Science.gov

Sample records for acetic acid citric

  1. Effect of acetic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    PubMed

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-09-01

    An integrated citric acid-methane fermentation process was proposed to solve the problem of extraction wastewater in citric acid fermentation process. Extraction wastewater was treated by anaerobic digestion and then recycled for the next batch of citric acid fermentation to eliminate wastewater discharge and reduce water resource consumption. Acetic acid as an intermediate product of methane fermentation was present in anaerobic digestion effluent. In this study, the effect of acetic acid on citric acid fermentation was investigated and results showed that lower concentration of acetic acid could promote Aspergillus niger growth and citric acid production. 5-Cyano-2,3-ditolyl tetrazolium chloride (CTC) staining was used to quantify the activity of A. niger cells, and the results suggested that when acetic acid concentration was above 8 mM at initial pH 4.5, the morphology of A. niger became uneven and the part of the cells' activity was significantly reduced, thereby resulting in deceasing of citric acid production. Effects of acetic acid on citric acid fermentation, as influenced by initial pH and cell number in inocula, were also examined. The result indicated that inhibition by acetic acid increased as initial pH declined and was rarely influenced by cell number in inocula.

  2. Use of acetic and citric acids to control Salmonella Typhimurium in tahini (sesame paste).

    PubMed

    Al-Nabulsi, Anas A; Olaimat, Amin N; Osaili, Tareq M; Shaker, Reyad R; Zein Elabedeen, Noor; Jaradat, Ziad W; Abushelaibi, Aisha; Holley, Richard A

    2014-09-01

    Since tahini and its products have been linked to Salmonella illness outbreaks and product recalls in recent years, this study assessed the ability of Salmonella Typhimurium to survive or grow in commercial tahini and when hydrated (10% w/v in water), treated with 0.1%-0.5% acetic or citric acids, and stored at 37, 21 and 10 °C for 28 d. S. Typhimurium survived in commercial tahini up to 28 d but was reduced in numbers from 1.7 to 3.3 log10 CFU/ml. However, in the moist or hydrated tahini, significant growth of S. Typhimurium occurred at the tested temperatures. Acetic and citric acids at ≤0.5% reduced S. Typhimurium by 2.7-4.8 log10 CFU/ml and 2.5-3.8 log10 CFU/ml, respectively, in commercial tahini at 28 d. In hydrated tahini the organic acids were more effective. S. Typhimurium cells were not detected in the presence of 0.5% acetic acid after 7 d or with 0.5% citric acid after 21 d at the tested temperatures. The ability of S. Typhimurium to grow or survive in commercial tahini and products containing hydrated tahini may contribute to salmonellosis outbreaks; however, use of acetic and citric acids in ready-to-eat foods prepared from tahini can significantly minimize the risk associated with this pathogen.

  3. Citric acid cycle in the hyperthermophilic archaeon Pyrobaculum islandicum grown autotrophically, heterotrophically, and mixotrophically with acetate.

    PubMed

    Hu, Yajing; Holden, James F

    2006-06-01

    The hyperthermophilic archaeon Pyrobaculum islandicum uses the citric acid cycle in the oxidative and reductive directions for heterotrophic and autotrophic growth, respectively, but the control of carbon flow is poorly understood. P. islandicum was grown at 95 degrees C autotrophically, heterotrophically, and mixotrophically with acetate, H2, and small amounts of yeast extract and with thiosulfate as the terminal electron acceptor. The autotrophic growth rates and maximum concentrations of cells were significantly lower than those in other media. The growth rates on H2 and 0.001% yeast extract with and without 0.05% acetate were the same, but the maximum concentration of cells was fourfold higher with acetate. There was no growth with acetate if 0.001% yeast extract was not present, and addition of H2 to acetate-containing medium greatly increased the growth rates and maximum concentrations of cells. P. islandicum cultures assimilated 14C-labeled acetate in the presence of H2 and yeast extract with an efficiency of 55%. The activities of 11 of 19 enzymes involved in the central metabolism of P. islandicum were regulated under the three different growth conditions. Pyruvate synthase and acetate:coenzyme A (CoA) ligase (ADP-forming) activities were detected only in heterotrophically grown cultures. Citrate synthase activity decreased in autotrophic and acetate-containing cultures compared to the activity in heterotrophic cultures. Acetylated citrate lyase, acetate:CoA ligase (AMP forming), and phosphoenolpyruvate carboxylase activities increased in autotrophic and acetate-containing cultures. Citrate lyase activity was higher than ATP citrate synthase activity in autotrophic cultures. These data suggest that citrate lyase and AMP-forming acetate:CoA ligase, but not ATP citrate synthase, work opposite citrate synthase to control the direction of carbon flow in the citric acid cycle.

  4. Oxidation of acetate through reactions of the citric acid cycle by Geobacter sulfurreducens in pure culture and in syntrophic coculture.

    PubMed

    Galushko, A S; Schink, B

    2000-11-01

    Geobacter sulfurreducens strain PCA oxidized acetate to CO2 via citric acid cycle reactions during growth with acetate plus fumarate in pure culture, and with acetate plus nitrate in coculture with Wolinella succinogenes. Acetate was activated by succinyl-CoA:acetate CoA-transferase and also via acetate kinase plus phosphotransacetylase. Citrate was formed by citrate synthase. Soluble isocitrate and malate dehydrogenases NADP+ and NAD+, respectively. Oxidation of 2-oxoglutarate was measured as benzyl viologen reduction and strictly CoA-dependent; a low activity was also observed with NADP+. Succinate dehydrogenase and fumarate ductase both were membrane-bound. Succinate oxidation was coupled to NADP+ reduction whereas fumarate reduction was coupled to NADPH and NADH Coupling of succinate oxidation to NADP+ or cytochrome(s) reduction required an ATP-dependent reversed electron transport. Net ATP synthesis proceeded exclusively through electron transport phosphorylation. During fumarate reduction, both NADPH and NADH delivered reducing equivalents into the electron transport chain, which contained a menaquinone. Overall, acetate oxidation with fumarate proceeded through an open loop of citric acid cycle reactions, excluding succinate dehydrogenase, with fumarate reductase as the key reaction for electron delivery, whereas acetate oxidation in the syntrophic coculture required the complete citric acid cycle.

  5. Influence of acetic, citric, and lactic acids on Escherichia coli O157:H7 membrane lipid composition, verotoxin secretion, and acid resistance in simulated gastric fluid.

    PubMed

    Yuk, Hyun-Gyun; Marshall, Douglas L

    2005-04-01

    The effect of organic acid (acetic, citric, and lactic acids) adaptation at equivalent initial pH values (6.4 and 5.4) on changes in membrane lipid composition, verotoxin concentration, and acid resistance in simulated gastric fluid (pH 1.5, 37 degrees C) was determined for Escherichia coli O157:H7 ATCC 43895 (HEC) and an rpoS mutant of E. coli O157:H7 ATCC 43895 (RM, FRIK 816-3). For HEC, lactic acid-adapted (pH 5.4) cells had the greatest D-value (32.2 min) and acetic acid-adapted (pH 5.4) cells had the smallest D-value (16.6 min) in simulated gastric fluid. For RM, D-values of citric and acetic acid-adapted cells were similar to those for nonadapted cells grown at pH 7.3, but D-values increased from 13.1 to 27.9 min in lactic acid-adapted cells (from pH 7.3 to pH 5.4). For both strains, the ratio of cis-vaccenic to palmitic acids decreased for citric and lactic acid-adapted cells, but the ratio increased for acetic acid-adapted cells at pH 5.4. Organic acid-adapted cells produced less total verotoxin than did nonadapted cells at approximately 10(8) CFU/ml. Extracellular verotoxin concentration proportionally decreased with decreasing pH for both HEC and RM. Changes in membrane lipid composition, verotoxin concentration, and acid resistance in HEC and RM were dependent on both pH and organic acid. Deletion of the rpoS gene did not affect these changes but did decrease acid resistance in citric acid-adapted cells. Results indicate that decreased membrane fluidity may have caused increased acid resistance and decreased verotoxin secretion.

  6. Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants.

    PubMed

    Barrios, Ana Cecilia; Rico, Cyren M; Trujillo-Reyes, Jesica; Medina-Velo, Illya A; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2016-09-01

    Little is known about the physiological and biochemical responses of plants exposed to surface modified nanomaterials. In this study, tomato (Solanum lycopersicum L.) plants were cultivated for 210days in potting soil amended with uncoated and citric acid coated cerium oxide nanoparticles (nCeO2, CA+nCeO2) bulk cerium oxide (bCeO2), and cerium acetate (CeAc). Millipore water (MPW), and citric acid (CA) were used as controls. Physiological and biochemical parameters were measured. At 500mg/kg, both the uncoated and CA+nCeO2 increased shoot length by ~9 and ~13%, respectively, while bCeO2 and CeAc decreased shoot length by ~48 and ~26%, respectively, compared with MPW (p≤0.05). Total chlorophyll, chlo-a, and chlo-b were significantly increased by CA+nCeO2 at 250mg/kg, but reduced by bCeO2 at 62.5mg/kg, compared with MPW. At 250 and 500mg/kg, nCeO2 increased Ce in roots by 10 and 7 times, compared to CA+nCeO2, but none of the treatments affected the Ce concentration in above ground tissues. Neither nCeO2 nor CA+nCeO2 affected the homeostasis of nutrient elements in roots, stems, and leaves or catalase and ascorbate peroxidase in leaves. CeAc at 62.5 and 125mg/kg increased B (81%) and Fe (174%) in roots, while at 250 and 500mg/kg, increased Ca in stems (84% and 86%, respectively). On the other hand, bCeO2 at 62.5 increased Zn (152%) but reduced P (80%) in stems. Only nCeO2 at 62.5mg/kg produced higher total number of tomatoes, compared with control and the rest of the treatments. The surface coating reduced Ce uptake by roots but did not affect its translocation to the aboveground organs. In addition, there was no clear effect of surface coating on fruit production. To our knowledge, this is the first study comparing the effects of coated and uncoated nCeO2 on tomato plants.

  7. Performance, kinetics, and equilibrium of methylene blue adsorption on biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids.

    PubMed

    Sun, Lei; Chen, Dongmei; Wan, Shungang; Yu, Zebin

    2015-12-01

    Biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids at low temperatures was utilized as adsorbent to remove methylene blue (MB) from aqueous solutions. Fourier transform infrared spectroscopy analysis showed that the carboxyl group was introduced on the biochar surface. Adsorption experiment data indicated that eucalyptus saw dust modified with citric acid showed higher MB adsorption efficiency than that modified with tartaric and acetic acids. Pseudo-second-order kinetics was the most suitable model for describing MB adsorption on biochar compared with pseudo-first-order, Elovich, and intraparticle diffusion models. The calculated values of ΔG(0) and ΔH(0) indicated the spontaneous and endothermic nature of the adsorption process. MB adsorption on biochar followed the Langmuir isotherm. The maximum adsorption capacities for eucalyptus saw dust modified with citric, tartaric, and acetic acids were 178.57, 99.01, and 29.94 mg g(-1), respectively, at 35°C.

  8. Citric acid and ethylene diamine tetra-acetic acid as effective washing agents to treat sewage sludge for agricultural reuse.

    PubMed

    Ren, Xianghao; Yan, Rui; Wang, Hong-Cheng; Kou, Ying-Ying; Chae, Kyu-Jung; Kim, In S; Park, Yong-Jin; Wang, Ai-Jie

    2015-12-01

    This paper presents the effects of different concentrations of citric acid (CA) and ethylene diamine tetra-acetic acid (EDTA) when used as additive reagents for the treatment of sewage sludge for agricultural use. Herein, both the retention of nutrients and removal of metals from the sewage sludge are examined. The average removal rate for the metals after treatment by CA decreased in the order Cu>Pb>Cd>Cr>Zn, while the rates after treatment by EDTA decreased in the order of Pb>Cu>Cr>Cd>Zn. After treatment with CA and EDTA, total nitrogen and total phosphorus concentrations in the sludge decreased, while the content of available nitrogen and Olsen-P increased. In addition, a multi-criteria analysis model-fuzzy analytic network process method (with 3 main factors and 12 assessment sub-factors) was adopted to evaluate the effectiveness of different treatment methods. The results showed that the optimal CA and EDTA concentrations for sewage sludge treatment were 0.60 and 0.125 mol/L, respectively.

  9. Survival of Listeria innocua in rainbow trout protein recovered by isoelectric solubilization and precipitation with acetic and citric acids.

    PubMed

    Otto, R A; Paker, I; Bane, L; Beamer, S; Jaczynski, J; Matak, K E

    2011-08-01

    During mechanical fish processing, a substantial amount of protein is discarded as by-products. Isoelectric solubilization and precipitation (ISP) is a process that uses extreme pH shifts to solubilize and precipitate protein from by-products to recover previously discarded protein. Typically, strong acids are used for pH reduction, but these acids do not have a pasteurization effect (6 log reduction) on bacterial load; therefore, organic acids were used during ISP processing to test the impact on Listeria innocua concentrations. Headed and gutted rainbow trout (Oncorhynchus mykiss) were inoculated with L. innocua, homogenized, and brought to the target pH with granular citric acid (pH 2.0 and 2.5) or glacial acetic acid (pH 3.0 and 3.5). Proteins were solubilized for 10 min at 4°C, and insoluble components (e.g., skin and insoluble protein) were removed by centrifugation. The remaining solution was pH shifted to the protein isoelectric point (pH 5.5) with sodium hydroxide, and precipitated protein was separated from the water. Microbial cells for each component (proteins, insolubles, and water) were enumerated on modified Oxford agar (MOX) and tryptic soy agar with 6% yeast extract (TSAYE). The sums of the surviving cells from each component were compared with the initial inoculum levels. No significant differences were observed between results obtained from TSAYE and from MOX (P > 0.05). Significant reductions in microbial populations were detected, regardless of pH or acid type (P < 0.05). The greatest reduction was at pH 3.0 with glacial acetic acid, resulting in a mean reduction of 6.41 log CFU/g in the recovered protein and 5.88 log CFU/g in the combined components. These results demonstrate the antimicrobial potential of organic acids in ISP processing.

  10. Minimal inhibitory concentrations of undissociated lactic, acetic, citric and propionic acid for Listeria monocytogenes under conditions relevant to cheese.

    PubMed

    Wemmenhove, Ellen; van Valenberg, Hein J F; Zwietering, Marcel H; van Hooijdonk, Toon C M; Wells-Bennik, Marjon H J

    2016-09-01

    Minimal inhibitory concentrations (MICs) of undissociated lactic acid were determined for six different Listeria monocytogenes strains at 30 °C and in a pH range of 4.2-5.8. Small increments in pH and acid concentrations were used to accurately establish the growth/no growth limits of L. monocytogenes for these acids. The MICs of undissociated lactic acid in the pH range of 5.2-5.8 were generally higher than at pH 4.6 for the different L. monocytogenes strains. The average MIC of undissociated lactic acid was 5.0 (SD 1.5) mM in the pH range 5.2-5.6, which is relevant to Gouda cheese. Significant differences in MICs of undissociated lactic acid were found between strains of L. monocytogenes at a given pH, with a maximum observed level of 9.0 mM. Variations in MICs were mostly due to strain variation. In the pH range 5.2-5.6, the MICs of undissociated lactic acid were not significantly different at 12 °C and 30 °C. The average MICs of undissociated acetic acid, citric acid, and propionic acid were 19.0 (SD 6.5) mM, 3.8 (SD 0.9) mM, and 11.0 (SD 6.3) mM, respectively, for the six L. monocytogenes strains tested in the pH range 5.2-5.6. Variations in MICs of these organic acids for L. monocytogenes were also mostly due to strain variation. The generated data contribute to improved predictions of growth/no growth of L. monocytogenes in cheese and other foods containing these organic acids.

  11. Citric acid urine test

    MedlinePlus

    ... used to diagnose renal tubular acidosis and evaluate kidney stone disease. Normal Results The normal range is 320 ... tubular acidosis and a tendency to form calcium kidney stones. The following may decrease urine citric acid levels: ...

  12. A specialized citric acid cycle requiring succinyl-coenzyme A (CoA):acetate CoA-transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter aceti.

    PubMed

    Mullins, Elwood A; Francois, Julie A; Kappock, T Joseph

    2008-07-01

    Microbes tailor macromolecules and metabolism to overcome specific environmental challenges. Acetic acid bacteria perform the aerobic oxidation of ethanol to acetic acid and are generally resistant to high levels of these two membrane-permeable poisons. The citric acid cycle (CAC) is linked to acetic acid resistance in Acetobacter aceti by several observations, among them the oxidation of acetate to CO2 by highly resistant acetic acid bacteria and the previously unexplained role of A. aceti citrate synthase (AarA) in acetic acid resistance at a low pH. Here we assign specific biochemical roles to the other components of the A. aceti strain 1023 aarABC region. AarC is succinyl-coenzyme A (CoA):acetate CoA-transferase, which replaces succinyl-CoA synthetase in a variant CAC. This new bypass appears to reduce metabolic demand for free CoA, reliance upon nucleotide pools, and the likely effect of variable cytoplasmic pH upon CAC flux. The putative aarB gene is reassigned to SixA, a known activator of CAC flux. Carbon overflow pathways are triggered in many bacteria during metabolic limitation, which typically leads to the production and diffusive loss of acetate. Since acetate overflow is not feasible for A. aceti, a CO(2) loss strategy that allows acetic acid removal without substrate-level (de)phosphorylation may instead be employed. All three aar genes, therefore, support flux through a complete but unorthodox CAC that is needed to lower cytoplasmic acetate levels.

  13. Citric Acid Metabolism in the Bovine Rumen

    PubMed Central

    Wright, D. E.

    1971-01-01

    Rumen microorganisms rapidly metabolize citric acid to carbon dioxide and acetic acid. The rate of metabolism varied between 0.00008 and 0.76 μmoles per g per min, the rate becoming higher as the citric acid concentration increased. The addition of potassium chloride to rumen contents decreased the rate of utilization. The results indicate that dietary citric acid is unlikely to accumulate in the rumen to a sufficiently high level to be an important factor in hypomagnesemia, except where other factors such as very high potassium levels in the food influence its metabolism. PMID:5549696

  14. [Analysis of citric acid and citrates. Citric acid and urolithiasis].

    PubMed

    Leskovar, P

    1979-08-01

    In the first part the physico-chemical, analytic chemical and physiologic biochemical properties of the citric acid are discussed. In the second part the author enters the role of the citric acid in the formation of uric calculi. In the third part is reported on the individual methods of the determination of citric acid and the method practised in the author's laboratory is described.

  15. Biotechnological production of citric acid

    PubMed Central

    Max, Belén; Salgado, José Manuel; Rodríguez, Noelia; Cortés, Sandra; Converti, Attilio; Domínguez, José Manuel

    2010-01-01

    This work provides a review about the biotechnological production of citric acid starting from the physicochemical properties and industrial applications, mainly in the food and pharmaceutical sectors. Several factors affecting citric acid fermentation are discussed, including carbon source, nitrogen and phosphate limitations, pH of culture medium, aeration, trace elements and morphology of the fungus. Special attention is paid to the fundamentals of biochemistry and accumulation of citric acid. Technologies employed at industrial scale such as surface or submerged cultures, mainly employing Aspergillus niger, and processes carried out with Yarrowia lipolytica, as well as the technology for recovering the product are also described. Finally, this review summarizes the use of orange peels and other by-products as feedstocks for the bioproduction of citric acid. PMID:24031566

  16. The effect of using citric or acetic acid on survival of Listeria monocytogenes during fish protein recovery by isoelectric solubilization and precipitation process.

    PubMed

    Otto, R A; Beamer, S; Jaczynski, J; Matak, K E

    2011-10-01

    Isoelectric solubilization and precipitation (ISP) is a protein recovery process effective at reducing Listeria innocua, a nonpathogenic bacterium typically used as a surrogate for L. monocytogenes in recovered trout protein. The response of L. monocytogenes to ISP processing was determined and compared to the response of L. innocua. Headed and gutted rainbow trout were inoculated with L. monocytogenes (10.16 log CFU/g), homogenized, and pH-adjusted with granular citric acid (pH 2.0 and 2.5) or glacial acetic acid (pH 3.0 and 3.5). Proteins were solubilized and centrifugation was used to remove insoluble components (skin, insoluble protein, so on). The supernatant was returned to the protein isoelectric point (pH 5.5) with NaOH and centrifuged to remove precipitated protein. Microbial load was enumerated on both growth and selective media; recovery was not significantly different (P > 0.05). Surviving cells from each component (protein, insoluble, and water) were compared to initial inoculum numbers. Significant reductions were detected at all pH (P < 0.05). The greatest reductions were at pH 3.0 with acetic acid, with a mean log reduction of 3.03 in the combined components, and a 3.53 log reduction in the protein portion. Data were compared to results from a previous study using L. innocua. Significant differences (P < 0.05) in recovery were found between the 2 species at pH 2.0 and 3.0 with greater recovery of L. monocytogenes, regardless of processing pH or acid type. These results demonstrate the variability in resistance between species and indicate that L. innocua is not an appropriate surrogate for L. monocytogenes for ISP processing with organic acids.

  17. 21 CFR 582.1033 - Citric acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Citric acid. 582.1033 Section 582.1033 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1033 Citric acid. (a) Product. Citric acid. (b) Conditions of use. This substance is...

  18. 21 CFR 582.1033 - Citric acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Citric acid. 582.1033 Section 582.1033 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1033 Citric acid. (a) Product. Citric acid. (b) Conditions of use. This substance is...

  19. 21 CFR 582.1033 - Citric acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Citric acid. 582.1033 Section 582.1033 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1033 Citric acid. (a) Product. Citric acid. (b) Conditions of use. This substance is...

  20. 21 CFR 582.1033 - Citric acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Citric acid. 582.1033 Section 582.1033 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1033 Citric acid. (a) Product. Citric acid. (b) Conditions of use. This substance is...

  1. 21 CFR 582.1033 - Citric acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Citric acid. 582.1033 Section 582.1033 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1033 Citric acid. (a) Product. Citric acid. (b) Conditions of use. This substance is...

  2. Flecainide acetate acetic acid solvates.

    PubMed

    Veldre, Kaspars; Actiņs, Andris; Eglite, Zane

    2011-02-01

    Flecainide acetate forms acetic acid solvates with 0.5 and 2 acetic acid molecules. Powder X-ray diffraction, differential thermal analysis/thermogravimetric, infrared, and potentiometric titration were used to determine the composition of solvates. Flecainide acetate hemisolvate with acetic acid decomposes to form a new crystalline form of flecainide acetate. This form is less stable than the already known polymorphic form at all temperatures, and it is formed due to kinetic reasons. Both flecainide acetate nonsolvated and flecainide acetate hemisolvate forms crystallize in monoclinic crystals, but flecainide triacetate forms triclinic crystals. Solvate formation was not observed when flecainide base was treated with formic acid, propanoic acid, and butanoic acid. Only nonsolvated flecainide salts were obtained in these experiments.

  3. 21 CFR 184.1033 - Citric acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Citric acid. 184.1033 Section 184.1033 Food and... Substances Affirmed as GRAS § 184.1033 Citric acid. (a) Citric acid (C6H8O7, CAS Reg. No. 77-92-9) is the compound 2-hydroxy-1,2,3-propanetricarboxylic acid. It is a naturally occurring constituent of plant...

  4. 21 CFR 184.1033 - Citric acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Citric acid. 184.1033 Section 184.1033 Food and... Substances Affirmed as GRAS § 184.1033 Citric acid. (a) Citric acid (C6H8O7, CAS Reg. No. 77-92-9) is the compound 2-hydroxy-1,2,3-propanetricarboxylic acid. It is a naturally occurring constituent of plant...

  5. 21 CFR 184.1033 - Citric acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Citric acid. 184.1033 Section 184.1033 Food and....1033 Citric acid. (a) Citric acid (C6H8O7, CAS Reg. No. 77-92-9) is the compound 2-hydroxy-1,2,3-propanetricarboxylic acid. It is a naturally occurring constituent of plant and animal tissues. It occurs as...

  6. 21 CFR 184.1033 - Citric acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Citric acid. 184.1033 Section 184.1033 Food and... Substances Affirmed as GRAS § 184.1033 Citric acid. (a) Citric acid (C6H8O7, CAS Reg. No. 77-92-9) is the compound 2-hydroxy-1,2,3-propanetricarboxylic acid. It is a naturally occurring constituent of plant...

  7. 21 CFR 184.1033 - Citric acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Citric acid. 184.1033 Section 184.1033 Food and... Substances Affirmed as GRAS § 184.1033 Citric acid. (a) Citric acid (C6H8O7, CAS Reg. No. 77-92-9) is the compound 2-hydroxy-1,2,3-propanetricarboxylic acid. It is a naturally occurring constituent of plant...

  8. 21 CFR 582.6033 - Citric acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Citric acid. 582.6033 Section 582.6033 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... acid. (a) Product. Citric acid. 2 For the purpose of this subpart, no attempt has been made...

  9. 21 CFR 582.6033 - Citric acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Citric acid. 582.6033 Section 582.6033 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... acid. (a) Product. Citric acid. 2 For the purpose of this subpart, no attempt has been made...

  10. 21 CFR 582.6033 - Citric acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Citric acid. 582.6033 Section 582.6033 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... acid. (a) Product. Citric acid. 2 For the purpose of this subpart, no attempt has been made...

  11. 21 CFR 582.6033 - Citric acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Citric acid. 582.6033 Section 582.6033 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... acid. (a) Product. Citric acid. 2 For the purpose of this subpart, no attempt has been made...

  12. 21 CFR 582.6033 - Citric acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Citric acid. 582.6033 Section 582.6033 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... acid. (a) Product. Citric acid. 2 For the purpose of this subpart, no attempt has been made...

  13. Citric acid fermentation in whey permeate

    SciTech Connect

    Somkuti, G.A.; Bencivengo, M.M.

    1981-01-01

    Acid-whey permeate was used for the production of citric acid by Aspergillus niger. The fermentation proceeded in 2 phases: a growth phase when citric acid was not accumulated, followed by an acidogenic phase when citric acid accumulated and mold growth was greatly reduced. Optimal production of citric acid occurred after 8-12 days at 30 degrees. Maximum citric acid yields were influenced by the initial lactose concentration and reached 10 g/l when the lactose concentration in the acid-whey permeate was adjusted to 15%. MeOH at 2-4% markedly increased the production of citric acid. Fermentation of acid-whey permeate by a mutant strain (A. niger 599-3) was more reproducible, and yields of citric acid were substantially improved. The amount of citric acid produced by A. niger 599-3 was 18-23 g/l after 12-14 days, depending on the lactose content of the whey permeate. Throughout the fermentation, galactose was apparently co-metabolized with glucose.

  14. BNL Citric Acid Technology: Pilot Scale Demonstration

    SciTech Connect

    FRANCIS, A J; DODGE,; J, C; GILLOW, J B; FORRESTER, K E

    1999-09-24

    The objective of this project is to remove toxic metals such as lead and cadmium from incinerator ash using the Citric Acid Process developed at Brookhaven National Laboratory. In this process toxic metals in bottom ash from the incineration of municipal solid waste were first extracted with citric acid followed by biodegradation of the citric acid-metal extract by the bacterium Pseudomonas fluorescens for metals recovery. The ash contained the following metals: Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Se, Sr, Ti, and Zn. Optimization of the Citric Acid Process parameters which included citric acid molarity, contact time, the impact of mixing aggressiveness during extraction and pretreatment showed lead and cadmium removal from incinerator ash of >90%. Seeding the treated ash with P. fluorescens resulted in the removal of residual citric acid and biostabilization of any leachable lead, thus allowing it to pass EPA?s Toxicity Characteristic Leaching Procedure. Biodegradation of the citric acid extract removed >99% of the lead from the extract as well as other metals such as Al, Ca, Cu, Fe, Mg, Mn, Ti, and Zn. Speciation of the bioprecipitated lead by Extended X-ray Absorption Fine Structure at the National Synchrotron Light Source showed that the lead is predominantly associated with the phosphate and carboxyl functional groups in a stable form. Citric acid was completely recovered (>99%) from the extract by sulfide precipitation technique and the extraction efficiency of recovered citric acid is similar to that of the fresh citric acid. Recycling of the citric acid should result in considerable savings in the overall treatment cost. We have shown the potential application of this technology to remove and recover the metal contaminants from incinerator ash as well as from other heavy metal bearing wastes (i.e., electric arc furnace dust from steel industry) or soils. Information developed from this project is being applied to demonstrate the remediation of

  15. Citric Acid Passivation of Stainless Steel

    NASA Technical Reports Server (NTRS)

    Yasensky, David; Reali, John; Larson, Chris; Carl, Chad

    2009-01-01

    Passivation is a process for cleaning and providing corrosion protection for stainless steel. Currently, on Kennedy Space Center (KSC), only parts passivated with nitric acid are acceptable for use. KSC disposes of approximately 125gal of concentrated nitric acid per year, and receives many parts from vendors who must also dispose of used nitric acid. Unfortunately, nitric acid presents health and environmental hazards. As a result, several recent industry studies have examined citric acid as an alternative. Implementing a citric acid-based passivation procedure would improve the health and environmental safety aspects of passivation process. However although there is a lack of published studies that conclusively prove citric acid is a technically sound passivation agent. In 2007, NASA's KSC Materials Advisory Working Group requested the evaluation of citric acid in place of nitric acid for passivation of parts at KSC. United Space Alliance Materials & Processes engineers have developed a three-phase test plan to evaluate citric acid as an alternative to nitric acid on three stainless steels commonly used at KSC: UNS S30400, S41000, and S17400. Phases 1 and 2 will produce an optimized citric acid treatment based on results from atmospheric exposure at NASA's Beach Corrosion Facility. Phase 3 will compare the optimized solution(s) with nitric acid treatments. If the results indicate that citric acid passivates as well or better than nitric acid, NASA intends to approve this method for parts used at the Kennedy Space Center.

  16. Citraturic response to oral citric acid load

    NASA Technical Reports Server (NTRS)

    Sakhaee, K.; Alpern, R.; Poindexter, J.; Pak, C. Y.

    1992-01-01

    It is possible that some orally administered citrate may appear in urine by escaping oxidation in vivo. To determine whether this mechanism contributes to the citraturic response to potassium citrate, we measured serum and urinary citrate for 4 hours after a single oral load of citric acid (40 mEq.) in 6 normal subjects. Since citric acid does not alter acid-base balance, the effect of absorbed citrate could be isolated from that of alkali load. Serum citrate concentration increased significantly (p less than 0.05) 30 minutes after a single oral dose of citric acid and remained significantly elevated for 3 hours after citric acid load. Commensurate with this change, urinary citrate excretion peaked at 2 hours and gradually decreased during the next 2 hours after citric acid load. In contrast, serum and urinary citrate remained unaltered following the control load (no drug). Differences of the citratemic and citraturic effects between phases were significant (p less than 0.05) at 2 and 3 hours. Urinary pH, carbon dioxide pressure, bicarbonate, total carbon dioxide and ammonium did not change at any time after citric acid load, and did not differ between the 2 phases. No significant difference was noted in serum electrolytes, arterialized venous pH and carbon dioxide pressure at any time after citric acid load and between the 2 phases. Thus, the citraturic and citratemic effects of oral citric acid are largely accountable by provision of absorbed citrate, which has escaped in vivo degradation.

  17. Citric Acid Alternative to Nitric Acid Passivation

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie L. (Compiler)

    2013-01-01

    The Ground Systems Development and Operations GSDO) Program at NASA John F. Kennedy Space Center (KSC) has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described as the launch support and infrastructure modernization program in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of the GSDO Program, the purpose of this project is to demonstratevalidate citric acid as a passivation agent for stainless steel. Successful completion of this project will result in citric acid being qualified for use as an environmentally preferable alternative to nitric acid for passivation of stainless steel alloys in NASA and DoD applications.

  18. Crystallization kinetics of citric acid anhydrate

    NASA Astrophysics Data System (ADS)

    Nemdili, L.; Koutchoukali, O.; Bouhelassa, M.; Seidel, J.; Mameri, F.; Ulrich, J.

    2016-10-01

    The solubility curve, metastable zone width (MSZW) and Crystallization kinetics (nucleation and growth) were measured and estimated during batch crystallization of citric acid anhydrate (CAA). The solubility of citric acid in pure water was measured over the temperature range from 15 to 60 °C using a refractometer. The experimental data were correlated by the modified Apelblat equation. The MSZW was determined under four cooling rates for different citric acid concentrations by means of an ultrasonic technique. The primary nucleation kinetics of CAA was calculated based on these data and the polythermal method of Nyvlt. It was found that the MSZW obtained is in good agreement with literature. Crystal growth rates were calculated by two methods. The first one used seeded isothermal growth experiments (desupersaturation curve) and the derivatives method of Garside. The second method used the measurement of the dimension change of a single crystal in a microscopic cell at different supersaturation levels.

  19. Utilization of citric acid in wood bonding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citric acid (CA) is a weak organic acid. It exists most notably in citrus fruits so that it is named likewise. As a commodity chemical, CA is produced on a large scale by fermentation. In this chapter, we first briefly review the applied research and methods for commercial production of CA. Then we ...

  20. Crosslinking of agarose bioplastic using citric acid.

    PubMed

    Awadhiya, Ankur; Kumar, David; Verma, Vivek

    2016-10-20

    We report chemical crosslinking of agarose bioplastic using citric acid. Crosslinking was confirmed using Fourier transform infrared (FTIR) spectroscopy. The effects of crosslinking on the tensile strength, swelling, thermal stability, and degradability of the bioplastic were studied in detail. The tensile strength of the bioplastic films increased from 25.1MPa for control films up to a maximum of 52.7MPa for citric acid crosslinked films. At 37°C, the amount of water absorbed by crosslinked agarose bioplastic was only 11.5% of the amount absorbed by non-crosslinked controls. Thermogravimetric results showed that the crosslinked samples retain greater mass at high temperature (>450°C) than control samples. Moreover, while the crosslinked films were completely degradable, the rate of degradation was lower compared to non-crosslinked controls.

  1. Citric acid application for denitrification process support in biofilm reactor.

    PubMed

    Mielcarek, Artur; Rodziewicz, Joanna; Janczukowicz, Wojciech; Dabrowska, Dorota; Ciesielski, Slawomir; Thornton, Arthur; Struk-Sokołowska, Joanna

    2017-03-01

    The study demonstrated that citric acid, as an organic carbon source, can improve denitrification in Anaerobic Sequencing Batch Biofilm Reactor (AnSBBR). The consumption rate of the organic substrate and the denitrification rate were lower during the period of the reactor's acclimatization (cycles 1-60; 71.5 mgCOD L(-1) h(-1) and 17.81 mgN L(-1) h(-1), respectively) than under the steady state conditions (cycles 61-180; 143.8 mgCOD L(-1) h(-1) and 24.38 mgN L(-1) h(-1)). The biomass yield coefficient reached 0.04 ± 0.02 mgTSS· mgCODre(-1) (0.22 ± 0.09 mgTSS mgNre(-1)). Observations revealed the diversified microbiological ecology of the denitrifying bacteria. Citric acid was used mainly by bacteria representing the Trichoccocus genus, which represented above 40% of the sample during the first phase of the process (cycles 1-60). In the second phase (cycles 61-180) the microorganisms the genera that consumed the acetate and formate, as the result of citric acid decomposition were Propionibacterium (5.74%), Agrobacterium (5.23%), Flavobacterium (1.32%), Sphaerotilus (1.35%), Erysipelothrix (1.08%).

  2. Germanium oxide removal by citric acid and thiol passivation from citric acid-terminated Ge(100).

    PubMed

    Collins, Gillian; Aureau, Damien; Holmes, Justin D; Etcheberry, Arnaud; O'Dwyer, Colm

    2014-12-02

    Many applications of germanium (Ge) are underpinned by effective oxide removal and surface passivation. This important surface treatment step often requires H-X (X = Cl, Br, I) or HF etchants. Here, we show that aqueous citric acid solutions are effective in the removal of GeOx. The stability of citric acid-treated Ge(100) is compared to HF and HCl treated surfaces and analyzed by X-ray photoelectron spectroscopy. Further Ge surface passivation was investigated by thiolation using alkane monothiols and dithiols. The organic passivation layers show good stability with no oxide regrowth observed after 3 days of ambient exposure.

  3. Citric Acid Production by Aspergillus niger Cultivated on Parkia biglobosa Fruit Pulp

    PubMed Central

    Abidoye, Khadijat Toyin; Tahir, Hauwa; Ibrahim, Aliyu Dabai; Aransiola, Sesan Abiodun

    2014-01-01

    The study was conducted to investigate the potential of Parkia biglobosa fruit pulp as substrate for citric acid production by Aspergillus niger. Reducing sugar was estimated by 3,5-dinitrosalicylic acid and citric acid was estimated spectrophotometrically using pyridine-acetic anhydride methods. The studies revealed that production parameters (pH, inoculum size, substrate concentration, incubation temperature, and fermentation period) had profound effect on the amount of citric acid produced. The maximum yield was obtained at the pH of 2 with citric acid of 1.15 g/L and reducing sugar content of 0.541 mMol−1, 3% vegetative inoculum size with citric acid yield of 0.53 g/L and reducing sugar content of 8.87 mMol−1, 2% of the substrate concentration with citric acid yield of 0.83 g/L and reducing sugar content of 9.36 mMol−1, incubation temperature of 55°C with citric acid yield of 0.62 g/L and reducing sugar content of 8.37 mMol−1, and fermentation period of 5 days with citric acid yield of 0.61 g/L and reducing sugar content of 3.70 mMol−1. The results of this study are encouraging and suggest that Parkia biglobosa pulp can be harnessed at low concentration for large scale citric acid production. PMID:27433535

  4. Citric acid cycle intermediates in cardioprotection.

    PubMed

    Czibik, Gabor; Steeples, Violetta; Yavari, Arash; Ashrafian, Houman

    2014-10-01

    Over the last decade, there has been a concerted clinical effort to deliver on the laboratory promise that a variety of maneuvers can profoundly increase cardiac tolerance to ischemia and/or reduce additional damage consequent upon reperfusion. Here we will review the proximity of the metabolic approach to clinical practice. Specifically, we will focus on how the citric acid cycle is involved in cardioprotection. Inspired by cross-fertilization between fundamental cancer biology and cardiovascular medicine, a set of metabolic observations have identified novel metabolic pathways, easily manipulable in man, which can harness metabolism to robustly combat ischemia-reperfusion injury.

  5. Simple citric acid-catalyzed surface esterification of cellulose nanocrystals.

    PubMed

    Ávila Ramírez, Jhon Alejandro; Fortunati, Elena; Kenny, José María; Torre, Luigi; Foresti, María Laura

    2017-02-10

    A simple straightforward route for the surface esterification of cellulose nanocrystals (CNC) is herein proposed. CNC obtained from microcrystalline cellulose were acetylated using as catalyst citric acid, a α-hydroxy acid present in citrus fruits and industrially produced by certain molds in sucrose or glucose-containing medium. No additional solvent was added to the system; instead, the acylant (acetic anhydride) was used in sufficient excess to allow CNC dispersion and proper suspension agitation. By tuning the catalyst load, CNC with two different degree of substitution (i.e. DS=0.18 and 0.34) were obtained. Acetylated cellulose nanocrystals were characterized in terms of chemical structure, crystallinity, morphology, thermal decomposition and dispersion in a non-polar solvent. Results illustrated for the first time the suitability of the protocol proposed for the simple surface acetylation of cellulose nanocrystals.

  6. Hydrogen production by fermentation using acetic acid and lactic acid.

    PubMed

    Matsumoto, Mitsufumi; Nishimura, Yasuhiko

    2007-03-01

    Microbial hydrogen production from sho-chu post-distillation slurry solution (slurry solution) containing large amounts of organic acids was investigated. The highest hydrogen producer, Clostridium diolis JPCC H-3, was isolated from natural environment and produced hydrogen at 6.03+/-0.15 ml from 5 ml slurry solution in 30 h. Interestingly, the concentration of acetic acid and lactic acid in the slurry solution decreased during hydrogen production. The substrates for hydrogen production by C. diolis JPCC H-3, in particular organic acids, were investigated in an artificial medium. No hydrogen was produced from acetic acid, propionic acid, succinic acid, or citric acid on their own. Hydrogen and butyric acid were produced from a mixture of acetic acid and lactic acid, showing that C. diolis. JPCC H-3 could produce hydrogen from acetic acid and lactic acid. Furthermore, calculation of the Gibbs free energy strongly suggests that this reaction would proceed. In this paper, we describe for the first time microbial hydrogen production from acetic acid and lactic acid by fermentation.

  7. Submerged citric acid fermentation on orange peel autohydrolysate.

    PubMed

    Rivas, Beatriz; Torrado, Ana; Torre, Paolo; Converti, Attilio; Domínguez, José Manuel

    2008-04-09

    The citrus-processing industry generates in the Mediterranean area huge amounts of orange peel as a byproduct from the industrial extraction of citrus juices. To reduce its environmental impact as well as to provide an extra profit, this residue was investigated in this study as an alternative substrate for the fermentative production of citric acid. Orange peel contained 16.9% soluble sugars, 9.21% cellulose, 10.5% hemicellulose, and 42.5% pectin as the most important components. To get solutions rich in soluble and starchy sugars to be used as a carbon source for citric acid fermentation, this raw material was submitted to autohydrolysis, a process that does not make use of any acidic catalyst. Liquors obtained by this process under optimum conditions (temperature of 130 degrees C and a liquid/solid ratio of 8.0 g/g) contained 38.2 g/L free sugars (8.3 g/L sucrose, 13.7 g/L glucose, and 16.2 g/L fructose) and significant amounts of metals, particularly Mg, Ca, Zn, and K. Without additional nutrients, these liquors were employed for citric acid production by Aspergillus niger CECT 2090 (ATCC 9142, NRRL 599). Addition of calcium carbonate enhanced citric acid production because it prevented progressive acidification of the medium. Moreover, the influence of methanol addition on citric acid formation was investigated. Under the best conditions (40 mL of methanol/kg of medium), an effective conversion of sugars into citric acid was ensured (maximum citric acid concentration of 9.2 g/L, volumetric productivity of 0.128 g/(L.h), and yield of product on consumed sugars of 0.53 g/g), hence demonstrating the potential of orange peel wastes as an alternative raw material for citric acid fermentation.

  8. Sodium Picosulfate, Magnesium Oxide, and Anhydrous Citric Acid

    MedlinePlus

    Sodium picosulfate, magnesium oxide, and anhydrous citric acid combination powder is used to empty the colon (large ... clear view of the walls of the colon. Sodium picosulfate is in a class of medications called ...

  9. Probing linker design in citric acid-ciprofloxacin conjugates.

    PubMed

    Milner, Stephen J; Snelling, Anna M; Kerr, Kevin G; Abd-El-Aziz, Ahmad; Thomas, Gavin H; Hubbard, Roderick E; Routledge, Anne; Duhme-Klair, Anne-Kathrin

    2014-08-15

    A series of structurally related citric acid-ciprofloxacin conjugates was synthesised to investigate the influence of the linker between citric acid and ciprofloxacin on antibacterial activities. Minimum inhibitory concentrations (MICs) were determined against a panel of reference strains and clinical isolates of bacteria associated with infection in humans and correlated with the DNA gyrase inhibitory activity. The observed trend was rationalised by computational modelling.

  10. 77 FR 6061 - Citric Acid and Certain Citrate Salts From Canada: Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ... International Trade Administration Citric Acid and Certain Citrate Salts From Canada: Preliminary Results of... administrative review of the antidumping duty order on citric acid and certain citrate salts (citric acid) from... initiation of an administrative review of the antidumping duty order on citric acid from Canada with...

  11. 78 FR 34338 - Citric Acid and Certain Citrate Salts From Canada: Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-07

    ... International Trade Administration Citric Acid and Certain Citrate Salts From Canada: Preliminary Results of... administrative review of the antidumping duty order on citric acid and certain citrate salts (citric acid) from... is citric acid and certain citrate salts. The product is currently classified in the...

  12. 76 FR 5782 - Citric Acid and Certain Citrate Salts From Canada: Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-02

    ... International Trade Administration Citric Acid and Certain Citrate Salts From Canada: Preliminary Results of... administrative review of the antidumping duty order on citric acid and certain citrate salts (citric acid) from... citric acid from Canada with respect to JBL Canada covering the period November 20, 2008, through May...

  13. The pulpal response to topically applied citric acid.

    PubMed

    Kitchings, S K; del Rio, C E; Aufdemorte, T B; Meffert, R M; Lane, J J

    1984-08-01

    Citric acid is currently being used to aid in the reattachment of periodontal tissues to tooth roots which have become separated as a result of periodontitis. The present study examines the effect of topically applied citric acid on the dental pulp. Citric acid, pH 1, was applied for 3 minutes on instrumented premolar teeth in six dogs. As a control, saline solution was applied on similarly instrumented premolars. The teeth were removed 1, 6, 24, 48, 72, and 144 hours after citric acid application. After histologic preparation, the pulps were examined for inflammatory cell infiltrates, odontoblast displacement into the dentinal tubules, hyperemic capillaries in the odontoblast layer, hemorrhage, abscess formation, irregular dentin, and the thickness of the dentin remaining beneath the treated area. There was no statistically significant response to the citric acid over the saline controls. Nor was the pulpal response, as examined above, correlated to the thickness of the remaining dentin. The results suggest that citric acid, pH 1, when applied to tooth roots during surgical reattachment therapy, does not adversely affect the pulp.

  14. Assessment of the effectiveness of silver-coated dressing, chlorhexidine acetate (0.5%), citric acid (3%), and silver sulfadiazine (1%) for topical antibacterial effects against the multi-drug resistant Pseudomonas aeruginosa infecting full-skin thickness burn wounds on rats.

    PubMed

    Yabanoglu, Hakan; Basaran, Ozgur; Aydogan, Cem; Azap, Ozlem Kurt; Karakayali, Feza; Moray, Gokhan

    2013-01-01

    The aim of this study was to compare the effects of four different topical antimicrobial dressings on a multi-drug resistant Pseudomonas aeruginosa contaminated full-thickness burn wound rat model. A total of 40 adult male Wistar albino rats were used. The control group (group 1), silver sulfadiazine (1%) group 2, chlorhexidine acetate (0.5%) group 3, citric acid (3%) group 4, and silver-coated dressing group 5 were compared to assess the antibacterial effects of a daily application to a 30% full-skin thickness burn wound seeded 10 minutes earlier with 10(8) CFU (colony forming unit)/0.5 mL of a multi-drug resistant Pseudomonas aeruginosa strain. Five groups (1 control group and 4 treatment groups) were compared. The administration of third-degree burns to all rats was confirmed based on histopathologic data. The tissue cultures from groups 2 and 5 exhibited significant differences compared to those of the other 3 groups, whereas no significant differences were observed between groups 1, 3, and 4. The effectiveness of the treatments was as follows: 1% silver sulfadiazine > silver-coated dressing > 3% citric acid > 0.5% chlorhexidine acetate > control group. Our results supported the efficacy of topical therapy by silver sulfadiazine and silver-coated dressing on infections caused by multi-drug resistant Pseudomonas spp.

  15. Assessment of the Effectiveness of Silver-Coated Dressing, Chlorhexidine Acetate (0.5%), Citric Acid (3%), and Silver Sulfadiazine (1%) for Topical Antibacterial Effects Against the Multi-Drug Resistant Pseudomonas Aeruginosa Infecting Full-Skin Thickness Burn Wounds on Rats

    PubMed Central

    Yabanoglu, Hakan; Basaran, Ozgur; Aydogan, Cem; Azap, Ozlem Kurt; Karakayali, Feza; Moray, Gokhan

    2013-01-01

    The aim of this study was to compare the effects of four different topical antimicrobial dressings on a multi-drug resistant Pseudomonas aeruginosa contaminated full-thickness burn wound rat model. A total of 40 adult male Wistar albino rats were used. The control group (group 1), silver sulfadiazine (1%) group 2, chlorhexidine acetate (0.5%) group 3, citric acid (3%) group 4, and silver-coated dressing group 5 were compared to assess the antibacterial effects of a daily application to a 30% full-skin thickness burn wound seeded 10 minutes earlier with 108 CFU (colony forming unit)/0.5 mL of a multi-drug resistant Pseudomonas aeruginosa strain. Five groups (1 control group and 4 treatment groups) were compared. The administration of third-degree burns to all rats was confirmed based on histopathologic data. The tissue cultures from groups 2 and 5 exhibited significant differences compared to those of the other 3 groups, whereas no significant differences were observed between groups 1, 3, and 4. The effectiveness of the treatments was as follows: 1% silver sulfadiazine > silver-coated dressing > 3% citric acid > 0.5% chlorhexidine acetate > control group. Our results supported the efficacy of topical therapy by silver sulfadiazine and silver-coated dressing on infections caused by multi-drug resistant Pseudomonas spp. PMID:24229034

  16. Citric acid: emerging applications of key biotechnology industrial product.

    PubMed

    Ciriminna, Rosaria; Meneguzzo, Francesco; Delisi, Riccardo; Pagliaro, Mario

    2017-01-01

    Owing to new biotechnological production units mostly located in China, global supply of citric acid in the course of the last two decades rose from less than 0.5 to more than 2 million tonnes becoming the single largest chemical obtained via biomass fermentation and the most widely employed organic acid. Critically reviewing selected research achievements and production trends, we identify the reasons for which this polycarboxylic acid will become a key chemical in the emerging bioeconomy.Graphical abstractPalermo's Fabbrica Chimica Italiana Goldenberg today. In 1930 it was Europe's largest citric acid plant (photo courtesy of Aldo Ferrande).

  17. Citric acid-assisted phytoextraction of lead: a field experiment.

    PubMed

    Freitas, Eriberto Vagner; Nascimento, Clístenes Williams; Souza, Adailson; Silva, Fernando Bruno

    2013-06-01

    Soil contamination with heavy metals has become a serious environmental problem that requires affordable strategies of remediation. This study was carried out to assess the performance of maize and vetiver in the phytoextraction of Pb from a soil contaminated by battery recycling activities. The species were planted with different spacings between rows (0.80, 0.65 and 0.50m). Citric acid (40mmolkg(-1)) was applied on each experimental plot on the 61st d of cultivation in order to solubilize the Pb and assist the phytoextraction. The results showed that the chelating agent promoted a 14-fold increase in the Pb concentration in maize shoots as compared to the control, which accumulated only 111mgkg(-1) of the metal. The citric acid induced a Pb concentration in vetiver shoots that was 7.2-6.7-fold higher than the control at both the 0.65 and 0.50m plant spacing, respectively. The use of citric acid increased substantially the uptake and translocation of Pb to the shoots, regardless of plant spacing. Citric acid was efficient in solubilizing Pb from the soil and inducing its uptake by both species. Environmentally-friendly and cost effective, commercial citric acid is recommended for assisting Pb-phytoextraction in the studied area. Due to the low natural solubility of Pb and a time frame needed of longer than 150yr to accomplish the clean-up, phytoextraction with no chelate assistance is not recommended for the area.

  18. Effect of mineral supplements to citric acid on enamel erosion.

    PubMed

    Attin, T; Meyer, K; Hellwig, E; Buchalla, W; Lennon, A M

    2003-11-01

    The aim of this study was to evaluate the effect of mineral supplements to citric acid (1%; pH 2.21) on enamel erosion under controlled conditions in an artificial mouth. From each of 156 bovine incisors one polished enamel sample was prepared. The samples were divided among 13 experimental groups (n=12). In group 1 citric acid only was used (control). In groups 2-10 either calcium, phosphate or fluoride in various low concentrations was admixed to the citric acid. In groups 11-13 the citric acid was supplemented with a mixture of calcium, phosphate and fluoride. For demineralisation the specimens were rinsed with the respective solution for 1 min, immediately followed by a remineralisation period with artificial saliva (1 min). The specimens were cycled through this alternating procedure five times followed by rinsing for 8 h with artificial saliva. The de- and remineralisation cycle was repeated three times for each specimen interrupted by the 8 h-remineralisation periods. Before and after the experiments, the specimens were examined using microhardness testing (Knoop hardness) and laser profilometry. Hardness loss and enamel dissolution was significantly higher for the controls as compared to the remaining groups. Significantly lowest hardness loss for all groups was recorded for group 12 with admixture of calcium, phosphate and fluoride to citric acid. The significantly highest enamel loss was recorded for the controls compared to all other samples. Groups 3 and 4 revealed significantly lower and higher tissue loss compared to the remaining groups (2-13), respectively. The other groups did not differ significantly from each other. Modification of citric acid with calcium, phosphate and fluoride exerts a significant protective potential with respect to dental erosion. However, with the low concentrations applied enamel dissolution could not be completely prevented.

  19. Assemblies of cytosine within H-bonded network of adipic acid and citric acid

    NASA Astrophysics Data System (ADS)

    Das, Babulal; Baruah, Jubaraj B.

    2011-08-01

    Adipic acid binds to cytosine to form H-bonded discrete cytosine-cytosinium assemblies embedded in 1D infinite chain of adipic acid, whereas citric acid stabilizes trimeric cytosine-cytosinium assemblies having length of 19.44 Å stabilized between layered structures of citric acid molecules.

  20. Citric acid metabolism in hetero- and homofermentative lactic acid bacteria.

    PubMed Central

    Drinan, D F; Robin, S; Cogan, T M

    1976-01-01

    The effect of citrate on production of diacetyl and acetoin by four strains each of heterofermentative and homofermentative lactic acid bacteria capable of utilizing citrate was studied. Acetoin was quantitatively the more important compound. The heterofermentative bacteria produced no acetoin or diacetyl in the absence of citrate, and two strains produced traces of acetoin in its presence. Citrate stimulated the growth rate of the heterofermentative lactobacilli. Acidification of all heterofermentative cultures with citric acid resulted in acetoin production. Destruction of accumulated acetoin appeared to coincide with the disappearance of citrate. All homofermentative bacteria produced more acetoin and diacetyl in the presence of citrate than in its absence. Citrate utilization was begun immediately by the streptococci but was delayed until at least the middle of the exponential phase in the case of the lactobacilli. PMID:5054

  1. Dissolution of kaolinite induced by citric, oxalic, and malic acids.

    PubMed

    Wang, Xingxiang; Li, Qingman; Hu, Huafeng; Zhang, Taolin; Zhou, Yiyong

    2005-10-15

    Kaolinite is a dominant clay mineral in the soils in tropical and subtropical regions, and its dissolution has an influence on a variety of soil properties. In this work, kaolinite dissolution induced by three kinds of low-molecular-weight organic acid, i.e., citric, oxalic, and malic acids, was evaluated under far-from-equilibrium conditions. The rates of kaolinite dissolution depended on the kind and concentration of organic acids, with the sequence R(oxalate)>R(citrate)>R(malate). Chemical calculation showed the change in concentration of organic ligand relative to change in concentration of organic acid in suspensions of kaolinite and organic acid. The effect of organic acid on kaolinite dissolution was modeled by species of organic anionic ligand. For oxalic acid, L(2-)(oxalic) and HL(-)(oxalic) jointly enhanced the dissolution of kaolinite, but for malic and citric acids, HL(-)(malic) and H2L-(citric) made a higher contribution to the total dissolution rate of kaolinite than L(2-)(malic) and L(3-)(citric), respectively. For oxalic acid, the proposed model was R(Si)=1.89x10(-12)x[(25x)/(1+25x)]+1.93x10(-12)x[(1990x1)/(1+1990x1)] (R2=0.9763), where x and x1 denote the concentrations of HL(oxalic) and L(oxalic), respectively, and x1=10(-3.81)xx/[H+]. For malic acid, the model was R(Si)=4.79x10(-12)x[(328x)/(1+328x)]+1.67x10(-13)x[(1149x1)/(1+1149x1)] (R2=0.9452), where x and x1 denote the concentrations of HL(malic) and L(malic), respectively, and x1=10(-5.11)xx/[H+], and for citric acid, the model was R(Si)=4.73x10(-12)x[(845x)/(1+845x)]+4.68x10(-12)x[(2855x1)/(1+2855x1)] (R2=0.9682), where x and x1 denote the concentrations of H2L(citric) and L(citric), respectively, and [Formula: see text] .

  2. Citric acid cycle biomimic on a carbon electrode.

    PubMed

    Sokic-Lazic, Daria; Minteer, Shelley D

    2008-12-01

    The citric acid cycle is one of the main metabolic pathways living cells utilize to completely oxidize biofuels to carbon dioxide and water. The overall goal of this research is to mimic the citric acid cycle at the carbon surface of an electrode in order to achieve complete oxidation of ethanol at a bioanode to increase biofuel cell energy density. In order to mimic this process, dehydrogenase enzymes (known to be the electron or energy producing enzymes of the citric acid cycle) are immobilized in cascades at an electrode surface along with non-energy producing enzymes necessary for the cycle to progress. Six enzymatic schemes were investigated each containing an additional dehydrogenase enzyme involved in the complete oxidation of ethanol. An increase in current density is observed along with an increase in power density with each additional dehydrogenase immobilized on an electrode, reflecting increased electron production at the bioanode with deeper oxidation of the ethanol biofuel. By mimicking the complete citric acid cycle on a carbon electrode, power density was increased 8.71-fold compared to a single enzyme (alcohol dehydrogenase)-based ethanol/air biofuel cell.

  3. 77 FR 24461 - Citric Acid and Certain Citrate Salts From Canada: Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    ... all grades and granulation sizes of citric acid, sodium citrate, and potassium citrate in their... blends of citric acid, sodium citrate, and potassium citrate; as well as blends with other ingredients, such as sugar, where the unblended form(s) of citric acid, sodium citrate, and potassium...

  4. 78 FR 64914 - Citric Acid and Certain Citrate Salts From Canada: Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-30

    ... International Trade Administration Citric Acid and Certain Citrate Salts From Canada: Final Results of... of the antidumping duty order on citric acid and certain citrate salts from Canada.\\1\\ The review... period of review (POR) is May 1, 2011, through April 30, 2012. \\1\\ See Citric Acid and Certain...

  5. 78 FR 34648 - Citric Acid and Certain Citrate Salts: Preliminary Results of Countervailing Duty Administrative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... International Trade Administration Citric Acid and Certain Citrate Salts: Preliminary Results of Countervailing... review of the countervailing duty (CVD) order on citric acid and citrate salts from the People's Republic... (202) 482-1503. Scope of the Order The merchandise subject to the order is citric acid and...

  6. 76 FR 34044 - Citric Acid and Certain Citrate Salts From Canada: Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-10

    ... International Trade Administration Citric Acid and Certain Citrate Salts From Canada: Final Results of... preliminary results of the first administrative review of the antidumping duty order on citric acid and certain citrate salts (citric acid) from Canada. The review covers one manufacturer/exporter of...

  7. Cleaner production of citric acid by recycling its extraction wastewater treated with anaerobic digestion and electrodialysis in an integrated citric acid-methane production process.

    PubMed

    Xu, Jian; Su, Xian-Feng; Bao, Jia-Wei; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-01-01

    To solve the pollution problem of extraction wastewater in citric acid production, an integrated citric acid-methane production process was proposed. Extraction wastewater was treated through anaerobic digestion and the anaerobic digestion effluent (ADE) was recycled for the next batch of citric acid fermentation, thus eliminating wastewater discharge and reducing water consumption. Excessive Na(+) contained in ADE could significantly inhibit citric acid fermentation in recycling and was removed by electrodialysis in this paper. Electrodialysis performance was improved after pretreatment of ADE with air stripping and activated carbon adsorption to remove precipitable metal ions and pigments. Moreover, the concentrate water was recycled and mixed with feed to improve the water recovery rate above 95% in electrodialysis treatment, while the dilute water was collected for citric acid fermentation. The removal rate of Na(+) in ADE was above 95% and the citric acid production was even higher than that with tap water.

  8. Functional citric acid cycle in an arcA mutant of Escherichia coli during growth with nitrate under anoxic conditions.

    PubMed

    Prohl, C; Wackwitz, B; Vlad, D; Unden, G

    1998-07-01

    The operation of the citric acid cycle of Escherichia coli during nitrate respiration (anoxic conditions) was studied by measuring end products and enzyme activities. Excretion of products other than CO2, such as acetate or ethanol, was taken as an indication for a non-functional cycle. From glycerol, approximately 0.3 mol acetate was produced; the residual portion was completely oxidized, indicating the presence of a partially active citric acid cycle. In an arcA mutant devoid of the transcriptional regulator ArcA, glycerol was completely oxidized with nitrate as an electron acceptor, demonstrating derepression and function of the complete pathway. Glucose, on the other hand, was excreted mostly as acetate by the wild-type and by the arcA mutant. During growth on glucose, but not on glycerol, activities of succinate dehydrogenase and of 2-oxoglutarate dehydrogenase were missing nearly completely. Thus, the previously described strong repression of the citric acid cycle during nitrate respiration occurs only during growth on glucose and is the effect of anaerobic and, more important, of glucose repression. In Pseudomonas fluorescens (but not Pseudomonas stutzeri), a similar decrease of citric acid cycle function during anaerobic growth with nitrate was found, indicating a broad distribution of this regulatory principle.

  9. Citric acid cycle and role of its intermediates in metabolism.

    PubMed

    Akram, Muhammad

    2014-04-01

    The citric acid cycle is the final common oxidative pathway for carbohydrates, fats and amino acids. It is the most important metabolic pathway for the energy supply to the body. TCA is the most important central pathway connecting almost all the individual metabolic pathways. In this review article, introduction, regulation and energetics of TCA cycle have been discussed. The present study was carried out to review literature on TCA cycle.

  10. Citric acid cycle and the origin of MARS.

    PubMed

    Eswarappa, Sandeepa M; Fox, Paul L

    2013-05-01

    The vertebrate multiaminoacyl tRNA synthetase complex (MARS) is an assemblage of nine aminoacyl tRNA synthetases (ARSs) and three non-synthetase scaffold proteins, aminoacyl tRNA synthetase complex-interacting multifunctional protein (AIMP)1, AIMP2, and AIMP3. The evolutionary origin of the MARS is unclear, as is the significance of the inclusion of only nine of 20 tRNA synthetases. Eight of the nine amino acids corresponding to ARSs of the MARS are derived from two citric acid cycle intermediates, α-ketoglutatrate and oxaloacetate. We propose that the metabolic link with the citric acid cycle, the appearance of scaffolding proteins AIMP2 and AIMP3, and the subsequent disappearance of the glyoxylate cycle, together facilitated the origin of the MARS in a common ancestor of metazoans and choanoflagellates.

  11. Hydrophobic starch nanocrystals preparations through crosslinking modification using citric acid.

    PubMed

    Zhou, Jiang; Tong, Jin; Su, Xingguang; Ren, Lili

    2016-10-01

    Biodegradable starch nanocrystals prepared by an acid treatment process were modified through crosslinking modification using citric acid as reactant by a dry reaction method. The occurrence of crosslinking modification was evaluated by Fourier transform infrared spectroscopy and swelling degree. X-ray diffraction, wettability tests and contact angle measurements were used to characterize the modified starch nanocrystals. It was found that the crosslinked starch nanocrystals displayed a higher affinity for low polar solvents such as dichloromethane. The surface of starch nanocrystals became more roughness after crosslinking modification with citric acid and the size decreased as revealed by scanning electron microscopy and dynamic light scattering results. XRD analysis showed that the crystalline structure of starch nanocrystals was basically not changed after the crosslinking modification with shorter heating time. The resulting hydrophobic starch nanocrystals are versatile precursors to the development of nanocomposites.

  12. 21. Interior view of citric acid air pollution control room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Interior view of citric acid air pollution control room (also known as scrubber room) in Components Test Laboratory (T-27), looking southeast. Photograph shows upgraded instrumentation, piping, tanks, and technological modifications installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  13. The biochemistry of citric acid accumulation by Aspergillus niger.

    PubMed

    Karaffa, L; Sándor, E; Fekete, E; Szentirmai, A

    2001-01-01

    Fungi, in particular Aspergilli, are well known for their potential to overproduce a variety of organic acids. These microorganisms have an intrinsic ability to accumulate these substances and it is generally believed that this provides the fungi with an ecological advantage, since they grow rather well at pH 3 to 5, while some species even tolerate pH values as low as 1.5. Organic acid production can be stimulated and in a number of cases conditions have been found that result in almost quantitative conversion of carbon substrate into acid. This is exploited in large-scale production of a number of organic acids like citric-, gluconic- and itaconic acid. Both in production volume as well as in knowledge available, citrate is by far the major organic acid. Citric acid (2-hydroxy-propane-1,2,3-tricarboxylic acid) is a true bulk product with an estimated global production of over 900 thousand tons in the year 2000. Till the beginning of the 20th century, it was exclusively extracted from lemons. Since the global market was dominated by an Italian cartel, other means of production were sought. Chemical synthesis was possible, but not suitable due to expensive raw materials and a complicated process with low yield. The discovery of citrate accumulation by Aspergillus niger led to a rapid development of a fermentation process, which only a decade later accounted for a large part of the global production. The application of citric acid is based on three of its properties: (1) acidity and buffer capacity, (2) taste and flavour, and (3) chelation of metal ions. Because of its three acid groups with pKa values of 3.1, 4.7 and 6.4, citrate is able to produce a very low pH in solution, but is also useful as a buffer over a broad range of pH values (2 to 7). Citric acid has a pleasant acid taste which leaves little aftertaste. It sometimes enhances flavour, but is also able to mask sweetness, such as the aspartame taste in diet beverages. Chelation of metal ions is a very

  14. Citric-acid-derived photo-cross-linked biodegradable elastomers.

    PubMed

    Gyawali, Dipendra; Tran, Richard T; Guleserian, Kristine J; Tang, Liping; Yang, Jian

    2010-01-01

    Citric-acid-derived thermally cross-linked biodegradable elastomers (CABEs) have recently received significant attention in various biomedical applications, including tissue-engineering orthopedic devices, bioimaging and implant coatings. However, citric-acid-derived photo-cross-linked biodegradable elastomers are rarely reported. Herein, we report a novel photo-cross-linked biodegradable elastomer, referred to as poly(octamethylene maleate citrate) (POMC), which preserves pendant hydroxyl and carboxylic functionalities after cross-linking for the potential conjugation of biologically active molecules. Pre-POMC is a low-molecular-mass pre-polymer with an average molecular mass between 701 and 1291 Da. POMC networks are soft and elastic with an initial modulus of 0.07 to 1.3 MPa and an elongation-at-break between 38 and 382%. FT-IR-ATR results confirmed the successful surface immobilization of type-I collagen onto POMC films, which enhanced in vitro cellular attachment and proliferation. Photo-polymerized POMC films implanted subcutaneously into Sprague-Dawley rats demonstrated minimal in vivo inflammatory responses. The development of POMC enriches the family of citric-acid-derived biodegradable elastomers and expands the available biodegradable polymers for versatile needs in biomedical applications.

  15. 77 FR 9891 - Citric Acid and Certain Citrate Salts from the People's Republic of China: Amended Final Results...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... International Trade Administration Citric Acid and Certain Citrate Salts from the People's Republic of China... antidumping duty order on citric acid and certain citrate salts (``citric acid'') from the People's Republic... Act of 1930, as amended (``the Act''). \\1\\ See Citric Acid and Certain Citrate Salts from the...

  16. 76 FR 77772 - Citric Acid and Certain Citrate Salts from the People's Republic of China: Final Results of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... International Trade Administration Citric Acid and Certain Citrate Salts from the People's Republic of China... of the antidumping duty order on citric acid and certain citrate salts (``citric acid'') from the... Citric Acid and Certain Citrate Salts from the People's Republic of China: Preliminary Results of...

  17. 76 FR 33219 - Citric Acid and Certain Citrate Salts from the People's Republic of China: Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... International Trade Administration Citric Acid and Certain Citrate Salts from the People's Republic of China... administrative review of the countervailing duty order on citric acid and certain citrate salts from the People's... countervailing duty order on citric acid and certain citrate salts (``citric acid'') from the People's...

  18. 76 FR 17835 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Extension of Time...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-31

    ... International Trade Administration A-570-937] Citric Acid and Certain Citrate Salts From the People's Republic... order on citric acid and certain citrate salts (``citric acid'') from the People's Republic of China.... See Citric Acid and Certain Citrate Salts from the People's Republic of China: Notice of Extension...

