; Kim, Okjoon

    2015-01-01

    Objectives: Abnormal cellular immune response has been considered to be responsible for oral lesions in recurrent aphthous stomatitis. Zinc has been known to be an essential nutrient metal that is necessary for a broad range of biological activities including antioxidant, immune mediator, and anti-inflammatory drugs in oral mucosal disease. The objective of this study was to investigate the effects of zinc in a phorbol-12-myristate-13-acetate (PMA)-treated inflammatory model on human gingival fibroblast cells (hGFs). Study Design: Cells were pre-treated with zinc chloride, followed by PMA in hGFs. The effects were assessed on cell viability, cyclooxygenease-1,2(COX-1/2) protein expression, PGE2 release, ROS production and cytokine release, Results: The effects were assessed on cell viability, COX1/2 protein expression, PGE2 release, ROS production, cytokine release. The results showed that, in the presence of PMA, zinc treatment leads to reduce the production of ROS, which results in decrease of COX-2 expression and PGE2 release. Conclusions: Thus, we suggest that zinc treatment leads to the mitigation of oral inflammation and may prove to be an alternative treatment for recurrent aphthous stomatitis. Key words:Zinc, inflammatory response, cytokines, phorbol-12-myristate-13-acetate, gingival fibroblasts cells. PMID:25662537

  7. Phorbol ester stimulates calcium sequestration in saponized human platelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, K.; Nachmias, V.T.

    1987-11-25

    When platelets are activated by agonists, calcium (Ca2+) is released from an intracellular storage site. Recent studies using fura-2 show that, after thrombin stimulation, the rise in free calcium is transient and returns to base-line levels in 2-3 min, while the transient following ADP stimulation lasts only 15-20 s. We reported previously that the phorbol ester 12,13-phorbol myristate acetate (PMA), added at nanomolar levels after thrombin, immediately accelerated the rate of return of calcium to the base line severalfold. In the present study, we used both intact and saponized platelets to determine whether this is due to stimulation of calciummore » sequestration. Using fura-2 and intact platelets, we found 1) that PMA stimulated the restoration of free Ca2+ levels after ADP as well as after thrombin, and 2) that H-7, an inhibitor of protein kinase C (Ca2+/phospholipid-dependent enzyme), slowed the return of Ca2+ to baseline levels. Using saponized platelets, we also found 3) that pretreatment of platelets with PMA before saponin treatment increased the ATP-dependent /sup 45/Ca2+ uptake 2-fold, with a half-maximal effect at 5 nm; 4) that most of the Ca2+ released by ionomycin or by myoinositol 1,4,5-trisphosphate; and 5) that a GTP-binding protein inhibitor, guanosine 5'-O-(2-thiodiphosphate), decreased basal or PMA-stimulated /sup 45/Ca2+ uptake in saponin-treated platelets. Our data suggest that activation of protein kinase C stimulates the sequestration of Ca2+ independently of cAMP or myoinositol 1,4,5-trisphosphate.« less

  8. Effect of Dark Chocolate Extracts on Phorbol 12-Myristate 13-Acetate-Induced Oxidative Burst in Leukocytes Isolated by Normo-Weight and Overweight/Obese Subjects

    PubMed Central

    Ioannone, Francesca; Sacchetti, Giampiero; Serafini, Mauro

    2017-01-01

    Oxidative and inflammatory stress represents a major risk factor for cardiovascular disease (CVD) in overweight and obese subjects. Between the different plant foods, chocolate has been shown to decrease CVD risk due to its antioxidant and anti-inflammatory properties. However, as we recently showed in epidemiological studies, meta-analyses, and human trials, dietary antioxidants resulted more effective in subjects characterized by an ongoing oxidative stress, than in healthy people. Aim of this work was to investigate the effect of different concentrations of chocolate phenolic extract (CPE) on in vitro free radical production, stimulated by phorbol 12-myristate 13-acetate (PMA), in leukocytes extracted from blood of normo-weight and overweight/obese subjects. Neutrophils from overweight/obese group had a significantly higher free radical production compared to the normo-weight group. In neutrophils, the lowest CPE concentration significantly reduced free radical production in overweight/obese group only, and higher CPE concentrations were effective in both groups. In monocytes, the CPE concentration that was significantly effective in reducing free radical production was lower in overweight/obese subjects than in normo-weight subjects. Chocolate polyphenol extracts inhibit oxidative burst in human neutrophils and monocytes with a higher efficiency in subjects characterized by an unphysiological oxidative/inflammatory stress, such as overweight and obese. Results of this study provide further evidence about a differential role of dietary antioxidant strictly related to the “stress” condition of the subjects. PMID:28649567

  9. Effect of Dark Chocolate Extracts on Phorbol 12-Myristate 13-Acetate-Induced Oxidative Burst in Leukocytes Isolated by Normo-Weight and Overweight/Obese Subjects.

    PubMed

    Ioannone, Francesca; Sacchetti, Giampiero; Serafini, Mauro

    2017-01-01

    Oxidative and inflammatory stress represents a major risk factor for cardiovascular disease (CVD) in overweight and obese subjects. Between the different plant foods, chocolate has been shown to decrease CVD risk due to its antioxidant and anti-inflammatory properties. However, as we recently showed in epidemiological studies, meta-analyses, and human trials, dietary antioxidants resulted more effective in subjects characterized by an ongoing oxidative stress, than in healthy people. Aim of this work was to investigate the effect of different concentrations of chocolate phenolic extract (CPE) on in vitro free radical production, stimulated by phorbol 12-myristate 13-acetate (PMA), in leukocytes extracted from blood of normo-weight and overweight/obese subjects. Neutrophils from overweight/obese group had a significantly higher free radical production compared to the normo-weight group. In neutrophils, the lowest CPE concentration significantly reduced free radical production in overweight/obese group only, and higher CPE concentrations were effective in both groups. In monocytes, the CPE concentration that was significantly effective in reducing free radical production was lower in overweight/obese subjects than in normo-weight subjects. Chocolate polyphenol extracts inhibit oxidative burst in human neutrophils and monocytes with a higher efficiency in subjects characterized by an unphysiological oxidative/inflammatory stress, such as overweight and obese. Results of this study provide further evidence about a differential role of dietary antioxidant strictly related to the "stress" condition of the subjects.

  10. In vivo and in vitro evidences that carotenoids could modulate the neutrophil respiratory burst during dietary manipulation.

    PubMed

    Walrand, Stéphane; Farges, Marie-Chantal; Dehaese, Olivier; Cardinault, Nicolas; Minet-Quinard, Régine; Grolier, Pascal; Bouteloup-Demange, Corinne; Ribalta, Josep; Winklhofer-Roob, Brigitte M; Rock, Edmond; Vasson, Marie-Paule

    2005-03-01

    The primary role of polymorphonuclear neutrophils (PMNs) is to destroy pathogenic microorganisms after phagocytosis by producing reactive oxygen species (ROS) and toxic molecules. However, PMNs produce sufficient amounts of ROS during an oxidative burst to be autotoxic and detrimental to their own functions and to possibly cause DNA damage, protein and lipid oxidation and cell membrane destructuration. The aim of this study was to investigate in vivo the role of the antioxidant capacities of carotenoids in modulating ROS content in PMNs during oxidative burst. Moreover to investigate the direct or indirect effect of carotenoids, the modification of PMN ROS content was explored after in vitro supplementation with beta-carotene or lycopene, chosen taking account of their vitamin A and no vitamin A precursor effect, respectively. In vivo study: Venous blood was collected from 10 healthy male volunteers and ROS production from phorbol myristate acetate (PMA)-stimulated PMNs was determined, by flow cytometry using the fluorescent dye dihydrorhodamine 123, at baseline, after 3 weeks of carotenoid depletion (carotenoid intake limited to 25% of usual intake) and after 5 weeks of carotenoid repletion (30 mg beta-carotene, 15 mg lycopene and 9 mg lutein per day). In vitro study: ROS content in PMA-stimulated PMNs isolated from carotenoid depleted subjects and controls was quantified after an in vitro enrichment with beta-carotene (1 micromol/L) or lycopene (0.3 micromol/L). In vivo carotenoid depletion increased PMN H2O2 content after PMA activation by 38% (p < 0.05 vs baseline),while supplementation for 5 weeks restored basal H2O2 generation (p < 0.05 vs depletion). Although H2O2 measurement in PMNs from non-depleted subjects was not affected by an in vitro supply with beta-carotene or lycopene, a significant decrease in H2O2 content by 78.9 % and 81.2%, respectively, was observed in PMNs from carotenoid depleted subjects (p < 0.01 vs depleted control subjects). The

  11. Effect of Bee Venom and Its Fractions on the Release of Pro-Inflammatory Cytokines in PMA-Differentiated U937 Cells Co-Stimulated with LPS

    PubMed Central

    Tusiimire, Jonans; Wallace, Jennifer; Woods, Nicola; Dufton, Mark J.; Parkinson, John A.; Abbott, Grainne; Clements, Carol J.; Young, Louise; Park, Jin Kyu; Jeon, Jong Woon; Ferro, Valerie A.; Watson, David G.

    2016-01-01

    The venom of Apis mellifera (honey bee) has been reported to play a role in immunotherapy, but existing evidence to support its immuno-modulatory claims is insufficient. Four fractions from whole bee venom (BV) were separated using medium pressure liquid chromatography. Their ability to induce the production of cytokines TNFα, IL-1β and IL-6 in phorbol-12-myristate-13-acetate (PMA)-treated U937 cells was assessed. The levels of the three cytokines produced by stimulation with the four fractions and crude BV without LPS were not significantly different from negative control values. However, co-stimulation of the cells with LPS and Fraction 4 (F-4) induced a 1.6-fold increase in TNF-α level (p < 0.05) compared to LPS alone. Likewise, LPS-induced IL-1β production was significantly synergised in the presence of F-1 (nine-fold), F-2 (six-fold), F-3 (four-fold) and F-4 (two-fold) fractions, but was only slightly enhanced with crude BV (1.5-fold) relative to LPS. Furthermore, the LPS-stimulated production of IL-6 was not significantly increased in cells co-treated with F-2 and F-3, but the organic fraction (F-4) showed an inhibitory effect (p < 0.05) on IL-6 production. The latter was elucidated by NMR spectroscopy and found to contain(Z)-9-eicosen-1-ol. The effects observed with the purified BV fractions were more marked than those obtained with the crude sample. PMID:27104574

  12. Anti-Neutrophil Cytoplasmic Antibodies Stimulate Release of Neutrophil Microparticles

    PubMed Central

    Eleftheriou, Despina; Hussain, Abdullah A.K.; Price-Kuehne, Fiona E.; Savage, Caroline O.; Jayne, David; Little, Mark A.; Salama, Alan D.; Klein, Nigel J.; Brogan, Paul A.

    2012-01-01

    The mechanisms by which anti-neutrophil cytoplasmic antibodies (ANCAs) may contribute to the pathogenesis of ANCA-associated vasculitis are not well understood. In this study, both polyclonal ANCAs isolated from patients and chimeric proteinase 3–ANCA induced the release of neutrophil microparticles from primed neutrophils. These microparticles expressed a variety of markers, including the ANCA autoantigens proteinase 3 and myeloperoxidase. They bound endothelial cells via a CD18-mediated mechanism and induced an increase in endothelial intercellular adhesion molecule-1 expression, production of endothelial reactive oxygen species, and release of endothelial IL-6 and IL-8. Removal of the neutrophil microparticles by filtration or inhibition of reactive oxygen species production with antioxidants abolished microparticle-mediated endothelial activation. In addition, these microparticles promoted the generation of thrombin. In vivo, we detected more neutrophil microparticles in the plasma of children with ANCA-associated vasculitis compared with that in healthy controls or those with inactive vasculitis. Taken together, these results support a role for neutrophil microparticles in the pathogenesis of ANCA-associated vasculitis, potentially providing a target for future therapeutics. PMID:22052057

  13. Modulation of Human Neutrophil Responses by the Essential Oils from Ferula akitschkensis and Their Constituents.

    PubMed

    Schepetkin, Igor A; Kushnarenko, Svetlana V; Özek, Gulmira; Kirpotina, Liliya N; Sinharoy, Pritam; Utegenova, Gulzhakhan A; Abidkulova, Karime T; Özek, Temel; Başer, Kemal Hüsnü Can; Kovrizhina, Anastasia R; Khlebnikov, Andrei I; Damron, Derek S; Quinn, Mark T

    2016-09-28

    Essential oils were obtained by hydrodistillation of the umbels+seeds and stems of Ferula akitschkensis (FAEOu/s and FAEOstm, respectively) and analyzed by gas chromatography and gas chromatography-mass spectrometry. Fifty-two compounds were identified in FAEOu/s; the primary components were sabinene, α-pinene, β-pinene, terpinen-4-ol, eremophilene, and 2-himachalen-7-ol, whereas the primary components of FAEOstm were myristicin and geranylacetone. FAEOu/s, β-pinene, sabinene, γ-terpinene, geranylacetone, isobornyl acetate, and (E)-2-nonenal stimulated [Ca(2+)]i mobilization in human neutrophils, with the most potent being geranylacetone (EC50 = 7.6 ± 1.9 μM) and isobornyl acetate 6.4 ± 1.7 (EC50 = 7.6 ± 1.9 μM). In addition, treatment of neutrophils with β-pinene, sabinene, γ-terpinene, geranylacetone, and isobornyl acetate desensitized the cells to N-formyl-Met-Leu-Phe (fMLF)- and interleukin-8 (IL-8)-induced [Ca(2+)]i flux and inhibited fMLF-induced chemotaxis. The effects of β-pinene, sabinene, γ-terpinene, geranylacetone, and isobornyl acetate on neutrophil [Ca(2+)]i flux were inhibited by transient receptor potential (TRP) channel blockers. Furthermore, the most potent compound, geranylacetone, activated Ca(2+) influx in TRPV1-transfected HEK293 cells. In contrast, myristicin inhibited neutrophil [Ca(2+)]i flux stimulated by fMLF and IL-8 and inhibited capsaicin-induced Ca(2+) influx in TRPV1-transfected HEK293 cells. These findings, as well as pharmacophore modeling of TRP agonists, suggest that geranylacetone is a TRPV1 agonist, whereas myristicin is a TRPV1 antagonist. Thus, at least part of the medicinal properties of Ferula essential oils may be due to modulatory effects on TRP channels.

  14. Granulocyte colony-stimulating factor receptor signaling in severe congenital neutropenia, chronic neutrophilic leukemia, and related malignancies.

    PubMed

    Dwivedi, Pankaj; Greis, Kenneth D

    2017-02-01

    Granulocyte colony-stimulating factor is a hematopoietic cytokine that stimulates neutrophil production and hematopoietic stem cell mobilization by initiating the dimerization of homodimeric granulocyte colony-stimulating factor receptor. Different mutations of CSF3R have been linked to a unique spectrum of myeloid disorders and related malignancies. Myeloid disorders caused by the CSF3R mutations include severe congenital neutropenia, chronic neutrophilic leukemia, and atypical chronic myeloid leukemia. In this review, we provide an analysis of granulocyte colony-stimulating factor receptor, various mutations, and their roles in the severe congenital neutropenia, chronic neutrophilic leukemia, and malignant transformation, as well as the clinical implications and some perspective on approaches that could expand our knowledge with respect to the normal signaling mechanisms and those associated with mutations in the receptor. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  15. Activation of syntaxin 1C, an alternative splice variant of HPC-1/syntaxin 1A, by phorbol 12-myristate 13-acetate (PMA) suppresses glucose transport into astroglioma cells via the glucose transporter-1 (GLUT-1).

    PubMed

    Nakayama, Takahiro; Mikoshiba, Katsuhiko; Yamamori, Tetsuo; Akagawa, Kimio

    2004-05-28

    Syntaxin 1C is an alternative splice variant lacking the transmembrane domain of HPC-1/syntaxin 1A. We found previously that syntaxin 1C is expressed as a soluble protein in human astroglioma (T98G) cells, and syntaxin 1C expression is enhanced by stimulation with phorbol 12-myristate 13-acetate (PMA). However, the physiological function of syntaxin 1C is not known. In this study, we examined the relationship between syntaxin 1C and glucose transport. First, we discovered that glucose transporter-1 (GLUT-1) was the primary isoform in T98G cells. Second, we demonstrated that glucose uptake in T98G cells was suppressed following an increase in endogenous syntaxin 1C after stimulation with PMA, which did not alter the expression levels of other plasma membrane syntaxins. We further examined glucose uptake and intracellular localization of GLUT-1 in cells that overexpressed exogenous syntaxin 1C; glucose uptake via GLUT-1 was inhibited without affecting sodium-dependent glucose transport. The value of Vmax for the dose-dependent uptake of glucose was reduced in syntaxin 1C-expressing cells, whereas there was no change in Km. Immunofluorescence studies revealed a reduction in the amount of GLUT-1 in the plasma membrane in cells that expressed syntaxin 1C. Based on these results, we postulate that syntaxin 1C regulates glucose transport in astroglioma cells by changing the intracellular trafficking of GLUT-1. This is the first report to indicate that a syntaxin isoform that lacks a transmembrane domain can regulate the intracellular transport of a plasma membrane protein.

  16. Natural Product Anacardic Acid from Cashew Nut Shells Stimulates Neutrophil Extracellular Trap Production and Bactericidal Activity.

    PubMed

    Hollands, Andrew; Corriden, Ross; Gysler, Gabriela; Dahesh, Samira; Olson, Joshua; Raza Ali, Syed; Kunkel, Maya T; Lin, Ann E; Forli, Stefano; Newton, Alexandra C; Kumar, Geetha B; Nair, Bipin G; Perry, J Jefferson P; Nizet, Victor

    2016-07-01

    Emerging antibiotic resistance among pathogenic bacteria is an issue of great clinical importance, and new approaches to therapy are urgently needed. Anacardic acid, the primary active component of cashew nut shell extract, is a natural product used in the treatment of a variety of medical conditions, including infectious abscesses. Here, we investigate the effects of this natural product on the function of human neutrophils. We find that anacardic acid stimulates the production of reactive oxygen species and neutrophil extracellular traps, two mechanisms utilized by neutrophils to kill invading bacteria. Molecular modeling and pharmacological inhibitor studies suggest anacardic acid stimulation of neutrophils occurs in a PI3K-dependent manner through activation of surface-expressed G protein-coupled sphingosine-1-phosphate receptors. Neutrophil extracellular traps produced in response to anacardic acid are bactericidal and complement select direct antimicrobial activities of the compound. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Failure of rabbit neutrophils to secrete endogenous pyrogen when stimulated with staphylococci.

    PubMed

    Hanson, D F; Murphy, P A; Windle, B E

    1980-06-01

    Cells obtained from acute peritoneal exudates in rabbits were separated into neutrophil and mononuclear populations by centrifugation on colloidal silica gradients. When these populations were separately incubated in tissue culture medium in the presence of opsonized Staphylococcus epidermidis, endogenous pyrogen was secreted only by the adherent cells of the mononuclear population. Pyrogen production by neutrophils could not have amounted to as much as 1% of the pyrogen produced by macrophages. When mononuclear cells were added back to purified neutrophils, no pyrogen was produced that could not be accounted for by the number of macrophages added. Rabbit blood cells were similarly fractionated on colloidal silica gradients. Again, endogenous pyrogen was made only by the adherent mononuclear population. The neutrophils isolated on these gradients appeared to be morphologically normal and were 85% viable as judged by dye exclusion. They showed normal random motility. Both blood and exudate neutrophils responded chemotactically to N-formyl Met-Leu-Phe, and blood neutrophils responded chemotactically to zymosan-activated serum. Both kinds of neutrophils phagocytosed zymosan particles and both killed opsonized S. epidermidis in a roller tube system. Both blood and exudate neutrophils showed normal superoxide production when stimulated with opsonized zymosan particles. This evidence suggests that macrophages are the only source of endogenous pyrogens, and that pyrogens secreted by cell populations that are rich in neutrophils are to be attributed to the monocytes or macrophages that they contain.

  18. Failure of rabbit neutrophils to secrete endogenous pyrogen when stimulated with staphylococci

    PubMed Central

    1980-01-01

    Cells obtained from acute peritoneal exudates in rabbits were separated into neutrophil and mononuclear populations by centrifugation on colloidal silica gradients. When these populations were separately incubated in tissue culture medium in the presence of opsonized Staphylococcus epidermidis, endogenous pyrogen was secreted only by the adherent cells of the mononuclear population. Pyrogen production by neutrophils could not have amounted to as much as 1% of the pyrogen produced by macrophages. When mononuclear cells were added back to purified neutrophils, no pyrogen was produced that could not be accounted for by the number of macrophages added. Rabbit blood cells were similarly fractionated on colloidal silica gradients. Again, endogenous pyrogen was made only by the adherent mononuclear population. The neutrophils isolated on these gradients appeared to be morphologically normal and were 85% viable as judged by dye exclusion. They showed normal random motility. Both blood and exudate neutrophils responded chemotactically to N-formyl Met-Leu-Phe, and blood neutrophils responded chemotactically to zymosan-activated serum. Both kinds of neutrophils phagocytosed zymosan particles and both killed opsonized S. epidermidis in a roller tube system. Both blood and exudate neutrophils showed normal superoxide production when stimulated with opsonized zymosan particles. This evidence suggests that macrophages are the only source of endogenous pyrogens, and that pyrogens secreted by cell populations that are rich in neutrophils are to be attributed to the monocytes or macrophages that they contain. PMID:6247413

  19. Indomethacin increases the formation of lipoxygenase products in calcium ionophore stimulated human neutrophils.

    PubMed

    Docherty, J C; Wilson, T W

    1987-10-29

    Arachidonic acid metabolism in human neutrophils stimulated in vitro with the calcium ionophore A23187 was studied using combined HPLC and radioimmunoassays. Indomethacin (0.1 and 1.0 microM) caused a 300% increase in LTB4 formation in neutrophils stimulated with A23187. 5-, 12- and 15-HETE levels were also increased. In the presence of exogenous arachidonic acid 1.0 microM Indomethacin caused a 37% increase in LTB4 formation. Acetyl Salicylic Acid and Ibuprofen had no effect on the formation of lipoxygenase metabolites. The effect of indomethacin on LTB4 formation does not appear to be due to a simple redirection of substrate arachidonic acid from the cyclooxygenase to the lipoxygenase pathways.

  20. Immunomodulatory activity of plant residues on ovine neutrophils.

    PubMed

    Farinacci, Maura; Colitti, Monica; Sgorlon, Sandy; Stefanon, Bruno

    2008-11-15

    Neutrophils play an essential role in host defense and inflammation. Plants have long been used to improve the immune function, but for most of them specific investigations on animal health are lacking. In the present study, water and hydroethanolic extracts from 11 plant wastes have been screened on immune responses of ovine neutrophils. Eight sheep clinically healthy, not lactating, non-pregnant were selected and used for the experiment. Freshly isolated neutrophils were incubated with the extracts of the residues at increasing doses, and then they were tested for adhesion and superoxide production induced with PMA. The residues of Larix decidua, Thymus vulgaris, Salix alba, Sinupret, Helianthus annuus, Mangifera indica modulated the neutrophil immune functions, moreover, Larix decidua, Thymus vulgaris and Salix alba presented the highest anti-inflammatory activity.

  1. Biomaterial-induced alterations of neutrophil superoxide production.

    PubMed

    Kaplan, S S; Basford, R E; Mora, E; Jeong, M H; Simmons, R L

    1992-08-01

    Because periprosthetic infection remains a vexing problem for patients receiving implanted devices, we evaluated the effect of several materials on neutrophil free radical production. Human peripheral blood neutrophils were incubated with several sterile, lipopolysaccharide (LPS)-free biomaterials used in surgically implantable prosthetic devices: polyurethane, woven dacron, and velcro. Free radical formation as the superoxide (O2-) anion was evaluated by cytochrome c reduction in neutrophils that were exposed to the materials and then removed and in neutrophils allowed to remain in association with the materials. Neutrophils exposed to polyurethane or woven dacron for 30 or 60 min and then removed consistently exhibited an enhanced release of O2- after simulation via receptor engagement with formyl methionyl-leucyl-phenylalanine. Enhanced reactivity to stimulation via protein kinase C with phorbol myristate acetate, however, was not consistently observed. The cells evaluated for O2- release during continuous association with the biomaterials showed enhanced metabolic activity during short periods of association (especially with polyurethane and woven dacron). Although O2- release by neutrophils in association with these materials decreased with longer periods of incubation, it was not obliterated. These studies, therefore, show that several commonly used biomaterials activate neutrophils soon after exposure and that this activated state diminishes with prolonged exposure but nevertheless remains measurable. The diminishing level of activity with prolonged exposure, however, suggests that ultimately a depletion of reactivity may occur and may result in increased susceptibility to periprosthetic infection.

  2. Severe paramethoxymethamphetamine (PMMA) and paramethoxyamphetamine (PMA) outbreak in Israel.

    PubMed

    Lurie, Yael; Gopher, Asher; Lavon, Ophir; Almog, Shlomo; Sulimani, Liron; Bentur, Yedidia

    2012-01-01

    Paramethoxymethamphetamine (PMMA) is a hallucinogenic synthetic substituted amphetamine that was not included in the Israeli Controlled Substance Act (CSA). To report a severe PMMA and paramethoxyamphetamine (PMA) outbreak. The Israeli national forensic toxicology laboratory analyzes the body fluids of unnatural deaths by means of screening immunoassays and chromatographic confirmation and quantification. Samples are referred to this laboratory by the Israeli Forensic Medicine Institute and by hospitals following consultation with the Israel Poison Information Center. The forensic toxicology laboratory began determining PMMA and PMA in February 2007. In all fatal cases with a positive immunoassay screen for amphetamines, a chromatographic analysis of PMA and PMMA was performed. The laboratory and demographic data of consecutive patients in whom PMMA or PMA were detected, were collected during 1 year and subjected to descriptive analysis. Of 108 fatal cases with a positive screen for amphetamines, 32 were confirmed. Twenty-four of the 32 cases tested positive for PMMA and PMA--age 27 ± 5 years, 79.2% males, post mortem whole blood PMMA and PMA concentrations 0.35 ± 0.24 and 2.72 ± 1.67 mcg/mL, respectively. Co-exposures were detected in 17 (70.8%) fatalities; including methylenedioxymethamphetamine, methylenedioxyamphetamine, cocaine, cannabinoids, cathinone derivatives, ephedrine/pseudoephedrine, opiates, and ethanol. In addition, five non-fatal male cases were identified; age 32 ± 5 years, four had co-exposures to cocaine, cathinone derivatives, and cannabinoids. These findings led to the inclusion of PMMA in the CSA in July 2007, resulting in only three more fatalities in the following year. We report an outbreak of PMMA and PMA poisoning resulting in 24 fatalities, and the post mortem whole blood and urine concentrations of these two compounds. PMA was probably the result of PMMA metabolism. Stimulant co-exposures may have contributed to the severity of the

  3. Differential Activation of Enkephalin, Galanin, Somatostatin, NPY, and VIP Neuropeptide Production by Stimulators of Protein Kinases A and C in Neuroendocrine Chromaffin Cells

    PubMed Central

    Hook, Vivian; Toneff, Thomas; Baylon, Sheley; Sei, Catherine

    2009-01-01

    Neuropeptides function as peptide neurotransmitters and hormones to mediate cell-cell communication. The goal of this study was to understand how different neuropeptides may be similarly or differentially regulated by protein kinase A (PKA) and protein kinase C (PKC) intracellular signaling mechanisms. Therefore, this study compared the differential effects of treating neuroendocrine chromaffin cells with stimulators of PKA and PKC on the production of the neuropeptides (Met)enkephalin, galanin, somatostatin, NPY, and VIP. Significantly, selective increases in production of these neuropeptides was observed by forskolin or PMA (phorbol myristate acetate) which stimulate PKA and PKC mechanisms, respectively. (Met)enkephalin production was stimulated by up to 2-fold by forskolin treatment, but not by PMA. In contrast, PMA treatment (but not forskolin) resulted in a 2-fold increase in production of galanin and somatostatin, and a 3-fold increase in NPY production. Notably, VIP production was highly stimulated by forskolin and PMA, with increases of 3-fold and 10–15-fold, respectively. Differences in elevated neuropeptides occurred in cell extracts compared to secretion media, which consisted of (i) increased NPY primarily in cell extracts, (ii) increased (Met)enkephalin and somatostatin in secretion media (not cell extracts), and (iii) increased galanin and VIP in both cell extracts and secretion media. Involvement of PKA or PKC for forskolin or PMA regulation of neuropeptide biosynthesis, respectively, was confirmed with direct inhibitors of PKA and PKC. The selective activation of neuropeptide production by forskolin and PMA demonstrates that PKA and PKC pathways are involved in the differential regulation of neuropeptide production. PMID:18619673

  4. Prompt inhibition of fMLP-induced Ca2+ mobilization by parenteral lipid emulsions in human neutrophils.

    PubMed

    Wanten, Geert; Rops, Angelique; van Emst-De Vries, Sjenet E; Naber, Ton; Willems, Peter H G M

    2002-04-01

    It remains unclear whether modulation of immune system functions by lipids contributes to the increased infection rate observed in patients treated with parenteral nutrition. We therefore evaluated the effects of lipid emulsions derived from fish oil [very long chain triglycerides (VLCT)], olive oil [long-chain triglycerides- mono-unsaturated fatty acid (LCT-MUFA)], soya oil [long-chain triglycerides (LCT)], or a physical mixture of coconut and soya oil [mixed long- and medium-chain triglycerides (LCT-MCT)] on neutrophil activation. N-formyl-methionyl-leucyl-phenylalanine (fMLP) evoked an immediate increase of the cytosolic Ca2+ concentration ([Ca2+](i,av)) in a suspension of neutrophils. When added 3 min before fMLP, however, all four lipid emulsions reduced the hormone-induced increase in [Ca2+](i,av) with the same efficacy but with different potency. Half-maximal inhibition was reached at emulsion concentrations of 0.24 mM VLCT, 0.32 mM LCT-MCT, 0.52 mM LCT, and 0.82 mM LCT-MUFA. Similarly to the lipids, the protein kinase C (PKC) activator PMA markedly reduced the fMLP-induced increase in [Ca2+](i,av). PMA inhibition was abolished by the PKC inhibitor staurosporine. In contrast, however, this drug did not interfere with the inhibitory lipid effect, indicating that the lipids act primarily in a PKC-independent manner. In summary, this study shows that nutritional lipids can evoke a prompt and significant attenuation of hormone-induced neutrophil stimulation and that the emulsions based on fish oil and a mixture of coconut oil and soya oil are among the most potent ones in this respect.

  5. CO from enhanced HO activity or from CORM-2 inhibits both O2- and NO production and downregulates HO-1 expression in LPS-stimulated macrophages.

    PubMed

    Srisook, Klaokwan; Han, Shan-Shu; Choi, Hyung-Sim; Li, Mei-Hua; Ueda, Hideo; Kim, Chaekyun; Cha, Young-Nam

    2006-01-12

    Carbon monoxide (CO) arising from heme degradation, catalyzed particularly by the stress-inducible heme oxygenase-1 (HO-1), has recently been demonstrated to provide cytoprotection against cell death in macrophages stimulated with bacterial lipopolysaccharide (LPS). In the present study, we determined the effects of CO on the production of reactive oxygen species (ROS) and nitric oxide (NO) by the LPS-stimulated RAW 264.7 macrophages. In addition, effect of CO-exposure on the production of superoxide (O(2)(-)) in the phorbol myristate acetate (PMA)-stimulated PLB-985 neutrophils was determined. Production of ROS by the LPS-stimulated macrophages pretreated with 50microM [Ru(CO)(3)Cl(2)](2), a CO-releasing molecule (CORM-2), was abolished and the production of O(2)(-) by the PMA-stimulated neutrophils pretreated with the CORM-2 was decreased markedly. The CORM-2 (50microM) was not cytotoxic to both the unstimulated and LPS-stimulated macrophages when determined by employing mitochondrial reductase function test (MTT assay). In macrophages pretreated with increasing doses of CORM-2, both the LPS-derived upregulations of iNOS (NO production) and HO-1 expression (CO production) were suppressed in a dose-dependent manner. Alternatively, when the macrophages were treated with LPS and CO-donor together, the LPS-derived increase in NO production was decreased. Conversely, when the control and LPS-stimulated macrophages were treated with zinc protoporphyrin IX (ZnPP) to inhibit the HO activity blocking endogenous production of CO (basal and enhanced), macrophages died extensively. Interestingly, production of NO in the LPS-stimulated macrophages increased significantly following the ZnPP treatment. Addition of CORM-2 to the LPS-treated cells that were being treated additionally with ZnPP did not prevent the cell death. However, endogenous overproduction of CO by super-induction of HO-1 (obtained by pretreatment of macrophages with either buthionine sulfoximine or hemin

  6. The effect of interleukin-8 and granulocyte macrophage colony stimulating factor on the response of neutrophils to formyl methionyl leucyl phenylalanine.

    PubMed

    Mikami, M; Llewellyn-Jones, C G; Stockley, R A

    1998-08-14

    Neutrophils isolated from patients with chronic bronchitis and emphysema have been shown to have enhanced responses to formyl peptides when assessed in vitro compared to age, sex matched controls. It is currently unclear whether the observed differences are due to a 'priming' effect by a second agent in vivo, or whether this is a primary difference in the neutrophils. We have studied the effects of interleukin-8, which is thought to be one of the major pro-inflammatory cytokines in chronic lung disease and granulocyte macrophage colony stimulating factor (GMCSF), in order to assess their effects on neutrophil chemotaxis and connective tissue degradation. In addition, we have assessed the effect of preincubation of these agents with neutrophils for 30 min followed by stimulation with F-Met-Leu-Phe (FMLP) to investigate any possible 'priming' effect that may be relevant to our clinical data. We report suppression of neutrophil chemotaxis to FMLP following incubation of the neutrophils with both IL-8 and GMCSF. However, we have observed an additive effect of IL-8 and FMLP for neutrophil degranulation leading to fibronectin degradation. The results suggest that IL-8 does not 'prime' neutrophils for subsequent FMLP stimulation as observed in vivo. Although the results for GMCSF were similar for the chemotactic response, the agent also had a synergistic effect on connective tissue degradation. However, it is concluded that neither agent could explain the enhanced neutrophil responses seen in our patients.

  7. Phorbol ester phorbol-12-myristate-13-acetate promotes anchorage-independent growth and survival of melanomas through MEK-independent activation of ERK1/2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorgensen, Kjersti; Skrede, Martina; Cruciani, Veronique

    2005-04-01

    The phorbol ester, phorbol-12-myristate-13-acetate (PMA), an activator of PKCs, is known to stimulate the in vitro growth of monolayer cultures of normal human melanocytes whereas it inhibits the growth of most malignant melanoma cell lines. We examined the effect of PMA on proliferation and survival of melanoma cells grown as multicellular aggregates in suspension (spheroids), and aimed to elucidate downstream targets of PKC signaling. In contrast to monolayer cultures, PMA increased cell proliferation as well as protected melanoma cells from suspension-mediated apoptosis (anoikis). Supporting the importance of PKC in anchorage-independent growth, treatment of anoikis-resistant melanoma cell lines with antisense oligonucleotidesmore » against PKC-{alpha}, or the PKC inhibitor Goe6976, strongly induced anoikis. PMA induced activation of ERK1/2, but this effect was not prevented by the MEK inhibitors PD98059 or by U0126. Whereas PD98059 treatment alone led to marked activation of the pro-apoptotic Bim and Bad proteins and significantly increased anoikis, these effects were clearly reversed by PMA. In conclusion, our results indicate that the protective effect of PMA on anchorage-independent survival of melanoma cells at least partly is mediated by MEK-independent activation of ERK1/2 and inactivation of downstream pro-apoptotic effector proteins.« less

  8. Granulocyte colony-stimulating factor improves host defense to resuscitated shock and polymicrobial sepsis without provoking generalized neutrophil-mediated damage.

    PubMed

    Patton, J H; Lyden, S P; Ragsdale, D N; Croce, M A; Fabian, T C; Proctor, K G

    1998-05-01

    Granulocyte colony-stimulating factor (G-CSF) increases production and release of neutrophil precursors and activates multiple functions of circulating polymorphonuclear neutrophils (PMNs). G-CSF has therapeutic effects in many experimental models of sepsis; its actions with superimposed reperfusion insults are unknown. In traumatic conditions, G-CSF could exacerbate unregulated, PMN-dependent injury to otherwise normal host tissue or, it could partially reverse trauma-induced immune suppression, which may improve long-term outcome. This study tested whether stimulating PMN proliferation and function with G-CSF during recovery from trauma+sepsis potentiated reperfusion injury or whether it improved host defense. Anesthetized swine were subjected to cecal ligation and incision, 35% hemorrhage, and 1 hr of hypotension. Resuscitation consisted of intravenous G-CSF (5 microg/kg) or placebo followed by shed blood and 40 mL/kg of lactated Ringer's solution. The control group received laparotomy only. G-CSF or placebo was given daily. Animals were killed at 4 days. Observers, blind to the protocol, graded autopsy samples for localization of infection and quality of abscess wall formation. Data included complete blood count, granulocyte oxidative burst after phorbol myristate acetate stimulation in vitro (GO2B), bronchoalveolar lavage (BAL) cell count, BAL noncellular protein, lipopolysaccharide-stimulated tumor necrosis factor production in whole blood in vitro (lipopolysaccharide-tumor necrosis factor), and lung tissue myeloperoxidase (MPO). Neutrophilia and localization of infection, were significantly improved by G-CSF. Variables altered by G-CSF, though not significantly, showed GO2B potential increased by 50%, lipopolysaccharide-tumor necrosis factor decreased by 50%, and improved survival versus placebo (100% vs. 70%). G-CSF did not increase lung MPO, BAL cell count, or BAL protein. Both arterial and venous O2 saturations were unaltered. Our data show that G

  9. Active Oxygen Metabolites and Thromboxane in Phorbol Myristate Acetate Toxicity to the Isolated, Perfused Rat Lung.

    NASA Astrophysics Data System (ADS)

    Carpenter, Laurie Jean

    When administered intravenously or intratracheally to rats, rabbits and sheep, phorbol myristate acetate (PMA) produces changes in lung morphology and function are similar to those seen in humans with the adult respiratory distress syndrome (ARDS). Therefore, it is thought that information about the mechanism of ARDS development can be gained from experiments using PMA-treated animals. Currently, the mechanisms by which PMA causes pneumotoxicity are unknown. Results from other studies in rabbits and in isolated, perfused rabbit lungs suggest that PMA-induced lung injury is mediated by active oxygen species from neutrophils (PMN), whereas studies in sheep and rats suggest that PMN are not required for the toxic response. The role of PMN, active oxygen metabolites and thromboxane (TxA_2) in PMA-induced injury to isolated, perfused rat lungs (IPLs) was examined in this thesis. To determine whether PMN were required for PMA to produce toxicity to the IPL, lungs were perfused for 30 min with buffer containing various concentrations of PMA (in the presence or absence of PMN). When concentrations >=q57 ng/ml were added to medium devoid of added PMN, perfusion pressure and lung weight increased. When a concentration of PMA (14-28 ng/ml) that did not by itself cause lungs to accumulate fluid was added to the perfusion medium containing PMN (1 x 10 ^8), perfusion pressure increased, and lungs accumulated fluid. These results indicate that high concentrations of PMA produce lung injury which is independent of PMN, whereas injury induced by lower concentrations is PMN-dependent. To examine whether active oxygen species were involved in mediating lung injury induced by PMA and PMN, lungs were coperfused with the oxygen radical scavengers SOD and/or catalase. Coperfusion with either or both of these enzymes totally protected lungs against injury caused by PMN and PMA. These results suggest that active oxygen species (the hydroxyl radical in particular), mediate lung injury in

  10. Effect of PMA-induced protein kinase C activation on development and apoptosis in early zebrafish embryos.

    PubMed

    Hrubik, Jelena; Glisic, Branka; Samardzija, Dragana; Stanic, Bojana; Pogrmic-Majkic, Kristina; Fa, Svetlana; Andric, Nebojsa

    2016-12-01

    Protein kinase C (PKC) isoforms have been implicated in several key steps during early development, but the consequences of xenobiotic-induced PKC activation during early embryogenesis are still unknown. In this study, zebrafish embryos were exposed to a range of phorbol 12-myristate 13-acetate (PMA) concentrations (0-200μg/L) at different time points after fertilization. Results showed that 200μgPMA/L caused development of yolk bags, cardiac edema, slow blood flow, pulsating blood flow, slow pulse, elongated heart, lack of tail fins, curved tail, and coagulation. PMA exposure decreased survival rate of the embryos starting within the first 24h and becoming more pronounced after prolonged exposure (96h). PMA increased the number of apoptotic cells in the brain region as demonstrated by acridine orange staining and caused up-regulation of caspase 9 (casp9) and p53 up-regulated modulator of apoptosis (puma) mRNA in whole embryos. PMA caused oxidative stress in the embryos as demonstrated by decreased mRNA expression of catalase and superoxide dismutase 2. Inhibition of Pkc with GF109203X improved overall survival rate, reduced apoptosis in the brain and decreased expression of casp9 and puma in the PMA-exposed embryos. However, Pkc inhibition neither prevented development of deformities nor reversed oxidative stress in the PMA-exposed embryos. These data suggest that direct over-activation of Pkc during early embryogenesis of zebrafish is associated with apoptosis and decreased survival rate of the embryos. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Effect of PGE2 on the cell surface molecule expression in PMA treated thymocytes.

    PubMed

    Daculsi, R; Vaillier, D; Carron, J C; Gualde, N

    1998-02-01

    PGE2 is produced by cells of the thymic microenvironment. The effects of PGE2 are mediated by cAMP through binding to its intracellular receptor protein kinase A (PKA). Phorbol 12-myristate 13-acetate (PMA) is known to modulate CD molecule expression on thymocytes, probably through activation of protein kinase C (PKC). We have hypothesized that cross-talk between these two signalling pathways may affect modulation of the CD molecules on the cell surface of thymocytes. For this purpose, we compare the effects of PMA alone or combined with PGE2 on CD3, CD4 and CD8 expression on mouse thymocytes by flow-cytometric analysis. PMA treatment almost completely abolished CD4 expression and slightly decreased CD3 and CD8 expression. PGE2 alone did not change the CD3, CD4 and CD8 molecule expression. Combined with PMA, PGE2 can overcome the decrease induced by PMA of the CD3 expression and partially reduced the disappearance of the CD4 molecule. On the other hand PGE2 accelerated the loss of CD8 molecule expression. These events occurred only in CD4+ CD8+ immature thymocytes. An analogue of cAMP (dibutyryl cAMP) mimics the effect of PGE2, but not Br-cGMP. This differential regulation by PGE2 of the CD molecule expression on immature thymocytes may provide additional evidence on the role of PGE2 during the process of thymic differentiation.

  12. KCl stimulation increases norepinephrine transporter function in PC12 cells.

    PubMed

    Mandela, Prashant; Ordway, Gregory A

    2006-09-01

    The norepinephrine transporter (NET) plays a pivotal role in terminating noradrenergic signaling and conserving norepinephrine (NE) through the process of re-uptake. Recent evidence suggests a close association between NE release and regulation of NET function. The present study evaluated the relationship between release and uptake, and the cellular mechanisms that govern these processes. KCl stimulation of PC12 cells robustly increased [3H]NE uptake via the NET and simultaneously increased [3H]NE release. KCl-stimulated increases in uptake and release were dependent on Ca2+. Treatment of cells with phorbol-12-myristate-13-acetate (PMA) or okadaic acid decreased [3H]NE uptake but did not block KCl-stimulated increases in [3H]NE uptake. In contrast, PMA increased [3H]NE release and augmented KCl-stimulated release, while okadaic acid had no effects on release. Inhibition of Ca2+-activated signaling cascades with KN93 (a Ca2+ calmodulin-dependent kinase inhibitor), or ML7 and ML9 (myosin light chain kinase inhibitors), reduced [3H]NE uptake and blocked KCl-stimulated increases in uptake. In contrast, KN93, ML7 and ML9 had no effect on KCl-stimulated [3H]NE release. KCl-stimulated increases in [3H]NE uptake were independent of transporter trafficking to the plasma membrane. While increases in both NE release and uptake mediated by KCl stimulation require Ca2+, different intracellular mechanisms mediate these two events.

  13. Ascorbate and α-tocopherol differentially modulate reactive oxygen species generation by neutrophils in response to FcγR and TLR agonists.

    PubMed

    Chapple, Iain Lc; Matthews, John B; Wright, Helen J; Scott, Ann E; Griffiths, Helen R; Grant, Melissa M

    2013-01-01

    Periodontitis, a ubiquitous chronic inflammatory disease, is associated with reduced antioxidant defences and neutrophil hyperactivity in terms of reactive oxygen species (ROS) generation. Its phenotype is thus characterized by oxidative stress. We have determined the effect of antioxidant micronutrients ascorbate and α-tocopherol on neutrophil ROS generation. Peripheral neutrophils from periodontally-healthy individuals (n = 20) were challenged with phorbol myristate acetate, IgG-opsonised Staphylococcus aureus, Fusobacterium nucleatum or PBS in the presence and absence of micronutrients (50 µM). Total and extracellular ROS were measured by luminol and isoluminol chemiluminescence respectively. Total and extracellular unstimulated, baseline ROS generation was unaffected by α-tocopherol, but inhibited by ascorbate and a combination of both micronutrients. Fcγ-receptor (Fcγ-R)-stimulated total or extracellular ROS generation was not affected by the presence of individual micronutrients. However, the combination significantly reduced extracellular FcγR-stimulated ROS release. Neither micronutrient inhibited TLR-stimulated total ROS, but the combination caused inhibition. Ascorbate and the micronutrient combination, but not α-tocopherol, inhibited extracellular ROS release by TLR-stimulated cells. Such micronutrient effects in vivo could be beneficial in reducing collateral tissue damage in chronic inflammatory diseases, such as periodontitis, while retaining immune-mediated neutrophil function.

  14. Pma1 is an alkali/alkaline earth metal cation ATPase that preferentially transports Na(+) and K(+) across the Mycobacterium smegmatis plasma membrane.

    PubMed

    Ayala-Torres, Carlos; Novoa-Aponte, Lorena; Soto, Carlos Y

    2015-07-01

    Mycobacterium smegmatis Pma1 is the orthologue of M. tuberculosis P-type ATPase cation transporter CtpF, which is activated under stress conditions, such as hypoxia, starvation and response to antituberculous and toxic substances. The function of Pma1 in the mycobacterial processes across the plasma membrane has not been characterised. In this work, bioinformatic analyses revealed that Pma1 likely contains potential sites for, Na(+), K(+) and Ca(2+) binding and transport. Accordingly, RT-qPCR experiments showed that M. smegmatis pma1 transcription is stimulated by sub-lethal doses of Na(+), K(+) and Ca(2+); in addition, the ATPase activity of plasma membrane vesicles in recombinant Pma1-expressing M. smegmatis cells is stimulated by treatment with these cations. In contrast, M. smegmatis cells homologously expressing Pma1 displayed tolerance to high doses of Na(+) and K(+) but not to Ca(2+) ions. Consistently, the recombinant protein Km embedded in plasma membrane demonstrated that Ca(2+) has more affinity for Pma1 than Na(+) and K(+) ions; furthermore, the estimation of Vmax/Km suggests that Na(+) and K(+) ions are more efficiently translocated than Ca(2+). Thus, these results strongly suggest that Pma1 is a promiscuous alkali/alkaline earth cation ATPase that preferentially transports Na(+) and/or K(+) across the mycobacterial plasma membrane. Copyright © 2015 Elsevier GmbH. All rights reserved.

  15. Nicotine drives neutrophil extracellular traps formation and accelerates collagen-induced arthritis.

    PubMed

    Lee, Jaejoon; Luria, Ayala; Rhodes, Christopher; Raghu, Harini; Lingampalli, Nithya; Sharpe, Orr; Rada, Balazs; Sohn, Dong Hyun; Robinson, William H; Sokolove, Jeremy

    2017-04-01

    The aim was to investigate the effects of nicotine on neutrophil extracellular traps (NETs) formation in current and non-smokers and on a murine model of RA. We compared spontaneous and phorbol 12-myristate 13-acetate-induced NETosis between current and non-smokers by DNA release binding. Nicotine-induced NETosis from non-smokers was assessed by DNA release binding, NET-specific (myeloperoxidase (MPO)-DNA complex) ELISA and real-time fluorescence microscopy. We also used immunofluorescent staining to detect nicotinic acetylcholine receptors (nAChRs) on neutrophils and performed a functional analysis to assess the role of nAChRs in nicotine-induced NETosis. Finally, we investigated the effects of systemic nicotine exposure on arthritis severity and NETosis in the CIA mouse model. Neutrophils derived from current smokers displayed elevated levels of spontaneous and phorbol 12-myristate 13-acetate-induced NETosis. Nicotine induced dose-dependent NETosis in ex vivo neutrophils from healthy non-smokers, and co-incubation with ACPA-immune complexes or TNF-α facilitated a synergistic effect on NETosis. Real-time fluorescence microscopy revealed robust formation of NET-like structures in nicotine-exposed neutrophils. Immunofluorescent staining demonstrated the presence of the α7 subunit of the nAChR on neutrophils. Stimulation of neutrophils with an α7-specific nAChR agonist induced NETosis, whereas pretreatment with an nAChR antagonist attenuated nicotine-induced NETosis. Nicotine administration to mice with CIA exacerbated inflammatory arthritis, with higher plasma levels of NET-associated MPO-DNA complex. We demonstrate that nicotine is a potent inducer of NETosis, which may play an important role in accelerating arthritis in the CIA model. This study generates awareness of and the mechanisms by which nicotine-containing products, including e-cigarettes, may have deleterious effects on patients with RA. Published by Oxford University Press 2016. This work is written

  16. Tumor-Derived Granulocyte-Macrophage Colony-Stimulating Factor and Granulocyte Colony-Stimulating Factor Prolong the Survival of Neutrophils Infiltrating Bronchoalveolar Subtype Pulmonary Adenocarcinoma

    PubMed Central

    Wislez, Marie; Fleury-Feith, Jocelyne; Rabbe, Nathalie; Moreau, Joelle; Cesari, Danielle; Milleron, Bernard; Mayaud, Charles; Antoine, Martine; Soler, Paul; Cadranel, Jacques

    2001-01-01

    We evaluated the role of the tumor environment in the regulation of apoptosis of tumor-infiltrating neutrophils, the number of which correlates negatively with outcome, in patients with adenocarcinoma of the bronchioloalveolar (BAC) subtype. We examined three different parameters of apoptosis, namely morphological aspect, annexin-V expression, and DNA fragmentation. Bronchoalveolar lavage fluid (BALF) supernatants from patients with BAC significantly inhibited the 24-hour spontaneous apoptosis of normal peripheral blood neutrophils in vitro compared to BALF supernatants from control patients (64 ± 4% versus 90 ± 2% measured by annexin-V flow cytometry, P = 0.04). The alveolar neutrophil count correlated positively with the granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) concentrations in the patient’s BALF. Furthermore, neutralizing antibodies (Abs) against GM-CSF and G-CSF significantly inhibited BALF anti-apoptotic activity (15 to 40% and 34 to 63% inhibition, respectively), whereas neutralizing Abs against interleukin (IL)-8, IL-6, IL-1β and tumor necrosis factor-α had no significant effect. In an attempt to identify the cell origin of anti-apoptotic cytokines, we tested in vitro the effect of BAC cells (A549 cell line and primary culture derived from a patient’s BAC tumor) on the apoptosis of peripheral blood neutrophils. Cell-free supernatants from tumor cells did not inhibit neutrophil apoptosis. In contrast, cell-free supernatants from tumor cells previously exposed to conditioned media from peripheral blood mononuclear cells and alveolar macrophages significantly inhibited spontaneous neutrophil apoptosis. This inhibition was partially lifted when conditioned media from mononuclear cells were previously treated with Abs against IL-1β and tumor necrosis factor-α. As in vivo, neutralizing Abs against GM-CSF significantly inhibited the anti-apoptotic activity of cell culture supernatants

  17. Extracellular Vesicles Released from Mycobacterium tuberculosis-Infected Neutrophils Promote Macrophage Autophagy and Decrease Intracellular Mycobacterial Survival

    PubMed Central

    Alvarez-Jiménez, Violeta D.; Leyva-Paredes, Kahiry; García-Martínez, Mariano; Vázquez-Flores, Luis; García-Paredes, Víctor Gabriel; Campillo-Navarro, Marcia; Romo-Cruz, Israel; Rosales-García, Víctor Hugo; Castañeda-Casimiro, Jessica; González-Pozos, Sirenia; Hernández, José Manuel; Wong-Baeza, Carlos; García-Pérez, Blanca Estela; Ortiz-Navarrete, Vianney; Estrada-Parra, Sergio; Serafín-López, Jeanet; Wong-Baeza, Isabel; Chacón-Salinas, Rommel; Estrada-García, Iris

    2018-01-01

    Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis (Mtb). In the lungs, macrophages and neutrophils are the first immune cells that have contact with the infecting mycobacteria. Neutrophils are phagocytic cells that kill microorganisms through several mechanisms, which include the lytic enzymes and antimicrobial peptides that are found in their lysosomes, and the production of reactive oxygen species. Neutrophils also release extracellular vesicles (EVs) (100–1,000 nm in diameter) to the extracellular milieu; these EVs consist of a lipid bilayer surrounding a hydrophilic core and participate in intercellular communication. We previously demonstrated that human neutrophils infected in vitro with Mtb H37Rv release EVs (EV-TB), but the effect of these EVs on other cells relevant for the control of Mtb infection, such as macrophages, has not been completely analyzed. In this study, we characterized the EVs produced by non-stimulated human neutrophils (EV-NS), and the EVs produced by neutrophils stimulated with an activator (PMA), a peptide derived from bacterial proteins (fMLF) or Mtb, and observed that the four EVs differed in their size. Ligands for toll-like receptor (TLR) 2/6 were detected in EV-TB, and these EVs favored a modest increase in the expression of the co-stimulatory molecules CD80, a higher expression of CD86, and the production of higher amounts of TNF-α and IL-6, and of lower amounts of TGF-β, in autologous human macrophages, compared with the other EVs. EV-TB reduced the amount of intracellular Mtb in macrophages, and increased superoxide anion production in these cells. TLR2/6 ligation and superoxide anion production are known inducers of autophagy; accordingly, we found that EV-TB induced higher expression of the autophagy-related marker LC3-II in macrophages, and the co-localization of LC3-II with Mtb inside infected macrophages. The intracellular mycobacterial load increased when autophagy was inhibited with

  18. Extracellular Vesicles Released from Mycobacterium tuberculosis-Infected Neutrophils Promote Macrophage Autophagy and Decrease Intracellular Mycobacterial Survival.

    PubMed

    Alvarez-Jiménez, Violeta D; Leyva-Paredes, Kahiry; García-Martínez, Mariano; Vázquez-Flores, Luis; García-Paredes, Víctor Gabriel; Campillo-Navarro, Marcia; Romo-Cruz, Israel; Rosales-García, Víctor Hugo; Castañeda-Casimiro, Jessica; González-Pozos, Sirenia; Hernández, José Manuel; Wong-Baeza, Carlos; García-Pérez, Blanca Estela; Ortiz-Navarrete, Vianney; Estrada-Parra, Sergio; Serafín-López, Jeanet; Wong-Baeza, Isabel; Chacón-Salinas, Rommel; Estrada-García, Iris

    2018-01-01

    Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis (Mtb). In the lungs, macrophages and neutrophils are the first immune cells that have contact with the infecting mycobacteria. Neutrophils are phagocytic cells that kill microorganisms through several mechanisms, which include the lytic enzymes and antimicrobial peptides that are found in their lysosomes, and the production of reactive oxygen species. Neutrophils also release extracellular vesicles (EVs) (100-1,000 nm in diameter) to the extracellular milieu; these EVs consist of a lipid bilayer surrounding a hydrophilic core and participate in intercellular communication. We previously demonstrated that human neutrophils infected in vitro with Mtb H37Rv release EVs (EV-TB), but the effect of these EVs on other cells relevant for the control of Mtb infection, such as macrophages, has not been completely analyzed. In this study, we characterized the EVs produced by non-stimulated human neutrophils (EV-NS), and the EVs produced by neutrophils stimulated with an activator (PMA), a peptide derived from bacterial proteins (fMLF) or Mtb, and observed that the four EVs differed in their size. Ligands for toll-like receptor (TLR) 2/6 were detected in EV-TB, and these EVs favored a modest increase in the expression of the co-stimulatory molecules CD80, a higher expression of CD86, and the production of higher amounts of TNF-α and IL-6, and of lower amounts of TGF-β, in autologous human macrophages, compared with the other EVs. EV-TB reduced the amount of intracellular Mtb in macrophages, and increased superoxide anion production in these cells. TLR2/6 ligation and superoxide anion production are known inducers of autophagy; accordingly, we found that EV-TB induced higher expression of the autophagy-related marker LC3-II in macrophages, and the co-localization of LC3-II with Mtb inside infected macrophages. The intracellular mycobacterial load increased when autophagy was inhibited with wortmannin

  19. The cytokine-protease connection: identification of a 96-kD THP-1 gelatinase and regulation by interleukin-1 and cytokine inducers.

    PubMed

    Van Ranst, M; Norga, K; Masure, S; Proost, P; Vandekerckhove, F; Auwerx, J; Van Damme, J; Opdenakker, G

    1991-05-01

    The induction of proteolytic enzymes is an important mechanism in the migration of monocytes into tissues and body fluids. The monocytic cell line THP-1 was used as a model system to study the production of a particular gelatinase. Upon stimulation with phorbol myristate acetate (PMA) the cells differentiated to the adherent phenotype and produced significant amounts of a 96-kD gelatinase in a dose-dependent way. The secretion rate was maximal between 12 and 24 h after induction. Study of gelatinase mRNA steady state levels showed that the synthesis of THP-1 gelatinase is regulated by PMA at transcriptional or posttranscriptional levels. Stimulation of signal transduction pathways with other substances, including calcium ionophore A 23187, dibutyryl cyclic AMP, and dexamethasone, were ineffective in inducing gelatinase mRNA or enzyme activity. However, THP-1 cells were responsive to the cytokine interleukin (IL)-1 beta, to bacterial lipopolysaccharide (LPS), and the lectin concanavalin A (Con A), the kinetics of gelatinase induction being similar to those of induction by PMA. The THP-1 cells did not synthesize and/or secrete detectable levels of IL-6 after stimulation with PMA, Con A, LPS, or IL-1 beta. The 96-kD monocytic THP-1 gelatinase was shown to be a neutral metalloproteinase that cross-reacted with hepatoma-derived and neutrophil gelatinases in immunoprecipitation experiments. The active enzyme produced by THP-1 cells consistently showed, however, a molecular mass different from that of normal granulocyte-, monocyte-, and tumor cell-derived gelatinases.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. CD36 Is a Matrix Metalloproteinase-9 Substrate That Stimulates Neutrophil Apoptosis and Removal During Cardiac Remodeling.

    PubMed

    DeLeon-Pennell, Kristine Y; Tian, Yuan; Zhang, Bai; Cates, Courtney A; Iyer, Rugmani Padmanabhan; Cannon, Presley; Shah, Punit; Aiyetan, Paul; Halade, Ganesh V; Ma, Yonggang; Flynn, Elizabeth; Zhang, Zhen; Jin, Yu-Fang; Zhang, Hui; Lindsey, Merry L

    2016-02-01

    After myocardial infarction, the left ventricle undergoes a wound healing response that includes the robust infiltration of neutrophils and macrophages to facilitate removal of dead myocytes as well as turnover of the extracellular matrix. Matrix metalloproteinase (MMP)-9 is a key enzyme that regulates post-myocardial infarction left ventricular remodeling. Infarct regions from wild-type and MMP-9 null mice (n=8 per group) analyzed by glycoproteomics showed that of 541 N-glycosylated proteins quantified, 45 proteins were at least 2-fold upregulated or downregulated with MMP-9 deletion (all P<0.05). Cartilage intermediate layer protein and platelet glycoprotein 4 (CD36) were identified as having the highest fold increase in MMP-9 null mice. By immunoblotting, CD36 but not cartilage intermediate layer protein decreased steadily during the time course post-myocardial infarction, which identified CD36 as a candidate MMP-9 substrate. MMP-9 was confirmed in vitro and in vivo to proteolytically degrade CD36. In vitro stimulation of day 7 post-myocardial infarction macrophages with MMP-9 or a CD36-blocking peptide reduced phagocytic capacity. Dual immunofluorescence revealed concomitant accumulation of apoptotic neutrophils in the MMP-9 null group compared with wild-type group. In vitro stimulation of isolated neutrophils with MMP-9 decreased neutrophil apoptosis, indicated by reduced caspase-9 expression. Our data reveal a new cell-signaling role for MMP-9 through CD36 degradation to regulate macrophage phagocytosis and neutrophil apoptosis. © 2015 American Heart Association, Inc.

  1. Kinetics of Neutrophils in Mice Exposed to Radiation and/or Granulocyte Colony-Stimulating Factor Treatment

    PubMed Central

    Romero-Weaver, A. L.; Wan, X. S.; Diffenderfer, E. S.; Lin, L.; Kennedy, A. R.

    2014-01-01

    Astronauts have the potential to develop the hematopoietic syndrome as a result of exposure to radiation from a solar particle event (SPE) during exploration class missions. This syndrome is characterized by a reduction in the number of circulating blood cells (cytopenias). In the present study the effects of SPE-like proton and γ radiation on the kinetics of circulating neutrophils were evaluated during a one-month time period using mice as a model system. The results revealed that exposure to a 2 Gy dose of either SPE-like proton or γ radiation significantly decreased the number of circulating neutrophils, with two nadirs observed on day 4 and day 16 postirradiation. Low circulating neutrophil count (neutropenia) is particularly important because it can increase the risk of astronauts developing infections, which can compromise the success of the mission. Thus, two granulocyte colony-stimulating factors (G-CSFs), filgrastim and pegfilgrastim were evaluated as countermeasures for this endpoint. Both forms of G-CSF significantly increased neutrophil counts in irradiated mice, however, the effect of pegfilgrastim was more potent and lasted longer than filgrastim. Using the expression of CD11b, CD18 and the production of reactive oxygen species (ROS) as markers of neutrophil activation, it was determined that the neutrophils in the irradiated mice treated with pegfilgrastim were physiologically active. Thus, these results suggest that pegfilgrastim could be a potential countermeasure for the reduced number of circulating neutrophils in irradiated animals. PMID:23829559

  2. PMA3 Relocate ops

    NASA Image and Video Library

    2009-08-07

    ISS020-E-028611 (7 Aug. 2009) --- European Space Agency astronaut Frank De Winne (foreground) and Canadian Space Agency astronaut Robert Thirsk, both Expedition 20 flight engineers, work the controls of the Space Station Remote Manipulator System (SSRMS) and the Centerline Berthing Camera System (CBCS) in the International Space Station’s Destiny laboratory to relocate the Pressurized Mating Adapter 3 (PMA-3) from the Unity node nadir port to Unity’s port side. This relocation is required to allow reconfigurations on the side of the Unity node port bulkhead by the crew in a pressurized environment where PMA-3 is now located. Once these reconfigurations are completed, PMA-3 will be relocated back to Unity’s nadir port, after which the Tranquility node will be brought up and berthed to Unity’s port side on mission STS-130/20A.

  3. Neutrophil Interactions Stimulate Evasive Hyphal Branching by Aspergillus fumigatus

    PubMed Central

    Jorgensen, Julianne; Frydman, Galit H.; Jones, Caroline N.

    2017-01-01

    Invasive aspergillosis (IA), primarily caused by Aspergillus fumigatus, is an opportunistic fungal infection predominantly affecting immunocompromised and neutropenic patients that is difficult to treat and results in high mortality. Investigations of neutrophil-hypha interaction in vitro and in animal models of IA are limited by lack of temporal and spatial control over interactions. This study presents a new approach for studying neutrophil-hypha interaction at single cell resolution over time, which revealed an evasive fungal behavior triggered by interaction with neutrophils: Interacting hyphae performed de novo tip formation to generate new hyphal branches, allowing the fungi to avoid the interaction point and continue invasive growth. Induction of this mechanism was independent of neutrophil NADPH oxidase activity and neutrophil extracellular trap (NET) formation, but could be phenocopied by iron chelation and mechanical or physiological stalling of hyphal tip extension. The consequence of branch induction upon interaction outcome depends on the number and activity of neutrophils available: In the presence of sufficient neutrophils branching makes hyphae more vulnerable to destruction, while in the presence of limited neutrophils the interaction increases the number of hyphal tips, potentially making the infection more aggressive. This has direct implications for infections in neutrophil-deficient patients and opens new avenues for treatments targeting fungal branching. PMID:28076396

  4. Synthesis and anti-inflammatory effect of chalcones and related compounds.

    PubMed

    Hsieh, H K; Lee, T H; Wang, J P; Wang, J J; Lin, C N

    1998-01-01

    Mast cell and neutrophil degranulations are the important players in inflammatory disorders. Combined with potent inhibition of chemical mediators released from mast cells and neutrophil degranulations, it could be a promising anti-inflammatory agent. 2',5'-Dihydroxychalcone has been reported as a potent chemical mediator and cyclooxygenase inhibitor. In an effort to continually develop potent anti-inflammatory agents, a novel series of chalcone, 2'- and 3'-hydroxychalcones, 2',5'-dihydroxychalcones and flavanones were continually synthesized to evaluate their inhibitory effects on the activation of mast cells and neutrophils and the inhibitory effect on phlogist-induced hind-paw edema in mice. A series of chalcones and related compounds were prepared by Claisen-Schmidt condensation of appropriate acetophenones with appropriate aromatic aldehyde and the anti-inflammatory activities of these synthetic compounds were studied on inhibitory effects on the activation of mast cells and neutrophils. Some chalcones showed strong inhibitory effects on the release of beta-glucuronidase and histamine from rat peritoneal mast cells stimulated with compound 48/80. Almost all chalcones and 4'-hydroxyflavanone exhibited potent inhibitory effects on the release of beta-glucuronidase and lysozyme from rat neutrophils stimulated with formyl-Met-Leu-Phe (fMLP). Some chalcones showed potent inhibitory effects on superoxide formation of rat neutrophils stimulated with fMLP/cytochalasin B (CB) or phorbol myristate acetate (PMA). 2',3-Dihydroxy-, 2',5'-dihydroxy-4-chloro-, and 2',5'-dihydroxychalcone showed remarkable inhibitory effects on hind-paw edema induced by polymyxin B in normal as well as in adrenalectomized mice. These results indicated that the anti-inflammatory effects of these compounds were mediated, at least partly, through the suppression of chemical mediators released from mast cells and neutrophils.

  5. Neutrophil adherence to isolated adult canine myocytes. Evidence for a CD18-dependent mechanism.

    PubMed

    Entman, M L; Youker, K; Shappell, S B; Siegel, C; Rothlein, R; Dreyer, W J; Schmalstieg, F C; Smith, C W

    1990-05-01

    Cardiac myocytes were isolated from adult dogs and incubated with isolated canine neutrophils (PMN). Intercellular adhesion was low and unchanged by stimulation of the PMN with zymosan activated serum or platelet activating factor (PAF) at concentrations that significantly enhance PMN adhesion to protein-coated glass and canine endothelial cell monolayers. Intercellular adhesion was significantly increased only when both myocytes and PMN were stimulated (e.g., myocytes incubated with IL-1, tumor necrosis factor, or phorbol myristate acetate, and PMN were chemotactically stimulated). Inhibitors of protein synthesis diminished the IL-1 beta-induced effect by greater than 80%. The IL-1 beta, PAF-stimulated PMN-myocyte adhesion was associated with substantial H2O2 production. Under conditions with low PMN-myocyte adhesion (i.e., IL-1 beta alone, PAF alone, or no stimulus) H2O2 production was generally less than 5% of that occurring with high adhesion. An anti-CD18 monoclonal antibody (R15.7) inhibited stimulated PMN-myocyte adhesion by greater than 95% and reduced H2O2 production by greater than 90%. Control isotype-matched, binding, and nonbinding antibodies were without effect on adherence or H2O2 production. The results indicate that cytokine stimulation of adult myocytes induces expression of a ligand involved in CD18-dependent adherence of canine neutrophils.

  6. Mechanism and characteristics of stimuli-dependent ROS generation in undifferentiated HL-60 cells.

    PubMed

    Muranaka, Shikibu; Fujita, Hirofumi; Fujiwara, Takuzo; Ogino, Tetsuya; Sato, Eisuke F; Akiyama, Jitsuo; Imada, Isuke; Inoue, Masayasu; Utsumi, Kozo

    2005-01-01

    It has been widely believed that undifferentiated human promyelocytic leukemia cells (HL-60) have no ability to generate reactive oxygen species (ROS) responding to stimuli. We report here that undifferentiated HL-60 cells possess NADPH oxidase and that generation of superoxide can be measured using a highly sensitive chemiluminescence dye, L-012. Five subunits of NADPH oxidase, namely, gp91(phox), p22(phox), p67(phox), p47(phox), and Rac 2, were detected in undifferentiated HL-60 cells by immunoblotting analysis. The contents of these NADPH oxidase components in the cells were increased with the differentiation induced by phorbol myristate acetate (PMA), except for p22(phox). Messenger RNAs of these subunits were also detected by the RT-PCR method, and their expressions increased except that of p22(phox) with the differentiation induced by PMA. Kinetic analysis using L-012 revealed that HL-60 cells generated substantial amounts of ROS by various stimulants, including formylmethionyl-leucyl-phenylalanine, PMA, myristic acid, and a Ca2+ ionophore, A23187. Both diphenyleneiodonium (an inhibitor of FAD-dependent oxidase) and apocynin (a specific inhibitor of NADPH oxidase) suppressed this stimuli-dependent ROS generation. Genistein, staurosporine, uric acid, and sodium azide inhibited the ROS generation in undifferentiated HL-60 cells in a similar way to that in undifferentiated neutrophils. These results suggested that the mechanism of ROS generation in undifferentiated HL-60 cells is the same as that in primed neutrophils.

  7. Recombinant human granulocyte colony-stimulating factor administration in a case of neutropenia due to increased neutrophil sequestration.

    PubMed

    Carulli, G; Lazzeri, E; Lagomarsini, G; Zucca, A; Cannizzo, E; Riccioni, R; Petrini, M

    2007-01-01

    A 55-year-old female was admitted with fever which followed an episode of pseudomembranous colitis. Despite an accurate clinical investigation, there was no evidence for specific sites of infection. Remission of fever was not obtained with antibiotic therapy (gentamycin plus carbepenem) and progressive neutropenia was observed. Neutrophils fell to 0.3 x 10(9)/1. The diagnostic approach, including a bone marrow aspirate, excluded mechanisms leading to impaired neutrophil production, and in the suspect of increased neutrophil sequestration/destruction, whole-body scintigraphy with (99m)technetium-hexamethylpropyleneamineoxime ((99m)Tc-HMPAO)-labeled autologous leukocytes was performed. As a result, a site of leukocyte sequestration localized at the medium lobe of the right lung was detected. In an attempt to enhance neutrophil functions and achieve remission of infection, recombinant human granulocyte colony-stimulating factor (Filgrastim, Granulokine 30, Roche) at the dosage of 300 microg/day, subcutaneously, was added. As a results, fever disappeared in three days, but neutrophil recovery was slower, and normalization of the absolute neutrophil count (ANC) was obtained on day +7. The results obtained in this peculiar case of neutropenia, and the kinetics of both fever and ANC, suggest the possible combination of neutrophil function enhancement and an anti-inflammatory effect of rhG-CSF.

  8. The yeast H+-ATPase Pma1 promotes Rag/Gtr-dependent TORC1 activation in response to H+-coupled nutrient uptake.

    PubMed

    Saliba, Elie; Evangelinos, Minoas; Gournas, Christos; Corrillon, Florent; Georis, Isabelle; André, Bruno

    2018-03-23

    The yeast Target of Rapamycin Complex 1 (TORC1) plays a central role in controlling growth. How amino acids and other nutrients stimulate its activity via the Rag/Gtr GTPases remains poorly understood. We here report that the signal triggering Rag/Gtr-dependent TORC1 activation upon amino-acid uptake is the coupled H + influx catalyzed by amino-acid/H + symporters. H + -dependent uptake of other nutrients, ionophore-mediated H + diffusion, and inhibition of the vacuolar V-ATPase also activate TORC1. As the increase in cytosolic H + elicited by these processes stimulates the compensating H + -export activity of the plasma membrane H + -ATPase (Pma1), we have examined whether this major ATP-consuming enzyme might be involved in TORC1 control. We find that when the endogenous Pma1 is replaced with a plant H + -ATPase, H + influx or increase fails to activate TORC1. Our results show that H + influx coupled to nutrient uptake stimulates TORC1 activity and that Pma1 is a key actor in this mechanism. © 2018, Saliba et al.

  9. Neutrophil extracellular traps possess anti-human respiratory syncytial virus activity: Possible interaction with the viral F protein.

    PubMed

    Souza, Priscila Silva Sampaio; Barbosa, Lia Vezenfard; Diniz, Larissa Figueiredo Alves; da Silva, Gabriel Soares; Lopes, Bruno Rafael Pereira; Souza, Pedro Miyadaira Ribeiro; de Araujo, Gabriela Campos; Pessoa, Diogo; de Oliveira, Juliana; Souza, Fátima Pereira; Toledo, Karina Alves

    2018-06-02

    Human respiratory syncytial virus (hRSV) is one of the main etiological agents of diseases of the lower respiratory tract, and is often responsible for the hospitalization of children and the elderly. To date, treatments are only palliative and there is no vaccine available. The airways of patients infected with hRSV exhibit intense neutrophil infiltration, which is responsible for the release of neutrophil extracellular traps (NETs). These are extracellular structures consisting of DNA associated with intracellular proteins, and are efficient in capturing and eliminating various microorganisms, including some viruses. hRSV induces the release of NETs into the lung tissue of infected individuals; however, the pathophysiological consequences of this event have not been elucidated. The objective of this study was to utilize in vitro and in silico assays to investigate the impact of NETs on hRSV infection. NETs, generated by neutrophils stimulated with phorbol myristate acetate (PMA), displayed long fragments of DNA and an electrophoretic profile suggestive of the presence of proteins that are classically associated with these structures (elastase, cathepsin G, myeloperoxidase, and histones). The presence of NETs (>2 μg/ml) in HEp-2 cell culture medium resulted in cellular cytotoxicity of less than 50%. Pre-incubation (1 h) of viral particles (multiplicity of infection (MOI) values of 0.1, 0.5, and 1.0) with NETs (2-32 μg/ml) resulted in cellular protection from virus-induced death of HEp-2 cells. Concurrently, there was a reduction in the formation of syncytia, which is related to decreased viral spread in infected tissue. Results from western blotting and molecular docking, suggest interactions between F protein of the hRSV viral envelope and BPI (bactericidal permeability-increasing protein), a microbicidal member of NETs. Interactions occurred at sites important for the neutralization and coordination of the hRSV infection/replication process. Our results

  10. Acetate Dose-Dependently Stimulates Milk Fat Synthesis in Lactating Dairy Cows.

    PubMed

    Urrutia, Natalie L; Harvatine, Kevin J

    2017-05-01

    Background: Acetate is a short-chain fatty acid (FA) that is especially important to cows because it is the major substrate for de novo FA synthesis. However, the effect of acetate supply on mammary lipid synthesis is not clear. Objective: The objective of this experiment was to determine the effect of increasing acetate supply on milk fat synthesis in lactating dairy cows. Methods: Six multiparous lactating Holstein cows were randomly assigned to treatments in a replicated design to investigate the effect of acetate supply on milk fat synthesis. Treatments were 0 (control), 5, 10, and 15 mol acetate/d continuously infused into the rumen for 4 d. Rumen short-chain FAs, plasma hormones and metabolites, milk fat concentration, and milk FA profile were analyzed on day 4 of each treatment. Polynomial contrasts were used to test the linear and quadratic effects of increasing acetate supply. Results: Acetate increased milk fat yield quadratically ( P < 0.01) by 7%, 16%, and 14% and increased milk fat concentration linearly ( P < 0.001) by 6%, 9%, and 11% for 5, 10, and 15 mol acetate/d, respectively, compared with the control treatment. Increased milk fat yield predominantly was due to a linear increase in 16-carbon FAs ( P < 0.001) and a quadratic increase in de novo synthesized FAs (<16-carbon FAs; P < 0.01), indicating that there was stimulation of de novo synthesis pathways. Apparent transfer of acetate to milk fat was 33.4%, 36.2%, and 20.6% for 5, 10, and 15 mol/d, respectively. Acetate infusion linearly increased the relative concentration of rumen acetate ( P < 0.001) before feeding, but not after feeding. Acetate linearly increased plasma ß-hydroxybutyric acid by 29%, 50%, and 78%, respectively, after feeding compared with the control treatment ( P < 0.01). Conclusions: Increasing acetate supply to lactating cows increases milk fat synthesis, suggesting that nutritional strategies that increase ruminal acetate absorption would be expected to increase milk fat

  11. 21 CFR 814.42 - Filing a PMA.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... PREMARKET APPROVAL OF MEDICAL DEVICES FDA Action on a PMA § 814.42 Filing a PMA. (a) The filing of an application means that FDA has made a threshold determination that the application is sufficiently complete to permit a substantive review. Within 45 days after a PMA is received by FDA, the agency will notify the...

  12. 21 CFR 814.42 - Filing a PMA.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... PREMARKET APPROVAL OF MEDICAL DEVICES FDA Action on a PMA § 814.42 Filing a PMA. (a) The filing of an application means that FDA has made a threshold determination that the application is sufficiently complete to permit a substantive review. Within 45 days after a PMA is received by FDA, the agency will notify the...

  13. 21 CFR 814.42 - Filing a PMA.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... PREMARKET APPROVAL OF MEDICAL DEVICES FDA Action on a PMA § 814.42 Filing a PMA. (a) The filing of an application means that FDA has made a threshold determination that the application is sufficiently complete to permit a substantive review. Within 45 days after a PMA is received by FDA, the agency will notify the...

  14. Involvement of purinergic signaling on nitric oxide production by neutrophils stimulated with Trichomonas vaginalis.

    PubMed

    Frasson, Amanda Piccoli; De Carli, Geraldo Attilio; Bonan, Carla Denise; Tasca, Tiana

    2012-03-01

    Trichomonas vaginalis is a parasite from the human urogenital tract that causes trichomonosis, the most prevalent non-viral sexually transmitted disease. The neutrophil infiltration has been considered to be primarily responsible for cytological changes observed at infection site, and the chemoattractants can play an important role in this leukocytic recruitment. Nitric oxide (NO) is one of the most widespread mediator compounds, and it is implicated in modulation of immunological mechanisms. Extracellular nucleotides and nucleosides are signaling molecules involved in several processes, including immune responses and control of leukocyte trafficking. Ectonucleoside triphosphate diphosphohydrolase members, ecto-5'-nucleotidase, and adenosine deaminase (ectoADA) have been characterized in T. vaginalis. Herein, we investigated the effects of purinergic system on NO production by neutrophils stimulated with T. vaginalis. The trophozoites were able to induce a high NO synthesis by neutrophils through iNOS pathway. The extracellular nucleotides ATP, ADP, and ATPγS (a non-hydrolyzable ATP analog) showed no significant change in NO secretion. In contrast, adenosine and its degradation product, inosine, promoted a low production of the compound. The immunosuppressive effect of adenosine upon NO release by neutrophils occurred due to adenosine A(2A) receptor activation. The ecto-5'-nucleotidase activity displayed by T. vaginalis was shown to be important in adenosine generation, indicating the efficiency of purinergic cascade. Our data suggest the influence of purinergic signaling, specifically adenosinergic system, on NO production by neutrophils in T. vaginalis infection, contributing to the immunological aspects of disease.

  15. Synergistic effect of hydrogen peroxide on polyploidization during the megakaryocytic differentiation of K562 leukemia cells by PMA

    PubMed Central

    Ojima, Yoshihiro; Duncan, Mark Thompson; Nurhayati, Retno Wahyu; Taya, Masahito; Miller, William Martin

    2013-01-01

    The human myelogenous cell line, K562 has been extensively used as a model for the study of megakaryocytic (MK) differentiation, which could be achieved by exposure to phorbol 12-myristate 13-acetate (PMA). In this study, real-time PCR analysis revealed that the expression of catalase (cat) was significantly repressed during MK differentiation of K562 cells induced by PMA. In addition, PMA increased the intracellular reactive oxygen species (ROS) concentration, suggesting that ROS was a key factor for PMA-induced differentiation. PMA-differentiated K562 cells were exposed to hydrogen peroxide (H2O2) to clarify the function of ROS during MK differentiation. Interestingly, the percentage of high-ploidy (DNA content >4N) cells with H2O2 was 34.8±2.3% at day 9, and was 70% larger than that without H2O2 (21.5±0.8%). Further, H2O2 addition during the first 3 days of PMA-induced MK differentiation had the greatest effect on polyploidization. In an effort to elucidate the mechanisms of enhanced polyploidization by H2O2, the BrdU assay clearly indicated that H2O2 suppressed the division of 4N cells into 2N cells, followed by the increased polyploidization of K562 cells. These findings suggest that the enhancement in polyploidization mediated by H2O2 is due to synergistic inhibition of cytokinesis with PMA. Although H2O2 did not increase ploidy during the MK differentiation of primary cells, we clearly observed that cat expression was repressed in both immature and mature primary MK cells, and that treatment with the antioxidant N-acetylcysteine effectively blocked and/or delayed the polyploidization of immature MK cells. Together, these findings suggest that MK cells are more sensitive to ROS levels during earlier stages of maturation. PMID:23770036

  16. Neutrophil hyper-responsiveness in periodontitis.

    PubMed

    Matthews, J B; Wright, H J; Roberts, A; Ling-Mountford, N; Cooper, P R; Chapple, I L C

    2007-08-01

    Peripheral neutrophil hyper-responsiveness in chronic periodontitis leads to excessive reactive oxygen species (ROS) production. We aimed to determine whether neutrophil hyper-responsiveness was constitutive or reactive, and to discover the effect of non-surgical therapy. Peripheral blood neutrophils from patients (n = 19), before and 3 months after therapy, and matched control individuals were Fc gamma-receptor-stimulated with/without priming with P. gingivalis and F. nucleatum. Total and extracellular ROS were determined by luminol/isoluminol chemiluminescence. The high total ROS generation of patients' neutrophils compared with that of control individuals (P = 0.016) continued at a reduced level post-therapy (P = 0.059). Reduced activity post-therapy was also seen with priming. Unstimulated total ROS levels did not differ between patients and control individuals before or after therapy. However, the high unstimulated, extracellular ROS production by patients' neutrophils compared with control individuals (P < 0.05) continued post-therapy and was unaffected by priming. Therapy reduced Fc gamma-receptor-stimulated total ROS production, but not unstimulated extracellular radical release, suggesting that constitutive and reactive mechanisms underlie neutrophil hyper-responsiveness.

