Science.gov

Sample records for acetic acid dtpa

  1. Analysis of proteins responsive to acetic acid in Acetobacter: molecular mechanisms conferring acetic acid resistance in acetic acid bacteria.

    PubMed

    Nakano, Shigeru; Fukaya, Masahiro

    2008-06-30

    Acetic acid bacteria are used for industrial vinegar production because of their remarkable ability to oxidize ethanol and high resistance to acetic acid. Although several molecular machineries responsible for acetic acid resistance in acetic acid bacteria have been reported, the entire mechanism that confers acetic acid resistance has not been completely understood. One of the promising methods to elucidate the entire mechanism is global analysis of proteins responsive to acetic acid by two-dimensional gel electrophoresis. Recently, two proteins whose production was greatly enhanced by acetic acid in Acetobacter aceti were identified to be aconitase and a putative ABC-transporter, respectively; furthermore, overexpression or disruption of the genes encoding these proteins affected acetic acid resistance in A. aceti, indicating that these proteins are involved in acetic acid resistance. Overexpression of each gene increased acetic acid resistance in Acetobacter, which resulted in an improvement in the productivity of acetic acid fermentation. Taken together, the results of the proteomic analysis and those of previous studies indicate that acetic acid resistance in acetic acid bacteria is conferred by several mechanisms. These findings also provide a clue to breed a strain having high resistance to acetic acid for vinegar fermentation.

  2. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is...

  3. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is...

  4. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is...

  5. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is...

  6. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is...

  7. Extractive fermentation of acetic acid

    SciTech Connect

    Busche, R.M.

    1991-12-31

    In this technoeconomic evaluation of the manufacture of acetic acid by fermentation, the use of the bacterium: Acetobacter suboxydans from the old vinegar process was compared with expected performance of the newer Clostridium thermoaceticum bacterium. Both systems were projected to operate as immobilized cells in a continuous, fluidized bed bioreactor, using solvent extraction to recover the product. Acetobacter metabolizes ethanol aerobically to produce acid at 100 g/L in a low pH medium. This ensures that the product is in the form of a concentrated extractable free acid, rather than as an unextractable salt. Unfortunately, yields from glucose by way of the ethanol fermentation are poor, but near the biological limits of the organisms involved. Conversely, C. thermoaceticum is a thermophilic anaerobe that operates at high fermentation rates on glucose at neutral pH to produce acetate salts directly in substantially quantitative yields. However, it is severely inhibited by product, which restricts concentration to a dilute 20 g/L. An improved Acetobacter system operating with recycled cells at 50 g/L appears capable of producing acid at $0.38/lb, as compared with a $0.29/lb price for synthetic acid. However, this system has only a limited margin for process improvement. The present Clostridium system cannot compete, since the required selling price would be $0.42/lb. However, if the organism could be adapted to tolerate higher product concentrations at acid pH, selling price could be reduced to $0.22/lb, or about 80% of the price of synthetic acid.

  8. Nucleation of calcium carbonate in presence of citric acid, DTPA, EDTA and pyromellitic acid.

    PubMed

    Westin, K-J; Rasmuson, A C

    2005-02-15

    The influence of four calcium complexing additives, i.e., citric acid (CIT), diethylenetriaminepentaacetic acid (DTPA), ethylenediaminetetraacetic acid (EDTA) and pyromellitic acid (PMA), and their concentration on the induction time of calcium carbonate nucleation has been studied. The experiments were performed by rapidly mixing a sodium carbonate solution and a calcium chloride solution of various concentrations. The induction time was obtained by recording the white light absorption of the solution. Chemical speciation was used to estimate the initial thermodynamic driving force of each experiment. The induction time was found to increase with additive concentration. The effect varies from one additive to another. CIT causes the greatest increase in induction time and PMA the least. Using classical nucleation theory the experimental data were evaluated in terms of the interfacial energy. In pure water a value of 37.8 mJ m(-2) was obtained, showing good agreement with other works. CIT, DTPA and EDTA caused a notable increase of the interfacial energy at a concentration of 0.5 mmol l(-1). PMA does not appear to have any effect at all on the interfacial energy. Different mechanisms for the influence of the additives on the measured induction time and on the estimated interfacial energy are discussed. PMID:15589542

  9. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.

    PubMed

    Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai

    2015-05-01

    In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.

  10. Dynamic Protonation Equilibrium of Solvated Acetic Acid

    SciTech Connect

    Gu, Wei; Frigato, Tomaso; Straatsma, TP; Helms, Volkhard H.

    2007-04-13

    For the first time, the dynamic protonation equilibrium between an amino acid side chain analogue and bulk water as well as the diffusion properties of the excess proton were successfully reproduced through unbiased computer simulations. During a 50 ns Q-HOP MD simulation, two different regimes of proton transfer were observed. Extended phases of frequent proton swapping between acetic acid and nearby water were separated by phases where the proton freely diffuses in the simulation box until it is captured again by acetic acid. The pKa of acetic acid was calculated around 3.0 based on the relative population of protonated and deprotonated states and the diffusion coefficient of excess proton was computed from the average mean squared displacement in the simulation. Both calculated values agree well with the experimental measurements.

  11. Fabrication and Characterization of Gd-DTPA-Loaded Chitosan-Poly(Acrylic Acid) Nanoparticles for Magnetic Resonance Imaging.

    PubMed

    Ahmed, Arsalan; Zhang, Chao; Guo, Jian; Hu, Yong; Jiang, Xiqun

    2015-08-01

    Gd-DTPA-loaded chitosan-poly(acrylic acid) nanoparticles (Gd-DTPA@CS-PAA NPs) were formulated based on the reaction system of water-soluble polymer-monomer pairs of acrylic acid in chitosan solution followed by sorption of Gd-DTPA. Morphological investigations revealed the spherical shape of these NPs with about 220 nm particle size. These NPs showed charge reversal characteristic in acidic solution. In vitro and in vivo magnetic characteristics of these NPs were explored to estimate their utilization in targeted enhanced magnetic resonance imaging. Relaxation studies showed that these NPs possessed pH susceptible relaxation properties, which could introduce in vivo-specific distribution of contrast agent. MRI experiment showed that these nanoparticles had better results in contrast enhancement, and the concentration of contrast agent increased in liver and brain with increment in time. Thus, these NPs could maintain in vivo long circulation and high relaxation rate and were suitable agents for magnetic resonance imaging.

  12. Acetal phosphatidic acids: novel platelet aggregating agents.

    PubMed

    Brammer, J P; Maguire, M H; Walaszek, E J; Wiley, R A

    1983-05-01

    1 Palmitaldehyde, olealdehyde and linolealdehyde acetal phosphatidic acids induced rapid shape change and dose-dependent biphasic aggregation of human platelets in platelet-rich plasma; aggregation was reversible at low doses and irreversible at high doses of the acetal phosphatidic acids. The palmitaldehyde congener elicited monophasic dose-dependent aggregation of sheep platelets in platelet-rich plasma.2 The threshold concentration for palmitaldehyde acetal phosphatidic acid (PGAP)-induced platelet aggregation was 2.5-5 muM for human platelets and 0.25-0.5 muM for sheep platelets. PGAP was 4-5 times as potent versus human platelets as the olealdehyde and linolealdehyde acetal phosphatidic acids, which were equipotent.3 PGAP-induced irreversible aggregation of [(14)C]-5-hydroxytryptamine ([(14)C]-5-HT)-labelled human platelets in platelet-rich plasma was accompanied by release of 44.0+/-2.4% (s.e.) of the platelet [(14)C]-5-HT; reversible aggregation was not associated with release. In contrast, PGAP-induced release of [(14)C]-5-HT-labelled sheep platelets was dose-dependent.4 The adenosine diphosphate (ADP) antagonist, 2-methylthio-AMP, and the cyclo-oxygenase inhibitor, aspirin, abolished PGAP-induced second phase aggregation and release in human platelets but did not affect the first, reversible, phase of aggregation. Both the first and second phases of PGAP-induced aggregation were abolished by chlorpromazine, by the phospholipase A(2) inhibitor, mepacrine, and by nmolar concentrations of prostaglandin E(1) (PGE(1)); these agents abolished the second, but not the first phase of ADP-induced aggregation.5 The related phospholipids, lecithin, lysolecithin and phosphatidic acid, at <100 muM, neither induced aggregation of human platelets in platelet-rich plasma, nor modified PGAP-induced aggregation; 1-palmityl lysophosphatidic acid elicited aggregation of human platelets at a threshold concentration of 100 muM.6 It is concluded that the acetal phosphatidic acids

  13. Use of gadolinium diethylene triamine penta-acetic acid, as measured by ELISA, in the determination of glomerular filtration rates in cats.

    PubMed

    Sox, Erika M; Chiotti, Ruthanne; Goldstein, Richard E

    2010-10-01

    The goal of this study was to evaluate a commercially available assay for gadolinium diethylene triamine penta-acetic acid (Gd-DTPA) for use in estimating glomerular filtration rate (GFR) in cats (Gd-DTPA GFR) with a wide range of GFRs. Eighteen adult cats (11 healthy and seven with chronic kidney disease) were included. Plasma concentrations of Gd-DTPA following intravenous injection were measured with an ELISA kit (FIT-GFR). Results for Gd-DTPA GFR were compared with simultaneously obtained values for plasma clearance of iohexol (iohexol GFR), plasma blood urea nitrogen (BUN) and creatinine concentrations. A negative correlation existed between iohexol GFR and plasma concentrations of BUN and creatinine. A positive correlation existed between Gd-DTPA GFR and iohexol GFR. There was no correlation between Gd-DTPA GFR and plasma concentrations of BUN and creatinine. In this study plasma clearance of Gd-DTPA assayed by FIT-GFR did not appear to provide a sufficiently accurate estimation of GFR in cats when compared with plasma clearance of iohexol, and plasma concentrations of BUN and creatinine. PMID:20724186

  14. A new approach to quantification of DTPA incorporation into monoclonal antibodies (MoAbs) labeled by the cyclic anhydride DTPA method

    SciTech Connect

    Wang, T.S.T.; Ng, A.K.; Fawwaz, R.A.; Alsedairy, S.; Alderson, P.O.

    1985-05-01

    A method for determining the ratio of DTPA molecules attached per molecule of Ab was developed and used to examine the immunoreactivity of different Abs as a function of the amount of incorporated DTPA. The bicyclic anhydride of DTPA(2-C-14)acetic acid (BADTPA-C-14) was synthesized by reacting DTPA(2-C-14)acetic acid (1mCi/mmo1) and acetic anhydride. BADTPA-C-14 then was reacted with a MoAb to a melanoma associated antigen (MA) and to a MoAb to human HLA class II antigen (HLA) at 2mg/m1 of MoAb concentration, at MoAb to BADTPA-C-14 ratios (mmo1/mmo1) of l:1, 1:10, 1:00, l:200. The conjugate was dialyzed exhaustively against HEPES at pH 7.0. The MoAb concentration was measured at 280mm of uv; the DTPA/MoAb ratio was calculated based on the specific activity of BADTPA-C-14, and the immunoreactivity was assessed by direct cell-binding to melanoma, the HLA antigen and control (lymphoma) cells. Percent binding to the lymphoid cell line was less than 3%. The authors' results demonstrated a method for directly determining the number of DTPA molecules attached to a MOAb, and demonstrated variations in immunoreactivity as the number of DTPA groups per MoAb is altered.

  15. Solid dispersions of the penta-ethyl ester prodrug of diethylenetriaminepentaacetic acid (DTPA): Formulation design and optimization studies

    PubMed Central

    Yang, Yu-Tsai; Di Pasqua, Anthony J.; Zhang, Yong; Sueda, Katsuhiko; Jay, Michael

    2015-01-01

    The penta-ethyl ester prodrug of diethylenetriaminepentaacetic acid (DTPA), which exists as an oily liquid, was incorporated into a solid dispersion for oral administration by the solvent evaporation method using blends of polyvinylpyrrolidone (PVP), Eudragit® RL PO and α-tocopherol. D-optimal mixture design was used to optimize the formulation. Formulations that had a high concentration of both Eudragit® RL PO and α-tocopherol exhibited low water absorption and enhanced stability of the DTPA prodrug. Physicochemical properties of the optimal formulation were evaluated using Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). In vitro release of the prodrug was evaluated using the USP Type II apparatus dissolution method. DSC studies indicated that the matrix had an amorphous structure, while FTIR spectrometry showed that DTPA penta-ethyl ester and excipients did not react with each other during formation of the solid dispersion.. Dissolution testing showed that the optimized solid dispersion exhibited a prolonged release profile, which could potentially result in a sustained delivery of DTPA penta-ethyl to enhance bioavailability. In conclusion, DTPA penta-ethyl ester was successfully incorporated into a solid matrix with high drug loading and improved stability compared to prodrug alone. PMID:24047113

  16. Overview on mechanisms of acetic acid resistance in acetic acid bacteria.

    PubMed

    Wang, Bin; Shao, Yanchun; Chen, Fusheng

    2015-02-01

    Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided.

  17. Kinetics of Ethyl Acetate Synthesis Catalyzed by Acidic Resins

    ERIC Educational Resources Information Center

    Antunes, Bruno M.; Cardoso, Simao P.; Silva, Carlos M.; Portugal, Ines

    2011-01-01

    A low-cost experiment to carry out the second-order reversible reaction of acetic acid esterification with ethanol to produce ethyl acetate is presented to illustrate concepts of kinetics and reactor modeling. The reaction is performed in a batch reactor, and the acetic acid concentration is measured by acid-base titration versus time. The…

  18. Effect of desferrioxamine (DFO) and calcium trinatrium diethylenetriaminepentaacetic acid (DTPA) on rat cytomegalovirus replication in vitro and in vivo.

    PubMed

    Kloover, J S; Scholz, M; Cinatl, J; Lautenschlager, I; Grauls, G E; Bruggeman, C A

    1999-11-01

    Cytomegalovirus (CMV) infection is a major problem in the immunosuppressed patient. It is thought that besides direct CMV induced cell lysis, immunological damage is part of CMV pathogenesis. New antiviral drugs, which combine immunomodulating and antiviral qualities, could be beneficial. Recently, it has been described that desferrioxamine (DFO) and calcium trinatrium diethylenetriaminepentaacetic acid (DTPA) exhibit both properties. In this report the antiviral effects of both compounds against rat CMV (RCMV) are described in vitro and in vivo using a generalised and local infection model. In vitro, both compounds exhibited a significant antiviral effect, DTPA being more potent than DFO. However, in the generalised infection model no effect was seen on mortality, morbidity or presence of virus in internal organs. In rats infected subcutaneously in the hind paw, no effect was seen locally on paw thickness, presence of viral antigens and inflammatory response. In addition, these rats suffered from a generalised infection of low magnitude at 15 days post infection, although both DFO and DTPA were able to lower the level of viral replication. In conclusion, our data indicate that despite in vitro activity, in vivo usage of DFO or DTPA for acute CMV infection is not warranted.

  19. Separating acetic acid from furol (furfural) by electrodialysis method

    SciTech Connect

    Guan, S.F.; Li, C.S. Ye, S.T.; Shen, S.Y.; Wang, Y.T.; Yu, S.H.

    1981-01-01

    Furfural production by hydrolysis of fibrous plant materials is accompanied by formation of acetic acid in amounts depending on the material used. The amount of acetic formed in the hydrolysis of the fruit shell of oil-tea camellia (Camellia oleosa) (an oilseed-bearing tree) is equal to the amount of furfural. The acetic acid can be separated from the furfural and concentrated to 10% by electrodialysis. A smaller amount of furfural is separated with acetic acid.

  20. Adaptation and tolerance of bacteria against acetic acid.

    PubMed

    Trček, Janja; Mira, Nuno Pereira; Jarboe, Laura R

    2015-08-01

    Acetic acid is a weak organic acid exerting a toxic effect to most microorganisms at concentrations as low as 0.5 wt%. This toxic effect results mostly from acetic acid dissociation inside microbial cells, causing a decrease of intracellular pH and metabolic disturbance by the anion, among other deleterious effects. These microbial inhibition mechanisms enable acetic acid to be used as a preservative, although its usefulness is limited by the emergence of highly tolerant spoilage strains. Several biotechnological processes are also inhibited by the accumulation of acetic acid in the growth medium including production of bioethanol from lignocellulosics, wine making, and microbe-based production of acetic acid itself. To design better preservation strategies based on acetic acid and to improve the robustness of industrial biotechnological processes limited by this acid's toxicity, it is essential to deepen the understanding of the underlying toxicity mechanisms. In this sense, adaptive responses that improve tolerance to acetic acid have been well studied in Escherichia coli and Saccharomyces cerevisiae. Strains highly tolerant to acetic acid, either isolated from natural environments or specifically engineered for this effect, represent a unique reservoir of information that could increase our understanding of acetic acid tolerance and contribute to the design of additional tolerance mechanisms. In this article, the mechanisms underlying the acetic acid tolerance exhibited by several bacterial strains are reviewed, with emphasis on the knowledge gathered in acetic acid bacteria and E. coli. A comparison of how these bacterial adaptive responses to acetic acid stress fit to those described in the yeast Saccharomyces cerevisiae is also performed. A systematic comparison of the similarities and dissimilarities of the ways by which different microbial systems surpass the deleterious effects of acetic acid toxicity has not been performed so far, although such exchange

  1. [Degradation of oxytetracycline with ozonation in acetic acid solvent].

    PubMed

    Li, Shi-Yin; Li, Xiao-Rong; Zhu, Yi-Ping; Zhu, Jiang-Peng; Wang, Guo-Xiang

    2012-12-01

    Use acetic acid as the media of ozone degradation of oxytetracycline (OTC), and effects of the initial dosing ratio of ozone/OTC, ozone flow, free radical scavenger, metal ions on the removal rate of OTC were investigated respectively. The results showed that acetic acid had a high ozone stability and solubility. OTC had a high removal rate and degradation rate in acetic acid solution. With the increase of OTC dosage, the removal rate of OTC decreased in acetic acid. Removal rate of OTC was increased distinctly when ozone flow increased properly. It was also observed that free radical scavenger had a significantly negative effect on OTC ozonation degradation in acetic acid. Furthermore the main reactions of OTC ozone oxidation were direct oxidation and indirect oxidation in acetic acid. When Fe3+ and Co2+ were existent in acetic acid, the degradation of OTC was inhibited significantly.

  2. Sphingolipids contribute to acetic acid resistance in Zygosaccharomyces bailii.

    PubMed

    Lindahl, Lina; Genheden, Samuel; Eriksson, Leif A; Olsson, Lisbeth; Bettiga, Maurizio

    2016-04-01

    Lignocellulosic raw material plays a crucial role in the development of sustainable processes for the production of fuels and chemicals. Weak acids such as acetic acid and formic acid are troublesome inhibitors restricting efficient microbial conversion of the biomass to desired products. To improve our understanding of weak acid inhibition and to identify engineering strategies to reduce acetic acid toxicity, the highly acetic-acid-tolerant yeast Zygosaccharomyces bailii was studied. The impact of acetic acid membrane permeability on acetic acid tolerance in Z. bailii was investigated with particular focus on how the previously demonstrated high sphingolipid content in the plasma membrane influences acetic acid tolerance and membrane permeability. Through molecular dynamics simulations, we concluded that membranes with a high content of sphingolipids are thicker and more dense, increasing the free energy barrier for the permeation of acetic acid through the membrane. Z. bailii cultured with the drug myriocin, known to decrease cellular sphingo-lipid levels, exhibited significant growth inhibition in the presence of acetic acid, while growth in medium without acetic acid was unaffected by the myriocin addition. Furthermore, following an acetic acid pulse, the intracellular pH decreased more in myriocin-treated cells than in control cells. This indicates a higher inflow rate of acetic acid and confirms that the reduction in growth of cells cultured with myriocin in the medium with acetic acid was due to an increase in membrane permeability, thereby demonstrating the importance of a high fraction of sphingolipids in the membrane of Z. bailii to facilitate acetic acid resistance; a property potentially transferable to desired production organisms suffering from weak acid stress. PMID:26416641

  3. Sphingolipids contribute to acetic acid resistance in Zygosaccharomyces bailii.

    PubMed

    Lindahl, Lina; Genheden, Samuel; Eriksson, Leif A; Olsson, Lisbeth; Bettiga, Maurizio

    2016-04-01

    Lignocellulosic raw material plays a crucial role in the development of sustainable processes for the production of fuels and chemicals. Weak acids such as acetic acid and formic acid are troublesome inhibitors restricting efficient microbial conversion of the biomass to desired products. To improve our understanding of weak acid inhibition and to identify engineering strategies to reduce acetic acid toxicity, the highly acetic-acid-tolerant yeast Zygosaccharomyces bailii was studied. The impact of acetic acid membrane permeability on acetic acid tolerance in Z. bailii was investigated with particular focus on how the previously demonstrated high sphingolipid content in the plasma membrane influences acetic acid tolerance and membrane permeability. Through molecular dynamics simulations, we concluded that membranes with a high content of sphingolipids are thicker and more dense, increasing the free energy barrier for the permeation of acetic acid through the membrane. Z. bailii cultured with the drug myriocin, known to decrease cellular sphingo-lipid levels, exhibited significant growth inhibition in the presence of acetic acid, while growth in medium without acetic acid was unaffected by the myriocin addition. Furthermore, following an acetic acid pulse, the intracellular pH decreased more in myriocin-treated cells than in control cells. This indicates a higher inflow rate of acetic acid and confirms that the reduction in growth of cells cultured with myriocin in the medium with acetic acid was due to an increase in membrane permeability, thereby demonstrating the importance of a high fraction of sphingolipids in the membrane of Z. bailii to facilitate acetic acid resistance; a property potentially transferable to desired production organisms suffering from weak acid stress.

  4. Sphingolipids contribute to acetic acid resistance in Zygosaccharomyces bailii

    PubMed Central

    Lindahl, Lina; Genheden, Samuel; Eriksson, Leif A.; Olsson, Lisbeth

    2015-01-01

    ABSTRACT Lignocellulosic raw material plays a crucial role in the development of sustainable processes for the production of fuels and chemicals. Weak acids such as acetic acid and formic acid are troublesome inhibitors restricting efficient microbial conversion of the biomass to desired products. To improve our understanding of weak acid inhibition and to identify engineering strategies to reduce acetic acid toxicity, the highly acetic‐acid‐tolerant yeast Zygosaccharomyces bailii was studied. The impact of acetic acid membrane permeability on acetic acid tolerance in Z. bailii was investigated with particular focus on how the previously demonstrated high sphingolipid content in the plasma membrane influences acetic acid tolerance and membrane permeability. Through molecular dynamics simulations, we concluded that membranes with a high content of sphingolipids are thicker and more dense, increasing the free energy barrier for the permeation of acetic acid through the membrane. Z. bailii cultured with the drug myriocin, known to decrease cellular sphingo­lipid levels, exhibited significant growth inhibition in the presence of acetic acid, while growth in medium without acetic acid was unaffected by the myriocin addition. Furthermore, following an acetic acid pulse, the intracellular pH decreased more in myriocin‐treated cells than in control cells. This indicates a higher inflow rate of acetic acid and confirms that the reduction in growth of cells cultured with myriocin in the medium with acetic acid was due to an increase in membrane permeability, thereby demonstrating the importance of a high fraction of sphingolipids in the membrane of Z. bailii to facilitate acetic acid resistance; a property potentially transferable to desired production organisms suffering from weak acid stress. Biotechnol. Bioeng. 2016;113: 744–753. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:26416641

  5. Tested Demonstrations: Buffer Capacity of Various Acetic Acid-Sodium Acetate Systems: A Lecture Experiment.

    ERIC Educational Resources Information Center

    Donahue, Craig J.; Panek, Mary G.

    1985-01-01

    Background information and procedures are provided for a lecture experiment which uses indicators to illustrate the concept of differing buffer capacities by titrating acetic acid/sodium acetate buffers with 1.0 molar hydrochloric acid and 1.0 molar sodium hydroxide. A table with data used to plot the titration curve is included. (JN)

  6. Differential titration of bases in glacial acetic acid.

    PubMed

    Castellano, T; Medwick, T; Shinkai, J H; Bailey, L

    1981-01-01

    A study of bases in acetic acid and their differential titration was carried out. The overall basicity constants for 20 bases were measured in acetic acid, and the differential titration of five binary mixtures of variable delta pKb values in acetic acid was followed using a glass electrode-modified calomel electrode system. Agreement with literature values was good. A leveling diagram was constructed that indicated that bases stronger than aqueous pKb 10 are leveled to an acetous pKb 5.69, whereas weaker bases are not leveled but instead exhibit their own intrinsic basicity, with the acetous pKb to aqueous pKb values being linearly related (slope 1.18, correlation coefficient 0.962). A minimum acetous delta pKb of four units is required for the satisfactory differential titration of two bases in acetic acid.

  7. Genetic dissection of acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Geng, Peng; Xiao, Yin; Hu, Yun; Sun, Haiye; Xue, Wei; Zhang, Liang; Shi, Gui-Yang

    2016-09-01

    Dissection of the hereditary architecture underlying Saccharomyces cerevisiae tolerance to acetic acid is essential for ethanol fermentation. In this work, a genomics approach was used to dissect hereditary variations in acetic acid tolerance between two phenotypically different strains. A total of 160 segregants derived from these two strains were obtained. Phenotypic analysis indicated that the acetic acid tolerance displayed a normal distribution in these segregants, and suggested that the acetic acid tolerant traits were controlled by multiple quantitative trait loci (QTLs). Thus, 220 SSR markers covering the whole genome were used to detect QTLs of acetic acid tolerant traits. As a result, three QTLs were located on chromosomes 9, 12, and 16, respectively, which explained 38.8-65.9 % of the range of phenotypic variation. Furthermore, twelve genes of the candidates fell into the three QTL regions by integrating the QTL analysis with candidates of acetic acid tolerant genes. These results provided a novel avenue to obtain more robust strains.