  19. Citric acid production from extract of Jerusalem artichoke tubers by the genetically engineered yeast Yarrowia lipolytica strain 30 and purification of citric acid.

    PubMed

    Wang, Ling-Fei; Wang, Zhi-Peng; Liu, Xiao-Yan; Chi, Zhen-Ming

    2013-11-01

    In this study, citric acid production from extract of Jerusalem artichoke tubers by the genetically engineered yeast Yarrowia lipolytica strain 30 was investigated. After the compositions of the extract of Jerusalem artichoke tubers for citric acid production were optimized, the results showed that natural components of extract of Jerusalem artichoke tubers without addition of any other components were suitable for citric acid production by the yeast strain. During 10 L fermentation using the extract containing 84.3 g L(-1) total sugars, 68.3 g L(-1) citric acid was produced and the yield of citric acid was 0.91 g g(-1) within 336 h. At the end of the fermentation, 9.2 g L(-1) of residual total sugar and 2.1 g L(-1) of reducing sugar were left in the fermented medium. At the same time, citric acid in the supernatant of the culture was purified. It was found that 67.2 % of the citric acid in the supernatant of the culture was recovered and purity of citric acid in the crystal was 96 %.

  20. Coamorphous Loratadine-Citric Acid System with Enhanced Physical Stability and Bioavailability.

    PubMed

    Wang, Jin; Chang, Ruimiao; Zhao, Yanan; Zhang, Jiye; Zhang, Ting; Fu, Qiang; Chang, Chun; Zeng, Aiguo

    2017-02-21

    Coamorphous systems using citric acid as a small molecular excipient were studied for improving physical stability and bioavailability of loratadine, a BCS class II drug with low water solubility and high permeability. Coamorphous loratadine-citric acid systems were prepared by solvent evaporation technique and characterized by differential scanning calorimetry, X-ray powder diffraction, and Fourier transform infrared spectroscopy. Solid-state analysis proofed that coamorphous loratadine-citric acid system (1:1) was amorphous and homogeneous, had a higher T g over amorphous loratadine, and the intermolecular hydrogen bond interactions between loratadine and citric acid exist. The solubility and dissolution of coamorphous loratadine-citric acid system (1:1) were found to be significantly greater than those of crystalline and amorphous form. The pharmacokinetic study in rats proved that coamorphous loratadine-citric acid system (1:1) could significantly improve absorption and bioavailability of loratadine. Coamorphous loratadine-citric acid system (1:1) showed excellently physical stability over a period of 3 months at 25°C under 0% RH and 25°C under 60% RH conditions. The improved stability of coamorphous loratadine-citric acid system (1:1) could be related to an elevated T g over amorphous form and the intermolecular hydrogen bond interactions between loratadine and citric acid. These studies demonstrate that the developed coamorphous loratadine-citric acid system might be a promising oral formulation for improving solubility and bioavailability of loratadine.

  1. 21 CFR 184.1005 - Acetic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acetic acid. 184.1005 Section 184.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1005 Acetic acid. (a) Acetic acid (C2H4O2, CAS Reg. No. 64-19-7) is known as ethanoic acid. It...

  2. 76 FR 49735 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Partial Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-11

    ... International Trade Administration Citric Acid and Certain Citrate Salts From the People's Republic of China... review of the countervailing duty order on citric acid and certain citrate salts (``citric acid'') from..., 2011, Huangshi Xinghua Biochemical Co., Ltd. (``Xinghua''), a producer and exporter of citric...

  3. Fermentative production of high titer citric acid from corn stover feedstock after dry dilute acid pretreatment and biodetoxification.

    PubMed

    Zhou, Ping-Ping; Meng, Jiao; Bao, Jie

    2017-01-01

    The aim of this work is to study the citric acid fermentation by a robust strain Aspergillus niger SIIM M288 using corn stover feedstock after dry dilute sulfuric acid pretreatment and biodetoxification. Citric acid at 100.04g/L with the yield of 94.11% was obtained, which are comparable to the starch or sucrose based citric acid fermentation. No free wastewater was generated in the overall process from the pretreatment to citric acid fermentation. Abundant divalent metal ions as well as high titer of potassium, phosphate, and nitrogen were found in corn stover hydrolysate. Further addition of extra nutrients showed no impact on increasing citric acid formation except minimum nitrogen source was required. Various fermentation parameters were tested and only minimum regulation was required during the fermentation. This study provided a biorefining process for citric acid fermentation from lignocellulose feedstock with the maximum citric acid titer and yield.

  4. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is...

  5. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is...

  6. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is...

  7. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is...

  8. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is...

  9. Electrochemical monitoring of citric acid production by Aspergillus niger.

    PubMed

    Kutyła-Olesiuk, Anna; Wawrzyniak, Urszula E; Ciosek, Patrycja; Wróblewski, Wojciech

    2014-05-01

    Hybrid electronic tongue was developed for the monitoring of citric acid production by Aspergillus niger. The system based on various potentiometric/voltammetric sensors and appropriate chemometric techniques provided correct qualitative and quantitative classification of the samples collected during standard Aspergillus niger culture and culture infected with yeast. The performance of the proposed approach was compared with the monitoring of the fermentation process carried out using classical methods. The results obtained proved, that the designed hybrid electronic tongue was able to evaluate the progress and correctness of the fermentation process.

  10. Leaching with Penicillium simplicissimum: Influence of metals and buffers on proton extrusion and citric acid production

    SciTech Connect

    Franz, A.; Burgstaller, W.; Schinner, F. )

    1991-03-01

    In the presence of insoluble metal oxides (industrial filter dust, zinc oxide, synthetic mixture of metal oxides), Penicillium simplicissimum developed the ability to excrete considerable amounts of citric acid (>100 mM). Parallel with the increase of citric acid concentration in the culture broth, zinc was solubilized from zinc oxide. The adsorption of filter dust onto the mycelium (the pellets formed were less than 1 mm in diameter) was required for not only the citric acid excretion but also the leaching of zinc. When the filter dust was replaced with a synthetic mixture of metal oxides or with zinc oxide in combination with trace elements, levels of adsorption and citric acid production were observed to be similar to those in experiments where industrial filter dust was used. The two most important properties of the filter dust were its heavy-metal content and its buffering capacity. These properties were simulated by adding heavy metals in soluble form (as chlorides, sulfates, or nitrates) or soluble buffers to the medium. Both heavy metals and buffers were not able to induce a citric acid efflux. As with citric acid production by Aspergillus niger, the addition of manganese lowered citric acid excretion (by 40% with metal oxide-induced citric acid efflux and by 100% with urea-induced citric acid efflux). Copper antagonized the effect of manganese. The mechanism for the bulk of citric acid excretion by P. simplicissimum, however, seemed to be different from that described for citric acid accumulation by A. niger. Because of the inefficiency of metals in solubilized form and of soluble buffers to induce a strong citric acid efflux, adsorption of an insoluble metal compound (zinc oxide) turned out to be essential.

  11. Extractive fermentation of acetic acid

    SciTech Connect

    Busche, R.M.

    1991-12-31

    In this technoeconomic evaluation of the manufacture of acetic acid by fermentation, the use of the bacterium: Acetobacter suboxydans from the old vinegar process was compared with expected performance of the newer Clostridium thermoaceticum bacterium. Both systems were projected to operate as immobilized cells in a continuous, fluidized bed bioreactor, using solvent extraction to recover the product. Acetobacter metabolizes ethanol aerobically to produce acid at 100 g/L in a low pH medium. This ensures that the product is in the form of a concentrated extractable free acid, rather than as an unextractable salt. Unfortunately, yields from glucose by way of the ethanol fermentation are poor, but near the biological limits of the organisms involved. Conversely, C. thermoaceticum is a thermophilic anaerobe that operates at high fermentation rates on glucose at neutral pH to produce acetate salts directly in substantially quantitative yields. However, it is severely inhibited by product, which restricts concentration to a dilute 20 g/L. An improved Acetobacter system operating with recycled cells at 50 g/L appears capable of producing acid at $0.38/lb, as compared with a $0.29/lb price for synthetic acid. However, this system has only a limited margin for process improvement. The present Clostridium system cannot compete, since the required selling price would be $0.42/lb. However, if the organism could be adapted to tolerate higher product concentrations at acid pH, selling price could be reduced to $0.22/lb, or about 80% of the price of synthetic acid.

  12. Physical properties and dyeability of silk fibers degummed with citric acid.

    PubMed

    Khan, Majibur Rahman; Tsukada, Masuhiro; Gotoh, Yasuo; Morikawa, Hideaki; Freddi, Giuliano; Shiozaki, Hideki

    2010-11-01

    Silk fibers from Bombyx mori silkworm was degummed with different concentration of citric acid, and the physical properties and fine structure were investigated to elucidate the effects of citric acid treatment. The silk sericin removal percentage was almost 100% after degumming with 30% citric acid which resulted in a total weight loss of 25.4% in the silk fibers. The surface morphology of silk fiber degummed with citric acid was very smooth and fine, showed perfect degumming like traditional soap-alkali method. The tensile strength of silk fiber was increased after degumming with citric acid (507MPa), where as the traditional soap-alkali method causes to decrease the strength about half of the control silk fiber (250MPa). The molecular conformation estimated by Fourier transform infrared spectroscopy and the crystalline structure evaluated from X-ray diffraction curve stayed unchanged regardless of the degumming with citric acid and soap. The dye uptake percentage of silk fiber degummed with citric acid decreased slightly, about 4.2%. On the other hand, the dye uptake percentage of silk degummed with soap was higher which indicates the disordering of the molecular orientation of the laterally ordered structure, accompanied with the partial hydrolysis of silk fibroin molecules by the alkali action of soap. The thermal properties were greatly enhanced by soap and citric acid degumming agents. Dynamic mechanical thermal analysis showed silk degummed with citric acid is more stable in higher temperature than that of soap. With heating at above 300 degrees C, the silk degummed with citric acid shows an increase in storage modulus and an onset of tan delta peaks at 325 degrees C and the melt flow of the sample was inhibited. The degumming of silk fibers with citric acid is safe and the results obtained are quite promising as a basis for possible future industrial application.

  13. Effect of citric acid on the acidification of artificial pepsin solution for metacercariae isolation from fish.

    PubMed

    Kim, Min-Ki; Pyo, Kyoung-Ho; Hwang, Young-Sang; Chun, Hyang Sook; Park, Ki Hwan; Ko, Seong-Hee; Chai, Jong-Yil; Shin, Eun-Hee

    2013-11-15

    Artificial digestive solution based on pepsin is essential for collecting metacercariae from fish. To promote the enzymatic reactivity of pepsin, the pH of the solution has to be adjusted to pH 1.0-2.0. Hydrochloride (HCl) is usually used for this purpose, but the use of HCl raises safety concerns. The aim of this work was to address the usefulness of citric acid as an alternative for HCl for the acidification of pepsin solution, and to examine its potential to damage metacercariae during in vitro digestion as compared with HCl. Changes in pH after adding 1-9% of citric acid (m/v) to pepsin solution were compared to a 1% HCl (v/v) addition. Digestion of fish muscle was evaluated by measuring released protein concentrations by spectrophotometry. In addition, survival rates of metacercariae in pepsin solution were determined at different citric acid concentrations and were compared that of with 1% HCl. The present study shows that addition of citric acid reduced the pH of pepsin solutions to the required level. Addition of more than 5% of citric acid resulted in the effective digestion of fish muscle over 3h in vitro, and 5% citric acid was less lethal to metacercariae than 1% HCl in pepsin solution. Pepsin solution containing 5% citric acid had digestive capacity superior to pepsin solution containing 1% HCl after 3h incubation with released protein concentrations of 12.0 ng/ml for 5% citric acid and 9.6 ng/ml for 1% HCl. Accordingly, the present study suggests that the addition of 5% citric acid to pepsin solution is a good alternative to 1% HCl in infection studies because citric acid is a stable at room temperature and has a good safety profile. In addition, we suggest that the use of citric acid enables the preparation of commercial digestive solutions for the detection of microorganisms in fish and other vertebrate muscle tissue.

  14. 21 CFR 184.1005 - Acetic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acetic acid. 184.1005 Section 184.1005 Food and... Substances Affirmed as GRAS § 184.1005 Acetic acid. (a) Acetic acid (C2H4O2, CAS Reg. No. 64-19-7) is known as ethanoic acid. It occurs naturally in plant and animal tissues. It is produced by fermentation...

  15. 21 CFR 184.1005 - Acetic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acetic acid. 184.1005 Section 184.1005 Food and... Substances Affirmed as GRAS § 184.1005 Acetic acid. (a) Acetic acid (C2H4O2, CAS Reg. No. 64-19-7) is known as ethanoic acid. It occurs naturally in plant and animal tissues. It is produced by fermentation...

  16. 21 CFR 184.1005 - Acetic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acetic acid. 184.1005 Section 184.1005 Food and... Substances Affirmed as GRAS § 184.1005 Acetic acid. (a) Acetic acid (C2H4O2, CAS Reg. No. 64-19-7) is known as ethanoic acid. It occurs naturally in plant and animal tissues. It is produced by fermentation...

  17. 21 CFR 184.1005 - Acetic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acetic acid. 184.1005 Section 184.1005 Food and... Substances Affirmed as GRAS § 184.1005 Acetic acid. (a) Acetic acid (C2H4O2, CAS Reg. No. 64-19-7) is known as ethanoic acid. It occurs naturally in plant and animal tissues. It is produced by fermentation...

  18. 21 CFR 173.280 - Solvent extraction process for citric acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... conventional Aspergillus niger fermentation liquor may be safely used to produce food-grade citric acid in... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Solvent extraction process for citric acid. 173.280 Section 173.280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  19. 21 CFR 173.280 - Solvent extraction process for citric acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... conventional Aspergillus niger fermentation liquor may be safely used to produce food-grade citric acid in... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Solvent extraction process for citric acid. 173.280 Section 173.280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  20. 21 CFR 173.280 - Solvent extraction process for citric acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... conventional Aspergillus niger fermentation liquor may be safely used to produce food-grade citric acid in... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Solvent extraction process for citric acid. 173.280 Section 173.280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  1. 21 CFR 173.280 - Solvent extraction process for citric acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... conventional Aspergillus niger fermentation liquor may be safely used to produce food-grade citric acid in... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Solvent extraction process for citric acid. 173.280 Section 173.280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  2. 77 FR 22560 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Extension of Time...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    ... International Trade Administration Citric Acid and Certain Citrate Salts From the People's Republic of China... acid and certain citrate salts (``citric acid'') from the People's Republic of China (``PRC'').\\1\\ On...). \\2\\ See Citric Acid and Certain Citrate Salts From the People's Republic of China: Extension of...

  3. 77 FR 1455 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Extension of Time...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-10

    ... International Trade Administration Citric Acid and Certain Citrate Salts From the People's Republic of China... acid and certain citrate salts (``citric acid'') from the People's Republic of China (``PRC''). See... of the administrative review of citric acid from the PRC within this time limit....

  4. Oxygen requirements for growth and citric acid production of Yarrowia lipolytica.

    PubMed

    Kamzolova, Svetlana V; Shishkanova, Nadezda V; Morgunov, Igor G; Finogenova, Tatyana V

    2003-04-01

    During continuous cultivation of Yarrowia lipolytica N 1, oxygen requirements for growth and citric acid synthesis were found to depend on the iron concentration in the medium. A coupled effect of oxygen and iron concentrations on the functioning of the mitochondrial electron transport chain in Y. lipolytica N 1 was established. Based on the results obtained in continuous culture, conditions for citric acid production in a batch culture of Y. lipolytica N 1 were proposed. At relatively low pO(2) value and a high iron concentration, citric acid accumulation was as high as 120 g l(-1); the specific rate of citric acid synthesis reached 120 mg citric acid (g cells h)(-1). The mass yield coefficient was 0.87 and the energy yield coefficient was 0.31.

  5. Effect of Periodic Water Addition on Citric Acid Production in Solid State Fermentation

    NASA Astrophysics Data System (ADS)

    Utpat, Shraddha S.; Kinnige, Pallavi T.; Dhamole, Pradip B.

    2013-09-01

    Water addition is one of the methods used to control the moisture loss in solid state fermentation (SSF). However, none of the studies report the timing of water addition and amount of water to be added in SSF. Therefore, this work was undertaken with an objective to evaluate the performance of periodic water addition on citric acid production in SSF. Experiments were conducted at different moistures (50-80 %) and temperatures (30-40 °C) to simulate the conditions in a fermenter. Citric acid production by Aspergillus niger (ATCC 9029) using sugarcane baggase was chosen as a model system. Based on the moisture profile, citric acid and sugar data, a strategy was designed for periodic addition of water. Water addition at 48, 96, 144 and 192 h enhanced the citric acid production by 62 % whereas water addition at 72, 120, and 168 h increased the citric acid production by just 17 %.

  6. Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes.

    PubMed

    Gadd, G M

    1999-01-01

    The production of organic acids by fungi has profound implications for metal speciation, physiology and biogeochemical cycles. Biosynthesis of oxalic acid from glucose occurs by hydrolysis of oxaloacetate to oxalate and acetate catalysed by cytosolic oxaloacetase, whereas on citric acid, oxalate production occurs by means of glyoxylate oxidation. Citric acid is an intermediate in the tricarboxylic acid cycle, with metals greatly influencing biosynthesis: growth limiting concentrations of Mn, Fe and Zn are important for high yields. The metal-complexing properties of these organic acids assist both essential metal and anionic (e.g. phosphate) nutrition of fungi, other microbes and plants, and determine metal speciation and mobility in the environment, including transfer between terrestrial and aquatic habitats, biocorrosion and weathering. Metal solubilization processes are also of potential for metal recovery and reclamation from contaminated solid wastes, soils and low-grade ores. Such 'heterotrophic leaching' can occur by several mechanisms but organic acids occupy a central position in the overall process, supplying both protons and a metal-complexing organic acid anion. Most simple metal oxalates [except those of alkali metals, Fe(III) and Al] are sparingly soluble and precipitate as crystalline or amorphous solids. Calcium oxalate is the most important manifestation of this in the environment and, in a variety of crystalline structures, is ubiquitously associated with free-living, plant symbiotic and pathogenic fungi. The main forms are the monohydrate (whewellite) and the dihydrate (weddelite) and their formation is of significance in biomineralization, since they affect nutritional heterogeneity in soil, especially Ca, P, K and Al cycling. The formation of insoluble toxic metal oxalates, e.g. of Cu, may confer tolerance and ensure survival in contaminated environments. In semi-arid environments, calcium oxalate formation is important in the formation and

  7. Method for the isolation of citric acid and malic acid in Japanese apricot liqueur for carbon stable isotope analysis.

    PubMed

    Akamatsu, Fumikazu; Hashiguchi, Tomokazu; Hisatsune, Yuri; Oe, Takaaki; Kawao, Takafumi; Fujii, Tsutomu

    2017-02-15

    A method for detecting the undeclared addition of acidic ingredients is required to control the authenticity of Japanese apricot liqueur. We developed an analytical procedure that minimizes carbon isotope discrimination for measurement of the δ(13)C values of citric and malic acid isolated from Japanese apricot liqueur. Our results demonstrated that freeze-drying is preferable to nitrogen spray-drying, because it does not significantly affect the δ(13)C values of citric acid and results in smaller isotope discrimination for malic acid. Both 0.1% formic acid and 0.2% phosphoric acid are acceptable HPLC mobile phases for the isolation of citric and malic acid, although the δ(13)C values of malic acid exhibited relatively large variation compared with citric acid following isolation using either mobile phase. The developed procedure allows precise δ(13)C measurements of citric and malic acid isolated from Japanese apricot liqueur.

  8. New insights into structural alteration of enamel apatite induced by citric acid and sodium fluoride solutions.

    PubMed

    Wang, Xiaojie; Klocke, Arndt; Mihailova, Boriana; Tosheva, Lubomira; Bismayer, Ulrich

    2008-07-24

    Attenuated total reflectance infrared spectroscopy and complementary scanning electron microscopy were applied to analyze the surface structure of enamel apatite exposed to citric acid and to investigate the protective potential of fluorine-containing reagents against citric acid-induced erosion. Enamel and, for comparison, geological hydroxylapatite samples were treated with aqueous solutions of citric acid and sodium fluoride of different concentrations, ranging from 0.01 to 0.5 mol/L for citric acid solutions and from 0.5 to 2.0% for fluoride solutions. The two solutions were applied either simultaneously or consecutively. The citric acid-induced structural modification of apatite increases with the increase in the citric acid concentration and the number of treatments. The application of sodium fluoride alone does not suppress the atomic level changes in apatite exposed to acidic agents. The addition of sodium fluoride to citric acid solutions leads to formation of surface CaF2 and considerably reduces the changes in the apatite P-O-Ca framework. However, the CaF2 globules deposited on the enamel surface seem to be insufficient to prevent the alteration of the apatite structure upon further exposure to acidic agents. No evidence for fluorine-induced recovery of the apatite structure was found.

  9. Mixture tetracycline citric acid and detergent – A root canal irrigant. A review

    PubMed Central

    Srikumar, G.P.V.; Sekhar, K.S.; Nischith, K.G.

    2012-01-01

    Background Root canal irrigants play an indispensable role for the complete disinfection of the root canal system, in particular those areas of the root canal that are not accessible for instrumentation. Sodium hypochlorite, ethylene diamine tetra acetic acid, hydrogen peroxide and chlorhexidine are the most commonly used root canal irrigants in endodontic practice, but they do not satisfy all the properties of an ideal root canal irrigant. Mixture tetracycline, citric acid and detergent, a root canal irrigant, is commercially available as BioPure MTAD (Dentsply, Tulsa Dental, Tulsa, OK). Methodology The literature was searched for root canal irrigants used in the last 3 decades in PubMed. Data showed 83 relevant articles, of which 24 were found most suitable on the basis of description of properties, advantages and disadvantages of MTAD, hence were included. The aim of this study was to evaluate the properties of MTAD for its antibacterial efficiency, biocompatibility, chelating action with removal of endodontic smear layer and compare it with other commonly used root canal irrigants like sodium hypochlorite, ethylene diamine tetra acetic acid, hydrogen peroxide, chlorhexidine. Results MTAD was found to be highly effective intracanal irrigant compared to other commonly used root canal irrigants with excellent disinfection of the entire root canal system. Conclusion MTAD is biocompatible with superior antimicrobial efficiency compared to other commonly used root canal irrigants. PMID:25737877

  10. 77 FR 56188 - Citric Acid and Certain Citrate Salts from the People's Republic of China: Notice of Rescission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-12

    ... International Trade Administration Citric Acid and Certain Citrate Salts from the People's Republic of China... of the countervailing duty (CVD) order on citric acid and certain citrate salts from the People's...\\ See Citric Acid and Certain Citrate Salts from the People's Republic of China: Intent to...

  11. 76 FR 4288 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Notice of Extension of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Citric Acid and Certain Citrate Salts From the People's Republic of China... review of the antidumping duty order on citric acid and certain citrate salts (``citric acid'') from...

  12. 76 FR 77206 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-12

    ... International Trade Administration Citric Acid and Certain Citrate Salts From the People's Republic of China...'') has completed its administrative review of the countervailing duty (``CVD'') order on citric acid and... Citric Acid and Certain Citrate Salts from the People's Republic of China: Preliminary Results...

  13. 77 FR 33167 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... International Trade Administration Citric Acid and Certain Citrate Salts From the People's Republic of China... conducting an administrative review of the countervailing duty (CVD) order on citric acid and citrate salts.... SUPPLEMENTARY INFORMATION: Background On May 29, 2009, the Department published a CVD order on citric acid...

  14. 76 FR 47146 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Extension of Time...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ... International Trade Administration Citric Acid and Certain Citrate Salts From the People's Republic of China...'') published the initiation of the administrative review of the antidumping duty order on citric acid and certain citrate salts (``citric acid'') from the People's Republic of China (``PRC''). See Initiation...

  15. 78 FR 34642 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... International Trade Administration Citric Acid and Certain Citrate Salts From the People's Republic of China... Department'') is conducting an administrative review of the antidumping duty order on citric acid and certain citrate salts (``citric acid'') from the People's Republic of China (``PRC''). The period of review...

  16. Citric acid production in Yarrowia lipolytica SWJ-1b yeast when grown on waste cooking oil.

    PubMed

    Liu, Xiaoyan; Lv, Jinshun; Xu, Jiaxing; Zhang, Tong; Deng, Yuanfang; He, Jianlong

    2015-03-01

    In this study, citric acid was produced from waste cooking oil by Yarrowia lipolytica SWJ-1b. To get the maximal yield of citric acid, the compositions of the medium for citric acid production were optimized, and our results showed that extra nitrogen and magnesium rather than vitamin B1 and phosphate were needed for CA accumulation when using waste cooking oil. The results also indicated that the optimal initial concentration of the waste cooking oil in the medium for citric acid production was 80.0 g/l, and the ideal inoculation size was 1 × 10(7) cells/l of medium. We also reported that during 10-l fermentation, 31.7 g/l of citric acid, 6.5 g/l of isocitric acid, 5.9 g/l of biomass, and 42.1 g/100.0 g cell dry weight of lipid were attained from 80.0 g/l of waste cooking oil within 336 h. At the end of the fermentation, 94.6 % of the waste cooking oil was utilized by the cells of Y. lipolytica SWJ-1b, and the yield of citric acid was 0.4 g/g waste cooking oil, which suggested that waste cooking oil was a suitable carbon resource for citric acid production.

  17. Citric Acid Effects on Brain and Liver Oxidative Stress in Lipopolysaccharide-Treated Mice

    PubMed Central

    Youness, Eman R.; Mohammed, Nadia A.; Morsy, Safaa M. Youssef; Omara, Enayat A.; Sleem, Amany A.

    2014-01-01

    Abstract Citric acid is a weak organic acid found in the greatest amounts in citrus fruits. This study examined the effect of citric acid on endotoxin-induced oxidative stress of the brain and liver. Mice were challenged with a single intraperitoneal dose of lipopolysaccharide (LPS; 200 μg/kg). Citric acid was given orally at 1, 2, or 4 g/kg at time of endotoxin injection and mice were euthanized 4 h later. LPS induced oxidative stress in the brain and liver tissue, resulting in marked increase in lipid peroxidation (malondialdehyde [MDA]) and nitrite, while significantly decreasing reduced glutathione, glutathione peroxidase (GPx), and paraoxonase 1 (PON1) activity. Tumor necrosis factor-alpha (TNF-α) showed a pronounced increase in brain tissue after endotoxin injection. The administration of citric acid (1–2 g/kg) attenuated LPS-induced elevations in brain MDA, nitrite, TNF-α, GPx, and PON1 activity. In the liver, nitrite was decreased by 1 g/kg citric acid. GPx activity was increased, while PON1 activity was decreased by citric acid. The LPS-induced liver injury, DNA fragmentation, serum transaminase elevations, caspase-3, and inducible nitric oxide synthase expression were attenuated by 1–2 g/kg citric acid. DNA fragmentation, however, increased after 4 g/kg citric acid. Thus in this model of systemic inflammation, citric acid (1–2 g/kg) decreased brain lipid peroxidation and inflammation, liver damage, and DNA fragmentation. PMID:24433072

  18. Vesicles protect activated acetic acid.

    PubMed

    Todd, Zoe R; House, Christopher H

    2014-10-01

    Abstract Methyl thioacetate, or activated acetic acid, has been proposed to be central to the origin of life and an important energy currency molecule in early cellular evolution. We have investigated the hydrolysis of methyl thioacetate under various conditions. Its uncatalyzed rate of hydrolysis is about 3 orders of magnitude faster (K=0.00663 s(-1); 100°C, pH 7.5, concentration=0.33 mM) than published rates for its catalyzed production, making it unlikely to accumulate under prebiotic conditions. However, our experiments showed that methyl thioacetate was protected from hydrolysis when inside its own hydrophobic droplets. Further, we found that methyl thioacetate protection from hydrolysis was also possible in droplets of hexane and in the membranes of nonanoic acid vesicles. Thus, the hydrophobic regions of prebiotic vesicles and early cell membranes could have offered a refuge for this energetic molecule, increasing its lifetime in close proximity to the reactions for which it would be needed. This model of early energy storage evokes an additional critical function for the earliest cell membranes.

  19. Optimization of the integrated citric acid-methane fermentation process by air stripping and glucoamylase addition.

    PubMed

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Wang, Ke; Tang, Lei; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-03-01

    To solve the problem of extraction wastewater in citric acid industry, an integrated citric acid-methane fermentation process was proposed. In the integrated process, extraction wastewater was treated by mesophilic anaerobic digestion and then reused to make mash for the next batch of citric acid fermentation. In this study, an Aspergillus niger mutant strain exhibiting resistance to high metal ions concentration was used to eliminate the inhibition of 200 mg/L Na(+) and 300 mg/L K(+) in anaerobic digestion effluent (ADE) and citric acid production increased by 25.0 %. Air stripping was used to remove ammonium, alkalinity, and part of metal ions in ADE before making mash. In consequence, citric acid production was significantly improved but still lower by 6.1 % than the control. Results indicated that metal ions in ADE synergistically inhibited the activity of glucoamylase, thus reducing citric acid production. When 130 U/g glucoamylase was added before fermentation, citric acid production was 141.5 g/L, which was even higher than the control (140.4 g/L). This process could completely eliminate extraction wastewater discharge and reduce water resource consumption.

  20. Acetic acid in aged vinegar affects molecular targets for thrombus disease management.

    PubMed

    Jing, Li; Yanyan, Zhang; Junfeng, Fan

    2015-08-01

    To elucidate the mechanism underlying the action of dietary vinegar on antithrombotic activity, acetic acid, the main acidic component of dietary vinegar, was used to determine antiplatelet and fibrinolytic activity. The results revealed that acetic acid significantly inhibits adenosine diphosphate (ADP)-, collagen-, thrombin-, and arachidonic acid (AA)-induced platelet aggregation. Acetic acid (2.00 mM) reduced AA-induced platelet aggregation to approximately 36.82 ± 1.31%, and vinegar (0.12 mL L(-1)) reduced the platelet aggregation induced by AA to 30.25 ± 1.34%. Further studies revealed that acetic acid exerts its effects by inhibiting cyclooxygenase-1 and the formation of thromboxane-A2. Organic acids including acetic acid, formic acid, lactic acid, citric acid, and malic acid also showed fibrinolytic activity; specifically, the fibrinolytic activity of acetic acid amounted to 1.866 IU urokinase per mL. Acetic acid exerted its fibrinolytic activity by activating plasminogen during fibrin crossing, thus leading to crosslinked fibrin degradation by the activated plasmin. These results suggest that organic acids in dietary vinegar play important roles in the prevention and cure of cardiovascular diseases.

  1. Electron transfer induced fragmentation of acetic acid

    NASA Astrophysics Data System (ADS)

    Ferreira da Silva, F.; Meneses, G.; Almeida, D.; Limão-Vieira, P.

    2014-04-01

    We present negative ion formation driven by electron transfer in atom (K) molecule (acetic acid) collisions. Acetic acid has been found in the interstellar medium, is also considered a biological related compound and as such studying low energy electron interactions will bring new insights as far as induced chemistry is concerned.

  2. Low- and high-affinity transport systems for citric acid in the yeast Candida utilis.

    PubMed Central

    Cássio, F; Leáo, C

    1991-01-01

    Citric acid-grown cells of the yeast Candida utilis induced two transport systems for citric acid, presumably a proton symport and a facilitated diffusion system for the charged and the undissociated forms of the acid, respectively. Both systems could be observed simultaneously when the transport was measured at 25 degrees C with labelled citric acid at pH 3.5 with the following kinetic parameters: for the low-affinity system, Vmax, 1.14 nmol of undissociated citric acid s-1 mg (dry weight) of cells-1, and Km, 0.59 mM undissociated acid; for the high-affinity system, Vmax, 0.38 nmol of citrate s-1 mg (dry weight) of cells-1, and Km, 0.056 mM citrate. At high pH values (above 5.0), the low-affinity system was absent or not measurable. The two transport systems exhibited different substrate specificities. Isocitric acid was a competitive inhibitor of citric acid for the high-affinity system, suggesting that these tricarboxylic acids used the same transport system, while aconitic, tricarballylic, trimesic, and hemimellitic acids were not competitive inhibitors. With respect to the low-affinity system, isocitric acid, L-lactic acid, and L-malic acid were competitive inhibitors, suggesting that all of these mono-, di-, and tricarboxylic acids used the same low-affinity transport system. The two transport systems were repressed by glucose, and as a consequence diauxic growth was observed. Both systems were inducible, and not only citric acid but also lactic acid and malic acid may induce those transport systems. The induction of both systems was not dependent on the relative concentration of the anionic form(s) and of undissociated citric acid in the culture medium.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1664712

  3. Citric Acid-Modified Fenton's Reaction for the Oxidation of Chlorinated Ethylenes in Soil Solution Systems

    SciTech Connect

    Seol, Yongkoo; Javandel, Iraj

    2008-03-15

    Fenton's reagent, a solution of hydrogen peroxide and ferrous iron catalyst, is used for an in-situ chemical oxidation of organic contaminants. Sulfuric acid is commonly used to create an acidic condition needed for catalytic oxidation. Fenton's reaction often involves pressure buildup and precipitation of reaction products, which can cause safety hazards and diminish efficiency. We selected citric acid, a food-grade substance, as an acidifying agent to evaluate its efficiencies for organic contaminant removal in Fenton's reaction, and examined the impacts of using citric acid on the unwanted reaction products. A series of batch and column experiments were performed with varying H{sub 2}O{sub 2} concentrations to decompose selected chlorinated ethylenes. Either dissolved iron from soil or iron sulfate salt was added to provide the iron catalyst in the batch tests. Batch experiments revealed that both citric and sulfuric acid systems achieved over 90% contaminant removal rates, and the presence of iron catalyst was essential for effective decontamination. Batch tests with citric acid showed no signs of pressure accumulation and solid precipitations, however the results suggested that an excessive usage of H{sub 2}O{sub 2} relative to iron catalysts (Fe{sup 2+}/H{sub 2}O{sub 2} < 1/330) would result in lowering the efficiency of contaminant removal by iron chelations in the citric acid system. Column tests confirmed that citric acid could provide suitable acidic conditions to achieve higher than 55% contaminant removal rates.

  4. Development of pectin films with pomegranate juice and citric acid.

    PubMed

    Azeredo, Henriette M C; Morrugares-Carmona, Rosario; Wellner, Nikolaus; Cross, Kathryn; Bajka, Balazs; Waldron, Keith W

    2016-05-01

    The influence of pomegranate juice (PJ, replacing water as solvent) and citric acid (CA) on properties of pectin films was studied. PJ provided the films with a bright red color, and acted as a plasticizer. Increasing PJ/water ratio from 0/100 to 100/0 resulted in enhanced elongation (from 2% to 20%), decreased strength (from 10 to <2 MPa) and modulus (from 93 to <10 MPa), increased water vapor permeability (WVP, from 3 to 9 g.mm.kPa(-1).h(-1).m(-2)), and decreased insoluble matter (IM, from 35% to 24%). Although a crosslinking effect by CA was not confirmed, it has been suggested to occur from its effects on films. CA noticeably increased IM (from <10% to almost 40%); moreover, when measured on a dry film basis, the CA effects presented a noticeable tendency to increases strength and modulus, and to decrease WVP. The red color density was decreased by CA, suggesting a destabilization of anthocyanins.

  5. Application of carbon and hydrogen stable isotope analyses to detect exogenous citric acid in Japanese apricot liqueur.

    PubMed

    Akamatsu, Fumikazu; Oe, Takaaki; Hashiguchi, Tomokazu; Hisatsune, Yuri; Kawao, Takafumi; Fujii, Tsutomu

    2017-08-01

    Japanese apricot liqueur manufacturers are required to control the quality and authenticity of their liqueur products. Citric acid made from corn is the main acidulant used in commercial liqueurs. In this study, we conducted spiking experiments and carbon and hydrogen stable isotope analyses to detect exogenous citric acid used as an acidulant in Japanese apricot liqueurs. Our results showed that the δ(13)C values detected exogenous citric acid originating from C4 plants but not from C3 plants. The δ(2)H values of citric acid decreased as the amount of citric acid added increased, whether the citric acid originated from C3 or C4 plants. Commercial liqueurs with declared added acidulant provided higher δ(13)C values and lower δ(2)H values than did authentic liqueurs and commercial liqueurs with no declared added acidulant. Carbon and hydrogen stable isotope analyses are suitable as routine methods for detecting exogenous citric acid in Japanese apricot liqueur.

  6. Changes in the physiological properties and kinetics of citric acid accumulation via carbon ion irradiation mutagenesis of Aspergillus niger *

    PubMed Central

    Hu, Wei; Chen, Ji-hong; Wang, Shu-yang; Liu, Jing; Song, Yuan; Wu, Qing-feng; Li, Wen-jian

    2016-01-01

    The objective of this work was to produce citric acid from corn starch using a newly isolated mutant of Aspergillus niger, and to analyze the relationship between changes in the physiological properties of A. niger induced by carbon ion irradiation and citric acid accumulation. Our results showed that the physiological characteristics of conidia in A. niger were closely related to citric acid accumulation and that lower growth rate and viability of conidia may be beneficial to citric acid accumulation. Using corn starch as a raw material, a high-yielding citric acid mutant, named HW2, was obtained. In a 10-L bioreactor, HW2 can accumulate 118.9 g/L citric acid with a residual total sugar concentration of only 14.4 g/L. This represented an 18% increase in citric acid accumulation and a 12.5% decrease in sugar utilization compared with the original strain.

  7. Changes in citric acid cycle flux and anaplerosis antedate the functional decline in isolated rat hearts utilizing acetoacetate.

    PubMed Central

    Russell, R R; Taegtmeyer, H

    1991-01-01

    To determine the temporal relationship between changes in contractile performance and flux through the citric acid cycle in hearts oxidizing acetoacetate, we perfused isolated working rat hearts with either glucose or acetoacetate (both 5 mM) and freeze-clamped the tissue at defined times. After 60 min of perfusion, hearts utilizing acetoacetate exhibited lower systolic and diastolic pressures and lower cardiac outputs. The oxidation of acetoacetate increased the tissue content of 2-oxoglutarate and glutamate and decreased the content of succinyl-CoA suggesting inhibition of citric acid cycle flux through 2-oxoglutarate dehydrogenase. Whereas hearts perfused with either acetoacetate or glucose were similar with respect to their function for the first 20 min, changes in tissue metabolites were already observed within 5 min of perfusion at near-physiological workloads. The addition of lactate or propionate, but not acetate, to hearts oxidizing acetoacetate improved contractile performance, although inhibition of 2-oxoglutarate dehydrogenase was probably not diminished. If lactate or propionate were added, malate and citrate accumulated indicating utilization of anaplerotic pathways for the citric acid cycle. We conclude that a decreased rate of flux through 2-oxoglutarate dehydrogenase in hearts oxidizing acetoacetate precedes, and may be responsible for, contractile failure and is not the result of decreased cardiac work. Further, anaplerosis play an important role in the maintenance of contractile function in hearts utilizing acetoacetate. Images PMID:1671390

  8. Photostabilization of ascorbic acid with citric acid, tartaric acid and boric acid in cream formulations.

    PubMed

    Ahmad, I; Ali Sheraz, M; Ahmed, S; Shad, Z; Vaid, F H M

    2012-06-01

    This study involves the evaluation of the effect of certain stabilizers, that is, citric acid (CT), tartaric acid (TA) and boric acid (BA) on the degradation of ascorbic acid (AH(2) ) in oil-in-water cream formulations exposed to the UV light and stored in the dark. The apparent first-order rate constants (0.34-0.95 × 10(-3) min(-1) in light, 0.38-1.24 × 10(-2) day(-1) in dark) for the degradation reactions in the presence of the stabilizers have been determined. These rate constants have been used to derive the second-order rate constants (0.26-1.45 × 10(-2) M(-1) min(-1) in light, 3.75-8.50 × 10(-3) M(-1) day(-1) in dark) for the interaction of AH(2) and the individual stabilizers. These stabilizers are effective in causing the inhibition of the rate of degradation of AH(2) both in the light and in the dark. The inhibitory effect of the stabilizers is in the order of CT > TA > BA. The rate of degradation of AH(2) in the presence of these stabilizers in the light is about 120 times higher than that in the dark. This could be explained on the basis of the deactivation of AH(2) -excited triplet state by CT and TA and by the inhibition of AH(2) degradation through complex formation with BA. AH(2) leads to the formation of dehydroascorbic acid (A) by chemical and photooxidation in cream formulations.

  9. Improved flotation performance of hematite fines using citric acid as a dispersant

    NASA Astrophysics Data System (ADS)

    Luo, Xi-mei; Yin, Wan-zhong; Sun, Chuan-yao; Wang, Nai-ling; Ma, Ying-qiang; Wang, Yun-fan

    2016-10-01

    In this study, citric acid was used as a dispersant to improve the flotation performance of hematite fines. The effect and mechanism of citric acid on the reverse flotation of hematite fines were investigated by flotation tests, sedimentation experiments, scanning electron microscopy (SEM), zeta-potential measurements, and X-ray photoelectron spectroscopy (XPS). The results of SEM analysis and flotation tests reveal that a strong heterocoagulation in the form of slime coating or coagulation in hematite fine slurry affects the beneficiation of hematite ores by froth flotation. The addition of a small amount of citric acid (less than 300 g/t) favorably affects the reverse flotation of hematite fines by improving particle dispersion. The results of sedimentation experiments, zeta-potential measurements, and XPS measurements demonstrate that citric acid adsorbs onto hematite and quartz surfaces via hydrogen bonding, thereby reducing the zeta potentials of mineral surfaces, strengthening the electrical double-layer repulsion between mineral particles, and dispersing the pulp particles.

  10. Stoichiometry of Reducing Equivalents and Splitting of Water in the Citric Acid Cycle.

    ERIC Educational Resources Information Center

    Madeira, Vitor M. C.

    1988-01-01

    Presents a solution to the problem of finding the source of extra reducing equivalents, and accomplishing the stoichiometry of glucose oxidation reactions. Discusses the citric acid cycle and glycolysis. (CW)

  11. 7 CFR 51.1178 - Maximum anhydrous citric acid permissible for corresponding total soluble solids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) United States Standards for Grades of Florida Oranges and Tangelos Standards for Internal Quality of Common Sweet Oranges (citrus Sinensis (l) Osbeck) § 51.1178 Maximum anhydrous citric acid permissible...

  12. Use of Energy Crop (Ricinus communis L.) for Phytoextraction of Heavy Metals Assisted with Citric Acid.

    PubMed

    Zhang, Hui; Chen, Xueping; He, Chiquan; Liang, Xia; Oh, Kokyo; Liu, Xiaoyan; Lei, Yanru

    2015-01-01

    Ricinus communis L. is a bioenergetic crop with high-biomass production and tolerance to cadmium (Cd) and lead (Pb), thus, the plant is a candidate crop for phytoremediation. Pot experiments were performed to study the effects of citric acid in enhancing phytoextraction of Cd/Pb by Ricinus communis L. Citric acid increased Cd and Pb contents in plant shoots in all treatments by about 78% and 18-45%, respectively, at the dosage of 10 mM kg(-1) soil without affecting aboveground biomass production. Addition of citric acid reduced CEC, weakened soil adsorption of heavy metals and activated Cd and Pb in soil solutions. The acid-exchangeable fraction (BCR-1) of Pb remained lower than 7% and significantly increased with citric acid amendment. Respective increases in soil evaluation index induces by 14% and 19% under the Cd1Pb50 and Cd1Pb250 treatments upon addition of citric acid resulted in soil quality improvement. Ricinus communis L. has great potential in citric acid-assisted phytoextraction for Cd and Pb remediation.

  13. Citric acid assisted phytoremediation of copper by Brassica napus L.

    PubMed

    Zaheer, Ihsan Elahi; Ali, Shafaqat; Rizwan, Muhammad; Farid, Mujahid; Shakoor, Muhammad Bilal; Gill, Rafaqa Ali; Najeeb, Ullah; Iqbal, Naeem; Ahmad, Rehan

    2015-10-01

    Use of organic acids for promoting heavy metals phytoextraction is gaining worldwide attention. The present study investigated the influence of citric acid (CA) in enhancing copper (Cu) uptake by Brassica napus L. seedlings. 6 Weeks old B. napus seedlings were exposed to different levels of copper (Cu, 0, 50 and 100µM) alone or with CA (2.5mM) in a nutrient medium for 40 days. Exposure to elevated Cu levels (50 and 100µM) significantly reduced the growth, biomass production, chlorophyll content, gas exchange attributes and soluble proteins of B. napus seedlings. In addition, Cu toxicity increased the production of hydrogen peroxide (H2O2), malondialdehyde (MDA) and electrolyte leakage (EL) in leaf and root tissues of B. napus. Activities of antioxidant enzymes such as guaiacol peroxidase (POD), superoxide dismutase (SOD), catalases (CAT), ascorbate peroxidase (APX) in root and shoot tissues of B. napus were increased in response to lower Cu concentration (50µM) but increased under higher Cu concentration (100µM). Addition of CA into nutrient medium significantly alleviated Cu toxicity effects on B. napus seedlings by improving photosynthetic capacity and ultimately plant growth. Increased activities of antioxidant enzymes in CA-treated plants seems to play a role in capturing of stress-induced reactive oxygen species as was evident from lower level of H2O2, MDA and EL in CA-treated plants. Increasing Cu concentration in the nutrient medium significantly increased Cu concentration in in B. napus tissues. Cu uptake was further increased by CA application. These results suggested that CA might be a useful strategy for increasing phytoextraction of Cu from contaminated soils.

  14. The viability of a nonenzymatic reductive citric acid cycle--kinetics and thermochemistry.

    PubMed

    Ross, David S

    2007-02-01

    The likelihood of a functioning nonenzymatic reductive citric acid cycle, recently proposed as the precursor to biosynthesis on early Earth, is examined on the basis of the kinetics and thermochemistry of the acetate --> pyruvate --> oxaloacetate --> malate sequence. Using data derived from studies of the Pd-catalyzed phosphinate reduction of carbonyl functions it is shown that the rate of conversion of pyruvate to malate with that system would have been much too slow to have played a role in the early chemistry of life, while naturally occurring reduction systems such as the fayalite-magnetite-quartz and pyrrhotite-pyrite-magnetite mineral assemblages would have provided even slower conversions. It is also shown that the production of pyruvate from acetate is too highly endoergic to be driven by a naturally occurring energy source such as pyrophosphate. It is thus highly doubtful that the cycle can operate at suitable rates without enzymes, and most unlikely that it could have participated in the chemistry leading to life.

  15. The viability of a nonenzymatic reductive citric acid cycle - Kinetics and thermochemistry

    USGS Publications Warehouse

    Ross, D.S.

    2007-01-01

    The likelihood of a functioning nonenzymatic reductive citric acid cycle, recently proposed as the precursor to biosynthesis on early Earth, is examined on the basis of the kinetics and thermochemistry of the acetate ??? pyruvate ??? oxaloacetate ??? malate sequence. Using data derived from studies of the Pd-catalyzed phosphinate reduction of carbonyl functions it is shown that the rate of conversion of pyruvate to malate with that system would have been much too slow to have played a role in the early chemistry of life, while naturally occurring reduction systems such as the fayalite-magnetite-quartz and pyrrhotite-pyrite-magnetite mineral assemblages would have provided even slower conversions. It is also shown that the production of pyruvate from acetate is too highly endoergic to be driven by a naturally occurring energy source such as pyrophosphate. It is thus highly doubtful that the cycle can operate at suitable rates without enzymes, and most unlikely that it could have participated in the chemistry leading to life. ?? 2006 Springer Science + Business Media B.V.

  16. Fed-batch production of citric acid by Candida lipolytica grown on n-paraffins.

    PubMed

    Crolla, A; Kennedy, K J

    2004-05-13

    This study reports on the effects of fermentor agitation and fed-batch mode of operation on citric acid production from Candida lipolytica using n-paraffin as the carbon source. An optimum range of agitation speeds in the 800-1000 rpm range corresponding to Reynolds numbers of 50000-63000 (based on initial batch conditions) seemed to give the best balance between substrate utilization for biomass growth and citric acid production. Application of multiple fed-batch feedings can be used to extend the batch fermentation and increase final citric acid concentrations and product yield. The three-cycle fed-batch system increased overall citric acid yields to 0.8-1.0 g citricacid/g n-paraffin, approximately a 100% improvement in product yield from those observed in the single cycle fed-batch system and a 200% improvement over normal batch operation. The three-cycle fed-batch mode of operation also increased the final citric acid concentration to 42 g/l from about 12 and 6g/l for single fed-batch cycle and normal batch modes of operation, respectively. Increased citric acid concentrations in three-cycle fed-batch mode was achieved at longer fermentation times.

  17. A novel cleaner production process of citric acid by recycling its treated wastewater.

    PubMed

    Xu, Jian; Su, Xian-Feng; Bao, Jia-Wei; Zhang, Hong-Jian; Zeng, Xin; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2016-07-01

    In this study, a novel cleaner production process of citric acid was proposed to completely solve the problem of wastewater management in citric acid industry. In the process, wastewater from citric acid fermentation was used to produce methane through anaerobic digestion and then the anaerobic digestion effluent was further treated with air stripping and electrodialysis before recycled as process water for the later citric acid fermentation. This proposed process was performed for 10 batches and the average citric acid production in recycling batches was 142.4±2.1g/L which was comparable to that with tap water (141.6g/L). Anaerobic digestion was also efficient and stable in operation. The average chemical oxygen demand (COD) removal rate was 95.1±1.2% and methane yield approached to 297.7±19.8mL/g TCODremoved. In conclusion, this novel process minimized the wastewater discharge and achieved the cleaner production in citric acid industry.

  18. Uptake of ozone to mixed sodium bromide/ citric acid solutions

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Tao; Steimle, Emilie; Bartels-Rausch, Thorsten; Kato, Shunsuke; Lampimäki, Markus; Brown, Matthew; van Bokhoven, Jeroen; Nolting, Frithjof; Kleibert, Armin; Türler, Andreas; Ammann, Markus

    2013-04-01

    Sea-salt solution - air interfaces play an important role in the chemistry of the marine boundary layer. The reaction of ozone (O3) with bromide is of interest in the context of formation of photolabile halogens (Br2, BrCl) in the marine boundary layer. Recent experiments have suggested that the bromide oxidation rate is related to the surface concentration of bromide [1] and inversely related to the gas phase concentration of O3, an indication for a precursor mediated reaction at the surface [2]. So far, the effect of organics (such as those occurring at the ocean surface or in marine aerosols) on the reaction of O3 with bromide aerosols has not been studied yet. In our study we investigate the uptake kinetics of O3 to a mixed solution of sodium bromide (NaBr) and citric acid (CA), which represents highly oxidized organic compounds present in the environment, with a well-established coated wall flow tube technique, which leads to exposure of the film to O3 allowing the heterogeneous reactions to take place and the loss of O3 being measured. The results indicate that the uptake of O3 to the films with the higher bromide concentrations (0.34M and 4M) is independent of the gas phase concentration and roughly consistent with uptake limited by reaction in the bulk. For the lower bromide concentration (84mM), however, we observe a trend of the uptake coefficient to decrease with increasing O3 concentration, indicating an increasing importance of a surface reaction. In an attempt to constrain the kinetic data, we employed X-ray photoelectron spectroscopy (XPS) to get insight into the surface composition of the aqueous solution - air interface. Previous XPS studies have shown that halide ion concentrations are enhanced at the aqueous solution air interface [3-4], which likely promotes the surface reactions of bromide or iodide with O3. A first XPS study of ternary solutions of KI with butanol indicated the importance of specific interactions of the cation with the alcohol

  19. Multiple glass transitions and freezing events of aqueous citric acid.

    PubMed

    Bogdan, Anatoli; Molina, Mario J; Tenhu, Heikki; Loerting, Thomas

    2015-05-14

    Calorimetric and optical cryo-microscope measurements of 10-64 wt % citric acid (CA) solutions subjected to moderate (3 K/min) and slow (0.5 and 0.1 K/min) cooling/warming rates and also to quenching/moderate warming between 320 and 133 K are presented. Depending on solution concentration and cooling rate, the obtained thermograms show one freezing event and from one to three liquid-glass transitions upon cooling and from one to six liquid-glass and reverse glass-liquid transitions, one or two freezing events, and one melting event upon warming of frozen/glassy CA/H2O. The multiple freezing events and glass transitions pertain to the mother CA/H2O solution itself and two freeze-concentrated solution regions, FCS1 and FCS2, of different concentrations. The FCS1 and FCS2 (or FCS22) are formed during the freezing of CA/H2O upon cooling and/or during the freezing upon warming of partly glassy or entirely glassy mother CA/H2O. The formation of two FCS1 and FCS22 regions during the freezing upon warming to our best knowledge has never been reported before. Using an optical cryo-microscope, we are able to observe the formation of a continuous ice framework (IF) and its morphology and reciprocal distribution of IF/(FCS1 + FCS2). Our results provide a new look at the freezing and glass transition behavior of aqueous solutions and can be used for the optimization of lyophilization and freezing of foods and biopharmaceutical formulations, among many other applications where freezing plays a crucial role.

  20. Quantitative Determination of Citric and Ascorbic Acid in Powdered Drink Mixes

    ERIC Educational Resources Information Center

    Sigmann, Samuella B.; Wheeler, Dale E.

    2004-01-01

    A procedure by which the reactions are used to quantitatively determine the amount of total acid, the amount of total ascorbic acid and the amount of citric acid in a given sample of powdered drink mix, are described. A safe, reliable and low-cost quantitative method to analyze consumer product for acid content is provided.

  1. Gamma irradiation of isocitric and citric acid in aqueous solution: Relevance in prebiotic chemistry

    NASA Astrophysics Data System (ADS)

    Negrón-Mendoza, A.; Ramos-Bernal, S.

    2015-07-01

    The radiation chemistry of hydroxy acids like citric and isocitric acids is rather scarce, even though they are crucial compounds in biological systems and for food irradiation. The aim of this work is to study the radiolytic behavior of these acids focused on the interconversion induced by radiation of citric and isocitric acid into other members of the Krebs cycle. The results showed that among the products formed were succinic, malonic, malic and other acids related to metabolic pathways, and these results are correlated with its possible role in chemical evolution processes.

  2. Gamma irradiation of isocitric and citric acid in aqueous solution: Relevance in prebiotic chemistry

    SciTech Connect

    Negrón-Mendoza, A. Ramos-Bernal, S.

    2015-07-23

    The radiation chemistry of hydroxy acids like citric and isocitric acids is rather scarce, even though they are crucial compounds in biological systems and for food irradiation. The aim of this work is to study the radiolytic behavior of these acids focused on the interconversion induced by radiation of citric and isocitric acid into other members of the Krebs cycle. The results showed that among the products formed were succinic, malonic, malic and other acids related to metabolic pathways, and these results are correlated with its possible role in chemical evolution processes.

  3. Influence of ingestion of aluminum, citric acid and soil on mineral metabolism of lactating beef cows.

    PubMed

    Allen, V G; Horn, F P; Fontenot, J P

    1986-05-01

    Lactating beef cows (16 Hereford and 34 Angus, 430 kg average body weight, aged 8 to 10 yr) were fed a basal diet containing 200 micrograms/g Al alone or supplemented with Al-citrate, citric acid, soil or soil plus citric acid for 56 d. Diets containing Al-citrate, soil and soil plus citric acid contained 1,730, 1,870 and 1,935 micrograms/g Al, dry-basis, respectively. Adding soil to the diet also increased Mg and Fe content of the diet. Aluminum values in ruminal contents of beef cows fed the basal alone or supplemented with citric acid, Al-citrate, soil or soil plus citric acid were 800, 990, 2,930, 3,410 and 2,910 micrograms/g, air-dry basis, respectively. Serum Mg and inorganic P declined (P less than .01) and urinary Ca concentration increased (P less than .01) for cows fed Al-citrate. By d 56, serum Mg was 1.5 and 2.2 mg/dl, and serum P was 3.8 and 6.8 mg/dl, for cows fed Al-citrate and basal diets, respectively. Calcium concentrations in urine were 281 and 11 micrograms/g for cows fed Al-citrate and basal diets, respectively. Citric acid, soil and soil plus citric acid had no detrimental effects on serum Mg and inorganic P, or urinary Ca concentration. By d 56, serum Ca was higher (P less than .06) in cows fed Al-citrate, compared with cows on the other four diets. Bone Ca, P, Zn and percent ash were not significantly affected by treatment but bone Mg tended to be slightly lower (P less than .07) for cows fed Al-citrate.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Enhanced citric acid biosynthesis in Pseudomonas fluorescens ATCC 13525 by overexpression of the Escherichia coli citrate synthase gene.

    PubMed

    Buch, Aditi D; Archana, G; Kumar, G Naresh

    2009-08-01

    Citric acid secretion by fluorescent pseudomonads has a distinct significance in microbial phosphate solubilization. The role of citrate synthase in citric acid biosynthesis and glucose catabolism in pseudomonads was investigated by overexpressing the Escherichia coli citrate synthase (gltA) gene in Pseudomonas fluorescens ATCC 13525. The resultant approximately 2-fold increase in citrate synthase activity in the gltA-overexpressing strain Pf(pAB7) enhanced the intracellular and extracellular citric acid yields during the stationary phase, by about 2- and 26-fold, respectively, as compared to the control, without affecting the growth rate, glucose depletion rate or biomass yield. Decreased glucose consumption was paralleled by increased gluconic acid production due to an increase in glucose dehydrogenase activity. While the extracellular acetic acid yield increased in Pf(pAB7), pyruvic acid secretion decreased, correlating with an increase in pyruvate carboxylase activity and suggesting an increased demand for the anabolic precursor oxaloacetate. Activities of two other key enzymes, glucose-6-phosphate dehydrogenase and isocitrate dehydrogenase, remained unaltered, and the contribution of phosphoenolpyruvate carboxylase and isocitrate lyase to glucose catabolism was negligible. Strain Pf(pAB7) demonstrated an enhanced phosphate-solubilizing ability compared to the control. Co-expression of the Synechococcus elongatus PCC 6301 phosphoenolpyruvate carboxylase and E. coli gltA genes in P. fluorescens ATCC 13525, so as to supplement oxaloacetate for citrate biosynthesis, neither significantly affected citrate biosynthesis nor caused any change in the other physiological and biochemical parameters measured, despite approximately 1.3- and 5-fold increases in citrate synthase and phosphoenolpyruvate carboxylase activities, respectively. Thus, our results demonstrate that citrate synthase is rate-limiting in enhancing citrate biosynthesis in P. fluorescens ATCC 13525

  5. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.

    PubMed

    Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai

    2015-05-01

    In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.

  6. Mechanism of aluminum tolerance in snapbeans. Root exudation of citric acid

    SciTech Connect

    Miyasaka, S.C. ); Buta, J.G.; Howell, R.K.; Foy, C.D. )

    1991-07-01

    One proposed mechanism of aluminum (Al) tolerance in plants is the release of an Al-chelating compound into the rhizosphere. In this experiment, two cultivars of snapbeans (Phaseolus vulgaris L. Romano and Dade) that differ in Al tolerance were grown hydroponically with and without Al under aseptic conditions. After growth in nutrient solutions for 8 days, aliphatic and phenolic organic acids were analyzed in the culture solutions with an ion chromatograph and a high pressure liquid chromatograph. The tolerant snapbean, Dade when exposed to Al, exuded citric acid into the rhizosphere in a concentration that was 70 times as great as that of Dade grown without Al, and 10 times as great as that of Romano grown without Al, and 10 times as great as that of Romano, exuded only slightly more citric acid into the growing medium under Al-stress, compared to nonstressed conditions. Citric acid is known to chelate Al strongly and to reverse its phytotoxic effects. Also, citric acid has been shown previously to enhance the availability of phosphorus (P) from insoluble Al phosphates, Thus, one mechanism of Al-tolerance in snapbeans appears to be the exudation of citric acid into the rhizosphere, induced either by toxic levels of Al or by low P due to the precipitation of insoluble Al phosphates. The experiment was not able to distinguish between these two factors; however, tolerance to both primary and secondary Al-stress injuries are important for plants growing in Al-toxic soils.

  7. Preparation and physico-chemical properties of hydrogels from carboxymethyl cassava starch crosslinked with citric acid

    NASA Astrophysics Data System (ADS)

    Boonkham, Sasikan; Sangseethong, Kunruedee; Chatakanon, Pathama; Niamnuy, Chalida; Nakasaki, Kiyohiko; Sriroth, Klanarong

    2014-06-01

    Recently, environmentally friendly hydrogels prepared from renewable bio-based resources have drawn significant attention from both industrial and academic sectors. In this study, chemically crosslinked hydrogels have been developed from cassava starch which is a bio-based polymer using a non-toxic citric acid as a crosslinking agent. Cassava starch was first modified by carboxymethylation to improve its water absorbency property. The carboxymethyl cassava starch (CMCS) obtained was then crosslinked with citric acid at different concentrations and reaction times. The gel fraction of hydrogels increased progressively with increasing citric acid concentration. Free swelling capacity of hydrogels in de-ionized water, saline solution and buffers at various pHs as well as absorption under load were investigated. The results revealed that swelling behavior and mechanical characteristic of hydrogels depended on the citric acid concentration used in reaction. Increasing citric acid concentration resulted in hydrogels with stronger network but lower swelling and absorption capacity. The cassava starch hydrogels developed were sensitive to ionic strength and pH of surrounding medium, showing much reduced swelling capacity in saline salt solution and acidic buffers.

  8. Microhydration of Neutral and Charged Acetic Acid.

    PubMed

    Krishnakumar, Parvathi; Maity, Dilip Kumar

    2017-01-19

    A systematic theoretical study has been carried out on the effect of sequential addition of water molecules to neutral and mono positively charged acetic acid molecules by applying first principle based electronic structure theory. Geometry, dipole moment, and polarizability of hydrated clusters of neutral and mono positively charged acetic acid of the type CH3COOH·nH2O (n = 1-8) and [CH3COOH·nH2O](+) (n = 1, 2) are calculated at the ωB97X-D/aug-cc-pVDZ level of theory. Free energies of formation of the hydrated acid clusters, at different temperatures and pressures are determined. Solvent stabilization energy and interaction energy are also calculated at the CCSD(T)/6-311++G(d,p) level of theory. It is observed that in the case of neutral acetic acid, proton transfer from the acid molecule to solvent water molecules does not occur even with eight water molecules and the acid molecule remains in the undissociated form. High-energy equilibrium structures showing dissociation of acetic acid are obtained in case of hexahydrated and larger hydrated clusters only. However, dissociation of mono positively charged acetic acid occurs with just two water molecules. Interestingly, it is noted that in the case of dissociation, calculated bond dipole moments of the dissociating bonds of acetic acid in microhydated clusters shows a characteristic feature. IR spectra of CH3COOH·nH2O (n = 1-8) and [CH3COOH·nH2O](+) (n = 1-3) clusters are simulated and compared with the available experimental data.

  9. Dynamic Protonation Equilibrium of Solvated Acetic Acid

    SciTech Connect

    Gu, Wei; Frigato, Tomaso; Straatsma, TP; Helms, Volkhard H.

    2007-04-13

    For the first time, the dynamic protonation equilibrium between an amino acid side chain analogue and bulk water as well as the diffusion properties of the excess proton were successfully reproduced through unbiased computer simulations. During a 50 ns Q-HOP MD simulation, two different regimes of proton transfer were observed. Extended phases of frequent proton swapping between acetic acid and nearby water were separated by phases where the proton freely diffuses in the simulation box until it is captured again by acetic acid. The pKa of acetic acid was calculated around 3.0 based on the relative population of protonated and deprotonated states and the diffusion coefficient of excess proton was computed from the average mean squared displacement in the simulation. Both calculated values agree well with the experimental measurements.

  10. Effects of Citric Acid and l-Carnitine on Physical Fatigue.

    PubMed

    Sugino, Tomohiro; Aoyagi, Sayaka; Shirai, Tomoko; Kajimoto, Yoshitaka; Kajimoto, Osami

    2007-11-01

    We examined the effects of citric acid and l-carnitine administration on physical fatigue. In a double-blind, placebo-controlled, 3-way crossover study, 18 healthy volunteers were randomized to oral citric acid (2,700 mg/day), l-carnitine (1,000 mg/day), or placebo for 8 days. The fatigue-inducing physical task consisted of workload trials on a cycle ergometer at fixed workloads for 2 h on 2 occasions. Before the physical load, salivary chromogranin A, measured as a physiological stress marker, was lower in the group given citric acid than in the group given placebo. Also, after the physical load, the subjective feeling of fatigue assessed with a visual analogue scale was lower in the citric acid group than in the placebo group. In contrast, l-carnitine had no effect on chromogranin A or subjective fatigue. These results suggest that citric acid reduces physiological stress and attenuates physical fatigue, whereas l-carnitine does not.

  11. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors.

    PubMed

    He, Weihai; Miao, Frederick J-P; Lin, Daniel C-H; Schwandner, Ralf T; Wang, Zhulun; Gao, Jinhai; Chen, Jin-Long; Tian, Hui; Ling, Lei

    2004-05-13

    The citric acid cycle is central to the regulation of energy homeostasis and cell metabolism. Mutations in enzymes that catalyse steps in the citric acid cycle result in human diseases with various clinical presentations. The intermediates of the citric acid cycle are present at micromolar concentration in blood and are regulated by respiration, metabolism and renal reabsorption/extrusion. Here we show that GPR91 (ref. 3), a previously orphan G-protein-coupled receptor (GPCR), functions as a receptor for the citric acid cycle intermediate succinate. We also report that GPR99 (ref. 4), a close relative of GPR91, responds to alpha-ketoglutarate, another intermediate in the citric acid cycle. Thus by acting as ligands for GPCRs, succinate and alpha-ketoglutarate are found to have unexpected signalling functions beyond their traditional roles. Furthermore, we show that succinate increases blood pressure in animals. The succinate-induced hypertensive effect involves the renin-angiotensin system and is abolished in GPR91-deficient mice. Our results indicate a possible role for GPR91 in renovascular hypertension, a disease closely linked to atherosclerosis, diabetes and renal failure.

  12. Hypotensive and toxicological study of citric acid and other constituents from Tagetes patula roots.

    PubMed

    Saleem, Rubeena; Ahmad, Mohammad; Naz, Aneela; Siddiqui, Humaira; Ahmad, Syed Iqbal; Faizi, Shaheen

    2004-10-01

    Study of the effects of the methanolic extract of Tagetes patula roots on blood pressure led to the isolation of well known citric (1) and malic acid (7) as hypotensive, and pyridine hydrochloride (4) as hypertensive constituents of the plant along with a new constituent, 2-hydroxy, 5-hydroxymethyl furan (9). Citric acid and malic acid caused 71% and 43% fall in Mean Arterial Blood Pressure (MABP) of rats at the doses of 15 mg/kg and 30 mg/kg respectively while pyridine hydrochloride produced 34% rise in the MABP of rats at the dose of 30 mg/kg. LD50 and LD100 of citric acid in mice have been determined as 545 mg/kg and 1000 mg/kg, respectively.

  13. 75 FR 71078 - Citric Acid and Certain Citrate Salts From People's Republic of China: Partial Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-22

    ...., Ltd. Juxian Hongde Citric Acid Co., Ltd. Kelong International Co., Ltd. Laiwu Taihe Biochemistry Co.... Shandong Laiwu Gangcheng Group Shandong Ningmeng Biochemistry Co., Ltd. Shandong Yingfeng Chemical...

  14. Effects of citric acid esterification on digestibility, structural and physicochemical properties of cassava starch.

    PubMed

    Mei, Ji-Qiang; Zhou, Da-Nian; Jin, Zheng-Yu; Xu, Xue-Ming; Chen, Han-Qing

    2015-11-15

    In this study, citric acid was used to react with cassava starch in order to compare the digestibility, structural and physicochemical properties of citrate starch samples. The results indicated that citric acid esterification treatment significantly increased the content of resistant starch (RS) in starch samples. The swelling power and solubility of citrate starch samples were lower than those of native starch. Compared with native starch, a new peak at 1724 cm(-1) was appeared in all citrate starch samples, and crystalline peaks of all starch citrates became much smaller or even disappeared. Differential scanning calorimetry results indicated that the endothermic peak of citrate starches gradually shrank or even disappeared. Moreover, the citrate starch gels exhibited better freeze-thaw stability. These results suggested that citric acid esterification induced structural changes in cassava starch significantly affected its digestibility and it could be a potential method for the preparation of RS with thermal stability.