  17. Propionate stimulates pyruvate oxidation in the presence of acetate.

    PubMed

    Purmal, Colin; Kucejova, Blanka; Sherry, A Dean; Burgess, Shawn C; Malloy, Craig R; Merritt, Matthew E

    2014-10-15

    Flux through pyruvate dehydrogenase (PDH) in the heart may be reduced by various forms of injury to the myocardium, or by oxidation of alternative substrates in normal heart tissue. It is important to distinguish these two mechanisms because imaging of flux through PDH based on the appearance of hyperpolarized (HP) [(13)C]bicarbonate derived from HP [1-(13)C]pyruvate has been proposed as a method for identifying viable myocardium. The efficacy of propionate for increasing PDH flux in the setting of PDH inhibition by an alternative substrate was studied using isotopomer analysis paired with exams using HP [1-(13)C]pyruvate. Hearts from C57/bl6 mice were supplied with acetate (2 mM) and glucose (8.25 mM). (13)C NMR spectra were acquired in a cryogenically cooled probe at 14.1 Tesla. After addition of hyperpolarized [1-(13)C]pyruvate, (13)C NMR signals from lactate, alanine, malate, and aspartate were easily detected, in addition to small signals from bicarbonate and CO2. The addition of propionate (2 mM) increased appearance of HP [(13)C]bicarbonate >30-fold without change in O2 consumption. Isotopomer analysis of extracts from the freeze-clamped hearts indicated that acetate was the preferred substrate for energy production, glucose contribution to energy production was minimal, and anaplerosis was stimulated in the presence of propionate. Under conditions where production of acetyl-CoA is dominated by the availability of an alternative substrate, acetate, propionate markedly stimulated PDH flux as detected by the appearance of hyperpolarized [(13)C]bicarbonate from metabolism of hyperpolarized [1-(13)C]pyruvate. Copyright © 2014 the American Physiological Society.

  18. Superoxide anion production by human neutrophils activated by Trichomonas vaginalis.

    PubMed

    Song, Hyun-Ouk; Ryu, Jae-Sook

    2013-08-01

    Neutrophils are the predominant inflammatory cells found in vaginal discharges of patients infected with Trichomonas vaginalis. In this study, we examined superoxide anion (O2 (.-)) production by neutrophils activated by T. vaginalis. Human neutrophils produced superoxide anions when stimulated with either a lysate of T. vaginalis, its membrane component (MC), or excretory-secretory product (ESP). To assess the role of trichomonad protease in production of superoxide anions by neutrophils, T. vaginalis lysate, ESP, and MC were each pretreated with a protease inhibitor cocktail before incubation with neutrophils. Superoxide anion production was significantly decreased by this treatment. Trichomonad growth was inhibited by preincubation with supernatants of neutrophils incubated for 3 hr with T. vaginalis lysate. Furthermore, myeloperoxidase (MPO) production by neutrophils was stimulated by live trichomonads. These results indicate that the production of superoxide anions and MPO by neutrophils stimulated with T. vaginalis may be a part of defense mechanisms of neutrophils in trichomoniasis.

  19. Unexpected function of the phagocyte NADPH oxidase in supporting hyperglycolysis in stimulated neutrophils: key role of 6-phosphofructo-2-kinase.

    PubMed

    Baillet, Athan; Hograindleur, Marc-André; El Benna, Jamel; Grichine, Alexei; Berthier, Sylvie; Morel, Françoise; Paclet, Marie-Hélène

    2017-02-01

    The phagocyte NADPH oxidase 2 (Nox2) is an enzymatic complex that is involved in innate immunity, notably via its capacity to produce toxic reactive oxygen species. Recently, a proteomic analysis of the constitutively active Nox2 complex, isolated from neutrophil fractions, highlighted the presence of 6-phosphofructo-2-kinase (PFK-2). The purpose of this work was to study the relationship between PFK-2 and NADPH oxidase in neutrophils. Data have underlined a specific association of the active phosphorylated form of PFK-2 with Nox2 complex in stimulated neutrophils. In its active form, PFK-2 catalyzes the production of fructose-2,6-bisphosphate, which is the main allosteric activator of phosphofructo-1-kinase, the limiting enzyme in glycolysis. Pharmacologic inhibition of PFK-2 phosphorylation and cell depletion in PFK-2 by a small interfering RNA strategy led to a decrease in the glycolysis rate and a reduction in NADPH oxidase activity in stimulated cells. Surprisingly, alteration of Nox2 activity impacted the glycolysis rate, which indicated that Nox2 in neutrophils was not only required for reactive oxygen species production but was also involved in supporting the energetic metabolism increase that was induced by inflammatory conditions. PFK-2 seems to be a strategic element that links NADPH oxidase activation and glycolysis modulation, and, as such, is proposed as a potential therapeutic target in inflammatory diseases.-Baillet, A., Hograindleur, M.-A., El Benna, J., Grichine, A., Berthier, S., Morel, F., Paclet, M.-H. Unexpected function of the phagocyte NADPH oxidase in supporting hyperglycolysis in stimulated neutrophils: key role of 6-phosphofructo-2-kinase. © FASEB.

  20. Near infrared laser irradiation induces NETosis via oxidative stress and autophagy.

    PubMed

    Mario, Migliario; Stelvio, Tonello; Vincenzo, Rochetti; Manuela, Rizzi; Filippo, Renò

    2018-06-02

    NETosis is a novel immune defense strategy in which neutrophil activation results in the formation of extracellular DNA/protein network which is able to kill microbial populations. NETosis can be induced in vitro by lipopolysaccharide (LPS) or phorbol myristate acetate (PMA). Due to the importance of NETosis in different physiological and pathological processes, photobiostimulation effect on this neutrophil activation mechanism has been investigated. Human granulocytes, isolated from venous blood of healthy donors, were stimulated with a diode laser emitting at 980 nm with an energy intensity ranging from 0 to 75 joules. After 3 h of laser stimulation, granulocytes were fixed and colored with crystal violet in order to assess the NETosis morphology while extracellular DNA produced has been quantified using Sytox Green fluorescent dye. To evaluate ROS production and autophagy role in photobiostimulation-induced NETosis, granulocytes were pre-treated with ROS scavengers (vitamin C, sodium pyruvate, L-NAME, sodium azide), and an autophagy inhibitor (wortmannin). Laser stimulation induced an energy-dependent neutrophil extracellular trap (NET) production in human granulocytes starting from 50-J laser intensity. ROS scavengers and the autophagy inhibitor were able to abrogate both morphological features of NETosis and extracellular DNA production without modifying the basal level of NETosis. Photobiostimulation induced an increase in NET production due to an increase in ROS levels and autophagy activation.

  1. 21 CFR 814.44 - Procedures for review of a PMA.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES PREMARKET APPROVAL OF MEDICAL DEVICES FDA Action on a PMA § 814.44 Procedures for review of a PMA. Link to an amendment published at 75 FR 16351, Apr. 1, 2010. (a) FDA will begin substantive review of a PMA after the PMA is accepted for filing under § 814.42. FDA may refer the PMA to a panel on...

  2. 21 CFR 814.44 - Procedures for review of a PMA.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES PREMARKET APPROVAL OF MEDICAL DEVICES FDA Action on a PMA § 814.44 Procedures for review of a PMA. (a) FDA will begin substantive review of a PMA after the PMA is accepted for filing under § 814.42. FDA may refer the PMA to a panel on its own initiative, and will do so upon request of an...

  3. 21 CFR 814.44 - Procedures for review of a PMA.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES PREMARKET APPROVAL OF MEDICAL DEVICES FDA Action on a PMA § 814.44 Procedures for review of a PMA. Link to an amendment published at 79 FR 1740, Jan. 10, 2014. (a) FDA will begin substantive review of a PMA after the PMA is accepted for filing under § 814.42. FDA may refer the PMA to a panel on...

  4. Enhanced Detection of Chromosomal Abnormalities in Chronic Lymphocytic Leukemia by Conventional Cytogenetics Using CpG Oligonucleotide in Combination with Pokeweed Mitogen and Phorbol Myristate Acetate

    PubMed Central

    Muthusamy, Natarajan; Breidenbach, Heather; Andritsos, Leslie; Flynn, Joseph; Jones, Jeffrey; Ramanunni, Asha; Mo, Xiaokui; Jarjoura, David; Byrd, John C.; Heerema, Nyla A.

    2011-01-01

    Reproducible cytogenetic analysis in CLL has been limited by the inability to obtain reliable metaphase cells for analysis. CpG oligonucleotide and cytokine stimulation have been shown to improve metaphase analysis of CLL cytogenetic abnormalities, but is limited by variability in the cytokine receptor levels, stability and biological activity of the cytokine in culture conditions and high costs associated with these reagents. We report here use of a novel, stable CpG, GNKG168 along with pokeweed mitogen (PWM) and phorbol 12-myristate 13-acetate (PMA) for conventional cytogenetic assessment in CLL. We demonstrate that the combined use of GNKG168+PWM/PMA increased the sensitivity of detection of chromosomal abnormalities compared to PWM/PMA (n=207, odds ratio=2.2, p=0.0002) and GNKG168 (n=219, odds ratio=1.5, p=0.0452). Further, a significant increase in sensitivity to detect complexity ≥3 with GNKG168+PWM/PMA compared to GNKG168 alone (odds ratio 8.0, p=0.0022) or PWM/PMA alone (odds ratio 9.6, p=0.0007) was observed. The trend toward detection of higher complexity was significantly greater with GNKG168+PWM/PMA compared to GNKG168 alone (p=0.0412). The increased sensitivity was mainly attributed to the addition of PWM/PMA with GNKG168 because GNKG168 alone showed no difference in sensitivity for detection of complex abnormalities (p=0.17). Comparison of fluorescence in situ hybridization (FISH) results with karyotypic results showed a high degree of consistency, although some complex karyotypes were present in cases with no adverse FISH abnormality. These studies provide evidence for potential use of GNKG168 in combination with PWM and PMA in karyotypic analysis of CLL patient samples to better identify chromosomal abnormalities for risk stratification. PMID:21494579

  5. Effects of dietary supplementation with eicosapentaenoic acid or gamma-linolenic acid on neutrophil phospholipid fatty acid composition and activation responses.

    PubMed

    Fletcher, M P; Ziboh, V A

    1990-10-01

    Previous data that alimentation with fish oil rich in eicosapentaenoic acid (EPA; 20:n-3) or vegetable oil rich in gamma-linolenic acid (GLA; 18:3n-6) can reduce symptoms of inflammatory skin disorders lead us to determine the effects of dietary supplements of oils rich in EPA or GLA on guinea pig (GP) neutrophil (PMN) membrane potential (delta gamma), secretion, and superoxide (O2-) responses. Weanling GPs were initially fed diets supplemented with olive oil (less than 0.1% EPA; less than 0.1% GLA) for 2 weeks, followed by a crossover by two sets of animals to diets supplemented with fish oil (19% EPA) or borage oil (25% GLA). At 4-week intervals, 12% sterile casein-elicited peritoneal neutrophils (PMN) were assessed for membrane polyunsaturated fatty acid (PUFA) profiles and FMLP-, LTB4-, and PMA-stimulated delta gamma changes, changes in flow cytometrically measured forward scatter (FWD-SC) (shape change), 90 degrees scatter (90 degrees -SC) in cytochalasin B-pretreated-PMN (secretion response), and superoxide responses, GP incorporated EPA and GLA (as the elongation product, dihomo-GLA or DGLA) into their PMN phospholipids by 4 weeks. The peritoneal PMN of all groups demonstrated broad resting FWD-SC and poor activation-related FWD-SC increases, suggesting in vivo activation. While secretion was comparable in the three groups in response to FMLP, there was a trend toward inhibition of LTB4-stimulated 90 degrees -SC loss in both fish and borage oil groups. This was significant only with borage oil (21.7 +/- 2.1 vs 15.3 +/- 1.2% loss of baseline 90 degrees -SC, olive vs borage: P = 0.03). PMN from borage- and fish oil-fed GPs showed a progressively lower O2- response to FMLP than the olive oil group (73.9 +/- 3.9 and 42.9 +/- 6.8% of olive oil response for borage and fish oils, respectively; P less than 0.005 and P less than 0.01, respectively, at 12 weeks), while PMA-stimulated O2- was inhibited only in the fish oil-fed group and only at 12 weeks (62.0 +/- 2

  6. Synergistic effect of hydrogen peroxide on polyploidization during the megakaryocytic differentiation of K562 leukemia cells by PMA.

    PubMed

    Ojima, Yoshihiro; Duncan, Mark Thompson; Nurhayati, Retno Wahyu; Taya, Masahito; Miller, William Martin

    2013-08-15

    The human myelogenous cell line, K562 has been extensively used as a model for the study of megakaryocytic (MK) differentiation, which could be achieved by exposure to phorbol 12-myristate 13-acetate (PMA). In this study, real-time PCR analysis revealed that the expression of catalase (cat) was significantly repressed during MK differentiation of K562 cells induced by PMA. In addition, PMA increased the intracellular reactive oxygen species (ROS) concentration, suggesting that ROS was a key factor for PMA-induced differentiation. PMA-differentiated K562 cells were exposed to hydrogen peroxide (H2O2) to clarify the function of ROS during MK differentiation. Interestingly, the percentage of high-ploidy (DNA content >4N) cells with H2O2 was 34.8±2.3% at day 9, and was 70% larger than that without H2O2 (21.5±0.8%). Further, H2O2 addition during the first 3 days of PMA-induced MK differentiation had the greatest effect on polyploidization. In an effort to elucidate the mechanisms of enhanced polyploidization by H2O2, the BrdU assay clearly indicated that H2O2 suppressed the division of 4N cells into 2N cells, followed by the increased polyploidization of K562 cells. These findings suggest that the enhancement in polyploidization mediated by H2O2 is due to synergistic inhibition of cytokinesis with PMA. Although H2O2 did not increase ploidy during the MK differentiation of primary cells, we clearly observed that cat expression was repressed in both immature and mature primary MK cells, and that treatment with the antioxidant N-acetylcysteine effectively blocked and/or delayed the polyploidization of immature MK cells. Together, these findings suggest that MK cells are more sensitive to ROS levels during earlier stages of maturation. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. 21 CFR 814.45 - Denial of approval of a PMA.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES PREMARKET APPROVAL OF MEDICAL DEVICES FDA Action on a PMA § 814.45 Denial of approval of a PMA. (a) FDA may issue an order denying approval of a PMA if the applicant fails to follow the... information before the agency, FDA determines that any of the grounds for denying approval of a PMA specified...

  8. 21 CFR 814.45 - Denial of approval of a PMA.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES PREMARKET APPROVAL OF MEDICAL DEVICES FDA Action on a PMA § 814.45 Denial of approval of a PMA. (a) FDA may issue an order denying approval of a PMA if the applicant fails to follow the... information before the agency, FDA determines that any of the grounds for denying approval of a PMA specified...

  9. 21 CFR 814.45 - Denial of approval of a PMA.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES PREMARKET APPROVAL OF MEDICAL DEVICES FDA Action on a PMA § 814.45 Denial of approval of a PMA. (a) FDA may issue an order denying approval of a PMA if the applicant fails to follow the... information before the agency, FDA determines that any of the grounds for denying approval of a PMA specified...

  10. Down-Regulation of Protein Kinase C-ε by Prolonged Incubation with PMA Inhibits the Proliferation of Vascular Smooth Muscle Cells.

    PubMed

    Zhou, Huixuan; Wang, Yan; Zhou, Quanhong; Wu, Bin; Wang, Aizhong; Jiang, Wei; Wang, Li

    2016-01-01

    Phorbol myristate acetate (PMA) exerts a pleiotropic effect on the growth and differentiation of various cells. Protein kinase Cs (PKCs) plays a central role in mediating the effects of PMA on cells. The present study investigated whether the down-regulation of protein kinase C-ε (PKC-ε) is involved in the inhibition of vascular smooth muscle cell (VSMC) proliferation caused by prolonged PMA incubation. Using cell counting, Cell Counting Kit-8 (CCK-8) and EdU incorporation assay on VSMCs, we evaluated the inhibitory effects of prolonged incubation of PMA, of lentiviruses carrying the short-hairpin RNAs (shRNA) of PKC-ε and of the PKC-ε inhibitor peptide on the proliferation and viability of cells. The effect of PKC-ε down-regulation on growth of rat breast cancer SHZ-88 cells was also measured. The prolonged incubation of VSMCs with PMA for up to 72 hours resulted in attenuated cell growth rates in a time-dependent manner. The expression of PKC-ε, as assessed by Western blotting, was also decreased accordingly. Notably, the number of EdU-positive cells and the cell viability of VSMCs were decreased by shRNA of PKC-ε and the PKC-ε inhibitor peptide, respectively. The proliferation of rat breast cancer SHZ-88 cells was also attenuated by lentivirus-induced shRNA silencing of PKC-ε. Prolonged incubation of PMA can inhibit the expression of PKC-ε. The effect results in the inhibition of VSMC proliferation. PKC-ε silencing can also attenuate breast cancer cell growth, suggesting that PKC-ε may be a potential target for anti-cancer drugs. © 2016 The Author(s) Published by S. Karger AG, Basel.

  11. Role of circulating granulocytes in sheep lung injury produced by phorbol myristate acetate.

    PubMed

    Dyer, E L; Snapper, J R

    1986-02-01

    Phorbol myristate acetate (PMA) and endotoxin cause pulmonary granulocyte sequestration and alteration in lung fluid and solute exchange in awake sheep that are felt to be analogous to the adult respiratory distress syndrome in humans. The basic hypothesis that PMA causes lung injury by activating circulating granulocytes has never been tested. The effects of infused PMA on lung mechanics and the cellular constituents of lung lymph have also not been reported. We therefore characterized the effects of intravenous PMA, 5 micrograms/kg, on lung mechanics, pulmonary hemodynamics, lung fluid and solute exchange, pulmonary gas exchange, blood and lymph leukocyte counts, and plasma and lymph cyclooxygenase products of arachidonate metabolism in 10 awake sheep with normal granulocyte counts and after granulocyte depletion with hydroxyurea. PMA significantly altered lung mechanics from base line in both nongranulocyte depleted and granulocyte-depleted sheep. Dynamic compliance decreased by over 50% and resistance to airflow across the lungs increased over threefold acutely following PMA infusion in both sets of experiments. Changes in lung mechanics, pulmonary hemodynamics, lung fluid and solute exchange, pulmonary gas exchange, and plasma and lymph arachidonate metabolites were not significantly affected by greater than 99% depletion of circulating granulocytes. We conclude that the lung injury caused by PMA in chronically instrumented awake sheep probably is not a result of activation of circulating granulocytes.

  12. Phorbol 12-myristate 13-acetate down-regulates Na,K-ATPase independent of its protein kinase C site: decrease in basolateral cell surface area.

    PubMed Central

    Beron, J; Forster, I; Beguin, P; Geering, K; Verrey, F

    1997-01-01

    The effect of protein kinase C (PKC) stimulation on the pump current (Ip) generated by the Na,K-ATPase was measured in A6 epithelia apically permeabilized with amphotericin B. Phorbol 12-myristate 13-acetate (PMA) produced a decrease in Ip carried by sodium pumps containing the endogenous Xenopus laevis or transfected Bufo marinus alpha 1 subunits (approximately 30% reduction within 25 min, maximum after 40 min) independent of the PKC phosphorylation site (T15A/S16A). In addition to this major effect of PMA, which was independent of the intracellular sodium concentration and was prevented by the PKC inhibitor bisindolylmaleimide GF 109203X (BIM), another BIM-resistant, PKC site-independent decrease was observed when the Ip was measured at low sodium concentrations (total reduction approximately 50% at 5 mM sodium). Using ouabain binding and cell surface biotinylation, stimulation of PKC was shown to reduce surface Na,K-ATPase by 14 to 20% within 25 min. The same treatment stimulated fluid phase endocytosis sevenfold and decreased by 16.5% the basolateral cell surface area measured by transepithelial capacitance measurements. In conclusion, PKC stimulation produces a decrease in sodium pump function which can be attributed, to a large extent, to a withdrawal of sodium pumps from the basolateral cell surface independent of their PKC site. This reduction of the number of sodium pumps is parallel to a decrease in basolateral membrane area. Images PMID:9188092

  13. Sodium acetate decreases phosphorylation of hormone sensitive lipase in isoproterenol-stimulated 3T3-L1 mature adipocytes

    PubMed Central

    Aberdein, Nicola; Schweizer, Michael; Ball, Derek

    2014-01-01

    Lipolysis, the process of hydrolysis of stored triacylglycerol into glycerol and non-esterified fatty acids (NEFA), is reported to be reduced by short chain fatty acids (SCFA) but the mechanism of this inhibition is poorly understood. The aim of this study was to measure the phosphorylation at serine residue 563 of hormone sensitive lipase with and without exposure to sodium acetate. Using the 3T3-L1 cell line, we identified that stimulating the cells with isoproterenol increased phosphorylated hormone sensitive lipase (pHSL) expression by 60% compared with the basal state. In the presence of the SCFA acetate in stimulated cells, pHSL decreased by 15% compared with stimulated cells alone. These results were mirrored by the NEFA release from stimulated cells that had significantly decreased in the presence of sodium acetate after 60 min (from 0.53 µmol mg−1 protein to 0.41 µmol mg−1 protein, respectively, P = 0.004); and 180 min (1.73 µmol mg−1 protein to 1.13 µmol mg−1 protein, P = 0.020); however, treatment had no effect on glycerol release (P = 0.109). In conclusion, exposure to 4 mM acetate reduced the level of phosphorylation of HSL(SER563) in mature 3T3-L1 adipocytes and led to a significant reduction in NEFA release, although glycerol release was not affected. PMID:24719785

  14. Effect of PGE2 on thymocyte proliferation induced by Con A or IL-4 + PMA.

    PubMed

    Daculsi, R; Vaillier, D; Bezian, J H; Gualde, N

    1993-02-01

    Prostaglandin E2 (PGE2) is known to inhibit peripheral T-lymphocyte and thymocyte proliferation activated by antigens, mitogens or anti-CD3 antibodies. In this study, we have investigated, the effect of PGE2 on thymocyte proliferation induced by the combination of IL-4 plus PMA. PGE2 inhibits the proliferation of thymocytes activated by ConA, whatever the culture period; in contrast PGE2 shifts the kinetics of thymocyte proliferation after stimulation by IL-4 plus PMA, but does not sustain the proliferation beyond day 3. This effect depends upon cell density, IL-4 concentration and on the time that PGE2 is added to the culture. By use of the cAMP inducer, forskolin, or a cAMP analog, db-cAMP, we observed the same results, PGE2 increases the proliferation of CD8+ corticoresistant thymocytes (CRT) activated by IL-4 plus PMA, but inhibits that of CD4+ CRT. These results suggest that PGE2 can regulate thymocyte proliferation differently according to the activation pathway and the thymic subpopulations.

  15. 21 CFR 814.47 - Temporary suspension of approval of a PMA.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES PREMARKET APPROVAL OF MEDICAL DEVICES FDA Action on a PMA § 814.47 Temporary suspension of approval of a PMA. (a) Scope. (1) This section describes the procedures that FDA will follow in... the original PMA, as well as any PMA supplement(s), for a medical device. (2) FDA will issue an order...

  16. 21 CFR 814.47 - Temporary suspension of approval of a PMA.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES PREMARKET APPROVAL OF MEDICAL DEVICES FDA Action on a PMA § 814.47 Temporary suspension of approval of a PMA. (a) Scope. (1) This section describes the procedures that FDA will follow in... the original PMA, as well as any PMA supplement(s), for a medical device. (2) FDA will issue an order...

  17. 21 CFR 814.47 - Temporary suspension of approval of a PMA.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) MEDICAL DEVICES PREMARKET APPROVAL OF MEDICAL DEVICES FDA Action on a PMA § 814.47 Temporary suspension of approval of a PMA. (a) Scope. (1) This section describes the procedures that FDA will follow in... the original PMA, as well as any PMA supplement(s), for a medical device. (2) FDA will issue an order...

  18. Mast Cell Activation Protects Cornea by Promoting Neutrophil Infiltration via Stimulating ICAM-1 and Vascular Dilation in Fungal Keratitis.

    PubMed

    Xie, Yanting; Zhang, Hongmin; Liu, Susu; Chen, Guoming; He, Siyu; Li, Zhijie; Wang, Liya

    2018-05-30

    The role of mast cells (MCs) in fungal infection is largely unknown. This study was to explore a protective role and mechanism of MCs in fungal keratitis. Experimental fungal keratitis (FK) mouse model was developed. Mice untreated (UT) or receiving corneal wound without fungal infection (Mock) were used as controls. Large number of connective tissue MCs was found in normal mice. MC activation with degranulation was largely observed, and the percentage of degranulated/total cells was high in FK. Dilated limbal vasculature with increased permeability, as well as largely infiltrated neutrophils with stimulated ICAM-1 protein levels were observed in corneas of FK mice, when compared with Mock and UT mice. Interestingly, pretreatment with cromolyn sodium (Block) significantly blocked MC degranulation, dramatically suppressed vascular dilation and permeability, and markedly reduced neutrophil infiltration with lower ICAM-1 levels in FK mice at 6-24 hours. Furthermore, the Block mice manifested prolonged disease course, increased pathological damage, and vigorous fungus growth, with much higher corneal perforation rate than FK mice at 72 h. These findings reveal a novel phenomenon that MCs play a vital role in protecting cornea against fungal infection through degranulation that promotes neutrophil infiltration via stimulating ICAM-1 production and limbal vascular dilation and permeability.

  19. TNF-α potentiates uric acid-induced interleukin-1β (IL-1β) secretion in human neutrophils.

    PubMed

    Yokose, Kohei; Sato, Shuzo; Asano, Tomoyuki; Yashiro, Makiko; Kobayashi, Hiroko; Watanabe, Hiroshi; Suzuki, Eiji; Sato, Chikako; Kozuru, Hideko; Yatsuhashi, Hiroshi; Migita, Kiyoshi

    2018-05-01

    Monosodium urate (MSU) has been shown to promote interleukin-1β (IL-1β) secretion in human monocytes, but the priming signals for NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome pathway remains elusive. In this study, we investigated the role of Tumor necrosis factor-alpha (TNF-α) on MSU-mediated IL-1β induction in human neutrophils. Human neutrophils were stimulated with MSU, in the presence or absence of TNF-α priming. The cellular supernatants were analyzed for IL-1β, IL-18, and caspase-1 by enzyme-linked immunosorbent assay (ELISA) methods. Pro-IL-1β mRNA expressions in human neutrophils were analyzed by real-time PCR method. TNF-α stimulation induced pro-IL-1β mRNA expression; however, MSU stimulation did not induce pro-IL-1β mRNA expression in human neutrophils. TNF-α alone or MSU stimulation did not result in efficient IL-1β secretion in human neutrophils, whereas in TNF-α-primed neutrophils, MSU stimulation resulted in a marked IL-1β and IL-18 secretion. TNF-α-primed neutrophils secreted cleaved caspase-1 (p20), in response to MSU stimulation. Our data demonstrate that priming of human neutrophils with TNF-α promotes uric acid-mediated IL-1β secretion in the absence of microbial stimulation. These findings provide insights into the neutrophils-mediated inflammatory processes in gouty arthritis.

  20. Silver nanoparticles impede phorbol myristate acetate-induced monocyte-macrophage differentiation and autophagy

    NASA Astrophysics Data System (ADS)

    Xu, Yingying; Wang, Liming; Bai, Ru; Zhang, Tianlu; Chen, Chunying

    2015-09-01

    Monocytes/macrophages are important constituents of the innate immune system. Monocyte-macrophage differentiation is not only crucial for innate immune responses, but is also related to some cardiovascular diseases. Silver nanoparticles (AgNPs) are one of the most widely used nanomaterials because of their broad-spectrum antimicrobial properties. However, the effect of AgNPs on the functions of blood monocytes is scarcely reported. Here, we report the impedance effect of AgNPs on THP-1 monocyte differentiation, and that this effect was mediated by autophagy blockade and lysosomal impairment. Firstly, AgNPs inhibit phorbol 12-myristate 13-acetate (PMA)-induced monocyte differentiation by down-regulating both expression of surface marker CD11b and response to lipopolysaccharide (LPS) stimulation. Secondly, autophagy is activated during PMA-induced THP-1 monocyte differentiation, and the autophagy inhibitor chloroquine (CQ) can inhibit this process. Thirdly, AgNPs block the degradation of the autophagy substrate p62 and induce autophagosome accumulation, which demonstrates the blockade of autophagic flux. Fourthly, lysosomal impairments including alkalization and decrease of lysosomal membrane stability were observed in AgNP-treated THP-1 cells. In conclusion, we demonstrate that the impedance of monocyte-macrophage differentiation by AgNPs is mediated by autophagy blockade and lysosomal dysfunction. Our results suggest that crosstalk exists in different biological effects induced by AgNPs.

  1. Wnt3a stimulates maturation of impaired neutrophils developed from severe congenital neutropenia patient-derived pluripotent stem cells.

    PubMed

    Hiramoto, Takafumi; Ebihara, Yasuhiro; Mizoguchi, Yoko; Nakamura, Kazuhiro; Yamaguchi, Kiyoshi; Ueno, Kazuko; Nariai, Naoki; Mochizuki, Shinji; Yamamoto, Shohei; Nagasaki, Masao; Furukawa, Yoichi; Tani, Kenzaburo; Nakauchi, Hiromitsu; Kobayashi, Masao; Tsuji, Kohichiro

    2013-02-19

    The derivation of induced pluripotent stem (iPS) cells from individuals of genetic disorders offers new opportunities for basic research into these diseases and the development of therapeutic compounds. Severe congenital neutropenia (SCN) is a serious disorder characterized by severe neutropenia at birth. SCN is associated with heterozygous mutations in the neutrophil elastase [elastase, neutrophil-expressed (ELANE)] gene, but the mechanisms that disrupt neutrophil development have not yet been clarified because of the current lack of an appropriate disease model. Here, we generated iPS cells from an individual with SCN (SCN-iPS cells). Granulopoiesis from SCN-iPS cells revealed neutrophil maturation arrest and little sensitivity to granulocyte-colony stimulating factor, reflecting a disease status of SCN. Molecular analysis of the granulopoiesis from the SCN-iPS cells vs. control iPS cells showed reduced expression of genes related to the wingless-type mmtv integration site family, member 3a (Wnt3a)/β-catenin pathway [e.g., lymphoid enhancer-binding factor 1], whereas Wnt3a administration induced elevation lymphoid enhancer-binding factor 1-expression and the maturation of SCN-iPS cell-derived neutrophils. These results indicate that SCN-iPS cells provide a useful disease model for SCN, and the activation of the Wnt3a/β-catenin pathway may offer a novel therapy for SCN with ELANE mutation.

  2. Hyperactivity and reactivity of peripheral blood neutrophils in chronic periodontitis.

    PubMed

    Matthews, J B; Wright, H J; Roberts, A; Cooper, P R; Chapple, I L C

    2007-02-01

    Some evidence exists that peripheral neutrophils from patients with chronic periodontitis generate higher levels of reactive oxygen species (ROS) after Fcgamma-receptor stimulation than those from healthy controls. We hypothesized that peripheral neutrophils in periodontitis also show both hyper-reactivity to plaque organisms and hyperactivity in terms of baseline, unstimulated generation and release of ROS. Peripheral neutrophils from chronic periodontitis patients and age/sex/smoking-matched healthy controls (18 pairs) were assayed for total ROS generation and extracellular ROS release, with and without stimulation (Fcgamma-receptor and Fusobacterium nucleatum), using luminol and isoluminol chemiluminescence. Assays were performed with and without priming with Escherichia coli lipopolysaccharide (LPS) and granulocyte-macrophage colony-stimulating factor (GM-CSF). Phox gene expression (p22, p47, p67, gp91) was investigated using reverse transcription-polymerase chain reaction (RT-PCR). Neutrophils from patients produced higher mean levels of ROS in all assays. Total generation and extracellular release of ROS by patients' cells were significantly greater than those from controls after FcgammaR-stimulation, with (P = 0.023) and without (P < or = 0.023) priming with GM-CSF. Differences in unstimulated total ROS generation were not significant. By contrast, patients' cells demonstrated greater baseline, extracellular ROS release than those from controls (P = 0.004). This difference was maintained after priming with LPS (P = 0.028) but not GM-CSF (P = 0.217). Phox gene expression was similar in patient and control cells at baseline and stimulation with F. nucleatum (3 h) consistently reduced gp91(PHOX) transcripts. Our data demonstrate that peripheral neutrophils from periodontitis patients exhibit hyper-reactivity following stimulation (Fcgamma-receptor and F. nucleatum) and hyperactivity in terms of excess ROS release in the absence of exogenous stimulation. This

  3. Hyperactivity and reactivity of peripheral blood neutrophils in chronic periodontitis

    PubMed Central

    Matthews, J B; Wright, H J; Roberts, A; Cooper, P R; Chapple, I L C

    2007-01-01

    Some evidence exists that peripheral neutrophils from patients with chronic periodontitis generate higher levels of reactive oxygen species (ROS) after Fcγ-receptor stimulation than those from healthy controls. We hypothesized that peripheral neutrophils in periodontitis also show both hyper-reactivity to plaque organisms and hyperactivity in terms of baseline, unstimulated generation and release of ROS. Peripheral neutrophils from chronic periodontitis patients and age/sex/smoking-matched healthy controls (18 pairs) were assayed for total ROS generation and extracellular ROS release, with and without stimulation (Fcγ-receptor and Fusobacterium nucleatum), using luminol and isoluminol chemiluminescence. Assays were performed with and without priming with Escherichia coli lipopolysaccharide (LPS) and granulocyte–macrophage colony-stimulating factor (GM-CSF). Phox gene expression (p22, p47, p67, gp91) was investigated using reverse transcription–polymerase chain reaction (RT–PCR). Neutrophils from patients produced higher mean levels of ROS in all assays. Total generation and extracellular release of ROS by patients' cells were significantly greater than those from controls after FcγR-stimulation, with (P = 0·023) and without (P ≤ 0·023) priming with GM-CSF. Differences in unstimulated total ROS generation were not significant. By contrast, patients' cells demonstrated greater baseline, extracellular ROS release than those from controls (P = 0·004). This difference was maintained after priming with LPS (P = 0·028) but not GM-CSF (P = 0·217). Phox gene expression was similar in patient and control cells at baseline and stimulation with F. nucleatum (3 h) consistently reduced gp91PHOX transcripts. Our data demonstrate that peripheral neutrophils from periodontitis patients exhibit hyper-reactivity following stimulation (Fcγ-receptor and F. nucleatum) and hyperactivity in terms of excess ROS release in the absence of exogenous stimulation. This

  4. Voss in PMA2

    NASA Image and Video Library

    2001-04-27

    ISS002-E-6140 (27 April 2001) --- James S. Voss, Expedition Two flight engineer, discusses procedures with Mission Control while working in Pressurized Mating Adapter 2 (PMA2). The image was taken with a digital still camera.

  5. Chemiluminescence of neutrophiles stimulated by opsonized Zymosan in children with bronchial asthma and pneumonia

    NASA Astrophysics Data System (ADS)

    Lewandowicz-Uszynska, A.; Jankowski, A.

    2004-08-01

    Oxygen metabolism of neutrophils after stimulation with opsonized zymosan was examined using chemiluminescence test (in the presence of the patient serum or pooled serum). Into the study 37 children aged from 2 to 12 years were enrolled (20 girls and 17 boys). 10 healthy volunteers comprised the control group (group III). Two groups of patients were established: group I -- children with bronchial asthma (without infection), group II -- children with pneumonia. The examination in both groups was performed twice -- in acute phase and in remission period. The group I in acute phase comprised 16 children and in remission phase 9 children, group II - 21 children in acute phase and 9 children in remission phase, respectively. The following parameters of CL were estimated average value of so called spontaneous CL, maximal excitation of neutrophils after stimulation by zymogen (CLmax), time of zymosan opsonization. The following results were obtained: increased spontaneous CL and CLmax (at the presence of both sera) in acute phase of bronchial asthma and pneumonia in comparison to the control group. In the period of remission both these parameters were insignificantly decreased. The longest time of zymosan opsonization in acute period of disease was observed in children with pneumonia (18 min.). This time did not change during remission phase. Only slightly longer time of opsonization was observed in the patients from group I (in exacerbation) (15 min) than in the control group (13,1 min). This time was prolonged in the clinical remission (20 min).

  6. Spatial control of actin polymerization during neutrophil chemotaxis

    PubMed Central

    Weiner, Orion D.; Servant, Guy; Welch, Matthew D.; Mitchison, Timothy J.; Sedat, John W.; Bourne, Henry R.

    2010-01-01

    Neutrophils respond to chemotactic stimuli by increasing the nucleation and polymerization of actin filaments, but the location and regulation of these processes are not well understood. Here, using a permeabilized-cell assay, we show that chemotactic stimuli cause neutrophils to organize many discrete sites of actin polymerization, the distribution of which is biased by external chemotactic gradients. Furthermore, the Arp2/3 complex, which can nucleate actin polymerization, dynamically redistributes to the region of living neutrophils that receives maximal chemotactic stimulation, and the least-extractable pool of the Arp2/3 complex co-localizes with sites of actin polymerization. Our observations indicate that chemoattractant-stimulated neutrophils may establish discrete foci of actin polymerization that are similar to those generated at the posterior surface of the intracellular bacterium Listeria monocytogenes. We propose that asymmetrical establishment and/or maintenance of sites of actin polymerization produces directional migration of neutrophils in response to chemotactic gradients. PMID:10559877

  7. Spatial control of actin polymerization during neutrophil chemotaxis.

    PubMed

    Weiner, O D; Servant, G; Welch, M D; Mitchison, T J; Sedat, J W; Bourne, H R

    1999-06-01

    Neutrophils respond to chemotactic stimuli by increasing the nucleation and polymerization of actin filaments, but the location and regulation of these processes are not well understood. Here, using a permeabilized-cell assay, we show that chemotactic stimuli cause neutrophils to organize many discrete sites of actin polymerization, the distribution of which is biased by external chemotactic gradients. Furthermore, the Arp2/3 complex, which can nucleate actin polymerization, dynamically redistributes to the region of living neutrophils that receives maximal chemotactic stimulation, and the least-extractable pool of the Arp2/3 complex co-localizes with sites of actin polymerization. Our observations indicate that chemoattractant-stimulated neutrophils may establish discrete foci of actin polymerization that are similar to those generated at the posterior surface of the intracellular bacterium Listeria monocytogenes. We propose that asymmetrical establishment and/or maintenance of sites of actin polymerization produces directional migration of neutrophils in response to chemotactic gradients.

  8. Antimicrobial peptides and nitric oxide production by neutrophils from periodontitis subjects

    PubMed Central

    Mariano, F.S.; Campanelli, A.P.; Nociti, F.H.; Mattos-Graner, R.O.; Gonçalves, R.B.

    2012-01-01

    Neutrophils play an important role in periodontitis by producing nitric oxide (NO) and antimicrobial peptides, molecules with microbicidal activity via oxygen-dependent and -independent mechanisms, respectively. It is unknown whether variation in the production of antimicrobial peptides such as LL-37, human neutrophil peptides (HNP) 1-3, and NO by neutrophils influences the pathogenesis of periodontal diseases. We compared the production of these peptides and NO by lipopolysaccharide (LPS)-stimulated neutrophils isolated from healthy subjects and from patients with periodontitis. Peripheral blood neutrophils were cultured with or without Aggregatibacter actinomycetemcomitans-LPS (Aa-LPS), Porphyromonas gingivalis-LPS (Pg-LPS) and Escherichia coli-LPS (Ec-LPS). qRT-PCR was used to determine quantities of HNP 1-3 and LL-37 mRNA in neutrophils. Amounts of HNP 1-3 and LL-37 proteins in the cell culture supernatants were also determined by ELISA. In addition, NO levels in neutrophil culture supernatants were quantitated by the Griess reaction. Neutrophils from periodontitis patients cultured with Aa-LPS, Pg-LPS and Ec-LPS expressed higher HNP 1-3 mRNA than neutrophils from healthy subjects. LL-37 mRNA expression was higher in neutrophils from patients stimulated with Aa-LPS. Neutrophils from periodontitis patients produced significantly higher LL-37 protein levels than neutrophils from healthy subjects when stimulated with Pg-LPS and Ec-LPS, but no difference was observed in HNP 1-3 production. Neutrophils from periodontitis patients cultured or not with Pg-LPS and Ec-LPS produced significantly lower NO levels than neutrophils from healthy subjects. The significant differences in the production of LL-37 and NO between neutrophils from healthy and periodontitis subjects indicate that production of these molecules might influence individual susceptibility to important periodontal pathogens. PMID:22850872

  9. 21 CFR 814.46 - Withdrawal of approval of a PMA.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES PREMARKET APPROVAL OF MEDICAL DEVICES FDA Action on a PMA § 814.46 Withdrawal of approval of a PMA. (a) FDA may issue an order withdrawing approval of a PMA if, from any information available to the agency, FDA determines that: (1) Any of the grounds under section 515(e)(1) (A)-(G) of the act...

  10. 21 CFR 814.46 - Withdrawal of approval of a PMA.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES PREMARKET APPROVAL OF MEDICAL DEVICES FDA Action on a PMA § 814.46 Withdrawal of approval of a PMA. (a) FDA may issue an order withdrawing approval of a PMA if, from any information available to the agency, FDA determines that: (1) Any of the grounds under section 515(e)(1) (A)-(G) of the act...

  11. 21 CFR 814.46 - Withdrawal of approval of a PMA.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES PREMARKET APPROVAL OF MEDICAL DEVICES FDA Action on a PMA § 814.46 Withdrawal of approval of a PMA. (a) FDA may issue an order withdrawing approval of a PMA if, from any information available to the agency, FDA determines that: (1) Any of the grounds under section 515(e)(1) (A)-(G) of the act...

  12. Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cronstein, B.N.; Eberle, M.A.; Levin, R.I.

    1991-03-15

    Although commonly used to control a variety of inflammatory diseases, the mechanism of action of a low dose of methotrexate remains a mystery. Methotrexate accumulates intracellularly where it may interfere with purine metabolism. Therefore, the authors determined whether a 48-hr pretreatment with methotrexate affected adenosine release from ({sup 14}C)adenine-labeled human fibroblasts and umbilical vein endothelial cells. Methotrexate significantly increased adenosine release by fibroblasts. The effect of methotrexate on adenosine release was not due to cytotoxicity since cells treated with maximal concentrations of methotrexate took up ({sup 14}C)adenine and released {sup 14}C-labeled purine (a measure of cell injury) in a mannermore » identical to control cells. Methotrexate treatment of fibroblasts dramatically inhibited adherence to fibroblasts by both unstimulated neutrophils and stimulated neutrophils. One hypothesis that explains the effect of methotrexate on adenosine release is that, by inhibition of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase, methotrexate induces the accumulation of AICAR, the nucleoside precursor of which has previously been shown to cause adenosine release from ischemic cardiac tissue. The observation that the antiinflammatory actions of methotrexate are due to the capacity of methotrexate to induce adenosine release may form the basis for the development of an additional class of antiinflammatory drugs.« less

  13. Soluble and insoluble immune complexes activate human neutrophil NADPH oxidase by distinct Fc gamma receptor-specific mechanisms.

    PubMed

    Crockett-Torabi, E; Fantone, J C

    1990-11-01

    Signal transduction initiated by interaction of immune complexes (IC) with Fc gamma RII and Fc gamma RIII receptors on human neutrophils was studied by investigating the capacity of well-defined complexes to stimulate O2- generation in neutrophils. IC consisting of polyclonal rabbit antibody to human albumin were prepared at equivalence (insoluble complexes) and at five times Ag excess (soluble complexes). Stimulation of human neutrophils with soluble and insoluble IC caused a dose-dependent activation of the respiratory burst and O2- generation. Incubation of neutrophils with cytochalasin B significantly enhanced O2- generation in neutrophils stimulated with soluble IC. In contrast, cytochalasin B treatment had a minimal effect on O2- generation in neutrophils stimulated with insoluble IC. Treatment of neutrophils with PGE1 or pertussis toxin (PTx) significantly inhibited O2- generation by soluble IC-stimulated neutrophils. However, neither PGE1 nor PTx treatment significantly altered O2- generation in neutrophils stimulated with insoluble complexes. Although O2- generation induced by soluble IC was significantly inhibited by mAb against both Fc gamma RII and Fc gamma RIII receptor, insoluble IC stimulation of neutrophil O2- generation was significantly diminished only by mAb against Fc gamma RIII receptor. Cross-linking of either Fc gamma RII or Fc gamma RIII receptors on neutrophil surfaces induced O2- generation, and this activation was inhibited by both PGE1 and PTx treatment. These findings indicate that soluble and insoluble ICs induce O2- production in human neutrophils through distinct mechanisms. Soluble IC induce activation of neutrophils through a PTx- and PGE1-sensitive pathway that is dependent upon both Fc gamma RII and Fc gamma RIII receptors. Although insoluble IC induce O2- production through a PTx and PGE1 insensitive pathway mediated primarily through Fc gamma RIII receptor.

  14. Protective effect of U74500A on phorbol myristate acetate-induced acute lung injury.

    PubMed

    Chu, Shi-Jye; Chang, Deh-Ming; Wang, David; Lin, Hen-I; Lin, Shih-Hua; Hsu, Kang

    2004-08-01

    1. The present study was designed to determine whether U74500A could ameliorate acute lung injury (ALI) induced by phorbol myristate acetate (PMA) in our rat isolated lung model compared with any amelioration induced by dimethylthiourea (DMTU), superoxide dismutase (SOD) and catalase. 2. Acute lung injury was induced successfully by PMA during 60 min of observation. At 2 microg/kg, PMA elicited a significant increase in microvascular permeability (measured using the capillary filtration coefficient Kfc), lung weight gain, the lung weight/bodyweight ratio, pulmonary arterial pressure and protein concentration of the bronchoalveolar lavage fluid. 3. Pretreatment with 1.5 mg/kg U74500A significantly attenuated ALI; there was no significant increase in any parameters measured, except for pulmonary arterial pressure. The protective effect of U74500A was approximately the same as that of 600 mg/kg DMTU. However, 6000 U/kg SOD, 50,000 U/kg catalase and 6000 U/kg SOD + 50,000 U/kg catalase had no protective effect. 4. These experimental data suggest that U74500A significantly ameliorates ALI induced by PMA in rats.

  15. Disentangling the effects of tocilizumab on neutrophil survival and function.

    PubMed

    Gaber, Timo; Hahne, Martin; Strehl, Cindy; Hoff, Paula; Dörffel, Yvonne; Feist, Eugen; Burmester, Gerd-Rüdiger; Buttgereit, Frank

    2016-06-01

    The synovial tissue in rheumatoid arthritis (RA) represents a hypoxic environment with up-regulated pro-inflammatory cytokines and cellular infiltrates including neutrophils. Although inhibition of the interleukin (IL)6 receptor pathway by tocilizumab is a potent treatment option for RA, it may also cause adverse effects such as an occasionally high-grade neutropenia. We analysed the impact of tocilizumab on survival, mediator secretion, oxidative burst, phagocytosis and energy availability of high-dose toll-like receptor (TLR)2/4-stimulated neutrophils (to mimic an arthritis flare) under normoxic versus hypoxic conditions. Human neutrophils were purified, pre-treated with varying doses of tocilizumab, dexamethasone or human IgG1 and high-dose-stimulated with lipopolysaccharide (LPS) alone-triggering TLR2/4-, LPS plus IL6, or left unstimulated. Cells were then incubated under normoxic (18 % O2) or hypoxic (1 % O2) conditions and subsequently analysed. Neutrophil survival and energy availability were significantly decreased by tocilizumab in a dose-dependent manner in high-dose TLR2/4-stimulated cells, but to a greater extent under normoxia as compared to hypoxia. We also found high-dose LPS-stimulated oxidative burst and phagocytosis of neutrophils to be higher under hypoxic versus normoxic conditions, but this difference was reduced by tocilizumab. Finally, we observed that tocilizumab affected neutrophil mediator secretion as a function of oxygen availability. Tocilizumab is known for both beneficial effects and a higher incidence of neutropenia when treating RA patients. Our results suggest that both effects can at least in part be explained by a reduction in neutrophil survival, a dose-dependent inhibition of hypoxia-induced NADPH oxidase-mediated oxidative burst and phagocytosis of infiltrating hypoxic neutrophils and an alteration of mediator secretion.

  16. Short-term exposure of umbilical cord blood CD34+ cells to granulocyte-macrophage colony-stimulating factor early in culture improves ex vivo expansion of neutrophils.

    PubMed

    Marturana, Flavia; Timmins, Nicholas E; Nielsen, Lars K

    2011-03-01

    Despite the availability of modern antibiotics/antimycotics and cytokine support, neutropenic infection accounts for the majority of chemotherapy-associated deaths. While transfusion support with donor neutrophils is possible, cost and complicated logistics make such an option unrealistic on a routine basis. A manufactured neutrophil product could enable routine prophylactic administration of neutrophils, preventing the onset of neutropenia and substantially reducing the risk of infection. We examined the use of pre-culture strategies and various cytokine/modulator combinations to improve neutrophil expansion from umbilical cord blood (UCB) hematopoietic stem and progenitor cells (HPC). Enriched UCB HPC were cultured using either two-phase pre-culture strategies or a single phase using various cytokine/modulator combinations. Outcome was assessed with respect to numerical expansion, cell morphology, granulation and respiratory burst activity. Pre-culture in the absence of strong differentiation signals (e.g. granulocyte colony-stimulating factor; G-CSF) failed to provide any improvement to final neutrophil yields. Similarly, removal of differentiating cells during pre-culture failed to improve neutrophil yields to an appreciable extent. Of the cytokine/modulator combinations, the addition of granulocyte-macrophage (GM)-colony-stimulating factor (CSF) alone gave the greatest increase. In order to avoid production of monocytes, it was necessary to remove GM-CSF on day 5. Using this strategy, neutrophil expansion improved 2.7-fold. Although all cytokines and culture strategies employed have been reported previously to enhance HPC expansion, we found that the addition of GM-CSF alone was sufficient to improve total cell yields maximally. The need to remove GM-CSF on day 5 to avoid monocyte differentiation highlights the context and time-dependent complexity of exogenous signaling in hematopoietic cell differentiation and growth.

  17. Synergic production of neutrophil chemotactic activity by colonic epithelial cells and eosinophils.

    PubMed

    Dent, Gordon; Loweth, Sam C; Hasan, Anwar Matar; Leslie, Fiona M

    2014-10-01

    The presence of eosinophils in the lumen and mucosa of the intestine is characteristic of both ulcerative colitis (UC) and Crohn's disease (CD). There is evidence of eosinophil activation in the intestine during acute inflammatory episodes of these diseases; these episodes are also characterized by an influx of neutrophils, which have the potential to cause extensive tissue damage. We undertook a study to determine whether eosinophils in contact with colonic epithelial cells produce factors that may attract neutrophils in response to immunological stimulation. Neutrophil chemotactic activity (NCA) and concentrations of three neutrophil-attracting CXC chemokines - CXCL1 (Groα), CXCL5 (Ena78) and CXCL8 (IL8) - were measured in supernatants of T84 colonic epithelial cells and blood eosinophils or eosinophil-like myeloid leukaemia cells (AML14.3D10), alone or in combination. Cells were stimulated with serum-opsonized zymosan (OZ) particles. NCA (P<0.005) and CXCL5 levels (P<0.05) in the supernatants of OZ-stimulated epithelial/eosinophil co-cultures were significantly higher than in the supernatants of either cell type alone. Release of CXCL1 (P<0.05) and CXCL8 (P<0.01) from OZ-stimulated co-culture supernatants was significantly higher than from OZ-stimulated eosinophils but not higher than from OZ-stimulated epithelial cells. Eosinophils and colonic epithelial cells exhibit synergy in production of neutrophil chemoattractants in response to immunological stimulation. This may represent a mechanism for exaggerated recruitment of neutrophils to the intestine in response to acute infection in conditions that are characterized by the presence of eosinophils in the bowel. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. Decrease in free-radical production with age in rat peritoneal macrophages.

    PubMed Central

    Alvarez, E; Conde, M; Machado, A; Sobrino, F; Santa Maria, C

    1995-01-01

    The respiratory-burst reaction has been studied in rat peritoneal macrophages of different ages (3, 12 and 24 months) using phorbol 12-myristate 13-acetate (PMA) to stimulate NADPH oxidase. Production of O2-. and H2O2 decreased with age (about 50 and 75% respectively); however, no difference in NADPH oxidase activity was found. NO. production was also reduced with age (40%). Furthermore, a progressive and significant decrease in the pentose phosphate flux was detected as a function of age in control and PMA-stimulated macrophages. The NADPH/NADP+ ratio decreased with age in control and PMA-stimulated macrophages. Glucose uptake was lower in middle-aged (12 months) and old (24 months) animals but no differences were found between these groups. PMID:8526870

  19. Inhibition of EMMPRIN and MMP-9 Expression by Epigallocatechin-3-Gallate through 67-kDa Laminin Receptor in PMA-Induced Macrophages.

    PubMed

    Wang, Qi-Ming; Wang, Hao; Li, Ya-Fei; Xie, Zhi-Yong; Ma, Yao; Yan, Jian-Jun; Gao, Yi Fan Wei; Wang, Ze-Mu; Wang, Lian-Sheng

    2016-01-01

    It is well documented that overexpression of EMMPRIN (extracellular matrix metalloproteinase inducer) and MMPs (matrix metalloproteinases) by monocytes/macrophages plays an important role in atherosclerotic plaque rupture. Green tea polyphenol epigallocatechin-3-gallate (EGCG) has a variety of pharmacological properties and exerts cardiovascular protective effects. Recently, the 67-kD laminin receptor (67LR) has been identified as a cell surface receptor of EGCG. The aim of the present study was to evaluate the effects of EGCG on the expression of EMMPRIN and MMP-9 in PMA-induced macrophages, and the potential mechanisms underlying its effects. Human monocytic THP-1 cells were induced to differentiate into macrophages with phorbol 12-myristate 13-acetate (PMA). Protein expression and MMP-9 activity were assayed by Western blot and Gelatin zymography, respectively. Real-time PCR was used to examine EMMPRIN and MMP-9 mRNA expression. We showed that EGCG (10-50µmol/L) significantly inhibited the expression of EMMPRIN and MMP-9 and activation of extracellular signal-regulated kinase 1/2 (ERK1/2), p38 and c-Jun N-terminal kinase (JNK) in PMA-induced macrophages. Downregulation of EMMPRIN by gene silencing hindered PMA-induced MMP-9 secretion and expression, indicating an important role of EMMPRIN in the inhibition of MMP-9 by EGCG. Moreover, 67LR was involved in EGCG-mediated suppression of EMMPRIN and MMP-9 expression. Anti-67LR antibody treatment led to abrogation of the inhibitory action of EGCG on the expression of EMMPRIN and MMP-9 and activation of ERK1/2, p38, and JNK. Our results indicate that EGCG restrains EMMPRIN and MMP-9 expression via 67LR in PMA-induced macrophages, which also suggests that EGCG may be a possible therapeutic agent for stabilizing atherosclerotic plaque. © 2016 The Author(s) Published by S. Karger AG, Basel.

  20. Phenotypic changes in neutrophils related to anti-inflammatory therapy.

    PubMed

    Barton, A E; Bayley, D L; Mikami, M; Llewellyn-Jones, C G; Stockley, R A

    2000-01-03

    Previous work from the group has shown that non-steroidal anti-inflammatory agents given to volunteers and patients inhibit PMN function possibly by affecting the developing neutrophil during the differentiation process. In this study indomethacin treatment in vivo reduced neutrophil chemotaxis and proteolytic degradation of fibronectin, with a maximal effect after 14 days. Stimulated neutrophil adherence to fibronectin was also reduced but this was not due to quantitative changes in beta(2) integrin expression or function. L-Selectin expression on resting and stimulated neutrophils was increased after 14 days and there was a small decrease in plasma levels of soluble L-selectin. These effects, however, could not be reproduced by treatment of neutrophils with indomethacin in vitro, suggesting they are due to effects on differentiating/maturing PMNs. In an attempt to interpret these changes, studies were performed with dexamethasone, which is known to alter neutrophil function and kinetics. Dexamethasone treatment reduced chemotaxis and increased superoxide generation after 1 day and was associated with increased expression of activated beta(2) integrins and reduced L-selectin expression on resting neutrophils. This suggests the appearance of mainly 'activated' cells as a result of demargination and indicates that the effects of indomethacin are distinctive and not related to changes in compartmentalisation.

  1. Paradoxical drop in circulating neutrophil count following granulocyte-colony stimulating factor and stem cell factor administration in rhesus macaques.

    PubMed

    Gordon, Brent C; Revenis, Amy M; Bonifacino, Aylin C; Sander, William E; Metzger, Mark E; Krouse, Allen E; Usherson, Tatiana N; Donahue, Robert E

    2007-06-01

    Granulocyte colony-stimulating factor (G-CSF) is frequently used therapeutically to treat chronic or transient neutropenia and to mobilize hematopoietic stem cells. Shortly following G-CSF administration, we observed a dramatic transient drop in circulating neutrophil number. This article characterizes this effect in a rhesus macaque animal model. Hematologic changes were monitored following subcutaneous (SQ) administration of G-CSF. G-CSF was administered as a single SQ dose at 10 microg/kg or 50 microg/kg. It was also administered (10 microg/kg) in combination with stem cell factor (SCF; 200 microg/kg) over 5 days. Flow cytometry was performed on serial blood samples to detect changes in cell surface adhesion protein expression. Neutrophil count dramatically declined 30 minutes after G-CSF administration. This decline was observed whether 10 microg/kg G-CSF was administered in combination with SCF over 5 days, or given as a single 10 microg/kg dose. At a single 50 microg/kg dose, the decline accelerated to 15 minutes. Neutrophil count returned to baseline after 120 minutes and rapidly increased thereafter. An increase in CD11a and CD49d expression coincided with the drop in neutrophil count. A transient paradoxical decline in neutrophil count was observed following administration of G-CSF either alone or in combination with SCF. This decline accelerated with the administration of a higher dose of G-CSF and was associated with an increase in CD11a and CD49d expression. It remains to be determined whether this decline in circulating neutrophils is associated with an increase in endothelial margination and/or entrance into extravascular compartments.

  2. The opposing effects of calmodulin, adenosine 5 prime -triphosphate, and pertussis toxin on phorbol ester induced inhibition of atrial natriuretic factor stimulated guanylate cyclase in SK-NEP-1 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekiya, M.; Frohlich, E.D.; Cole, F.E.

    1991-01-01

    In the present study, we investigated the effects of calmodulin, adenosine 5{prime}-triphosphate (ATP) and pertussis toxin (PT) on phorbol ester (PMA) induced inhibition of ANF-stimulated cyclic GMP formation in cells from the human renal cell line, SK-NEP-1. PMA inhibited ANF-stimulated guanylate cyclase activity in particulate membranes by about 65%. Calmodulin reversed this inhibition in a dose dependent manner. ATP potentiated Mg++ but not Mn++ supported guanylate cyclase activity. In PMA treated membranes, ATP potentiating effects were abolished. PMA also inhibited ANF-stimulated cGMP accumulation, but pretreatment with PT prevented this PMA inhibition. PT did not affect basal or ANF-stimulated cGMP accumulation.more » In conclusion, these results demonstrated that PMA inhibited ANF stimulation of particulate guanylate cyclase in opposition to the activating effects of calmodulin or ATP in SK-NEP-1 cells. The protein kinase C inhibitory effects appeared to be mediated via a PT-sensitive G protein.« less

  3. Involvement of neutrophils and interleukin-18 in nociception in a mouse model of muscle pain.

    PubMed

    Yoshida, Shinichirou; Hagiwara, Yoshihiro; Tsuchiya, Masahiro; Shinoda, Masamichi; Koide, Masashi; Hatakeyama, Hiroyasu; Chaweewannakorn, Chayanit; Yano, Toshihisa; Sogi, Yasuhito; Itaya, Nobuyuki; Sekiguchi, Takuya; Yabe, Yutaka; Sasaki, Keiichi; Kanzaki, Makoto; Itoi, Eiji

    2018-01-01

    Muscle pain is a common condition that relates to various pathologies. Muscle overuse induces muscle pain, and neutrophils are key players in pain production. Neutrophils also play a central role in chronic pain by secreting interleukin (IL)-18. The aim of this study was to investigate the involvement of neutrophils and IL-18 in a mouse model of muscle pain. The right hind leg muscles of BALB/c mice were stimulated electrically to induce excessive muscle contraction. The left hind leg muscles were not stimulated. The pressure pain threshold, number of neutrophils, and IL-18 levels were investigated. Furthermore, the effects of the IL-18-binding protein and Brilliant Blue G on pain were investigated. In stimulated muscles, pressure pain thresholds decreased, and neutrophil and IL-18 levels increased compared with that in non-stimulated muscles. The administration of IL-18-binding protein and Brilliant Blue G attenuated hyperalgesia caused by excessive muscle contraction. These results suggest that increased IL-18 secretion from larger numbers of neutrophils elicits mechanical hyperalgesia.

  4. Effect of nicotine, cotinine and cigarette smoke extract on the neutrophil respiratory burst.

    PubMed

    Matthews, John B; Chen, Fa-Ming; Milward, Michael R; Wright, Helen J; Carter, Kevin; McDonagh, Anna; Chapple, Iain L C

    2011-03-01

    To determine the effect of nicotine, cotinine and cigarette smoke extract (CSE) on the neutrophil respiratory burst and their effect on activation of the nuclear factor-κB (NFκB) pathway in oral epithelium. Neutrophils from periodontally healthy individuals were treated with nicotine, cotinine and CSE before stimulation with Fusobacterium nucleatum, IgG-opsonized Staphylococcus aureus and Escherichia coli lipopolysaccharide. Total and extracellular reactive oxygen species (ROS) generation was determined by luminol/isoluminol chemiluminescence. Activation of NFκB in oral epithelial cells was determined by immunocytochemistry. Smoke extract alone caused increased neutrophil extracellular isoluminol-dependent chemiluminescence, not detectable with luminol. However, pre-treatment with smoke extract reduced both total and extracellular ROS generation in response to all stimuli. Nicotine and cotinine had no effect on the neutrophil respiratory burst. Smoke extract, nicotine and cotinine did not induce oral epithelial cell NFκB activation. These data demonstrate that smoke extract reduces the ability of neutrophils to generate ROS after stimulation with F. nucleatum and IgG-opsonized S. aureus but, at high concentrations, stimulates extracellular ROS generation. During periodontitis, cigarette smoking may differentially affect neutrophil function, generally preventing elimination of periodontal pathogens but, in heavy smokers, also stimulating ROS release and oxidative stress mediated tissue damage. © 2011 John Wiley & Sons A/S.

  5. Mild Hyperthermia Downregulates Receptor-dependent Neutrophil Function

    PubMed Central

    Fröhlich, Dieter; Wittmann, Sigrid; Rothe, Gregor; Sessler, Daniel I.; Vogel, Peter; Taeger, Kai

    2005-01-01

    Mild hypothermia impairs resistance to infection and, reportedly, impairs phagocytosis and oxidative killing of un-opsonized bacteria. We evaluated various functions at 33 to 41°C in neutrophils taken from volunteers. Adhesion on endothelial cells was determined using light microscopy. Adhesion molecules expression and receptors, phagocytosis, and release of reactive oxidants were assessed using flow cytometric assays. Adhesion protein CD11b expression on resting neutrophils was temperature independent. However, upregulation of CD11b with TNF-α was increased by hypothermia and decreased with hyperthermia. Neutrophil adhesion to either resting or activated endothelial cells was not temperature dependent. Bacterial uptake was inversely related to temperature, more so with E. coli than S. aureus. Temperature dependence of phagocytosis occurred only with opsonized bacteria. Hypothermia slightly increased N-Formyl-L-methionyl-L-leucyl-phenylalanine (FMLP) receptors on neutrophils: hyperthermia decreased expression, especially with TNF-α. FMLP-induced H2O2 production was inversely related to temperature, especially in the presence of TNF-α. Conversely, phorbol-13-myristate-12-acetate, an activator of protein kinase C, induced an extreme and homogenous release of reactive oxidants that increased with temperature. In contrast to non-receptor dependent phagocytosis and oxidative killing, several crucial receptor-dependent neutrophil activities show temperature-dependent regulation, with hypothermia increasing function. The temperature dependence of neutrophil function is thus more complicated than previously appreciated. PMID:15281545

  6. Inhibition of neutrophil elastase and metalloprotease-9 of human adenocarcinoma gastric cells by chamomile (Matricaria recutita L.) infusion.

    PubMed

    Bulgari, Michela; Sangiovanni, Enrico; Colombo, Elisa; Maschi, Omar; Caruso, Donatella; Bosisio, Enrica; Dell'Agli, Mario

    2012-12-01

    This study investigated whether the antiinflammatory effect of chamomile infusion at gastric level could be ascribed to the inhibition of metalloproteinase-9 and elastase. The infusions from capitula and sifted flowers (250-1500 µg/mL) and individual flavonoids (10 µM) were tested on phorbol 12-myristate 13-acetate-stimulated AGS cells and human neutrophil elastase. The results indicate that the antiinflammatory activity associated with chamomile infusions from both the capitula and sifted flowers is most likely due to the inhibition of neutrophil elastase and gastric metalloproteinase-9 activity and secretion; the inhibition occurring in a concentration dependent manner. The promoter activity was inhibited as well and the decrease of metalloproteinase-9 expression was found to be associated with the inhibition of NF-kB driven transcription. The results further indicate that the flavonoid-7-glycosides, major constituents of chamomile flowers, may be responsible for the antiinflammatory action of the chamomile infusion observed here. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Neutrophil extracellular trap formation in supragingival biofilms.

    PubMed

    Hirschfeld, Josefine; Dommisch, Henrik; Skora, Philipp; Horvath, Gabor; Latz, Eicke; Hoerauf, Achim; Waller, Tobias; Kawai, Toshihisa; Jepsen, Søren; Deschner, James; Bekeredjian-Ding, Isabelle

    2015-01-01

    Oral biofilms are the causative agents of the highly prevalent oral diseases periodontitis and caries. Additionally, the host immune response is thought to play a critical role in disease onset. Neutrophils are known to be a key host response factor to bacterial challenge on host surfaces. Release of neutrophil extracellular traps (NETs) as a novel antimicrobial defense strategy has gained increasing attention in the past years. Here, we investigated the influx of neutrophils into the dental plaque and the ability of oral bacteria to trigger intra-biofilm release of NETs and intracellular proteins. Supragingival biofilms and whole saliva were sampled from systemically healthy subjects participating in an experimental gingivitis study. Biofilms were analysed by immunofluorescence followed by confocal and fluorescence microscopy. Moreover, concentrations of cytokines and immune-associated proteins in biofilm suspensions and saliva were assessed by ELISA. Neutrophils obtained from blood were stimulated with twelve bacterial species isolated from cultured biofilms or with lipopolysaccharide to monitor NET formation. Neutrophils, NETs, neutrophil-associated proteins (myeloperoxidase, elastase-2, cathepsin G, cathelicidin LL-37), interleukin-8, interleukin-1β and tumor necrosis factor were detected within plaque samples and saliva. All tested bacterial species as well as the polymicrobial samples isolated from the plaque of each donor induced release of NETs and interleukin-8. The degree of NET formation varied among different subjects and did not correlate with plaque scores or clinical signs of local inflammation. Our findings indicate that neutrophils are attracted towards dental biofilms, in which they become incorporated and where they are stimulated by microbes to release NETs and immunostimulatory proteins. Thus, neutrophils and NETs may be involved in host biofilm control, although their specific role needs to be further elucidated. Moreover, inter

  8. Pathogen response-like recruitment and activation of neutrophils by sterile immunogenic dying cells drives neutrophil-mediated residual cell killing

    PubMed Central

    Garg, Abhishek D; Vandenberk, Lien; Fang, Shentong; Fasche, Tekele; Van Eygen, Sofie; Maes, Jan; Van Woensel, Matthias; Koks, Carolien; Vanthillo, Niels; Graf, Norbert; de Witte, Peter; Van Gool, Stefaan; Salven, Petri; Agostinis, Patrizia

    2017-01-01

    Innate immune sensing of dying cells is modulated by several signals. Inflammatory chemokines-guided early recruitment, and pathogen-associated molecular patterns-triggered activation, of major anti-pathogenic innate immune cells like neutrophils distinguishes pathogen-infected stressed/dying cells from sterile dying cells. However, whether certain sterile dying cells stimulate innate immunity by partially mimicking pathogen response-like recruitment/activation of neutrophils remains poorly understood. We reveal that sterile immunogenic dying cancer cells trigger (a cell autonomous) pathogen response-like chemokine (PARC) signature, hallmarked by co-release of CXCL1, CCL2 and CXCL10 (similar to cells infected with bacteria or viruses). This PARC signature recruits preferentially neutrophils as first innate immune responders in vivo (in a cross-species, evolutionarily conserved manner; in mice and zebrafish). Furthermore, key danger signals emanating from these dying cells, that is, surface calreticulin, ATP and nucleic acids stimulate phagocytosis, purinergic receptors and toll-like receptors (TLR) i.e. TLR7/8/9-MyD88 signaling on neutrophil level, respectively. Engagement of purinergic receptors and TLR7/8/9-MyD88 signaling evokes neutrophil activation, which culminates into H2O2 and NO-driven respiratory burst-mediated killing of viable residual cancer cells. Thus sterile immunogenic dying cells perform 'altered-self mimicry' in certain contexts to exploit neutrophils for phagocytic targeting of dead/dying cancer cells and cytotoxic targeting of residual cancer cells. PMID:28234357

  9. LL-37 modulates human neutrophil responses to influenza A virus

    PubMed Central

    Tripathi, Shweta; Verma, Anamika; Kim, Eun-Jeong; White, Mitchell R.; Hartshorn, Kevan L.

    2014-01-01

    Recent studies have shown that the human cathelicidin, LL-37, has antiviral activity against IAV in vitro and in vivo. Neutrophils are important cellular components of the initial innate response to IAV infection. In addition to its direct antimicrobial activities, LL-37 has important immunomodulatory effects. In this study, we explore how LL-37 affects interactions of IAV with human neutrophils. LL-37 did not alter neutrophil uptake of IAV but significantly increased neutrophil H2O2 responses to the virus. IAV stimulated production of NETs in vitro, and this response was increased by preincubating the virus with LL-37. NADPH-oxidase blockade did not reduce IAV-induced NET formation or the increased NET response stimulated by LL-37 + IAV. The increased respiratory burst and NET responses were, however, inhibited by preincubating cells with a formyl peptide receptor blocker, indicating that LL-37 engages these receptors when complexed with IAV. Responses to IAV alone were not inhibited by formyl peptide receptor blockade. It has been reported that LL-37 reduces proinflammatory cytokine responses during IAV infection in vivo. We now show that IAV alone potentiated release of IL-8 from neutrophils, and preincubation with LL-37 reduced IAV-stimulated IL-8 release. These results confirm that LL-37 modulates human neutrophil responses to IAV in a distinctive manner and could have important bearing on the protective effects of LL-37 during IAV infection in vivo. PMID:25082153

  10. Polymethacrylic acid grafted psyllium (Psy- g-PMA): a novel material for waste water treatment

    NASA Astrophysics Data System (ADS)

    Kumar, Ranvijay; Sharma, Kaushlendra; Tiwary, K. P.; Sen, Gautam

    2013-03-01

    Polymethacrylic acid grafted psyllium (Psy- g-PMA) was synthesized by microwave assisted method, which involves a microwave irradiation in synergism with silver sulfate as a free radical initiator to initiate grafting reaction. Psy- g-PMA grades have been synthesized and characterized on structural basis (elemental analysis, FTIR spectroscopy, intrinsic viscosity study) as well as morphological and thermal studies, taking psyllium as reference. The effects of reaction time, amount of monomer and silver sulfate (free radical initiator) on grafting of PMA on psyllium backbone have been studied. It is observed that all the grades of Psy- g-PMA have higher intrinsic viscosities than that of psyllium. The best synthesized grade was Psy- g-PMA having intrinsic viscosity of 6.93 and 58 % grafting of PMA on the main polymer backbone. Further Psy- g-PMA applications as flocculants for waste water treatment have been investigated. Psy- g-PMA resulted in higher decrease in the flocculation parameters such as total dissolved solid or total solids compared to psyllium. Hence the result shows the possible application of grafted psyllium in wastewater treatment.

  11. Coordinated activation of AMP-activated protein kinase, extracellular signal-regulated kinase, and autophagy regulates phorbol myristate acetate-induced differentiation of SH-SY5Y neuroblastoma cells.

    PubMed

    Zogovic, Nevena; Tovilovic-Kovacevic, Gordana; Misirkic-Marjanovic, Maja; Vucicevic, Ljubica; Janjetovic, Kristina; Harhaji-Trajkovic, Ljubica; Trajkovic, Vladimir

    2015-04-01

    We explored the interplay between the intracellular energy sensor AMP-activated protein kinase (AMPK), extracellular signal-regulated kinase (ERK), and autophagy in phorbol myristate acetate (PMA)-induced neuronal differentiation of SH-SY5Y human neuroblastoma cells. PMA-triggered expression of neuronal markers (dopamine transporter, microtubule-associated protein 2, β-tubulin) was associated with an autophagic response, measured by the conversion of microtubule-associated protein light chain 3 (LC3)-I to autophagosome-bound LC3-II, increase in autophagic flux, and expression of autophagy-related (Atg) proteins Atg7 and beclin-1. This coincided with the transient activation of AMPK and sustained activation of ERK. Pharmacological inhibition or RNA interference-mediated silencing of AMPK suppressed PMA-induced expression of neuronal markers, as well as ERK activation and autophagy. A selective pharmacological blockade of ERK prevented PMA-induced neuronal differentiation and autophagy induction without affecting AMPK phosphorylation. Conversely, the inhibition of autophagy downstream of AMPK/ERK, either by pharmacological agents or LC3 knockdown, promoted the expression of neuronal markers, thus indicating a role of autophagy in the suppression of PMA-induced differentiation of SH-SY5Y cells. Therefore, PMA-induced neuronal differentiation of SH-SY5Y cells depends on a complex interplay between AMPK, ERK, and autophagy, in which the stimulatory effects of AMPK/ERK signaling are counteracted by the coinciding autophagic response. Phorbol myristate acetate (PMA) induces the expression of dopamine transporter, microtubule-associated protein 2, and β-tubulin, and subsequent neuronal differentiation of SH-SY5Y neuroblastoma cells through AMP-activated protein kinase (AMPK)-dependent activation of extracellular signal-regulated kinase (ERK). The activation of AMPK/ERK axis also induces the expression of beclin-1 and Atg7, and increases LC3 conversion, thereby triggering

  12. High-density PhyloChip profiling of stimulated aquifer microbial communities reveals a complex response to acetate amendment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handley, Kim M.; Wrighton, Kelly C.; Piceno, Yvette M.

    2012-04-13

    There is increasing interest in harnessing the functional capacities of indigenous microbial communities to transform and remediate a wide range of environmental contaminants. Information about which community members respond to stimulation can guide the interpretation and development of remediation approaches. To comprehensively determine community membership and abundance patterns among a suite of samples associated with uranium bioremediation experiments we employed a high-density microarray (PhyloChip). Samples were unstimulated, naturally reducing, or collected during Fe(III) (early) and sulfate reduction (late biostimulation) from an acetate re-amended/amended aquifer in Rifle, Colorado, and from laboratory experiments using field-collected materials. Deep community sampling with PhyloChip identifiedmore » hundreds-to-thousands of operational taxonomic units (OTUs) present during amendment, and revealed close similarity among highly enriched taxa from drill-core and groundwater well-deployed column sediment. Overall, phylogenetic data suggested stimulated community membership was most affected by a carryover effect between annual stimulation events. Nevertheless, OTUs within the Fe(III)- and sulfate-reducing lineages, Desulfuromonadales and Desulfobacterales, were repeatedly stimulated. Less consistent, co-enriched taxa represented additional lineages associated with Fe(III) and sulfate reduction (for example, Desulfovibrionales; Syntrophobacterales; Peptococcaceae) and autotrophic sulfur oxidation (Sulfurovum; Campylobacterales). These data imply complex membership among highly stimulated taxa, and by inference biogeochemical responses to acetate, a non-fermentable substrate.« less

  13. Acute Ethanol Exposure Prevents PMA-mediated Augmentation of N-methyl-d-aspartate Receptor Function in Primary Cultured Cerebellar Granule Cells

    PubMed Central

    Reneau, Jason; Reyland, Mary E.; Popp, R. Lisa

    2011-01-01

    Many intracellular proteins and signaling cascades contribute to the ethanol sensitivity of native N-methyl-d-aspartate receptors (NMDARs). One putative protein is the serine / threonine kinase, Protein kinase C (PKC). The purpose of this study was to assess if PKC modulates the ethanol sensitivity of native NMDARs expressed in primary cultured cerebellar granule cells (CGCs). With the whole-cell patch-clamp technique, we assessed if ethanol inhibition of NMDA-induced currents (INMDA) (100 μM NMDA plus 10 μM glycine) were altered in CGCs in which the novel and classical PKC isoforms were activated by phorbol-12-myristate-13-acetate (PMA). Percent inhibition by 10, 50 or 100 mM ethanol of NMDA-induced steady-state (ISS) or peak current amplitudes (IPk) of NMDARs expressed in CGCs in which PKC was activated by a 12.5 min, 100 nM PMA exposure at 37° C did not differ from currents obtained from receptors contained in control cells. However, PMA-mediated augmentation of IPk in the absence of ethanol was abolished after brief applications of 10 or 1 mM ethanol co-applied with agonists, and this suppression of enhanced receptor function was observed for up to eight minutes post-ethanol exposure. Because we had previously shown that PMA-mediated augmentation of INMDA of NMDARs expressed in these cells is by activation of PKCα, we assessed the effect of ethanol (1, 10, 50 and 100 mM) on PKCα activity. Ethanol decreased PKCα activity by 18% for 1 mM ethanol and activity decreased with increasing ethanol concentrations with a 50% inhibition observed with 100 mM ethanol. The data suggest that ethanol disruption of PMA-mediated augmentation of INMDA may be due to a decrease in PKCα activity by ethanol. However, given the incomplete blockade of PKCα activity and the low concentration of ethanol at which this phenomenon is observed, other ethanol-sensitive signaling cascades must also be involved. PMID:21624785

  14. Actin polymerization in neutrophils from donors of peripheral blood stem cells: divergent effects of glycosylated and nonglycosylated recombinant human granulocyte colony-stimulating factor.

    PubMed

    Carulli, Giovanni; Mattii, Letizia; Azzarà, Antonio; Brizzi, Stefania; Galimberti, Sara; Zucca, Alessandra; Benedetti, Edoardo; Petrini, Mario

    2006-05-01

    Neutrophil functions can be modified by Recombinant human G-CSF (rhG-CSF) treatment, with divergent effects on phagocytosis, motility, bactericidal activity, and surface molecule expression. Neutrophil morphology is modified by treatment with filgrastim (the nonglycosylated form of rhG-CSF), while it is not affected by lenograstim (the glycosylated type of rhG-CSF). Little information is available about actin polymerization in neutrophils from subjects treated with the two types of rhG-CSF. In the current paper we evaluated two groups of donors of peripheral blood stem cells (PBSC) for allogeneic transplantation. Ten subjects were treated with filgrastim and 10 with lenograstim to mobilize PBSC; 15 blood donors were evaluated as a control group. Actin polymerization (both spontaneous and fMLP-stimulated) was studied by a flow cytometric assay. A microscopic fluorescent assay was also carried out to evaluate F-actin distribution in neutrophils. We found that filgrastim induced an increased F-actin content in resting neutrophils, along with morphologic evidence for increased actin polymerization distributed principally at the cell membrane and frequently polarized in focal areas; in addition, fMLP was not able to induce further actin polymerization. On the contrary, treatment with lenograstim was associated with F-actin content, distribution, and polymerization kinetics indistinguishable from those displayed by control neutrophils. Such experimental results show that filgrastim and lenograstim display divergent effects also on neutrophil actin polymerization and provide further explanation for previous experimental findings. 2006 Wiley-Liss, Inc.

  15. New Technique for Speciation of Uranium in Sediments Following Acetate-Stimulated Bioremediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-06-22

    Acetate-stimulated bioremediation is a promising new technique for sequestering toxic uranium contamination from groundwater. The speciation of uranium in sediments after such bioremediation attempts remains unknown as a result of low uranium concentration, and is important to analyzing the stability of sequestered uranium. A new technique was developed for investigating the oxidation state and local molecular structure of uranium from field site sediments using X-Ray Absorption Spectroscopy (XAS), and was implemented at the site of a former uranium mill in Rifle, CO. Glass columns filled with bioactive Rifle sediments were deployed in wells in the contaminated Rifle aquifer and amendedmore » with a hexavalent uranium (U(VI)) stock solution to increase uranium concentration while maintaining field conditions. This sediment was harvested and XAS was utilized to analyze the oxidation state and local molecular structure of the uranium in sediment samples. Extended X-Ray Absorption Fine Structure (EXAFS) data was collected and compared to known uranium spectra to determine the local molecular structure of the uranium in the sediment. Fitting was used to determine that the field site sediments did not contain uraninite (UO{sub 2}), indicating that models based on bioreduction using pure bacterial cultures are not accurate for bioremediation in the field. Stability tests on the monomeric tetravalent uranium (U(IV)) produced by bioremediation are needed in order to assess the efficacy of acetate-stimulation bioremediation.« less

  16. Effect of diazepam and clonazepam on the function of isolated rat platelet and neutrophil.

    PubMed

    Rajtar, Grazyna; Zółkowska, Dorota; Kleinrok, Zdzisław

    2002-04-01

    Benzodiazepine binding sites distinct from the GABA-receptor-chloride-complex in the central nervous system have been recognized in many peripheral tissues, but their physiological role remains unexplained. Our study was undertaken to examine the effects of diazepam, clonazepam, and PK 11195, a peripheral benzodiazepine receptor antagonist, on the functional and biochemical responses of platelets and neutrophils stimulated by different physiological agonists. The experiments were conducted on isolated washed rat platelets activated by arachidonic acid (AA), adenosine 5'-diphosphate (ADP), or thrombin and on isolated rat neutrophils activated by a chemotactic peptide, formyl methionyl leucyl phenylalanine (fMLP). The results showed that neither diazepam nor clonazepam nor PK 11195 alone augmented the response of resting platelets or modified neutrophil response, but diazepam and clonazepam in a concentration-dependent manner inhibited thrombin, ADP or AA-stimulated platelet aggregation and the thrombin-induced increase in free intracellular Ca2+. Both drugs also exerted an inhibitory effect on reactive oxygen species (ROS) produced by fMLP-stimulated neutrophils. However, diazepam was about 10 times more effective than clonazepam. PK11195 did not influence platelet and neutrophil function stimulated by agonists, but reversed the inhibitory action of both benzodiazepines on platelet activation and ROS production. The results indicated that in vitro diazepam, and in a much smaller degree clonazepam, may down-regulate platelet activation and release of some proinflammatory mediators by stimulated neutrophils. These effects are probably exerted by a specific benzodiazepine binding sites.

  17. Eosinophils Regulate Interferon Alpha Production in Plasmacytoid Dendritic Cells Stimulated with Components of Neutrophil Extracellular Traps.

    PubMed

    Skrzeczynska-Moncznik, Joanna; Zabieglo, Katarzyna; Bossowski, Jozef P; Osiecka, Oktawia; Wlodarczyk, Agnieszka; Kapinska-Mrowiecka, Monika; Kwitniewski, Mateusz; Majewski, Pawel; Dubin, Adam; Cichy, Joanna

    2017-03-01

    Eosinophils constitute an important component of helminth immunity and are not only associated with various allergies but are also linked to autoinflammatory disorders, including the skin disease psoriasis. Here we demonstrate the functional relationship between eosinophils and plasmacytoid dendritic cells (pDCs) as related to skin diseases. We previously showed that pDCs colocalize with neutrophil extracellular traps (NETs) in psoriatic skin. Here we demonstrate that eosinophils are found in psoriatic skin near neutrophils and NETs, suggesting that pDC responses can be regulated by eosinophils. Eosinophils inhibited pDC function in vitro through a mechanism that did not involve cell contact but depended on soluble factors. In pDCs stimulated by specific NET components, eosinophil-conditioned media attenuated the production of interferon α (IFNα) but did not affect the maturation of pDCs as evidenced by the unaltered expression of the costimulatory molecules CD80 and CD86. As pDCs and IFNα play a key role in autoimmune skin inflammation, these data suggest that eosinophils may influence autoinflammatory responses through their impact on the production of IFNα by pDCs.