  8. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    NASA Technical Reports Server (NTRS)

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  9. Viscometric study of chitosan solutions in acetic acid/sodium acetate and acetic acid/sodium chloride.

    PubMed

    Costa, Cristiane N; Teixeira, Viviane G; Delpech, Marcia C; Souza, Josefa Virginia S; Costa, Marcos A S

    2015-11-20

    A viscometric study was carried out at 25°C to assess the physical-chemical behavior in solution and the mean viscometric molar mass (M¯v) of chitosan solutions with different deacetylation degrees, in two solvent mixtures: medium 1-acetic acid 0.3mol/L and sodium acetate 0.2mol/L; and medium 2-acetic acid 0.1mol/L and sodium chloride 0.2mol/L. Different equations were employed, by graphical extrapolation, to calculate the intrinsic viscosities [η] and the viscometric constants, to reveal the solvent's quality: Huggins (H), Kraemer (K) and Schulz-Blaschke (SB). For single-point determination, the equations used were SB, Solomon-Ciuta (SC) and Deb-Chanterjee (DC), resulting in a faster form of analysis. The values of ̄M¯v were calculated by applying the equation of Mark-Houwink-Sakurada. The SB and SC equations were most suitable for single-point determination of [η] and ̄M¯v and the Schulz-Blachke constant (kSB), equal to 0.28, already utilized for various systems, can also be employed to analyze chitosan solutions under the conditions studied.

  10. Paramagnetic Gd IIIFe III heterobimetallic complexes of DTPA-bis-salicylamide

    NASA Astrophysics Data System (ADS)

    Aime, S.; Botta, M.; Fasano, M.; Terreno, E.

    1993-08-01

    The reaction between DTPA (diethylenetriaminepenta-acetic acid)-anhydride and p-aminosalicylic acid (PAS) affords a novel ligand, [DTPA(PAS) 2], able to form stable heterobimetallic complexes with Gd 3+ and Fe 3+ ions. The lanthanide ion occupies an internal coordination cage formed by three nitrogen atoms, two carboxylate and two carboxoamido groups of the ligand, whereas the outer salicylic moieties form stable chelate rings with Fe III ions. The stoichiometry of the resulting heterobimetallic complexes, established by measurements of water proton relaxation enhancement, is [(H 2O)-Gd-DTPA(PAS) 2] 2-Fe(H 2O) 2 or [(H 2O)-Gd-DTPA(PAS) 2] 3-Fe depending on the pH of the aqueous solution. The individual contributions to the observed relaxation enhancement from Gd 3+ and Fe 3+ paramagnetic ions have been clearly distinguished and analysed.

  11. Biological Function of Acetic Acid-Improvement in Obesity and Glucose Tolerance by Acetic Acid in Type 2 Diabetic Rats.

    PubMed

    Yamashita, Hiromi

    2016-07-29

    Fatty acids derived from adipose tissue are oxidized by β-oxidation to form ketone bodies as final products under the starving condition. Previously, we found that free acetic acid was formed concomitantly with the production of ketone bodies in isolated rat liver perfusion, and mitochondrial acetyl CoA hydrolase was appeared to be involved with the acetic acid production. It was revealed that acetic acid was formed as a final product of enhanced β-oxidation of fatty acids and utilized as a fuel in extrahepatic tissues under the starving condition. Under the fed condition, β-oxidation is suppressed and acetic acid production is decreased. When acetic acid was taken daily by obesity-linked type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats under the fed condition, it protected OLETF rats against obesity. Furthermore, acetic acid contributed to protect from the accumulation of lipid in the liver as well as abdominal fat in OLETF rats. Transcripts of lipogenic genes in the liver were decreased, while transcripts of myoglobin and Glut4 genes in abdominal muscles were increased in the acetic acid-administered OLETF rats. It is indicated that exogenously administered acetic acid would have effects on lipid metabolism in both the liver and the skeletal muscles, and have function that works against obesity and obesity-linked type 2 diabetes.

  12. Trehalose accumulation enhances tolerance of Saccharomyces cerevisiae to acetic acid.

    PubMed

    Yoshiyama, Yoko; Tanaka, Koichi; Yoshiyama, Kohei; Hibi, Makoto; Ogawa, Jun; Shima, Jun

    2015-02-01

    Trehalose confers protection against various environmental stresses on yeast cells. In this study, trehalase gene deletion mutants that accumulate trehalose at high levels showed significant stress tolerance to acetic acid. The enhancement of trehalose accumulation can thus be considered a target in the breeding of acetic acid-tolerant yeast strains.

  13. Fermentation of lignocellulosic sugars to acetic acid by Moorella thermoacetica.

    PubMed

    Ehsanipour, Mandana; Suko, Azra Vajzovic; Bura, Renata

    2016-06-01

    A systematic study of bioconversion of lignocellulosic sugars to acetic acid by Moorella thermoacetica (strain ATCC 39073) was conducted. Four different water-soluble fractions (hydrolysates) obtained after steam pretreatment of lignocellulosic biomass were selected and fermented to acetic acid in batch fermentations. M. thermoacetica can effectively ferment xylose and glucose in hydrolysates from wheat straw, forest residues, switchgrass, and sugarcane straw to acetic acid. Xylose and glucose were completely utilized, with xylose being consumed first. M. thermoacetica consumed up to 62 % of arabinose, 49 % galactose and 66 % of mannose within 72 h of fermentation in the mixture of lignocellulosic sugars. The highest acetic acid yield was obtained from sugarcane straw hydrolysate, with 71 % of theoretical yield based on total sugars (17 g/L acetic acid from 24 g/L total sugars). The lowest acetic acid yield was observed in forest residues hydrolysate, with 39 % of theoretical yield based on total sugars (18 g/L acetic acid from 49 g/L total sugars). Process derived compounds from steam explosion pretreatment, including 5-hydroxymethylfurfural (0.4 g/L), furfural (0.1 g/L) and total phenolics (3 g/L), did not inhibit microbial growth and acetic acid production yield. This research identified two major factors that adversely affected acetic acid yield in all hydrolysates, especially in forest residues: (i) glucose to xylose ratio and (ii) incomplete consumption of arabinose, galactose and mannose. For efficient bioconversion of lignocellulosic sugars to acetic acid, it is imperative to have an appropriate balance of sugars in a hydrolysate. Hence, the choice of lignocellulosic biomass and steam pretreatment design are fundamental steps for the industrial application of this process.

  14. Fermentation of lignocellulosic sugars to acetic acid by Moorella thermoacetica.

    PubMed

    Ehsanipour, Mandana; Suko, Azra Vajzovic; Bura, Renata

    2016-06-01

    A systematic study of bioconversion of lignocellulosic sugars to acetic acid by Moorella thermoacetica (strain ATCC 39073) was conducted. Four different water-soluble fractions (hydrolysates) obtained after steam pretreatment of lignocellulosic biomass were selected and fermented to acetic acid in batch fermentations. M. thermoacetica can effectively ferment xylose and glucose in hydrolysates from wheat straw, forest residues, switchgrass, and sugarcane straw to acetic acid. Xylose and glucose were completely utilized, with xylose being consumed first. M. thermoacetica consumed up to 62 % of arabinose, 49 % galactose and 66 % of mannose within 72 h of fermentation in the mixture of lignocellulosic sugars. The highest acetic acid yield was obtained from sugarcane straw hydrolysate, with 71 % of theoretical yield based on total sugars (17 g/L acetic acid from 24 g/L total sugars). The lowest acetic acid yield was observed in forest residues hydrolysate, with 39 % of theoretical yield based on total sugars (18 g/L acetic acid from 49 g/L total sugars). Process derived compounds from steam explosion pretreatment, including 5-hydroxymethylfurfural (0.4 g/L), furfural (0.1 g/L) and total phenolics (3 g/L), did not inhibit microbial growth and acetic acid production yield. This research identified two major factors that adversely affected acetic acid yield in all hydrolysates, especially in forest residues: (i) glucose to xylose ratio and (ii) incomplete consumption of arabinose, galactose and mannose. For efficient bioconversion of lignocellulosic sugars to acetic acid, it is imperative to have an appropriate balance of sugars in a hydrolysate. Hence, the choice of lignocellulosic biomass and steam pretreatment design are fundamental steps for the industrial application of this process. PMID:26992903

  15. Measurement of the rates of oxindole-3-acetic acid turnover, and indole-3-acetic acid oxidation in Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Nonhebel, H. M.; Bandurski, R. S. (Principal Investigator)

    1986-01-01

    Oxindole-3-acetic acid is the principal catabolite of indole-3-acetic acid in Zea mays seedlings. In this paper measurements of the turnover of oxindole-3-acetic acid are presented and used to calculate the rate of indole-3-acetic acid oxidation. [3H]Oxindole-3-acetic acid was applied to the endosperm of Zea mays seedlings and allowed to equilibrate for 24 h before the start of the experiment. The subsequent decrease in its specific activity was used to calculate the turnover rate. The average half-life of oxindole-3-acetic acid in the shoots was found to be 30 h while that in the kernels had an average half-life of 35h. Using previously published values of the pool sizes of oxindole-3-acetic acid in shoots and kernels from seedlings of the same age and variety, and grown under the same conditions, the rate of indole-3-acetic acid oxidation was calculated to be 1.1 pmol plant-1 h-1 in the shoots and 7.1 pmol plant-1 h-1 in the kernels.

  16. Enrichment of amino acid-oxidizing, acetate-reducing bacteria.

    PubMed

    Ato, Makoto; Ishii, Masaharu; Igarashi, Yasuo

    2014-08-01

    In anaerobic condition, amino acids are oxidatively deaminated, and decarboxylated, resulting in the production of volatile fatty acids. In this process, excess electrons are produced and their consumption is necessary for the accomplishment of amino acid degradation. In this study, we anaerobically constructed leucine-degrading enrichment cultures from three different environmental samples (compost, excess sludge, and rice field soil) in order to investigate the diversity of electron-consuming reaction coupled to amino acid oxidation. Constructed enrichment cultures oxidized leucine to isovalerate and their activities were strongly dependent on acetate. Analysis of volatile fatty acids (VFAs) profiles and community structure analysis during batch culture of each enrichment indicated that Clostridium cluster I coupled leucine oxidation to acetate reduction in the enrichment from the compost and the rice field soil. In these cases, acetate was reduced to butyrate. On the other hand, Clostridium cluster XIVb coupled leucine oxidation to acetate reduction in the enrichment from the excess sludge. In this case, acetate was reduced to propionate. To our surprise, the enrichment from rice field soil oxidized leucine even in the absence of acetate and produced butyrate. The enrichment would couple leucine oxidation to reductive butyrate synthesis from CO2. The coupling reaction would be achieved based on trophic link between hydrogenotrophic acetogenic bacteria and acetate-reducing bacteria by sequential reduction of CO2 and acetate. Our study suggests anaerobic degradation of amino acids is achieved yet-to-be described reactions. PMID:24630616

  17. Oxidation of indole-3-acetic acid and oxindole-3-acetic acid to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glucopyranoside in Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Nonhebel, H. M.; Bandurski, R. S.

    1984-01-01

    Radiolabeled oxindole-3-acetic acid was metabolized by roots, shoots, and caryopses of dark grown Zea mays seedlings to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glycopyranoside with the simpler name of 7-hydroxyoxindole-3-acetic acid-glucoside. This compound was also formed from labeled indole-3-acetic acid supplied to intact seedlings and root segments. The glucoside of 7-hydroxyoxindole-3-acetic acid was also isolated as an endogenous compound in the caryopses and shoots of 4-day-old seedlings. It accumulates to a level of 4.8 nanomoles per plant in the kernel, more than 10 times the amount of oxindole-3-acetic acid. In the shoot it is present at levels comparable to that of oxindole-3-acetic acid and indole-3-acetic acid (62 picomoles per shoot). We conclude that 7-hydroxyoxindole-3-acetic acid-glucoside is a natural metabolite of indole-3-acetic acid in Z. mays seedlings. From the data presented in this paper and in previous work, we propose the following route as the principal catabolic pathway for indole-3-acetic acid in Zea seedlings: Indole-3-acetic acid --> Oxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid-glucoside.

  18. Computerized image analysis for acetic acid induced intraepithelial lesions

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; Ferris, Daron G.; Lieberman, Rich W.

    2008-03-01

    Cervical Intraepithelial Neoplasia (CIN) exhibits certain morphologic features that can be identified during a visual inspection exam. Immature and dysphasic cervical squamous epithelium turns white after application of acetic acid during the exam. The whitening process occurs visually over several minutes and subjectively discriminates between dysphasic and normal tissue. Digital imaging technologies allow us to assist the physician analyzing the acetic acid induced lesions (acetowhite region) in a fully automatic way. This paper reports a study designed to measure multiple parameters of the acetowhitening process from two images captured with a digital colposcope. One image is captured before the acetic acid application, and the other is captured after the acetic acid application. The spatial change of the acetowhitening is extracted using color and texture information in the post acetic acid image; the temporal change is extracted from the intensity and color changes between the post acetic acid and pre acetic acid images with an automatic alignment. The imaging and data analysis system has been evaluated with a total of 99 human subjects and demonstrate its potential to screening underserved women where access to skilled colposcopists is limited.

  19. Biosynthesis of the halogenated auxin, 4-chloroindole-3-acetic acid.

    PubMed

    Tivendale, Nathan D; Davidson, Sandra E; Davies, Noel W; Smith, Jason A; Dalmais, Marion; Bendahmane, Abdelhafid I; Quittenden, Laura J; Sutton, Lily; Bala, Raj K; Le Signor, Christine; Thompson, Richard; Horne, James; Reid, James B; Ross, John J

    2012-07-01

    Seeds of several agriculturally important legumes are rich sources of the only halogenated plant hormone, 4-chloroindole-3-acetic acid. However, the biosynthesis of this auxin is poorly understood. Here, we show that in pea (Pisum sativum) seeds, 4-chloroindole-3-acetic acid is synthesized via the novel intermediate 4-chloroindole-3-pyruvic acid, which is produced from 4-chlorotryptophan by two aminotransferases, TRYPTOPHAN AMINOTRANSFERASE RELATED1 and TRYPTOPHAN AMINOTRANSFERASE RELATED2. We characterize a tar2 mutant, obtained by Targeting Induced Local Lesions in Genomes, the seeds of which contain dramatically reduced 4-chloroindole-3-acetic acid levels as they mature. We also show that the widespread auxin, indole-3-acetic acid, is synthesized by a parallel pathway in pea. PMID:22573801

  20. Sequential injection redox or acid-base titration for determination of ascorbic acid or acetic acid.

    PubMed

    Lenghor, Narong; Jakmunee, Jaroon; Vilen, Michael; Sara, Rolf; Christian, Gary D; Grudpan, Kate

    2002-12-01

    Two sequential injection titration systems with spectrophotometric detection have been developed. The first system for determination of ascorbic acid was based on redox reaction between ascorbic acid and permanganate in an acidic medium and lead to a decrease in color intensity of permanganate, monitored at 525 nm. A linear dependence of peak area obtained with ascorbic acid concentration up to 1200 mg l(-1) was achieved. The relative standard deviation for 11 replicate determinations of 400 mg l(-1) ascorbic acid was 2.9%. The second system, for acetic acid determination, was based on acid-base titration of acetic acid with sodium hydroxide using phenolphthalein as an indicator. The decrease in color intensity of the indicator was proportional to the acid content. A linear calibration graph in the range of 2-8% w v(-1) of acetic acid with a relative standard deviation of 4.8% (5.0% w v(-1) acetic acid, n=11) was obtained. Sample throughputs of 60 h(-1) were achieved for both systems. The systems were successfully applied for the assays of ascorbic acid in vitamin C tablets and acetic acid content in vinegars, respectively.

  1. Genetic organization of Acetobacter for acetic acid fermentation.

    PubMed

    Beppu, T

    Plasmid vectors for the acetic acid-producing strains of Acetobacter and Gluconobacter were constructed from their cryptic plasmids and the efficient transformation conditions were established. The systems allowed to reveal the genetic background of the strains used in the acetic acid fermentation. Genes encoding indispensable components in the acetic acid fermentation, such as alcohol dehydrogenase, aldehyde dehydrogenase and terminal oxidase, were cloned and characterized. Spontaneous mutations at high frequencies in the acetic acid bacteria to cause the deficiency in ethanol oxidation were analyzed. A new insertion sequence element, IS1380, was identified as a major factor of the genetic instability, which causes insertional inactivation of the gene encoding cytochrome c, an essential component of the functional alcohol dehydrogenase complex. Several genes including the citrate synthase gene of A. aceti were identified to confer acetic acid resistance, and the histidinolphosphate aminotransferase gene was cloned as a multicopy suppressor of an ethanol sensitive mutant. Improvement of the acetic acid productivity of an A. aceti strain was achieved through amplification of the aldehyde dehydrogenase gene with a multicopy vector. In addition, spheroplast fusion of the Acetobacter strains was developed and applied to improve their properties.

  2. Genetic dissection of acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Geng, Peng; Xiao, Yin; Hu, Yun; Sun, Haiye; Xue, Wei; Zhang, Liang; Shi, Gui-Yang

    2016-09-01

    Dissection of the hereditary architecture underlying Saccharomyces cerevisiae tolerance to acetic acid is essential for ethanol fermentation. In this work, a genomics approach was used to dissect hereditary variations in acetic acid tolerance between two phenotypically different strains. A total of 160 segregants derived from these two strains were obtained. Phenotypic analysis indicated that the acetic acid tolerance displayed a normal distribution in these segregants, and suggested that the acetic acid tolerant traits were controlled by multiple quantitative trait loci (QTLs). Thus, 220 SSR markers covering the whole genome were used to detect QTLs of acetic acid tolerant traits. As a result, three QTLs were located on chromosomes 9, 12, and 16, respectively, which explained 38.8-65.9 % of the range of phenotypic variation. Furthermore, twelve genes of the candidates fell into the three QTL regions by integrating the QTL analysis with candidates of acetic acid tolerant genes. These results provided a novel avenue to obtain more robust strains. PMID:27430512

  3. Diethylentriaminepenta acetic acid glucose conjugates as a cell permeable iron chelator

    PubMed Central

    Mosayebnia, Mona; Shafiee-Ardestani, Mehdi; Pasalar, Parvin; Mashayekhi, Mojgan; Amanlou, Massoud

    2014-01-01

    Objective: To find out whether DTPA-DG complex can enhance clearance of intracellular free iron. Materials and Methods: Diethylenetriaminepentaacetic acid-D-deoxy-glucosamine (DTPA-DG) was synthesized and examined for its activity as a cell-permeable iron chelator in human hepatocellular carcinoma (HEPG2) cell line exposed to high concentration of iron sulfate and compared with deferoxamine (DFO), a prototype iron chelator. The effect of DTPA-DG on cell viability was monitored using the 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide MTT assay as well. Results: There was a significant increase of iron level after iron overload induction in HEPG2 cell culture. DTPA-DG presented a remarkable capacity to iron burden reducing with estimated 50% inhibitory concentration value of 65.77 nM. In fact, glycosyl moiety was gained access of DTPA to intracellular iron deposits through glucose transporter systems. Conclusion: DTPA-DG, more potent than DFO to sequester deposits of free iron with no profound toxic effect. The results suggest the potential of DTPA-DG in chelating iron and permitting its excretion from primary organ storage. PMID:24554907

  4. Formation of Amino Acids from Reactor Irradiated Ammonium Acetate

    NASA Astrophysics Data System (ADS)

    Akaboshi, M.; Kawai, K.; Maki, H.; Kawamoto, K.; Honda, Y.

    1982-12-01

    Ammonium acetate in various conditions was irradiated in a reactor to examine the contributions of both the reactor radiations and recoiled14C nucleis to form the biologically interesting molecules. Present investigations demonstrated that several amino acids, glycine, alanine, β-alanine and GABA, and may-be aspartic acid, serine and valine by prolonged irradiation, were formed in the aqueous solutions of ammonium acetate.14C-radioactivities were also found distributed in these amino acids. However, no special relationship between14C-radioactivity and these amino acids formed was observed.

  5. Tetrazole acetic acid: tautomers, conformers, and isomerization.

    PubMed

    Araujo-Andrade, C; Reva, I; Fausto, R

    2014-02-14

    Monomers of (tetrazol-5-yl)-acetic acid (TAA) were obtained by sublimation of the crystalline compound and the resulting vapors were isolated in cryogenic nitrogen matrices at 13 K. The conformational and tautomeric composition of TAA in the matrix was characterized by infrared spectroscopy and vibrational calculations carried out at the B3LYP/6-311++G(d,p) level. TAA may adopt two tautomeric modifications, 1H- and 2H-, depending on the position of the annular hydrogen atom. Two-dimensional potential energy surfaces (PESs) of TAA were theoretically calculated at the MP2/6-311++G(d,p) level, for each tautomer. Four and six symmetry-unique minima were located on these PESs, for 1H- and 2H-TAA, respectively. The energetics of the detected minima was subsequently refined by calculations at the QCISD level. Two 1H- and three 2H-conformers fall within the 0-8 kJ mol(-1) energy range and should be appreciably populated at the sublimation temperature (∼330 K). Observation of only one conformer for each tautomer (1ccc and 2pcc) is explained in terms of calculated barriers to conformational rearrangements. All conformers with the cis O=COH moiety are separated by low barriers (less than 10 kJ mol(-1)) and collapse to the most stable 1ccc (1H-) and 2pcc (2H-) forms during deposition of the matrix. On the trans O=COH surfaces, the relative energies are very high (between 12 and 27 kJ mol(-1)). The trans forms are not thermally populated at the sublimation conditions and were not detected in matrices. One high-energy form in each tautomer, 1cct (1H-) and 2pct (2H-), was found to differ from the most stable form only by rotation of the OH group and separated from other forms by high barriers. This opened a perspective for their stabilization in a matrix. 1cct and 2pct were generated in the matrices selectively by means of narrow-band near-infrared (NIR) irradiations of the samples at 6920 and 6937 cm(-1), where the first OH stretching overtone vibrations of 1ccc and 2pcc occur

  6. Tetrazole acetic acid: Tautomers, conformers, and isomerization

    SciTech Connect

    Araujo-Andrade, C.; Reva, I. Fausto, R.

    2014-02-14

    Monomers of (tetrazol-5-yl)-acetic acid (TAA) were obtained by sublimation of the crystalline compound and the resulting vapors were isolated in cryogenic nitrogen matrices at 13 K. The conformational and tautomeric composition of TAA in the matrix was characterized by infrared spectroscopy and vibrational calculations carried out at the B3LYP/6-311++G(d,p) level. TAA may adopt two tautomeric modifications, 1H- and 2H-, depending on the position of the annular hydrogen atom. Two-dimensional potential energy surfaces (PESs) of TAA were theoretically calculated at the MP2/6-311++G(d,p) level, for each tautomer. Four and six symmetry-unique minima were located on these PESs, for 1H- and 2H-TAA, respectively. The energetics of the detected minima was subsequently refined by calculations at the QCISD level. Two 1H- and three 2H-conformers fall within the 0–8 kJ mol{sup −1} energy range and should be appreciably populated at the sublimation temperature (∼330 K). Observation of only one conformer for each tautomer (1ccc and 2pcc) is explained in terms of calculated barriers to conformational rearrangements. All conformers with the cis O=COH moiety are separated by low barriers (less than 10 kJ mol{sup −1}) and collapse to the most stable 1ccc (1H-) and 2pcc (2H-) forms during deposition of the matrix. On the trans O=COH surfaces, the relative energies are very high (between 12 and 27 kJ mol{sup −1}). The trans forms are not thermally populated at the sublimation conditions and were not detected in matrices. One high-energy form in each tautomer, 1cct (1H-) and 2pct (2H-), was found to differ from the most stable form only by rotation of the OH group and separated from other forms by high barriers. This opened a perspective for their stabilization in a matrix. 1cct and 2pct were generated in the matrices selectively by means of narrow-band near-infrared (NIR) irradiations of the samples at 6920 and 6937 cm{sup −1}, where the first OH stretching overtone

  7. Variability in soil micronutrients extracted by DTPA and Mehlich-3 at the plot scale in an acidic environment

    NASA Astrophysics Data System (ADS)

    Paz-Ferreiro, Jorge; Lado, Marcos; de Abreu, Cleide A.