  15. Wheat straw hemicelluloses added with cellulose nanocrystals and citric acid. Effect on film physical properties.

    PubMed

    Pereira, Paulo H F; Waldron, Keith W; Wilson, David R; Cunha, Arcelina P; Brito, Edy S de; Rodrigues, Tigressa H S; Rosa, Morsyleide F; Azeredo, Henriette M C

    2017-05-15

    Wheat straw has been used as a source of hemicelluloses (WSH) and cellulose nanocrystals (CNC) for the elaboration of biodegradable films. Different films have been formed by using WSH as a matrix and different contents of CNC and citric acid. The predominant hemicelluloses were arabinoxylans. CNC reinforced the films, improving tensile strength and modulus, water resistance and water vapor barrier. Citric acid, on the other hand, presented concomitant plasticizing and crosslinking effects (the latter also evidenced by FTIR), probably due to a crosslinking extension by glycerol. The use of 5.9wt% CNC and 30wt% citric acid was defined as optimal conditions, resulting in minimum water sensitivity and permeability, while maintaining a good combination of tensile properties. Under those conditions, the films presented enhanced modulus, elongation, water resistance, and barrier to water vapor when compared to the control WSH film, and might be used for wrapping or coating a variety of foods.

  16. Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites.

    PubMed

    Cooper, George; Reed, Chris; Nguyen, Dang; Carter, Malika; Wang, Yi

    2011-08-23

    Carbonaceous meteorites deliver a variety of organic compounds to Earth that may have played a role in the origin and/or evolution of biochemical pathways. Some apparently ancient and critical metabolic processes require several compounds, some of which are relatively labile such as keto acids. Therefore, a prebiotic setting for any such individual process would have required either a continuous distant source for the entire suite of intact precursor molecules and/or an energetic and compact local synthesis, particularly of the more fragile members. To date, compounds such as pyruvic acid, oxaloacetic acid, citric acid, isocitric acid, and α-ketoglutaric acid (all members of the citric acid cycle) have not been identified in extraterrestrial sources or, as a group, as part of a "one pot" suite of compounds synthesized under plausibly prebiotic conditions. We have identified these compounds and others in carbonaceous meteorites and/or as low temperature (laboratory) reaction products of pyruvic acid. In meteorites, we observe many as part of three newly reported classes of compounds: keto acids (pyruvic acid and homologs), hydroxy tricarboxylic acids (citric acid and homologs), and tricarboxylic acids. Laboratory syntheses using (13)C-labeled reactants demonstrate that one compound alone, pyruvic acid, can produce several (nonenzymatic) members of the citric acid cycle including oxaloacetic acid. The isotopic composition of some of the meteoritic keto acids points to interstellar or presolar origins, indicating that such compounds might also exist in other planetary systems.

  17. Effects of Citric Acid and Desensitizing Agent Application on Nonfluorosed and Fluorosed Dentin: An In Vitro Sem Study

    PubMed Central

    Neha, Mahajan; Vandana, Laxman K

    2015-01-01

    Fluorosis is one of the factors which bring about mineralisation changes in a dentinal structure leading to dentin. The purpose of the present study was to compare and evaluate the dentinal tubular changes in fluorosed and nonfluorosed teeth subsequent to the application of citric acid,strontium acetate based sodium fluoride (SAF) using scanning electron microscopy (SEM). Dentin specimens from healthy fluorosed and nonfluorosed teeth were included in the study. Each of them was grouped into acid treated and SAF treatment groups. Using SEM, the photomicrographs (3500x) of dentin specimens were evaluated. Results showed while there was a significant difference in tubular width of partial occlusion ≤ 25%, being more in fluorosed group compared to nonfluorosed group after application SAF. Application of desensitising agents demonstrated higher number of dentinal tubular occlusion and diameter reduction in nonfluorosed dentin compared to fluorosed dentin. Summary: Root biomodification and desensitising agent procedure brings in definite difference between fluorosed and non-fluorosed dentin specimens. PMID:25870716

  18. The Effect of Citric Acid on the Oxidation of Organic Contaminants by Fenton's Reagent

    NASA Astrophysics Data System (ADS)

    Seol, Y.; Javandel, I.; Lee, G.

    2003-12-01

    Combined with acids and iron catalysts, hydrogen peroxide (H2O2) as Fenton's reagent is proven to be effective in oxidizing halogenated volatile organic compounds (VOCs). The Fenton's reagent, traditionally used for waste water treatment technique, has been applied to the remediation of contaminated soil systems and numerous investigators have found intrinsic iron salts are effective source of iron catalyst for the reaction. Citric acid, which is naturally occurring nutrients to microorganisms and less destructive to soil chemical properties, is selected for an acidifying agent to create acidic soil condition. However, citric acid has been considered as a reaction inhibitant because it sequesters ferric iron from Fenton's catalytic cycle by forming strong chelates with iron. This paper presents the feasibility of using citric acid as an acidifying agent of soil matrix for the Fenton-like oxidation. Series of batch tests were performed to test disappearance of VOCs in various aqueous systems with two acidifying agents (citric acid or sulfuric acid) and three iron sources (iron sulfate, water soluble soil iron, or soil matrix). Batch results show that soluble iron is essential for near complete disappearance of VOCs and that citric acid performs similarly to sulfuric acid at low H2O2 dosage (< 1 wt%). The test soil provided water-soluble soil iron but also contained scavengers of the oxidizing agents, resulting in limited removals of VOCs. Column tests confirmed the results of the batch tests, suggesting citric acid is also as effective as sulfuric acid in providing acidic environment for the Fenton-like oxidation. The batch experiments also reveal that higher doses of H2O2 lower the degree of VOC removals in citric acid systems. Potential explanations for this declining include that excessive presence of H2O2 expedites the oxidation of ferrous to ferric iron, which then forms a strong complex with citrate, leading to the sequestration of the iron from the Fenton

  19. 7 CFR 51.1178 - Maximum anhydrous citric acid permissible for corresponding total soluble solids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... with the minimum ratio of total soluble solids to anhydrous citric acid: Table II Total soluble solids (average pct) Maximum anhydrous citric acid (average pct) Minimum ratio of total soluble solids to... 1.027 9.25-1 9.6 1.043 9.20-1 9.7 1.060 9.15-1 9.8 1.077 9.10-1 9.9 1.094 9.05-1 10.0 1.111...

  20. Acetal phosphatidic acids: novel platelet aggregating agents.

    PubMed

    Brammer, J P; Maguire, M H; Walaszek, E J; Wiley, R A

    1983-05-01

    1 Palmitaldehyde, olealdehyde and linolealdehyde acetal phosphatidic acids induced rapid shape change and dose-dependent biphasic aggregation of human platelets in platelet-rich plasma; aggregation was reversible at low doses and irreversible at high doses of the acetal phosphatidic acids. The palmitaldehyde congener elicited monophasic dose-dependent aggregation of sheep platelets in platelet-rich plasma.2 The threshold concentration for palmitaldehyde acetal phosphatidic acid (PGAP)-induced platelet aggregation was 2.5-5 muM for human platelets and 0.25-0.5 muM for sheep platelets. PGAP was 4-5 times as potent versus human platelets as the olealdehyde and linolealdehyde acetal phosphatidic acids, which were equipotent.3 PGAP-induced irreversible aggregation of [(14)C]-5-hydroxytryptamine ([(14)C]-5-HT)-labelled human platelets in platelet-rich plasma was accompanied by release of 44.0+/-2.4% (s.e.) of the platelet [(14)C]-5-HT; reversible aggregation was not associated with release. In contrast, PGAP-induced release of [(14)C]-5-HT-labelled sheep platelets was dose-dependent.4 The adenosine diphosphate (ADP) antagonist, 2-methylthio-AMP, and the cyclo-oxygenase inhibitor, aspirin, abolished PGAP-induced second phase aggregation and release in human platelets but did not affect the first, reversible, phase of aggregation. Both the first and second phases of PGAP-induced aggregation were abolished by chlorpromazine, by the phospholipase A(2) inhibitor, mepacrine, and by nmolar concentrations of prostaglandin E(1) (PGE(1)); these agents abolished the second, but not the first phase of ADP-induced aggregation.5 The related phospholipids, lecithin, lysolecithin and phosphatidic acid, at <100 muM, neither induced aggregation of human platelets in platelet-rich plasma, nor modified PGAP-induced aggregation; 1-palmityl lysophosphatidic acid elicited aggregation of human platelets at a threshold concentration of 100 muM.6 It is concluded that the acetal phosphatidic acids

  1. Oxalic acid production by citric acid-producing Aspergillus niger overexpressing the oxaloacetate hydrolase gene oahA.

    PubMed

    Kobayashi, Keiichi; Hattori, Takasumi; Honda, Yuki; Kirimura, Kohtaro

    2014-05-01

    The filamentous fungus Aspergillus niger is used worldwide in the industrial production of citric acid. However, under specific cultivation conditions, citric acid-producing strains of A. niger accumulate oxalic acid as a by-product. Oxalic acid is used as a chelator, detergent, or tanning agent. Here, we sought to develop oxalic acid hyperproducers using A. niger as a host. To generate oxalic acid hyperproducers by metabolic engineering, transformants overexpressing the oahA gene, encoding oxaloacetate hydrolase (OAH; EC 3.7.1.1), were constructed in citric acid-producing A. niger WU-2223L as a host. The oxalic acid production capacity of this strain was examined by cultivation of EOAH-1 under conditions appropriate for oxalic acid production with 30 g/l glucose as a carbon source. Under all the cultivation conditions tested, the amount of oxalic acid produced by EOAH-1, a representative oahA-overexpressing transformant, exceeded that produced by A. niger WU-2223L. A. niger WU-2223L and EOAH-1 produced 15.6 and 28.9 g/l oxalic acid, respectively, during the 12-day cultivation period. The yield of oxalic acid for EOAH-1 was 64.2 % of the maximum theoretical yield. Our method for oxalic acid production gave the highest yield of any study reported to date. Therefore, we succeeded in generating oxalic acid hyperproducers by overexpressing a single gene, i.e., oahA, in citric acid-producing A. niger as a host.

  2. The Role of Citric Acid in Perfecting Platinum Monolayer on Palladium Nanoparticles during the Surface Limited Redox Replacement Reaction

    SciTech Connect

    Zhu, Shangqian; Yue, Jeffrey; Qin, Xueping; Wei, Zidong; Liang, Zhixiu; Adzic, Radoslav R.; Brankovic, Stanko R.; Du, Zheng; Shao, Minhua

    2016-07-28

    Cu-mediated-Pt-displacement method that involves the displacement of an underpotentially deposited (UPD) Cu monolayer by Pt has been extensively studied to prepare core-shell catalysts. It has been found that Pt clusters instead of a uniform Pt monolayer were formed in the gram batch synthesis. With a suitable surfactant, such as citric acid, the Pt shell could be much more uniform. In this study, the role of citric acid in controlling the Cu-Pt displacement reaction kinetics was studied by electrochemical techniques and theoretical approaches. It was found that citric acid strongly adsorbed on Pd, Pt, Cu/Pd, and Pt/Pd surfaces, especially in the double layer region in acid solutions. The strong adsorption of citric acid slowed down the Cu-Pt displacement reaction. The main characteristics of such strong interaction most likely arises from the OH groups in the citric acid molecule according to the molecular dynamics simulation results.

  3. In vitro evidence that D-serine disturbs the citric acid cycle through inhibition of citrate synthase activity in rat cerebral cortex.

    PubMed

    Zanatta, Angela; Schuck, Patrícia Fernanda; Viegas, Carolina Maso; Knebel, Lisiane Aurélio; Busanello, Estela Natacha Brandt; Moura, Alana Pimentel; Wajner, Moacir

    2009-11-17

    The present work investigated the in vitro effects of D-serine (D-Ser) on important parameters of energy metabolism in cerebral cortex of young rats. The parameters analyzed were CO(2) generation from glucose and acetate, glucose uptake and the activities of the respiratory chain complexes I-IV, of the citric acid cycle enzymes citrate synthase, aconitase, isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, fumarase and malate dehydrogenase and of creatine kinase and Na(+),K(+)-ATPase. Our results show that D-Ser significantly reduced CO(2) production from acetate, but not from glucose, reflecting an impairment of the citric acid cycle function. Furthermore, D-Ser did not affect glucose uptake. We also observed that the activity of the mitochondrial enzyme citrate synthase from mitochondrial preparations and purified citrate synthase was significantly inhibited by D-Ser, whereas the other activities of the citric acid cycle as well as the activities of complexes I-III, II-III, II and IV of the respiratory chain, creatine kinase and Na(+),K(+)-ATPase were not affected by this D-amino acid. We also found that L-serine did not affect citrate synthase activity from mitochondrial preparations and purified enzyme. The data indicate that D-Ser impairs the citric acid cycle activity via citrate synthase inhibition, therefore compromising energy metabolism production in cerebral cortex of young rats. Therefore, it is presumed that this mechanism may be involved at least in part in the neurological damage found in patients affected by disorders in which D-Ser metabolism is impaired, with altered cerebral concentrations of this D-amino acid.

  4. 76 FR 82275 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Extension of Time...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ... International Trade Administration Citric Acid and Certain Citrate Salts From the People's Republic of China... countervailing duty order on citric acid and certain citrate salts from the People's Republic of China (PRC). See... and Certain Citrate Salts, 74 FR 25705 (May 29, 2009). On May 2, 2011, the Department published...

  5. 77 FR 74171 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... International Trade Administration Citric Acid and Certain Citrate Salts From the People's Republic of China... certain citrate salts from the People's Republic of China (``PRC'') on June 6, 2012.\\1\\ The period of... Citric Acid and Certain Citrate Salts from the People's Republic of China: Post- Preliminary...

  6. 78 FR 54625 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Notice of Partial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Citric Acid and Certain Citrate Salts From the People's Republic of China... citric acid and certain citrate salts from the People's Republic of China (PRC) covering the period...

  7. 76 FR 2648 - Citric Acid and Certain Citrate Salts From People's Republic of China: Extension of Time Limit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Citric Acid and Certain Citrate Salts From People's Republic of China... initiation of administrative review of the countervailing duty order on citric acid and certain citrate...

  8. The extraordinary mitochondrion and unusual citric acid cycle in Trypanosoma brucei.

    PubMed

    van Hellemond, J J; Opperdoes, F R; Tielens, A G M

    2005-11-01

    African trypanosomes are parasitic protozoa that cause sleeping sickness and nagana. Trypanosomes are not only of scientific interest because of their clinical importance, but also because these protozoa contain several very unusual biological features, such as their specially adapted mitochondrion and the compartmentalization of glycolytic enzymes in glycosomes. The energy metabolism of Trypanosoma brucei differs significantly from that of their hosts and changes drastically during the life cycle. Despite the presence of all citric acid cycle enzymes in procyclic insect-stage T. brucei, citric acid cycle activity is not used for energy generation. Recent investigations on the influence of substrate availability on the type of energy metabolism showed that absence of glycolytic substrates did not induce a shift from a fermentative metabolism to complete oxidation of substrates. Apparently, insect-stage T. brucei use parts of the citric acid cycle for other purposes than for complete degradation of mitochondrial substrates. Parts of the cycle are suggested to be used for (i) transport of acetyl-CoA units from the mitochondrion to the cytosol for the biosynthesis of fatty acids, (ii) degradation of proline and glutamate to succinate, (iii) generation of malate, which can then be used for gluconeogenesis. Therefore the citric acid cycle in trypanosomes does not function as a cycle.

  9. The cardioprotective effects of citric Acid and L-malic Acid on myocardial ischemia/reperfusion injury.

    PubMed

    Tang, Xilan; Liu, Jianxun; Dong, Wei; Li, Peng; Li, Lei; Lin, Chengren; Zheng, Yongqiu; Hou, Jincai; Li, Dan

    2013-01-01

    Organic acids in Chinese herbs, the long-neglected components, have been reported to possess antioxidant, anti-inflammatory, and antiplatelet aggregation activities; thus they may have potentially protective effect on ischemic heart disease. Therefore, this study aims to investigate the protective effects of two organic acids, that is, citric acid and L-malic acid, which are the main components of Fructus Choerospondiatis, on myocardial ischemia/reperfusion injury and the underlying mechanisms. In in vivo rat model of myocardial ischemia/reperfusion injury, we found that treatments with citric acid and L-malic acid significantly reduced myocardial infarct size, serum levels of TNF-α, and platelet aggregation. In vitro experiments revealed that both citric acid and L-malic acid significantly reduced LDH release, decreased apoptotic rate, downregulated the expression of cleaved caspase-3, and upregulated the expression of phosphorylated Akt in primary neonatal rat cardiomyocytes subjected to hypoxia/reoxygenation injury. These results suggest that both citric acid and L-malic acid have protective effects on myocardial ischemia/reperfusion injury; the underlying mechanism may be related to their anti-inflammatory, antiplatelet aggregation and direct cardiomyocyte protective effects. These results also demonstrate that organic acids, besides flavonoids, may also be the major active ingredient of Fructus Choerospondiatis responsible for its cardioprotective effects and should be attached great importance in the therapy of ischemic heart disease.

  10. Analysis of Citric Acid in Beverages: Use of an Indicator Displacement Assay

    ERIC Educational Resources Information Center

    Umali, Alona P.; Anslyn, Eric V.; Wright, Aaron T.; Blieden, Clifford R.; Smith, Carolyne K.; Tian, Tian; Truong, Jennifer A.; Crumm, Caitlin E.; Garcia, Jorge E.; Lee, Soal; Mosier, Meredith; Nguyen, Chester P.

    2010-01-01

    The use of an indicator displacement assay permits the visualization of binding events between host and guest molecules. An undergraduate laboratory experiment is described to demonstrate the technique in the determination of citric acid content in commercially available beverages such as soda pop and fruit juices. Through the technique, students…

  11. Corn starch granules with enhanced load-carrying capacity via citric acid treatment.

    PubMed

    Kim, Jong-Yea; Huber, Kerry C

    2013-01-02

    This research investigated conditions by which maize starch granule porosity and load-carrying capacity (LCC) might be enhanced via treatment with varying citric acid concentrations (0.5-1.5 M), temperatures (40-60 °C), and lengths of treatment (1-8 h). At the lowest temperatures (40 and 50 °C), citric acid treatment induced minimal physicochemical changes to granules. In contrast, both aqueous and oil LCCs of starches treated at 60 °C (0.5 M citric acid, 2 h) were almost doubled (15.69 and 14.48 mL/10 g starch, respectively), recovering 92% of the granular starch after treatment. Such treatment increased starch hydration capacity (0.97-1.91) and reduced gelatinization enthalpy (10.6-7.4 J/g). More severe treatment conditions adversely impacted aqueous LCC (due to excessive granule swelling), but improved oil absorption. The basis for LCC enhancement by citric acid treatment was ascribed to leaching of starch material from granules and partial disruption of the granule crystalline structure, as opposed to starch hydrolysis or chemical substitution.

  12. Iron-dependent changes in cellular energy metabolism: influence on citric acid cycle and oxidative phosphorylation.

    PubMed

    Oexle, H; Gnaiger, E; Weiss, G

    1999-11-10

    Iron modulates the expression of the critical citric acid cycle enzyme aconitase via a translational mechanism involving iron regulatory proteins. Thus, the present study was undertaken to investigate the consequences of iron perturbation on citric acid cycle activity, oxidative phosphorylation and mitochondrial respiration in the human cell line K-562. In agreement with previous data iron increases the activity of mitochondrial aconitase while it is reduced upon addition of the iron chelator desferrioxamine (DFO). Interestingly, iron also positively affects three other citric acid cycle enzymes, namely citrate synthase, isocitric dehydrogenase, and succinate dehydrogenase, while DFO decreases the activity of these enzymes. Consequently, iron supplementation results in increased formation of reducing equivalents (NADH) by the citric acid cycle, and thus in increased mitochondrial oxygen consumption and ATP formation via oxidative phosphorylation as shown herein. This in turn leads to downregulation of glucose utilization. In contrast, all these metabolic pathways are reduced upon iron depletion, and thus glycolysis and lactate formation are significantly increased in order to compensate for the decrease in ATP production via oxidative phosphorylation in the presence of DFO. Our results point to a complex interaction between iron homeostasis, oxygen supply and cellular energy metabolism in human cells.

  13. Effects of Solution Hydrodynamics on Corrosion Inhibition of Steel by Citric Acid in Cooling Water

    NASA Astrophysics Data System (ADS)

    Ashassi-Sorkhabi, H.; Asghari, E.; Mohammadi, M.

    2014-08-01

    Corrosion is a major problem in cooling water systems, which is often controlled using corrosion inhibitors. Solution hydrodynamics is one of the factors affecting corrosion inhibition of metals in these systems. The present work focuses on the study of the combined effects of citric acid concentration (as a green corrosion inhibitor) and fluid flow on corrosion of steel in simulated cooling water. Electrochemical techniques including Tafel polarization and electrochemical impedance spectroscopy were used for corrosion studies. Laminar flow was simulated using a rotating disk electrode. The effects of solution hydrodynamics on inhibition performance of citric acid were discussed. The citric acid showed low inhibition performance in quiescent solution; however, when the electrode rotated at 200 rpm, inhibition efficiency increased remarkably. It was attributed mainly to the acceleration of inhibitor mass transport toward metal surface. The efficiencies were then decreased at higher rotation speeds due to enhanced wall shear stresses on metal surface and separation of adsorbed inhibitor molecules. This article is first part of authors' attempts in designing green inhibitor formulations for industrial cooling water. Citric acid showed acceptable corrosion inhibition in low rotation rates; thus, it can be used as a green additive to the corrosion inhibitor formulations.

  14. Modification of wheat gluten with citric acid to produce superabsorbent materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat gluten was reacted with citric acid to produce natural superabsorbent materials able to absorb up to 78 times its weight in water. The properties of the modified gluten samples were characterized using Fourier Transform Infra-red (FTIR) spectroscopy, thermogravimetric analysis, and water uptak...

  15. 7 CFR 51.1178 - Maximum anhydrous citric acid permissible for corresponding total soluble solids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... corresponding total soluble solids. 51.1178 Section 51.1178 Agriculture Regulations of the Department of... solids. For determining the grade of juice, the maximum permissible anhydrous citric acid content in relation to corresponding total soluble solids in the fruit is set forth in the following Table II...

  16. Simultaneous Removal of Lindane, Lead and Cadmium from Soils by Rhamnolipids Combined with Citric Acid

    PubMed Central

    Long, Tao; Ying, Rongrong; Ye, Mao; Zhang, Shengtian; Li, Qun; Zhou, Yan; Lin, Yusuo

    2015-01-01

    This study investigated the performance of rhamnolipids-citric acid mixed agents in simultaneous desorption of lindane and heavy metals from soils. The capacity of the mixed agents to solubilize lindane, lead and cadmium in aqueous solution was also explored. The results showed that the presence of citric acid greatly enhanced the solubilization of lindane and cadmium by rhamnolipids. A combined effect of the mixed agents on lindane and heavy metals removal from soils was observed. The maximum desorption ratios for lindane, cadmium and lead were 85.4%, 76.4% and 28.1%, respectively, for the mixed agents containing 1% rhamnolipidsand 0.1 mol/L citric acid. The results also suggest that the removal efficiencies of lead and cadmium were strongly related to their speciations in soils, and metals in the exchangeable and carbonate forms were easier to be removed. Our study suggests that the combining use of rhamnolipids and citric acid is a promising alternative to simultaneously remove organochlorine pesticides and heavy metals from soils. PMID:26087302

  17. 21 CFR 173.280 - Solvent extraction process for citric acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Solvent extraction process for citric acid. 173.280 Section 173.280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION...

  18. Leaching of metals from large pieces of printed circuit boards using citric acid and hydrogen peroxide.

    PubMed

    Jadhav, Umesh; Su, C; Hocheng, Hong

    2016-12-01

    In the present study, the leaching of metals from large pieces of computer printed circuit boards (CPCBs) was studied. A combination of citric acid (0.5 M) and 1.76 M hydrogen peroxide (H2O2) was used to leach the metals from CPCB piece. The influence of system variables such as H2O2 concentration, concentration of citric acid, shaking speed, and temperature on the metal leaching process was investigated. The complete metal leaching was achieved in 4 h from a 4 × 4 cm CPCB piece. The presence of citric acid and H2O2 together in the leaching solution is essential for complete metal leaching. The optimum addition amount of H2O2 was 5.83 %. The citric acid concentration and shaking speed had an insignificant effect on the leaching of metals. The increase in the temperature above 30 °C showed a drastic effect on metal leaching process.

  19. Optimization of date syrup for enhancement of the production of citric acid using immobilized cells of Aspergillus niger.

    PubMed

    Mostafa, Yasser S; Alamri, Saad A

    2012-04-01

    Date syrup as an economical source of carbohydrates and immobilized Aspergillus niger J4, which was entrapped in calcium alginate pellets, were employed for enhancing the production of citric acid. Maximum production was achieved by pre-treating date syrup with 1.5% tricalcium phosphate to remove heavy metals. The production of citric acid using a pretreated medium was 38.87% higher than an untreated one that consumed sugar. The appropriate presence of nitrogen, phosphate and magnesium appeared to be important in order for citric acid to accumulate. The production of citric acid and the consumed sugar was higher when using 0.1% ammonium nitrate as the best source of nitrogen. The production of citric acid increased significantly when 0.1 g/l of KH2PO4 was added to the medium of date syrup. The addition of magnesium sulfate at the rate of 0.20 g/l had a stimulating effect on the production of citric acid. Maximum production of citric acid was obtained when calcium chloride was absent. One of the most important benefits of immobilized cells is their ability and stability to produce citric acid under a repeated batch culture. Over four repeated batches, the production of citric acid production was maintained for 24 days when each cycle continued for 144 h. The results obtained in the repeated batch cultivation using date syrup confirmed that date syrup could be used as a medium for the industrial production of citric acid.

  20. Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Lolium arundinaceum)

    PubMed Central

    Hu, Longxing; Zhang, Zhifei; Xiang, Zuoxiang; Yang, Zhijian

    2016-01-01

    Citric acid may be involved in plant response to high temperature. The objective of this study was to investigate whether exogenous citric acid could improve heat tolerance in a cool-season turfgrass species, tall fescue (Lolium arundinaceum), and to determine the physiological mechanisms of citric acid effects on heat stress tolerance. The grasses were subjected to four citric acid levels (0, 0.2, 2, and 20 mM) and two temperature levels (25/20 and 35/30 ± 0.5°C, day/night) treatments in growth chambers. Heat stress increased an electrolyte leakage (EL) and malonaldehyde (MDA) content, while reduced plant growth, chlorophyll (Chl) content, photochemical efficiency (Fv/Fm), root activity and antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD). External citric acid alleviated the detrimental effects of heat stress on tall fescue, which was evidenced by decreased EL and MDA content, and improved plant growth under stress conditions. Additionally, the reduction in Chl content, Fv/Fm, SOD, POD, CAT and root activity were ameliorated in citric acid treated plants under heat stressed conditions. High temperature induced the expression of heat shock protein (HSP) genes, which exhibited greater expression levels after citric acid treatment under heat stress. These results suggest that exogenous citric acid application may alleviate growth and physiological damage caused by high temperature. In addition, the exogenously applied citric acid might be responsible for maintaining membrane stability, root activity, and activation of antioxidant response and HSP genes which could contribute to the protective roles of citric acid in tall fescue responses to heat stress. PMID:26925085

  1. EDTA and citric acid mediated phytoextraction of Zn, Cu, Pb and Cd through marigold (Tagetes erecta).

    PubMed

    Sinhal, V K; Srivastava, Alok; Singh, V P

    2010-05-01

    Phytoextraction is an emerging cost-effective solution for remediation of contaminated soils which involves the removal of toxins, especially heavy metals and metalloids, by the roots of the plants with subsequent transport to aerial plant organs. The aim of the present investigation is to study the effects of EDTA and citric acid on accumulation potential of marigold (Tagetes erecta) to Zn, Cu, Pb, and Cd and also to evaluate the impacts of these chelators (EDTA and citric acid) in combination with all the four heavy metals on the growth of marigold. The plants were grown in pots and treated with Zn (7.3 mg l(-1)), Cu (7.5 mg I(-1)), Pb (3.7 mg l(-1)) and Cd (0.2 mg l(-1)) alone and in combination with different doses of EDTA i.e., 10, 20 and 30 mg l(-1). All the three doses of EDTA i.e., 10, 20 and 30 mg l(-1) significantly increased the accumulation of Zn, Cu, Pb and Cd by roots, stems and leaves as compared to control treatments. The 30 mg l(-1) concentration of citric acid showed reduced accumulation of these metals by root, stem and leaves as compared to lower doses i.e., 10 and 20 mg l(-1). Among the four heavy metals, Zn accumulated in the great amount (526.34 mg kg(-1) DW) followed by Cu (443.14 mg kg(-1) DW), Pb (393.16 mg kg(-1) DW) and Cd (333.62 mg kg(-1) DW) in leaves with 30 mg l(-1) EDTA treatment. The highest concentration of EDTA and citric acid (30 mg l(-1)) caused significant reduction in growth of marigold in terms of plant height, fresh weight of plant, total chlorophyll, carbohydrate content and protein content. Thus EDTA and citric acid efficiently increased the phytoextractability of marigold which can be used to remediate the soil contaminated with these metals.

  2. Overview on mechanisms of acetic acid resistance in acetic acid bacteria.

    PubMed

    Wang, Bin; Shao, Yanchun; Chen, Fusheng

    2015-02-01

    Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided.

  3. CITRIC ACID AS A SET RETARDER FOR CALCIUM ALUMINATE PHOSPHATE CEMENTS.

    SciTech Connect

    SUGAMA,T.; BROTHERS, L.E.

    2005-01-01

    Citric acid added as set retarder significantly contributed to enhancing the setting temperature and to extending the thickening time of a calcium aluminate phosphate (CaP) geothermal cement slurry consisting of calcium aluminate cement (CAC) as the base reactant and sodium polyphosphate (NaP) solution as the acid reactant. The set-retarding activity of citric acid was due to the uptake of Ca{sup 2+} ions from the CAC by carboxylic acid groups within the citric acid. This uptake led to the precipitation of a Ca-complexed carboxylate compound as a set-retarding barrier layer on the CAC grains' surfaces. However, this barrier layer was vulnerable to disintegration by the attack of free Ca{sup 2+} ions from CAC, and also to degradation at elevated temperature, thereby promoting the generation of exothermic energy from acid-base reactions between the CAC and NaP after the barrier was broken. The exothermic reaction energy that was promoted in this way minimized the loss in strength of the citric acid-retarded cement. The phase composition assembled in both retarded and non-retarded cements after autoclaving at 180 C encompassed three reaction products, hydroxyapatite (HOAp), hydrogrossular and boehmite, which are responsible for strengthening the autoclaved cement. The first two reaction products were susceptible to reactions with sulfuric acid and sodium sulfate to form crystalline bassanite scale as the corrosion product. The boehmite phase possessed a great resistance to acid and sulfate. Although the bassanite scales clinging to the cement's surfaces were the major factor governing the loss in weight, they served in protecting the cement from further acid- and sulfate-corrosion until their spallation eventually occurred. Nevertheless, the repetitive processes of HOAp and hydrogrossular {yields} bassanite {yields} spallation played an important role in extending the useful lifetime of CaP cement in a low pH environment at 180 C.

  4. Computer Aided Prediction of Biological Activity Spectra: Study of Correlation between Predicted and Observed Activities for Coumarin-4-Acetic Acids

    PubMed Central

    Basanagouda, M.; Jadhav, V. B.; Kulkarni, M. V.; Rao, R. Nagendra

    2011-01-01

    Coumarin-4-acetic acids have been synthesized from various phenols and citric acid under Pechmann cyclisation conditions. All the compounds have been evaluated for antiinflammatory and analgesic activity in acute models. Compounds have also been evaluated for their ulcerogenic potential. Using the computer program, prediction of activity spectra for substances, prediction results and their Pharma Expert software, we have found a correlation between the observed and predicted antiinflammatory activity. PMID:22131629

  5. Influence of Citric Acid on the Pink Color and Characteristics of Sous Vide Processed Chicken Breasts During Chill Storage

    PubMed Central

    Lim, Ki-Won

    2015-01-01

    Chicken breast dipped with citric acid (CA) was treated by sous vide processing and stored in a refrigerated state for 0, 3, 6, 9, and 14 d. A non-dipped control group (CON) and three groups dipped in different concentrations of citric acid concentration were analyzed (0.5%, 0.5CIT; 2.0%, 2CIT and 5.0%, 5CIT; w/v). Cooking yield and moisture content increased due to the citric acid. While the redness of the juice and meat in all groups showed significant increase during storage, the redness of the citric acid groups was reduced compared to the control group (p<0.05). The percentage of myoglobin denaturation (PMD) of the CA groups was also increased according to the level of CA during storage. Total aerobic counts, Enterobacteriaceae counts, volatile basic nitrogen and thiobarbituric acid reactive substances (TBARS) were generally lower in the citric acid-treated samples than in untreated ones, indicating extended shelf life of the cooked chicken breast dipped in citric acid solution. The shear force of the 2CIT and 5CIT groups was significantly lower (p<0.05). The findings indicated positive effects in the physicochemical properties and storage ability of sous vide chicken breast at 2% and 5% citric acid concentrations. PMID:26761885

  6. Rotational study of the bimolecule acetic acid-fluoroacetic acid

    NASA Astrophysics Data System (ADS)

    Feng, Gang; Gou, Qian; Evangelisti, Luca; Caminati, Walther

    2017-01-01

    The rotational spectrum of the acetic acid-fluoroacetic acid bimolecule was measured by using a pulsed jet Fourier transform microwave spectrometer. One conformer, in which fluoroacetic acid is in trans form, has been observed. The rotational transitions are split into two component lines, due to the internal rotation of the methyl group of acetic acid. From these splittings, the corresponding V3 barrier has been determined. The dissociation energy of this complex has been estimated to 66 kJ/mol. An increase of the distance between the two monomers upon the OH → OD substitution (Ubbelohde effect) has been observed.

  7. Acetic acid vapor levels associated with facial prosthetics

    SciTech Connect

    McElroy, T.H.; Guerra, O.N.; Lee, S.A.

    1985-01-01

    The use of Silastic Medical Adhesive Type A in the fabrication of facial prostheses may cause health hazards to the patient and the operator because of acetic acid emissions. Caution must be exercised to remove acetic acid vapors from the air and unliberated acetic acid from material applied directly to the skin.

  8. Kinetics of Ethyl Acetate Synthesis Catalyzed by Acidic Resins

    ERIC Educational Resources Information Center

    Antunes, Bruno M.; Cardoso, Simao P.; Silva, Carlos M.; Portugal, Ines

    2011-01-01

    A low-cost experiment to carry out the second-order reversible reaction of acetic acid esterification with ethanol to produce ethyl acetate is presented to illustrate concepts of kinetics and reactor modeling. The reaction is performed in a batch reactor, and the acetic acid concentration is measured by acid-base titration versus time. The…

  9. Effect of Pre-Harvest Foliar Application of Citric Acid and Malic Acid on Chlorophyll Content and Post-Harvest Vase Life of Lilium cv. Brunello.

    PubMed

    Darandeh, Nafiseh; Hadavi, Ebrahim

    2011-01-01

    Citric acid is a regular ingredient in many vase solution formulations but pre-harvest use of citric acid is a novel method in vase life extension of cut flowers, which is reported on tuberose earlier. In order to verify previous result, and check for possible substitution of citric acid by malic acid, the current research was designed. Citric acid (0, 0.075, 0.15% w/v) and malic acid (0, 0.075, 0.15% w/v) were used in a factorial design with three replications. Foliar sprays were applied two times during growth period of Lilium plants. The results point out that 0.15% citric acid alone had increased vase life from 11.8 in control treatment to 14 days (α < 0.05). The interesting finding was the effect of citric acid on bulbil weight, which was decreased from 9 g in control to 1.5 g in treatment containing combination of 0.075% citric acid and 0.075% malic acid. Malic acid while having no direct effect on pre-mentioned traits surprisingly increased the chlorophyll content significantly. The interaction effect between citric acid and malic acid on vase life and chlorophyll content proved significant and was evident in results, both as antagonistic and synergistic in various traits.

  10. A mutation of Aspergillus niger for hyper-production of citric acid from corn meal hydrolysate in a bioreactor*

    PubMed Central

    Hu, Wei; Liu, Jing; Chen, Ji-hong; Wang, Shu-yang; Lu, Dong; Wu, Qing-hua; Li, Wen-jian

    2014-01-01

    The properties of the screened mutants for hyper-production of citric acid induced by carbon (12C6+) ion beams and X-ray irradiation were investigated in our current study. Among these mutants, mutant H4002 screened from 12C6+ ion irradiation had a higher yield of citric acid production than the parental strain in a 250-ml shaking flash. These expanded submerged experiments in a bioreactor were also carried out for mutant H4002. The results showed that (177.7–196.0) g/L citric acid was accumulated by H4002 through exploiting corn meal hydrolysate (containing initial 200.0–235.7 g/L sugar) with the productivity of (2.96–3.27) g/(L∙h). This was especially true when the initial sugar concentration was 210 g/L, and the best economical citric acid production reached (187.5±0.7) g/L with a productivity of 3.13 g/(L∙h). It was observed that mutant H4002 can utilize low-cost corn meal as a feedstock to efficiently produce citric acid. These results imply that the H4002 strain has the industrial production potentiality for citric acid and offers strong competition for the citric acid industry. PMID:25367793

  11. Survival of heated Bacillus coagulans spores in a medium acidified with lactic or citric acid.

    PubMed

    Palop, A; Marco, A; Raso, J; Sala, F J; Condón, S

    1997-08-19

    The influence of the intensity of heat treatments on the capacity of citric or lactic acid to prevent growth of survivors of Bacillus coagulans spores after 10 days storage at 35 degrees C was studied. In most cases, the number of survivors during storage decreased. The extent of this spore inactivation depended on the intensity of previous heat treatment and the pH of the medium and the acidulant used. The inactivating effect of storage was pronounced even at pH values less acidic than those used by the canning industry. Citric acid was more effective than lactic acid on spores given only low heat treatments, but lactic was more effective against those given more severe heat treatments. The severity of heat treatment required for lactic to be more effective than citric acid increased with pH of the medium. Heat treatment also required increased pH for heated spores to grow. pH 4.6, regardless of acidulant used, was unable to prevent growth of unheated spores but a less acidic pH (pH 5.2) did prevent growth even when spores had been given only mild heat treatments (10 s at 100 degrees C).

  12. Potential citric acid exposure and toxicity to Hawaiian hoary bats (Lasiurus cinereus semotus) associated with Eleutherodactylus frog control.

    PubMed

    Pitt, William C; Witmer, Gary W; Jojola, Susan M; Sin, Hans

    2014-04-01

    We examined potential exposure of Hawaiian hoary bats (Lasiurus cinereus semotus) to citric acid, a minimum risk pesticide registered for control of invasive Eleutherodactylus frog populations. Hoary bats are nocturnal insectivores that roost solitarily in foliage, federally listed as endangered, and are endemic to Hawaii. Oral ingestion during grooming of contaminated fur appears to be the principal route by which these bats might be exposed to citric acid. We made assessments of oral toxicity, citric acid consumption, retention of material on fur, and grooming using big brown bats (Eptesicus fuscus) as a surrogate species. We evaluated both ground application and aerial application of 16 % solutions of citric acid during frog control operations. Absorbent bat effigies exposed to ground and aerial operational spray applications retained means of 1.54 and 0.02 g, respectively, of dry citric acid, although retention by the effigies was much higher than bat carcasses drenched in citric acid solutions. A high dose delivered orally (2,811 mg/kg) was toxic to the big brown bats and emesis occurred in 1 bat dosed as low as the 759 mg/kg level. No effect was observed with the lower doses examined (≤ 542 mg/kg). Bats sprayed with 5 ml of 16 % (w/w) citric acid solution showed no evidence of intoxication. In field situations, it is unlikely that bats would be sprayed directly or ingest much citric acid retained by fur. Based on our observations, we believe Hawaiian hoary bats to be at very low risk from harmful exposure to a toxic dose of citric acid during frog control operations.

  13. Photochemical synthesis of citric acid cycle intermediates based on titanium dioxide.

    PubMed

    Saladino, Raffaele; Brucato, John Robert; De Sio, Antonio; Botta, Giorgia; Pace, Emanuele; Gambicorti, Lisa

    2011-10-01

    The emergence of the citric acid cycle is one of the most remarkable occurrences with regard to understanding the origin and evolution of metabolic pathways. Although the chemical steps of the cycle are preserved intact throughout nature, diverse organisms make wide use of its chemistry, and in some cases organisms use only a selected portion of the cycle. However, the origins of this cycle would have arisen in the more primitive anaerobic organism or even back in the proto-metabolism, which likely arose spontaneously under favorable prebiotic chemical conditions. In this context, we report that UV irradiation of formamide in the presence of titanium dioxide afforded 6 of the 11 carboxylic acid intermediates of the reductive version of the citric acid cycle. Since this cycle is the central metabolic pathway of contemporary biology, this report highlights the role of photochemical processes in the origin of the metabolic apparatus.

  14. Effect of citric acid deamidation on in vitro digestibility and antioxidant properties of wheat gluten.

    PubMed

    Qiu, Chaoying; Sun, Weizheng; Cui, Chun; Zhao, Mouming

    2013-12-01

    The effects of citric acid deamidation on the physiochemical properties of wheat gluten were investigated. In vitro digestion was carried out to determine changes of molecular weight distribution, amino acids composition and antioxidant efficacy of wheat gluten hydrolysates. Results indicated that citric acid deamidation significantly increased gluten solubility and surface hydrophobicity, at a neutral pH. Deamidation induced molecular weight distribution change of gluten with little proteolysis. Results from FTIR indicated that the α-helix and β-turn of deamidated gluten increased accompanied by a decrease of the β-sheet structure. After deamidation, in vitro pepsin digestibility of wheat gluten decreased, while in vitro pancreatin digestibility increased. The oxygen radical absorbance capacity (ORAC) activity of the in vitro digests decreased with increase of deamidation time. The high Lys and total essential AAs amounts in the final digests suggested that the nutritional values of wheat gluten after deamidation might be enhanced.

  15. Separating acetic acid from furol (furfural) by electrodialysis method

    SciTech Connect

    Guan, S.F.; Li, C.S. Ye, S.T.; Shen, S.Y.; Wang, Y.T.; Yu, S.H.

    1981-01-01

    Furfural production by hydrolysis of fibrous plant materials is accompanied by formation of acetic acid in amounts depending on the material used. The amount of acetic formed in the hydrolysis of the fruit shell of oil-tea camellia (Camellia oleosa) (an oilseed-bearing tree) is equal to the amount of furfural. The acetic acid can be separated from the furfural and concentrated to 10% by electrodialysis. A smaller amount of furfural is separated with acetic acid.

  16. Adaptation and tolerance of bacteria against acetic acid.

    PubMed

    Trček, Janja; Mira, Nuno Pereira; Jarboe, Laura R

    2015-08-01

    Acetic acid is a weak organic acid exerting a toxic effect to most microorganisms at concentrations as low as 0.5 wt%. This toxic effect results mostly from acetic acid dissociation inside microbial cells, causing a decrease of intracellular pH and metabolic disturbance by the anion, among other deleterious effects. These microbial inhibition mechanisms enable acetic acid to be used as a preservative, although its usefulness is limited by the emergence of highly tolerant spoilage strains. Several biotechnological processes are also inhibited by the accumulation of acetic acid in the growth medium including production of bioethanol from lignocellulosics, wine making, and microbe-based production of acetic acid itself. To design better preservation strategies based on acetic acid and to improve the robustness of industrial biotechnological processes limited by this acid's toxicity, it is essential to deepen the understanding of the underlying toxicity mechanisms. In this sense, adaptive responses that improve tolerance to acetic acid have been well studied in Escherichia coli and Saccharomyces cerevisiae. Strains highly tolerant to acetic acid, either isolated from natural environments or specifically engineered for this effect, represent a unique reservoir of information that could increase our understanding of acetic acid tolerance and contribute to the design of additional tolerance mechanisms. In this article, the mechanisms underlying the acetic acid tolerance exhibited by several bacterial strains are reviewed, with emphasis on the knowledge gathered in acetic acid bacteria and E. coli. A comparison of how these bacterial adaptive responses to acetic acid stress fit to those described in the yeast Saccharomyces cerevisiae is also performed. A systematic comparison of the similarities and dissimilarities of the ways by which different microbial systems surpass the deleterious effects of acetic acid toxicity has not been performed so far, although such exchange

  17. Viscosity controls humidity dependence of N2O5 uptake to citric acid aerosol

    NASA Astrophysics Data System (ADS)

    Gržinić, G.; Bartels-Rausch, T.; Berkemeier, T.; Türler, A.; Ammann, M.

    2015-12-01

    The heterogeneous loss of dinitrogen pentoxide (N2O5) to aerosol particles has a significant impact on the night-time nitrogen oxide cycle and therefore the oxidative capacity in the troposphere. Using a 13N short-lived radioactive tracer method, we studied the uptake kinetics of N2O5 on citric acid aerosol particles as a function of relative humidity (RH). The results show that citric acid exhibits lower reactivity than similar dicarboxylic and polycarboxylic acids, with uptake coefficients between ∼ 3 × 10-4-∼ 3 × 10-3 depending on humidity (17-70 % RH). At RH above 50 %, the magnitude and the humidity dependence can be best explained by the viscosity of citric acid as compared to aqueous solutions of simpler organic and inorganic solutes and the variation of viscosity with RH and, hence, diffusivity in the organic matrix. Since the diffusion rates of N2O5 in highly concentrated citric acid solutions are not well established, we present four different parameterizations of N2O5 diffusivity based on the available literature data or estimates for viscosity and diffusivity of H2O. Above 50 % RH, uptake is consistent with the reacto-diffusive kinetic regime whereas below 50 % RH, the uptake coefficient is higher than expected from hydrolysis of N2O5 within the bulk of the particles, and the uptake kinetics is most likely limited by loss on the surface only. This study demonstrates the impact of viscosity in highly oxidized and highly functionalized secondary organic aerosol material on the heterogeneous chemistry of N2O5 and may explain some of the unexpectedly low loss rates to aerosol derived from field studies.

  18. Chemical speciation and mobilization of copper and zinc in naturally contaminated mine soils with citric and tartaric acids.

    PubMed

    Pérez-Esteban, Javier; Escolástico, Consuelo; Moliner, Ana; Masaguer, Alberto

    2013-01-01

    A one-step extraction procedure and a leaching column experiment were performed to assess the effects of citric and tartaric acids on Cu and Zn mobilization in naturally contaminated mine soils to facilitate assisted phytoextraction. A speciation modeling of the soil solution and the metal fractionation of soils were performed to elucidate the chemical processes that affected metal desorption by organic acids. Different extracting solutions were prepared, all of which contained 0.01 M KNO(3) and different concentrations of organic acids: control without organic acids, 0.5 mM citric, 0.5 mM tartaric, 10 mM citric, 10 mM tartaric, and 5 mM citric +5 mM tartaric. The results of the extraction procedure showed that higher concentrations of organic acids increased metal desorption, and citric acid was more effective at facilitating metal desorption than tartaric acid. Metal desorption was mainly influenced by the decreasing pH and the dissolution of Fe and Mn oxides, not by the formation of soluble metal-organic complexes as was predicted by the speciation modeling. The results of the column study reported that low concentrations of organic acids did not significantly increase metal mobilization and that higher doses were also not able to mobilize Zn. However, 5-10 mM citric acid significantly promoted Cu mobilization (from 1 mg kg(-1) in the control to 42 mg kg(-1) with 10 mM citric acid) and reduced the exchangeable (from 21 to 3 mg kg(-1)) and the Fe and Mn oxides (from 443 to 277 mg kg(-1)) fractions. Citric acid could efficiently facilitate assisted phytoextraction techniques.

  19. By-products from the biodiesel chain as a substrate to citric acid production by solid-state fermentation.

    PubMed

    Schneider, Manuella; Zimmer, Gabriela F; Cremonese, Ezequiel B; de C de S Schneider, Rosana; Corbellini, Valeriano A

    2014-07-01

    In this study, we propose the use of tung cake for the production of organic acids, with an emphasis on citric acid by solid-state fermentation. We evaluated the conditions of production and the by-products from the biodiesel chain as raw materials involved in this bioprocess. First, we standardized the conditions of solid-state fermentation in tung cake with and without residual fat and with different concentrations of glycerine using the fungus Aspergillus niger The solid-state fermentation process was monitored for 7 days considering the biomass growth and pH level. Citric acid production was determined by high-performance liquid chromatography. Fungal development was better in the crude tung cake, consisting of 20% glycerine. The highest citric acid yield was 350 g kg(-1) of biomass. Therefore, the solid-state fermentation of the tung cake with glycerine led to citric acid production using the Aspergillus niger fungus.

  20. The crystallinity of calcium phosphate powders influenced by the conditions of neutralized procedure with citric acid additions

    SciTech Connect

    Li Chengfeng

    2009-05-06

    Calcium phosphate powders with nano-sized crystallinity were synthesized by neutralization using calcium hydroxide and orthophosphoric acid with the assistance of citric acid. The influence of processing parameters, such as free or additive citric acid, synthetic temperature and ripening time, on the crystallinity of hydroxyapatite were investigated. The results of X-ray diffraction and microstructure observations showed that the crystallinity and morphology of nano-sized hydroxyapatite particles were influenced by the presence or absence of citric acid. It was found that the crystallinities and crystallite sizes of hydroxyapatite powders prepared with the additive citric acid increased with increasing synthetic temperature and ripening time. Especially, the crystallinities of (h k 0) planes were raised and more homogeneously grown particles were obtained with increasing synthetic temperature.

  1. Recovery of very dilute acetic acid using ion exchange

    SciTech Connect

    Cloete, F.L.D.; Marais, A.P.

    1995-07-01

    Acetic and related acids occur in many industrial wastewaters, often mixed with several other classes of organic compounds. Acetic acid can be recovered from 1% solutions using weakly basic ion exchange resins. The acid is adsorbed by the free-base form of the resin, which can then be eluted using a slurry of lime to give a solution of calcium acetate. This solution could either be evaporated to crystallize calcium acetate or reacted with sulfuric acid to form acetic acid and gypsum. Laboratory tests of the proposed process gave product solutions of 15--20% acetic acid using pure 1% acetic acid as feed. Some measurements using a typical industrial effluent gave similar recoveries and showed that there was no initial fouling of the resins.

  2. Viscosity controls humidity dependence of N2O5 uptake to citric acid aerosol

    NASA Astrophysics Data System (ADS)

    Gržinić, G.; Bartels-Rausch, T.; Berkemeier, T.; Türler, A.; Ammann, M.

    2015-08-01

    The heterogeneous loss of dinitrogen pentoxide (N2O5) to aerosol particles has a significant impact on the night time nitrogen oxide cycle and therefore the oxidative capacity in the troposphere. Using a 13N short lived radioactive tracer method we studied the uptake kinetics of N2O5 on citric acid aerosol particles as a function of relative humidity (RH). The results show that citric acid exhibits lower reactivity than similar di- and polycarboxylic acids, with uptake coefficients between ~ 3 × 10-4-~ 3 × 10-3 depending on humidity (17-70 % RH). This humidity dependence can be explained by a changing viscosity and, hence, diffusivity in the organic matrix. Since the viscosity of highly concentrated citric acid solutions is not well established, we present four different parameterizations of N2O5 diffusivity based on the available literature data or estimates for viscosity and diffusivity. Above 50 % RH, uptake is consistent with the reacto-diffusive kinetic regime whereas below 50 % RH, the uptake coefficient is higher than expected from hydrolysis of N2O5 within the bulk of the particles, and the uptake kinetics may be limited by loss on the surface only. This study demonstrates the impact of viscosity in highly oxidized and highly functionalized secondary organic aerosol material on the heterogeneous chemistry of N2O5 and may explain some of the unexpectedly low loss rates to aerosol derived from field studies.

  3. Chemical modification of chitosan film via surface grafting of citric acid molecular to promote the biomineralization

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Shen, Xin; Zhou, Huan; Wang, Yingjun; Deng, Linhong

    2016-05-01

    We develop a novel chitosan-citric acid film (abbreviated as CS-CA) suitable for biomedical applications in this study. In this CS-CA film, the citric acid, which is a harmless organic acid has been extensively investigated as a modifying agent on carbohydrate polymers, was cross-linked by 1-Ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) onto the surface of chitosan (CS) film. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirms the graft copolymerization of the modified chitosan film (CS-CA). Surface wettability, moisturizing performance, the capacity of mineralization in vitro and biocompatibility of the films were characterized. After modification, this CS-CA film has good hydrophilicity. It is very evident that the citric acid grafting treatment significantly promotes the biomineralization of the chitosan based substrates. Cell experiments show that the MC3T3-E1 osteoblasts can adhere and proliferate well on the surface of CS-CA film. This CS-CA film, which can be prepared in large quantities and at low cost, should have potential application in bone tissue engineering.

  4. The effect of citric acid on the activity, thermodynamics and conformation of mushroom polyphenoloxidase.

    PubMed

    Liu, Wei; Zou, Li-qiang; Liu, Jun-ping; Zhang, Zhao-qin; Liu, Cheng-mei; Liang, Rui-hong

    2013-09-01

    Few reports have focused on the effect of citric acid on thermodynamics and conformation of polyphenoloxidase (PPO). In this study, variations on activity, thermodynamics and conformation of mushroom PPO induced by citric acid (1-60mM) and relationships among these were investigated. It showed that with the increasing concentration of citric acid, the activity of PPO decreased gradually to an inactivity condition; inactivation rate constant (k) of PPO increased and the activation energy (Ea) as well as thermodynamic parameters (ΔG, ΔH, ΔS) decreased, which indicated that the thermosensitivity, stability and number of non-covalent bonds of PPO decreased. The conformation was gradually unfolded, which was reflected in the decrease of α-helix contents, increase of β-sheet and exposure of aromatic amino acid residuals. Moreover, two linear relationships of relative activities, enthalpies (ΔH) against α-helix contents were obtained. It indicated that changes of activity and thermodynamics might correlate to the unfolding of conformation.

  5. Nucleation of calcium carbonate in presence of citric acid, DTPA, EDTA and pyromellitic acid.

    PubMed

    Westin, K-J; Rasmuson, A C

    2005-02-15

    The influence of four calcium complexing additives, i.e., citric acid (CIT), diethylenetriaminepentaacetic acid (DTPA), ethylenediaminetetraacetic acid (EDTA) and pyromellitic acid (PMA), and their concentration on the induction time of calcium carbonate nucleation has been studied. The experiments were performed by rapidly mixing a sodium carbonate solution and a calcium chloride solution of various concentrations. The induction time was obtained by recording the white light absorption of the solution. Chemical speciation was used to estimate the initial thermodynamic driving force of each experiment. The induction time was found to increase with additive concentration. The effect varies from one additive to another. CIT causes the greatest increase in induction time and PMA the least. Using classical nucleation theory the experimental data were evaluated in terms of the interfacial energy. In pure water a value of 37.8 mJ m(-2) was obtained, showing good agreement with other works. CIT, DTPA and EDTA caused a notable increase of the interfacial energy at a concentration of 0.5 mmol l(-1). PMA does not appear to have any effect at all on the interfacial energy. Different mechanisms for the influence of the additives on the measured induction time and on the estimated interfacial energy are discussed.

  6. Crystal growth of aragonite and calcite in presence of citric acid, DTPA, EDTA and pyromellitic acid.

    PubMed

    Westin, K-J; Rasmuson, A C

    2005-02-15

    The influence of four calcium complexing substances, i.e., citric acid (CIT), diethylenetriaminepentaacetic acid (DTPA), ethylenediaminetetraacetic acid (EDTA) and pyromellitic acid (PMA), on the crystal growth rate of the calcium carbonate polymorphs aragonite and calcite has been studied. Using a seeded constant supersaturation method supersaturation was maintained at 4 by keeping a constant pH of 8.5 through addition of sodium carbonate and calcium chloride solutions. The unique composition of each solution was calculated using chemical speciation. The growth rate was interpreted in terms of an overall growth rate. For both calcite and aragonite, the crystal growth rate is significantly reduced in the presence of the calcium complexing substances. The growth retarding effect depends on both the concentration and the polymorph. The relative crystal growth rate was correlated to the total complexing agent concentration using a Langmuir adsorption approach. Aragonite appeared fully covered for lower total concentrations than calcite. Furthermore, CIT very efficiently blocked aragonite growth contrary to what was observed for calcite. This is thought to be related to certain distinct features of the dominant aragonite crystal faces compared to the dominant calcite faces.

  7. Sphingolipids contribute to acetic acid resistance in Zygosaccharomyces bailii.

    PubMed

    Lindahl, Lina; Genheden, Samuel; Eriksson, Leif A; Olsson, Lisbeth; Bettiga, Maurizio

    2016-04-01

    Lignocellulosic raw material plays a crucial role in the development of sustainable processes for the production of fuels and chemicals. Weak acids such as acetic acid and formic acid are troublesome inhibitors restricting efficient microbial conversion of the biomass to desired products. To improve our understanding of weak acid inhibition and to identify engineering strategies to reduce acetic acid toxicity, the highly acetic-acid-tolerant yeast Zygosaccharomyces bailii was studied. The impact of acetic acid membrane permeability on acetic acid tolerance in Z. bailii was investigated with particular focus on how the previously demonstrated high sphingolipid content in the plasma membrane influences acetic acid tolerance and membrane permeability. Through molecular dynamics simulations, we concluded that membranes with a high content of sphingolipids are thicker and more dense, increasing the free energy barrier for the permeation of acetic acid through the membrane. Z. bailii cultured with the drug myriocin, known to decrease cellular sphingo-lipid levels, exhibited significant growth inhibition in the presence of acetic acid, while growth in medium without acetic acid was unaffected by the myriocin addition. Furthermore, following an acetic acid pulse, the intracellular pH decreased more in myriocin-treated cells than in control cells. This indicates a higher inflow rate of acetic acid and confirms that the reduction in growth of cells cultured with myriocin in the medium with acetic acid was due to an increase in membrane permeability, thereby demonstrating the importance of a high fraction of sphingolipids in the membrane of Z. bailii to facilitate acetic acid resistance; a property potentially transferable to desired production organisms suffering from weak acid stress.

  8. Metabolism of citric acid production by Aspergillus niger: model definition, steady-state analysis and constrained optimization of citric acid production rate.

    PubMed

    Alvarez-Vasquez, F; González-Alcón, C; Torres, N V

    2000-10-05

    In an attempt to provide a rational basis for the optimization of citric acid production by A. niger, we developed a mathematical model of the metabolism of this filamentous fungus when in conditions of citric acid accumulation. The present model is based in a previous one, but extended with the inclusion of new metabolic processes and updated with currently available kinetic data. Among the different alternatives to represent the system behavior we have chosen the S-system representation within power-law formalism. This type of representation allows us to verify not only the ability of the model to exhibit a stable steady state of the integrated system but also the robustness and quality of the representation. The model analysis is shown to be self-consistent, with a stable steady state, and in good agreement with experimental evidence. Moreover, the model representation is sufficiently robust, as indicated by sensitivity and steady-state and dynamic analyses. From the steady-state results we concluded that the range of accuracy of the S-system representation is wide enough to model realistic deviations from the nominal steady state. The dynamic analysis indicated a reasonable response time, which provided further indication that the model is adequate. The extensive assessment of the reliability and quality of the model put us in a position to address questions of optimization of the system with respect to increased citrate production. We carried out the constrained optimization of A. niger metabolism with the goal of predicting an enzyme activity profile yielding the maximum rate of citrate production, while, at the same time, keeping all enzyme activities within predetermined, physiologically acceptable ranges. The optimization is based on a method described and tested elsewhere that utilizes the fact that the S-system representation of a metabolic system becomes linear at steady state, which allows application of linear programming techniques. Our results show

  9. Modeling and prediction of retardance in citric acid coated ferrofluid using artificial neural network

    NASA Astrophysics Data System (ADS)

    Lin, Jing-Fung; Sheu, Jer-Jia

    2016-06-01

    Citric acid coated (citrate-stabilized) magnetite (Fe3O4) magnetic nanoparticles have been conducted and applied in the biomedical fields. Using Taguchi-based measured retardances as the training data, an artificial neural network (ANN) model was developed for the prediction of retardance in citric acid (CA) coated ferrofluid (FF). According to the ANN simulation results in the training stage, the correlation coefficient between predicted retardances and measured retardances was found to be as high as 0.9999998. Based on the well-trained ANN model, the predicted retardance at excellent program from Taguchi method showed less error of 2.17% compared with a multiple regression (MR) analysis of statistical significance. Meanwhile, the parameter analysis at excellent program by the ANN model had the guiding significance to find out a possible program for the maximum retardance. It was concluded that the proposed ANN model had high ability for the prediction of retardance in CA coated FF.

  10. The citric acid-modified, enzyme-resistant dextrin from potato starch as a potential prebiotic.

    PubMed

    Sliżewska, Katarzyna

    2013-01-01

    In the present study, enzyme-resistant dextrin, prepared by heating of potato starch in the presence of hydrochloric (0.1% dsb) and citric (0.1% dsb) acid at 130ºC for 3 h (CA-dextrin), was tested as a source of carbon for probiotic lactobacilli and bifidobacteria cultured with intestinal bacteria isolated from feces of three healthy 70-year old volunteers. The dynamics of growth of bacterial monocultures in broth containing citric acid (CA)-modified dextrin were estimated. It was also investigated whether lactobacilli and bifidobacteria cultured with intestinal bacteria in the presence of resistant dextrin would be able to dominate the intestinal isolates. Prebiotic fermentation of resistant dextrin was analyzed using prebiotic index (PI). In co-cultures of intestinal and probiotic bacteria, the environment was found to be dominated by the probiotic strains of Bifidobacterium and Lactobacillus, which is a beneficial effect.

  11. A Biodegradable Thermoset Polymer Made by Esterification of Citric Acid and Glycerol

    PubMed Central

    Halpern, Jeffrey M.; Urbanski, Richard; Weinstock, Allison K.; Iwig, David F.; Mathers, Robert T.; von Recum, Horst

    2014-01-01

    A new biomaterial, a degradable thermoset polymer, was made from simple, economical, biocompatable monomers without the need for a catalyst. Glycerol and citric acid, non-toxic and renewable reagents, were crosslinked by a melt polymerization reaction at temperatures from 90-150°C. Consistent with a condensation reaction, water was determined to be the primary byproduct. The amount of crosslinking was controlled by the reaction conditions, including temperature, reaction time, and ratio between glycerol and citric acid. Also, the amount of crosslinking was inversely proportional to the rate of degradation. As a proof-of-principle for drug delivery applications, gentamicin, an antibiotic, was incorporated into the polymer with preliminary evaluations of antimicrobial activity. The polymers incorporating gentamicin had significantly better bacteria clearing of Staphylococcus aureus compared to non-gentamicin gels for up to nine days. PMID:23737239

  12. Facile production of chitin from crab shells using ionic liquid and citric acid.

    PubMed

    Setoguchi, Tatsuya; Kato, Takeshi; Yamamoto, Kazuya; Kadokawa, Jun-ichi

    2012-04-01

    Facile production of chitin from crab shells was performed by direct extraction using an ionic liquid, 1-allyl-3-methylimidazolium bromide (AMIMBr), followed by demineralization using citric acid. First, dried crab shells were treated with AMIMBr at elevated temperatures to extract chitin. Supernatants separated by centrifugation were then subjected to a chelating treatment with an aqueous solution of citric acid to achieve demineralization. The precipitated extracts were filtered and dried. The isolated material was subjected to X-ray diffraction, IR, (1)H NMR, and energy-dispersive X-ray spectroscopy, and thermal gravimetric analysis; the results indicated the structure of chitin. On the basis of the IR spectra, the degree of deacetylation in the samples obtained was calculated to be <7%. Furthermore, the protein content was <0.1% and the M(w) values were 0.7-2.2×10(5).

  13. Citric acid-coated gold nanoparticles for visual colorimetric recognition of pesticide dimethoate

    NASA Astrophysics Data System (ADS)

    Dar, Aqib Iqbal; Walia, Shanka; Acharya, Amitabha

    2016-08-01

    A colorimetric chemo-sensor based on citric acid-coated gold NPs (C-GNP) showed a linear increase in fluorescence intensity with increasing concentration of pesticide dimethoate (DM). The limit of detection was found to be between 8.25± 0.3 and 20 ± 9.5 ppm. The increase in fluorescence intensity was suggested to have originated from the soft-soft interaction between C-GNPs and DM via sulfur group which is absent in pesticide dicofol (DF). Similar studies with citric acid-coated silver NPs (C-SNPs) did not result any change in the fluorescence intensity. The microscopic studies suggested aggregation of C-GNPs in the presence of DM but not in case of DF.

  14. Enhanced concentrations of citric acid in spring aerosols collected at the Gosan background site in East Asia

    NASA Astrophysics Data System (ADS)

    Jung, Jinsang; Kawamura, Kimitaka

    2011-09-01

    In order to investigate water-soluble dicarboxylic acids and related compounds in the aerosol samples under the Asian continent outflow, total suspended particle (TSP) samples ( n = 32) were collected at the Gosan site in Jeju Island over 2-5 days integration during 23 March-1 June 2007 and 16-24 April 2008. The samples were analyzed for water-soluble dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls using a capillary gas chromatography technique. We found elevated concentrations of atmospheric citric acid (range: 20-320 ng m -3) in the TSP samples during mid- to late April of 2007 and 2008. To specify the sources of citric acid, dicarboxylic acids and related compounds were measured in the pollen sample collected at the Gosan site (Pollen_Gosan), authentic pollen samples from Japanese cedar ( Cryptomeria) (Pollen_cedar) and Japanese cypress ( Chamaecyparis obtusa) (Pollen_cypress), and tangerine fruit produced from Jeju Island. Citric acid (2790 ng in unit mg of pollen mass) was found as most abundant species in the Pollen_Gosan, followed by oxalic acid (2390 ng mg -1). Although citric acid was not detected in the Pollen_cedar and Pollen_cypress as major species, it was found as a dominant species in the tangerine juice while malic acid was detected as major species in the tangerine peel, followed by oxalic and citric acids. Since Japanese cedar trees are planted around tangerine farms to prevent strong winds from the Pacific Ocean, citric acid that may be directly emitted from tangerine is likely adsorbed on pollens emitted from Japanese cedar and then transported to the Gosan site. Much lower malic/citric acid ratios obtained under cloudy condition than clear condition suggest that malic acid may rapidly decompose to lower molecular weight compounds such as oxalic and malonic acids (

  15. Citric acid treatment of post operative wound infections in HIV/AIDS patients.

    PubMed

    Nagoba, Basavraj; Patil Dawale, Chandrakala; Raju, Reena; Wadher, Bharat; Chidrawar, Shruti; Selkar, Sohan; Suryawanshi, Namdev

    2014-02-01

    The normal cellular immunity is required for normal wound healing. The HIV infection affects wound healing adversely. Wound infections in HIV/AIDS patients are difficult to manage because of compromised immunity. The result is delayed wound healing and increased susceptibility to wound infection. Here we report two cases of HIV positive patients who had developed the post operative wound gape, not responding to the conventional treatment, treated simply by local application of three percent citric acid ointment.

  16. Citric acid treatment of chronic nonhealing ulcerated tophaceous gout with bursitis.

    PubMed

    Nagoba, Basavaraj S; Punpale, Ajay; Poddar, Ashok; Suryawanshi, Namdev M; Swami, Ganesh A; Selkar, Sohan P

    2013-12-01

    The ulceration associated with gout tophi is very difficult to treat because of impaired and halted local inflammatory response resulting from the gout treatment regimen. We report chronic nonhealing tophaceous gout with bursitis in an 80-year-old male, not responding to conventional treatment modality for months together. This nonhealing ulcer was treated successfully with local application of 3% citric acid ointment for 22 days.