  18. Facilitation of Allergic Sensitization and Allergic Airway Inflammation by Pollen-Induced Innate Neutrophil Recruitment.

    PubMed

    Hosoki, Koa; Aguilera-Aguirre, Leopoldo; Brasier, Allan R; Kurosky, Alexander; Boldogh, Istvan; Sur, Sanjiv

    2016-01-01

    Neutrophil recruitment is a hallmark of rapid innate immune responses. Exposure of airways of naive mice to pollens rapidly induces neutrophil recruitment. The innate mechanisms that regulate pollen-induced neutrophil recruitment and the contribution of this neutrophilic response to subsequent induction of allergic sensitization and inflammation need to be elucidated. Here we show that ragweed pollen extract (RWPE) challenge in naive mice induces C-X-C motif ligand (CXCL) chemokine synthesis, which stimulates chemokine (C-X-C motif) receptor 2 (CXCR2)-dependent recruitment of neutrophils into the airways. Deletion of Toll-like receptor 4 (TLR4) abolishes CXCL chemokine secretion and neutrophil recruitment induced by a single RWPE challenge and inhibits induction of allergic sensitization and airway inflammation after repeated exposures to RWPE. Forced induction of CXCL chemokine secretion and neutrophil recruitment in mice lacking TLR4 also reconstitutes the ability of multiple challenges of RWPE to induce allergic airway inflammation. Blocking RWPE-induced neutrophil recruitment in wild-type mice by administration of a CXCR2 inhibitor inhibits the ability of repeated exposures to RWPE to stimulate allergic sensitization and airway inflammation. Administration of neutrophils derived from naive donor mice into the airways of Tlr4 knockout recipient mice after each repeated RWPE challenge reconstitutes allergic sensitization and inflammation in these mice. Together these observations indicate that pollen-induced recruitment of neutrophils is TLR4 and CXCR2 dependent and that recruitment of neutrophils is a critical rate-limiting event that stimulates induction of allergic sensitization and airway inflammation. Inhibiting pollen-induced recruitment of neutrophils, such as by administration of CXCR2 antagonists, may be a novel strategy to prevent initiation of pollen-induced allergic airway inflammation.

  19. Macrophage differentiation induced by PMA is mediated by activation of RhoA/ROCK signaling.

    PubMed

    Yang, Lifeng; Dai, Fan; Tang, Lian; Le, Yulan; Yao, Wenjuan

    2017-01-01

    In order to investigate the effects of RhoA/ROCK signaling in macrophage differentiation, we used 100 ng/mL PMA to induce macrophage differentiation from U937 cells in vitro. The observation of cell morphology and the expression of CD68 and SR-A were performed to confirm the differentiation induced by PMA. Western blot analysis showed that the expression of ROCK1 and ROCK2 and the phosphorylation of MYPT1 were significantly increased after PMA treatment. Pulldown assay showed that the activation of RhoA was obviously enhanced when U937 cells were treated with PMA. In order to further demonstrate whether RhoA/ROCK signaling could mediate the macrophage differentiation induced by PMA, we successfully suppressed the expression of RhoA, ROCK1 and ROCK2 by performing siRNA technology in U937 cells, respectively. The macrophage differentiation and the expression of CD68 and SR-A were significantly inhibited by the suppression of RhoA, ROCK1 or ROCK2 in PMA-induced U937 cells, indicating that the macrophage differentiation induced by PMA is associated with RhoA/ROCK signaling pathway. In addition, we pretreated U937 cells with Y27632 (ROCK inhibitor, 20 μM) for 30 min and then observed the macrophage differentiation induced by PMA. The result illustrated that Y27632 pretreatment obviously inhibited PMA-induced differentiation and the expression of CD68 and SR-A. In conclusion, the activation of RhoA/ROCK signaling is responsible for the macrophage differentiation induced by PMA.

  20. Expression and regulation of aromatase cytochrome P450 in THP 1 human myeloid leukaemia cells.

    PubMed

    Jakob, F; Homann, D; Seufert, J; Schneider, D; Köhrle, J

    1995-04-28

    Aromatase cytochrome P450 mRNA and activity was strongly expressed in THP 1 myeloid leukaemia cells after treatment with phorbol-myristate-acetate (PMA) and dexamethasone, low level expression was caused by calcitriol. mRNA species of 4.0, 3.0, 2.4 and 1.1 kb size were differentially stimulated. After calcitriol-mediated differentiation (72 h, measured by CD 14 expression) mRNA expression was further enhanced by PMA (45-fold), dexamethasone (15-fold), oestradiol (3.7-fold), testosterone (2.5-fold) and androstenedione (3.5-fold). Forskolin, cAMP and follicle stimulating hormone had no stimulatory effect. Oestradiol formation from testosterone (oestradiol radioimmunoassay in culture supernatants) increased to > 2000 pg/ml/10(6) cells/24 h after PMA-stimulation, mirrored mRNA expression and was suppressed below 10% of original values in the presence of 4-OH-androstenedione. Exons I.2 and I.4 were expressed in PMA-stimulated cells only, exon I.3 in both PMA- and dexamethasone-stimulated cells. A new splicing variant was expressed after calcitriol-stimulation, which did not hybridize to an exon II-derived oligonucleotide but to an exon III-derived one. Local aromatisation of androgens into oestradiol may be important in the concerted crosstalk of cells of the monocyte/macrophage lineage with their respective tissues in inflammation and bone metabolism.

  1. Tamoxifen induces apoptotic neutrophil efferocytosis in horses.

    PubMed

    Olave, C; Morales, N; Uberti, B; Henriquez, C; Sarmiento, J; Ortloff, A; Folch, H; Moran, G

    2018-03-01

    Macrophages and neutrophils are important cellular components in the process of acute inflammation and its subsequent resolution, and evidence increasingly suggests that they play important functions during the resolution of chronic, adaptive inflammatory processes. Exacerbated neutrophil activity can be harmful to surrounding tissues; this is important in a range of diseases, including allergic asthma and chronic obstructive pulmonary disease in humans, and equine asthma (also known as recurrent airway obstruction (RAO). Tamoxifen (TX) is a non-steroidal estrogen receptor modulator with effects on cell growth and survival. Previous studies showed that TX treatment in horses with induced acute pulmonary inflammation promoted early apoptosis of blood and BALF neutrophils, reduction of BALF neutrophils, and improvement in animals' clinical status. The aim of this study was to describe if TX induces in vitro efferocytosis of neutrophils by alveolar macrophages. Efferocytosis assay, myeloperoxidase (MPO) detection and translocation phosphatidylserine (PS) were performed on neutrophils isolated from peripheral blood samples from five healthy horses. In in vitro samples from heathy horses, TX treatment increases the phenomenon of efferocytosis of peripheral neutrophils by alveolar macrophages. Similar increases in supernatant MPO concentration and PS translocation were observed in TX-treated neutrophils, compared to control cells. In conclusion, these results confirm that tamoxifen has a direct effect on equine peripheral blood neutrophils, through stimulation of the engulfment of apoptotic neutrophils by alveolar macrophages.

  2. 21 CFR 814.40 - Time frames for reviewing a PMA.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES PREMARKET APPROVAL OF MEDICAL DEVICES FDA Action on a PMA § 814.40 Time frames for... the applicant does not submit a major amendment, FDA will review the PMA and, after receiving the report and recommendation of the appropriate FDA advisory committee, send the applicant an approval order...

  3. 21 CFR 814.40 - Time frames for reviewing a PMA.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES PREMARKET APPROVAL OF MEDICAL DEVICES FDA Action on a PMA § 814.40 Time frames for... the applicant does not submit a major amendment, FDA will review the PMA and, after receiving the report and recommendation of the appropriate FDA advisory committee, send the applicant an approval order...

  4. 21 CFR 814.40 - Time frames for reviewing a PMA.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES PREMARKET APPROVAL OF MEDICAL DEVICES FDA Action on a PMA § 814.40 Time frames for... the applicant does not submit a major amendment, FDA will review the PMA and, after receiving the report and recommendation of the appropriate FDA advisory committee, send the applicant an approval order...

  5. Responses of human neutrophils to nicotine and/or Porphyromonas gingivalis.

    PubMed

    Al-Shibani, Nouf K; Labban, Nawaf Y; Kowolik, Michael J; Ruby, John D; Windsor, L Jack

    2011-10-01

    Tobacco smoking is considered a major modifiable risk factor for periodontal disease. Nicotine is the addictive ingredient in tobacco and has been shown to affect multiple cellular processes. Neutrophils are the first line of host defense and are critical cells in the maintenance of periodontal health through their role in the control of bacteria, but they can also contribute to the progression of periodontal disease by the production and release of reactive oxygen species (ROS). Virulence factors from periodontal pathogens, such as Porphyromonas gingivalis (Pg), stimulate the respiratory burst of neutrophils. The objective of this study is to explore the oxidative activity of neutrophils when stimulated with Pg, nicotine, or both. Neutrophils were separated from buffy coats by the double dextran gradient method. The generation of ROS by neutrophils was determined using luminol-dependent chemiluminescence assays. The reaction was followed for 90 minutes, and the neutrophil activation was recorded as the total integrated energy output. The Pg and Pg plus nicotine groups had a significantly higher active and peak chemiluminescence than the nicotine group (all with P <0.0001). The Pg and Pg with nicotine groups were not significantly different (P = 0.90). In the presence of Pg, the nicotine did not further enhance the ROS release by the neutrophils, suggesting that the bacteria induced the maximum ROS release in this model system.

  6. High temperature stimulates acetic acid accumulation and enhances the growth inhibition and ethanol production by Saccharomyces cerevisiae under fermenting conditions.

    PubMed

    Woo, Ji-Min; Yang, Kyung-Mi; Kim, Sae-Um; Blank, Lars M; Park, Jin-Byung

    2014-07-01

    Cellular responses of Saccharomyces cerevisiae to high temperatures of up to 42 °C during ethanol fermentation at a high glucose concentration (i.e., 100 g/L) were investigated. Increased temperature correlated with stimulated glucose uptake to produce not only the thermal protectant glycerol but also ethanol and acetic acid. Carbon flux into the tricarboxylic acid (TCA) cycle correlated positively with cultivation temperature. These results indicate that the increased demand for energy (in the form of ATP), most likely caused by multiple stressors, including heat, acetic acid, and ethanol, was matched by both the fermentation and respiration pathways. Notably, acetic acid production was substantially stimulated compared to that of other metabolites during growth at increased temperature. The acetic acid produced in addition to ethanol seemed to subsequently result in adverse effects, leading to increased production of reactive oxygen species. This, in turn, appeared to cause the specific growth rate, and glucose uptake rate reduced leading to a decrease of the specific ethanol production rate far before glucose depletion. These results suggest that adverse effects from heat, acetic acid, ethanol, and oxidative stressors are synergistic, resulting in a decrease of the specific growth rate and ethanol production rate and, hence, are major determinants of cell stability and ethanol fermentation performance of S. cerevisiae at high temperatures. The results are discussed in the context of possible applications.

  7. Facilitation of Allergic Sensitization and Allergic Airway Inflammation by Pollen-Induced Innate Neutrophil Recruitment

    PubMed Central

    Hosoki, Koa; Aguilera-Aguirre, Leopoldo; Brasier, Allan R.; Kurosky, Alexander; Boldogh, Istvan

    2016-01-01

    Neutrophil recruitment is a hallmark of rapid innate immune responses. Exposure of airways of naive mice to pollens rapidly induces neutrophil recruitment. The innate mechanisms that regulate pollen-induced neutrophil recruitment and the contribution of this neutrophilic response to subsequent induction of allergic sensitization and inflammation need to be elucidated. Here we show that ragweed pollen extract (RWPE) challenge in naive mice induces C-X-C motif ligand (CXCL) chemokine synthesis, which stimulates chemokine (C-X-C motif) receptor 2 (CXCR2)-dependent recruitment of neutrophils into the airways. Deletion of Toll-like receptor 4 (TLR4) abolishes CXCL chemokine secretion and neutrophil recruitment induced by a single RWPE challenge and inhibits induction of allergic sensitization and airway inflammation after repeated exposures to RWPE. Forced induction of CXCL chemokine secretion and neutrophil recruitment in mice lacking TLR4 also reconstitutes the ability of multiple challenges of RWPE to induce allergic airway inflammation. Blocking RWPE-induced neutrophil recruitment in wild-type mice by administration of a CXCR2 inhibitor inhibits the ability of repeated exposures to RWPE to stimulate allergic sensitization and airway inflammation. Administration of neutrophils derived from naive donor mice into the airways of Tlr4 knockout recipient mice after each repeated RWPE challenge reconstitutes allergic sensitization and inflammation in these mice. Together these observations indicate that pollen-induced recruitment of neutrophils is TLR4 and CXCR2 dependent and that recruitment of neutrophils is a critical rate-limiting event that stimulates induction of allergic sensitization and airway inflammation. Inhibiting pollen-induced recruitment of neutrophils, such as by administration of CXCR2 antagonists, may be a novel strategy to prevent initiation of pollen-induced allergic airway inflammation. PMID:26086549

  8. Cu/Zn superoxide dismutase and the proton ATPase Pma1p of Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baron, J. Allen; Chen, Janice S.; Culotta, Valeria C., E-mail: vculott1@jhu.edu

    2015-07-03

    In eukaryotes, the Cu/Zn containing superoxide dismutase (SOD1) plays a critical role in oxidative stress protection as well as in signaling. We recently demonstrated a function for Saccharomyces cerevisiae Sod1p in signaling through CK1γ casein kinases and identified the essential proton ATPase Pma1p as one likely target. The connection between Sod1p and Pma1p was explored further by testing the impact of sod1Δ mutations on cells expressing mutant alleles of Pma1p that alter activity and/or post-translational regulation of this ATPase. We report here that sod1Δ mutations are lethal when combined with the T912D allele of Pma1p in the C-terminal regulatory domain.more » This “synthetic lethality” was reversed by intragenic suppressor mutations in Pma1p, including an A906G substitution that lies within the C-terminal regulatory domain and hyper-activates Pma1p. Surprisingly the effect of sod1Δ mutations on Pma1-T912D is not mediated through the Sod1p signaling pathway involving the CK1γ casein kinases. Rather, Sod1p sustains life of cells expressing Pma1-T912D through oxidative stress protection. The synthetic lethality of sod1Δ Pma1-T912D cells is suppressed by growing cells under low oxygen conditions or by treatments with manganese-based antioxidants. We now propose a model in which Sod1p maximizes Pma1p activity in two ways: one involving signaling through CK1γ casein kinases and an independent role for Sod1p in oxidative stress protection. - Highlights: • In yeast, the anti-oxidant enzyme SOD1 promotes activity of the proton ATPase Pma1p. • Cells expressing a T912D variant of Pma1p are not viable without SOD1. • SOD1 is needed to protect Pma1-T912D expressing cells from severe oxidative damage. • SOD1 activates Pma1p through casein kinase signaling and oxidative stress protection.« less

  9. RasGRP1 confers the phorbol ester-sensitive phenotype to EL4 lymphoma cells.

    PubMed

    Han, Shujie; Knoepp, Stewart M; Hallman, Mark A; Meier, Kathryn E

    2007-01-01

    The murine EL4 lymphoma cell line exists in variants that are either sensitive or resistant to the tumor promoter phorbol 12-myristate 13-acetate (PMA). In sensitive EL4 cells, PMA causes robust Erk mitogen-activated protein kinase activation that results in growth arrest. In resistant cells, PMA induces minimal Erk activation, without growth arrest. PMA stimulates IL-2 production in sensitive, but not resistant, cells. The role of RasGRP1, a PMA-activated guanine nucleotide exchange factor for Ras, in EL4 phenotype was examined. Endogenous RasGRP1 protein is expressed at much higher levels in sensitive than in resistant cells. PMA-induced Ras activation is observed in sensitive cells but not in resistant cells lacking Ras-GRP1. PMA induces down-regulation of RasGRP1 protein in sensitive cells but increases RasGRP1 in resistant cells. Transfection of RasGRP1 into resistant cells enhances PMA-induced Erk activation. In the reverse experiment, introduction of small interfering RNA (siRNA) for RasGRP1 suppresses PMA-induced Ras and Erk activations in sensitive cells. Sensitive cells incubated with siRNA for RasGRP1 exhibit the PMA-resistant phenotype, in that they are able to proliferate in the presence of PMA and do not secrete IL-2 when stimulated with PMA. These studies indicate that the PMA-sensitive phenotype, as previously defined for the EL4 cell line, is conferred by endogenous expression of RasGRP1 protein.

  10. Secretion of S100A8, S100A9, and S100A12 by Neutrophils Involves Reactive Oxygen Species and Potassium Efflux.

    PubMed

    Tardif, Mélanie R; Chapeton-Montes, Julie Andrea; Posvandzic, Alma; Pagé, Nathalie; Gilbert, Caroline; Tessier, Philippe A

    2015-01-01

    S100A8/A9 (calprotectin) and S100A12 proinflammatory mediators are found at inflammatory sites and in the serum of patients with inflammatory or autoimmune diseases. These cytoplasmic proteins are secreted by neutrophils at sites of inflammation via alternative secretion pathways of which little is known. This study examined the nature of the stimuli leading to S100A8/A9 and S100A12 secretion as well as the mechanism involved in this alternative secretion pathway. Chemotactic agents, cytokines, and particulate molecules were used to stimulate human neutrophils. MSU crystals, PMA, and H2O2 induced the release of S100A8, S100A9, and S100A12 homodimers, as well as S100A8/A9 heterodimer. High concentrations of S100A8/A9 and S100A12 were secreted in response to nanoparticles like MSU, silica, TiO2, fullerene, and single-wall carbon nanotubes as well as in response to microbe-derived molecules, such as zymosan or HKCA. However, neutrophils exposed to the chemotactic factors fMLP failed to secrete S100A8/A9 or S100A12. Secretion of S100A8/A9 was dependent on the production of reactive oxygen species and required K(+) exchanges through the ATP-sensitive K(+) channel. Altogether, these findings suggest that S100A12 and S100A8/A9 are secreted independently either via distinct mechanisms of secretion or following the activation of different signal transduction pathways.

  11. Secretion of S100A8, S100A9, and S100A12 by Neutrophils Involves Reactive Oxygen Species and Potassium Efflux

    PubMed Central

    Tardif, Mélanie R.; Chapeton-Montes, Julie Andrea; Posvandzic, Alma; Pagé, Nathalie; Gilbert, Caroline; Tessier, Philippe A.

    2015-01-01

    S100A8/A9 (calprotectin) and S100A12 proinflammatory mediators are found at inflammatory sites and in the serum of patients with inflammatory or autoimmune diseases. These cytoplasmic proteins are secreted by neutrophils at sites of inflammation via alternative secretion pathways of which little is known. This study examined the nature of the stimuli leading to S100A8/A9 and S100A12 secretion as well as the mechanism involved in this alternative secretion pathway. Chemotactic agents, cytokines, and particulate molecules were used to stimulate human neutrophils. MSU crystals, PMA, and H2O2 induced the release of S100A8, S100A9, and S100A12 homodimers, as well as S100A8/A9 heterodimer. High concentrations of S100A8/A9 and S100A12 were secreted in response to nanoparticles like MSU, silica, TiO2, fullerene, and single-wall carbon nanotubes as well as in response to microbe-derived molecules, such as zymosan or HKCA. However, neutrophils exposed to the chemotactic factors fMLP failed to secrete S100A8/A9 or S100A12. Secretion of S100A8/A9 was dependent on the production of reactive oxygen species and required K+ exchanges through the ATP-sensitive K+ channel. Altogether, these findings suggest that S100A12 and S100A8/A9 are secreted independently either via distinct mechanisms of secretion or following the activation of different signal transduction pathways. PMID:27057553

  12. Activation of l-arginine transport by protein kinase C in rabbit, rat and mouse alveolar macrophages

    PubMed Central

    Racké, Kurt; Hey, Claudia; Mössner, Jutta; Hammermann, Rainer; Stichnote, Christina; Wessler, Ignaz

    1998-01-01

    The role of protein kinase C in controlling L-arginine transport in alveolar macrophages was investigated. L-[3H]Arginine uptake in rabbit alveolar macrophages declined by 80 % after 20 h in culture. 4β-Phorbol 12-myristate 13-acetate (PMA), but not 4α-phorbol 12-myristate 13-acetate (α-PMA), present during 20 h culture, enhanced L-[3H]arginine uptake more than 10-fold. Staurosporine and chelerythrine opposed this effect. L-[3H]Arginine uptake was saturable and blockable by L-lysine. After PMA treatment Vmax was increased more than 5-fold and Km was reduced from 0.65 to 0.32 mM. Time course experiments showed that PMA increased L-[3H]arginine uptake almost maximally within 2 h. This short-term effect was not affected by cycloheximide or actinomycin D. L-[3H]Arginine uptake and its stimulation by PMA was also observed in sodium-free medium. L-Leucine (0.1 mM) inhibited L-[3H]arginine uptake by 50 % in sodium-containing medium, but not in sodium-free medium. At 1 mM, L-leucine caused significant inhibition in sodium-free medium also. L-Leucine showed similar effects on PMA-treated cells. N-Ethylmaleimide (200 μm, 10 min) reduced L-[3H]arginine uptake by 70 % in control cells, but had no effect on PMA-treated (20 or 2 h) cells. In alveolar macrophages, multiple transport systems are involved in L-arginine uptake, which is markedly stimulated by protein kinase C, probably by modulation of the activity of already expressed cationic amino acid transporters. PMID:9714862

  13. Heterogeneity in Neutrophil Microparticles Reveals Distinct Proteome and Functional Properties*

    PubMed Central

    Dalli, Jesmond; Montero-Melendez, Trinidad; Norling, Lucy V; Yin, Xiaoke; Hinds, Charles; Haskard, Dorian; Mayr, Manuel; Perretti, Mauro

    2013-01-01

    Altered plasma neutrophil microparticle levels have recently been implicated in a number of vascular and inflammatory diseases, yet our understanding of their actions is very limited. Herein, we investigate the proteome of neutrophil microparticles in order to shed light on their biological actions. Stimulation of human neutrophils, either in suspension or adherent to an endothelial monolayer, led to the production of microparticles containing >400 distinct proteins with only 223 being shared by the two subsets. For instance, postadherent microparticles were enriched in alpha-2 macroglobulin and ceruloplasmin, whereas microparticles produced by neutrophils in suspension were abundant in heat shock 70 kDa protein 1. Annexin A1 and lactotransferrin were expressed in both microparticle subsets. We next determined relative abundance of these proteins in three types of human microparticle samples: healthy volunteer plasma, plasma of septic patients and skin blister exudates finding that these proteins were differentially expressed on neutrophil microparticles from these samples reflecting in part the expression profiles we found in vitro. Functional assessment of the neutrophil microparticles subsets demonstrated that in response to direct stimulation neutrophil microparticles produced reactive oxygen species and leukotriene B4 as well as locomoted toward a chemotactic gradient. Finally, we investigated the actions of the two neutrophil microparticles subsets described herein on target cell responses. Microarray analysis with human primary endothelial cells incubated with either microparticle subset revealed a discrete modulation of endothelial cell gene expression profile. These findings demonstrate that neutrophil microparticles are heterogenous and can deliver packaged information propagating the activation status of the parent cell, potentially exerting novel and fundamental roles both under homeostatic and disease conditions. PMID:23660474

  14. Optimization of PMA-PCR Protocol for Viability Detection of Pathogens

    NASA Technical Reports Server (NTRS)

    Mikkelson, Brian J.; Lee, Christine M.; Ponce, Adrian

    2011-01-01

    This presented study demonstrates the need that PMA-PCR can be used to capture the loss of viability of a sample that is much more specific and time-efficient than alternative methods. This protocol is particularly useful in scenarios in which sterilization treatments may inactivate organisms but not degrade their DNA. The use of a PCR-based method of pathogen detection without first inactivating the DNA of nonviable cells will potentially lead to false positives. The loss of culturability, by heat-killing, did not prevent amplified PCR products, which supports the use of PMA to prevent amplification and differentiate between viable and dead cells. PMA was shown to inhibit the amplification of DNA by PCR in vegetative cells that had been heat-killed.

  15. 14 CFR 45.15 - Marking requirements for PMA articles, TSO articles, and Critical parts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Marking requirements for PMA articles, TSO articles, and Critical parts. 45.15 Section 45.15 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Articles § 45.15 Marking requirements for PMA articles, TSO articles, and Critical parts. (a) PMA articles...

  16. 14 CFR 45.15 - Marking requirements for PMA articles, TSO articles, and Critical parts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Marking requirements for PMA articles, TSO articles, and Critical parts. 45.15 Section 45.15 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Articles § 45.15 Marking requirements for PMA articles, TSO articles, and Critical parts. (a) PMA articles...

  17. 14 CFR 45.15 - Marking requirements for PMA articles, TSO articles, and Critical parts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Marking requirements for PMA articles, TSO articles, and Critical parts. 45.15 Section 45.15 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Articles § 45.15 Marking requirements for PMA articles, TSO articles, and Critical parts. (a) PMA articles...

  18. Inductive potential of recombinant human granulocyte colony-stimulating factor to mature neutrophils from x-irradiated human peripheral blood hematopoietic progenitor cells.

    PubMed

    Katsumori, Takeo; Yoshino, Hironori; Hayashi, Masako; Takahashi, Kenji; Kashiwakura, Ikuo

    2009-11-01

    Recombinant human granulocyte colony-stimulating factor (rhG-CSF) has been used for treatment of neutropenia. Filgrastim, Nartograstim, and Lenograstim are clinically available in Japan. However, the differences in potential benefit for radiation-induced disorder between these types of rhG-CSFs remain unknown. Therefore, the effects of three different types of rhG-CSFs on granulocyte progenitor cells and expansion of neutrophils from nonirradiated or 2 Gy X-irradiated human CD34+ hematopoietic progenitor cells were examined. For analysis of granulocyte colony-forming units (CFU-G) and a surviving fraction of CFU-G, nonirradiated or X-irradiated CD34+ cells were cultured in methylcellulose containing rhG-CSF. These cells were cultured in serum-free medium supplemented with rhG-CSF, and the expansion and characteristics of neutrophils were analyzed. All three types of rhG-CSFs increased the number of CFU-G in a dose-dependent manner; however, Lenograstim is superior to others because of CFU-G-derived colony formation at relatively low doses. The surviving fraction of CFU-G was independent of the types of rhG-CSFs. Expansion of neutrophils by rhG-CSF was largely attenuated by X-irradiation, though no significant difference in neutrophil number was observed between the three types of rhG-CSFs under both nonirradiation and X-irradiation conditions. In terms of functional characteristics of neutrophils, Lenograstim-induced neutrophils produced high levels of reactive oxygen species compared to Filgrastim, when rhG-CSF was applied to nonirradiated CD34(+) cells. In conclusion, different types of rhG-CSFs lead to different effects when rhG-CSF is applied to nonirradiated CD34+ cells, though Filgrastim, Nartograstim, and Lenograstim show equal effects on X-irradiated CD34+ cells.

  19. [Acetate-free biofiltration].

    PubMed

    Martello, Mauro; Di Luca, Marina

    2012-01-01

    Acetate-free biofiltration is a dialysis method with high biocompatibility. The lack of acetate results in decreased stimulation of the production of inflammatory mediators. Other favorable features have been added over the years, such as the possibility to modulate the concentration of potassium in the dialysate, thereby reducing the risk of arrhythmias; the possibility to constantly monitor the blood volume during treatment to reduce the risk of intradialytic hypotension; and a reduced need for heparin thanks to a membrane with a specially treated surface. In this review we discuss the specifics of acetate-free biofiltration.

  20. Phorbol esters alter alpha4 and alphad integrin usage during eosinophil adhesion to VCAM-1.

    PubMed

    Kikuchi, Matsuo; Tachimoto, Hiroshi; Nutku, Esra; Hudson, Sherry A; Bochner, Bruce S

    2003-01-01

    We examined the effect of the protein kinase C activator phorbol-12-myristate-13-acetate (PMA) on the human eosinophil adhesion molecule phenotype and attachment to VCAM-1 via alpha4 and alphad integrins under static and flow conditions. PMA increased surface expression of alphad integrins and decreased alpha4 integrin expression. Under static conditions, eosinophils bound well to VCAM-1, primarily via alpha4beta1 integrins, with a minor alphadbeta2 integrin component. Unexpectedly, PMA-stimulated eosinophils bound equally well to VCAM-1 and albumin in a temperature- and divalent cation-dependent manner, yet adhesion was independent of beta1 and beta2 integrins. Under flow conditions, eosinophils readily attached to VCAM-1, and adhesion was inhibited by both alpha4 and alphad mAbs (95 and 50% inhibition, respectively). Many fewer PMA-stimulated eosinophils bound to VCAM-1 under flow conditions, but both alpha4 and alphad mAbs inhibited adhesion equally. Thus, PMA alters eosinophil integrin expression and the relative contributions of alpha4 and alphad integrins during attachment to VCAM-1.

  1. Immune complexes formed following the binding of anti-platelet factor 4 (CXCL4) antibodies to CXCL4 stimulate human neutrophil activation and cell adhesion.

    PubMed

    Xiao, Zhihua; Visentin, Gian P; Dayananda, Kannayakanahalli M; Neelamegham, Sriram

    2008-08-15

    We tested the possibility that immune complexes formed following platelet factor 4 (PF4/CXCL4) binding to anti-PF4 antibody can stimulate neutrophil activation, similar to previous reports with platelets. Monoclonal Abs against PF4 and IgG from a heparin-induced thrombocytopenia (HIT) patient were applied. We observed that although PF4 or anti-PF4 antibody alone did not alter neutrophil function, costimulation with both reagents resulted in approximately 3-fold increase in cell surface Mac-1 expression, enhanced cell adhesion via L-selectin and CD18 integrins, and degranulation of secondary and tertiary granules. The level of Mac-1 up-regulation peaked at an intermediate PF4 dose, suggesting that functional response varies with antigen-antibody stoichiometry. PF4 binding to neutrophils was blocked by chondroitinase ABC. Cell activation was inhibited by both chondroitinase ABC and anti-CD32/FcgammaRII blocking mAb, IV.3. Confocal microscopy demonstrated that immune complexes colocalize with CD32a. Studies with HIT IgG demonstrated that neutrophils could be activated in the absence of exogenous heparin. These data, together, show that leukocyte surface chondroitin sulfates promote neutrophil activation by enhancing immune-complex binding to CD32a. Studies with recombinant PF4 suggest a role for arginine 49 in stabilizing PF4-chondroitin binding. Neutrophils activated via this mechanism may contribute to thrombosis and inflammation in patients mounting an immune response to PF4-heparin.

  2. Immune complexes formed following the binding of anti–platelet factor 4 (CXCL4) antibodies to CXCL4 stimulate human neutrophil activation and cell adhesion

    PubMed Central

    Xiao, Zhihua; Visentin, Gian P.; Dayananda, Kannayakanahalli M.

    2008-01-01

    We tested the possibility that immune complexes formed following platelet factor 4 (PF4/CXCL4) binding to anti-PF4 antibody can stimulate neutrophil activation, similar to previous reports with platelets. Monoclonal Abs against PF4 and IgG from a heparin-induced thrombocytopenia (HIT) patient were applied. We observed that although PF4 or anti-PF4 antibody alone did not alter neutrophil function, costimulation with both reagents resulted in approximately 3-fold increase in cell surface Mac-1 expression, enhanced cell adhesion via L-selectin and CD18 integrins, and degranulation of secondary and tertiary granules. The level of Mac-1 up-regulation peaked at an intermediate PF4 dose, suggesting that functional response varies with antigen-antibody stoichiometry. PF4 binding to neutrophils was blocked by chondroitinase ABC. Cell activation was inhibited by both chondroitinase ABC and anti-CD32/FcγRII blocking mAb, IV.3. Confocal microscopy demonstrated that immune complexes colocalize with CD32a. Studies with HIT IgG demonstrated that neutrophils could be activated in the absence of exogenous heparin. These data, together, show that leukocyte surface chondroitin sulfates promote neutrophil activation by enhancing immune-complex binding to CD32a. Studies with recombinant PF4 suggest a role for arginine 49 in stabilizing PF4-chondroitin binding. Neutrophils activated via this mechanism may contribute to thrombosis and inflammation in patients mounting an immune response to PF4-heparin. PMID:18539895

  3. Laser fluorescence fluctuation excesses in molecular immunology experiments

    NASA Astrophysics Data System (ADS)

    Galich, N. E.; Filatov, M. V.

    2007-04-01

    A novel approach to statistical analysis of flow cytometry fluorescence data have been developed and applied for population analysis of blood neutrophils stained with hydroethidine during respiratory burst reaction. The staining based on intracellular oxidation hydroethidine to ethidium bromide, which intercalate into cell DNA. Fluorescence of the resultant product serves as a measure of the neutrophil ability to generate superoxide radicals after induction respiratory burst reaction by phorbol myristate acetate (PMA). It was demonstrated that polymorphonuclear leukocytes of persons with inflammatory diseases showed a considerably changed response. Cytofluorometric histograms obtained have unique information about condition of neutrophil population what might to allow a determination of the pathology processes type connecting with such inflammation. A novel approach to histogram analysis is based on analysis of high-momentum dynamic of distribution. The features of fluctuation excesses of distribution have unique information about disease under consideration.

  4. P-selectin mediates neutrophil adhesion to endothelial cell borders.

    PubMed

    Burns, A R; Bowden, R A; Abe, Y; Walker, D C; Simon, S I; Entman, M L; Smith, C W

    1999-03-01

    During an acute inflammatory response, endothelial P-selectin (CD62P) can mediate the initial capture of neutrophils from the free flowing bloodstream. P-selectin is stored in secretory granules (Weibel-Palade bodies) and is rapidly expressed on the endothelial surface after stimulation with histamine or thrombin. Because neutrophil transmigration occurs preferentially at endothelial borders, we wished to determine whether P-selectin-dependent neutrophil capture (adhesion) occurs at endothelial cell borders. Under static or hydrodynamic flow (2 dyn/cm2) conditions, histamine (10(-4) M) or thrombin (0.2 U/mL) treatment induced preferential (> or = 75%) neutrophil adhesion to the cell borders of endothelial monolayers. Blocking antibody studies established that neutrophil adhesion was completely P-selectin dependent. P-selectin surface expression increased significantly after histamine treatment and P-selectin immunostaining was concentrated along endothelial borders. We conclude that preferential P-selectin expression along endothelial borders may be an important mechanism for targeting neutrophil migration at endothelial borders.

  5. The effect of stress-inducible extracellular Hsp72 on human neutrophil chemotaxis: a role during acute intense exercise.

    PubMed

    Ortega, Eduardo; Hinchado, M D; Martín-Cordero, L; Asea, A

    2009-05-01

    We studied the physiological role of the 72 kDa extracellular heat shock protein (Hsp72, a stress-inducible protein) in modulating neutrophil chemotaxis during a single bout of intense exercise performed by sedentary women, together with various cell mechanisms potentially involved in the modulation. For each volunteer, we evaluated neutrophil chemotaxis and serum Hsp72 concentration before and immediately after a single bout of exercise (1 h on a cycle ergometer at 70% VO(2) max), and 24 h later. Both parameters were found to be stimulated by the exercise, and had returned to basal values 24 h later. In vitro, there was a dose-dependent increase in chemotaxis when neutrophils were incubated both with physiological Hsp72 concentrations and with a 100 x greater concentration. The chemotaxis was greater when the neutrophils were incubated with the post-exercise Hsp72 concentration than with the basal concentration, suggesting a physiological role for this protein in the context of the stimulation of neutrophil chemotaxis by intense exercise. The 100 x Hsp72 concentration stimulated chemotaxis even more strongly. In addition, Hsp72 was found to have chemoattractant and chemokinetic effects on the neutrophils at physiological concentrations, with these effects being significantly greater with the post-exercise than with the basal Hsp72 concentration. The Hsp72-induced stimulation of neutrophil chemotaxis disappeared when the toll-like receptor 2 (TLR-2) was blocked, and phosphatidylinositol-3-kinase (PI3K), extracellular signal-regulated kinase (ERK), and nuclear transcription factor kappa B (NF-kappaB) were also found to be involved in the signaling process. No changes were observed, however, in neutrophil intracellular calcium levels in response to Hsp72. In conclusion, physiological concentrations of the stress protein Hsp72 stimulate human neutrophil chemotaxis through TLR-2 with its cofactor CD14, involving ERK, NF-kappaB, and PI3K, but not iCa(2 + ), as

  6. 5-Lipoxygenase-Dependent Recruitment of Neutrophils and Macrophages by Eotaxin-Stimulated Murine Eosinophils

    PubMed Central

    Luz, Ricardo Alves; Xavier-Elsas, Pedro; de Luca, Bianca; Masid-de-Brito, Daniela; Cauduro, Priscila Soares; Gondar Arcanjo, Luiz Carlos; Cordeiro Faria dos Santos, Ana Carolina; de Oliveira, Ivi Cristina Maria; Gaspar-Elsas, Maria Ignez Capella

    2014-01-01

    The roles of eosinophils in antimicrobial defense remain incompletely understood. In ovalbumin-sensitized mice, eosinophils are selectively recruited to the peritoneal cavity by antigen, eotaxin, or leukotriene(LT)B4, a 5-lipoxygenase (5-LO) metabolite. 5-LO blockade prevents responses to both antigen and eotaxin. We examined responses to eotaxin in the absence of sensitization and their dependence on 5-LO. BALB/c or PAS mice and their mutants (5-LO-deficient ALOX; eosinophil-deficient GATA-1) were injected i.p. with eotaxin, eosinophils, or both, and leukocyte accumulation was quantified up to 24 h. Significant recruitment of eosinophils by eotaxin in BALB/c, up to 24 h, was accompanied by much larger numbers of recruited neutrophils and monocytes/macrophages. These effects were abolished by eotaxin neutralization and 5-LO-activating protein inhibitor MK886. In ALOX (but not PAS) mice, eotaxin recruitment was abolished for eosinophils and halved for neutrophils. In GATA-1 mutants, eotaxin recruited neither neutrophils nor macrophages. Transfer of eosinophils cultured from bone-marrow of BALB/c donors, or from ALOX donors, into GATA-1 mutant recipients, i.p., restored eotaxin recruitment of neutrophils and showed that the critical step dependent on 5-LO is the initial recruitment of eosinophils by eotaxin, not the secondary neutrophil accumulation. Eosinophil-dependent recruitment of neutrophils in naive BALB/c mice was associated with increased binding of bacteria. PMID:24723744

  7. Paediatric Crohn disease patients with stricturing behaviour exhibit ileal granulocyte–macrophage colony-stimulating factor (GM-CSF) autoantibody production and reduced neutrophil bacterial killing and GM-CSF bioactivity

    PubMed Central

    Jurickova, I; Collins, M H; Chalk, C; Seese, A; Bezold, R; Lake, K; Allmen, D; Frischer, J S; Falcone, R A; Trapnell, B C; Denson, L A

    2013-01-01

    Granulocyte–macrophage colony-stimulating factor (GM-CSF) autoantibodies are associated with stricturing behaviour in Crohn disease (CD). We hypothesized that CD ileal lamina propria mononuclear cells (LPMC) would produce GM-CSF autoantibodies and peripheral blood (PB) samples would contain GM-CSF neutralizing capacity (NC). Paediatric CD and control PBMC and ileal biopsies or LPMC were isolated and cultured and GM-CSF, immunoglobulin (Ig)G and GM-CSF autoantibodies production were measured by enzyme-linked immunosorbent assay (ELISA). Basal and GM-CSF-primed neutrophil bacterial killing and signal transducer and activator of transcription 5 (STAT5) tyrosine phosphorylation (pSTAT5) were measured by flow cytometry. GM-CSF autoantibodies were enriched within total IgG for LPMC isolated from CD ileal strictures and proximal margins compared to control ileum. Neutrophil bacterial killing was reduced in CD patients compared to controls. Within CD, neutrophil GM-CSF-dependent STAT5 activation and bacterial killing were reduced as GM-CSF autoantibodies increased. GM-CSF stimulation of pSTAT5 did not vary between controls and CD patients in washed PB granulocytes in which serum was removed. However, GM-CSF stimulation of pSTAT5 was reduced in whole PB samples from CD patients. These data were used to calculate the GM-CSF NC. CD patients with GM-CSF NC greater than 25% exhibited a fourfold higher rate of stricturing behaviour and surgery. The likelihood ratio (95% confidence interval) for stricturing behaviour for patients with elevation in both GM-CSF autoantibodies and GM-CSF NC was equal to 5 (2, 11). GM-CSF autoantibodies are produced by LPMC isolated from CD ileal resection specimens and are associated with reduced neutrophil bacterial killing. CD peripheral blood contains GM-CSF NC, which is associated with increased rates of stricturing behaviour. PMID:23600834

  8. Characterization of a phorbol ester-stimulated S6 kinase from MDCK renal epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, K.E.; Krebs, E.G.

    Increased phosphorylation of S6, a 40S ribosomal subunit protein, is observed in mammalian cells in response to growth factors and phorbol esters. The goal of this study was to identify the S6 kinase that is stimulated by phorbol ester treatment of MDCK cells. MDCK clone D1 cells express high levels of protein kinase C(PKC). PKC and S6 kinase activities were measured following DEAE-Sephacel fractionation of cytosol; this procedure separated the two kinase activities. When confluent MDCK-D1 cells were exposed to 100 nM phorbol 12-myristate 13-acetate (PMA), 95% of the total cellular PKC activity became associated with the particulate fraction withinmore » 1 hour. Cytosolic S6 kinase activity was maximal by 1 hour and then declined thereafter, preceding any detectable loss of total cellular PKC. The PMA-responsive S6 kinase was partially purified from MDCK-D1 cytosol by consecutive steps of DEAE-Sephacel, ammonium sulfate precipitation, Ultrogel AcA 34, heparin-agarose, and Ultrogel AcA 34. The partially-purified enzyme had an apparent molecular size of approximately 80 kDa. In addition to S6, the enzyme phosphorylated synthetic peptides based on the carboxyl terminal sequence of S6. S6 kinase activity utilized ATP but not GTP, and was inhibited by heparin, NaCl, and ..beta..-glycerophosphate. In conclusion, a phorbol ester-stimulated S6 kinase has been partially purified from an epithelial cell line. This kinase is distinct from PKC.« less

  9. Improved viability and activity of neutrophils differentiated from HL-60 cells by co-culture with adipose tissue-derived mesenchymal stem cells.

    PubMed

    Park, Yoon Shin; Lim, Goh-Woon; Cho, Kyung-Ah; Woo, So-Youn; Shin, Meeyoung; Yoo, Eun-Sun; Chan Ra, Jeong; Ryu, Kyung-Ha

    2012-06-22

    Neutropenia is a principal complication of cancer treatment. We investigated the supportive effect of adipose tissue-derived mesenchymal stem cells (AD-MSCs) on the viability and function of neutrophils. Neutrophils were derived from HL-60 cells by dimethylformamide stimulation and cultured with or without AD-MSCs under serum-starved conditions to evaluate neutrophil survival, proliferation, and function. Serum starvation resulted in the apoptosis of neutrophils and decreased cell survival. The co-culture of neutrophils and AD-MSCs resulted in cell survival and inhibited neutrophil apoptosis under serum-starved conditions. The survival rate of neutrophils was prolonged up to 72 h, and the expression levels of interferon (IFN)-α, granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor, and transforming growth factor (TGF)-β in AD-MSCs were increased after co-culture with neutrophils. AD-MSCs promoted the viability of neutrophils by inhibiting apoptosis as well as enhancing respiratory burst, which could potentially be mediated by the increased expression of IFN-α, G-CSF, and TGF-β. Thus, we conclude that the use of AD-MSCs may be a promising cell-based therapy for increasing immunity by accelerating neutrophil function. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Chronic Inflammation and Neutrophil Activation as Possible Causes of Joint Diseases in Ballet Dancers

    PubMed Central

    Borges, Leandro da Silva; Santos, Vinicius Coneglian; de Moura, Nivaldo Ribeiro; Dermargos, Alexandre; Cury-Boaventura, Maria Fernanda; Gorjão, Renata; Pithon-Curi, Tania Cristina; Hatanaka, Elaine

    2014-01-01

    Herein, we investigated the effects of a ballet class on the kinetic profiles of creatine kinase (CK) and lactate dehydrogenase (LDH) activities, cytokines, complement component 3 (C3), and the concentrations of immunoglobulin (Ig), IgA and IgM, in ballerinas. We also verified neutrophil death and ROS release. Blood samples were taken from 13 dancers before, immediately after, and 18 hours after a ballet class. The ballet class increased the plasma activities of CK-total (2.0-fold) immediately after class, while the activities of CK-cardiac muscle (1.0-fold) and LDH (3.0-fold) were observed to increase 18 hours after the class. Levels of the TNF-α, IL-1β, IgG, and IgA were not affected under the study conditions. The exercise was found to induce neutrophil apoptosis (6.0-fold) 18 hours after the ballet class. Additionally, immediately after the ballet class, the neutrophils from the ballerinas were found to be less responsive to PMA stimulus. Conclusion. Ballet class was found to result in inflammation in dancers. The inflammation caused by the ballet class remained for 18 hours after the exercise. These findings are important in preventing the development of chronic lesions that are commonly observed in dancers, such as those with arthritis and synovitis. PMID:24701035

  11. Chronic inflammation and neutrophil activation as possible causes of joint diseases in ballet dancers.

    PubMed

    Borges, Leandro da Silva; Bortolon, José Ricardo; Santos, Vinicius Coneglian; de Moura, Nivaldo Ribeiro; Dermargos, Alexandre; Cury-Boaventura, Maria Fernanda; Gorjão, Renata; Pithon-Curi, Tania Cristina; Hatanaka, Elaine

    2014-01-01

    Herein, we investigated the effects of a ballet class on the kinetic profiles of creatine kinase (CK) and lactate dehydrogenase (LDH) activities, cytokines, complement component 3 (C3), and the concentrations of immunoglobulin (Ig), IgA and IgM, in ballerinas. We also verified neutrophil death and ROS release. Blood samples were taken from 13 dancers before, immediately after, and 18 hours after a ballet class. The ballet class increased the plasma activities of CK-total (2.0-fold) immediately after class, while the activities of CK-cardiac muscle (1.0-fold) and LDH (3.0-fold) were observed to increase 18 hours after the class. Levels of the TNF-α , IL-1β, IgG, and IgA were not affected under the study conditions. The exercise was found to induce neutrophil apoptosis (6.0-fold) 18 hours after the ballet class. Additionally, immediately after the ballet class, the neutrophils from the ballerinas were found to be less responsive to PMA stimulus. Ballet class was found to result in inflammation in dancers. The inflammation caused by the ballet class remained for 18 hours after the exercise. These findings are important in preventing the development of chronic lesions that are commonly observed in dancers, such as those with arthritis and synovitis.

  12. Neutrophil extracellular trap formation is associated with autophagy-related signalling in ANCA-associated vasculitis

    PubMed Central

    Tang, S; Zhang, Y; Yin, S-W; Gao, X-J; Shi, W-W; Wang, Y; Huang, X; Wang, L; Zou, L-Y; Zhao, J-H; Huang, Y-J; Shan, L-Y; Gounni, A S; Wu, Y-Z; Zhang, J-B

    2015-01-01

    Increasing evidence indicates that aberrant neutrophil extracellular trap (NET) formation could contribute to the pathogenesis of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). Recent research has provided evidence that a novel type of ANCA autoantibody, anti-lysosomal membrane protein-2 (LAMP-2) antibody, may have a pathogenic role in AAV. We have shown previously that anti-LAMP-2 antibody-stimulated NET formation contains autoantigens and anti-microbial peptides. The current study sought to determine whether LAMP-2, as a novel antigen of ANCA, was present on NETs in AAV patients, the influence of the anti-LAMP-2 antibody on the neutrophil apoptosis rate and the role of autophagy in anti-LAMP-2 antibody-induced NET formation. NET formation was assessed using immunofluorescence microscopy, scanning electron microscopy or live cell imaging. The neutrophil apoptosis rate was analysed using fluorescence activated cell sorting (FACS). Autophagy was detected using LC3B accumulation and transmission electron microscopy. The results showed that enhanced NET formation, which contains LAMP-2, was observed in kidney biopsies and neutrophils from AAV patients. The apoptosis rate decreased significantly in human neutrophils stimulated with anti-LAMP-2 antibody, and this effect was attenuated by the inhibitors of autophagy 3-methyladenine (3MA) and 2-morpholin-4-yl-8-phenylchromen-4-one (LY294002). The anti-LAMP-2 antibody-stimulated NET formation was unaffected by benzyloxycarbonyl-Val- Ala-Asp (OMe)-fluoromethylketone (zVAD-fmk) and necrostatin-1 (Nec-1), which are inhibitors of apoptosis and necrosis, respectively, but was inhibited by 3MA and LY294002. Moreover, the proportion of LC3BI that was converted to LC3BII increased significantly (P = 0·0057), and massive vacuolizations that exhibited characteristics typical of autophagy were detected in neutrophils stimulated with anti-LAMP-2 antibody. Our results provide further evidence that

  13. Neutrophil extracellular trap formation is associated with autophagy-related signalling in ANCA-associated vasculitis.

    PubMed

    Tang, S; Zhang, Y; Yin, S-W; Gao, X-J; Shi, W-W; Wang, Y; Huang, X; Wang, L; Zou, L-Y; Zhao, J-H; Huang, Y-J; Shan, L-Y; Gounni, A S; Wu, Y-Z; Zhang, J-B

    2015-06-01

    Increasing evidence indicates that aberrant neutrophil extracellular trap (NET) formation could contribute to the pathogenesis of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). Recent research has provided evidence that a novel type of ANCA autoantibody, anti-lysosomal membrane protein-2 (LAMP-2) antibody, may have a pathogenic role in AAV. We have shown previously that anti-LAMP-2 antibody-stimulated NET formation contains autoantigens and anti-microbial peptides. The current study sought to determine whether LAMP-2, as a novel antigen of ANCA, was present on NETs in AAV patients, the influence of the anti-LAMP-2 antibody on the neutrophil apoptosis rate and the role of autophagy in anti-LAMP-2 antibody-induced NET formation. NET formation was assessed using immunofluorescence microscopy, scanning electron microscopy or live cell imaging. The neutrophil apoptosis rate was analysed using fluorescence activated cell sorting (FACS). Autophagy was detected using LC3B accumulation and transmission electron microscopy. The results showed that enhanced NET formation, which contains LAMP-2, was observed in kidney biopsies and neutrophils from AAV patients. The apoptosis rate decreased significantly in human neutrophils stimulated with anti-LAMP-2 antibody, and this effect was attenuated by the inhibitors of autophagy 3-methyladenine (3MA) and 2-morpholin-4-yl-8-phenylchromen-4-one (LY294002). The anti-LAMP-2 antibody-stimulated NET formation was unaffected by benzyloxycarbonyl-Val- Ala-Asp (OMe)-fluoromethylketone (zVAD-fmk) and necrostatin-1 (Nec-1), which are inhibitors of apoptosis and necrosis, respectively, but was inhibited by 3MA and LY294002. Moreover, the proportion of LC3BI that was converted to LC3BII increased significantly (P=0.0057), and massive vacuolizations that exhibited characteristics typical of autophagy were detected in neutrophils stimulated with anti-LAMP-2 antibody. Our results provide further evidence that autophagy is

  14. Alterations in protein glycosylation in PMA-differentiated U-937 cells exposed to mineral particles.

    PubMed Central

    Trabelsi, N; Greffard, A; Pairon, J C; Bignon, J; Zanetti, G; Fubini, B; Pilatte, Y

    1997-01-01

    Carbohydrate moieties of cell glycoconjugates play a pivotal role in molecular recognition phenomena involved in the regulation of most biological systems and the changes observed in cell surface carbohydrates during cell activation or differentiation frequently modulate certain cell functions. Consequently, some aspects of macrophage response to particle exposure might conceivably result from alterations in glycosylation. Therefore, the effect of mineral particles on protein glycosylation was investigated in phorbol myristate acetate (PMA)-differentiated U-937. Jacalin, a lectin specific for O-glycosylated structures, showed a global increase in O-glycosylation in particle-treated cells. In contrast, no significant modifications were observed with concanavalin A, a lectin that recognizes certain N-glycosylated structures. The sialic acid-specific lectins Sambucus nigra agglutinin and Maackia amurensis agglutinin and the galactose-specific lectin Ricinus communis agglutinin revealed a complex pattern of alterations in glycoprotein glycosylation after crystalline silica or manganese dioxide treatments. Expression of sialyl Lewis(x), a glycosylated structure implicated in leukocyte trafficking, could not be detected in control or treated cells. This finding was consistent with the decrease in sialyl Lewis(x) expression observed during PMA-induced differentiation. In conclusion, various treatments used in this study induced quantitative as well as qualitative changes in protein glycosylation. Whether these changes are due to glycosidase release or to an alteration in glycosyltransferase expression remains to be determined. The potential functional implications of these changes are currently under investigation. Images Figure 1. A Figure 1. B Figure 2. A Figure 2. B Figure 3. A Figure 3. B Figure 3. C Figure 4. PMID:9400716

  15. Astronaut Voss Peers Into Pressurized Mating Adapter (PMA)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The STS-100 mission launched for the International Space Station (ISS) on April 19, 2001 as the sixth station assembly flight. Main objectives included the delivery and installation of the Canadian-built Space Station Remote Manipulator System (SSRMS), or Canadarm2, the installation of a UHF anterna for space-to-space communications for U.S. based space walks, and the delivery of supplies via the Italian Multipurpose Logistics Module (MPLM) 'Raffaello'. This is an STS-110 onboard photo of Astronaut James S. Voss, Expedition Two flight engineer, peering into the pressurized Mating Adapter (PMA-2) prior hatch opening. The picture was taken by one of the STS-100 crew members inside the PMA.

  16. Neither eosinophils nor neutrophils require ATG5-dependent autophagy for extracellular DNA trap formation.

    PubMed

    Germic, Nina; Stojkov, Darko; Oberson, Kevin; Yousefi, Shida; Simon, Hans-Uwe

    2017-11-01

    The importance of extracellular traps (ETs) in innate immunity is well established, but the molecular mechanisms responsible for their formation remain unclear and in scientific dispute. ETs have been defined as extracellular DNA scaffolds associated with the granule proteins of eosinophils or neutrophils. They are capable of killing bacteria extracellularly. Based mainly on results with phosphoinositide 3-kinase (PI3K) inhibitors such as 3-methyladenine (3-MA) and wortmannin, which are commonly used to inhibit autophagy, several groups have reported that autophagy is required for neutrophil extracellular trap (NET) formation. We decided to investigate this apparent dependence on autophagy for ET release and generated genetically modified mice that lack, specifically in eosinophils or neutrophils, autophagy-related 5 (Atg5), a gene encoding a protein essential for autophagosome formation. Interestingly, neither eosinophils nor neutrophils from Atg5-deficient mice exhibited abnormalities in ET formation upon physiological activation or exposure to low concentrations of PMA, although we could confirm that human and mouse eosinophils and neutrophils, after pre-treatment with inhibitors of class III PI3K, show a block both in reactive oxygen species (ROS) production and in ET formation. The so-called late autophagy inhibitors bafilomycin A1 and chloroquine, on the other hand, were without effect. These data indicate that ET formation occurs independently of autophagy and that the inhibition of ROS production and ET formation in the presence of 3-MA and wortmannin is probably owing to their additional ability to block the class I PI3Ks, which are involved in signalling cascades initiated by triggers of ET formation. © 2017 John Wiley & Sons Ltd.

  17. Neutrophil alveolitis following endotoxemia. Enhancement by previous exposure to hyperoxia.

    PubMed

    Rinaldo, J E; Dauber, J H; Christman, J; Rogers, R M

    1984-12-01

    We injected Escherichia coli endotoxin, 2.5 mg/kg, intraperitoneally in rats, sequentially quantified alveolar inflammation during a 6-day period by several techniques, and observed the effect of previous exposure to hyperoxia on the intensity of alveolitis in this model. As noted in other models of endotoxemia, we found intravascular sequestration of leukocytes and an increase in the retention of 125I albumin in the lung 4 to 6 h after the injection of endotoxin. Bronchoalveolar lavage fluid (BALF) obtained at this time only slightly stimulated the migration of neutrophils in vitro, and the numbers and types of cells recovered by lavage were normal. Fifteen h after the injection of endotoxin, however, bronchoalveolar lavage fluid stimulated both random and directed migration of neutrophils in vitro, although recovery of neutrophils by lavage was increased only slightly. By 24 h, 125I albumin retention had returned to normal levels, but the chemotactic activity of BALF remained high, and the percentage and absolute number of neutrophils recovered by lung lavage were increased markedly. The recovery of neutrophils remained significantly elevated for 3 days but declined to control levels by 6 days, whereas the recovery of alveolar macrophages was increased at this time. Exposure to 100% O2 for 36 h prior to endotoxemia accelerated and intensified neutrophil influx into the lung and increased the stimulatory effect of BALF on neutrophil migration in vitro. We conclude that a single episode of endotoxemia in the rat causes a multi-phasic alveolar inflammatory response, and that this response is accelerated and intensified by prior, mild exposure to hyperoxia.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Production of macrophage inflammatory protein (MIP)-1alpha and MIP-1beta by human polymorphonuclear neutrophils stimulated with Porphyromonas endodontalis lipopolysaccharide.

    PubMed

    Ko, Hyun Jung; Lim, Sung Sam

    2002-11-01

    This study was undertaken to investigate the capacity of polymorphonuclear neutrophils (PMNs) to secrete Macrophage Inflammatory Protein (MIP)-1alpha and MIP-1beta after stimulation with Porphyromonas endodontalis lipopolysaccharide (LPS). Escherichia coli LPS was used as a positive control. Venous blood was collected and PMNs were isolated from healthy volunteers. Cells were cultured with various concentrations of LPS for different periods of time. Cell supernatants were assayed by enzyme-linked immunosorbent assay. The levels of chemokine secretion in PMNs stimulated with each LPS were found to be significantly higher than in the unstimulated control cells (p < 0.05), and this expression occurred in a time- and dose-dependent manner. E. coli LPS induced higher levels of cytokines than P. endodontalis LPS. These findings demonstrated that P. endodontalis LPS is capable of stimulating PMNs to produce chemotactic cytokines and suggested that PMNs stimulated with P. endodontalis LPS may play a crucial role in the inflammatory and immunopathological reactions of pulpal and periapical diseases.

  19. Legionella phosphatase hydrolyzes phosphatidylinositol 4,5-bisphosphate and inosital triphosphate in human neutrophils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowling, J.N.; Saha, A.K.; Glew, R.H.

    1987-05-01

    Legionella are facultative intracellular bacterial pathogens which multiply in host phagocytes. L. micdadei cells contain an acid phosphatase (ACP) that blocks superoxide anion production by human neutrophils stimulated with the formylated peptide, fMLP. The possibility that ACP acts by interefering with polyphosphoinositide metabolism and the production of the intracellular second messenger, inositol triphosphate (IP3) was explored. When neutrophil phosphoinositides were labeled with TSP, incubation of the cells with ACP caused an 85% loss of the labeled phosphatidylinositol-4,5-bisphosphate (PIP2) over 2 h. Treatment of (TH)inositol-labeled neutrophils with ACP for 30 min resulted in a 20% decrease of labeled PIP2. Following fMLPmore » stimulation, the fractional reduction in PIP2 and the fractional increase in IP3 was the same in ACP-treated and untreated neutrophils, but the total quantity of IP3 was reduced by ACP pre-treatment. The reduction in IP3 generated following fMLP stimulation seems to be due primarily to the decreased amount of PIP2 available for hydrolysis. However, some loss of IP3 due to direct hydrolysis by ACP cannot be ruled out. The Legionella phosphatase may compromise neutrophil response to the bacteria by hydrolyzing PIP2, the prognitor of IP3, and by hydrolyzing IP3 itself.« less

  20. Human intravenous immunoglobulin (IVIG) preparations degranulate human neutrophils in vitro

    PubMed Central

    Teeling, J L; de Groot, E R; Eerenberg, A J M; Bleeker, W K; Van Mierlo, G; Aarden, L A; Hack, C E

    1998-01-01

    IVIG preparations have biological effects in vivo that are not fully understood. Possible effects include the property to stimulate Fc receptors on various cell types. To study whether IVIG may interact with neutrophils we developed an in vitro system, in which neutrophils, in whole blood or purified, were incubated with IVIG and assessed for degranulation by measuring the release of elastase and lactoferrin in culture medium. All commercially available IVIG preparations tested induced degranulation of neutrophils when incubated for 2 h at therapeutically relevant concentrations. In studies with blocking antibodies against Fc receptors (FcR), this degranulation was shown to be dependent on FcγRII, whereas FcγRIII had no effect. Experiments with purified neutrophils as well as binding experiments with labelled IVIG preparations indicated that neutrophil degranulation resulted from a direct interaction of IVIG with neutrophils. Using gel filtration fractions, it was found that polymeric and dimeric IgG present in IVIG was mainly responsible for the degranulation. We suggest that degranulation of neutrophils may contribute to the (side)effects of IVIG treatment in vivo. PMID:9822286

  1. Propagation of thrombosis by neutrophils and extracellular nucleosome networks

    PubMed Central

    Pfeiler, Susanne; Stark, Konstantin; Massberg, Steffen; Engelmann, Bernd

    2017-01-01

    Neutrophils, early mediators of the innate immune defense, are recruited to developing thrombi in different types of thrombosis. They amplify intravascular coagulation by stimulating the tissue factor-dependent extrinsic pathway via inactivation of endogenous anticoagulants, enhancing factor XII activation or decreasing plasmin generation. Neutrophil-dependent prothrombotic mechanisms are supported by the externalization of decondensed nucleosomes and granule proteins that together form neutrophil extracellular traps. These traps, either in intact or fragmented form, are causally involved in various forms of experimental thrombosis as first indicated by their role in the enhancement of both microvascular thrombosis during bacterial infection and carotid artery thrombosis. Neutrophil extracellular traps can be induced by interactions of neutrophils with activated platelets; vice versa, these traps enhance adhesion of platelets via von Willebrand factor. Neutrophil-induced microvascular thrombus formation can restrict the dissemination and survival of blood-borne bacteria and thereby sustain intravascular immunity. Dysregulation of this innate immune pathway may support sepsis-associated coagulopathies. Notably, neutrophils and extracellular nucleosomes, together with platelets, critically promote fibrin formation during flow restriction-induced deep vein thrombosis. Neutrophil extracellular traps/extracellular nucleosomes are increased in thrombi and in the blood of patients with different vaso-occlusive pathologies and could be therapeutically targeted for the prevention of thrombosis. Thus, during infections and in response to blood vessel damage, neutrophils and externalized nucleosomes are major promoters of intravascular blood coagulation and thrombosis. PMID:27927771

  2. Neutrophil-derived resistin release induced by Aggregatibacter actinomycetemcomitans.

    PubMed

    Furugen, Reiko; Hayashida, Hideaki; Yoshii, Yumiko; Saito, Toshiyuki

    2011-08-01

    Resistin is an adipokine that induces insulin resistance in mice. In humans, resistin is not produced in adipocytes, but in various leukocytes instead, and it acts as a proinflammatory molecule. The present investigation demonstrated high levels of resistin in culture supernatants of neutrophils that are stimulated by a highly leukotoxic strain of Aggregatibacter actinomycetemcomitans. In contrast, the level of resistin was remarkably low when neutrophils were exposed to two other strains that produce minimal levels of leukotoxin and a further isogenic mutant strain incapable of producing leukotoxin. Pretreatment of neutrophils with a monoclonal antibody to CD18, β chain of lymphocyte function-associated molecule 1 (LFA-1), or an Src family tyrosine kinase inhibitor before incubation with the highly leukotoxic strain inhibited the release of resistin. These results show that A. actinomycetemcomitans-expressed leukotoxin induces extracellular release of human neutrophil-derived resistin by interacting with LFA-1 on the surface of neutrophils and, consequently, activating Src family tyrosine kinases. 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  3. Effects of Pasteurella haemolytica leukotoxic culture supernatant on bovine neutrophil aggregation.

    PubMed

    Conlon, P; Gervais, M; Chaudhari, S; Conlon, J

    1992-07-01

    Pasteurella haemolytica A1 leukotoxic culture supernatant was evaluated for its ability to cause aggregation of bovine peripheral neutrophils. Neutrophils were isolated by a hypotonic lysis method and incubated with zymosan-activated plasma (ZAP), leukotoxic culture supernatant, antileukotoxin serum, calcium and magnesium-free media, p-bromophenacyl bromide and protein kinase C inhibitors. Aggregation was evaluated by changes in infrared light transmittance. Leukotoxic culture supernatant caused neutrophils to aggregate, and this effect was significantly removed by preincubation with antileukotoxin serum. Aggregation to ZAP and leukotoxin was dependent on the presence of extra-cellular calcium. Activation of protein kinase C by phorbol myristate acetate induced aggregation which was reduced by staurosporine; however, aggregation to leukotoxin did not involve protein kinase C activation. Phospholipase A2 inhibition did not alter the aggregation response to ZAP or to leukotoxin. The in vitro measurement of neutrophil aggregation induced by the leukotoxin of P. haemolytica reflects cytoskeletal and other activation events that may contribute to the intense inflammatory process which this organism induces in the lungs of cattle.

  4. Effects of Pasteurella haemolytica leukotoxic culture supernatant on bovine neutrophil aggregation.

    PubMed Central

    Conlon, P; Gervais, M; Chaudhari, S; Conlon, J

    1992-01-01

    Pasteurella haemolytica A1 leukotoxic culture supernatant was evaluated for its ability to cause aggregation of bovine peripheral neutrophils. Neutrophils were isolated by a hypotonic lysis method and incubated with zymosan-activated plasma (ZAP), leukotoxic culture supernatant, antileukotoxin serum, calcium and magnesium-free media, p-bromophenacyl bromide and protein kinase C inhibitors. Aggregation was evaluated by changes in infrared light transmittance. Leukotoxic culture supernatant caused neutrophils to aggregate, and this effect was significantly removed by preincubation with antileukotoxin serum. Aggregation to ZAP and leukotoxin was dependent on the presence of extra-cellular calcium. Activation of protein kinase C by phorbol myristate acetate induced aggregation which was reduced by staurosporine; however, aggregation to leukotoxin did not involve protein kinase C activation. Phospholipase A2 inhibition did not alter the aggregation response to ZAP or to leukotoxin. The in vitro measurement of neutrophil aggregation induced by the leukotoxin of P. haemolytica reflects cytoskeletal and other activation events that may contribute to the intense inflammatory process which this organism induces in the lungs of cattle. PMID:1423054

  5. Nitric oxide-dependent neutrophil recruitment: role in nasal secretion.

    PubMed

    Cardell, L O; Agustí, C; Nadel, J A

    2000-12-01

    Leukotriene B4 (LTB4), an inflammatory mediator, is a potent chemoattractant for neutrophils that plays an important role in nasal secretion via release of elastase. Nitric oxide (NO) is an important modulator of leucocyte-endothelial cell interactions, endogenously produced in large quantities in the paranasal sinuses. To examine the role of NO in LTB4-stimulated nasal secretion. A newly-developed method for isolating and superfusing a nasal segment in dogs was used. Instillation of LTB4 into the nasal segment caused a time-dependent increase in the volume of airway fluid and in the recruitment of neutrophils. N(G)-nitro-L-arginine-methylester (L-NAME), an inhibitor of NO synthase, prevented LTB4-induced neutrophil recruitment and nasal secretion. These studies show that NO modulates LTB4-induced neutrophil recruitment and subsequent fluid secretion in the nose, and they suggest a therapeutic role for NO inhibitors in modulating neutrophil-dependent nasal secretion.

  6. Epidermal growth factor (EGF) stimulated Ca/sup 2 +/ mobilization in hepatocytes is abolished by phorbol esters, pertussis toxin and partial hepatectomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, R.M.; Garrison, J.C.

    1986-05-01

    EGF has been demonstrated to increase free intracellular Ca/sup 2 +/ levels in isolated hepatocytes putatively by generation of the second messenger inositol trisphosphate (IP/sub 3/). Pretreatment of cells with phorbol 12-myristate 13-acetate (PMA) inhibited the EGF (66 nM) stimulated Ca/sup 2 +/ response as measured by quin2. Inhibition by PMA was maximal within 3 min and was concentration dependent (IC/sub 50/ = 13.5 nM). Four other active phorbol ester analogues blocked the Ca/sup 2 +/ response while inactive analogues did not. EGF was unable to increase intracellular Ca/sup 2 +/ levels in hepatocytes isolated from rats treated with pertussismore » toxin for 72 hrs. Neither PMA nor toxin pretreatment was able to inhibit the Ca/sup 2 +/ response to angiotensin II (Ang II). In hepatocytes isolated 24 hrs after partial hepatectomy, the Ca/sup 2 +/ response to EGF (as measured by phosphorylase activity, EC/sub 50/ = 5 nM) was completely abolished and remained attenuated for 7 days post-hepatectomy. The Ca/sup 2 +/ response to Ang II in this model system was also blunted but required 3 days for development of the full effect and within 7 days full activity is nearly restored. The results suggest that fundamental differences exist in the transduction mechanisms used by these two Ca/sup 2 +/-linked hormones to mobilize intracellular Ca/sup 2 +/ (and putatively increase IP/sub 3/ formation).« less

  7. Localization and Functionality of the Inflammasome in Neutrophils*

    PubMed Central

    Bakele, Martina; Joos, Melanie; Burdi, Sofia; Allgaier, Nicolas; Pöschel, Simone; Fehrenbacher, Birgit; Schaller, Martin; Marcos, Veronica; Kümmerle-Deschner, Jasmin; Rieber, Nikolaus; Borregaard, Niels; Yazdi, Amir; Hector, Andreas; Hartl, Dominik

    2014-01-01

    Neutrophils represent the major fraction of circulating immune cells and are rapidly recruited to sites of infection and inflammation. The inflammasome is a multiprotein complex that regulates the generation of IL-1 family proteins. The precise subcellular localization and functionality of the inflammasome in human neutrophils are poorly defined. Here we demonstrate that highly purified human neutrophils express key components of the NOD-like receptor family, pyrin domain containing 3 (NLRP3), and absent in melanoma 2 (AIM2) inflammasomes, particularly apoptosis-associated speck-like protein containing a CARD (ASC), AIM2, and caspase-1. Subcellular fractionation and microscopic analyses further showed that inflammasome components were localized in the cytoplasm and also noncanonically in secretory vesicle and tertiary granule compartments. Whereas IL-1β and IL-18 were expressed at the mRNA level and released as protein, highly purified neutrophils neither expressed nor released IL-1α at baseline or upon stimulation. Upon inflammasome activation, highly purified neutrophils released substantially lower levels of IL-1β protein compared with partially purified neutrophils. Serine proteases and caspases were differentially involved in IL-1β release, depending on the stimulus. Spontaneous activation of the NLRP3 inflammasome in neutrophils in vivo affected IL-1β, but not IL-18 release. In summary, these studies show that human neutrophils express key components of the inflammasome machinery in distinct intracellular compartments and release IL-1β and IL-18, but not IL-1α or IL-33 protein. Targeting the neutrophil inflammasome may represent a future therapeutic strategy to modulate neutrophilic inflammatory diseases, such as cystic fibrosis, rheumatoid arthritis, or sepsis. PMID:24398679

  8. Compensatory Internalization of Pma1 in V-ATPase Mutants in Saccharomyces cerevisiae Requires Calcium- and Glucose-Sensitive Phosphatases.

    PubMed

    Velivela, Swetha Devi; Kane, Patricia M

    2018-02-01

    Loss of V-ATPase activity in organelles, whether through V-ATPase inhibition or V-ATPase ( vma ) mutations, triggers a compensatory downregulation of the essential plasma membrane proton pump Pma1 in Saccharomyces cerevisiae We have previously determined that the α-arrestin Rim8 and ubiquitin ligase Rsp5 are essential for Pma1 ubiquination and endocytosis in response to loss of V-ATPase activity. Here, we show that Pma1 endocytosis in V-ATPase mutants does not require Rim101 pathway components upstream and downstream of Rim8, indicating that Rim8 is acting independently in Pma1 internalization. We find that two phosphatases, the calcium-responsive phosphatase calcineurin and the glucose-sensitive phosphatase Glc7 (PP1), and one of the Glc7 regulatory subunits Reg1, exhibit negative synthetic genetic interactions with vma mutants, and demonstrate that both phosphatases are essential for ubiquitination and endocytic downregulation of Pma1 in these mutants. Although both acute and chronic loss of V-ATPase activity trigger the internalization of ∼50% of surface Pma1, a comparable reduction in Pma1 expression in a pma1-007 mutant neither compensates for loss of V-ATPase activity nor stops further Pma1 endocytosis. The results indicate that the cell surface level of Pma1 is not directly sensed and that internalized Pma1 may play a role in compensating for loss of V-ATPase-dependent acidification. Taken together, these results provide new insights into cross talk between two major proton pumps central to cellular pH control. Copyright © 2018 by the Genetics Society of America.

  9. Rethinking stimulation of brain in stroke rehabilitation: Why higher-motor areas might be better alternatives for patients with greater impairments

    PubMed Central

    Plow, Ela B; Cunningham, David; Varnerin, Nicole; Machado, Andre

    2015-01-01

    Stimulating the brain to drive its adaptive plastic potential is promising to accelerate rehabilitative outcomes in stroke. Ipsilesional Primary Motor Cortex (M1) is invariably facilitated. However, evidence supporting its efficacy is divided, indicating we may have over-generalized its potential. Since M1 and its corticospinal output are frequently damaged, in patients with serious lesions and impairments, ipsilesional premotor areas (PMA) could be useful alternates instead. We base our premise on their higher probability of survival, greater descending projections, and an adaptive potential, which is causal for recovery across the seriously impaired. Using a conceptual model, we describe how chronically stimulating PMA would strongly affect key mechanisms of stroke motor recovery, such as facilitating plasticity of alternate descending output, restoring inter-hemispheric balance, and establishing widespread connectivity. Although at this time it is difficult to predict whether PMA would be ‘better’, it is important to at least investigate whether they are reasonable substitutes for M1. Even if stimulation of M1 may benefit those with maximum recovery potential, while that of PMA may only help the more disadvantaged, it may still be reasonable to achieve some recovery across the majority rather than stimulate a single locus fated to be inconsistently effective across all. PMID:24951091

  10. PMA-PhyloChip DNA Microarray to Elucidate Viable Microbial Community Structure

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri J.; Stam, Christina N.; Andersen, Gary L.; DeSantis, Todd

    2011-01-01

    Since the Viking missions in the mid-1970s, traditional culture-based methods have been used for microbial enumeration by various NASA programs. Viable microbes are of particular concern for spacecraft cleanliness, for forward contamination of extraterrestrial bodies (proliferation of microbes), and for crew health/safety (viable pathogenic microbes). However, a "true" estimation of viable microbial population and differentiation from their dead cells using the most sensitive molecular methods is a challenge, because of the stability of DNA from dead cells. The goal of this research is to evaluate a rapid and sensitive microbial detection concept that will selectively estimate viable microbes. Nucleic acid amplification approaches such as the polymerase chain reaction (PCR) have shown promise for reducing time to detection for a wide range of applications. The proposed method is based on the use of a fluorescent DNA intercalating agent, propidium monoazide (PMA), which can only penetrate the membrane of dead cells. The PMA-quenched reaction mixtures can be screened, where only the DNA from live cells will be available for subsequent PCR reaction and microarray detection, and be identified as part of the viable microbial community. An additional advantage of the proposed rapid method is that it will detect viable microbes and differentiate from dead cells in only a few hours, as opposed to less comprehensive culture-based assays, which take days to complete. This novel combination approach is called the PMA-Microarray method. DNA intercalating agents such as PMA have previously been used to selectively distinguish between viable and dead bacterial cells. Once in the cell, the dye intercalates with the DNA and, upon photolysis under visible light, produces stable DNA adducts. DNA cross-linked in this way is unavailable for PCR. Environmental samples suspected of containing a mixture of live and dead microbial cells/spores will be treated with PMA, and then incubated

  11. VizieR Online Data Catalog: PMA Catalogue (Akhmetov+, 2017)

    NASA Astrophysics Data System (ADS)

    Akhmetov, V. S.; Fedorov, P. N.; Velichko, A. B.; Shulga, V. M.

    2017-06-01

    The idea for creating the catalogue is very simple. The PMA catalogue has been derived from a combination of two catalogues, namely 2MASS and Gaia DR1. The difference of epochs of observations for these catalogues is approximately 15 yr. The positions of objects in the Gaia DR1 catalogue are referred to the reference frame, which is consistent with ICRF to better than 0.1 mas for the J2015.0 epoch. The positions of objects in 2MASS are referred to HCRF, which, as was shown in Kovalevsky et al. (1997A&A...323..620K), is aligned with the ICRF to within ±0.6 mas at the epoch 1991.25 and is non-rotating with respect to distant extragalactic objects to within ±0.25mas/yr. By comparing the positions of the common objects contained in the catalogues, it is possible to determine their proper motions within their common range of stellar magnitudes by dividing differences of positions over the time interval between their observations. Formally, proper motions derived in such a way are given in the ICRF system, because the positions of both Gaia DR1 stars and those of 2MASS objects (through Hipparcos/Tycho-2 stars) are given in the ICRF and cover the whole sphere without gaps. We designate them further in this paper as relative, with the aim of discriminating them from absolute ones, which refer to the reference frame defined by the positions of about 1.6 million galaxies from Gaia DR1. There is no possibility of obtaining estimates of individual errors of proper motions of stars for the PMA Catalogue from the intrinsic convergence, because the direct errors for positions are not indicated in 2MASS. Therefore we use some indirect methods to obtain the estimates of uncertainties for proper motions. After elimination of the systematic errors, the root-mean-squared deviation of the coordinate differences of extended sources is about 200mas, and the mean number of galaxies inside each pixel is about 1300, so we expect the error of the absolute calibration to be 0.35mas

  12. Functionalisation of mesoporous silica gel with 2-[(phosphonomethyl)-amino]acetic acid functional groups. Characterisation and application

    NASA Astrophysics Data System (ADS)

    Caldarola, Dario; Mitev, Dimitar P.; Marlin, Lucile; Nesterenko, Ekaterina P.; Paull, Brett; Onida, Barbara; Bruzzoniti, Maria Concetta; Carlo, Rosa Maria De; Sarzanini, Corrado; Nesterenko, Pavel N.

    2014-01-01

    A new complexing adsorbent was prepared by chemical modification of mesoporous silica Kieselgel 60 (dp = 37-63 μm, average pore size 6 nm, specific surface area 425 m2 g-1) with 3-glycidoxypropyltrimethoxysilane and 2-[(phosphonomethyl)amino]acetic acid (PMA), commonly known as glyphosate. The prepared adsorbent was fully characterised using elemental analysis, thermal gravimetric analysis (TGA), acid-base potentiometric titration, Fourier Transform Infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption isotherms at 77 K (BET), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS). The concentration of bonded PMA groups calculated from the nitrogen content was 0.38 mmol per gram. The adsorption of transition metal ions on PMA functionalised silica (HEPMAS) was studied from aqueous solutions having different pH and the following selectivity was established, Zn(II) < Co(II) < Cd(II) < Mn(II) < Ni(II) < Cu(II). The calculated values of distribution coefficients D for the adsorption of ecotoxic metal ions on HEPMAS are 5.0 × 104, 4.9 × 105 and 2.6 × 104 for Zn(II), Pb(II) and Cd(II), respectively.

  13. Th-17 regulatory cytokines IL-21, IL-23, and IL-6 enhance neutrophil production of IL-17 cytokines during asthma.

    PubMed

    Halwani, Rabih; Sultana, Asma; Vazquez-Tello, Alejandro; Jamhawi, Amer; Al-Masri, Abeer A; Al-Muhsen, Saleh

    2017-11-01

    In a subset of severe asthma patients, chronic airway inflammation is associated with infiltration of neutrophils, Th-17 cells and elevated expression of Th-17-derived cytokines (e.g., interleukin [IL]-17, IL-21, IL-22). Peripheral neutrophils from allergic asthmatics are known to express higher IL-17 cytokine levels than those from healthy subjects, but the regulatory mechanisms involved are not well understood. We hypothesize that Th-17 regulatory cytokines could modulate IL-17 expression in neutrophils. Peripheral blood neutrophils isolated from asthmatics were stimulated with IL-21, IL-23, and IL-6 cytokines and their ability to produce IL-17A and IL-17F was determined relative to healthy controls. Signal transducer and activator of transcription 3 (STAT3) phosphorylation levels were measured in stimulated neutrophil using flow cytometry. The requirement for STAT3 phosphorylation was determined by blocking its activation using a specific chemical inhibitor. Stimulating asthmatic neutrophils with IL-21, 23, and 6 enhanced the production of IL-17A and IL-17F at significantly higher levels comparatively to healthy controls. Stimulating neutrophils with IL-21, IL-23, and IL-6 cytokines enhanced STAT3 phosphorylation, in all cases. Interestingly, inhibiting STAT3 phosphorylation using a specific chemical inhibitor dramatically blocked the ability of neutrophils to produce IL-17, demonstrating that STAT3 activation is the major factor mediating IL-17 gene expression. These findings suggest that neutrophil infiltration in lungs of severe asthmatics may represent an important source of pro-inflammatory IL-17A and -F cytokines, a production enhanced by Th-17 regulatory cytokines, and thus providing a feedback mechanism that sustains inflammation. Our results suggest that STAT3 pathway could be a potential target for regulating neutrophilic inflammation during severe asthma.

  14. Loss of neutral endopeptidase activity contributes to neutrophil activation and cardiac dysfunction during chronic hypomagnesemia: Protection by substance P receptor blockade.

    PubMed

    Mak, I Tong; Chmielinska, Joanna J; Kramer, Jay H; Spurney, Christopher F; Weglicki, William B

    2011-01-01

    Hypomagnesemia (Hypo-Mg) in rodents leads to neurogenic inflammation associated with substance P (SP) elevations; neutral endopeptidase (NEP) is a principle cell surface proteolytic enzyme, which degrades SP. The effects of chronic Hypo-Mg on neutrophil NEP activity, cell activation and the associated cardiac dysfunction were examined. Male Sprague-Dawley rats (180 g) were fed Mg-sufficient or Mg-deficient (Hypo-Mg) diets for five weeks. Enriched blood neutrophils were isolated at the end of one, three and five weeks by step gradient centrifugation. NEP enzymatic activity decreased by 20% (P value was nonsignificant), 50% (P<0.025) and 57% (P<0.01), respectively, for week 1, 3 and 5 Hypo-Mg rats. In association, neutrophil basal superoxide (•O(2) (-))-generating activities were elevated: 30% at week 1 (P value was nonsignificant), and fourfold to sevenfold for weeks 3 to 5 (P<0.01). Maximal phorbol myristate acetate-stimulated •O(2) (-) production by Hypo-Mg neutrophils increased twofold at week 5. Also, plasma 8-isoprostane levels were elevated twofold to threefold, and red blood cell glutathione decreased by 50% (P<0.01) after three to five weeks of chronic Hypo-Mg. When Hypo-Mg rats were treated with the SP receptor blocker (L-703,606), neutrophil NEP activities were retained at 75% (week 3) and 77% (week 5) (P<0.05); activation of neutrophil •O(2) (-) and other oxidative indexes were also significantly (P<0.05) attenuated. After five weeks, histochemical (hematoxylin and eosin) staining of Hypo-Mg-treated rat ventricles revealed significant white blood cell infiltration, which was substantially reduced by L-703,606. Echocardiography after three weeks of Hypo-Mg only showed modest diastolic impairment, but five weeks resulted in significant (P<0.05) depression in both left ventricular systolic and diastolic functions; changes in these functional parameters were attenuated by L-703,606. NEP activity regulates neutrophil •O(2) (-) formation by controlling

  15. Single point mutations distributed in 10 soluble and membrane regions of the Nicotiana plumbaginifolia plasma membrane PMA2 H+-ATPase activate the enzyme and modify the structure of the C-terminal region.