    2014-05-01

    Land use practices affect soil properties and nutrient supply. Very limited data are available on micronutrient extractability in northwest Spain. The aim of this study was to analyse long-term effects of land use on the concentration, variability and spatial distribution of soil nutrients. To this end, neighboring forest and cultivated stands were compared. The study was carried out in an acid, rich in organic matter soil developed over sediments at the province of Lugo, northwestern of Spain. Adjacent plots with a surface of 100 m2 were marked on regular square grids with 2-m spacing. Fe, Mn, Zn and Cu were extracted both by Mehlich-3 and DTPA solutions and determined by ICP-MS. General soil chemical and physical properties were routinely analyzed. In arable land, microelement concentration ranges were as follows: Fe (100 and 135 mg kg-1), Mn (7.6 and 21.5 mg kg-1), Zn (0.6 and 3.7 mg kg-1), and Cu (0.2 and 0.7 mg kg-1). In forest land, these ranges were: Fe (62 and 309 mg kg-1), Mn (0.2 and 2.1 mg kg-1), Zn (0.2 and 2.9 mg kg-1), and Cu (0.1 and 0.2 mg kg-1). With the exception of Fe-DTPA, microelement concentrations extracted both with DTPA and Mehlich-3 were higher in the cultivated than in the forest stand. Coefficients of variation were higher for the microelement content of the soil under forest. Principal component analysis was performed to evaluate associations between extractable microelements and general physico-chemical properties. At the studied scale, nutrient management was the main factor affecting the agricultural site, whereas soil-plant interactions were probably responsible for the higher variation within the forest site. Patterns of spatial variability of the studied nutrients at the small plot scale also were assessed by geostatistical techniques. Results were discussed in the frame of sustainable land use and organic matter decline with conventional tillage and sustainable land use

  8. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.

    PubMed

    Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S

    2016-07-01

    Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016.

  9. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.

    PubMed

    Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S

    2016-07-01

    Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016. PMID:27090191

  10. Simultaneous acetic acid separation and monosaccharide concentration by reverse osmosis.

    PubMed

    Zhou, Fanglei; Wang, Cunwen; Wei, Jiang

    2013-03-01

    This study aimed to investigate the feasibility and efficiency of simultaneous acetic acid separation and sugar concentration in model lignocellulosic hydrolyzates by reverse osmosis. The effects of operation parameters such as pH, temperature, pressure and feed concentration on the solute retentions were examined with a synthetic xylose–glucose–acetic acid model solution. Results showed that the monosaccharides were almost completely rejected at above 20 bar, while the acetic acid retention increased with the increase in pH and pressure, and decreased with the temperature increase. The maximum separation factors of acetic acid over xylose and glucose reached as high as 211.5 and 228.4 at pH 2.93 (the initial pH of model lignocellulosic hydrolyzates), 40 °C and 20 bar. Furthermore, the concentration and diafiltration process were employed at optimal operation conditions. Consequently, a high sugar concentration and a beneficially lower acetic acid concentration were simultaneously achieved by reverse osmosis.

  11. Photodissociation spectroscopy of the Mg{sup +}-acetic acid complex

    SciTech Connect

    Abate, Yohannes; Kleiber, P. D.

    2006-11-14

    We have studied the structure and photodissociation of Mg{sup +}-acetic acid clusters. Ab initio calculations suggest four relatively strongly bound ground state isomers for the [MgC{sub 2}H{sub 4}O{sub 2}]{sup +} complex. These isomers include the cis and trans forms of the Mg{sup +}-acetic acid association complex with Mg{sup +} bonded to the carbonyl O atom of acetic acid, the Mg{sup +}-acetic acid association complex with Mg{sup +} bonded to the hydroxyl O atom of acetic acid, or to a Mg{sup +}-ethenediol association complex. Photodissociation through the Mg{sup +}-based 3p<-3s absorption bands in the near UV leads to direct (nonreactive) and reactive dissociation products: Mg{sup +}, MgOH{sup +}, Mg(H{sub 2}O){sup +}, CH{sub 3}CO{sup +}, and MgCH{sub 3}{sup +}. At low energies the dominant reactive quenching pathway is through dehydration to Mg(H{sub 2}O){sup +}, but additional reaction channels involving C-H and C-C bond activation are also open at higher energies.

  12. Acetic Acid Increases Stability of Silage under Aerobic Conditions

    PubMed Central

    Danner, H.; Holzer, M.; Mayrhuber, E.; Braun, R.

    2003-01-01

    The effects of various compounds on the aerobic stability of silages were evaluated. It has been observed that inoculation of whole-crop maize with homofermentative lactic acid bacteria leads to silages which have low stability against aerobic deterioration, while inoculation with heterofermentative lactic acid bacteria, such as Lactobacillus brevis or Lactobacillus buchneri, increases stability. Acetic acid has been proven to be the sole substance responsible for the increased aerobic stability, and this acid acts as an inhibitor of spoilage organisms. Therefore, stability increases exponentially with acetic acid concentration. Only butyric acid has a similar effect. Other compounds, like lactic acid, 1,2-propanediol, and 1-propanol, have been shown to have no effect, while fructose and mannitol reduce stability. PMID:12514042

  13. Catalysis of the Carbonylation of Alcohols to Carboxylic Acids Including Acetic Acid Synthesis from Methanol.

    ERIC Educational Resources Information Center

    Forster, Denis; DeKleva, Thomas W.

    1986-01-01

    Monsanto's highly successful synthesis of acetic acid from methanol and carbon monoxide illustrates use of new starting materials to replace pretroleum-derived ethylene. Outlines the fundamental aspects of the acetic acid process and suggests ways of extending the synthesis to higher carboxylic acids. (JN)

  14. 21 CFR 184.1005 - Acetic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... as ethanoic acid. It occurs naturally in plant and animal tissues. It is produced by fermentation of...). Current good manufacturing practice results in a maximum level as served, of 0.25 percent for baked...

  15. 21 CFR 184.1005 - Acetic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... as ethanoic acid. It occurs naturally in plant and animal tissues. It is produced by fermentation of...). Current good manufacturing practice results in a maximum level as served, of 0.25 percent for baked...

  16. 21 CFR 184.1005 - Acetic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... as ethanoic acid. It occurs naturally in plant and animal tissues. It is produced by fermentation of...). Current good manufacturing practice results in a maximum level as served, of 0.25 percent for baked...

  17. 21 CFR 184.1005 - Acetic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... as ethanoic acid. It occurs naturally in plant and animal tissues. It is produced by fermentation of...). Current good manufacturing practice results in a maximum level as served, of 0.25 percent for baked...

  18. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  19. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  20. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  1. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  2. Different Protonation Equilibria of 4-Methylimidazole and Acetic Acid

    SciTech Connect

    Gu, Wei; Helms, Volkhard H.

    2007-12-03

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Dynamic protonation equilibria in water of one 4-methylimidazole molecule as well as for pairs and groups consisting of 4- methylimidazole, acetic acid and bridging water molecules are studied using Q-HOP molecular dynamics simulation. We find a qualitatively different protonation behavior of 4-methylimidazole compared to that of acetic acid. On one hand, deprotonated, neutral 4-methylimidazole cannot as easily attract a freely diffusing extra proton from solution. Once the proton is bound, however, it remains tightly bound on a time scale of tens of nanoseconds. In a linear chain composed of acetic acid, a separating water molecule and 4-methylimidazole, an excess proton is equally shared between 4-methylimidazole and water. When a water molecule is linearly placed between two acetic acid molecules, the excess proton is always found on the central water. On the other hand, an excess proton in a 4-methylimidazole-water- 4-methylimidazole chain is always localized on one of the two 4- methylimidazoles. These findings are of interest to the discussion of proton transfer along chains of amino acids and water molecules in biomolecules.

  3. Condensation of acetol and acetic acid vapor with sprayed liquid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A cellulose-derived fraction of biomass pyrolysis vapor was simulated by evaporating acetol and acetic acid (AA) from flasks on a hot plate. The liquid in the flasks was infused with heated nitrogen. The vapor/nitrogen stream was superheated in a tube oven and condensed by contact with a cloud of ...

  4. Thermodynamic analysis of acetic acid steam reforming for hydrogen production

    NASA Astrophysics Data System (ADS)

    Goicoechea, Saioa; Ehrich, Heike; Arias, Pedro L.; Kockmann, Norbert

    2015-04-01

    A thermodynamic analysis of hydrogen generation by acetic acid steam reforming has been carried out with respect to applications in solid oxide fuel cells. The effect of operating parameters on equilibrium composition has been examined focusing especially on hydrogen and carbon monoxide production, which are the fuels in this type of fuel cell. The temperature, steam to acetic acid ratio, and to a lesser extent pressure affect significantly the equilibrium product distribution due to their influence on steam reforming, thermal decomposition and water-gas shift reaction. The study shows that steam reforming of acetic acid with a steam to acetic acid ratio of 2 to 1 is thermodynamically feasible with hydrogen, carbon monoxide and water as the main products at the equilibrium at temperatures higher than 700 °C, and achieving CO/CO2 ratios higher than 1. Thus, it can be concluded that within the operation temperature range of solid oxide fuel cells - between 700 °C and 1000 °C - the production of a gas rich in hydrogen and carbon monoxide is promoted.

  5. Intramolecular carbon isotope distribution of acetic acid in vinegar.

    PubMed

    Hattori, Ryota; Yamada, Keita; Kikuchi, Makiko; Hirano, Satoshi; Yoshida, Naohiro

    2011-09-14

    Compound-specific carbon isotope analysis of acetic acid is useful for origin discrimination and quality control of vinegar. Intramolecular carbon isotope distributions, which are each carbon isotope ratios of the methyl and carboxyl carbons in the acetic acid molecule, may be required to obtain more detailed information to discriminate such origin. In this study, improved gas chromatography-pyrolysis-gas chromatography-combustion-isotope ratio mass spectrometry (GC-Py-GC-C-IRMS) combined with headspace solid-phase microextraction (HS-SPME) was used to measure the intramolecular carbon isotope distributions of acetic acid in 14 Japanese vinegars. The results demonstrated that the methyl carbons of acetic acid molecules in vinegars produced from plants were mostly isotopically depleted in (13)C relative to the carboxyl carbon. Moreover, isotopic differences (δ(13)C(carboxyl) - δ(13)C(methyl)) had a wide range from -0.3 to 18.2‰, and these values differed among botanical origins, C3, C4, and CAM plants.

  6. Release of acetic acid and furfural from cork products.

    PubMed

    Salthammer, T; Fuhrmann, F

    2000-06-01

    Cork samples were exposed to different temperatures and volatile ingredients were analyzed using gas chromatography/mass spectrometry (GC/MS). Thermal treatment at 180 degrees C yielded considerable amounts of furfural and acetic acid. In accordance with previous investigations it was concluded that both compounds are produced under thermal stress from degradation of polyoses.

  7. Occurrence and metabolism of 7-hydroxy-2-indolinone-3-acetic acid in Zea mays

    NASA Technical Reports Server (NTRS)

    Lewer, P.; Bandurski, R. S.

    1987-01-01

    7-Hydroxy-2-indolinone-3-acetic acid was identified as a catabolite of indole-3-acetic acid in germinating kernels of Zea mays and found to be present in amounts of ca 3.1 nmol/kernel. 7-Hydroxy-2-indolinone-3-acetic acid was shown to be a biosynthetic intermediate between 2-indolinone-3-acetic acid and 7-hydroxy-2-indolinone-3-acetic acid-7'-O-glucoside in both kernels and roots of Zea mays. Further metabolism of 7-hydroxy-2-[5-3H]-indolinone-3-acetic acid-7'-O-glucoside occurred to yield tritiated water plus, as yet, uncharacterized products.

  8. Effects of acetic acid on light scattering from cells

    NASA Astrophysics Data System (ADS)

    Marina, Oana C.; Sanders, Claire K.; Mourant, Judith R.

    2012-08-01

    Acetic acid has been used for decades as an aid for the detection of precancerous cervical lesions, and the use of acetic acid is being investigated in several other tissues. Nonetheless, the mechanism of acetowhitening is unclear. This work tests some of the hypotheses in the literature and measures changes in light scattering specific to the nucleus and the cytoplasm. Wide angle side scattering from both the nucleus and the cytoplasm increases with acetic application to tumorigenic cells, with the increase in nuclear scattering being greater. In one cell line, the changes in nuclear scattering are likely due to an increase in number or scattering efficiency of scattering centers smaller than the wavelength of excitation light. There are likely several cellular changes that cause acetowhitening and the cellular changes may differ with cell type. These results should lead to a better understanding of acetowhitening and potentially the development of adjunct techniques to improve the utility of acetic acid application. For the well-studied case of cervical tissue, acetowhitening has been shown to be sensitive, but not specific for oncogenic changes needing treatment.

  9. Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor.

    PubMed

    Mounir, Majid; Shafiei, Rasoul; Zarmehrkhorshid, Raziyeh; Hamouda, Allal; Ismaili Alaoui, Mustapha; Thonart, Philippe

    2016-02-01

    The activity of bacterial strains significantly influences the quality and the taste of vinegar. Previous studies of acetic acid bacteria have primarily focused on the ability of bacterial strains to produce high amounts of acetic acid. However, few studies have examined the production of gluconic acid during acetous fermentation at high temperatures. The production of vinegar at high temperatures by two strains of acetic acid bacteria isolated from apple and cactus fruits, namely AF01 and CV01, respectively, was evaluated in this study. The simultaneous production of gluconic and acetic acids was also examined in this study. Biochemical and molecular identification based on a 16s rDNA sequence analysis confirmed that these strains can be classified as Acetobacter pasteurianus. To assess the ability of the isolated strains to grow and produce acetic acid and gluconic acid at high temperatures, a semi-continuous fermentation was performed in a 20-L bioreactor. The two strains abundantly grew at a high temperature (41°C). At the end of the fermentation, the AF01 and CV01 strains yielded acetic acid concentrations of 7.64% (w/v) and 10.08% (w/v), respectively. Interestingly, CV01 was able to simultaneously produce acetic and gluconic acids during acetic fermentation, whereas AF01 mainly produced acetic acid. In addition, CV01 was less sensitive to ethanol depletion during semi-continuous fermentation. Finally, the enzymatic study showed that the two strains exhibited high ADH and ALDH enzyme activity at 38°C compared with the mesophilic reference strain LMG 1632, which was significantly susceptible to thermal inactivation. PMID:26253254

  10. Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor.

    PubMed

    Mounir, Majid; Shafiei, Rasoul; Zarmehrkhorshid, Raziyeh; Hamouda, Allal; Ismaili Alaoui, Mustapha; Thonart, Philippe

    2016-02-01

    The activity of bacterial strains significantly influences the quality and the taste of vinegar. Previous studies of acetic acid bacteria have primarily focused on the ability of bacterial strains to produce high amounts of acetic acid. However, few studies have examined the production of gluconic acid during acetous fermentation at high temperatures. The production of vinegar at high temperatures by two strains of acetic acid bacteria isolated from apple and cactus fruits, namely AF01 and CV01, respectively, was evaluated in this study. The simultaneous production of gluconic and acetic acids was also examined in this study. Biochemical and molecular identification based on a 16s rDNA sequence analysis confirmed that these strains can be classified as Acetobacter pasteurianus. To assess the ability of the isolated strains to grow and produce acetic acid and gluconic acid at high temperatures, a semi-continuous fermentation was performed in a 20-L bioreactor. The two strains abundantly grew at a high temperature (41°C). At the end of the fermentation, the AF01 and CV01 strains yielded acetic acid concentrations of 7.64% (w/v) and 10.08% (w/v), respectively. Interestingly, CV01 was able to simultaneously produce acetic and gluconic acids during acetic fermentation, whereas AF01 mainly produced acetic acid. In addition, CV01 was less sensitive to ethanol depletion during semi-continuous fermentation. Finally, the enzymatic study showed that the two strains exhibited high ADH and ALDH enzyme activity at 38°C compared with the mesophilic reference strain LMG 1632, which was significantly susceptible to thermal inactivation.

  11. [Conversion of acetic acid to methane by thermophiles

    SciTech Connect

    Zinder, S.H.

    1993-01-01

    The primary goal of this project is to obtain a better understanding of thermophilic microorganisms which convert acetic acid to CH[sub 4]. The previous funding period represents a departure from earlier research in this laboratory, which was more physiological and ecological. The present work is centered on the biochemistry of the thermophile Methanothrix sp. strain CALS-1. this organism presents a unique opportunity, with its purity and relatively rapid growth, to do comparative biochemical studies with the other major acetotrophic genus Methanosarcina. We previously found that Methanothrix is capable of using acetate at concentrations 100 fold lower than Methanosarcina. This finding suggests that there are significant differences in the pathways of methanogenesis from acetate in the two genera.

  12. (Conversion of acetic acid to methane by thermophiles: Progress report)

    SciTech Connect

    Zinder, S.

    1991-01-01

    The objective of this project is to provide an understanding of thermophilic anaerobic microorganisms capable of breaking down acetic acid, the precursor of two-thirds of the methane produced by anaerobic bioreactors. Recent results include: (1) the isolation of Methanothrix strain CALLS-1, which grows much more rapidly than mesophilic strains; (2) the demonstration that thermophilic cultures of Methanosarcina and Methanothrix show minimum thresholds for acetate utilization of 1--2.5 mM and 10--20{mu}m respectively, in agreement with ecological data indicating that Methanothrix is favored by low acetate concentration; (3) the demonstration of high levels of thermostable acetyl-coA synthetase and carbon monoxide dehydrogenase in cell-free extracts of Methanothrix strains CALS-1; (4) the demonstration of methanogenesis from acetate and ATP in cell free extracts of strain CALS-1. (5) the demonstration that methanogenesis from acetate required 2 ATP/methane, and, in contrast to Methanosarcina, was independent of hydrogen and other electron donors; (6) the finding that entropy effects must be considered when predicting the level of hydrogen in thermophilic syntrophic cultures. (7) the isolation and characterization of the Desulfotomaculum thermoacetoxidans. Current research is centered on factors which allow thermophilic Methanothrix to compete with Methanosarcina.

  13. [Conversion of acetic acid to methane by thermophiles: Progress report

    SciTech Connect

    Zinder, S.

    1991-12-31

    The objective of this project is to provide an understanding of thermophilic anaerobic microorganisms capable of breaking down acetic acid, the precursor of two-thirds of the methane produced by anaerobic bioreactors. Recent results include: (1) the isolation of Methanothrix strain CALLS-1, which grows much more rapidly than mesophilic strains; (2) the demonstration that thermophilic cultures of Methanosarcina and Methanothrix show minimum thresholds for acetate utilization of 1--2.5 mM and 10--20{mu}m respectively, in agreement with ecological data indicating that Methanothrix is favored by low acetate concentration; (3) the demonstration of high levels of thermostable acetyl-coA synthetase and carbon monoxide dehydrogenase in cell-free extracts of Methanothrix strains CALS-1; (4) the demonstration of methanogenesis from acetate and ATP in cell free extracts of strain CALS-1. (5) the demonstration that methanogenesis from acetate required 2 ATP/methane, and, in contrast to Methanosarcina, was independent of hydrogen and other electron donors; (6) the finding that entropy effects must be considered when predicting the level of hydrogen in thermophilic syntrophic cultures. (7) the isolation and characterization of the Desulfotomaculum thermoacetoxidans. Current research is centered on factors which allow thermophilic Methanothrix to compete with Methanosarcina.

  14. Comparative genotoxicity of halogenated acetic acids found in drinking water.

    PubMed

    Giller, S; Le Curieux, F; Erb, F; Marzin, D

    1997-09-01

    Three short-term assays (SOS chromotest, Ames fluctuation test and newt micronucleus test) were performed to detect the genotoxic activity of organohalides, compounds likely to be found in chlorinated and/or ozonated drinking water: monochloro-, dichloro- and trichloroacetic acids and monobromo-, dibromo- and tribromoacetic acids. With the SOS chromotest, only three of the chemicals studied (dichloroacetic acid, dibromo- and tribromoacetic acids) were found to induce primary DNA damage in Escherichia coli PQ 37. In the Ames fluctuation test, all the compounds except monochloroacetic acid showed mutagenic activity in Salmonella typhimurium strain TA100. In these two in vitro tests, a good correlation between increasing number of substituents and decreasing mutagenicity was observed. Namely, the toxicity of brominated and chlorinated acetic acids decreased when the number of substituents increased. The newt micronucleus test detected a weak clastogenic effect on the peripheral blood erythrocytes of Pleurodeles waltl larvae for trichloroacetic acid only.

  15. Synthesis and evaluation of novel polysaccharide-Gd-DTPA compounds as contrast agent for MRI

    NASA Astrophysics Data System (ADS)

    Sun, Guoying; Feng, Jianghua; Jing, Fengying; Pei, Fengkui; Liu, Maili

    2003-09-01

    Macromolecular conjugates of two kinds of natural polysaccharides, that from Panax quinquefolium linn (PQPS) and Ganoderma applanatum pat (GAPS), with gadolinium-diethylenetriaminepenta-acetic acid (Gd-DTPA) have been synthesized and characterized by means of FTIR, elementary analysis and ICP-AES. Their stability was investigated by competition study with Ca 2+, EDTA (ethylenediaminetetraacetic acid) and DTPA. Polysaccharide-bound complexes exhibit T1 relaxivities of 1.5-1.7 times that of Gd-DTPA in D 2O at 25°C and 9.4 T. MR imaging of Sprague-Dawley (SD) rats showed remarkable enhancement in rat liver and kidney after i.v. injection of these two complexes: liver parenchyma 60.9±5.6%, 57.8±7.4% at 65-85 min; kidney 144.9±14.5%, 199.9±25.4% at 10-30 min for PQPS-Gd-DTPA, GAPS-Gd-DTPA at gadolinium dose of 0.083 and 0.082 mmol/kg, respectively. Our preliminary in vivo and in vitro study indicates that the two kinds of polysaccharide-bound complexes are potential tissue-specific contrast agents for MRI.

  16. Gadolinium Ethoxybenzyl Diethylenetriamine Pentaacetic Acid (Gd-EOB-DTPA)-Enhanced Magnetic Resonance Imaging and Multidetector-Row Computed Tomography for the Diagnosis of Hepatocellular Carcinoma

    PubMed Central

    Ye, Feng; Liu, Jun; Ouyang, Han

    2015-01-01

    Abstract The purpose of this meta-analysis was to compare the diagnostic accuracy of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) and multidetector-row computed tomography (MDCT) for hepatocellular carcinoma (HCC). Medline, Cochrane, EMBASE, and Google Scholar databases were searched until July 4, 2014, using combinations of the following terms: gadoxetic acid disodium, Gd-EOB-DTPA, multidetector CT, contrast-enhanced computed tomography, and magnetic resonance imaging. Inclusion criteria were as follows: confirmed diagnosis of primary HCC by histopathological examination of a biopsy specimen; comparative study of MRI using Gd-EOB-DTPA and MDCT for diagnosis of HCC; and studies that provided quantitative outcome data. The pooled sensitivity and specificity of the 2 methods were compared, and diagnostic accuracy was assessed with alternative-free response receiver-operating characteristic analysis. Nine studies were included in the meta-analysis, and a total of 1439 lesions were examined. The pooled sensitivity and specificity for 1.5T MRI were 0.95 and 0.96, respectively, for 3.0T MRI were 0.91 and 0.96, respectively, and for MDCT were 0.74 and 0.93, respectively. The pooled diagnostic odds ratio for 1.5T and 3.0T MRI was 242.96, respectively, and that of MDCT was 33.47. To summarize, Gd-EOB-DTPA-enhanced MRI (1.5T and 3.0T) has better diagnostic accuracy for HCC than MDCT. PMID:26266348

  17. Evaporation kinetics of acetic acid-water solutions

    NASA Astrophysics Data System (ADS)

    Duffey, K.; Wong, N.; Saykally, R.; Cohen, R. C.

    2012-12-01

    The transport of water molecules across vapor-liquid interfaces in the atmosphere is a crucial step in the formation and evolution of cloud droplets. Despite decades of study, the effects of solutes on the mechanism and rate of evaporation and condensation remain poorly characterized. The present work aims to determine the effect of atmospherically-relevant solutes on the evaporation rate of water. In our experiments, we create a train of micron-sized droplets and measure their temperature via Raman thermometry as they undergo evaporation without condensation. Analysis of the cooling rate yields the evaporation coefficient (γ). Previous work has shown that inorganic salts have little effect on γ, with surface-adsorbing anions causing a slight reduction in the coefficient from that measured for pure water. Organic acids are ubiquitous in aqueous aerosol and have been shown to disrupt the surface structure of water. Here we describe measurements of the evaporation rate of acetic acid solutions, showing that acetic acid reduces γ to a larger extent than inorganic ions, and that γ decreases with increasing acetic acid concentration.

  18. 40 CFR 721.10448 - Acetic acid, hydroxy- methoxy-, methyl ester, reaction products with substituted alkylamine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ester, reaction products with substituted alkylamine (generic). 721.10448 Section 721.10448 Protection... Acetic acid, hydroxy- methoxy-, methyl ester, reaction products with substituted alkylamine (generic). (a... generically as acetic acid, hydroxymethoxy-, methyl ester, reaction products with substituted alkylamine...

  19. 40 CFR 721.10448 - Acetic acid, hydroxy- methoxy-, methylester, reaction products with substituted alkylamine...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-, methylester, reaction products with substituted alkylamine (generic). 721.10448 Section 721.10448 Protection... Acetic acid, hydroxy- methoxy-, methylester, reaction products with substituted alkylamine (generic). (a... generically as acetic acid, hydroxymethoxy-, methyl ester, reaction products with substituted alkylamine...