  17. 13C-NMR spectroscopic evaluation of the citric acid cycle flux in conditions of high aspartate transaminase activity in glucose-perfused rat hearts.

    PubMed

    Tran-Dinh, S; Hoerter, J A; Mateo, P; Gyppaz, F; Herve, M

    1998-12-01

    A new mathematical model, based on the observation of 13C-NMR spectra of two principal metabolites (glutamate and aspartate), was constructed to determine the citric acid cycle flux in the case of high aspartate transaminase activity leading to the formation of large amounts of labeled aspartate and glutamate. In this model, the labeling of glutamate and aspartate carbons by chemical and isotopic exchange with the citric acid cycle are considered to be interdependent. With [U-13C]Glc or [1,2-(13)C]acetate as a substrate, all glutamate and aspartate carbons can be labeled. The isotopic transformations of 32 glutamate isotopomers into 16 aspartate isotopomers or vice versa were studied using matrix operations; the results were compiled in two matrices. We showed how the flux constants of the citric acid cycle and the 13C-enrichment of acetyl-CoA can be deduced from 13C-NMR spectra of glutamate and/or aspartate. The citric acid cycle flux in beating Wistar rat hearts, aerobically perfused with [U-13C]glucose in the absence of insulin, was investigated by 13C-NMR spectroscopy. Surprisingly, aspartate instead of glutamate was found to be the most abundantly-labeled metabolite, indicating that aspartate transaminase (which catalyses the reversible reaction: (glutamate + oxaloacetate <--> 2-oxoglutarate + aspartate) is highly active in the absence of insulin. The amount of aspartate was about two times larger than glutamate. The quantities of glutamate (G0) or aspartate (A0) were approximately the same for all hearts and remained constant during perfusion: G0 = (0.74 +/- 0.03) micromol/g; A0 = (1.49 +/- 0.05) micromol/g. The flux constants, i.e., the fraction of glutamate and aspartate in exchange with the citric acid cycle, were about 1.45 min(-1) and 0.72 min(-1), respectively; the flux of this cycle is about (1.07 +/- 0.02) micromol min(-1) g(-1). Excellent agreement between the computed and experimental data was obtained, showing that: i) in the absence of insulin

  18. The Humidity Dependence of N2O5 Uptake to Citric Acid Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Grzinic, G.; Bartels-Rausch, T.; Tuerler, A.; Ammann, M.

    2013-12-01

    Dinitrogen pentoxide is a significant reactive intermediate in the night time chemistry of nitrogen oxides. Depending on atmospheric conditions it can act either as a NO3 radical reservoir or as a major NOx sink by heterogeneous hydrolysis on aerosol surfaces. As such, it can influence tropospheric ozone production and therefore the oxidative capacity of the atmosphere. The heterogeneous loss of N2O5 to aerosol particles has remained uncertain, and reconciling lab and field data has demonstrated some gaps in our understanding of the detailed mechanism. We used the short-lived radioactive tracer 13N to study N2O5 uptake kinetics on aerosol particles in an aerosol flow reactor at ambient pressure, temperature and relative humidity. Citric acid, representing strongly oxidized polyfunctional organic compounds in atmospheric aerosols, has been chosen as a proxy due to its well established physical properties. Aerosol uptake measurements were performed with citric acid aerosols in a humidity range of 15-75 % RH, within which the uptake coefficient varies between about 0.001 and about 0.02. Taking into account the well established hygroscopic properties of citric acid, we interpret uptake in terms of disproportionation of N2O5 into nitrate ion and nitronium ion and reaction of the latter with liquid water.

  19. Another unusual type of citric acid cycle enzyme in Helicobacter pylori: the malate:quinone oxidoreductase.

    PubMed

    Kather, B; Stingl, K; van der Rest, M E; Altendorf, K; Molenaar, D

    2000-06-01

    The only enzyme of the citric acid cycle for which no open reading frame (ORF) was found in the Helicobacter pylori genome is the NAD-dependent malate dehydrogenase. Here, it is shown that in this organism the oxidation of malate to oxaloacetate is catalyzed by a malate:quinone oxidoreductase (MQO). This flavin adenine dinucleotide-dependent membrane-associated enzyme donates electrons to quinones of the electron transfer chain. Similar to succinate dehydrogenase, it is part of both the electron transfer chain and the citric acid cycle. MQO activity was demonstrated in isolated membranes of H. pylori. The enzyme is encoded by the ORF HP0086, which is shown by the fact that expression of the HP0086 sequence from a plasmid induces high MQO activity in mqo deletion mutants of Escherichia coli or Corynebacterium glutamicum. Furthermore, this plasmid was able to complement the phenotype of the C. glutamicum mqo deletion mutant. Interestingly, the protein predicted to be encoded by this ORF is only distantly related to known or postulated MQO sequences from other bacteria. The presence of an MQO shown here and the previously demonstrated presence of a 2-ketoglutarate:ferredoxin oxidoreductase and a succinyl-coenzyme A (CoA):acetoacetyl-CoA transferase indicate that H. pylori possesses a complete citric acid cycle, but one which deviates from the standard textbook example in three steps.

  20. In the aging housefly aconitase is the only citric acid cycle enzyme to decline significantly.

    PubMed

    Yarian, Connie S; Sohal, Rajindar S

    2005-04-01

    The main objective of this study was to determine if the activities of the mitochondrial citric acid cycle enzymes are altered during the normal aging process. Flight muscle mitochondria of houseflies of different ages were used as a model system because of their apparent age-related decline in bioenergetic efficiency, evident as a failure of flying ability. The maximal activities of each of the citric acid cycle enzymes were determined in preparations of mitochondria from flies of relatively young, middle, and old age. Aconitase was the only enzyme exhibiting altered activity during aging. The maximal activity of aconitase from old flies was decreased by 44% compared to that from young flies while the other citric acid cycle enzymes showed no change in activity with age. It is suggested that the selective age-related decrease in aconitase activity is likely to contribute to a decline in the efficiency of mitochondrial bioenergetics, as well as result in secondary effects associated with accumulation of citrate and redox-active iron.

  1. Inactivation of foot-and-mouth disease virus by citric acid and sodium carbonate with deicers.

    PubMed

    Hong, Jang-Kwan; Lee, Kwang-Nyeong; You, Su-Hwa; Kim, Su-Mi; Tark, Dongseob; Lee, Hyang-Sim; Ko, Young-Joon; Seo, Min-Goo; Park, Jong-Hyeon; Kim, Byounghan

    2015-11-01

    Three out of five outbreaks of foot-and-mouth disease (FMD) since 2010 in the Republic of Korea have occurred in the winter. At the freezing temperatures, it was impossible to spray disinfectant on the surfaces of vehicles, roads, and farm premises because the disinfectant would be frozen shortly after discharge and the surfaces of the roads or machines would become slippery in cold weather. In this study, we added chemical deicers (ethylene glycol, propylene glycol, sodium chloride, calcium chloride, ethyl alcohol, and commercial windshield washer fluid) to keep disinfectants (0.2% citric acid and 4% sodium carbonate) from freezing, and we tested their virucidal efficacies under simulated cold temperatures in a tube. The 0.2% citric acid could reduce the virus titer 4 logs at -20°C with all the deicers. On the other hand, 4% sodium carbonate showed little virucidal activity at -20°C within 30 min, although it resisted being frozen with the function of the deicers. In conclusion, for the winter season, we may recommend the use of citric acid (>0.2%) diluted in 30% ethyl alcohol or 25% sodium chloride solvent, depending on its purpose.

  2. Citric acid cough threshold and airway responsiveness in asthmatic patients and smokers with chronic airflow obstruction.

    PubMed Central

    Auffarth, B; de Monchy, J G; van der Mark, T W; Postma, D S; Koëter, G H

    1991-01-01

    The relation between citric acid cough threshold and airway hyperresponsiveness was investigated in 11 non-smoking patients with allergic asthma (mean FEV1 94% predicted) and 25 non-atopic smokers with chronic airflow obstruction (mean FEV1 65% predicted). Cough threshold was determined on two occasions by administering doubling concentrations of citric acid. Seven of the 11 asthmatic subjects and 14 of 25 smokers with chronic airflow obstruction had a positive cough threshold on both test days. Cough threshold measurements were reproducible in both groups (standard deviation of duplicate measurements 1.2 doubling concentrations in asthma, 1.1 doubling concentrations in chronic airflow obstruction). Citric acid provocation did not cause bronchial obstruction in most patients, though four patients had a fall in FEV1 of more than 20% for a short time on one occasion only. No significant difference in cough threshold was found between the two patient groups despite differences in baseline FEV1 values. There was no significant correlation between cough threshold and the provocative concentration of histamine causing a 20% fall in FEV1 (PC20) histamine in either group. Thus sensory nerves can be activated with a tussive agent in patients with asthma and chronic airflow obstruction without causing bronchial smooth muscle contraction. PMID:1948792

  3. Changes in primary metabolism leading to citric acid overflow in Aspergillus niger.

    PubMed

    Legisa, Matic; Mattey, Michael

    2007-02-01

    For citric acid-accumulating Aspergillus niger cells, the enhancement of anaplerotic reactions replenishing tricarboxylic acid cycle intermediates predisposes the cells to form the product. However, there is no increased citrate level in germinating spores and a complex sequence of developmental events is needed to change the metabolism in a way that leads to an increased level of tricarboxylic acid cycle intermediates in mycelia. A review of physiological events that cause such intracellular conditions, with the special emphasis on the discussion of hexose transport into the cells and regulation of primary metabolism, predominantly of glycolytic flux during the process, is presented.

  4. Pd/C synthesized with citric acid: an efficient catalyst for hydrogen generation from formic acid/sodium formate.

    PubMed

    Wang, Zhi-Li; Yan, Jun-Min; Wang, Hong-Li; Ping, Yun; Jiang, Qing

    2012-01-01

    A highly efficient hydrogen generation from formic acid/sodium formate aqueous solution catalyzed by in situ synthesized Pd/C with citric acid has been successfully achieved at room temperature. Interestingly, the presence of citric acid during the formation and growth of the Pd nanoparticles on carbon can drastically enhance the catalytic property of the resulted Pd/C, on which the conversion and turnover frequency for decomposition of formic acid/sodium formate system can reach the highest values ever reported of 85% within 160 min and 64 mol H(2) mol(-1) catalyst h(-1), respectively, at room temperature. The present simple, low cost, but highly efficient CO-free hydrogen generation system at room temperature is believed to greatly promote the practical application of formic acid system on fuel cells.

  5. Pd/C Synthesized with Citric Acid: An Efficient Catalyst for Hydrogen Generation from Formic Acid/Sodium Formate

    PubMed Central

    Wang, Zhi-Li; Yan, Jun-Min; Wang, Hong-Li; Ping, Yun; Jiang, Qing

    2012-01-01

    A highly efficient hydrogen generation from formic acid/sodium formate aqueous solution catalyzed by in situ synthesized Pd/C with citric acid has been successfully achieved at room temperature. Interestingly, the presence of citric acid during the formation and growth of the Pd nanoparticles on carbon can drastically enhance the catalytic property of the resulted Pd/C, on which the conversion and turnover frequency for decomposition of formic acid/sodium formate system can reach the highest values ever reported of 85% within 160 min and 64 mol H2 mol−1 catalyst h−1, respectively, at room temperature. The present simple, low cost, but highly efficient CO-free hydrogen generation system at room temperature is believed to greatly promote the practical application of formic acid system on fuel cells. PMID:22953041

  6. Analysis of tellurium thin films electrodeposition from acidic citric bath

    NASA Astrophysics Data System (ADS)

    Kowalik, Remigiusz; Kutyła, Dawid; Mech, Krzysztof; Żabiński, Piotr

    2016-12-01

    This work presents the description of the electrochemical process of formation thin tellurium layers from citrate acidic solution. The suggested methodology consists in the preparation of stable acidic baths with high content of tellurium, and with the addition of citrate acid. In order to analyse the mechanism of the process of tellurium deposition, the electroanalytical tests were conducted. The tests of cyclic voltammetry and hydrodynamic ones were performed with the use of polycrystalline gold disk electrode. The range of potentials in which deposition of tellurium in direct four-electron process is possible was determined as well as the reduction of deposited Te° to Te2- and its re-deposition as a result of the comproportionation reaction. On the basis of the obtained results, the deposition of tellurium was conducted by the potentiostatic method. The influence of a deposition potential and a concentration of TeO2 in the solution on the rate of tellurium coatings deposition was examined. The presence of tellurium was confirmed by X-ray spectrofluorometry and electron probe microanalysis. In order to determine the phase composition and the morphology, the obtained coatings were analysed with the use of x-ray diffraction and scanning electron microscopy.

  7. Submillimeter wave spectrum of acetic acid

    NASA Astrophysics Data System (ADS)

    Ilyushin, Vadim V.; Endres, Christian P.; Lewen, Frank; Schlemmer, Stephan; Drouin, Brian J.

    2013-08-01

    We present a new global study of the submillimeter wave spectrum of the lowest three torsional states of acetic acid (CH3COOH). New measurements involving torsion-rotation transitions with J up to 79 and Ka up to 44 have been carried out between 230 and 845 GHz using the submillimeter wave spectrometers in University of Cologne and Jet Propulsion Laboratory. The new data were combined with previously published measurements and fitted using the rho-axis-method torsion-rotation Hamiltonian. The final fit used 93 parameters to give an overall weighted root-mean-square deviation of 0.85 for a dataset consisting of 7543, 6087, and 5171 transitions belonging, respectively, to the ground, first, and second excited torsional states and 1888 Δvt ≠ 0 transitions. This investigation presents more than a twofold expansion both in the J quantum number and frequency range coverage of the acetic acid spectrum. Numerous inter-torsional interactions have been observed. Furthermore, this is the highest J value ever treated with the rho-axis-method and provides a good test case for the theoretical model in use.

  8. Growth/no growth interfaces of table olive related yeasts for natamycin, citric acid and sodium chloride.

    PubMed

    Arroyo-López, F N; Bautista-Gallego, J; Romero-Gil, V; Rodríguez-Gómez, F; Garrido-Fernández, A

    2012-04-16

    The present work uses a logistic/probabilistic model to obtain the growth/no growth interfaces of Saccharomyces cerevisiae, Wickerhamomyces anomalus and Candida boidinii (three yeast species commonly isolated from table olives) as a function of the diverse combinations of natamycin (0-30 mg/L), citric acid (0.00-0.45%) and sodium chloride (3-6%). Mathematical models obtained individually for each yeast species showed that progressive concentrations of citric acid decreased the effect of natamycin, which was only observed below 0.15% citric acid. Sodium chloride concentrations around 5% slightly increased S. cerevisiae and C. boidinii resistance to natamycin, although concentrations above 6% of NaCl always favoured inhibition by this antimycotic. An overall growth/no growth interface, built considering data from the three yeast species, revealed that inhibition in the absence of citric acid and at 4.5% NaCl can be reached using natamycin concentrations between 12 and 30 mg/L for growth probabilities between 0.10 and 0.01, respectively. Results obtained in this survey show that is not advisable to use jointly natamycin and citric acid in table olive packaging because of the observed antagonistic effects between both preservatives, but table olives processed without citric acid could allow the application of the antifungal.

  9. Tested Demonstrations: Buffer Capacity of Various Acetic Acid-Sodium Acetate Systems: A Lecture Experiment.

    ERIC Educational Resources Information Center

    Donahue, Craig J.; Panek, Mary G.

    1985-01-01

    Background information and procedures are provided for a lecture experiment which uses indicators to illustrate the concept of differing buffer capacities by titrating acetic acid/sodium acetate buffers with 1.0 molar hydrochloric acid and 1.0 molar sodium hydroxide. A table with data used to plot the titration curve is included. (JN)

  10. Differential titration of bases in glacial acetic acid.

    PubMed

    Castellano, T; Medwick, T; Shinkai, J H; Bailey, L

    1981-01-01

    A study of bases in acetic acid and their differential titration was carried out. The overall basicity constants for 20 bases were measured in acetic acid, and the differential titration of five binary mixtures of variable delta pKb values in acetic acid was followed using a glass electrode-modified calomel electrode system. Agreement with literature values was good. A leveling diagram was constructed that indicated that bases stronger than aqueous pKb 10 are leveled to an acetous pKb 5.69, whereas weaker bases are not leveled but instead exhibit their own intrinsic basicity, with the acetous pKb to aqueous pKb values being linearly related (slope 1.18, correlation coefficient 0.962). A minimum acetous delta pKb of four units is required for the satisfactory differential titration of two bases in acetic acid.

  11. Genetic dissection of acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Geng, Peng; Xiao, Yin; Hu, Yun; Sun, Haiye; Xue, Wei; Zhang, Liang; Shi, Gui-Yang

    2016-09-01

    Dissection of the hereditary architecture underlying Saccharomyces cerevisiae tolerance to acetic acid is essential for ethanol fermentation. In this work, a genomics approach was used to dissect hereditary variations in acetic acid tolerance between two phenotypically different strains. A total of 160 segregants derived from these two strains were obtained. Phenotypic analysis indicated that the acetic acid tolerance displayed a normal distribution in these segregants, and suggested that the acetic acid tolerant traits were controlled by multiple quantitative trait loci (QTLs). Thus, 220 SSR markers covering the whole genome were used to detect QTLs of acetic acid tolerant traits. As a result, three QTLs were located on chromosomes 9, 12, and 16, respectively, which explained 38.8-65.9 % of the range of phenotypic variation. Furthermore, twelve genes of the candidates fell into the three QTL regions by integrating the QTL analysis with candidates of acetic acid tolerant genes. These results provided a novel avenue to obtain more robust strains.

  12. Citric acid ingestion: a life-threatening cause of metabolic acidosis.

    PubMed

    DeMars, C S; Hollister, K; Tomassoni, A; Himmelfarb, J; Halperin, M L

    2001-11-01

    We present a case that illustrates the acute (<6 hours) metabolic and hemodynamic effects of the ingestion of a massive oral citric acid load. The principal findings included metabolic acidosis accompanied by an increase in the plasma anion gap that was not caused by L -lactic acidosis, hyperkalemia, and the abrupt onset of hypotension. A unique feature was a dramatic clinical improvement when ionized calcium was infused. The case illustrates the importance of considering the properties of the conjugate base (anion) of the added acid because, in this instance, the citrate anion had a unique and life-threatening consequence (lower ionized calcium level) that was rapidly reversible.

  13. Geobiochemistry of metabolism: Standard state thermodynamic properties of the citric acid cycle

    NASA Astrophysics Data System (ADS)

    Canovas, Peter A.; Shock, Everett L.

    2016-12-01

    Integrating microbial metabolism into geochemical modeling allows assessments of energy and mass transfer between the geosphere and the microbial biosphere. Energy and power supplies and demands can be assessed from analytical geochemical data given thermodynamic data for compounds involved in catabolism and anabolism. Results are reported here from a critique of the available standard state thermodynamic data for organic acids and acid anions involved in the citric acid cycle (also known as the tricarboxylic acid cycle or the Krebs cycle). The development of methods for estimating standard state data unavailable from experiments is described, together with methods to predict corresponding values at elevated temperatures and pressures using the revised Helgeson-Kirkham-Flowers (HKF) equation of state for aqueous species. Internal consistency is maintained with standard state thermodynamic data for organic and inorganic aqueous species commonly used in geochemical modeling efforts. Standard state data and revised-HKF parameters are used to predict equilibrium dissociation constants for the organic acids in the citric acid cycle, and to assess standard Gibbs energies of reactions for each step in the cycle at elevated temperatures and pressures. The results presented here can be used with analytical data from natural and experimental systems to assess the energy and power demands of microorganisms throughout the habitable ranges of pressure and temperature, and to assess the consequences of abiotic organic compound alteration processes at conditions of subsurface aquifers, sedimentary basins, hydrothermal systems, meteorite parent bodies, and ocean worlds throughout the solar system.

  14. Citric acid traps to replace sulphuric acid in the ammonia diffusion of dilute water samples for 15N analysis.

    PubMed

    Schleppi, Patrick; Bucher-Wallin, Inga; Saurer, Matthias; Jäggi, Maya; Landolt, Werner

    2006-01-01

    The analysis of 15N in aqueous samples requires the concentration of dissolved nitrogen (N) into a small volume that can be analysed by mass spectrometry. This is conveniently achieved by the NH3 diffusion technique, where NH4+ is captured on small acidified filters enclosed in PTFE. NO3- can be analysed the same way by reducing it to NH4+ with Devarda's alloy. H2SO4 is commonly used for the acidification of the filters. During combustion, however, this acid leads to the production of SO2 and elemental sulphur, which both have detrimental effects on the mass spectrometer. We propose here to replace H2SO4 with citric acid because it is combusted completely to CO2 and H2O in the elemental analyser before entering the mass spectrometer. Citric acid was found to give comparable results in terms of N recovery and 15N values, both for NH4+ and for NO3- samples. Blank samples revealed that N contamination was slightly lower using citric instead of sulphuric acid as acidifier of the glass filters. NH4+ samples first concentrated over cation-exchange columns were strongly acidic and several methods were tested to raise the pH for the subsequent diffusion. These samples gave incomplete N recoveries, but this problem was independent of the acid used on the filters and of the final pH of the sample. Complete recovery was achieved only by increasing the volume of the eluate from the columns. Citric acid can thus generally be recommended instead of H2SO4 for ammonia diffusion.

  15. Use of ascorbic and citric acids to increase dialyzable iron from vinal (Prosopis ruscifolia) pulp.

    PubMed

    Bernardi, C; Freyre, M; Sambucetti, M E; Pirovani, M E

    2004-01-01

    Vinal (Prosopis ruscifolia) is an ecologically important wild leguminous tree that grows spontaneously in Argentine deforested lands, the fruit of which is consumed by humans and animals. Because considerable iron content with low to intermediate availability has been previously reported in vinal pulps, its enhancement would be of interest. Iron availability was determined as iron dialyzability using an in vitro technique. Response surface methodology was used to evaluate iron availability increase after adding ascorbic and/or citric acids to vinal pulp at different mM acid/mM Fe ratios. Those ratios ranged from 0.05:1 to 9.95:1 and from 0.5:1 to 99.5:1 for ascorbic acid/Fe (AA:Fe) and citric acid/Fe (CA:Fe), respectively. The obtained second- and first-order polynomial equations showed that AA:Fe and CA:Fe molar ratios linear terms had a significant effect on iron dialyzability increase (P < or = 0.05). It was possible to enhance iron availability to a maximum of 4.6 times. Additional confirmatory experiments were made adding the same organic acids to different vinal pulps and to a traditional cake prepared with vinal pulp called "patay." There were no significant differences (p > 0.05) between predicted values obtained by the model and experimental results.

  16. Enhancing the functionality of biobased polyester coating resins through modification with citric acid.

    PubMed

    Noordover, Bart A J; Duchateau, Robbert; van Benthem, Rolf A T M; Ming, Weihua; Koning, Cor E

    2007-12-01

    Citric acid (CA) was evaluated as a functionality-enhancing monomer in biobased polyesters suitable for coating applications. Model reactions of CA with several primary and secondary alcohols and diols, including the 1,4:3,6-dianhydrohexitols, revealed that titanium(IV) n-butoxide catalyzed esterification reactions involving these compounds proceed at relatively low temperatures, often via anhydride intermediates. Interestingly, the facile anhydride formation from CA at temperatures around CA's melting temperature ( T m = 153 degrees C) proved to be crucial in modifying sterically hindered secondary hydroxyl end groups. OH-functional polyesters were reacted with CA in the melt between 150 and 165 degrees C, yielding slightly branched carboxylic acid functional materials with strongly enhanced functionality. The acid/epoxy curing reaction of the acid-functional polymers was simulated with a monofunctional glycidyl ether. Finally, the CA-modified polyesters were applied as coatings, using conventional cross-linking agents. The formulations showed rapid curing, resulting in chemically and mechanically stable coatings. These results demonstrate that citric acid can be applied in a new way, making use of its anhydride formation to functionalize OH-functional polyesters, which is an important new step toward fully biobased coating systems.

  17. Antiplatelet activity of a novel formula composed of malic acid, succinic acid and citric acid from Cornus officinalis fruit.

    PubMed

    Zhang, Qi-Chun; Zhao, Yue; Bian, Hui-Min

    2013-12-01

    The present study investigated the antiplatelet activity of a novel formula composed by malic acid, succinic acid and citric acid with a ratio of 3:2:2. The IC50 and inhibition of platelet aggregation induced by various agonists as well as platelet adhesion were evaluated in vitro. Of note, the IC50 for the formula inhibiting adenosine diphosphate (ADP)-induced platelet aggregation was 0.185 mg/mL. Meanwhile, the formula showed more potent inhibitory effect on platelet aggregation induced by ADP and thrombin than the single component at same concentration (0.37 mg/mL). Moreover, the formula could prevent platelet adhesion significantly without influence on platelet viability.

  18. Model-based design of a pilot-scale simulated moving bed for purification of citric acid from fermentation broth.

    PubMed

    Wu, Jinglan; Peng, Qijun; Arlt, Wolfgang; Minceva, Mirjana

    2009-12-11

    One of the conventional processes used for the recovery of citric acid from its fermentation broth is environmentally harmful and cost intensive. In this work an innovative benign process, which comprises simulated moving bed (SMB) technology and use of a tailor-made tertiary poly(4-vinylpyridine) (PVP) resin as a stationary phase is proposed. This paper focuses on a model-based design of the operation conditions for an existing pilot-scale SMB plant. The SMB unit is modeled on the basis of experimentally determined hydrodynamics, thermodynamics and mass transfer characteristics in a single chromatographic column. Three mathematical models are applied and validated for the prediction of the experimentally attained breakthrough and elution profiles of citric acid and the main impurity component (glucose). The transport dispersive model was selected for the SMB simulation and design studies, since it gives a satisfactory prediction of the elution profiles within acceptable computational time. The equivalent true moving bed (TMB) and SMB models give a good prediction of the experimentally attained SMB separation performances, obtained with a real clarified and concentrated fermentation broth as a feed mixture. The SMB separation requirements are set to at least 99.8% citric acid purity and 90% citric acid recovery in the extract stream. The complete regeneration in sections 1 and 4 is unnecessary. Therefore the net flow rates in all four SMB sections have been considered in the unit design. The influences of the operating conditions (the flow rate in each section, switching time and unit configuration) on the SMB performances were investigated systematically. The resulting SMB design provides 99.8% citric acid purity and 97.2% citric acid recovery in the extract. In addition the citric acid concentration in the extract is a half of its concentration in the pretreated fermentation broth (feed).

  19. Comparison of sodium acid sulfate to citric acid to inhibit browning of fresh-cut potatoes.

    PubMed

    Calder, Beth L; Kash, Emily A; Davis-Dentici, Katherine; Bushway, Alfred A

    2011-04-01

    Sodium acid sulfate (SAS) dip treatments were evaluated against a distilled water control and citric acid (CA) to compare its effectiveness in reducing enzymatic browning of raw, French-fry cut potatoes. Two separate studies were conducted with dip concentrations ranging from 0%, 1%, and 3% in experiment 1 to 0%, 2%, and 2.5% in experiment 2 to determine optimal dip concentrations. Russet Burbank potatoes were peeled, sliced, and dipped for 1 min and stored at 3 °C. Color, texture, fry surface pH, and microbiological analyses were conducted on days 0, 7, and 14. The 3% SAS- and CA-treated samples had significantly (p<0.0001) lower pH levels on fry surfaces than all other treatments. Both acidulants had significantly (p≤0.05) lower aerobic plate counts compared to controls in both studies by day 7. However, SAS appeared to be the most effective at the 3% level in maintaining a light fry color up to day 14 and had the highest L-values than all other treatments. The 3% SAS-treated fry slices appeared to have the least change in textural properties over storage time, having a significantly (p=0.0002) higher force value (kg force [kgf]) than the other treatments during experiment 1, without any signs of case-hardening that appeared in the control and CA-treated samples. SAS was just as comparable to CA in reducing surface fry pH and also lowering microbial counts over storage time. According to the results, SAS may be another viable acidulant to be utilized in the fresh-cut fruit and vegetable industry.

  20. Monitoring of the fermentation media of citric acid by the trimethylsilyl derivatives of the organic acids formed.

    PubMed

    Ghassempour, Alireza; Nojavan, Saeed; Talebpour, Zahra; Amiri, Ali Asghar; Najafi, Nahid Mashkouri

    2004-10-20

    In this approach, a derivatization method is described for monitoring of organic acids in fermentation media without any separation step. The aqueous phase of fermentation media was evaporated and heated in a silylation reagent to form trimethylsilyl (TMS) derivatives. The silylated compounds are analyzed by 29Si nuclear magnetic resonance (29Si NMR) and gas chromatography-mass spectrometry (GC-MS). 29Si NMR can qualitatively monitor the components produced in the Krebs cycle. Quantification of these compounds is investigated by using selected ion monitoring mode of mass spectrometry. In this mode, mass to charge (m/z) values of their [M - 15]+ ions, which are 465, 275, 247, 221, 335, 251, and 313 of TMS derivatives of citric, alpha-ketoglutaric, succinic, fumaric, l-malic, oxaloacetic, and palmitic (as an internal standard), acids, respectively, are used. The limit of detection and the linear working range for derivatized citric acid were found to be 0.1 mg L(-1) and 10-3 x 10(4) mg L(-1). The relative standard deviation of the method for five replicates was 2.1%. The average recovery efficiency for citric acid added to culture media was approximately 97.2%. Quantitative results of GC-MS are compared with those obtained by an ultraviolet-visible method.

  1. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    NASA Technical Reports Server (NTRS)

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  2. Gene identification and functional analysis of methylcitrate synthase in citric acid-producing Aspergillus niger WU-2223L.

    PubMed

    Kobayashi, Keiichi; Hattori, Takasumi; Honda, Yuki; Kirimura, Kohtaro

    2013-01-01

    Methylcitrate synthase (EC 2.3.3.5; MCS) is a key enzyme of the methylcitric acid cycle localized in the mitochondria of eukaryotic cells and related to propionic acid metabolism. In this study, cloning of the gene mcsA encoding MCS and heterologous expression of it in Escherichia coli were performed for functional analysis of the MCS of citric acid-producing Aspergillus niger WU-2223L. Only one copy of mcsA (1,495 bp) exists in the A. niger WU-2223L chromosome. It encodes a 51-kDa polypeptide consisting of 465 amino acids containing mitochondrial targeting signal peptides. Purified recombinant MCS showed not only MCS activity (27.6 U/mg) but also citrate synthase (EC 2.3.3.1; CS) activity (26.8 U/mg). For functional analysis of MCS, mcsA disruptant strain DMCS-1, derived from A. niger WU-2223L, was constructed. Although A. niger WU-2223L showed growth on propionate as sole carbon source, DMCS-1 showed no growth. These results suggest that MCS is an essential enzyme in propionic acid metabolism, and that the methylcitric acid cycle operates functionally in A. niger WU-2223L. To determine whether MCS makes a contribution to citric acid production, citric acid production tests on DMCS-1 were performed. The amount of citric acid produced from glucose consumed by DMCS-1 in citric acid production medium over 12 d of cultivation was on the same level to that by WU-2223L. Thus it was found that MCS made no contribution to citric acid production from glucose in A. niger WU-2223L, although MCS showed CS activity.

  3. Mast cell mediators in citric acid-induced airway constriction of guinea pigs

    SciTech Connect

    Lin, C.-H.; Lai, Y.-L. . E-mail: tiger@ha.mc.ntu.edu.tw

    2005-08-15

    We demonstrated previously that mast cells play an important role in citric acid (CA)-induced airway constriction. In this study, we further investigated the underlying mediator(s) for this type of airway constriction. At first, to examine effects caused by blocking agents, 67 young Hartley guinea pigs were divided into 7 groups: saline + CA; methysergide (serotonin receptor antagonist) + CA; MK-886 (leukotriene synthesis inhibitor) + CA; mepyramine (histamine H{sub 1} receptor antagonist) + CA; indomethacin (cyclooxygenase inhibitor) + CA; cromolyn sodium (mast cell stabilizer) + CA; and compound 48/80 (mast cell degranulating agent) + CA. Then, we tested whether leukotriene C{sub 4} (LTC{sub 4}) or histamine enhances CA-induced airway constriction in compound 48/80-pretreated guinea pigs. We measured dynamic respiratory compliance (Crs) and forced expiratory volume in 0.1 s (FEV{sub 0.1}) during either baseline or recovery period. In addition, we detected histamine level, an index of pulmonary mast cell degranulation, in bronchoalveolar lavage (BAL) samples. Citric acid aerosol inhalation caused decreases in Crs and FEV{sub 0.1}, indicating airway constriction in the control group. This airway constriction was significantly attenuated by MK-886, mepyramine, cromolyn sodium, and compound 48/80, but not by either methysergide or indomethacin. Both LTC{sub 4} and histamine infusion significantly increased the magnitude of CA-induced airway constriction in compound 48/80-pretreated guinea pigs. Citric acid inhalation caused significant increase in histamine level in the BAL sample, which was significantly suppressed by compound 48/80. These results suggest that leukotrienes and histamine originating from mast cells play an important role in CA inhalation-induced noncholinergic airway constriction.

  4. Viscometric study of chitosan solutions in acetic acid/sodium acetate and acetic acid/sodium chloride.

    PubMed

    Costa, Cristiane N; Teixeira, Viviane G; Delpech, Marcia C; Souza, Josefa Virginia S; Costa, Marcos A S

    2015-11-20

    A viscometric study was carried out at 25°C to assess the physical-chemical behavior in solution and the mean viscometric molar mass (M¯v) of chitosan solutions with different deacetylation degrees, in two solvent mixtures: medium 1-acetic acid 0.3mol/L and sodium acetate 0.2mol/L; and medium 2-acetic acid 0.1mol/L and sodium chloride 0.2mol/L. Different equations were employed, by graphical extrapolation, to calculate the intrinsic viscosities [η] and the viscometric constants, to reveal the solvent's quality: Huggins (H), Kraemer (K) and Schulz-Blaschke (SB). For single-point determination, the equations used were SB, Solomon-Ciuta (SC) and Deb-Chanterjee (DC), resulting in a faster form of analysis. The values of ̄M¯v were calculated by applying the equation of Mark-Houwink-Sakurada. The SB and SC equations were most suitable for single-point determination of [η] and ̄M¯v and the Schulz-Blachke constant (kSB), equal to 0.28, already utilized for various systems, can also be employed to analyze chitosan solutions under the conditions studied.

  5. Recovery of acetic acid from waste streams by extractive distillation.

    PubMed

    Demiral, H; Yildirim, M Ercengiz

    2003-01-01

    Wastes have been considered to be a serious worldwide environmental problem in recent years. Because of increasing pollution, these wastes should be treated. However, industrial wastes can contain a number of valuable organic components. Recovery of these components is important economically. Using conventional distillation techniques, the separation of acetic acid and water is both impractical and uneconomical, because it often requires large number of trays and a high reflux ratio. In practice special techniques are used depending on the concentration of acetic acid. Between 30 and 70% (w/w) acetic acid contents, extractive distillation was suggested. Extractive distillation is a multicomponent-rectification method similar in purpose to azeotropic distillation. In extractive distillation, to a binary mixture which is difficult or impossible to separate by ordinary means, a third component termed an entrainer is added which alters the relative volatility of the original constituents, thus permitting the separation. In our department acetic acid is used as a solvent during the obtaining of cobalt(III) acetate from cobalt(II) acetate by an electrochemical method. After the operation, the remaining waste contains acetic acid. In thiswork, acetic acid which has been found in this waste was recovered by extractive distillation. Adiponitrile and sulfolane were used as high boiling solvents and the effects of solvent feed rate/solution feed rate ratio and type were investigated. According to the experimental results, it was seem that the recovery of acetic acid from waste streams is possible by extractive distillation.

  6. The Role of Citric Acid in Perfecting Platinum Monolayer on Palladium Nanoparticles during the Surface Limited Redox Replacement Reaction

    DOE PAGES

    Zhu, Shangqian; Yue, Jeffrey; Qin, Xueping; ...

    2016-07-28

    Cu-mediated-Pt-displacement method that involves the displacement of an underpotentially deposited (UPD) Cu monolayer by Pt has been extensively studied to prepare core-shell catalysts. It has been found that Pt clusters instead of a uniform Pt monolayer were formed in the gram batch synthesis. With a suitable surfactant, such as citric acid, the Pt shell could be much more uniform. In this study, the role of citric acid in controlling the Cu-Pt displacement reaction kinetics was studied by electrochemical techniques and theoretical approaches. It was found that citric acid strongly adsorbed on Pd, Pt, Cu/Pd, and Pt/Pd surfaces, especially in themore » double layer region in acid solutions. The strong adsorption of citric acid slowed down the Cu-Pt displacement reaction. The main characteristics of such strong interaction most likely arises from the OH groups in the citric acid molecule according to the molecular dynamics simulation results.« less

  7. Analysis of the citric acid cycle intermediates using gas chromatography-mass spectrometry.

    PubMed

    Kombu, Rajan S; Brunengraber, Henri; Puchowicz, Michelle A

    2011-01-01

    Researchers view analysis of the citric acid cycle (CAC) intermediates as a metabolomic approach to identifying unexpected correlations between apparently related and unrelated pathways of metabolism. Relationships of the CAC intermediates, as measured by their concentrations and relative ratios, offer useful information to understanding interrelationships between the CAC and metabolic pathways under various physiological and pathological conditions. This chapter presents a relatively simple method that is sensitive for simultaneously measuring concentrations of CAC intermediates (relative and absolute) and other related intermediates of energy metabolism using gas chromatography-mass spectrometry.

  8. Micelles Protect and Concentrate Activated Acetic Acid

    NASA Astrophysics Data System (ADS)

    Todd, Zoe; House, C.

    2014-01-01

    As more and more exoplanets are discovered and the habitability of such planets is considered, one can turn to searching for the origin of life on Earth in order to better understand what makes a habitable planet. Activated acetic acid, or methyl thioacetate, has been proposed to be central to the origin of life on Earth, and also as an important energy currency molecule in early cellular evolution. We have investigated the hydrolysis of methyl thioacetate under various conditions. Its uncatalyzed rate of hydrolysis is about three orders of magnitude faster (K = 0.00663 s^-1; 100°C, pH 7.5, concentration = 0.33mM) than published rates for its catalyzed production making it unlikely to accumulate under prebiotic conditions. However, we also observed that methyl thioacetate was protected from hydrolysis when inside its own hydrophobic droplets. We found that methyl thioacetate protection from hydrolysis was also possible in droplets of hexane and in the membranes of nonanoic acid micelles. Thus, the hydrophobic regions of prebiotic micelles and early cell membranes could have offered a refuge for this energetic molecule increasing its lifetime in close proximity to the reactions for which it would be needed. Methyl thioacetate could thus be important for the origin of life on Earth and perhaps for better understanding the potential habitability of other planets.

  9. Influence of barley grain particle size and treatment with citric acid on digestibility, ruminal fermentation and microbial protein synthesis in Holstein calves.

    PubMed

    Kazemi-Bonchenari, M; Salem, A Z M; López, S

    2017-01-18

    Chemical and physical treatments of barley grain increase ruminally resistant starch and can improve the rumen fermentation pattern. The objective of the present study was to evaluate the effects of chemical (addition of citric acid, CA) and physical (grinding to two different particle sizes, PS) treatment of barley grain on performance, rumen fermentation, microbial protein yield in the rumen and selected blood metabolites in growing calves. In all, 28 male Holstein calves (172±5.1 kg initial BW) were used in a complete randomised design with a factorial arrangement of 2 barley grain particle sizes×2 levels of citric acid. The diets were as follows: (i) small PS (average 1200 µm) barley grain soaked in water (no CA addition); (ii) small PS barley grain soaked in a CA solution (adding 20 g CA/kg barley); (iii) large PS (average 2400 µm) barley grain soaked in water (no citric acid addition) and (iv) large PS barley grain soaked in a citric acid solution (adding 20 g CA/kg barley). Barley grain was then incorporated at 35% in a total mixed ration and fed to the calves for 11 weeks. Feeding small PS barley decreased feed intake (P=0.02) and average daily weight gain (P=0.01). The addition of CA to barley grain did not affect intake but increased weight gain (P0.05). However, the molar proportion of propionate was increased (P=0.03) when barley was more finely ground, and that of acetate was increased (P=0.04) when CA was added to barley grain. The ruminal concentration of ammonia nitrogen was increased (P<0.01) and microbial nitrogen synthesis in the rumen tended to decrease by adding CA to barley. Treating barley grain with citric acid increased fibre digestibility of total mixed rations, attenuated the decrease in ruminal pH, and improved weight gain and feed efficiency in male Holstein growing calves fed a high-cereal diet (550 g cereal grain/kg diet).

  10. Biological Function of Acetic Acid-Improvement in Obesity and Glucose Tolerance by Acetic Acid in Type 2 Diabetic Rats.

    PubMed

    Yamashita, Hiromi

    2016-07-29

    Fatty acids derived from adipose tissue are oxidized by β-oxidation to form ketone bodies as final products under the starving condition. Previously, we found that free acetic acid was formed concomitantly with the production of ketone bodies in isolated rat liver perfusion, and mitochondrial acetyl CoA hydrolase was appeared to be involved with the acetic acid production. It was revealed that acetic acid was formed as a final product of enhanced β-oxidation of fatty acids and utilized as a fuel in extrahepatic tissues under the starving condition. Under the fed condition, β-oxidation is suppressed and acetic acid production is decreased. When acetic acid was taken daily by obesity-linked type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats under the fed condition, it protected OLETF rats against obesity. Furthermore, acetic acid contributed to protect from the accumulation of lipid in the liver as well as abdominal fat in OLETF rats. Transcripts of lipogenic genes in the liver were decreased, while transcripts of myoglobin and Glut4 genes in abdominal muscles were increased in the acetic acid-administered OLETF rats. It is indicated that exogenously administered acetic acid would have effects on lipid metabolism in both the liver and the skeletal muscles, and have function that works against obesity and obesity-linked type 2 diabetes.

  11. Characterization and functional properties of mango peel pectin extracted by ultrasound assisted citric acid.

    PubMed

    Wang, Miaomiao; Huang, Bohui; Fan, Chuanhui; Zhao, Kaili; Hu, Hao; Xu, Xiaoyun; Pan, Siyi; Liu, Fengxia

    2016-10-01

    Pectin was extracted from 'Tainong No. 1' mango peels, using a chelating agent-citric acid as extraction medium by ultrasound-assisted extraction (UAE) and conventional extraction (CE) at temperatures of 20 and 80°C. Chemical structures, rheological and emulsifying properties of mango peel pectins (MPPs) were comparatively studied with laboratory grade citrus pectin (CP). All MPPs exhibited higher protein content (4.74%-5.94%), degree of methoxylation (85.43-88.38%), average molecular weight (Mw, 378.4-2858kDa) than the CP, but lower galacuronic acid content (GalA, 52.21-53.35%). CE or UAE at 80°C resulted in significantly higher pectin yield than those at 20°C, while the extraction time for UAE-80°C (15min) was significantly shorter compared to CE-80°C (2h) with comparable pectin yield. Moreover, MPPs extracted at 80°C were observed with higher GalA and protein content, higher Mw, resulting in higher viscosity, better emulsifying capacity and stability, as compared to those extracted at 20°C and the CP. Therefore, these results suggested that MPPs from 'Tainong No. 1' may become a highly promising pectin with good thickening and emulsifying properties, using ultrasound-assisted citric acid as an efficient and eco-friendly extraction method.

  12. Periodontal healing following guided tissue regeneration with citric acid and fibronectin application.

    PubMed

    Caffesse, R G; Nasjleti, C E; Anderson, G B; Lopatin, D E; Smith, B A; Morrison, E C

    1991-01-01

    This study was undertaken to determine the effects of guided tissue regeneration (GTR) with and without citric acid conditioning and autologous fibronectin application. The study subjects were four female beagle dogs with spontaneous periodontitis. The dogs were given thorough root debridement and 4 weeks later, mucoperiosteal flaps were raised on both sides of the mandible involving the 2nd, 3rd, and 4th premolar and 1st molar teeth. After debridement, notches were placed on the roots at the level of supporting bone. Citric acid (pH 1) was topically applied for 3 minutes on the exposed root surfaces of one side (experimental). The roots were irrigated with normal saline solution. Both the root surfaces and the inner surface of the flap were then bathed in autologous fibronectin in saline. Following this, Gore-Tex periodontal material was adapted to the roots of each tooth and sutured. The contralateral side, serving as control, was treated by surgery and application of Gore-Tex periodontal material only. All membranes were removed 1 month after surgery, and the dogs sacrificed at 3 months. Both mesio-distal and bucco-lingual microscopic histological sections were evaluated by descriptive histology, and linear measurements and surface area determination of the furcal tissues were made. Periodontal healing following the use of GTR procedure resulted in an increase in connective tissue and alveolar bone regeneration. Adjunctive critic acid plus autologous fibronectin produced slightly better results, but these differences were not statistically significant for this sample.

  13. Trehalose accumulation enhances tolerance of Saccharomyces cerevisiae to acetic acid.

    PubMed

    Yoshiyama, Yoko; Tanaka, Koichi; Yoshiyama, Kohei; Hibi, Makoto; Ogawa, Jun; Shima, Jun

    2015-02-01

    Trehalose confers protection against various environmental stresses on yeast cells. In this study, trehalase gene deletion mutants that accumulate trehalose at high levels showed significant stress tolerance to acetic acid. The enhancement of trehalose accumulation can thus be considered a target in the breeding of acetic acid-tolerant yeast strains.

  14. Influence of concentration, time and method of application of citric acid and sodium citrate in root conditioning

    PubMed Central

    CAVASSIM, Rodrigo; LEITE, Fábio Renato Manzolli; ZANDIM, Daniela Leal; DANTAS, Andrea Abi Rached; RACHED, Ricardo Samih Georges Abi; SAMPAIO, José Eduardo Cezar

    2012-01-01

    Objective The aim of this study was to establish the parameters of concentration, time and mode of application of citric acid and sodium citrate in relation to root conditioning. Material and Methods A total of 495 samples were obtained and equally distributed among 11 groups (5 for testing different concentrations of citric acid, 5 for testing different concentrations of sodium citrate and 1 control group). After laboratorial processing, the samples were analyzed under scanning electron microscopy. A previously calibrated and blind examiner evaluated micrographs of the samples. Non-parametric statistical analysis was performed to analyze the data obtained. Results Brushing 25% citric acid for 3 min, promoted greater exposure of collagen fibers in comparison with the brushing of 1% citric acid for 1 minute and its topical application at 1% for 3 min. Sodium citrate exposed collagen fibers in a few number of samples. Conclusion Despite the lack of statistical significance, better results for collagen exposure were obtained with brushing application of 25% citric acid for 3 min than with other application parameter. Sodium citrate produced a few number of samples with collagen exposure, so it is not indicated for root conditioning. PMID:22858707

  15. Fabrication of calcium phosphate-calcium sulfate injectable bone substitute using hydroxy-propyl-methyl-cellulose and citric acid.

    PubMed

    Thai, Van Viet; Lee, Byong-Taek

    2010-06-01

    In this study, an injectable bone substitute (IBS) consisting of citric acid, chitosan, and hydroxyl propyl methyl cellulose (HPMC) as the liquid phase and tetra calcium phosphate (TTCP), dicalcium phosphate dihydrate (DCPD) and calcium sulfate dehydrate (CSD, CaSO4 x 2H2O) powders as the solid phase, were fabricated. Two groups were classified based on the percent of citric acid in the liquid phase (20, 40 wt%). In each groups, the HPMC percentage was 0, 2, and 4 wt%. An increase in compressive strength due to changes in morphology was confirmed by scanning electron microscopy images. A good conversion rate of HAp at 20% citric acid was observed in the XRD profiles. In addition, HPMC was not obviously affected by apatite formation. However, both HPMC and citric acid increased the compressive strength of IBS. The maximum compressive strength for IBS was with 40% citric acid and 4% HPMC after 14 days of incubation in 100% humidity at 37 degrees C.

  16. Fermentation of lignocellulosic sugars to acetic acid by Moorella thermoacetica.

    PubMed

    Ehsanipour, Mandana; Suko, Azra Vajzovic; Bura, Renata

    2016-06-01

    A systematic study of bioconversion of lignocellulosic sugars to acetic acid by Moorella thermoacetica (strain ATCC 39073) was conducted. Four different water-soluble fractions (hydrolysates) obtained after steam pretreatment of lignocellulosic biomass were selected and fermented to acetic acid in batch fermentations. M. thermoacetica can effectively ferment xylose and glucose in hydrolysates from wheat straw, forest residues, switchgrass, and sugarcane straw to acetic acid. Xylose and glucose were completely utilized, with xylose being consumed first. M. thermoacetica consumed up to 62 % of arabinose, 49 % galactose and 66 % of mannose within 72 h of fermentation in the mixture of lignocellulosic sugars. The highest acetic acid yield was obtained from sugarcane straw hydrolysate, with 71 % of theoretical yield based on total sugars (17 g/L acetic acid from 24 g/L total sugars). The lowest acetic acid yield was observed in forest residues hydrolysate, with 39 % of theoretical yield based on total sugars (18 g/L acetic acid from 49 g/L total sugars). Process derived compounds from steam explosion pretreatment, including 5-hydroxymethylfurfural (0.4 g/L), furfural (0.1 g/L) and total phenolics (3 g/L), did not inhibit microbial growth and acetic acid production yield. This research identified two major factors that adversely affected acetic acid yield in all hydrolysates, especially in forest residues: (i) glucose to xylose ratio and (ii) incomplete consumption of arabinose, galactose and mannose. For efficient bioconversion of lignocellulosic sugars to acetic acid, it is imperative to have an appropriate balance of sugars in a hydrolysate. Hence, the choice of lignocellulosic biomass and steam pretreatment design are fundamental steps for the industrial application of this process.

  17. Reconsideration of the significance of substrate-level phosphorylation in the citric acid cycle*.

    PubMed

    Lambeth, David O

    2006-01-01

    For nearly 50 years, students of metabolism in animals have been taught that a substrate-level phosphorylation in the Krebs citric acid cycle produces GTP that subsequently undergoes a transphosphorylation with ADP catalyzed by nucleoside diphosphate kinase. Research in the past decade has revealed that animals also express an ADP-forming succinate-CoA ligase whose activity exceeds that of the GDP-forming enzyme in some tissues. Here I argue that the primary fate of GTP is unlikely to be transphosphorylation with ADP. Rather, two succinate-CoA ligases with different nucleotide specificities have evolved to better integrate and regulate the central metabolic pathways that involve the citric acid cycle. The products of substrate-level phosphorylation, ATP and/or GTP, may represent a pool of nucleotide that has a different phosphorylation potential than the ATP made by oxidative phosphorylation and may be channeled to meet specific needs within mitochondria and the cell. Further research is needed to determine the applicable mechanisms and how they vary in tissues.

  18. Preliminary study on preparation of BCNO phosphor particles using citric acid as carbon source

    SciTech Connect

    Nuryadin, Bebeh W.; Pratiwi, Tripuspita; Faryuni, Irfana D.; Iskandar, Ferry Abdullah, Mikrajuddin; Khairurrijal; Ogi, Takashi; Okuyama, Kikuo

    2015-04-16

    A citric acid was used as a carbon source in the preparation of boron carbon oxy-nitride (BCNO) phosphor particles by a facile process. The preparation process was conducted at relatively low temperature 750 °C and at ambient pressure. The prepared BCNO phosphors showed a high photoluminescence (PL) performance at peak emission wavelength of 470 nm under excitation by a UV light 365 nm. The effects of carbon/boron and nitrogen/boron molar ratios on the PL properties were also investigated. The result showed that the emission spectra with a wavelength peak ranging from 444 nm to 496 nm can be obtained by varying carbon/boron ratios from 0.1 to 0.9. In addition, the observations showed that the BCNO phosphor material has two excitation peaks located at the 365 nm (UV) and 420 nm (blue). Based on these observations, we believe that the citric acid derived BCNO phosphor particles can be a promising inexpensive material for phosphor conversion-based white LED.

  19. Enhanced biocompatibility and antibacterial property of polyurethane materials modified with citric acid and chitosan.

    PubMed

    Liu, Tian-Ming; Wu, Xing-Ze; Qiu, Yun-Ren

    2016-08-01

    Citric acid (CA) and chitosan (CS) were covalently immobilized on polyurethane (PU) materials to improve the biocompatibility and antibacterial property. The polyurethane pre-polymer with isocyanate group was synthesized by one pot method, and then grafted with citric acid, followed by blending with polyethersulfone (PES) to prepare the blend membrane by phase-inversion method so that chitosan can be grafted from the membrane via esterification and acylation reactions eventually. The native and modified membranes were characterized by attenuated total reflectance-Fourier transform infrared spectroscope, X-ray photoelectron spectroscopy, scanning electron microscopy, water contact angle measurement, and tensile strength test. Protein adsorption, platelet adhesion, hemolysis assay, activated partial thromboplastin time, prothrombin time, thrombin time, and adsorption of Ca(2+) were executed to evaluate the blood compatibility of the membranes decorated by CA and CS. Particularly, the antibacterial activities on the modified membranes were evaluated based on a vitro antibacterial test. It could be concluded that the modified membrane had good anticoagulant property and antibacterial property.

  20. Early tissue response to citric acid-based micro- and nanocomposites

    PubMed Central

    Chung, Eun Ji; Qiu, Hongjin; Kodali, Pradeep; Yang, Scott; Sprague, Stuart M.; Hwong, James; Koh, Jason; Ameer, Guillermo A.

    2010-01-01

    Composites based on calcium phosphates and biodegradable polymers are desirable for orthopaedic applications due to their potential to mimic bone. Herein, we describe the fabrication, characterization, and in vivo response of novel citric acid-based microcomposites and nanocomposites. Poly(1,8-octanediol-co-citrate) (POC) was mixed with increasing amounts of HA nanoparticles or microparticles (up to 60 wt%), and the morphology and mechanical properties of the resulting composites were assessed. To investigate tissue response, nanocomposites, microcomposites, POC, and poly(L-lactide) (PLL) were implanted in osteochondral defects in rabbits and harvested at 6 weeks for histological evaluation. SEM confirmed increased surface roughness of microcomposites relative to nanocomposites. The mechanical properties of both types of composites increased with increasing amounts of HA (8–328 MPa), although nanocomposites with 60 wt.% HA displayed the highest strength and stiffness. Based on tissue-implant interfacial assessments, all implants integrated well with the surrounding bone and cartilage with no evidence of inflammation. Both nanocomposites and microcomposites supported bone remodeling; however, nanocomposites induced more trabecular bone formation at the tissue-implant interface. The mechanical properties of citric acid-based composites are within the range of human trabecular bone (1–1524 MPa, 211±78 MPa mean modulus) and tissue response was dependent on the size and content of HA, providing new perspectives of design and fabrication criteria for orthopaedic devices such as interference screws and fixation pins. PMID:20949482

  1. Preliminary study on preparation of BCNO phosphor particles using citric acid as carbon source

    NASA Astrophysics Data System (ADS)

    Nuryadin, Bebeh W.; Pratiwi, Tripuspita; Faryuni, Irfana D.; Iskandar, Ferry; Abdullah, Mikrajuddin; Khairurrijal, Ogi, Takashi; Okuyama, Kikuo

    2015-04-01

    A citric acid was used as a carbon source in the preparation of boron carbon oxy-nitride (BCNO) phosphor particles by a facile process. The preparation process was conducted at relatively low temperature 750 °C and at ambient pressure. The prepared BCNO phosphors showed a high photoluminescence (PL) performance at peak emission wavelength of 470 nm under excitation by a UV light 365 nm. The effects of carbon/boron and nitrogen/boron molar ratios on the PL properties were also investigated. The result showed that the emission spectra with a wavelength peak ranging from 444 nm to 496 nm can be obtained by varying carbon/boron ratios from 0.1 to 0.9. In addition, the observations showed that the BCNO phosphor material has two excitation peaks located at the 365 nm (UV) and 420 nm (blue). Based on these observations, we believe that the citric acid derived BCNO phosphor particles can be a promising inexpensive material for phosphor conversion-based white LED.

  2. Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: regulating adaptation to citric acid stress.

    PubMed

    Lawrence, Clare L; Botting, Catherine H; Antrobus, Robin; Coote, Peter J

    2004-04-01

    Screening the Saccharomyces cerevisiae disruptome, profiling transcripts, and determining changes in protein expression have identified an important new role for the high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway in the regulation of adaptation to citric acid stress. Deletion of HOG1, SSK1, PBS2, PTC2, PTP2, and PTP3 resulted in sensitivity to citric acid. Furthermore, citric acid resulted in the dual phosphorylation, and thus activation, of Hog1p. Despite minor activation of glycerol biosynthesis, the inhibitory effect of citric acid was not due to an osmotic shock. HOG1 negatively regulated the expression of a number of proteins in response to citric acid stress, including Bmh1p. Evidence suggests that BMH1 is induced by citric acid to counteract the effect of amino acid starvation. In addition, deletion of BMH2 rendered cells sensitive to citric acid. Deletion of the transcription factor MSN4, which is known to be regulated by Bmh1p and Hog1p, had a similar effect. HOG1 was also required for citric acid-induced up-regulation of Ssa1p and Eno2p. To counteract the cation chelating activity of citric acid, the plasma membrane Ca(2+) channel, CCH1, and a functional vacuolar membrane H(+)-ATPase were found to be essential for optimal adaptation. Also, the transcriptional regulator CYC8, which mediates glucose derepression, was required for adaptation to citric acid to allow cells to metabolize excess citrate via the tricarboxylic acid (TCA) cycle. Supporting this, Mdh1p and Idh1p, both TCA cycle enzymes, were up-regulated in response to citric acid.

  3. Measurement of the rates of oxindole-3-acetic acid turnover, and indole-3-acetic acid oxidation in Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Nonhebel, H. M.; Bandurski, R. S. (Principal Investigator)

    1986-01-01

    Oxindole-3-acetic acid is the principal catabolite of indole-3-acetic acid in Zea mays seedlings. In this paper measurements of the turnover of oxindole-3-acetic acid are presented and used to calculate the rate of indole-3-acetic acid oxidation. [3H]Oxindole-3-acetic acid was applied to the endosperm of Zea mays seedlings and allowed to equilibrate for 24 h before the start of the experiment. The subsequent decrease in its specific activity was used to calculate the turnover rate. The average half-life of oxindole-3-acetic acid in the shoots was found to be 30 h while that in the kernels had an average half-life of 35h. Using previously published values of the pool sizes of oxindole-3-acetic acid in shoots and kernels from seedlings of the same age and variety, and grown under the same conditions, the rate of indole-3-acetic acid oxidation was calculated to be 1.1 pmol plant-1 h-1 in the shoots and 7.1 pmol plant-1 h-1 in the kernels.

  4. Synergistic antimicrobial activity of caprylic acid in combination with citric acid against both Escherichia coli O157:H7 and indigenous microflora in carrot juice.

    PubMed

    Kim, S A; Rhee, M S

    2015-08-01

    The identification of novel, effective, and non-thermal decontamination methods is imperative for the preservation of unpasteurized and fresh vegetable juices. The aim of this study was to examine the bactericidal effects of caprylic acid + citric acid against the virulent pathogen Escherichia coli O157:H7 and the endogenous microflora in unpasteurized fresh carrot juice. Carrot juice was treated with either caprylic acid, citric acid, or a combination of caprylic acid + citric acid at mild heating temperature (45 °C or 50 °C). The color of the treated carrot juice as well as microbial survival was examined over time. Combined treatment was more effective than individual treatment in terms of both color and microbial survival. Caprylic acid + citric acid treatment (each at 5.0 mM) at 50 °C for 5 min resulted in 7.46 and 3.07 log CFU/ml reductions in the E. coli O157:H7 and endogenous microflora populations, respectively. By contrast, there was no apparent reduction in either population following individual treatment. A validation assay using a low-density E. coli O157:H7 inoculum (3.31 log CFU/ml) showed that combined treatment with caprylic acid (5.0 mM) + citric acid (2.5 mM) at 50 °C for >5 min or with caprylic acid + citric acid (both at 5.0 mM) at either 45 °C or 50 °C for >5 min completely destroyed the bacteria. Combined treatment also increased the redness of the juice, which is a perceived indication of quality. Taken together, these results indicate that combined treatment with low concentrations of caprylic acid and citric acid, which are of biotic origin, can eliminate microorganisms from unpasteurized carrot juice.

  5. [On the contamination of the citric acid fermentation. I. The contamination by representatives of Enterobacteriaceae (author's transl)].

    PubMed

    Leopold, H; Trefil, L

    1979-01-01

    Among the most dangerous bacterial contaminations of the citric acid fermentation is the so-called brown contamination, which is called forth by non pathogenic representatives of Enterobacteriaceae like Escherichia coli, Aerobacter aerogenes, Enterobacter cloacae and Proteus vulgaris, while other bacteria do not produce the mentioned contamination. There is given a comprehensive characterization of the brown contamination. Enterobacteriaceae interrupt the growth of the mycelium of the mold Aspergillus niger and stop the production of citric acid, produce a characteristic repugnant smell and reduce nitrate to nitrite. In a case of weak contamination the phenomena of the brown contamination do not appear, but the yield of citric acid is rather low. The contamination may be transferred successfully within the first 24 hrs. of incubation. The effect of the bacteria is determined by their virulence and some other factors.

  6. Synthesis, spectral properties, and antitumor activity of a new axially substituted phthalocyanine complex of zirconium(IV) with citric acid.

    PubMed

    Tomachynski, Larisa A; Chernii, Victor Y; Gorbenko, Helena N; Filonenko, Valeriy V; Volkov, Sergey V

    2004-06-01

    The new axially substituted phthalocyanine (pc) complex of zirconium(IV) with citric acid is reported. It has been shown that the replacement of two Cl-atoms with two citric acid fragments takes place as the result of the reaction between [ZrCl2(pc)] and citric acid. The complex [Zr(citrate)2(pc)] was formed. The spectroscopic properties of the synthesized compound in DMSO, RPMI 1640 medium with and without fetal calf serum (FCS), H2O, and buffer (Tris) solutions have been described. Antitumor activity of this compound has been studied. The cytostatic activity was observed in the concentration range of 6.1-9.0x10(9) molecules [Zr(citrate)2(pc)]/cell and occurred in 4-6 h after treatment with [Zr(citrate)2(pc)] solution.

  7. 77 FR 72323 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-05

    ... International Trade Administration Citric Acid and Certain Citrate Salts From the People's Republic of China... certain citrate salts from the People's Republic of China for the period January 1, 2010, through December... Acid and Certain Citrate Salts from the People's Republic of China: Preliminary Results...

  8. 77 FR 47370 - Citric Acid and Certain Citrate Salts from the People's Republic of China: Intent To Rescind...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ..., sodium citrate, and potassium citrate in their unblended forms, whether dry or in solution, and regardless of packaging type. The scope also includes blends of citric acid, sodium citrate, and potassium... acid, sodium citrate, and potassium citrate constitute 40 percent or more, by weight, of the blend....

  9. Oxidation of indole-3-acetic acid and oxindole-3-acetic acid to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glucopyranoside in Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Nonhebel, H. M.; Bandurski, R. S.

    1984-01-01

    Radiolabeled oxindole-3-acetic acid was metabolized by roots, shoots, and caryopses of dark grown Zea mays seedlings to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glycopyranoside with the simpler name of 7-hydroxyoxindole-3-acetic acid-glucoside. This compound was also formed from labeled indole-3-acetic acid supplied to intact seedlings and root segments. The glucoside of 7-hydroxyoxindole-3-acetic acid was also isolated as an endogenous compound in the caryopses and shoots of 4-day-old seedlings. It accumulates to a level of 4.8 nanomoles per plant in the kernel, more than 10 times the amount of oxindole-3-acetic acid. In the shoot it is present at levels comparable to that of oxindole-3-acetic acid and indole-3-acetic acid (62 picomoles per shoot). We conclude that 7-hydroxyoxindole-3-acetic acid-glucoside is a natural metabolite of indole-3-acetic acid in Z. mays seedlings. From the data presented in this paper and in previous work, we propose the following route as the principal catabolic pathway for indole-3-acetic acid in Zea seedlings: Indole-3-acetic acid --> Oxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid-glucoside.

  10. Accelerated anaerobic dechlorination of DDT in slurry with Hydragric Acrisols using citric acid and anthraquinone-2,6-disulfonate (AQDS).

    PubMed

    Liu, Cuiying; Xu, Xianghua; Fan, Jianling

    2015-12-01

    The application of electron donor and electron shuttle substances has a vital influence on electron transfer, thus may affect the reductive dechlorination of 1,1,1-trichoro-2,2-bis(p-chlorophenyl)ethane (DDT) in anaerobic reaction systems. To evaluate the roles of citric acid and anthraquinone-2,6-disulfonate (AQDS) in accelerating the reductive dechlorination of DDT in Hydragric Acrisols that contain abundant iron oxide, a batch anaerobic incubation experiment was conducted in a slurry system with four treatments of (1) control, (2) citric acid, (3) AQDS, and (4) citric acid+AQDS. Results showed that DDT residues decreased by 78.93%-92.11% of the initial quantities after 20days of incubation, and 1,1-dichloro-2,2-bis(4-chlorophenyl)-ethane (DDD) was the dominant metabolite. The application of citric acid accelerated DDT dechlorination slightly in the first 8days, while the methanogenesis rate increased quickly, and then the acceleration effect improved after the 8th day while the methanogenesis rate decreased. The amendment by AQDS decreased the Eh value of the reaction system and accelerated microbial reduction of Fe(III) oxides to generate Fe(II), which was an efficient electron donor, thus enhancing the reductive dechlorination rate of DDT. The addition of citric acid+AQDS was most efficient in stimulating DDT dechlorination, but no significant interaction between citric acid and AQDS on DDT dechlorination was observed. The results will be of great significance for developing an efficient in situ remediation strategy for DDT-contaminated sites.

  11. Synthesis of bio-based methacrylic acid by decarboxylation of itaconic acid and citric acid catalyzed by solid transition-metal catalysts.

    PubMed

    Le Nôtre, Jérôme; Witte-van Dijk, Susan C M; van Haveren, Jacco; Scott, Elinor L; Sanders, Johan P M

    2014-09-01

    Methacrylic acid, an important monomer for the plastics industry, was obtained in high selectivity (up to 84%) by the decarboxylation of itaconic acid using heterogeneous catalysts based on Pd, Pt and Ru. The reaction takes place in water at 200-250 °C without any external added pressure, conditions significantly milder than those described previously for the same conversion with better yield and selectivity. A comprehensive study of the reaction parameters has been performed, and the isolation of methacrylic acid was achieved in 50% yield. The decarboxylation procedure is also applicable to citric acid, a more widely available bio-based feedstock, and leads to the production of methacrylic acid in one pot in 41% selectivity. Aconitic acid, the intermediate compound in the pathway from citric acid to itaconic acid was also used successfully as a substrate.

  12. On a hypothetical generational relationship between HCN and constituents of the reductive citric acid cycle.

    PubMed

    Eschenmoser, Albert

    2007-04-01

    Encouraged by observations made on the course of reactions the HCN-tetramer can undergo with acetaldehyde, I delineate a constitutional and potentially generational relationship between HCN and those constituents of the reductive citric acid cycle that are direct precursors of amino acids in contemporary metabolism. In this context, the robustness postulate of classical prebiotic chemistry is questioned, and, by an analysis of the (hypothetical) reaction-tree of a stepwise hydrolysis of the HCN-tetramer, it is shown how such a non-robust chemical reaction platform could harbor the potential for the emergence of autocatalytic cycles. It is concluded that the chemistry of HCN should be revisited by focussing on its non-robust parts in order to demonstrate its full potential as one of the possible roots of prebiotic self-organizing chemical processes.

  13. Computerized image analysis for acetic acid induced intraepithelial lesions

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; Ferris, Daron G.; Lieberman, Rich W.