    PubMed

    Morsomme, P; Dambly, S; Maudoux, O; Boutry, M

    1998-12-25

    The Nicotiana plumbaginifolia pma2 (plasma membrane H+-ATPase) gene is capable of functionally replacing the H+-ATPase genes of the yeast Saccharomyces cerevisiae, provided that the external pH is kept above 5.0. Single point mutations within the pma2 gene were previously identified that improved H+-ATPase activity and allowed yeast growth at pH 4.0. The aim of the present study was to identify most of the PMA2 positions, the mutation of which would lead to improved growth and to determine whether all these mutations result in similar enzymatic and structural modifications. We selected additional mutants in total 42 distinct point mutations localized in 30 codons. They were distributed in 10 soluble and membrane regions of the enzyme. Most mutant PMA2 H+-ATPases were characterized by a higher specific activity, lower inhibition by ADP, and lower stimulation by lysophosphatidylcholine than wild-type PMA2. The mutants thus seem to be constitutively activated. Partial tryptic digestion and immunodetection showed that the PMA2 mutants had a conformational change making the C-terminal region more accessible. These data therefore support the hypothesis that point mutations in various H+-ATPase parts displace the inhibitory C-terminal region, resulting in enzyme activation. The high density of mutations within the first half of the C-terminal region suggests that this part is involved in the interaction between the inhibitory C-terminal region and the rest of the enzyme.

  16. Lipid effects on neutrophil calcium signaling induced by opsonized particles: platelet activating factor is only part of the story.

    PubMed

    Wanten, Geert; Kusters, Anneke; van Emst-de Vries, Sjenet E; Tool, Anton; Roos, Dirk; Naber, Ton; Willems, Peter

    2004-08-01

    Total parenteral nutrition is frequently used in clinical practice to improve the nutritional status of patients. However, the risk for infectious complications remains a drawback in which immune-modulating effects of the lipid component may play a role. To characterize these lipid effects we investigated neutrophil activation by opsonized yeast particles under influence of lipid emulsions derived from fish oil (VLCT), olive oil (LCT-MUFA), soybean oil (LCT), and a physical mixture of coconut and soybean oil (LCT-MCT). Serum-treated zymosan (STZ) evoked a biphasic increase in cytosolic Ca2+ concentration ([Ca2+]c) with an initial slow rise that turned into a second fast rise until a plateau was reached. LCT-MCT (5 mM) pretreatment markedly increased the rate of [Ca2+]c rise during the initial phase, abolished the second phase and lowered the plateau. These effects of LCT-MCT were mimicked by the protein kinase C (PKC) activating phorbol ester PMA. LCT, LCT-MUFA and VLCT, on the other hand, decreased the rate of [Ca2+]c rise during both phases and lowered the plateau. The platelet-activating factor (PAF) receptor antagonist WEB 2086 inhibited the second phase, demonstrating that PAF acts as an intercellular messenger in STZ-induced Ca2+ mobilization, but did not interfere with the stimulatory effect of LCT-MCT or PMA on the initial rate of [Ca2+]c rise. Structurally different lipids act only in part through PAF to distinctively modulate neutrophil calcium signaling in response to activation by opsonized particles. Copyright 2003 Elsevier Ltd.

  17. The effect of free and carrier-bound cortisol on equine neutrophil function.

    PubMed

    Fratto, Melanie A; Hart, Kelsey A; Norton, Natalie A; Barton, Michelle H; Giguère, Steeve; Hurley, David J

    2017-01-01

    Cortisol is a key anti-inflammatory hormone that increases in bacterial sepsis and circulates predominantly bound to cortisol binding globulin (CBG). Only unbound cortisol was believed to be biologically active, but recent evidence suggests that CBG-bound cortisol also regulates inflammation. The objective of this study was to evaluate the effects of free and CBG-bound cortisol on equine neutrophil function ex vivo. We hypothesized that CBG would enhance cortisol-mediated suppression of neutrophil pro-inflammatory responses. Neutrophils isolated from 8 foals and 6 adult horses were exposed to Staphylococcus aureus antigen (SAA) alone and with hydrocortisone (HC), CBG, or both (CBG+HC). Inflammatory cytokine (TNF-α, IL-8) and reactive oxygen species (ROS) production were measured and compared among stimulants and between ages with linear mixed-effects models. CBG and CBG+HC inhibited ROS production induced by SAA in both foal and horse neutrophils, maintaining it at levels comparable to baseline production (P≤0.060-0.907). TNF-α production was not significantly different among stimulants (P=0.284). CBG+HC significantly (P≤0.016) increased IL-8 production by neutrophils in response to SAA in both foals and adults, although the response of foals was significantly greater than that of adults (P<0.001). These findings suggest that CBG directly modulates equine neutrophil responses, but the effects are cytokine- and age-specific. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. In vitro interactions between Neoparamoeba spp. and salmonid leucocytes; The effect of parasite sonicate on anterior kidney leucocyte function

    USGS Publications Warehouse

    Gross, K.; Alcorn, S.; Murray, A.; Morrison, R.; Nowak, B.

    2006-01-01

    Sonicated Neoparamoeba spp. (Nspp) did not affect the in vitro respiratory burst response of leucocytes isolated from Atlantic salmon Salmo salar, rainbow trout Oncorhynchus mykiss and chinook salmon Oncorhynchus tshawytscha anterior kidneys (P > 0.05). Atlantic salmon and chinook salmon leucocytes pre-incubated with the parasites, however, responded to phorbol myristate acetate (PMA) stimulation with a greater response compared to cells incubated with PMA on its own (P < 0.05). Sonicated Nspp was not chemo-attractive for anterior kidney leucocytes isolated from all three fish species. ?? 2006 The Fisheries Society of the British Isles.

  19. Epidermal growth factor (EGF)-stimulated inositol phosphate formation in hepatocytes is abolished by pertussis toxin and phorbol esters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, R.M.; Garrison, J.C.

    1987-05-01

    The EGF-stimulated rise in intracellular Ca/sup 2 +/ (Ca/sup 2 +/)/sub i/ and Ca/sup 2 +/-dependent protein phosphorylation events in isolated hepatocytes are blocked by pertussis toxin and phorbol ester pretreatment. The present study characterized the EGF-stimulated formation of inositol 1,4,5-trisphosphate (Ins(1,4,5)P/sub 3/) and inositol 1,3,4-trisphosphate (Ins(1,3,4)P/sub 3/) in hepatocytes using HPLC methodology to separate the InsP/sub 3/ isomers. Both 66 nM EGF and 10 nM angiotensin II (ANG II) caused a rapid increase in the Ins(1,4,5)P/sub 3/ isomer although EGF-stimulated formation was smaller. At a concentration of ANG II (0.1 nM) which gave an equivalent rise in (Ca/sup 2more » +/)/sub i/ as 66 nM EGF, the kinetics and magnitude of Ins(1,4,5)P/sub 3/ formation were similar. EGF or ANG II-stimulated formation of the Ins(1,3,4)P/sub 3/ isomer was more gradual and increased beyond the level of Ins(1,4,5)P/sub 3/ after 60 sec. The initial EGF and ANG II-stimulated increase in both InsP/sub 3/ isomers was not affected by removing external Ca/sup 2 +/ with a 10-fold excess of EGTA. Pretreatment of rats with pertussis toxin for 72 hrs blocked the ability of EGF to increase Ins(1,4,5)P/sub 3/ but did not affect the increase due to ANG II. Three main pretreatment of cells with 1 ..mu..g/ml phorbol 12-myristate-13-acetate (PMA) also inhibited the EGF-stimulated Ins(1,4,5)P/sub 3/ formation. PMA slightly attenuated Ins(1,4,5)P/sub 3/ formation stimulated by 0.1 nM ANG II but not enough to affect the Ca/sup 2 +/ signal. These data suggest that the signal transduction system used by EGF receptors to increase Ins (1,4,5)P/sub 3/ in hepatocytes is somehow different from that used by ANG II receptors.« less

  20. Improved viability and activity of neutrophils differentiated from HL-60 cells by co-culture with adipose tissue-derived mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Yoon Shin; Lim, Goh-Woon; Cho, Kyung-Ah

    Highlights: Black-Right-Pointing-Pointer Neutropenia is a principal complication of cancer treatment. Black-Right-Pointing-Pointer Co-culture of neutrophils with AD-MSC retained cell survival and proliferation and inhibited neutrophil apoptosis under serum starved conditions. Black-Right-Pointing-Pointer AD-MSC increased functions of neutrophil. Black-Right-Pointing-Pointer AD-MSC promoted the viability of neutrophils by enhancing respiratory burst through the expression of IFN-{alpha}, G-CSF, and TGF-{beta}. Black-Right-Pointing-Pointer AD-MSC can be used to improve immunity for neutropenia treatment. -- Abstract: Neutropenia is a principal complication of cancer treatment. We investigated the supportive effect of adipose tissue-derived mesenchymal stem cells (AD-MSCs) on the viability and function of neutrophils. Neutrophils were derived from HL-60 cellsmore » by dimethylformamide stimulation and cultured with or without AD-MSCs under serum-starved conditions to evaluate neutrophil survival, proliferation, and function. Serum starvation resulted in the apoptosis of neutrophils and decreased cell survival. The co-culture of neutrophils and AD-MSCs resulted in cell survival and inhibited neutrophil apoptosis under serum-starved conditions. The survival rate of neutrophils was prolonged up to 72 h, and the expression levels of interferon (IFN)-{alpha}, granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor, and transforming growth factor (TGF)-{beta} in AD-MSCs were increased after co-culture with neutrophils. AD-MSCs promoted the viability of neutrophils by inhibiting apoptosis as well as enhancing respiratory burst, which could potentially be mediated by the increased expression of IFN-{alpha}, G-CSF, and TGF-{beta}. Thus, we conclude that the use of AD-MSCs may be a promising cell-based therapy for increasing immunity by accelerating neutrophil function.« less

  1. Prolonged neutropenia due to antihuman neutrophil antigen 2 (CD177) antibody after bone marrow transplantation.

    PubMed

    Wada, Taizo; Miyamoto, Satoshi; Okamoto, Hiroyuki; Matsuda, Yusuke; Toma, Tomoko; Imai, Kohsuke; Takagi, Masatoshi; Morio, Tomohiro; Yachie, Akihiro

    2017-07-01

    We describe a patient who presented with prolonged neutropenia due to anti-human neutrophil antigen (HNA)-2 (CD177) antibody after allogeneic bone marrow transplantation. A granulocyte immunofluorescence test showed bimodal expression of antineutrophil antibody that resulted from specific binding of anti-HNA-2 to CD177 + neutrophils from healthy donors. The patient did not respond to granulocyte colony stimulating factor, which is able to upregulate CD177 expression on neutrophils. The low percentage of CD177 + cells in the few remaining neutrophils supports the possibility of elimination of CD177-upregulated neutrophils. These findings might explain an inferior response to neutrophil growth factors in neutropenia secondary to anti-HNA-2 antibody. © 2016 Wiley Periodicals, Inc.

  2. Modulation of Neutrophil Extracellular Trap and Reactive Oxygen Species Release by Periodontal Bacteria

    PubMed Central

    White, Phillipa C.; Milward, Michael R.; Cooper, Paul R.

    2017-01-01

    ABSTRACT Oral bacteria are the main trigger for the development of periodontitis, and some species are known to modulate neutrophil function. This study aimed to explore the release of neutrophil extracellular traps (NETs), associated antimicrobial proteins, and reactive oxygen species (ROS) in response to periodontal bacteria, as well as the underlying pathways. Isolated peripheral blood neutrophils were stimulated with 19 periodontal bacteria. NET and ROS release, as well as the expression of NET-bound antimicrobial proteins, elastase, myeloperoxidase, and cathepsin G, in response to these species was measured using fluorescence-based assays. NET and ROS release was monitored after the addition of NADP (NADPH) oxidase pathway modulators and inhibitors of Toll-like receptors (TLRs). Moreover, bacterial entrapment by NETs was visualized microscopically, and bacterial killing was assessed by bacterial culture. Certain microorganisms, e.g., Veillonella parvula and Streptococcus gordonii, stimulated higher levels of ROS and NET release than others. NETs were found to entrap, but not kill, all periodontal bacteria tested. NADPH oxidase pathway modulators decreased ROS production but not NET production in response to the bacteria. Interestingly, TLR inhibitors did not impact ROS and NET release. These data suggest that the variability in the neutrophil response toward different bacteria may contribute to the pathogenesis of periodontal diseases by mechanisms such as bacterial avoidance of host responses and activation of neutrophils. Moreover, our results indicate that bacterium-stimulated NET release may arise in part via NADPH oxidase-independent mechanisms. The role of TLR signaling in bacterium-induced ROS and NET release needs to be further elucidated. PMID:28947649

  3. Modulation of Neutrophil Extracellular Trap and Reactive Oxygen Species Release by Periodontal Bacteria.

    PubMed

    Hirschfeld, Josefine; White, Phillipa C; Milward, Michael R; Cooper, Paul R; Chapple, Iain L C

    2017-12-01

    Oral bacteria are the main trigger for the development of periodontitis, and some species are known to modulate neutrophil function. This study aimed to explore the release of neutrophil extracellular traps (NETs), associated antimicrobial proteins, and reactive oxygen species (ROS) in response to periodontal bacteria, as well as the underlying pathways. Isolated peripheral blood neutrophils were stimulated with 19 periodontal bacteria. NET and ROS release, as well as the expression of NET-bound antimicrobial proteins, elastase, myeloperoxidase, and cathepsin G, in response to these species was measured using fluorescence-based assays. NET and ROS release was monitored after the addition of NADP (NADPH) oxidase pathway modulators and inhibitors of Toll-like receptors (TLRs). Moreover, bacterial entrapment by NETs was visualized microscopically, and bacterial killing was assessed by bacterial culture. Certain microorganisms, e.g., Veillonella parvula and Streptococcus gordonii , stimulated higher levels of ROS and NET release than others. NETs were found to entrap, but not kill, all periodontal bacteria tested. NADPH oxidase pathway modulators decreased ROS production but not NET production in response to the bacteria. Interestingly, TLR inhibitors did not impact ROS and NET release. These data suggest that the variability in the neutrophil response toward different bacteria may contribute to the pathogenesis of periodontal diseases by mechanisms such as bacterial avoidance of host responses and activation of neutrophils. Moreover, our results indicate that bacterium-stimulated NET release may arise in part via NADPH oxidase-independent mechanisms. The role of TLR signaling in bacterium-induced ROS and NET release needs to be further elucidated. Copyright © 2017 American Society for Microbiology.

  4. In-vivo extravasation induces the expression of interleukin 1 receptor type 1 in human neutrophils

    PubMed Central

    Paulsson, J M; Moshfegh, A; Dadfar, E; Held, C; Jacobson, S H; Lundahl, J

    2012-01-01

    In order to address neutrophil activation during inflammation we assessed the expression of interleukin 1 receptor type 1 (IL-1R1) following in-vivo extravasation. Extravasated neutrophils were collected from 11 healthy study subjects by a skin chamber technique and compared to neutrophils in peripheral blood. Expression of IL-1R1 was assessed by microarray, quantitative polymerase chain reaction (qPCR), Western blot, flow cytometry, enzyme linked immunosorbent assay (ELISA) and immunoelectron microscopy (iEM). IL-1R1 was induced following extravasation, demonstrated by both gene array and qPCR. Western blot demonstrated an increased expression of IL-1R1 in extravasated leucocytes. This was confirmed further in neutrophils by flow cytometry and iEM that also demonstrated an increased intracellular pool of IL-1R1 that could be mobilized by N-formyl-methionine-leucine-phenylalanine (fMLP). Stimulation of peripheral neutrophils with IL-1 resulted in transcription of NFκB and a number of downstream chemokines and the corresponding chemokines were also induced following in-vivo extravasation. The present results demonstrate that IL-1R1 is induced following extravasation and exists on the neutrophil surface, as well as in a mobile intracellular pool. Furthermore, neutrophils express functional IL-1R1 as demonstrated by the induction of chemokines following IL-1 stimulation. The results indicate a potential role for IL-1 in the activation of neutrophils at inflammatory sites. PMID:22385245

  5. Blockade by fenspiride of endotoxin-induced neutrophil migration in the rat.

    PubMed

    Cunha, F Q; Boukili, M A; da Motta, J I; Vargaftig, B B; Ferreira, S H

    1993-07-06

    Fenspiride, an antiinflammatory drug with low anti-cyclooxygenase activity, administered orally at 60-200 mg/kg inhibited neutrophil migration into peritoneal and air pouches cavities as well as exudation into peritoneal cavities induced by endotoxin but not induced by carrageenin. Up to 100 microM, fenspiride failed to inhibit the in vitro release of a neutrophil chemotactic activity by endotoxin-stimulated macrophages and the in vivo migration into the peritoneal cavities induced by the supernatant of those macrophages. The release of tumour necrosis factor by stimulated macrophages was inhibited by fenspiride in a dose-dependent manner. These results suggest that the antiinflammatory effects of fenspiride are associated with the inhibition of the tumour necrosis factor release by resident macrophages.

  6. Metabolism of 4-chloro-2-nitrophenol in a Gram-positive bacterium, Exiguobacterium sp. PMA

    PubMed Central

    2012-01-01

    Background Chloronitrophenols (CNPs) are widely used in the synthesis of dyes, drugs and pesticides, and constitute a major group of environmental pollutants. 4-Chloro-2-nitrophenol (4C2NP) is an isomer of CNPs that has been detected in various industrial effluents. A number of physicochemical methods have been used for treatment of wastewater containing 4C2NP. These methods are not as effective as microbial degradation, however. Results A 4C2NP-degrading bacterium, Exiguobacterium sp. PMA, which uses 4C2NP as the sole carbon and energy source was isolated from a chemically-contaminated site in India. Exiguobacterium sp. PMA degraded 4C2NP with the release of stoichiometeric amounts of chloride and ammonium ions. The effects of different substrate concentrations and various inoculum sizes on degradation of 4C2NP were investigated. Exiguobacterium sp. PMA degraded 4C2NP up to a concentration of 0.6 mM. High performance liquid chromatography and gas chromatography–mass spectrometry identified 4-chloro-2-aminophenol (4C2AP) and 2-aminophenol (2AP) as possible metabolites of the 4C2NP degradation pathway. The crude extract of 4C2NP-induced PMA cells contained enzymatic activity for 4C2NP reductase and 4C2AP dehalogenase, suggesting the involvement of these enzymes in the degradation of 4C2NP. Microcosm studies using sterile and non-sterile soils spiked with 4C2NP were carried out to monitor the bioremediation potential of Exiguobacterium sp. PMA. The bioremediation of 4C2NP by Exiguobacterium sp. PMA was faster in non-sterilized soil than sterilized soil. Conclusions Our studies indicate that Exiguobacterium sp. PMA may be useful for the bioremediation of 4C2NP-contaminated sites. This is the first report of (i) the formation of 2AP in the 4C2NP degradation pathway by any bacterium and (iii) the bioremediation of 4C2NP by any bacterium. PMID:23171039

  7. Metabolism of 4-chloro-2-nitrophenol in a gram-positive bacterium, Exiguobacterium sp. PMA.

    PubMed

    Arora, Pankaj Kumar; Sharma, Ashutosh; Mehta, Richa; Shenoy, Belle Damodara; Srivastava, Alok; Singh, Vijay Pal

    2012-11-21

    Chloronitrophenols (CNPs) are widely used in the synthesis of dyes, drugs and pesticides, and constitute a major group of environmental pollutants. 4-Chloro-2-nitrophenol (4C2NP) is an isomer of CNPs that has been detected in various industrial effluents. A number of physicochemical methods have been used for treatment of wastewater containing 4C2NP. These methods are not as effective as microbial degradation, however. A 4C2NP-degrading bacterium, Exiguobacterium sp. PMA, which uses 4C2NP as the sole carbon and energy source was isolated from a chemically-contaminated site in India. Exiguobacterium sp. PMA degraded 4C2NP with the release of stoichiometeric amounts of chloride and ammonium ions. The effects of different substrate concentrations and various inoculum sizes on degradation of 4C2NP were investigated. Exiguobacterium sp. PMA degraded 4C2NP up to a concentration of 0.6 mM. High performance liquid chromatography and gas chromatography-mass spectrometry identified 4-chloro-2-aminophenol (4C2AP) and 2-aminophenol (2AP) as possible metabolites of the 4C2NP degradation pathway. The crude extract of 4C2NP-induced PMA cells contained enzymatic activity for 4C2NP reductase and 4C2AP dehalogenase, suggesting the involvement of these enzymes in the degradation of 4C2NP. Microcosm studies using sterile and non-sterile soils spiked with 4C2NP were carried out to monitor the bioremediation potential of Exiguobacterium sp. PMA. The bioremediation of 4C2NP by Exiguobacterium sp. PMA was faster in non-sterilized soil than sterilized soil. Our studies indicate that Exiguobacterium sp. PMA may be useful for the bioremediation of 4C2NP-contaminated sites. This is the first report of (i) the formation of 2AP in the 4C2NP degradation pathway by any bacterium and (iii) the bioremediation of 4C2NP by any bacterium.

  8. PMA-Linked Fluorescence for Rapid Detection of Viable Bacterial Endospores

    NASA Technical Reports Server (NTRS)

    LaDuc, Myron T.; Venkateswaran, Kasthuri; Mohapatra, Bidyut

    2012-01-01

    The most common approach for assessing the abundance of viable bacterial endospores is the culture-based plating method. However, culture-based approaches are heavily biased and oftentimes incompatible with upstream sample processing strategies, which make viable cells/spores uncultivable. This shortcoming highlights the need for rapid molecular diagnostic tools to assess more accurately the abundance of viable spacecraft-associated microbiota, perhaps most importantly bacterial endospores. Propidium monoazide (PMA) has received a great deal of attention due to its ability to differentiate live, viable bacterial cells from dead ones. PMA gains access to the DNA of dead cells through compromised membranes. Once inside the cell, it intercalates and eventually covalently bonds with the double-helix structures upon photoactivation with visible light. The covalently bound DNA is significantly altered, and unavailable to downstream molecular-based manipulations and analyses. Microbiological samples can be treated with appropriate concentrations of PMA and exposed to visible light prior to undergoing total genomic DNA extraction, resulting in an extract comprised solely of DNA arising from viable cells. This ability to extract DNA selectively from living cells is extremely powerful, and bears great relevance to many microbiological arenas.

  9. The influence of blood glucose on neutrophil function in individuals without diabetes.

    PubMed

    Saito, Yuriko; Takahashi, Ippei; Iwane, Kaori; Okubo, Noriyuki; Nishimura, Miya; Matsuzaka, Masashi; Wada, Naoko; Miwa, Takashi; Umeda, Takashi; Nakaji, Shigeyuki

    2013-01-01

    We assessed the association of neutrophil function with glycated hemoglobin (HbA1c) levels in a Japanese general population. Participants were 809 males and females who were over 20 years old living in the Iwaki region in Aomori Prefecture located in northern Japan. Lifestyle parameters (smoking, alcohol consumption, and exercise habits), HbA1c and neutrophil function such as reactive oxygen species (ROS) production capability and phagocytic activity (PA) were measured. ROS production capability was measured before and after phagocytic stimulus to obtain basal ROS production and stimulated ROS production. Level of HbA1c had a positive correlation with basal ROS production (p=0.053), a negative correlation with stimulated ROS production (p=0.072) and PA (p=0.059) only in post-menopausal groups, and not in pre-menopausal groups. However, there were no correlations between levels of HbA1c and neutrophil functions in male. In conclusion, in the present study, despite the presence of diabetes, chronic hyperglycemia was found to cause an increase in daily basal ROS production of neutrophils, and increased susceptibility to infection caused by reduced neutrophilic reaction in females in their menopause. Therefore, from the oxidative point of view, strict glycemic control is necessary to prevent post-menopausal females from developing diabetic complications in spite of the presence of diabetes. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Butyric acid stimulates bovine neutrophil functions and potentiates the effect of platelet activating factor.

    PubMed

    Carretta, M D; Hidalgo, A I; Burgos, J; Opazo, L; Castro, L; Hidalgo, M A; Figueroa, C D; Taubert, A; Hermosilla, C; Burgos, R A

    2016-08-01

    Increased short-chain fatty acid (SCFA) production is associated with subacute ruminal acidosis (SARA) and activation of inflammatory processes. In humans and rodents, SCFAs modulate inflammatory responses in the gut via free fatty acid receptor 2 (FFA2). In bovines, butyric acid is one of the most potent FFA2 agonists. Its expression in bovine neutrophils has recently been demonstrated, suggesting a role in innate immune response in cattle. This study aimed to evaluate if butyric acid modulates oxidative and non-oxidative functions or if it can potentiate other inflammatory mediators in bovine neutrophils. Our results showed that butyric acid can activate bovine neutrophils, inducing calcium (Ca(2+)) influx and mitogen-activated protein kinase (MAPK) phosphorylation, two second messengers involved in FFA2 activation. Ca(2+) influx induced by butyric acid was dependent on the extracellular and intracellular Ca(2+) source and phospholipase C (PLC) activation. Butyric acid alone had no significant effect on reactive oxygen species (ROS) production and chemotaxis; however, a priming effect on platelet-activating factor (PAF), a potent inflammatory mediator, was observed. Butyric acid increased CD63 expression and induced the release of neutrophil granule markers matrix metalloproteinase-9 (MMP-9) and lactoferrin. Finally, we observed that butyric acid induced neutrophil extracellular trap (NET) formation without affecting cellular viability. These findings suggest that butyric acid, a component of the ruminal fermentative process, can modulate the innate immune response of ruminants. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Guide to preemption of state-law claims against Class III PMA medical devices.

    PubMed

    Whitney, Daniel W

    2010-01-01

    There is a perception that the express preemption holding of the Supreme Court in Riegel v. Medtronic, 552 U.S. 312(2008), immunizes medical device manufacturers from common law personal injury actions involving Class III devices that received FDA clearance under a premarket approval application (PMA). In the aftermath of Riegel, many lawsuits involving Class III PMA devices have been dismissed by district courts applying the new heightened pleading standard of Bell Atlantic Corp. v. Twombly, 550 U.S. 544 (2007). Other lawsuits involving Class III PMA devices premised on fraud-on-FDA have been dismissed based on the implied preemption holding of the Supreme Court in Buckman v. Plaintiffs' Legal Comm., 531 U.S. 341 (2001). When these decisions are carefully analyzed together with Medtronic, Inc. v. Lohr, 518 U.S. 470 (1996), which found no preemption regarding a Class III device receiving FDA clearance through the 510(k) mechanism, it is apparent that the preemption defense does not apply universally to Class III PMA devices. The overall methodology for framing a non-preempted claim is to first identify conduct which violated the PMA or other specific requirements related to safety or efficacy. If such conduct can also be stated in terms of a breach of a parallel common law duty (e.g, failure to warn under strict liability or negligence, manufacturing defect or breach of warranty), then it would appear the claim is not preempted. Alternatively, regardless of a specific violation, common law remedies are not preempted by general CGMP requirements.

  12. High-density PhyloChip profiling of stimulated aquifer microbial communities reveals a complex response to acetate amendment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handley, Kim M.; Wrighton, Kelly E.; Piceno, Y. M.

    2012-06-13

    There is increasing interest in harnessing the functional diversity of indigenous microbial communities to transform and remediate a wide range of environmental contaminants. Understanding the response of communities to stimulation, including flanking taxa, presents important opportunities for optimizing remediation approaches. We used high-density PhyloChip microarray analysis to comprehensively determine community membership and abundance patterns amongst a suite of samples from U(VI) bioremediation experiments. Samples were unstimulated or collected during Fe(III) and sulfate reduction from an acetate-augmented aquifer in Rifle, Colorado, and from laboratory experiments using field-collected materials. Results showed the greatest diversity in abundant SRB lineages was present in naturally-reducedmore » sediment. Desulfuromonadales and Desulfobacterales were consistently identified as the dominant Fe(III)- and sulfate-reducing bacteria (IRB and SRB) throughout acetate amendment experiments. Stimulated communities also exhibited a high degree of functional redundancy amongst enriched flanking members. Not surprisingly, competition for both sulfate and iron was evident amongst abundant taxa, but the distribution and abundance of these ancillary SRB (Peptococcaceae, Desulfovibrionales and Syntrophobacterales), and lineages containing IRB (excluding Desulfobacteraceae) was heterogeneous amongst sample types. Interesting, amongst the most abundant taxa, particularly during sulfate reduction, were Epsilonproteobacteria that perform microaerobic or nitrate-dependant sulfur oxidation, and a number of bacteria other than Geobacteraceae that may enzymatically reduce U(VI). Finally, in depth community probing with PhyloChip determined the efficacy of experimental approaches, notably revealing striking similarity amongst stimulated sediment (from drill cores and in-situ columns) and groundwater communities, and demonstrating that sediment-packed in-situ (down-well) columns

  13. Interleukin-17 Promotes Neutrophil-Mediated Immunity by Activating Microvascular Pericytes and Not Endothelium

    PubMed Central

    Liu, Rebecca; Lauridsen, Holly M.; Amezquita, Robert A.; Pierce, Richard W.; Jane-wit, Dan; Fang, Caodi; Pellowe, Amanda S.; Kirkiles-Smith, Nancy C.; Gonzalez, Anjelica L.; Pober, Jordan S.

    2016-01-01

    A classical hallmark of acute inflammation is neutrophil infiltration of tissues, a multi-step process that involves sequential cell-cell interactions of circulating leukocytes with interleukin (IL)-1- or tumor necrosis factor-α (TNF)-activated microvascular endothelial cells (ECs) and pericytes (PCs) that form the wall of the postcapillary venules. The initial infiltrating cells accumulate perivascularly in close proximity to PCs. IL-17, a pro-inflammatory cytokine that acts on target cells via a heterodimeric receptor formed by IL-17RA and IL-17RC subunits, also promotes neutrophilic inflammation but its effects on vascular cells are less clear. We report that both cultured human ECs and PCs strongly express IL-17RC and, while neither cell type expresses much IL-17RA, PCs express significantly more than ECs. IL-17, alone or synergistically with TNF, significantly alters inflammatory gene expression in cultured human PCs but not ECs. RNA-seq analysis identifies many IL-17-induced transcripts in PCs encoding proteins known to stimulate neutrophil-mediated immunity. Conditioned media (CM) from IL-17-activated PCs, but not ECs, induce pertussis toxin-sensitive neutrophil polarization, likely mediated by PC-secreted chemokines, and also stimulate neutrophil production of pro-inflammatory molecules, including TNF, IL-1α, IL-1β, and IL-8. Furthermore, IL-17-activated PCs but not ECs can prolong neutrophil survival by producing G-CSF and GM-CSF, delaying the mitochondria outer membrane permeabilization and caspase 9 activation. Importantly, neutrophils exhibit enhanced phagocytic capacity after activation by CM from IL-17-treated PCs. We conclude that PCs, not ECs, are the major target of IL-17 within the microvessel wall and that IL-17-activated PCs can modulate neutrophil functions within the perivascular tissue space. PMID:27534549

  14. Neutrophils Contribute to the Protection Conferred by ArtinM against Intracellular Pathogens: A Study on Leishmania major

    PubMed Central

    Ricci-Azevedo, Rafael; Oliveira, Aline Ferreira; Conrado, Marina C. A. V.; Carvalho, Fernanda Caroline; Roque-Barreira, Maria Cristina

    2016-01-01

    ArtinM, a D-mannose binding lectin from Artocarpus heterophyllus, has immunomodulatory activities through its interaction with N-glycans of immune cells, culminating with the establishment of T helper type 1 (Th1) immunity. This interaction protects mice against intracellular pathogens, including Leishmania major and Leishmania amazonensis. ArtinM induces neutrophils activation, which is known to account for both resistance to pathogens and host tissue injury. Although exacerbated inflammation was not observed in ArtinM-treated animals, assessment of neutrophil responses to ArtinM is required to envisage its possible application to design a novel immunomodulatory agent based on carbohydrate recognition. Herein, we focus on the mechanisms through which neutrophils contribute to ArtinM-induced protection against Leishmania, without exacerbating inflammation. For this purpose, human neutrophils treated with ArtinM and infected with Leishmania major were analyzed together with untreated and uninfected controls, based on their ability to eliminate the parasite, release cytokines, degranulate, produce reactive oxygen species (ROS), form neutrophil extracellular traps (NETs) and change life span. We demonstrate that ArtinM-stimulated neutrophils enhanced L. major clearance and at least duplicated tumor necrosis factor (TNF) and interleukin-1beta (IL-1β) release; otherwise, transforming growth factor-beta (TGF-β) production was reduced by half. Furthermore, ROS production and cell degranulation were augmented. The life span of ArtinM-stimulated neutrophils decreased and they did not form NETs when infected with L. major. We postulate that the enhanced leishmanicidal ability of ArtinM-stimulated neutrophils is due to augmented release of inflammatory cytokines, ROS production, and cell degranulation, whereas host tissue integrity is favored by their shortened life span and the absence of NET formation. Our results reinforce the idea that ArtinM may be considered an

  15. Neutrophils Contribute to the Protection Conferred by ArtinM against Intracellular Pathogens: A Study on Leishmania major.

    PubMed

    Ricci-Azevedo, Rafael; Oliveira, Aline Ferreira; Conrado, Marina C A V; Carvalho, Fernanda Caroline; Roque-Barreira, Maria Cristina

    2016-04-01

    ArtinM, a D-mannose binding lectin from Artocarpus heterophyllus, has immunomodulatory activities through its interaction with N-glycans of immune cells, culminating with the establishment of T helper type 1 (Th1) immunity. This interaction protects mice against intracellular pathogens, including Leishmania major and Leishmania amazonensis. ArtinM induces neutrophils activation, which is known to account for both resistance to pathogens and host tissue injury. Although exacerbated inflammation was not observed in ArtinM-treated animals, assessment of neutrophil responses to ArtinM is required to envisage its possible application to design a novel immunomodulatory agent based on carbohydrate recognition. Herein, we focus on the mechanisms through which neutrophils contribute to ArtinM-induced protection against Leishmania, without exacerbating inflammation. For this purpose, human neutrophils treated with ArtinM and infected with Leishmania major were analyzed together with untreated and uninfected controls, based on their ability to eliminate the parasite, release cytokines, degranulate, produce reactive oxygen species (ROS), form neutrophil extracellular traps (NETs) and change life span. We demonstrate that ArtinM-stimulated neutrophils enhanced L. major clearance and at least duplicated tumor necrosis factor (TNF) and interleukin-1beta (IL-1β) release; otherwise, transforming growth factor-beta (TGF-β) production was reduced by half. Furthermore, ROS production and cell degranulation were augmented. The life span of ArtinM-stimulated neutrophils decreased and they did not form NETs when infected with L. major. We postulate that the enhanced leishmanicidal ability of ArtinM-stimulated neutrophils is due to augmented release of inflammatory cytokines, ROS production, and cell degranulation, whereas host tissue integrity is favored by their shortened life span and the absence of NET formation. Our results reinforce the idea that ArtinM may be considered an

  16. Effect of fluticasone propionate on neutrophil chemotaxis, superoxide generation, and extracellular proteolytic activity in vitro.

    PubMed

    Llewellyn-Jones, C G; Hill, S L; Stockley, R A

    1994-03-01

    Corticosteroids are widely used in the treatment of many inflammatory conditions but the exact mode of action on neutrophil function is uncertain. Fluticasone propionate is a new topically active synthetic steroid which can be measured in body fluids and which undergoes first pass metabolism. The effects of fluticasone propionate on the function of neutrophils isolated from normal, healthy control subjects and on the chemotactic activity of sputum sol phase were assessed. Preincubation of neutrophils with fluticasone propionate reduced the chemotactic response to 10(-8) mol/l F-Met-Leu-Phe (FMLP) and to a 1:5 dilution of sputum sol phase in a dose dependent manner. Furthermore, when fluticasone propionate was added to sputum from eight patients with stable chronic obstructive bronchitis the chemotactic activity of a 1:5 dilution of the sol phase fell from a mean (SE) value of 22.2 (1.21) cells/field to 19.6 (0.89), 17.1 (0.74), and 11.9 (0.6) cells field at 1 mumol/l, 10 mumol/l, and 100 mumol/l, respectively. In further experiments fluticasone propionate preincubated with neutrophils inhibited fibronectin degradation by resting cells and by cells stimulated by FMLP (15.2% inhibition of resting cells, 5.1% inhibition of stimulated cells with 1 mumol/l fluticasone propionate, 24% and 18.7% inhibition respectively at 100 mumol/l fluticasone propionate. Fluticasone propionate had no effect on generation of superoxide anion by resting or stimulated cells. These results indicate that fluticasone propionate has a direct suppressive effect on several aspects of neutrophil function and may suggest a role for this agent in the modulation of neutrophil mediated damage to connective tissue.

  17. In vivo study of indomethacin in bronchiectasis: effect on neutrophil function and lung secretion.

    PubMed

    Llewellyn-Jones, C G; Johnson, M M; Mitchell, J L; Pye, A; Okafor, V C; Hill, S L; Stockley, R A

    1995-09-01

    Bronchiectasis is associated with sputum containing high levels of the proteolytic enzyme elastase, which is thought to be involved in the pathogenesis of the disease. Agents which inhibit neutrophil function and interfere with neutrophil elastase release may have a beneficial effect on the development and progression of such diseases. We have studied the effects of the nonsteroidal anti-inflammatory agent indomethacin on neutrophil function in nine patients with clinically stable bronchiectasis. All patients remained clinically stable during the study. We observed a significant reduction in peripheral neutrophil chemotaxis to 10 nmol.L-1 N-formyl-methionyl-leucyl-phenylalanine (FMLP) from a mean of 19.86 (SEM 1.35) to 8.46 (0.68) cells.field-1 after 4 weeks of therapy. There was also a significant reduction in fibronectin degradation both by resting and FMLP-stimulated neutrophils, from a mean of 1.90 (0.19) micrograms x 3 x 10(5) cells at the start of therapy to 0.87 (0.08) micrograms after 4 weeks, and from 3.17 (0.35) micrograms to 1.48 (0.05) micrograms, respectively. There was no effect on spontaneous or stimulated superoxide anion generation by neutrophils. Despite the marked changes in peripheral neutrophil function, no adverse effect was observed on viable bacterial load in the bronchial secretions. In addition, there was no difference in sputum albumin, elastase or myeloperoxidase levels, and only minor changes in the chemotactic activity of the sputum. These results suggest that nonsteroidal anti-inflammatory agents have a major effect on peripheral neutrophil function but do not appear to have an adverse effect on bacterial colonization of the airways.

  18. Optimization of PMA-qPCR for Staphylococcus aureus and determination of viable bacteria in indoor air.

    PubMed

    Chang, C-W; Lin, M-H

    2018-01-01

    Staphylococcus aureus may cause infections in humans from mild skin disorders to lethal pneumonia. Rapid and accurate monitoring of viable S. aureus is essential to characterize human exposure. This study evaluated quantitative PCR (qPCR) with propidium monoazide (PMA) to quantify S. aureus. The results showed comparable S. aureus counts between exclusively live cells and mixtures of live/dead cells by qPCR with 1.5 or 2.3 μg/mL PMA (P>.05), illustrating the ability of PMA-qPCR to detect DNA exclusively from viable cells. Moreover, qPCR with 1.5 or 2.3 μg/mL PMA performed optimally with linearity over 10 3 -10 8  CFU/mL (R 2 ≥0.9), whereas qPCR with 10, 23 or 46 μg/mL PMA significantly underestimated viable counts. Staphylococcus aureus and total viable bacteria were further determined with PMA-qPCR (1.5 μg/mL) from 48 samples from a public library and two university dormitories and four from outside. Viable bacteria averaged 1.9×10 4 cells/m 3 , and S. aureus were detected in 22 (42%) samples with a mean of 4.4×10 3 cells/m 3 . The number of S. aureus and viable bacteria were positively correlated (r=.61, P<.005), and percentages of S. aureus relative to viable bacteria averaged 12-44%. The results of field samples suggest that PMA-qPCR can be used to quantify viable S. aureus cells. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Whitson prepares to close PMA2 hatch

    NASA Image and Video Library

    2007-11-04

    S120-E-008857 (4 Nov. 2007) --- Astronaut Peggy Whitson, Expedition 16 commander, prepares to close the hatch in the Pressurized Mating Adapter (PMA-2) of the International Space Station after the STS-120 crewmembers boarded Space Shuttle Discovery for their return trip home. Hatches were closed between the station and the shuttle at 2:03 p.m. (CST) on Nov. 4.

  20. Helicobacter pylori neutrophil activating protein as target for new drugs against H. pylori inflammation.

    PubMed

    Choli-Papadopoulou, Theodora; Kottakis, Filippos; Papadopoulos, Georgios; Pendas, Stefanos

    2011-06-07

    Helicobacter pylori (H. pylori) infection is among the most common human infections and the major risk factor for peptic ulcer disease and gastric cancer. Within this work we present the implication of C-terminal region of H. pylori neutrophil activating protein in the stimulation of neutrophil activation as well as the evidence that the C-terminal region of H. pylori activating protein is indispensable for neutrophil adhesion to endothelial cells, a step necessary to H. pylori inflammation. In addition we show that arabino galactan proteins derived from chios mastic gum, the natural resin of the plant Pistacia lentiscus var. Chia inhibit neutrophil activation in vitro.

  1. Localizing the lipid products of PI3Kγ in neutrophils.

    PubMed

    Norton, Laura; Lindsay, Yvonne; Deladeriere, Arnaud; Chessa, Tamara; Guillou, Hervé; Suire, Sabine; Lucocq, John; Walker, Simon; Andrews, Simon; Segonds-Pichon, Anne; Rausch, Oliver; Finan, Peter; Sasaki, Takehiko; Du, Cheng-Jin; Bretschneider, Till; Ferguson, G John; Hawkins, Phillip T; Stephens, Len

    2016-01-01

    Class I phosphoinositide 3-kinases (PI3Ks) are important regulators of neutrophil migration in response to a range of chemoattractants. Their primary lipid products PtdIns(3,4,5)P3 and PtdIns(3,4)P2 preferentially accumulate near to the leading edge of migrating cells and are thought to act as an important cue organizing molecular and morphological polarization. We have investigated the distribution and accumulation of these lipids independently in mouse neutrophils using eGFP-PH reportersand electron microscopy (EM). We found that authentic mouse neutrophils rapidly polarized their Class I PI3K signalling, as read-out by eGFP-PH reporters, both at the up-gradient leading edge in response to local stimulation with fMLP as well as spontaneously and randomly in response to uniform stimulation. EM studies revealed these events occurred at the plasma membrane, were dominated by accumulation of PtdIns(3,4,5)P3, but not PtdIns(3,4)P2, and were dependent on PI3Kγ and its upstream activation by both Ras and Gβγs. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlasova, Irina I., E-mail: irina.vlasova@yahoo.com; Vakhrusheva, Tatyana V.; Sokolov, Alexey V.

    Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H{sub 2}O{sub 2} system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acidmore » (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes. -- Highlights: ► Myeloperoxidase (MPO) product hypochlorous acid is able to degrade CNTs. ► PEGylated SWCNTs stimulate isolated neutrophils to produce hypochlorous acid. ► SWCNTs are capable of activating neutrophils in blood samples. ► Activation of

  3. Combined activity of post-exercise concentrations of NA and eHsp72 on human neutrophil function: role of cAMP.

    PubMed

    Giraldo, Esther; Hinchado, María D; Ortega, Eduardo

    2013-09-01

    Extracellular heat shock proteins of 72 kDa (eHsp72) and noradrenaline (NA) can act as "danger signals" during exercise-induced stress by activating neutrophil function (chemotaxis, phagocytosis, and fungicidal capacity). In addition, post-exercise concentrations of NA increase the expression and release of Hsp72 by human neutrophils, and adrenoreceptors and cAMP are involved in the stimulation of neutrophils by eHsp72. This suggests an interaction between the two molecules in the modulation of neutrophils during exercise-induced stress. Given this context, the aim of the present investigation was to study the combined activity of post-exercise circulating concentrations of NA and eHsp72 on the neutrophil phagocytic process, and to evaluate the role of cAMP as intracellular signal in these effects. Results showed an accumulative stimulation of chemotaxis induced by NA and eHsp72. However, while NA and eHsp72, separately, stimulate the phagocytosis and fungicidal activity of neutrophils, when they act together they do not modify these capacities of neutrophils. Similarly, post-exercise concentrations of NA and eHsp72 separately increased the intracellular level of cAMP, but NA and eHsp72 acting together did not modify the intracellular concentration of cAMP. These results confirm that cAMP can be involved in the autocrine/paracrine physiological regulation of phagocytosis and fungicidal capacity of human neutrophils mediated by NA and eHsp72 in the context of exercise-induced stress. Copyright © 2013 Wiley Periodicals, Inc.

  4. Elevated CXCL1 expression in gp130-deficient endothelial cells impairs neutrophil migration in mice

    PubMed Central

    Yao, Longbiao; Yago, Tadayuki; Shao, Bojing; Liu, Zhenghui; Silasi-Mansat, Robert; Setiadi, Hendra; Lupu, Florea

    2013-01-01

    Neutrophils emigrate from venules to sites of infection or injury in response to chemotactic gradients. How these gradients form is not well understood. Some IL-6 family cytokines stimulate endothelial cells to express adhesion molecules and chemokines that recruit leukocytes. Receptors for these cytokines share the signaling subunit gp130. We studied knockout mice lacking gp130 in endothelial cells. Unexpectedly, gp130-deficient endothelial cells constitutively expressed more CXCL1 in vivo and in vitro, and even more upon stimulation with tumor necrosis factor-α. Mobilization of this increased CXCL1 from intracellular stores to the venular surface triggered β2 integrin–dependent arrest of neutrophils rolling on selectins but impaired intraluminal crawling and transendothelial migration. Superfusing CXCL1 over venules promoted neutrophil migration only after intravenously injecting mAb to CXCL1 to diminish its intravascular function or heparinase to release CXCL1 from endothelial proteoglycans. Remarkably, mice lacking gp130 in endothelial cells had impaired histamine-induced venular permeability, which was restored by injecting anti–P-selectin mAb to prevent neutrophil rolling and arrest. Thus, excessive CXCL1 expression in gp130-deficient endothelial cells augments neutrophil adhesion but hinders migration, most likely by disrupting chemotactic gradients. Our data define a role for endothelial cell gp130 in regulating integrin-dependent adhesion and de-adhesion of neutrophils during inflammation. PMID:24081661

  5. Loss of neutral endopeptidase activity contributes to neutrophil activation and cardiac dysfunction during chronic hypomagnesemia: Protection by substance P receptor blockade

    PubMed Central

    Mak, I Tong; Chmielinska, Joanna J; Kramer, Jay H; Spurney, Christopher F; Weglicki, William B

    2011-01-01

    BACKGROUND/OBJECTIVE: Hypomagnesemia (Hypo-Mg) in rodents leads to neurogenic inflammation associated with substance P (SP) elevations; neutral endopeptidase (NEP) is a principle cell surface proteolytic enzyme, which degrades SP. The effects of chronic Hypo-Mg on neutrophil NEP activity, cell activation and the associated cardiac dysfunction were examined. METHODS/RESULTS: Male Sprague-Dawley rats (180 g) were fed Mg-sufficient or Mg-deficient (Hypo-Mg) diets for five weeks. Enriched blood neutrophils were isolated at the end of one, three and five weeks by step gradient centrifugation. NEP enzymatic activity decreased by 20% (P value was nonsignificant), 50% (P<0.025) and 57% (P<0.01), respectively, for week 1, 3 and 5 Hypo-Mg rats. In association, neutrophil basal superoxide (•O2−)-generating activities were elevated: 30% at week 1 (P value was nonsignificant), and fourfold to sevenfold for weeks 3 to 5 (P<0.01). Maximal phorbol myristate acetate-stimulated •O2− production by Hypo-Mg neutrophils increased twofold at week 5. Also, plasma 8-isoprostane levels were elevated twofold to threefold, and red blood cell glutathione decreased by 50% (P<0.01) after three to five weeks of chronic Hypo-Mg. When Hypo-Mg rats were treated with the SP receptor blocker (L-703,606), neutrophil NEP activities were retained at 75% (week 3) and 77% (week 5) (P<0.05); activation of neutrophil •O2− and other oxidative indexes were also significantly (P<0.05) attenuated. After five weeks, histochemical (hematoxylin and eosin) staining of Hypo-Mg-treated rat ventricles revealed significant white blood cell infiltration, which was substantially reduced by L-703,606. Echocardiography after three weeks of Hypo-Mg only showed modest diastolic impairment, but five weeks resulted in significant (P<0.05) depression in both left ventricular systolic and diastolic functions; changes in these functional parameters were attenuated by L-703,606. CONCLUSION: NEP activity regulates

  6. Mannan-Binding Lectin Inhibits Candida albicans-Induced Cellular Responses in PMA-Activated THP-1 Cells through Toll-Like Receptor 2 and Toll-Like Receptor 4

    PubMed Central

    Yang, Jianbin; Zhao, Dongfang; Wang, Hongpo; Shao, Feng; Wang, Wenjun; Sun, Ruili; Ling, Mingzhi; Zhai, Jingjing; Song, Shijun

    2013-01-01

    Background Candida albicans (C. albicans), the most common human fungal pathogen, can cause fatal systemic infections under certain circumstances. Mannan-binding lectin (MBL),a member of the collectin family in the C-type lectin superfamily, is an important serum component associated with innate immunity. Toll-like receptors (TLRs) are expressed extensively, and have been shown to be involved in C. albicans-induced cellular responses. We first examined whether MBL modulated heat-killed (HK) C. albicans-induced cellular responses in phorbol 12-myristate 13-acetate (PMA)-activated human THP-1 macrophages. We then investigated the possible mechanisms of its inhibitory effect. Methodology/Principal Finding Enzyme-linked immunosorbent assay (ELISA) and reverse transcriptasepolymerase chain reaction (RT-PCR) analysis showed that MBL at higher concentrations (10–20 µg/ml) significantly attenuated C. albicans-induced chemokine (e.g., IL-8) and proinflammatory cytokine (e.g., TNF-α) production from PMA-activated THP-1 cells at both protein and mRNA levels. Electrophoretic mobility shift assay (EMSA) and Western blot (WB) analysis showed that MBL could inhibit C. albicans-induced nuclear factor-κB (NF-κB) DNA binding and its translocation in PMA-activated THP-1 cells. MBL could directly bind to PMA-activated THP-1 cells in the presence of Ca2+, and this binding decreased TLR2 and TLR4 expressions in C. albicans-induced THP-1 macrophages. Furthermore, the binding could be partially inhibited by both anti-TLR2 monoclonal antibody (clone TL2.1) and anti-TLR4 monoclonal antibody (clone HTA125). In addition, co-immunoprecipitation experiments and microtiter wells assay showed that MBL could directly bind to the recombinant soluble form of extracellular TLR2 domain (sTLR2) and sTLR4. Conclusions/Significance Our study demonstrates that MBL can affect proinflammatory cytokine and chemokine expressions by modifying C. albicans-/TLR-signaling pathways. This study supports an

  7. Effect of fluticasone propionate on neutrophil chemotaxis, superoxide generation, and extracellular proteolytic activity in vitro.

    PubMed Central

    Llewellyn-Jones, C. G.; Hill, S. L.; Stockley, R. A.

    1994-01-01

    BACKGROUND--Corticosteroids are widely used in the treatment of many inflammatory conditions but the exact mode of action on neutrophil function is uncertain. Fluticasone propionate is a new topically active synthetic steroid which can be measured in body fluids and which undergoes first pass metabolism. METHODS--The effects of fluticasone propionate on the function of neutrophils isolated from normal, healthy control subjects and on the chemotactic activity of sputum sol phase were assessed. RESULTS--Preincubation of neutrophils with fluticasone propionate reduced the chemotactic response to 10(-8) mol/l F-Met-Leu-Phe (FMLP) and to a 1:5 dilution of sputum sol phase in a dose dependent manner. Furthermore, when fluticasone propionate was added to sputum from eight patients with stable chronic obstructive bronchitis the chemotactic activity of a 1:5 dilution of the sol phase fell from a mean (SE) value of 22.2 (1.21) cells/field to 19.6 (0.89), 17.1 (0.74), and 11.9 (0.6) cells field at 1 mumol/l, 10 mumol/l, and 100 mumol/l, respectively. In further experiments fluticasone propionate preincubated with neutrophils inhibited fibronectin degradation by resting cells and by cells stimulated by FMLP (15.2% inhibition of resting cells, 5.1% inhibition of stimulated cells with 1 mumol/l fluticasone propionate, 24% and 18.7% inhibition respectively at 100 mumol/l fluticasone propionate. Fluticasone propionate had no effect on generation of superoxide anion by resting or stimulated cells. CONCLUSIONS--These results indicate that fluticasone propionate has a direct suppressive effect on several aspects of neutrophil function and may suggest a role for this agent in the modulation of neutrophil mediated damage to connective tissue. PMID:8202875

  8. Kinematics of our Galaxy from the PMA and TGAS catalogues

    NASA Astrophysics Data System (ADS)

    Velichko, Anna B.; Akhmetov, Volodymyr S.; Fedorov, Peter N.

    2018-04-01

    We derive and compare kinematic parameters of the Galaxy using the PMA and Gaia TGAS data. Two methods are used in calculations: evaluation of the Ogorodnikov-Milne model (OMM) parameters by the least square method (LSM) and a decomposition on a set of vector spherical harmonics (VSH). We trace dependencies on the distance of the derived parameters including the Oort constants A and B and the rotational velocity of the Galaxy V rot at the Solar distance for the common sample of stars of mixed spectral composition of the PMA and TGAS catalogues. The distances were obtained from the TGAS parallaxes or from reduced proper motions for fainter stars. The A, B and V rot parameters derived from proper motions of both catalogues used show identical behaviour but the values are systematically shifted by about 0.5 mas/yr. The Oort B parameter derived from the PMA sample of red giants shows gradual decrease with increasing the distance while the Oort A has a minimum at about 2 kpc and then gradually increases. As for models chosen for calculations, first, we confirm conclusions of other authors about the existence of extra-model harmonics in the stellar velocity field. Secondly, not all parameters of the OMM are statistically significant, and the set of parameters depends on the stellar sample used.

  9. Increased Neutrophil Secretion Induced by NLRP3 Mutation Links the Inflammasome to Azurophilic Granule Exocytosis

    PubMed Central

    Johnson, Jennifer L.; Ramadass, Mahalakshmi; Haimovich, Ariela; McGeough, Matthew D.; Zhang, Jinzhong; Hoffman, Hal M.; Catz, Sergio D.

    2017-01-01

    Heterozygous mutations in the NLRP3 gene in patients with cryopyrin associated periodic syndrome (CAPS) lead to hyper-responsive inflammasome function. CAPS is a systemic auto-inflammatory syndrome characterized by the activation of the innate immune system induced by elevated pro-inflammatory cytokines, but the involvement of selective innate immune cells in this process is not fully understood. Neutrophil secretion and the toxic components of their granules are mediators of inflammation associated with several human diseases and inflammatory conditions. Here, using the Nlrp3A350V inducible mouse model (MWS CreT) that recapitulates human patients with the A352V mutation in NLRP3 observed in the Muckle-Wells sub-phenotype of CAPS, we studied the relationship between hyper-activation of the inflammasome and neutrophil exocytosis. Using a flow cytometry approach, we show that Nlrp3A350V (MWS) neutrophils express normal basal levels of CD11b at the plasma membrane and that the upregulation of CD11b from secretory vesicles in response to several plasma membrane or endocytic agonist including the bacterial-derived mimetic peptide formyl-Leu-Met-Phe (fMLF) and the unmethylated oligonucleotide CpG is normal in MWS neutrophils. Significant but modest CD11b upregulation in MWS neutrophils compared to wild type was only observed in response to GM-CSF and CpG. The same pattern was observed for the secretion of matrix metalloproteinase-9 (MMP-9) from gelatinase granules in that MMP-9 secretion in MWS neutrophils was not different from that observed in wild-type neutrophils except when stimulated with GM-CSF and CpG. In contrast, azurophilic granule secretion, whose cargoes constitute the most toxic secretory and pro-inflammatory factors of the neutrophil, was markedly dysregulated in MWS neutrophils under both basal and stimulated conditions. This could not be attributed to paracrine effects of secretory cytokines because IL-1β secretion by neutrophils was undetectable under

  10. Staphylococcus aureus capsular polysaccharide types 5 and 8 reduce killing by bovine neutrophils in vitro.

    PubMed

    Kampen, Annette H; Tollersrud, Tore; Lund, Arve

    2005-03-01

    Isogenic variants of Staphylococcus aureus strain Reynolds expressing either no capsule or capsular polysaccharide (CP) type 5 (CP5) or type 8 (CP8) were used to assess the effect of CP on bacterial killing and the respiratory burst of bovine neutrophils. The effects of antisera specific for CP5 and CP8 were also evaluated. The killing of live bacteria by isolated neutrophils was quantified in a bactericidal assay, while the respiratory burst after stimulation with live bacteria in whole blood was measured by flow cytometry. The expression of a CP5 or CP8 capsule protected the bacteria from being killed by bovine neutrophils in vitro (P <0.001), and the capsule-expressing variants did not stimulate respiratory burst activity in calf whole blood. The addition of serotype-specific antisera increased the killing of the capsule-expressing bacteria and enhanced their stimulating effect in the respiratory burst assay (P <0.01). When the S. aureus variants were grown under conditions known not to promote capsule expression, there were no significant differences between them. The present study demonstrates that the expression of S. aureus CP5 or CP8 confers resistance to opsonophagocytic killing and prevents the bacteria from inducing respiratory burst of bovine neutrophils in vitro and that these effects can be reversed by the addition of serotype-specific antisera.

  11. Chronic neutrophilic leukaemia and plasma cell-related neutrophilic leukaemoid reactions.

    PubMed

    Bain, Barbara J; Ahmad, Shahzaib

    2015-11-01

    Many cases reported as 'chronic neutrophilic leukaemia' have had an associated plasma cell neoplasm. Recent evidence suggests that the great majority of such cases represent a neutrophilic leukaemoid reaction to the underlying multiple myeloma or monoclonal gammopathy of undetermined significance. We have analysed all accessible reported cases to clarify the likely diagnosis and to ascertain whether toxic granulation, Döhle bodies and an increased neutrophil alkaline phosphatase score were useful in making a distinction between chronic neutrophilic leukaemia and a neutrophilic leukaemoid reaction. We established that all these changes occur in both conditions. Toxic granulation and Döhle bodies are more consistently present in leukaemoid reactions but also occur quite frequently in chronic neutrophilic leukaemia. The neutrophil alkaline phosphatase score is increased in both conditions and is of no value in making a distinction. © 2015 John Wiley & Sons Ltd.

  12. IFN-λ suppresses intestinal inflammation by non-translational regulation of neutrophil function.

    PubMed

    Broggi, Achille; Tan, Yunhao; Granucci, Francesca; Zanoni, Ivan

    2017-10-01

    Interferon-λ (IFN-λ) is a central regulator of mucosal immunity; however, its signaling specificity relative to that of type I interferons is poorly defined. IFN-λ can induce antiviral interferon-stimulated genes (ISGs) in epithelia, while the effect of IFN-λ in non-epithelial cells remains unclear. Here we report that neutrophils responded to IFN-λ. We found that in addition to inducing ISG transcription, IFN-λ (but not IFN-β) specifically activated a translation-independent signaling pathway that diminished the production of reactive oxygen species and degranulation in neutrophils. In mice, IFN-λ was elicited by enteric viruses and acted on neutrophils to decrease oxidative stress and intestinal damage. Thus, IFN-λ acted as a unique immunomodulatory agent by modifying transcriptional and non-translational neutrophil responses, which might permit a controlled development of the inflammatory process.

  13. Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice

    PubMed Central

    Suidan, Georgette L.; Demers, Melanie; Herr, Nadine; Carbo, Carla; Brill, Alexander; Cifuni, Stephen M.; Mauler, Maximilian; Cicko, Sanja; Bader, Michael; Idzko, Marco; Bode, Christoph

    2013-01-01

    The majority of peripheral serotonin is stored in platelets, which secrete it on activation. Serotonin releases Weibel-Palade bodies (WPBs) and we asked whether absence of platelet serotonin affects neutrophil recruitment in inflammatory responses. Tryptophan hydroxylase (Tph)1–deficient mice, lacking non-neuronal serotonin, showed mild leukocytosis compared with wild-type (WT), primarily driven by an elevated neutrophil count. Despite this, 50% fewer leukocytes rolled on unstimulated mesenteric venous endothelium of Tph1−/− mice. The velocity of rolling leukocytes was higher in Tph1−/− mice, indicating fewer selectin-mediated interactions with endothelium. Stimulation of endothelium with histamine, a secretagogue of WPBs, or injection of serotonin normalized the rolling in Tph1−/− mice. Diminished rolling in Tph1−/− mice resulted in reduced firm adhesion of leukocytes after lipopolysaccharide treatment. Blocking platelet serotonin uptake with fluoxetine in WT mice reduced serum serotonin by > 80% and similarly reduced leukocyte rolling and adhesion. Four hours after inflammatory stimulation, neutrophil extravasation into lung, peritoneum, and skin wounds was reduced in Tph1−/− mice, whereas in vitro neutrophil chemotaxis was independent of serotonin. Survival of lipopolysaccharide-induced endotoxic shock was improved in Tph1−/− mice. In conclusion, platelet serotonin promotes the recruitment of neutrophils in acute inflammation, supporting an important role for platelet serotonin in innate immunity. PMID:23243271

  14. Modulation of Neutrophil Motility by Curcumin: Implications for Inflammatory Bowel Disease

    PubMed Central

    Larmonier, C.B.; Midura-Kiela, M.T.; Ramalingam, R.; Laubitz, D.; Janikashvili, N.; Larmonier, N.; Ghishan, F.K.; Kiela, P.R.

    2010-01-01

    Background Neutrophils (PMN) are the first cells recruited at the site of inflammation. They play a key role in the innate immune response by recognizing, ingesting and eliminating pathogens and participate in the orientation of the adaptive immune responses. However, in Inflammatory Bowel Disease (IBD), transepithelial neutrophil migration leads to an impaired epithelial barrier function, perpetuation of inflammation and tissue destruction via oxidative and proteolytic damage. Curcumin (diferulolylmethane) displays a protective role in mouse models of IBD and in human ulcerative colitis, a phenomenon consistently accompanied by a reduced mucosal neutrophil infiltration. Methods We investigated the effect of curcumin on mouse and human neutrophil polarization and motility in vitro and in vivo. Results Curcumin attenuated LPS-stimulated expression and secretion of MIP-2, IL-1β, KC and MIP-1α in colonic epithelial cells (CEC) and in macrophages. Curcumin significantly inhibited PMN chemotaxis against MIP-2, KC or against conditioned media from LPS-treated macrophages or CEC, a well as the IL-8-mediated chemotaxis of human neutrophils. At non-toxic concentrations, curcumin inhibited random neutrophil migration suggesting a direct effect on neutrophil chemokinesis. Curcumin-mediated inhibition of PMN motility could be attributed to a downregulation of PI3K activity, AKT phosphorylation and F-actin polymerization at the leading edge. The inhibitory effect of curcumin on neutrophil motility was further demonstrated in vivo in a model of aseptic peritonitis. Conclusion Our results indicate that curcumin interferes with colonic inflammation partly through inhibition of the chemokine expression and through direct inhibition of neutrophil chemotaxis and chemokinesis. PMID:20629184

  15. The PMA Scale: A Measure of Physicians' Motivation to Adopt Medical Devices.

    PubMed

    Hatz, Maximilian H M; Sonnenschein, Tim; Blankart, Carl Rudolf

    2017-04-01

    Studies have often stated that individual-level determinants are important drivers for the adoption of medical devices. Empirical evidence supporting this claim is, however, scarce. At the individual level, physicians' adoption motivation was often considered important in the context of adoption decisions, but a clear notion of its dimensions and corresponding measurement scales is not available. To develop and subsequently validate a scale to measure the motivation to adopt medical devices of hospital-based physicians. The development and validation of the physician-motivation-adoption (PMA) scale were based on a literature search, internal expert meetings, a pilot study with physicians, and a three-stage online survey. The data collected in the online survey were analyzed using exploratory factor analysis (EFA), and the PMA scale was revised according to the results. Confirmatory factor analysis (CFA) was conducted to test the results from the EFA in the third stage. Reliability and validity tests and subgroup analyses were also conducted. Overall, 457 questionnaires were completed by medical personnel of the National Health Service England. The EFA favored a six-factor solution to appropriately describe physicians' motivation. The CFA confirmed the results from the EFA. Our tests indicated good reliability and validity of the PMA scale. This is the first reliable and valid scale to measure physicians' adoption motivation. Future adoption studies assessing the individual level should include the PMA scale to obtain more information about the role of physicians' motivation in the broader adoption context. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  16. Granule Exocytosis Contributes to Priming and Activation of the Human Neutrophil Respiratory Burst

    PubMed Central

    Uriarte, Silvia M.; Rane, Madhavi J.; Luerman, Gregory C.; Barati, Michelle T.; Ward, Richard A.; Nauseef, William M.; McLeish, Kenneth R.

    2013-01-01

    The role of exocytosis in the human neutrophil respiratory burst was determined using a fusion protein (TAT–SNAP-23) containing the HIV transactivator of transcription (TAT) cell-penetrating sequence and the N-terminal SNARE domain of synaptosome-associated protein-23 (SNAP-23). This agent inhibited stimulated exocytosis of secretory vesicles and gelatinase and specific granules but not azurophil granules. GST pulldown showed that TAT–SNAP-23 bound to the combination of vesicle-associated membrane protein-2 and syntaxin-4 but not to either individually. TAT–SNAP-23 reduced phagocytosis-stimulated hydrogen peroxide production by 60% without affecting phagocytosis or generation of HOCl within phagosomes. TAT–SNAP-23 had no effect on fMLF-stimulated superoxide release but significantly inhibited priming of this response by TNF-α and platelet-activating factor. Pretreatment with TAT–SNAP-23 inhibited the increase in plasma membrane expression of gp91phox in TNF-α–primed neutrophils, whereas TNF-α activation of ERK1/2 and p38 MAPK was not affected. The data demonstrate that neutrophil granule exocytosis contributes to phagocytosis-induced respiratory burst activity and plays a critical role in priming of the respiratory burst by increasing expression of membrane components of the NADPH oxidase. PMID:21642540

  17. Human Neutrophil Peptides Mediate Endothelial-Monocyte Interaction, Foam Cell Formation, and Platelet Activation

    PubMed Central

    Quinn, Kieran L.; Henriques, Melanie; Tabuchi, Arata; Han, Bing; Yang, Hong; Cheng, Wei-Erh; Tole, Soumitra; Yu, Hanpo; Luo, Alice; Charbonney, Emmanuel; Tullis, Elizabeth; Lazarus, Alan; Robinson, Lisa A.; Ni, Heyu; Peterson, Blake R.; Kuebler, Wolfgang M.; Slutsky, Arthur S.; Zhang, Haibo

    2016-01-01

    Objective Neutrophils are involved in the inflammatory responses during atherosclerosis. Human neutrophil peptides (HNPs) released from activated neutrophils exert immune modulating properties. We hypothesized that HNPs play an important role in neutrophil-mediated inflammatory cardiovascular responses in atherosclerosis. Methods and Results We examined the role of HNPs in endothelial-leukocyte interaction, platelet activation, and foam cell formation in vitro and in vivo. We demonstrated that stimulation of human coronary artery endothelial cells with clinically relevant concentrations of HNPs resulted in monocyte adhesion and transmigration; induction of oxidative stress in human macrophages, which accelerates foam cell formation; and activation and aggregation of human platelets. The administration of superoxide dismutase or anti-CD36 antibody reduced foam cell formation and cholesterol efflux. Mice deficient in double genes of low-density lipoprotein receptor and low-density lipoprotein receptor–related protein (LRP), and mice deficient in a single gene of LRP8, the only LRP phenotype expressed in platelets, showed reduced leukocyte rolling and decreased platelet aggregation and thrombus formation in response to HNP stimulation. Conclusion HNPs exert proatherosclerotic properties that appear to be mediated through LRP8 signaling pathways, suggesting an important role for HNPs in the development of inflammatory cardiovascular diseases. PMID:21817096

  18. Front-signal-dependent accumulation of the RHOA inhibitor FAM65B at leading edges polarizes neutrophils

    PubMed Central

    Gao, Kun; Tang, Wenwen; Li, Yuan; Zhang, Pingzhao; Wang, Dejie; Yu, Long; Wang, Chenji; Wu, Dianqing

    2015-01-01

    ABSTRACT A hallmark of neutrophil polarization is the back localization of active RHOA and phosphorylated myosin light chain (pMLC, also known as MYL2). However, the mechanism for the polarization is not entirely clear. Here, we show that FAM65B, a newly identified RHOA inhibitor, is important for the polarization. When FAM65B is phosphorylated, it binds to 14-3-3 family proteins and becomes more stable. In neutrophils, chemoattractants stimulate FAM65B phosphorylation largely depending on the signals from the front of the cells that include those mediated by phospholipase Cβ (PLCβ) and phosphoinositide 3-kinase γ (PI3Kγ), leading to FAM65B accumulation at the leading edge. Concordantly, FAM65B deficiency in neutrophils resulted in an increase in RHOA activity and localization of pMLC to the front of cells, as well as defects in chemotaxis directionality and adhesion to endothelial cells under flow. These data together elucidate a mechanism for RHOA and pMLC polarization in stimulated neutrophils through direct inhibition of RHOA by FAM65B at the leading edge. PMID:25588844

  19. Neutrophils Are Central to Antibody-Mediated Protection against Genital Chlamydia.

    PubMed

    Naglak, Elizabeth K; Morrison, Sandra G; Morrison, Richard P

    2017-10-01

    Determining the effector populations involved in humoral protection against genital chlamydia infection is crucial to development of an effective chlamydial vaccine. Antibody has been implicated in protection studies in multiple animal models, and we previously showed that the passive transfer of immune serum alone does not confer immunity in the mouse. Using the Chlamydia muridarum model of genital infection, we demonstrate a protective role for both Chlamydia -specific immunoglobulin G (IgG) and polymorphonuclear neutrophils and show the importance of an antibody/effector cell interaction in mediating humoral immunity. While neutrophils were found to contribute significantly to antibody-mediated protection in vivo , natural killer (NK) cells were dispensable for protective immunity. Furthermore, gamma interferon (IFN-γ)-stimulated primary peritoneal neutrophils (PPNs) killed chlamydiae in vitro in an antibody-dependent manner. The results from this study support the view that an IFN-γ-activated effector cell population cooperates with antibody to protect against genital chlamydia and establish neutrophils as a key effector cell in this response. Copyright © 2017 Naglak et al.

  20. Granulocyte and monocyte adsorption apheresis for refractory skin diseases due to activated neutrophils, psoriasis, and associated arthropathy.

    PubMed

    Sakanoue, Masanao; Takeda, Koichiro; Kawai, Kazuhiro; Kanekura, Takuro

    2013-10-01

    Granulocyte and monocyte adsorption apheresis (GMA), an extracorporeal apheresis instrument whose column contains cellulose acetate (CA) beads, is designed to remove activated granulocytes and monocytes. We previously demonstrated that GMA was useful for treating neutrophilic dermatoses and associated arthropathy as it adsorbs Mac-1 (CD11b/CD18)-expressing neutrophils to the CA beads by the binding of complement component (iC3b) and CD11b expressed on activated neutrophils. The objective of this study is to further assess the clinical effectiveness of GMA in the treatment of neutrophilic dermatoses and associated arthropathy. The effect of GMA for skin lesions and joint lesions was assessed in 44 and 23 patients, respectively. Mac-1 expression on peripheral neutrophils was measured by flow cytometry. Skin lesions and arthropathy improved in 39 of 44 patients (88.6%) and 22 of 23 (95.6%), respectively. Mac-1 (CD11b/CD18) expression on the peripheral neutrophils, 27.1 ± 6.66 MFI (mean fluorescence intensity) before treatment, was reduced to 17.9 ± 3.02 MFI by GMA (P < 0.05). Clinical effectiveness of GMA for the treatment of intractable neutrophilic dermatoses and associated arthropathy was further confirmed. © 2013 The Authors. Therapeutic Apheresis and Dialysis © 2013 International Society for Apheresis.

  1. Expedition Two's Jim Voss looks through the PMA2 window minutes before the STS-100 ingress

    NASA Image and Video Library

    2001-04-23

    STS100-E-5283 (23 April 2001) --- Astronaut James S. Voss, Expedition Two flight engineer, peers into the Pressurized Mating Adapter (PMA-2) prior to hatch opening. The picture was taken with a digital still camera by one of the STS-100 crew members in the PMA. Photo credit: NASA

  2. Presence of estrogen receptors in human myeloid monocytic cells (THP-1 cell line).

    PubMed

    Cutolo, M; Villaggio, B; Bisso, A; Sulli, A; Coviello, D; Dayer, J M

    2001-01-01

    To test THP-1 cells for the presence of estrogen receptors (ER) since studies have demonstrated in vivo and in vitro, the influence of estrogens on cells involved in immune response (i.e. macrophages), and since it has been demonstrated that human myeloid monocytic THP-1 cells acquire phenotypic and functional macrophage-like features after incubation with several cytokines or pharmacological agents. Stimulation of THP-1 cells with phorbol myristate acetate (PMA) to prompt their differentiation into macrophage-like cells and evaluation of the possible induction of ER. The expression of ER was analyzed by immunocytochemical assay, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot analysis. After stimulation by PMA, the human myeloid monocytic THP-1 cells showed the presence of ER, together with markers of monocytic cell differentiation such as CD68, CD54 and HLA-DR. Estrogen effects may be exerted directly through ER on monocytes/macrophages. PMA-treated THP-1 cells may constitute a useful in vitro model to determine the effects of estrogens on macrophage-like cells and their implications in the inflammatory and immune processes.

  3. Comparison of culture-based, vital stain and PMA-qPCR methods for the quantitative detection of viable hookworm ova.

    PubMed

    Gyawali, P; Sidhu, J P S; Ahmed, W; Jagals, P; Toze, S

    2017-06-01

    Accurate quantitative measurement of viable hookworm ova from environmental samples is the key to controlling hookworm re-infections in the endemic regions. In this study, the accuracy of three quantitative detection methods [culture-based, vital stain and propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR)] was evaluated by enumerating 1,000 ± 50 Ancylostoma caninum ova in the laboratory. The culture-based method was able to quantify an average of 397 ± 59 viable hookworm ova. Similarly, vital stain and PMA-qPCR methods quantified 644 ± 87 and 587 ± 91 viable ova, respectively. The numbers of viable ova estimated by the culture-based method were significantly (P < 0.05) lower than vital stain and PMA-qPCR methods. Therefore, both PMA-qPCR and vital stain methods appear to be suitable for the quantitative detection of viable hookworm ova. However, PMA-qPCR would be preferable over the vital stain method in scenarios where ova speciation is needed.

  4. 21 CFR 814.9 - Confidentiality of data and information in a premarket approval application (PMA) file.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Confidentiality of data and information in a premarket approval application (PMA) file. 814.9 Section 814.9 Food and Drugs FOOD AND DRUG ADMINISTRATION... General § 814.9 Confidentiality of data and information in a premarket approval application (PMA) file. (a...

  5. PKC-dependent stimulation of the human MCT1 promoter involves transcription factor AP2.

    PubMed

    Saksena, Seema; Dwivedi, Alka; Gill, Ravinder K; Singla, Amika; Alrefai, Waddah A; Malakooti, Jaleh; Ramaswamy, Krishnamurthy; Dudeja, Pradeep K

    2009-02-01

    Monocarboxylate transporter (MCT1) plays an important role in the absorption of short-chain fatty acids (SCFA) such as butyrate in the human colon. Previous studies from our laboratory have demonstrated that phorbol ester, PMA (1 microM, 24 h), upregulates butyrate transport and MCT1 protein expression in human intestinal Caco-2 cells. However, the molecular mechanisms involved in the transcriptional regulation of MCT1 gene expression by PMA in the intestine are not known. In the present study, we showed that PMA (0.1 microM, 24 h) increased the MCT1 promoter activity (-871/+91) by approximately fourfold. A corresponding increase in MCT1 mRNA abundance in response to PMA was also observed. PMA-induced stimulation of MCT1 promoter activity was observed as early as 1 h and persisted until 24 h, suggesting that the effects of PMA are attributable to initial PKC activation. Kinase inhibitor and phosphorylation studies indicated that these effects may be mediated through activation of the atypical PKC-zeta isoform. 5'-deletion studies demonstrated that the MCT1 core promoter region (-229/+91) is the PMA-responsive region. Site-directed mutagenesis studies showed the predominant involvement of potential activator protein 2 (AP2) binding site in the activation of MCT1 promoter activity by PMA. In addition, overexpression of AP2 in Caco-2 cells significantly increased MCT1 promoter activity in a dose-dependent manner. These findings showing the regulation of MCT1 promoter by PKC and AP2 are of significant importance for an understanding of the molecular regulation of SCFA absorption in the human intestine.

  6. [6]-Gingerol Induces Caspase-Dependent Apoptosis and Prevents PMA-Induced Proliferation in Colon Cancer Cells by Inhibiting MAPK/AP-1 Signaling

    PubMed Central

    Narayanan, Sai Shyam; Nath, Lekshmi R.; Thulasidasan, Arun Kumar T.; Soniya, Eppurathu Vasudevan; Anto, Ruby John

    2014-01-01

    We report mechanism-based evidence for the anticancer and chemopreventive efficacy of [6]-gingerol, the major active principle of the medicinal plant, Ginger (Zingiber officinale), in colon cancer cells. The compound was evaluated in two human colon cancer cell lines for its cytotoxic effect and the most sensitive cell line, SW-480, was selected for the mechanistic evaluation of its anticancer and chemopreventive efficacy. The non-toxic nature of [6]-gingerol was confirmed by viability assays on rapidly dividing normal mouse colon cells. [6]-gingerol inhibited cell proliferation and induced apoptosis as evidenced by externalization of phosphatidyl serine in SW-480, while the normal colon cells were unaffected. Sensitivity to [6]-gingerol in SW-480 cells was associated with activation of caspases 8, 9, 3 &7 and cleavage of PARP, which attests induction of apoptotic cell death. Mechanistically, [6]-gingerol down-regulated Phorbol Myristate Acetate (PMA) induced phosphorylation of ERK1/2 and JNK MAP kinases and activation of AP-1 transcription factor, but had only little effects on phosphorylation of p38 MAP kinase and activation of NF-kappa B. Additionally, it complemented the inhibitors of either ERK1/2 or JNK MAP kinase in bringing down the PMA-induced cell proliferation in SW-480 cells. We report the inhibition of ERK1/2/JNK/AP-1 pathway as a possible mechanism behind the anticancer as well as chemopreventive efficacy of [6]-gingerol against colon cancer. PMID:25157570

  7. [6]-Gingerol induces caspase-dependent apoptosis and prevents PMA-induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling.

    PubMed

    Radhakrishnan, E K; Bava, Smitha V; Narayanan, Sai Shyam; Nath, Lekshmi R; Thulasidasan, Arun Kumar T; Soniya, Eppurathu Vasudevan; Anto, Ruby John

    2014-01-01

    We report mechanism-based evidence for the anticancer and chemopreventive efficacy of [6]-gingerol, the major active principle of the medicinal plant, Ginger (Zingiber officinale), in colon cancer cells. The compound was evaluated in two human colon cancer cell lines for its cytotoxic effect and the most sensitive cell line, SW-480, was selected for the mechanistic evaluation of its anticancer and chemopreventive efficacy. The non-toxic nature of [6]-gingerol was confirmed by viability assays on rapidly dividing normal mouse colon cells. [6]-gingerol inhibited cell proliferation and induced apoptosis as evidenced by externalization of phosphatidyl serine in SW-480, while the normal colon cells were unaffected. Sensitivity to [6]-gingerol in SW-480 cells was associated with activation of caspases 8, 9, 3 &7 and cleavage of PARP, which attests induction of apoptotic cell death. Mechanistically, [6]-gingerol down-regulated Phorbol Myristate Acetate (PMA) induced phosphorylation of ERK1/2 and JNK MAP kinases and activation of AP-1 transcription factor, but had only little effects on phosphorylation of p38 MAP kinase and activation of NF-kappa B. Additionally, it complemented the inhibitors of either ERK1/2 or JNK MAP kinase in bringing down the PMA-induced cell proliferation in SW-480 cells. We report the inhibition of ERK1/2/JNK/AP-1 pathway as a possible mechanism behind the anticancer as well as chemopreventive efficacy of [6]-gingerol against colon cancer.

  8. G-CSF maintains controlled neutrophil mobilization during acute inflammation by negatively regulating CXCR2 signaling

    PubMed Central

    Bajrami, Besnik; Zhu, Haiyan; Zhang, Yu C.

    2016-01-01

    Cytokine-induced neutrophil mobilization from the bone marrow to circulation is a critical event in acute inflammation, but how it is accurately controlled remains poorly understood. In this study, we report that CXCR2 ligands are responsible for rapid neutrophil mobilization during early-stage acute inflammation. Nevertheless, although serum CXCR2 ligand concentrations increased during inflammation, neutrophil mobilization slowed after an initial acute fast phase, suggesting a suppression of neutrophil response to CXCR2 ligands after the acute phase. We demonstrate that granulocyte colony-stimulating factor (G-CSF), usually considered a prototypical neutrophil-mobilizing cytokine, was expressed later in the acute inflammatory response and unexpectedly impeded CXCR2-induced neutrophil mobilization by negatively regulating CXCR2-mediated intracellular signaling. Blocking G-CSF in vivo paradoxically elevated peripheral blood neutrophil counts in mice injected intraperitoneally with Escherichia coli and sequestered large numbers of neutrophils in the lungs, leading to sterile pulmonary inflammation. In a lipopolysaccharide-induced acute lung injury model, the homeostatic imbalance caused by G-CSF blockade enhanced neutrophil accumulation, edema, and inflammation in the lungs and ultimately led to significant lung damage. Thus, physiologically produced G-CSF not only acts as a neutrophil mobilizer at the relatively late stage of acute inflammation, but also prevents exaggerated neutrophil mobilization and the associated inflammation-induced tissue damage during early-phase infection and inflammation. PMID:27551153

  9. Organization and mobility of CD11b/CD18 and targeting of superoxide on the surface of degranulated human neutrophils.

    PubMed

    Mukherjee, G; Rasmusson, B; Linner, J G; Quinn, M T; Parkos, C A; Magnusson, K E; Jesaitis, A J

    1998-09-01

    A monoclonal IgM, specifically recognizing both CD11b and CD18 of human neutrophils, was used to examine the organization and mobility of CD11b/CD18 in the plasma membrane of human neutrophils degranulated by dihydrocytochalasin B (dhCB) treatment and fMet-Leu-Phe (fMLF) stimulation. Subcellular fractionation analysis of untreated or dhCB-treated control neutrophils indicated that 20% of CD11b/CD18 cosedimented with plasma membrane and the remainder with specific granules. In contrast, fMLF stimulation of dhCB-treated cells caused a major reorganization of CD11b/CD18, in which 60-70% of CD11b/CD18 sedimented in dense plasma membrane fractions that were also enriched in superoxide-generating NADPH oxidase activity. Similarly pretreated neutrophils were fixed, immunogold labeled, and examined by scanning electron microscopy. Immunogold particles were distributed uniformly over the symmetrically ruffled surface of unstimulated neutrophils. On dhCB-treated cells, immunogold was mostly uniformly distributed on a smooth membrane with a small percentage of particles lining up into linear arrays. After fMLF + dhCB stimulation, CD11b/CD18 gold label was more abundant on the cell surface and formed large aggregates on polarized membrane protrusions. However, when cells were adhered to an albumin-coated quartz surface and stimulated with fMLF in the presence of dhCB, immunogold was excluded on the articulated and rounded cell body but concentrated on the periphery of adherent lamellae. Fluorescence photobleaching recovery indicated that in unstimulated cells 38 +/- 3% of CD11b/CD18 was mobile (R) with a diffusion constant D of 3.1 +/- 0.3 x 10(-10) cm2/s. Treatment with dhCB raised R and D 24 and 74%, respectively. Stimulation using 1 microM fMLF with dhCB lowered D and R to near control levels. Since NADPH oxidase and CD11b/CD18 cosediment in high-density plasma membrane domains after fMLF + dhCB stimulation, we speculate that a stimulus-induced reorganization of CD11b/CD18

  10. Technical advance: autofluorescence-based sorting: rapid and nonperturbing isolation of ultrapure neutrophils to determine cytokine production.