  20. Acetic acid enhances endurance capacity of exercise-trained mice by increasing skeletal muscle oxidative properties.

    PubMed

    Pan, Jeong Hoon; Kim, Jun Ho; Kim, Hyung Min; Lee, Eui Seop; Shin, Dong-Hoon; Kim, Seongpil; Shin, Minkyeong; Kim, Sang Ho; Lee, Jin Hyup; Kim, Young Jun

    2015-01-01

    Acetic acid has been shown to promote glycogen replenishment in skeletal muscle during exercise training. In this study, we investigated the effects of acetic acid on endurance capacity and muscle oxidative metabolism in the exercise training using in vivo mice model. In exercised mice, acetic acid induced a significant increase in endurance capacity accompanying a reduction in visceral adipose depots. Serum levels of non-esterified fatty acid and urea nitrogen were significantly lower in acetic acid-fed mice in the exercised mice. Importantly, in the mice, acetic acid significantly increased the muscle expression of key enzymes involved in fatty acid oxidation and glycolytic-to-oxidative fiber-type transformation. Taken together, these findings suggest that acetic acid improves endurance exercise capacity by promoting muscle oxidative properties, in part through the AMPK-mediated fatty acid oxidation and provide an important basis for the application of acetic acid as a major component of novel ergogenic aids.

  1. 40 CFR 180.1258 - Acetic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Acetic acid; exemption from the... Exemptions From Tolerances § 180.1258 Acetic acid; exemption from the requirement of a tolerance. (a) An... acetic acid when used as a preservative on post-harvest agricultural commodities intended for animal...

  2. Acetic Acid bacteria: physiology and carbon sources oxidation.

    PubMed

    Mamlouk, Dhouha; Gullo, Maria

    2013-12-01

    Acetic acid bacteria (AAB) are obligately aerobic bacteria within the family Acetobacteraceae, widespread in sugary, acidic and alcoholic niches. They are known for their ability to partially oxidise a variety of carbohydrates and to release the corresponding metabolites (aldehydes, ketones and organic acids) into the media. Since a long time they are used to perform specific oxidation reactions through processes called "oxidative fermentations", especially in vinegar production. In the last decades physiology of AAB have been widely studied because of their role in food production, where they act as beneficial or spoiling organisms, and in biotechnological industry, where their oxidation machinery is exploited to produce a number of compounds such as l-ascorbic acid, dihydroxyacetone, gluconic acid and cellulose. The present review aims to provide an overview of AAB physiology focusing carbon sources oxidation and main products of their metabolism.

  3. Morphological diversity of Blastocystis hominis in sodium acetate-acetic acid-formalin-preserved stool samples stained with iron hematoxylin.

    PubMed

    MacPherson, D W; MacQueen, W M

    1994-01-01

    The objective of this investigation was to study the morphological characteristics of Blastocystis hominis in sodium acetate-acetic acid-Formalin-preserved stool samples. Routinely processed samples were examined for morphological detail, including size, shape, nuclear detail, and central body characteristics. Morphological findings revealing the importance of recognizing B. hominis in the diagnostic laboratory are described. PMID:7510311

  4. Change in the plasmid copy number in acetic acid bacteria in response to growth phase and acetic acid concentration.

    PubMed

    Akasaka, Naoki; Astuti, Wiwik; Ishii, Yuri; Hidese, Ryota; Sakoda, Hisao; Fujiwara, Shinsuke

    2015-06-01

    Plasmids pGE1 (2.5 kb), pGE2 (7.2 kb), and pGE3 (5.5 kb) were isolated from Gluconacetobacter europaeus KGMA0119, and sequence analyses revealed they harbored 3, 8, and 4 genes, respectively. Plasmid copy numbers (PCNs) were determined by real-time quantitative PCR at different stages of bacterial growth. When KGMA0119 was cultured in medium containing 0.4% ethanol and 0.5% acetic acid, PCN of pGE1 increased from 7 copies/genome in the logarithmic phase to a maximum of 12 copies/genome at the beginning of the stationary phase, before decreasing to 4 copies/genome in the late stationary phase. PCNs for pGE2 and pGE3 were maintained at 1-3 copies/genome during all phases of growth. Under a higher concentration of ethanol (3.2%) the PCN for pGE1 was slightly lower in all the growth stages, and those of pGE2 and pGE3 were unchanged. In the presence of 1.0% acetic acid, PCNs were higher for pGE1 (10 copies/genome) and pGE3 (6 copies/genome) during the logarithmic phase. Numbers for pGE2 did not change, indicating that pGE1 and pGE3 increase their PCNs in response to acetic acid. Plasmids pBE2 and pBE3 were constructed by ligating linearized pGE2 and pGE3 into pBR322. Both plasmids were replicable in Escherichia coli, Acetobacter pasteurianus and G. europaeus, highlighting their suitability as vectors for acetic acid bacteria.

  5. Change in the plasmid copy number in acetic acid bacteria in response to growth phase and acetic acid concentration.

    PubMed

    Akasaka, Naoki; Astuti, Wiwik; Ishii, Yuri; Hidese, Ryota; Sakoda, Hisao; Fujiwara, Shinsuke

    2015-06-01

    Plasmids pGE1 (2.5 kb), pGE2 (7.2 kb), and pGE3 (5.5 kb) were isolated from Gluconacetobacter europaeus KGMA0119, and sequence analyses revealed they harbored 3, 8, and 4 genes, respectively. Plasmid copy numbers (PCNs) were determined by real-time quantitative PCR at different stages of bacterial growth. When KGMA0119 was cultured in medium containing 0.4% ethanol and 0.5% acetic acid, PCN of pGE1 increased from 7 copies/genome in the logarithmic phase to a maximum of 12 copies/genome at the beginning of the stationary phase, before decreasing to 4 copies/genome in the late stationary phase. PCNs for pGE2 and pGE3 were maintained at 1-3 copies/genome during all phases of growth. Under a higher concentration of ethanol (3.2%) the PCN for pGE1 was slightly lower in all the growth stages, and those of pGE2 and pGE3 were unchanged. In the presence of 1.0% acetic acid, PCNs were higher for pGE1 (10 copies/genome) and pGE3 (6 copies/genome) during the logarithmic phase. Numbers for pGE2 did not change, indicating that pGE1 and pGE3 increase their PCNs in response to acetic acid. Plasmids pBE2 and pBE3 were constructed by ligating linearized pGE2 and pGE3 into pBR322. Both plasmids were replicable in Escherichia coli, Acetobacter pasteurianus and G. europaeus, highlighting their suitability as vectors for acetic acid bacteria. PMID:25575969

  6. Distinct Effects of Sorbic Acid and Acetic Acid on the Electrophysiology and Metabolism of Bacillus subtilis

    PubMed Central

    van Beilen, J. W. A.; Teixeira de Mattos, M. J.; Hellingwerf, K. J.

    2014-01-01

    Sorbic acid and acetic acid are among the weak organic acid preservatives most commonly used to improve the microbiological stability of foods. They have similar pKa values, but sorbic acid is a far more potent preservative. Weak organic acids are most effective at low pH. Under these circumstances, they are assumed to diffuse across the membrane as neutral undissociated acids. We show here that the level of initial intracellular acidification depends on the concentration of undissociated acid and less on the nature of the acid. Recovery of the internal pH depends on the presence of an energy source, but acidification of the cytosol causes a decrease in glucose flux. Furthermore, sorbic acid is a more potent uncoupler of the membrane potential than acetic acid. Together these effects may also slow the rate of ATP synthesis significantly and may thus (partially) explain sorbic acid's effectiveness. PMID:25038097

  7. Gas-Phase Structures of Ketene and Acetic Acid from Acetic Anhydride Using Very-High-Temperature Gas Electron Diffraction.

    PubMed

    Atkinson, Sandra J; Noble-Eddy, Robert; Masters, Sarah L

    2016-03-31

    The gas-phase molecular structure of ketene has been determined using samples generated by the pyrolysis of acetic anhydride (giving acetic acid and ketene), using one permutation of the very-high-temperature (VHT) inlet nozzle system designed and constructed for the gas electron diffraction (GED) apparatus based at the University of Canterbury. The gas-phase structures of acetic anhydride, acetic acid, and ketene are presented and compared to previous electron diffraction and microwave spectroscopy data to show improvements in data extraction and manipulation with current methods. Acetic anhydride was modeled with two conformers, rather than a complex dynamic model as in the previous study, to allow for inclusion of multiple pyrolysis products. The redetermined gas-phase structure of acetic anhydride (obtained using the structure analysis restrained by ab initio calculations for electron diffraction method) was compared to that from the original study, providing an improvement on the description of the low vibrational torsions compared to the dynamic model. Parameters for ketene and acetic acid (both generated by the pyrolysis of acetic anhydride) were also refined with higher accuracy than previously reported in GED studies, with structural parameter comparisons being made to prior experimental and theoretical studies. PMID:26916368

  8. Gas-Phase Structures of Ketene and Acetic Acid from Acetic Anhydride Using Very-High-Temperature Gas Electron Diffraction.

    PubMed

    Atkinson, Sandra J; Noble-Eddy, Robert; Masters, Sarah L

    2016-03-31

    The gas-phase molecular structure of ketene has been determined using samples generated by the pyrolysis of acetic anhydride (giving acetic acid and ketene), using one permutation of the very-high-temperature (VHT) inlet nozzle system designed and constructed for the gas electron diffraction (GED) apparatus based at the University of Canterbury. The gas-phase structures of acetic anhydride, acetic acid, and ketene are presented and compared to previous electron diffraction and microwave spectroscopy data to show improvements in data extraction and manipulation with current methods. Acetic anhydride was modeled with two conformers, rather than a complex dynamic model as in the previous study, to allow for inclusion of multiple pyrolysis products. The redetermined gas-phase structure of acetic anhydride (obtained using the structure analysis restrained by ab initio calculations for electron diffraction method) was compared to that from the original study, providing an improvement on the description of the low vibrational torsions compared to the dynamic model. Parameters for ketene and acetic acid (both generated by the pyrolysis of acetic anhydride) were also refined with higher accuracy than previously reported in GED studies, with structural parameter comparisons being made to prior experimental and theoretical studies.

  9. Decorporation of systemically distributed americium by a novel orally administered diethylenetriaminepentaacetic acid (DTPA) formulation in beagle dogs.

    PubMed

    Wilson, James P; Cobb, Ronald R; Dungan, Nathanael W; Matthews, Laura L; Eppler, Bärbel; Aiello, Kenneth V; Curtis, Shiro; Boger, Teannetta; Guilmette, Raymond A; Weber, Waylon; Doyle-Eisele, Melanie; Talton, James D

    2015-03-01

    Novel decorporation agents are being developed to protect against radiological accidents and terrorists attacks. Radioactive americium is a significant component of nuclear fallout. Removal of large radioactive materials, such as 241Am, from exposed persons is a subject of significant interest due to the hazards they pose. The objective of this study was to evaluate the dose-related efficacy of daily doses of NanoDTPA™ Capsules for decorporating Am administered intravenously as a soluble citrate complex to male and female beagle dogs. In addition, the efficacy of the NanoDTPA™ Capsules for decorporating 241Am was directly compared to intravenously administered saline and DTPA. Animals received a single IV administration of 241Am(III)-citrate on Day 0. One day after radionuclide administration, one of four different doses of NanoDTPA™ Capsules [1, 2, or 6 capsules d(-1) (30 mg, 60 mg, or 180 mg DTPA) or 2 capsules BID], IV Zn-DTPA (5 mg kg(-1) pentetate zinc trisodium) as a positive control, or IV saline as a placebo were administered. NanoDTPA™ Capsules, IV Zn-DTPA, or IV saline was administered on study days 1-14. Animals were euthanized on day 21. A full necropsy was conducted, and liver, spleen, kidneys, lungs and trachea, tracheobronchial lymph nodes (TBLN), muscle samples (right and left quadriceps), gastrointestinal (GI) tract (stomach plus esophagus, upper and lower intestine), gonads, two femurs, lumbar vertebrae (L1-L4), and all other soft tissue remains were collected. Urinary and fecal excretion profiles were increased approximately 10-fold compared to those for untreated animals. Tissue contents were decreased compared to untreated controls. In particular, liver content was decreased by approximately eightfold compared to untreated animals. The results from this study further demonstrate that oral NanoDTPA™ Capsules are equally efficient compared to IV Zn-DTPA in decorporation of actinides. PMID:25627942

  10. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance

    PubMed Central

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H.; Patton-Vogt, Jana; Bakalinsky, Alan T.

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification. PMID:25673654

  11. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance.

    PubMed

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification.

  12. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance.

    PubMed

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification. PMID:25673654

  13. Formation of biologically relevant carboxylic acids during the gamma irradiation of acetic acid

    NASA Technical Reports Server (NTRS)

    Negron-Mendoza, A.; Ponnamperuma, C.

    1976-01-01

    Irradiation of aqueous solutions of acetic acid with gamma rays produced several carboxylic acids in small yield. Their identification was based on the technique of gas chromatography combined with mass spectrometry. Some of these acids are Krebs Cycle intermediates. Their simultaneous formation in experiments simulating the primitive conditions on the earth suggests that metabolic pathways may have had their origin in prebiotic chemical processes.

  14. Effect of acetic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    PubMed

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-09-01

    An integrated citric acid-methane fermentation process was proposed to solve the problem of extraction wastewater in citric acid fermentation process. Extraction wastewater was treated by anaerobic digestion and then recycled for the next batch of citric acid fermentation to eliminate wastewater discharge and reduce water resource consumption. Acetic acid as an intermediate product of methane fermentation was present in anaerobic digestion effluent. In this study, the effect of acetic acid on citric acid fermentation was investigated and results showed that lower concentration of acetic acid could promote Aspergillus niger growth and citric acid production. 5-Cyano-2,3-ditolyl tetrazolium chloride (CTC) staining was used to quantify the activity of A. niger cells, and the results suggested that when acetic acid concentration was above 8 mM at initial pH 4.5, the morphology of A. niger became uneven and the part of the cells' activity was significantly reduced, thereby resulting in deceasing of citric acid production. Effects of acetic acid on citric acid fermentation, as influenced by initial pH and cell number in inocula, were also examined. The result indicated that inhibition by acetic acid increased as initial pH declined and was rarely influenced by cell number in inocula.

  15. Temperature dependence of hydrogen-bond dynamics in acetic acid-water solutions.

    PubMed

    D'Amico, Francesco; Bencivenga, Filippo; Gessini, Alessandro; Masciovecchio, Claudio

    2010-08-19

    An inelastic UV scattering experiment has been carried out on acetic acid-water solutions as a function of temperature and concentration. The analysis of experimental data indicates the presence of a crossover temperature (T(c) approximately 325 +/- 10 K). Above T(c), the energy of hydrogen bonds responsible for water-acetic acid and acetic acid-acetic acid interactions is strongly reduced. This leads to a reduction in the average number of water molecule interacting with acetic acid, as well as to a lower number of acetic acid clusters. The latter behavior can be mainly ascribed to a temperature change in the activation energy of carboxylic groups of acetic acid. These results may be also relevant to better understand the folding mechanism in protein-water solutions. PMID:20701390

  16. FIRST ACETIC ACID SURVEY WITH CARMA IN HOT MOLECULAR CORES

    SciTech Connect

    Shiao, Y.-S. Jerry; Looney, Leslie W.; Snyder, Lewis E.; Friedel, Douglas N.; Remijan, Anthony J. E-mail: aremijan@nrao.ed

    2010-06-10

    Acetic acid (CH{sub 3}COOH) has been detected mainly in hot molecular cores where the distribution between oxygen (O) and nitrogen (N) containing molecular species is cospatial within the telescope beam. Previous work has presumed that similar cores with cospatial O and N species may be an indicator for detecting acetic acid. However, does this presumption hold as higher spatial resolution observations of large O- and N-containing molecules become available? As the number of detected acetic acid sources is still low, more observations are needed to support this postulate. In this paper, we report the first acetic acid survey conducted with the Combined Array for Research in Millimeter-wave Astronomy at 3 mm wavelengths toward G19.61-0.23, G29.96-0.02, and IRAS 16293-2422. We have successfully detected CH{sub 3}COOH via two transitions toward G19.61-0.23 and tentatively confirmed the detection toward IRAS 16293-2422 A. The determined column density of CH{sub 3}COOH is 2.0(1.0) x 10{sup 16} cm{sup -2} and the abundance ratio of CH{sub 3}COOH to methyl formate (HCOOCH{sub 3}) is 2.2(0.1) x 10{sup -1} toward G19.61-0.23. Toward IRAS 16293 A, the determined column density of CH{sub 3}COOH is {approx}1.6 x 10{sup 15} cm{sup -2} and the abundance ratio of CH{sub 3}COOH to methyl formate (HCOOCH{sub 3}) is {approx}1.0 x 10{sup -1}, both of which are consistent with abundance ratios determined toward other hot cores. Finally, we model all known line emission in our passband to determine physical conditions in the regions and introduce a new metric to better reveal weak spectral features that are blended with stronger lines or that may be near the 1{sigma}-2{sigma} detection limit.

  17. Kinetic Modeling of Esterification of Ethylene Glycol with Acetic Acid

    NASA Astrophysics Data System (ADS)

    Yadav, Vishnu P.; Mukherjee, Rudra Palash; Bantraj, Kandi; Maity, Sunil K.

    2010-10-01

    The reaction kinetics of the esterification of ethylene glycol with acetic acid in the presence of cation exchange resin has been studied and kinetic models based on empirical and Langmuir approach has been developed. The Langmuir based model involving eight kinetic parameters fits experimental data much better compared to empirical model involving four kinetic parameters. The effect of temperature and catalyst loading on the reaction system has been analyzed. Further, the activation energy and frequency factor of the rate constants for Langmuir based model has been estimated.

  18. Kinetic Modeling of Esterification of Ethylene Glycol with Acetic Acid

    SciTech Connect

    Yadav, Vishnu P.; Maity, Sunil K.; Mukherjee, Rudra Palash; Bantraj, Kandi

    2010-10-26

    The reaction kinetics of the esterification of ethylene glycol with acetic acid in the presence of cation exchange resin has been studied and kinetic models based on empirical and Langmuir approach has been developed. The Langmuir based model involving eight kinetic parameters fits experimental data much better compared to empirical model involving four kinetic parameters. The effect of temperature and catalyst loading on the reaction system has been analyzed. Further, the activation energy and frequency factor of the rate constants for Langmuir based model has been estimated.

  19. Radioiron utilization and gossypol acetic acid in male rats

    SciTech Connect

    Tone, J.N.; Jensen, D.R.

    1985-01-01

    The 24-h incorporation of VZFe into circulating red blood cells, bone marrow, urine, liver, spleen, and skeletal muscle was measured in splenectomized and sham-splenectomized rats which had received a daily, oral dose of gossypol acetic acid (20 mg GAA/kg body wt) for 91 days. A significant decrease in total body weight gain was observed in all GAA treated animals. Splenectomized rats dosed with GAA exhibited a significant decrease in hemoglobin concentration, hematocrit and erythrocyte count. A significant increase in VZFe incorporation by red blood cells and a decrease in hepatic incorporation of VZFe indicate a preferential utilization of iron in erythropoiesis among GAA treated animals.

  20. Measurements of acetone, acetic acid, and formic acid in the northern midlatitude upper troposphere and lower stratosphere

    NASA Astrophysics Data System (ADS)

    Reiner, Thomas; MöHler, Ottmar; Arnold, Frank

    1999-06-01

    We have measured acetone, acetic acid, and formic acid concentrations in the upper troposphere and lower stratosphere over Germany. The measurements were performed by ion molecule reaction mass spectrometry using new kinetic data on ion molecule reactions of formic and acetic acids with negative ions obtained at our laboratory. Mean volume mixing ratios between 384 and 832 parts per trillion (pptv) for acetone, 110 and 357 pptv for acetic acid, and 59 and 215 pptv for formic acid were obtained. The correlation between formic acid and acetic acid was very poor (r2 = 0.14). A better correlation could be observed for acetone and acetic acid, with a correlation coefficient r2 = 0.46 and a slope (acetic acid/acetone) of 0.31. For acetic acid a maximum around 9 km was observed. A significant fraction of the acetic acid observed in the lower stratosphere may be due to in situ photochemical production by reactions of HO2 and CH3O2 with peroxy acetyl radicals produced by the photolysis of acetone. In the upper troposphere, vertical transport is much more efficient, and significant acetic acid production is only possible if HOx concentrations are elevated, making the production of acetic acid fast enough to compete with vertical transport.

  1. Quantitative Structure of an Acetate Dye Molecule Analogue at the TiO2–Acetic Acid Interface

    PubMed Central

    2016-01-01

    The positions of atoms in and around acetate molecules at the rutile TiO2(110) interface with 0.1 M acetic acid have been determined with a precision of ±0.05 Å. Acetate is used as a surrogate for the carboxylate groups typically employed to anchor monocarboxylate dye molecules to TiO2 in dye-sensitized solar cells (DSSC). Structural analysis reveals small domains of ordered (2 × 1) acetate molecules, with substrate atoms closer to their bulk terminated positions compared to the clean UHV surface. Acetate is found in a bidentate bridge position, binding through both oxygen atoms to two 5-fold titanium atoms such that the molecular plane is along the [001] azimuth. Density functional theory calculations provide adsorption geometries in excellent agreement with experiment. The availability of these structural data will improve the accuracy of charge transport models for DSSC. PMID:27110318

  2. Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance.

    PubMed

    Ma, Cui; Wei, Xiaowen; Sun, Cuihuan; Zhang, Fei; Xu, Jianren; Zhao, Xinqing; Bai, Fengwu

    2015-03-01

    Acetic acid is present in cellulosic hydrolysate as a potent inhibitor, and the superior acetic acid tolerance of Saccharomyces cerevisiae ensures good cell viability and efficient ethanol production when cellulosic raw materials are used as substrates. In this study, a mutant strain of S. cerevisiae ATCC4126 (Sc4126-M01) with improved acetic acid tolerance was obtained through screening strains transformed with an artificial zinc finger protein transcription factor (ZFP-TF) library. Further analysis indicated that improved acetic acid tolerance was associated with improved catalase (CAT) activity. The ZFP coding sequence associated with the improved phenotype was identified, and real-time RT-PCR analysis revealed that three of the possible genes involved in the enhanced acetic acid tolerance regulated by this ZFP-TF, namely YFL040W, QDR3, and IKS1, showed decreased transcription levels in Sc4126-M01 in the presence of acetic acid, compared to those in the control strain. Sc4126-M01 mutants having QDR3 and IKS1 deletion (ΔQDR3 and ΔIKS1) exhibited higher acetic acid tolerance than the wild-type strain under acetic acid treatment. Glucose consumption rate and ethanol productivity in the presence of 5 g/L acetic acid were improved in the ΔQDR3 mutant compared to the wild-type strain. Our studies demonstrated that the synthetic ZFP-TF library can be used to improve acetic acid tolerance of S. cerevisiae and that the employment of an artificial transcription factor can facilitate the exploration of novel functional genes involved in stress tolerance of S. cerevisiae.

  3. Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance.

    PubMed

    Ma, Cui; Wei, Xiaowen; Sun, Cuihuan; Zhang, Fei; Xu, Jianren; Zhao, Xinqing; Bai, Fengwu

    2015-03-01

    Acetic acid is present in cellulosic hydrolysate as a potent inhibitor, and the superior acetic acid tolerance of Saccharomyces cerevisiae ensures good cell viability and efficient ethanol production when cellulosic raw materials are used as substrates. In this study, a mutant strain of S. cerevisiae ATCC4126 (Sc4126-M01) with improved acetic acid tolerance was obtained through screening strains transformed with an artificial zinc finger protein transcription factor (ZFP-TF) library. Further analysis indicated that improved acetic acid tolerance was associated with improved catalase (CAT) activity. The ZFP coding sequence associated with the improved phenotype was identified, and real-time RT-PCR analysis revealed that three of the possible genes involved in the enhanced acetic acid tolerance regulated by this ZFP-TF, namely YFL040W, QDR3, and IKS1, showed decreased transcription levels in Sc4126-M01 in the presence of acetic acid, compared to those in the control strain. Sc4126-M01 mutants having QDR3 and IKS1 deletion (ΔQDR3 and ΔIKS1) exhibited higher acetic acid tolerance than the wild-type strain under acetic acid treatment. Glucose consumption rate and ethanol productivity in the presence of 5 g/L acetic acid were improved in the ΔQDR3 mutant compared to the wild-type strain. Our studies demonstrated that the synthetic ZFP-TF library can be used to improve acetic acid tolerance of S. cerevisiae and that the employment of an artificial transcription factor can facilitate the exploration of novel functional genes involved in stress tolerance of S. cerevisiae. PMID:25698512

  4. Acetobacter aceti possesses a proton motive force-dependent efflux system for acetic acid.

    PubMed

    Matsushita, Kazunobu; Inoue, Taketo; Adachi, Osao; Toyama, Hirohide

    2005-07-01

    Acetic acid bacteria are obligate aerobes able to oxidize ethanol, sugar alcohols, and sugars into their corresponding acids. Among them, Acetobacter and Gluconacetobacter species have very high ethanol oxidation capacity, leading to accumulation of vast amounts of acetic acid outside the cell. Since these bacteria are able to grow in media with high concentrations of acetic acid, they must possess a specific mechanism such as an efflux pump by which they can resist the toxic effects of acetic acid. In this study, the efflux pump of Acetobacter aceti IFO 3283 was examined using intact cells and membrane vesicles. The accumulation of acetic acid/acetate in intact cells was increased by the addition of a proton uncoupler and/or cyanide, suggesting the presence of an energy-dependent efflux system. To confirm this, right-side-out and inside-out membrane vesicles were prepared from A. aceti IFO 3283, and the accumulation of acetic acid/acetate in the vesicles was examined. Upon the addition of a respiratory substrate, the accumulation of acetic acid/acetate in the right-side-out vesicles was largely decreased, while its accumulation was very much increased in the inside-out vesicles. These respiration-dependent phenomena observed in both types of membrane vesicles were all sensitive to a proton uncoupler. Acetic acid/acetate uptake in the inside-out membrane vesicles was dependent not on ATP but on the proton motive force. Furthermore, uptake was shown to be rather specific for acetic acid and to be pH dependent, because higher uptake was observed at lower pH. Thus, A. aceti IFO 3283 possesses a proton motive force-dependent efflux pump for acetic acid.