    2008-03-01

    Cervical Intraepithelial Neoplasia (CIN) exhibits certain morphologic features that can be identified during a visual inspection exam. Immature and dysphasic cervical squamous epithelium turns white after application of acetic acid during the exam. The whitening process occurs visually over several minutes and subjectively discriminates between dysphasic and normal tissue. Digital imaging technologies allow us to assist the physician analyzing the acetic acid induced lesions (acetowhite region) in a fully automatic way. This paper reports a study designed to measure multiple parameters of the acetowhitening process from two images captured with a digital colposcope. One image is captured before the acetic acid application, and the other is captured after the acetic acid application. The spatial change of the acetowhitening is extracted using color and texture information in the post acetic acid image; the temporal change is extracted from the intensity and color changes between the post acetic acid and pre acetic acid images with an automatic alignment. The imaging and data analysis system has been evaluated with a total of 99 human subjects and demonstrate its potential to screening underserved women where access to skilled colposcopists is limited.

  14. Production of Succinic Acid from Citric Acid and Related Acids by Lactobacillus Strains

    PubMed Central

    Kaneuchi, Choji; Seki, Masako; Komagata, Kazuo

    1988-01-01

    A number of Lactobacillus strains produced succinic acid in de Man-Rogosa-Sharpe broth to various extents. Among 86 fresh isolates from fermented cane molasses in Thailand, 30 strains (35%) produced succinic acid; namely, 23 of 39 Lactobacillus reuteri strains, 6 of 18 L. cellobiosus strains, and 1 of 6 unidentified strains. All of 10 L. casei subsp. casei strains, 5 L. casei subsp. rhamnosus strains, 6 L. mali strains, and 2 L. buchneri strains did not produce succinic acid. Among 58 known strains including 48 type strains of different Lactobacillus species, the strains of L. acidophilus, L. crispatus, L. jensenii, and L. parvus produced succinic acid to the same extent as the most active fresh isolates, and those of L. alimentarius, L. collinoides, L. farciminis, L. fructivorans (1 of 2 strains tested), L. malefermentans, and L. reuteri were also positive, to lesser extents. Diammonium citrate in de Man-Rogosa-Sharpe broth was determined as a precursor of the succinic acid produced. Production rates were about 70% on a molar basis with two fresh strains tested. Succinic acid was also produced from fumaric and malic acids but not from dl-isocitric, α-ketoglutaric, and pyruvic acids. The present study is considered to provide the first evidence on the production of succinic acid, an important flavoring substance in dairy products and fermented beverages, from citrate by lactobacilli. PMID:16347795

  15. Uranyl complexes of n-alkanediaminotetra-acetic acids.

    PubMed

    Gonçalves, M L; Mota, A M; da Silva, J J

    1984-07-01

    The uranyl complexes of n-propanediaminetetra-acetic acid, n-butanediaminetetra-acetic acid and n-hexanediaminetetra-acetic acid have been studied by potentiometry, with computer evaluation of the titration data by the MINIQUAD program. Stability constants of the 1:1 and 2:1 metal:ligand chelates have been determined as well as the respective hydrolysis and polymerization constants at 25 degrees in 0.10M and 1.00M KNO(3). The influence of the length of the alkane chain of the ligands on the complexes formed is discussed.

  16. Effect of Citric Acid and Ethylenediaminetetraacetic Acid on the Surface Morphology of Young and Old Root Dentin

    PubMed Central

    Scelza, Miriam Zaccaro; de Noronha, Fernando; da Silva, Licinio Esmeraldo; Maurício, Marcos; Gallito, Marco Antonio; Scelza, Pantaleo

    2016-01-01

    Introduction: The aim of this in vitro study was to evaluate the effect of 10% citric acid and 17% ethylenediaminetetraacetic acid (EDTA) irrigating solutions on the surface morphology of young and old root dentin by determining the number and diameter of dentinal tubules using scanning electron microscopy (SEM). Methods and Materials: Fifty healthy human teeth collected from young (≤30 years) and old (≥60 years) individuals (n=25) were first prepared with a Largo bur #2 to produce smear layer on the root canal surface. Subsequently, the crowns and the root middle and apical thirds were sectioned and removed, and the cervical thirds were sectioned vertically in the buccal-lingual direction into two equal halves. The obtained samples were then immersed in 2.5% sodium hypochlorite for 30 min and randomly separated into two treatment groups for each age group. In each age group, ten samples were selected as controls and did not receive any type of treatment. The rest of the specimens were then rinsed, dried and treated for 4 min with 10% citric acid or 17% EDTA. The samples were then assessed with SEM regarding the number and diameter of dentinal tubules. All data were assessed using Student’s t-test. The level of significance was set at 0.05. Results: Regardless of the type of treatment, no significant differences were observed in the number of open tubules between the young and old root dentin (P>0.05). Nonetheless, the diameter of the tubules in the old root dentin was larger when 17% EDTA was used (P<0.05). Both, young and old root dentin did not differ with the 10% citric acid treatment (P>0.05). Conclusion: The results showed that 17% EDTA treatment induced a significant demineralization in old root dentin. PMID:27471529

  17. Disproportionation Kinetics of Hypoiodous Acid As Catalyzed and Suppressed by Acetic Acid-Acetate Buffer.

    PubMed

    Urbansky, Edward T.; Cooper, Brian T.; Margerum, Dale W.

    1997-03-26

    The kinetics of the disproportionation of hypoiodous acid to give iodine and iodate ion (5HOI right harpoon over left harpoon 2I(2) + IO(3)(-) + H(+) + 2H(2)O) are investigated in aqueous acetic acid-sodium acetate buffer. The rate of iodine formation is followed photometrically at -log [H(+)] = 3.50, 4.00, 4.50, and 5.00, &mgr; = 0.50 M (NaClO(4)), and 25.0 degrees C. Both catalytic and inhibitory buffer effects are observed. The first process is proposed to be a disproportionation of iodine(I) to give HOIO and I(-); the iodide then reacts with HOI to give I(2). The reactive species (acetato-O)iodine(I), CH(3)CO(2)I, is postulated to increase the rate by assisting in the formation of I(2)O, a steady-state species that hydrolyzes to give HOIO and I(2). Inhibition is postulated to result from the formation of the stable ion bis(acetato-O)iodate(I), (CH(3)CO(2))(2)I(-), as buffer concentration is increased. This species is observed spectrophotometrically with a UV absorption shoulder (lambda = 266 nm; epsilon = 530 M(-)(1) cm(-)(1)). The second process is proposed to be a disproportionation of HOIO to give IO(3)(-) and I(2). Above 1 M total buffer, the reaction becomes reversible with less than 90% I(2) formation. Rate and equilibrium constants are resolved and reported for the proposed mechanism.

  18. Anti-thrombotic effect of a novel formula from Corni fructus with malic acid, succinic acid and citric acid.

    PubMed

    Zhang, Qi-Chun; Zhao, Yue; Bian, Hui-Min

    2014-05-01

    Our previous investigation had confirmed the inhibition of platelet aggregation of a novel Corni fructus-derived formula composed of malic acid, succinic acid and citric acid with a ratio of 3:2:2. The present study was to further evaluate the anti-thrombotic effect of the formula in vivo. Mice of acute pulmonary thromboembolism, and rats of arterial thrombosis were used to determine the anti-thrombotic effect of the formula. Histology analysis of endothelium was conducted with hematoxylin and eosin stain. TXB2 , 6-K-PGF1α , cAMP, cGMP and NO in rat plasma were determined. In vitro assay of αIIbβ3 and phosphorylation of ERK1/2 were performed in ADP-treated platelet. The formula significantly reduced the recovery time and mortality rate of mice with acute pulmonary thromboembolism. Remarkably extended occlusion time, decreased thrombus weight and more integrated endothelium were observed in rat with the formula. Enhanced 6-K-PGF1α , cGMP and NO, but not TXB2 and cAMP, were demonstrated in rat plasma with treatment of the formula. Finally, the formula was shown to inhibit αIIbβ3 expression and activation of ERK1/2 in platelet. The formula shows positive anti-thrombotic effect. The direct interference on ADP activated signaling in platelet and regulation of endothelium function are two primary pathways involved in the action on thrombosis.

  19. Do mitochondria regulate cellular iron homeostasis through citric acid and haem production? Implications for cancer and other diseases.

    PubMed

    Johnson, S

    2003-01-01

    Citric acid is produced industrially by depriving Aspergillus niger of iron. The lack of Fe deactivates mitochondrial aconitase and interrupts the krebs cycle, causing the mitochondria to release citric acid as a siderophore (an Fe getter). When the mitochondrion has plenty of Fe and the cell has enough ATP, aerobic phosphorylation stops and fatty acid or haem synthesis take place, when the cell has plenty of haem, haem synthesis stops. Since most of the Fe activity in the cell is related to the mitochondria, I hypothesise that in the animal cell when the mitochondria are low in Fe, citric acid acts as a signal that triggers the production of transferrin receptor messenger RNA (TrR mRNA) in the nucleus, which in the absence of Fe causes the expression of transferrin receptor. When the cell has plenty of Fe, cytosolic aconitase detaches itself from the transferrin receptor and ferritin mRNA stopping expression of the former and initiating expression of the latter. The detached cytosolic aconitase transforms the citric acid, blocking the production of the transferrin receptor mRNA.

  20. Phytotoxicity of citric acid and Tween® 80 for potential use as soil amendments in enhanced phytoremediation.

    PubMed

    Agnello, A C; Huguenot, D; van Hullebusch, E D; Esposito, G

    2015-01-01

    Enhanced phytoremediation adding biodegradable amendments like low molecular weight organic acids and surfactants is an interesting area of current research to overcome the limitation that represents low bioavailability of pollutants in soils. However, prior to their use in assisted phytoremediation, it is necessary to test if amendments per se exert any toxic effect to plants and to optimize their application mode. In this context, the present study assessed the effects of citric acid and Tween® 80 (polyethylene glycol sorbitan monooleate) on the development of alfalfa (Medicago sativa) plants, as influenced by their concentration and frequency of application, in order to evaluate the feasibility for their future use in enhanced phytoremediation of multi-contaminated soils. The results showed that citric acid negatively affected plant germination, while it did not have any significant effect on biomass or chlorophyll content. In turn, Tween® 80 did not affect plant germination and showed a trend to increase biomass, as well as it did not have any significant effect on chlorophyll levels. M. sativa appeared to tolerate citric acid and Tween® 80 at the tested concentrations, applied weekly. Consequently, citric acid and Tween® 80 could potentially be utilized to assist phytoremediation of contaminated soils vegetated with M. sativa.

  1. [Metabolism of Yarrowia lipolytica grown on ethanol under conditions promoting the production of alpha-ketoglutaric and citric acids: a comparative study of the central metabolism enzymes].

    PubMed

    Il'chenko, A P; Cherniavskaia, O G; Shishkanova, N V; Finogenova, T V

    2002-01-01

    A comparative study of the enzymes of the tricarboxylic acid (TCA) and glyoxylate cycles in the mutant Yarrowia lipolytica strain N1 capable of producing alpha-ketoglutaric acid (KGA) and citric acid showed that almost all enzymes of the TCA cycle are more active under conditions promoting the production of KGA. The only exception was citrate synthase, whose activity was higher in yeast cells producing citric acid. The production of both acids was accompanied by suppression of the glyoxylate cycle enzymes. The activities of malate dehydrogenase, aconitase, NADP-dependent isocitrate dehydrogenase, and fumarase were higher in cells producing KGA than in cells producing citric acid.

  2. Equilibrium concentrations for pyruvate dehydrogenase and the citric acid cycle at specified concentrations of certain coenzymes.

    PubMed

    Alberty, Robert A

    2004-04-01

    It is of interest to calculate equilibrium compositions of systems of biochemical reactions at specified concentrations of coenzymes because these reactants tend to be in steady states. Thermodynamic calculations under these conditions require the definition of a further transformed Gibbs energy G" by use of a Legendre transform. These calculations are applied to the pyruvate dehydrogenase reaction plus the citric acid cycle, but steady-state concentrations of CoA, acetyl-CoA and succinyl-CoA cannot be specified because they are involved in the conservation of carbon atoms. These calculations require the use of linear algebra to obtain further transformed Gibbs energies of formation of reactants and computer programs to calculate equilibrium compositions. At specified temperature, pH, ionic strength and specified concentrations of several coenzymes, the equilibrium composition depends on the specified concentrations of the coenzymes and the initial amounts of reactants.

  3. Properties of baked foams from citric acid modified cassava starch and native cassava starch blends.

    PubMed

    Pornsuksomboon, Kanlaya; Holló, Berta Barta; Szécsényi, Katalin Mészáros; Kaewtatip, Kaewta

    2016-01-20

    Starch foams from native cassava starch (NS) and citric acid modified cassava starch (CNS) were prepared using baking processes with blend ratios of 80/20, 60/40, 50/50, 40/60 and 20/80. The density, thickness, morphology, thermal stability and water absorption of the NS, CNS and blended starch foams were determined. The ratio of the two starch components had a significant influence on the density and thickness of the blended starch foams. All blended starch foams showed good water resistance. Moreover, the morphology of the blended starch foam with the NS/CNS ratio of 50/50 showed a more ordered distribution of cell sizes with thicker cell walls than for the NS and CNS foams. The thermal stability of the blended starch foams was somewhat lower than the stability of the NS foam but not to the extent that it affected any potential practical applications.

  4. Fuzzy approach for improved recognition of citric acid induced piglet coughing from continuous registration

    NASA Astrophysics Data System (ADS)

    Van Hirtum, A.; Berckmans, D.

    2003-09-01

    A natural acoustic indicator of animal welfare is the appearance (or absence) of coughing in the animal habitat. A sound-database of 5319 individual sounds including 2034 coughs was collected on six healthy piglets containing both animal vocalizations and background noises. Each of the test animals was repeatedly placed in a laboratory installation where coughing was induced by nebulization of citric acid. A two-class classification into 'cough' or 'other' was performed by the application of a distance function to a fast Fourier spectral sound analysis. This resulted in a positive cough recognition of 92%. For the whole sound-database however there was a misclassification of 21%. As spectral information up to 10000 Hz is available, an improved overall classification on the same database is obtained by applying the distance function to nine frequency ranges and combining the achieved distance-values in fuzzy rules. For each frequency range clustering threshold is determined by fuzzy c-means clustering.

  5. Effect of trace elements on citric acid fermentation by Aspergillus niger.

    PubMed

    Sánchez-Marroquín, A; Carreño, R; Ledezma, M

    1970-12-01

    Citric acid yields of 98.7% (sugar consumption basis) were reached in shaker flasks with mutant UV-ET-71-15 of Aspergillus niger in a resin-treated sucrose medium of the following composition (g/100 ml): sucrose, 14.0; NH(4)NO(3), 0.20; KH(2)PO(4), 0.10; MgSO(4).7H(2)O, 0.025; and (mg/liter): FeSO(4), 0.15 to 0.75; ZnSO(4), 0.10; and CuSO(4), 0.01. Yields of 75% were obtained in medium with resin-treated clarified syrup and 68% with ferrocyanide-treated blackstrap molasses. Optimal conditions included selection of appropriate pellets as inoculum at 3%, pH of 4.5, temperature at 30 C, agitation at 250 rev/min, and fermentation time of 8 days. The mutant tolerated high concentrations of trace elements.

  6. Citric Acid Capped Iron Oxide Nanoparticles as an Effective MALDI Matrix for Polymers

    NASA Astrophysics Data System (ADS)

    Liang, Qiaoli; Sherwood, Jennifer; Macher, Thomas; Wilson, Joseph M.; Bao, Yuping; Cassady, Carolyn J.

    2017-03-01

    A new matrix-assisted laser desorption ionization (MALDI) mass spectrometry matrix is proposed for molecular mass determination of polymers. This matrix contains an iron oxide nanoparticle (NP) core with citric acid (CA) molecules covalently bound to the surface. With the assistance of additives, the particulate nature of NPs allows the matrix to mix uniformly with polar or nonpolar polymer layers and promotes ionization, which may simplify matrix selection and sample preparation procedures. Several distinctively different polymer classes (polyethyleneglycol (PEG), polywax/polyethylene, perfluoropolyether, and polydimethylsiloxane) are effectively detected by the water or methanol dispersed NPCA matrix with NaCl, NaOH, LiOH, or AgNO3 as additives. Furtheremore, successful quantitative measurements of PEG1000 using polypropylene glycol 1000 as an internal standard are demonstrated.

  7. Citric Acid Capped Iron Oxide Nanoparticles as an Effective MALDI Matrix for Polymers

    NASA Astrophysics Data System (ADS)

    Liang, Qiaoli; Sherwood, Jennifer; Macher, Thomas; Wilson, Joseph M.; Bao, Yuping; Cassady, Carolyn J.

    2016-12-01

    A new matrix-assisted laser desorption ionization (MALDI) mass spectrometry matrix is proposed for molecular mass determination of polymers. This matrix contains an iron oxide nanoparticle (NP) core with citric acid (CA) molecules covalently bound to the surface. With the assistance of additives, the particulate nature of NPs allows the matrix to mix uniformly with polar or nonpolar polymer layers and promotes ionization, which may simplify matrix selection and sample preparation procedures. Several distinctively different polymer classes (polyethyleneglycol (PEG), polywax/polyethylene, perfluoropolyether, and polydimethylsiloxane) are effectively detected by the water or methanol dispersed NPCA matrix with NaCl, NaOH, LiOH, or AgNO3 as additives. Furtheremore, successful quantitative measurements of PEG1000 using polypropylene glycol 1000 as an internal standard are demonstrated.

  8. (Citric acid-co-polycaprolactone triol) polyester: a biodegradable elastomer for soft tissue engineering.

    PubMed

    Thomas, Lynda V; Nair, Prabha D

    2011-01-01

    Tissue engineering holds enormous challenges for materials science, wherein the ideal scaffold to be used is expected to be biocompatible, biodegradable and possess mechanical and physical properties that are suitable for target application. In this context, we have prepared degradable polyesters in different ratios by a simple polycondensation technique with citric acid and polycaprolactone triol. Differential scanning calorimetry indicated that the materials were amorphous based the absence of a crystalline melting peak and the presence of a glass transition temperature below 37°C. These polyesters were found to be hydrophilic and could be tailor-made into tubes and films. Porosity could also be introduced by addition of porogens. All the materials were non-cytotoxic in an in vitro cytotoxicity assay and may degrade via hydrolysis to non-toxic degradation products. These polyesters have potential implications in the field of soft tissue engineering on account of their similarity of properties.

  9. Importance of accurate spectral simulations for the analysis of terahertz spectra: citric acid anhydrate and monohydrate.

    PubMed

    King, Matthew D; Davis, Eric A; Smith, Tiffany M; Korter, Timothy M

    2011-10-13

    The terahertz (THz) spectra of crystalline solids are typically uniquely sensitive to the molecular packing configurations, allowing for the detection of polymorphs and hydrates by THz spectroscopic techniques. It is possible, however, that coincident absorptions may be observed between related crystal forms, in which case careful assessment of the lattice vibrations of each system must be performed. Presented here is a THz spectroscopic investigation of citric acid in its anhydrous and monohydrate phases. Remarkably similar features were observed in the THz spectra of both systems, requiring the accurate calculation of the low-frequency vibrational modes by solid-state density functional theory to determine the origins of these spectral features. The results of the simulations demonstrate the necessity of reliable and rigorous methods for THz vibrational modes to ensure the proper evaluation of the THz spectra of molecular solids.

  10. Attenuated acute salivary α-amylase responses to gustatory stimulation with citric acid in thin children.

    PubMed

    Chen, Long Hui; Yang, Ze Min; Chen, Wei Wen; Lin, Jing; Zhang, Min; Yang, Xiao Rong; Zhao, Ling Bo

    2015-04-14

    Salivary α-amylase (sAA) is responsible for the 'pre-digestion' of starch in the oral cavity and accounts for up to 50 % of salivary protein in human saliva. An accumulating body of literature suggests that sAA is of nutritional importance; however, it is still not clear how sAA is related to individual's nutritional status. Although copy number variations (CNV) of the salivary amylase gene (AMY1) are associated with variation in sAA levels, a significant amount of sAA variation is not explained by AMY1 CNV. To measure sAA responses to gustatory stimulation with citric acid, we used sAA ratio (the ratio of stimulated sAA levels to those of resting sAA) and investigated acute sAA responses to citric acid in children with normal (Normal-BMI, n 22) and low (Low-BMI, n 21) BMI. The AMY1 gene copy number was determined by quantitative PCR. We, for the first time, demonstrated attenuated acute sAA responses (decreased sAA ratio) to gustatory stimulation in Low-BMI (thinness grade 3) children compared with the Normal-BMI children, which suggest that sAA responses to gustatory stimulation may be of nutritional importance. However, child's nutritional status was not directly related to their resting or stimulated sAA levels, and it was not associated with AMY1 gene copy number. Finally, AMY1 CNV might influence, but did not eventually determine, sAA levels in children.

  11. Sequential injection redox or acid-base titration for determination of ascorbic acid or acetic acid.

    PubMed

    Lenghor, Narong; Jakmunee, Jaroon; Vilen, Michael; Sara, Rolf; Christian, Gary D; Grudpan, Kate

    2002-12-06

    Two sequential injection titration systems with spectrophotometric detection have been developed. The first system for determination of ascorbic acid was based on redox reaction between ascorbic acid and permanganate in an acidic medium and lead to a decrease in color intensity of permanganate, monitored at 525 nm. A linear dependence of peak area obtained with ascorbic acid concentration up to 1200 mg l(-1) was achieved. The relative standard deviation for 11 replicate determinations of 400 mg l(-1) ascorbic acid was 2.9%. The second system, for acetic acid determination, was based on acid-base titration of acetic acid with sodium hydroxide using phenolphthalein as an indicator. The decrease in color intensity of the indicator was proportional to the acid content. A linear calibration graph in the range of 2-8% w v(-1) of acetic acid with a relative standard deviation of 4.8% (5.0% w v(-1) acetic acid, n=11) was obtained. Sample throughputs of 60 h(-1) were achieved for both systems. The systems were successfully applied for the assays of ascorbic acid in vitamin C tablets and acetic acid content in vinegars, respectively.

  12. 76 FR 34048 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-10

    ..., which are intermediate products in the production of citric acid, sodium citrate, and potassium citrate... factors of production (``FOP''), valued in a surrogate market-economy (``ME'') country or countries... respondents' factors of production.\\8\\ On November 17, 2010, Yixing Union identified both Indonesia and...

  13. 76 FR 56158 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Extension of Time...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Citric Acid and Certain Citrate Salts From the People's Republic of China: Extension of Time Limit for the Final Results of the Countervailing Duty Administrative Review...

  14. Microwave Treated Rapid Hydrothermal Synthesis Of Zno Nano-Flakes Array: The Effect Of Citric Acid As Capping Agent

    NASA Astrophysics Data System (ADS)

    Gopal Ram, S. D.; Ravi, G.; Kulandainathan, M. Anbu

    2010-10-01

    Microwave assisted hydrothermal synthesis of ZnO nanostructures with improved surface area by the addition of Citric Acid (CA) as a metal capping agent is reported. Citric acid is added to the mother precursor in three different concentrations for the preparation of ZnO nanostructure. The influence of the citric acid as a capping agent has been studied both in the preparation of ZnO nanopowders and in the ordered array formation on the precoated ZnO seed layer over glass substrates. The addition of this capping agent has shown up clearly in the morphology of the nanostructures. The X-ray diffraction patterns has shown a diminished crystallinity and a increased full width half maximum (FWHM) in the preferred oriented diffraction peak. The peak broadening is an indication of the reduced crystallite size. This cause of the inhibition in growth is realized to be the effect of capping action of citric acid. The optical property of the ZnO nanostructure was characterized by UV-vis-NIR spectroscopy.

  15. The effect of pH on hydrolysis, cross-linking and barrier properties of starch barriers containing citric acid.

    PubMed

    Olsson, Erik; Menzel, Carolin; Johansson, Caisa; Andersson, Roger; Koch, Kristine; Järnström, Lars

    2013-11-06

    Citric acid cross-linking of starch for e.g. food packaging applications has been intensely studied during the last decade as a method of producing water-insensitive renewable barrier coatings. We managed to improve a starch formulation containing citric acid as cross-linking agent for industrial paper coating applications by adjusting the pH of the starch solution. The described starch formulations exhibited both cross-linking of starch by citric acid as well as satisfactory barrier properties, e.g. fairly low OTR values at 50% RH that are comparable with EVOH. Furthermore, it has been shown that barrier properties of coated papers with different solution pH were correlated to molecular changes in starch showing both hydrolysis and cross-linking of starch molecules in the presence of citric acid. Hydrolysis was shown to be almost completely hindered at solution pH≥4 at curing temperatures≤105 °C and at pH≥5 at curing temperatures≤150 °C, whereas cross-linking still occurred to some extent at pH≤6.5 and drying temperatures as low as 70 °C. Coated papers showed a minimum in water vapor transmission rate at pH 4 of the starch coating solution, corresponding to the point where hydrolysis was effectively hindered but where a significant degree of cross-linking still occurred.

  16. Effects of ultraviolet irradiation on bonding strength between Co-Cr alloy and citric acid-crosslinked gelatin matrix.

    PubMed

    Inoue, Motoki; Sasaki, Makoto; Katada, Yasuyuki; Taguchi, Tetsushi

    2014-02-01

    Novel techniques for creating a strong bond between polymeric matrices and biometals are required. We immobilized polymeric matrices on the surface of biometal for drug-eluting stents through covalent bond. We performed to improve the bonding strength between a cobalt-chromium alloy and a citric acid-crosslinked gelatin matrix by ultraviolet irradiation on the surface of cobalt-chromium alloy. The ultraviolet irradiation effectively generated hydroxyl groups on the surface of the alloy. The bonding strength between the gelatin matrix and the alloy before ultraviolet irradiation was 0.38 ± 0.02 MPa, whereas it increased to 0.48 ± 0.02 MPa after ultraviolet irradiation. Surface analysis showed that the citric acid derivatives occurred on the surface of the cobalt-chromium alloy through ester bond. Therefore, ester bond formation between the citric acid derivatives active esters and the hydroxyl groups on the cobalt-chromium alloy contributed to the enhanced bonding strength. Ultraviolet irradiation and subsequent immobilization of a gelatin matrix using citric acid derivatives is thus an effective way to functionalize biometal surfaces.

  17. Effect of EDTA and citric acid on phytoremediation of Cr- B[a]P-co-contaminated soil.

    PubMed

    Chigbo, Chibuike; Batty, Lesley

    2013-12-01

    Polycyclic aromatic hydrocarbons and heavy metals in the environment are a concern, and their removal to acceptable level is required. Phytoremediation, the use of plants to treat contaminated soils, could be an interesting alternative to conventional remediation processes. This work evaluates the role of single and combined applications of chelates to single or mixed Cr + benzo[a]pyrene (B[a]P)-contaminated soil. Medicago sativa was grown in contaminated soil and was amended with 0.3 g citric acid, 0.146 g ethylenediaminetetraacetic acid (EDTA), or their combination for 60 days. The result shows that in Cr-contaminated soil, the application of EDTA + citric acid significantly (p<0.05) decreased the shoot dry matter of M. sativa by 55 % and, as such, decreased the Cr removal potential from the soil. The soluble Cr concentration in single Cr or Cr + B[a]P-contaminated soil was enhanced with the amendment of all chelates; however, only the application of citric acid in Cr-contaminated soil (44 %) or EDTA and EDTA + citric acid in co-contaminated soil increased the removal of Cr from the soil (34 and 54 %, respectively). The dissipation of B[a]P in single B[a]P-contaminated soil was effective even without planting and amendment with chelates, while in co-contaminated soil, it was related to the application of either EDTA or EDTA + citric acid. This suggests that M. sativa with the help of chelates in single or co-contaminated soil can be effective in phytoextraction of Cr and promoting the biodegradation of B[a]P.

  18. The expanded Hansen approach to solubility parameters. Paracetamol and citric acid in individual solvents.

    PubMed

    Barra, J; Lescure, F; Doelker, E; Bustamante, P

    1997-07-01

    In this study two solubility-parameter models have been compared using as dependent variables the logarithm of the mole fraction solubility, lnX2e, and ln(alpha)/U (originally used in the extended Hansen method), where alpha is the activity coefficient and U is a function of the molar volume of the solute and the volume fraction of the solvent. The results show for the first time the proton-donor and -acceptor hydrogen-bonding capacities of paracetamol, as measured by the acidic and basic partial-solubility parameters. The influence of solvents on the differential scanning calorimetry (DSC) pattern of the solid phases was also studied in relation to the solubility models tested. Citric acid was chosen as a test substance because of its high acidity and its proton donor capacity to form hydrogen bonds with basic solvents. The partial acidic and basic solubility parameters obtained from multiple regression were consistent with this property, validating the model chosen. The results show that the more direct lnX2e variable was more suitable for fitting both models, and the four-parameter model seemed better for describing the interactions between solvent and solute.

  19. Vinegar Production from Jabuticaba (Myrciaria jaboticaba) Fruit Using Immobilized Acetic Acid Bacteria

    PubMed Central

    Silva, Monique Suela; Cristina de Souza, Angélica; Magalhăes-Guedes, Karina Teixeira; Ribeiro, Fernanda Severo de Rezende; Schwan, Rosane Freitas

    2016-01-01

    Summary Cell immobilization comprises the retention of metabolically active cells inside a polymeric matrix. In this study, the production of jabuticaba (Myrciaria jaboticaba) vinegar using immobilized Acetobacter aceti and Gluconobacter oxydans cells is proposed as a new method to prevent losses of jabuticaba fruit surplus. The pulp of jabuticaba was processed and Saccharomyces cerevisiae CCMA 0200 was used to ferment the must for jabuticaba wine production. Sugars, alcohols (ethanol and glycerol) and organic acids were assayed by high-performance liquid chromatography. Volatile compounds were determined by gas chromatography-flame ionization detector. The ethanol content of the produced jabuticaba wine was approx. 74.8 g/L (9.5% by volume) after 168 h of fermentation. Acetic acid fermentation for vinegar production was performed using a mixed culture of immobilized A. aceti CCT 0190 and G. oxydans CCMA 0350 cells. The acetic acid yield was 74.4% and productivity was 0.29 g/(L·h). The vinegar had particularly high concentrations of citric (6.67 g/L), malic (7.02 g/L) and succinic (5.60 g/L) acids. These organic acids give a suitable taste and flavour to the vinegar. Seventeen compounds (aldehydes, higher alcohols, terpene, acetate, diether, furans, acids, ketones and ethyl esters) were identified in the jabuticaba vinegar. In conclusion, vinegar was successfully produced from jabuticaba fruits using yeast and immobilized mixed cultures of A. aceti and G. oxydans. To the best of our knowledge, this is the first study to use mixed culture of immobilized cells for the production of jabuticaba vinegar. PMID:27956867

  20. Vinegar Production from Jabuticaba (Myrciaria jaboticaba) Fruit Using Immobilized Acetic Acid Bacteria.

    PubMed

    Dias, Disney Ribeiro; Silva, Monique Suela; Cristina de Souza, Angélica; Magalhăes-Guedes, Karina Teixeira; Ribeiro, Fernanda Severo de Rezende; Schwan, Rosane Freitas

    2016-09-01

    Cell immobilization comprises the retention of metabolically active cells inside a polymeric matrix. In this study, the production of jabuticaba (Myrciaria jaboticaba) vinegar using immobilized Acetobacter aceti and Gluconobacter oxydans cells is proposed as a new method to prevent losses of jabuticaba fruit surplus. The pulp of jabuticaba was processed and Saccharomyces cerevisiae CCMA 0200 was used to ferment the must for jabuticaba wine production. Sugars, alcohols (ethanol and glycerol) and organic acids were assayed by high-performance liquid chromatography. Volatile compounds were determined by gas chromatography-flame ionization detector. The ethanol content of the produced jabuticaba wine was approx. 74.8 g/L (9.5% by volume) after 168 h of fermentation. Acetic acid fermentation for vinegar production was performed using a mixed culture of immobilized A. aceti CCT 0190 and G. oxydans CCMA 0350 cells. The acetic acid yield was 74.4% and productivity was 0.29 g/(L·h). The vinegar had particularly high concentrations of citric (6.67 g/L), malic (7.02 g/L) and succinic (5.60 g/L) acids. These organic acids give a suitable taste and flavour to the vinegar. Seventeen compounds (aldehydes, higher alcohols, terpene, acetate, diether, furans, acids, ketones and ethyl esters) were identified in the jabuticaba vinegar. In conclusion, vinegar was successfully produced from jabuticaba fruits using yeast and immobilized mixed cultures of A. aceti and G. oxydans. To the best of our knowledge, this is the first study to use mixed culture of immobilized cells for the production of jabuticaba vinegar.

  1. Degradation by acetic acid for crystalline Si photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Masuda, Atsushi; Uchiyama, Naomi; Hara, Yukiko

    2015-04-01

    The degradation of crystalline Si photovoltaic modules during damp-heat test was studied using some test modules with and without polymer film insertion by observing electrical and electroluminescence properties and by chemical analyses. Acetic acid generated by the hydrolysis decomposition of ethylene vinyl acetate used as an encapsulant is the main origin of degradation. The change in electroluminescence images is explained on the basis of the corrosion of electrodes by acetic acid. On the other hand, little change was observed at the pn junction even after damp-heat test for a long time. Therefore, carrier generation occurs even after degradation; however, such generated carriers cannot be collected owing to corrosion of electrodes. The guiding principle that module structure and module materials without saving acetic acid into the modules was obtained.

  2. The opposite roles of agdA and glaA on citric acid production in Aspergillus niger.

    PubMed

    Wang, Lu; Cao, Zhanglei; Hou, Li; Yin, Liuhua; Wang, Dawei; Gao, Qiang; Wu, Zhenqiang; Wang, Depei

    2016-07-01

    Citric acid is produced by an industrial-scale process of fermentation using Aspergillus niger as a microbial cell factory. However, citric acid production was hindered by the non-fermentable isomaltose and insufficient saccharification ability in A. niger when liquefied corn starch was used as a raw material. In this study, A. niger TNA 101ΔagdA was constructed by deletion of the α-glucosidase-encoding agdA gene in A. niger CGMCC 10142 genome using Agrobacterium tumefaciens-mediated transformation. The transformants A. niger OG 1, OG 17, and OG 31 then underwent overexpression of glucoamylase in A. niger TNA 101ΔagdA. The results showed that the α-glucosidase activity of TNA 101ΔagdA was decreased by 62.5 % compared with CGMCC 10142, and isomaltose was almost undetectable in the fermentation broth. The glucoamylase activity of the transformants OG 1 and OG 17 increased by 34.5 and 16.89 % compared with that of TNA 101ΔagdA, respectively. In addition, for the recombinants TNA 101ΔagdA, OG 1 and OG 17, there were no apparent defects in the growth development. Consequently, in comparison with CGMCC 10142, TNA 101ΔagdA and OG 1 decreased the residual reducing sugar by 52.95 and 88.24 %, respectively, and correspondingly increased citric acid production at the end of fermentation by 8.68 and 16.87 %. Citric acid production was further improved by decreasing the non-fermentable residual sugar and increasing utilization rate of corn starch material in A. niger. Besides, the successive saccharification and citric acid fermentation processes were successfully integrated into one step.

  3. C-Myc induced compensated cardiac hypertrophy increases free fatty acid utilization for the citric acid cycle.

    PubMed

    Olson, Aaron K; Ledee, Dolena; Iwamoto, Kate; Kajimoto, Masaki; O'Kelly Priddy, Colleen; Isern, Nancy; Portman, Michael A

    2013-02-01

    The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam) injections. Isolated working hearts and (13)Carbon ((13)C)-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing (13)C-labeled free fatty acids, acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (Cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was assessed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contributions in NTG. Substrate utilization was not significantly altered in 3dMyc versus Cont. The free fatty acid FC was significantly greater in 7dMyc versus Cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to Cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes for the citric acid cycle did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the

  4. Tetrazole acetic acid: Tautomers, conformers, and isomerization

    SciTech Connect

    Araujo-Andrade, C.; Reva, I. Fausto, R.

    2014-02-14

    Monomers of (tetrazol-5-yl)-acetic acid (TAA) were obtained by sublimation of the crystalline compound and the resulting vapors were isolated in cryogenic nitrogen matrices at 13 K. The conformational and tautomeric composition of TAA in the matrix was characterized by infrared spectroscopy and vibrational calculations carried out at the B3LYP/6-311++G(d,p) level. TAA may adopt two tautomeric modifications, 1H- and 2H-, depending on the position of the annular hydrogen atom. Two-dimensional potential energy surfaces (PESs) of TAA were theoretically calculated at the MP2/6-311++G(d,p) level, for each tautomer. Four and six symmetry-unique minima were located on these PESs, for 1H- and 2H-TAA, respectively. The energetics of the detected minima was subsequently refined by calculations at the QCISD level. Two 1H- and three 2H-conformers fall within the 0–8 kJ mol{sup −1} energy range and should be appreciably populated at the sublimation temperature (∼330 K). Observation of only one conformer for each tautomer (1ccc and 2pcc) is explained in terms of calculated barriers to conformational rearrangements. All conformers with the cis O=COH moiety are separated by low barriers (less than 10 kJ mol{sup −1}) and collapse to the most stable 1ccc (1H-) and 2pcc (2H-) forms during deposition of the matrix. On the trans O=COH surfaces, the relative energies are very high (between 12 and 27 kJ mol{sup −1}). The trans forms are not thermally populated at the sublimation conditions and were not detected in matrices. One high-energy form in each tautomer, 1cct (1H-) and 2pct (2H-), was found to differ from the most stable form only by rotation of the OH group and separated from other forms by high barriers. This opened a perspective for their stabilization in a matrix. 1cct and 2pct were generated in the matrices selectively by means of narrow-band near-infrared (NIR) irradiations of the samples at 6920 and 6937 cm{sup −1}, where the first OH stretching overtone

  5. Effect of acid shock with hydrochloric, citric, and lactic acids on the survival and growth of Salmonella typhi and Salmonella typhimurium in acidified media.

    PubMed

    Arvizu-Medrano, Sofía M; Escartín, Eduardo F

    2005-10-01

    The effect of acid shock with hydrochloric, citric, or lactic acid on the survival and growth of Salmonella Typhi and Salmonella Typhimurium in acidified broth was evaluated. Salmonella serovars were acid shocked (1 h at 35 degrees C) in Trypticase soy broth acidified with hydrochloric, citric, or lactic acid at pH 5.5. Unshocked cells were exposed to the same media that had been neutralized before use to pH 7.0. Shocked and unshocked cells were inoculated into broth acidified with hydrochloric acid (pH 3.0), citric acid (pH 3.0), or lactic acid (pH 3.8), and growth and survival ability were evaluated. The acid shock conferred protection to Salmonella against the lethal effects of low pH and organic acids. The adaptive response was not specific to the anion used for adaptation. The biggest difference in reduction of survival between shocked and unshocked strains (approximately 2 log CFU/ml) was observed when the microorganisms were shocked with lactic acid and then challenged with citric acid. Salmonella Typhi was more tolerant of citric acid than was Salmonella Typhimurium, but Salmonella Typhimurium had higher acid tolerance in response to acid shock than did Salmonella Typhi. The acid shock decreased the extension of the lag phase and enhanced the physiological state values of Salmonella Typhi and Salmonella Typhimurium when the pH of growth was 4.5. This increased ability to tolerate acidity may have an important impact on food safety, especially in the case of Salmonella Typhi, given the very low infectious dose of this pathogen.

  6. The citric acid production from raw glycerol by Yarrowia lipolytica yeast and its regulation.

    PubMed

    Morgunov, Igor G; Kamzolova, Svetlana V; Lunina, Julia N

    2013-08-01

    The optimal cultivation conditions ensuring the maximal rate of citric acid (CA) biosynthesis by glycerol-grown mutant Yarrowia lipolytica NG40/UV7 were found to be as follows: growth limitation by inorganic nutrients (nitrogen, phosphorus, or sulfur), 28 °C, pH 5.0, dissolved oxygen concentration (pO₂) of 50 % (of air saturation), and pulsed addition of glycerol from 20 to 80 g L⁻¹ depending on the rate of medium titration. Under optimal conditions of fed-batch cultivation, in the medium with pure glycerol, strain Y. lipolytica NG40/UV7 produced 115 g L⁻¹ of CA with the mass yield coefficient of 0.64 g g⁻¹ and isocitric acid (ICA) amounted to 4.6 g L⁻¹; in the medium with raw glycerol, CA production was 112 g L⁻¹ with the mass yield coefficient of 0.90 g g⁻¹ and ICA amounted to 5.3 g L⁻¹. Based on the activities of enzymes involved in the initial stages of raw glycerol assimilation, the tricarboxylic acid cycle and the glyoxylate cycle, the mechanism of increased CA yield from glycerol-containing substrates in Y. lipolytica yeast was explained.

  7. [Evaluation of compounding EDTA and citric acid on remediation of heavy metals contaminated soil].

    PubMed

    Yin, Xue; Chen, Jia-Jun; Cai, Wen-Min

    2014-08-01

    As commonly used eluents, Na2EDTA (EDTA) and citric acid (CA) have been widely applied in remediation of soil contaminated by heavy metals. In order to evaluate the removal of arsenic, cadmium, copper, and lead in the contaminated soil collected in a chemical plant by compounding EDTA and CA, a series of stirring experiments were conducted. Furthermore, the changes in speciation distribution of heavy metals before and after washing were studied. The results showed that, adopting the optimal molar ratio of EDTA/CA (1:1), when the pH of the solution was 3, the stirring time was 30 min, the stirring rate was 150 r x min(-1) and the L/S was 5:1, the removal rates of arsenic, cadmium, copper and lead could reach 11.72%, 43.39%, 24.36% and 27.17%, respectively. And it was found that after washing, for arsenic and copper, the content of acid dissolved fraction rose which increased the percentage of available contents. Fe-Mn oxide fraction mainly contributed to the removal of copper. As for cadmium, the percentages of acid dissolved fraction, Fe-Mn oxide fraction and organic fraction also decreased. In practical projects, speciation changes would pose certain environmental risk after soil washing, which should be taken into consideration.

  8. Whiteness improvement of citric acid crosslinked cotton fabrics: H2O2 bleaching under alkaline condition.

    PubMed

    Tang, Peixin; Ji, Bolin; Sun, Gang

    2016-08-20

    Polycarboxylic acids have been employed as formaldehyde-free crosslinking agents in anti-wrinkle treatment for cotton fabrics. Cotton fabrics treated by citric acid (CA) catalyzed with effective catalysts have shown satisfactory anti-wrinkle properties. Meanwhile, CA is a natural-based and environmental friendly compound. However, the yellowing of CA treated fabrics is a stumbling block for its practical application. Due to the fact that CA firstly forms aconitic acid (AA) before forming anhydrides, the cause of the yellowing, hydrogen peroxide (H2O2) bleaching was adopted to treat the CA treated fabrics in order to break the CC bond structure and reduce the yellow color but retaining the desired anti-wrinkle properties. Thermogravimetric analysis and Fourier transformed infrared spectroscopy were employed to investigate the reactions. The results revealed that the H2O2 bleaching can effectively improve the whiteness and also maintain a good anti-wrinkle performance of the CA treated fabrics under an appropriate bleaching temperature and time.

  9. The effect of citric acid and pH on growth and metabolism of anaerobic Saccharomyces cerevisiae and Zygosaccharomyces bailii cultures.

    PubMed

    Nielsen, Marina Karelina; Arneborg, Nils

    2007-02-01

    The effects of citric acid at pH values of 3.0, 4.0, and 4.5 on growth and metabolism of anaerobic Saccharomyces cerevisiae and Zygosaccharomyces bailii cultures were investigated. S. cerevisiae and Z. bailii exhibited similar tolerances to citric acid, as determined by growth measurements, at all three pH values investigated. The citric-acid-induced growth inhibition of both yeast species increased with increasing pH values, indicating that the antimicrobial mechanism of citric acid differs from that of classical weak-acid preservatives. In S. cerevisiae, citric acid shifted the primary energy metabolism towards lower ethanol production and higher glycerol production, thus resulting in lower ATP production. These metabolic changes in S. cerevisiae were pH-dependent; i.e. the higher the pH, the lower the ATP production, and they may explain why growth of S. cerevisiae is more inhibited by citric acid at higher pH values. In Z. bailii, citric acid also caused an increased glycerol production, although to a lesser extent than in S. cerevisiae, but it caused virtually no changes in ethanol and ATP production.

  10. Effects of citric acid and the siderophore desferrioxamine B (DFO-B) on the mobility of germanium and rare earth elements in soil and uptake in Phalaris arundinacea.

    PubMed

    Wiche, Oliver; Tischler, Dirk; Fauser, Carla; Lodemann, Jana; Heilmeier, Hermann

    2017-02-03

    Effects of citric acid and desferrioxamine B (DFO-B) on the availability of Ge and selected REEs (La, Nd, Gd, Er) to P. arundinacea were investigated. A soil dissolution experiment was conducted to elucidate the effect of citric acid and DFO-B at different concentrations (1 and 10 mmol l(-1) citric acid) on the release of Ge and REEs from soil. In a greenhouse plants of P. arundinacea were cultivated on soil and on sand cultures to investigate the effects of citric acid and DFO-B on the uptake of Ge and REEs by the plants. Addition of 10 mmol l(-1) citric acid significantly enhanced desorption of Ge and REEs from soil and uptake into soil-grown plants. Applying DFO-B enhanced the dissolution and the uptake of REEs, while no effect on Ge was observed. In sand cultures, presence of citric acid and DFO-B significantly decreased the uptake of Ge and REEs, indicating a discrimination of the formed complexes during uptake. This study clearly indicates that citric acid and the microbial siderophore DFO-B may enhance phytoextraction of Ge and REEs due to the formation of soluble complexes that increase the migration of elements in the rhizosphere.

  11. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.

    PubMed

    Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S

    2016-07-08

    Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016.

  12. High-speed atomic force microscopy of dental enamel dissolution in citric acid.

    PubMed

    Pyne, Alice; Marks, Will; M Picco, Loren; G Dunton, Peter; Ulcinas, Arturas; E Barbour, Michele; B Jones, Siân; Gimzewski, James; J Miles, Mervyn

    2009-01-01

    High-speed atomic force microscopy (HS AFM) in 'contact' mode was used to image at video rate the surfaces of both calcium hydroxyapatite samples, often used as artificial dental enamel in such experiments, and polished actual bovine dental enamel in both neutral and acidic aqueous environments. The image in each frame of the video of the sample was a few micrometers square, and the high-speed scan window was panned across the sample in real time to examine larger areas. Conventional AFM images of the same regions of the sample were also recorded before and after high-speed imaging. The ability of HS AFM to follow processes occurring in liquid on the timescale of a few seconds was employed to study the dissolution process of both hydroxyapatite and bovine enamel under acidic conditions. Buffered citric acid at pH values between 3.0 and 4.0 was observed to dissolve the surface layers of these samples. The movies recorded showed rapid dissolution of the bovine enamel in particular, which proceeded until the relatively small amount of acid available had been exhausted. A comparison was made with enamel samples that had been treated in fluoride solution (1 h in 300 ppm NaF, pH 7) prior to addition of the acid; the speed of dissolution for these samples was much less than that of the untreated samples. The HS AFM used an in-house designed and constructed high-speed flexure scan stage employing a push-pull piezo actuator arrangement. The HS AFM is able to follow the large changes in height (on the micrometer scale) that occur during the dissolution process.

  13. Regulation of pyruvate dehydrogenase activity and citric acid cycle intermediates during high cardiac power generation.

    PubMed

    Sharma, Naveen; Okere, Isidore C; Brunengraber, Daniel Z; McElfresh, Tracy A; King, Kristen L; Sterk, Joseph P; Huang, Hazel; Chandler, Margaret P; Stanley, William C

    2005-01-15

    A high rate of cardiac work increases citric acid cycle (CAC) turnover and flux through pyruvate dehydrogenase (PDH); however, the mechanisms for these effects are poorly understood. We tested the hypotheses that an increase in cardiac energy expenditure: (1) activates PDH and reduces the product/substrate ratios ([NADH]/[NAD(+)] and [acetyl-CoA]/[CoA-SH]); and (2) increases the content of CAC intermediates. Measurements were made in anaesthetized pigs under control conditions and during 15 min of a high cardiac workload induced by dobutamine (Dob). A third group was made hyperglycaemic (14 mm) to stimulate flux through PDH during the high work state (Dob + Glu). Glucose and fatty acid oxidation were measured with (14)C-glucose and (3)H-oleate. Compared with control, the high workload groups had a similar increase in myocardial oxygen consumption ( and cardiac power. Dob increased PDH activity and glucose oxidation above control, but did not reduce the [NADH]/[NAD(+)] and [acetyl-CoA]/[CoA-SH] ratios, and there were no differences between the Dob and Dob + Glu groups. An additional group was treated with Dob + Glu and oxfenicine (Oxf) to inhibit fatty acid oxidation: this increased [CoA-SH] and glucose oxidation compared with Dob; however, there was no further activation of PDH or decrease in the [NADH]/[NAD(+)] ratio. Content of the 4-carbon CAC intermediates succinate, fumarate and malate increased 3-fold with Dob, but there was no change in citrate content, and the Dob + Glu and Dob + Glu + Oxf groups were not different from Dob. In conclusion, compared with normal conditions, at high myocardial energy expenditure (1) the increase in flux through PDH is regulated by activation of the enzyme complex and continues to be partially controlled through inhibition by fatty acid oxidation, and (2) there is expansion of the CAC pool size at the level of 4-carbon intermediates that is largely independent of myocardial fatty acid oxidation.

  14. Citric Acid Enhanced Copper Removal by a Novel Multi-amines Decorated Resin.

    PubMed

    Ling, Chen; Liu, Fuqiang; Pei, Zhiguo; Zhang, Xiaopeng; Wei, Mengmeng; Zhang, Yanhong; Zheng, Lirong; Zhang, Jing; Li, Aimin; Xing, Baoshan

    2015-05-12

    Cu removal by a novel multi-amines decorated resin (PAMD) from wastewater in the absence or presence of citric acid (CA) was examined. Adsorption capacity of Cu onto PAMD markedly increased by 186% to 5.07 mmol/g in the presence of CA, up to 7 times of that onto four commercial resins under the same conditions. Preloaded and kinetic studies demonstrated adsorption of [Cu-CA] complex instead of CA site-bridging and variations of adsorbate species were qualitatively illustrated. The interaction configuration was further studied with ESI-MS, FTIR, XPS and XANES characterizations. The large enhancement of Cu adsorption in Cu-CA bi-solutes systems was attributed to mechanism change from single-site to dual-sites interaction in which cationic or neutral Cu species (Cu(2+) and CuHL(0)) coordinated with neutral amine sites and anionic complex species (CuL(-) and Cu2L2(2-)) directly interacted with protonated amine sites via electrostatic attraction, and the ratio of the two interactions was approximately 0.5 for the equimolar bi-solutes system. Moreover, commonly coexisting ions in wastewaters had no obvious effect on the superior performance of PAMD. Also, Cu and CA could be recovered completely with HCl. Therefore, PAMD has a great potential to efficiently remove heavy metal ions from wastewaters in the presence of organic acids.

  15. Citric Acid Enhanced Copper Removal by a Novel Multi-amines Decorated Resin

    NASA Astrophysics Data System (ADS)

    Ling, Chen; Liu, Fuqiang; Pei, Zhiguo; Zhang, Xiaopeng; Wei, Mengmeng; Zhang, Yanhong; Zheng, Lirong; Zhang, Jing; Li, Aimin; Xing, Baoshan

    2015-05-01

    Cu removal by a novel multi-amines decorated resin (PAMD) from wastewater in the absence or presence of citric acid (CA) was examined. Adsorption capacity of Cu onto PAMD markedly increased by 186% to 5.07 mmol/g in the presence of CA, up to 7 times of that onto four commercial resins under the same conditions. Preloaded and kinetic studies demonstrated adsorption of [Cu-CA] complex instead of CA site-bridging and variations of adsorbate species were qualitatively illustrated. The interaction configuration was further studied with ESI-MS, FTIR, XPS and XANES characterizations. The large enhancement of Cu adsorption in Cu-CA bi-solutes systems was attributed to mechanism change from single-site to dual-sites interaction in which cationic or neutral Cu species (Cu2+ and CuHL0) coordinated with neutral amine sites and anionic complex species (CuL- and Cu2L22-) directly interacted with protonated amine sites via electrostatic attraction, and the ratio of the two interactions was approximately 0.5 for the equimolar bi-solutes system. Moreover, commonly coexisting ions in wastewaters had no obvious effect on the superior performance of PAMD. Also, Cu and CA could be recovered completely with HCl. Therefore, PAMD has a great potential to efficiently remove heavy metal ions from wastewaters in the presence of organic acids.

  16. Iron Absorption from Two Milk Formulas Fortified with Iron Sulfate Stabilized with Maltodextrin and Citric Acid

    PubMed Central

    Pizarro, Fernando; Olivares, Manuel; Maciero, Eugenia; Krasnoff, Gustavo; Cócaro, Nicolas; Gaitan, Diego

    2015-01-01

    Background: Fortification of milk formulas with iron is a strategy widely used, but the absorption of non-heme iron is low. The purpose of this study was to measure the bioavailability of two iron fortified milk formulas designed to cover toddlers’ nutritional needs. These milks were fortified with iron sulfate stabilized with maltodextrin and citric acid. Methods: 15 women (33–47 years old) participated in study. They received on different days, after an overnight fast, 200 mL of Formula A; 200 mL of Formula B; 30 mL of a solution of iron and ascorbic acid as reference dose and 200 mL of full fat cow’s milk fortified with iron as ferrous sulfate. Milk formulas and reference dose were labeled with radioisotopes 59Fe or 55Fe, and the absorption of iron measured by erythrocyte incorporation of radioactive Fe. Results: The geometric mean iron absorption corrected to 40% of the reference dose was 20.6% for Formula A and 20.7% for Formula B, versus 7.5% of iron fortified cow’s milk (p < 0.001). The post hoc Sheffé indeed differences between the milk formulas and the cow’s milk (p < 0.001). Conclusion: Formulas A and B contain highly bioavailable iron, which contributes to covering toddlers’ requirements of this micronutrient. PMID:26529007

  17. Effects of Citric and Lactic Acid on the Reduction of Deoxynivalenol and Its Derivatives in Feeds

    PubMed Central

    Humer, Elke; Lucke, Annegret; Harder, Hauke; Metzler-Zebeli, Barbara U.; Böhm, Josef; Zebeli, Qendrim

    2016-01-01

    Exposure to mycotoxin-contaminated feeds represents a serious health risk. This has necessitated the need for the establishment of practical methods for mycotoxin decontamination. This study investigated the effects of citric acid (CA) and lactic acid (LA) on common trichothecene mycotoxins in feeds contaminated with Fusarium mycotoxins. Contaminated feed samples were processed either with 5% CA or 5% LA solutions in a ratio of 1:1.2 (w/v) for 5, 24, or 48 h, and analyzed for multiple mycotoxin metabolites using a liquid chromatography–tandem mass spectrometric method. The analyses showed that treating the feed with CA and LA lowered the concentration of deoxynivalenol (DON), whereby 5% LA lowered the original DON concentration in the contaminated feed samples by half, irrespective of the processing time. Similar lowering effects were observed for the concentrations of 15Ac-DON, 5-hydroxyculmorin, and sambucinol. The concentration of nivalenol was only lowered by the LA treatment. In contrast, CA and LA treatments showed no or only small effects on the concentration of several mycotoxins and their derivatives, including zearalenone, fumonisins, and culmorin. In conclusion, the present results indicate that the use of 5% solutions of LA and CA might reduce the concentration of common trichothecene mycotoxins, especially DON and its derivate 15Ac-DON. However, further research is required to determine the effect on overall toxicity and to identify the underlying mechanisms. PMID:27690101

  18. Citric acid production from Aspergillus niger MT-4 using hydrolysate extract of the insect Locusta migratoria.

    PubMed

    Taskin, Mesut; Tasar, Gani Erhan; Incekara, Umit

    2013-06-01

    Citric acid (CA) is the most important organic acid used in the food and other industries. Locusta migratoria is an insect species, which has rich nutritional composition (especially protein) and cultivated in some countries. Therefore, the present study investigated the usability of hydrolysate extract of L. migratoria biomass as substrate for the production of CA from Aspergillus niger MT-4. The insect extract (IE) was found to be rich in ash (34.9 g/100 g), protein (35.6 g/100 g) and mineral contents. Yeast extract was found to be the most favorable substrate for biomass production, whereas the maximum production of CA (41.8 g/L) was achieved in the medium containing IE. Besides, uniform pellets with the smallest size (4 mm) were observed in IE medium. It was thought that rich magnesium (6.78 g/100 g) and manganese (1.14 g/100 g) contents of IE increased the production of CA, resulting in the formation of small uniform pellets. This is the first report on the effect of protein-rich insect biomasses on the production of CA. In this regard, L. migratoria biomass was tested for the first time as a CA-production substrate.

  19. Citric Acid Enhanced Copper Removal by a Novel Multi-amines Decorated Resin

    PubMed Central

    Ling, Chen; Liu, Fuqiang; Pei, Zhiguo; Zhang, Xiaopeng; Wei, Mengmeng; Zhang, Yanhong; Zheng, Lirong; Zhang, Jing; Li, Aimin; Xing, Baoshan

    2015-01-01

    Cu removal by a novel multi-amines decorated resin (PAMD) from wastewater in the absence or presence of citric acid (CA) was examined. Adsorption capacity of Cu onto PAMD markedly increased by 186% to 5.07 mmol/g in the presence of CA, up to 7 times of that onto four commercial resins under the same conditions. Preloaded and kinetic studies demonstrated adsorption of [Cu-CA] complex instead of CA site-bridging and variations of adsorbate species were qualitatively illustrated. The interaction configuration was further studied with ESI-MS, FTIR, XPS and XANES characterizations. The large enhancement of Cu adsorption in Cu-CA bi-solutes systems was attributed to mechanism change from single-site to dual-sites interaction in which cationic or neutral Cu species (Cu2+ and CuHL0) coordinated with neutral amine sites and anionic complex species (CuL− and Cu2L22−) directly interacted with protonated amine sites via electrostatic attraction, and the ratio of the two interactions was approximately 0.5 for the equimolar bi-solutes system. Moreover, commonly coexisting ions in wastewaters had no obvious effect on the superior performance of PAMD. Also, Cu and CA could be recovered completely with HCl. Therefore, PAMD has a great potential to efficiently remove heavy metal ions from wastewaters in the presence of organic acids. PMID:25962970

  20. Photodissociation spectroscopy of the Mg{sup +}-acetic acid complex

    SciTech Connect

    Abate, Yohannes; Kleiber, P. D.

    2006-11-14

    We have studied the structure and photodissociation of Mg{sup +}-acetic acid clusters. Ab initio calculations suggest four relatively strongly bound ground state isomers for the [MgC{sub 2}H{sub 4}O{sub 2}]{sup +} complex. These isomers include the cis and trans forms of the Mg{sup +}-acetic acid association complex with Mg{sup +} bonded to the carbonyl O atom of acetic acid, the Mg{sup +}-acetic acid association complex with Mg{sup +} bonded to the hydroxyl O atom of acetic acid, or to a Mg{sup +}-ethenediol association complex. Photodissociation through the Mg{sup +}-based 3p<-3s absorption bands in the near UV leads to direct (nonreactive) and reactive dissociation products: Mg{sup +}, MgOH{sup +}, Mg(H{sub 2}O){sup +}, CH{sub 3}CO{sup +}, and MgCH{sub 3}{sup +}. At low energies the dominant reactive quenching pathway is through dehydration to Mg(H{sub 2}O){sup +}, but additional reaction channels involving C-H and C-C bond activation are also open at higher energies.

  1. Simultaneous acetic acid separation and monosaccharide concentration by reverse osmosis.

    PubMed

    Zhou, Fanglei; Wang, Cunwen; Wei, Jiang

    2013-03-01

    This study aimed to investigate the feasibility and efficiency of simultaneous acetic acid separation and sugar concentration in model lignocellulosic hydrolyzates by reverse osmosis. The effects of operation parameters such as pH, temperature, pressure and feed concentration on the solute retentions were examined with a synthetic xylose–glucose–acetic acid model solution. Results showed that the monosaccharides were almost completely rejected at above 20 bar, while the acetic acid retention increased with the increase in pH and pressure, and decreased with the temperature increase. The maximum separation factors of acetic acid over xylose and glucose reached as high as 211.5 and 228.4 at pH 2.93 (the initial pH of model lignocellulosic hydrolyzates), 40 °C and 20 bar. Furthermore, the concentration and diafiltration process were employed at optimal operation conditions. Consequently, a high sugar concentration and a beneficially lower acetic acid concentration were simultaneously achieved by reverse osmosis.

  2. Citric acid enhances the phytoextraction of manganese and plant growth by alleviating the ultrastructural damages in Juncus effusus L.

    PubMed

    Najeeb, U; Xu, L; Ali, Shafaqat; Jilani, Ghulam; Gong, H J; Shen, W Q; Zhou, W J

    2009-10-30

    Chelate-assisted phytoextraction by high biomass producing plant species enhances the removal of heavy metals from polluted environments. In this regard, Juncus effusus a wetland plant has great potential. This study evaluated the effects of elevated levels of manganese (Mn) on the vegetative growth, Mn uptake and antioxidant enzymes in J. effusus. We also studied the role of citric acid and EDTA on improving metal accumulation, plant growth and Mn toxicity stress alleviation. Three-week-old plantlets of J. effusus were subjected to various treatments in the hydroponics as: Mn (50, 100 and 500 microM) alone, Mn (500 microM) + citric acid (5 mM), and Mn (500 microM) + EDTA (5 mM). After 2 weeks of treatment, higher Mn concentrations significantly reduced the plant biomass and height. Both citric acid and EDTA restored the plant height as it was reduced at the highest Mn level. Only the citric acid (but not EDTA) was able to recover the plant biomass weight, which was also obvious from the microscopic visualization of mesophyll cells. There was a concentration dependent increase in Mn uptake in J. effusus plants, and relatively more deposition in roots compared to aerial parts. Although both EDTA and citric acid caused significant increase in Mn accumulation; however, the Mn translocation was enhanced markedly by EDTA. Elevated levels of Mn augmented the oxidative stress, which was evident from changes in the activities of antioxidative enzymes in plant shoots. Raised levels of lipid peroxidation and variable changes in the activities of antioxidant enzymes were recorded under Mn stress. Electron microscopic images revealed several modifications in the plants at cellular and sub-cellular level due to the oxidative damage induced by Mn. Changes in cell shape and size, chloroplast swelling, increased number of plastoglobuli and disruption of thylakoid were noticed. However, these plants showed a high degree of tolerance against Mn toxicity stress, and it removed

  3. Improved Cycling Performance of a Si Nanoparticle Anode Utilizing Citric Acid as a Surface-Modifying Agent.

    PubMed

    Nguyen, Cao Cuong; Seo, Daniel M; Chandrasiri, K W D K; Lucht, Brett L

    2016-12-20

    Citric acid and its analogues have been investigated as surface-modifying agents for Si nanoparticle anodes using electrochemical cycling, attenuated total reflectance infrared (ATR IR), and X-ray photoelectron spectroscopy (XPS). A Si nanoparticle anode prepared with citric acid (CA) has better capacity retention than one containing 1,2,3,4-butanetetracarboxylic acid (BA), but both electrodes outperform Si-PVDF. The Si-CA anode has an initial specific capacity of 3530 mA h/g and a first cycle efficiency of 82%. Surprisingly, the Si-CA electrode maintains a high specific capacity of ∼2200 mA h/g after 250 cycles, corresponding to 64% capacity retention, which is similar to the Si prepared with long-chain poly(acrylic acid) (PAA). On the contrary, the silicon electrode prepared with PVDF has a fast capacity fade and retains only 980 mA h/g after 50 cycles. The IR and XPS data show that the Si-CA electrode has an SEI composed primarily of lithium citrate during the first 50 cycles, resulting from the electrochemical reduction of citric acid. Only low concentrations of electrolyte reduction products are observed. The lithium citrate layer derived from CA stabilizes the silicon surface and suppresses electrolyte reduction, which likely contributes to the enhanced cycling performance of the Si nanoparticle anode.

  4. Effect of citric acid dosage and sintered temperature on the composition, morphology and electrochemical properties of lithium vanadium oxide prepared by a sol–gel method

    NASA Astrophysics Data System (ADS)

    Zhong, C. R.; Su, X. J.; Hou, G. L.; Liu, Z. H.; Yu, F. S.; Bi, S.; Li, H.

    2017-03-01

    A lithium vanadium oxide cathode material was synthesized via sol-gel processing using citric acid as the chelating agent. Different dosage of citric acid and sintered temperature were introduced to investigate their effects on the products composition, morphology and electrochemical properties. The results showed that the V2O3 yield was inhibited and the crystallization of grain was accelerated with the increasing dosage of citric acid. Furthermore, V2O3 was oxidized to LiV3O8 and Li0.3V2O5 with the increase of sintered temperature.

  5. Role of different additives and metallic micro minerals on the enhanced citric acid production by Aspergillus niger MNNG-115 using different carbohydrate materials.

    PubMed

    Ali, Sikander; Haq, Ikram-ul

    2005-01-01

    The present investigation deals with the promotry effect of different additives and metallic micro minerals on citric acid production by Aspergillus niger MNNG-115 using different carbohydrate materials. For this, sugar cane bagasse was fortified with sucrose salt medium. Ethanol and coconut oil at 3.0% (v/w) level increased citric acid productivity. Fluoroacetate at a concentration of 1.0 mg/ml bagasse enhanced the yield of citric acid significantly. However, the addition of ethanol and fluoroacetate after 6 h of growth gave the maximum conversion of available sugar to citric acid. In another study, influence of some metallic micro-minerals viz. copper sulphate, molybdenum sulphate, zinc sulphate and cobalt sulphate on microbial synthesis of citric acid using molasses medium was also carried out. It was found that copper sulphate and molybdenum sulphate remarkably enhanced the production of citric acid while zinc sulphate was not so effective. However, cobalt sulphate was the least effective for microbial biosynthesis of citric acid under the same experimental conditions. In case of CuSO(4), the strain of Aspergillus niger MNNG-115 showed enhanced citric productivity with experimental (9.80%) over the control (7.54%). In addition, the specific productivity of the culture at 30 ppm CuSO(4) (Q(p) = 0.012a g/g cells/h) was several folds higher than other all other concentrations. All kinetic parameters including yield coefficients and volumetric rates revealed the hyper productivity of citric acid by CuSO(4) using blackstrap molasses as the basal carbon source.

  6. Characterization of acetic acid bacteria in "traditional balsamic vinegar".

    PubMed

    Gullo, Maria; Caggia, Cinzia; De Vero, Luciana; Giudici, Paolo

    2006-02-01

    This study evaluated the glucose tolerance of acetic acid bacteria strains isolated from Traditional Balsamic Vinegar. The results showed that the greatest hurdle to acetic acid bacteria growth is the high sugar concentration, since the majority of the isolated strains are inhibited by 25% of glucose. Sugar tolerance is an important technological trait because Traditional Balsamic Vinegar is made with concentrated cooked must. On the contrary, ethanol concentration of the cooked and fermented must is less significant for acetic acid bacteria growth. A tentative identification of the isolated strains was done by 16S-23S-5S rDNA PCR/RFLP technique and the isolated strains were clustered: 32 strains belong to Gluconacetobacter xylinus group, two strains to Acetobacter pasteurianus group and one to Acetobacter aceti.

  7. Catalysis of the Carbonylation of Alcohols to Carboxylic Acids Including Acetic Acid Synthesis from Methanol.

    ERIC Educational Resources Information Center

    Forster, Denis; DeKleva, Thomas W.