    PubMed

    Dorward, David A; Lucas, Christopher D; Alessandri, Ana L; Marwick, John A; Rossi, Fiona; Dransfield, Ian; Haslett, Christopher; Dhaliwal, Kevin; Rossi, Adriano G

    2013-07-01

    The technical limitations of isolating neutrophils without contaminating leukocytes, while concurrently minimizing neutrophil activation, is a barrier to determining specific neutrophil functions. We aimed to assess the use of FACS for generating highly pure quiescent neutrophil populations in an antibody-free environment. Peripheral blood human granulocytes and murine bone marrow-derived neutrophils were isolated by discontinuous Percoll gradient and flow-sorted using FSC/SSC profiles and differences in autofluorescence. Postsort purity was assessed by morphological analysis and flow cytometry. Neutrophil activation was measured in unstimulated-unsorted and sorted cells and in response to fMLF, LTB4, and PAF by measuring shape change, CD62L, and CD11b expression; intracellular calcium flux; and chemotaxis. Cytokine production by human neutrophils was also determined. Postsort human neutrophil purity was 99.95% (sem=0.03; n=11; morphological analysis), and 99.68% were CD16(+ve) (sem=0.06; n=11), with similar results achieved for murine neutrophils. Flow sorting did not alter neutrophil activation or chemotaxis, relative to presorted cells, and no differences in response to agonists were observed. Stimulated neutrophils produced IL-1β, although to a lesser degree than CXCL8/IL-8. The exploitation of the difference in autofluorescence between neutrophils and eosinophils by FACS is a quick and effective method for generating highly purified populations for subsequent in vitro study.

  11. Phenol-soluble modulin α4 mediates Staphylococcus aureus-associated vascular leakage by stimulating heparin-binding protein release from neutrophils

    PubMed Central

    li, Lin; Pian, Yaya; Chen, Shaolong; Hao, Huaijie; Zheng, Yuling; Zhu, Li; Xu, Bin; Liu, Keke; Li, Min; Jiang, Hua; Jiang, Yongqiang

    2016-01-01

    Vascular leakage frequently occurs in patients with severe Staphylococcus aureus infection. However, the mechanism underlying S. aureus infection-induced vascular leakage remains unclear. Here, we identified the S. aureus virulence factor phenol-soluble modulin (PSM)α4 from the culture supernatant of strain USA300 as a stimulator of heparin-binding protein (HBP) release from polymorphonuclear neutrophils (PMNs) and demonstrated that PSMα4-induced HBP release from PMNs leads to vascular leakage. PSMα4 appeared less cytolytic than PSMα1–3 and was insensitive to lipoproteins; it significantly increased myeloperoxidase and elastase release from PMNs and cell surface CD63 expression in PMNs. PSMα4-induced HBP release required formyl peptide receptor 2 (FPR2) and phosphoinositide 3-kinase (PI3K) and depended on Ca2+ influx and cytoskeleton rearrangement. Thus, PSMα4 may stimulate HBP release by activating FPR2 and PI3K to initiate PMN degranulation. PSMα4-induced HBP release from PMNs increased endothelial cell monolayer permeability in vitro and induced vascular leakage in mice. This novel function of PSMα4 may contribute to the pathogenesis of S. aureus and may be a potential therapeutic target. PMID:27383625

  12. Release of cystic fibrosis airway inflammatory markers from Pseudomonas aeruginosa-stimulated human neutrophils involves NADPH oxidase-dependent extracellular DNA trap formation.

    PubMed

    Yoo, Dae-goon; Winn, Matthew; Pang, Lan; Moskowitz, Samuel M; Malech, Harry L; Leto, Thomas L; Rada, Balázs

    2014-05-15

    Cystic fibrosis (CF) airways are characterized by bacterial infections, excess mucus production, and robust neutrophil recruitment. The main CF airway pathogen is Pseudomonas aeruginosa. Neutrophils are not capable of clearing the infection. Neutrophil primary granule components, myeloperoxidase (MPO) and human neutrophil elastase (HNE), are inflammatory markers in CF airways, and their increased levels are associated with poor lung function. Identifying the mechanism of MPO and HNE release from neutrophils is of high clinical relevance for CF. In this article, we show that human neutrophils release large amounts of neutrophil extracellular traps (NETs) in the presence of P. aeruginosa. Bacteria are entangled in NETs and colocalize with extracellular DNA. MPO, HNE, and citrullinated histone H4 are all associated with DNA in Pseudomonas-triggered NETs. Both laboratory standard strains and CF isolates of P. aeruginosa induce DNA, MPO, and HNE release from human neutrophils. The increase in peroxidase activity of neutrophil supernatants after Pseudomonas exposure indicates that enzymatically active MPO is released. P. aeruginosa induces a robust respiratory burst in neutrophils that is required for extracellular DNA release. Inhibition of the cytoskeleton prevents Pseudomonas-initiated superoxide production and DNA release. NADPH oxidase inhibition suppresses Pseudomonas-induced release of active MPO and HNE. Blocking MEK/ERK signaling results in only minimal inhibition of DNA release induced by Pseudomonas. Our data describe in vitro details of DNA, MPO, and HNE release from neutrophils activated by P. aeruginosa. We propose that Pseudomonas-induced NET formation is an important mechanism contributing to inflammatory conditions characteristic of CF airways.

  13. Stimulation of Ebola virus production from persistent infection through activation of the Ras/MAPK pathway.

    PubMed

    Strong, James E; Wong, Gary; Jones, Shane E; Grolla, Allen; Theriault, Steven; Kobinger, Gary P; Feldmann, Heinz

    2008-11-18

    Human infections with Ebola virus (EBOV) result in a deadly viral disease known as Ebola hemorrhagic fever. Up to 90% of infected patients die, and there is no available treatment or vaccine. The sporadic human outbreaks are believed to result when EBOV "jumps" from an infected animal to a person and is subsequently transmitted between persons by direct contact with infected blood or body fluids. This study was undertaken to investigate the mechanism by which EBOV can persistently infect and then escape from model cell and animal reservoir systems. We report a model system in which infection of mouse and bat cell lines with EBOV leads to persistence, which can be broken with low levels of lipopolysaccharide or phorbol-12-myristate-13-acetate (PMA). This reactivation depends on the Ras/MAPK pathway through inhibition of RNA-dependent protein kinase and eukaryotic initiation factor 2alpha phosphorylation and occurs at the level of protein synthesis. EBOV also can be evoked from mice 7 days after infection by PMA treatment, indicating that a similar mechanism occurs in vivo. Our findings suggest that EBOV may persist in nature through subclinical infection of a reservoir species, such as bats, and that appropriate physiological stimulation may result in increased replication and transmission to new hosts. Identification of a presumptive mechanism responsible for EBOV emergence from its reservoir underscores the "hit-and-run" nature of the initiation of human and/or nonhuman primate EBOV outbreaks and may provide insight into possible countermeasures to interfere with transmission.

  14. Stimulation of Ebola virus production from persistent infection through activation of the Ras/MAPK pathway

    PubMed Central

    Strong, James E.; Wong, Gary; Jones, Shane E.; Grolla, Allen; Theriault, Steven; Kobinger, Gary P.; Feldmann, Heinz

    2008-01-01

    Human infections with Ebola virus (EBOV) result in a deadly viral disease known as Ebola hemorrhagic fever. Up to 90% of infected patients die, and there is no available treatment or vaccine. The sporadic human outbreaks are believed to result when EBOV “jumps” from an infected animal to a person and is subsequently transmitted between persons by direct contact with infected blood or body fluids. This study was undertaken to investigate the mechanism by which EBOV can persistently infect and then escape from model cell and animal reservoir systems. We report a model system in which infection of mouse and bat cell lines with EBOV leads to persistence, which can be broken with low levels of lipopolysaccharide or phorbol-12-myristate-13-acetate (PMA). This reactivation depends on the Ras/MAPK pathway through inhibition of RNA-dependent protein kinase and eukaryotic initiation factor 2α phosphorylation and occurs at the level of protein synthesis. EBOV also can be evoked from mice 7 days after infection by PMA treatment, indicating that a similar mechanism occurs in vivo. Our findings suggest that EBOV may persist in nature through subclinical infection of a reservoir species, such as bats, and that appropriate physiological stimulation may result in increased replication and transmission to new hosts. Identification of a presumptive mechanism responsible for EBOV emergence from its reservoir underscores the “hit-and-run” nature of the initiation of human and/or nonhuman primate EBOV outbreaks and may provide insight into possible countermeasures to interfere with transmission. PMID:18981410

  15. Evasion of Human Neutrophil-Mediated Host Defense during Toxoplasma gondii Infection

    PubMed Central

    Lima, Tatiane S.; Gov, Lanny

    2018-01-01

    ABSTRACT Neutrophils are a major player in host immunity to infection; however, the mechanisms by which human neutrophils respond to the intracellular protozoan parasite Toxoplasma gondii are still poorly understood. In the current study, we found that, whereas primary human monocytes produced interleukin-1beta (IL-1β) in response to T. gondii infection, human neutrophils from the same blood donors did not. Moreover, T. gondii inhibited lipopolysaccharide (LPS)-induced IL-1β synthesis in human peripheral blood neutrophils. IL-1β suppression required active parasite invasion, since heat-killed or mycalolide B-treated parasites did not inhibit IL-1β release. By investigating the mechanisms involved in this process, we found that T. gondii infection of neutrophils treated with LPS resulted in reduced transcript levels of IL-1β and NLRP3 and reduced protein levels of pro-IL-1β, mature IL-1β, and the inflammasome sensor NLRP3. In T. gondii-infected neutrophils stimulated with LPS, the levels of MyD88, TRAF6, IKKα, IKKβ, and phosphorylated IKKα/β were not affected. However, LPS-induced IκBα degradation and p65 phosphorylation were reduced in T. gondii-infected neutrophils, and degradation of IκBα was reversed by treatment with the proteasome inhibitor MG-132. Finally, we observed that T. gondii inhibited the cleavage and activity of caspase-1 in human neutrophils. These results indicate that T. gondii suppression of IL-1β involves a two-pronged strategy whereby T. gondii inhibits both NF-κB signaling and activation of the NLRP3 inflammasome. These findings represent a novel mechanism of T. gondii evasion of human neutrophil-mediated host defense by targeting the production of IL-1β. PMID:29440572

  16. Activation of normal neutrophils by anti-neutrophil cytoplasm antibodies.

    PubMed Central

    Keogan, M T; Esnault, V L; Green, A J; Lockwood, C M; Brown, D L

    1992-01-01

    Anti-neutrophil cytoplasm antibodies (ANCA) are markers of systemic vasculitis for which a pathogenetic role has been postulated. We have examined the effect of these autoantibodies on the function of normal human neutrophils in vitro. In the presence of ANCA positive sera luminol-amplified chemiluminescence was significantly increased compared to the values seen in the presence of normal or anti-double stranded DNA positive sera (P < 0.01). Five of six ANCA positive F(ab)2 preparations also produced significant neutrophil activation as demonstrated by the chemiluminescence response. This response was totally abrogated by the addition of neutrophil cytoplasm extract, containing the ANCA antigen. Addition of inhibitors to the chemiluminescence system demonstrated that the chemiluminescence response was inhibited by azide and salicylhydroxamic acid and reduced by histidine, suggesting that the chemiluminescence response was due to activation of myeloperoxidase, with generation of singlet oxygen. The chemotactic response to f-Met-Leu-Phe, a bacterial chemotactic peptide, was significantly augmented in the presence of ANCA. Chemotaxis to zymosan-activated serum and chemokinesis was not affected. Phagocytosis was also unaffected. We propose that neutrophil activation and modulation of neutrophil migration by ANCA may be of pathogenetic significance in systemic vasculitis. PMID:1424279

  17. Modulation of the human equilibrative nucleoside transporter1 (hENT1) activity by IL-4 and PMA in B cells from chronic lymphocytic leukemia.

    PubMed

    Fernández Calotti, Paula; Galmarini, Carlos María; Cañones, Cristian; Gamberale, Romina; Saénz, Daniel; Avalos, Julio Sánchez; Chianelli, Mónica; Rosenstein, Ruth; Giordano, Mirta

    2008-02-15

    Nucleoside transporters (NTs) are essential for the uptake of therapeutic nucleoside analogs, broadly used in cancer treatment. The mechanisms responsible for NT regulation are largely unknown. IL-4 is a pro-survival signal for chronic lymphocytic leukemia (CLL) cells and has been shown to confer resistance to nucleoside analogs. The aim of this study was to investigate whether IL-4 is able to modulate the expression and function of the human equilibrative NT1 (hENT1) in primary cultures of CLL cells and, consequently, to affect cytotoxicity induced by therapeutic nucleosides analogs. We found that treatment with IL-4 (20 ng/ml for 24 h) increased mRNA hENT1 expression in CLL cells without affecting that of normal B cells. Given that the enhanced mRNA levels of hENT1 in CLL cells did not result in increased transport activity, we examined the possibility that hENT1 induced by IL-4 may require post-translational modifications to become active. We found that the acute stimulation of PKC in IL-4-treated CLL cells by short-term incubation with PMA significantly increased hENT1 transport activity and favoured fludarabine-induced apoptosis. By contrast, and in line with previous reports, IL-4 plus PMA protected CLL cells from a variety of cytotoxic agents. Our findings indicate that the combined treatment with IL-4 and PMA enhances hENT1 activity and specifically sensitizes CLL cells to undergo apoptosis induced by fludarabine.

  18. Boeing technicians join Node 1 for ISS to PMA-1 in the SSPF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Boeing technicians join Node 1 for the International Space Station (ISS) with the Pressurized Mating Adapter (PMA)-1 in KSC's Space Station Processing Facility. This PMA, identifiable by its bright red ring, is a cone-shaped connector for the space station's structural building block, known as Node 1. Seen here surrounded by scaffolding, Node 1 will have two PMAs attached, the second of which is scheduled for mating to the node in January 1998. The node and PMAs, which will be the first element of the ISS, are scheduled to be launched aboard the Space Shuttle Endeavour on STS-88 in July 1998.

  19. Front-signal-dependent accumulation of the RHOA inhibitor FAM65B at leading edges polarizes neutrophils.

    PubMed

    Gao, Kun; Tang, Wenwen; Li, Yuan; Zhang, Pingzhao; Wang, Dejie; Yu, Long; Wang, Chenji; Wu, Dianqing

    2015-03-01

    A hallmark of neutrophil polarization is the back localization of active RHOA and phosphorylated myosin light chain (pMLC, also known as MYL2). However, the mechanism for the polarization is not entirely clear. Here, we show that FAM65B, a newly identified RHOA inhibitor, is important for the polarization. When FAM65B is phosphorylated, it binds to 14-3-3 family proteins and becomes more stable. In neutrophils, chemoattractants stimulate FAM65B phosphorylation largely depending on the signals from the front of the cells that include those mediated by phospholipase Cβ (PLCβ) and phosphoinositide 3-kinase γ (PI3Kγ), leading to FAM65B accumulation at the leading edge. Concordantly, FAM65B deficiency in neutrophils resulted in an increase in RHOA activity and localization of pMLC to the front of cells, as well as defects in chemotaxis directionality and adhesion to endothelial cells under flow. These data together elucidate a mechanism for RHOA and pMLC polarization in stimulated neutrophils through direct inhibition of RHOA by FAM65B at the leading edge. © 2015. Published by The Company of Biologists Ltd.

  20. Beta-Glucan Activated Human B-Lymphocytes Participate in Innate Immune Responses by Releasing Pro-inflammatory Cytokines and Stimulating Neutrophil Chemotaxis

    PubMed Central

    Ali, Mohamed F.; Driscoll, Christopher B.; Walters, Paula R.; Limper, Andrew H.; Carmona, Eva M.

    2015-01-01

    B-lymphocytes play an essential regulatory role in the adaptive immune response through antibody production during infection. A less known function of B-lymphocytes is their ability to respond directly to infectious antigens through stimulation of pattern recognition receptors expressed on their surfaces. β-glucans are carbohydrates present in the cell wall of many pathogenic fungi that can be detected in the peripheral blood of patients during infection. They have been shown to participate in the innate inflammatory response as they can directly activate peripheral macrophages and dendritic cells. However, their effect as direct stimulators of B-lymphocytes has not been yet fully elucidated. The aim of this study was to examine the molecular mechanisms and cytokine profiles generated following β-glucan stimulation of B-lymphocytes, compared with the well-established TLR-9 agonist CpG-oligodeoxynucleotide (CpG) and study the participation of β-glucan stimulated B-cells in the innate immune response. Herein, we demonstrate that β-glucan activated B-lymphocytes upregulate pro-inflammatory cytokines (TNFα, IL-6 and IL-8). Interestingly, β-glucan, unlike CpG, had no effect on B-lymphocyte proliferation or IgM production. When compared with CpG (TLR9 agonist), β-glucan-activated cells secreted significantly higher levels of IL-8. Furthermore, IL-8 secretion was partially mediated by Dectin-1 and required SYK, MAPKs and the transcription factors NF-κB and AP-1. Moreover, we observed that conditioned media from β-glucan stimulated B-lymphocytes elicited neutrophil chemotaxis. These studies suggest that β-glucan activated B-lymphocytes have an important and novel role in fungal innate immune responses. PMID:26519534

  1. NFκB1 is a suppressor of neutrophil-driven hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Wilson, C. L.; Jurk, D.; Fullard, N.; Banks, P.; Page, A.; Luli, S.; Elsharkawy, A. M.; Gieling, R. G.; Chakraborty, J. Bagchi; Fox, C.; Richardson, C.; Callaghan, K.; Blair, G. E.; Fox, N.; Lagnado, A.; Passos, J. F.; Moore, A. J.; Smith, G. R.; Tiniakos, D. G.; Mann, J.; Oakley, F.; Mann, D. A.

    2015-04-01

    Hepatocellular carcinoma (HCC) develops on the background of chronic hepatitis. Leukocytes found within the HCC microenvironment are implicated as regulators of tumour growth. We show that diethylnitrosamine (DEN)-induced murine HCC is attenuated by antibody-mediated depletion of hepatic neutrophils, the latter stimulating hepatocellular ROS and telomere DNA damage. We additionally report a previously unappreciated tumour suppressor function for hepatocellular nfkb1 operating via p50:p50 dimers and the co-repressor HDAC1. These anti-inflammatory proteins combine to transcriptionally repress hepatic expression of a S100A8/9, CXCL1 and CXCL2 neutrophil chemokine network. Loss of nfkb1 promotes ageing-associated chronic liver disease (CLD), characterized by steatosis, neutrophillia, fibrosis, hepatocyte telomere damage and HCC. Nfkb1S340A/S340Amice carrying a mutation designed to selectively disrupt p50:p50:HDAC1 complexes are more susceptible to HCC; by contrast, mice lacking S100A9 express reduced neutrophil chemokines and are protected from HCC. Inhibiting neutrophil accumulation in CLD or targeting their tumour-promoting activities may offer therapeutic opportunities in HCC.

  2. Aciculatin Inhibits Granulocyte Colony-Stimulating Factor Production by Human Interleukin 1β-Stimulated Fibroblast-Like Synoviocytes

    PubMed Central

    Shih, Kao-Shang; Wang, Jyh-Horng; Wu, Yi-Wen; Teng, Che-Ming; Chen, Chien-Chih; Yang, Chia-Ron

    2012-01-01

    The expression of granulocyte colony-stimulating factor (G-CSF), the major regulator of neutrophil maturation, by human fibroblast-like synoviocytes (FLS) can be stimulated by the inflammatory cytokine interleukin-1β (IL-1β). G-CSF is known to contribute to the pathologic processes of destructive arthritis, but the induction mechanism remains unknown. The aims of this study were to identify the signaling pathways involved in IL-1β-stimulated G-CSF production and to determine whether this process was inhibited by aciculatin (8-((2R,4S,5S,6R)-tetrahydro-4,5-dihydroxy-6-methyl-2H-pyran-2-yl)-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4H-chromen-4-one), the major bioactive component of Chrysopogon aciculatus. IL-1β-induced cytokine expression was evaluated by measuring mRNA and protein levels by RT-PCR, ELISA, and Milliplex® assay. Whether aciculatin inhibited IL-1β-stimulated G-CSF expression, and if so, how, were evaluated using western blot assay, an electrophoretic mobility shift assay, and a reporter gene assay. Neutrophil differentiation was determined by Wright-Giemsa staining and flow cytometry. Aciculatin markedly inhibited G-CSF expression induced by IL-1β (10 ng/mL) in a concentration-dependent manner (1–10 µM). In clarifying the mechanisms involved, aciculatin was found to inhibit the IL-1β-induced activation of the IκB kinase (IKK)/IκB/nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways by suppressing the DNA binding activity of the transcription factors NF-κB and activator protein (AP)-1. Furthermore, aciculatin significantly inhibited the G-CSF-mediated phosphorylation of Janus kinase-signal transducer and activator of transcription (JAK-STAT) and Akt and neutrophil differentiation from precursor cells. Our results show that aciculatin inhibits IL-1β-stimulated G-CSF expression and the subsequent neutrophil differentiation, suggesting that it might have therapeutic potential for inflammatory arthritis. PMID

  3. Neutrophil extracellular traps release induced by Leishmania: role of PI3Kγ, ERK, PI3Kσ, PKC, and [Ca2+

    PubMed Central

    DeSouza-Vieira, Thiago; Guimarães-Costa, Anderson; Rochael, Natalia C.; Lira, Maria N.; Nascimento, Michelle T.; Lima-Gomez, Phillipe de Souza; Mariante, Rafael M.; Persechini, Pedro M.; Saraiva, Elvira M.

    2016-01-01

    Upon in vitro stimulation, neutrophils undergo a cell death named netosis. This process is characterized by extracellular release of chromatin scaffold associated with granular and cytoplasmic proteins, which together, ensnare and kill microbes. We have previously described that interaction of Leishmania amazonensis with human neutrophils leads to the release of neutrophil extracellular traps, which trap and kill the parasite. However, the signaling leading to Leishmania induced netosis is still unknown. Thus, we sought to evaluate signaling events that drive L. amazonensis induced neutrophil extracellular trap release from human neutrophils. Here, we found that PI3K, independently of protein kinase B, has a role in parasite-induced netosis. We also described that the main isoforms involved are PI3Kγ and PI3Kδ, which work in reactive oxygen species-dependent and -independent ways, respectively. We demonstrated that activation of ERK downstream of PI3Kγ is important to trigger reactive oxygen species-dependent, parasite-induced netosis. Pharmacological inhibition of protein kinase C also significantly decreased parasite-induced neutrophil extracellular trap release. Intracellular calcium, regulated by PI3Kδ, represents an alternative reactive oxygen species-independent pathway of netosis stimulated by L. amazonensis. Finally, intracellular calcium mobilization and reactive oxygen species generation are the major regulators of parasite-induced netosis. Our results contribute to a better understanding of the signaling behind netosis induced by interactions between Leishmania and neutrophils. PMID:27154356

  4. Luteolin, a flavonoid, inhibits CD40 ligand expression by activated human basophils.

    PubMed

    Hirano, Toru; Arimitsu, Junsuke; Higa, Shinji; Naka, Tetsuji; Ogata, Atsushi; Shima, Yoshihito; Fujimoto, Minoru; Yamadori, Tomoki; Ohkawara, Tomoharu; Kuwabara, Yusuke; Kawai, Mari; Kawase, Ichiro; Tanaka, Toshio

    2006-01-01

    We have previously shown that flavonoids such as luteolin, apigenin and fisetin inhibit interleukin 4 and interleukin 13 production. In this study, we investigated whether luteolin can suppress CD40 ligand expression by basophils. A human basophilic cell line, KU812, was stimulated with A23187 and phorbol myristate acetate (PMA) with or without various concentrations of luteolin or other flavonoids for 12 h, and CD40 ligand expression was analyzed by FACS. The effect of luteolin on CD40 ligand mRNA expression was studied by semiquantitative reverse transcription PCR analysis. In addition, CD40 ligand expression was also measured in purified basophils that had been stimulated for 12 h with A23187 plus PMA with or without various concentrations of luteolin. CD40 ligand expression by KU812 cells was enhanced noticeably in response to A23187 and even more strikingly augmented by A23187 plus PMA. The expression was significantly suppressed by 10 or 30 microM of luteolin, whereas myricetin failed to inhibit. Reverse transcription PCR analyses demonstrated that luteolin inhibited CD40 ligand mRNA expression by stimulated KU812 cells. Of the six flavonoids examined, luteolin, apigenin, fisetin and quercetin at 30 microM showed a significant inhibitory effect on CD40 ligand expression. The incubation of purified basophils with A23187 plus PMA significantly enhanced CD40 ligand expression, and the presence of luteolin again had an inhibitory effect. Luteolin inhibits CD40 ligand expression by activated basophils.

  5. Neutrophils in critical illness.

    PubMed

    McDonald, Braedon

    2018-03-01

    During critical illness, dramatic alterations in neutrophil biology are observed including abnormalities of granulopoeisis and lifespan, cell trafficking and antimicrobial effector functions. As a result, neutrophils transition from powerful antimicrobial protectors into dangerous mediators of tissue injury and organ dysfunction. In this article, the role of neutrophils in the pathogenesis of critical illness (sepsis, trauma, burns and others) will be explored, including pathological changes to neutrophil function during critical illness and the utility of monitoring aspects of the neutrophil phenotype as biomarkers for diagnosis and prognostication. Lastly, we review findings from clinical trials of therapies that target the harmful effects of neutrophils, providing a bench-to-bedside perspective on neutrophils in critical illness.

  6. Characterization of an Adhesion Molecule that Mediates Leukocyte Rolling on 24 h Cytokine- or Lipopolysaccharide-stimulated Bovine Endothelial Cells under Flow Conditions

    PubMed Central

    Jutila, Mark A.; Wilson, Eric; Kurk, Sandy

    1997-01-01

    Bovine γ/δ T cells and neutrophils roll on 24 h cytokine- or lipopolysaccharide-stimulated bovine fetal umbilical cord endothelial cells in assays done under physiological flow. An antibody directed against E- and L-selectin has minimal blocking effect on this rolling interaction. mAbs were raised against the stimulated bovine endothelial cells and screened for inhibition of γ/δ T cell rolling. One mAb (GR113) was identified that recognizes an antigen (GR antigen) selectively expressed by stimulated bovine endothelial cells isolated from fetal umbilical cord, mesenteric lymph nodes, and aorta. GR113 blocked bovine γ/δ T cell as well as neutrophil rolling on the 24 h-activated endothelial cells. The GR antigen was constitutively expressed at low levels on the cell surface of platelets and its expression was not upregulated after stimulation of these cells with thrombin or phorbol myristate acetate. However, stimulated platelets released a soluble, functionally active form of the molecule that selectively bound in solution to γ/δ T cells in a mixed lymphocyte preparation. GR113 mAb blocked the binding of the soluble platelet molecule to the γ/δ T cells. Soluble GR antigen also bound a subset of human lymphocytes. Cutaneous lymphocyte-associated antigen (CLA) bright human lymphocytes exhibited the greatest capacity to bind the GR antigen, though CLA was not required for binding. Subsets of both human CD4 and CD8 T cells bound the GR antigen. Immunoprecipitation experiments showed the GR antigen to be 110-120 kD M r. The binding of soluble GR antigen was inhibited by EDTA and O-sialoglycoprotease, but not neuraminidase treatment of the target cells. PMID:9362530

  7. Profile of peripheral blood neutrophil cytokines in diabetes type 1 pregnant women and its correlation with selected parameters in the newborns.

    PubMed

    Pertyńska-Marczewska, Magdalena; Głowacka, Ewa; Grodzicka, Alicja; Sobczak, Małgorzata; Cypryk, Katarzyna; Wilczyński, Jacek R; Wilczyński, Jan

    2010-02-01

    Interleukin (IL)-12, IL-10, tumor necrosis factor-alpha (TNF-alpha), IL-6 and IL-8 alter as pregnancy progresses, implying continuous immune regulation associated with the maintenance of pregnancy. We aimed to evaluate the peripheral blood neutrophil-derived production of these cytokines in the course of pregnancy complicated by type 1 diabetes. of study These parameters were measured in samples from healthy non-pregnant (C), diabetic non-pregnant (D), healthy pregnant (P) and pregnant diabetic (PD) women. Neutrophil-derived secretion of TNF-alpha and IL-12 increased along with progression of pregnancy in PD and P groups. The concentration of IL-10 from lipopolysaccharide (LPS)-stimulated neutrophils increased during the course of uncomplicated pregnancy but decreased in diabetic pregnancy. Concentration of IL-8 decreased with the advancing gestational age in P and PD groups. LPS-stimulated neutrophil-derived IL-6 concentration increased only in PD patients. Our results show that diabetes creates pro-inflammatory environment thus potentially influencing the outcome of pregnancy. We conclude that neutrophil-derived cytokine production could contribute to the complications seen in pregnant women with type 1 diabetes.

  8. Cutting Edge: Helicobacter pylori Induces Nuclear Hypersegmentation and Subtype Differentiation of Human Neutrophils In Vitro.

    PubMed

    Whitmore, Laura C; Weems, Megan N; Allen, Lee-Ann H

    2017-03-01

    Helicobacter pylori infects the human stomach and causes a spectrum of disease that includes gastritis, peptic ulcers, and gastric adenocarcinoma. A chronic, neutrophil-rich inflammatory response characterizes this infection. It is established that H. pylori stimulates neutrophil chemotaxis and a robust respiratory burst, but other aspects of this interaction are incompletely defined. We demonstrate here that H. pylori induces N1-like subtype differentiation of human neutrophils as indicated by profound nuclear hypersegmentation, a CD62L dim , CD16 bright , CD11b bright , CD66b bright , CD63 bright surface phenotype, proinflammatory cytokine secretion, and cytotoxicity. Hypersegmentation requires direct neutrophil- H. pylori contact as well as transcription and both host and bacterial protein synthesis, but not urease, NapA, VacA, CagA, or CagT. The concept of neutrophil plasticity is new and, to our knowledge, these data are the first evidence that neutrophils can undergo subtype differentiation in vitro in response to bacterial pathogen infection. We hypothesize that these changes favor H. pylori persistence and disease. Copyright © 2017 by The American Association of Immunologists, Inc.

  9. Leptin inhibits neutrophil apoptosis in children via ERK/NF-κB-dependent pathways.

    PubMed

    Sun, Zhizhi; Dragon, Stéphane; Becker, Allan; Gounni, Abdelilah S

    2013-01-01

    Previous studies have shown that delayed neutrophil apoptosis is associated with chronic airway diseases. Leptin is an adipocyte-derived hormone that acts as a regulator of energy homeostasis and food intake. Emerging evidence suggests that leptin can regulate immune responses including the release of proinflammatory cytokines and protection of inflammatory cells from apoptosis. Serum leptin is increased during allergic reactions in the airways. However, the expression and function of leptin receptor in neutrophils isolated from children is not known. Flow cytometry was used to detect leptin receptor expression in neutrophils isolated from allergic asthmatic (n = 14), allergic non asthmatic (n = 21), non allergic asthmatic (n = 7) and healthy children (n = 23); confocal laser scanning microscopy combined with immunofluorescence was performed to detect intracellular pool of leptin receptor; Annexin-V/PI staining and caspase 3 activity was used to determine neutrophil survival. Pharmacological inhibitors were utilized to understand the role of MAPK and NF-κB pathway in leptin-induced neutrophil survival. A heterogeneous leptin receptor expression was observed on neutrophils isolated from children. Neutrophils isolated from healthy children expressed more leptin receptor than those from allergic asthmatic (P<0.05) but not allergic non-asthmatic (P>0.05) or non-allergic asthmatic children (n = 7, P>0.05). Neutrophils isolated from children express an intracellular pool of leptin receptor that was mobilized to the cell surface upon GM-CSF stimulation. Finally, leptin exhibited anti-apoptotic properties on neutrophils via NF-κB and MEK1/2 MAPK pathway. Collectively, our data suggest that leptin may enhance airway inflammation by promoting neutrophil survival.

  10. Leptin Inhibits Neutrophil Apoptosis in Children via ERK/NF-κB-Dependent Pathways

    PubMed Central

    Sun, Zhizhi; Dragon, Stéphane; Becker, Allan; Gounni, Abdelilah S.

    2013-01-01

    Introduction and Rationale Previous studies have shown that delayed neutrophil apoptosis is associated with chronic airway diseases. Leptin is an adipocyte-derived hormone that acts as a regulator of energy homeostasis and food intake. Emerging evidence suggests that leptin can regulate immune responses including the release of proinflammatory cytokines and protection of inflammatory cells from apoptosis. Serum leptin is increased during allergic reactions in the airways. However, the expression and function of leptin receptor in neutrophils isolated from children is not known. Methods Flow cytometry was used to detect leptin receptor expression in neutrophils isolated from allergic asthmatic (n = 14), allergic non asthmatic (n = 21), non allergic asthmatic (n = 7) and healthy children (n = 23); confocal laser scanning microscopy combined with immunofluorescence was performed to detect intracellular pool of leptin receptor; Annexin-V/PI staining and caspase 3 activity was used to determine neutrophil survival. Pharmacological inhibitors were utilized to understand the role of MAPK and NF-κB pathway in leptin-induced neutrophil survival. Results and Conclusion A heterogeneous leptin receptor expression was observed on neutrophils isolated from children. Neutrophils isolated from healthy children expressed more leptin receptor than those from allergic asthmatic (P<0.05) but not allergic non-asthmatic (P>0.05) or non-allergic asthmatic children (n = 7, P>0.05). Neutrophils isolated from children express an intracellular pool of leptin receptor that was mobilized to the cell surface upon GM-CSF stimulation. Finally, leptin exhibited anti-apoptotic properties on neutrophils via NF-κB and MEK1/2 MAPK pathway. Collectively, our data suggest that leptin may enhance airway inflammation by promoting neutrophil survival. PMID:23383125

  11. [Neutrophilic dermatosis associated with anti-neutrophilic cytoplasmic antibodies (ANCA) after benzylthiouracil therapy].

    PubMed

    Frigui, M; Masmoudi, A; Kaddour, N; Jlidi, R; Turki, H; Bahloul, Z

    2009-05-01

    We report the case of a female patient who developed polymorphic expressions of neutrophilic dermatosis associated with p-ANCA while receiving benzylthiouracil for hyperthyroidism. A 41-year-old-woman was treated with benzylthiouracil for Basedow's disease. After 21 months of therapy, she developed fever with different expressions of neutrophilic dermatosis: pyoderma gangrenosum of feet, Sweet's syndrome of the forearms and the face. Biopsies confirmed the diagnosis of neutrophilic dermatosis. The histological examination of a skin specimen taken from the developing border of a foot lesion showed polynuclear neutrophilic infiltration with leucocytoclastic vasculitis and the presence of anti-myeloperoxydase p-ANCA. Abdominal ultrasound showed multiple splenic microabscesses. The myelogram, gastroscopy and colonoscopy findings were normal. Benzylthiouracil was stopped and systemic corticosteroid therapy resulted in regression of the skin lesions and splenic microabscesses. Different types of neutrophilic dermatosis were described in our case, confirming the notion of neutrophilic dermatosis continuum. The occurrence of neutrophilic dermatosis and p-ANCA after benzylthiouracil therapy suggests the involvement of polynuclear neutrophils in a common pathogenic mechanism. However, to date there have been no other reports analogous to ours, and inclusion of neutrophilic dermatosis as a benzylthiouracil-induced adverse effect would require confirmation by other instances of such associations.

  12. Entamoeba histolytica L220 induces the in vitro activation of macrophages and neutrophils and is modulated by neurotransmitters.

    PubMed

    Villalobos-Gómez, Fabiola Del Rocío; García-Lorenzana, Mario; Escobedo, Galileo; Talamás-Rohana, Patricia; Salinas-Gutiérrez, Rogelio; Hernández-Ramírez, Verónica-Ivonne; Sánchez-Alemán, Esperanza; Campos-Esparza, María Del Rosario; Muñoz-Ortega, Martín Humberto; Ventura-Juárez, Javier

    2018-06-26

    The neuroimmunoregulation of inflammation has been well characterized. Entamoeba histolytica provokes an inflammatory response in the host in which macrophages and neutrophils are the first line of defense. The aim of this study was to analyze the effect of the 220 kDa lectin of Entamoeba histolytica on stimulation of human macrophages and neutrophils, especially the secretion of cytokines and the relation of these to neurotransmitters. Human cells were interacted with L220, epinephrine, nicotine, esmolol and vecuronium bromide. The concentrations of IL-1β, IFN-γ, TNF-α and IL-10 were determined by ELISA at, 4 h of interaction. L220 has a cytokine stimulating function of macrophages and neutrophils for secretion of IL-1β, and IL-10 only by macrophages, which was modulated by the effect of vecuronium on cholinergic receptors in this immune cells.

  13. Quantifying fungal viability in air and water samples using quantitative PCR after treatment with propidium monoazide (PMA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vesper, Stephen; McKinstry, Craig A.; Hartmann, Chris

    2007-11-28

    A method is described to discriminate between live and dead cells of the infectious fungi Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus, Mucor racemosus, Rhizopus stolonifer and Paecilomyces variotii. To test the method, conidial suspensions were heat inactivated at 85 °C or held at 5 °C (controls) for 1 h. Polycarbonate filters (25 mm diameter, 0.8 μm pore size) were placed on "welled" slides (14 mm diameter) and the filters treated with either PBS or PMA. Propidium monoazide (PMA), which enters dead cells but not live cells, was incubated with cell suspensions, exposed to blue wavelength light-emitting diodes (LED) to inactivatemore » remaining PMA and secure intercalation of PMAwith DNA of dead cells. Treated cells were extracted and the live and dead cells evaluated with quantitative PCR (QPCR). After heat treatment and DNA modification with PMA, all fungal species tested showed an approximate 100- to 1000-fold difference in cell viability estimated by QPCR analysis which was consistent with estimates of viability based on culturing.« less

  14. Effect of Prototheca zopfii on neutrophil function from bovine milk.

    PubMed

    Cunha, Luciane T; Pugine, Silvana P; Valle, Claudia R; Ribeiro, Andrea R; Costa, Ernane J X; De Melo, Mariza P

    2006-12-01

    This study was carried to investigate neutrophil function in the presence of Prototheca zopfii. For this purpose, bovine milk neutrophils were incubated in the absence (control) of and presence of P. zopfii, and then they were examined hydrogen peroxide (H(2)O(2)) production, antioxidant enzyme activities, and phagocytic capacity. Milk was collected from negative "California Mastitis Test" (CMT) quarter from three lactating Holstein cows after induction of leukocytosis with an intramammary infusion of oyster glycogen. H(2)O(2) production was measured using the phenol red method. Catalase activity was measured following H(2)O(2) reduction at 240 nm and the activity of glutathione reductase was determined by measuring the rate of NADPH oxidation at 340 nm. P. zopfii death was assessed by fluorescent microscopy using acridine orange assay and by colony forming units (CFUs). Comparisons between the groups were initially performed by analysis of variance (ANOVA). Significant differences were then compared using Tukey's test with a significance coefficient of 0.05. Hydrogen peroxide production, catalase and glutathione reductase activities by neutrophils incubated in presence of P. zopfii were stimulated five times, 21% and 27% respectively, compared to the unstimulated-neutrophils. Neutrophils did not affect P. zopfii death as shown by microscopy and CFUs. These observations led to the conclusion that the P. zopfii promote a high increase of H(2)O(2) production by neutrophils from bovine milk during algae exposition accompanied by increase of antioxidant enzyme activities; however, this process did not affect P. zopfii death.

  15. Mannheimia haemolytica and Its Leukotoxin Cause Neutrophil Extracellular Trap Formation by Bovine Neutrophils▿

    PubMed Central

    Aulik, Nicole A.; Hellenbrand, Katrina M.; Klos, Heather; Czuprynski, Charles J.

    2010-01-01

    Mannheimia haemolytica is an important member of the bovine respiratory disease complex, which is characterized by abundant neutrophil infiltration into the alveoli and fibrin deposition. Recently several authors have reported that human neutrophils release neutrophil extracellular traps (NETs), which are protein-studded DNA matrices capable of trapping and killing pathogens. Here, we demonstrate that the leukotoxin (LKT) of M. haemolytica causes NET formation by bovine neutrophils in a CD18-dependent manner. Using an unacylated, noncytotoxic pro-LKT produced by an ΔlktC mutant of M. haemolytica, we show that binding of unacylated pro-LKT stimulates NET formation despite a lack of cytotoxicity. Inhibition of LKT binding to the CD18 chain of lymphocyte function-associated antigen 1 (LFA-1) on bovine neutrophils reduced NET formation in response to LKT or M. haemolytica cells. Further investigation revealed that NETs formed in response to M. haemolytica are capable of trapping and killing a portion of the bacterial cells. NET formation was confirmed by confocal microscopy and by scanning and transmission electron microscopy. Prior exposure of bovine neutrophils to LKT enhanced subsequent trapping and killing of M. haemolytica cells in bovine NETs. Understanding NET formation in response to M. haemolytica and its LKT provides a new perspective on how neutrophils contribute to the pathogenesis of bovine respiratory disease. PMID:20823211

  16. IL-17A promotes neutrophilic inflammation and disturbs acute wound healing in skin.

    PubMed

    Takagi, Naoyuki; Kawakami, Kazuyoshi; Kanno, Emi; Tanno, Hiromasa; Takeda, Atsushi; Ishii, Keiko; Imai, Yoshimichi; Iwakura, Yoichiro; Tachi, Masahiro

    2017-02-01

    In the wound healing process, neutrophils are the first inflammatory cells to move to the wound tissues. They sterilize wounds by killing microbes, and they stimulate other immune cells to protect the host from infection. In contrast, neutrophil-derived proteases cause damage to host tissues, so neutrophils play dual opposite roles in wound healing. Interleukin-17A (IL-17A) is a proinflammatory cytokine that promotes the recruitment of these cells. The role of this cytokine in the wound healing process is not fully clarified. In the present study, therefore, we examined how defect in IL-17A production affected the wound healing in skin. IL-17A-knockout (KO) mice showed promoted wound closure, myofibroblast differentiation and collagen deposition and decreased the neutrophil accumulation compared with wild-type (WT) mice. In contrast, the administration of recombinant IL-17A led to delayed wound closure, low collagen deposition and accelerated neutrophilic accumulation. In addition, the treatment of IL-17A-administered mice with a neutrophil elastase inhibitor improved the wound repair to the same level as that of WT mice. These results indicated that IL-17A hampered the wound healing process and suggested that neutrophilic inflammation caused by IL-17A may be associated with impaired wound healing in skin. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Severe congenital neutropenia resulting from G6PC3 deficiency with increased neutrophil CXCR4 expression and myelokathexis.

    PubMed

    McDermott, David H; De Ravin, Suk See; Jun, Hyun Sik; Liu, Qian; Priel, Debra A Long; Noel, Pierre; Takemoto, Clifford M; Ojode, Teresa; Paul, Scott M; Dunsmore, Kimberly P; Hilligoss, Dianne; Marquesen, Martha; Ulrick, Jean; Kuhns, Douglas B; Chou, Janice Y; Malech, Harry L; Murphy, Philip M

    2010-10-14

    Mutations in more than 15 genes are now known to cause severe congenital neutropenia (SCN); however, the pathologic mechanisms of most genetic defects are not fully defined. Deficiency of G6PC3, a glucose-6-phosphatase, causes a rare multisystem syndrome with SCN first described in 2009. We identified a family with 2 children with homozygous G6PC3 G260R mutations, a loss of enzymatic function, and typical syndrome features with the exception that their bone marrow biopsy pathology revealed abundant neutrophils consistent with myelokathexis. This pathologic finding is a hallmark of another type of SCN, WHIM syndrome, which is caused by gain-of-function mutations in CXCR4, a chemokine receptor and known neutrophil bone marrow retention factor. We found markedly increased CXCR4 expression on neutrophils from both our G6PC3-deficient patients and G6pc3(-/-) mice. In both patients, granulocyte colony-stimulating factor treatment normalized CXCR4 expression and neutrophil counts. In G6pc3(-/-) mice, the specific CXCR4 antagonist AMD3100 rapidly reversed neutropenia. Thus, myelokathexis associated with abnormally high neutrophil CXCR4 expression may contribute to neutropenia in G6PC3 deficiency and responds well to granulocyte colony-stimulating factor.

  18. Convenience versus Biological Significance: Are PMA-Differentiated THP-1 Cells a Reliable Substitute for Blood-Derived Macrophages When Studying in Vitro Polarization?

    PubMed Central

    Tedesco, Serena; De Majo, Federica; Kim, Jieun; Trenti, Annalisa; Trevisi, Lucia; Fadini, Gian Paolo; Bolego, Chiara; Zandstra, Peter W.; Cignarella, Andrea; Vitiello, Libero

    2018-01-01

    Human peripheral-blood monocytes are used as an established in vitro system for generating macrophages. For several reasons, monocytic cell lines such as THP-1 have been considered as a possible alternative. In view of their distinct developmental origins and phenotypic attributes, we set out to assess the extent to which human monocyte-derived macrophages (MDMs) and phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 cells were overlapping across a variety of responses to activating stimuli. Resting (M0) macrophages were polarized toward M1 or M2 phenotypes by 48-h incubation with LPS (1 μg/ml) and IFN-γ (10 ng/ml) or with IL-4 (20 ng/ml) and IL-13 (5 ng/ml), respectively. At the end of stimulation, MDMs displayed more pronounced changes in marker gene expression than THP-1. Upon assaying an array of 41 cytokines, chemokines and growth factors in conditioned media (CM) using the Luminex technology, secretion of 29 out of the 41 proteins was affected by polarized activation. While in 12 of them THP-1 and MDM showed comparable trends, for the remaining 17 proteins their responses to activating stimuli did markedly differ. Quantitative comparison for selected analytes confirmed this pattern. In terms of phenotypic activation markers, measured by flow cytometry, M1 response was similar but the established MDM M2 marker CD163 was undetectable in THP-1 cells. In a beads-based assay, MDM activation did not induce significant changes, whereas M2 activation of THP-1 decreased phagocytic activity compared to M0 and M1. In further biological activity tests, both MDM and THP-1 CM failed to affect proliferation of mouse myogenic progenitors, whereas they both reduced adipogenic differentiation of mouse fibro-adipogenic progenitor cells (M2 to a lesser extent than M1 and M0). Finally, migration of human umbilical vein endothelial cells was enhanced by CM irrespective of cell type and activation state except for M0 CM from MDMs. In summary, PMA-differentiated THP-1

  19. Convenience versus Biological Significance: Are PMA-Differentiated THP-1 Cells a Reliable Substitute for Blood-Derived Macrophages When Studying in Vitro Polarization?

    PubMed

    Tedesco, Serena; De Majo, Federica; Kim, Jieun; Trenti, Annalisa; Trevisi, Lucia; Fadini, Gian Paolo; Bolego, Chiara; Zandstra, Peter W; Cignarella, Andrea; Vitiello, Libero

    2018-01-01

    Human peripheral-blood monocytes are used as an established in vitro system for generating macrophages. For several reasons, monocytic cell lines such as THP-1 have been considered as a possible alternative. In view of their distinct developmental origins and phenotypic attributes, we set out to assess the extent to which human monocyte-derived macrophages (MDMs) and phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 cells were overlapping across a variety of responses to activating stimuli. Resting (M0) macrophages were polarized toward M1 or M2 phenotypes by 48-h incubation with LPS (1 μg/ml) and IFN-γ (10 ng/ml) or with IL-4 (20 ng/ml) and IL-13 (5 ng/ml), respectively. At the end of stimulation, MDMs displayed more pronounced changes in marker gene expression than THP-1. Upon assaying an array of 41 cytokines, chemokines and growth factors in conditioned media (CM) using the Luminex technology, secretion of 29 out of the 41 proteins was affected by polarized activation. While in 12 of them THP-1 and MDM showed comparable trends, for the remaining 17 proteins their responses to activating stimuli did markedly differ. Quantitative comparison for selected analytes confirmed this pattern. In terms of phenotypic activation markers, measured by flow cytometry, M1 response was similar but the established MDM M2 marker CD163 was undetectable in THP-1 cells. In a beads-based assay, MDM activation did not induce significant changes, whereas M2 activation of THP-1 decreased phagocytic activity compared to M0 and M1. In further biological activity tests, both MDM and THP-1 CM failed to affect proliferation of mouse myogenic progenitors, whereas they both reduced adipogenic differentiation of mouse fibro-adipogenic progenitor cells (M2 to a lesser extent than M1 and M0). Finally, migration of human umbilical vein endothelial cells was enhanced by CM irrespective of cell type and activation state except for M0 CM from MDMs. In summary, PMA-differentiated THP-1

  20. Immunomodulatory effects of beta-glucan on neutrophil function in fathead minnows (Pimephales promelas Rafinesque, 1820).

    PubMed

    Palić, Dusan; Andreasen, Claire B; Herolt, Dawn M; Menzel, Bruce W; Roth, James A

    2006-01-01

    Stimulatory effects of yeast beta-1,3-1,6-glucans on neutrophils have long been recognized, but effects of glucans on degranulation of primary granules in fish neutrophils have not been previously reported. Neutrophil function was monitored during in vitro and in vivo application of glucans to non- (NS), acute- (AS) and chronically stressed (CS) fish. beta-Glucan proved to be a strong and quick (80%, 2 min) stimulant of degranulation. Dietary glucan increased degranulation in NS fish, and prevented a decrease in AS fish. Degranulation in CS fish returned to NS levels 3 days after the glucan diet was fed. Fathead minnows appear to be a useful model to investigate neutrophil degranulation in fish exposed to different environmental conditions and immunomodulators. Use of beta-glucans in fish diets prior to AS and during chronic stress can enhance neutrophil function, potentially increasing disease resistance and survival rates after transportation or exposure to poor water quality.

  1. Characterization of a plasma membrane-associated prenylcysteine-directed alpha carboxyl methyltransferase in human neutrophils.

    PubMed

    Pillinger, M H; Volker, C; Stock, J B; Weissmann, G; Philips, M R

    1994-01-14

    Signal transduction in human neutrophils requires prenylcysteine-directed carboxyl methylation of ras-related low molecular weight GTP-binding proteins. We now report the subcellular localization and characterization of a neutrophil prenylcysteine alpha carboxyl methyltransferase. The highest carboxyl methyltransferase activity copurified with biotinylated neutrophil surface membranes, supporting a plasma membrane localization of the enzyme. Neutrophil nuclear fractions contained little or no methyltransferase activity. Methyltransferase activity was detergent-sensitive but could be reconstituted by removal of detergent in the presence of phosphatidyl choline and an anionic phospholipid. N-Acetyl-S-trans,trans-farnesyl-L-cysteine (AFC) and N-acetyl-S-all-trans-geranylgeranyl-L-cysteine (AGGC) were effective substrates for neutrophil prenylcysteine-directed methyltransferase; Vmax values for AFC and AGGC (16.4 and 22.1 pmol of methylated/mg protein/min, respectively) are among the highest yet reported. Although both GTP gamma S and the chemoattractant fMet-Leu-Phe stimulated methylation of ras-related proteins, neither affected methylation of AFC. These data suggest that neutrophil plasma membranes contain a phospholipid-dependent, prenylcysteine-directed carboxyl methyltransferase of relatively high specific activity that modifies ras-related protein substrates in the GTP-bound, activated state.

  2. Synthesis of sharply thermo and PH responsive PMA-b-PNIPAM-b-PEG-b-PNIPAM-b-PMA by RAFT radical polymerization and its schizophrenic micellization in aqueous solutions.

    PubMed

    Ahmadkhani, Lida; Abbasian, Mojtaba; Akbarzadeh, Abolfazl

    2017-01-01

    Sharply thermo- and pH-responsive pentablock terpolymer with a core-shell-corona structure was prepared by RAFT polymerization of N-isopropylacrylamide and methacrylic acid monomers using PEG-based benzoate-type of RAFT agent. The PEG-based RAFT agent could be easily synthesized by dihydroxyl-capped PEG with 4-cyano-4-(thiobenzoyl) sulfanylpentanoic acids, using esterification reaction. This pentablock terpolymer was characterized by 1 H NMR, FT-IR, and GPC. The PDI was obtained by GPC, indicating that the molecular weight distribution was narrow and the polymerization was well controlled. The thermo- and pH-responsive micellization of the pentablock terpolymer in aqueous solution was investigated using fluorescence spectroscopy technique, UV-vis transmittance, and TEM. The LCST of pentablock terpolymer increased (over 50 °C) compared to the NIPAM homopolymer (~32 °C), due to the incorporation of the hydrophilic PEG and PMA blocks in pentablock terpolymer (PNIPAM block as the core, PEG the block and the hydrophilic PMA block as the shell and the corona). Also, pH-dependent phase transition behavior shows at a pH value of about ~5.8, according to pKa of MAA. Thus, in acidic solution at room temperature, the pentablock terpolymer self-assembled to form core-shell-corona micelles, with the hydrophobic PMA block as the core, the PNIPAM block and the hydrophilic PEG block as the shell and the corona, respectively.

  3. Modulation of transglutaminase 2 activity in H9c2 cells by PKC and PKA signalling: a role for transglutaminase 2 in cytoprotection

    PubMed Central

    Almami, Ibtesam; Dickenson, John M; Hargreaves, Alan J; Bonner, Philip L R

    2014-01-01

    BACKGROUND AND PURPOSE Tissue transglutaminase (TG2) has been shown to mediate cell survival in many cell types. In this study, we investigated whether the role of TG2 in cytoprotection was mediated by the activation of PKA and PKC in cardiomyocyte-like H9c2 cells. EXPERIMENTAL APPROACH H9c2 cells were extracted following stimulation with phorbol-12-myristate-13-acetate (PMA) and forskolin. Transglutaminase activity was determined using an amine incorporating and a protein crosslinking assay. The presence of TG isoforms (TG1, 2, 3) was determined using Western blot analysis. The role of TG2 in PMA- and forskolin-induced cytoprotection was investigated by monitoring H2O2-induced oxidative stress in H9c2 cells. KEY RESULTS Western blotting showed TG2 >> TG1 protein expression but no detectable TG3. The amine incorporating activity of TG2 in H9c2 cells increased in a time and concentration-dependent manner following stimulation with PMA and forskolin. PMA and forskolin-induced TG2 activity was blocked by PKC (Ro 31-8220) and PKA (KT 5720 and Rp-8-Cl-cAMPS) inhibitors respectively. The PMA- and forskolin-induced increases in TG2 activity were attenuated by the TG2 inhibitors Z-DON and R283. Immunocytochemistry revealed TG2-mediated biotin-X-cadaverine incorporation into proteins and proteomic analysis identified known (β-tubulin) and novel (α-actinin) protein substrates for TG2. Pretreatment with PMA and forskolin reversed H2O2-induced decrease in MTT reduction and release of LDH. TG2 inhibitors R283 and Z-DON blocked PMA- and forskolin-induced cytoprotection. CONCLUSIONS AND IMPLICATIONS TG2 activity was stimulated via PKA- and PKC-dependent signalling pathways in H9c2 cells These results suggest a role for TG2 in cytoprotection induced by these kinases. PMID:24821315

  4. Loss of XIAP facilitates switch to TNFα-induced necroptosis in mouse neutrophils.

    PubMed

    Wicki, Simone; Gurzeler, Ursina; Wei-Lynn Wong, W; Jost, Philipp J; Bachmann, Daniel; Kaufmann, Thomas

    2016-10-13

    Neutrophils are essential players in the first-line defense against invading bacteria and fungi. Besides its antiapoptotic role, the inhibitor of apoptosis protein (IAP) family member X-linked IAP (XIAP) has been shown to regulate innate immune signaling. Whereas the role of XIAP in innate signaling pathways is derived mostly from work in macrophages and dendritic cells, it is not known if and how XIAP contributes to these pathways in neutrophils. Here we show that in response to bacterial lipopolysaccharides (LPS), mouse neutrophils secreted considerable amounts of tumor necrosis factor-α (TNFα) and interleukin-1β (IL-1β) and, in accordance with earlier reports, XIAP prevented LPS-induced hypersecretion of IL-1β also in neutrophils. Interestingly, and in contrast to macrophages or dendritic cells, Xiap-deficient neutrophils were insensitive to LPS-induced cell death. However, combined loss of function of XIAP and cIAP1/-2 resulted in rapid neutrophil cell death in response to LPS. This cell death occurred by classical apoptosis initiated by a TNFα- and RIPK1-dependent, but RIPK3- and MLKL-independent, pathway. Inhibition of caspases under the same experimental conditions caused a shift to RIPK3-dependent cell death. Accordingly, we demonstrate that treatment of neutrophils with high concentrations of TNFα induced apoptotic cell death, which was fully blockable by pancaspase inhibition in wild-type neutrophils. However, in the absence of XIAP, caspase inhibition resulted in a shift from apoptosis to RIPK3- and MLKL-dependent necroptosis. Loss of XIAP further sensitized granulocyte-macrophage colony-stimulating factor (GM-CSF)-primed neutrophils to TNFα-induced killing. These data suggest that XIAP antagonizes the switch from TNFα-induced apoptosis to necroptosis in mouse neutrophils. Moreover, our data may implicate an important role of neutrophils in the development of hyperinflammation and disease progression of patients diagnosed with X

  5. Generation and dietary modulation of anti-inflammatory electrophilic omega-3 fatty acid derivatives.

    PubMed

    Cipollina, Chiara; Salvatore, Sonia R; Muldoon, Matthew F; Freeman, Bruce A; Schopfer, Francisco J

    2014-01-01

    Dietary ω-3 polyunsaturated fatty acids (PUFAs) decrease cardiovascular risk via suppression of inflammation. The generation of electrophilic α,β-unsaturated ketone derivatives of the ω-3 PUFAs docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA) in activated human macrophages is catalyzed by cyclooxygenase-2 (Cox-2). These derivatives are potent pleiotropic anti-inflammatory signaling mediators that act via mechanisms including the activation of Nrf2-dependent phase 2 gene expression and suppression of pro-inflammatory NF-κB-driven gene expression. Herein, the endogenous generation of ω-3 PUFAs electrophilic ketone derivatives and their hydroxy precursors was evaluated in human neutrophils. In addition, their dietary modulation was assessed through a randomized clinical trial. Endogenous generation of electrophilic omega-3 PUFAs and their hydroxy precursors was evaluated by mass spectrometry in neutrophils isolated from healthy subjects, both at baseline and upon stimulation with calcium ionophore. For the clinical trial, participants were healthy adults 30-55 years of age with a reported EPA+DHA consumption of ≤300 mg/day randomly assigned to parallel groups receiving daily oil capsule supplements for a period of 4 months containing either 1.4 g of EPA+DHA (active condition, n = 24) or identical appearing soybean oil (control condition, n = 21). Participants and laboratory technicians remained blinded to treatment assignments. 5-lypoxygenase-dependent endogenous generation of 7-oxo-DHA, 7-oxo-DPA and 5-oxo-EPA and their hydroxy precursors is reported in human neutrophils stimulated with calcium ionophore and phorbol 12-myristate 13-acetate (PMA). Dietary EPA+DHA supplementation significantly increased the formation of 7-oxo-DHA and 5-oxo-EPA, with no significant modulation of arachidonic acid (AA) metabolite levels. The endogenous detection of these electrophilic ω-3 fatty acid ketone derivatives supports the precept that the benefit of

  6. Neutrophil-mediated oxidative burst and host defense are controlled by a Vav-PLCγ2 signaling axis in mice

    PubMed Central

    Graham, Daniel B.; Robertson, Charles M.; Bautista, Jhoanne; Mascarenhas, Francesca; Diacovo, M. Julia; Montgrain, Vivianne; Lam, Siu Kit; Cremasco, Viviana; Dunne, W. Michael; Faccio, Roberta; Coopersmith, Craig M.; Swat, Wojciech

    2007-01-01

    Oxidative burst, a critical antimicrobial mechanism of neutrophils, involves the rapid generation and release of reactive oxygen intermediates (ROIs) by the NADPH oxidase complex. Genetic mutations in an NADPH oxidase subunit, gp91 (also referred to as NOX2), are associated with chronic granulomatous disease (CGD), which is characterized by recurrent and life-threatening microbial infections. To combat such infections, ROIs are produced by neutrophils after stimulation by integrin-dependent adhesion to the ECM in conjunction with stimulation from inflammatory mediators, or microbial components containing pathogen-associated molecular patterns. In this report, we provide genetic evidence that both the Vav family of Rho GTPase guanine nucleotide exchange factors (GEFs) and phospholipase C–γ2 (PLC-γ2) are critical mediators of adhesion-dependent ROI production by neutrophils in mice. We also demonstrated that Vav was critically required for neutrophil-dependent host defense against systemic infection by Staphylococcus aureus and Pseudomonas aeruginosa, 2 common pathogens associated with fatal cases of hospital-acquired pneumonia. We identified a molecular pathway in which Vav GEFs linked integrin-mediated signaling with PLC-γ2 activation, release of intracellular Ca2+ cations, and generation of diacylglycerol to control assembly of the NADPH oxidase complex and ROI production by neutrophils. Taken together, our data indicate that integrin-dependent signals generated during neutrophil adhesion contribute to the activation of NADPH oxidase by a variety of distinct effector pathways, all of which require Vav. PMID:17932569

  7. Activation of Adenosine A2A Receptors Inhibits Neutrophil Transuroepithelial Migration ▿

    PubMed Central

    Säve, Susanne; Mohlin, Camilla; Vumma, Ravi; Persson, Katarina

    2011-01-01

    Adenosine has been identified as a significant inhibitor of inflammation by acting on adenosine A2A receptors. In this study, we examined the role of adenosine and A2A receptors in the transmigration of human neutrophils across an in vitro model of the transitional bladder urothelium. Human uroepithelial cells (UROtsa) were grown on transwell inserts; uropathogenic Escherichia coli (UPEC) and neutrophils were added to the transwell system; and the number of migrating neutrophils was evaluated. Reverse transcription-PCR (RT-PCR), immunohistochemistry, and flow cytometry were used to investigate the expression of adenosine receptors, the epithelial adhesion molecule ICAM-1, and the neutrophil integrin CD11b. Levels of proinflammatory interleukin-8 (IL-8) and phosphorylated IκBα were measured by enzyme-linked immunosorbent assays (ELISA) and Luminex assays, respectively. The neutrophils expressed all four adenosine receptor subtypes (A1, A2A, A2B, and A3 receptors), but A3 receptors were not expressed by UROtsa cells. UPEC stimulated neutrophil transuroepithelial migration, which was significantly decreased in response to the specific A2A receptor agonist CGS 21680. The inhibitory effect of CGS 21680 on neutrophil migration was reversed by the A2A receptor antagonist SCH 58261. The production of chemotactic IL-8 and the expression of the adhesion molecule ICAM-1 or CD11b were not significantly affected by CGS 21680. However, a significant decrease in the level of phosporylated IκBα was revealed in response to CGS 21680. In conclusion, UPEC infection in vitro evoked neutrophil migration through a multilayered human uroepithelium. The UPEC-evoked neutrophil transmigration decreased in response to A2A receptor activation, possibly through inhibition of NF-κB signaling pathways. PMID:21646447

  8. Neutrophil counts, neutrophil ratio, and new stroke in minor ischemic stroke or TIA.

    PubMed

    Zhu, Bihong; Pan, Yuesong; Jing, Jing; Meng, Xia; Zhao, Xingquan; Liu, Liping; Wang, David; Johnston, S Claiborne; Li, Hao; Wang, Yilong; Wang, Zhimin; Wang, Yongjun

    2018-05-22

    Evidence about whether neutrophil counts or neutrophil ratio is associated with new stroke is scant. The aim of this study is to assess the association of neutrophil counts or neutrophil ratio with a new stroke in patients with minor stroke or TIA. We derived data from the Clopidogrel in High-Risk Patients With Acute Nondisabling Cerebrovascular Events trial. Patients with a minor stroke or TIA were categorized into 4 groups according to the quartile of neutrophil counts or neutrophil ratio. The primary outcome was a new stroke (ischemic or hemorrhagic), and secondary outcomes included a new composite vascular event (stroke, myocardial infarction, or death resulting from cardiovascular causes) and ischemic stroke during the 90-day follow-up. We assessed the association between neutrophil counts, neutrophil ratio, and risk of new stroke. A total of 4,854 participants were enrolled, among whom 495 had new strokes at 90 days. Compared with the first quartile, the second, third, and fourth quartiles of neutrophil counts were associated with increased risk of new stroke (adjusted hazard ratio 1.40 [95% confidence interval (CI) 1.05-1.87], 1.55 [95% CI 1.17-2.05], and 1.69 [95% CI 1.28-2.23], respectively, p for trend <0.001). Similar results were observed for the endpoint of composite events and ischemic stroke. Parallel results were found for neutrophil ratio. High levels of both neutrophil counts and neutrophil ratio were associated with an increased risk of new stroke, composite events, and ischemic stroke in patients with a minor ischemic stroke or TIA. © 2018 American Academy of Neurology.

  9. Microbiota signalling through MyD88 is necessary for a systemic neutrophilic inflammatory response

    PubMed Central

    Karmarkar, Dipti; Rock, Kenneth L

    2013-01-01

    In the present study, we have found that intestinal flora strongly influence peritoneal neutrophilic inflammatory responses to diverse stimuli, including pathogen-derived particles like zymosan and sterile irritant particles like crystals. When germ-free and flora-deficient (antibiotic-treated) mice are challenged with zymosan intraperitoneally, neutrophils are markedly impaired in their ability to extravasate from blood into the peritoneum. In contrast, in these animals, neutrophils can extravasate in response to an intraperitoneal injection of the chemokine, macrophage inflammatory protein 2. Neutrophil recruitment upon inflammatory challenge requires stimulation by microbiota through a myeloid differentiation primary response gene (88) (MyD88) -dependent pathway. MyD88 signalling is crucial during the development of the immune system but depending upon the ligand it may be dispensable at the time of the actual inflammatory challenge. Furthermore, pre-treatment of flora-deficient mice with a purified MyD88-pathway agonist is sufficient to restore neutrophil migration. In summary, this study provides insight into the role of gut microbiota in influencing acute inflammation at sites outside the gastrointestinal tract. PMID:23909393

  10. A phorbol ester-binding protein is required downstream of Rab5 in endosome fusion.

    PubMed

    Aballay, A; Barbieri, M A; Colombo, M I; Arenas, G N; Stahl, P D; Mayorga, L S

    1998-12-28

    Previous observations indicate that a zinc and phorbol ester binding factor is necessary for endosome fusion. To further characterize the role of this factor in the process, we used an in vitro endosome fusion assay supplemented with recombinant Rab5 proteins. Both zinc depletion and addition of calphostin C, an inhibitor of protein kinase C, inhibited endosome fusion in the presence of active Rab5. Addition of the phorbol ester PMA (phorbol 12-myristate 13-acetate) reversed the inhibition of endosome fusion caused by a Rab5 negative mutant. Moreover, PMA stimulated fusion in the presence of Rab5 immunodepleted cytosol. These results suggest that the phorbol ester binding protein is acting downstream of Rab5 in endosome fusion.

  11. Evaluation of propidium monoazide (PMA) treatment directly on membrane filter for the enumeration of viable but non cultivable Legionella by qPCR.

    PubMed

    Slimani, Sami; Robyns, Audrey; Jarraud, Sophie; Molmeret, Maëlle; Dusserre, Eric; Mazure, Céline; Facon, Jean Pierre; Lina, Gérard; Etienne, Jerome; Ginevra, Christophe

    2012-02-01

    A PMA (propidium monoazide) pretreatment protocol, in which PMA is applied directly to membrane filters, was developed for the PCR-based quantification (PMA-qPCR) of viable Legionella pneumophila. Using this method, the amplification of DNA from membrane-damaged L. pneumophila was strongly inhibited for samples containing a small number of dead bacteria. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Effect of medroxyprogesterone acetate (Provera) on ovarian radiosensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarrell, J.; YoungLai, E.V.; McMahon, A.

    1989-04-01

    Medroxyprogesterone acetate (Provera) is a drug that is commonly given to young women with cancer during chemotherapy and radiation to control heavy bleeding associated with anovulation. Because hypothalamic-pituitary-ovarian suppression has been associated with ovarian protection from the effects of chemotherapy and medroxyprogesterone acetate has been identified as a radiosensitizing agent, we explored the effects of medroxyprogesterone acetate on a rat model with known radiation injury characteristics. Sprague-Dawley rats were treated with medroxyprogesterone acetate or vehicle from day 22 to day 37 of life and were either irradiated or sham-irradiated on day 30 of life and then killed on day 44.more » Radiation with medroxyprogesterone acetate administration produced a greater loss in preantral and healthy control follicles than in control follicles. No suppression of luteinizing hormone or follicle-stimulating hormone had occurred by day 30 but ovarian glutathione content was reduced. These findings indicate that the administration of medroxyprogesterone acetate with radiotherapy may enhance ovarian injury.« less

  13. The involvement of macrophage-derived tumour necrosis factor and lipoxygenase products on the neutrophil recruitment induced by Clostridium difficile toxin B.

    PubMed Central

    Souza, M H; Melo-Filho, A A; Rocha, M F; Lyerly, D M; Cunha, F Q; Lima, A A; Ribeiro, R A

    1997-01-01

    Clostridium difficile (Cd) toxins appear to mediate the inflammatory response in pseudomembranous colitis and/or colitis associated with the use of antibiotics. In contrast to Cd Toxin A (TxA), Cd Toxin B (TxB) has been reported not to promote fluid secretion or morphological damage in rabbits and hamsters and also does not induce neutrophil chemotaxis in vitro. However, TxB is about 1000 times more potent than TxA in stimulating the release of tumour necrosis factor-alpha (TNF-alpha) by cultured monocytes. In the present study, we investigated the ability of TxB to promote neutrophil migration into peritoneal cavities and subcutaneous air-pouches of rats. We also examined the role of resident peritoneal cells in this process as well as the inflammatory mediators involved. TxB caused a significant and dose-dependent neutrophil influx with a maximal response at 0.1 microgram/cavity after 4 hr. Depleting the peritoneal resident cell population by washing the peritoneal cavity or increasing this population by pretreating the animals with thioglycollate blocked and amplified the TxB-induced neutrophil migration, respectively. Pretreating the animals with MK886 (a lipoxygenase inhibitor), NDGA (a dual cyclo- and lipoxygenase inhibitor) or the glucocorticoid, dexamethasone, but not with indomethacin (a cyclo-oxygenase inhibitor), or BN52021 (a platelet-activating factor antagonist), inhibited the neutrophil migration evoked by TxB. Pretreatment with dexamethasone or the administration of anti-TNF-alpha serum into the air-pouches also significantly reduced the TxB-induced neutrophil migration. Supernatants from TxB-stimulated macrophages induced neutrophil migration when injected into the rat peritoneal cavity. This effect was attenuated by the addition of either MK886 or dexamethasone to the macrophage monolayer and by preincubating the supernatants with anti-TNF-alpha serum. TxB also stimulated the release of TNF-alpha by macrophages. Overall, these results suggest that

  14. Node 1 and PMA-1 are moved for weight and center of gravity determination

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Node 1, the first U.S. element for the International Space Station, and Pressurized Mating Adapter-1 (PMA-1) continue with prelaunch preparation activities at KSC's Space Station Processing Facility. Node 1 is a connecting passageway to the living and working areas of the space station. The node and PMA-1 are being moved to an element rotation stand, or test stand, where they will undergo an interim weight and center of gravity determination. The final determination is planned to be performed prior to transporting Node 1 to the launch pad. Node 1 is scheduled to fly on STS-88.

  15. Inactivation of a subpopulation of human neutrophils by exposure to ultrahigh-molecular-weight polyethylene wear debris.

    PubMed

    Bernard, Louis; Vaudaux, Pierre; Huggler, Elzbieta; Stern, Richard; Fréhel, Claude; Francois, Patrice; Lew, Daniel; Hoffmeyer, Pierre

    2007-04-01

    Polymorphonuclear neutrophils, a first line of defence against invading microbial pathogens, may be attracted by inflammatory mediators triggered by ultrahigh-molecular-weight polyethylene (UHMWPE) wear particles released from orthopaedic prostheses. Phagocytosis of UHMWPE particles by neutrophils may indirectly compromise their phagocytic-bactericidal mechanisms, thus enhancing host susceptibility to microbial infections. In an in vitro assay, pre-exposure of purified human neutrophils to UHMWPE micrometre- and submicrometre-sized wear particles interfered with subsequent Staphylococcos aureus uptake in a heterogeneous way, as assessed by a dual label fluorescence microscopic assay that discriminated intracellular rhodamine-labelled UHMWPE particles from fluorescein isothiocyanate-labelled S. aureus. Indeed, a higher percentage (44%) of neutrophils having engulfed UHMWPE particles lost the ability to phagocytize S. aureus, compared with UHMWPE-free neutrophils (<3%). Pre-exposure of neutrophils to UHMWPE wear particles did not impair but rather stimulated their oxidative burst response in a chemoluminescence assay. The presence of UHMWPE wear particles did not lead to significant overall consumption of complement-mediated opsonic factors nor decreased surface membrane display of neutrophil complement receptors. In conclusion, engulfment of UHMWPE wear particles led to inactivation of S. aureus uptake in nearly half of the neutrophil population, which may potentially impair host clearance mechanisms against pyogenic infections.

  16. PMA-LAMP for rapid detection of Escherichia coli and shiga toxins from viable but non-culturable state.

    PubMed

    Yan, Muxia; Xu, Ling; Jiang, Hua; Zhou, Zhenwen; Zhou, Shishui; Zhang, Li

    2017-04-01

    In exposure to outer pressure, microorganisms are capable of entry into the Viable But Non-Culturable (VBNC) state, and thus survive under various elimination processing. The survival microorganisms may yield negative results on culturing, and cause false negative for this golden standard methodology. In this study, a novel PMA-LAMP assay on the detection of Enterohemorrhage E. coli and shiga toxins has been developed and evaluated, with further application on a number of food borne E. coli strains. LAMP primers were designed on the target of rfbe for Enterohemorrhage E. coli and stx1with stx2 for shiga toxins. Via specific penetration through the damaged cell membrane of dead cells and intercalating into DNA, PMA could prevent DNA amplification of dead bacteria from LAMP, which enabled the differentiation of bacteria between VBNC state and dead state. The established PMA-LAMP showed significant advantage in rapidity, sensitivity and specificity, compared with regular PCR assay. The applicability had also been verified, demonstrating the PMA-LAMP was capable of detection on Enterohemorrhage E. coli and shiga toxins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Inhibition of peripheral blood neutrophil oxidative burst in periodontitis patients with a homeopathic medication Traumeel S

    PubMed Central

    žilinskas, Juozas; žekonis, Jonas; žekonis, Gediminas; Šadzevičienė, Renata; Sapragonienė, Marija; Navickaitė, Justina; Barzdžiukaitė, Ingrida

    2011-01-01

    Summary Background The anti-inflammatory effects of a homeopathic remedy, Traumeel S, have been observed in experimental and clinical studies; however, its antioxidant properties have not been elucidated. The aim of the present study was to evaluate the antioxidant effects of Traumeel S on peripheral blood neutrophils in patients with periodontitis. Material/Methods The study was performed using venous blood of 22 individuals with chronic periodontitis and 21 healthy subjects. The antioxidant effects of Traumeel S on the production of reactive oxygen species by unstimulated and stimulated with unopsonized E. coli neutrophils were investigated using luminol- and lucigenin-dependent chemiluminescence (CL). Results Polymorphonuclear leukocytes of periodontitis patients produced higher levels (p<0.01) of light output of lucigenin-dependent chemiluminescence and significantly reduced (p<0.01) light output of luminol-dependent chemiluminescence than analogous cells of healthy subjects. Highly diluted (10−4 of the stem solution) Traumeel S significantly (by approximately 50%) reduced superoxide-induced oxidation of lucigenin by unstimulated and stimulated with unopsonized E. coli polymorphonuclear leukocytes of periodontitis patients and had a tendency to intensify luminol-dependent chemiluminescence. Preincubation of the unstimulated and stimulated with unopsonized E. coli polymorphonuclear leukocytes of healthy subjects with Traumeel S exerts no inhibitory action on the luminol- and lucigenin-dependent chemiluminescence of the above-mentioned cells. Conclusions This study indicates that Traumeel S may significantly reduce production of superoxide anion by unstimulated and stimulated peripheral blood polymorphonuclear neutrophils of periodontitis patients. PMID:21525811

  18. Standardization of Spore Inactivation Method for PMA-PhyloChip Analysis

    NASA Technical Reports Server (NTRS)

    Schrader, Michael

    2011-01-01

    In compliance with the Committee on Space Research (COSPAR) planetary protection policy, National Aeronautics and Space Administration (NASA) monitors the total microbial burden of spacecraft as a means for minimizing the inadvertent transfer of viable contaminant microorganisms to extraterrestrial environments (forward contamination). NASA standard assay-based counts are used both as a proxy for relative surface cleanliness and to estimate overall microbial burden as well as to assess whether forward planetary protection risk criteria are met for a given mission, which vary by the planetary body to be explored and whether or not life detection missions are present. Despite efforts to reduce presence of microorganisms from spacecraft prior to launch, microbes have been isolated from spacecraft and associated surfaces within the extreme conditions of clean room facilities using state of the art molecular technologies. Development of a more sensitive method that will better enumerate all viable microorganisms from spacecraft and associated surfaces could support future life detection missions. Current culture-based (NASA standard spore assay) and nucleic-acid-based polymerase chain reaction (PCR) methods have significant shortcomings in this type of analysis. The overall goal of this project is to evaluate and validate a new molecular method based on the use of a deoxyribonucleic acid (DNA) intercalating agent propidium monoazide (PMA). This is used in combination with DNA microarray (PhyloChip) which has been shown to identify very low levels of organisms on spacecraft associated surfaces. PMA can only penetrate the membrane of dead cells. Once penetrated, it intercalates the DNA and, upon photolysis using visible light it produces stable DNA monoadducts. This allows DNA to be unavailable for further PCR analysis. The specific aim of this study is to standardize the spore inactivation method for PMA-PhyloChip analysis. We have used the bacterial spores Bacillus

  19. Identification of C-terminal phosphorylation sites of N-formyl peptide receptor-1 (FPR1) in human blood neutrophils.

    PubMed

    Maaty, Walid S; Lord, Connie I; Gripentrog, Jeannie M; Riesselman, Marcia; Keren-Aviram, Gal; Liu, Ting; Dratz, Edward A; Bothner, Brian; Jesaitis, Algirdas J

    2013-09-20

    Accumulation, activation, and control of neutrophils at inflammation sites is partly driven by N-formyl peptide chemoattractant receptors (FPRs). Occupancy of these G-protein-coupled receptors by formyl peptides has been shown to induce regulatory phosphorylation of cytoplasmic serine/threonine amino acid residues in heterologously expressed recombinant receptors, but the biochemistry of these modifications in primary human neutrophils remains relatively unstudied. FPR1 and FPR2 were partially immunopurified using antibodies that recognize both receptors (NFPRa) or unphosphorylated FPR1 (NFPRb) in dodecylmaltoside extracts of unstimulated and N-formyl-Met-Leu-Phe (fMLF) + cytochalasin B-stimulated neutrophils or their membrane fractions. After deglycosylation and separation by SDS-PAGE, excised Coomassie Blue-staining bands (∼34,000 Mr) were tryptically digested, and FPR1, phospho-FPR1, and FPR2 content was confirmed by peptide mass spectrometry. C-terminal FPR1 peptides (Leu(312)-Arg(322) and Arg(323)-Lys(350)) and extracellular FPR1 peptide (Ile(191)-Arg(201)) as well as three similarly placed FPR2 peptides were identified in unstimulated and fMLF + cytochalasin B-stimulated samples. LC/MS/MS identified seven isoforms of Ala(323)-Lys(350) only in the fMLF + cytochalasin B-stimulated sample. These were individually phosphorylated at Thr(325), Ser(328), Thr(329), Thr(331), Ser(332), Thr(334), and Thr(339). No phospho-FPR2 peptides were detected. Cytochalasin B treatment of neutrophils decreased the sensitivity of fMLF-dependent NFPRb recognition 2-fold, from EC50 = 33 ± 8 to 74 ± 21 nM. Our results suggest that 1) partial immunopurification, deglycosylation, and SDS-PAGE separation of FPRs is sufficient to identify C-terminal FPR1 Ser/Thr phosphorylations by LC/MS/MS; 2) kinases/phosphatases activated in fMLF/cytochalasin B-stimulated neutrophils produce multiple C-terminal tail FPR1 Ser/Thr phosphorylations but have little effect on corresponding FPR2 sites

  20. Nicotine is Chemotactic for Neutrophils and Enhances Neutrophil Responsiveness to Chemotactic Peptides

    NASA Astrophysics Data System (ADS)

    Totti, Noel; McCusker, Kevin T.; Campbell, Edward J.; Griffin, Gail L.; Senior, Robert M.

    1984-01-01

    Neutrophils contribute to chronic bronchitis and pulmonary emphysema associated with cigarette smoking. Nicotine was found to be chemotactic for human neutrophils but not monocytes, with a peak activity at ~ 31 micromolar. In lower concentrations (comparable to those in smokers' plasma), nicotine enhanced the response of neutrophils to two chemotactic peptides. In contrast to most other chemoattractants for neutrophils, however, nicotine did not affect degranulation or superoxide production. Nicotine thus may promote inflammation and consequent lung injury in smokers.

  1. Impaired granulocyte oxidative burst and decreased expression of leucocyte adhesion molecule-1 (LAM-1) in patients with Wegener's granulomatosis.

    PubMed Central

    Riecken, B; Gutfleisch, J; Schlesier, M; Peter, H H

    1994-01-01

    Neutrophils are the target of autoantibodies in Wegener's granulomatosis (WG). In this study, granulocyte function and surface marker expression were investigated in patients with WG. The oxidative burst in response to phorbol myristate acetate (PMA) was tested with granulocytes of 25 patients with histologically proven WG. A significantly diminished percentage of oxygen radical-producing cells was found in patients with active disease. Surface antigen expression of CD11b and LAM-1 was analysed on granulocytes of 20 patients with WG. Whereas the expression of CD11b was normal, surface expression of LAM-1 was decreased in nine cases with WG. The decrease of LAM-1 correlated with disease activity. Phagocytosis of Escherichia coli was tested in 10 patients with WG, and normal values were found in all cases. We conclude that down-regulation of LAM-1 may be a marker of disease activity in WG. The altered response to PMA may indicate functional changes in granulocyte reactivity due to autoantibody-induced damage of the granulocyte membrane. PMID:7512009

  2. 2',3-dihydroxy-5-methoxybiphenyl suppresses fMLP-induced superoxide anion production and cathepsin G release by targeting the β-subunit of G-protein in human neutrophils.