  5. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by etiolated and green corn tissues

    SciTech Connect

    Reinecke, D. )

    1989-04-01

    Etiolated corn tissues oxidase indole-3-acetic acid (IAA) to oxindole-3-acetic acid (OxIAA). This oxidation results in loss of auxin activity and may plant a role in regulating IAA-stimulated growth. The enzyme has been partially purified and characterized and shown to require O{sub 2}, and a heat-stable lipid-soluble corn factor which can be replaced by linolenic or linoleic acids in the oxidation of IAA. Corn oil was tested as a cofactor in the IAA oxidation reaction. Corn oil stimulated enzyme activity by 30% while trilinolein was inactive. The capacity of green tissue to oxidize IAA was examined by incubating leaf sections from 2 week old light-grown corn seedlings with {sup 14}C-IAA. OxIAA and IAA were separated from other IAA metabolites on a 3 ml anion exchange column. Of the IAA taken up by the sections, 13% was oxidized to OxIAA. This is the first evidence that green tissue of corn may also regulate IAA levels by oxidizing IAA to OxIAA.

  6. Unusal pattern of product inhibition: batch acetic acid fermentation

    SciTech Connect

    Bar, R.; Gainer, J.L.; Kirwan, D.J.

    1987-04-20

    The limited tolerance of microorganisms to their metabolic products results in inhibited growth and product formation. The relationship between the specific growth rate, micro, and the concentration of an inhibitory product has been described by a number of mathematical models. In most cases, micro was found to be inversely proportional to the product concentration and invariably the rate of substrate utilization followed the same pattern. In this communication, the authors report a rather unusual case in which the formation rate of a product, acetic acid, increased with a decreasing growth rate of the microorganism, Acetobacter aceti. Apparently, a similar behavior was mentioned in a review report with respect to Clostridium thermocellum in a batch culture but was not published in the freely circulating literature. The fermentation of ethanol to acetic acid, C/sub 2/H/sub 5/OH + O/sub 2/ = CH/sub 3/COOH + H/sub 2/O is clearly one of the oldest known fermentations. Because of its association with the commercial production of vinegar it has been a subject of extensive but rather technically oriented studies. Suprisingly, the uncommon uncoupling between the inhibited microbial growth and the product formation appears to have been unnoticed. 13 references.

  7. Lactobionic and cellobionic acid production profiles of the resting cells of acetic acid bacteria.

    PubMed

    Kiryu, Takaaki; Kiso, Taro; Nakano, Hirofumi; Murakami, Hiromi

    2015-01-01

    Lactobionic acid was produced by acetic acid bacteria to oxidize lactose. Gluconobacter spp. and Gluconacetobacter spp. showed higher lactose-oxidizing activities than Acetobacter spp. Gluconobacter frateurii NBRC3285 produced the highest amount of lactobionic acid per cell, among the strains tested. This bacterium assimilated neither lactose nor lactobionic acid. At high lactose concentration (30%), resting cells of the bacterium showed sufficient oxidizing activity for efficient production of lactobionic acid. These properties may contribute to industrial production of lactobionic acid by the bacterium. The bacterium showed higher oxidizing activity on cellobiose than that on lactose and produced cellobionic acid. PMID:25965080

  8. Heterogeneous Reactions of Acetic Acid with Oxide Surfaces: Effects of Mineralogy and Relative Humidity.

    PubMed

    Tang, Mingjin; Larish, Whitney A; Fang, Yuan; Gankanda, Aruni; Grassian, Vicki H

    2016-07-21

    We have investigated the heterogeneous uptake of gaseous acetic acid on different oxides including γ-Al2O3, SiO2, and CaO under a range of relative humidity conditions. Under dry conditions, the uptake of acetic acid leads to the formation of both acetate and molecularly adsorbed acetic acid on γ-Al2O3 and CaO and only molecularly adsorbed acetic acid on SiO2. More importantly, under the conditions of this study, dimers are the major form for molecularly adsorbed acetic acid on all three particle surfaces investigated, even at low acetic acid pressures under which monomers are the dominant species in the gas phase. We have also determined saturation surface coverages for acetic acid adsorption on these three oxides under dry conditions as well as Langmuir adsorption constants in some cases. Kinetic analysis shows that the reaction rate of acetic acid increases by a factor of 3-5 for γ-Al2O3 when relative humidity increases from 0% to 15%, whereas for SiO2 particles, acetic acid and water are found to compete for surface adsorption sites. PMID:27322707

  9. Heterogeneous Reactions of Acetic Acid with Oxide Surfaces: Effects of Mineralogy and Relative Humidity.

    PubMed

    Tang, Mingjin; Larish, Whitney A; Fang, Yuan; Gankanda, Aruni; Grassian, Vicki H

    2016-07-21

    We have investigated the heterogeneous uptake of gaseous acetic acid on different oxides including γ-Al2O3, SiO2, and CaO under a range of relative humidity conditions. Under dry conditions, the uptake of acetic acid leads to the formation of both acetate and molecularly adsorbed acetic acid on γ-Al2O3 and CaO and only molecularly adsorbed acetic acid on SiO2. More importantly, under the conditions of this study, dimers are the major form for molecularly adsorbed acetic acid on all three particle surfaces investigated, even at low acetic acid pressures under which monomers are the dominant species in the gas phase. We have also determined saturation surface coverages for acetic acid adsorption on these three oxides under dry conditions as well as Langmuir adsorption constants in some cases. Kinetic analysis shows that the reaction rate of acetic acid increases by a factor of 3-5 for γ-Al2O3 when relative humidity increases from 0% to 15%, whereas for SiO2 particles, acetic acid and water are found to compete for surface adsorption sites.

  10. Benzylidene Acetal Protecting Group as Carboxylic Acid Surrogate: Synthesis of Functionalized Uronic Acids and Sugar Amino Acids.

    PubMed

    Banerjee, Amit; Senthilkumar, Soundararasu; Baskaran, Sundarababu

    2016-01-18

    Direct oxidation of the 4,6-O-benzylidene acetal protecting group to C-6 carboxylic acid has been developed that provides an easy access to a wide range of biologically important and synthetically challenging uronic acid and sugar amino acid derivatives in good yields. The RuCl3 -NaIO4 -mediated oxidative cleavage method eliminates protection and deprotection steps and the reaction takes place under mild conditions. The dual role of the benzylidene acetal, as a protecting group and source of carboxylic acid, was exploited in the efficient synthesis of six-carbon sialic acid analogues and disaccharides bearing uronic acids, including glycosaminoglycan analogues.

  11. Recent advances in nitrogen-fixing acetic acid bacteria.

    PubMed

    Pedraza, Raúl O

    2008-06-30

    Nitrogen is an essential plant nutrient, widely applied as N-fertilizer to improve yield of agriculturally important crops. An interesting alternative to avoid or reduce the use of N-fertilizers could be the exploitation of plant growth-promoting bacteria (PGPB), capable of enhancing growth and yield of many plant species, several of agronomic and ecological significance. PGPB belong to diverse genera, including Azospirillum, Azotobacter, Herbaspirillum, Bacillus, Burkholderia, Pseudomonas, Rhizobium, and Gluconacetobacter, among others. They are capable of promoting plant growth through different mechanisms including (in some cases), the biological nitrogen fixation (BNF), the enzymatic reduction of the atmospheric dinitrogen (N(2)) to ammonia, catalyzed by nitrogenase. Aerobic bacteria able to oxidize ethanol to acetic acid in neutral or acid media are candidates of belonging to the family Acetobacteraceae. At present, this family has been divided into ten genera: Acetobacter, Gluconacetobacter, Gluconobacter, Acidomonas, Asaia, Kozakia, Saccharibacter, Swaminathania, Neoasaia, and Granulibacter. Among them, only three genera include N(2)-fixing species: Gluconacetobacter, Swaminathania and Acetobacter. The first N(2)-fixing acetic acid bacterium (AAB) was described in Brazil. It was found inside tissues of the sugarcane plant, and first named as Acetobacter diazotrophicus, but then renamed as Gluconacetobacter diazotrophicus. Later, two new species within the genus Gluconacetobacter, associated to coffee plants, were described in Mexico: G. johannae and G. azotocaptans. A salt-tolerant bacterium named Swaminathania salitolerans was found associated to wild rice plants. Recently, N(2)-fixing Acetobacter peroxydans and Acetobacter nitrogenifigens, associated with rice plants and Kombucha tea, respectively, were described in India. In this paper, recent advances involving nitrogen-fixing AAB are presented. Their natural habitats, physiological and genetic aspects

  12. Improvement in HPLC separation of acetic acid and levulinic acid in the profiling of biomass hydrolysate.

    PubMed

    Xie, Rui; Tu, Maobing; Wu, Yonnie; Adhikari, Sushil

    2011-04-01

    5-Hydroxymethylfurfural (HMF) and furfural could be separated by the Aminex HPX-87H column chromatography, however, the separation and quantification of acetic acid and levulinic acid in biomass hydrolysate have been difficult with this method. In present study, the HPLC separation of acetic acid and levulinic acid on Aminex HPX-87H column has been investigated by varying column temperature, flow rate, and sulfuric acid content in the mobile phase. The column temperature was found critical in resolving acetic acid and levulinic acid. The resolution for two acids increased dramatically from 0.42 to 1.86 when the column temperature was lowered from 60 to 30 °C. So did the capacity factors for levulinic acid that was increased from 1.20 to 1.44 as the column temperature dropped. The optimum column temperature for the separation was found at 45 °C. Variation in flow rate and sulfuric acid concentration improved not as much as the column temperature did.

  13. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    SciTech Connect

    Mondala, Andro; Hernandez, Rafael; French, Todd; McFarland, Linda; Sparks, Darrell; Holmes, William; Haque, Monica

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 + 0.7% and 8.8 + 3.2% w/w, respectively, which were lower than the control (17.8 + 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 + 0.6% w/w for 2 g L -1 acetic acid and 4.2 + 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.

  14. Transcript and metabolite alterations increase ganoderic acid content in Ganoderma lucidum using acetic acid as an inducer.

    PubMed

    Ren, Ang; Li, Xiong-Biao; Miao, Zhi-Gang; Shi, Liang; Jaing, Ai-Liang; Zhao, Ming-Wen

    2014-12-01

    Acetic acid at 5-8 mM increased ganoderic acid (GA) accumulation in Ganoderma lucidum. After optimization by the response surface methodology, the GA content reached 5.5/100 mg dry weight, an increase of 105% compared with the control. The intermediate metabolites of GA biosynthesis, lanosterol and squalene also increased to 47 and 15.8 μg/g dry weight, respectively, in response to acetic acid. Acetic acid significantly induced transcription levels of sqs, lano, hmgs and cyp51 in the GA biosynthesis pathway. An acetic acid-unregulated acetyl coenzyme A synthase (acs) gene was selected from ten candidate homologous acs genes. The results indicate that acetic acid alters the expression of genes related to acetic acid assimilation and increases GA biosynthesis and the metabolic levels of lanosterol, squalene and GA-a, thereby resulting in GA accumulation.

  15. Development of Acetic Acid Removal Technology for the UREX+Process

    SciTech Connect

    Robert M. Counce; Jack S. Watson

    2009-06-30

    It is imperative that acetic acid is removed from a waste stream in the UREX+process so that nitric acid can be recycled and possible interference with downstreatm steps can be avoidec. Acetic acid arises from acetohydrozamic acid (AHA), and is used to suppress plutonium in the first step of the UREX+process. Later, it is hydrolyzed into hydroxyl amine nitrate and acetic acid. Many common separation technologies were examined, and solvent extraction was determined to be the best choice under process conditions. Solvents already used in the UREX+ process were then tested to determine if they would be sufficient for the removal of acetic acid. The tributyl phosphage (TBP)-dodecane diluent, used in both UREX and NPEX, was determined to be a solvent system that gave sufficient distribution coefficients for acetic acid in addition to a high separation factor from nitric acid.

  16. Acetic acid in aged vinegar affects molecular targets for thrombus disease management.

    PubMed

    Jing, Li; Yanyan, Zhang; Junfeng, Fan

    2015-08-01

    To elucidate the mechanism underlying the action of dietary vinegar on antithrombotic activity, acetic acid, the main acidic component of dietary vinegar, was used to determine antiplatelet and fibrinolytic activity. The results revealed that acetic acid significantly inhibits adenosine diphosphate (ADP)-, collagen-, thrombin-, and arachidonic acid (AA)-induced platelet aggregation. Acetic acid (2.00 mM) reduced AA-induced platelet aggregation to approximately 36.82 ± 1.31%, and vinegar (0.12 mL L(-1)) reduced the platelet aggregation induced by AA to 30.25 ± 1.34%. Further studies revealed that acetic acid exerts its effects by inhibiting cyclooxygenase-1 and the formation of thromboxane-A2. Organic acids including acetic acid, formic acid, lactic acid, citric acid, and malic acid also showed fibrinolytic activity; specifically, the fibrinolytic activity of acetic acid amounted to 1.866 IU urokinase per mL. Acetic acid exerted its fibrinolytic activity by activating plasminogen during fibrin crossing, thus leading to crosslinked fibrin degradation by the activated plasmin. These results suggest that organic acids in dietary vinegar play important roles in the prevention and cure of cardiovascular diseases.

  17. Leaching of spent lead acid battery paste components by sodium citrate and acetic acid.

    PubMed

    Zhu, Xinfeng; He, Xiong; Yang, Jiakuan; Gao, Linxia; Liu, Jianwen; Yang, Danni; Sun, Xiaojuan; Zhang, Wei; Wang, Qin; Kumar, R Vasant

    2013-04-15

    A sustainable method, with minimal pollution and low energy cost in comparison with the conventional smelting methods, is proposed for treating components of spent lead-acid battery pastes in aqueous organic acid(s). In this study, PbO, PbO2, and PbSO4, the three major components in a spent lead paste, were individually reacted with a mixture of aqueous sodium citrate and acetic acid solution. Pure lead citrate precursor of Pb3(C6H5O7)2 · 3H2O is the only product crystallized in each leaching experiment. Conditions were optimized for individual lead compounds which were then used as the basis for leaching real industrial spent paste. In this work, efficient leaching process is achieved and raw material cost is reduced by using aqueous sodium citrate and acetic acid, instead of aqueous sodium citrate and citric acid as reported in a pioneering hydrometallurgical method earlier. Acetic acid is not only cheaper than citric acid but is also more effective in aiding dissolution of the lead compounds thus speeding up the leaching process in comparison with citric acid. Lead citrate is readily crystallized from the aqueous solution due to its low solubility and can be combusted to directly produce leady oxide as a precursor for making new battery pastes.

  18. [Removal of tattoos by CO2 laser and acetic acid].

    PubMed

    Di Quirico, R; Pallini, G; Di Domenicantonio, G; Astolfi, A; Bindi, F; Gianfelice, F

    1992-10-31

    The Authors pay attention to small tattoo removal by means of the utilization of the CO2 laser. Moreover, the Authors emphasize the drawback of double treatment which, usually, the patient suffers in tattoo removal by CO2 laser. Then, the pressure of the Authors is small sized tattoo removal in only one sitting achieving so an excellent esthetic result. Besides, the Authors, in this medical study, explains two methods for tattoo removal. In the study's results, the Authors describes the manner and the time of the two lesion recovery by the different manners of treatment. Finally, the Authors affirms the great consequence of the surgical CO2 laser, they don't fail, however, to affirm that the laser and acetic acid combination is an excellent procedure for small tattoo removal. PMID:1480288

  19. Transcriptome analysis of acetic-acid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance.

    PubMed

    Lee, Yeji; Nasution, Olviyani; Choi, Eunyong; Choi, In-Geol; Kim, Wankee; Choi, Wonja

    2015-08-01

    Acetic acid inhibits the metabolic activities of Saccharomyces cerevisiae. Therefore, a better understanding of how S. cerevisiae cells acquire the tolerance to acetic acid is of importance to develop robust yeast strains to be used in industry. To do this, we examined the transcriptional changes that occur at 12 h post-exposure to acetic acid, revealing that 56 and 58 genes were upregulated and downregulated, respectively. Functional categorization of them revealed that 22 protein synthesis genes and 14 stress response genes constituted the largest portion of the upregulated and downregulated genes, respectively. To evaluate the association of the regulated genes with acetic acid tolerance, 3 upregulated genes (DBP2, ASC1, and GND1) were selected among 34 non-protein synthesis genes, and 54 viable mutants individually deleted for the downregulated genes were retrieved from the non-essential haploid deletion library. Strains overexpressing ASC1 and GND1 displayed enhanced tolerance to acetic acid, whereas a strain overexpressing DBP2 was sensitive. Fifty of 54 deletion mutants displayed enhanced acetic acid tolerance. Three chosen deletion mutants (hsps82Δ, ato2Δ, and ssa3Δ) were also tolerant to benzoic acid but not propionic and sorbic acids. Moreover, all those five (two overexpressing and three deleted) strains were more efficient in proton efflux and lower in membrane permeability and internal hydrogen peroxide content than controls. Individually or in combination, those physiological changes are likely to contribute at least in part to enhanced acetic acid tolerance. Overall, information of our transcriptional profile was very useful to identify molecular factors associated with acetic acid tolerance.

  20. L-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss.

    PubMed

    Murakami, Nao; Oba, Mana; Iwamoto, Mariko; Tashiro, Yukihiro; Noguchi, Takuya; Bonkohara, Kaori; Abdel-Rahman, Mohamed Ali; Zendo, Takeshi; Shimoda, Mitsuya; Sakai, Kenji; Sonomoto, Kenji

    2016-01-01

    Glycerol is a by-product in the biodiesel production process and considered as one of the prospective carbon sources for microbial fermentation including lactic acid fermentation, which has received considerable interest due to its potential application. Enterococcus faecalis isolated in our laboratory produced optically pure L-lactic acid from glycerol in the presence of acetic acid. Gas chromatography-mass spectrometry analysis using [1, 2-(13)C2] acetic acid proved that the E. faecalis strain QU 11 was capable of converting acetic acid to ethanol during lactic acid fermentation of glycerol. This indicated that strain QU 11 restored the redox balance by oxidizing excess NADH though acetic acid metabolism, during ethanol production, which resulted in lactic acid production from glycerol. The effects of pH control and substrate concentration on lactic acid fermentation were also investigated. Glycerol and acetic acid concentrations of 30 g/L and 10 g/L, respectively, were expected to be appropriate for lactic acid fermentation of glycerol by strain QU 11 at a pH of 6.5. Furthermore, fed-batch fermentation with 30 g/L glycerol and 10 g/L acetic acid wholly exhibited the best performance including lactic acid production (55.3 g/L), lactic acid yield (0.991 mol-lactic acid/mol-glycerol), total yield [1.08 mol-(lactic acid and ethanol)]/mol-(glycerol and acetic acid)], and total carbon yield [1.06 C-mol-(lactic acid and ethanol)/C-mol-(glycerol and acetic acid)] of lactic acid and ethanol. In summary, the strain QU 11 successfully produced lactic acid from glycerol with acetic acid metabolism, and an efficient fermentation system was established without carbon loss.

  1. Formic acid and acetic acid induce a programmed cell death in pathogenic Candida species.

    PubMed

    Lastauskienė, Eglė; Zinkevičienė, Auksė; Girkontaitė, Irutė; Kaunietis, Arnoldas; Kvedarienė, Violeta

    2014-09-01

    Cutaneous fungal infections are common and widespread. Antifungal agents used for the treatment of these infections often have undesirable side effects. Furthermore, increased resistance of the microorganisms to the antifungal drugs becomes the growing problem. Accordingly, the search for natural antifungal compounds continues to receive attention. Apoptosis is highly regulated programmed cell death. During yeast cell apoptosis, amino acids and peptides are released and can stimulate regeneration of human epithelium cells. Thus, detection of chemical compounds inducing apoptosis in yeast and nontoxic for humans is of great medical relevance. The aim of this study was to detect chemical compound inducing apoptosis in pathogenic Candida species with the lowest toxicity to the mammalian cells. Five chemical compounds--acetic acid, sodium bicarbonate, potassium carbonate, lithium acetate, and formic acid--were tested for evaluation of antifungal activity on C. albicans, C. guilliermondii, and C. lusitaniae. The results showed that acetic acid and formic acid at the lowest concentrations induced yeast cells death. Apoptosis analysis revealed that cells death was accompanied by activation of caspase. Minimal inhibitory concentrations of potassium carbonate and sodium bicarbonate induced Candida cells necrosis. Toxicity test with mammalian cell cultures showed that formic acid has the lowest effect on the growth of Jurkat and NIH 3T3 cells. In conclusion, our results show that a low concentration of formic acid induces apoptosis-like programmed cell death in the Candida yeast and has a minimal effect on the survivability of mammalian cells, suggesting potential applications in the treatment of these infections. PMID:24752490

  2. Formic acid and acetic acid measurements during the Southern California Air Quality Study

    NASA Astrophysics Data System (ADS)

    Grosjean, Daniel

    As part of the Southern California Air Quality Study (SCAQS), ambient levels of gas phase formic acid and acetic acid have been measured at four locations: a 'control' site (San Nicholas Island), a source-dominated coastal site (Long Beach) and two inland smog receptor sites (Claremont and Palm Springs). Samples were collected on alkaline traps and were analyzed by size exclusion liquid chromatography with ultraviolet detection. Levels of gas phase formic acid (up to 19 ppb) and acetic acid (up to 17 ppb) exhibited diurnal (frequent night-time maxima), spatial and seasonal variations. During summer smog episodes, concentrations increased from 0.6 ppb at the 'control' site to up to 13-19 ppb at the inland smog receptor sites reflecting primary emissions and in situ formation during transport inland. The acetic acid/formic acid (A/F) ratio decreased from coastal to inland sites. At the coastal site levels of both acids and the A/F ratio were substantially higher during the fall than during the summer.

  3. Heavy metal uptake and leaching from polluted soil using permeable barrier in DTPA-assisted phytoextraction.

    PubMed

    Zhao, Shulan; Shen, Zhiping; Duo, Lian

    2015-04-01

    Application of sewage sludge (SS) in agriculture is an alternative technique of disposing this waste. But unreasonable application of SS leads to excessive accumulation of heavy metals in soils. A column experiment was conducted to test the availability of heavy metals to Lolium perenne grown in SS-treated soils following diethylene triamine penta acetic acid (DTPA) application at rates of 0, 10 and 20 mmol kg(-1) soil. In order to prevent metal leaching in DTPA-assisted phytoextraction process, a horizontal permeable barrier was placed below the treated soil, and its effectiveness was also assessed. Results showed that DTPA addition significantly increased metal uptake by L. perenne shoots and metal leaching. Permeable barriers increased metal concentrations in plant shoots and effectively decreased metal leaching from the treated soil. Heavy metals in SS-treated soils could be gradually removed by harvesting L. perenne many times in 1 year and adding low dosage of DTPA days before each harvest.

  4. Enhanced expression of aconitase raises acetic acid resistance in Acetobacter aceti.

    PubMed

    Nakano, Shigeru; Fukaya, Masahiro; Horinouchi, Sueharu

    2004-06-15

    Acetobacter spp. are used for industrial vinegar production because of their high ability to oxidize ethanol to acetic acid and high resistance to acetic acid. Two-dimensional gel electrophoretic analysis of a soluble fraction of Acetobacter aceti revealed the presence of several proteins whose production was enhanced, to various extents, in response to acetic acid in the medium. A protein with an apparent molecular mass of 100 kDa was significantly enhanced in amount by acetic acid and identified to be aconitase by NH2-terminal amino acid sequencing and subsequent gene cloning. Amplification of the aconitase gene by use of a multicopy plasmid in A. aceti enhanced the enzymatic activity and acetic acid resistance. These results showed that aconitase is concerned with acetic acid resistance. Enhancement of the aconitase activity turned out to be practically useful for acetic acid fermentation, because the A. aceti transformant harboring multiple copies of the aconitase gene produced a higher concentration of acetic acid with a reduced growth lag-time.

  5. [Advances in functional genomics studies underlying acetic acid tolerance of Saccharomyces cerevisiae].

    PubMed

    Zhao, Xinqing; Zhang, Mingming; Xu, Guihong; Xu, Jianren; Bai, Fengwu

    2014-03-01

    Industrial microorganisms are subject to various stress conditions, including products and substrates inhibitions. Therefore, improvement of stress tolerance is of great importance for industrial microbial production. Acetic acid is one of the major inhibitors in the cellulosic hydrolysates, which affects seriously on cell growth and metabolism of Saccharomyces cerevisiae. Studies on the molecular mechanisms underlying adaptive response and tolerance of acetic acid of S. cerevisiae benefit breeding of robust strains of industrial yeast for more efficient production. In recent years, more insights into the molecular mechanisms underlying acetic acid tolerance have been revealed through analysis of global gene expression and metabolomics analysis, as well as phenomics analysis by single gene deletion libraries. Novel genes related to response to acetic acid and improvement of acetic acid tolerance have been identified, and novel strains with improved acetic acid tolerance were constructed by modifying key genes. Metal ions including potassium and zinc play important roles in acetic acid tolerance in S. cerevisiae, and the effect of zinc was first discovered in our previous studies on flocculating yeast. Genes involved in cell wall remodeling, membrane transport, energy metabolism, amino acid biosynthesis and transport, as well as global transcription regulation were discussed. Exploration and modification of the molecular mechanisms of yeast acetic acid tolerance will be done further on levels such as post-translational modifications and synthetic biology and engineering; and the knowledge obtained will pave the way for breeding robust strains for more efficient bioconversion of cellulosic materials to produce biofuels and bio-based chemicals.