    1986-01-01

    Monsanto's highly successful synthesis of acetic acid from methanol and carbon monoxide illustrates use of new starting materials to replace pretroleum-derived ethylene. Outlines the fundamental aspects of the acetic acid process and suggests ways of extending the synthesis to higher carboxylic acids. (JN)

  8. Improved cadmium uptake and accumulation in the hyperaccumulator Sedum alfredii: the impact of citric acid and tartaric acid* #

    PubMed Central

    Lu, Ling-li; Tian, Sheng-ke; Yang, Xiao-e; Peng, Hong-yun; Li, Ting-qiang

    2013-01-01

    The elucidation of a natural strategy for metal hyperaccumulation enables the rational design of technologies for the clean-up of metal-contaminated soils. Organic acid has been suggested to be involved in toxic metallic element tolerance, translocation, and accumulation in plants. The impact of exogenous organic acids on cadmium (Cd) uptake and translocation in the zinc (Zn)/Cd co-hyperaccumulator Sedum alfredii was investigated in the present study. By the addition of organic acids, short-term (2 h) root uptake of 109Cd increased significantly, and higher 109Cd contents in roots and shoots were noted 24 h after uptake, when compared to controls. About 85% of the 109Cd taken up was distributed to the shoots in plants with citric acid (CA) treatments, as compared with 75% within controls. No such effect was observed for tartaric acid (TA). Reduced growth under Cd stress was significantly alleviated by low CA. Long-term application of the two organic acids both resulted in elevated Cd in plants, but the effects varied with exposure time and levels. The results imply that CA may be involved in the processes of Cd uptake, translocation and tolerance in S. alfredii, whereas the impact of TA is mainly on the root uptake of Cd. PMID:23365009

  9. Overexpression of the NADP+-specific isocitrate dehydrogenase gene (icdA) in citric acid-producing Aspergillus niger WU-2223L.

    PubMed

    Kobayashi, Keiichi; Hattori, Takasumi; Hayashi, Rie; Kirimura, Kohtaro

    2014-01-01

    In the tricarboxylic acid (TCA) cycle, NADP(+)-specific isocitrate dehydrogenase (NADP(+)-ICDH) catalyzes oxidative decarboxylation of isocitric acid to form α-ketoglutaric acid with NADP(+) as a cofactor. We constructed an NADP(+)-ICDH gene (icdA)-overexpressing strain (OPI-1) using Aspergillus niger WU-2223L as a host and examined the effects of increase in NADP(+)-ICDH activity on citric acid production. Under citric acid-producing conditions with glucose as the carbon source, the amounts of citric acid produced and glucose consumed by OPI-1 for the 12-d cultivation period decreased by 18.7 and 10.5%, respectively, compared with those by WU-2223L. These results indicate that the amount of citric acid produced by A. niger can be altered with the NADP(+)-ICDH activity. Therefore, NADP(+)-ICDH is an important regulator of citric acid production in the TCA cycle of A. niger. Thus, we propose that the icdA gene is a potentially valuable tool for modulating citric acid production by metabolic engineering.

  10. Aconitase is the main functional target of aging in the citric acid cycle of kidney mitochondria from mice.

    PubMed

    Yarian, Connie S; Toroser, Dikran; Sohal, Rajindar S

    2006-01-01

    The activities of the citric acid cycle enzymes were determined in mitochondria isolated from kidneys of relatively young, middle age, and old mice. Aconitase exhibited the most significant decrease in activity with age. The activity of alpha-ketoglutarate dehydrogenase exhibited a modest decrease in activity, while NADP(+)-isocitrate dehydrogenase (NADP(+)-ICD) activity increased moderately with age. Activities of citrate synthase, NAD(+)-isocitrate dehydrogenase (NAD(+)-ICD), succinyl-CoA synthetase (SCS), succinate dehydrogenase (SD), fumarase (FUM), and malate dehydrogenase (MD) were not affected. The molar ratio of the intra-mitochondrial redox indicator, NADPH:NADP(+), was higher in young compared to old animals, while the NADH:NAD(+) molar ratio remained unchanged. It is suggested that an age-related decrease in aconitase activity along with relatively subtle alterations in activities of some other citric acid cycle enzymes are likely to contribute to a decline in the overall efficiency of mitochondrial bioenergetics. The biological consequences of such alterations include age-related fluctuations in the citric acid cycle intermediates, which are precursors of protein synthesis, activators of fatty acid synthesis, and can also act as ligands for orphan G-protein coupled receptors.

  11. Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media.

    PubMed

    Chen, Xiangping; Zhou, Tao

    2014-11-01

    In this paper, a hydrometallurgical process has been proposed to recover valuable metals from spent lithium-ion batteries in citric acid media. Leaching efficiencies as high as 97%, 95%, 94%, and 99% of Ni, Co, Mn, and Li were achieved under the optimal leaching experimental conditions of citric acid concentration of 2 mol L(-1), leaching temperature of 80 °C, leaching time of 90 min, liquid-solid ratio of 30 ml g(-1), and 2 vol. % H2O2. For the metals recovery process, nickel and cobalt were selectively precipitated by dimethylglyoxime reagent and ammonium oxalate sequentially. Then manganese was extracted by Na-D2EHPA and the manganese-loaded D2EHPA was stripped with sulfuric acid. The manganese was recovered as MnSO4 in aqueous phase and D2EHPA could be reused after saponification. Finally, lithium was precipitated by 0.5 mol L(-1) sodium phosphate. Under their optimal conditions, the recovery percentages of Ni, Co, Mn, and Li can reach 98%, 97%, 98%, and 89%, respectively. This is a relatively simple route in which all metal values could be effectively leached and recovered in citric acid media.

  12. Ultrasound-assisted extraction of pectins from grape pomace using citric acid: a response surface methodology approach.

    PubMed

    Minjares-Fuentes, R; Femenia, A; Garau, M C; Meza-Velázquez, J A; Simal, S; Rosselló, C

    2014-06-15

    An ultrasound-assisted procedure for the extraction of pectins from grape pomace with citric acid as the extracting agent was established. A Box-Behnken design (BBD) was employed to optimize the extraction temperature (X1: 35-75°C), extraction time (X2: 20-60 min) and pH (X3: 1.0-2.0) to obtain a high yield of pectins with high average molecular weight (MW) and degree of esterification (DE) from grape pomace. Analysis of variance showed that the contribution of a quadratic model was significant for the pectin extraction yield and for pectin MW whereas the DE of pectins was more influenced by a linear model. An optimization study using response surface methodology was performed and 3D response surfaces were plotted from the mathematical model. According to the RSM model, the highest pectin yield (∼32.3%) can be achieved when the UAE process is carried out at 75°C for 60 min using a citric acid solution of pH 2.0. These pectic polysaccharides, composed mainly by galacturonic acid units (<97% of total sugars), have an average MW of 163.9 kDa and a DE of 55.2%. Close agreement between experimental and predicted values was found. These results suggest that ultrasound-assisted extraction could be a good option for the extraction of functional pectins with citric acid from grape pomace at industrial level.

  13. Properties of Aspergillus niger citrate synthase and effects of citA overexpression on citric acid production.

    PubMed

    Ruijter, G J; Panneman, H; Xu, D; Visser, J

    2000-03-01

    Using a combination of dye adsorption and affinity elution we purified Aspergillus niger citrate synthase to homogeneity using a single column and characterised the enzyme. An A. niger citrate synthase cDNA was isolated by immunological screening and used to clone the corresponding citA gene. The deduced amino acid sequence showed high similarity to other fungal citrate synthases. After processing upon mitochondrial import, the calculated M(r) of A. niger citrate synthase is 48501, which agrees well with the estimated molecular mass of the purified protein (48 kDa). In addition to an N-terminal mitochondrial import signal, a peroxisomal target sequence (AKL) was found at the C-terminus of the protein. Whether both signals are functional in vivo is not clear. Strains overexpressing citA were made by transformation and cultured under citric acid-producing conditions. Up to 11-fold overproduction of citrate synthase did not increase the rate of citric acid production by the fungus, suggesting that citrate synthase contributes little to flux control in the pathway involved in citric acid biosynthesis by a non-commercial strain.

  14. Evaluation of sanitizing efficacy of acetic acid on Piper betle leaves and its effect on antioxidant properties.

    PubMed

    Singla, Richu; Ganguli, Abhijit; Ghosh, Moushumi; Sohal, Sapna

    2009-01-01

    The sanitizing efficacy of acetic acid and its effect on health beneficial properties of Piper betle leaves were determined. Betel leaves artificially inoculated with Aeromonas, Salmonella and Yersinia were subjected to organic acid (citric acid, acetic acid and lactic acid) treatment. Pathogen populations reduced by 4 log upon individual inoculation and up to 2 log in a mixed cocktail following treatment with 2% acetic acid during storage up to 20 h at 28 degrees C, indicating a residual antimicrobial effect on pathogen during storage. Antioxidant potential ethanolic extracts of both raw and treated P. betle leaves were assayed for free radical scavenging activities against 2,2-diphenyl-1-picryhydrazyl. Polyphenols, flavonoids and the reducing power of treated and untreated P. betle were also compared. No significant (P>0.05) changes were observed in antioxidant status; flavonoids, polyphenols and reducing power of treated betel leaves. Results indicate the feasibility of a simple intervention strategy for inactivating pathogens in edible leaves of P. betle.

  15. Synthesis of citric acid functionalized magnetic graphene oxide coated corn straw for methylene blue adsorption.

    PubMed

    Ge, Heyi; Wang, Cuicui; Liu, Shanshan; Huang, Zhen

    2016-12-01

    The citric acid functionalized magnetic graphene oxide coated corn straw (CA-mGOCS) as a new adsorbent was synthesized in this work for the elimination of methylene blue (MB) from waste water. The as-prepared CA-mGOCS was tested by SEM, FTIR, XRD, Roman spectrum, TGA, particle size analyzer, BET and magnetic properties analyzer. Some factors affecting adsorption removal efficiency were explored. As a result, the addition of 5g CS (CA-mGO5CS) had the better adsorption performance than other adsorbents. The pseudo-second-order model and the Freundlich described the adsorption behavior well. The equilibrium adsorption capacity was 315.5mgg(-1) for MB at pH=12 and 298k. The electrostatic incorporation as well as hydrophobic interactions between CA-mGO5CS and MB determined the favourable adsorption property. Besides, the thermodynamic studies results ΔG<0, ΔH<0, ΔS<0 suggested that the adsorption was a spontaneous, exothermic and randomness decrease process. Finally, reusability studies imply that CA-mGO5CS has an excellent reproducibility.

  16. Adsorption of copper ions from aqueous solution by citric acid modified soybean straw.

    PubMed

    Zhu, Bo; Fan, Tongxiang; Zhang, Di

    2008-05-01

    The objectives of the present study were to convert soybean straw to a metal ion adsorbent and further to investigate the potential of using the adsorbent for the removal of Cu(2+) from aqueous solution. The soybean straw was water or base washed and citric acid (CA) modified to enhance its nature adsorption capacity. The morphological and chemical characteristics of the adsorbent were evaluated by spectroscopy and N(2)-adsorption techniques. The porous structure, as well as high amounts of introduced free carboxyl groups of CA modified soybean straw makes the adsorbent be good to retain Cu(2+). The adsorption capacities increased when the solution pH increased from 2 to 6 and reached the maximum value at pH 6 (0.64 mmol g(-1) for the base washed, CA modified soybean straw (CA-BWSS)). The Cu(2+) uptake increased and percentage adsorption of the Cu(2+) decreased with the increase in initial Cu(2+) concentration from 1 mM to 20 mM. Both the Langmuir and Freundlich adsorption isotherms were tested, and the Freundlich model fited much better than the Langmuir model. It was found that CA-BWSS have the highest adsorption capacity of the four kinds of pretreated soybean straw.

  17. Identification and physicochemical characterization of caffeine-citric acid co-crystal polymorphs.

    PubMed

    Mukaida, Makoto; Watanabe, Yuka; Sugano, Kiyohiko; Terada, Katsuhide

    2015-11-15

    The purpose of the present study was to identify a new caffeine-citric acid co-crystal (CA-CI) polymorph and characterize three CA-CI polymorphs. The stability order among the three CA-CI polymorphs was also determined. One new and two known CA-CI polymorphs were prepared by the liquid-assisted grinding method or the slurry methods. The three CA-CIs were then identified and characterized by powder X-ray diffraction (PXRD), thermal analysis, IR spectroscopy, Raman spectroscopy, and dynamic vapor sorption (DVS). The stability order of the CA-CIs was determined by the slurry conversion method. Each CA-CI showed distinct PXRD, IR, Raman, and DVS data. The melting points of CA-CIs were 131°C (a new form, Form III), 141°C (Form I), and 160°C (Form II). The order of thermodynamic stability was CA-CI Form II>CA-CI Form I>CA-CI Form III. CA-CI Forms I and II were relatively stable against humidity compared to CA, CI and CA-CI Form III.

  18. Teaching about citric acid cycle using plant mitochondrial preparations: Some assays for use in laboratory courses*.

    PubMed

    Vicente, Joaquim A F; Gomes-Santos, Carina S S; Sousa, Ana Paula M; Madeira, Vítor M C

    2005-03-01

    Potato tubers and turnip roots were used to prepare purified mitochondria for laboratory practical work in the teaching of the citric acid cycle (TCA cycle). Plant mitochondria are particularly advantageous over the animal fractions to demonstrate the TCA cycle enzymatic steps, by using simple techniques to measure O(2) consumption and transmembrane potential (ΔΨ). The several TCA cycle intermediates induce specific enzyme activities, which can be identified by respiratory parameters. Such a strategy is also used to evidence properties of the TCA cycle enzymes: ADP stimulation of isocitrate dehydrogenase and α-ketoglutarate dehydrogenase; activation by citrate of downstream oxidation steps, e.g. succinate dehydrogenase; and regulation of the activity of isocitrate dehydrogenase by citrate action on the citrate/isocitrate carrier. Furthermore, it has been demonstrated that, in the absence of exogenous Mg(2+) , isocitrate-dependent respiration favors the alternative oxidase pathway, as judged by changes of the ADP/O elicited by the inhibitor n-propyl galate. These are some examples of assays related with TCA cycle intermediates we can use in laboratory courses.

  19. New multifunctional pharmaceutical excipient in tablet formulation based on citric acid-cyclodextrin polymer.

    PubMed

    Garcia-Fernandez, Maria José; Tabary, Nicolas; Chai, Feng; Cazaux, Frédéric; Blanchemain, Nicolas; Flament, Marie-Pierre; Martel, Bernard

    2016-09-25

    A β-cyclodextrin (β-CD) polymer obtained by crosslinking β-CD with citric acid in its water-insoluble (PCD-I) and soluble (PCD-S) forms was used as a multifunctional direct compression excipient for tablet designing. PCD-I powder was obtained after grinding the solid fraction through a 200μm grid. PCD-S powder was recovered after lyophilization or spray drying of the PCD-S aqueous solutions, eventually followed by a wet granulation step. Both PCD-I and PCD-S powders were characterized, separately and mixed in variable ratios, based on dynamic water vapor sorption, SEM, particle size distribution, tapped density, compressibility, and flowability. PCD-I and spray dried and lyophilized/wet granulated PCD-S, as well as the mixture PCD-I/PCD-S=90/10, presented optimal free flowing characteristics. Then, PCD-I or PCD-S powders - separately or mixed in variable ratios - were used for tablets preparation by direct compression without adding any other excipient (e.g. binder, lubricant, disintegrant etc). As PCD-I decreased, tablets resistance to crushing and disintegration time increased from 15s to 15min (against 30min for β-CD), showing the improved disintegrant functionality of PCD-I, that rapidly swelled once in contact with water. Finally, PCD was force-fed to Sprague-Dawley rats (2g/kg) which were then observed during 14days for any clinical signs of toxicity.

  20. EXAFS determinations of uranium structures: The uranyl ion complexed with tartaric, citric, and malic acids

    SciTech Connect

    Allen, P.G.; Shuh, D.K.; Bucher, J.J.

    1996-01-31

    Studies of the coordination chemistry of uranium in aqueous solutions are increasingly important for understanding the behavior of uranium in the environment. Actinide speciation information is essential for assessing and developing long-term strategies addressing problems such as migration in nuclear waste repositories or improvements in the processing of nuclear waste and materials. Relative to the latter, one method for removing uranium contamination from soils involves extraction using a chelating agent such as Tiron, or citrate. These types of extractants are quite efficient at binding the uranyl ion and thus are suitable for removing uranium contamination when it is in the hexavalent uranyl ion form. Martell et al. and Markovits et al. have published a series of articles detailing the complexation of the uranyl ion with tartaric, malic, and citric acids as a function of pH. Using the functional dependencies of potentiometric titration results, they showed that, in the pH range 2-4, the uranyl ion forms a 2:2 dimeric species, (UO{sub 2}){sub 2-} (L){sub 2}, where L = tartrate, malate, or citrate ligands. The authors have reinvestigated the solution structures of the uranyl complexes formed in these systems with the structural technique extended X-ray absorption fine-structure (EXAFS) spectroscopy.

  1. Effect of Trace Elements on Citric Acid Fermentation by Aspergillus niger

    PubMed Central

    Sánchez-Marroquín, A.; Carreño, R.; Ledezma, M.

    1970-01-01

    Citric acid yields of 98.7% (sugar consumption basis) were reached in shaker flasks with mutant UV-ET-71-15 of Aspergillus niger in a resin-treated sucrose medium of the following composition (g/100 ml): sucrose, 14.0; NH4NO3, 0.20; KH2PO4, 0.10; MgSO4·7H2O, 0.025; and (mg/liter): FeSO4, 0.15 to 0.75; ZnSO4, 0.10; and CuSO4, 0.01. Yields of 75% were obtained in medium with resin-treated clarified syrup and 68% with ferrocyanide-treated blackstrap molasses. Optimal conditions included selection of appropriate pellets as inoculum at 3%, pH of 4.5, temperature at 30 C, agitation at 250 rev/min, and fermentation time of 8 days. The mutant tolerated high concentrations of trace elements. PMID:5492439

  2. Eco-friendly Rot and Crease Resistance Finishing of Jute Fabric using Citric Acid and Chitosan

    NASA Astrophysics Data System (ADS)

    Samanta, A. K.; Bagchi, A.

    2013-03-01

    Citric acid (CA) along with chitosan was used on bleached jute fabrics to impart anti crease and rot resistance properties in one step. The treatment was carried out by pad-dry-cure method in presence of sodium hypophosphite monohydrate catalyst. Curing at 150° Centigrade for 5 min delivered good crease resistant property (dry crease recovery angle is 244°) and high rot resistance simultaneously by a single treatment, which are durable for five washings with distilled water. Strength retention of jute fabric after 21 days soil burial was found to be 81 % and the loss (%) in strength due to this treatment was 15-18 %. The results showed that chitosan and CA treated-fabric exhibited higher rot resistance (as indicated by soil burial test) when compared to either CA or chitosan by individual treatment. The effect of CA and chitosan combination on the resistance to rotting of jute fabric was found to be synergistic which is higher than the sum of the effects of individual chemicals. CA possibly reacts with hydroxyl groups in cellulose or chitosan to form ester. The CA and chitosan finished fabric has adverse effect on stiffness. Thermal studies showed that final residue left at 500° C was much higher for CA and chitosan treated fabric than untreated jute fabric. FTIR spectroscopy suggested the formation of ester cross-linkage between the jute fibre, CA and chitosan and hence it is understood that this rot resistant finish on jute fabric become durable by this mechanism.

  3. Citric acid based durable and sustainable flame retardant treatment for lyocell fabric.

    PubMed

    Mengal, Naveed; Syed, Uzma; Malik, Samander Ali; Ali Sahito, Iftikhar; Jeong, Sung Hoon

    2016-11-20

    Pyrovatex CP New, is a commonly used organophosphorus based flame retardant (FR) reagent for cellulosic materials. However, it has a drawback of high formaldehyde release when used with methylated melamine (MM) based cross-linker, a known carcinogenous compound. In the present approach, a durable and sustainable flame retarding recipe formulation for lyocell fabrics is developed using citric acid (CA) as a cross-linker. The FR finish was applied by pad-dry-cure process. The treated fabrics were characterized for surface morphology, elemental analysis, TG analysis, char study and FT-IR spectroscopy. Furthermore, flame retardancy, washing durability, formaldehyde release and breaking strength were also assessed, and compared with the conventional MM based FR recipe. The fabric samples treated with 400gL(-1) of FR with either 40 or 80gL(-1) of CA demonstrate flame retardancy even after 10 washing cycles. Furthermore, a 75% reduction in formaldehyde release is achieved. Higher char yield and lower decomposition temperature are found compared to untreated and FR+ MM treated lyocell. Such an improved sustainable recipe formulation can be used for lyocell fabric without any health risk in apparel wear.

  4. Citric acid mediates the iron absorption from low molecular weight human milk fractions.

    PubMed

    Palika, Ravindranadh; Mashurabad, Purna Chandra; Kilari, Sreenivasulu; Kasula, Sunanda; Nair, Krishnapillai Madhavan; Raghu, Pullakhandam

    2013-11-20

    Previously, we have demonstrated increased iron absorption from low molecular weight (LMW) human milk whey fractions. In the present study, we investigated the effect of heat denaturation, zinc (a competitor of iron), duodenal cytochrome b (DcytB) antibody neutralization and citrate lyase treatment on LMW human milk fraction (>5 kDa referred as 5kF) induced ferric iron reduction, solubilization, and uptake in Caco-2 cells. Heat denaturation and zinc inhibited the 5kF fraction induced ferric iron reduction. In contrast, zinc but not heat denaturation abrogated the ferric iron solubilization activity. Despite inhibition of ferric iron reduction, iron uptake in Caco-2 cells was similar from both native and heat denatured 5kF fractions. However, iron uptake was higher from native compared to heat denatured 5kF fractions in the cells preincubated with the DcytB antibody. Citrate lyase treatment inhibited the ferric iron reduction, solubilization, and uptake in Caco-2 cells. These findings demonstrate that citric acid present in human milk solubilizes the ferric iron which could be reduced by other heat labile components leading to increased uptake in intestinal cells.

  5. Spectroscopic investigation of direct current (DC) plasma electrolytic oxidation of zirconium in citric acid.

    PubMed

    Stojadinović, Stevan; Radić-Perić, Jelena; Vasilić, Rastko; Perić, Miljenko

    2014-01-01

    Plasma electrolytic oxidation of zirconium in citric acid was investigated using optical spectroscopy. A rich emission spectrum consisting of about 360 zirconium and 170 oxygen atomic and ionic lines was identified in the spectral regions 313-320, 340-516, and 626-640 nm. It was shown that the remaining features observed in the spectrum could be ascribed to various molecular species, which involve zirconium, oxygen, hydrogen, and carbon. The temperature of the plasma core (T = 7500 ± 1000 K) was determined using measured Zr line intensities, and the temperature of peripheral plasma zone (T = 2800 ± 500 K) was estimated from the intensity distribution within a part of an OH spectrum. The composition of the plasma containing zirconium, oxygen, and hydrogen, under assumption of local thermal equilibrium, was calculated in the temperature range up to 12,000 K and for pressure of 10(5) and 10(7) Pa, in order to explain the appearance of the observed spectral features.

  6. Data of thermal degradation and dynamic mechanical properties of starch–glycerol based films with citric acid as crosslinking agent

    PubMed Central

    González Seligra, Paula; Medina Jaramillo, Carolina; Famá, Lucía; Goyanes, Silvia

    2016-01-01

    Interest in biodegradable edible films as packaging or coating has increased because their beneficial effects on foods. In particular, food products are highly dependents on thermal stability, integrity and transition process temperatures of the packaging. The present work describes a complete data of the thermal degradation and dynamic mechanical properties of starch–glycerol based films with citric acid (CA) as crosslinking agent described in the article titled: “Biodegradable and non-retrogradable eco-films based on starch–glycerol with citric acid as crosslinking agent” González Seligra et al. (2016) [1]. Data describes thermogravimetric and dynamical mechanical experiences and provides the figures of weight loss and loss tangent of the films as a function of the temperature. PMID:27158645

  7. Production of tartrates by cyanide-mediated dimerization of glyoxylate: a potential abiotic pathway to the citric acid cycle.

    PubMed

    Butch, Christopher; Cope, Elizabeth D; Pollet, Pamela; Gelbaum, Leslie; Krishnamurthy, Ramanarayanan; Liotta, Charles L

    2013-09-11

    An abiotic formation of meso- and DL-tartrates in 80% yield via the cyanide-catalyzed dimerization of glyoxylate under alkaline conditions is demonstrated. A detailed mechanism for this conversion is proposed, supported by NMR evidence and (13)C-labeled reactions. Simple dehydration of tartrates to oxaloacetate and an ensuing decarboxylation to form pyruvate are known processes that provide a ready feedstock for entry into the citric acid cycle. While glyoxylate and high hydroxide concentration are atypical in the prebiotic literature, there is evidence for natural, abiotic availability of each. It is proposed that this availability, coupled with the remarkable efficiency of tartrate production from glyoxylate, merits consideration of an alternative prebiotic pathway for providing constituents of the citric acid cycle.

  8. Enzymes in Glycolysis and the Citric Acid Cycle in the Yeast and Mycelial Forms of Paracoccidioides brasiliensis

    PubMed Central

    Kanetsuna, Fuminori; Carbonell, Luis M.

    1966-01-01

    Kanetsuna, Fuminori (Instituto Venezolano de Investigaciones Cientificas, Caracas, Venezuela), and Luis M. Carbonell. Enzymes in glycolysis and the citric acid cycle in the yeast and mycelial forms of Paracoccidioides brasiliensis. J. Bacteriol. 92:1315–1320. 1966.—Enzymatic activities in glycolysis, the hexose monophosphate shunt, and the citric acid cycle in cell-free extracts of the yeast and mycelial forms of Paracoccidioides brasiliensis were examined comparatively. Both forms have the enzymes of these pathways. Activities of glucose-6-phosphate dehydrogenase and malic dehydrogenase of the mycelial form were higher than those of the yeast form. Another 15 enzymatic activities of the mycelial form were lower than those of the yeast form. The activity of glyceraldehyde-3-phosphate dehydrogenase showed the most marked difference between the two forms, its activity in the mycelial form being about 20% of that in the yeast form. PMID:5924267

  9. Data of thermal degradation and dynamic mechanical properties of starch-glycerol based films with citric acid as crosslinking agent.

    PubMed

    González Seligra, Paula; Medina Jaramillo, Carolina; Famá, Lucía; Goyanes, Silvia

    2016-06-01

    Interest in biodegradable edible films as packaging or coating has increased because their beneficial effects on foods. In particular, food products are highly dependents on thermal stability, integrity and transition process temperatures of the packaging. The present work describes a complete data of the thermal degradation and dynamic mechanical properties of starch-glycerol based films with citric acid (CA) as crosslinking agent described in the article titled: "Biodegradable and non-retrogradable eco-films based on starch-glycerol with citric acid as crosslinking agent" González Seligra et al. (2016) [1]. Data describes thermogravimetric and dynamical mechanical experiences and provides the figures of weight loss and loss tangent of the films as a function of the temperature.

  10. Enzymes in glycolysis and the citric acid cycle in the yeast and mycelial forms of Paracoccidioides brasiliensis.

    PubMed

    Kanetsuna, F; Carbonell, L M

    1966-11-01

    Kanetsuna, Fuminori (Instituto Venezolano de Investigaciones Cientificas, Caracas, Venezuela), and Luis M. Carbonell. Enzymes in glycolysis and the citric acid cycle in the yeast and mycelial forms of Paracoccidioides brasiliensis. J. Bacteriol. 92:1315-1320. 1966.-Enzymatic activities in glycolysis, the hexose monophosphate shunt, and the citric acid cycle in cell-free extracts of the yeast and mycelial forms of Paracoccidioides brasiliensis were examined comparatively. Both forms have the enzymes of these pathways. Activities of glucose-6-phosphate dehydrogenase and malic dehydrogenase of the mycelial form were higher than those of the yeast form. Another 15 enzymatic activities of the mycelial form were lower than those of the yeast form. The activity of glyceraldehyde-3-phosphate dehydrogenase showed the most marked difference between the two forms, its activity in the mycelial form being about 20% of that in the yeast form.

  11. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  12. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  13. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  14. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  15. Coagulation of bitumen with kaolinite in aqueous solutions containing Ca2+, Mg2+ and Fe3+: effect of citric acid.

    PubMed

    Gan, Weibing; Liu, Qi

    2008-08-01

    Heterocoagulation experiments of kaolinite with solvent-diluted-bitumen were carried out to investigate the effect of hydrolyzable metal cations and citric acid on the liberation of bitumen from kaolinite. The adsorption of Ca(2+) and Mg(2+) on kaolinite, and zeta potentials of kaolinite and bitumen droplets in solutions containing 10(-3)mol/L of Ca(2+), Mg(2+) and Fe(3+) with or without citric acid were also measured. It was found that the heterocoagulation of bitumen with kaolinite was enhanced in the presence of the metal cations from pH 7 to pH 10.5, accompanied by a decrease in the magnitude of the zeta potentials and an increase in the adsorption of the metal cations on kaolinite and possibly on bitumen droplets. The addition of 5 x 10(-4)mol/L citric acid reduced the degree of coagulation from 90% to less than 40% in the presence of 10(-3)mol/L Ca(2+) and Mg(2+) cations at pH approximately 10, and at pH approximately 8 for Fe(3+). It was found that hydrolyzable metal cations enhanced bitumen-kaolinite interactions through electrical double layer compression and specific adsorption of the metal hydrolysis species on the surface of kaolinite. The effect of metal cations was removed by citric acid through formation of metal-citrate complexes and/or the adsorption of citrate anions, which restored the zeta potentials of both kaolinite and bitumen. Therefore, electrostatic attraction or repulsion was responsible for the coagulation or dispersion of kaolinite particles from bitumen droplets in the tested system.

  16. Metabolomic and mass isotopomer analysis of liver gluconeogenesis and citric acid cycle: II. Heterogeneity of metabolite labeling pattern.

    PubMed

    Yang, Lili; Kasumov, Takhar; Kombu, Rajan S; Zhu, Shu-Han; Cendrowski, Andrea V; David, France; Anderson, Vernon E; Kelleher, Joanne K; Brunengraber, Henri

    2008-08-08

    In this second of two companion articles, we compare the mass isotopomer distribution of metabolites of liver gluconeogenesis and citric acid cycle labeled from NaH(13)CO(3) or dimethyl [1,4-(13)C(2)]succinate. The mass isotopomer distribution of intermediates reveals the reversibility of the isocitrate dehydrogenase + aconitase reactions, even in the absence of a source of alpha-ketoglutarate. In addition, in many cases, a number of labeling incompatibilities were found as follows: (i) glucose versus triose phosphates and phosphoenolpyruvate; (ii) differences in the labeling ratios C-4/C-3 of glucose versus (glyceraldehyde 3-phosphate)/(dihydroxyacetone phosphate); and (iii) labeling of citric acid cycle intermediates in tissue versus effluent perfusate. Overall, our data show that gluconeogenic and citric acid cycle intermediates cannot be considered as sets of homogeneously labeled pools. This probably results from the zonation of hepatic metabolism and, in some cases, from differences in the labeling pattern of mitochondrial versus extramitochondrial metabolites. Our data have implications for the use of labeling patterns for the calculation of metabolic rates or fractional syntheses in liver, as well as for modeling liver intermediary metabolism.

  17. The effect of nedocromil sodium, sodium cromoglycate and codeine phosphate on citric acid-induced cough in dogs.

    PubMed Central

    Jackson, D. M.

    1988-01-01

    1. The effects of nedocromil sodium, sodium cromoglycate and codeine phosphate on citric acid-induced cough have been studied in conscious tracheostomised dogs. 2. Nedocromil sodium (approximately 15 mg given as an aerosol) and codeine phosphate (5 mg kg-1, i.v.) significantly increased the time to the first cough when dogs were challenged with citric acid aerosol. The mean number of coughs in the initial period of coughing fell after treatment of dogs with nedocromil sodium or with codeine phosphate, but this reduction in mean cough number was not statistically significant. 3. Neither sodium cromoglycate (approximately 15 mg given as an aerosol) nor saline had significant effect on a citric acid challenge. 4. It is concluded that nedocromil sodium, but not sodium cromoglycate, possesses an anti-tussive action that may result from inhibition of sensory nerve activity in the lung. Nedocromil sodium may prove useful in the treatment of unproductive cough in situations where the use of a centrally-acting antitussive is undesirable. PMID:2836011

  18. Development of a novel glue consisting of naturally-derived biomolecules: citric acid and human serum albumin.

    PubMed

    Taguchi, Tetsushi; Saito, Hirofumi; Iwasashi, Masashi; Sakane, Masataka; Kakinoki, Sachiro; Ochiai, Naoyuki; Tanaka, Junzo

    2007-03-01

    A novel glue consisting of human serum albumin (HSA) and citric acid derivative (CAD) was developed where the glue is named as CAD-A glue. In this adhesive, CAD works as a crosslinking reagent of HSA. For preparing crosslinking reagent CAD, using citric acid as a starting material, three carboxyl groups of a citric acid were modified with N-hydroxysuccinimide in the presence of 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide hydrochloride. From 1H-NMR spectrum, CAD with three active ester groups in a molecule was successfully synthesized with a high yield (more than 80%). The boding time of CAD-A glue to collagen-based casing was saturated within 15 minutes. The bonding strength of this glue to collagen-based casings increased with increasing of HSA concentration. The maximum bonding strength of CAD-A glue was a slightly low level compared to the bonding strength of cyanoacrylate adhesive and was 9 times higher than that of fibrin glue. The CAD-A glue showed excellent biocompatibility and high ability of wound closure similar to that of cyanoacrylate-based adhesive when glues were applied to the mouse skin. These results suggested that this developed adhesive had both tissue compatibility and bonding strength for use in clinical field.

  19. Improvement of production of citric acid from oil palm empty fruit bunches: optimization of media by statistical experimental designs.

    PubMed

    Bari, Md Niamul; Alam, Md Zahangir; Muyibi, Suleyman A; Jamal, Parveen; Abdullah-Al-Mamun

    2009-06-01

    A sequential optimization based on statistical design and one-factor-at-a-time (OFAT) method was employed to optimize the media constituents for the improvement of citric acid production from oil palm empty fruit bunches (EFB) through solid state bioconversion using Aspergillus niger IBO-103MNB. The results obtained from the Plackett-Burman design indicated that the co-substrate (sucrose), stimulator (methanol) and minerals (Zn, Cu, Mn and Mg) were found to be the major factors for further optimization. Based on the OFAT method, the selected medium constituents and inoculum concentration were optimized by the central composite design (CCD) under the response surface methodology (RSM). The statistical analysis showed that the optimum media containing 6.4% (w/w) of sucrose, 9% (v/w) of minerals and 15.5% (v/w) of inoculum gave the maximum production of citric acid (337.94 g/kg of dry EFB). The analysis showed that sucrose (p<0.0011) and mineral solution (p<0.0061) were more significant compared to inoculum concentration (p<0.0127) for the citric acid production.

  20. C-Myc Induced Compensated Cardiac Hypertrophy Increases Free Fatty Acid Utilization for the Citric Acid Cycle

    SciTech Connect

    Olson, Aaron; Ledee, Dolena; Iwamoto, Kate; Kajimoto, Masaki; O'Kelly-Priddy, Colleen M.; Isern, Nancy G.; Portman, Michael A.

    2013-02-01

    The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc-induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam). Isolated working hearts and 13Carbon (13C )-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing 13C-labeled free fatty acids, acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was confirmed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contribution in NTG. Substrate utilization was not significantly altered in 3dMyc versus cont. The free fatty acid FC was significantly greater in 7dMyc vs cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the mechanisms whereby this change maintained

  1. Uptake of 13N-labeled N2O5 to citric acid aerosol particles

    NASA Astrophysics Data System (ADS)

    Grzinic, Goran; Bartels-Rausch, Thorsten; Birrer, Mario; Türler, Andreas; Ammann, Markus

    2013-04-01

    Dinitrogen pentoxide is a significant reactive intermediate in the night time chemistry of nitrogen oxides. Depending on atmospheric conditions it can act either as a NO3 radical reservoir or as a major NOx sink by heterogeneous hydrolysis on aerosol surfaces. As such, it can influence tropospheric ozone production and therefore the oxidative capacity of the atmosphere. Furthermore it's suspected of being a non negligible source of tropospheric Cl, even over continental areas [1,2]. We used the short-lived radioactive tracer 13N delivered by PSI's PROTRAC facility [3] in conjunction with an aerosol flow tube reactor in order to study N2O5 uptake kinetics on aerosol particles. 13NO is mixed with non labeled NO and O3 in a gas reactor where N2O5 is synthesized under dry conditions to prevent hydrolysis on the reactor walls. The resulting N2O5 flow is fed into an aerosol flow tube reactor together with a humidified aerosol flow. By using movable inlets we can vary the length of the aerosol flow tube and thus the reaction time. The gas feed from the reactor is then directed into a narrow parallel plate diffusion denuder system that allows for selective separation of the gaseous species present in the gas phase. Aerosol particles are trapped on a particle filter placed at the end of the denuder system. The activity of 13N labeled species trapped on the denuder plates and in the particle filter can be monitored via scintillation counters. Aerosol uptake measurements were performed with citric acid aerosols in a humidity range of 27-61.5% RH. The results obtained from our measurements have shown that the uptake coefficient increases with humidity from 1.65±0.3x10-3 (~27% RH) to 1.25±0.3x10-2 (45% RH) and 2.00±0.3x10-2 (61.5% RH). Comparison to literature data shows that this is similar to values reported for some polycarboxylic acids (like malonic acid), while being higher than some others [4]. The increase is likely related to the increasing amount of water associated

  2. Differential effects of heptanoate and hexanoate on myocardial citric acid cycle intermediates following ischemia-reperfusion.

    PubMed

    Okere, Isidore C; McElfresh, Tracy A; Brunengraber, Daniel Z; Martini, Wenjun; Sterk, Joseph P; Huang, Hazel; Chandler, Margaret P; Brunengraber, Henri; Stanley, William C

    2006-01-01

    In the normal heart, there is loss of citric acid cycle (CAC) intermediates that is matched by the entry of intermediates from outside the cycle, a process termed anaplerosis. Previous in vitro studies suggest that supplementation with anaplerotic substrates improves cardiac function during myocardial ischemia and/or reperfusion. The present investigation assessed whether treatment with the anaplerotic medium-chain fatty acid heptanoate improves contractile function during ischemia and reperfusion. The left anterior descending coronary artery of anesthetized pigs was subjected to 60 min of 60% flow reduction and 30 min of reperfusion. Three treatment groups were studied: saline control, heptanoate (0.4 mM), or hexanoate as a negative control (0.4 mM). Treatment was initiated after 30 min of ischemia and continued through reperfusion. Myocardial CAC intermediate content was not affected by ischemia-reperfusion; however, treatment with heptanoate resulted in a more than twofold increase in fumarate and malate, with no change in citrate and succinate, while treatment with hexanoate did not increase fumarate or malate but increased succinate by 1.8-fold. There were no differences among groups in lactate exchange, glucose oxidation, oxygen consumption, and contractile power. In conclusion, despite a significant increase in the content of carbon-4 CAC intermediates, treatment with heptanoate did not result in improved mechanical function of the heart in this model of reversible ischemia-reperfusion. This suggests that reduced anaplerosis and CAC dysfunction do not play a major role in contractile and metabolic derangements observed with a 60% decrease in coronary flow followed by reperfusion.

  3. Citric acid induces cell-cycle arrest and apoptosis of human immortalized keratinocyte cell line (HaCaT) via caspase- and mitochondrial-dependent signaling pathways.

    PubMed

    Ying, Tsung-Ho; Chen, Chia-Wei; Hsiao, Yu-Ping; Hung, Sung-Jen; Chung, Jing-Gung; Yang, Jen-Hung

    2013-10-01

    Citric acid is an alpha-hydroxyacid (AHA) widely used in cosmetic dermatology and skincare products. However, there is concern regarding its safety for the skin. In this study, we investigated the cytotoxic effects of citric acid on the human keratinocyte cell line HaCaT. HaCaT cells were treated with citric acid at 2.5-12.5 mM for different time periods. Cell-cycle arrest and apoptosis were investigated by 4,6-diamidino-2-phenylindole dihydrochloride (DAPI) staining, flow cytometry, western blot and confocal microscopy. Citric acid not only inhibited proliferation of HaCaT cells in a dose-dependent manner, but also induced apoptosis and cell cycle-arrest at the G2/M phase (before 24 h) and S phase (after 24 h). Citric acid increased the level of Bcl-2-associated X protein (BAX) and reduced the levels of B-cell lymphoma-2 (BCL-2), B-cell lymphoma-extra large (BCL-XL) and activated caspase-9 and caspase-3, which subsequently induced apoptosis via caspase-dependent and caspase-independent pathways. Citric acid also activated death receptors and increased the levels of caspase-8, activated BH3 interacting-domain death agonist (BID) protein, Apoptosis-inducing factor (AIF), and Endonuclease G (EndoG). Therefore, citric acid induces apoptosis through the mitochondrial pathway in the human keratinocyte cell line HaCaT. The study results suggest that citric acid is cytotoxic to HaCaT cells via induction of apoptosis and cell-cycle arrest in vitro.

  4. New fermentation processes for producing itaconic acid and citric acid for industrial uses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Itaconic acid is an important industrial chemical that we have produced by fermentation of simple sugars using the yeast Pseudozyma antarctica. Itaconic acid is priced at ~$4 per kg and has an annual market volume of about 15,000 metric tons. Itaconic acid is used in the polymer industry and for m...

  5. Condensation of acetol and acetic acid vapor with sprayed liquid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A cellulose-derived fraction of biomass pyrolysis vapor was simulated by evaporating acetol and acetic acid (AA) from flasks on a hot plate. The liquid in the flasks was infused with heated nitrogen. The vapor/nitrogen stream was superheated in a tube oven and condensed by contact with a cloud of ...

  6. Intramolecular carbon isotope distribution of acetic acid in vinegar.

    PubMed

    Hattori, Ryota; Yamada, Keita; Kikuchi, Makiko; Hirano, Satoshi; Yoshida, Naohiro

    2011-09-14

    Compound-specific carbon isotope analysis of acetic acid is useful for origin discrimination and quality control of vinegar. Intramolecular carbon isotope distributions, which are each carbon isotope ratios of the methyl and carboxyl carbons in the acetic acid molecule, may be required to obtain more detailed information to discriminate such origin. In this study, improved gas chromatography-pyrolysis-gas chromatography-combustion-isotope ratio mass spectrometry (GC-Py-GC-C-IRMS) combined with headspace solid-phase microextraction (HS-SPME) was used to measure the intramolecular carbon isotope distributions of acetic acid in 14 Japanese vinegars. The results demonstrated that the methyl carbons of acetic acid molecules in vinegars produced from plants were mostly isotopically depleted in (13)C relative to the carboxyl carbon. Moreover, isotopic differences (δ(13)C(carboxyl) - δ(13)C(methyl)) had a wide range from -0.3 to 18.2‰, and these values differed among botanical origins, C3, C4, and CAM plants.

  7. Bioavailability of cobalt and iron from citric-acid-adsorbed CoFe2O4 nanoparticles in the terrestrial isopod Porcellio scaber.

    PubMed

    Romih, Tea; Drašler, Barbara; Jemec, Anita; Drobne, Damjana; Novak, Sara; Golobič, Miha; Makovec, Darko; Susič, Robert; Kogej, Ksenija

    2015-03-01

    The aim of this study was to determine whether citric acid adsorbed onto cobalt ferrite (CoFe2O4) nanoparticles (NPs) influences the bioavailability of their constituents Co and Fe. Dissolution of Co and Fe was assessed by two measures: (i) in aqueous suspension using chemical analysis, prior to application onto the food of test organisms; and (ii) in vivo, measuring the bioavailability in the model terrestrial invertebrate (Porcellio scaber, Isopoda, Crustacea). The isopods were exposed to citric-acid-adsorbed CoFe2O4 NPs for 2 weeks, and tissue accumulation of Co and Fe was assessed. This was compared to pristine CoFe2O4 NPs, and CoCl2 and Fe(III) salts as positive controls. The combined data shows that citric acid enhances free metal ion concentration from CoFe2O4 NPs in aqueous suspension, although in vivo, very similar amounts of assimilated Co were found in isopods exposed to both types of NPs. Therefore, evaluation of the dissolution in suspension by chemical means is not a good predictor of metal assimilation of this model organism; body assimilation of Co and Fe is rather governed by the physiological capacity of P. scaber for the uptake of these metals. Moreover, we propose that citric acid, due to its chelating properties, may hinder the uptake of Co that dissolves from citric-acid-adsorbed CoFe2O4 NPs, if citric acid is present in sufficient quantity.

  8. Occurrence and metabolism of 7-hydroxy-2-indolinone-3-acetic acid in Zea mays

    NASA Technical Reports Server (NTRS)

    Lewer, P.; Bandurski, R. S.

    1987-01-01

    7-Hydroxy-2-indolinone-3-acetic acid was identified as a catabolite of indole-3-acetic acid in germinating kernels of Zea mays and found to be present in amounts of ca 3.1 nmol/kernel. 7-Hydroxy-2-indolinone-3-acetic acid was shown to be a biosynthetic intermediate between 2-indolinone-3-acetic acid and 7-hydroxy-2-indolinone-3-acetic acid-7'-O-glucoside in both kernels and roots of Zea mays. Further metabolism of 7-hydroxy-2-[5-3H]-indolinone-3-acetic acid-7'-O-glucoside occurred to yield tritiated water plus, as yet, uncharacterized products.

  9. Pyruvate and citric acid cycle carbon requirements in isolated skeletal muscle mitochondria.

    PubMed

    Messer, Jeffrey I; Jackman, Matthew R; Willis, Wayne T

    2004-03-01

    Carbohydrate depletion precipitates fatigue in skeletal muscle, but, because pyruvate provides both acetyl-CoA for mainline oxidation and anaplerotic carbon to the citric acid cycle (CAC), the mechanism remains obscure. Thus pyruvate and CAC kinetic parameters were independently quantified in mitochondria isolated from rat mixed skeletal muscle. Mitochondrial oxygen consumption rate (Jo) was measured polarographically while either pyruvate or malate was added stepwise in the presence of a saturating concentration of the other substrate. These substrate titrations were carried out across a physiological range of fixed extramitochondrial ATP free energy states (DeltaGP), established with a creatine kinase energy clamp, and also at saturating [ADP]. The apparent Km,malate for mitochondrial Jo ranged from 21 to 32 microM, and the apparent Km,pyruvate ranged from 12 to 26 microM, with both substrate Km values increasing as DeltaGP declined. Vmax for both substrates also increased as DeltaGP fell, reflecting thermodynamic control of Jo. Reported in vivo skeletal muscle [malate] are >10-fold greater than the Km,malate determined in this study. In marked contrast, the K(m,pyruvate) determined is near the [pyruvate] reported in muscle approaching exhaustion associated with glycogen depletion. When data were evaluated in the context of a linear thermodynamic force-flow (DeltaGP-Jo) relationship, the DeltaGP-Jo slope was essentially insensitive to changes in [malate] in the range observed in vivo but decreased markedly with declining [pyruvate] across the physiological range. Mitochondrial respiration is particularly sensitive to variations in [pyruvate] in the physiological range. In contrast, physiological [malate] exerts very little, if any, influence on mitochondrial pyruvate oxidation measured in vitro.

  10. Mast cells in citric acid-induced cough of guinea pigs

    SciTech Connect

    Lai, Y.-L. . E-mail: tiger@ha.mc.ntu.edu.tw; Lin, T.-Y.

    2005-01-01

    It was demonstrated previously that mast cells play an important role in citric acid (CA)-induced airway constriction. To investigate the role of mast cells in CA-induced cough, three experiments were carried out in this study. In the first experiment, 59 guinea pigs were employed and we used compound 48/80 to deplete mast cells, cromolyn sodium to stabilize mast cells, MK-886 to inhibit leukotriene synthesis, pyrilamine to antagonize histamine H{sub 1} receptor, methysergide to antagonize serotonin receptor, and indomethacin to inhibit cyclooxygenase. In the second experiment, 56 compound 48/80-pretreated animals were divided into two parts; the first one was used to test the role of exogenous leukotriene (LT) C{sub 4}, while the second one to test the role of exogenous histamine in CA-induced cough. Each animal with one of the above pretreatments was exposed sequentially to saline (baseline) and CA (0.6 M) aerosol, each for 3 min. Then, cough was recorded for 12 min using a barometric body plethysmograph. In the third experiment, the activation of mast cells upon CA inhalation was investigated by determining arterial plasma histamine concentration in 17 animals. Exposure to CA induced a marked increase in cough number. Compound 48/80, cromolyn sodium, MK-886 and pyrilamine, but not indomethacin or methysergide, significantly attenuated CA-induced cough. Injection of LTC{sub 4} or histamine caused a significant increase in CA-induced cough in compound 48/80-pretreated animals. In addition, CA inhalation caused significant increase in plasma histamine concentration, which was blocked by compound 48/80 pretreatment. These results suggest that mast cells play an important role in CA aerosol inhalation-induced cough via perhaps mediators LTs and histamine.

  11. Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor.

    PubMed

    Mounir, Majid; Shafiei, Rasoul; Zarmehrkhorshid, Raziyeh; Hamouda, Allal; Ismaili Alaoui, Mustapha; Thonart, Philippe

    2016-02-01

    The activity of bacterial strains significantly influences the quality and the taste of vinegar. Previous studies of acetic acid bacteria have primarily focused on the ability of bacterial strains to produce high amounts of acetic acid. However, few studies have examined the production of gluconic acid during acetous fermentation at high temperatures. The production of vinegar at high temperatures by two strains of acetic acid bacteria isolated from apple and cactus fruits, namely AF01 and CV01, respectively, was evaluated in this study. The simultaneous production of gluconic and acetic acids was also examined in this study. Biochemical and molecular identification based on a 16s rDNA sequence analysis confirmed that these strains can be classified as Acetobacter pasteurianus. To assess the ability of the isolated strains to grow and produce acetic acid and gluconic acid at high temperatures, a semi-continuous fermentation was performed in a 20-L bioreactor. The two strains abundantly grew at a high temperature (41°C). At the end of the fermentation, the AF01 and CV01 strains yielded acetic acid concentrations of 7.64% (w/v) and 10.08% (w/v), respectively. Interestingly, CV01 was able to simultaneously produce acetic and gluconic acids during acetic fermentation, whereas AF01 mainly produced acetic acid. In addition, CV01 was less sensitive to ethanol depletion during semi-continuous fermentation. Finally, the enzymatic study showed that the two strains exhibited high ADH and ALDH enzyme activity at 38°C compared with the mesophilic reference strain LMG 1632, which was significantly susceptible to thermal inactivation.

  12. Citric acid as the last therapeutic approach in an acute life-threatening metabolic decompensation of propionic acidaemia.

    PubMed

    Siekmeyer, Manuela; Petzold-Quinque, Stefanie; Terpe, Friederike; Beblo, Skadi; Gebhardt, Rolf; Schlensog-Schuster, Franziska; Kiess, Wieland; Siekmeyer, Werner

    2013-01-01

    The tricarboxylic acid (TCA) cycle represents the key enzymatic steps in cellular energy metabolism. Once the TCA cycle is impaired in case of inherited metabolic disorders, life-threatening episodes of metabolic decompensation and severe organ failure can arise. We present the case of a 6 ½-year-old girl with propionic acidaemia during an episode of acute life-threatening metabolic decompensation and severe lactic acidosis. Citric acid given as an oral formulation showed the potential to sustain the TCA cycle flux. This therapeutic approach may become a treatment option in a situation of acute metabolic crisis, possibly preventing severe disturbance of energy metabolism.

  13. A continuous acetic acid system for polyacrylamide gel electrophoresis of gliadins and other prolamines.

    PubMed

    Clements, R L

    1988-02-01

    A polyacrylamide gel electrophoresis system buffered by acetic acid alone was developed for electrophoresis of prolamines. When applied to gliadin electrophoresis, the acetic acid system produces more bands than does a conventional aluminum lactate-lactic acid system (using 12% acrylamide gels). The acetic acid system is relatively simple, requiring a single buffer component that is universally available in high purity.

  14. [Conversion of acetic acid to methane by thermophiles: Progress report

    SciTech Connect

    Zinder, S.

    1991-12-31

    The objective of this project is to provide an understanding of thermophilic anaerobic microorganisms capable of breaking down acetic acid, the precursor of two-thirds of the methane produced by anaerobic bioreactors. Recent results include: (1) the isolation of Methanothrix strain CALLS-1, which grows much more rapidly than mesophilic strains; (2) the demonstration that thermophilic cultures of Methanosarcina and Methanothrix show minimum thresholds for acetate utilization of 1--2.5 mM and 10--20{mu}m respectively, in agreement with ecological data indicating that Methanothrix is favored by low acetate concentration; (3) the demonstration of high levels of thermostable acetyl-coA synthetase and carbon monoxide dehydrogenase in cell-free extracts of Methanothrix strains CALS-1; (4) the demonstration of methanogenesis from acetate and ATP in cell free extracts of strain CALS-1. (5) the demonstration that methanogenesis from acetate required 2 ATP/methane, and, in contrast to Methanosarcina, was independent of hydrogen and other electron donors; (6) the finding that entropy effects must be considered when predicting the level of hydrogen in thermophilic syntrophic cultures. (7) the isolation and characterization of the Desulfotomaculum thermoacetoxidans. Current research is centered on factors which allow thermophilic Methanothrix to compete with Methanosarcina.

  15. (Conversion of acetic acid to methane by thermophiles: Progress report)

    SciTech Connect

    Zinder, S.

    1991-01-01

    The objective of this project is to provide an understanding of thermophilic anaerobic microorganisms capable of breaking down acetic acid, the precursor of two-thirds of the methane produced by anaerobic bioreactors. Recent results include: (1) the isolation of Methanothrix strain CALLS-1, which grows much more rapidly than mesophilic strains; (2) the demonstration that thermophilic cultures of Methanosarcina and Methanothrix show minimum thresholds for acetate utilization of 1--2.5 mM and 10--20{mu}m respectively, in agreement with ecological data indicating that Methanothrix is favored by low acetate concentration; (3) the demonstration of high levels of thermostable acetyl-coA synthetase and carbon monoxide dehydrogenase in cell-free extracts of Methanothrix strains CALS-1; (4) the demonstration of methanogenesis from acetate and ATP in cell free extracts of strain CALS-1. (5) the demonstration that methanogenesis from acetate required 2 ATP/methane, and, in contrast to Methanosarcina, was independent of hydrogen and other electron donors; (6) the finding that entropy effects must be considered when predicting the level of hydrogen in thermophilic syntrophic cultures. (7) the isolation and characterization of the Desulfotomaculum thermoacetoxidans. Current research is centered on factors which allow thermophilic Methanothrix to compete with Methanosarcina.

  16. Browning inhibition mechanisms by cysteine, ascorbic acid and citric acid, and identifying PPO-catechol-cysteine reaction products.

    PubMed

    Ali, Hussein M; El-Gizawy, Ahmed M; El-Bassiouny, Rawia E I; Saleh, Mahmoud A

    2015-06-01

    The titled compounds were examined as PPO inhibitors and antibrowning agents; their various mechanisms were investigated and discussed. All compounds reduced significantly both the browning process and PPO activity. Browning index gave strong correlation with PPO activity (r(2) = 0.96, n = 19) indicating that the browning process is mainly enzymatic. Ascorbic acid could reduce the formed quinone instantly to the original substrate (catechol) at high concentration (>1.5 %) while at lower concentrations acted as competitive inhibitor (KI = 0.256 ± 0.067 mM). Cysteine, at higher concentrations (≥1.0 %), reacted with the resulted quinone to give a colorless products while at the low concentrations, cysteine worked as competitive inhibitor (KI = 1.113 ± 0.176 mM). Citric acid acted only as PPO non-competitive inhibitor with KI = 2.074 ± 0.363 mM. The products of PPO-catechole-cysteine reaction could be separation and identification by LC-ESI-MS. Results indicated that the product of the enzymatic oxidation of catechol, quinone, undergoes two successive nucleophilic attacks by cysteine thiol group. Cysteine was condensed with the resulted mono and dithiocatechols to form peptide side chains.

  17. Evaporation kinetics of acetic acid-water solutions

    NASA Astrophysics Data System (ADS)

    Duffey, K.; Wong, N.; Saykally, R.; Cohen, R. C.

    2012-12-01

    The transport of water molecules across vapor-liquid interfaces in the atmosphere is a crucial step in the formation and evolution of cloud droplets. Despite decades of study, the effects of solutes on the mechanism and rate of evaporation and condensation remain poorly characterized. The present work aims to determine the effect of atmospherically-relevant solutes on the evaporation rate of water. In our experiments, we create a train of micron-sized droplets and measure their temperature via Raman thermometry as they undergo evaporation without condensation. Analysis of the cooling rate yields the evaporation coefficient (γ). Previous work has shown that inorganic salts have little effect on γ, with surface-adsorbing anions causing a slight reduction in the coefficient from that measured for pure water. Organic acids are ubiquitous in aqueous aerosol and have been shown to disrupt the surface structure of water. Here we describe measurements of the evaporation rate of acetic acid solutions, showing that acetic acid reduces γ to a larger extent than inorganic ions, and that γ decreases with increasing acetic acid concentration.

  18. Crystal structure of febuxostat-acetic acid (1/1).

    PubMed

    Wu, Min; Hu, Xiu-Rong; Gu, Jian-Ming; Tang, Gu-Ping

    2015-05-01

    The asymmetric unit of the title compound [systematic name: 2-(3-cyano-4-iso-butyl-oxyphen-yl)-4-methyl-thia-zole-5-carb-oxy-lic acid-acetic acid (1/1)], C16H16N2O3S·CH3COOH, contains a febuxostat mol-ecule and an acetic acid mol-ecule. In the febuxostat mol-ecule, the thia-zole ring is nearly coplanar with the benzene ring [dihedral angle = 3.24 (2)°]. In the crystal, the febuxostat and acetic acid mol-ecules are linked by O-H⋯O, O-H⋯N hydrogen bonds and weak C-H⋯O hydrogen bonds, forming supra-molecular chains propagating along the b-axis direction. π-π stacking is observed between nearly parallel thia-zole and benzene rings of adjacent mol-ecules; the centroid-to-centroid distances are 3.8064 (17) and 3.9296 (17) Å.

  19. Acetic acid bacteria spoilage of bottled red wine -- a review.

    PubMed

    Bartowsky, Eveline J; Henschke, Paul A

    2008-06-30

    Acetic acid bacteria (AAB) are ubiquitous organisms that are well adapted to sugar and ethanol rich environments. This family of Gram-positive bacteria are well known for their ability to produce acetic acid, the main constituent in vinegar. The oxidation of ethanol through acetaldehyde to acetic acid is well understood and characterised. AAB form part of the complex natural microbial flora of grapes and wine, however their presence is less desirable than the lactic acid bacteria and yeast. Even though AAB were described by Pasteur in the 1850s, wine associated AAB are still difficult to cultivate on artificial laboratory media and until more recently, their taxonomy has not been well characterised. Wine is at most risk of spoilage during production and the presence of these strictly aerobic bacteria in grape must and during wine maturation can be controlled by eliminating, or at least limiting oxygen, an essential growth factor. However, a new risk, spoilage of wine by AAB after packaging, has only recently been reported. As wine is not always sterile filtered prior to bottling, especially red wine, it often has a small resident bacterial population (<10(3) cfu/mL), which under conducive conditions might proliferate. Bottled red wines, sealed with natural cork closures, and stored in a vertical upright position may develop spoilage by acetic acid bacteria. This spoilage is evident as a distinct deposit of bacterial biofilm in the neck of the bottle at the interface of the wine and the headspace of air, and is accompanied with vinegar, sherry, bruised apple, nutty, and solvent like off-aromas, depending on the degree of spoilage. This review focuses on the wine associated AAB species, the aroma and flavour changes in wine due to AAB metabolism, discusses the importance of oxygen ingress into the bottle and presents a hypothesis for the mechanism of spoilage of bottled red wine.

  20. 40 CFR 721.10448 - Acetic acid, hydroxy- methoxy-, methyl ester, reaction products with substituted alkylamine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ester, reaction products with substituted alkylamine (generic). 721.10448 Section 721.10448 Protection... Acetic acid, hydroxy- methoxy-, methyl ester, reaction products with substituted alkylamine (generic). (a... generically as acetic acid, hydroxymethoxy-, methyl ester, reaction products with substituted alkylamine...

  1. 40 CFR 721.10448 - Acetic acid, hydroxy- methoxy-, methylester, reaction products with substituted alkylamine...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-, methylester, reaction products with substituted alkylamine (generic). 721.10448 Section 721.10448 Protection... Acetic acid, hydroxy- methoxy-, methylester, reaction products with substituted alkylamine (generic). (a... generically as acetic acid, hydroxymethoxy-, methyl ester, reaction products with substituted alkylamine...

  2. Metabolism: Part II. The Tricarboxylic Acid (TCA), Citric Acid, or Krebs Cycle.

    ERIC Educational Resources Information Center

    Bodner, George M.

    1986-01-01

    Differentiates the tricarboxylic acid (TCA) cycle (or Krebs cycle) from glycolysis, and describes the bridge between the two as being the conversion of pyruvate into acetyl coenzyme A. Discusses the eight steps in the TCA cycle, the results of isotopic labeling experiments, and the net effects of the TCA cycle. (TW)

  3. Coulometric titration of bases in acetic acid and acetonitrile media.

    PubMed

    Vajgand, V J; Mihajlović, R

    1969-09-01

    The working conditions and the results for coulometric titration of milligram amounts of some bases in 0.1M sodium perchlorate in a mixture of acetic acid and acetic anhydride (1:6), are given. Determinations were made both by coulometric back-titration or direct titration at the platinum anode. Back-titration was done in the catholyte, by coulometric titration of the excess of added perchloric acid. The titration end-point was detected photometrically with Crystal Violet as indicator. The direct titration of bases was done at the platinum anode, in the same electrolyte, to which hydroquinone was added as anode depolarizer and as the source of hydrogen ions, Malachite Green being used as indicator. Similarly, bases can be determined in acetonitrile if sodium perchlorate, hydroquinone and Malachite Green are added to the solvent. Errors are below 1 %, and the precision is satisfactory.

  4. Acetic acid pretreatment improves the hardness of cooked potato slices.

    PubMed

    Zhao, Wenlin; Shehzad, Hussain; Yan, Shoulei; Li, Jie; Wang, Qingzhang

    2017-08-01

    The effects of acetic acid pretreatment on the texture of cooked potato slices were investigated in this work. Potato slices were pretreated with acetic acid immersion (AAI), distilled water immersion (DWI), or no immersion (NI). Subsequently, the cell wall material of the pretreated samples was isolated and fractioned to evaluate changes in the monosaccharide content and molar mass (MM), and the hardness and microscopic structure of the potato slices in different pretreatments before and after cooking were determined. The results showed that the highest firmness was obtained with more intact structure of the cell wall for cooked potato slices with AAI pretreatment. Furthermore, the MM and sugar ratio demonstrated that the AAI pretreated potato slices contained a higher content of the small molecular polysaccharides of cell walls, especially in the hemicellulose fraction. This work may provide a reference for potato processing.

  5. Acetic acid enhances endurance capacity of exercise-trained mice by increasing skeletal muscle oxidative properties.

    PubMed

    Pan, Jeong Hoon; Kim, Jun Ho; Kim, Hyung Min; Lee, Eui Seop; Shin, Dong-Hoon; Kim, Seongpil; Shin, Minkyeong; Kim, Sang Ho; Lee, Jin Hyup; Kim, Young Jun

    2015-01-01

    Acetic acid has been shown to promote glycogen replenishment in skeletal muscle during exercise training. In this study, we investigated the effects of acetic acid on endurance capacity and muscle oxidative metabolism in the exercise training using in vivo mice model. In exercised mice, acetic acid induced a significant increase in endurance capacity accompanying a reduction in visceral adipose depots. Serum levels of non-esterified fatty acid and urea nitrogen were significantly lower in acetic acid-fed mice in the exercised mice. Importantly, in the mice, acetic acid significantly increased the muscle expression of key enzymes involved in fatty acid oxidation and glycolytic-to-oxidative fiber-type transformation. Taken together, these findings suggest that acetic acid improves endurance exercise capacity by promoting muscle oxidative properties, in part through the AMPK-mediated fatty acid oxidation and provide an important basis for the application of acetic acid as a major component of novel ergogenic aids.

  6. Remediation of soils contaminated with chromium using citric and hydrochloric acids: the role of chromium fractionation in chromium leaching.

    PubMed

    Cheng, Shu-Fen; Huang, Chin-Yuan; Tu, Yao-Ting

    2011-01-01

    Acid washing is a common method for soil remediation, but is not always efficient for chromium-contaminated soil. Both soil particle size and the forms of chromium existing in the soil affect the efficiency of soil washing. Laboratory batch and column dissolution experiments were conducted to determine the efficiencies of citric and hydrochloric acids as agents to extract chromium from soils contaminated with chromium. The effects of soil particle size and chromium fractionation on Cr leaching were also investigated. About 90% of chromium in the studied soil existed either in residual form or bound to iron and manganese oxides, and Cr fraction distributions were similar for all soil particle sizes. Almost all exchangeable and carbonate-bound chromium was removed by washing once with 0.5 M HCl, whereas organic chromium was more effectively removed by washing with citric acid rather than with HCl solution of the same concentration. For chromium fractions that were either bound to Fe-Mn oxides or existed as residual forms, the efficiencies of acid washing were usually 20% or less, except for 0.5 M HCl solution, which had much higher efficiencies. Separation of the soil sample by particle size before the separate washing of the soil fractions had little improvement on the chromium removal.

  7. First Acetic Acid Survey with CARMA in Hot Molecular Cores

    NASA Astrophysics Data System (ADS)

    Shiao, Y.-S. Jerry; Looney, Leslie W.; Remijan, Anthony J.; Snyder, Lewis E.; Friedel, Douglas N.

    2010-06-01

    Acetic acid (CH3COOH) has been detected mainly in hot molecular cores where the distribution between oxygen (O) and nitrogen (N) containing molecular species is cospatial within the telescope beam. Previous work has presumed that similar cores with cospatial O and N species may be an indicator for detecting acetic acid. However, does this presumption hold as higher spatial resolution observations of large O- and N-containing molecules become available? As the number of detected acetic acid sources is still low, more observations are needed to support this postulate. In this paper, we report the first acetic acid survey conducted with the Combined Array for Research in Millimeter-wave Astronomy at 3 mm wavelengths toward G19.61-0.23, G29.96-0.02, and IRAS 16293-2422. We have successfully detected CH3COOH via two transitions toward G19.61-0.23 and tentatively confirmed the detection toward IRAS 16293-2422 A. The determined column density of CH3COOH is 2.0(1.0) × 1016 cm-2 and the abundance ratio of CH3COOH to methyl formate (HCOOCH3) is 2.2(0.1) × 10-1 toward G19.61-0.23. Toward IRAS 16293 A, the determined column density of CH3COOH is ~1.6 × 1015 cm-2 and the abundance ratio of CH3COOH to methyl formate (HCOOCH3) is ~1.0 × 10-1, both of which are consistent with abundance ratios determined toward other hot cores. Finally, we model all known line emission in our passband to determine physical conditions in the regions and introduce a new metric to better reveal weak spectral features that are blended with stronger lines or that may be near the 1σ-2σ detection limit.

  8. Metabolism of glycerol, glucose, and lactate in the citric acid cycle prior to incorporation into hepatic acylglycerols.