    PubMed

    Liao, Hsiang-Ruei; Chen, Ih-Sheng; Liu, Fu-Chao; Lin, Shinn-Zhi; Tseng, Ching-Ping

    2018-06-15

    This study investigates the effect and the underlying mechanism of 2',3-dihydroxy-5-methoxybiphenyl (RIR-2), a lignan extracted from the roots of Rhaphiolepis indica (L.) Lindl. ex Ker var. tashiroi Hayata ex Matsum. & Hayata (Rosaceae), on N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP)-induced respiratory burst and cathepsin G in human neutrophils. Signaling pathways regulated by RIR-2 which modulated fMLP-induced respiratory burst were evaluated by an interaction between β subunit of G-protein (Gβ) with downstream signaling induced by fMLP and by immunoblotting analysis of the downstream targets of Gβ-protein. RIR-2 inhibited fMLP-induced superoxide anion production (IC 50 :2.57 ± 0.22 μM), cathepsin G release (IC 50 :18.72 ± 3.76 μM) and migration in a concentration dependent manner. RIR-2 specifically suppresses fMLP-induced Src family kinases phosphorylation by inhibiting the interaction between Gβ-protein with Src kinases without inhibiting Src kinases activities, therefore, RIR-2 attenuated the downstream targets of Src kinase, such as phosphorylation of Raf/ERK, AKT, P38, PLCγ2, PKC and translocation Tec, p47 ph ° x and P40 ph ° x from the cytosol to the inner leaflet of the plasma membrane. Furthermore, RIR-2 attenuated fMLP-induced intracellular calcium mobilization by inhibiting the interaction between Gβ-protein with PLCβ2. RIR-2 was not a competitive or allosteric antagonist of fMLP. On the contrary, phorbol 12-myristate 13-acetate (PMA)-induced phosphorylation of Src, AKT, P38, PKC and membrane localization of p47 ph ° x and P40 ph ° x remained unaffected. RIR-2 specifically modulates fMLP-mediated neutrophil superoxide anion production and cathepsin G release by inhibiting the interaction between Gβ-protein with downstream signaling which subsequently interferes with the activation of intracellular calcium, PLCγ2, AKT, p38, PKC, ERK, p47 ph ° x and p40 phox . Copyright © 2018 Elsevier B.V. All rights reserved.

  3. CXCL16 contributes to neutrophil recruitment to cerebrospinal fluid in pneumococcal meningitis.

    PubMed

    Woehrl, Bianca; Klein, Matthias; Rupprecht, Tobias A; Schmetzer, Helga; Angele, Barbara; Häcker, Hans; Häcker, Georg; Pfister, Hans-Walter; Koedel, Uwe

    2010-11-01

    In this study, we analyzed the expression and function of CXCL16 in pneumococcal meningitis. CXCL16 was found to be up‐regulated in RAW264.7 macrophages (but not in neutrophils and endothelial cells) upon pneumococcal stimulation, in the cerebrospinal fluid of patients, and in the brains as well as the cerebrospinal fluid of mice with pneumococcal meningitis. CXCL16 up‐regulation in vivo was dependent on Toll‐like receptor (TLR) 2/TLR4 and MyD88 signaling. Neutralization of CXCL16 in animals before intracisternal pneumococcal infection (using anti‐CXCL16 antibodies) resulted in reduced cerebrospinal fluid pleocytosis. In vitro, murine neutrophils expressed the CXCL16 receptor CXCR6 and showed dose‐dependant migration toward a CXCL16 gradient. Thus, this study implicates CXCL16 as an additional neutrophil chemoattractant in cerebrospinal fluid in early pneumococcal meningitis.

  4. Differential acute and chronic response of protein kinase C in cultured neonatal rat heart myocytes to alpha 1-adrenergic and phorbol ester stimulation.

    PubMed

    Henrich, C J; Simpson, P C

    1988-12-01

    Both alpha 1-adrenergic agonists (e.g. norepinephrine, NE*) and tumor-promoting phorbol esters (e.g. phorbol myristate acetate, PMA) are known to activate protein kinase C (PKC) (Abdel-Latif, 1986, Niedel and Blackshear, 1986). However, alpha 1 agonists and PMA produce very different effects on cardiac function (see Simpson, 1985; Benfey, 1987; Meidell et al., 1986; Leatherman et al., 1987; Yuan et al., 1987; for examples). PKC activation in heart cells has been studied only for PMA treated perfused heart (Yuan et al., 1987). Therefore, acute activation and chronic regulation of PKC by NE and PMA were compared in cultured neonatal rat heart myocytes. NE acutely and transiently activated PKC, as measured by translocation of PKC activity to the cell particulate fraction (Niedel and Blackshear, 1986). Particulate PKC activity peaked at 23% of total after NE for 30 s, as compared with 8% for control (P less than 0.001). By contrast, acute PKC activation by PMA was more pronounced and persistent, with particulate PKC activity 62% of total at 5 min (P less than 0.001). Calcium/lipid-independent kinase activity increased acutely with PMA, but not with NE. Chronic treatment with NE (24 to 48 h) increased total per cell PKC activity and 3H-phorbol dibutyrate (PDB) binding sites, an index of the number of PKC molecules (Niedel and Blackshear, 1986), by 30 to 60% over control (all P less than 0.05 to 0.01). In contrast with NE, chronic treatment with PMA down-regulated PKC, reducing total per cell PKC activity and 3H-PDB binding sites to 3% and 12% of control, respectively (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Phospholipase A2 Inhibitor from Crotalus durissus terrificus rattlesnake: Effects on human peripheral blood mononuclear cells and human neutrophils cells.

    PubMed

    Xavier, Caroline V; da S Setúbal, Sulamita; Lacouth-Silva, Fabianne; Pontes, Adriana S; Nery, Neriane M; de Castro, Onassis Boeri; Fernandes, Carla F C; Soares, Andreimar M; Fortes-Dias, Consuelo L; Zuliani, Juliana P

    2017-12-01

    Crotalus Neutralizing Factor (CNF) is an inhibitor of phospholipase A 2 (PLA 2 ), present in the blood plasma of Crotalus durissus terrificus snake. This inhibitor neutralizes the lethal and enzymatic activity of crotoxin, the main neurotoxin from this venom. In this study, we investigated the effects of CNF on the functionality of human peripheral blood mononuclear cells (PBMCs) and human neutrophils. The following parameters were evaluated: viability and proliferation, chemotaxis, cytokines and LTB 4 production, cytosolic PLA 2 s activity, myeloperoxidase (MPO) and superoxide anion (O 2 - ) production. CNF showed no toxicity on PBMCs or neutrophils, and acts by stimulating the release of TNF-α and LTB 4 , but neither stimulates IL-10 and IL-2 nor affects PBMCs proliferation and O 2 - release. In neutrophils, CNF induces chemotaxis but does not induce the release of both MPO and O 2 - . However, it induces LTB 4 and IL-8 production. These data show the influence of CNF on PBMCs' function by inducing TNF-α and LTB 4 production, and on neutrophils, by stimulating chemotaxis and LTB 4 production, via cytosolic PLA 2 activity, and IL-8 release. The inflammatory profile produced by CNF is shown for the first time. Our present results suggest that CNF has a role in activation of leukocytes and exert proinflammatory effects on these cell. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Cell Intrinsic Galectin-3 Attenuates Neutrophil ROS-Dependent Killing of Candida by Modulating CR3 Downstream Syk Activation

    PubMed Central

    Wu, Sheng-Yang; Huang, Juin-Hua; Chen, Wen-Yu; Chan, Yi-Chen; Lin, Chun-Hung; Chen, Yee-Chun; Liu, Fu-Tong; Wu-Hsieh, Betty A.

    2017-01-01

    Invasive candidiasis is a leading cause of nosocomial bloodstream infection. Neutrophils are the important effector cells in host resistance to candidiasis. To investigate the modulation of neutrophil fungicidal function will advance our knowledge on the control of candidiasis. While recombinant galectin-3 enhances neutrophil phagocytosis of Candida, we found that intracellular galectin-3 downregulates neutrophil fungicidal functions. Co-immunoprecipitation and immunofluorescence staining reveal that cytosolic gal3 physically interacts with Syk in neutrophils after Candida stimulation. Gal3−/− neutrophils have higher level of Syk activation as well as greater abilities to generate reactive oxygen species (ROS) and kill Candida than gal3+/+ cells. While galectin-3 deficiency modulates neutrophil and macrophage activation and the recruitment of monocytes and dendritic cells, the deficiency does not affect the numbers of infiltrating neutrophils or macrophages. Galectin-3 deficiency ameliorates systemic candidiasis by reducing fungal burden, renal pathology, and mortality. Adoptive transfer experiments demonstrate that cell intrinsic galectin-3 negatively regulates neutrophil effector functions against candidiasis. Reducing galectin-3 expression or activity by siRNA or gal3 inhibitor TD139 enhances human neutrophil ROS production. Mice treated with TD139 have enhanced ability to clear the fungus. Our work unravels the mechanism by which galectin-3 regulates Syk-dependent neutrophil fungicidal functions and raises the possibility that blocking gal3 in neutrophils may be a promising therapeutic strategy for treating systemic candidiasis. PMID:28217127

  7. hMSCs suppress neutrophil-dominant airway inflammation in a murine model of asthma

    PubMed Central

    Hong, Gyong Hwa; Kwon, Hyouk-Soo; Lee, Kyoung Young; Ha, Eun Hee; Moon, Keun-Ai; Kim, Seong Who; Oh, Wonil; Kim, Tae-Bum; Moon, Hee-Bom; Cho, You Sook

    2017-01-01

    Although chronic eosinophilic inflammation is a common feature in patients with asthma, some patients have neutrophil-dominant inflammation, which is known to be associated with severe asthma.Human mesenchymal stem cells (hMSCs) have shown promise in treating various refractory immunological diseases. Thus, hMSCs may represent an alternative therapeutic option for asthma patients with neutrophil-dominant inflammation, in whom current treatments are ineffective. BALB/c mice exposed to ovalbumin and polyinosinic:polycytidylic acid (Poly I:C) to induce neutrophilic airway inflammation were systemically treated with hMSCs to examine whether the hMSCs can modulate neutrophilic airway inflammation. In addition, cytokine production was evaluated in co-cultures of hMSCs with either anti-CD3/CD28-stimulated peripheral blood mononuclear cells (PBMCs) obtained from asthmatic patients or cells of the human bronchial epithelial cell line BEAS-2B to assess the response to hMSC treatment. The total number of immune cells in bronchoalveolar lavage fluid (BALF) showed a dramatic decrease in hMSC-treated asthmatic mice, and, in particular, neutrophilic infiltration was significantly attenuated. This phenomenon was accompanied by reduced CXCL15 production in the BALF. BEAS-2B cells co-cultured with hMSCs showed reduced secretion of IL-8. Moreover, decreased secretion of IL-4, IL-13 and IFN-γ was observed when human PBMCs were cultured with hMSCs, whereas IL-10 production was greatly enhanced. Our data imply that hMSCs may have a role in reducing neutrophilic airway inflammation by downregulating neutrophil chemokine production and modulating T-cell responses. PMID:28127050

  8. Noradrenaline increases the expression and release of Hsp72 by human neutrophils.

    PubMed

    Giraldo, E; Multhoff, G; Ortega, E

    2010-05-01

    The blood concentration of extracellular 72kDa heat shock protein (eHsp72) increases under conditions of stress, including intense exercise. However, the signal(s), source(s), and secretory pathways in its release into the bloodstream have yet to be clarified. The aim of the present study was to evaluate the role of noradrenaline (NA) as a stress signal on the expression and release of Hsp72 by circulating neutrophils (as a source), all within a context of the immunophysiological regulation during exercise-induced stress in sedentary and healthy young (21-26years) women. The expression of Hsp72 on the surface of isolated neutrophils was determined by flow cytometry, and its release by cultured isolated neutrophils was determined by ELISA. Incubation with cmHsp70-FITC showed that neutrophils express Hsp72 on their surface under basal conditions. In addition, cultured isolated neutrophils (37 degrees C and 5% CO(2)) also released Hsp72 under basal conditions, with this release increasing from 10min to 24h in the absence of cell damage. NA at 10(-9)-10(-5)M doubled the percentage of neutrophils expressing Hsp72 after 60min and 24h incubation. NA also stimulated (by about 20%) the release of Hsp72 after 10min of incubation. (1) Hsp72 is expressed on the surface of isolated neutrophils under basal conditions, and this expression is augmented by NA. (2) Isolated neutrophils can also release Hsp72 under cultured basal conditions in the absence of cell death, and NA can increase this release. These results may contribute to confirming the hypothesis that NA can act as a "stress signal" for the increased eHsp72 in the context of exercise stress, with a role for neutrophils as a source for the expression and, to a lesser degree, the release of Hsp72 after activation by NA. Copyright 2010 Elsevier Inc. All rights reserved.

  9. The influence of very low doses of N-nitrosodimethylamine (NDMA) on the apoptosis of rat neutrophils in vivo. The role of reactive oxygen species.

    PubMed

    Jablonski, J; Jablonska, E; Chojnowski, M

    2001-08-13

    N-nitrosodimethylamine (NDMA) causes the apoptosis of neutrophils in vitro experiments. This compound also has the ability to stimulate neutrophils for the production of reactive oxygen species. It has been decided to examine more closely whether the apoptosis of neutrophils by NDMA is caused by the influence of the radicals produced by these cells and whether the stimulation to undergo apoptosis of neutrophils is caused by NDMA in either the original form or by its metabolites. The experiment was conducted on rats. The animals were administered a one-time dose of NDMA intragastrically, 1.5 mg/kg. The research was conducted 1,2,4,12 h consecutively following NDMA administration. The concentration of NDMA in blood was evaluated by means of the gas chromatography method. The neutrophils were isolated from blood by means of differential centrifugation. Respiratory burst was assessed in cells, by means of the cytochrome c reduction method. The percentage of cells revealing morphological properties of apoptosis was determined under the fluorescent microscope. It has been observed that the activation of the respiratory burst is caused mainly by non-metabolised NDMA. Probably the non-metabolised molecules of this compound also have a decisive role in the initiation of apoptosis of neutrophils. It can be assumed that the main factor responsible for the apoptosis of neutrophil rats following a one-time NDMA administration is the induction of respiratory burst in neutrophils by this compound.

  10. Tumour necrosis factor α secretion induces protease activation and acinar cell necrosis in acute experimental pancreatitis in mice.

    PubMed

    Sendler, Matthias; Dummer, Annegret; Weiss, Frank U; Krüger, Burkhard; Wartmann, Thomas; Scharffetter-Kochanek, Karin; van Rooijen, Nico; Malla, Sudarshan Ravi; Aghdassi, Ali; Halangk, Walter; Lerch, Markus M; Mayerle, Julia

    2013-03-01

    Acute pancreatitis has long been considered a disorder of pancreatic self-digestion, in which intracellular activation of digestive proteases induces tissue injury. Chemokines, released from damaged pancreatic cells then attract inflammatory cells, whose systemic action ultimately determines the disease severity. In the present work the opposite mechanism is investigated; that is, whether and how inflammatory cells can activate intracellular proteases. Using mice either deficient for the CD18-α subunit of the membrane attack complex-1 (MAC-1) complex or tumour necrosis factor (TNF)α, as well as after depletion of leucocyte subpopulations, pancreatitis was induced by 7-hourly caerulein injections (50 μg/kg, intraperitoneally). Pancreatic acini were coincubated in vitro from wild-type and cathepsin-B-deficient animals with phorbol-12-myristate-13-acetate (PMA)-activated neutrophils and macrophages, caerulein or TNFα, and activities of trypsin, cathepsin-B and caspase-3 were measured, as well as necrosis using fluorogenic substrates. TNFα was inhibited with monospecific antibodies. Deletion of CD18 prevented transmigration of leucocytes into the pancreas during pancreatitis, greatly reduced disease severity and abolished digestive protease activation. Depletion of neutrophils and macrophages equally reduced premature trypsinogen activation and disease severity. In vitro activated neutrophils and macrophages directly induced premature protease activation and cell death in pancreatic acini and stimulation of acini with TNFα induced caspase-3 activation and necrosis via a cathepsin-B and calcium-dependent mechanism. Neutralising antibodies against TNFα and genetic deletion of TNFα prevented leucocyte-induced trypsin activity and necrosis in isolated acini. The soluble inflammatory cell mediator TNFα directly induces premature protease activation and necrosis in pancreatic acinar cells. This activation depends on calcium and cathepsin-B activity. The findings

  11. Neutrophil elastase increases MUC5AC mRNA and protein expression in respiratory epithelial cells.

    PubMed

    Voynow, J A; Young, L R; Wang, Y; Horger, T; Rose, M C; Fischer, B M

    1999-05-01

    Chronic neutrophil-predominant inflammation and hypersecretion of mucus are common pathophysiological features of cystic fibrosis, chronic bronchitis, and viral- or pollution-triggered asthma. Neutrophils release elastase, a serine protease, that causes increased mucin production and secretion. The molecular mechanisms of elastase-induced mucin production are unknown. We hypothesized that as part of this mechanism, elastase upregulates expression of a major respiratory mucin gene, MUC5AC. A549, a human lung carcinoma cell line that expresses MUC5AC mRNA and protein, and normal human bronchial epithelial cells in an air-liquid interface culture were stimulated with neutrophil elastase. Neutrophil elastase increased MUC5AC mRNA levels in a time-dependent manner in both cell culture systems. Neutrophil elastase treatment also increased MUC5AC protein levels in A549 cells. The mechanism of MUC5AC gene regulation by elastase was determined in A549 cells. The induction of MUC5AC gene expression required serine protease activity; other classes of proteases had no effect on MUC5AC gene expression. Neutrophil elastase increased MUC5AC mRNA levels by enhancing mRNA stability. This is the first report of mucin gene regulation by this mechanism.

  12. Generation of choline for acetylcholine synthesis by phospholipase D isoforms

    PubMed Central

    Zhao, Di; Frohman, Michael A; Blusztajn, Jan Krzysztof

    2001-01-01

    Dedication This article is dedicated to the memory of Sue Kim Hanson, a graduate student in the department of Pathology and Laboratory Medicine at Boston University School of Medicine, who perished in the terrorist attacks of September 11, 2001. Abstract Background In cholinergic neurons, the hydrolysis of phosphatidylcholine (PC) by a phospholipase D (PLD)-type enzyme generates some of the precursor choline used for the synthesis of the neurotransmitter acetylcholine (ACh). We sought to determine the molecular identity of the relevant PLD using murine basal forebrain cholinergic SN56 cells in which the expression and activity of the two PLD isoforms, PLD1 and PLD2, were experimentally modified. ACh levels were examined in cells incubated in a choline-free medium, to ensure that their ACh was synthesized entirely from intracellular choline. Results PLD2, but not PLD1, mRNA and protein were detected in these cells and endogenous PLD activity and ACh synthesis were stimulated by phorbol 12-myristate 13-acetate (PMA). Introduction of a PLD2 antisense oligonucleotide into the cells reduced PLD2 mRNA and protein expression by approximately 30%. The PLD2 antisense oligomer similarly reduced basal- and PMA-stimulated PLD activity and ACh levels. Overexpression of mouse PLD2 by transient transfection increased basal- (by 74%) and PMA-stimulated (by 3.2-fold) PLD activity. Moreover, PLD2 transfection increased ACh levels by 26% in the absence of PMA and by 2.1-fold in the presence of PMA. Overexpression of human PLD1 by transient transfection increased PLD activity by 4.6-fold and ACh synthesis by 2.3-fold in the presence of PMA as compared to controls. Conclusions These data identify PLD2 as the endogenous enzyme that hydrolyzes PC to generate choline for ACh synthesis in cholinergic cells, and indicate that in a model system choline generated by PLD1 may also be used for this purpose. PMID:11734063

  13. Phorbol esters alter adenylate cyclase responses to vasoactive intestinal peptide and forskolin in the GH cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Summers, S.; Florio, T.; Cronin, M.

    1986-05-01

    Activation of protein kinase C with phorbol ester modifies cyclic AMP production in several anterior pituitary cell systems. In the GH cell line from a rat pituitary tumor, exposure to phorbol 12-myristate 13-acetate (PMA: 100 nM) for 30 minutes significantly reduces vasoactive intestinal peptide (VIP: 100 nM) stimulated adenylate cyclase (AC) activity in subsequent membrane preparations to 62 + 4% of control (n = 6 independent studies). In contrast, these same membrane preparations respond to forskolin (1 ..mu..M) with significantly more activity, 130 +/- 6% of controls (n = 6 independent studies). Finally, phorbol ester does not block an inhibitorymore » hormone input into the AC system; somatostatin (100 nM) reduction of VIP-stimulated AC activity is not significantly different in membrane preparations from PMA treated and control cells (n = 3 independent studies). These other findings lead the authors to propose that protein kinase C can modify several sites in the AC complex in anterior pituitary cells.« less

  14. Macrophage differentiation increases expression of the ascorbate transporter (SVCT2)

    PubMed Central

    Qiao, Huan; May, James M.

    2013-01-01

    To determine whether macrophage differentiation involves increased uptake of vitamin C, or ascorbic acid, we assessed the expression and function of its transporter SVCT2 during phorbol ester-induced differentiation of human-derived THP-1 monocytes. Induction of THP-1 monocyte differentiation by phorbol 12-myristate 13-acetate (PMA) markedly increased SVCT2 mRNA, protein, and function. When ascorbate was present during PMA-induced differentiation, the increase in SVCT2 protein expression was inhibited, but differentiation was enhanced. PMA-induced SVCT2 protein expression was blocked by inhibitors of protein kinase C (PKC), with most of the affect due to the PKCβI and βII isoforms. Activation of MEK/ERK was sustained up to 48 h after PMA treatment, and the inhibitors completely blocked PMA-stimulated SVCT2 protein expression, indicating an exclusive role for the classical MAP kinase pathway. However, inhibitors of NF-κB activation, NADPH oxidase inhibitors, and several antioxidants also partially prevented SVCT2 induction, suggesting diverse distal routes for control of SVCT2 transcription. Both known promoters for the SVCT2 were involved in these effects. In conclusion, PMA-induced monocyte-macrophage differentiation is enhanced by ascorbate and associated with increased expression and function of the SVCT2 protein through a pathway involving sustained activation of PKCβI/II, MAP kinase, NADPH oxidase, and NF-κB. PMID:19232538

  15. Phorbol ester inhibits arginine vasopressin activation of phospholipase C and promotes contraction of, and prostaglandin production by, cultured mesangial cells.

    PubMed Central

    Troyer, D A; Gonzalez, O F; Douglas, J G; Kreisberg, J I

    1988-01-01

    We have previously shown that arginine vasopressin (AVP) causes a rapid (5-10 min) contractile response in cultured mesangial cells plated onto slippery substrata such as poly(hydroxyethyl methacrylate)-coated dishes. This contraction is associated with an increase in the levels of inositol trisphosphate (InsP3), diacylglycerol and prostaglandin E2 (PGE2). We now report that agents which are known to activate protein kinase C, i.e. phorbol 12-myristate 13-acetate (PMA) and oleolylacetylglycerol (OAG), also contract mesangial cells; however, the contractile response is slow to develop (15-30 min). The inactive phorbol ester, 4 alpha -phorbol 12,13-didecanoate, did not elicit contraction. PMA and OAG did not increase InsP3 release in mesangial cells. However, pretreatment of mesangial cells with PMA inhibited the formation of InsP3. This inhibition could not be explained by a reduction in AVP binding since PMA treatment did not influence the number or affinity of [3H]AVP binding sites in intact cells. PMA alone stimulated PGE2 production in mesangial cells to a degree similar to AVP. Contrary to what was seen with InsP3, pretreatment of cells with PMA before AVP had an additive effect on arachidonic acid release and PGE2 production. Thus, there is an apparent dissociation of phospholipase C activity from that of phospholipase A2. Images Fig. 1. Fig. 2. PMID:3046605

  16. Antioxidant properties of nicergoline; inhibition of brain auto-oxidation and superoxide production of neutrophils in rats.

    PubMed

    Tanaka, M; Yoshida, T; Okamoto, K; Hirai, S

    1998-05-22

    Oxidative stress has been suggested to adversely influence cerebrovascular disorders and some neurodegenerative disorders. We examined whether nicergoline, an agent widely used for treating cerebrovascular disorders and senile mental impairment, possesses antioxidant activities and some beneficial effect on neutrophils generating free radicals. Although nicergoline did not scavenge superoxide produced from a superoxide-generating system, it significantly inhibited superoxide secretion from stimulated neutrophils. Auto-oxidation of brain homogenate of rats, monitored by formation of thiobarbituric acid-reactive substances, was suppressed by nicergoline in a dose-dependent manner. The oxidation of the homogenate was accelerated by activated neutrophils and was significantly suppressed by nicergoline. These observations suggest that nicergoine is an antioxidant that inhibits not only lipid peroxidation but also free radical generation from neutrophils. These properties of nicergoline should be beneficial in some pathological conditions including cerebrovascular and neurodegenerative disorders in which oxidative stress may have a pathoetiological role.

  17. Oral neutrophil responses to acute prolonged exercise may not be representative of blood neutrophil responses.

    PubMed

    Davison, Glen; Jones, Arwel Wyn

    2015-03-01

    Neutrophil numbers and function (oxidative burst) were assessed in peripheral blood and oral samples before and after prolonged exercise. Blood neutrophil count increased (∼3.5-fold, P < 0.001) and function decreased (30% ± 19% decrease, P = 0.005) postexercise. Oral neutrophil count (P = 0.392) and function (P = 0.334) were unchanged. Agreement between oral and blood neutrophil function responses to exercise was poor. These findings highlight the importance of studying neutrophils within various compartments/sample types.

  18. Inhibition of Neutrophil Adhesion and Antimicrobial Activity by Diluted Hydrosol Prepared from Rosa damascena.

    PubMed

    Maruyama, Naho; Tansho-Nagakawa, Shigeru; Miyazaki, Chizuru; Shimomura, Kazuyuki; Ono, Yasuo; Abe, Shigeru

    2017-01-01

    Hydrosol prepared from the flowers of Rosa damascena (rose water) has been traditionally used for various health-related issues, including skin troubles such as erythema, itchiness, swelling. For the care of these skin troubles caused by microbial infection, both antimicrobial and antiinflammatory effects are required. Here, we investigated the effects of rose water on the growth of Candida albicans and methicillin-resistant Staphylococcus aureus (MRSA), which cause skin infections, and on the function of neutrophils, which play a major role in the regulation of inflammatory reactions. To assess its modulatory effects on neutrophils, the effects of rose water against neutrophil adhesion response were evaluated. Rose water inhibited mycelial growth of C. albicans at a concentration of ca. 2.2%, and reduced viability of MRSA within 1 h. Rose water suppressed neutrophil activation induced by lipopolysaccharide (LPS), tumor necrosis factor alpha (TNF-α), and N-formyl-Met-Leu-Phe (fMLP) at 5-15%. It also reduced the LPS- and TNF-α-induced cell surface expression of the adhesion-related molecule, cluster of differentiation (CD) 11b, but did not affect the migratory capacity of neutrophils with or without chemoattractant. These results suggest that rose water may reduce the pathogenicity of microbes, and attenuate neutrophil stimulation, which is involved in inflammatory responses. These findings suggest that rose water has a potential effect to inhibit skin inflammation caused by microbes.

  19. Impairment of neutrophil Fc gamma receptor mediated transmembrane signalling in active rheumatoid arthritis.

    PubMed Central

    Goulding, N J; Guyre, P M

    1992-01-01

    Neutrophil Fc gamma receptor (Fc gamma R) signalling responses were compared in healthy subjects, patients with definite rheumatoid arthritis (RA), ankylosing spondylitis, and osteoarthritis. The patients with A were subdivided into those with active synovitis and those with quiescent disease. Basal intracellular calcium ion concentrations in patients with inactive RA were significantly higher than in control subjects, which in turn were greater than in patients with active RA. Transient cytosolic calcium ion fluxes were observed after binding Fc gamma RII or Fc gamma RIII with specific monoclonal antibodies and cross linking with the F(ab')2 fragment of antimouse IgG. Response times were significantly faster for Fc gamma RII than for Fc gamma RIII. Peak concentrations of intracellular calcium ions after neutrophil stimulation were comparable for Fc gamma RII and RIII in healthy subjects. Neutrophils in patients with ankylosing spondylitis and osteoarthritis responded to Fc gamma R triggering, but in the group with active RA fluxes of calcium ions were severely depressed. Neutrophils isolated from patients with RA with quiescent disease showed exaggerated responses when compared with controls. Expression of all three Fc gamma R types on neutrophils from patients with active RA, as measured by monoclonal antibody binding, was comparable with control cells. Impairment of neutrophil Fc gamma R cytosolic signalling in active RA could reflect a receptor signalling defect with potential effects on Fc mediated functions, or a fundamental defect in calcium ion homeostasis within these cells. PMID:1535494

  20. Hydrodynamic shear shows distinct roles for LFA-1 and Mac-1 in neutrophil adhesion to intercellular adhesion molecule-1.

    PubMed

    Neelamegham, S; Taylor, A D; Burns, A R; Smith, C W; Simon, S I

    1998-09-01

    The binding of neutrophil beta2 integrin to intercellular adhesion molecule-1 (ICAM-1) expressed on the inflamed endothelium is critical for neutrophil arrest at sites of tissue inflammation. To quantify the strength and kinetics of this interaction, we measured the adhesion between chemotactically stimulated neutrophils and ICAM-1-transfected mouse cells (E3-ICAM) in suspension in a cone-plate viscometer at shear rates typical of venular blood flow (100 s-1 to 500 s-1). The kinetics of aggregation were fit with a mathematical model based on two-body collision theory. This enabled estimation of adhesion efficiency, defined as the probability with which collisions between cells resulted in firm adhesion. The efficiency of beta2-integrin-dependent adhesion was highest ( approximately 0.2) at 100 s-1 and it decreased to approximately zero at 400 s-1. Both LFA-1 and Mac-1 contributed equally to adhesion efficiency over the initial 30 seconds of stimulation, but adhesion was entirely Mac-1-dependent by 120 seconds. Two hydrodynamic parameters were observed to influence integrin-dependent adhesion efficiency: the level of shear stress and the intercellular contact duration. Below a critical shear stress (<2 dyn/cm2), contact duration predominantly limited adhesion efficiency. The estimated minimum contact duration for beta2-integrin binding was approximately 6.5 ms. Above the critical shear stress (>2 dyn/cm2), the efficiency of neutrophil adhesion to E3-ICAM was limited by both the contact duration and the tensile stress. We conclude that at low shear, neutrophil adhesion is modulated independently through either LFA-1 or Mac-1, which initially contribute with equal efficiency, but differ over the duration of chemotactic stimulation. Copyright 1998 by The American Society of Hematology.

  1. Short communication: Protein kinase C regulates glucose uptake and mRNA expression of glucose transporter (GLUT) 1 and GLUT8 in lactating bovine mammary epithelial cells.

    PubMed

    Zhao, K; Liu, H-Y; Zhao, F-Q; Liu, J-X

    2014-07-01

    The aim of this study was to determine the role of protein kinase C (PKC) in regulating glucose uptake in lactating bovine mammary epithelial cells (BMEC). The BMEC were cultured and treated with different concentrations of phorbol 12-myristate 13-acetate (PMA;0, 10, 25, 50, 100, and 200 ng/mL), the classic activator of PKC, for 48 h. Compared with the cells with no PMA treatment, 50 and 100 ng of PMA/mL significantly stimulated the glucose uptake of the BMEC, whereas the glucose uptake by the cells treated with the lowest and the highest amounts of PMA (25 and 200 ng/mL, respectively) did not show a significant difference. Consistently, the mRNA expression of glucose transporter (GLUT) 1 and 8 showed a similar pattern of increase under the treatments of PMA. Furthermore, when the cells were pretreated with GF1090203X (0, 0.25, 0.5, 1, and 2 μM), an inhibitor of PKC, for 30 min before exposed to PMA (50 ng/mL), the PMA-induced glucose uptake and GLUT1 and GLUT8 expression were decreased by GF1090203X in a dose-dependent manner. These results demonstrate that PKC is involved in the regulation of glucose uptake by BMEC, and this function may work, at least partly, through upregulating the expression of GLUT1 and GLUT8. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Anti-inflammatory effects of secondary metabolites of marine Pseudomonas sp. in human neutrophils are through inhibiting P38 MAPK, JNK, and calcium pathways.

    PubMed

    Yang, Shun-Chin; Sung, Ping-Jyun; Lin, Chwan-Fwu; Kuo, Jimmy; Chen, Chun-Yu; Hwang, Tsong-Long

    2014-01-01

    Activated neutrophils play a significant role in the pathogenesis of many inflammatory diseases. The metabolites of marine microorganisms are increasingly employed as sources for developing new drugs; however, very few marine drugs have been studied in human neutrophils. Herein, we showed that secondary metabolites of marine Pseudomonas sp. (N11) significantly inhibited superoxide anion generation and elastase release in formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP)-activated human neutrophils, with IC50 values of 0.67±0.38 µg/ml and 0.84±0.12 µg/ml, respectively. In cell-free systems, neither superoxide anion-scavenging effect nor inhibition of elastase activity was associated with the suppressive effects of N11. N11 inhibited the phosphorylation of p38 MAP kinase and JNK, but not Erk and Akt, in FMLP-induced human neutrophils. Also, N11 dose-dependently attenuated the transient elevation of intracellular calcium concentration in activated neutrophils. In contrast, N11 failed to alter phorbol myristate acetate-induced superoxide anion generation, and the inhibitory effects of N11 were not reversed by protein kinase A inhibitor. In conclusion, the anti-inflammatory effects of N11 on superoxide anion generation and elastase release in activated human neutrophils are through inhibiting p38 MAP kinase, JNK, and calcium pathways. Our results suggest that N11 has the potential to be developed to treat neutrophil-mediated inflammatory diseases.

  3. Differential effector responses by circulating/blood and tissue/peritoneal neutrophils following burn combined with Enterococcus faecalis infection.

    PubMed

    Fazal, Nadeem; Shelip, Alla; Siddiqui, Erum; Ali, Ashraf; Azim, Anser C; Al-Ghoul, Walid M

    2012-03-01

    Recently we found that superimposition of Enterococcus faecalis infection on burn injury caused an eruption of host mortality not seen with either individual challenge. We hypothesized that the Enterococcus bacteria, and/or factors related to these organisms, aggravate burn-induced modulations in host defense by neutrophils. Our study focuses on alterations in neutrophils' oxidative, proteolytic, and adhesive functions and transendothelial migration of neutrophils in burn rats inoculated with E. faecalis. Rats were subjected to burn (30% total body surface area) and then intra-abdominally inoculated with E. faecalis (10(4)CFU kg(-1) b.w). Polymorphonuclear neutrophils (PMNs) were harvested from circulating/blood and tissue/peritoneal cavity at day-2 post injury. Extracellular release of O(-)(2) anion production was determined by luminometry, and intracellular production of reactive oxygen species was measured by digital imaging technique. Fluoroscan analysis and confocal microscopy determined intracellular elastase production. The expression of adhesion molecule CD11b/CD18 was performed by flow cytometry. Calcein AM-labeled PMNs were co-cultured with TNF-α-stimulated rat lung microvascular endothelial cells, and their ability to adhere was assessed by fluorometry and digital imaging and finally, chemotaxis was measured by neutrophil transmigration assays. The results showed differential effector responses by circulatory and/or tissue PMNs. Tissue/peritoneal PMNs produced more O(-)(2), less intracellular elastase, and increased expression of CD11b/CD18 accompanied with increased adhesivity of MIP-2-stimulated PMNs to endothelial cells as compared to circulatory/blood PMNs. This differential effect was more pronounced following burn plus E. faecalis infection, indicating that the combined injury changed neutrophil functions. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  4. β2 integrin mediates hantavirus-induced release of neutrophil extracellular traps

    PubMed Central

    Raftery, Martin J.; Lalwani, Pritesh; Krautkrӓmer, Ellen; Peters, Thorsten; Scharffetter-Kochanek, Karin; Krüger, Renate; Hofmann, Jörg; Seeger, Karl; Krüger, Detlev H.

    2014-01-01

    Rodent-borne hantaviruses are emerging human pathogens that cause severe human disease. The underlying mechanisms are not well understood, as hantaviruses replicate in endothelial and epithelial cells without causing any cytopathic effect. We demonstrate that hantaviruses strongly stimulated neutrophils to release neutrophil extracellular traps (NETs). Hantavirus infection induced high systemic levels of circulating NETs in patients and this systemic NET overflow was accompanied by production of autoantibodies to nuclear antigens. Analysis of the responsible mechanism using neutrophils from β2 null mice identified β2 integrin receptors as a master switch for NET induction. Further experiments suggested that β2 integrin receptors such as complement receptor 3 (CR3) and 4 (CR4) may act as novel hantavirus entry receptors. Using adenoviruses, we confirmed that viral interaction with β2 integrin induced strong NET formation. Collectively, β2 integrin–mediated systemic NET overflow is a novel viral mechanism of immunopathology that may be responsible for characteristic aspects of hantavirus-associated disease such as kidney and lung damage. PMID:24889201

  5. Response to comment on "Synovial fibroblast-neutrophil interactions promote pathogenic adaptive immunity in rheumatoid arthritis".

    PubMed

    Carmona-Rivera, Carmelo; Bicker, Kevin L; Thompson, Paul R; Buckner, Jane H; Robinson, William H; Fox, David A; Kaplan, Mariana J

    2018-03-30

    The citrullinome cargo in neutrophil extracellular traps varies according to disease condition and stimulation conditions. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  6. In Vitro Evaluation of the Link Between Cell Activation State and Its Rheological Impact on the Microscale Flow of Neutrophil Suspensions

    PubMed Central

    Akenhead, Michael L.; Horrall, Nolan M.; Rowe, Dylan; Sethu, Palaniappan; Shin, Hainsworth Y.

    2015-01-01

    Activated neutrophils have been reported to affect peripheral resistance, for example, by plugging capillaries or adhering to the microvasculature. In vivo and ex vivo data indicate that activated neutrophils circulating in the blood also influence peripheral resistance. We used viscometry and microvascular mimics for in vitro corroboration. The rheological impact of differentiated neutrophil-like HL-60 promyelocytes (dHL60s) or human neutrophil suspensions stimulated with 10 nM fMet-Leu-Phe (fMLP) was quantified using a cone-plate rheometer (450 s−1 shear rate). To evaluate their impact on microscale flow resistance, we used 10-μm Isopore® membranes to model capillaries as well as single 200 × 50 μm microchannels and networks of twenty 20 × 50 μm microfluidic channels to mimic noncapillary microvasculature. Stimulation of dHL60 and neutrophil populations significantly altered their flow behavior as evidenced by their impact on suspension viscosity. Notably, hematocrit abrogated the impact of leukocyte activation on blood cell suspension viscosity. In micropore filters, activated cell suspensions enhanced flow resistance. This effect was further enhanced by the presence of erythrocytes. The resistance of our noncapillary microvascular mimics to flow of activated neutrophil suspensions was significantly increased only with hematocrit. Notably, it was elevated to a higher extent within the micronetwork chambers compared to the single-channel chambers. Collectively, our findings provide supportive evidence that activated neutrophils passing through the microcirculation may alter hemodynamic resistance due to their altered rheology in the noncapillary microvasculature. This effect is another way neutrophil activation due to chronic inflammation may, at least in part, contribute to the elevated hemodynamic resistance associated with cardiovascular diseases (e.g., hypertension and hypercholesterolemia). PMID:26065495

  7. In Vitro Evaluation of the Link Between Cell Activation State and Its Rheological Impact on the Microscale Flow of Neutrophil Suspensions.

    PubMed

    Akenhead, Michael L; Horrall, Nolan M; Rowe, Dylan; Sethu, Palaniappan; Shin, Hainsworth Y

    2015-09-01

    Activated neutrophils have been reported to affect peripheral resistance, for example, by plugging capillaries or adhering to the microvasculature. In vivo and ex vivo data indicate that activated neutrophils circulating in the blood also influence peripheral resistance. We used viscometry and microvascular mimics for in vitro corroboration. The rheological impact of differentiated neutrophil-like HL-60 promyelocytes (dHL60s) or human neutrophil suspensions stimulated with 10 nM fMet-Leu-Phe (fMLP) was quantified using a cone-plate rheometer (450 s(-1) shear rate). To evaluate their impact on microscale flow resistance, we used 10-μm Isopore® membranes to model capillaries as well as single 200 × 50 μm microchannels and networks of twenty 20 × 50 μm microfluidic channels to mimic noncapillary microvasculature. Stimulation of dHL60 and neutrophil populations significantly altered their flow behavior as evidenced by their impact on suspension viscosity. Notably, hematocrit abrogated the impact of leukocyte activation on blood cell suspension viscosity. In micropore filters, activated cell suspensions enhanced flow resistance. This effect was further enhanced by the presence of erythrocytes. The resistance of our noncapillary microvascular mimics to flow of activated neutrophil suspensions was significantly increased only with hematocrit. Notably, it was elevated to a higher extent within the micronetwork chambers compared to the single-channel chambers. Collectively, our findings provide supportive evidence that activated neutrophils passing through the microcirculation may alter hemodynamic resistance due to their altered rheology in the noncapillary microvasculature. This effect is another way neutrophil activation due to chronic inflammation may, at least in part, contribute to the elevated hemodynamic resistance associated with cardiovascular diseases (e.g., hypertension and hypercholesterolemia).

  8. Neutrophil Kinetics in Acute Infection*

    PubMed Central

    Marsh, J. C.; Boggs, D. R.; Cartwright, G. E.; Wintrobe, M. M.

    1967-01-01

    Neutrophil kinetics of acute experimental infection were studied with diisopropylfluorophosphate-32P labeling in 31 dogs inoculated intrabronchially with pneumococci. In vitro neutrophil labeling indicated a rapid transit time through the blood in early infections, with an elevated marginal granulocyte pool sometimes preceding an elevation of the circulating granulocyte pool. 13 hr after infection, the circulating and total blood granulocyte pools were increased but the rate of neutrophil transit through the blood was normal. During the recovery from infection there was a marked prolongation of neutrophil blood transit time, suggesting virtually complete cessation of bone marrow release of neutrophils into the blood. Labeling of neutrophils in vivo indicated an increased rate of emptying of the bone marrow storage pool proportional to the severity of infection as measured by the fever index. The change in the blood ratio of nonsegmented to segmented neutrophils was a much more accurate index of the severity of infection than the blood granulocyte concentration, correlating significantly with the fever index. PMID:6073999

  9. Multiple lupus-associated ITGAM variants alter Mac-1 functions on neutrophils.

    PubMed

    Zhou, Yebin; Wu, Jianming; Kucik, Dennis F; White, Nathan B; Redden, David T; Szalai, Alexander J; Bullard, Daniel C; Edberg, Jeffrey C

    2013-11-01

    Multiple studies have demonstrated that single-nucleotide polymorphisms (SNPs) in the ITGAM locus (including the nonsynonymous SNPs rs1143679, rs1143678, and rs1143683) are associated with systemic lupus erythematosus (SLE). ITGAM encodes the protein CD11b, a subunit of the β2 integrin Mac-1. The purpose of this study was to determine the effects of ITGAM genetic variation on the biologic functions of neutrophil Mac-1. Neutrophils from ITGAM-genotyped and -sequenced healthy donors were isolated for functional studies. The phagocytic capacity of neutrophil ITGAM variants was probed with complement-coated erythrocytes, serum-treated zymosan, heat-treated zymosan, and IgG-coated erythrocytes. The adhesion capacity of ITGAM variants, in adhering to either purified intercellular adhesion molecule 1 or tumor necrosis factor α-stimulated endothelial cells, was assessed in a flow chamber. Expression levels of total CD11b and activation of CD11b were assessed by flow cytometry. Mac-1-mediated neutrophil phagocytosis, determined in cultures with 2 different complement-coated particles, was significantly reduced in individuals with nonsynonymous variant alleles of ITGAM. This reduction in phagocytosis was related to variation at either rs1143679 (in the β-propeller region) or rs1143678/rs1143683 (highly linked SNPs in the cytoplasmic/calf-1 regions). Phagocytosis mediated by Fcγ receptors was also significantly reduced in donors with variant ITGAM alleles. Similarly, firm adhesion of neutrophils was significantly reduced in individuals with variant ITGAM alleles. These functional alterations were not attributable to differences in total receptor expression or activation. The nonsynonymous ITGAM variants rs1143679 and rs1143678/rs113683 contribute to altered Mac-1 function on neutrophils. These results underscore the need to consider multiple nonsynonymous SNPs when assessing the functional consequences of ITGAM variation on immune cell processes and the risk of SLE

  10. Brief review on the effect of low-power laser irradiation on neutrophils with emphasis on emerging fungal infections

    NASA Astrophysics Data System (ADS)

    Sperandio, F. F.; Bani, G. M. A. C.; Mendes, A. C. S. C.; Brigagão, M. R. P. L.; Santos, G. B.; Malaquias, L. C. C.; Chavasco, J. K.; Verinaud, L. M.; Burger, E.

    2015-03-01

    Polymorphonuclear neutrophils (PMN) participate in an active way in the innate immunity developed after the fungal infection paracoccidioidomycosis (PCM). Nevertheless, the sole participation of neutrophils is not sufficient to eradicate PCM`s pathogenic fungus: Paracoccidioides brasiliensis (Pb). In that way, we aimed to develop a treatment capable of stimulating PMN to the site of injury through low-level laser therapy (LLLT). (LLLT) is safe to use and has not been linked to microorganism resistance so far; in addition, based on previous studies we understand that LLLT may be useful to treat several medical conditions through the stimulation and activation of certain types of cells. This brief review is based on the novel attempt of activating PMN against a fungal infection.

  11. The CgHaa1-Regulon Mediates Response and Tolerance to Acetic Acid Stress in the Human Pathogen Candida glabrata

    PubMed Central

    Bernardo, Ruben T.; Cunha, Diana V.; Wang, Can; Pereira, Leonel; Silva, Sónia; Salazar, Sara B.; Schröder, Markus S.; Okamoto, Michiyo; Takahashi-Nakaguchi, Azusa; Chibana, Hiroji; Aoyama, Toshihiro; Sá-Correia, Isabel; Azeredo, Joana; Butler, Geraldine; Mira, Nuno Pereira

    2016-01-01

    To thrive in the acidic vaginal tract, Candida glabrata has to cope with high concentrations of acetic acid. The mechanisms underlying C. glabrata tolerance to acetic acid at low pH remain largely uncharacterized. In this work, the essential role of the CgHaa1 transcription factor (encoded by ORF CAGL0L09339g) in the response and tolerance of C. glabrata to acetic acid is demonstrated. Transcriptomic analysis showed that CgHaa1 regulates, directly or indirectly, the expression of about 75% of the genes activated under acetic acid stress. CgHaa1-activated targets are involved in multiple physiological functions including membrane transport, metabolism of carbohydrates and amino acids, regulation of the activity of the plasma membrane H+-ATPase, and adhesion. Under acetic acid stress, CgHaa1 increased the activity and the expression of the CgPma1 proton pump and contributed to increased colonization of vaginal epithelial cells by C. glabrata. CgHAA1, and two identified CgHaa1-activated targets, CgTPO3 and CgHSP30, are herein demonstrated to be determinants of C. glabrata tolerance to acetic acid. The protective effect of CgTpo3 and of CgHaa1 was linked to a role of these proteins in reducing the accumulation of acetic acid inside C. glabrata cells. In response to acetic acid stress, marked differences were found in the regulons controlled by CgHaa1 and by its S. cerevisiae ScHaa1 ortholog, demonstrating a clear divergent evolution of the two regulatory networks. The results gathered in this study significantly advance the understanding of the molecular mechanisms underlying the success of C. glabrata as a vaginal colonizer. PMID:27815348

  12. Sulforaphane inhibits endothelial protein C receptor shedding in vitro and in vivo.

    PubMed

    Ku, Sae-Kwang; Han, Min-Su; Bae, Jong-Sup

    2014-10-01

    Sulforaphane (SFN), a natural isothiocyanate present in cruciferous vegetables such as broccoli and cabbage, is effective in preventing carcinogenesis, diabetes, and inflammatory responses. Increasing evidence has demonstrated that beyond its role in the activation of protein C, endothelial cell protein C receptor (EPCR) is also involved in vascular inflammation. EPCR activity is markedly changed by ectodomain cleavage and its release as the soluble EPCR. EPCR can be shed from the cell surface, which is mediated by tumor necrosis factor-α converting enzyme (TACE). However, little is known about the effects of SFN on EPCR shedding. Our results demonstrated that SFN induced potent inhibition of phorbol-12-myristate 13-acetate (PMA)-, tumor necrosis factor (TNF)-α-, interleukin (IL)-1β, and cecal ligation and puncture (CLP)-induced EPCR shedding. SFN also inhibited the expression and activity of PMA-induced TACE in endothelial cells. In addition, treatment with SFN resulted in reduced PMA-stimulated phosphorylation of p38, extracellular regulated kinases (ERK) 1/2, and c-Jun N-terminal kinase (JNK). These results demonstrate the potential of SFN as an anti-sEPCR shedding reagent against PMA and CLP-mediated EPCR shedding. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Swimming Motility Mediates the Formation of Neutrophil Extracellular Traps Induced by Flagellated Pseudomonas aeruginosa

    PubMed Central

    Sil, Payel; Chassaing, Benoit; Yoo, Dae-goon; Gewirtz, Andrew T.; Goldberg, Joanna B.; McCarter, Linda L.; Rada, Balázs

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen causing severe infections often characterized by robust neutrophilic infiltration. Neutrophils provide the first line of defense against P. aeruginosa. Aside from their defense conferred by phagocytic activity, neutrophils also release neutrophil extracellular traps (NETs) to immobilize bacteria. Although NET formation is an important antimicrobial process, the details of its mechanism are largely unknown. The identity of the main components of P. aeruginosa responsible for triggering NET formation is unclear. In this study, our focus was to identify the main bacterial factors mediating NET formation and to gain insight into the underlying mechanism. We found that P. aeruginosa in its exponential growth phase promoted strong NET formation in human neutrophils while its NET-inducing ability dramatically decreased at later stages of bacterial growth. We identified the flagellum as the primary component of P. aeruginosa responsible for inducing NET extrusion as flagellum-deficient bacteria remained seriously impaired in triggering NET formation. Purified P. aeruginosa flagellin, the monomeric component of the flagellum, does not stimulate NET formation in human neutrophils. P. aeruginosa-induced NET formation is independent of the flagellum-sensing receptors TLR5 and NLRC4 in both human and mouse neutrophils. Interestingly, we found that flagellar motility, not flagellum binding to neutrophils per se, mediates NET release induced by flagellated bacteria. Immotile, flagellar motor-deficient bacterial strains producing paralyzed flagella did not induce NET formation. Forced contact between immotile P. aeruginosa and neutrophils restored their NET-inducing ability. Both the motAB and motCD genetic loci encoding flagellar motor genes contribute to maximal NET release; however the motCD genes play a more important role. Phagocytosis of P. aeruginosa and superoxide production by neutrophils were also largely dependent upon

  14. Effects of exogenous recombinant human granulocyte colony-stimulating factor (filgrastim, rhG-CSF) on neutrophils of critically ill patients with systemic inflammatory response syndrome depend on endogenous G-CSF plasma concentrations on admission.

    PubMed

    Weiss, Manfred; Voglic, Sami; Harms-Schirra, Britt; Lorenz, Ingrid; Lasch, Britta; Dumon, Kristoffel; Gross-Weege, Wilhelm; Schneider, Elisabeth Marion

    2003-06-01

    To investigate the effects of exogenous recombinant human granulocyte colony-stimulating factor (rhG-CSF; filgrastim) application on the neutrophils of patients at risk of sepsis following major trauma or operation. Randomized controlled trial. Surgical intensive care unit and research laboratory of a university hospital. Twenty-seven patients with systemic inflammatory response syndrome (SIRS). Thirteen patients were treated with filgrastim (1 micro g.kg.24 h) for 10 days as a continuous infusion. Fourteen patients served as controls. Surface expression of FcgammaR type I (CD64), phagocytosis of E. coli, and the E. coli-induced oxidative burst of neutrophils were tested by flow cytometry. On the first postoperative/posttraumatic day, endogenous G-CSF plasma concentrations were <300 pg/ml in seven controls (subgroup 1) and nine filgrastim patients (subgroup 3), and were already elevated with >500 pg/ml in seven controls (subgroup 2) and four filgrastim patients (subgroup 4). G-CSF values ( P=0.0026, subgroup 1/3; P=0.0167, 2/4), neutrophil counts ( P=0.0026, 1/3; P=0.0167, 2/4), and CD64 expression ( P=0.0013, 1/3) were higher in filgrastim-treated than non-treated subgroups, but not phagocytic and burst activities. From day zero to day 1, phagocytosis decreased in subgroups 1 (5/7 patients) and 3 (5/9), but increased in subgroups 2 (5/7) and 4 (3/4), and respiratory burst activity decreased in subgroup 3 (8/9). Besides activation of neutrophil maturation, low-dose rhG-CSF application in postoperative patients with SIRS has different effects on neutrophil functions, in part depending on already endogenously produced G-CSF.

  15. Human neutrophils in auto-immunity.

    PubMed

    Thieblemont, Nathalie; Wright, Helen L; Edwards, Steven W; Witko-Sarsat, Véronique

    2016-04-01

    Human neutrophils have great capacity to cause tissue damage in inflammatory diseases via their inappropriate activation to release reactive oxygen species (ROS), proteases and other tissue-damaging molecules. Furthermore, activated neutrophils can release a wide variety of cytokines and chemokines that can regulate almost every element of the immune system. In addition to these important immuno-regulatory processes, activated neutrophils can also release, expose or generate neoepitopes that have the potential to break immune tolerance and result in the generation of autoantibodies, that characterise a number of human auto-immune diseases. For example, in vasculitis, anti-neutrophil cytoplasmic antibodies (ANCA) that are directed against proteinase 3 or myeloperoxidase are neutrophil-derived autoantigens and activated neutrophils are the main effector cells of vascular damage. In other auto-immune diseases, these neutrophil-derived neoepitopes may arise from a number of processes that include release of granule enzymes and ROS, changes in the properties of components of their plasma membrane as a result of activation or apoptosis, and via the release of Neutrophil Extracellular Traps (NETs). NETs are extracellular structures that contain chromatin that is decorated with granule enzymes (including citrullinated proteins) that can act as neo-epitopes to generate auto-immunity. This review therefore describes the processes that can result in neutrophil-mediated auto-immunity, and the role of neutrophils in the molecular pathologies of auto-immune diseases such as vasculitis, rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). We discuss the potential role of NETs in these processes and some of the debate in the literature regarding the role of this phenomenon in microbial killing, cell death and auto-immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The effect of manual acupuncture on blood neutrophil counts in moderate intensity exercise

    NASA Astrophysics Data System (ADS)

    Ciang, C. Y.; Simadibrata, C.; Tobing, A.; Srilestari, A.

    2017-08-01

    Exercise, even though it has a beneficial effect, can cause muscle damage and trigger inflammatory responses, as evidenced by increased neutrophils in the blood. Acupuncture is a therapeutic modality that is expected to reduce acute inflammatory responses due to exercise. Thirty untrained men were divided randomly into two groups. The manual acupuncture group (n = 15) received stimulation at acupoints ST36 and SP6 bilateral by needle insertion, while the placebo group (n = 15) received insertion of needles on plaster without penetrating the skin. Therapy was done once for 30 minutes immediately after the subjects completed the exercise. Blood neutrophil counts were assessed before exercise and one hour after exercise ended. The results show there is a statistically significant difference in the number of neutrophils before and after exercise between the manual acupuncture group and the placebo group (0.08±0.91 and 0.97±0.70 p = 0.006). Acupuncture therapy effectively mitigates the acute inflammatory response triggered by exercise.

  17. Potent inhibition of human neutrophil activations by bractelactone, a novel chalcone from Fissistigma bracteolatum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yang-Chang; Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; Sureshbabu, Munisamy

    Fissistigma bracteolatum is widely used in traditional medicine to treat inflammatory diseases. However, its active components and mechanisms of action remain unclear. In this study, (3Z)-6,7-dihydroxy-4-methoxy-3-(phenylmethylidene)-5-(3-phenylpropanoyl) -1-benzofuran-2(3H) (bractelactone), a novel chalcone from F. bracteolatum, showed potent inhibitory effects against superoxide anion (O{sub 2}{sup ·−}) production, elastase release, and CD11b expression in formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP)-induced human neutrophils. However, bractelactone showed only weak inhibition of phorbol myristate acetate-caused O{sub 2}{sup ·−} production. The peak cytosolic calcium concentration ([Ca{sup 2+}]{sub i}) was unaltered by bractelactone in FMLP-induced neutrophils, but the decay time of [Ca{sup 2+}]{sub i} was significantly shortened. In a calcium-free solution, changesmore » in [Ca{sup 2+}]{sub i} caused by the addition of extracellular Ca{sup 2+} were inhibited by bractelactone in FMLP-activated cells. In addition, bractelactone did not alter the phosphorylation of p38 MAPK, ERK, JNK, or AKT or the concentration of cAMP. These results suggest that bractelactone selectively inhibits store-operated calcium entry (SOCE). In agreement with this concept, bractelactone suppressed sustained [Ca{sup 2+}]{sub i} changes in thapsigargin-activated neutrophils. Furthermore, bractelactone did not alter FMLP-induced formation of inositol 1,4,5-triphosphate. Taken together, our results demonstrate that the anti-inflammatory effects of bractelactone, an active ingredient of F. bracteolatum, in human neutrophils are through the selective inhibition of SOCE. Highlights: ► Bractelactone isolated from Fissistigma bracteolatum. ► Bractelactone inhibited FMLP-induced human neutrophil activations. ► Bractelactone had no effect on IP3 formation. ► Bractelactone did not alter MAPKs, AKT, and cAMP pathways. ► Bractelactone inhibited store-operated calcium entry.« less

  18. Mixed species biofilms of Fusobacterium necrophorum and Porphyromonas levii impair the oxidative response of bovine neutrophils in vitro.

    PubMed

    Lockhart, Joey S; Buret, Andre G; Ceri, Howard; Storey, Douglas G; Anderson, Stefanie J; Morck, Douglas W

    2017-10-01

    Biofilms composed of anaerobic bacteria can result in persistent infections and chronic inflammation. Host immune cells have difficulties clearing biofilm-related infections and this can result in tissue damage. Neutrophils are a vital component of the innate immune system and help clear biofilms. The comparative neutrophilic response to biofilms versus planktonic bacteria remains incompletely understood, particularly in the context of mixed infections. The objective of this study was to generate mixed species anaerobic bacterial biofilms composed of two opportunistic pathogens, Fusobacterium necrophorum and Porphyromonas levii, and evaluate neutrophil responses to extracellular fractions from both biofilms and planktonic cell co-cultures of the same bacteria. Purified bovine neutrophils exposed to culture supernatants from mixed species planktonic bacteria showed elevated oxidative activity compared to neutrophils exposed to biofilms composed of the same bacteria. Bacterial lipopolysaccharide plays a significant role in the stimulation of neutrophils; biofilms produced substantially more lipopolysaccharide than planktonic bacteria under these experimental conditions. Removal of lipopolysaccharide significantly reduced neutrophil oxidative response to culture supernatants of planktonic bacteria. Oxidative responses to LPS-removed biofilm supernatants and LPS-removed planktonic cell supernatants were similar. The limited neutrophil response to biofilm bacteria observed in this study supports the reduced ability of the innate immune system to eradicate biofilm-associated infections. Lipopolysaccharide is likely important in neutrophil response; however, the presence of other extracellular, immune modifying molecules in the bacterial media also appears to be important in altering neutrophil function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Endothelial E-type prostanoid 4 receptors promote barrier function and inhibit neutrophil trafficking.

    PubMed

    Konya, Viktoria; Üllen, Andreas; Kampitsch, Nora; Theiler, Anna; Philipose, Sonia; Parzmair, Gerald P; Marsche, Gunther; Peskar, Bernhard A; Schuligoi, Rufina; Sattler, Wolfgang; Heinemann, Akos

    2013-02-01

    Increased vascular permeability is a fundamental characteristic of inflammation. Substances that are released during inflammation, such as prostaglandin (PG) E(2), can counteract vascular leakage, thereby hampering tissue damage. In this study we investigated the role of PGE(2) and its receptors in the barrier function of human pulmonary microvascular endothelial cells and in neutrophil trafficking. Endothelial barrier function was determined based on electrical impedance measurements. Neutrophil recruitment was assessed based on adhesion and transendothelial migration. Morphologic alterations are shown by using immunofluorescence microscopy. We observed that activation of E-type prostanoid (EP) 4 receptor by PGE(2) or an EP4-selective agonist (ONO AE1-329) enhanced the barrier function of human microvascular lung endothelial cells. EP4 receptor activation prompted similar responses in pulmonary artery and coronary artery endothelial cells. These effects were reversed by an EP4 antagonist (ONO AE3-208), as well as by blocking actin polymerization with cytochalasin B. The EP4 receptor-induced increase in barrier function was independent of the classical cyclic AMP/protein kinase A signaling machinery, endothelial nitric oxide synthase, and Rac1. Most importantly, EP4 receptor stimulation showed potent anti-inflammatory activities by (1) facilitating wound healing of pulmonary microvascular endothelial monolayers, (2) preventing junctional and cytoskeletal reorganization of activated endothelial cells, and (3) impairing neutrophil adhesion to endothelial cells and transendothelial migration. The latter effects could be partially attributed to reduced E-selectin expression after EP4 receptor stimulation. These data indicate that EP4 agonists as anti-inflammatory agents represent a potential therapy for diseases with increased vascular permeability and neutrophil extravasation. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc

  20. Mass Medication Clinic (MMC) Patient Medical Assistant (PMA) System Training Initiative

    DTIC Science & Technology

    2007-06-01

    AD_________________ Award Number: W81XWH-06-2-0045 TITLE: Mass Medication Clinic (MMC) Patient ...SUBTITLE 5a. CONTRACT NUMBER Mass Medication Clinic (MMC) Patient Medical Assistant (PMA) System Training Initiative 5b. GRANT NUMBER W81XWH-06-2...sections will describe the events, results, and accomplishments of this study. With validation through this project the Patient Medical Assistant

  1. The Interactions of Human Neutrophils with Shiga Toxins and Related Plant Toxins: Danger or Safety?

    PubMed Central

    Brigotti, Maurizio

    2012-01-01

    Shiga toxins and ricin are well characterized similar toxins belonging to quite different biological kingdoms. Plant and bacteria have evolved the ability to produce these powerful toxins in parallel, while humans have evolved a defense system that recognizes molecular patterns common to foreign molecules through specific receptors expressed on the surface of the main actors of innate immunity, namely monocytes and neutrophils. The interactions between these toxins and neutrophils have been widely described and have stimulated intense debate. This paper is aimed at reviewing the topic, focusing particularly on implications for the pathogenesis and diagnosis of hemolytic uremic syndrome. PMID:22741061

  2. A stable aspirin-triggered lipoxin A4 analog blocks phosphorylation of leukocyte-specific protein 1 in human neutrophils.

    PubMed

    Ohira, Taisuke; Bannenberg, Gerard; Arita, Makoto; Takahashi, Minoru; Ge, Qingyuan; Van Dyke, Thomas E; Stahl, Gregory L; Serhan, Charles N; Badwey, John A

    2004-08-01

    Lipoxins and their aspirin-triggered 15-epimers are endogenous anti-inflammatory agents that block neutrophil chemotaxis in vitro and inhibit neutrophil influx in several models of acute inflammation. In this study, we examined the effects of 15-epi-16-(p-fluoro)-phenoxy-lipoxin A(4) methyl ester, an aspirin-triggered lipoxin A(4)-stable analog (ATLa), on the protein phosphorylation pattern of human neutrophils. Neutrophils stimulated with the chemoattractant fMLP were found to exhibit intense phosphorylation of a 55-kDa protein that was blocked by ATLa (10-50 nM). This 55-kDa protein was identified as leukocyte-specific protein 1, a downstream component of the p38-MAPK cascade in neutrophils, by mass spectrometry, Western blotting, and immunoprecipitation experiments. ATLa (50 nM) also reduced phosphorylation/activation of several components of the p38-MAPK pathway in these cells (MAPK kinase 3/MAPK kinase 6, p38-MAPK, MAPK-activated protein kinase-2). These results indicate that ATLa exerts its anti-inflammatory effects, at least in part, by blocking activation of the p38-MAPK cascade in neutrophils, which is known to promote chemotaxis and other proinflammatory responses by these cells.

  3. Exocytosis of Neutrophil Granule Subsets and Activation of Prolyl Isomerase 1 are required for Respiratory Burst Priming

    PubMed Central

    McLeish, Kenneth R.; Uriarte, Silvia M.; Tandon, Shweta; Creed, Timothy M.; Le, Junyi; Ward, Richard A.

    2013-01-01

    This study tested the hypothesis that priming the neutrophil respiratory burst requires both granule exocytosis and activation of the prolyl isomerase, Pin1. Fusion proteins containing the TAT cell permeability sequence and either the SNARE domain of syntaxin-4 or the N-terminal SNARE domain of SNAP-23 were used to examine the role of granule subsets in TNF-mediated respiratory burst priming using human neutrophils. Concentration-inhibition curves for exocytosis of individual granule subsets and for priming of fMLF-stimulated superoxide release and phagocytosis-stimulated H2O2 production were generated. Maximal inhibition of priming ranged from 72% to 88%. Linear regression lines for inhibition of priming versus inhibition of exocytosis did not differ from the line of identity for secretory vesicles and gelatinase granules, while the slopes or the y-intercepts were different from the line of identity for specific and azurophilic granules. Inhibition of Pin1 reduced priming by 56%, while exocytosis of secretory vesicles and specific granules was not affected. These findings indicate that exocytosis of secretory vesicles and gelatinase granules and activation of Pin1 are independent events required for TNF-mediated priming of neutrophil respiratory burst. PMID:23363774

  4. Diadenosine polyphosphates induce intracellular Ca2+ mobilization in human neutrophils via a pertussis toxin sensitive G-protein.

    PubMed Central

    Gasmi, L; McLennan, A G; Edwards, S W

    1997-01-01

    The diadenosine polyphosphates diadenosine 5',5"'-P1,P3-triphosphate (Ap3A), diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A), diadenosine 5',5"'-P1,P5-pentaphosphate (Ap5A) and diadenosine 5',5"'-P1,P6-hexaphosphate (Ap6A) all stimulated increases in intracellular Ca2+ in human neutrophils. Maximal increases in intracellular Ca2+ of 650 nM were obtained at dinucleotide concentrations of 500-700 microM. These increases in intracellular, Ca2+ were completely abolished by pre-treatment of the neutrophils with pertussis toxin and were hardly affected when the extracellular buffer was devoid of Ca2+. On the other hand, adenosine triphosphate (ATP) could stimulate much greater increases in intracellular Ca2+ (up to 1.1 microM) at much lower concentrations (half maximal responses obtained at around 5 microM ATP). Receptor de-sensitization experiments indicate that human neutrophils may possess two types of P2-purinoceptors. The first of these may bind ATP (but not the dinucleotides) with high affinity whilst the second may bind the dinucleotides with lower affinity and also bind ATP. PMID:9038726

  5. Myristoylated alanine-rich C kinase substrate-mediated neurotensin release via protein kinase C-delta downstream of the Rho/ROK pathway.

    PubMed

    Li, Jing; O'Connor, Kathleen L; Greeley, George H; Blackshear, Perry J; Townsend, Courtney M; Evers, B Mark

    2005-03-04

    Myristoylated alanine-rich protein kinase C substrate (MARCKS) is a cellular substrate for protein kinase C (PKC). Recently, we have shown that PKC isoforms-alpha and -delta, as well as the Rho/Rho kinase (ROK) pathway, play a role in phorbol 12-myristate 13-acetate (PMA)-mediated secretion of the gut peptide neurotensin (NT) in the BON human endocrine cell line. Here, we demonstrate that activation of MARCKS protein is important for PMA- and bombesin (BBS)-mediated NT secretion in BON cells. Small interfering RNA (siRNA) to MARCKS significantly inhibited, whereas overexpression of wild-type MARCKS significantly increased PMA-mediated NT secretion. Endogenous MARCKS and green fluorescent protein-tagged wild-type MARCKS were translocated from membrane to cytosol upon PMA treatment, further confirming MARCKS activation. MARCKS phosphorylation was inhibited by PKC-delta siRNA, ROKalpha siRNA, and C3 toxin (a Rho protein inhibitor), suggesting that the PKC-delta and the Rho/ROK pathways are necessary for MARCKS activation. The phosphorylation of PKC-delta was inhibited by C3 toxin, demonstrating that the role of MARCKS in NT secretion was regulated by PKC-delta downstream of the Rho/ROK pathway. BON cell clones stably transfected with the receptor for gastrin releasing peptide, a physiologic stimulant of NT, and treated with BBS, the amphibian equivalent of gastrin releasing peptide, demonstrated a similar MARCKS phosphorylation as noted with PMA. BBS-mediated NT secretion was attenuated by MARCKS siRNA. Collectively, these findings provide evidence for novel signaling pathways, including the sequential regulation of MARCKS activity by Rho/ROK and PKC-delta proteins, in stimulated gut peptide secretion.

  6. Fibronectin-mediation cell adhesion is required for induction of 92-kDa type IV collagenase/gelatinase (MMP-9) gene expression during macrophage differentiation : the signaling role of protein kinase C-{beta}.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, B.; Laouar, A.; Huberman, E.

    1998-05-08

    Induction of the 92-kDa gelatinase (MMP-9) gene expression is associated with macrophage differentiation. In this study, we explored the regulatory mechanisms underlying this differentiation-associated MMP-9 gene expression in human HL-60 myeloid leukemia cells and human peripheral blood monocytes. Phorbol 12-myristate 13-acetate (PMA) markedly induced MMP-9 gene expression in HL-60 cells; the induction closely paralleled the timing and extent of PMA-induced cell adhesion and spreading, a hallmark of macrophage differentiation. Similarly, treatment with PMA or macrophage-colony stimulating factor stimulated adherence and spreading of blood monocytes with a concurrent 7- or 5-fold increase in MMP-9 production, respectively. In protein kinase C (PKC)-betamore » -deficient HL-60 variant cells (HL-525), PMA failed to induce cell adhesion and MMP-9 gene expression. Transfecting HL-525 cells with a PKC-beta expression plasmid restored PKC-beta levels and PMA inducibility of cell adhesion and spreading as well as MMP-9 gene expression. Induction of cell adhesion and MMP-9 gene expression in HL-60 cells and blood monocytes was strongly inhibited by neutralizing monoclonal antibodies to fibronectin (FN) and its receptor {alpha}5{beta}1 integrin. HL-525 cells, which constitutively display high levels of surface {alpha}5{beta}1 integrin, adhered and spread on immobilized FN with concomitant induction of MMP-9 gene expression. Cytochalasins B and D were each a potent inhibitor of MMP-9 production. Our results suggest that {alpha}5{beta}1 integrin-mediated interaction of immature hematopoietic cells with FN plays a critical role in modulating matrix-degrading activities during macrophage differentiation.« less

  7. Ritanserin-sensitive receptors modulate the prosocial and the anxiolytic effect of MDMA derivatives, DOB and PMA, in zebrafish.

    PubMed

    Ponzoni, Luisa; Sala, Mariaelvina; Braida, Daniela

    2016-11-01

    Little is known about the pharmacological effects of amphetamine derivatives. In the present study, the effect on social preference and anxiety-like behavior of 2,5-dimetoxy-4-bromo-amphetamine hydrobromide (DOB) and para-methoxyamphetamine (PMA), in comparison with 3,4 methylenedioxymethamphetamine (MDMA) was investigated in zebrafish, an emerging model to study emotional behavior in an inexpensive and quick manner. DOB (0.05-2mg/kg), PMA (0.0005-2mg/kg) or MDMA (0.25-20mg/kg), given i.m. to adult zebrafish, progressively increased the time spent in the proximity of nacre fish picture in a social preference test. However, high doses were ineffective. Similarly, in the novel tank diving and light-dark tests the compounds elicited a progressive anxiolytic effect in terms of time spent in the upper half of the tank and in the light compartment, respectively. All the above effects were interpolated by symmetrical parabolas. The 5-HT2A/C antagonist ritanserin (0.025-2.5mg/kg) in association with the maximal effective dose of MDMA, DOB and PMA blocked both the social and anxiolytic effect. Taken together these findings demonstrate for the first time the prosocial and anxiolytic properties of DOB and PMA and focus on the mechanisms of their action through the serotonergic-like system suggesting a potential clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. S-Glutathionylation Regulates Inflammatory Activities of S100A9*

    PubMed Central

    Lim, Su Yin; Raftery, Mark J.; Goyette, Jesse; Geczy, Carolyn L.

    2010-01-01

    Reactive oxygen species generated by activated neutrophils can cause oxidative stress and tissue damage. S100A8 (A8) and S100A9 (A9), abundant in neutrophil cytoplasm, are exquisitely sensitive to oxidation, which may alter their functions. Murine A8 is a neutrophil chemoattractant, but it suppresses leukocyte transmigration in the microcirculation when S-nitrosylated. Glutathione (GSH) modulates intracellular redox, and S-glutathionylation can protect susceptible proteins from oxidative damage and regulate function. We characterized S-glutathionylation of A9; GSSG and GSNO generated S-glutathionylated A8 (A8-SSG) and A9 (A9-SSG) in vitro, whereas only A9-SSG was detected in cytosol of neutrophils activated with phorbol myristate acetate (PMA) but not with fMLP or opsonized zymosan. S-Glutathionylation exposed more hydrophobic regions in Zn2+-bound A9 but did not alter Zn2+ binding affinity. A9-SSG had reduced capacity to form heterocomplexes with A8, but the arachidonic acid binding capacities of A8/A9 and A8/A9-SSG were similar. A9 and A8/A9 bind endothelial cells; S-glutathionylation reduced binding. We found little effect of A9 or A9-SSG on neutrophil CD11b/CD18 expression or neutrophil adhesion to endothelial cells. However, A9, A9-SSG and A8/A9 promoted neutrophil adhesion to fibronectin but, in the presence of A8, A9-mediated adhesion was abrogated by glutathionylation. S-Glutathionylation of A9 may protect its oxidation to higher oligomers and reduce neutrophil binding to the extracellular matrix. This may regulate the magnitude of neutrophil migration in the extravasculature, and together with the functional changes we reported for S-nitrosylated A8, particular oxidative modifications of these proteins may limit tissue damage in acute inflammation. PMID:20223829

  9. Failure of matrix metalloproteinase-9 dimer induction by phorbol 12-myristate 13-acetate in normal human cell lines.

    PubMed

    Waheed Roomi, Mohd; Kalinovsky, Tatiana; Rath, Matthias; Niedzwiecki, Aleksandra

    2015-06-01

    Increasing experimental and clinical data has identified an association between increased levels of matrix metalloproteinase (MMP)-9 and shortened patient survival, cancer progression and metastasis. MMP-9 has a significant role in tumor cell invasion and metastasis, as it digests the basement membrane and components of the extracellular matrix. MMP-9 is secreted in either a monomeric or dimeric form. Although limited evidence exists concerning MMP-9 dimers, certain studies have demonstrated that the dimer is associated with aggressive tumor progression. This is believed to be due to the fact that cellular migration depends upon the MMP-9 dimer, and not the monomer. Our previous study revealed that cancer cell MMP-9 dimer secretion patterns could be divided into different categories, and that high MMP-9 and MMP-9 dimer secretion levels were correlated with the most aggressive cancer cell lines. It has been established that signal transduction pathways and cytokines, including those activated by phorbol 12-myristate 13-acetate (PMA), regulate the expression of MMPs. The aim of the present study was to analyze the expression patterns of MMP-2, MMP-9 and MMP-9 dimer in normal human cells from a number of tissues treated with PMA. Muscle, epithelial and connective tissues were selected for use in the present study, since adenosarcomas, carcinomas and sarcomas are derived from these tissue types, respectively. The cell lines were first cultured in 24-well tissue culture plates containing recommended media that was supplemented with 10% fetal bovine serum and antibiotics. When at confluency, the cells were washed and fresh medium was added. In addition, a parallel set of cultures was treated with PMA. Subsequent to a 24-h incubation period, the media were collected and analyzed using gelatinase zymography for the expression of MMP-2 and MMP-9 monomer and dimer forms. The results revealed that the cellular expression of MMP-2 and MMP-9 was dependent upon the primary

  10. Inhibitory activity of tryptanthrin on prostaglandin and leukotriene synthesis.

    PubMed

    Danz, Henning; Stoyanova, Stefka; Thomet, Olivier A R; Simon, Hans-Uwe; Dannhardt, Gerd; Ulbrich, Holger; Hamburger, Matthias

    2002-10-01

    The indolo[2,1- b]quinazoline alkaloid tryptanthrin has previously been identified as the cyclooxygenase-2 (COX-2) inhibitory principle in the extract ZE550 prepared from the medicinal plant Isatis tinctoria (Brassicaceae). We here investigated the potential inhibitory activity of tryptanthrin and ZE550 on COX-2, COX-1 in cellular and cell-free systems. A certain degree of selectivity towards COX-2 was observed when COX-1-dependent formation of thromboxane B(2) (TxB(2)) in HEL cells and COX-2-dependent formation of 6-ketoprostaglandin F(1alpha) (6-keto-PGF(1alpha)) in Mono Mac 6 and RAW 264.7 cells were compared. Preferential inhibition of COX-2 by two orders of magnitude was found in phorbol myristate acetate (PMA) activated bovine aortic coronary endothelial cells (BAECs). Assays with purified COX isoenzymes from sheep confirmed the high selectivity towards COX-2. The leukotriene B(4) (LTB(4)) release from calcium ionophore-stimulated human granulocytes (neutrophils) was used as a model to determine 5-lipoxygenase (5-LOX) activity. Tryptanthrin and the extract ZE550 inhibited LTB(4) release in a dose dependent manner and with a potency comparable to that of the clinically used 5-LOX inhibitor zileuton.

  11. Neutrophil extracellular traps: double-edged swords of innate immunity.

    PubMed

    Kaplan, Mariana J; Radic, Marko

    2012-09-15

    Spectacular images of neutrophils ejecting nuclear chromatin and bactericidal proteins, in response to microbes, were first reported in 2004. As externalized chromatin could entangle bacteria, these structures were named neutrophil extracellular traps (NETs). Subsequent studies identified microorganisms and sterile conditions that stimulate NETs, as well as additional cell types that release extracellular chromatin. The release of NETs is the most dramatic stage in a cell death process called NETosis. Experimental evidence suggests that NETs participate in pathogenesis of autoimmune and inflammatory disorders, with proposed involvement in glomerulonephritis, chronic lung disease, sepsis, and vascular disorders. Exaggerated NETosis or diminished NET clearance likely increases risk of autoreactivity to NET components. The biological significance of NETs is just beginning to be explored. A more complete integration of NETosis within immunology and pathophysiology will require better understanding of NET properties associated with specific disease states and microbial infections. This may lead to the identification of important therapeutic targets.

  12. c-fms mRNA is regulated posttranscriptionally by 1,25(OH)2D3 in HL-60 cells.

    PubMed

    Biskobing, D M; Fan, D; Rubin, J

    1997-09-01

    Macrophage colony-stimulating factor (MCSF) is required for normal osteoclast and macrophage development. The receptor for MCSF (c-fms) is expressed on the pluripotent precursor and mature osteoclasts and macrophages. We have previously shown in myelomonocytic HL-60 cells that phorbol myristate acetate (PMA) upregulates c-fms mRNA expression. This induction of c-fms is inhibited by 1,25(OH)2D3. The major regulatory control of c-fms mRNA levels by PMA has been identified as posttranscriptional. However, a role of transcript elongation in controlling levels of c-fms mRNA has also been suggested. To better understand the 1,25(OH)2D3 regulation of c-fms mRNA expression we studied nuclear run on, mRNA stability, and transcript elongation in HL-60 cells treated with 10 ng/ml phorbol myristate acetate, 10 nM 1,25(OH)2D3 alone or combined. We demonstrated by nuclear run on that c-fms was constitutively transcribed in 1,25(OH)2D3 as well as control and PMA-treated cells. Transcript elongation was evaluated by RT-PCR for exon 2 or exon 3. Both exons were minimally expressed in control and 1,25(OH)2D3-treated cells, and increased in PMA-treated cells; this increased expression was inhibited by the addition of 1,25(OH)2D3. These results fail to show differential transcript elongation. Measurement of mRNA stability demonstrated decreased mRNA half-life to 5 hours in cells treated with PMA and 1,25(OH)2D3 compared with a half-life of 8 hours in cells treated with PMA alone. Our findings demonstrate that c-fms is regulated by 1,25(OH)2D3 at the posttranscriptional level by changes in mRNA stability. This gives the cell the ability to respond to local signals with rapid changes in c-fms levels altering the ability of the cell to respond to MCSF.

  13. Enhanced interleukin-8 production in THP-1 human monocytic cells by lipopolysaccharide from oral microorganisms and granulocyte-macrophage colony-stimulating factor.

    PubMed

    Baqui, A A; Meiller, T F; Falkler, W A

    1999-10-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been used to assist in bone marrow recovery during cancer chemotherapy. Interleukin-8 (IL-8) plays an important role in macrophage mediated inflammatory processes including exacerbation of periodontal diseases, one of the most common complications in GM-CSF receiving cancer patients. The effect of GM-CSF supplementation on IL-8 production was investigated in a human monocyte cell line THP-1, stimulated with lipopolysaccharide extracted from two oral microorganisms, Porphyromonas gingivalis and Fusobacterium nucleatum. Resting THP-1 cells were treated with lipopolysaccharide (1 microgram/ml) of P. gingivalis or F. nucleatum and/or GM-CSF (50 IU/ml) for varying time periods. The production of IL-8 in THP-1 cells was measured by a solid-phase enzyme-linked immunosorbent assay (ELISA). A very low level of the cytokine IL-8 was produced constitutive in THP-1 cells. Starting from 8 h of treatment and afterwards GM-CSF alone significantly increased IL-8 production in THP-1 cells. Lipopolysaccharide (1 microgram/ml) extracts from either F. nucleatum or P. gingivalis amplified IL-8 production 500-800 times in comparison to resting THP-1 cells. When lipopolysaccharide of F. nucleatum or P. gingivalis was supplemented with 50 IU/ml of GM-CSF, there was a statistically significant enhanced production of IL-8 by THP-1 cells after 1 day to 7 days of treatment as compared with lipopolysaccharide treatment alone. GM-CSF (50 IU/ml) also significantly increased IL-8 production from 2-7 days of treatment of THP-1 cells when supplemented with a positive control, phorbol-12-myristate-13 acetate (PMA), as compared to PMA treatment alone. These investigations using the in vitro THP-1 human monocyte cell model indicate that there may be an increase in the response on a cellular level to oral endotoxin following GM-CSF therapy as evidenced by enhanced production of the tissue-reactive inflammatory cytokine, IL-8.

  14. The relationship between periodontal status and peripheral levels of neutrophils in two consanguineous siblings with severe congenital neutropenia: case reports.

    PubMed

    Tözüm, Tolga Fikret; Berker, Ezel; Ersoy, Fügen; Tezcan, Iihan; Sanal, Ozden

    2003-03-01

    Congenital neutropenia is characterized by a severe reduction in absolute neutrophil counts, resulting in an almost total absence of neutrophils. It is well known that severe neutropenia affects periodontal status. Oral manifestations include ulcerations, gingival desquamation, gingival inflammation, attachment loss, and alveolar bone loss which may result in tooth loss. Treatment with granulocyte-colony stimulating factor (G-CSF) may improve this periodontal condition. This article reports the relationship between periodontal disease status and peripheral neutrophil levels in two consanguineous siblings with severe congenital neutropenia who did not receive routine G-CSF for 2 years prior to examination. Both siblings were given scaling, root planing, and periodontal prophylaxis in regular follow-up visits. This report demonstrates that periodontal therapy supported by adequate oral hygiene may result in restoration of neutrophil counts in siblings with congenital neutropenia.