  6. Atmospheric geochemistry of formic and acetic acids at a mid-latitude temperate site

    NASA Technical Reports Server (NTRS)

    Talbot, R. W.; Beecher, K. M.; Harriss, R. C.; Cofer, R. W., III

    1988-01-01

    Tropospheric concentrations of formic and acetic acids in the gas, the aerosol, and the rainwater phases were determined in samples collected 1-2 m above ground level at an open field site in eastern Virginia. These acids were found to occur principally (98 percent or above) in the gas phase, with a marked annual seasonality, averaging 1890 ppt for formate and 1310 ppt for acetate during the growing season, as compared to 695 ppt and 700 ppt, respectively, over the nongrowing season. The data support the hypothesis that biogenic emissions from vegatation are important sources of atmospheric formic and acetic acid during the local growing season. The same time trends were observed for precipitation, although with less defined seasonality. The relative increase of the acetic acid/formic acid ratio during the nongrowing season points to the dominance of anthropogenic inputs of acetic acid from motor vehicles and biomass combustion in the wintertime.

  7. Modification of wheat starch with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures I. Thermophysical and pasting properties.

    PubMed

    Subarić, Drago; Ačkar, Durđica; Babić, Jurislav; Sakač, Nikola; Jozinović, Antun

    2014-10-01

    The aim of this research was to investigate the influence of modification with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures on thermophysical and pasting properties of wheat starch. Starch was isolated from two wheat varieties and modified with mixtures of succinic acid and acetic anhydride, and azelaic acid and acetic anhydride in 4, 6 and 8 % (w/w). Thermophysical, pasting properties, swelling power, solubility and amylose content of modified starches were determined. The results showed that modifications with mixtures of afore mentioned dicarboxylic acids with acetic anhydride decreased gelatinisation and pasting temperatures. Gelatinisation enthalpy of Golubica starch increased, while of Srpanjka starch decreased by modifications. Retrogradation after 7 and 14 day-storage at 4 °C decreased after modifications of both starches. Maximum, hot and cold paste viscosity of both starches increased, while stability during shearing at high temperatures decreased. % setback of starches modified with azelaic acid/acetic anhydride mixture decreased. Swelling power and solubility of both starches increased by both modifications.

  8. Phenyl Acetate Preparation from Phenol and Acetic Acid: Reassessment of a Common Textbook Misconception.

    ERIC Educational Resources Information Center

    Hocking, M. B.

    1980-01-01

    Reassesses a common textbook misconception that "...phenols cannot be esterified directly." Results of experiments are discussed and data tables provided of an effective method for the direct preparation of phenyl acetate. (CS)

  9. Putative ABC transporter responsible for acetic acid resistance in Acetobacter aceti.

    PubMed

    Nakano, Shigeru; Fukaya, Masahiro; Horinouchi, Sueharu

    2006-01-01

    Two-dimensional gel electrophoretic analysis of the membrane fraction of Acetobacter aceti revealed the presence of several proteins that were produced in response to acetic acid. A 60-kDa protein, named AatA, which was mostly induced by acetic acid, was prepared; aatA was cloned on the basis of its NH2-terminal amino acid sequence. AatA, consisting of 591 amino acids and containing ATP-binding cassette (ABC) sequences and ABC signature sequences, belonged to the ABC transporter superfamily. The aatA mutation with an insertion of the neomycin resistance gene within the aatA coding region showed reduced resistance to acetic acid, formic acid, propionic acid, and lactic acid, whereas the aatA mutation exerted no effects on resistance to various drugs, growth at low pH (adjusted with HCl), assimilation of acetic acid, or resistance to citric acid. Introduction of plasmid pABC101 containing aatA under the control of the Escherichia coli lac promoter into the aatA mutant restored the defect in acetic acid resistance. In addition, pABC101 conferred acetic acid resistance on E. coli. These findings showed that AatA was a putative ABC transporter conferring acetic acid resistance on the host cell. Southern blot analysis and subsequent nucleotide sequencing predicted the presence of aatA orthologues in a variety of acetic acid bacteria belonging to the genera Acetobacter and Gluconacetobacter. The fermentation with A. aceti containing aatA on a multicopy plasmid resulted in an increase in the final yield of acetic acid.

  10. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid

    PubMed Central

    2010-01-01

    Background Acetic acid is a byproduct of Saccharomyces cerevisiae alcoholic fermentation. Together with high concentrations of ethanol and other toxic metabolites, acetic acid may contribute to fermentation arrest and reduced ethanol productivity. This weak acid is also a present in lignocellulosic hydrolysates, a highly interesting non-feedstock substrate in industrial biotechnology. Therefore, the better understanding of the molecular mechanisms underlying S. cerevisiae tolerance to acetic acid is essential for the rational selection of optimal fermentation conditions and the engineering of more robust industrial strains to be used in processes in which yeast is explored as cell factory. Results The yeast genes conferring protection against acetic acid were identified in this study at a genome-wide scale, based on the screening of the EUROSCARF haploid mutant collection for susceptibility phenotypes to this weak acid (concentrations in the range 70-110 mM, at pH 4.5). Approximately 650 determinants of tolerance to acetic acid were identified. Clustering of these acetic acid-resistance genes based on their biological function indicated an enrichment of genes involved in transcription, internal pH homeostasis, carbohydrate metabolism, cell wall assembly, biogenesis of mitochondria, ribosome and vacuole, and in the sensing, signalling and uptake of various nutrients in particular iron, potassium, glucose and amino acids. A correlation between increased resistance to acetic acid and the level of potassium in the growth medium was found. The activation of the Snf1p signalling pathway, involved in yeast response to glucose starvation, is demonstrated to occur in response to acetic acid stress but no evidence was obtained supporting the acetic acid-induced inhibition of glucose uptake. Conclusions Approximately 490 of the 650 determinants of tolerance to acetic acid identified in this work are implicated, for the first time, in tolerance to this weak acid. These are

  11. Electromembrane extraction and HPLC analysis of haloacetic acids and aromatic acetic acids in wastewater.

    PubMed

    Alhooshani, Khalid; Basheer, Chanbasha; Kaur, Jagjit; Gjelstad, Astrid; Rasmussen, Knut E; Pedersen-Bjergaard, Stig; Lee, Hian Kee

    2011-10-30

    For the first time, haloacetic acids and aromatic acetic acids were extracted from wastewater samples using electromembrane extraction (EME). A thin layer of toluene immobilized on the walls of a polypropylene membrane envelope served as an artificial supported liquid membrane (SLM). The haloacetic acids (HAAs) (chloroacetic acid, dichloroacetic acid, and trifluoroacetic acid) and aromatic acetic acids (phenylacetic acid and p-hydroxyphenylacetic acid) were extracted through the SLM and into an alkalized aqueous buffer solution. The buffer solution was located inside the membrane envelope. The electrical potential difference sustained over the membrane acted as the driving force for the transport of haloacetic acids into the membrane by electrokinetic migration. After extraction, the extracts were analyzed by high-performance liquid chromatography-ultraviolet detection. The detection limits were between 0.072 and 40.3 ng L(-1). The calibration plot linearity was in the range of 5 and 200 μg L(-1) while the correlation coefficients for the analytes ranged from 0.9932 to 0.9967. Relative recoveries were in the range of 87-106%. The extraction efficiency was found to be comparable to that of solid-phase extraction.

  12. A Binary Host Plant Volatile Lure Combined With Acetic Acid to Monitor Codling Moth (Lepidoptera: Tortricidae).

    PubMed

    Knight, A L; Basoalto, E; Katalin, J; El-Sayed, A M

    2015-10-01

    Field studies were conducted in the United States, Hungary, and New Zealand to evaluate the effectiveness of septa lures loaded with ethyl (E,Z)-2,4-decadienoate (pear ester) and (E)-4,8-dimethyl-1,3,7-nonatriene (nonatriene) alone and in combination with an acetic acid co-lure for both sexes of codling moth, Cydia pomonella (L.). Additional studies were conducted to evaluate these host plant volatiles and acetic acid in combination with the sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone). Traps baited with pear ester/nonatriene + acetic acid placed within orchards treated either with codlemone dispensers or left untreated caught significantly more males, females, and total moths than similar traps baited with pear ester + acetic acid in some assays. Similarly, traps baited with codlemone/pear ester/nonatriene + acetic acid caught significantly greater numbers of moths than traps with codlemone/pear ester + acetic acid lures in some assays in orchards treated with combinational dispensers (dispensers loaded with codlemone/pear ester). These data suggest that monitoring of codling moth can be marginally improved in orchards under variable management plans using a binary host plant volatile lure in combination with codlemone and acetic acid. These results are likely to be most significant in orchards treated with combinational dispensers. Significant increases in the catch of female codling moths in traps with the binary host plant volatile blend plus acetic acid should be useful in developing more effective mass trapping strategies.

  13. A Binary Host Plant Volatile Lure Combined With Acetic Acid to Monitor Codling Moth (Lepidoptera: Tortricidae).

    PubMed

    Knight, A L; Basoalto, E; Katalin, J; El-Sayed, A M

    2015-10-01

    Field studies were conducted in the United States, Hungary, and New Zealand to evaluate the effectiveness of septa lures loaded with ethyl (E,Z)-2,4-decadienoate (pear ester) and (E)-4,8-dimethyl-1,3,7-nonatriene (nonatriene) alone and in combination with an acetic acid co-lure for both sexes of codling moth, Cydia pomonella (L.). Additional studies were conducted to evaluate these host plant volatiles and acetic acid in combination with the sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone). Traps baited with pear ester/nonatriene + acetic acid placed within orchards treated either with codlemone dispensers or left untreated caught significantly more males, females, and total moths than similar traps baited with pear ester + acetic acid in some assays. Similarly, traps baited with codlemone/pear ester/nonatriene + acetic acid caught significantly greater numbers of moths than traps with codlemone/pear ester + acetic acid lures in some assays in orchards treated with combinational dispensers (dispensers loaded with codlemone/pear ester). These data suggest that monitoring of codling moth can be marginally improved in orchards under variable management plans using a binary host plant volatile lure in combination with codlemone and acetic acid. These results are likely to be most significant in orchards treated with combinational dispensers. Significant increases in the catch of female codling moths in traps with the binary host plant volatile blend plus acetic acid should be useful in developing more effective mass trapping strategies. PMID:26314018

  14. Evidence for a Complex Between Thf and Acetic Acid from Broadband Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zaleski, Daniel P.; Bittner, Dror M.; Mullaney, John Connor; Stephens, Susanna L.; King, Adrian; Habgood, Matthew; Walker, Nick

    2015-06-01

    Evidence for a complex between tetrahydrofuran (THF) and acetic acid from broadband rotational spectroscopy will be presented. Transitions believed to belong to the complex were first identified in a gas mixture containing small amounts of THF, triethyl borane, and acetic acid balanced in argon. Ab initio calculations suggest a complex between THF and acetic acid is more likely to form compared to the analogous acetic acid complex with triethyl borane, the initial target. The observed rotational constants are also more similar to those predicted for a complex formed between THF and acetic acid, than for those of a complex formed between triethyl borane and acetic acid. Subsequently, multiple isotopologues of acetic acid have been measured, confirming its presence in the structure. No information has yet been obtained through isotopic substitution within the THF sub-unit. Ab initio calculations predict the most likely structure is one where the acetic acid subunit coordinates over the ring creating a "bridge" between the THF oxygen, the carboxylic O-H, and the carbonyl oxygen to a hydrogen atom on the back of the ring.

  15. Microbiological preservation of cucumbers for bulk storage by the use of acetic acid and food preservatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial growth did not occur when cucumbers were preserved without a thermal process by storage in solutions containing acetic acid, sodium benzoate, and calcium chloride to maintain tissue firmness. The concentrations of acetic acid and sodium benzoate required to assure preservation were low en...

  16. 40 CFR 180.1258 - Acetic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD... acetic acid when used as a preservative on post-harvest agricultural commodities intended for animal feed... of acetic acid in or on all food crops resulting from unintentional spray and drift to...

  17. 40 CFR 180.1258 - Acetic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD... acetic acid when used as a preservative on post-harvest agricultural commodities intended for animal feed... of acetic acid in or on all food crops resulting from unintentional spray and drift to...

  18. Development of xylose-fermenting yeasts for ethanol production at high acetic acid concentrations

    SciTech Connect

    Mohandas, D.V.; Whelan, D.R.; Panchal, C.J.

    1995-12-31

    Mutants resistant to comparatively high levels of acetic acid were isolated from the xylose-fermenting yeasts Candida shehatae and Pichia Stipitis by adapting these cultures to increasing concentrations of acetic acid grown in shake-flask cultures. These mutants were tested for their ability to ferment xylose in presence of high acetic acid concentrations, in acid hydrolysates of wood, and in hardwood spent sulfite liquor, and compared with their wild-type counterparts and between themselves. The P. stipitis mutant exhibited faster fermentation times, better tolerance to acid hydrolysates, and tolerance to lower pH.

  19. Acetate/acetyl-CoA metabolism associated with cancer fatty acid synthesis: overview and application.

    PubMed

    Yoshii, Yukie; Furukawa, Takako; Saga, Tsuneo; Fujibayashi, Yasuhisa

    2015-01-28

    Understanding cancer-specific metabolism is important for identifying novel targets for cancer diagnosis and therapy. Induced acetate/acetyl CoA metabolism is a notable feature that is related to fatty acid synthesis supporting tumor growth. In this review, we focused on the recent findings related to cancer acetate/acetyl CoA metabolism. We also introduce [1-¹¹C]acetate positron emission tomography (PET), which is a useful tool to visualize up-regulation of acetate/acetyl CoA metabolism in cancer, and discuss the utility of [1-¹¹C]acetate PET in cancer diagnosis and its application to personalized medicine.

  20. Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2

    PubMed Central

    Qian, Qingli; Zhang, Jingjing; Cui, Meng; Han, Buxing

    2016-01-01

    Acetic acid is an important bulk chemical that is currently produced via methanol carbonylation using fossil based CO. Synthesis of acetic acid from the renewable and cheap CO2 is of great importance, but state of the art routes encounter difficulties, especially in reaction selectivity and activity. Here we report a route to produce acetic acid from CO2, methanol and H2. The reaction can be efficiently catalysed by Ru–Rh bimetallic catalyst using imidazole as the ligand and LiI as the promoter in 1,3-dimethyl-2-imidazolidinone (DMI) solvent. It is confirmed that methanol is hydrocarboxylated into acetic acid by CO2 and H2, which accounts for the outstanding reaction results. The reaction mechanism is proposed based on the control experiments. The strategy opens a new way for acetic acid production and CO2 transformation, and represents a significant progress in synthetic chemistry. PMID:27165850

  1. Glacial Acetic Acid Adverse Events: Case Reports and Review of the Literature

    PubMed Central

    Doles, William; Wilkerson, Garrett; Morrison, Samantha

    2015-01-01

    Glacial acetic acid is a dangerous chemical that has been associated with several adverse drug events involving patients over recent years. When diluted to the proper concentration, acetic acid solutions have a variety of medicinal uses. Unfortunately, despite warnings, the improper dilution of concentrated glacial acetic acid has resulted in severe burns and other related morbidities. We report on 2 additional case reports of adverse drug events involving glacial acetic acid as well as a review of the literature. A summary of published case reports is provided, including the intended and actual concentration of glacial acetic acid involved, the indication for use, degree of exposure, and resultant outcome. Strategies that have been recommended to improve patient safety are summarized within the context of the key elements of the medication use process. PMID:26448660

  2. The Key to Acetate: Metabolic Fluxes of Acetic Acid Bacteria under Cocoa Pulp Fermentation-Simulating Conditions

    PubMed Central

    Adler, Philipp; Frey, Lasse Jannis; Berger, Antje; Bolten, Christoph Josef; Hansen, Carl Erik

    2014-01-01

    Acetic acid bacteria (AAB) play an important role during cocoa fermentation, as their main product, acetate, is a major driver for the development of the desired cocoa flavors. Here, we investigated the specialized metabolism of these bacteria under cocoa pulp fermentation-simulating conditions. A carefully designed combination of parallel 13C isotope labeling experiments allowed the elucidation of intracellular fluxes in the complex environment of cocoa pulp, when lactate and ethanol were included as primary substrates among undefined ingredients. We demonstrate that AAB exhibit a functionally separated metabolism during coconsumption of two-carbon and three-carbon substrates. Acetate is almost exclusively derived from ethanol, while lactate serves for the formation of acetoin and biomass building blocks. Although this is suboptimal for cellular energetics, this allows maximized growth and conversion rates. The functional separation results from a lack of phosphoenolpyruvate carboxykinase and malic enzymes, typically present in bacteria to interconnect metabolism. In fact, gluconeogenesis is driven by pyruvate phosphate dikinase. Consequently, a balanced ratio of lactate and ethanol is important for the optimum performance of AAB. As lactate and ethanol are individually supplied by lactic acid bacteria and yeasts during the initial phase of cocoa fermentation, respectively, this underlines the importance of a well-balanced microbial consortium for a successful fermentation process. Indeed, AAB performed the best and produced the largest amounts of acetate in mixed culture experiments when lactic acid bacteria and yeasts were both present. PMID:24837393

  3. Acetic acid induces pH-independent cellular energy depletion in Salmonella enterica.

    PubMed

    Tan, Sin Mei; Lee, Sui Mae; Dykes, Gary A

    2015-03-01

    Weak organic acids are widely used as preservatives and disinfectants in the food industry. Despite their widespread use, the antimicrobial mode of action of organic acids is still not fully understood. This study investigated the effect of acetic acid on the cell membranes and cellular energy generation of four Salmonella strains. Using a nucleic acid/protein assay, it was established that acetic acid did not cause leakage of intracellular components from the strains. A scanning electron microscopy study further confirmed that membrane disruption was not the antimicrobial mode of action of acetic acid. Some elongated Salmonella cells observed in the micrographs indicated a possibility that acetic acid may inhibit DNA synthesis in the bacterial cells. Using an ATP assay, it was found that at a neutral pH, acetic acid caused cellular energy depletion with an ADP/ATP ratio in the range between 0.48 and 2.63 (p<0.05) that was apparent for the four Salmonella strains. We suggest that this effect was probably due solely to the action of undissociated acid molecules. The antimicrobial effect of acetic acid was better under acidic conditions (ADP/ATP ratio of 5.56 ± 1.27; p<0.05), where the role of both pH and undissociated acid molecules can act together. We concluded that the inhibitory effect of acetic acid is not solely attributable to acidic pH but also to undissociated acid molecules. This finding has implication for the use of acetic acid as an antimicrobial against Salmonella on food products, such as chicken meat, which can buffer its pH.

  4. Metabolic regulation of the plant hormone indole-3-acetic acid

    SciTech Connect

    Jerry D. Cohen

    2009-11-01

    The phytohormone indole-3-acetic acid (IAA, auxin) is important for many aspects of plant growth, development and responses to the environment yet the routes to is biosynthesis and mechanisms for regulation of IAA levels remain important research questions. A critical issue concerning the biosynthesis if IAA in plants is that redundant pathways for IAA biosynthesis exist in plants. We showed that these redundant pathways and their relative contribution to net IAA production are under both developmental and environmental control. We worked on three fundamental problems related to how plants get their IAA: 1) An in vitro biochemical approach was used to define the tryptophan dependent pathway to IAA using maize endosperm, where relatively large amounts of IAA are produced over a short developmental period. Both a stable isotope dilution and a protein MS approach were used to identify intermediates and enzymes in the reactions. 2) We developed an in vitro system for analysis of tryptophan-independent IAA biosynthesis in maize seedlings and we used a metabolite profiling approach to isolate intermediates in this reaction. 3) Arabidopsis contains a small family of genes that encode potential indolepyruvate decarboxylase enzymes. We cloned these genes and studied plants that are mutant in these genes and that over-express each member in the family in terms of the level and route of IAA biosynthesis. Together, these allowed further development of a comprehensive picture of the pathways and regulatory components that are involved in IAA homeostasis in higher plants.

  5. Acetic acid chromoendoscopy: Improving neoplasia detection in Barrett's esophagus

    PubMed Central

    Chedgy, Fergus J Q; Subramaniam, Sharmila; Kandiah, Kesavan; Thayalasekaran, Sreedhari; Bhandari, Pradeep

    2016-01-01

    Barrett’s esophagus (BE) is an important condition given its significant premalignant potential and dismal five-year survival outcomes of advanced esophageal adenocarcinoma. It is therefore suggested that patients with a diagnosis of BE undergo regular surveillance in order to pick up dysplasia at an earlier stage to improve survival. Current “gold-standard” surveillance protocols suggest targeted biopsy of visible lesions followed by four quadrant random biopsies every 2 cm. However, this method of Barrett’s surveillance is fraught with poor endoscopist compliance as the procedures are time consuming and poorly tolerated by patients. There are also significant miss-rates with this technique for the detection of neoplasia as only 13% of early neoplastic lesions appear as visible nodules. Despite improvements in endoscope resolution these problems persist. Chromoendoscopy is an extremely useful adjunct to enhance mucosal visualization and characterization of Barrett’s mucosa. Acetic acid chromoendoscopy (AAC) is a simple, non-proprietary technique that can significantly improve neoplasia detection rates. This topic highlight summarizes the current evidence base behind AAC for the detection of neoplasia in BE and provides an insight into the direction of travel for further research in this area. PMID:27433088

  6. Acetic acid chromoendoscopy: Improving neoplasia detection in Barrett's esophagus.

    PubMed

    Chedgy, Fergus J Q; Subramaniam, Sharmila; Kandiah, Kesavan; Thayalasekaran, Sreedhari; Bhandari, Pradeep

    2016-07-01

    Barrett's esophagus (BE) is an important condition given its significant premalignant potential and dismal five-year survival outcomes of advanced esophageal adenocarcinoma. It is therefore suggested that patients with a diagnosis of BE undergo regular surveillance in order to pick up dysplasia at an earlier stage to improve survival. Current "gold-standard" surveillance protocols suggest targeted biopsy of visible lesions followed by four quadrant random biopsies every 2 cm. However, this method of Barrett's surveillance is fraught with poor endoscopist compliance as the procedures are time consuming and poorly tolerated by patients. There are also significant miss-rates with this technique for the detection of neoplasia as only 13% of early neoplastic lesions appear as visible nodules. Despite improvements in endoscope resolution these problems persist. Chromoendoscopy is an extremely useful adjunct to enhance mucosal visualization and characterization of Barrett's mucosa. Acetic acid chromoendoscopy (AAC) is a simple, non-proprietary technique that can significantly improve neoplasia detection rates. This topic highlight summarizes the current evidence base behind AAC for the detection of neoplasia in BE and provides an insight into the direction of travel for further research in this area. PMID:27433088

  7. Acetic acid bacteria isolated from grapes of South Australian vineyards.

    PubMed

    Mateo, E; Torija, M J; Mas, A; Bartowsky, E J

    2014-05-16

    Acetic acid bacteria (AAB) diversity from healthy, mould-infected and rot-affected grapes collected from three vineyards of Adelaide Hills (South Australia) was analyzed by molecular typing and identification methods. Nine different AAB species were identified from the 624 isolates recovered: Four species from Gluconobacter genus, two from Asaia and one from Acetobacter were identified by the analysis of 16S rRNA gene and 16S-23S rRNA gene internal transcribed spacer. However, the identification of other isolates that were assigned as Asaia sp. and Ameyamaea chiangmaiensis required more analysis for a correct species classification. The species of Gluconobacter cerinus was the main one identified; while one genotype of Asaia siamensis presented the highest number of isolates. The number of colonies recovered and genotypes identified was strongly affected by the infection status of the grapes; the rot-affected with the highest number. However, the species diversity was similar in all the cases. High AAB diversity was detected with a specific genotype distribution for each vineyard.

  8. Evaluation of the morphological changes of gastric mucosa induced by a low concentration of acetic acid using a rat model.

    PubMed

    Nakao, Ken-ichiro; Ro, Ayako; Kibayashi, Kazuhiko

    2014-02-01

    Oral ingestion of concentrated acetic acid causes corrosive injury of the gastrointestinal tract. To assess the effects of a low concentration of acetic acid on gastric mucosa, we examined the gastric mucosal changes in rats at 1 and 3 days after the injection of 5% or 25% acetic acid into the gastric lumen. The area of the gastric ulcerative lesions in the 25% acetic acid group was significantly larger than that in the 5% acetic acid group. The lesion area was reduced significantly at 3 days after injection in the 5% acetic acid group, whereas no significant difference in lesion area was observed at 1 and 3 days in the 25% acetic acid group. Histologically, corrosive necrosis was limited to the mucosal layer in the 5% acetic acid group, whereas necrosis extended throughout the gastric wall in the 25% acetic acid group. At 3 days post-injection, the 25% acetic acid group showed widespread persistent inflammation, whereas the 5% acetic acid group showed widespread appearance of fibroblasts indicative of a healing process. These results indicate that a low concentration of acetic acid damages the gastric mucosa and that the degree of mucosal damage depends on the concentration of acetic acid.