    PubMed

    Jin, Eunsook S; Sherry, A Dean; Malloy, Craig R

    2013-05-17

    During hepatic lipogenesis, the glycerol backbone of acylglycerols originates from one of three sources: glucose, glycerol, or substrates passing through the citric acid cycle via glyceroneogenesis. The relative contribution of each substrate source to glycerol in rat liver acylglycerols was determined using (13)C-enriched substrates and NMR. Animals received a fixed mixture of glucose, glycerol, and lactate; one group received [U-(13)C6]glucose, another received [U-(13)C3]glycerol, and the third received [U-(13)C3]lactate. After 3 h, the livers were harvested to extract fats, and the glycerol moiety from hydrolyzed acylglycerols was analyzed by (13)C NMR. In either fed or fasted animals, glucose and glycerol provided the majority of the glycerol backbone carbons, whereas the contribution of lactate was small. In fed animals, glucose contributed >50% of the total newly synthesized glycerol backbone, and 35% of this contribution occurred after glucose had passed through the citric acid cycle. By comparison, the glycerol contribution was ~40%, and of this, 17% of the exogenous glycerol passed first through the cycle. In fasted animals, exogenous glycerol became the major contributor to acylglycerols. The contribution from exogenous lactate did increase in fasted animals, but its overall contribution remained small. The contributions of glucose and glycerol that had passed through the citric acid cycle first increased in fasted animals from 35 to 71% for glucose and from 17 to 24% for glycerol. Thus, a substantial fraction from both substrate sources passed through the cycle prior to incorporation into the glycerol moiety of acylglycerols in the liver.

  9. Point mutation of the xylose reductase (XR) gene reduces xylitol accumulation and increases citric acid production in Aspergillus carbonarius.

    PubMed

    Weyda, István; Lübeck, Mette; Ahring, Birgitte K; Lübeck, Peter S

    2014-04-01

    Aspergillus carbonarius accumulates xylitol when it grows on D-xylose. In fungi, D-xylose is reduced to xylitol by the NAD(P)H-dependent xylose reductase (XR). Xylitol is then further oxidized by the NAD(+)-dependent xylitol dehydrogenase (XDH). The cofactor impairment between the XR and XDH can lead to the accumulation of xylitol under oxygen-limiting conditions. Most of the XRs are NADPH dependent and contain a conserved Ile-Pro-Lys-Ser motif. The only known naturally occurring NADH-dependent XR (from Candida parapsilosis) carries an arginine residue instead of the lysine in this motif. In order to overcome xylitol accumulation in A. carbonarius a Lys-274 to Arg point mutation was introduced into the XR with the aim of changing the specificity toward NADH. The effect of the genetic engineering was examined in fermentation for citric acid production and xylitol accumulation by using D-xylose as the sole carbon source. Fermentation with the mutant strain showed a 2.8-fold reduction in xylitol accumulation and 4.5-fold increase in citric acid production compared to the wild-type strain. The fact that the mutant strain shows decreased xylitol levels is assumed to be associated with the capability of the mutated XR to use the NADH generated by the XDH, thus preventing the inhibition of XDH by the high levels of NADH and ensuring the flux of xylose through the pathway. This work shows that enhanced production of citric acid can be achieved using xylose as the sole carbon source by reducing accumulation of other by-products, such as xylitol.

  10. Synthesis of WO{sub 3} nanoparticles by citric acid-assisted precipitation and evaluation of their photocatalytic properties

    SciTech Connect

    Sánchez-Martínez, D.; Martínez-de la Cruz, A.; López-Cuéllar, E.

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► WO{sub 3} nanoparticles were synthesized by a simple citric acid-assisted precipitation. ► WO{sub 3} photocatalyst was able to the partial mineralization of rhB, IC and MO. ► WO{sub 3} can be considered as a photocatalyst active under visible light irradiation. -- Abstract: WO{sub 3} nanoparticles were synthesized by citric acid-assisted precipitation method using a 1:1.5 molar ratio of ammonium paratungstate hydrate (H{sub 42}N{sub 10}O{sub 42}W{sub 12}·xH{sub 2}O):citric acid (C{sub 6}H{sub 8}O{sub 7}). The formation of monoclinic crystal structure of WO{sub 3} at different temperatures was confirmed by X-ray powder diffraction (XRD). The characterization of the samples synthesized was complemented by transmission electron microscopy (TEM), Brunauer–Emmitt–Teller surface area (BET) and diffuse reflectance spectroscopy (DRS). According to the thermal treatment followed during the synthesis of WO{sub 3}, the morphology of the nanoparticles formed was characterized by rectangular and ovoid shapes. The photocatalytic activity of WO{sub 3} obtained under different experimental conditions was evaluated in the degradation of rhodamine B (rhB), indigo carmine (IC), methyl orange (MO), and Congo red (CR) in aqueous solution under UV and UV–vis radiation. The highest photocatalytic activity was observed in the sample obtained by thermal treatment at 700 °C. In general, the sequence of degradation of the organic dyes was: indigo carmine (IC) > rhodamine B (rhB) > methyl orange (MO) > Congo red (CR). The mineralization degree of organic dyes by WO{sub 3} photocatalysts was determined by total organic carbon analysis (TOC) reaching percentages of mineralization of 82% (rhB), 85% (IC), 28% (MO), and 7% (CR) for 96 h of lamp irradiation.

  11. Phenotypes of gene disruptants in relation to a putative mitochondrial malate-citrate shuttle protein in citric acid-producing Aspergillus niger.

    PubMed

    Kirimura, Kohtaro; Kobayashi, Keiichi; Ueda, Yuka; Hattori, Takasumi

    2016-09-01

    The mitochondrial citrate transport protein (CTP) functions as a malate-citrate shuttle catalyzing the exchange of citrate plus a proton for malate between mitochondria and cytosol across the inner mitochondrial membrane in higher eukaryotic organisms. In this study, for functional analysis, we cloned the gene encoding putative CTP (ctpA) of citric acid-producing Aspergillus niger WU-2223L. The gene ctpA encodes a polypeptide consisting 296 amino acids conserved active residues required for citrate transport function. Only in early-log phase, the ctpA disruptant DCTPA-1 showed growth delay, and the amount of citric acid produced by strain DCTPA-1 was smaller than that by parental strain WU-2223L. These results indicate that the CTPA affects growth and thereby citric acid metabolism of A. niger changes, especially in early-log phase, but not citric acid-producing period. This is the first report showing that disruption of ctpA causes changes of phenotypes in relation to citric acid production in A. niger.

  12. Effects of acetic acid and arginine on pH elevation and growth of Bacillus licheniformis in an acidified cucumber juice medium.

    PubMed

    Yang, Zhenquan; Meng, Xia; Breidt, Frederick; Dean, Lisa L; Arritt, Fletcher M

    2015-04-01

    Bacillus licheniformis has been shown to cause pH elevation in tomato products having an initial pH below 4.6 and metabiotic effects that can lead to the growth of pathogenic bacteria. Because of this, the organism poses a potential risk to acidified vegetable products; however, little is known about the growth and metabolism of this organism in these products. To clarify the mechanisms of pH change and growth of B. licheniformis in vegetable broth under acidic conditions, a cucumber juice medium representative of a noninhibitory vegetable broth was used to monitor changes in pH, cell growth, and catabolism of sugars and amino acids. For initial pH values between pH 4.1 to 6.0, pH changes resulted from both fermentation of sugar (lowering pH) and ammonia production (raising pH). An initial pH elevation occurred, with starting pH values of pH 4.1 to 4.9 under both aerobic and anaerobic conditions, and was apparently mediated by the arginine deiminase reaction of B. licheniformis. This initial pH elevation was prevented if 5 mM or greater acetic acid was present in the brine at the same pH. In laboratory media, under favorable conditions for growth, data indicated that growth of the organism was inhibited at pH 4.6 with protonated acetic acid concentrations of 10 to 20 mM, corresponding to 25 to 50 mM total acetic acid; however, growth inhibition required greater than 300 mM citric acid (10-fold excess of the amount in processed tomato products) products under similar conditions. The data indicate that growth and pH increase by B. licheniformis may be inhibited by the acetic acid present in most commercial acidified vegetable products but not by the citric acid in many tomato products.

  13. 21 CFR 175.350 - Vinyl acetate/crotonic acid copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Vinyl acetate/crotonic acid copolymer. 175.350... COATINGS Substances for Use as Components of Coatings § 175.350 Vinyl acetate/crotonic acid copolymer. A copolymer of vinyl acetate and crotonic acid may be safely used as a coating or as a component of a...

  14. 40 CFR 180.1258 - Acetic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Acetic acid; exemption from the... Exemptions From Tolerances § 180.1258 Acetic acid; exemption from the requirement of a tolerance. An... acetic acid when used as a preservative on post-harvest agricultural commodities intended for animal...

  15. 75 FR 52269 - Acetic Acid Ethenyl Ester, Polymer With Oxirane; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ...-2010-0429; FRL-8841-2] Acetic Acid Ethenyl Ester, Polymer With Oxirane; Tolerance Exemption AGENCY... from the requirement of a tolerance for residues of acetic acid ethenyl ester, polymer with oxirane... permissible level for residues of acetic acid ethenyl ester, polymer with oxirane on food or feed...

  16. 75 FR 40736 - Acetic Acid; Exemption from the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-14

    ... AGENCY 40 CFR Part 180 Acetic Acid; Exemption from the Requirement of a Tolerance AGENCY: Environmental... for acetic acid by establishing an exemption from the requirement of a tolerance for residues of acetic acid, also known as vinegar in or on all food crops resulting from unintentional spray and...

  17. Which way does the citric acid cycle turn during hypoxia? The critical role of α-ketoglutarate dehydrogenase complex.

    PubMed

    Chinopoulos, Christos

    2013-08-01

    The citric acid cycle forms a major metabolic hub and as such it is involved in many disease states involving energetic imbalance. In spite of the fact that it is being branded as a "cycle", during hypoxia, when the electron transport chain does not oxidize reducing equivalents, segments of this metabolic pathway remain operational but exhibit opposing directionalities. This serves the purpose of harnessing high-energy phosphates through matrix substrate-level phosphorylation in the absence of oxidative phosphorylation. In this Mini-Review, these segments are appraised, pointing to the critical importance of the α-ketoglutarate dehydrogenase complex dictating their directionalities.

  18. Olodaterol attenuates citric acid-induced cough in naïve and ovalbumin-sensitized and challenged guinea pigs.

    PubMed

    Wex, Eva; Bouyssou, Thierry

    2015-01-01

    Excessive coughing is a common feature of airway diseases. Different G-protein coupled receptors, including β2-adrenergic receptors (β2-AR), have been implicated in the molecular mechanisms underlying the cough reflex. However, the potential antitussive property of β2-AR agonists in patients with respiratory disease is a matter of ongoing debate. The aim of our study was to test the efficacy of the long-acting β2-AR agonist olodaterol with regard to its antitussive property in a pre-clinical model of citric acid-induced cough in guinea pigs and to compare the results to different clinically relevant β2-AR agonists. In our study β2-AR agonists were intratracheally administered, as dry powder, into the lungs of naïve or ovalbumin-sensitized guinea pigs 15 minutes prior to induction of cough by exposure to citric acid. Cough events were counted over 15 minutes during the citric acid exposure. Olodaterol dose-dependently inhibited the number of cough events in naïve and even more potently and with a greater maximal efficacy in ovalbumin-sensitized guinea pigs (p < 0.01). Formoterol and salmeterol showed a trend towards reducing cough. On the contrary, indacaterol demonstrated pro-tussive properties as it significantly increased the number of coughs, both in naïve and ovalbumin-sensitized animals (p < 0.001). In conclusion, olodaterol, at doses eliciting bronchodilation, showed antitussive properties in a model of citric acid-induced cough in naïve and ovalbumin-sensitized guinea pigs. This is in agreement with pre-clinical and clinical studies showing antitussive efficacy of β2-AR agonists. Indacaterol increased the number of coughs in this model, which concurs with clinical data where a transient cough has been observed after indacaterol inhalation. While the antitussive properties of β2-AR agonists can be explained by their ability to lead to the cAMP-induced hyperpolarization of the neuron membrane thereby inhibiting sensory nerve activation and the

  19. The regulatory effect of citric acid on the co-production of poly(ε-lysine) and poly(L-diaminopropionic acid) in Streptomyces albulus PD-1.

    PubMed

    Xia, Jun; Xu, Zhaoxian; Xu, Hong; Feng, Xiaohai; Bo, Fangfang

    2014-10-01

    Streptomyces albulus PD-1 can co-produce antimicrobial homo-polymers poly(ε-lysine) (ε-PL) and poly(L-diaminopropionic acid) (PDAP). In this study, a novel feeding strategy of citric acid coupled with glucose-(NH4)2SO4 feeding was employed to S. albulus PD-1. When the pH of the culture broth dropped to 4.0, the feeding solution was added continuously to maintain the concentrations of glucose and citric acid at 10 and 4 g L(-1), respectively. As a result, the final concentration of ε-PL increased from 21.7 to 29.7 g L(-1) and the final concentration of PDAP decreased from 4.8 to 3.2 g L(-1). Assays on intracellular nucleotide levels and key enzyme activities were performed to elucidate the underlying regulation mechanism. The addition of citric acid increased NADH/NAD(+) ratio and decreased intracellular ATP level; meanwhile, the activities of pyruvate kinase, citrate synthase and isocitrate dehydrogenase decreased while aspartate aminotransferase activity increased. Therefore, we deduced that citric acid feeding resulted in metabolic flux redistribution at the node of phosphoenolpyruvate; the metabolic pathway from phosphoenolpyruvate directed into tricarboxylic acid cycle was weakened and thus PDAP production was inhibited. On the other hand, the metabolic pathway from phosphoenolpyruvate directed into oxaloacetate and L-aspartate was enhanced, thereby improving ε-PL production. This fermentation strategy may be potentially useful in ε-PL production because it can effectively inhibit the formation of by-products, such as PDAP.

  20. Indole-3-acetic acid in plant-microbe interactions.

    PubMed

    Duca, Daiana; Lorv, Janet; Patten, Cheryl L; Rose, David; Glick, Bernard R

    2014-07-01

    Indole-3-acetic acid (IAA) is an important phytohormone with the capacity to control plant development in both beneficial and deleterious ways. The ability to synthesize IAA is an attribute that many bacteria including both plant growth-promoters and phytopathogens possess. There are three main pathways through which IAA is synthesized; the indole-3-pyruvic acid, indole-3-acetamide and indole-3-acetonitrile pathways. This chapter reviews the factors that effect the production of this phytohormone, the role of IAA in bacterial physiology and in plant-microbe interactions including phytostimulation and phytopathogenesis.

  1. Change in the plasmid copy number in acetic acid bacteria in response to growth phase and acetic acid concentration.

    PubMed

    Akasaka, Naoki; Astuti, Wiwik; Ishii, Yuri; Hidese, Ryota; Sakoda, Hisao; Fujiwara, Shinsuke

    2015-06-01

    Plasmids pGE1 (2.5 kb), pGE2 (7.2 kb), and pGE3 (5.5 kb) were isolated from Gluconacetobacter europaeus KGMA0119, and sequence analyses revealed they harbored 3, 8, and 4 genes, respectively. Plasmid copy numbers (PCNs) were determined by real-time quantitative PCR at different stages of bacterial growth. When KGMA0119 was cultured in medium containing 0.4% ethanol and 0.5% acetic acid, PCN of pGE1 increased from 7 copies/genome in the logarithmic phase to a maximum of 12 copies/genome at the beginning of the stationary phase, before decreasing to 4 copies/genome in the late stationary phase. PCNs for pGE2 and pGE3 were maintained at 1-3 copies/genome during all phases of growth. Under a higher concentration of ethanol (3.2%) the PCN for pGE1 was slightly lower in all the growth stages, and those of pGE2 and pGE3 were unchanged. In the presence of 1.0% acetic acid, PCNs were higher for pGE1 (10 copies/genome) and pGE3 (6 copies/genome) during the logarithmic phase. Numbers for pGE2 did not change, indicating that pGE1 and pGE3 increase their PCNs in response to acetic acid. Plasmids pBE2 and pBE3 were constructed by ligating linearized pGE2 and pGE3 into pBR322. Both plasmids were replicable in Escherichia coli, Acetobacter pasteurianus and G. europaeus, highlighting their suitability as vectors for acetic acid bacteria.

  2. Citric acid production from hydrolysate of pretreated straw cellulose by Yarrowia lipolytica SWJ-1b using batch and fed-batch cultivation.

    PubMed

    Liu, Xiaoyan; Lv, Jinshun; Zhang, Tong; Deng, Yuanfang

    2015-01-01

    In this study, crude cellulase produced by Trichoderma reesei Rut-30 was used to hydrolyze pretreated straw. After the compositions of the hydrolysate of pretreated straw were optimized, the study showed that natural components of pretreated straw without addition of any other components such as (NH4)2SO4, KH2PO4, or Mg(2+) were suitable for citric acid production by Yarrowia lipolytica SWJ-1b, and the optimal ventilatory capacity was 10.0 L/min/L medium. Batch and fed-batch production of citric acid from the hydrolysate of pretreated straw by Yarrowia lipolytica SWJ-1b has been investigated. In the batch cultivation, 25.4 g/L and 26.7 g/L citric acid were yields from glucose and hydrolysate of straw cellulose, respectively, while the cultivation time was 120 hr. In the three-cycle fed-batch cultivation, citric acid (CA) production was increased to 42.4 g/L and the cultivation time was extended to 240 hr. However, iso-citric acid (ICA) yield in fed-batch cultivation (4.0 g/L) was similar to that during the batch cultivation (3.9 g/L), and only 1.6 g/L of reducing sugar was left in the medium at the end of fed-batch cultivation, suggesting that most of the added carbon was used in the cultivation.

  3. Gene transfer between different Trichoderma species and Aspergillus niger through intergeneric protoplast fusion to convert ground rice straw to citric acid and cellulases.

    PubMed

    El-Bondkly, Ahmed M

    2006-11-01

    Single-stage direct bioconversion of cellulosic materials to citric acid using intergeneric hybrids obtained from three different Trichoderma species and Aspergillus niger was carried out. The recent results were obtained on the basis of either resistance or sensitivity to one or more of five metal ions, two catabolite repressors, and five antifungal agents, which were used in this study at different concentrations. Sixty-six fusants were isolated after using the three intergeneric protoplast fusion experiments, belonging to two types of intergeneric fusants. Fusants of the first type are heterokaryons (35 fusants). On the other hand, those of the second type are haploids (31 fusants), i.e., they were stable. The present study can be successfully applied in the construction of 14 new genetic fusants, which produced at least 100% more citric acid than the citric acid producer strain A. niger. Out of the fusants, three (1/18, 2/13 and 2/15) showed about a threefold increase of citric acid production in comparison with the parent A. niger strain. Furthermore, studies on DNA content showed that this finding may be submitted on the evidence that citric acid and cellulases production was not correlated with DNA content; however, the productivity depends on specific DNA content.

  4. Determination of gaseous formic acid and acetic acid by pulsed ultraviolet photoacoustic spectroscopy

    SciTech Connect

    Cvijin, P.V.; Gilmore, D.A.; Atkinson, G.H.

    1988-07-01

    The quantitative determination of gaseous formic acid and acetic acid by photoacoustic spectroscopy (PAS) using pulsed laser excitation in the ultraviolet is reported. Instrumentation utilizing continuously tunable laser excitation in the 220-nm wavelength region is used to record time-resolved PA signals from samples of each acid. Detection limits of 140 ppbv for formic acid and 120 ppbv for acetic acid in dry nitrogen at one atmosphere total pressure are attained. Considerable background signal originating from atmospheric oxygen is found to impose limitations on the detection sensitive with air samples.

  5. Effect of dietary citric acid on the performance and mineral metabolism of broiler.

    PubMed

    Islam, K M S; Schaeublin, H; Wenk, C; Wanner, M; Liesegang, A

    2012-10-01

    The objective of this study was to investigate the effect of dietary citric acid (CA) on the performance and mineral metabolism of broiler chicks. A total of 1720 Ross PM3 broiler chicks (days old) were randomly assigned to four groups (430 in each) and reared for a period of 35 days. The diets of groups 1, 2, 3 and 4 were supplemented with 0%, 0.25%, 0.75% or 1.25% CA by weight respectively. Feed and faeces samples were collected weekly and analysed for acid insoluble ash, calcium (Ca), phosphorus (P) and magnesium (Mg). The pH was measured in feed and faeces. At the age of 28 days, 10 birds from each group were slaughtered; tibiae were collected from each bird for the determination of bone mineral density, total ash, Ca, P, Mg and bone-breaking strength, and blood was collected for the measurement of osteocalcin, serum CrossLaps(®), Ca, P, Mg and 1,25(OH)(2)Vit-D in serum. After finishing the trial on day 37, all chicks were slaughtered by using the approved procedure. Birds that were fed CA diets were heavier (average body weights of 2030, 2079 and 2086 g in the 0.25%, 0.75% and 1.25% CA groups, respectively, relative to the control birds (1986 g). Feed conversion efficiency (weight gain in g per kg of feed intake) was also higher in birds of the CA-fed groups (582, 595 and 587 g/kg feed intake for 0.25%, 0.75% and 1.25% CA respectively), relative to the control birds (565 g/kg feed intake). The digestibility of Ca, P and Mg increased in the CA-fed groups, especially for the diets supplemented with 0.25% and 0.75% CA. Support for finding was also indicated in the results of the analysis of the tibia. At slaughter, the birds had higher carcass weights and higher graded carcasses in the groups that were fed the CA diets. The estimated profit margin was highest for birds fed the diet containing 0.25% CA. Birds of the 0.75% CA group were found to have the second highest estimated profit margin. Addition of CA up to a level of 1.25% of the diet increased performance

  6. Distinct effects of sorbic acid and acetic acid on the electrophysiology and metabolism of Bacillus subtilis.

    PubMed

    van Beilen, J W A; Teixeira de Mattos, M J; Hellingwerf, K J; Brul, S

    2014-10-01

    Sorbic acid and acetic acid are among the weak organic acid preservatives most commonly used to improve the microbiological stability of foods. They have similar pKa values, but sorbic acid is a far more potent preservative. Weak organic acids are most effective at low pH. Under these circumstances, they are assumed to diffuse across the membrane as neutral undissociated acids. We show here that the level of initial intracellular acidification depends on the concentration of undissociated acid and less on the nature of the acid. Recovery of the internal pH depends on the presence of an energy source, but acidification of the cytosol causes a decrease in glucose flux. Furthermore, sorbic acid is a more potent uncoupler of the membrane potential than acetic acid. Together these effects may also slow the rate of ATP synthesis significantly and may thus (partially) explain sorbic acid's effectiveness.

  7. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance.

    PubMed

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification.

  8. Determination of tertiary amines and salts of organic acids in acetic acid by catalytic thermometric titration.

    PubMed

    Vajgand, V J; Gaál, F F

    1967-03-01

    A new method of determination of tertiary amines and salts of organic adds in acetic acid solution, to which about 2 % of water and 8% acetic anhydride are added, is described. After the equivalence point, the excess of perchloric acid catalyses the exothermic reaction of water with acetic anhydride. The end-point is determined from the graph of temperature against volume of added titrant. If a slightly soluble compound is produced during the titration, the precision of the new method is superior to that of the potentiometric method.

  9. Indole-3-acetic acid/diol based pH-sensitive biological macromolecule for antibacterial, antifungal and antioxidant applications.

    PubMed

    G, Chitra; D S, Franklin; S, Sudarsan; M, Sakthivel; S, Guhanathan

    2017-02-01

    Indole-3-acetic acid (IAA)/diol based pH-sensitive biopolymeric hydrogels with tunable biological properties (cytotoxicity, anti-oxidant and anti-fungal) have been synthesized via condensation polymerization. The present study focused on the synthesis of heterocyclic hydrogel using citric acid (CA), indole-3-acetic acid (IAA) and diethylene glycol (DEG) by condensation polymerization. The hydrogels revealed a pH-sensitive swelling behaviour, with increased swelling in acidic media, then turns to decreased the swelling in the basic media. The hydrogel samples were tested for antifungal activity against Aspergillus fumigates, Rhizopusoryzae and Candida albicans at different concentrations using ketoconazole as positive control and DMSO as negative control for antifungal activity. Antioxidant activity increasing nature in DPPH than NO radical compared with rutin and confirmed non toxic property using cytotoxicity analysis. The biopolymeric hydrogels were characterized by Fourier transform infrared (FT-IR) spectroscopy, (1)H NMR,(13)C NMR, TGA, DSC followed by scanning electron microscopy (SEM). Such hydrogels with antioxidant properties is recommended for medical applications such as bandages, catheters, drains and tubes to prevent infection.

  10. Comparison of clindamycin 1% and benzoyl peroxide 5% gel to a novel composition containing salicylic acid, capryloyl salicylic acid, HEPES, glycolic acid, citric acid, and dioic acid in the treatment of acne vulgaris.

    PubMed

    Baumann, Leslie S; Oresajo, Christian; Yatskayer, Margarita; Dahl, Amanda; Figueras, Kristian

    2013-03-01

    This study evaluated the tolerance and efficacy of 2 facial skin products in subjects with acne using the following acne treatments: 1) treatment A, a combination of salicylic acid, capryloyl salicylic acid, HEPES, glycolic acid, citric acid, and dioic acid, and 2) treatment B (BenzaClin®, clindamycin 1% and benzoyl peroxide 5% gel). The treatment design included the split-face application of treatment A and treatment B and the full-face application of the cleanser, moisturizer, and sunscreen. Data were collected through physician visual assessments, subject irritation questionnaires and assessments, along with clinical photography. Results showed similar tolerance and efficacy for both treatments.

  11. Formation of biologically relevant carboxylic acids during the gamma irradiation of acetic acid

    NASA Technical Reports Server (NTRS)

    Negron-Mendoza, A.; Ponnamperuma, C.

    1976-01-01

    Irradiation of aqueous solutions of acetic acid with gamma rays produced several carboxylic acids in small yield. Their identification was based on the technique of gas chromatography combined with mass spectrometry. Some of these acids are Krebs Cycle intermediates. Their simultaneous formation in experiments simulating the primitive conditions on the earth suggests that metabolic pathways may have had their origin in prebiotic chemical processes.

  12. Evaluation of shrinking core model in leaching process of Pomalaa nickel laterite using citric acid as leachant at atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Wanta, K. C.; Perdana, I.; Petrus, H. T. B. M.

    2016-11-01

    Most of kinetics studies related to leaching process used shrinking core model to describe physical phenomena of the process. Generally, the model was developed in connection with transport and/or reaction of reactant components. In this study, commonly used internal diffusion controlled shrinking core model was evaluated for leaching process of Pomalaa nickel laterite using citric acid as leachant. Particle size was varied at 60-70, 100-120, -200 meshes, while the operating temperature was kept constant at 358 K, citric acid concentration at 0.1 M, pulp density at 20% w/v and the leaching time was for 120 minutes. Simulation results showed that the shrinking core model was inadequate to closely approach the experimental data. Meanwhile, the experimental data indicated that the leaching process was determined by the mobility of product molecules in the ash layer pores. In case of leaching resulting large product molecules, a mathematical model involving steps of reaction and product diffusion might be appropriate to develop.

  13. Palladium-platinum core-shell electrocatalysts for oxygen reduction reaction prepared with the assistance of citric acid

    SciTech Connect

    Zhang, Lulu; Su, Dong; Zhu, Shangqian; Chang, Qiaowan; Yue, Jeffrey; Du, Zheng; Shao, Minhua

    2016-04-26

    Core–shell structure is a promising alternative to solid platinum (Pt) nanoparticles as electrocatalyst for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). A simple method of preparing palladium (Pd)–platinum (Pt) core–shell catalysts (Pd@Pt/C) in a gram-batch was developed with the assistance of citric acid. The Pt shell deposition involves three different pathways: galvanic displacement reaction between Pd atoms and Pt cations, chemical reduction by citric acid, and reduction by negative charges on Pd surfaces. The uniform ultrathin (~0.4 nm) Pt shell was characterized by in situ X-ray diffraction (XRD) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images combined with electron energy loss spectroscopy (EELS). Compared with state-of-the-art Pt/C, the Pd@Pt/C core–shell catalyst showed 4 times higher Pt mass activity and much better durability upon potential cycling. As a result, both the mass activity and durability were comparable to that of Pd@Pt/C synthesized by a Cu-mediated-Pt-displacement method, which is more complicated and difficult for mass production.

  14. Biodegradable and non-retrogradable eco-films based on starch-glycerol with citric acid as crosslinking agent.

    PubMed

    Seligra, Paula González; Medina Jaramillo, Carolina; Famá, Lucía; Goyanes, Silvia

    2016-03-15

    Biodegradable and non-retrogradable starch-glycerol based films were obtained using citric acid (CA) as crosslinking agent at 75°C. This material allowed decreasing water vapor permeability (WVP) more than 35%, remained amorphous for at least 45 days as a result of the network formed by the CA that avoided starch retrogradation and maintained the degradability in compost, occurring only six days after the films without citric acid. A simulation of the gelatinization process of starch-glycerol with and without CA, using a differential thermal analysis device, showed that the system with CA completed the gelatinization 5°C before than the other and, CA first reacted with glycerol and then starch-glycerol-CA reaction occurred. The temperature at which the gelatinization process was carried out was critical to obtain the best results. An increase of gelatinization process temperature at 85°C in system with CA, led to a worsening on WVP and its integrity after a swelling process with dimethylsulphoxide (DMSO), compared to the films processed at 75°C.

  15. Fabrication of Self-Ordered Alumina Films with Large Interpore Distance by Janus Anodization in Citric Acid

    PubMed Central

    Ma, Yingjun; Wen, Yihao; Li, Juan; Li, Yuxin; Zhang, Zhiying; Feng, Chenchen; Sun, Runguang

    2016-01-01

    Self-organized porous anodic alumina (PAA) formed by electrochemical anodization have become a fundamental tool to develop various functional nanomaterials. However, it is still a great challenge to break the interpore distance (Dint) limit (500 nm) by using current anodization technologies of mild anodization (MA) and hard anodization (HA). Here, we reported a new anodization mode named “Janus anodization” (JA) to controllably fabricate self-ordered PAA with large Dint at high voltage of 350–400 V. JA naturally occurs as anodizing Al foils in citric acid solution, which possessing both the characteristics of MA and HA. The process can be divided into two stages: I, slow pore nucleation stage similar to MA; II, unequilibrium self-organization process similar to HA. The as-prepared films had the highest modulus (7.0 GPa) and hardness (127.2 GPa) values compared with the alumina obtained by MA and HA. The optical studies showed that the black films have low reflectance (<10 %) in the wavelength range of 250–1500 nm and photoluminescence property. Dint can be tuned between 645–884 nm by controlling citric acid concentration or anodization voltage. JA is a potential technology to efficiently and controllably fabricate microstructured or hybrid micro- and nanostructured materials with novel properties. PMID:27958365

  16. Identification of transport pathways for citric acid cycle intermediates in the human colon carcinoma cell line, Caco-2.

    PubMed

    Weerachayaphorn, Jittima; Pajor, Ana M

    2008-04-01

    Citric acid cycle intermediates are absorbed from the gastrointestinal tract through carrier-mediated mechanisms, although the transport pathways have not been clearly identified. This study examines the transport of citric acid cycle intermediates in the Caco-2 human colon carcinoma cell line, often used as a model of small intestine. Inulin was used as an extracellular volume marker instead of mannitol since the apparent volume measured with mannitol changed with time. The results show that Caco-2 cells contain at least three distinct transporters, including the Na+-dependent di- and tricarboxylate transporters, NaDC1 and NaCT, and one or more sodium-independent pathways, possibly involving organic anion transporters. Succinate transport is mediated mostly by Na+-dependent pathways, predominantly by NaDC1, but with some contribution by NaCT. RT-PCR and functional characteristics verified the expression of these transporters in Caco-2 cells. In contrast, citrate transport in Caco-2 cells occurs by a combination of Na+-independent pathways, possibly mediated by an organic anion transporter, and Na+-dependent mechanisms. The non-metabolizable dicarboxylate, methylsuccinate, is also transported by a combination of Na+-dependent and -independent pathways. In conclusion, we find that multiple pathways are involved in the transport of di- and tricarboxylates by Caco-2 cells. Since many of these pathways are not found in human intestine, this model may be best suited for studying Na+-dependent transport of succinate by NaDC1.

  17. Effects of Tetracycline, EDTA and Citric Acid Application on Nonfluorosed and Fluorosed Dentin: An In Vitro Study

    PubMed Central

    Sadanand, K.; Vandana, K. L.

    2016-01-01

    Fluorosis is one of the factors that may bring about mineralization changes in teeth. Routine treatment of root biomodification is commonly followed during Periodontal therapy. Background: The Purpose of the present study was to compare and evaluate the morphological changes in fluorosed and nonfluorosed root dentin subsequent to the application of Tetracycline, EDTA and Citric acid. Both fluorosed and nonfluorosed teeth comprising of periodontally healthy and diseased were included in this study. Method: Each of them was grouped into Tetracycline Hydrochloride, EDTA and Citric acid treatment groupes. Using scanning electron microscope (SEM), the photomicrographs of dentin specimens were obtained. Results: Showed that there was no significant difference in exposure of number of tubules in different groups, while significant increase in the tubular width and tubular surface area was seen in fluorosed healthy, followed by fluorosed diseased groups, nonfluorosed healthy and nonfluorosed diseased groups after root biomodification procedure using various root conditioning agents. The root biomodification procedure brings in definite difference between fluorosed and nonfluorosed dentin specimens. PMID:27335611

  18. Application of natural citric acid sources and their role on arsenic removal from drinking water: a green chemistry approach.

    PubMed

    Majumder, Santanu; Nath, Bibhash; Sarkar, Simita; Islam, Sk Mijanul; Bundschuh, Jochen; Chatterjee, Debashis; Hidalgo, Manuela

    2013-11-15

    Solar Oxidation and Removal of Arsenic (SORAS) is a low-cost non-hazardous technique for the removal of arsenic (As) from groundwater. In this study, we tested the efficiency of natural citric acid sources extracted from tomato, lemon and lime to promote SORAS for As removal at the household level. The experiment was conducted in the laboratory using both synthetic solutions and natural groundwater samples collected from As-polluted areas in West Bengal. The role of As/Fe molar ratios and citrate doses on As removal efficiency were checked in synthetic samples. The results demonstrate that tomato juice (as citric acid) was more efficient to remove As from both synthetic (percentage of removal: 78-98%) and natural groundwater (90-97%) samples compared to lemon (61-83% and 79-85%, respectively) and lime (39-69% and 63-70%, respectively) juices. The As/Fe molar ratio and the citrate dose showed an 'optimized central tendency' on As removal. Anti-oxidants, e.g. 'hydroxycinnamates', found in tomato, were shown to have a higher capacity to catalyze SORAS photochemical reactions compared to 'flavanones' found in lemon or lime. The application of this method has several advantages, such as eco- and user- friendliness and affordability at the household level compared to other low-cost techniques.

  19. Palladium-platinum core-shell electrocatalysts for oxygen reduction reaction prepared with the assistance of citric acid

    DOE PAGES

    Zhang, Lulu; Su, Dong; Zhu, Shangqian; ...

    2016-04-26

    Core–shell structure is a promising alternative to solid platinum (Pt) nanoparticles as electrocatalyst for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). A simple method of preparing palladium (Pd)–platinum (Pt) core–shell catalysts (Pd@Pt/C) in a gram-batch was developed with the assistance of citric acid. The Pt shell deposition involves three different pathways: galvanic displacement reaction between Pd atoms and Pt cations, chemical reduction by citric acid, and reduction by negative charges on Pd surfaces. The uniform ultrathin (~0.4 nm) Pt shell was characterized by in situ X-ray diffraction (XRD) and high-angle annular dark-field scanning transmission electron microscopymore » (HAADF-STEM) images combined with electron energy loss spectroscopy (EELS). Compared with state-of-the-art Pt/C, the Pd@Pt/C core–shell catalyst showed 4 times higher Pt mass activity and much better durability upon potential cycling. As a result, both the mass activity and durability were comparable to that of Pd@Pt/C synthesized by a Cu-mediated-Pt-displacement method, which is more complicated and difficult for mass production.« less

  20. Fabrication of Self-Ordered Alumina Films with Large Interpore Distance by Janus Anodization in Citric Acid

    NASA Astrophysics Data System (ADS)

    Ma, Yingjun; Wen, Yihao; Li, Juan; Li, Yuxin; Zhang, Zhiying; Feng, Chenchen; Sun, Runguang

    2016-12-01

    Self-organized porous anodic alumina (PAA) formed by electrochemical anodization have become a fundamental tool to develop various functional nanomaterials. However, it is still a great challenge to break the interpore distance (Dint) limit (500 nm) by using current anodization technologies of mild anodization (MA) and hard anodization (HA). Here, we reported a new anodization mode named “Janus anodization” (JA) to controllably fabricate self-ordered PAA with large Dint at high voltage of 350–400 V. JA naturally occurs as anodizing Al foils in citric acid solution, which possessing both the characteristics of MA and HA. The process can be divided into two stages: I, slow pore nucleation stage similar to MA; II, unequilibrium self-organization process similar to HA. The as-prepared films had the highest modulus (7.0 GPa) and hardness (127.2 GPa) values compared with the alumina obtained by MA and HA. The optical studies showed that the black films have low reflectance (<10 %) in the wavelength range of 250–1500 nm and photoluminescence property. Dint can be tuned between 645–884 nm by controlling citric acid concentration or anodization voltage. JA is a potential technology to efficiently and controllably fabricate microstructured or hybrid micro- and nanostructured materials with novel properties.

  1. Fabrication of Self-Ordered Alumina Films with Large Interpore Distance by Janus Anodization in Citric Acid.

    PubMed

    Ma, Yingjun; Wen, Yihao; Li, Juan; Li, Yuxin; Zhang, Zhiying; Feng, Chenchen; Sun, Runguang

    2016-12-13

    Self-organized porous anodic alumina (PAA) formed by electrochemical anodization have become a fundamental tool to develop various functional nanomaterials. However, it is still a great challenge to break the interpore distance (Dint) limit (500 nm) by using current anodization technologies of mild anodization (MA) and hard anodization (HA). Here, we reported a new anodization mode named "Janus anodization" (JA) to controllably fabricate self-ordered PAA with large Dint at high voltage of 350-400 V. JA naturally occurs as anodizing Al foils in citric acid solution, which possessing both the characteristics of MA and HA. The process can be divided into two stages: I, slow pore nucleation stage similar to MA; II, unequilibrium self-organization process similar to HA. The as-prepared films had the highest modulus (7.0 GPa) and hardness (127.2 GPa) values compared with the alumina obtained by MA and HA. The optical studies showed that the black films have low reflectance (<10 %) in the wavelength range of 250-1500 nm and photoluminescence property. Dint can be tuned between 645-884 nm by controlling citric acid concentration or anodization voltage. JA is a potential technology to efficiently and controllably fabricate microstructured or hybrid micro- and nanostructured materials with novel properties.

  2. The mixture of liquid foam soap, ethanol and citric acid as a new fixative-preservative solution in veterinary anatomy.

    PubMed

    Turan, Erkut; Gules, Ozay; Kilimci, Figen Sevil; Kara, Mehmet Erkut; Dilek, Omer Gurkan; Sabanci, Seyyid Said; Tatar, Musa

    2017-01-01

    The present study investigates the efficiency of liquid foam soap, ethanol, citric acid and benzalkonium chloride as a fixative-preservative solution (a soap-and ethanol-based fixing solution, or SEFS). In this study, ethanol serves as the fixative and preservative, liquid foam soap as the modifying agent, citric acid as the antioxidant and benzalkonium chloride as the disinfectant. The goat cadavers perfused with SEFS (n=8) were evaluated over a period of one year with respect to hardness, colour and odour using objective methods. Colour and hardness were compared between one fresh cadaver and the SEFS-embalmed cadavers. Histological and microbiological examinations were also performed in tissue samples. Additionally, the cadavers were subjectively evaluated after dissection and palpation. The SEFS provided the effectiveness expected over a 1-year embalming period for the animal cadavers. No bacteria or fungi were isolated except for some non-pathogenic Bacillus species. Visible mould was not present on either cadavers or in the surrounding environment. The cadavers maintained an appearance close to their original anatomical appearance, with muscles having good hardness and elasticity for dissection.

  3. Poly(citric acid)-block-poly(ethylene glycol) copolymers--new biocompatible hybrid materials for nanomedicine.

    PubMed

    Naeini, Ashkan Tavakoli; Adeli, Mohsen; Vossoughi, Manouchehr

    2010-08-01

    Linear-dendritic ABA triblock copolymers containing poly(ethylene glycol) (PEG) as B block and hyperbranched poly(citric acid) (PCA) as A blocks were synthesized through polycondensation. The molecular self-assembly of synthesized PCA-PEG-PCA copolymers in water led to formation of nanoparticles and fibers in different sizes and shapes depending on the time and size of PCA blocks. Ten days after dissolving PCA-PEG-PCA copolymers in water, the size of fibers had reached several millimeters. Mixing a water solution of fluorescein as a small guest molecule and PCA-PEG-PCA copolymers led to the encapsulation of fluorescein by products of molecular self-assembly. To investigate their potential application in nanomedicine and to understand the limitations and capabilities of these materials as nanoexcipients in biological systems, different types of short-term in vitro cytotoxicity experiments on the HT1080 cell line (human fibrosarcoma) and hemocompatibility tests were performed. From the clinical editor: This manuscript investigates the potentials of linear-dendritic ABA triblock copolymers containing poly(ethylene glycol) (PEG) as B block and hyperbranched poly(citric acid) (PCA) as A blocks for future applications in nanomedicine.

  4. Determination of citric acid of lemon vinegar using visible/near infrared spectroscopy and least squares-support vector machine

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Wang, Li; He, Yong

    2008-11-01

    The determination of citric acid of lemon vinegar was processed using visible and near infrared (Vis/NIR) spectroscopy combined with least squares-support vector machine (LS-SVM). Five concentration levels (100%, 80%, 60%, 40% and 20%) of lemon vinegar were studied. The calibration set was consisted of 225 samples (45 samples for each level) and the remaining 75 samples for the validation set. Partial least squares (PLS) analysis was employed for the calibration models as well as extraction of certain latent variables (LVs) and effective wavelengths (EWs). Different preprocessing methods were compared in PLS models including smoothing, standard normal variate (SNV), the first and second derivative. The selected LVs and EWs were employed as the inputs to develop least square-support vector machine (LSSVM) models. The optimal prediction results were achieved by LV-LS-SVM model, and the correlation coefficient (r), root mean square error of prediction (RMSEP) and bias for validation set were 0.9990, 0.1972 and -0.0334, respectively. Moreover, the EW-LS-SVM model was also acceptable and slightly better than all PLS models. The results indicated that Vis/NIR spectroscopy could be utilized as a parsimonious and efficient way for the determination of citric acid of lemon vinegar based on LS-SVM method.

  5. A novel fermentation pathway in an Escherichia coli mutant producing succinic acid, acetic acid, and ethanol.

    SciTech Connect

    Donnelly, M. I.; Millard, C. S.; Clark, D. P.; Chen, M. J.; Rathke, J. W.; Southern Illinois Univ.

    1998-04-01

    Escherichia coli strain NZN111, which is unable to grow fermentatively because of insertional inactivation of the genes encoding pyruvate: formate lyase and the fermentative lactate dehydrogenase, gave rise spontaneously to a chromosomal mutation that restored its ability to ferment glucose. The mutant strain, named AFP111, fermented glucose more slowly than did its wild-type ancestor, strain W1485, and generated a very different spectrum of products. AFP111 produced succinic acid, acetic acid, and ethanol in proportions of approx 2:1:1. Calculations of carbon and electron balances accounted fully for the observed products; 1 mol of glucose was converted to 1 mol of succinic acid and 0.5 mol each of acetic acid and ethanol. The data support the emergence in E.coli of a novel succinic acid:acetic acid:ethanol fermentation pathway.

  6. Covalent interaction of chloroacetic and acetic acids with cholesterol.

    PubMed

    Bhat, H K; Ansari, G A

    1989-01-01

    The covalent interaction of chloroacetic acid with rat liver lipids was studied in vivo. Rats were given a single oral dose (8.75 mg/kg, 50 microCi) of 1-[14C]chloroacetic acid and sacrificed after 24 hours. Lipids extracted from the livers were separated into neutral lipids and phospholipids by solid-phase extraction using sep-pak silica cartridges. The neutral lipid fraction was further fractionated by preparative thin-layer chromatography followed by reverse-phase high-performance liquid chromatography. The fraction corresponding to the retention time of standard cholesteryl chloroacetate gave a pseudomolecular ion peak at m/z 480/482 ratio: (3:1) on ammonia chemical ionization mass spectrometry, and the fragmentation pattern was found to be similar to that of the standard sample. Under similar conditions, acetic acid resulted in the formation of cholesteryl acetate. The effect of such conjugation reactions on the cell membrane and their contribution to toxicity is presently unknown.

  7. Radioiron utilization and gossypol acetic acid in male rats

    SciTech Connect

    Tone, J.N.; Jensen, D.R.

    1985-01-01

    The 24-h incorporation of VZFe into circulating red blood cells, bone marrow, urine, liver, spleen, and skeletal muscle was measured in splenectomized and sham-splenectomized rats which had received a daily, oral dose of gossypol acetic acid (20 mg GAA/kg body wt) for 91 days. A significant decrease in total body weight gain was observed in all GAA treated animals. Splenectomized rats dosed with GAA exhibited a significant decrease in hemoglobin concentration, hematocrit and erythrocyte count. A significant increase in VZFe incorporation by red blood cells and a decrease in hepatic incorporation of VZFe indicate a preferential utilization of iron in erythropoiesis among GAA treated animals.

  8. FIRST ACETIC ACID SURVEY WITH CARMA IN HOT MOLECULAR CORES

    SciTech Connect

    Shiao, Y.-S. Jerry; Looney, Leslie W.; Snyder, Lewis E.; Friedel, Douglas N.; Remijan, Anthony J. E-mail: aremijan@nrao.ed

    2010-06-10

    Acetic acid (CH{sub 3}COOH) has been detected mainly in hot molecular cores where the distribution between oxygen (O) and nitrogen (N) containing molecular species is cospatial within the telescope beam. Previous work has presumed that similar cores with cospatial O and N species may be an indicator for detecting acetic acid. However, does this presumption hold as higher spatial resolution observations of large O- and N-containing molecules become available? As the number of detected acetic acid sources is still low, more observations are needed to support this postulate. In this paper, we report the first acetic acid survey conducted with the Combined Array for Research in Millimeter-wave Astronomy at 3 mm wavelengths toward G19.61-0.23, G29.96-0.02, and IRAS 16293-2422. We have successfully detected CH{sub 3}COOH via two transitions toward G19.61-0.23 and tentatively confirmed the detection toward IRAS 16293-2422 A. The determined column density of CH{sub 3}COOH is 2.0(1.0) x 10{sup 16} cm{sup -2} and the abundance ratio of CH{sub 3}COOH to methyl formate (HCOOCH{sub 3}) is 2.2(0.1) x 10{sup -1} toward G19.61-0.23. Toward IRAS 16293 A, the determined column density of CH{sub 3}COOH is {approx}1.6 x 10{sup 15} cm{sup -2} and the abundance ratio of CH{sub 3}COOH to methyl formate (HCOOCH{sub 3}) is {approx}1.0 x 10{sup -1}, both of which are consistent with abundance ratios determined toward other hot cores. Finally, we model all known line emission in our passband to determine physical conditions in the regions and introduce a new metric to better reveal weak spectral features that are blended with stronger lines or that may be near the 1{sigma}-2{sigma} detection limit.

  9. Enhanced citric acid production in aspergillus with inactivated asparagine-linked glycosylation protein 3 (ALG3), and/or increased laeA expression

    DOEpatents

    Dai, Ziyu; Baker, Scott E.

    2015-12-08

    Provided herein are fungi, such as Aspergillus niger, having a dolichyl-P-Man:Man(5)GlcNAc(2)-PP-dolichyl mannosyltransferase (Alg3) gene genetic inactivation, increased expression of a loss of aflR expression A (Lae), or both. In some examples, such mutants have several phenotypes, including an increased production of citric acid relative to the parental strain. Methods of using the disclosed fungi to make citric acid are also provided, as are compositions and kits including the disclosed fungi.

  10. Quantitative Structure of an Acetate Dye Molecule Analogue at the TiO2-Acetic Acid Interface.

    PubMed

    Hussain, Hadeel; Torrelles, Xavier; Cabailh, Gregory; Rajput, Parasmani; Lindsay, Robert; Bikondoa, Oier; Tillotson, Marcus; Grau-Crespo, Ricardo; Zegenhagen, Jörg; Thornton, Geoff

    2016-04-14

    The positions of atoms in and around acetate molecules at the rutile TiO2(110) interface with 0.1 M acetic acid have been determined with a precision of ±0.05 Å. Acetate is used as a surrogate for the carboxylate groups typically employed to anchor monocarboxylate dye molecules to TiO2 in dye-sensitized solar cells (DSSC). Structural analysis reveals small domains of ordered (2 × 1) acetate molecules, with substrate atoms closer to their bulk terminated positions compared to the clean UHV surface. Acetate is found in a bidentate bridge position, binding through both oxygen atoms to two 5-fold titanium atoms such that the molecular plane is along the [001] azimuth. Density functional theory calculations provide adsorption geometries in excellent agreement with experiment. The availability of these structural data will improve the accuracy of charge transport models for DSSC.

  11. Quantitative Structure of an Acetate Dye Molecule Analogue at the TiO2–Acetic Acid Interface

    PubMed Central

    2016-01-01

    The positions of atoms in and around acetate molecules at the rutile TiO2(110) interface with 0.1 M acetic acid have been determined with a precision of ±0.05 Å. Acetate is used as a surrogate for the carboxylate groups typically employed to anchor monocarboxylate dye molecules to TiO2 in dye-sensitized solar cells (DSSC). Structural analysis reveals small domains of ordered (2 × 1) acetate molecules, with substrate atoms closer to their bulk terminated positions compared to the clean UHV surface. Acetate is found in a bidentate bridge position, binding through both oxygen atoms to two 5-fold titanium atoms such that the molecular plane is along the [001] azimuth. Density functional theory calculations provide adsorption geometries in excellent agreement with experiment. The availability of these structural data will improve the accuracy of charge transport models for DSSC. PMID:27110318

  12. Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance.

    PubMed

    Ma, Cui; Wei, Xiaowen; Sun, Cuihuan; Zhang, Fei; Xu, Jianren; Zhao, Xinqing; Bai, Fengwu

    2015-03-01

    Acetic acid is present in cellulosic hydrolysate as a potent inhibitor, and the superior acetic acid tolerance of Saccharomyces cerevisiae ensures good cell viability and efficient ethanol production when cellulosic raw materials are used as substrates. In this study, a mutant strain of S. cerevisiae ATCC4126 (Sc4126-M01) with improved acetic acid tolerance was obtained through screening strains transformed with an artificial zinc finger protein transcription factor (ZFP-TF) library. Further analysis indicated that improved acetic acid tolerance was associated with improved catalase (CAT) activity. The ZFP coding sequence associated with the improved phenotype was identified, and real-time RT-PCR analysis revealed that three of the possible genes involved in the enhanced acetic acid tolerance regulated by this ZFP-TF, namely YFL040W, QDR3, and IKS1, showed decreased transcription levels in Sc4126-M01 in the presence of acetic acid, compared to those in the control strain. Sc4126-M01 mutants having QDR3 and IKS1 deletion (ΔQDR3 and ΔIKS1) exhibited higher acetic acid tolerance than the wild-type strain under acetic acid treatment. Glucose consumption rate and ethanol productivity in the presence of 5 g/L acetic acid were improved in the ΔQDR3 mutant compared to the wild-type strain. Our studies demonstrated that the synthetic ZFP-TF library can be used to improve acetic acid tolerance of S. cerevisiae and that the employment of an artificial transcription factor can facilitate the exploration of novel functional genes involved in stress tolerance of S. cerevisiae.

  13. [Effect of acetic acid on adsorption of acid phosphatase by some soil colloids and clay minerals].

    PubMed

    Zhao, Zhenhua; Huang, Qiaoyun; Jiang, Xin; Yu, Guifen; Wang, Fang; Li, Xueyuan

    2004-03-01

    This paper studied the effect of acetic acid with different concentrations and pH values on the adsorption of acid phosphatase by some soil colloids and clay minerals (SCCM). The results showed that the pH values for the maximum adsorption of the enzyme were between the IEP of the enzyme and the PZC of SCCM. In the acetic acid systems, the amount of the enzyme adsorbed by SCCM was in the order of goethite > yellow brown soil > latosol > kaolinite > delta-MnO2. A remarkable influence of acetic acid concentration on the adsorption amount and the binding energy of the enzyme was observed. With the increase of the concentration from 0 to 200 mmol.L-1 in the system, acetic acid exhibited an enhanced effect, followed by an inhibition action on the adsorption of the enzyme on SCCM. The changes of the binding energy (K value) for the enzyme on SCCM were on the contrary to those of the maximum adsorption. The possible mechanisms for the influence of acetic acid on the adsorption of enzyme by SCCM were also discussed.

  14. Improving clarity and stability of skim milk powder dispersions by dissociation of casein micelles at pH 11.0 and acidification with citric acid.

    PubMed

    Pan, Kang; Zhong, Qixin

    2013-09-25

    Casein micelles in milk cause turbidity and have poor stability at acidic conditions. In this study, skim milk powder dispersions were alkalized to pH 10.0 or 11.0, corresponding to reduced particle mass. In the following acidification with hydrochloric or citric acid, the re-formation of casein particles was observed. The combination of treatment at pH 11.0 and acidification with citric acid resulted in dispersions with the lowest turbidity and smallest particles, which enabled translucent dispersions at pH 5.5-7.0, corresponding to discrete nanoparticles. The concentration of ionic calcium was lower when acidified with citric acid than hydrochloric acid, corresponding to smaller particles with less negative zeta potential. The pH 11.0 treatment followed by acidification with citric acid also resulted in smaller particles than the simple chelating effects (directly implementing sodium citrate). The produced casein nanoparticles with reduced dimensions can be used for beverage and other novel applications.

  15. Unusal pattern of product inhibition: batch acetic acid fermentation

    SciTech Connect

    Bar, R.; Gainer, J.L.; Kirwan, D.J.

    1987-04-20

    The limited tolerance of microorganisms to their metabolic products results in inhibited growth and product formation. The relationship between the specific growth rate, micro, and the concentration of an inhibitory product has been described by a number of mathematical models. In most cases, micro was found to be inversely proportional to the product concentration and invariably the rate of substrate utilization followed the same pattern. In this communication, the authors report a rather unusual case in which the formation rate of a product, acetic acid, increased with a decreasing growth rate of the microorganism, Acetobacter aceti. Apparently, a similar behavior was mentioned in a review report with respect to Clostridium thermocellum in a batch culture but was not published in the freely circulating literature. The fermentation of ethanol to acetic acid, C/sub 2/H/sub 5/OH + O/sub 2/ = CH/sub 3/COOH + H/sub 2/O is clearly one of the oldest known fermentations. Because of its association with the commercial production of vinegar it has been a subject of extensive but rather technically oriented studies. Suprisingly, the uncommon uncoupling between the inhibited microbial growth and the product formation appears to have been unnoticed. 13 references.

  16. Evaluation of clastogenicity of formic acid, acetic acid and lactic acid on cultured mammalian cells.

    PubMed

    Morita, T; Takeda, K; Okumura, K

    1990-03-01

    Using Chinese hamster ovary K1 cells, chromosomal aberration tests were carried out with formic acid, acetic acid and lactic acid, and the relationship between the pH of the medium and the clastogenic activity was examined. The medium used was Ham's F12 supplemented with 17 mM NaHCO3 and 10% fetal calf serum. All of these acids induced chromosomal aberrations at the initial pH of ca. 6.0 or below (about 10-14 mM of each acid) both with and without S9 mix. Exposure of cells to about pH 5.7 or below (about 12-16 mM of each acid) was found to be toxic. When the culture medium was first acidified with each of these acids and then neutralized to pH 6.4 or pH 7.2 with NaOH, no clastogenic activity was observed. Using F12 medium supplemented with 34 mM NaHCO3 as a buffer, no clastogenic activity was observed at doses up to 25 mM of these acids (initial pH 5.8-6.0). However, it was found that about 10% of the cells had aberrations at pH 5.7 or below (27.5-32.5 mM of each acid). Furthermore, when 30 mM HEPES was used as a buffer, chromosomal aberrations were not induced at doses up to 20 mM formic acid and acetic acid (initial pH 7.0-7.1), and at doses up to 30 mM lactic acid (initial pH 6.6). In the initial pH range of 6.4-6.7 (25-32.5 mM of each acid), chromosomal aberrations were observed. The above results show that these acids themselves are non-clastogenic, and the pseudo-positive reactions attributable to non-physiological pH could be eliminated by either neutralization of the treatment medium or enhancement of the buffering ability.

  17. The Citrus transcription factor, CitERF13, regulates citric acid accumulation via a protein-protein interaction with the vacuolar proton pump, CitVHA-c4

    PubMed Central

    Li, Shao-jia; Yin, Xue-ren; Xie, Xiu-lan; Allan, Andrew C.; Ge, Hang; Shen, Shu-ling; Chen, Kun-song

    2016-01-01

    Organic acids are essential to fruit flavor. The vacuolar H+ transporting adenosine triphosphatase (V-ATPase) plays an important role in organic acid transport and accumulation. However, less is known of V-ATPase interacting proteins and their relationship with organic acid accumulation. The relationship between V-ATPase and citric acid was investigated, using the citrus tangerine varieties ‘Ordinary Ponkan (OPK)’ and an early maturing mutant ‘Zaoshu Ponkan (ZPK)’. Five V-ATPase genes (CitVHA) were predicted as important to citric acid accumulation. Among the genes, CitVHA-c4 was observed, using a yeast two-hybrid screen, to interact at the protein level with an ethylene response factor, CitERF13. This was verified using bimolecular fluorescence complementation assays. A similar interaction was also observed between Arabidopsis AtERF017 (a CitERF13 homolog) and AtVHA-c4 (a CitVHA-c4 homolog). A synergistic effect on citric acid levels was observed between V-ATPase proteins and interacting ERFs when analyzed using transient over-expression in tobacco and Arabidopsis mutants. Furthermore, the transcript abundance of CitERF13 was concomitant with CitVHA-c4. CitERF13 or AtERF017 over-expression leads to significant citric acid accumulation. This accumulation was abolished in an AtVHA-c4 mutant background. ERF-VHA interactions appear to be involved in citric acid accumulation, which was observed in both citrus and Arabidopsis. PMID:26837571

  18. A Comparative Study of the Quality of Apical Seal in Resilon/Epiphany SE Following Intra canal Irrigation With 17% EDTA, 10% Citric Acid, And MTAD as Final Irrigants – A Dye Leakage Study Under Vacuum

    PubMed Central

    Saraswathi, Vidya; Ballal, Nidambur Vasudev; Acharya, Shashi Rashmi; Sampath, J. Sivakumar; Singh, Sandeep

    2017-01-01

    Introduction Adequate apical sealing ability of the root canal filling material is an essential requisite for a successful endodontic therapy. Various endodontic irrigants are used for the removal of smear layer before obturating with a solid core material, thereby, reducing microleakage and improving apical seal. Resilon, a synthetic material was developed as an alternative to replace the conventional gutta-percha (standard root canal filling material) and traditional sealers for the obturation of endodontically treated teeth. Aim To evaluate and compare in-vitro, the post obturation apical seal obtained with Resilon /Epiphany SE (Self Etch) sealer following irrigation with 17% Ethylenediamine Tetra-Acetic Acid (EDTA), 10% citric acid, and MTAD (a mixture of doxycycline, citric acid, and a detergent, Tween 80), as final irrigants in combination with Sodium hypochlorite (NaOCl) using dye leakage under vacuum method. Materials and Methods Fifty five single rooted human maxillary central incisors were subjected to root canal instrumentation. Based on the final irrigation solution, samples were divided into three experimental groups (n=15); (I) 17% EDTA + 1.3% NaOCl, (II) 10% citric acid + 1.3% NaOCl, (III) MTAD + 1.3% NaOCl and two control groups (positive and negative) with 0.9% normal saline as a final irrigant. The samples were obturated with resilon/epiphany SE sealer according to manufacturer instructions and placed in 2% rhodamine B dye solution under vacuum pressure for 30 minutes and allowed to remain in the dye for seven days. All samples were then longitudinally split and examined for dye leakage under stereomicroscope and the data were statistically analysed using one-way ANOVA and post hoc tukey test. Results Statistically significant difference (p=0.001) was observed in the mean apical leakage between the experimental and the control groups. However, there was no significant difference (p>0.05) observed in the mean apical leakage amongst the three

  19. Interaction effects of lactic acid and acetic acid at different temperatures on ethanol production by Saccharomyces cerevisiae in corn mash.

    PubMed

    Graves, Tara; Narendranath, Neelakantam V; Dawson, Karl; Power, Ronan

    2007-01-01

    The combined effects of lactic acid and acetic acid on ethanol production by S. cerevisiae in corn mash, as influenced by temperature, were examined. Duplicate full factorial experiments (three lactic acid concentrations x three acetic acid concentrations) were performed to evaluate the interaction between lactic and acetic acids on the ethanol production of yeast at each of the three temperatures, 30, 34, and 37 degrees C. Corn mash at 30% dry solids adjusted to pH 4 after lactic and acetic acid addition was used as the substrate. Ethanol production rates and final ethanol concentrations decreased (P<0.001) progressively as the concentration of combined lactic and acetic acids in the corn mash increased and the temperature was raised from 30 to 37 degrees C. At 30 degrees C, essentially no ethanol was produced after 96 h when 0.5% w/v acetic acid was present in the mash (with 0.5, 2, and 4% w/v lactic acid). At 34 and 37 degrees C, the final concentrations of ethanol produced by the yeast were noticeably reduced by the presence of 0.3% w/v acetic acid and >or=2% w/v lactic acid. It can be concluded that, as in previous studies with defined media, lactic acid and acetic acid act synergistically to reduce ethanol production by yeast in corn mash. In addition, the inhibitory effects of combined lactic and acetic acid in corn mash were more apparent at elevated temperatures.

  20. Heterogeneous Reactions of Acetic Acid with Oxide Surfaces: Effects of Mineralogy and Relative Humidity.

    PubMed

    Tang, Mingjin; Larish, Whitney A; Fang, Yuan; Gankanda, Aruni; Grassian, Vicki H

    2016-07-21

    We have investigated the heterogeneous uptake of gaseous acetic acid on different oxides including γ-Al2O3, SiO2, and CaO under a range of relative humidity conditions. Under dry conditions, the uptake of acetic acid leads to the formation of both acetate and molecularly adsorbed acetic acid on γ-Al2O3 and CaO and only molecularly adsorbed acetic acid on SiO2. More importantly, under the conditions of this study, dimers are the major form for molecularly adsorbed acetic acid on all three particle surfaces investigated, even at low acetic acid pressures under which monomers are the dominant species in the gas phase. We have also determined saturation surface coverages for acetic acid adsorption on these three oxides under dry conditions as well as Langmuir adsorption constants in some cases. Kinetic analysis shows that the reaction rate of acetic acid increases by a factor of 3-5 for γ-Al2O3 when relative humidity increases from 0% to 15%, whereas for SiO2 particles, acetic acid and water are found to compete for surface adsorption sites.

  1. Benzylidene Acetal Protecting Group as Carboxylic Acid Surrogate: Synthesis of Functionalized Uronic Acids and Sugar Amino Acids.

    PubMed

    Banerjee, Amit; Senthilkumar, Soundararasu; Baskaran, Sundarababu

    2016-01-18

    Direct oxidation of the 4,6-O-benzylidene acetal protecting group to C-6 carboxylic acid has been developed that provides an easy access to a wide range of biologically important and synthetically challenging uronic acid and sugar amino acid derivatives in good yields. The RuCl3 -NaIO4 -mediated oxidative cleavage method eliminates protection and deprotection steps and the reaction takes place under mild conditions. The dual role of the benzylidene acetal, as a protecting group and source of carboxylic acid, was exploited in the efficient synthesis of six-carbon sialic acid analogues and disaccharides bearing uronic acids, including glycosaminoglycan analogues.

  2. Escherichia coli and Salmonella enterica are protected against acetic acid, but not hydrochloric acid, by hypertonicity.

    PubMed

    Chapman, B; Ross, T

    2009-06-01

    Chapman et al. (B. Chapman, N. Jensen, T Ross, and M. B. Cole, Appl. Environ. Microbiol. 72:5165-5172, 2006) demonstrated that an increased NaCl concentration prolongs survival of Escherichia coli O157 SERL 2 in a broth model simulating the aqueous phase of a food dressing or sauce containing acetic acid. We examined the responses of five other E. coli strains and four Salmonella enterica strains to increasing concentrations of NaCl under conditions of lethal acidity and observed that the average "lag" time prior to inactivation decreases in the presence of hydrochloric acid but not in the presence of acetic acid. For E. coli in the presence of acetic acid, the lag time increased with increasing NaCl concentrations up to 2 to 4% at pH 4.0, up to 4 to 6% at pH 3.8, and up to 4 to 7% (wt/wt of water) NaCl at pH 3.6. Salmonella was inactivated more rapidly by combined acetic acid and NaCl stresses than E. coli, but increasing NaCl concentrations still decreased the lag time prior to inactivation in the presence of acetic acid; at pH 4.0 up to 1 to 4% NaCl was protective, and at pH 3.8 up to 1 to 2% NaCl delayed the onset of inactivation. Sublethal injury kinetics suggest that this complex response is a balance between the lethal effects of acetic acid, against which NaCl is apparently protective, and the lethal effects of the NaCl itself. Compared against 3% NaCl, 10% (wt/wt of water) sucrose with 0.5% NaCl (which has similar osmotic potential) was found to be equally protective against adverse acetic acid conditions. We propose that hypertonicity may directly affect the rate of diffusion of acetic acid into cells and hence cell survival.

  3. Lemon juice improves the extractability and quality characteristics of pectin from yellow passion fruit by-product as compared with commercial citric acid extractant.

    PubMed

    Yapo, Beda M

    2009-06-01

    An environment-friendly procedure, allowing the extraction of safe pectin products with good functional properties from yellow passion fruit by-product, was developed using two natural acid extractants, namely, pure lemon juice and citric acid solvent. The results show that both of them solubilise, from cell wall material, pectins characterised by high galacturonic acid content (64-78% w/w), degree of esterification (52-73), viscosity-average molecular weight (70-95 kDa) and capable of forming gels in the presence of high soluble solids (sucrose) content and acid. However, compared to pure citric acid solvents, lemon natural juice and its concentrate isolate, under similar extraction conditions, pectins of superior quality characteristics, i.e., higher galacturonic acid content, degree of esterification, viscosity-average molecular weight and gelling power.

  4. Acetylation of bacterial cellulose catalyzed by citric acid: Use of reaction conditions for tailoring the esterification extent.

    PubMed

    Ávila Ramírez, Jhon Alejandro; Gómez Hoyos, Catalina; Arroyo, Silvana; Cerrutti, Patricia; Foresti, María Laura

    2016-11-20

    Bacterial cellulose (BC) nanoribbons were partially acetylated by a simple direct solvent-free route catalyzed by citric acid. The assay of reaction conditions within chosen intervals (i.e. esterification time (0.5-7h), catalyst content (0.08-1.01mmol/mmol AGU), and temperature (90-140°C)), illustrated the flexibility of the methodology proposed, with reaction variables which can be conveniently manipulated to acetylate BC to the required degree of substitution (DS) within the 0.20-0.73 interval. Within this DS interval, characterization results indicated a surface-only process in which acetylated bacterial cellulose with tunable DS, preserved fibrous structure and increased hydrophobicity could be easily obtained. The feasibility of reusing the catalyst/excess acylant in view of potential scale-up was also illustrated.

  5. in situ formation of rGO quantum dots during GO reduction via interaction with citric acid in aqueous medium

    NASA Astrophysics Data System (ADS)

    Ortega-Amaya, R.; Matsumoto, Y.; Flores-Conde, A.; Pérez-Guzmán, M. A.; Ortega-López, M.

    2016-10-01

    Chemical methods represent an economical approach to the mass production of graphene. Their main drawback is the use of environmentally harmful reagents. This work describes a simple, green method to prepare reduced graphene oxide (rGO) sheets and rGO quantum dots (rGOQD) in a single step using citric acid (CA) as the reductant in aqueous medium at room temperature. The reduction level of the nanocomposite obtained depends strongly on the processing time; the sample treated for 24 h demonstrate significant reduction. It is found that CA not only reduces GO but also functionalizes it to produce well-stabilized rGO aqueous dispersions. Additionally, a mechanism for the reduction and functionalization of GO by CA is proposed.