  15. Phorbol 12-myristate 13-acetate enhances nm23 gene expression in murine melanocytes but not in syngeneic B16-BL6 melanoma variants.

    PubMed

    Huijzer, J C; McFarland, M; Niles, R M; Meadows, G G

    1996-03-01

    The nm23 gene has been described as a potential metastasis suppressor gene in certain rodent and human tumors. We previously demonstrated that tyrosine and phenylalanine restriction suppresses metastatic heterogeneity of B16-BL6 murine melanoma and selects for tumor variants with decreased metastatic potential. In this study, we investigated nm23 expression in the highly metastatic B16-BL6 (ND) melanoma, its nutritionally derived poorly metastatic (LT) variant, and the syngeneic non-tumorigenic Mel-ab melanocytes. No differences in nm23 expression were observed between ND and LT cells, and nm23 expression varied between different isolates. Previously, we showed that metastatic potential of 1-ND cells decreases and is not altered in 1-LT cells after prolonged in vitro cell passage; however, nm23 expression is equivalently increased by 2-fold. In 2-ND and 2-LT cells, expression of nm23 is not different at higher in vitro cell passage. Expression of nm23 decreased about 2-fold when phorbol 12-myristate 13-acetate (PMA) was removed from Mel-ab cells, which induces these cells to become quiescent. Although membrane-associated protein kinase C (PKC) activity decreased after prolonged PMA treatment in all cells, neither nm23 expression nor proliferation of ND and LT cells was affected by PMA. These data indicate that nm23 expression is related to proliferative activity rather than to the suppression of metastatic potential.

  16. Regulation of Src homology 2-containing tyrosine phosphatase 1 during activation of human neutrophils. Role of protein kinase C.

    PubMed

    Brumell, J H; Chan, C K; Butler, J; Borregaard, N; Siminovitch, K A; Grinstein, S; Downey, G P

    1997-01-10

    The tyrosine phosphorylation of several proteins induced in neutrophils by soluble and particulate stimuli is thought to be crucial for initiating antimicrobial responses. Although activation of tyrosine kinases is thought to mediate this event, the role of tyrosine phosphatases in the initiation and modulation of neutrophil responses remains largely undefined. We investigated the role of Src homology 2-containing tyrosine phosphatase 1 (SHP-1; also known as protein tyrosine phosphatase 1C (PTP1C), hematopoetic cell phosphatase, PTP-N6, and SHPTP-1), a phosphatase expressed primarily in hemopoietic cells, in the activation of human neutrophils. SHP-1 mRNA and protein were detected in these cells, and the enzyme was found to be predominantly localized to the cytosol in unstimulated cells. Following stimulation with neutrophil agonists such as phorbol ester, chemotactic peptide, or opsonized zymosan, a fraction of the phosphatase redistributed to the cytoskeleton. Agonist treatment also induced significant decreases (30-60%) in SHP-1 activity, which correlated temporally with increases in the cellular phosphotyrosine content. Phosphorylation of SHP-1 on serine residues was associated with the inhibition of its enzymatic activity, suggesting a causal relationship. Accordingly, both the agonist-evoked phosphorylation of SHP-1 and the inhibition of its catalytic activity were blocked by treatment with bisindolylmaleimide I, a potent and specific inhibitor of protein kinase C (PKC) activity. Immunoprecipitated SHP-1 was found to be phosphorylated efficiently by purified PKC in vitro. Such phosphorylation also caused a decrease in the phosphatase activity of SHP-1. Together, these data suggest that inhibition of SHP-1 by PKC-mediated serine phosphorylation plays a role in facilitating the accumulation of tyrosine-phosphorylated proteins following neutrophil stimulation. These findings provide a new link between the PKC and tyrosine phosphorylation branches of the

  17. Ulipristal acetate versus leuprolide acetate for uterine fibroids.

    PubMed

    Donnez, Jacques; Tomaszewski, Janusz; Vázquez, Francisco; Bouchard, Philippe; Lemieszczuk, Boguslav; Baró, Francesco; Nouri, Kazem; Selvaggi, Luigi; Sodowski, Krzysztof; Bestel, Elke; Terrill, Paul; Osterloh, Ian; Loumaye, Ernest

    2012-02-02

    The efficacy and side-effect profile of ulipristal acetate as compared with those of leuprolide acetate for the treatment of symptomatic uterine fibroids before surgery are unclear. In this double-blind noninferiority trial, we randomly assigned 307 patients with symptomatic fibroids and excessive uterine bleeding to receive 3 months of daily therapy with oral ulipristal acetate (at a dose of either 5 mg or 10 mg) or once-monthly intramuscular injections of leuprolide acetate (at a dose of 3.75 mg). The primary outcome was the proportion of patients with controlled bleeding at week 13, with a prespecified noninferiority margin of -20%. Uterine bleeding was controlled in 90% of patients receiving 5 mg of ulipristal acetate, in 98% of those receiving 10 mg of ulipristal acetate, and in 89% of those receiving leuprolide acetate, for differences (as compared with leuprolide acetate) of 1.2 percentage points (95% confidence interval [CI], -9.3 to 11.8) for 5 mg of ulipristal acetate and 8.8 percentage points (95% CI, 0.4 to 18.3) for 10 mg of ulipristal acetate. Median times to amenorrhea were 7 days for patients receiving 5 mg of ulipristal acetate, 5 days for those receiving 10 mg of ulipristal acetate, and 21 days for those receiving leuprolide acetate. Moderate-to-severe hot flashes were reported for 11% of patients receiving 5 mg of ulipristal acetate, for 10% of those receiving 10 mg of ulipristal acetate, and for 40% of those receiving leuprolide acetate (P<0.001 for each dose of ulipristal acetate vs. leuprolide acetate). Both the 5-mg and 10-mg daily doses of ulipristal acetate were noninferior to once-monthly leuprolide acetate in controlling uterine bleeding and were significantly less likely to cause hot flashes. (Funded by PregLem; ClinicalTrials.gov number, NCT00740831.).

  18. Cross-linking of surface Ig receptors on murine B lymphocytes stimulates the expression of nuclear tetradecanoyl phorbol acetate-response element-binding proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiles, T.C.; Liu, J.L.; Rothstein, T.L.

    1991-03-15

    Cross-linking of sIg on primary B lymphocytes leads to increased nuclear DNA-binding activity specific for the tetradecanoyl phorbol acetate-response element (TRE), as judged by gel mobility shift assays. Stimulation of B cells to enter S phase of the cell cycle by treatment with the combination of phorbol ester plus calcium ionophore also stimulated nuclear TRE-binding activity within 2 h, with maximal expression at 4 h; however, phorbol ester and calcium ionophore were not as effective in stimulating binding activity when examined separately. Stimulated nuclear expression of TRE-binding activity appears to require protein synthesis. Fos- and Jun/AP-1-related proteins participate directly inmore » the identified nucleoprotein complex, as shown by the ability of c-fos- and c-jun-specific antisera to either alter or completely abolish electrophoretic migration of the complex in native gels. Further, UV photo-cross-linking studies identified two major TRE-binding protein species, whose sizes correspond to TRE-binding proteins derived from HeLa cell nuclear extracts. The results suggest that in primary B cells nuclear TRE-binding activity represents a downstream signaling event that occurs subsequent to changes in protein kinase C activity and intracellular Ca2+ but that can be triggered physiologically through sIg.« less

  19. Anti-Inflammatory benefits of antibiotic-induced neutrophil apoptosis: tulathromycin induces caspase-3-dependent neutrophil programmed cell death and inhibits NF-kappaB signaling and CXCL8 transcription.

    PubMed

    Fischer, Carrie D; Beatty, Jennifer K; Zvaigzne, Cheryl G; Morck, Douglas W; Lucas, Merlyn J; Buret, A G

    2011-01-01

    Clearance of apoptotic neutrophils is a central feature of the resolution of inflammation. Findings indicate that immuno-modulation and induction of neutrophil apoptosis by macrolide antibiotics generate anti-inflammatory benefits via mechanisms that remain obscure. Tulathromycin (TUL), a new antimicrobial agent for bovine respiratory disease, offers superior clinical efficacy for reasons not fully understood. The aim of this study was to identify the immuno-modulating effects of tulathromycin and, in this process, to establish tulathromycin as a new model for characterizing the novel anti-inflammatory properties of antibiotics. Bronchoalveolar lavage specimens were collected from Holstein calves 3 and 24 h postinfection, challenged intratracheally with live Mannheimia haemolytica (2 × 10(7) CFU), and treated with vehicle or tulathromycin (2.5 mg/kg body weight). Terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining and enzyme-linked immunosorbent assay (ELISA) revealed that tulathromycin treatment significantly increased leukocyte apoptosis and reduced levels of proinflammatory leukotriene B(4) in M. haemolytica-challenged calves. In vitro, tulathromycin concentration dependently induced apoptosis in freshly isolated bovine neutrophils from healthy steers in a capase-3-dependent manner but failed to induce apoptosis in bovine fibroblasts, epithelial cells, and endothelial cells, as well as freshly isolated bovine blood monocytes and monocyte-derived macrophages. The proapoptotic effects of TUL were also, in part, drug specific; equimolar concentrations of penicillin G, oxytetracycline, and ceftiofur failed to cause apoptosis in bovine neutrophils. In addition, tulathromycin significantly reduced levels of phosphorylated IκBα, nuclear translocation of NF-κB p65, and mRNA levels of proinflammatory interleukin-8 in lipopolysaccharide (LPS)-stimulated bovine neutrophils. The findings illustrate novel mechanisms through which

  20. Development of PMA real-time PCR method to quantify viable cells of Pantoea agglomerans CPA-2, an antagonist to control the major postharvest diseases on oranges.

    PubMed

    Soto-Muñoz, Lourdes; Teixidó, Neus; Usall, Josep; Viñas, Inmaculada; Crespo-Sempere, Ana; Torres, Rosario

    2014-06-16

    Dilution plating is the quantification method commonly used to estimate the population level of postharvest biocontrol agents, but this method does not permit a distinction among introduced and indigenous strains. Recently, molecular techniques based on DNA amplification such as quantitative real-time PCR (qPCR) have been successfully applied for their high strain-specific detection level. However, the ability of qPCR to distinguish viable and nonviable cells is limited. A promising strategy to avoid this issue relies on the use of nucleic acid intercalating dyes, such as propidium monoazide (PMA), as a sample pretreatment prior to the qPCR. The objective of this study was to optimize a protocol based on PMA pre-treatment samples combined with qPCR to distinguish and quantify viable cells of the biocontrol agent P. agglomerans CPA-2 applied as a postharvest treatment on orange. The efficiency of PMA-qPCR method under the established conditions (30μM PMA for 20min of incubation followed by 30min of LED light exposure) was evaluated on an orange matrix. Results showed no difference in CFU or cells counts of viable cells between PMA-qPCR and dilution plating. Samples of orange matrix inoculated with a mixture of viable/dead cells showed 5.59log10 CFU/ml by dilution plating, 8.25log10 cells/ml by qPCR, and 5.93log10 cells/ml by PMA-qPCR. Furthermore, samples inoculated with heat-killed cells were not detected by dilution plating and PMA-qPCR, while by qPCR was of 8.16log10 cells/ml. The difference in quantification cycles (Cq) among qPCR and PMA-qPCR was approximately 16cycles, which means a reduction of 65,536 fold of the dead cells detected. In conclusion, PMA-qPCR method is a suitable tool for quantify viable CPA-2 cells, which could be useful to estimate the ability of this antagonist to colonize the orange surface. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Release of superoxide and change in morphology by neutrophils in response to phorbol esters: antagonism by inhibitors of calcium-binding proteins

    PubMed Central

    1985-01-01

    The ability of phorbol derivatives to function as stimulating agents for superoxide (O2-) release by guinea pig neutrophils has been evaluated and compared to the known ability of each compound to activate protein kinase C. Those that activate the kinase also stimulate O2- release, while those that are inactive with respect to the kinase have no effect on O2- release. The same correlation was observed with respect to the ability of phorbol esters to induce morphological changes in neutrophils, i.e., vesiculation and reduction in granule content. Certain phenothiazines and naphthalene sulfonamides that are known antagonists of calcium-binding proteins blocked both phorbol ester-induced O2- release and morphological changes in these cells. PMID:2993312

  2. Evidence of early systemic activation and transendothelial migration of neutrophils in neonates with severe respiratory distress syndrome.

    PubMed

    Sarafidis, K; Drossou-Agakidou, V; Kanakoudi-Tsakalidou, F; Taparkou, A; Tsakalidis, C; Tsandali, C; Kremenopoulos, G

    2001-03-01

    Several observations imply that the early inflammatory response involving activated neutrophils, tissue macrophages, and cytokines plays an important role in the pathogenesis of neonatal respiratory distress syndrome (RDS) and progression to bronchopulmonary dysplasia (BPD). The aim of this study was to test the hypothesis that changes in circulating neutrophil number and function and plasma levels of cytokines, consistent with neutrophil activation and migration to the tissues, occur during the early stages of neonatal RDS. For this purpose we measured peripheral blood levels of certain immunological parameters that promote neutrophil activation and transendothelial migration. Twenty preterm neonates with severe RDS and 20 healthy infants matched for gestational age were the subjects. The absolute neutrophil count (ANC), and plasma levels of interleukin-6 (IL-6), granulocyte colony-stimulating factor (G-CSF), and sL-selectin using an enzyme-linked immunosorbent assay (ELISA), neutrophil CD11b expression, and respiratory burst activity (RBA) using flow cytometry, were measured within 24 h after birth. The two groups were comparable regarding perinatal characteristics. None of the neonates studied had any clinical or laboratory evidence of infection by the time of blood sampling. The immunological investigation showed that the RDS neonates had significantly lower ANC (P = 0.032), higher expression of the CD11b on neutrophils (P = 0.0065), and higher G-CSF and IL-6 plasma levels (P = 0.0047 and P < 0.0001, respectively) in comparison to healthy preterm neonates. The neutrophil RBA and plasma sL-selectin levels did not differ significantly between the two groups. We conclude that in neonates with severe RDS, there is evidence of a systemic neutrophil activation early in the course of the disease, supporting the view of a contributing role of activated neutrophils in the pathogenesis of RDS. Copyright 2001 Wiley-Liss, Inc.

  3. A cascade of Ca2+/calmodulin-dependent protein kinases regulates the differentiation and functional activation of murine neutrophils

    PubMed Central

    Gaines, Peter; Lamoureux, James; Marisetty, Anantha; Chi, Jeffrey; Berliner, Nancy

    2008-01-01

    Objective The function of neutrophils as primary mediators of innate immunity depends on the activity of granule proteins and critical components of the NADPH oxidase complex. Expression of their cognate genes is regulated during neutrophil differentiation by a complex network of intracellular signaling pathways. In this study we have investigated the role of two members of the calcium/calmodulin-dependent protein kinase (CaMK) signaling cascade, CaMKI-like kinase (CKLiK) and CaMKKα, in regulating neutrophil differentiation and functional activation. Materials and Methods Mouse myeloid cell lines were used to examine the expression of a CaMK cascade in developing neutrophils and to examine the effects of constitutive activation versus inhibition of CaMKs on neutrophil maturation. Results Expression of CaMKKα was shown to increase during neutrophil differentiation in multiple cell lines, whereas expression of CKLiK increased as multipotent progenitors committed to promyelocytes but then decreased as cells differentiated into mature neutrophils. Expression of constitutively active CKLiKs did not affect morphologic maturation, but caused dramatic decreases in both respiratory burst responses and chemotaxis. This loss of neutrophil function was accompanied by reduced secondary granule and gp91phox gene expression. The CaMK inhibitor KN93 attenuated cytokine-stimulated proliferative responses in promyelocytic cell lines, and inhibited the respiratory burst. Similar data were observed with the CaMKKα inhibitor, STO-609. Conclusions Overactivation of a cascade of CaMKs inhibits neutrophil maturation, suggesting that these kinases play an antagonistic role during neutrophil differentiation, but at least one CaMK is required for myeloid cell expansion and functional activation. PMID:18400360

  4. Classical ROS-dependent and early/rapid ROS-independent release of Neutrophil Extracellular Traps triggered by Leishmania parasites.

    PubMed

    Rochael, Natalia C; Guimarães-Costa, Anderson B; Nascimento, Michelle T C; DeSouza-Vieira, Thiago S; Oliveira, Matheus P; Garcia e Souza, Luiz F; Oliveira, Marcus F; Saraiva, Elvira M

    2015-12-17

    Neutrophil extracellular traps (NETs) extruded from neutrophils upon activation are composed of chromatin associated with cytosolic and granular proteins, which ensnare and kill microorganisms. This microbicidal mechanism named classical netosis has been shown to dependent on reactive oxygen species (ROS) generation by NADPH oxidase and also chromatin decondensation dependent upon the enzymes (PAD4), neutrophil elastase (NE) and myeloperoxidase (MPO). NET release also occurs through an early/rapid ROS-independent mechanism, named early/rapid vital netosis. Here we analyze the role of ROS, NE, MPO and PAD4 in the netosis stimulated by Leishmania amazonensis promastigotes in human neutrophils. We demonstrate that promastigotes induce a classical netosis, dependent on the cellular redox imbalance, as well as by a chloroamidine sensitive and elastase activity mechanism. Additionally, Leishmania also induces the early/rapid NET release occurring only 10 minutes after neutrophil-parasite interaction. We demonstrate here, that this early/rapid mechanism is dependent on elastase activity, but independent of ROS generation and chloroamidine. A better understanding of both mechanisms of NET release, and the NETs effects on the host immune system modulation, could support the development of new potential therapeutic strategies for leishmaniasis.

  5. Tani in the U.S. Laboratory during Node 2/PMA-2 Relocation

    NASA Image and Video Library

    2007-11-14

    ISS016-E-011253 (14 Nov. 2007) --- Astronaut Daniel Tani, Expedition 16 flight engineer, works the controls of the space station's robotic Canadarm2 in the Destiny laboratory of the International Space Station, during the relocation of the Harmony node and Pressurized Mating Adapter 2 (PMA2) from the Unity node to the front of Destiny.

  6. A Genetic Screen for Pathogenicity Genes in the Hemibiotrophic Fungus Colletotrichum higginsianum Identifies the Plasma Membrane Proton Pump Pma2 Required for Host Penetration

    PubMed Central

    Dahl, Marlis; Müller, Susanne; Voll, Lars M.; Koch, Christian

    2015-01-01

    We used insertional mutagenesis by Agrobacterium tumefaciens mediated transformation (ATMT) to isolate pathogenicity mutants of Colletotrichum higginsianum. From a collection of 7200 insertion mutants we isolated 75 mutants with reduced symptoms. 19 of these were affected in host penetration, while 17 were affected in later stages of infection, like switching to necrotrophic growth. For 16 mutants the location of T-DNA insertions could be identified by PCR. A potential plasma membrane H+-ATPase Pma2 was targeted in five independent insertion mutants. We genetically inactivated the Ku80 component of the non-homologous end-joining pathway in C. higginsianum to establish an efficient gene knockout protocol. Chpma2 deletion mutants generated by homologous recombination in the ΔChku80 background form fully melanized appressoria but entirely fail to penetrate the host tissue and are non-pathogenic. The ChPMA2 gene is induced upon appressoria formation and infection of A. thaliana. Pma2 activity is not important for vegetative growth of saprophytically growing mycelium, since the mutant shows no growth penalty under these conditions. Colletotrichum higginsianum codes for a closely related gene (ChPMA1), which is highly expressed under most growth conditions. ChPMA1 is more similar to the homologous yeast genes for plasma membrane pumps. We propose that expression of a specific proton pump early during infection may be common to many appressoria forming fungal pathogens as we found ChPMA2 orthologs in several plant pathogenic fungi. PMID:25992547

  7. Neutrophil ageing is regulated by the microbiome

    PubMed Central

    Zhang, Dachuan; Chen, Grace; Manwani, Deepa; Mortha, Arthur; Xu, Chunliang; Faith, Jeremiah J.; Burk, Robert D.; Kunisaki, Yuya; Jang, Jung-Eun; Scheiermann, Christoph; Merad, Miriam; Frenette, Paul S.

    2015-01-01

    Blood polymorphonuclear neutrophils provide immune protection against pathogens but also may promote tissue injury in inflammatory diseases1,2. Although neutrophils are generally considered as a relatively homogeneous population, evidence for heterogeneity is emerging3,4. Under steady-state conditions, neutrophil heterogeneity may arise from ageing and the replenishment by newly released neutrophils from the bone marrow5. Aged neutrophils up-regulate CXCR4, a receptor allowing their clearance in the bone marrow6,7, with feedback inhibition of neutrophil production via the IL17/G-CSF axis8, and rhythmic modulation of the haematopoietic stem cell niche5. The aged subset also expresses low levels of L-selectin (CD62L)5,9. Previous studies have suggested that in vitro-aged neutrophils exhibit impaired migration and reduced pro-inflammatory properties6,10. Here, we show using in vivo ageing analyses that the neutrophil pro-inflammatory activity correlates positively with their ageing in the circulation. Aged neutrophils represent an overly active subset exhibiting enhanced αMβ2 integrin (Mac-1) activation and neutrophil extracellular trap (NET) formation under inflammatory conditions. Neutrophil ageing is driven by the microbiota via Toll-like receptors (TLRs)- and myeloid differentiation factor 88 (Myd88)-mediated signalling pathways. Depletion of the microbiota significantly reduces the number of circulating aged neutrophils and dramatically improves the pathogenesis and inflammation-related organ damage in models of sickle cell disease or endotoxin-induced septic shock. These results thus identify an unprecedented role for the microbiota in regulating a disease-promoting neutrophil subset. PMID:26374999

  8. Effects of an anti-inflammatory VAP-1/SSAO inhibitor, PXS-4728A, on pulmonary neutrophil migration.

    PubMed

    Schilter, Heidi C; Collison, Adam; Russo, Remo C; Foot, Jonathan S; Yow, Tin T; Vieira, Angelica T; Tavares, Livia D; Mattes, Joerg; Teixeira, Mauro M; Jarolimek, Wolfgang

    2015-03-20

    The persistent influx of neutrophils into the lung and subsequent tissue damage are characteristics of COPD, cystic fibrosis and acute lung inflammation. VAP-1/SSAO is an endothelial bound adhesion molecule with amine oxidase activity that is reported to be involved in neutrophil egress from the microvasculature during inflammation. This study explored the role of VAP-1/SSAO in neutrophilic lung mediated diseases and examined the therapeutic potential of the selective inhibitor PXS-4728A. Mice treated with PXS-4728A underwent intra-vital microscopy visualization of the cremaster muscle upon CXCL1/KC stimulation. LPS inflammation, Klebsiella pneumoniae infection, cecal ligation and puncture as well as rhinovirus exacerbated asthma models were also assessed using PXS-4728A. Selective VAP-1/SSAO inhibition by PXS-4728A diminished leukocyte rolling and adherence induced by CXCL1/KC. Inhibition of VAP-1/SSAO also dampened the migration of neutrophils to the lungs in response to LPS, Klebsiella pneumoniae lung infection and CLP induced sepsis; whilst still allowing for normal neutrophil defense function, resulting in increased survival. The functional effects of this inhibition were demonstrated in the RV exacerbated asthma model, with a reduction in cellular infiltrate correlating with a reduction in airways hyperractivity. This study demonstrates that the endothelial cell ligand VAP-1/SSAO contributes to the migration of neutrophils during acute lung inflammation, pulmonary infection and airway hyperractivity. These results highlight the potential of inhibiting of VAP-1/SSAO enzymatic function, by PXS-4728A, as a novel therapeutic approach in lung diseases that are characterized by neutrophilic pattern of inflammation.

  9. Anti-inflammatory properties of clovamide and Theobroma cacao phenolic extracts in human monocytes: evaluation of respiratory burst, cytokine release, NF-κB activation, and PPARγ modulation.

    PubMed

    Zeng, Huawu; Locatelli, Monica; Bardelli, Claudio; Amoruso, Angela; Coisson, Jean Daniel; Travaglia, Fabiano; Arlorio, Marco; Brunelleschi, Sandra

    2011-05-25

    There is a great interest in the potential health benefits of biologically active phenolic compounds in cocoa (Theobroma cacao) and dark chocolate. We investigated the anti-inflammatory potential of clovamide (a N-phenylpropenoyl-L-amino acid amide present in cocoa beans) and two phenolic extracts from unroasted and roasted cocoa beans, by evaluating superoxide anion (O(2)(-)) production, cytokine release, and NF-κB activation in human monocytes stimulated by phorbol 12-myristate 13-acetate (PMA). The effects of rosmarinic acid are shown for comparison. Clovamide and rosmarinic acid inhibited PMA-induced O(2)(-) production and cytokine release (with a bell-shaped curve and maximal inhibition at 10-100 nM), as well as PMA-induced NF-κB activation; the two cocoa extracts were less effective. In all tests, clovamide was the most potent compound and also enhanced peroxisome proliferator-activated receptor-γ (PPARγ) activity, which may exert anti-inflammatory effects. These findings indicate clovamide as a possible bioactive compound with anti-inflammatory activity in human cells.

  10. G-CSF Analogue Treatment Increases Peripheral Neutrophil Numbers in Pigs - a Potential Alternative for In-Feed Antibiotics

    USDA-ARS?s Scientific Manuscript database

    Immunomodulators is a promising area for therapeutic, prophylactic, and metaphylactic use to prevent and combat infectious disease during periods of peak disease incidence. Granulocyte colony-stimulating factor (G-CSF) enhances neutrophil production and release from the bone marrow and is already li...

  11. Dual Effects of Cell Free Supernatants from Lactobacillus acidophilus and Lactobacillus rhamnosus GG in Regulation of MMP-9 by Up-Regulating TIMP-1 and Down-Regulating CD147 in PMA- Differentiated THP-1 Cells

    PubMed Central

    Maghsood, Faezeh; Mirshafiey, Abbas; Farahani, Mohadese M.; Modarressi, Mohammad Hossein; Jafari, Parvaneh; Motevaseli, Elahe

    2018-01-01

    Objective Recent studies have reported dysregulated expression of matrix metalloproteinases (MMPs), especially MMP-2, MMP-9, tissue inhibitor of metalloproteinase-1, -2 (TIMP-1, TIMP-2), and extracellular matrix metalloproteinase inducer (EMMPRIN/CD147) in activated macrophages of patients with inflammatory diseases. Therefore, MMP-2, MMP-9, and their regulators may represent a new target for treatment of inflammatory diseases. Probiotics, which are comprised of lactic acid bacteria, have the potential to modulate inflammatory responses. In this experimental study, we investigated the anti-inflammatory effects of cell-free supernatants (CFS) from Lactobacillus acidophilus (L. acidophilus) and L. rhamnosus GG (LGG) in phorbol myristate acetate (PMA)-differentiated THP-1 cells. Materials and Methods In this experimental study, PMA-differentiated THP-1 cells were treated with CFS from L. acidophilus, LGG and uninoculated bacterial growth media (as a control). The expression of MMP-2, MMP-9, TIMP-1, and TIMP-2 mRNAs were determined using real-time quantitative reverse transcription polymerase chain reaction (RT- PCR). The levels of cellular surface expression of CD147 were assessed by flow cytometry, and the gelatinolytic activity of MMP-2 and MMP-9 were determined by zymography. Results Our results showed that CFS from both L. acidophilus and LGG significantly inhibited the gene expression of MMP-9 (P=0.0011 and P=0.0005, respectively), increased the expression of TIMP-1 (P<0.0001), decreased the cell surface expression of CD147 (P=0.0307 and P=0.0054, respectively), and inhibited the gelatinolytic activity of MMP-9 (P=0.0003 and P<0.0001, respectively) in PMA-differentiated THP-1 cells. Although, MMP-2 expression and activity and TIMP-2 expression remained unchanged. Conclusion Our results indicate that CFS from L. acidophilus and LGG possess anti-inflammatory properties and can modulate the inflammatory response. PMID:29105390

  12. Nicotinamide treatment ameliorates the course of experimental colitis mediated by enhanced neutrophil-specific antibacterial clearance.

    PubMed

    Bettenworth, Dominik; Nowacki, Tobias M; Ross, Matthias; Kyme, Pierre; Schwammbach, Daniela; Kerstiens, Linda; Thoennissen, Gabriela B; Bokemeyer, Carsten; Hengst, Karin; Berdel, Wolfgang E; Heidemann, Jan; Thoennissen, Nils H

    2014-07-01

    In previous studies, we could show that the B vitamin nicotinamide (NAM) enhanced antimicrobial activity of neutrophils. Here, we assessed the effects of NAM in two models of experimental colitis. Colitis was induced in C57BL/6 mice either by oral infection with Citrobacter rodentium or by DSS (dextran sodium sulphate) administration, and animals were systemically treated with NAM. Ex vivo bacterial clearance was assessed in murine and human whole blood, as well as isolated human neutrophils. In C. rodentium-induced colitis, NAM treatment resulted in markedly decreased systemic bacterial invasion, histological damage and increased fecal clearance of C. rodentium by up to 600-fold. In contrast, NAM had no effect when administered to neutrophil-depleted mice. Ex vivo stimulation of isolated human neutrophils, as well as murine and human whole blood with NAM led to increased clearance of C. rodentium and enhanced expression of antimicrobial peptides in neutrophils. Moreover, NAM treatment significantly ameliorated the course of DSS colitis, as assessed by body weight, histological damage and myeloperoxidase activity. Pharmacological application of NAM mediates beneficial effects in bacterial and chemically induced colitis. Future studies are needed to explore the clinical potential of NAM in the context of intestinal bacterial infections and human inflammatory bowel disease (IBD). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo.

    PubMed

    von Brühl, Marie-Luise; Stark, Konstantin; Steinhart, Alexander; Chandraratne, Sue; Konrad, Ildiko; Lorenz, Michael; Khandoga, Alexander; Tirniceriu, Anca; Coletti, Raffaele; Köllnberger, Maria; Byrne, Robert A; Laitinen, Iina; Walch, Axel; Brill, Alexander; Pfeiler, Susanne; Manukyan, Davit; Braun, Siegmund; Lange, Philipp; Riegger, Julia; Ware, Jerry; Eckart, Annekathrin; Haidari, Selgai; Rudelius, Martina; Schulz, Christian; Echtler, Katrin; Brinkmann, Volker; Schwaiger, Markus; Preissner, Klaus T; Wagner, Denisa D; Mackman, Nigel; Engelmann, Bernd; Massberg, Steffen

    2012-04-09

    Deep vein thrombosis (DVT) is a major cause of cardiovascular death. The sequence of events that promote DVT remains obscure, largely as a result of the lack of an appropriate rodent model. We describe a novel mouse model of DVT which reproduces a frequent trigger and resembles the time course, histological features, and clinical presentation of DVT in humans. We demonstrate by intravital two-photon and epifluorescence microscopy that blood monocytes and neutrophils crawling along and adhering to the venous endothelium provide the initiating stimulus for DVT development. Using conditional mutants and bone marrow chimeras, we show that intravascular activation of the extrinsic pathway of coagulation via tissue factor (TF) derived from myeloid leukocytes causes the extensive intraluminal fibrin formation characteristic of DVT. We demonstrate that thrombus-resident neutrophils are indispensable for subsequent DVT propagation by binding factor XII (FXII) and by supporting its activation through the release of neutrophil extracellular traps (NETs). Correspondingly, neutropenia, genetic ablation of FXII, or disintegration of NETs each confers protection against DVT amplification. Platelets associate with innate immune cells via glycoprotein Ibα and contribute to DVT progression by promoting leukocyte recruitment and stimulating neutrophil-dependent coagulation. Hence, we identified a cross talk between monocytes, neutrophils, and platelets responsible for the initiation and amplification of DVT and for inducing its unique clinical features.

  14. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo

    PubMed Central

    von Brühl, Marie-Luise; Stark, Konstantin; Steinhart, Alexander; Chandraratne, Sue; Konrad, Ildiko; Lorenz, Michael; Khandoga, Alexander; Tirniceriu, Anca; Coletti, Raffaele; Köllnberger, Maria; Byrne, Robert A.; Laitinen, Iina; Walch, Axel; Brill, Alexander; Pfeiler, Susanne; Manukyan, Davit; Braun, Siegmund; Lange, Philipp; Riegger, Julia; Ware, Jerry; Eckart, Annekathrin; Haidari, Selgai; Rudelius, Martina; Schulz, Christian; Echtler, Katrin; Brinkmann, Volker; Schwaiger, Markus; Preissner, Klaus T.; Wagner, Denisa D.; Mackman, Nigel; Engelmann, Bernd

    2012-01-01

    Deep vein thrombosis (DVT) is a major cause of cardiovascular death. The sequence of events that promote DVT remains obscure, largely as a result of the lack of an appropriate rodent model. We describe a novel mouse model of DVT which reproduces a frequent trigger and resembles the time course, histological features, and clinical presentation of DVT in humans. We demonstrate by intravital two-photon and epifluorescence microscopy that blood monocytes and neutrophils crawling along and adhering to the venous endothelium provide the initiating stimulus for DVT development. Using conditional mutants and bone marrow chimeras, we show that intravascular activation of the extrinsic pathway of coagulation via tissue factor (TF) derived from myeloid leukocytes causes the extensive intraluminal fibrin formation characteristic of DVT. We demonstrate that thrombus-resident neutrophils are indispensable for subsequent DVT propagation by binding factor XII (FXII) and by supporting its activation through the release of neutrophil extracellular traps (NETs). Correspondingly, neutropenia, genetic ablation of FXII, or disintegration of NETs each confers protection against DVT amplification. Platelets associate with innate immune cells via glycoprotein Ibα and contribute to DVT progression by promoting leukocyte recruitment and stimulating neutrophil-dependent coagulation. Hence, we identified a cross talk between monocytes, neutrophils, and platelets responsible for the initiation and amplification of DVT and for inducing its unique clinical features. PMID:22451716

  15. ISS Node-1 and PMA-1 rotated in KSC's SSPF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The International Space Station's Node 1 and Pressurized Mating Adapter-1 (PMA-1) are rotated by workers in KSC's Space Station Processing Facility. The node is rotated to provide access to different areas of the flight element for processing. Here, the node is rotated to provide access for the installation of heat pipe radiators and a flight computer. The node is scheduled to launch into space on STS-88, slated for a July 9 liftoff at 1:11 p.m. from KSC's Launch Pad 39B.

  16. Intramuscular Administration of a Synthetic CpG-Oligodeoxynucleotide Modulates Functional Responses of Neutrophils of Neonatal Foals

    PubMed Central

    Cohen, Noah D.; Bourquin, Jessica R.; Bordin, Angela I.; Kuskie, Kyle R.; Brake, Courtney N.; Weaver, Kaytee B.; Liu, Mei; Felippe, M. Julia B.; Kogut, Michael H.

    2014-01-01

    Neutrophils play an important role in protecting against infection. Foals have age-dependent deficiencies in neutrophil function that may contribute to their predisposition to infection. Thus, we investigated the ability of a CpG-ODN formulated with Emulsigen to modulate functional responses of neutrophils in neonatal foals. Eighteen foals were randomly assigned to receive either a CpG-ODN with Emulsigen (N = 9) or saline intramuscularly at ages 1 and 7 days. At ages 1, 3, 9, 14, and 28, blood was collected and neutrophils were isolated from each foal. Neutrophils were assessed for basal and Rhodococcus equi-stimulated mRNA expression of the cytokines interferon-γ (IFN-γ), interleukin (IL)-4, IL-6, and IL-8 using real-time PCR, degranulation by quantifying the amount of β-D glucuronidase activity, and reactive oxygen species (ROS) generation using flow cytometry. In vivo administration of the CpG-ODN formulation on days 1 and 7 resulted in significantly (P<0.05) increased IFN-γ mRNA expression by foal neutrophils on days 3, 9, and 14. Degranulation was significantly (P<0.05) lower for foals in the CpG-ODN-treated group than the control group at days 3 and 14, but not at other days. No effect of treatment on ROS generation was detected. These results indicate that CpG-ODN administration to foals might improve innate and adaptive immune responses that could protect foals against infectious diseases and possibly improve responses to vaccination. PMID:25333660

  17. Solar ultraviolet irradiation induces decorin degradation in human skin likely via neutrophil elastase.

    PubMed

    Li, Yong; Xia, Wei; Liu, Ying; Remmer, Henriette A; Voorhees, John; Fisher, Gary J

    2013-01-01

    Exposure of human skin to solar ultraviolet (UV) irradiation induces matrix metalloproteinase-1 (MMP-1) activity, which degrades type I collagen fibrils. Type I collagen is the most abundant protein in skin and constitutes the majority of skin connective tissue (dermis). Degradation of collagen fibrils impairs the structure and function of skin that characterize skin aging. Decorin is the predominant proteoglycan in human dermis. In model systems, decorin binds to and protects type I collagen fibrils from proteolytic degradation by enzymes such as MMP-1. Little is known regarding alterations of decorin in response to UV irradiation. We found that solar-simulated UV irradiation of human skin in vivo stimulated substantial decorin degradation, with kinetics similar to infiltration of polymorphonuclear (PMN) cells. Proteases that were released from isolated PMN cells degraded decorin in vitro. A highly selective inhibitor of neutrophil elastase blocked decorin breakdown by proteases released from PMN cells. Furthermore, purified neutrophil elastase cleaved decorin in vitro and generated fragments with similar molecular weights as those resulting from protease activity released from PMN cells, and as observed in UV-irradiated human skin. Cleavage of decorin by neutrophil elastase significantly augmented fragmentation of type I collagen fibrils by MMP-1. Taken together, these data indicate that PMN cell proteases, especially neutrophil elastase, degrade decorin, and this degradation renders collagen fibrils more susceptible to MMP-1 cleavage. These data identify decorin degradation and neutrophil elastase as potential therapeutic targets for mitigating sun exposure-induced collagen fibril degradation in human skin.

  18. Short-Chain Fatty Acid Acetate Stimulates Adipogenesis and Mitochondrial Biogenesis via GPR43 in Brown Adipocytes.

    PubMed

    Hu, Jiamiao; Kyrou, Ioannis; Tan, Bee K; Dimitriadis, Georgios K; Ramanjaneya, Manjunath; Tripathi, Gyanendra; Patel, Vanlata; James, Sean; Kawan, Mohamed; Chen, Jing; Randeva, Harpal S

    2016-05-01

    Short-chain fatty acids play crucial roles in a range of physiological functions. However, the effects of short-chain fatty acids on brown adipose tissue have not been fully investigated. We examined the role of acetate, a short-chain fatty acid formed by fermentation in the gut, in the regulation of brown adipocyte metabolism. Our results show that acetate up-regulates adipocyte protein 2, peroxisomal proliferator-activated receptor-γ coactivator-1α, and uncoupling protein-1 expression and affects the morphological changes of brown adipocytes during adipogenesis. Moreover, an increase in mitochondrial biogenesis was observed after acetate treatment. Acetate also elicited the activation of ERK and cAMP response element-binding protein, and these responses were sensitive to G(i/o)-type G protein inactivator, Gβγ-subunit inhibitor, phospholipase C inhibitor, and MAPK kinase inhibitor, indicating a role for the G(i/o)βγ/phospholipase C/protein kinase C/MAPK kinase signaling pathway in these responses. These effects of acetate were mimicked by treatment with 4-chloro-α-(1-methylethyl)-N-2-thiazolylbenzeneacetamide, a synthetic G protein-coupled receptor 43 (GPR43) agonist and were impaired in GPR43 knockdown cells. Taken together, our results indicate that acetate may have important physiological roles in brown adipocytes through the activation of GPR43.

  19. Harnessing Neutrophil Survival Mechanisms during Chronic Infection by Pseudomonas aeruginosa: Novel Therapeutic Targets to Dampen Inflammation in Cystic Fibrosis.

    PubMed

    Marteyn, Benoît S; Burgel, Pierre-Régis; Meijer, Laurent; Witko-Sarsat, Véronique

    2017-01-01

    More than two decades after cloning the cystic fibrosis transmembrane regulator (CFTR) gene, the defective gene in cystic fibrosis (CF), we still do not understand how dysfunction of this ion channel causes lung disease and the tremendous neutrophil burden which persists within the airways; nor why chronic colonization by Pseudomonas aeruginosa develops in CF patients who are thought to be immunocompetent. It appears that the microenvironment within the lung of CF patients provides favorable conditions for both P. aeruginosa colonization and neutrophil survival. In this context, the ability of bacteria to induce hypoxia, which in turn affects neutrophil survival is an additional level of complexity that needs to be accounted for when controlling neutrophil fate in CF. Recent studies have underscored the importance of neutrophils in innate immunity and their functions appear to extend far beyond their well-described role in antibacterial defense. Perhaps a disturbance in neutrophil reprogramming during the course of an infection severely modulates the inflammatory response in CF. Furthermore there is an emerging concept that the CFTR itself may be an immune modulator and stimulating CFTR function in CF patients could promote neutrophil and macrophages antimicrobial function. Fostering the resolution of inflammation by favoring neutrophil apoptosis could preserve their microbicidal activities but decrease their proinflammatory potential. In this context, triggering neutrophil apoptosis with roscovitine may be a potential therapeutic option and this is currently being evaluated in CF patients. In the present review we discuss how neutrophils functions are disturbed in CF and how this may relate to chronic infection with P. aeuginosa and we propose novel research directions aimed at modulating neutrophil survival, dampening lung inflammation and ultimately leading to an amelioration of the lung disease.

  20. Venous levels of shear support neutrophil-platelet adhesion and neutrophil aggregation in blood via P-selectin and beta2-integrin

    NASA Technical Reports Server (NTRS)

    Konstantopoulos, K.; Neelamegham, S.; Burns, A. R.; Hentzen, E.; Kansas, G. S.; Snapp, K. R.; Berg, E. L.; Hellums, J. D.; Smith, C. W.; McIntire, L. V.; hide

    1998-01-01

    BACKGROUND: After activation, platelets adhere to neutrophils via P-selectin and beta2-integrin. The molecular mechanisms and adhesion events in whole blood exposed to venous levels of hydrodynamic shear in the absence of exogenous activation remain unknown. METHODS AND RESULTS: Whole blood was sheared at approximately 100 s(-1). The kinetics of neutrophil-platelet adhesion and neutrophil aggregation were measured in real time by flow cytometry. P-selectin was upregulated to the platelet surface in response to shear and was the primary factor mediating neutrophil-platelet adhesion. The extent of neutrophil aggregation increased linearly with platelet adhesion to neutrophils. Blocking either P-selectin, its glycoprotein ligand PSGL-1, or both simultaneously by preincubation with a monoclonal antibody resulted in equivalent inhibition of neutrophil-platelet adhesion (approximately 30%) and neutrophil aggregation (approximately 70%). The residual amount of neutrophil adhesion was blocked with anti-CD11b/CD18. Treatment of blood with prostacyclin analogue ZK36374, which raises cAMP levels in platelets, blocked P-selectin upregulation and neutrophil aggregation to baseline. Complete abrogation of platelet-neutrophil adhesion required both ZK36374 and anti-CD18. Electron microscopic observations of fixed blood specimens revealed that platelets augmented neutrophil aggregation both by forming bridges between neutrophils and through contact-mediated activation. CONCLUSIONS: The results are consistent with a model in which venous levels of shear support platelet adherence to neutrophils via P-selectin binding PSGL-1. This interaction alone is sufficient to mediate neutrophil aggregation. Abrogation of platelet adhesion and aggregation requires blocking Mac-1 in addition to PSGL-1 or P-selectin. The described mechanisms are likely of key importance in the pathogenesis and progression of thrombotic disorders that are exacerbated by leukocyte-platelet aggregation.

  1. Venous levels of shear support neutrophil-platelet adhesion and neutrophil aggregation in blood via P-selectin and beta2-integrin.

    PubMed

    Konstantopoulos, K; Neelamegham, S; Burns, A R; Hentzen, E; Kansas, G S; Snapp, K R; Berg, E L; Hellums, J D; Smith, C W; McIntire, L V; Simon, S I

    1998-09-01

    After activation, platelets adhere to neutrophils via P-selectin and beta2-integrin. The molecular mechanisms and adhesion events in whole blood exposed to venous levels of hydrodynamic shear in the absence of exogenous activation remain unknown. Whole blood was sheared at approximately 100 s(-1). The kinetics of neutrophil-platelet adhesion and neutrophil aggregation were measured in real time by flow cytometry. P-selectin was upregulated to the platelet surface in response to shear and was the primary factor mediating neutrophil-platelet adhesion. The extent of neutrophil aggregation increased linearly with platelet adhesion to neutrophils. Blocking either P-selectin, its glycoprotein ligand PSGL-1, or both simultaneously by preincubation with a monoclonal antibody resulted in equivalent inhibition of neutrophil-platelet adhesion (approximately 30%) and neutrophil aggregation (approximately 70%). The residual amount of neutrophil adhesion was blocked with anti-CD11b/CD18. Treatment of blood with prostacyclin analogue ZK36374, which raises cAMP levels in platelets, blocked P-selectin upregulation and neutrophil aggregation to baseline. Complete abrogation of platelet-neutrophil adhesion required both ZK36374 and anti-CD18. Electron microscopic observations of fixed blood specimens revealed that platelets augmented neutrophil aggregation both by forming bridges between neutrophils and through contact-mediated activation. The results are consistent with a model in which venous levels of shear support platelet adherence to neutrophils via P-selectin binding PSGL-1. This interaction alone is sufficient to mediate neutrophil aggregation. Abrogation of platelet adhesion and aggregation requires blocking Mac-1 in addition to PSGL-1 or P-selectin. The described mechanisms are likely of key importance in the pathogenesis and progression of thrombotic disorders that are exacerbated by leukocyte-platelet aggregation.

  2. Expression of IL-17A concentration and effector functions of peripheral blood neutrophils in food allergy hypersensitivity patients.

    PubMed

    Żbikowska-Gotz, Magdalena; Pałgan, Krzysztof; Gawrońska-Ukleja, Ewa; Kuźmiński, Andrzej; Przybyszewski, Michał; Socha, Ewa; Bartuzi, Zbigniew

    2016-03-01

    Lymphocytes Th17 and other types of immune system cells produce IL17. By induction of cytokines and chemokines, the IL17 cytokine is involved in mechanisms of allergic reaction with participation of neutrophil granulocytes. It affects activation, recruitment, and migration of neutrophils to the tissues, regulating inflammatory reaction intensity. Excited neutrophils secrete inter alia elastase and reactive oxygen species (ROS)--significant mediators of inflammation process responsible for tissues damage.The aim of the study was to evaluate the concentrations of serum interleukin 17A, serum neutrophil elastase, and ROS production by neutrophils in patients with food allergy.The study included 30 patients with food allergy diagnosed based on interview, clinical symptoms, positive SPT, placebo controlled double-blind oral provocation trial, and the presence of asIgE in blood serum against selected food allergens using fluoro-immuno-enzymatic method FEIA UNICap 100. The control group consisted of 10 healthy volunteers. The concentrations of IL17A were determined in all patients using ELISA method with eBioscience kits, and elastase using BenderMed Systems kits. Chemiluminescence of non-stimulated neutrophils was evaluated using luminol-dependent kinetic method for 40 min on Luminoskan (Labsystems luminometer).The results of serum IL-17A concentrations and the values of chemiluminescence obtained by non-activated neutrophils, as well as elastase concentrations, were higher in patients with food allergic hypersensitivity compared to healthy volunteers.This study demonstrates a significance of IL-17A and activated neutrophil granulocytes in the course of diseases with food allergic hypersensitivity. © The Author(s) 2015.

  3. Neutrophil chemotaxis in cord blood of term and preterm neonates is reduced in preterm neonates and influenced by the mode of delivery and anaesthesia.

    PubMed

    Birle, Alexandra; Nebe, C Thomas; Hill, Sandra; Hartmann, Karin; Poeschl, Johannes; Koch, Lutz

    2015-01-01

    Bacterial infections, even without any perinatal risk factors, are common in newborns, especially in preterm neonates. The aim of this study was to evaluate possible impairment of neutrophil chemotaxis in term and preterm neonates compared with adults as well as neonates with different modes of delivery and anaesthesia. We analysed the expression of the adhesion molecule L-Selectin as well as shape change, spontaneous and N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced transmigration of neutrophils in a flow cytometric assay of chemotaxis after spontaneous delivery with Cesarian Section (CS) under spinal anaesthesia (mepivacaine, sufentanil), epidural anaesthesia (ropivacaine or bupivacaine, sufentanil) or general anaesthesia (ketamine, thiopental, succinylcholine). Chemokinesis was higher (p=0.008) in cord blood neutrophils than in the adult ones, whereas those could be more stimulated by fMLP (p=0.02). After vaginal delivery neutrophils showed a higher spontaneous and fMLP-stimulated chemotactic response compared to neonates after CS without labor. Comparing different types of anaesthesia for CS, spinal anaesthesia resulted in less impairment on chemotaxis than general anaesthesia or epidural anaesthesia. The new flow cytometric assay of neutrophil chemotaxis is an appropriate and objective method to analyse functional differences even in very small volumes of blood, essential in neonatology. Term neonates do not show reduced chemotaxis compared to adults. Preterm neonates present with reduced chemotaxis and chemokinesis, confirming the well known deficits in their neutrophil function. The side effects of maternal drugs on the neonatal immune system have to be considered especially when the immune response is already impaired, as in preterm infants.

  4. Evaluation of genome-wide expression profiles of blood and sputum neutrophils in cystic fibrosis patients before and after antibiotic therapy.

    PubMed

    Conese, Massimo; Castellani, Stefano; Lepore, Silvia; Palumbo, Orazio; Manca, Antonio; Santostasi, Teresa; Polizzi, Angela Maria; Copetti, Massimiliano; Di Gioia, Sante; Casavola, Valeria; Guerra, Lorenzo; Diana, Anna; Montemurro, Pasqualina; Mariggiò, Maria Addolorata; Gallo, Crescenzio; Maffione, Angela Bruna; Carella, Massimo

    2014-01-01

    In seeking more specific biomarkers of the cystic fibrosis (CF) lung inflammatory disease that would be sensitive to antibiotic therapy, we sought to evaluate the gene expression profiles of neutrophils in CF patients before treatment in comparison with non-CF healthy individuals and after antibiotic treatment. Genes involved in neutrophil-mediated inflammation, i.e. chemotaxis, respiratory burst, apoptosis, and granule exocytosis, were the targets of this study. Microarray analysis was carried out in blood and airway neutrophils from CF patients and in control subjects. A fold change (log) threshold of 1.4 and a cut-off of p<0.05 were utilized to identify significant genes. Community networks and principal component analysis were used to distinguish the groups of controls, pre- and post-therapy patients. Control subjects and CF patients before therapy were readily separated, whereas a clear distinction between patients before and after antibiotic therapy was not possible. Blood neutrophils before therapy presented 269 genes down-regulated and 56 up-regulated as compared with control subjects. Comparison between the same patients before and after therapy showed instead 44 genes down-regulated and 72 up-regulated. Three genes appeared to be sensitive to therapy and returned to "healthy" condition: phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1), hydrogen voltage-gated channel 1 (HVCN1), and β-arrestin 1 (ARRB1). The up-regulation of these genes after therapy were confirmed by real time PCR. In airway neutrophils, 1029 genes were differentially expressed post- vs pre-therapy. Of these, 30 genes were up-regulated and 75 down-regulated following antibiotic treatment. However, biological plausibility determined that only down-regulated genes belonged to the gene classes studied for blood neutrophils. Finally, it was observed that commonly expressed genes showed a greater variability in airway neutrophils than that found in blood neutrophils, both before and

  5. Evaluation of Genome-Wide Expression Profiles of Blood and Sputum Neutrophils in Cystic Fibrosis Patients Before and After Antibiotic Therapy

    PubMed Central

    Conese, Massimo; Castellani, Stefano; Lepore, Silvia; Palumbo, Orazio; Manca, Antonio; Santostasi, Teresa; Polizzi, Angela Maria; Copetti, Massimiliano; Di Gioia, Sante; Casavola, Valeria; Guerra, Lorenzo; Diana, Anna; Montemurro, Pasqualina; Mariggiò, Maria Addolorata; Gallo, Crescenzio; Maffione, Angela Bruna; Carella, Massimo

    2014-01-01

    In seeking more specific biomarkers of the cystic fibrosis (CF) lung inflammatory disease that would be sensitive to antibiotic therapy, we sought to evaluate the gene expression profiles of neutrophils in CF patients before treatment in comparison with non-CF healthy individuals and after antibiotic treatment. Genes involved in neutrophil-mediated inflammation, i.e. chemotaxis, respiratory burst, apoptosis, and granule exocytosis, were the targets of this study. Microarray analysis was carried out in blood and airway neutrophils from CF patients and in control subjects. A fold change (log) threshold of 1.4 and a cut-off of p<0.05 were utilized to identify significant genes. Community networks and principal component analysis were used to distinguish the groups of controls, pre- and post-therapy patients. Control subjects and CF patients before therapy were readily separated, whereas a clear distinction between patients before and after antibiotic therapy was not possible. Blood neutrophils before therapy presented 269 genes down-regulated and 56 up-regulated as compared with control subjects. Comparison between the same patients before and after therapy showed instead 44 genes down-regulated and 72 up-regulated. Three genes appeared to be sensitive to therapy and returned to “healthy” condition: phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1), hydrogen voltage-gated channel 1 (HVCN1), and β-arrestin 1 (ARRB1). The up-regulation of these genes after therapy were confirmed by real time PCR. In airway neutrophils, 1029 genes were differentially expressed post- vs pre-therapy. Of these, 30 genes were up-regulated and 75 down-regulated following antibiotic treatment. However, biological plausibility determined that only down-regulated genes belonged to the gene classes studied for blood neutrophils. Finally, it was observed that commonly expressed genes showed a greater variability in airway neutrophils than that found in blood neutrophils, both before

  6. Tamm-Horsfall Protein Regulates Granulopoiesis and Systemic Neutrophil Homeostasis

    PubMed Central

    Micanovic, Radmila; Chitteti, Brahmananda R.; Dagher, Pierre C.; Srour, Edward F.; Khan, Shehnaz; Hato, Takashi; Lyle, Allison; Tong, Yan; Wu, Xue-Ru

    2015-01-01

    Tamm-Horsfall protein (THP) is a glycoprotein uniquely expressed in the kidney. We recently showed an important role for THP in mediating tubular cross-talk in the outer medulla and in suppressing neutrophil infiltration after kidney injury. However, it remains unclear whether THP has a broader role in neutrophil homeostasis. In this study, we show that THP deficiency in mice increases the number of neutrophils, not only in the kidney but also in the circulation and in the liver, through enhanced granulopoiesis in the bone marrow. Using multiplex ELISA, we identified IL-17 as a key granulopoietic cytokine specifically upregulated in the kidneys but not in the liver of THP−/− mice. Indeed, neutralization of IL-17 in THP−/− mice completely reversed the systemic neutrophilia. Furthermore, IL-23 was also elevated in THP−/− kidneys. We performed real-time PCR on laser microdissected tubular segments and FACS-sorted renal immune cells and identified the S3 proximal segments, but not renal macrophages, as a major source of increased IL-23 synthesis. In conclusion, we show that THP deficiency stimulates proximal epithelial activation of the IL-23/IL-17 axis and systemic neutrophilia. Our findings provide evidence that the kidney epithelium in the outer medulla can regulate granulopoiesis. When this novel function is added to its known role in erythropoiesis, the kidney emerges as an important regulator of the hematopoietic system. PMID:25556169

  7. Theophylline therapy inhibits neutrophil and mononuclear cell chemotaxis from chronic asthmatic children.

    PubMed Central

    Condino-Neto, A; Vilela, M M; Cambiucci, E C; Ribeiro, J D; Guglielmi, A A; Magna, L A; De Nucci, G

    1991-01-01

    1. Theophylline is commonly used to relieve symptoms of chronic asthma. Since neutrophil and mononuclear cell activation are associated with late phase asthmatic reactions, effects of theophylline on these cells may be of importance. 2. In the present investigation we compared neutrophil and mononuclear cell chemotaxis from chronic asthmatic children during and after theophylline therapy. 3. Thirty patients were recruited for the study. Each patient received theophylline orally for 10 days. The theophylline dose was 20 mg kg-1 day-1 given in four divided doses. On the tenth day, blood was collected into heparinized (100 u ml-1) and siliconized tubes 2 h after the last theophylline dose for chemotactic assays, cAMP and theophylline plasma determinations. When clinical conditions allowed, theophylline was discontinued for 7 days and the chemotactic assays, cAMP and theophylline plasma concentrations repeated. Serum complement and IgE levels were also determined. 4. Theophylline therapy clearly inhibited both spontaneous and stimulated neutrophil and mononuclear cell chemotaxis. Twenty-seven patients had therapeutic plasma concentrations of theophylline (5-20 micrograms ml-1). Discontinuation of theophylline therapy caused a significant decrease in plasma cAMP levels (44 and 31 pmol ml-1 respectively during and after treatment, n = 30, P less than 0.001). 5. The inhibition of neutrophil and mononuclear cell migration by theophylline therapy in chronic asthmatic children may be beneficial for the control of the inflammatory response observed in these patients. PMID:1659436

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinson, E.A.; Goldstein, D.; Brown, J.H.

    We examined the relationship between phosphatidylcholine (PC) hydrolysis, phosphoinositide hydrolysis, and diacylglycerol (DAG) formation in response to muscarinic acetylcholine receptor (mAChR) stimulation in 1321N1 astrocytoma cells. Carbachol increases the release of (3H)choline and (3H)phosphorylcholine ((3H)Pchol) from cells containing (3H)choline-labeled PC. The production of Pchol is rapid and transient, while choline production continues for at least 30 min. mAChR-stimulated release of Pchol is reduced in cells that have been depleted of intracellular Ca2+ stores by ionomycin pretreatment, whereas choline release is unaffected by this pretreatment. Phorbol 12-myristate 13-acetate (PMA) increases the release of choline, but not Pchol, from 1321N1 cells, andmore » down-regulation of protein kinase C blocks the ability of carbachol to stimulate choline production. Taken together, these results suggest that Ca2+ mobilization is involved in mAChR-mediated hydrolysis of PC by a phospholipase C, whereas protein kinase C activation is required for mAChR-stimulated hydrolysis of PC by a phospholipase D. Both carbachol and PMA rapidly increase the formation of (3H)phosphatidic acid ((3H)PA) in cells containing (3H)myristate-labeled PC. (3H)Diacylglycerol ((3H)DAG) levels increase more slowly, suggesting that the predominant pathway for PC hydrolysis is via phospholipase D. When cells are labeled with (3H)myristate and (14C)arachidonate such that there is a much greater 3H/14C ratio in PC compared with the phosphoinositides, the 3H/14C ratio in DAG and PA increases with PMA treatment but decreases in response to carbachol.« less

  9. Antioxidant and neurosedative properties of polyphenols and iridoids from Lippia alba.

    PubMed

    Hennebelle, Thierry; Sahpaz, Sevser; Gressier, Bernard; Joseph, Henry; Bailleul, François

    2008-02-01

    The neurosedative and antioxidative properties of some major compounds isolated from a citral chemotype of Lippia alba were investigated. Binding assays were performed on two CNS inhibitory targets: benzodiazepine and GABA(A) receptors. The most active compound was luteolin-7-diglucuronide, with half maximal inhibitory concentrations (IC(50)) of 101 and 40 microm, respectively. Fifteen compounds isolated from Lippia alba were tested for their radical scavenging capacities against DPPH. Four of the major compounds (verbascoside, calceolarioside E, luteolin-7-diglucuronide and theveside) were also tested for their antioxidant activity against superoxide radical-anion in cell-free (hypoxanthine-xanthine oxidase) and cellular (PMA-stimulated neutrophil granulocytes) systems.

  10. Neutrophil elastase enhances IL-12p40 production by lipopolysaccharide-stimulated macrophages via transactivation of the PAR-2/EGFR/TLR4 signaling pathway.

    PubMed

    Yamaguchi, Rui; Yamamoto, Takatoshi; Sakamoto, Arisa; Narahara, Shinji; Sugiuchi, Hiroyuki; Yamaguchi, Yasuo

    2016-07-01

    Proteinase-activated receptor 2 (PAR-2) and toll-like receptor 4 (TLR4) are involved in innate immune responses and signaling cross-talk between these receptor molecules has the potential to augment an ongoing inflammatory response. The aim of this study was to evaluate the possible cooperative influence of PAR-2 and TLR4 on IL-12p40 production by macrophages after stimulation with lipopolysaccharide (LPS). During culture, GM-CSF upregulated PAR-2 expression by macrophages in a time-dependent manner. Stimulation with LPS enhanced IL-12p40 production by macrophages in a concentration-dependent manner. While human neutrophil elastase (HNE) did not induce IL-12p40 production, pretreatment of macrophages with HNE synergistically increased the IL-12p40 protein level after LPS exposure. Silencing of TLR4 with small interfering RNA blunted the synergistic enhancement of IL-12p40 by HNE combined with LPS. Silencing of β-arrestin 2, p22phox, or ERK1/2 also inhibited an increase of IL-12p40. Interestingly, transfection of macrophages with small interfering RNA duplexes for DUOX-2, EGFR, TLR4, or TRAF6 significantly blunted the increase of IL-12p40 in response to treatment with HNE plus LPS. U73122 and Rottlerin also inhibited the increased production of IL-12p40. In conclusion, HNE is involved in transactivation of TLR4 through activation of DUOX-2/EGFR and synergistically enhances IL-12p40 production by macrophages stimulated with LPS. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The thalidomide analogue CC-3052 inhibits HIV-1 and tumour necrosis factor-alpha (TNF-α) expression in acutely and chronically infected cells in vitro

    PubMed Central

    La Maestra, L; Zaninoni, A; Marriott, J B; Lazzarin, A; Dalgleish, A G; Barcellini, W

    2000-01-01

    We investigated the in vitro effect of the water-soluble, highly stable thalidomide analogue CC-3052 on HIV-1 expression and TNF-α production in latently infected promonocytic U1 cells, acutely infected T cells and monocyte-derived human macrophages (MDM), and in mitogen-stimulated ex vivo cultures from patients with primary acute HIV-1 infection. HIV-1 expression was assessed by Northern blot analysis of RNAs, and ELISA for p24 antigen release and reverse transcriptase (RT) activity. TNF-α expression was evaluated by RT-polymerase chain reaction (PCR)-ELISA for mRNA and ELISA for protein secretion. We demonstrated that CC-3052 is able to inhibit HIV-1 expression, as evaluated by mRNA, p24 release and RT activity, in phorbol myristate acetate (PMA)- and cytokine-stimulated U1 cells. Furthermore, CC-3052 inhibited HIV-1 expression, as evaluated by p24 and RT activity, in acutely infected MDM and T cells. As far as TNF-α is concerned, CC-3052 significantly reduced TNF-α mRNA and protein secretion in PMA-stimulated U937 and U1 cells, and in PMA-stimulated uninfected and acutely infected MDM. Consistently, the addition of CC-3052 reduced TNF-α production in phytohaemagglutinin (PHA) and lipopolysaccharide (LPS)-stimulated whole blood cultures from patients during the primary acute phase of HIV-1 infection. Since TNF-α is among the most potent enhancers of HIV-1 expression, the effect of CC-3052 on TNF-α may account for its inhibitory activity on HIV-1 expression. Given the well documented immunopathological role of TNF-α and its correlation with viral load, advanced disease and poor prognosis, CC-3052 could be an interesting drug for the design of therapeutic strategies in association with anti-retroviral agents. PMID:10606973

  12. The thalidomide analogue CC-3052 inhibits HIV-1 and tumour necrosis factor-alpha (TNF-alpha) expression in acutely and chronically infected cells in vitro.

    PubMed

    La Maestra, L; Zaninoni, A; Marriott, J B; Lazzarin, A; Dalgleish, A G; Barcellini, W

    2000-01-01

    We investigated the in vitro effect of the water-soluble, highly stable thalidomide analogue CC-3052 on HIV-1 expression and TNF-alpha production in latently infected promonocytic U1 cells, acutely infected T cells and monocyte-derived human macrophages (MDM), and in mitogen-stimulated ex vivo cultures from patients with primary acute HIV-1 infection. HIV-1 expression was assessed by Northern blot analysis of RNAs, and ELISA for p24 antigen release and reverse transcriptase (RT) activity. TNF-alpha expression was evaluated by RT-polymerase chain reaction (PCR)-ELISA for mRNA and ELISA for protein secretion. We demonstrated that CC-3052 is able to inhibit HIV-1 expression, as evaluated by mRNA, p24 release and RT activity, in phorbol myristate acetate (PMA)- and cytokine-stimulated U1 cells. Furthermore, CC-3052 inhibited HIV-1 expression, as evaluated by p24 and RT activity, in acutely infected MDM and T cells. As far as TNF-alpha is concerned, CC-3052 significantly reduced TNF-alpha mRNA and protein secretion in PMA-stimulated U937 and U1 cells, and in PMA-stimulated uninfected and acutely infected MDM. Consistently, the addition of CC-3052 reduced TNF-alpha production in phytohaemagglutinin (PHA) and lipopolysaccharide (LPS)-stimulated whole blood cultures from patients during the primary acute phase of HIV-1 infection. Since TNF-alpha is among the most potent enhancers of HIV-1 expression, the effect of CC-3052 on TNF-alpha may account for its inhibitory activity on HIV-1 expression. Given the well documented immunopathological role of TNF-alpha and its correlation with viral load, advanced disease and poor prognosis, CC-3052 could be an interesting drug for the design of therapeutic strategies in association with anti-retroviral agents.

  13. Yersinia pestis subverts the dermal neutrophil response in a mouse model of bubonic plague.

    PubMed

    Shannon, Jeffrey G; Hasenkrug, Aaron M; Dorward, David W; Nair, Vinod; Carmody, Aaron B; Hinnebusch, B Joseph

    2013-08-27

    intradermal infection. We found that neutrophils, innate immune cells that engulf and destroy microbes, are rapidly recruited to the injection site, irrespective of strain virulence, indicating that Y. pestis is unable to subvert neutrophil recruitment to the site of infection. However, we saw a decreased activation of neutrophils that were associated with Y. pestis strains harboring the pCD1 plasmid, which is essential for virulence. These findings indicate a role for pCD1-encoded factors in suppressing the activation/stimulation of these cells in vivo.

  14. NET formation induced by Pseudomonas aeruginosa cystic fibrosis isolates measured as release of myeloperoxidase-DNA and neutrophil elastase-DNA complexes.

    PubMed

    Yoo, Dae-goon; Floyd, Madison; Winn, Matthew; Moskowitz, Samuel M; Rada, Balázs

    2014-08-01

    Cystic fibrosis (CF) airway disease is characterized by Pseudomonas aeruginosa infection and recruitment of neutrophil granulocytes. Neutrophil granule components (myeloperoxidase (MPO), human neutrophil elastase (HNE)), extracellular DNA and P. aeruginosa can all be found in the CF respiratory tract and have all been associated with worsening CF lung function. Pseudomonas-induced formation of neutrophil extracellular traps (NETs) offers a likely mechanism for release of MPO, HNE and DNA from neutrophils. NETs are composed of a DNA backbone decorated with granule proteins like MPO and HNE. Here we sought to examine whether CF clinical isolates of Pseudomonas are capable of inducing NET release from human neutrophil granulocytes. We used two methods to quantify NETs. We modified a previously employed ELISA that detects MPO-DNA complexes and established a new HNE-DNA ELISA. We show that these methods reliably quantify MPO-DNA and HNE-DNA complexes, measures of NET formation. We have found that CF isolates of P. aeruginosa stimulate robust respiratory burst and NET release in human neutrophils. By comparing paired "early" and "late" bacterial isolates obtained from the same CF patient we have found that early isolates induced significantly more NET release than late isolates. Our data support that Pseudomonas-induced NET release represents an important mechanism for release of neutrophil-derived CF inflammatory mediators, and confirm that decreased induction of NET formation is required for long-term adaptation of P. aeruginosa to CF airways. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Targeting Neutrophilic Inflammation Using Polymersome-Mediated Cellular Delivery.

    PubMed

    Robertson, James D; Ward, Jon R; Avila-Olias, Milagros; Battaglia, Giuseppe; Renshaw, Stephen A

    2017-05-01

    Neutrophils are key effector cells in inflammation and play an important role in neutralizing invading pathogens. During inflammation resolution, neutrophils undergo apoptosis before they are removed by macrophages, but if apoptosis is delayed, neutrophils can cause extensive tissue damage and chronic disease. Promotion of neutrophil apoptosis is a potential therapeutic approach for treating persistent inflammation, yet neutrophils have proven difficult cells to manipulate experimentally. In this study, we deliver therapeutic compounds to neutrophils using biocompatible, nanometer-sized synthetic vesicles, or polymersomes, which are internalized by binding to scavenger receptors and subsequently escape the early endosome through a pH-triggered disassembly mechanism. This allows polymersomes to deliver molecules into the cell cytosol of neutrophils without causing cellular activation. After optimizing polymersome size, we show that polymersomes can deliver the cyclin-dependent kinase inhibitor (R)-roscovitine into human neutrophils to promote apoptosis in vitro. Finally, using a transgenic zebrafish model, we show that encapsulated (R)-roscovitine can speed up inflammation resolution in vivo more efficiently than the free drug. These results show that polymersomes are effective intracellular carriers for drug delivery into neutrophils. This has important consequences for the study of neutrophil biology and the development of neutrophil-targeted therapeutics. Copyright © 2017 The Authors.

  16. Neutropenia fails to prevent the acute phase stimulation of fibrinogen synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kernoff, L.; Colman, J.

    This study evaluates the role of neutrophil granulocytes in mediating acute phase stimulation of fibrinogen synthesis. Turpentine was administered to neutropenic and non-neutropenic rats and fibrinogen synthetic rates measured in an isolated liver perfusion system. Using the (/sup 14/C) carbonate technique for the measurement of the absolute synthetic rates of liver produced plasma proteins it was observed that the rates of fibrinogen synthesis of the neutropenic and non-neutropenic rats were significantly greater (p less than 0.01) than those of normal control animals, but were not significantly different from each other. These results suggest that the neutrophil granulocyte may not bemore » of major importance in mediating acute phase stimulation of fibrinogen synthesis.« less

  17. Secretin stimulates HCO3(-) and acetate efflux but not Na+/HCO3(-) uptake in rat pancreatic ducts.

    PubMed

    Novak, I; Christoffersen, B C

    2001-03-01

    Pancreatic ducts secrete HCO3(-), but transport mechanisms are unresolved and possibly vary between species. Our aim was to study the intracellular pH (pHi) regulation and thus H+/HCO3- transport in rat pancreatic ducts. Of particular interest was the Na+/HCO3(-) cotransporter, thought to be important in HCO3(-) -transporting epithelia. pHi was measured with BCECF in freshly isolated intralobular ducts. A reduction in extracellular Na+ concentration or application of HOE 694 (1 microM) decreased pHi by 0.1 to 0.6 pH units, demonstrating Na+/H+ exchanger activity. A reduction in extracellular Cl- concentration or addition of H2DIDS (10 microM) increased pHi by 0.1 to 0.5 pH units, demonstrating Cl-/ HCO(3)- (OH ) exchanger activity. In experimental acidosis, extracellular HCO3(-)/CO2 buffer did not increase the rate of pHi recovery, indicating that provision of HCO3(-) by the Na+/HCO3(-) cotransporter was not apparent. Most importantly, Na+/HCO3(-) cotransport was not stimulated by secretin (1 nM). In contrast, in experimental alkalosis the pHi recovery was increased in HCO3(-)/CO2 buffer, possibly due to Na+/HCO3(-) cotransport in the efflux mode. Secretin (1 nM) and carbachol (1 microM) stimulated HCO3(-) efflux, which can account for the observed HCO3(-) concentrations in rat pancreatic juice. Acetate and HCO3(-) buffers were handled similarly, indicating similar transport mechanisms in pancreatic ducts.

  18. T lymphocyte recruitment by interleukin-8 (IL-8). IL-8-induced degranulation of neutrophils releases potent chemoattractants for human T lymphocytes both in vitro and in vivo.

    PubMed Central

    Taub, D D; Anver, M; Oppenheim, J J; Longo, D L; Murphy, W J

    1996-01-01

    IL-8 has been shown to be a human neutrophil and T cell chemoattractant in vitro. In an effort to assess the in vivo effects of IL-8 on human leukocyte migration, we examined the ability of rhIL-8 to induce human T cell infiltration using a human/mouse model in which SCID mice were administered human peripheral blood lymphocytes intraperitoneally, followed by subcutaneous injections of rhIL-8. rhIL-8 induced predominantly murine neutrophil accumulation by 4 h after administration while recombinant human macrophage inflammatory protein-1beta (rhMIP-1beta) induced both murine monocytes and human T cell infiltration during the same time period as determined by immunohistology. Interestingly, 72 h after chemokine administration, a marked human T cell infiltrate was observed in the IL-8 injection site suggesting that rhIL-8 may be acting indirectly possibly through a murine neutrophil-derived T cell chemoattractant. This hypothesis was confirmed using granulocyte-depleted SCID mice. Moreover, human neutrophils stimulated in vitro with IL-8 were found to release granule-derived factor(s) that induce in vitro T cell and monocyte chemotaxis and chemokinesis. This T cell and monocyte chemotactic activity was detected in extracts of both azurophilic and specific granules. Together, these results demonstrate that neutrophils store and release, upon stimulation with IL-8 or other neutrophil activators, chemoattractants that mediate T cell and monocyte accumulation at sites of inflammation. PMID:8621778

  19. Identification and Characterization of Roseltide, a Knottin-type Neutrophil Elastase Inhibitor Derived from Hibiscus sabdariffa

    PubMed Central

    Loo, Shining; Kam, Antony; Xiao, Tianshu; Nguyen, Giang K. T.; Liu, Chuan Fa; Tam, James P.

    2016-01-01

    Plant knottins are of therapeutic interest due to their high metabolic stability and inhibitory activity against proteinases involved in human diseases. The only knottin-type proteinase inhibitor against porcine pancreatic elastase was first identified from the squash family in 1989. Here, we report the identification and characterization of a knottin-type human neutrophil elastase inhibitor from Hibiscus sabdariffa of the Malvaceae family. Combining proteomic and transcriptomic methods, we identified a panel of novel cysteine-rich peptides, roseltides (rT1-rT8), which range from 27 to 39 residues with six conserved cysteine residues. The 27-residue roseltide rT1 contains a cysteine spacing and amino acid sequence that is different from the squash knottin-type elastase inhibitor. NMR analysis demonstrated that roseltide rT1 adopts a cystine-knot fold. Transcriptome analyses suggested that roseltides are bioprocessed by asparagine endopeptidases from a three-domain precursor. The cystine-knot structure of roseltide rT1 confers its high resistance against degradation by endopeptidases, 0.2 N HCl, and human serum. Roseltide rT1 was shown to inhibit human neutrophil elastase using enzymatic and pull-down assays. Additionally, roseltide rT1 ameliorates neutrophil elastase-stimulated cAMP accumulation in vitro. Taken together, our findings demonstrate that roseltide rT1 is a novel knottin-type neutrophil elastase inhibitor with therapeutic potential for neutrophil elastase associated diseases. PMID:27991569

  20. Normal neutrophil differentiation and secondary granule gene expression in the EML and MPRO cell lines.

    PubMed

    Lawson, N D; Krause, D S; Berliner, N

    1998-11-01

    The EML and MPRO cell lines express a dominant negative retinoic acid receptor alpha that causes a block at specific stages of myelopoiesis. The EML cell line is multipotent and gives rise to erythroid, lymphoid, and myeloid lineages depending on the presence of appropriate cytokines. The MPRO cell line is promyelocytic and undergoes neutrophilic differentiation when induced with all-trans retinoic acid in the presence of granulocyte/macrophage colony-stimulating factor. Previous studies have shown that both of these cell lines undergo morphological differentiation into neutrophils. In this study, we show that unlike other models of neutrophil differentiation such as NB4 and HL60, both EML and MPRO cell lines undergo complete, normal granulocytic differentiation programs. Similar to HL60, MPRO and EML induce expression of CD11b/CD18 and also exhibit downregulation of CD34 on differentiation. In contrast to HL60 and NB4, EML and MPRO cell lines coordinately upregulate secondary granule transcripts for lactoferrin and neutrophil gelatinase. Furthermore, we have confirmed previous observations that serum can induce a low level of differentiation in MPRO cells and that it is possible to grow these cells in serum-free medium, thereby eliminating this effect. Based on these studies, it appears that these lines can serve as a model for normal retinoic acid-induced neutrophil differentiation and provide insight into the role of the retinoic acid-responsive pathway in normal and leukemic myelopoiesis.

  1. Systemic lupus erythematosus-associated neutrophilic dermatosis--an underrecognized neutrophilic dermatosis in patients with systemic lupus erythematosus.

    PubMed

    Larson, Allison R; Granter, Scott R

    2014-03-01

    Neutrophilic dermatoses are an uncommon manifestation of lupus. We describe the clinical and histopathologic features of 14 patients with systemic lupus erythematosus (SLE) and neutrophilic dermatoses, 2 of whom had no prior history of SLE. Thirteen patients were female, ranging in age from 27 to 62 years (mean age, 42.8 years). One patient was a 20-year-old man. Most lesions were described as erythematous papules and plaques and showed annular morphology in 6 patients and a photodistribution in 2 patients. Histopathologic examination in all cases showed an interstitial neutrophilic infiltrate with leukocytoclasis that ranged from sparse in 5 cases and moderate to dense in 9 cases. With one exception, those cases with moderate to dense infiltrates resembled Sweet's syndrome at scanning magnification. Two cases resembled bullous SLE, and 1 case showed overlapping features of bullous SLE and Sweet's syndrome. Interface changes were seen in 8 patients, which were subtle and vacuolar in 7. One case was associated with a florid interface tissue reaction. Dermal mucin was seen in 4 cases and was a prominent feature in only one of these. One case showed a minute discrete focus resembling palisaded neutrophilic and granulomatous dermatitis. It is important to consider SLE-associated neutrophilic dermatosis in the differential diagnosis of neutrophilic tissue reactions particularly because some patients will have no prior history of lupus. It is also important to be aware of the broad histologic spectrum that may be encountered in SLE-associated neutrophilic dermatosis, ranging from subtle paucicellular lesions to florid Sweet's-like lesions associated with a dense neutrophilic infiltrate. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Public Regulatory Databases as a Source of Insight for Neuromodulation Devices Stimulation Parameters

    PubMed Central

    Kumsa, Doe; Steinke, G. Karl; Molnar, Gregory F.; Hudak, Eric M.; Montague, Fred W.; Kelley, Shawn C.; Untereker, Darrel F.; Shi, Alan; Hahn, Benjamin P.; Condit, Chris; Lee, Hyowon; Bardot, Dawn; Centeno, Jose A.; Krauthamer, Victor; Takmakov, Pavel A.

    2017-01-01

    Objective The Shannon model is often used to define an expected boundary between non-damaging and damaging modes of electrical neurostimulation. Numerous preclinical studies have been performed by manufacturers of neuromodulation devices using different animal models and a broad range of stimulation parameters while developing devices for clinical use. These studies are mostly absent from peer-reviewed literature, which may lead to this information being overlooked by the scientific community. We aimed to locate summaries of these studies accessible via public regulatory databases and to add them to a body of knowledge available to a broad scientific community. Methods We employed web search terms describing device type, intended use, neural target, therapeutic application, company name, and submission number to identify summaries for premarket approval (PMA) devices and 510(k) devices. We filtered these records to a subset of entries that have sufficient technical information relevant to safety of neurostimulation. Results We identified 13 product codes for 8 types of neuromodulation devices. These led us to devices that have 22 PMAs and 154 510(k)s and six transcripts of public panel meetings. We found one PMA for a brain, peripheral nerve, and spinal cord stimulator and five 510(k) spinal cord stimulators with enough information to plot in Shannon coordinates of charge and charge density per phase. Conclusions Analysis of relevant entries from public regulatory databases reveals use of pig, sheep, monkey, dog, and goat animal models with deep brain, peripheral nerve, muscle and spinal cord electrode placement with a variety of stimulation durations (hours to years); frequencies (10–10,000 Hz) and magnitudes (Shannon k from below zero to 4.47). Data from located entries indicate that a feline cortical model that employs acute stimulation might have limitations for assessing tissue damage in diverse anatomical locations, particularly for peripheral nerve and

  3. Public Regulatory Databases as a Source of Insight for Neuromodulation Devices Stimulation Parameters.

    PubMed

    Kumsa, Doe; Steinke, G Karl; Molnar, Gregory F; Hudak, Eric M; Montague, Fred W; Kelley, Shawn C; Untereker, Darrel F; Shi, Alan; Hahn, Benjamin P; Condit, Chris; Lee, Hyowon; Bardot, Dawn; Centeno, Jose A; Krauthamer, Victor; Takmakov, Pavel A

    2018-02-01

    The Shannon model is often used to define an expected boundary between non-damaging and damaging modes of electrical neurostimulation. Numerous preclinical studies have been performed by manufacturers of neuromodulation devices using different animal models and a broad range of stimulation parameters while developing devices for clinical use. These studies are mostly absent from peer-reviewed literature, which may lead to this information being overlooked by the scientific community. We aimed to locate summaries of these studies accessible via public regulatory databases and to add them to a body of knowledge available to a broad scientific community. We employed web search terms describing device type, intended use, neural target, therapeutic application, company name, and submission number to identify summaries for premarket approval (PMA) devices and 510(k) devices. We filtered these records to a subset of entries that have sufficient technical information relevant to safety of neurostimulation. We identified 13 product codes for 8 types of neuromodulation devices. These led us to devices that have 22 PMAs and 154 510(k)s and six transcripts of public panel meetings. We found one PMA for a brain, peripheral nerve, and spinal cord stimulator and five 510(k) spinal cord stimulators with enough information to plot in Shannon coordinates of charge and charge density per phase. Analysis of relevant entries from public regulatory databases reveals use of pig, sheep, monkey, dog, and goat animal models with deep brain, peripheral nerve, muscle and spinal cord electrode placement with a variety of stimulation durations (hours to years); frequencies (10-10,000 Hz) and magnitudes (Shannon k from below zero to 4.47). Data from located entries indicate that a feline cortical model that employs acute stimulation might have limitations for assessing tissue damage in diverse anatomical locations, particularly for peripheral nerve and spinal cord simulation. © 2017

  4. Myeloperoxidase in blood neutrophils during normal and abnormal menstrual cycles in women of reproductive age.

    PubMed

    Shibata, T; Sakamoto, J; Osaka, Y; Neyatani, N; Fujita, S; Oka, Y; Takagi, H; Mori, H; Fujita, H; Tanaka, Y; Sasagawa, T

    2017-04-01

    We previously reported that granulocyte colony-stimulating factor (G-CSF) plays a critical role in ovulation, suggesting that neutrophils may maintain ovulation. We assessed myeloperoxidase (MPO), a major and specific enzyme of neutrophils, in women with abnormal and normal menstrual cycles to clarify the relationship between MPO and ovulation. We analyzed MPO activity in blood neutrophils of women with abnormal menstrual cycles (indicative of anovulation, n = 12) and age- and body mass index-matched normal menstrual cycles (indicative of ovulation, n = 24) using two parameters as a marker of MPO, Neut X and mean peroxidase index (MPXI). MPO of women with abnormal menstrual cycles was significantly lower than that of women with normal menstrual cycles [Neut X: 62.6 ± 1.1 (mean ± standard error of the mean) vs. 66.2 ± 0.3, P = 0.009; MPXI: -0.54 ± 1.66 vs. 4.91 ± 0.53, P = 0.008]. Among women with normal menstrual cycles, MPO was highest in the follicular phase (Neut X: 67.0 ± 0.3; P = 0.033). The difference in MPO between women with abnormal and normal menstrual cycles and the upregulation of MPO before ovulation suggest that neutrophils and MPO are closely related to ovulation. © 2016 John Wiley & Sons Ltd.