  9. Absorption cross section for the 5νOH stretch of acetic acid and peracetic acid

    NASA Astrophysics Data System (ADS)

    Begashaw, I. G.; Collingwood, M.; Bililign, S.

    2009-12-01

    We report measurements of the absorption cross sections for the vibrational O-H stretch (5νOH) overtone transitions in glacial acetic acid and peracetic acid. The photochemistry that results from overtone excitation has been shown to lead to OH radical production in molecules containing O-H (HNO3, H2O2). In addition the overtone excitation has been observed to result in light initiated chemical reaction. A Cavity ring-down spectroscopy (CRDS) instrument comprising of an Nd:YAG pumped dye laser and 620nm high reflectivity mirrors (R=99.995%) was used to measure the cross sections. The dye laser wavelength was calibrated using water vapor spectrum and the HITRAN 2008 database. The instrument’s minimum detectable absorption is αmin =4.5 *10-9cm-1 Hz-1/2 at 2σ noise level near the peak of the absorption feature. This measurement is the first for acetic acid at this excitation level. Preliminary results for acetic acid show the peak occurs near 615nm. Procedures for separating the monomer and dimer contribution will be presented. We would like to acknowledge support from NSF award #0803016 and NOAA-EPP award #NA06OAR4810187.

  10. Scaleable production and separation of fermentation-derived acetic acid. Final CRADA report.

    SciTech Connect

    Snyder, S. W.; Energy Systems

    2010-02-08

    Half of U.S. acetic acid production is used in manufacturing vinyl acetate monomer (VAM) and is economical only in very large production plants. Nearly 80% of the VAM is produced by methanol carbonylation, which requires high temperatures and exotic construction materials and is energy intensive. Fermentation-derived acetic acid production allows for small-scale production at low temperatures, significantly reducing the energy requirement of the process. The goal of the project is to develop a scaleable production and separation process for fermentation-derived acetic acid. Synthesis gas (syngas) will be fermented to acetic acid, and the fermentation broth will be continuously neutralized with ammonia. The acetic acid product will be recovered from the ammonium acid broth using vapor-based membrane separation technology. The process is summarized in Figure 1. The two technical challenges to success are selecting and developing (1) microbial strains that efficiently ferment syngas to acetic acid in high salt environments and (2) membranes that efficiently separate ammonia from the acetic acid/water mixture and are stable at high enough temperature to facilitate high thermal cracking of the ammonium acetate salt. Fermentation - Microbial strains were procured from a variety of public culture collections (Table 1). Strains were incubated and grown in the presence of the ammonium acetate product and the fastest growing cultures were selected and incubated at higher product concentrations. An example of the performance of a selected culture is shown in Figure 2. Separations - Several membranes were considered. Testing was performed on a new product line produced by Sulzer Chemtech (Germany). These are tubular ceramic membranes with weak acid functionality (see Figure 3). The following results were observed: (1) The membranes were relatively fragile in a laboratory setting; (2) Thermally stable {at} 130 C in hot organic acids; (3) Acetic acid rejection > 99%; and (4

  11. Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae.

    PubMed

    Li, Bing-Zhi; Yuan, Ying-Jin

    2010-05-01

    Furfural and acetic acid are two prevalent inhibitors to microorganisms during cellulosic ethanol production, but molecular mechanisms of tolerance to these inhibitors are still unclear. In this study, genome-wide transcriptional responses to furfural and acetic acid were investigated in Saccharomyces cerevisiae using microarray analysis. We found that 103 and 227 genes were differentially expressed in the response to furfural and acetic acid, respectively. Furfural downregulated genes related to transcriptional control and translational control, while it upregulated stress-responsive genes. Furthermore, furfural also interrupted the transcription of genes involved in metabolism of essential chemicals, such as etrahydrofolate, spermidine, spermine, and riboflavin monophosphate. Acetic acid downregulated genes encoding mitochondrial ribosomal proteins and genes involved in carbohydrate metabolism and regulation and upregulated genes related to amino acid metabolism. The results revealed that furfural and acetic acid had effects on multiple aspects of cellular metabolism on the transcriptional level and that mitochondria might play important roles in response to both furfural and acetic acid. This research has provided insights into molecular response to furfural and acetic acid in S. cerevisiae, and it will be helpful to construct more resistant strains for cellulosic ethanol production.

  12. Beneficial Effect of Acetic Acid on the Xylose Utilization and Bacterial Cellulose Production by Gluconacetobacter xylinus.

    PubMed

    Yang, Xiao-Yan; Huang, Chao; Guo, Hai-Jun; Xiong, Lian; Luo, Jun; Wang, Bo; Chen, Xue-Fang; Lin, Xiao-Qing; Chen, Xin-De

    2014-09-01

    In this work, acetic acid was found as one promising substrate to improve xylose utilization by Gluconacetobacter xylinus CH001. Also, with the help of adding acetic acid into medium, the bacterial cellulose (BC) production by G. xylinus was increased significantly. In the medium containing 3 g l(-1) acetic acid, the optimal xylose concentration for BC production was 20 g l(-1). In the medium containing 20 g l(-1) xylose, the xylose utilization and BC production by G. xylinus were stimulated by acetic acid within certain concentration. The highest BC yield (1.35 ± 0.06 g l(-1)) was obtained in the medium containing 20 g l(-1) xylose and 3 g l(-1) acetic acid after 14 days. This value was 6.17-fold higher than the yield (0.21 ± 0.01 g l(-1)) in the medium only containing 20 g l(-1) xylose. The results analyzed by FE-SEM, FTIR, and XRD showed that acetic acid affected little on the microscopic morphology and physicochemical characteristics of BC. Base on the phenomenon observed, lignocellulosic acid hydrolysates (xylose and acetic acid are main carbon sources present in it) could be considered as one potential substrate for BC production.

  13. Selection of a Bifidobacterium animalis subsp. lactis Strain with a Decreased Ability To Produce Acetic Acid

    PubMed Central

    Margolles, Abelardo

    2012-01-01

    We have characterized a new strain, Bifidobacterium animalis subsp. lactis CECT 7953, obtained by random UV mutagenesis, which produces less acetic acid than the wild type (CECT 7954) in three different experimental settings: De Man-Rogosa-Sharpe broth without sodium acetate, resting cells, and skim milk. Genome sequencing revealed a single Phe-Ser substitution in the acetate kinase gene product that seems to be responsible for the strain's reduced acid production. Accordingly, acetate kinase specific activity was lower in the low acetate producer. Strain CECT 7953 produced less acetate, less ethanol, and more yoghourt-related volatile compounds in skim milk than the wild type did. Thus, CECT 7953 shows promising potential for the development of dairy products fermented exclusively by a bifidobacterial strain. PMID:22389372

  14. Microbial process for the preparation of acetic acid, as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2007-03-27

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  15. Microbial process for the preparation of acetic acid, as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2004-06-22

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  16. Tolerance to acetic acid is improved by mutations of the TATA-binding protein gene.

    PubMed

    An, Jieun; Kwon, Hyeji; Kim, Eunjung; Lee, Young Mi; Ko, Hyeok Jin; Park, Hongjae; Choi, In-Geol; Kim, Sooah; Kim, Kyoung Heon; Kim, Wankee; Choi, Wonja

    2015-03-01

    Screening a library of overexpressing mutant alleles of the TATA-binding gene SPT15 yielded two Saccharomyces cerevisiae strains (MRRC 3252 and 3253) with enhanced tolerance to acetic acid. They were also tolerant to propionic acid and hydrogen peroxide. Transcriptome profile analysis identified 58 upregulated genes and 106 downregulated genes in MRRC 3252. Stress- and protein synthesis-related transcription factors were predominantly enriched in the upregulated and downregulated genes respectively. Eight deletion mutants for some of the highly downregulated genes were acetic acid-tolerant. The level of intracellular reactive oxygen species was considerably lessened in MRRC 3252 and 3253 upon exposure to acetic acid. Metabolome profile analysis revealed that intracellular concentrations of 5 and 102 metabolites were increased and decreased, respectively, in MRRC 3252, featuring a large increase of urea and a significant decrease of amino acids. The dur1/2Δmutant, in which the urea degradation gene DUR1/2 is deleted, displayed enhanced tolerance to acetic acid. Enhanced tolerance to acetic acid was also observed on the medium containing a low concentration of amino acids. Taken together, this study identified two SPT15 alleles, nine gene deletions and low concentration of amino acids in the medium that confer enhanced tolerance to acetic acid.

  17. Acetic acid-water complex: The first observation of structures containing the higher-energy acetic acid conformer

    NASA Astrophysics Data System (ADS)

    Lopes, Susy; Fausto, Rui; Khriachtchev, Leonid

    2016-02-01

    Non-covalent interaction of acetic acid (AA) and water is studied experimentally by IR spectroscopy in a nitrogen matrix and theoretically at the MP2 and coupled-cluster with single and double and perturbative triple excitations [CCSD(T)]/6-311++G(2d,2p) levels of theory. This work is focused on the first preparation and characterization of complexes of higher-energy (cis) conformer of AA with water. The calculations show three 1:1 structures for the trans-AA⋯H2O complexes and three 1:1 structures for the cis-AA⋯H2O complexes. Two trans-AA⋯H2O and two cis-AA⋯H2O complexes are found and structurally assigned in the experiments. The two cis-AA⋯ ṡ H2O complexes are obtained by annealing of a matrix containing water and cis-AA molecules prepared by selective vibrational excitation of the ground-state trans form. The less stable trans-AA⋯H2O complex is obtained by vibrational excitation of the less stable cis-AA⋯H2O complex. In addition, the 1:2 complexes of trans-AA and cis-AA with water molecules are studied computationally and the most stable forms of the 1:2 complexes are experimentally identified.

  18. Effects of acetic acid on the viability of Ascaris lumbricoides eggs

    PubMed Central

    Beyhan, Yunus E.; Yilmaz, Hasan; Hokelek, Murat

    2016-01-01

    Objectives: To investigate the effects of acetic acid on durable Ascaris lumbricoides (A. lumbricoides) eggs to determine the effective concentration of vinegar and the implementation period to render the consumption of raw vegetables more reliable. Methods: This experimental study was performed in May 2015 in the Parasitology Laboratory, Faculty of Medicine, Yuzuncu Yil University, Van, Turkey. The A. lumbricoides eggs were divided into 2 groups. Eggs in the study group were treated with 1, 3, 5, and 10% acetic acid concentrations, and eggs in the control group were treated with Eosin. The eggs’ viability was observed at the following points in time during the experiment: 0, 10, 15, 20, 30, 45, and 60 minutes. Results: The 1% acetic acid was determined insufficient on the viability of Ascaris eggs. At the 30th minute, 3% acetic acid demonstrated 95% effectiveness, and at 5% concentration, all eggs lost their viability. Treatment of acetic acid at the ratio of 4.8% in 30 minutes, or a ratio of 4.3% in 60 minutes is required for full success of tretment. Conclusion: Since Ascaris eggs have 3 layers and are very resistant, the acetic acid concentration, which can be effective on these eggs are thought to be effective also on many other parasitic agents. In order to attain an active protection, after washing the vegetables, direct treatment with a vinegar containing 5% acetic acid for 30 minutes is essential. PMID:26905351

  19. Acetic acid bacteria in traditional balsamic vinegar: phenotypic traits relevant for starter cultures selection.

    PubMed

    Gullo, Maria; Giudici, Paolo

    2008-06-30

    This review focuses on acetic acid bacteria in traditional balsamic vinegar process. Although several studies are available on acetic acid bacteria ecology, metabolism and nutritional requirements, their activity as well as their technological traits in homemade vinegars as traditional balsamic vinegar is not well known. The basic technology to oxidise cooked grape must to produce traditional balsamic vinegar is performed by the so called "seed-vinegar" that is a microbiologically undefined starter culture obtained from spontaneous acetification of previous raw material. Selected starter cultures are the main technological improvement in order to innovate traditional balsamic vinegar production but until now they are rarely applied. To develop acetic acid bacteria starter cultures, selection criteria have to take in account composition of raw material, acetic acid bacteria metabolic activities, applied technology and desired characteristics of the final product. For traditional balsamic vinegar, significative phenotypical traits of acetic acid bacteria have been highlighted. Basic traits are: ethanol preferred and efficient oxidation, fast rate of acetic acid production, tolerance to high concentration of acetic acid, no overoxidation and low pH resistance. Specific traits are tolerance to high sugar concentration and to a wide temperature range. Gluconacetobacter europaeus and Acetobacter malorum strains can be evaluated to develop selected starter cultures since they show one or more suitable characters.

  20. Point mutation of H3/H4 histones affects acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Liu, Xiangyong; Zhang, Xiaohua; Zhang, Zhaojie

    2014-10-10

    The molecular mechanism of acetic acid tolerance in yeast remains unclear despite of its importance for efficient cellulosic ethanol production. In this study, we examined the effects of histone H3/H4 point mutations on yeast acetic acid tolerance by comprehensively screening a histone H3/H4 mutant library. A total of 24 histone H3/H4 mutants (six acetic acid resistant and 18 sensitive) were identified. Compared to the wild-type strain, the histone acetic acid-resistant mutants exhibited improved ethanol fermentation performance under acetic acid stress. Genome-wide transcriptome analysis revealed that changes in the gene expression in the acetic acid-resistant mutants H3 K37A and H4 K16Q were mainly related to energy production, antioxidative stress. Our results provide novel insights into yeast acetic acid tolerance on the basis of histone, and suggest a novel approach to improve ethanol production by altering the histone H3/H4 sequences.

  1. Acetic acid bacteria in traditional balsamic vinegar: phenotypic traits relevant for starter cultures selection.

    PubMed

    Gullo, Maria; Giudici, Paolo

    2008-06-30

    This review focuses on acetic acid bacteria in traditional balsamic vinegar process. Although several studies are available on acetic acid bacteria ecology, metabolism and nutritional requirements, their activity as well as their technological traits in homemade vinegars as traditional balsamic vinegar is not well known. The basic technology to oxidise cooked grape must to produce traditional balsamic vinegar is performed by the so called "seed-vinegar" that is a microbiologically undefined starter culture obtained from spontaneous acetification of previous raw material. Selected starter cultures are the main technological improvement in order to innovate traditional balsamic vinegar production but until now they are rarely applied. To develop acetic acid bacteria starter cultures, selection criteria have to take in account composition of raw material, acetic acid bacteria metabolic activities, applied technology and desired characteristics of the final product. For traditional balsamic vinegar, significative phenotypical traits of acetic acid bacteria have been highlighted. Basic traits are: ethanol preferred and efficient oxidation, fast rate of acetic acid production, tolerance to high concentration of acetic acid, no overoxidation and low pH resistance. Specific traits are tolerance to high sugar concentration and to a wide temperature range. Gluconacetobacter europaeus and Acetobacter malorum strains can be evaluated to develop selected starter cultures since they show one or more suitable characters. PMID:18177968

  2. Theophylline-7-acetic acid derivatives with amino acids as anti-tuberculosis agents.

    PubMed

    Voynikov, Yulian; Valcheva, Violeta; Momekov, Georgi; Peikov, Plamen; Stavrakov, Georgi

    2014-07-15

    A series of amides were synthesized by condensation of theophylline-7-acetic acid and eight commercially available amino acid methyl ester hydrochlorides. Consecutive hydrolysis of six of the amido-esters resulted in the formation of corresponding amido-acids. The newly synthesized compounds were evaluated for their in vitro activity against Mycobacterium tuberculosis H37Rv. The activity varied depending on the amino acid fragments and in seven cases exerted excellent values with MICs 0.46-0.26 μM. Assessment of the cytotoxicity revealed that the compounds were not cytotoxic against the human embryonal kidney cell line HEK-293T. The theophylline-7-acetamides containing amino acid moieties appear to be promising lead compounds for the development of antimycobacterial agents.

  3. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acetic acid, , 1-methyl hexyl ester... Substances § 721.304 Acetic acid, , 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as acetic acid, -, 1-methylhexyl ester (PMN...

  4. Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering.

    PubMed

    Chen, Yingying; Stabryla, Lisa; Wei, Na

    2016-01-29

    Development of acetic acid-resistant Saccharomyces cerevisiae is important for economically viable production of biofuels from lignocellulosic biomass, but the goal remains a critical challenge due to limited information on effective genetic perturbation targets for improving acetic acid resistance in the yeast. This study employed a genomic-library-based inverse metabolic engineering approach to successfully identify a novel gene target, WHI2 (encoding a cytoplasmatic globular scaffold protein), which elicited improved acetic acid resistance in S. cerevisiae. Overexpression of WHI2 significantly improved glucose and/or xylose fermentation under acetic acid stress in engineered yeast. The WHI2-overexpressing strain had 5-times-higher specific ethanol productivity than the control in glucose fermentation with acetic acid. Analysis of the expression of WHI2 gene products (including protein and transcript) determined that acetic acid induced endogenous expression of Whi2 in S. cerevisiae. Meanwhile, the whi2Δ mutant strain had substantially higher susceptibility to acetic acid than the wild type, suggesting the important role of Whi2 in the acetic acid response in S. cerevisiae. Additionally, overexpression of WHI2 and of a cognate phosphatase gene, PSR1, had a synergistic effect in improving acetic acid resistance, suggesting that Whi2 might function in combination with Psr1 to elicit the acetic acid resistance mechanism. These results improve our understanding of the yeast response to acetic acid stress and provide a new strategy to breed acetic acid-resistant yeast strains for renewable biofuel production.

  5. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acetic acid, , 1-methyl hexyl ester... Substances § 721.304 Acetic acid, , 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as acetic acid, -, 1-methylhexyl ester (PMN...

  6. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acetic acid, , 1-methyl hexyl ester... Substances § 721.304 Acetic acid, , 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as acetic acid, -, 1-methylhexyl ester (PMN...

  7. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acetic acid, , 1-methyl hexyl ester... Substances § 721.304 Acetic acid, , 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as acetic acid, -, 1-methylhexyl ester (PMN...

  8. Biosynthesis of the Halogenated Auxin, 4-Chloroindole-3-Acetic Acid1[W][OA

    PubMed Central

    Tivendale, Nathan D.; Davidson, Sandra E.; Davies, Noel W.; Smith, Jason A.; Dalmais, Marion; Bendahmane, Abdelhafid I.; Quittenden, Laura J.; Sutton, Lily; Bala, Raj K.; Le Signor, Christine; Thompson, Richard; Horne, James; Reid, James B.; Ross, John J.

    2012-01-01

    Seeds of several agriculturally important legumes are rich sources of the only halogenated plant hormone, 4-chloroindole-3-acetic acid. However, the biosynthesis of this auxin is poorly understood. Here, we show that in pea (Pisum sativum) seeds, 4-chloroindole-3-acetic acid is synthesized via the novel intermediate 4-chloroindole-3-pyruvic acid, which is produced from 4-chlorotryptophan by two aminotransferases, TRYPTOPHAN AMINOTRANSFERASE RELATED1 and TRYPTOPHAN AMINOTRANSFERASE RELATED2. We characterize a tar2 mutant, obtained by Targeting Induced Local Lesions in Genomes, the seeds of which contain dramatically reduced 4-chloroindole-3-acetic acid levels as they mature. We also show that the widespread auxin, indole-3-acetic acid, is synthesized by a parallel pathway in pea. PMID:22573801

  9. Acetic Acid Acts as a Volatile Signal To Stimulate Bacterial Biofilm Formation

    PubMed Central

    Chen, Yun; Gozzi, Kevin; Yan, Fang

    2015-01-01

    ABSTRACT Volatiles are small air-transmittable chemicals with diverse biological activities. In this study, we showed that volatiles produced by the bacterium Bacillus subtilis had a profound effect on biofilm formation of neighboring B. subtilis cells that grew in proximity but were physically separated. We further demonstrated that one such volatile, acetic acid, is particularly potent in stimulating biofilm formation. Multiple lines of genetic evidence based on B. subtilis mutants that are defective in either acetic acid production or transportation suggest that B. subtilis uses acetic acid as a metabolic signal to coordinate the timing of biofilm formation. Lastly, we investigated how B. subtilis cells sense and respond to acetic acid in regulating biofilm formation. We showed the possible involvement of three sets of genes (ywbHG, ysbAB, and yxaKC), all encoding putative holin-antiholin-like proteins, in cells responding to acetic acid and stimulating biofilm formation. All three sets of genes were induced by acetate. A mutant with a triple mutation of those genes showed a severe delay in biofilm formation, whereas a strain overexpressing ywbHG showed early and robust biofilm formation. Results of our studies suggest that B. subtilis and possibly other bacteria use acetic acid as a metabolic signal to regulate biofilm formation as well as a quorum-sensing-like airborne signal to coordinate the timing of biofilm formation by physically separated cells in the community. PMID:26060272

  10. Isolation of cellulose from rice straw and its conversion into cellulose acetate catalyzed by phosphotungstic acid.

    PubMed

    Fan, Guozhi; Wang, Min; Liao, Chongjing; Fang, Tao; Li, Jianfen; Zhou, Ronghui

    2013-04-15

    Cellulose was isolated from rice straw by pretreatment with dilute alkaline and acid solutions successively, and it was further transferred into cellulose acetate in the presence of acetic anhydride and phosphotungstic acid (H3PW12O40·6H2O). The removal of hemicellulose and lignin was affected by the concentration of KOH and the immersion time in acetic acid solution, and 83wt.% content of cellulose in the treated rice straw was obtained after pretreatment with 4% KOH and immersion in acetic acid for 5h. Phosphotungstic acid was found to be an effective catalyst for the acetylation of the cellulose derived from rice straw. The degree of substitution (DS) values revealed a significant effect for the solubility of cellulose acetate, and the acetone-soluble cellulose acetate with DS values around 2.2 can be obtained by changing the amount of phosphotungstic acid and the time of acetylation. Both the structure of cellulose separated from rice straw and cellulose acetate were confirmed by FTIR and XRD.

  11. Anaerobic conversion of lactic acid to acetic acid and 1, 2-propanediol by Lactobacillus buchneri.

    PubMed

    Oude Elferink, S J; Krooneman, J; Gottschal, J C; Spoelstra, S F; Faber, F; Driehuis, F

    2001-01-01

    The degradation of lactic acid under anoxic conditions was studied in several strains of Lactobacillus buchneri and in close relatives such as Lactobacillus parabuchneri, Lactobacillus kefir, and Lactobacillus hilgardii. Of these lactobacilli, L. buchneri and L. parabuchneri were able to degrade lactic acid under anoxic conditions, without requiring an external electron acceptor. Each mole of lactic acid was converted into approximately 0.5 mol of acetic acid, 0.5 mol of 1,2-propanediol, and traces of ethanol. Based on stoichiometry studies and the high levels of NAD-linked 1, 2-propanediol-dependent oxidoreductase (530 to 790 nmol min(-1) mg of protein(-1)), a novel pathway for anaerobic lactic acid degradation is proposed. The anaerobic degradation of lactic acid by L. buchneri does not support cell growth and is pH dependent. Acidic conditions are needed to induce the lactic-acid-degrading capacity of the cells and to maintain the lactic-acid-degrading activity. At a pH above 5.8 hardly any lactic acid degradation was observed. The exact function of anaerobic lactic acid degradation by L. buchneri is not certain, but some results indicate that it plays a role in maintaining cell viability.

  12. Auxin Biosynthesis: Are the Indole-3-Acetic Acid and Phenylacetic Acid Biosynthesis Pathways Mirror Images?

    PubMed

    Cook, Sam D; Nichols, David S; Smith, Jason; Chourey, Prem S; McAdam, Erin L; Quittenden, Laura; Ross, John J

    2016-06-01

    The biosynthesis of the main auxin in plants (indole-3-acetic acid [IAA]) has been elucidated recently and is thought to involve the sequential conversion of Trp to indole-3-pyruvic acid to IAA However, the pathway leading to a less well studied auxin, phenylacetic acid (PAA), remains unclear. Here, we present evidence from metabolism experiments that PAA is synthesized from the amino acid Phe, via phenylpyruvate. In pea (Pisum sativum), the reverse reaction, phenylpyruvate to Phe, is also demonstrated. However, despite similarities between the pathways leading to IAA and PAA, evidence from mutants in pea and maize (Zea mays) indicate that IAA biosynthetic enzymes are not the main enzymes for PAA biosynthesis. Instead, we identified a putative aromatic aminotransferase (PsArAT) from pea that may function in the PAA synthesis pathway. PMID:27208245

  13. 40 CFR 180.1258 - Acetic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD... acetic acid when used as a preservative on post-harvest agricultural commodities intended for animal...

  14. Effect of metal ions on decomposition of chlorinated organic substances by ozonation in acetic acid.

    PubMed

    Okawa, Kiyokazu; Tsai, Tsung-Yueh; Nakano, Yoichi; Nishijima, Wataru; Okada, Mitsumasa

    2005-01-01

    The objective of this study is to find metal ions that enhance the ozone decomposition of chlorinated organic substances in acetic acid. Although the pseudo-first order degradation rate constant for 2,4-DCP by ozone in acetic acid in addition of Ca2+, Mg2+, Al3+ and Fe2+ were almost the same as that with no metal ion, the degradation rate in addition of Mn2+ and Fe3+ were 2.4 and 4.5 times as high as that with no metal ion, respectively. The presence of Fe3+ enhanced the degradation of 2,4-DCP by ozone in acetic acid because Fe3+-phenolate complex which have high reactivity with ozone was produced by the reaction between 2,4-DCP and Fe3+ in acetic acid. PMID:15620744

  15. Percutaneous Sclerotherapy Using Acetic Acid After Failure of Alcohol Ablation in an Intra-abdominal Lymphangioma

    SciTech Connect

    Park, Sang Woo Cha, In Ho; Kim, Kyeong Ah; Hong, Suk Joo; Park, Cheol Min; Chung, Hwan Hoon

    2004-09-15

    We report a case of percutaneous sclerotherapy using acetic acid in a 22-year-old woman with an intra-abdominal cystic lymphangioma who was not successfully treated with ethanol despite multiple trials.