  6. Thorium(IV) removal from aqueous medium by citric acid treated mangrove endophytic fungus Fusarium sp. #ZZF51.

    PubMed

    Yang, S K; Tan, N; Yan, X M; Chen, F; Long, W; Lin, Y C

    2013-09-15

    Thorium(IV) biosorption is investigated by citric acid treated mangrove endophytic fungus Fussarium sp. #ZZF51 (CA-ZZF51) from South China Sea. The biosorption process was optimized at pH 4.5, equilibrium time 90 min, initial thorium(IV) concentration 50 mg L(-1) and adsorbent dose 0.6 g L(-1) with 90.87% of removal efficiency and 75.47 mg g(-1) of adsorption capacity, which is obviously greater than that (11.35 mg g(-1)) of the untreated fungus Fussarium sp. #ZZF51 for thorium(IV) biosorption under the condition of optimization. The experimental data are analyzed by using isotherm and kinetic models. Kinetic data follow the pseudo-second-order model and equilibrium data agree very well with the Langmuir model. In addition, FTIR analysis indicates that hydroxyl, amino, and carbonyl groups act as the important roles in the adsorption process.

  7. Recent advances in nitrogen-fixing acetic acid bacteria.

    PubMed

    Pedraza, Raúl O

    2008-06-30

    Nitrogen is an essential plant nutrient, widely applied as N-fertilizer to improve yield of agriculturally important crops. An interesting alternative to avoid or reduce the use of N-fertilizers could be the exploitation of plant growth-promoting bacteria (PGPB), capable of enhancing growth and yield of many plant species, several of agronomic and ecological significance. PGPB belong to diverse genera, including Azospirillum, Azotobacter, Herbaspirillum, Bacillus, Burkholderia, Pseudomonas, Rhizobium, and Gluconacetobacter, among others. They are capable of promoting plant growth through different mechanisms including (in some cases), the biological nitrogen fixation (BNF), the enzymatic reduction of the atmospheric dinitrogen (N(2)) to ammonia, catalyzed by nitrogenase. Aerobic bacteria able to oxidize ethanol to acetic acid in neutral or acid media are candidates of belonging to the family Acetobacteraceae. At present, this family has been divided into ten genera: Acetobacter, Gluconacetobacter, Gluconobacter, Acidomonas, Asaia, Kozakia, Saccharibacter, Swaminathania, Neoasaia, and Granulibacter. Among them, only three genera include N(2)-fixing species: Gluconacetobacter, Swaminathania and Acetobacter. The first N(2)-fixing acetic acid bacterium (AAB) was described in Brazil. It was found inside tissues of the sugarcane plant, and first named as Acetobacter diazotrophicus, but then renamed as Gluconacetobacter diazotrophicus. Later, two new species within the genus Gluconacetobacter, associated to coffee plants, were described in Mexico: G. johannae and G. azotocaptans. A salt-tolerant bacterium named Swaminathania salitolerans was found associated to wild rice plants. Recently, N(2)-fixing Acetobacter peroxydans and Acetobacter nitrogenifigens, associated with rice plants and Kombucha tea, respectively, were described in India. In this paper, recent advances involving nitrogen-fixing AAB are presented. Their natural habitats, physiological and genetic aspects

  8. L-Malate dehydrogenase activity in the reductive arm of the incomplete citric acid cycle of Nitrosomonas europaea.

    PubMed

    Deutch, Charles E

    2013-11-01

    The autotrophic nitrifying bacterium Nitrosomonas europaea does not synthesize 2-oxoglutarate (α-ketoglutarate) dehydrogenase under aerobic conditions and so has an incomplete citric acid cycle. L-malate (S-malate) dehydrogenase (MDH) from N. europaea was predicted to show similarity to the NADP(+)-dependent enzymes from chloroplasts and was separated from the NAD(+)-dependent proteins from most other bacteria or mitochondria. MDH activity in a soluble fraction from N. europaea ATCC 19718 was measured spectrophotometrically and exhibited simple Michaelis-Menten kinetics. In the reductive direction, activity with NADH increased from pH 6.0 to 8.5 but activity with NADPH was consistently lower and decreased with pH. At pH 7.0, the K m for oxaloacetate was 20 μM; the K m for NADH was 22 μM but that for NADPH was at least 10 times higher. In the oxidative direction, activity with NAD(+) increased with pH but there was very little activity with NADP(+). At pH 7.0, the K m for L-malate was 5 mM and the K m for NAD(+) was 24 μM. The reductive activity was quite insensitive to inhibition by L-malate but the oxidative activity was very sensitive to oxaloacetate. MDH activity was not strongly activated or inhibited by glycolytic or citric acid cycle metabolites, adenine nucleotides, NaCl concentrations, or most metal ions, but increased with temperature up to about 55 °C. The reductive activity was consistently 10-20 times higher than the oxidative activity. These results indicate that the L-malate dehydrogenase in N. europaea is similar to other NAD(+)-dependent MDHs (EC 1.1.1.37) but physiologically adapted for its role in a reductive biosynthetic sequence.

  9. Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L.

    PubMed

    Afshan, Sehar; Ali, Shafaqat; Bharwana, Saima Aslam; Rizwan, Muhammad; Farid, Mujahid; Abbas, Farhat; Ibrahim, Muhammad; Mehmood, Muhammad Aamer; Abbasi, Ghulam Hasan

    2015-08-01

    Chromium (Cr) toxicity is widespread in crops grown on Cr-contaminated soils and has become a serious environmental issue which requires affordable strategies for the remediation of such soils. This study was performed to assess the performance of citric acid (CA) through growing Brassica napus in the phytoextraction of Cr from contaminated soil. Different Cr (0, 100, and 500 μM) and citric acid (0, 2.5, and 5.0 mM) treatments were applied alone and in combinations to 4-week-old seedlings of B. napus plants in soil under wire house condition. Plants were harvested after 12 weeks of sowing, and the data was recorded regarding growth characteristics, biomass, photosynthetic pigments, malondialdehyde (MDA), electrolytic leakage (EL), antioxidant enzymes, and Cr uptake and accumulation. The results showed that the plant growth, biomass, chlorophyll contents, and carotenoid as well as soluble protein concentrations significantly decreased under Cr stress alone while these adverse effects were alleviated by application of CA. Cr concentration in roots, stem, and leaves of CA-supplied plant was significantly reduced while total uptake of Cr increased in all plant parts with CA application. Furthermore, in comparison with Cr treatments alone, CA supply reduced the MDA and EL values in both shoots and roots. Moreover, the activity of superoxide dismutase (SOD), guaiacol peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) in shoots and roots markedly increased by 100 μM Cr exposure, while decreased at 500 μM Cr stress. CA application enhanced the activities of antioxidant enzymes compared to the same Cr treatment alone. Thus, the data indicate that exogenous CA application can increase Cr uptake and can minimize Cr stress in plants and may be beneficial in accelerating the phytoextraction of Cr through hyper-accumulating plants such as B. napus.

  10. Chronic fluoxetine treatment directs energy metabolism towards the citric acid cycle and oxidative phosphorylation in rat hippocampal nonsynaptic mitochondria.

    PubMed

    Filipović, Dragana; Costina, Victor; Perić, Ivana; Stanisavljević, Andrijana; Findeisen, Peter

    2017-03-15

    Fluoxetine (Flx) is the principal treatment for depression; however, the precise mechanisms of its actions remain elusive. Our aim was to identify protein expression changes within rat hippocampus regulated by chronic Flx treatment versus vehicle-controls using proteomics. Fluoxetine-hydrohloride (15mg/kg) was administered daily to adult male Wistar rats for 3weeks, and cytosolic and nonsynaptic mitochondrial hippocampal proteomes were analyzed. All differentially expressed proteins were functionally annotated according to biological process and molecular function using Uniprot and Blast2GO. Our comparative study revealed that in cytosolic and nonsynaptic mitochondrial fractions, 60 and 3 proteins respectively, were down-regulated, and 23 and 60 proteins, respectively, were up-regulated. Proteins differentially regulated in cytosolic and nonsynaptic mitochondrial fractions were primarily related to cellular and metabolic processes. Of the identified proteins, the expressions of calretinin and parvalbumine were confirmed. The predominant molecular functions of differentially expressed proteins in both cell hippocampal fractions were binding and catalytic activity. Most differentially expressed proteins in nonsynaptic mitochondria were catalytic enzymes involved in the pyruvate metabolism, citric acid cycle, oxidative phosphorylation, ATP synthesis, ATP transduction and glutamate metabolism. Results indicate that chronic Flx treatment may influence proteins involved in calcium signaling, cytoskeletal structure, chaperone system and stimulates energy metabolism via the upregulation of GAPDH expression in cytoplasm, as well as directing energy metabolism toward the citric acid cycle and oxidative phosphorylation in nonsynaptic mitochondria. This approach provides new insight into the chronic effects of Flx treatment on protein expression in a key brain region associated with stress response and memory.

  11. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    SciTech Connect

    Mondala, Andro; Hernandez, Rafael; French, Todd; McFarland, Linda; Sparks, Darrell; Holmes, William; Haque, Monica

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 + 0.7% and 8.8 + 3.2% w/w, respectively, which were lower than the control (17.8 + 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 + 0.6% w/w for 2 g L -1 acetic acid and 4.2 + 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.

  12. Improvement in HPLC separation of acetic acid and levulinic acid in the profiling of biomass hydrolysate.

    PubMed

    Xie, Rui; Tu, Maobing; Wu, Yonnie; Adhikari, Sushil

    2011-04-01

    5-Hydroxymethylfurfural (HMF) and furfural could be separated by the Aminex HPX-87H column chromatography, however, the separation and quantification of acetic acid and levulinic acid in biomass hydrolysate have been difficult with this method. In present study, the HPLC separation of acetic acid and levulinic acid on Aminex HPX-87H column has been investigated by varying column temperature, flow rate, and sulfuric acid content in the mobile phase. The column temperature was found critical in resolving acetic acid and levulinic acid. The resolution for two acids increased dramatically from 0.42 to 1.86 when the column temperature was lowered from 60 to 30 °C. So did the capacity factors for levulinic acid that was increased from 1.20 to 1.44 as the column temperature dropped. The optimum column temperature for the separation was found at 45 °C. Variation in flow rate and sulfuric acid concentration improved not as much as the column temperature did.

  13. Improving the degradation behavior and in vitro biological property of nano-hydroxyapatite surface- grafted with the assist of citric acid.

    PubMed

    Jiang, Liuyun; Jiang, Lixin; Xiong, Chengdong; Su, Shengpei

    2016-10-01

    To obtain ideal nano-hydroxyapatite(n-HA) filler for poly(lactide-co-glycolide) (PLGA), a new surface-grafting with the assist of citric acid for nano-hydroxyapatite (n-HA) was designed, and the effect of n-HA surface-grafted with or without citric acid on in vitro degradation behavior and cells viability was studied by the experiments of soaking in simulated body fluid (SBF) and incubating with human osteoblast-like cells (MG-63). The change of pH value, tensile strength reduction, the surface deposits, cells attachment and proliferation of samples during the soaking and incubation were investigated by means of pH meter, electromechanical universal tester, scanning electron microscope (SEM) coupled with energy-dispersive spectro-scopy (EDS), fluorescence microscope and MTT method. The results showed that the introduction of citric acid not only delayed the strength reduction during the degradation by inhibiting the detachment of n-HA from PLGA, but also endowed it better cell attachment and proliferation, suggesting that the n-HA surface-grafted with the assist of citric acid was an important bioactive ceramic fillers for PLGA used as bone materials.

  14. Rapid (<3 min) microwave synthesis of block copolymer templated ordered mesoporous metal oxide and carbonate films using nitrate-citric acid systems.

    PubMed

    Zhang, Yuanzhong; Bhaway, Sarang M; Wang, Yi; Cavicchi, Kevin A; Becker, Matthew L; Vogt, Bryan D

    2015-03-25

    Rapid chemical transformation from micelle templated precursors (metal nitrate and citric acid) to ordered mesoporous metal carbonates and oxides is demonstrated using microwave heating for cobalt, copper, manganese and zinc. Without aging requirements, <3 min of microwave processing yields highly ordered mesoporous films.

  15. Transcript and metabolite alterations increase ganoderic acid content in Ganoderma lucidum using acetic acid as an inducer.

    PubMed

    Ren, Ang; Li, Xiong-Biao; Miao, Zhi-Gang; Shi, Liang; Jaing, Ai-Liang; Zhao, Ming-Wen

    2014-12-01

    Acetic acid at 5-8 mM increased ganoderic acid (GA) accumulation in Ganoderma lucidum. After optimization by the response surface methodology, the GA content reached 5.5/100 mg dry weight, an increase of 105% compared with the control. The intermediate metabolites of GA biosynthesis, lanosterol and squalene also increased to 47 and 15.8 μg/g dry weight, respectively, in response to acetic acid. Acetic acid significantly induced transcription levels of sqs, lano, hmgs and cyp51 in the GA biosynthesis pathway. An acetic acid-unregulated acetyl coenzyme A synthase (acs) gene was selected from ten candidate homologous acs genes. The results indicate that acetic acid alters the expression of genes related to acetic acid assimilation and increases GA biosynthesis and the metabolic levels of lanosterol, squalene and GA-a, thereby resulting in GA accumulation.

  16. Corrosion behavior of mild steel in acetic acid solutions

    SciTech Connect

    Singh, M.M.; Gupta, A.

    2000-04-01

    The corrosion behavior of mild steel in acetic acid (CH{sub 3}COOH) solutions was studied by weight loss and potentiostatic polarization techniques. The variation in corrosion rate of mild steel with concentrations of CH{sub 3}COOH, evaluated by weight loss and electrochemical techniques, showed marked resemblance. From both techniques, the maximum corrosion rate was observed for 20% CH{sub 3}COOH solution at all three experimental temperatures (25, 35, and 45 C). Anodic polarization curves showed active-passive behavior at each concentration, except at 80% CH{sub 3}COOH. Critical current density (i{sub c}) passive current density (I{sub n}), primary passivation potential (E{sub pp}), and potential for passivity (E{sub p}) had their highest values in 20% CH{sub 3}COOH solution. With an increase in temperature, while the anodic polarization curves shifted toward higher current density region at each concentration, the passive region became progressively less distinguishable. With the addition of sodium acetate (NaCOOCH{sub 3}) as a supporting electrolyte, the passive range was enlarged substantially. However, the transpassive region commenced at more or less the same potential. Cathodic polarization curves were almost identical irrespective of the concentration of CH{sub 3}COOH or temperature.

  17. The Unusual Acid-Accumulating Behavior during Ripening of Cherimoya (Annona cherimola Mill.) is Linked to Changes in Transcription and Enzyme Activity Related to Citric and Malic Acid Metabolism.

    PubMed

    González-Agüero, Mauricio; Tejerina Pardo, Luis; Zamudio, María Sofía; Contreras, Carolina; Undurraga, Pedro; Defilippi, Bruno G

    2016-04-25

    Cherimoya (Annona cherimola Mill.) is a subtropical fruit characterized by a significant increase in organic acid levels during ripening, making it an interesting model for studying the relationship between acidity and fruit flavor. In this work, we focused on understanding the balance between the concentration of organic acids and the gene expression and activity of enzymes involved in the synthesis and degradation of these metabolites during the development and ripening of cherimoya cv. "Concha Lisa". Our results showed an early accumulation of citric acid and other changes associated with the accumulation of transcripts encoding citrate catabolism enzymes. During ripening, a 2-fold increase in malic acid and a 6-fold increase in citric acid were detected. By comparing the contents of these compounds with gene expression and enzymatic activity levels, we determined that cytoplasmic NAD-dependent malate dehydrogenase (cyNAD-MDH) and mitochondrial citrate synthase (mCS) play important regulatory roles in the malic and citric acid biosynthetic pathways.

  18. Development of Acetic Acid Removal Technology for the UREX+Process

    SciTech Connect

    Robert M. Counce; Jack S. Watson

    2009-06-30

    It is imperative that acetic acid is removed from a waste stream in the UREX+process so that nitric acid can be recycled and possible interference with downstreatm steps can be avoidec. Acetic acid arises from acetohydrozamic acid (AHA), and is used to suppress plutonium in the first step of the UREX+process. Later, it is hydrolyzed into hydroxyl amine nitrate and acetic acid. Many common separation technologies were examined, and solvent extraction was determined to be the best choice under process conditions. Solvents already used in the UREX+ process were then tested to determine if they would be sufficient for the removal of acetic acid. The tributyl phosphage (TBP)-dodecane diluent, used in both UREX and NPEX, was determined to be a solvent system that gave sufficient distribution coefficients for acetic acid in addition to a high separation factor from nitric acid.

  19. Synthesis and characterization of acetic acid and ethanoic acid (based)-maleimide

    NASA Astrophysics Data System (ADS)

    Poad, Siti Nashwa Mohd; Hassan, Nurul Izzaty; Hassan, Nur Hasyareeda

    2016-11-01

    A new route to the synthesis of maleimide is described. 2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)acetic acid maleimide (1) and 2-(4-(2,5-Dioxo-2,5-dihydro- 1H-pyrrol-1-yl)phenyl)ethanoic acid maleimide (2) have been synthesized by the reaction of maleic anhydride with glycine and 4-aminophenyl acetic aicd. Maleimide (1) was synthesized by conventional technique while maleimide (2) was synthesized by microwave method. The compounds were characterized using FT-Infrared (FT-IR), 1H and 13C Nuclear Magnetic Resonance (NMR) spectroscopies and Mass Spectrometry.

  20. Crystal structure of 7,8-benzocoumarin-4-acetic acid.

    PubMed

    Swamy, R Ranga; Gowda, Ramakrishna; Gowda, K V Arjuna; Basanagouda, Mahantesha

    2015-08-01

    The fused-ring system in the title compound [systematic name: 2-(2-oxo-2H-benzo[h]chromen-4-yl)acetic acid], C15H10O4, is almost planar (r.m.s. deviation = 0.031 Å) and the Car-C-C=O (ar = aromatic) torsion angle for the side chain is -134.4 (3)°. In the crystal, mol-ecules are linked by O-H⋯O hydrogen bonds, generating [100] C(8) chains, where the acceptor atom is the exocyclic O atom of the fused-ring system. The packing is consolidated by a very weak C-H⋯O hydrogen bond to the same acceptor atom. Together, these inter-actions lead to undulating (001) layers in the crystal.

  1. The Ground and First Excited Torsional States of Acetic Acid.

    PubMed

    Ilyushin, V. V.; Alekseev, E. A.; Dyubko, S. F.; Podnos, S. V.; Kleiner, I.; Margulès, L.; Wlodarczak, G.; Demaison, J.; Cosléou, J.; Maté, B.; Karyakin, E. N.; Golubiatnikov, G. Yu.; Fraser, G. T.; Suenram, R. D.; Hougen, J. T.

    2001-02-01

    A global fit of microwave and millimeter-wave rotational transitions in the ground and first excited torsional states (v(t) = 0 and 1) of acetic acid (CH(3)COOH) is reported, which combines older measurements from the literature with new measurements from Kharkov, Lille, and NIST. The fit uses a model developed initially for acetaldehyde and methanol-type internal rotor molecules. It requires 34 parameters to achieve a unitless weighted standard deviation of 0.84 for a total of 2518 data and includes A- and E-species transitions with J

  2. Transcriptome analysis of acetic-acid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance.

    PubMed

    Lee, Yeji; Nasution, Olviyani; Choi, Eunyong; Choi, In-Geol; Kim, Wankee; Choi, Wonja

    2015-08-01

    Acetic acid inhibits the metabolic activities of Saccharomyces cerevisiae. Therefore, a better understanding of how S. cerevisiae cells acquire the tolerance to acetic acid is of importance to develop robust yeast strains to be used in industry. To do this, we examined the transcriptional changes that occur at 12 h post-exposure to acetic acid, revealing that 56 and 58 genes were upregulated and downregulated, respectively. Functional categorization of them revealed that 22 protein synthesis genes and 14 stress response genes constituted the largest portion of the upregulated and downregulated genes, respectively. To evaluate the association of the regulated genes with acetic acid tolerance, 3 upregulated genes (DBP2, ASC1, and GND1) were selected among 34 non-protein synthesis genes, and 54 viable mutants individually deleted for the downregulated genes were retrieved from the non-essential haploid deletion library. Strains overexpressing ASC1 and GND1 displayed enhanced tolerance to acetic acid, whereas a strain overexpressing DBP2 was sensitive. Fifty of 54 deletion mutants displayed enhanced acetic acid tolerance. Three chosen deletion mutants (hsps82Δ, ato2Δ, and ssa3Δ) were also tolerant to benzoic acid but not propionic and sorbic acids. Moreover, all those five (two overexpressing and three deleted) strains were more efficient in proton efflux and lower in membrane permeability and internal hydrogen peroxide content than controls. Individually or in combination, those physiological changes are likely to contribute at least in part to enhanced acetic acid tolerance. Overall, information of our transcriptional profile was very useful to identify molecular factors associated with acetic acid tolerance.

  3. Detection of CIN by naked eye visualization after application of acetic acid.

    PubMed

    Londhe, M; George, S S; Seshadri, L

    1997-06-01

    A prospective study was undertaken to determine the sensitivity and specificity of acetic application to the cervix followed by naked eye visualization as a screening test for detection of cervical intraepithelial neoplasia. Three hundred and seventy two sexually active woman in the reproductive age group were studied. All the women underwent Papanicolaou test, acetic acid test and colposcopy. One hundred and seventy five woman were acetic acid test negative, 197 women were acetic acid test positive. The sensitivity of acetic acid test was 72.4%, specificity 54% and false negative rate 15.2%, as compared to papanicolaou test which had a sensitivity of 13.2%, specificity of 96.3% and false negative rate of 24.4%. The advantage of the acetic acid test lies in its easy technique, low cost and high sensitivity which are important factors for determining the efficacy of any screening programme in developing countries.

  4. Acetic acid and aromatics units planned in China

    SciTech Connect

    Alperowicz, N.

    1993-01-27

    The Shanghai Wujing Chemical Complex (SWCC; Shanghai) is proceeding with construction of an acetic acid plant. The 100,000-m.t./year until will use BP Chemicals carbonylation technology, originally developed by Monsanto. John Brown has been selected by China National Technical Import Corp. (CNTIC) to supply the plant, Chinese sources say. The UK contractor, which competed against Mitsui Engineering Shipbuilding (Tokyo) and Lurgi (Frankfurt), has built a similar plant for BP in the UK, although using different technology. The new plant will require 54,000 m.t./year of methanol, which is available onsite. Carbon monoxide will be delivered from a new plant. The acetic acid unit will joint two other acetic plants in China supplied some time ago by Uhde (Dortmund). SWCC is due to be integrated with two adjacent complexes to form Shanghai Pacific Chemical. Meanwhile, four groups are competing to supply a UOP-process aromatics complex for Jilin Chemical Industrial Corp. They are Toyo Engineering, Lurgi, Lucky/Foster Wheeler, and Eurotechnica. The complex will include plants with annual capacities for 115,000 m.t. of benzene, 90,000 m.t. of ortho-xylene, 93,000 m.t. of mixed xylenes, and 20,000 m.t. of toluene. The plants will form part of a $2-billion petrochemical complex based on a 300,000-m.t./year ethylene plant awarded last year to a consortium of Samsung Engineering and Linde. Downstream plants will have annual capacities for 120,000 m.t. of linear low-density polyethylene, 80,000 m.t. of ethylene oxide, 100,000 m.t. of ethylene glycol, 80,000 m.t. of phenol, 100,000 m.t. of acrylonitrile, 20,000 m.t. of sodium cyanide, 40,000 m.t. of phthalic anhydride, 40,000 m.t. of ethylene propylene rubber, 20,000 m.t. of styrene butadiene styrene, and 30,000 m.t. of acrylic fiber.

  5. L-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss.

    PubMed

    Murakami, Nao; Oba, Mana; Iwamoto, Mariko; Tashiro, Yukihiro; Noguchi, Takuya; Bonkohara, Kaori; Abdel-Rahman, Mohamed Ali; Zendo, Takeshi; Shimoda, Mitsuya; Sakai, Kenji; Sonomoto, Kenji

    2016-01-01

    Glycerol is a by-product in the biodiesel production process and considered as one of the prospective carbon sources for microbial fermentation including lactic acid fermentation, which has received considerable interest due to its potential application. Enterococcus faecalis isolated in our laboratory produced optically pure L-lactic acid from glycerol in the presence of acetic acid. Gas chromatography-mass spectrometry analysis using [1, 2-(13)C2] acetic acid proved that the E. faecalis strain QU 11 was capable of converting acetic acid to ethanol during lactic acid fermentation of glycerol. This indicated that strain QU 11 restored the redox balance by oxidizing excess NADH though acetic acid metabolism, during ethanol production, which resulted in lactic acid production from glycerol. The effects of pH control and substrate concentration on lactic acid fermentation were also investigated. Glycerol and acetic acid concentrations of 30 g/L and 10 g/L, respectively, were expected to be appropriate for lactic acid fermentation of glycerol by strain QU 11 at a pH of 6.5. Furthermore, fed-batch fermentation with 30 g/L glycerol and 10 g/L acetic acid wholly exhibited the best performance including lactic acid production (55.3 g/L), lactic acid yield (0.991 mol-lactic acid/mol-glycerol), total yield [1.08 mol-(lactic acid and ethanol)]/mol-(glycerol and acetic acid)], and total carbon yield [1.06 C-mol-(lactic acid and ethanol)/C-mol-(glycerol and acetic acid)] of lactic acid and ethanol. In summary, the strain QU 11 successfully produced lactic acid from glycerol with acetic acid metabolism, and an efficient fermentation system was established without carbon loss.

  6. Effects of Oxygen Availability on Acetic Acid Tolerance and Intracellular pH in Dekkera bruxellensis

    PubMed Central

    Capusoni, Claudia; Arioli, Stefania; Zambelli, Paolo; Moktaduzzaman, M.; Mora, Diego

    2016-01-01

    ABSTRACT The yeast Dekkera bruxellensis, associated with wine and beer production, has recently received attention, because its high ethanol and acid tolerance enables it to compete with Saccharomyces cerevisiae in distilleries that produce fuel ethanol. We investigated how different cultivation conditions affect the acetic acid tolerance of D. bruxellensis. We analyzed the ability of two strains (CBS 98 and CBS 4482) exhibiting different degrees of tolerance to grow in the presence of acetic acid under aerobic and oxygen-limited conditions. We found that the concomitant presence of acetic acid and oxygen had a negative effect on D. bruxellensis growth. In contrast, incubation under oxygen-limited conditions resulted in reproducible growth kinetics that exhibited a shorter adaptive phase and higher growth rates than those with cultivation under aerobic conditions. This positive effect was more pronounced in CBS 98, the more-sensitive strain. Cultivation of CBS 98 cells under oxygen-limited conditions improved their ability to restore their intracellular pH upon acetic acid exposure and to reduce the oxidative damage to intracellular macromolecules caused by the presence of acetic acid. This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can protect against the damage caused by the presence of acetic acid. This aspect is important for optimizing industrial processes performed in the presence of acetic acid. IMPORTANCE This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can have a protective role against the damage caused by the presence of acetic acid. This aspect is important for the optimization of industrial processes performed in the presence of acetic acid. PMID:27235432

  7. Effect of stevia and citric acid on the stability of phenolic compounds and in vitro antioxidant and antidiabetic capacity of a roselle (Hibiscus sabdariffa L.) beverage.

    PubMed

    Pérez-Ramírez, Iza F; Castaño-Tostado, Eduardo; Ramírez-de León, José A; Rocha-Guzmán, Nuria E; Reynoso-Camacho, Rosalía

    2015-04-01

    Plant infusions are consumed due to their beneficial effects on health, which is attributed to their bioactive compounds content. However, these compounds are susceptible to degradation during processing and storage. The objective of this research was to evaluate the effect of stevia and citric acid on the stability of phenolic compounds, antioxidant capacity and carbohydrate-hydrolysing enzyme inhibitory activity of roselle beverages during storage. The optimum extraction conditions of roselle polyphenolic compounds was of 95 °C/60 min, which was obtained by a second order experimental design. The incorporation of stevia increased the stability of colour and some polyphenols, such as quercetin, gallic acid and rosmarinic acid, during storage. In addition, stevia decreased the loss of ABTS, DPPH scavenging activity and α-amylase inhibitory capacity, whereas the incorporation of citric acid showed no effect. These results may contribute to the improvement of technological processes for the elaboration of hypocaloric and functional beverages.

  8. Formic acid and acetic acid measurements during the Southern California Air Quality Study

    NASA Astrophysics Data System (ADS)

    Grosjean, Daniel

    As part of the Southern California Air Quality Study (SCAQS), ambient levels of gas phase formic acid and acetic acid have been measured at four locations: a 'control' site (San Nicholas Island), a source-dominated coastal site (Long Beach) and two inland smog receptor sites (Claremont and Palm Springs). Samples were collected on alkaline traps and were analyzed by size exclusion liquid chromatography with ultraviolet detection. Levels of gas phase formic acid (up to 19 ppb) and acetic acid (up to 17 ppb) exhibited diurnal (frequent night-time maxima), spatial and seasonal variations. During summer smog episodes, concentrations increased from 0.6 ppb at the 'control' site to up to 13-19 ppb at the inland smog receptor sites reflecting primary emissions and in situ formation during transport inland. The acetic acid/formic acid (A/F) ratio decreased from coastal to inland sites. At the coastal site levels of both acids and the A/F ratio were substantially higher during the fall than during the summer.

  9. Phenyl Acetate Preparation from Phenol and Acetic Acid: Reassessment of a Common Textbook Misconception.

    ERIC Educational Resources Information Center

    Hocking, M. B.

    1980-01-01

    Reassesses a common textbook misconception that "...phenols cannot be esterified directly." Results of experiments are discussed and data tables provided of an effective method for the direct preparation of phenyl acetate. (CS)

  10. [Advances in functional genomics studies underlying acetic acid tolerance of Saccharomyces cerevisiae].

    PubMed

    Zhao, Xinqing; Zhang, Mingming; Xu, Guihong; Xu, Jianren; Bai, Fengwu

    2014-03-01

    Industrial microorganisms are subject to various stress conditions, including products and substrates inhibitions. Therefore, improvement of stress tolerance is of great importance for industrial microbial production. Acetic acid is one of the major inhibitors in the cellulosic hydrolysates, which affects seriously on cell growth and metabolism of Saccharomyces cerevisiae. Studies on the molecular mechanisms underlying adaptive response and tolerance of acetic acid of S. cerevisiae benefit breeding of robust strains of industrial yeast for more efficient production. In recent years, more insights into the molecular mechanisms underlying acetic acid tolerance have been revealed through analysis of global gene expression and metabolomics analysis, as well as phenomics analysis by single gene deletion libraries. Novel genes related to response to acetic acid and improvement of acetic acid tolerance have been identified, and novel strains with improved acetic acid tolerance were constructed by modifying key genes. Metal ions including potassium and zinc play important roles in acetic acid tolerance in S. cerevisiae, and the effect of zinc was first discovered in our previous studies on flocculating yeast. Genes involved in cell wall remodeling, membrane transport, energy metabolism, amino acid biosynthesis and transport, as well as global transcription regulation were discussed. Exploration and modification of the molecular mechanisms of yeast acetic acid tolerance will be done further on levels such as post-translational modifications and synthetic biology and engineering; and the knowledge obtained will pave the way for breeding robust strains for more efficient bioconversion of cellulosic materials to produce biofuels and bio-based chemicals.

  11. Atmospheric geochemistry of formic and acetic acids at a mid-latitude temperate site

    NASA Technical Reports Server (NTRS)

    Talbot, R. W.; Beecher, K. M.; Harriss, R. C.; Cofer, R. W., III

    1988-01-01

    Tropospheric concentrations of formic and acetic acids in the gas, the aerosol, and the rainwater phases were determined in samples collected 1-2 m above ground level at an open field site in eastern Virginia. These acids were found to occur principally (98 percent or above) in the gas phase, with a marked annual seasonality, averaging 1890 ppt for formate and 1310 ppt for acetate during the growing season, as compared to 695 ppt and 700 ppt, respectively, over the nongrowing season. The data support the hypothesis that biogenic emissions from vegatation are important sources of atmospheric formic and acetic acid during the local growing season. The same time trends were observed for precipitation, although with less defined seasonality. The relative increase of the acetic acid/formic acid ratio during the nongrowing season points to the dominance of anthropogenic inputs of acetic acid from motor vehicles and biomass combustion in the wintertime.

  12. Modification of wheat starch with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures I. Thermophysical and pasting properties.

    PubMed

    Subarić, Drago; Ačkar, Durđica; Babić, Jurislav; Sakač, Nikola; Jozinović, Antun

    2014-10-01

    The aim of this research was to investigate the influence of modification with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures on thermophysical and pasting properties of wheat starch. Starch was isolated from two wheat varieties and modified with mixtures of succinic acid and acetic anhydride, and azelaic acid and acetic anhydride in 4, 6 and 8 % (w/w). Thermophysical, pasting properties, swelling power, solubility and amylose content of modified starches were determined. The results showed that modifications with mixtures of afore mentioned dicarboxylic acids with acetic anhydride decreased gelatinisation and pasting temperatures. Gelatinisation enthalpy of Golubica starch increased, while of Srpanjka starch decreased by modifications. Retrogradation after 7 and 14 day-storage at 4 °C decreased after modifications of both starches. Maximum, hot and cold paste viscosity of both starches increased, while stability during shearing at high temperatures decreased. % setback of starches modified with azelaic acid/acetic anhydride mixture decreased. Swelling power and solubility of both starches increased by both modifications.

  13. Oxidation of Indole-3-Acetic Acid-Amino Acid Conjugates by Horseradish Peroxidase

    PubMed Central

    Park, Ro Dong; Park, Chang Kyu

    1987-01-01

    The stability of 21 amino acid conjugates of indole-3-acetic acid (IAA) toward horseradish peroxidase (HRP) was studied. The IAA conjugates of Arg, Ile, Leu, Tyr, and Val were oxidized readily by peroxidase. Those of Ala, β-Ala, Asp, Cys, Gln, Glu, Gly, and Lys were not degraded and their recovery was above 92% after 1 hour incubation with HRP. A correlation between the stability of IAA conjugates toward peroxidase-catalyzed oxidation and the hydrophobicity of the amino acid moiety conjugated to IAA was demonstrated. Polar amino acid conjugates of IAA are more resistant to HRP-catalyzed oxidation. PMID:16665529

  14. Evidence for a Complex Between Thf and Acetic Acid from Broadband Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zaleski, Daniel P.; Bittner, Dror M.; Mullaney, John Connor; Stephens, Susanna L.; King, Adrian; Habgood, Matthew; Walker, Nick

    2015-06-01

    Evidence for a complex between tetrahydrofuran (THF) and acetic acid from broadband rotational spectroscopy will be presented. Transitions believed to belong to the complex were first identified in a gas mixture containing small amounts of THF, triethyl borane, and acetic acid balanced in argon. Ab initio calculations suggest a complex between THF and acetic acid is more likely to form compared to the analogous acetic acid complex with triethyl borane, the initial target. The observed rotational constants are also more similar to those predicted for a complex formed between THF and acetic acid, than for those of a complex formed between triethyl borane and acetic acid. Subsequently, multiple isotopologues of acetic acid have been measured, confirming its presence in the structure. No information has yet been obtained through isotopic substitution within the THF sub-unit. Ab initio calculations predict the most likely structure is one where the acetic acid subunit coordinates over the ring creating a "bridge" between the THF oxygen, the carboxylic O-H, and the carbonyl oxygen to a hydrogen atom on the back of the ring.

  15. Efficacy of Acetic Acid against Listeria monocytogenes Attached to Poultry Skin during Refrigerated Storage.

    PubMed

    Gonzalez-Fandos, Elena; Herrera, Barbara

    2014-09-11

    This work evaluates the effect of acetic acid dipping on the growth of L. monocytogenes on poultry legs stored at 4 °C for eight days. Fresh inoculated chicken legs were dipped into either a 1% or 2% acetic acid solution (v/v) or distilled water (control). Changes in mesophiles, psychrotrophs, Enterobacteriaceae counts and sensorial characteristics (odor, color, texture and overall appearance) were also evaluated. The shelf life of the samples washed with acetic acid was extended by at least two days over the control samples washed with distilled water. L. monocytogenes counts before decontamination were 5.57 log UFC/g, and after treatment with 2% acetic acid (Day 0), L. monocytogenes counts were 4.47 log UFC/g. Legs washed with 2% acetic acid showed a significant (p < 0.05) inhibitory effect on L. monocytogenes compared to control legs, with a decrease of about 1.31 log units after eight days of storage. Sensory quality was not adversely affected by acetic acid. This study demonstrates that while acetic acid did reduce populations of L. monocytogenes on meat, it did not completely inactivate the pathogen. The application of acetic acid may be used as an additional hurdle contributing to extend the shelf life of raw poultry and reducing populations of L. monocytogenes.

  16. Microbiological preservation of cucumbers for bulk storage by the use of acetic acid and food preservatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial growth did not occur when cucumbers were preserved without a thermal process by storage in solutions containing acetic acid, sodium benzoate, and calcium chloride to maintain tissue firmness. The concentrations of acetic acid and sodium benzoate required to assure preservation were low en...

  17. A Binary Host Plant Volatile Lure Combined With Acetic Acid to Monitor Codling Moth (Lepidoptera: Tortricidae).

    PubMed

    Knight, A L; Basoalto, E; Katalin, J; El-Sayed, A M

    2015-10-01

    Field studies were conducted in the United States, Hungary, and New Zealand to evaluate the effectiveness of septa lures loaded with ethyl (E,Z)-2,4-decadienoate (pear ester) and (E)-4,8-dimethyl-1,3,7-nonatriene (nonatriene) alone and in combination with an acetic acid co-lure for both sexes of codling moth, Cydia pomonella (L.). Additional studies were conducted to evaluate these host plant volatiles and acetic acid in combination with the sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone). Traps baited with pear ester/nonatriene + acetic acid placed within orchards treated either with codlemone dispensers or left untreated caught significantly more males, females, and total moths than similar traps baited with pear ester + acetic acid in some assays. Similarly, traps baited with codlemone/pear ester/nonatriene + acetic acid caught significantly greater numbers of moths than traps with codlemone/pear ester + acetic acid lures in some assays in orchards treated with combinational dispensers (dispensers loaded with codlemone/pear ester). These data suggest that monitoring of codling moth can be marginally improved in orchards under variable management plans using a binary host plant volatile lure in combination with codlemone and acetic acid. These results are likely to be most significant in orchards treated with combinational dispensers. Significant increases in the catch of female codling moths in traps with the binary host plant volatile blend plus acetic acid should be useful in developing more effective mass trapping strategies.

  18. Electromembrane extraction and HPLC analysis of haloacetic acids and aromatic acetic acids in wastewater.

    PubMed

    Alhooshani, Khalid; Basheer, Chanbasha; Kaur, Jagjit; Gjelstad, Astrid; Rasmussen, Knut E; Pedersen-Bjergaard, Stig; Lee, Hian Kee

    2011-10-30

    For the first time, haloacetic acids and aromatic acetic acids were extracted from wastewater samples using electromembrane extraction (EME). A thin layer of toluene immobilized on the walls of a polypropylene membrane envelope served as an artificial supported liquid membrane (SLM). The haloacetic acids (HAAs) (chloroacetic acid, dichloroacetic acid, and trifluoroacetic acid) and aromatic acetic acids (phenylacetic acid and p-hydroxyphenylacetic acid) were extracted through the SLM and into an alkalized aqueous buffer solution. The buffer solution was located inside the membrane envelope. The electrical potential difference sustained over the membrane acted as the driving force for the transport of haloacetic acids into the membrane by electrokinetic migration. After extraction, the extracts were analyzed by high-performance liquid chromatography-ultraviolet detection. The detection limits were between 0.072 and 40.3 ng L(-1). The calibration plot linearity was in the range of 5 and 200 μg L(-1) while the correlation coefficients for the analytes ranged from 0.9932 to 0.9967. Relative recoveries were in the range of 87-106%. The extraction efficiency was found to be comparable to that of solid-phase extraction.

  19. The role of citric acid in oral peptide and protein formulations: relationship between calcium chelation and proteolysis inhibition.

    PubMed

    Welling, Søren H; Hubálek, František; Jacobsen, Jette; Brayden, David J; Rahbek, Ulrik L; Buckley, Stephen T

    2014-04-01

    The excipient citric acid (CA) has been reported to improve oral absorption of peptides by different mechanisms. The balance between its related properties of calcium chelation and permeation enhancement compared to a proteolysis inhibition was examined. A predictive model of CA's calcium chelation activity was developed and verified experimentally using an ion-selective electrode. The effects of CA, its salt (citrate, Cit) and the established permeation enhancer, lauroyl carnitine chloride (LCC) were compared by measuring transepithelial electrical resistance (TEER) and permeability of insulin and FD4 across Caco-2 monolayers and rat small intestinal mucosae mounted in Ussing chambers. Proteolytic degradation of insulin was determined in rat luminal extracts across a range of pH values in the presence of CA. CA's capacity to chelate calcium decreased ~10-fold for each pH unit moving from pH 6 to pH 3. CA was an inferior weak permeation enhancer compared to LCC in both in vitro models using physiological buffers. At pH 4.5 however, degradation of insulin in rat luminal extracts was significantly inhibited in the presence of 10mM CA. The capacity of CA to chelate luminal calcium does not occur significantly at the acidic pH values where it effectively inhibits proteolysis, which is its dominant action in oral peptide formulations. On account of insulin's low basal permeability, inclusion of alternative permeation enhancers is likely to be necessary to achieve sufficient oral bioavailability since this is a weak property of CA.

  20. Investigation of citric acid-glycerol based pH-sensitive biopolymeric hydrogels for dye removal applications: A green approach.

    PubMed

    Franklin, D S; Guhanathan, S

    2015-11-01

    Hydrogels are three dimensional polymeric structure with segments of hydrophilic groups. The special structure of hydrogels facilitates the diffusion of solutes into the interior network and possess numerous ionic and non-ionic functional groups, which can absorb or trap ionic dyes from waste water. The present investigation was devoted to the synthesis of a series of citric acid and glycerol based pH sensitive biopolymeric hydrogels using a solventless green approach via condensation polymerization in the presence of acidic medium. The formations of hydrogels were confirmed using various spectral investigations viz., FT-IR, (1)H and (13)C NMR. The thermal properties of various hydrogels have been studied using TGA, DTA and DSC analysis. The rationalized relationship was noticed with increasing of pH from 4.0 to 10.0. The surface morphologies of hydrogels were analyzed using SEM technique which was well supported from the results of swelling studies. Methylene blue has been selected as a cationic dye for its removal from various environmental sources using pH-sensitive biopolymeric hydrogels. The results of dye removal revealed that glycerol based biopolymeric hydrogels have shown an excellent dye removal capacity. Hence, the synthesized pH sensitive biopolymeric hydrogels have an adaptability with pH tuned properties might have greater potential opening in various environmental applications viz., metal ion removal, agrochemical release, purification of water, dye removal etc.

  1. Citric-acid cycle key enzyme activities during in vitro growth and metacyclogenesis of Leishmania infantum promastigotes.

    PubMed

    Louassini, M; Foulquié, M; Benítez, R; Adroher, J

    1999-08-01

    The activities of 5 key regulatory enzymes in most energetic systems, namely citrate synthase (EC 4.1.3.7, CS), NADP-specific isocitrate dehydrogenase (EC 1.1.1.42, ICDH), succinate dehydrogenase (EC 1.3.99.1, SDH), L-malate dehydrogenase (EC 1.1.1.37, MDH), and decarboxylating malic enzyme (EC 1.1.1.40, ME), were measured during the growth and metacyclogenesis of a cutaneous (CL) and a visceral (VL) strain of Leishmania infantum. As occurs with other Leishmania species, infective promastigotes were present along all phases of growth, but their percentages were higher at the early stationary phase for VL and the end of the same phase for CL. High CS and SDH activities were detected in both strains, as compared with other trypanosomatids, bringing more evidence for an actively functional citric-acid cycle in L. infantum. Both strains showed higher levels of CS, ICDH, and MDH and lower SDH and ME activities when more metacyclic promastigotes were present, but in VL these changes paralleled an increase in glucose consumption, whereas in CL these changes coincided with an NH3 hyperproduction. This suggests that the energy metabolism during L. infantum growth and metacyclogenesis is affected by regulated enzymes that probably respond to changes in the culture medium in the levels of glucose and amino acids.

  2. Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2

    PubMed Central

    Qian, Qingli; Zhang, Jingjing; Cui, Meng; Han, Buxing

    2016-01-01

    Acetic acid is an important bulk chemical that is currently produced via methanol carbonylation using fossil based CO. Synthesis of acetic acid from the renewable and cheap CO2 is of great importance, but state of the art routes encounter difficulties, especially in reaction selectivity and activity. Here we report a route to produce acetic acid from CO2, methanol and H2. The reaction can be efficiently catalysed by Ru–Rh bimetallic catalyst using imidazole as the ligand and LiI as the promoter in 1,3-dimethyl-2-imidazolidinone (DMI) solvent. It is confirmed that methanol is hydrocarboxylated into acetic acid by CO2 and H2, which accounts for the outstanding reaction results. The reaction mechanism is proposed based on the control experiments. The strategy opens a new way for acetic acid production and CO2 transformation, and represents a significant progress in synthetic chemistry. PMID:27165850

  3. Glacial Acetic Acid Adverse Events: Case Reports and Review of the Literature

    PubMed Central

    Doles, William; Wilkerson, Garrett; Morrison, Samantha

    2015-01-01

    Glacial acetic acid is a dangerous chemical that has been associated with several adverse drug events involving patients over recent years. When diluted to the proper concentration, acetic acid solutions have a variety of medicinal uses. Unfortunately, despite warnings, the improper dilution of concentrated glacial acetic acid has resulted in severe burns and other related morbidities. We report on 2 additional case reports of adverse drug events involving glacial acetic acid as well as a review of the literature. A summary of published case reports is provided, including the intended and actual concentration of glacial acetic acid involved, the indication for use, degree of exposure, and resultant outcome. Strategies that have been recommended to improve patient safety are summarized within the context of the key elements of the medication use process. PMID:26448660

  4. RESTORATION OF NORMAL GLUTAMIC ACID TRANSPORT IN VITAMIN B6-DEFICIENT LACTOBACILLUS PLANTARUM BY ACETATE, AMMONIUM, AND VITAMIN B6,

    DTIC Science & Technology

    GLUTAMIC ACID, * LACTOBACILLUS , VITAMIN B COMPLEX, METABOLIC DISEASES, VITAMIN B COMPLEX, ACETATES, AMMONIUM COMPOUNDS, CHLORAMPHENICOL, DEOXYRIBONUCLEIC ACIDS, AMINO ACIDS, PENICILLINS, CELL WALL, SYNTHESIS, OSMOSIS.

  5. Acetic acid induces pH-independent cellular energy depletion in Salmonella enterica.

    PubMed

    Tan, Sin Mei; Lee, Sui Mae; Dykes, Gary A

    2015-03-01

    Weak organic acids are widely used as preservatives and disinfectants in the food industry. Despite their widespread use, the antimicrobial mode of action of organic acids is still not fully understood. This study investigated the effect of acetic acid on the cell membranes and cellular energy generation of four Salmonella strains. Using a nucleic acid/protein assay, it was established that acetic acid did not cause leakage of intracellular components from the strains. A scanning electron microscopy study further confirmed that membrane disruption was not the antimicrobial mode of action of acetic acid. Some elongated Salmonella cells observed in the micrographs indicated a possibility that acetic acid may inhibit DNA synthesis in the bacterial cells. Using an ATP assay, it was found that at a neutral pH, acetic acid caused cellular energy depletion with an ADP/ATP ratio in the range between 0.48 and 2.63 (p<0.05) that was apparent for the four Salmonella strains. We suggest that this effect was probably due solely to the action of undissociated acid molecules. The antimicrobial effect of acetic acid was better under acidic conditions (ADP/ATP ratio of 5.56 ± 1.27; p<0.05), where the role of both pH and undissociated acid molecules can act together. We concluded that the inhibitory effect of acetic acid is not solely attributable to acidic pH but also to undissociated acid molecules. This finding has implication for the use of acetic acid as an antimicrobial against Salmonella on food products, such as chicken meat, which can buffer its pH.

  6. Metabolic regulation of the plant hormone indole-3-acetic acid

    SciTech Connect

    Jerry D. Cohen

    2009-11-01

    The phytohormone indole-3-acetic acid (IAA, auxin) is important for many aspects of plant growth, development and responses to the environment yet the routes to is biosynthesis and mechanisms for regulation of IAA levels remain important research questions. A critical issue concerning the biosynthesis if IAA in plants is that redundant pathways for IAA biosynthesis exist in plants. We showed that these redundant pathways and their relative contribution to net IAA production are under both developmental and environmental control. We worked on three fundamental problems related to how plants get their IAA: 1) An in vitro biochemical approach was used to define the tryptophan dependent pathway to IAA using maize endosperm, where relatively large amounts of IAA are produced over a short developmental period. Both a stable isotope dilution and a protein MS approach were used to identify intermediates and enzymes in the reactions. 2) We developed an in vitro system for analysis of tryptophan-independent IAA biosynthesis in maize seedlings and we used a metabolite profiling approach to isolate intermediates in this reaction. 3) Arabidopsis contains a small family of genes that encode potential indolepyruvate decarboxylase enzymes. We cloned these genes and studied plants that are mutant in these genes and that over-express each member in the family in terms of the level and route of IAA biosynthesis. Together, these allowed further development of a comprehensive picture of the pathways and regulatory components that are involved in IAA homeostasis in higher plants.

  7. Acetic acid chromoendoscopy: Improving neoplasia detection in Barrett's esophagus

    PubMed Central

    Chedgy, Fergus J Q; Subramaniam, Sharmila; Kandiah, Kesavan; Thayalasekaran, Sreedhari; Bhandari, Pradeep

    2016-01-01

    Barrett’s esophagus (BE) is an important condition given its significant premalignant potential and dismal five-year survival outcomes of advanced esophageal adenocarcinoma. It is therefore suggested that patients with a diagnosis of BE undergo regular surveillance in order to pick up dysplasia at an earlier stage to improve survival. Current “gold-standard” surveillance protocols suggest targeted biopsy of visible lesions followed by four quadrant random biopsies every 2 cm. However, this method of Barrett’s surveillance is fraught with poor endoscopist compliance as the procedures are time consuming and poorly tolerated by patients. There are also significant miss-rates with this technique for the detection of neoplasia as only 13% of early neoplastic lesions appear as visible nodules. Despite improvements in endoscope resolution these problems persist. Chromoendoscopy is an extremely useful adjunct to enhance mucosal visualization and characterization of Barrett’s mucosa. Acetic acid chromoendoscopy (AAC) is a simple, non-proprietary technique that can significantly improve neoplasia detection rates. This topic highlight summarizes the current evidence base behind AAC for the detection of neoplasia in BE and provides an insight into the direction of travel for further research in this area. PMID:27433088

  8. Radioimmunoassay of 5-hydroxyindole acetic acid using an iodinated derivative

    SciTech Connect

    Puizillout, J.J.; Delaage, M.A.

    1981-06-01

    A radioimmunoassay for the main catabolite of serotonin, 5-hydroxyindole acetic acid (5-HIAA), was developed by using specific antibodies and iodinated derivative. The synthesis of a /sup 125/I-iodinated analog was performed by coupling 5-HIAA to (125I-)glycyl-tyrosine without any contact between 5-HIAA and iodine or chloramine T. It was purified on a G25 Sephadex column and diluted in citrate buffer up to 2.5 X 10(5) cpm/ml. Antibodies were obtained by coupling 5-HIAA to human serum albumin with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and tested by equilibrium dialysis. After the third immunogen injection, the four rabbits gave antisera capable of binding 50% of iodinated 5-HIIA-glycyl-tyrosine at 1/2000 final dilution. A chemical conversion of the biological samples gives to the antigen molecules a better resemblance to the immunogen, thus conferring a 100-fold gain in specificity and sensitivity. This assay allows 5-HIAA to be determined in small amounts of tissue, blood, cerebrospinal fluid or perfusate without purification with a sensitivity threshold below 0.1 ng. Some applications in cat and rat are presented.

  9. Evaluation of the morphological changes of gastric mucosa induced by a low concentration of acetic acid using a rat model.

    PubMed

    Nakao, Ken-ichiro; Ro, Ayako; Kibayashi, Kazuhiko

    2014-02-01

    Oral ingestion of concentrated acetic acid causes corrosive injury of the gastrointestinal tract. To assess the effects of a low concentration of acetic acid on gastric mucosa, we examined the gastric mucosal changes in rats at 1 and 3 days after the injection of 5% or 25% acetic acid into the gastric lumen. The area of the gastric ulcerative lesions in the 25% acetic acid group was significantly larger than that in the 5% acetic acid group. The lesion area was reduced significantly at 3 days after injection in the 5% acetic acid group, whereas no significant difference in lesion area was observed at 1 and 3 days in the 25% acetic acid group. Histologically, corrosive necrosis was limited to the mucosal layer in the 5% acetic acid group, whereas necrosis extended throughout the gastric wall in the 25% acetic acid group. At 3 days post-injection, the 25% acetic acid group showed widespread persistent inflammation, whereas the 5% acetic acid group showed widespread appearance of fibroblasts indicative of a healing process. These results indicate that a low concentration of acetic acid damages the gastric mucosa and that the degree of mucosal damage depends on the concentration of acetic acid.

  10. Acetic Acid Bacteria, Newly Emerging Symbionts of Insects▿

    PubMed Central

    Crotti, Elena; Rizzi, Aurora; Chouaia, Bessem; Ricci, Irene; Favia, Guido; Alma, Alberto; Sacchi, Luciano; Bourtzis, Kostas; Mandrioli, Mauro; Cherif, Ameur; Bandi, Claudio; Daffonchio, Daniele

    2010-01-01

    Recent research in microbe-insect symbiosis has shown that acetic acid bacteria (AAB) establish symbiotic relationships with several insects of the orders Diptera, Hymenoptera, Hemiptera, and Homoptera, all relying on sugar-based diets, such as nectars, fruit sugars, or phloem sap. To date, the fruit flies Drosophila melanogaster and Bactrocera oleae, mosquitoes of the genera Anopheles and Aedes, the honey bee Apis mellifera, the leafhopper Scaphoideus titanus, and the mealybug Saccharicoccus sacchari have been found to be associated with the bacterial genera Acetobacter, Gluconacetobacter, Gluconobacter, Asaia, and Saccharibacter and the novel genus Commensalibacter. AAB establish symbiotic associations with the insect midgut, a niche characterized by the availability of diet-derived carbohydrates and oxygen and by an acidic pH, selective factors that support AAB growth. AAB have been shown to actively colonize different insect tissues and organs, such as the epithelia of male and female reproductive organs, the Malpighian tubules, and the salivary glands. This complex topology of the symbiosis indicates that AAB possess the keys for passing through body barriers, allowing them to migrate to different organs of the host. Recently, AAB involvement in the regulation of innate immune system homeostasis of Drosophila has been shown, indicating a functional role in host survival. All of these lines of evidence indicate that AAB can play different roles in insect biology, not being restricted to the feeding habit of the host. The close association of AAB and their insect hosts has been confirmed by the demonstration of multiple modes of transmission between individuals and to their progeny that include vertical and horizontal transmission routes, comprising a venereal one. Taken together, the data indicate that AAB represent novel secondary symbionts of insects. PMID:20851977

  11. Foliar sprays of citric acid and salicylic acid alter the pattern of root acquisition of some minerals in sweet basil (Ocimum basilicum L.)

    PubMed Central

    Ghazijahani, Noushin; Hadavi, Ebrahim; Jeong, Byoung R.

    2014-01-01

    The effect of foliar application of two levels of citric acid (CA; 0 and 7 mM) and two levels of salicylic acid (SA; 0 and 1 mM) combined with two levels of nutrient solution strength (full strength and half strength) on mineral acquisition by sweet basil were investigated. The experiment was conducted in a randomized block design arrangement with three replications. SA alone reduced the plant height and thickened the stem. Plants supplied with a full strength solution had a ticker stem, produced more biomass, and showed higher values of Fv/Fm. Some changes in the uptake pattern of some nutrients, especially boron and sulfur, were noticed. Higher boron concentrations in leaves were in plants sprayed with a combination of 7 mM CA and 1 mM of SA. Applying combination of CA and SA was more effective than using them individually that suggests an effective synergism between them. PMID:25400645

  12. Foliar sprays of citric acid and salicylic acid alter the pattern of root acquisition of some minerals in sweet basil (Ocimum basilicum L.).

    PubMed

    Ghazijahani, Noushin; Hadavi, Ebrahim; Jeong, Byoung R

    2014-01-01

    The effect of foliar application of two levels of citric acid (CA; 0 and 7 mM) and two levels of salicylic acid (SA; 0 and 1 mM) combined with two levels of nutrient solution strength (full strength and half strength) on mineral acquisition by sweet basil were investigated. The experiment was conducted in a randomized block design arrangement with three replications. SA alone reduced the plant height and thickened the stem. Plants supplied with a full strength solution had a ticker stem, produced more biomass, and showed higher values of Fv/Fm. Some changes in the uptake pattern of some nutrients, especially boron and sulfur, were noticed. Higher boron concentrations in leaves were in plants sprayed with a combination of 7 mM CA and 1 mM of SA. Applying combination of CA and SA was more effective than using them individually that suggests an effective synergism between them.

  13. Cell wall dynamics modulate acetic acid-induced apoptotic cell death of Saccharomyces cerevisiae

    PubMed Central

    Rego, António; Duarte, Ana M.; Azevedo, Flávio; Sousa, Maria J.; Côrte-Real, Manuela; Chaves, Susana R.

    2014-01-01

    Acetic acid triggers apoptotic cell death in Saccharomyces cerevisiae, similar to mammalian apoptosis. To uncover novel regulators of this process, we analyzed whether impairing MAPK signaling affected acetic acid-induced apoptosis and found the mating-pheromone response and, especially, the cell wall integrity pathways were the major mediators, especially the latter, which we characterized further. Screening downstream effectors of this pathway, namely targets of the transcription factor Rlm1p, highlighted decreased cell wall remodeling as particularly important for acetic acid resistance. Modulation of cell surface dynamics therefore emerges as a powerful strategy to increase acetic acid resistance, with potential application in industrial fermentations using yeast, and in biomedicine to exploit the higher sensitivity of colorectal carcinoma cells to apoptosis induced by acetate produced by intestinal propionibacteria. PMID:28357256

  14. Scaleable production and separation of fermentation-derived acetic acid. Final CRADA report.

    SciTech Connect

    Snyder, S. W.; Energy Systems

    2010-02-08

    Half of U.S. acetic acid production is used in manufacturing vinyl acetate monomer (VAM) and is economical only in very large production plants. Nearly 80% of the VAM is produced by methanol carbonylation, which requires high temperatures and exotic construction materials and is energy intensive. Fermentation-derived acetic acid production allows for small-scale production at low temperatures, significantly reducing the energy requirement of the process. The goal of the project is to develop a scaleable production and separation process for fermentation-derived acetic acid. Synthesis gas (syngas) will be fermented to acetic acid, and the fermentation broth will be continuously neutralized with ammonia. The acetic acid product will be recovered from the ammonium acid broth using vapor-based membrane separation technology. The process is summarized in Figure 1. The two technical challenges to success are selecting and developing (1) microbial strains that efficiently ferment syngas to acetic acid in high salt environments and (2) membranes that efficiently separate ammonia from the acetic acid/water mixture and are stable at high enough temperature to facilitate high thermal cracking of the ammonium acetate salt. Fermentation - Microbial strains were procured from a variety of public culture collections (Table 1). Strains were incubated and grown in the presence of the ammonium acetate product and the fastest growing cultures were selected and incubated at higher product concentrations. An example of the performance of a selected culture is shown in Figure 2. Separations - Several membranes were considered. Testing was performed on a new product line produced by Sulzer Chemtech (Germany). These are tubular ceramic membranes with weak acid functionality (see Figure 3). The following results were observed: (1) The membranes were relatively fragile in a laboratory setting; (2) Thermally stable {at} 130 C in hot organic acids; (3) Acetic acid rejection > 99%; and (4

  15. Absorption cross section for the 5νOH stretch of acetic acid and peracetic acid

    NASA Astrophysics Data System (ADS)

    Begashaw, I. G.; Collingwood, M.; Bililign, S.

    2009-12-01

    We report measurements of the absorption cross sections for the vibrational O-H stretch (5νOH) overtone transitions in glacial acetic acid and peracetic acid. The photochemistry that results from overtone excitation has been shown to lead to OH radical production in molecules containing O-H (HNO3, H2O2). In addition the overtone excitation has been observed to result in light initiated chemical reaction. A Cavity ring-down spectroscopy (CRDS) instrument comprising of an Nd:YAG pumped dye laser and 620nm high reflectivity mirrors (R=99.995%) was used to measure the cross sections. The dye laser wavelength was calibrated using water vapor spectrum and the HITRAN 2008 database. The instrument’s minimum detectable absorption is αmin =4.5 *10-9cm-1 Hz-1/2 at 2σ noise level near the peak of the absorption feature. This measurement is the first for acetic acid at this excitation level. Preliminary results for acetic acid show the peak occurs near 615nm. Procedures for separating the monomer and dimer contribution will be presented. We would like to acknowledge support from NSF award #0803016 and NOAA-EPP award #NA06OAR4810187.

  16. Beneficial Effect of Acetic Acid on the Xylose Utilization and Bacterial Cellulose Production by Gluconacetobacter xylinus.

    PubMed

    Yang, Xiao-Yan; Huang, Chao; Guo, Hai-Jun; Xiong, Lian; Luo, Jun; Wang, Bo; Chen, Xue-Fang; Lin, Xiao-Qing; Chen, Xin-De

    2014-09-01

    In this work, acetic acid was found as one promising substrate to improve xylose utilization by Gluconacetobacter xylinus CH001. Also, with the help of adding acetic acid into medium, the bacterial cellulose (BC) production by G. xylinus was increased significantly. In the medium containing 3 g l(-1) acetic acid, the optimal xylose concentration for BC production was 20 g l(-1). In the medium containing 20 g l(-1) xylose, the xylose utilization and BC production by G. xylinus were stimulated by acetic acid within certain concentration. The highest BC yield (1.35 ± 0.06 g l(-1)) was obtained in the medium containing 20 g l(-1) xylose and 3 g l(-1) acetic acid after 14 days. This value was 6.17-fold higher than the yield (0.21 ± 0.01 g l(-1)) in the medium only containing 20 g l(-1) xylose. The results analyzed by FE-SEM, FTIR, and XRD showed that acetic acid affected little on the microscopic morphology and physicochemical characteristics of BC. Base on the phenomenon observed, lignocellulosic acid hydrolysates (xylose and acetic acid are main carbon sources present in it) could be considered as one potential substrate for BC production.

  17. Analysis of Sporulation Mutants II. Mutants Blocked in the Citric Acid Cycle

    PubMed Central

    Fortnagel, Peter; Freese, Ernst

    1968-01-01

    Sporulation mutants that were unable to incorporate uracil during the developmental period recovered this capacity with the addition of ribose and in most cases with the addition of glutamate. Of the mutants that responded to both ribose and glumate, all but three also responded to citrate, and all but five responded to acetate. One of the exceptional strains was deficient in aconitase and another one in aconitase and isocitrate dehydrogenase; both required glutamate for growth. For the mutants which did not respond to glutamate, the products made from 14C-glutamate were determined by thin-layer chromatography. Significant differences were found which enabled the identification of mutant blocks. The deficiency of the corresponding enzyme activity was verified. Several mutants were deficient in α-ketoglutarate dehydrogenase, and one lacked succinic dehydrogenase. These mutants could still grow on glucose as sole carbon source, but not on glutamate. The intact Krebs cycle is therefore not required for vegetative growth of aerobic Bacillis subtilis, but it is indispensable for sporulation. Images PMID:4967197

  18. Enhanced adsorption of methylene blue by citric acid modification of biochar derived from water hyacinth (Eichornia crassipes).

    PubMed

    Xu, Yan; Liu, Yunguo; Liu, Shaobo; Tan, Xiaofei; Zeng, Guangming; Zeng, Wei; Ding, Yang; Cao, Weicheng; Zheng, Bohong

    2016-12-01

    In this work, a novel potential adsorbent, citric acid (CA)-modified biochar, named as CAWB, was obtained from water hyacinth biomass by slow pyrolysis in a N2 environment at 300 °C. The CA modification focused on enhancing the contaminants adsorption capacity of biochar pyrolyzed at relatively low temperature. Over 90 % of the total methylene blue (MB) could be removed at the first 60 min by CAWB, and the maximum MB adsorption capacity could reach to 395 mg g(-1). The physicochemical properties of CAWB was examined by FTIR, XPS, SEM, and BET analysis. The results indicated that the additional carboxyl groups were introduced to the surface of CAWB via the esterification reaction with CA, which played a significant role in the adsorption of MB. Batch adsorption studies showed that the initial MB concentration, solution pH, background ionic strength, and temperature could affect the removal efficiency obviously. The adsorption process could be well described by the pseudo-second-order kinetic model and Langmuir isotherm. Thermodynamic analysis revealed that the MB adsorption onto CAWB was an endothermic and spontaneous process. The regeneration study revealed that CAWB still exhibited an excellent regeneration and adsorption performance after multiple cycle adsorptions. The adsorption experiments of actual dye wastewater by CAWB suggested that it had a great potential in environmental application.

  19. Individual differences in sour and salt sensitivity: detection and quality recognition thresholds for citric acid and sodium chloride.

    PubMed

    Wise, Paul M; Breslin, Paul A S

    2013-05-01

    Taste sensitivity is assessed with various techniques, including absolute detection and quality recognition. For any stimulus, one might expect individual differences in sensitivity to be reflected in all measures, but they are often surprisingly independent. Here, we focus on sensitivity to sour and salty taste, in part because processing of these qualities is poorly understood relative to other tastes. In Study 1, we measured retest reliability for detection (modified, forced-choice staircase method) and recognition (modified Harris-Kalmus procedure) for both citric acid (CA) and sodium chloride (NaCl). Despite good retest reliability, individual differences in detection and recognition were weakly correlated, suggesting that detection and recognition of sour and salty stimuli may reflect different physiological processes. In Study 2, a subset of subjects returned to contribute full detection (psychometric) functions for CA and NaCl. Thresholds estimated from full detection functions correlated with both staircase and recognition thresholds, suggesting that both tasks may reflect absolute sensitivity to some extent. However, the ranges of individual differences were systematically compressed for staircase thresholds relative to those from full detection functions. Thus, individual differences in sensitivity appear to interact with different test methodologies in lawful ways. More work will be required to understand how different taste phenotypes relate to one another.

  20. Combined effects of independent variables on yield and protein content of pectin extracted from sugar beet pulp by citric acid.

    PubMed

    Li, De-Qiang; Du, Guang-Ming; Jing, Wei-Wen; Li, Jun-Fang; Yan, Jia-Yu; Liu, Zhi-Yong

    2015-09-20

    The extraction of pectin from sugar beet pulp by citric acid was carried out under different conditions using Box-Behnken design for four independent variables (pH, temperature, time and liquid to solid ratio). The yield of sugar beet pulp pectin ranged from 6.3% to 23.0%, and the content of protein from 1.5% to 4.5%. All independent variables significantly affected the yield, and all variables except liquid to solid ratio significantly affected the protein content. The yield increased as decreasing pH of extracting solution, extending time and advancing temperature, and an opposite relationship of effects between variables and content of protein was obtained. The chemical composition of collected samples was determined. Moreover, from the results of emulsifying properties study, the extracted pectin from sugar beet pulp could prepare steady oil-in-water emulsions. Therefore, it was inferred that the extraction conditions could influence yield and protein content, resulting in different emulsifying property.