  5. Down-regulated resistin level in consequence of decreased neutrophil counts in untreated Grave's disease.

    PubMed

    Peng, Ying; Qi, Yicheng; Huang, Fengjiao; Chen, Xinxin; Zhou, Yulin; Ye, Lei; Wang, Weiqing; Ning, Guang; Wang, Shu

    2016-11-29

    Resistin, belongs to cysteine-rich secretory protein, is mainly produced by circulating leukocytes, such as neutrophils monocytes and macrophages in humans. To date, few but controversial studies have reported about resistin concentrations in hyperthyroid patients, especially in Graves' disease (GD). We undertaked a controlled, prospective study to explore the serum resistin concentration in GD patients before and after -MMI treatment. In addition, we also investigated the main influencing factor on serum resistin level and discuessed the potential role of serum resistin plays in GD patients. 39 untreated GD (uGD) patients, including 8 males and 31 females, were enrolled in our investigation. All of these patients were prescribed with MMI treatment, in addition to 25 healthy controls. Anthropometric parameters and hormone assessment were measured. Enzyme-linked immunosorbent assay was used to detect serum resistin concentration in different stages of GD patients. Furthermore, neutrophil cell line NB4 with or without T3 treatment to detect the effect of thyroid hormones on resistin expression. The serum resistin level and neutrophil counts in untreated GD patients were significantly declined. And all of these parameters were recovered to normal after MMI treatment in ethyroid GD (eGD) and TRAb-negative conversion (nGD) patients. Resistin concentration exhibited a negative correlation with FT3 and FT4, but a positive correlation with absolute number of neutrophiles in uGD patients, whereas did not correlate with thyroid autoimmune antibodies and BMI. Neutrophile cell line, NB4, produced decreased expression of resistin when stimulated with T3. Our study showed a decrease of serum resistin level in GD patients and we suggested that the serum resistin might primarily secreted from circulating neutrophils and down-regulated by excessive thyroid hormones in GD patients.

  6. EGCG reverses human neutrophil elastase-induced migration in A549 cells by directly binding to HNE and by regulating α1-AT

    PubMed Central

    Xiaokaiti, Yilixiati; Wu, Haoming; Chen, Ya; Yang, Haopeng; Duan, Jianhui; Li, Xin; Pan, Yan; Tie, Lu; Zhang, Liangren; Li, Xuejun

    2015-01-01

    Lung carcinogenesis is a complex process that occurs in unregulated inflammatory environment. EGCG has been extensively investigated as a multi-targeting anti-tumor and anti-inflammatory compound. In this study, we demonstrated a novel mechanism by which EGCG reverses the neutrophil elastase-induced migration of A549 cells. We found that neutrophil elastase directly triggered human adenocarcinoma A549 cell migration and that EGCG suppressed the elevation of tumor cell migration induced by neutrophil elastase. We observed that EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity based on the CDOCKER algorithm, MD stimulation by GROMACS, SPR assay and elastase enzymatic activity assay. As the natural inhibitor of neutrophil elastase, α1-antitrypsin is synthesized in tumor cells. We further demonstrated that the expression of α1-antitrypsin was up-regulated after EGCG treatment in neutrophil elastase-treated A549 cells. We preliminarily discovered that the EGCG-mediated induction of α1-antitrypsin expression might be correlated with the regulatory effect of EGCG on the PI3K/Akt pathway. Overall, our results suggest that EGCG ameliorates the neutrophil elastase-induced migration of A549 cells. The mechanism underlying this effect may include two processes: EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity; EGCG enhances the expression of α1-antitrypsin by regulating the PI3K/AKT pathway. PMID:26177797

  7. EGCG reverses human neutrophil elastase-induced migration in A549 cells by directly binding to HNE and by regulating α1-AT

    NASA Astrophysics Data System (ADS)

    Xiaokaiti, Yilixiati; Wu, Haoming; Chen, Ya; Yang, Haopeng; Duan, Jianhui; Li, Xin; Pan, Yan; Tie, Lu; Zhang, Liangren; Li, Xuejun

    2015-07-01

    Lung carcinogenesis is a complex process that occurs in unregulated inflammatory environment. EGCG has been extensively investigated as a multi-targeting anti-tumor and anti-inflammatory compound. In this study, we demonstrated a novel mechanism by which EGCG reverses the neutrophil elastase-induced migration of A549 cells. We found that neutrophil elastase directly triggered human adenocarcinoma A549 cell migration and that EGCG suppressed the elevation of tumor cell migration induced by neutrophil elastase. We observed that EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity based on the CDOCKER algorithm, MD stimulation by GROMACS, SPR assay and elastase enzymatic activity assay. As the natural inhibitor of neutrophil elastase, α1-antitrypsin is synthesized in tumor cells. We further demonstrated that the expression of α1-antitrypsin was up-regulated after EGCG treatment in neutrophil elastase-treated A549 cells. We preliminarily discovered that the EGCG-mediated induction of α1-antitrypsin expression might be correlated with the regulatory effect of EGCG on the PI3K/Akt pathway. Overall, our results suggest that EGCG ameliorates the neutrophil elastase-induced migration of A549 cells. The mechanism underlying this effect may include two processes: EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity; EGCG enhances the expression of α1-antitrypsin by regulating the PI3K/AKT pathway.

  8. EGCG reverses human neutrophil elastase-induced migration in A549 cells by directly binding to HNE and by regulating α1-AT.

    PubMed

    Xiaokaiti, Yilixiati; Wu, Haoming; Chen, Ya; Yang, Haopeng; Duan, Jianhui; Li, Xin; Pan, Yan; Tie, Lu; Zhang, Liangren; Li, Xuejun

    2015-07-16

    Lung carcinogenesis is a complex process that occurs in unregulated inflammatory environment. EGCG has been extensively investigated as a multi-targeting anti-tumor and anti-inflammatory compound. In this study, we demonstrated a novel mechanism by which EGCG reverses the neutrophil elastase-induced migration of A549 cells. We found that neutrophil elastase directly triggered human adenocarcinoma A549 cell migration and that EGCG suppressed the elevation of tumor cell migration induced by neutrophil elastase. We observed that EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity based on the CDOCKER algorithm, MD stimulation by GROMACS, SPR assay and elastase enzymatic activity assay. As the natural inhibitor of neutrophil elastase, α1-antitrypsin is synthesized in tumor cells. We further demonstrated that the expression of α1-antitrypsin was up-regulated after EGCG treatment in neutrophil elastase-treated A549 cells. We preliminarily discovered that the EGCG-mediated induction of α1-antitrypsin expression might be correlated with the regulatory effect of EGCG on the PI3K/Akt pathway. Overall, our results suggest that EGCG ameliorates the neutrophil elastase-induced migration of A549 cells. The mechanism underlying this effect may include two processes: EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity; EGCG enhances the expression of α1-antitrypsin by regulating the PI3K/AKT pathway.

  9. Quantitative detection of viable helminth ova from raw wastewater, human feces, and environmental soil samples using novel PMA-qPCR methods.

    PubMed

    Gyawali, P; Ahmed, W; Sidhu, J P S; Nery, S V; Clements, A C; Traub, R; McCarthy, J S; Llewellyn, S; Jagals, P; Toze, S

    2016-09-01

    In this study, we have evaluated the efficacy of propidium monoazide quantitative polymerase chain reaction (PMA-qPCR) to differentiate between viable and non-viable Ancylostoma caninum ova. The newly developed method was validated using raw wastewater seeded with known numbers of A. caninum ova. Results of this study confirmed that PMA-qPCR has resulted in average of 88 % reduction (P < 0.05) in gene copy numbers for 50 % viable +50 % non-viable when compared with 100 % viable ova. A reduction of 100 % in gene copies was observed for 100 % non-viable ova when compared with 100 % viable ova. Similar reductions (79-80 %) in gene copies were observed for A. caninum ova-seeded raw wastewater samples (n = 18) collected from wastewater treatment plants (WWTPs) A and B. The newly developed PMA-qPCR method was applied to determine the viable ova of different helminths (A. caninum, A. duodenale, Necator americanus and Ascaris lumbricoides) in raw wastewater, human fecal and soil samples. None of the unseeded wastewater samples were positive for the above-mentioned helminths. N. americanus and A. lumbricoides ova were found in unseeded human fecal and soil samples. For the unseeded human fecal samples (1 g), an average gene copy concentration obtained from qPCR and PMA-qPCR was found to be similar (6.8 × 10(5) ± 6.4 × 10(5) and 6.3 × 10(5) ± 4.7 × 10(5)) indicating the presence of viable N. americanus ova. Among the 24 unseeded soil samples tested, only one was positive for A. lumbricoides. The mean gene copy concentration in the positively identified soil sample was 1.0 × 10(5) ± 1.5 × 10(4) (determined by qPCR) compared to 4.9 × 10(4) ± 3.7 × 10(3) (determined by PMA-qPCR). The newly developed PMA-qPCR methods were able to detect viable helminth ova from wastewater and soil samples and could be adapted for health risk assessment.

  10. Epidermal growth factor-stimulated protein phosphorylation in rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connelly, P.A.; Sisk, R.B.; Johnson, R.M.

    1987-05-01

    Epidermal growth factor (EGF) causes a 6-fold increase in the phosphorylation state of a cytosolic protein (pp36, M/sub r/ = 36,000, pI = 5.5) in hepatocytes isolated from fasted, male, Wistar rats. Stimulation of /sup 32/P incorporation is observed as early as 1 min following treatment of hepatocytes with EGF and is still present at 30 min after exposure to the growth factor. The phosphate incorporated into pp36 in response to EGF is located predominantly in serine but not tyrosine residues. Phosphorylation of pp36 does not occur in response to insulin or to agents which specifically activate the cAMP-dependent proteinmore » kinase (S/sub p/ -cAMPS), protein kinase C (PMA) or Ca/sup 2 +//calmodulin-dependent protein kinases (A23187) in these cells. Prior treatment of hepatocytes with the cAMP analog, S/sub p/-cAMPS, or ADP-ribosylation of N/sub i/, the inhibitory GTP-binding protein of the adenylate cyclase complex, does not prevent EGF-stimulated phosphorylation of pp36. However, as seen in other cell types, pretreatment of hepatocytes with PMA abolishes all EGF-mediated responses including phosphorylation of pp36. These results suggest that EGP specifically activates an uncharacterized, serine protein kinase in hepatocytes that is distal to the intrinsic EGF receptor tyrosine protein kinase. The rapid activation of this kinase suggests that it may play an important role in the early response of the cell to EGF.« less

  11. The Role of FAK in the Secretion of MMP9 after CD147 Stimulation in Macrophages.

    PubMed

    Yu, Chen; Lixia, Yang; Ruiwei, Guo; Yankun, Shi; Jinshan, Ye

    2018-03-30

    To investigate whether focal adhesion kinase (FAK) can participate in the secretion of matrix metalloproteinase 9 (MMP9) after CD147 stimulation in THP-1 induced macrophages; thus, to explore the potential treatment perspectives for acute coronary syndrome (ACS).Phorbol-12-myristate-13-acetate (PMA) was used to induce THP-1 cells to differentiate into macrophages. To confirm the peak mRNA and protein expression of FAK and MMP9 after the stimulation of CD147, the macrophages were divided into 5 groups (0, 3, 6, 9, and 12 hours), with 0 hours group as control group. To investigate the role of FAK in the secretion of MMP9, with stimulation of CD147 for 9 hours, FAK inhibitor 14 was used to inhibit FAK Y397 phosphorylation. The mRNA and protein expressions were quantified by qRT-PCR and western blotting, respectively. (1) Relative mRNA expression of FAK and MMP9 were both significantly up-regulated (all P < 0.05) after stimulation of CD147, FAK peaked at 9 hours (3.908 ± 0.106 versus 1, P < 0.05), whereas MMP9 peaked at 6 hours (2.522 ± 0.062 versus 1, P < 0.05). (2) Relative protein expression of FAK, pFAK, and MMP9 were all significantly increased after CD147 stimulation (all P < 0.05), FAK (1.930 ± 0.024 versus 1, P < 0.05) and pFAK (1.737 ± 0.021 versus 1, P < 0.05) peaked at 9 hours, whereas MMP9 peaked at 6 hours (1.527 ± 0.033 versus 1, P < 0.05). (3) CD147 up-regulates FAK, pFAK, and MMP9 mRNA and protein expressions in a dose-dependent manner. (4) FAK inhibitor 14 significantly reduced the relative protein expression level of pFAK (0.077 ± 0.012 versus 1, P < 0.05) and MMP9 (0.133 ± 0.012) at 9 hours after CD147 stimulation.The results demonstrated that FAK Y397 phosphorylation was involved in the secretion of MMP9 after CD147 stimulation in macrophages and may play a role in the regulation of ACS.

  12. Omega-3 Fatty acids and inflammation: novel interactions reveal a new step in neutrophil recruitment.

    PubMed

    Tull, Samantha P; Yates, Clara M; Maskrey, Benjamin H; O'Donnell, Valerie B; Madden, Jackie; Grimble, Robert F; Calder, Philip C; Nash, Gerard B; Rainger, G Ed

    2009-08-01

    Inflammation is a physiological response to tissue trauma or infection, but leukocytes, which are the effector cells of the inflammatory process, have powerful tissue remodelling capabilities. Thus, to ensure their precise localisation, passage of leukocytes from the blood into inflamed tissue is tightly regulated. Recruitment of blood borne neutrophils to the tissue stroma occurs during early inflammation. In this process, peptide agonists of the chemokine family are assumed to provide a chemotactic stimulus capable of supporting the migration of neutrophils across vascular endothelial cells, through the basement membrane of the vessel wall, and out into the tissue stroma. Here, we show that, although an initial chemokine stimulus is essential for the recruitment of flowing neutrophils by endothelial cells stimulated with the inflammatory cytokine tumour necrosis factor-alpha, transit of the endothelial monolayer is regulated by an additional and downstream stimulus. This signal is supplied by the metabolism of the omega-6-polyunsaturated fatty acid (n-6-PUFA), arachidonic acid, into the eicosanoid prostaglandin-D(2) (PGD(2)) by cyclooxygenase (COX) enzymes. This new step in the neutrophil recruitment process was revealed when the dietary n-3-PUFA, eicosapentaenoic acid (EPA), was utilised as an alternative substrate for COX enzymes, leading to the generation of PGD(3). This alternative series eicosanoid inhibited the migration of neutrophils across endothelial cells by antagonising the PGD(2) receptor. Here, we describe a new step in the neutrophil recruitment process that relies upon a lipid-mediated signal to regulate the migration of neutrophils across endothelial cells. PGD(2) signalling is subordinate to the chemokine-mediated activation of neutrophils, but without the sequential delivery of this signal, neutrophils fail to penetrate the endothelial cell monolayer. Importantly, the ability of the dietary n-3-PUFA, EPA, to inhibit this process not only

  13. IFNα enhances the production of IL-6 by human neutrophils activated via TLR8.

    PubMed

    Zimmermann, Maili; Arruda-Silva, Fabio; Bianchetto-Aguilera, Francisco; Finotti, Giulia; Calzetti, Federica; Scapini, Patrizia; Lunardi, Claudio; Cassatella, Marco A; Tamassia, Nicola

    2016-01-21

    Recently, we reported that human neutrophils produce biologically active amounts of IL-6 when incubated with agonists activating TLR8, a receptor recognizing viral single strand RNA. In this study, we demonstrate that IFNα, a cytokine that modulates the early innate immune responses toward viral and bacterial infections, potently enhances the production of IL-6 in neutrophils stimulated with R848, a TLR8 agonist. We also show that such an effect is not caused by an IFNα-dependent induction of TLR7 and its consequent co-activation with TLR8 in response to R848, but, rather, it is substantially mediated by an increased production and release of endogenous TNFα. The latter cytokine, in an autocrine manner, leads to an augmented synthesis of the IkBζ co-activator and an enhanced recruitment of the C/EBPβ transcription factor to the IL-6 promoter. Moreover, we show that neutrophils from SLE patients with active disease state, hence displaying an IFN-induced gene expression signature, produce increased amounts of both IL-6 and TNFα in response to R848 as compared to healthy donors. Altogether, data uncover novel effects that type I IFN exerts in TLR8-activated neutrophils, which therefore enlarge our knowledge on the various biological actions which type I IFN orchestrates during infectious and autoimmune diseases.

  14. Cortactin deficiency is associated with reduced neutrophil recruitment but increased vascular permeability in vivo.

    PubMed

    Schnoor, Michael; Lai, Frank P L; Zarbock, Alexander; Kläver, Ruth; Polaschegg, Christian; Schulte, Dörte; Weich, Herbert A; Oelkers, J Margit; Rottner, Klemens; Vestweber, Dietmar

    2011-08-01

    Neutrophil extravasation and the regulation of vascular permeability require dynamic actin rearrangements in the endothelium. In this study, we analyzed in vivo whether these processes require the function of the actin nucleation-promoting factor cortactin. Basal vascular permeability for high molecular weight substances was enhanced in cortactin-deficient mice. Despite this leakiness, neutrophil extravasation in the tumor necrosis factor-stimulated cremaster was inhibited by the loss of cortactin. The permeability defect was caused by reduced levels of activated Rap1 (Ras-related protein 1) in endothelial cells and could be rescued by activating Rap1 via the guanosine triphosphatase (GTPase) exchange factor EPAC (exchange protein directly activated by cAMP). The defect in neutrophil extravasation was caused by enhanced rolling velocity and reduced adhesion in postcapillary venules. Impaired rolling interactions were linked to contributions of β(2)-integrin ligands, and firm adhesion was compromised by reduced ICAM-1 (intercellular adhesion molecule 1) clustering around neutrophils. A signaling process known to be critical for the formation of ICAM-1-enriched contact areas and for transendothelial migration, the ICAM-1-mediated activation of the GTPase RhoG was blocked in cortactin-deficient endothelial cells. Our results represent the first physiological evidence that cortactin is crucial for orchestrating the molecular events leading to proper endothelial barrier function and leukocyte recruitment in vivo.

  15. Neutrophil-derived MRP-14 is up-regulated in infectious osteomyelitis and stimulates osteoclast generation.

    PubMed

    Dapunt, Ulrike; Giese, Thomas; Maurer, Susanne; Stegmaier, Sabine; Prior, Birgit; Hänsch, G Maria; Gaida, Matthias M

    2015-10-01

    Bone infections of patients with joint replacement by endoprosthesis (so called "periprosthetic joint infection") pose a severe problem in the field of orthopedic surgery. The diagnosis is often difficult, and treatment is, in most cases, complicated and prolonged. Patients often require an implant exchange surgery, as the persistent infection and the accompanying inflammation lead to tissue damage with bone degradation and consequently, to a loosening of the implant. To gain insight into the local inflammatory process, expression of the proinflammatory cytokine MRP-14, a major content of neutrophils, and its link to subsequent bone degradation was evaluated. We found MRP-14 prominently expressed in the affected tissue of patients with implant-associated infection, in close association with the chemokine CXCL8 and a dense infiltrate of neutrophils and macrophages. In addition, the number of MRP-14-positive cells correlated with the presence of bone-resorbing osteoclasts. MRP-14 plasma concentrations were significantly higher in patients with implant-associated infection compared with patients with sterile inflammation or healthy individuals, advocating MRP-14 as a novel diagnostic marker. A further biologic activity of MRP-14 was detected: rMRP-14 directly induced the differentiation of monocytes to osteoclasts, thus linking the inflammatory response in implant infections with osteoclast generation, bone degradation, and implant loosening. © Society for Leukocyte Biology.

  16. Sexy again: the renaissance of neutrophils in psoriasis.

    PubMed

    Schön, Michael P; Broekaert, Sigrid M C; Erpenbeck, Luise

    2017-04-01

    Notwithstanding their prominent presence in psoriatic skin, the functional role of neutrophilic granulocytes still remains somewhat enigmatic. Sparked by exciting scientific discoveries regarding neutrophil functions within the last years, the interest in these short-lived cells of the innate immune system has been boosted recently. While it had been known for some time that neutrophils produce and respond to a number of inflammatory mediators, recent research has linked neutrophils with the pathogenic functions of IL-17, possibly in conjunction with the formation of NETs (neutrophil extracellular traps). Antipsoriatic therapies exert their effects, at least in part, through interference with neutrophils. Neutrophils also appear to connect psoriasis with comorbid diseases. However, directly tampering with neutrophil functions is not trivial as evinced by the failure of therapeutic approaches targeting redundantly regulated cellular communication networks. It has also become apparent that neutrophils link important pathogenic functions of the innate and the adaptive immune system and that they are intricately involved in regulatory networks underlying the pathophysiology of psoriasis. In order to advocate intensified research into the role of this interesting cell population, we here highlight some features of neutrophils and put them into perspective with our current view of the pathophysiology of psoriasis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Neutrophil extracellular traps - the dark side of neutrophils.

    PubMed

    Sørensen, Ole E; Borregaard, Niels

    2016-05-02

    Neutrophil extracellular traps (NETs) were discovered as extracellular strands of decondensed DNA in complex with histones and granule proteins, which were expelled from dying neutrophils to ensnare and kill microbes. NETs are formed during infection in vivo by mechanisms different from those originally described in vitro. Citrullination of histones by peptidyl arginine deiminase 4 (PAD4) is central for NET formation in vivo. NETs may spur formation of autoantibodies and may also serve as scaffolds for thrombosis, thereby providing a link among infection, autoimmunity, and thrombosis. In this review, we present the mechanisms by which NETs are formed and discuss the physiological and pathophysiological consequences of NET formation. We conclude that NETs may be of more importance in autoimmunity and thrombosis than in innate immune defense.

  18. Immunomodulatory effects of Santolina chamaecyparissus leaf extracts on human neutrophil functions.

    PubMed

    Boudoukha, Chahra; Bouriche, Hamama; Ortega, Eduardo; Senator, Abderrahmane

    2016-01-01

    Santolina chamaecyparissus L. (Asteraceae) is an aromatic plant wide spread in the Mediterranean region. It is used in folk medicine for its anti-inflammatory properties. The effects of S. chamaecyparissus aqueous extract (SCAE) and polyphenolic extract (SCPE) on human polymorphonuclear neutrophil (PMN) degranulation, chemotaxis, phagocytosis, and microbicidal capacity were examined in vitro. Aqueous and polyphenolic extracts were prepared from S. chamaecyparissus leaves. The elastase release was used as a marker for measuring PMN degranulation, while chemotaxis was performed using a 48-microwell chemotaxis chamber. The phagocytosis and the microbicidal capacity were evaluated using fresh cultures of Candida albicans. The treatment of neutrophils with different concentrations (10-200 µg/ml) of SCAE and SCPE caused a significant (p < 0.001) and dose-dependent inhibitory effect on elastase release in fMLP/Cytochalasin B (CB)-stimulated neutrophils. Indeed, 100 µg/ml of SCAE exerted an inhibitory effect of 51.97 ± 6.2%, whereas SCPE at the same concentration abolished completely PMN degranulation. Moreover, both extracts inhibited markedly (p < 0.01) fMLP-induced chemotactic migration. At 200 µg/ml, SCAE and SCPE exerted an inhibitory effect of 54.61 ± 7.3% and 57.71 ± 7.44%, respectively. In addition, a decline in both phagocytosis and microbicidal capacity against Candida albicans was observed when PMNs were exposed to 100 and 200 µg/ml of SCAE or SCPE. The exerted effects on neutrophil functions support the anti-inflammatory activity and show new mechanisms of action and effectiveness of S. chamaecyparissus leaf extracts. This plant may be considered as an interesting source of anti-inflammatory and immunomodulatory agents.

  19. IL-1 Coordinates the Neutrophil Response to C. albicans in the Oral Mucosa.

    PubMed

    Altmeier, Simon; Toska, Albulena; Sparber, Florian; Teijeira, Alvaro; Halin, Cornelia; LeibundGut-Landmann, Salomé

    2016-09-01

    Mucosal infections with Candida albicans belong to the most frequent forms of fungal diseases. Host protection is conferred by cellular immunity; however, the induction of antifungal immunity is not well understood. Using a mouse model of oropharyngeal candidiasis (OPC) we show that interleukin-1 receptor (IL-1R) signaling is critical for fungal control at the onset of infection through its impact on neutrophils at two levels. We demonstrate that both the recruitment of circulating neutrophils to the site of infection and the mobilization of newly generated neutrophils from the bone marrow depended on IL-1R. Consistently, IL-1R-deficient mice displayed impaired chemokine production at the site of infection and defective secretion of granulocyte colony-stimulating factor (G-CSF) in the circulation in response to C. albicans. Strikingly, endothelial cells were identified as the primary cellular source of G-CSF during OPC, which responded to IL-1α that was released from keratinocytes in the infected tissue. The IL-1-dependent crosstalk between two different cellular subsets of the nonhematopoietic compartment was confirmed in vitro using a novel murine tongue-derived keratinocyte cell line and an established endothelial cell line. These data establish a new link between IL-1 and granulopoiesis in the context of fungal infection. Together, we identified two complementary mechanisms coordinating the neutrophil response in the oral mucosa, which is critical for preventing fungal growth and dissemination, and thus protects the host from disease.

  20. Effects of peritoneal fluid from endometriosis patients on the release of vascular endothelial growth factor by neutrophils and monocytes.

    PubMed

    Na, Yong-Jin; Yang, Seung-Hong; Baek, Dae-Won; Lee, Dong-Hyung; Kim, Ki-Hyung; Choi, Young-Min; Oh, Sung-Tack; Hong, Young-Seoub; Kwak, Jong-Young; Lee, Kyu-Sup

    2006-07-01

    An increase in the level of the vascular endothelial growth factor (VEGF) production has been reported in the peritoneal fluid (PF) of endometriosis patients. This suggests that changes in the vascular permeability and angiogenesis play an important role in the pathophysiology of this disease. This study examined the effects of the PF obtained from endometriosis patients on the release of VEGF by neutrophils and monocytes. Neutrophils and monocytes were obtained from young healthy volunteers and cultured with the PF obtained from either endometriosis patients (EPF) (n=18) or a control group (CPF) (n=4). A human monocyte/macrophage cell line, THP-1, was cultured with either 10% EPF or 10% CPF. The PF and culture supernatants were assayed for VEGF using ELISA. Real-time PCR and Western blotting were used to measure the VEGF mRNA and protein expression level, respectively. The VEGF levels were higher in the EPF than in the CPF (591+/-75 versus 185+/-31 pg/ml, P<0.05). However, the level of VEGF released by THP-1 cells in CPF and EPF was similar. The EPF induced the release of VEGF by neutrophils, but no VEGF was released by monocytes. The VEGF mRNA expression levels in the neutrophils were higher in the EPF, which was abrogated by cycloheximide, suggesting that the EPF induces the production of VEGF in neutrophils. Neutralizing antibodies against IL-8 and TNF-alpha did not completely prevent the EPF-induced release of VEGF by the neutrophils, even though these growth factors stimulated the release of VEGF by neutrophils. There was a positive correlation between the VEGF and IL-10 concentrations in the EPF (correlation coefficient=0.549, P=0.012, n=18), but the neutralizing antibody of IL-10 did not affect the release of VEGF by the EPF-treated neutrophils. The EPF induced the production and release of VEGF by neutrophils, suggesting that neutrophils may be a source of peritoneal VEGF. In addition, neutrophil-derived VEGF might be a marker for diagnosing endometriosis.

  1. Expression of toll-like receptors 2 and 4 and CD14 during differentiation of HL-60 cells induced by phorbol 12-myristate 13-acetate and 1 alpha, 25-dihydroxy-vitamin D(3).

    PubMed

    Li, Changlin; Wang, Yibing; Gao, Li; Zhang, Jingsong; Shao, Jie; Wang, Shengnian; Feng, Weiguo; Wang, Xingyu; Li, Minglie; Chang, Zongliang

    2002-01-01

    Macrophages form a crucial bridge between the innate and adaptive immune response. One of their most important functions is to recognize infectious microorganisms. Toll-like receptors (TLRs) are key elements in pathogen recognition, and among them, TLR2 and TLR4 are most discussed. However, expression patterns of TLRs during myeloid cell differentiation to macrophage are unknown. In this study, we examined differentiation in the model human myeloid cell line, HL-60, treated with phorbol 12-myristate 13-acetate (PMA) or VitD(3). Expression of TLR2, TLR4, and CD14 were measured by reverse transcription-PCR, RNase protection assay, and fluorescence-activated cell sorter assays. After treatment by PMA (1, 10, and 100 nM) for 12, 24, and 48 h, expression of TLR2 and CD14 mRNA was increased in a time- and dose-dependent manner. However, VitD(3) only induced expression of CD14 but not TLR2 in HL-60 cells. TLR4 was expressed constitutively before differentiation and increased slightly after that. Thus, PMA-mediated differentiation of HL-60 cells to macrophages is associated largely with TLR2 expression and, to a much lesser extent, with TLR4. Furthermore, up-regulation of TLR2 and CD14 mRNA expression by PMA was abrogated by a protein kinase C inhibitor, Calphostine C, suggesting the up-regulation of TLR2 and CD14 mRNA is dependent on the activation of protein kinase C. Coexpression of CD14/TLR2 and/or CD14/TLR4 may be essential but not sufficient for the production of tumor necrosis factor-alpha in response to lipopolysaccharide in our system.

  2. Antimicrobial Efficacy of Contact Lens Care Solutions Against Neutrophil-Enhanced Bacterial Biofilms

    PubMed Central

    Hinojosa, Jorge A.; Patel, Naiya B.; Zhu, Meifang; Robertson, Danielle M.

    2017-01-01

    Purpose Neutrophil-derived extracellular debris has been shown to accelerate bacterial biofilm formation on hydrogel and silicone hydrogel contact lens surfaces compared to lenses inoculated with bacteria alone. The purpose of this study was to evaluate the disinfection efficacy of four standard commercial contact lens cleaning regimens against neutrophil-enhanced bacterial biofilms formed on silicone hydrogel contact lenses. Methods Four reference strains were used: Pseudomonas aeruginosa, Serratia marcescens, Stenotrophomonas maltophilia, and Staphylococcus aureus. Human neutrophils were isolated from peripheral blood by venipuncture. Unworn Lotrafilcon B lenses were incubated overnight in each respective strain with stimulated neutrophils. Contact lenses were then cleaned using one of four contact lens care solutions according to manufacturer instructions. Bacterial viability was assessed by colony counts and confocal microscopy. Volume of residual debris on lens surfaces after cleaning was quantified using IMARIS software. Results All four solutions tested showed effective antimicrobial activity against each bacterial strain; however, substantial amounts of nonviable bacteria and cellular debris remained on the lens surface despite concomitant digital cleaning. Conclusions Necrotic cellular debris that accumulates under the posterior lens surface during wear of an inoculated contact lens is not fully removed during routine cleaning and disinfection. Translational Relevance The accumulation of residual cellular debris on the contact lens surface may contribute to new colonization of the lens and represents a significant risk factor for a contact lens–related adverse event. Additional studies are needed to correlate these findings with risk for corneal infiltrative and/or infectious events in a standard animal model. PMID:28473944

  3. Neutrophils in Cancer: Two Sides of the Same Coin.

    PubMed

    Uribe-Querol, Eileen; Rosales, Carlos

    2015-01-01

    Neutrophils are the most abundant leukocytes in blood and are considered to be the first line of defense during inflammation and infections. In addition, neutrophils are also found infiltrating many types of tumors. Tumor-associated neutrophils (TANs) have relevant roles in malignant disease. Indeed neutrophils may be potent antitumor effector cells. However, increasing clinical evidence shows TANs correlate with poor prognosis. The tumor microenvironment controls neutrophil recruitment and in turn TANs help tumor progression. Hence, TANs can be beneficial or detrimental to the host. It is the purpose of this review to highlight these two sides of the neutrophil coin in cancer and to describe recent studies that provide some light on the mechanisms for neutrophil recruitment to the tumor, for neutrophils supporting tumor progression, and for neutrophil activation to enhance their antitumor functions.

  4. Optical spectral analysis of ultra-weak photon emission from tissue culture and yeast cells

    NASA Astrophysics Data System (ADS)

    Nerudová, Michaela; Červinková, Kateřina; Hašek, Jiří; Cifra, Michal

    2015-01-01

    Optical spectral analysis of the ultra-weak photon emission (UPE) could be utilized for non-invasive diagnostic of state of biological systems and for elucidation of underlying mechanisms of UPE generation. Optical spectra of UPE from differentiated HL-60 cells and yeast cells (Saccharomyces cerevisiae) were investigated. Induced photon emission of neutrophil-like cells and spontaneous photon emission of yeast cells were measured using highly sensitive photomultiplier module Hamamatsu H7360-01 in a thermally regulated light-tight chamber. The respiratory burst of neutrophil-like HL-60 cells was induced with the PMA (phorbol 12-myristate, 13-acetate). PMA activates an assembly of NADPH oxidase, which induces a rapid formation of reactive oxygen species (ROS). Long-pass edge filters (wavelength 350, from 400 to 600 with 25 nm resolution and 650 nm) were used for optical spectral analysis. Propagation of error of indirect measurements and standard deviation were used to assess reliability of the measured spectra. Results indicate that the photon emission from both cell cultures is detectable in the six from eight examined wavelength ranges with different percentage distribution of cell suspensions, particularly 450-475, 475-500, 500-525, 525-550, 550-575 and 575-600 nm. The wavelength range of spectra from 450 to 550 nm coincides with the range of photon emission from triplet excited carbonyls (350-550 nm). The both cells cultures emitted photons in wavelength range from 550 to 600 nm but this range does not correspond with any known emitter. To summarize, we have demonstrated a clear difference in the UPE spectra between two organisms using rigorous methodology and error analysis.

  5. Both Influenza-Induced Neutrophil Dysfunction and Neutrophil-Independent Mechanisms Contribute to Increased Susceptibility to a Secondary Streptococcus pneumoniae Infection▿

    PubMed Central

    McNamee, Lynnelle A.; Harmsen, Allen G.

    2006-01-01

    Since secondary Streptococcus pneumoniae infections greatly increase the mortality of influenza infections, we determined the relative roles of neutrophil-dependent and -independent mechanisms in increased susceptibility to S. pneumoniae during influenza infection. Mice infected with influenza for 6 days, but not 3 days, showed a significant increase in susceptibility to S. pneumoniae infection compared to mice not infected with influenza. There was significant neutrophil accumulation in the lungs of S. pneumoniae-infected mice regardless of whether or not they were infected with influenza for 3 or 6 days. Depletion of neutrophils in these mice resulted in increased susceptibility to S. pneumoniae in both the non-influenza-infected mice and mice infected with influenza for 3 days but not in the mice infected with influenza for 6 days, indicating that a prior influenza infection of 6 days may compromise neutrophil function, resulting in increased susceptibility to a S. pneumoniae infection. Neutrophils from the lungs of mice infected with influenza for 3 or 6 days exhibited functional impairment in the form of decreased phagocytosis and intracellular reactive oxygen species generation in response to S. pneumoniae. In addition, neutrophil-depleted mice infected with influenza for 6 days were more susceptible to S. pneumoniae than neutrophil-depleted mice not infected with influenza, indicating that neutrophil-independent mechanisms also contribute to influenza-induced increased susceptibility to S. pneumoniae. Pulmonary interleukin-10 levels were increased in coinfected mice infected with influenza for 6 days but not 3 days. Thus, an influenza infection of 6 days increases susceptibility to S. pneumoniae by both suppression of neutrophil function and by neutrophil-independent mechanisms such as enhanced cytokine production. PMID:16982840

  6. Neutrophils and monocytes transport tumor cell antigens from the peritoneal cavity to secondary lymphoid tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terasawa, Masao; Nagata, Kisaburo; Kobayashi, Yoshiro

    2008-12-12

    Antigen-transporting cells take up pathogens, and then migrate from sites of inflammation to secondary lymphoid tissues to induce an immune response. Among antigen-transporting cells, dendritic cells (DCs) are believed to be the most potent and professional antigen-presenting cells that can stimulate naive T cells. However, the cells that transport antigens, tumor cell antigens in particular, have not been clearly identified. In this study we have analyzed what types of cells transport tumor cell antigens to secondary lymphoid tissues. We show that neutrophils, monocytes and macrophages but not DCs engulf X-irradiated P388 leukemic cells after their injection into the peritoneal cavity,more » and that neutrophils and monocytes but not macrophages migrate to the parathymic lymph nodes (pLN), the blood, and then the spleen. The monocytes in the pLN comprise Gr-1{sup -} and Gr-1{sup +} ones, and some of these cells express CD11c. Overall, this study demonstrates that neutrophils and monocytes transport tumor cell antigens from the peritoneal cavity to secondary lymphoid tissues.« less

  7. Expression of Toll-like Receptor 2 and 4 in Peripheral Blood Neutrophil Cells from Patients with Chronic Obstructive Pulmonary Disease

    PubMed Central

    Tripathi, Prashant Mani; Kant, Surya; Yadav, Ravi Shanker; Kushwaha, Ram Awadh Singh; Prakash, Ved; Rizvi, Sayed Husian Mustafa; Parveen, Arshiya; Mahdi, Abbas Ali; Ahmad, Iqbal

    2017-01-01

    Objectives Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality around the world. Preliminary studies have evaluated the association between innate immunity including Toll-like receptors (TLRs) and airway samples of patients with COPD. The role of TLRs in peripheral blood neutrophils is poorly understood. Hence, this study aimed to investigate the role of TLR2 and TLR4 in peripheral blood neutrophils of COPD patients. Methods A total of 101 COPD cases and an equal number of healthy controls participated in this case-control study. Peripheral blood neutrophils were isolated from all participants and cultured for 24 hours through lipopolysaccharide (LPS) stimulation. The gene expressions of TLR2 and TLR4 were assessed by real-time polymerase chain reaction. The protein levels of interleukin (IL)-8 and matrix metalloproteinase (MMP)-9 were measured in neutrophils cell culture supernatants using enzyme-linked immunosorbent assay (ELISA). Results The levels of IL-8 and MMP-9 were significantly higher in patients with COPD compared to healthy controls. Similarly, the gene expression of TLR2 and TLR4 were increased in LPS stimulated peripheral blood neutrophils of patients with COPD. Smoke pack years was positively correlated with IL-8 levels and negatively correlated with forced expiratory volume in the first second % (r = -0.33; p = 0.023) and FEV1/forced vital capacity (FVC) (r = -0.27; p = 0.011). Conclusions The increased expression of TLR2 and TLR4 suggests its role in disease pathogenesis of COPD. Smoke pack years was negatively associated with spirometric parameters in COPD patients. This may help to predict the smokers without COPD who risk developing the condition in the future. PMID:29218124

  8. Critical behavior of subcellular density organization during neutrophil activation and migration.

    PubMed

    Baker-Groberg, Sandra M; Phillips, Kevin G; Healy, Laura D; Itakura, Asako; Porter, Juliana E; Newton, Paul K; Nan, Xiaolin; McCarty, Owen J T

    2015-12-01

    Physical theories of active matter continue to provide a quantitative understanding of dynamic cellular phenomena, including cell locomotion. Although various investigations of the rheology of cells have identified important viscoelastic and traction force parameters for use in these theoretical approaches, a key variable has remained elusive both in theoretical and experimental approaches: the spatiotemporal behavior of the subcellular density. The evolution of the subcellular density has been qualitatively observed for decades as it provides the source of image contrast in label-free imaging modalities (e.g., differential interference contrast, phase contrast) used to investigate cellular specimens. While these modalities directly visualize cell structure, they do not provide quantitative access to the structures being visualized. We present an established quantitative imaging approach, non-interferometric quantitative phase microscopy, to elucidate the subcellular density dynamics in neutrophils undergoing chemokinesis following uniform bacterial peptide stimulation. Through this approach, we identify a power law dependence of the neutrophil mean density on time with a critical point, suggesting a critical density is required for motility on 2D substrates. Next we elucidate a continuum law relating mean cell density, area, and total mass that is conserved during neutrophil polarization and migration. Together, our approach and quantitative findings will enable investigators to define the physics coupling cytoskeletal dynamics with subcellular density dynamics during cell migration.

  9. Critical behavior of subcellular density organization during neutrophil activation and migration

    PubMed Central

    Baker-Groberg, Sandra M.; Phillips, Kevin G.; Healy, Laura D.; Itakura, Asako; Porter, Juliana E.; Newton, Paul K.; Nan, Xiaolin; McCarty, Owen J.T.

    2015-01-01

    Physical theories of active matter continue to provide a quantitative understanding of dynamic cellular phenomena, including cell locomotion. Although various investigations of the rheology of cells have identified important viscoelastic and traction force parameters for use in these theoretical approaches, a key variable has remained elusive both in theoretical and experimental approaches: the spatiotemporal behavior of the subcellular density. The evolution of the subcellular density has been qualitatively observed for decades as it provides the source of image contrast in label-free imaging modalities (e.g., differential interference contrast, phase contrast) used to investigate cellular specimens. While these modalities directly visualize cell structure, they do not provide quantitative access to the structures being visualized. We present an established quantitative imaging approach, non-interferometric quantitative phase microscopy, to elucidate the subcellular density dynamics in neutrophils undergoing chemokinesis following uniform bacterial peptide stimulation. Through this approach, we identify a power law dependence of the neutrophil mean density on time with a critical point, suggesting a critical density is required for motility on 2D substrates. Next we elucidate a continuum law relating mean cell density, area, and total mass that is conserved during neutrophil polarization and migration. Together, our approach and quantitative findings will enable investigators to define the physics coupling cytoskeletal dynamics with subcellular density dynamics during cell migration. PMID:26640599

  10. Exploring Inflammatory Disease Drug Effects on Neutrophil Function

    PubMed Central

    Wu, Xiaojie; Kim, Donghyuk; Young, Ashlyn T.; Haynes, Christy L.

    2014-01-01

    Neutrophils are critical inflammatory cells; thus, it is important to characterize the effects of drugs on neutrophil function in the context of inflammatory diseases. Herein, chemically guided neutrophil migration, known as chemotaxis, is studied in the context of drug treatment at the single cell level using a microfluidic platform, complemented by cell viability assays and calcium imaging. Three representative drugs known to inhibit surface receptor expression, signaling enzyme activity, and the elevation of intracellular Ca2+ levels, each playing a significant role in neutrophil chemotactic pathways, are used to examine the in vitro drug effects on cellular behaviors. The microfluidic device establishes a stable concentration gradient of chemokines across a cell culture chamber so that neutrophil migration can be monitored under various drug-exposure conditions. Different time- and concentration-dependent regulatory effects were observed by comparing the motility, polarization, and effectiveness of neutrophil chemotaxis in response to the three drugs. Viability assays revealed distinct drug capabilities in reducing neutrophil viability while calcium imaging clarified the role of Ca2+ in the neutrophil chemotactic pathway. This study provides mechanistic insight into the drug effects on neutrophil function, facilitating comparison of current and potential pharmaceutical approaches. PMID:24946254

  11. Cytokine production of the neutrophils and macrophages in time of phagocytosis under influence of infrared low-level laser irradiation

    NASA Astrophysics Data System (ADS)

    Rudik, Dmitry V.; Tikhomirova, Elena I.; Tuchina, Elena S.

    2006-08-01

    Influence of infrared low-level laser irradiation (LLLI) on induction of synthesis of some cytokines such as interleykin-1 (Il-1), tumor necrosis factor-α (TNF-α), interferon-γ (INF-γ), interleykin-8 (Il-8) and interleykin-4 (Il-4) by the neutrophils and macrophages in time of bacterial cells phagocytosis that was searched. As the object of analysis we used peritoneal macrophages from white mice and neutrophils from peripheral blood of healthy donors. We used the laser diod with spectrum maximum of 850 nm with doses 300, 900 and 1500 mJ (exposition -60, 180 and 300 s respectively; capacity - 5 mW). We carried out the Enzyme-Linked Immunospot Assay (ELISA) to determine cytokine content during phagocytosis after 3 h and 6 h. We found dynamics in production of the cytokines, which was different for the neutrophils and macrophages. We showed that the infrared LLLI has significant stimulating activity on the proinflammatory cytokines production by neutrophils and macrophages. Moreover we revealed dynamics changing in the Il-8 and Il-4 production.

  12. Neutrophils in Cancer: Two Sides of the Same Coin

    PubMed Central

    Uribe-Querol, Eileen; Rosales, Carlos

    2015-01-01

    Neutrophils are the most abundant leukocytes in blood and are considered to be the first line of defense during inflammation and infections. In addition, neutrophils are also found infiltrating many types of tumors. Tumor-associated neutrophils (TANs) have relevant roles in malignant disease. Indeed neutrophils may be potent antitumor effector cells. However, increasing clinical evidence shows TANs correlate with poor prognosis. The tumor microenvironment controls neutrophil recruitment and in turn TANs help tumor progression. Hence, TANs can be beneficial or detrimental to the host. It is the purpose of this review to highlight these two sides of the neutrophil coin in cancer and to describe recent studies that provide some light on the mechanisms for neutrophil recruitment to the tumor, for neutrophils supporting tumor progression, and for neutrophil activation to enhance their antitumor functions. PMID:26819959

  13. The inward rectifier potassium channel Kir2.1 is expressed in mouse neutrophils from bone marrow and liver.

    PubMed

    Masia, Ricard; Krause, Daniela S; Yellen, Gary

    2015-02-01

    Neutrophils are phagocytic cells that play a critical role in innate immunity by destroying bacterial pathogens. Channels belonging to the inward rectifier potassium channel subfamily 2 (Kir2 channels) have been described in other phagocytes (monocytes/macrophages and eosinophils) and in hematopoietic precursors of phagocytes. Their physiological function in these cells remains unclear, but some evidence suggests a role in growth factor-dependent proliferation and development. Expression of functional Kir2 channels has not been definitively demonstrated in mammalian neutrophils. Here, we show by RT-PCR that neutrophils from mouse bone marrow and liver express mRNA for the Kir2 subunit Kir2.1 but not for other subunits (Kir2.2, Kir2.3, and Kir2.4). In electrophysiological experiments, resting (unstimulated) neutrophils from mouse bone marrow and liver exhibit a constitutively active, external K(+)-dependent, strong inwardly rectifying current that constitutes the dominant current. The reversal potential is dependent on the external K(+) concentration in a Nernstian fashion, as expected for a K(+)-selective current. The current is not altered by changes in external or internal pH, and it is blocked by Ba(2+), Cs(+), and the Kir2-selective inhibitor ML133. The single-channel conductance is in agreement with previously reported values for Kir2.1 channels. These properties are characteristic of homomeric Kir2.1 channels. Current density in short-term cultures of bone marrow neutrophils is decreased in the absence of growth factors that are important for neutrophil proliferation [granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF)]. These results demonstrate that mouse neutrophils express functional Kir2.1 channels and suggest that these channels may be important for neutrophil function, possibly in a growth factor-dependent manner. Copyright © 2015 the American Physiological Society.

  14. Determination of viable Salmonellae from potable and source water through PMA assisted qPCR.

    PubMed

    Singh, Gulshan; Vajpayee, Poornima; Bhatti, Saurabh; Ronnie, Nirmala; Shah, Nimish; McClure, Peter; Shanker, Rishi

    2013-07-01

    Resource constrained countries identified as endemic zones for pathogenicity of Salmonella bear an economic burden due to recurring expenditure on medical treatment. qPCR used for Salmonella detection could not discriminate between viable and nonviable cells. Propidium monoazide (PMA) that selectively penetrates nonviable cells to cross-link their DNA, was coupled with ttr gene specific qPCR for quantifying viable salmonellae in source/potable waters collected from a north Indian city. Source water (raw water for urban potable water supply) and urban potable water exhibited viable salmonellae in the range of 2.1×10(4)-2.6×10(6) and 2-7160CFU/100mL, respectively. Potable water at water works exhibited DNA from dead cells but no viable cells were detected. PMA assisted qPCR could specifically detect low numbers of live salmonellae in Source and potable waters. This strategy can be used in surveillance of urban potable water distribution networks to map contamination points for better microbial risk management. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. CFP-10 from Mycobacterium tuberculosis Selectively Activates Human Neutrophils through a Pertussis Toxin-Sensitive Chemotactic Receptor

    PubMed Central

    Björnsdottir, Halla; Winther, Malene; Christenson, Karin; Oprea, Tudor; Karlsson, Anna; Forsman, Huamei; Dahlgren, Claes; Bylund, Johan

    2014-01-01

    Upon infection with Mycobacterium tuberculosis, neutrophils are massively recruited to the lungs, but the role of these cells in combating the infection is poorly understood. Through a type VII secretion system, M. tuberculosis releases a heterodimeric protein complex, containing a 6-kDa early secreted antigenic target (ESAT-6) and a 10-kDa culture filtrate protein (CFP-10), that is essential for virulence. Whereas the ESAT-6 component possesses multiple virulence-related activities, no direct biological activity of CFP-10 has been shown, and CFP-10 has been described as a chaperone protein for ESAT-6. We here show that the ESAT-6:CFP-10 complex induces a transient release of Ca2+ from intracellular stores in human neutrophils. Surprisingly, CFP-10 rather than ESAT-6 was responsible for triggering the Ca2+ response, in a pertussis toxin-sensitive manner, suggesting the involvement of a G-protein-coupled receptor. In line with this, the response was accompanied by neutrophil chemotaxis and activation of the superoxide-producing NADPH-oxidase. Neutrophils were unique among leukocytes in responding to CFP-10, as monocytes and lymphocytes failed to produce a Ca2+ signal upon stimulation with the M. tuberculosis protein. Hence, CFP-10 may contribute specifically to neutrophil recruitment and activation during M. tuberculosis infection, representing a novel biological role for CFP-10 in the ESAT-6:CFP-10 complex, beyond the previously described chaperone function. PMID:25332123

  16. The molecular mechanisms of glucocorticoids-mediated neutrophil survival.

    PubMed

    Saffar, Arash S; Ashdown, Heather; Gounni, Abdelilah S

    2011-04-01

    Neutrophil-dominated inflammation plays an important role in many airway diseases including asthma, chronic obstructive pulmonary disease (COPD), bronchiolitis and cystic fibrosis. In cases of asthma where neutrophil-dominated inflammation is a major contributing factor to the disease, treatment with corticosteroids can be problematic as corticosteroids have been shown to promote neutrophil survival which, in turn, accentuates neutrophilic inflammation. In light of such cases, novel targeted medications must be developed that could control neutrophilic inflammation while still maintaining their antibacterial/anti-fungal properties, thus allowing individuals to maintain effective innate immune responses to invading pathogens. The aim of this review is to describe the molecular mechanisms of neutrophil apoptosis and how these pathways are modulated by glucocorticoids. These new findings are of potential clinical value and provide further insight into treatment of neutrophilic inflammation in lung disease.

  17. Development and evaluation of an interferon-γ release assay in Asian elephants (Elephas maximus).

    PubMed

    Paudel, Sarad; Villanueva, Marvin A; Mikota, Susan K; Nakajima, Chie; Gairhe, Kamal P; Subedi, Suraj; Rayamajhi, Nabin; Sashika, Mariko; Shimozuru, Michito; Matsuba, Takashi; Suzuki, Yasuhiko; Tsubota, Toshio

    2016-08-01

    We developed an interferon-γ release assay (IGRA) specific for Asian elephants (Elephas maximus). Whole blood collected from forty captive Asian elephants was stimulated with three different mitogens i.e., phytohemagglutinin (PHA), pokweed mitogen (PWM) and phorbol myristate aceteate/ionomycin (PMA/I). A sandwich ELISA that was able to recognize the recombinant elephant interferon-γ (rEIFN-γ) as well as native interferon-γ from the Asian elephants was performed using anti-elephant IFN-γ rabbit polyclonal antibodies as capture antibodies and biotinylated anti-elephant IFN-γ rabbit polyclonal antibodies as detection antibodies. PMA/I was the best mitogen to use as a positive control for an Asian elephant IGRA. The development of an Asian elephant-specific IGRA that detects native IFN-γ in elephant whole blood provides promising results for its application as a potential diagnostic tool for diseases, such as tuberculosis (TB) in Asian elephants.

  18. Neutrophilic Skin Lesions in Autoimmune Connective Tissue Diseases

    PubMed Central

    Hau, Estelle; Vignon Pennamen, Marie-Dominique; Battistella, Maxime; Saussine, Anne; Bergis, Maud; Cavelier-Balloy, Benedicte; Janier, Michel; Cordoliani, Florence; Bagot, Martine; Rybojad, Michel; Bouaziz, Jean-David

    2014-01-01

    Abstract The pathophysiology of neutrophilic dermatoses (NDs) and autoimmune connective tissue diseases (AICTDs) is incompletely understood. The association between NDs and AICTDs is rare; recently, however, a distinctive subset of cutaneous lupus erythematosus (LE, the prototypical AICTD) with neutrophilic histological features has been proposed to be included in the spectrum of lupus. The aim of our study was to test the validity of such a classification. We conducted a monocentric retrospective study of 7028 AICTDs patients. Among these 7028 patients, a skin biopsy was performed in 932 cases with mainly neutrophilic infiltrate on histology in 9 cases. Combining our 9 cases and an exhaustive literature review, pyoderma gangrenosum, Sweet syndrome (n = 49), Sweet-like ND (n = 13), neutrophilic urticarial dermatosis (n = 6), palisaded neutrophilic granulomatous dermatitis (n = 12), and histiocytoid neutrophilic dermatitis (n = 2) were likely to occur both in AICTDs and autoinflammatory diseases. Other NDs were specifically encountered in AICTDs: bullous LE (n = 71), amicrobial pustulosis of the folds (n = 28), autoimmunity-related ND (n = 24), ND resembling erythema gyratum repens (n = 1), and neutrophilic annular erythema (n = 1). The improvement of AICTDS neutrophilic lesions under neutrophil targeting therapy suggests possible common physiopathological pathways between NDs and AICTDs. PMID:25546688

  19. Disaggregation of lipopolysaccharide by albumin, hemoglobin or high-density lipoprotein, forming complexes that prime neutrophils for enhanced release of superoxide.

    PubMed

    Komatsu, Toshiya; Aida, Yoshitomi; Fukuda, Takao; Sanui, Terukazu; Hiratsuka, Shunji; Pabst, Michael J; Nishimura, Fusanori

    2016-04-01

    We studied the interaction of LPS with albumin, hemoglobin or high-density lipoprotein (HDL), and whether the interaction affected the activity of LPS on neutrophils. These proteins disaggregated LPS, depending upon temperature and LPS:protein ratio. Albumin-treated LPS was absorbed by immobilized anti-albumin antibody and was eluted with Triton X-100, indicating that LPS formed a hydrophobic complex with albumin. Rd mutant LPS was not disaggregated by the proteins, and did not form a complex with the proteins. But triethylamine-treated Rd mutant LPS formed complexes. When LPS was incubated with an equal concentration of albumin and with polymyxin B (PMXB), PMXB-LPS-protein three-way complexes were formed. After removal of PMXB, the complexes consisted of 11-15 LPS monomers bound to one albumin or hemoglobin molecule. LPS primed neutrophils for enhanced release of formyl peptide-stimulated superoxide, in a serum- and LPS-binding protein (LBP)-dependent manner. Although LPS plus LBP alone did not prime neutrophils, albumin-, hemoglobin- or HDL-treated LPS primed neutrophils when added with LBP. Triethylamine-treated Rd mutant LPS primed neutrophils only when incubated with one of the proteins and with LBP. Thus, in addition to LBP, disaggregation and complex formation of LPS with one of these proteins is required for LPS to prime neutrophils. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. [Neuro-neutrophilic Disease and Dementia].

    PubMed

    Hisanaga, Kinya

    2016-04-01

    Neuro-neutrophilic diseases are multisystem inflammatory disorders that include neuro-Behçet and neuro-Sweet disease. These disorders ectopically damage the nervous system due to the abnormal chemotaxis of neutrophils. The neutrophils' chemotaxis is induced by oral muco-cutaneous bacterial infections and the dysregulation of cytokines, including interleukins. The frequencies of human leukocyte antigen (HLA)-B51 in neuro-Behçet disease and HLA-B54 as well as Cw1 in neuro-Sweet disease significantly higher than the levels present in Japanese normal controls. Notably, their frequencies are also higher in patients exhibiting neurological complications than in patients without neurological complications. These HLA types are considered risk factors that are directly related to the etiology of these diseases. Prednisolone and colchicine, which suppress neutrophil activation, are used to treat the acute phase of both diseases. Alternatively, dapsone is prescribed to prednisolone-dependent recurrent cases of neuro-Sweet disease. Dementia is a neurological symptom of these disorders, especially in the chronic progressive subtype of neuro-Behçet disease. Other immunosuppressant drugs, including methotrexate and infliximab, are administered to patients with the chronic progressive type of neuro-Behçet disease. Neuro-neutrophilic diseases are a form of dementia considered treatable.

  1. The PMA Catalogue as a realization of the extragalactic reference system in optical and near infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Akhmetov, Volodymyr S.; Fedorov, Peter N.; Velichko, Anna B.

    2018-04-01

    We combined the data from the Gaia DR1 and Two-Micron All Sky Survey (2MASS) catalogues in order to derive the absolute proper motions more than 420 million stars distributed all over the sky in the stellar magnitude range 8 mag < G < 21 mag (Gaia magnitude). To eliminate the systematic zonal errors in position of 2MASS catalogue objects, the 2-dimensional median filter was used. The PMA system of proper motion has been obtained by direct link to 1.6 millions extragalactic sources. The short analysis of the absolute proper motion of the PMA stars Catalogue is presented in this work. From a comparison of this data with same stars from the TGAS, UCAC4 and PPMXL catalogues, the equatorial components of the mutual rotation vector of these coordinate systems are determined.

  2. Withaferin A is an inhibitor of endothelial protein C receptor shedding in vitro and in vivo.

    PubMed

    Ku, Sae-Kwang; Han, Min-Su; Bae, Jong-Sup

    2014-06-01

    Withaferin A (WFA), an active compound from Withania somnifera, has been widely researched for its anti-inflammatory and cardioactive properties and effects on the central nervous system. The endothelial cell protein C receptor (EPCR) plays important roles in blood coagulation and inflammation. EPCR activity is markedly changed by ectodomain cleavage and release as the soluble EPCR. EPCR is shed from the cell surface, mediated by tumor necrosis factor-α converting enzyme (TACE). In this study, we investigated the effects of WFA on the EPCR shedding in human umbilical vein endothelial cells (HUVECs) and in mice and the associated signaling pathways. WFA was found to induce inhibition of phorbol-12-myristate 13-acetate (PMA), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and on cecal ligation and puncture (CLP)-induced EPCR shedding and WFA suppressed the expression and activity of TACE. In addition, treatment with WFA resulted in reduced PMA-stimulated phosphorylation of p38, extracellular regulated kinases (ERK) 1/2, and c-Jun N-terminal kinase (JNK). These results demonstrate a therapeutic potentiality of WFA as an anti-sEPCR shedding reagent against PMA and CLP-mediated EPCR shedding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Standardization of blood smears prepared in transparent acetate: an alternative method for the microscopic diagnosis of malaria.

    PubMed

    Mello, Marcia B C; Luz, Francisco C; Leal-Santos, Fabio A; Alves, Eduardo R; Gasquez, Thamires M; Fontes, Cor J F

    2014-06-17

    Due to students' initial inexperience, slides are frequently broken and blood smears are damaged in microscopy training, leading to the need for their constant replacement. To minimize this problem a method of preparing blood smears on transparent acetate sheets was developed with the goal of implementing appropriate and more readily available teaching resources for the microscopic diagnosis of malaria. Acetate sheets derived from polyester were used to standardize the preparation and staining of thin and thick blood smears on transparent acetate sheets. Thick and thin blood smears were also prepared using the conventional method on glass slides. The staining was conducted using Giemsa staining for the thick and thin smears. Microscopic examination (1,000x) of the thin and thick blood smears prepared on transparent acetate produced high-quality images for both the parasites and the blood cells. The smears showed up on a clear background and with minimal dye precipitation. It was possible to clearly identify the main morphological characteristics of Plasmodium, neutrophils and platelets. After 12 months of storage, there was no change in image quality or evidence of fungal colonization. Preparation of thin and thick blood smears in transparent acetate for the microscopic diagnosis of malaria does not compromise the morphological and staining characteristics of the parasites or blood cells. It is reasonable to predict the applicability of transparent acetate in relevant situations such as the training of qualified professionals for the microscopic diagnosis of malaria and the preparation of positive specimens for competency assessment (quality control) of professionals and services involved in the diagnosis of malaria.

  4. The PMA Catalogue: 420 million positions and absolute proper motions

    NASA Astrophysics Data System (ADS)

    Akhmetov, V. S.; Fedorov, P. N.; Velichko, A. B.; Shulga, V. M.

    2017-07-01

    We present a catalogue that contains about 420 million absolute proper motions of stars. It was derived from the combination of positions from Gaia DR1 and 2MASS, with a mean difference of epochs of about 15 yr. Most of the systematic zonal errors inherent in the 2MASS Catalogue were eliminated before deriving the absolute proper motions. The absolute calibration procedure (zero-pointing of the proper motions) was carried out using about 1.6 million positions of extragalactic sources. The mean formal error of the absolute calibration is less than 0.35 mas yr-1. The derived proper motions cover the whole celestial sphere without gaps for a range of stellar magnitudes from 8 to 21 mag. In the sky areas where the extragalactic sources are invisible (the avoidance zone), a dedicated procedure was used that transforms the relative proper motions into absolute ones. The rms error of proper motions depends on stellar magnitude and ranges from 2-5 mas yr-1 for stars with 10 mag < G < 17 mag to 5-10 mas yr-1 for faint ones. The present catalogue contains the Gaia DR1 positions of stars for the J2015 epoch. The system of the PMA proper motions does not depend on the systematic errors of the 2MASS positions, and in the range from 14 to 21 mag represents an independent realization of a quasi-inertial reference frame in the optical and near-infrared wavelength range. The Catalogue also contains stellar magnitudes taken from the Gaia DR1 and 2MASS catalogues. A comparison of the PMA proper motions of stars with similar data from certain recent catalogues has been undertaken.

  5. On-chip PMA labeling of foodborne pathogenic bacteria for viable qPCR and qLAMP detection

    USDA-ARS?s Scientific Manuscript database

    Propidium monoazide (PMA) is a membrane impermeable molecule that covalently bonds to double stranded DNA when exposed to light and inhibits the polymerase activity, thus enabling DNA amplification detection protocols that discriminate between viable and non-viable entities. Here, we present a micro...

  6. The role of blood neutrophil count and the neutrophil-to-lymphocyte ratio as a predictive factor for prostate biopsy results.

    PubMed

    Kamali, Koosha; Ashrafi, Mojtaba; Shadpour, Pejman; Ameli, Mojtaba; Khayyamfar, Amirmahdi; Abolhasani, Maryam; Azizpoor, Amin

    2018-04-01

    It is apparent that prostate cancer has harmful effects on the erythrocytes, leucocytes, and platelets. In addition, it has been suggested that the toxic granules in neutrophils lead to inflammation in the cancerous tissues besides the activation of monocytes, so in this study we aimed to evaluate the blood neutrophil count besides the neutrophil-to-lymphocyte ratio as a predictive factor for prostate biopsy results and their relationship with prostate cancer grade in patients undergoing biopsy of the prostate. For all men with irritative lower urinary tract symptoms visiting Hasheminezhad Hospital from January to July 2015, in case of having a suspicious digital rectal examination or aged above 40 years, prostate-specific antigen was requested and in case of abnormal results, they underwent prostate biopsy. In order to examine the study hypothesis, the blood neutrophil count and the neutrophil-to-lymphocyte ratio were measured and compared with the abnormal prostate-specific antigen results and suspicious digital rectal examination. Among the 500 referred samples for biopsy, 352 (70.4%) had a negative biopsy result, while it was positive in the other 148 (29.6). The mean neutrophil count showed no statistical difference regarding the biopsy results (p = 0.381). When measuring the neutrophil-to-lymphocyte ratio again with biopsy results, no statistically significant difference was obtained based on the biopsy results (p = 0.112). Neutrophil count and neutrophil-to-lymphocyte ratio cannot be predictive factors for positive prostate cancer biopsy.

  7. A role for protein kinase C in the regulation of membrane fluidity and Ca²(+) flux at the endoplasmic reticulum and plasma membranes of HEK293 and Jurkat cells.

    PubMed

    Chen, Lihong; Meng, Qingli; Jing, Xian; Xu, Pingxiang; Luo, Dali

    2011-02-01

    Protein kinase C (PKC) plays a prominent role in the regulation of a variety of cellular functions, including Ca²(+) signalling. In HEK293 and Jurkat cells, the Ca²(+) release and Ca²(+) uptake stimulated by several different activators were attenuated by activation of PKC with phorbol myristate acetate (PMA) or 1-oleoyl-2-acetyl-sn-glycerol (OAG) and potentiated by PKC inhibition with Gö6983 or knockdown of PKCα or PKCβ using shRNA. Immunostaining and Western blotting analyses revealed that PKCα and PKCβII accumulated at the plasma membrane (PM) and that these isoforms, along with PKCβI, also translocated to the endoplasmic reticulum (ER) upon activation with PMA. Measurements of membrane fluidity showed that, like the cell membrane stabilizers bovine serum albumin (BSA) and ursodeoxycholate (UDCA), PMA and OAG significantly reduced the fluidity of both the PM and ER membranes; these effects were blocked in PKC-knockdown cells. Interestingly, both BSA and UDCA inhibited the Ca²(+) responses to agonists to the same extent as PMA, whereas Tween 20, which increases membrane fluidity, raised the internal Ca²(+) concentration. Thus, activation of PKC induces both translocation of PKC to the PM and ER membranes and downregulation of membrane fluidity, thereby negatively modulating Ca²(+) flux. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Exposure to Leishmania braziliensis triggers neutrophil activation and apoptosis.

    PubMed

    Falcão, Sarah A C; Weinkopff, Tiffany; Hurrell, Benjamin P; Celes, Fabiana S; Curvelo, Rebecca P; Prates, Deboraci B; Barral, Aldina; Borges, Valeria M; Tacchini-Cottier, Fabienne; de Oliveira, Camila I

    2015-03-01

    Neutrophils are the first line of defense against invading pathogens and are rapidly recruited to the sites of Leishmania inoculation. During Leishmania braziliensis infection, depletion of inflammatory cells significantly increases the parasite load whereas co-inoculation of neutrophils plus L. braziliensis had an opposite effect. Moreover, the co-culture of infected macrophages and neutrophils also induced parasite killing leading us to ask how neutrophils alone respond to an L. braziliensis exposure. Herein we focused on understanding the interaction between neutrophils and L. braziliensis, exploring cell activation and apoptotic fate. Inoculation of serum-opsonized L. braziliensis promastigotes in mice induced neutrophil accumulation in vivo, peaking at 24 h. In vitro, exposure of thyoglycollate-elicited inflammatory or bone marrow neutrophils to L. braziliensis modulated the expression of surface molecules such as CD18 and CD62L, and induced the oxidative burst. Using mCherry-expressing L. braziliensis, we determined that such effects were mainly observed in infected and not in bystander cells. Neutrophil activation following contact with L. braziliensis was also confirmed by the release of TNF-α and neutrophil elastase. Lastly, neutrophils infected with L. braziliensis but not with L. major displayed markers of early apoptosis. We show that L. braziliensis induces neutrophil recruitment in vivo and that neutrophils exposed to the parasite in vitro respond through activation and release of inflammatory mediators. This outcome may impact on parasite elimination, particularly at the early stages of infection.

  9. Activation of bovine neutrophils by Brucella spp.

    PubMed

    Keleher, Lauren L; Skyberg, Jerod A

    2016-09-01

    Brucellosis is a globally important zoonotic infectious disease caused by gram negative bacteria of the genus Brucella. While many species of Brucella exist, Brucella melitensis, Brucella abortus, and Brucella suis are the most common pathogens of humans and livestock. The virulence of Brucella is largely influenced by its ability to evade host factors, including phagocytic killing mechanisms, which are critical for the host response to infection. The aim of this study was to characterize the bovine neutrophil response to virulent Brucella spp. Here, we found that virulent strains of smooth B. abortus, B. melitensis, B. suis, and virulent, rough, strains of Brucella canis possess similar abilities to resist killing by resting, or IFN-γ-activated, bovine neutrophils. Bovine neutrophils responded to infection with a time-dependent oxidative burst that varied little between Brucella spp. Inhibition of TAK1, or SYK kinase blunted the oxidative burst of neutrophils in response to Brucella infection. Interestingly, Brucella spp. did not induce robust death of bovine neutrophils. These results indicate that bovine neutrophils respond similarly to virulent Brucella spp. In addition, virulent Brucella spp., including naturally rough strains of B. canis, have a conserved ability to resist killing by bovine neutrophils. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Neutrophilic inflammation in asthma: mechanisms and therapeutic considerations.

    PubMed

    Chang, Hun Soo; Lee, Tae-Hyeong; Jun, Ji Ae; Baek, Ae Rin; Park, Jong-Sook; Koo, So-My; Kim, Yang-Ki; Lee, Ho Sung; Park, Choon-Sik

    2017-01-01

    Neutrophilic airway inflammation represents a pathologically distinct form of asthma and frequently appears in symptomatic adulthood asthmatics. However, clinical impacts and mechanisms of the neutrophilic inflammation have not been thoroughly evaluated up to date. Areas covered: Currently, distinct clinical manifestations, triggers, and molecular mechanisms of the neutrophilic inflammation (namely Toll-like receptor, Th1, Th17, inflammasome) are under investigation in asthma. Furthermore, possible role of the neutrophilic inflammation is being investigated in respect to the airway remodeling. We searched the related literatures published during the past 10 years on the website of Pub Med under the title of asthma and neutrophilic inflammation in human. Expert commentary: Epidemiologic and experimental studies have revealed that the neutrophilic airway inflammation is induced by a wide variety of stimuli including ozone, particulate matters, cigarette smoke, occupational irritants, endotoxins, microbial infection and colonization, and aeroallergens. These triggers provoke diverse immune and inflammatory responses leading to progressive and sometimes irreversible airway obstruction. Clinically, neutrophilic airway inflammation is frequently associated with severe asthma and poor response to glucocorticoid therapy, indicating the need for other treatment strategies. Accordingly, therapeutics will be targeted against the main mediators behind the underlying molecular mechanisms of the neutrophilic inflammation.

  11. Phorbol ester impairs electrical excitation of rat pancreatic beta-cells through PKC-independent activation of KATP channels.

    PubMed

    Suga, S; Wu, J; Ogawa, Y; Takeo, T; Kanno, T; Wakui, M

    2001-01-01

    Phorbol 12-myristate 13-acetate (PMA) is often used as an activating phorbol ester of protein kinase C (PKC) to investigate the roles of the kinase in cellular functions. Accumulating lines of evidence indicate that in addition to activating PKC, PMA also produces some regulatory effects in a PKC-independent manner. In this study, we investigated the non-PKC effects of PMA on electrical excitability of rat pancreatic beta-cells by using patch-clamp techniques. In current-clamp recording, PMA (80 nM) reversibly inhibited 15 mM glucose-induced action potential spikes superimposed on a slow membrane depolarization and this inhibition can not be prevented by pre-treatment of the cell with a specific PKC inhibitor, bisindolylmaleimide (BIM, 1 microM). In the presence of a subthreshold concentration (5.5 mM) of glucose, PMA hyperpolarized beta-cells in a concentration-dependent manner (0.8-240 nM), even in the presence of BIM. Based on cell-attached single channel recordings, PMA increased ATP-sensitive K+ channel (KATP) activity. Based on inside-out patch-clamp recordings, PMA had little effect on KATP activity if no ATP was in the bath, while PMA restored KATP activity that was suppressed by 10 microM ATP in the bath. In voltage-clamp recording, PMA enhanced tolbutamide-sensitive membrane currents elicited by repetitive ramp pulses from -90 to -50 mV in a concentration-dependent manner, and this potentiation could not be prevented by pre-treatment of cell with BIM. 4alpha-phorbol 12,13-didecanoate (4alpha-PDD), a non-PKC-activating phorbol ester, mimicked the effect of PMA on both current-clamp and voltage-clamp recording configurations. With either 5.5 or 16.6 mM glucose in the extracellular solution, PMA (80 nM) increased insulin secretion from rat islets. However, in islets pretreated with BIM (1 microM), PMA did not increase, but rather reduced insulin secretion. In rat pancreatic beta-cells, PMA modulates insulin secretion through a mixed mechanism: increases

  12. Acute effects of ethanol and acetate on glucose kinetics in normal subjects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yki-Jaervinen, H.; Koivisto, V.A.; Ylikahri, R.

    1988-02-01

    The authors compared the effects of two ethanol doses on glucose kinetics and assessed the role of acetate as a mediator of ethanol-induced insulin resistance. Ten normal males were studied on four occasions, during which either a low or moderate ethanol, acetate, or saline dose was administered. Both ethanol doses similarly inhibited basal glucose production. The decrease in R{sub a} was matched by a comparable decrease in glucose utilization (R{sub d}), resulting in maintenance of normoglycemia. During hyperinsulinemia glucose disposal was lower in the moderate than the low-dose ethanol or saline studies. During acetate infusion, the blood acetate level wasmore » comparable with those in the ethanol studies. Acetate had no effect on glucose kinetics. In conclusion, (1) in overnight fasted subjects, ethanol does not cause hypoglycemia because its inhibitory effect on R{sub a} is counterbalanced by equal inhibition of R{sub d}; (2) basal R{sub a} and R{sub d} are maximally inhibited already by small ethanol doses, whereas inhibition of insulin-stimulated glucose disposal requires a moderate ethanol dose; and (3) acetate is not the mediator of ethanol-induced insulin resistance.« less

  13. African swine fever virus IAP-like protein induces the activation of nuclear factor kappa B.

    PubMed

    Rodríguez, Clara I; Nogal, María L; Carrascosa, Angel L; Salas, María L; Fresno, Manuel; Revilla, Yolanda

    2002-04-01

    African swine fever virus (ASFV) encodes a homologue of the inhibitor of apoptosis (IAP) that promotes cell survival by controlling the activity of caspase-3. Here we show that ASFV IAP is also able to activate the transcription factor NF-kappaB. Thus, transient transfection of the viral IAP increases the activity of an NF-kappaB reporter gene in a dose-responsive manner in Jurkat cells. Similarly, stably transfected cells expressing ASFV IAP have elevated basal levels of c-rel, an NF-kappaB-dependent gene. NF-kappaB complexes in the nucleus were increased in A224L-expressing cells compared with control cells upon stimulation with phorbol myristate acetate (PMA) plus ionomycin. This resulted in greater NF-kappaB-dependent promoter activity in ASFV IAP-expressing than in control cells, both in basal conditions and after PMA plus ionophore stimulation. The elevated NF-kappaB activity seems to be the consequence of higher IkappaB kinase (IKK) basal activity in these cells. The NF-kappaB-inducing activity of ASFV IAP was abrogated by an IKK-2 dominant negative mutant and enhanced by expression of tumor necrosis factor receptor-associated factor 2.

  14. African Swine Fever Virus IAP-Like Protein Induces the Activation of Nuclear Factor Kappa B

    PubMed Central

    Rodríguez, Clara I.; Nogal, María L.; Carrascosa, Angel L.; Salas, María L.; Fresno, Manuel; Revilla, Yolanda

    2002-01-01

    African swine fever virus (ASFV) encodes a homologue of the inhibitor of apoptosis (IAP) that promotes cell survival by controlling the activity of caspase-3. Here we show that ASFV IAP is also able to activate the transcription factor NF-κB. Thus, transient transfection of the viral IAP increases the activity of an NF-κB reporter gene in a dose-responsive manner in Jurkat cells. Similarly, stably transfected cells expressing ASFV IAP have elevated basal levels of c-rel, an NF-κB-dependent gene. NF-κB complexes in the nucleus were increased in A224L-expressing cells compared with control cells upon stimulation with phorbol myristate acetate (PMA) plus ionomycin. This resulted in greater NF-κB-dependent promoter activity in ASFV IAP-expressing than in control cells, both in basal conditions and after PMA plus ionophore stimulation. The elevated NF-κB activity seems to be the consequence of higher IκB kinase (IKK) basal activity in these cells. The NF-κB-inducing activity of ASFV IAP was abrogated by an IKK-2 dominant negative mutant and enhanced by expression of tumor necrosis factor receptor-associated factor 2. PMID:11907233

  15. The complex interplay between neutrophils and cancer.

    PubMed

    Rakic, Andrea; Beaudry, Paul; Mahoney, Douglas J

    2018-03-01

    Neutrophils are the most abundant type of white blood cell, and are an essential component of the innate immune system. They characteristically arrive rapidly at sites of infection and injury, and release a variety of cytokines and toxic molecules to eliminate pathogens and elicit an acute inflammatory response. Research into the function of neutrophils in cancer suggest they have divergent roles. Indeed, while most studies have found neutrophils to be associated with cancer progression, others have also documented anticancer effects. In this review, we describe the investigations into neutrophil populations that have been implicated in promoting tumor growth and metastasis as well those demonstrating antitumor functions. The collective research suggests a complex role for neutrophils in cancer biology, which raises the prospect of their targeting for the treatment of cancer.

  16. Pathophysiology of neutrophil-mediated extracellular redox reactions.

    PubMed

    Jaganjac, Morana; Cipak, Ana; Schaur, Rudolf Joerg; Zarkovic, Neven

    2016-01-01

    Neutrophil granulocyte leukocytes (neutrophils) play fundamental role in the innate immune response. In the presence of adequate stimuli, neutrophils release excessive amount of reactive oxygen species (ROS) that may induce cell and tissue injury. Oxidative burst of neutrophils acts as a double-edged sword. It may contribute to the pathology of atherosclerosis and brain injury but is also necessary in resolving infections. Moreover, neutrophil-derived ROS may also have both a tumor promoting and tumor suppressing role. ROS have a specific activities and diffusion distance, which is related to their short lifetime. Therefore, the manner in which ROS will act depends on the cells targeted and the intra- and extracellular levels of individual ROS, which can further cause production of reactive aldehydes like 4-hydroxynonenal (HNE) that act as a second messengers of ROS. In this review we discuss the influence of neutrophil mediated extracellular redox reactions in ischemia reperfusion injury, transplant rejection and chronic diseases (atherosclerosis, inflammatory bowel diseases and cancer). At the end a brief overview of cellular mechanisms to maintain ROS homeostasis is given.

  17. Dynamics of neutrophil migration in lymph nodes during infection.

    PubMed

    Chtanova, Tatyana; Schaeffer, Marie; Han, Seong-Ji; van Dooren, Giel G; Nollmann, Marcelo; Herzmark, Paul; Chan, Shiao Wei; Satija, Harshita; Camfield, Kristin; Aaron, Holly; Striepen, Boris; Robey, Ellen A

    2008-09-19

    Although the signals that control neutrophil migration from the blood to sites of infection have been well characterized, little is known about their migration patterns within lymph nodes or the strategies that neutrophils use to find their local sites of action. To address these questions, we used two-photon scanning-laser microscopy to examine neutrophil migration in intact lymph nodes during infection with an intracellular parasite, Toxoplasma gondii. We found that neutrophils formed both small, transient and large, persistent swarms via a coordinated migration pattern. We provided evidence that cooperative action of neutrophils and parasite egress from host cells could trigger swarm formation. Neutrophil swarm formation coincided in space and time with the removal of macrophages that line the subcapsular sinus of the lymph node. Our data provide insights into the cellular mechanisms underlying neutrophil swarming and suggest new roles for neutrophils in shaping immune responses.

  18. Dynamics of neutrophil migration in lymph nodes during infection

    PubMed Central

    Chtanova, Tatyana; Schaeffer, Marie; Han, Seong-Ji; van Dooren, Giel G.; Nollmann, Marcelo; Herzmark, Paul; Chan, Shiao Wei; Satija, Harshita; Camfield, Kristin; Aaron, Holly; Striepen, Boris; Robey, Ellen A.

    2008-01-01

    Summary While the signals that control neutrophil migration from the blood to sites of infection have been well characterized, little is known about their migration patterns within lymph nodes, or the strategies that neutrophils use to find their local sites of action. To address these questions, we used two-photon scanning laser microscopy (TPSLM) to examine neutrophil migration in intact lymph nodes during infection with an intracellular parasite, Toxoplasma gondii. We find that neutrophils form both small, transient or large, persistent swarms via a strikingly coordinated migration pattern. We provide evidence that cooperative action of neutrophils and parasite egress from host cells can trigger swarm formation. Neutrophil swarm formation coincides in space and time with the removal of macrophages that line the subcapsular sinus of the lymph node. Our data provide insights into the cellular mechanisms underlying neutrophil swarming and suggest new roles for neutrophils in shaping immune responses. PMID:18718768

  19. Evaluation Lactogenic Activity of Ethyl Acetate Fraction of Torbangun (Coleus amboinicus L.) Leaves

    NASA Astrophysics Data System (ADS)

    Damanik, R. M.; Kustiyah, L.; Hanafi, M.; Iwansyah, A. C.

    2017-12-01

    This study aimed to assess the lactogenic property of ethyl acetate fraction of torbangun (Coleus amboinicus L.) leaves and to identify the compounds that responsibility as ‘milk booster’ using LC- MS approach. Lactagogue activity was evaluated in terms of quantity of milk produced from the rats treated with commercial milk booster (AF), ethyl acetate fraction of torbangun leaves (EA), water extraction of torbangun (AQ) and kaempferol (KP). The feed was given orally every two days and starting from Day 2 after giving birth until Day 28. The performance of milk production was measured along the experimental period by weight-suckle-weight method. The level of prolactin serum was determined by ELISA methods. Histopathological analysis of mammary gland, liver, intestines and kidney tissues was carried out. Moreover, in order to profiling and identification of compounds of ethyl acetate fraction, ultra-performance liquid chromatography quadrupole time of flight to electrospray ionization mass spectrometry (UPLC-QTOF-ESI-MS) in the positive-ion mode was performed. The ethyl acetate fraction of torbangun leaves (EA) was induced milk production about 17%, and AF 22% and KP 51% compared to the control group. Meanwhile, the EA was not significantly stimulate the synthesis of serum prolactin at Day 14 and Day 28 (p>0.05). Administration of EA did not cause any signs or symptoms of toxicity. In addition, a total of ten compounds was identified by UPLC-QTOF-ESI/MS in the ethyl acetate fraction of the leaves of C. amboinicus, mostly phenolic compounds, flavonols and some of their glycoside derivatives, such as: digiprolatone, and kaempferol-3-7-O-di-rhamnopyranoside. The present study reveals the ethyl acetate fraction of torbangun leaves and its bioactive compounds has the potency as a remedy for stimulating and improving milk production.

  20. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures.

    PubMed

    Steinbusch, Kirsten J J; Hamelers, Hubertus V M; Schaap, Joris D; Kampman, Christel; Buisman, Cees J N

    2010-01-01

    Biological acetate reduction with hydrogen is a potential method to convert wet biomass waste into ethanol. Since the ethanol concentration and reaction rates are low, this research studies the feasibility of using an electrode, in stead of hydrogen, as an electron donor for biological acetate reduction in conjunction of an electron mediator. Initially, the effect of three selected mediators on metabolic flows during acetate reduction with hydrogen was explored; subsequently, the best performing mediator was used in a bioelectrochemical system to stimulate acetate reduction at the cathode with mixed cultures at an applied cathode potential of -550 mV. In the batch test, methyl viologen (MV) was found to accelerate ethanol production 6-fold and increased ethanol concentration 2-fold to 13.5 +/- 0.7 mM compared to the control. Additionally, MV inhibited n-butyrate and methane formation, resulting in high ethanol production efficiency (74.6 +/- 6%). In the bioelectrochemical system, MV addition to an inoculated cathode led directly to ethanol production (1.82 mM). Hydrogen was coproduced at the cathode (0.0035 Nm(3) hydrogen m(-2) d(-1)), so it remained unclear whether acetate was reduced to ethanol by electrons supplied by the mediator or by hydrogen. As MV reacted irreversibly at the cathode, ethanol production stopped after 5 days.