  16. Kinetic model for methanogenesis of acetic acid in a multireactor system

    SciTech Connect

    Bhadra, A.; Mukhopadhyay, S.N.; Ghose, T.K.

    1984-01-01

    Bioconversion of acetic acid to methane by a crude culture of methanogens in a continuous multireactor system was investigateed. Culture of methanogens was drawn from an active cow-dung digester (12 days) and was grown in a semisynthetic medium (pH 6.3, 37/sup 0/C) with acetic acid as the sole carbon source. The solubilities of CO/sub 2/, HCO/sub 3//sup -/ and CO/sub 3//sup 2 -/ increased with the rise in pH and exercised considerable influence on the gas composition. Various mechanisms for methanogenesis of acetic acid based on the available pathways were considered. Experimental data were compared with these mechansims, the best fit was determined, and the corresponding rate expression was identified. This mechanism predicted that, of the total methane produced, 72% comes from acetic acid directly and 28% via the CO/sub 2/ reduction route.

  17. Recovery of acetic acid from dilute aqueous solutions using catalytic dehydrative esterification with ethanol.

    PubMed

    Yagyu, Daisuke; Ohishi, Tetsuo; Igarashi, Takeshi; Okumura, Yoshikuni; Nakajo, Tetsuo; Mori, Yuichiro; Kobayashi, Shū

    2013-03-01

    We have developed a direct esterification of aqueous acetic acid with ethanol (molar ratio=1:1) catalyzed by polystyrene-supported or homogeneous sulfonic acids toward the recovery of acetic acid from wastewater in chemical plants. The equilibrium yield was significantly increased by the addition of toluene, which had a high ability to extract ethyl acetate from the aqueous phase. It was shown that low-loading and alkylated polystyrene-supported sulfonic acid efficiently accelerated the reaction. These results suggest that the construction of hydrophobic reaction environments in water was critical in improving the chemical yield. Addition of inorganic salts was also effective for the reaction under not only biphasic conditions (toluene-water) but also toluene-free conditions, because the mutual solubility of ethyl acetate and water was suppressed by the salting-out effect. Among the tested salts, CaCl(2) was found to be the most suitable for this reaction system. PMID:23290939

  18. The antimicrobial effect of acetic acid--an alternative to common local antiseptics?

    PubMed

    Ryssel, H; Kloeters, O; Germann, G; Schäfer, Th; Wiedemann, G; Oehlbauer, M

    2009-08-01

    Acetic acid has been commonly used in medicine for more than 6000 years for the disinfection of wounds and especially as an antiseptic agent in the treatment and prophylaxis of the plague. The main goal of this study was to prove the suitability of acetic acid, in low concentration of 3%, as a local antiseptic agent, especially for use in salvage procedures in problematic infections caused by organisms such as Proteus vulgaris, Acinetobacter baumannii or Pseudomonas aeruginosa. This study was designed to compare the in vitro antimicrobial effect of acetic acid with those of common local antiseptics such as povidone-iodine 11% (Betaisodona), polyhexanide 0.04% (Lavasept), mafenide 5% and chlohexidine gluconate 1.5% cetrimide 15% (Hibicet). Former studies suggest the bactericidal effect of acetic acid, but these data are very heterogeneous; therefore, a standardised in vitro study was conducted. To cover the typical bacterial spectrum of a burn unit, the following Gram-negative and Gram-positive bacterial strains were tested: Escherichia coli, P. vulgaris, P. aeruginosa, A. baumannii, Enterococcus faecalis, Staphylococcus epidermidis, methicillin-resistant Staphylococcus aureus (MRSA) and beta-haemolytic Streptococcus group A and B. The tests showed excellent bactericidal effect of acetic acid, particularly with problematic Gram-negative bacteria such as P. vulgaris, P. aeruginosa and A. baumannii. The microbiological spectrum of acetic acid is wide, even when tested at a low concentration of 3%. In comparison to our currently used antiseptic solutions, it showed similar - in some bacteria, even better - bactericidal properties. An evaluation of the clinical value of topical application of acetic acid is currently underway. It can be concluded that acetic acid in a concentration of 3% has excellent bactericidal effect and, therefore, seems to be suitable as a local antiseptic agent, but further clinical studies are necessary.

  19. Responses of Pisum sativum L. to exogenous indole acetic acid application under manganese toxicity.

    PubMed

    Gangwar, Savita; Singh, Vijay Pratap; Maurya, Jagat Narayan

    2011-06-01

    Responses of pea (Pisum sativum L.) seedlings to manganese (50, 100 and 250 μM) and indole acetic acid (10 and 100 μM) treatments were investigated. Single and combined exposure of pea to manganese and 100 μM indole acetic acid decreased root and shoot fresh mass, chlorophyll, carotenoids, protein and nitrogen while ammonium content increased compared to the control. Combined treatment of pea with 250 μM manganese and 100 μM indole acetic acid decreased root and shoot fresh mass by 54% and 51%, chlorophyll and carotenoids by 31% and 26%, root and shoot protein by 47% and 44%, and root and shoot nitrogen by 44% and 40%, respectively. Activities of glutamine synthetase and glutamate synthase were decreased by the exposure of manganese and 100 μM indole acetic acid while glutamate dehydrogenase activity increased. Combined application of 250 μM manganese and 100 μM indole acetic acid decreased root and shoot glutamine synthetase activity by 44% and 39%, and glutamate synthase activity by 39% and 37% while root and shoot glutamate dehydrogenase activity increased by 47% and 42%, respectively compared to the control. In contrast, application of 10 μM indole acetic acid together with manganese decreased the negative impacts of manganese, and promoted seedling growth compared to the manganese treatments alone. This study has shown that 10 μM indole acetic acid protected pea seedlings appreciably from manganese toxicity by regulating ammonium content and the activities of enzymes of ammonium assimilation, while 100 μM of indole acetic acid exhibited opposite response under manganese toxicity. PMID:21516457

  20. Iontophoretic enhancement of leuprolide acetate by fatty acids, limonene, and depilatory lotions through porcine epidermis.

    PubMed

    Rastogi, Sumeet K; Singh, Jagdish

    2004-11-01

    The effect of chemical enhancers (e.g., fatty acids, limonene, depilatory lotions) and iontophoresis was investigated on the in vitro permeability of leuprolide acetate through porcine epidermis. Franz diffusion cells and Scepter iontophoretic power source were used for the percutaneous absorption studies. Anodal iontophoresis was performed at 0.2 mA/cm2 current density. Fatty acids used were palmitic (C16:0), palmitoleic (C16:1), stearic (C18:0), oleic (C18:1), linoleic (C18:2), and linolenic (C18:3) acids. The passive and iontophoretic flux were significantly (p < 0.05) greater through fatty acids-treated porcine epidermis in comparison to the control (untreated epidermis) for leuprolide acetate. The passive and iontophoretic permeability of leuprolide acetate increased with increasing number of cis double bonds. Among the fatty acids tested, linolenic acid (C18:3) exhibited the maximum permeability of leuprolide acetate during passive (51.42 x 10(-4) cm/hr) and iontophoretic (318.98 x 10(-4) cm/hr) transport. The passive and iontophoretic flux of leuprolide acetate were significantly (p < 0.05) greater through the limonene and depilatory lotion treated epidermis in comparison to their respective control. In conclusion, iontophoresis in combination with chemical enhancers synergistically increased (p < 0.05) the in vitro permeability of leuprolide acetate through porcine epidermis.

  1. Origin and yields of acetic acid in pentose-based Maillard reaction systems.

    PubMed

    Davidek, Tomas; Gouézec, Elisabeth; Devaud, Stéphanie; Blank, Imre

    2008-04-01

    The formation of acetic acid from pentoses was studied in aqueous buffered systems (90-120 degrees C, pH 6.0-8.0) containing equimolar concentrations of 13C-labeled xylose and glycine. Acetic acid was quantified by gas chromatography-mass spectroscopy using an isotope dilution assay. Acetic acid was mainly formed from the C-1/C-2 carbon atoms of xylose (77-87%), while small amounts were also formed from the C-4/C-5 atoms of the pentose sugar (9-15%). Temperature and pH had only a small effect on the relative contribution of the sugar carbon atoms to acetic acid. These results support beta-dicarbonyl cleavage of 1-deoxypento-2,4-diulose as a major pathway leading to acetic acid in pentose-based Maillard reaction systems under food processing conditions. Acetic acid was confirmed as a major degradation product of pentoses at the early stage of the Maillard reaction, yielding 16 mol% and 28 mol% at pH 6.0 and pH 8.0, respectively. PMID:18448822

  2. Effects of acetic acid and lactic acid on physicochemical characteristics of native and cross-linked wheat starches.

    PubMed

    Majzoobi, Mahsa; Beparva, Paniz

    2014-03-15

    The effects of two common organic acids; lactic and acetic acids (150 mg/kg) on physicochemical properties of native and cross-linked wheat starches were investigated prior and after gelatinization. These acids caused formation of some cracks and spots on the granules. The intrinsic viscosity of both starches decreased in the presence of the acids particularly after gelatinization. Water solubility increased while water absorption reduced after addition of the acids. The acids caused reduction in gelatinization temperature and enthalpy of gelatinization of both starches. The starch gels became softer, less cohesive, elastic and gummy when acids were added. These changes may indicate the degradation of the starch molecules by the acids. Cross-linked wheat starch was more resistant to the acids. However, both starches became more susceptible to the acids after gelatinization. The effect of lactic acid on physicochemical properties of both starches before and after gelatinization was greater than acetic acid.

  3. Comparison of D-gluconic acid production in selected strains of acetic acid bacteria.

    PubMed

    Sainz, F; Navarro, D; Mateo, E; Torija, M J; Mas, A

    2016-04-01

    The oxidative metabolism of acetic acid bacteria (AAB) can be exploited for the production of several compounds, including D-gluconic acid. The production of D-gluconic acid in fermented beverages could be useful for the development of new products without glucose. In the present study, we analyzed nineteen strains belonging to eight different species of AAB to select those that could produce D-gluconic acid from D-glucose without consuming D-fructose. We tested their performance in three different media and analyzed the changes in the levels of D-glucose, D-fructose, D-gluconic acid and the derived gluconates. D-Glucose and D-fructose consumption and D-gluconic acid production were heavily dependent on the strain and the media. The most suitable strains for our purpose were Gluconobacter japonicus CECT 8443 and Gluconobacter oxydans Po5. The strawberry isolate Acetobacter malorum (CECT 7749) also produced D-gluconic acid; however, it further oxidized D-gluconic acid to keto-D-gluconates.

  4. [Advances in the progress of anti-bacterial biofilms properties of acetic acid].

    PubMed

    Gao, Xinxin; Jin, Zhenghua; Chen, Xinxin; Yu, Jia'ao

    2016-06-01

    Bacterial biofilms are considered to be the hindrance in the treatment of chronic wound, because of their tolerance toward antibiotics and other antimicrobial agents. They also have strong ability to escape from the host immune attack. Acetic acid, as a kind of organic weak acid, can disturb the biofilms by freely diffusing through the bacterial biofilms and bacterial cell membrane structure. Then the acid dissociates to release the hydrogen ions, leading to the disorder of the acid-base imbalance, change of protein conformation, and the degradation of the DNA within the membranes. This paper reviews the literature on the characteristics and treatment strategies of the bacterial biofilms and the acetic acid intervention on them, so as to demonstrate the roles acetic acid may play in the treatment of chronic wound, and thus provide a convincing treatment strategy for this kind of disease. PMID:27321493

  5. [Advances in the progress of anti-bacterial biofilms properties of acetic acid].

    PubMed

    Gao, Xinxin; Jin, Zhenghua; Chen, Xinxin; Yu, Jia'ao

    2016-06-01

    Bacterial biofilms are considered to be the hindrance in the treatment of chronic wound, because of their tolerance toward antibiotics and other antimicrobial agents. They also have strong ability to escape from the host immune attack. Acetic acid, as a kind of organic weak acid, can disturb the biofilms by freely diffusing through the bacterial biofilms and bacterial cell membrane structure. Then the acid dissociates to release the hydrogen ions, leading to the disorder of the acid-base imbalance, change of protein conformation, and the degradation of the DNA within the membranes. This paper reviews the literature on the characteristics and treatment strategies of the bacterial biofilms and the acetic acid intervention on them, so as to demonstrate the roles acetic acid may play in the treatment of chronic wound, and thus provide a convincing treatment strategy for this kind of disease.

  6. The fraction of cells that resume growth after acetic acid addition is a strain-dependent parameter of acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Swinnen, Steve; Fernández-Niño, Miguel; González-Ramos, Daniel; van Maris, Antonius J A; Nevoigt, Elke

    2014-06-01

    High acetic acid tolerance of Saccharomyces cerevisiae is a relevant phenotype in industrial biotechnology when using lignocellulosic hydrolysates as feedstock. A screening of 38 S. cerevisiae strains for tolerance to acetic acid revealed considerable differences, particularly with regard to the duration of the latency phase. To understand how this phenotype is quantitatively manifested, four strains exhibiting significant differences were studied in more detail. Our data show that the duration of the latency phase is primarily determined by the fraction of cells within the population that resume growth. Only this fraction contributed to the exponential growth observed after the latency phase, while all other cells persisted in a viable but non-proliferating state. A remarkable variation in the size of the fraction was observed among the tested strains differing by several orders of magnitude. In fact, only 11 out of 10(7)  cells of the industrial bioethanol production strain Ethanol Red resumed growth after exposure to 157 mM acetic acid at pH 4.5, while this fraction was 3.6 × 10(6) (out of 10(7)  cells) in the highly acetic acid tolerant isolate ATCC 96581. These strain-specific differences are genetically determined and represent a valuable starting point to identify genetic targets for future strain improvement.

  7. Conformational equilibria and large-amplitude motions in dimers of carboxylic acids: rotational spectrum of acetic acid-difluoroacetic acid.

    PubMed

    Gou, Qian; Feng, Gang; Evangelisti, Luca; Caminati, Walther

    2014-10-01

    We report the rotational spectra of two conformers of the acetic acid-difluoroacetic acid adduct (CH3COOH-CHF2COOH) and supply information on its internal dynamics. The two conformers differ from each other, depending on the trans or gauche orientation of the terminal -CHF2 group. Both conformers display splittings of the rotational transitions, due to the internal rotation of the methyl group of acetic acid. The corresponding barriers are determined to be V3(trans)=99.8(3) and V3(gauche)=90.5(9) cm(-1) (where V3 is the methyl rotation barrier height). The gauche form displays a further doubling of the rotational transitions, due to the tunneling motion of the -CHF2 group between its two equivalent conformations. The corresponding B2 barrier is estimated to be 108(2) cm(-1). The increase in the distance between the two monomers upon OH→OD deuteration (the Ubbelohde effect) is determined.

  8. Pretreatment of corn stover with diluted acetic acid for enhancement of acidogenic fermentation.

    PubMed

    Zhao, Xu; Wang, Lijuan; Lu, Xuebin; Zhang, Shuting

    2014-04-01

    A Box-Behnken design of response surface method was used to optimize acetic acid-catalyzed hydrothermal pretreatment of corn stover, in respect to acid concentration (0.05-0.25%), treatment time (5-15 min) and reaction temperature (180-210°C). Acidogenic fermentations with different initial pH and hydrolyzates were also measured to evaluate the optimal pretreatment conditions for maximizing acid production. The results showed that pretreatment with 0.25% acetic acid at 191°C for 7.74 min was found to be the most optimal condition for pretreatment of corn stover under which the production of acids can reach the highest level. Acidogenic fermentation with the hydrolyzate of pretreatment at the optimal condition at the initial pH=5 was shown to be butyric acid type fermentation, producing 21.84 g acetic acid, 7.246 g propionic acid, 9.170 butyric acid and 1.035 g isovaleric acid from 100g of corn stover in 900 g of water containing 2.25 g acetic acid.

  9. Thermal decarboxylation of acetic acid: Implications for origin of natural gas

    USGS Publications Warehouse

    Kharaka, Y.K.; Carothers, W.W.; Rosenbauer, R.J.

    1983-01-01

    Laboratory experiments on the thermal decarboxylation of solutions of acetic acid at 200??C and 300??C were carried out in hydrothermal equipment allowing for on-line sampling of both the gas and liquid phases for chemical and stable-carbon-isotope analyses. The solutions had ambient pH values between 2.5 and 7.1; pH values and the concentrations of the various acetate species at the conditions of the experiments were computed using a chemical model. Results show that the concentrations of acetic acid, and not total acetate in solution, control the reaction rates which follow a first order equation based on decreasing concentrations of acetic acid with time. The decarboxylation rates at 200??C (1.81 ?? 10-8 per second) and 300??C (8.17 ?? 10-8 per second) and the extrapolated rates at lower temperatures are relatively high. The activation energy of decarboxylation is only 8.1 kcal/mole. These high decarboxylation rates, together with the distribution of short-chained aliphatic acid anions in formation waters, support the hypothesis that acid anions are precursors for an important portion of natural gas. Results of the ??13C values of CO2, CH4, and total acetate show a reasonably constant fractionation factor of about 20 permil between CO2 and CH4 at 300??C. The ??13C values of CO2 and CH4 are initially low and become higher as decarboxylation increases. ?? 1983.

  10. Brønsted Acid/Lewis Acid Cooperatively Catalyzed Addition of Diazoester to 2H-chromene Acetals

    PubMed Central

    Luan, Yi; Qi, Yue; Gao, Hongyi; Ma, Qianqian; Schaus, Scott E.

    2014-01-01

    A novel Brønsted acid/Lewis acid dual catalyst system has been developed to promote an efficient C–C bond formation between a range of oxocarbenium precursors derived from chromene acetals and ethyl diazoacetate. The reaction proceeds under mild conditions and is tolerant of common functionalized 2H-chromene and isochromene acetals. In addition, an asymmetric variant of diazoacetate addition towards 2H-chromene acetal is described. Continued investigations include the further optimization of asymmetric induction towards the formation of diazo ester substituted 2H-chromene. PMID:25411552

  11. Adsorptive Membranes vs. Resins for Acetic Acid Removal from Biomass Hydrolysates

    SciTech Connect

    Han, B.; Carvalho, W.; Canilha, L.; da Silva, S. S.; e Silva, J. B. A.; McMillan, J. D.; Wickramasinghe, S. R.

    2006-01-01

    Acetic acid is a compound commonly found in hemicellulosic hydrolysates. This weak acid strongly influences the bioconversion of sugar containing hydrolysates. Previous investigators have used anion exchange resins for acetic acid removal from different hemicellulosic hydrolysates. In this study, the efficiency of an anion exchange membrane was compared to that of an anion exchange resin, for acetic acid removal from a DI water solution and an acidic hemicellulose hydrolysate pretreated using two different methods. Ion exchange membranes and resins have very different geometries. Here the performance of membranes and resins is compared using two dimensionless parameters, the relative mass throughput and chromatographic bed number. The relative mass throughput arises naturally from the Thomas solution for ion exchange. The results show that the membrane exhibit better performance in terms of capacity, and loss of the desired sugars. In addition acetic acid may be eluted at a higher concentration from the membrane thus leading to the possibility of recovery and re-use of the acetic acid.

  12. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.

    PubMed

    Cibis, Katharina Gabriela; Gneipel, Armin; König, Helmut

    2016-02-20

    In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firmicutes, Tenericutes or Thermotogae. According to 16S rRNA gene sequences, most isolates were related to Clostridium sporosphaeroides, Defluviitoga tunisiensis and Dendrosporobacter quercicolus. Acetic, propionic or butyric acid were produced in cultures of isolates affiliated to Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, C. sporosphaeroides, D. quercicolus, Proteiniborus ethanoligenes, Selenomonas bovis and Tepidanaerobacter sp. Isolates related to Thermoanaerobacterium thermosaccharolyticum produced acetic, butyric and lactic acid, and isolates related to D. tunisiensis formed acetic acid. Specific primer sets targeting 16S rRNA gene sequences were designed and used for real-time quantitative PCR (qPCR). The isolates were physiologically characterized and their role in BGP discussed.

  13. Growth and survival of various strains of enterohemorrhagic Escherichia coli in hydrochloric and acetic acid.

    PubMed

    McKellar, R C; Knight, K P

    1999-12-01

    Nineteen strains of enterohemorrhagic Escherichia coli isolated from humans and foods were examined for their ability to grow and survive at low pH in organic (acetic) and mineral (HCl) acids. Strains were subcultured in tryptic soy broth adjusted to various pH values (3.75 to 4.75 for HCl and 4.75 to 5.75 for acetic acid) and incubated for 72 h at 37 degrees C to determine the minimum growth pH value. Minimum pH values for growth of 4.25 and 5.5 were found for HCl and acetic acid, respectively. Strains were also exposed to pH 2.0 (HCl) and pH 4.0 (acetic acid) for up to 24 h at 37 degrees C to assess their ability to survive. HCl was a more effective inhibitor after 6 h of exposure, whereas acetic acid was more effective after 24 h. Outbreak strains survived acid treatment significantly (P < or = 0.05) better than strains isolated from fermented or high-pH foods or animal or human isolates. Significant (P < or = 0.05) differences among serotypes and between O157:H7 and other serotypes were apparent after 3 or 6 h of exposure to acids. PMID:10606153

  14. Microbiological preservation of cucumbers for bulk storage using acetic acid and food preservatives.

    PubMed

    Pérez-Díaz, I M; McFeeters, R F

    2008-08-01

    Microbial growth did not occur when cucumbers were preserved without a thermal process by storage in solutions containing acetic acid, sodium benzoate, and calcium chloride to maintain tissue firmness. The concentrations of acetic acid and sodium benzoate required to ensure preservation were low enough so that stored cucumbers could be converted to the finished product without the need to wash out and discard excess acid or preservative. Since no thermal process was required, this method of preservation would be applicable for storing cucumbers in bulk containers. Acid tolerant pathogens died off in less than 24 h with the pH, acetic acid, and sodium benzoate concentrations required to assure the microbial stability of cucumbers stored at 30 degrees C. Potassium sorbate as a preservative in this application was not effective. Yeast growth was observed when sulfite was used as a preservative.

  15. Conductometric simultaneous determination of acetic acid, monochloroacetic acid and trichloroacetic acid using orthogonal signal correction-partial least squares.

    PubMed

    Ghorbani, R; Ghasemi, J; Abdollahi, B

    2006-04-17

    A simultaneous conductometric titration method for determination of mixtures of acetic acid, monochloroacetic acid and trichloroacetic acid based on the multivariate calibration partial least squares is proposed. It is possible to obtain an adjustable model to relate squared concentration values of the mixtures used in the calibration range by conductance. The effect of orthogonal signal correction (OSC) as a preprocessing technique used to remove the information unrelated to the target variables is studied. The calibration model was build using conductometric titrations data of 16 mixtures of three acids. The concentration matrix was designed by a orthogonal design. The root mean squares error of prediction (RMSEP) for acetic acid, monochloroacetic acid and trichloroacetic acid with and without OSC were 0.08, 0.30 and 0.08, and 0.15, 0.40 and 0.18, respectively. The results obtained by OSC-PLS are better than the PLS and this indicate the successful application of the OSC filter as a good preprocessing method in multivariate calibration methods. The proposed procedure allows the simultaneous determination of these acids, in the synthetic mixtures.

  16. Microwave Spectroscopy and Proton Transfer Dynamics in the Formic Acid-Acetic Acid Dimer

    NASA Astrophysics Data System (ADS)

    Howard, B. J.; Steer, E.; Page, F.; Tayler, M.; Ouyang, B.; Leung, H. O.; Marshall, M. D.; Muenter, J. S.

    2012-06-01

    The rotational spectrum of the doubly hydrogen-bonded {hetero} dimer formed between formic acid and acetic acid has been recorded between 4 and 18 GHz using a pulsed-nozzle Fourier transform microwave spectrometer. Each rigid-molecule rotational transition is split into four as a result of two concurrent tunnelling motions, one being proton transfer between the two acid molecules, and the other the torsion/rotation of the methyl group within the acetic acid. We present a full assignment of the spectrum for {J} = 1 to {J} = 7 for these four torsion/tunnelling states. Spectra have been observed for the main isotopic species, with deuterium substitution at the C of the formic acid and all 13C species in natural abundance, The observed transitions are fitted to within a few kilohertz using a molecule-fixed effective rotational Hamiltonian for the separate {A} and {E} vibrational species of the G12 permutation-inversion group which is applicable to this complex. To reduce the effects of internal angular momentum, a non-principal axis system is used throughout. Interpretation of the internal motion uses an internal-vibration and overall rotation scheme, and full sets of rotational and centrifugal distortion constants are determined. The proton tunnelling rates and the internal angular momentum of the methyl group in the {E} states is interpreted in terms of a dynamical model which involves coupled proton transfer and internal rotation. The resulting potential energy surface not only describes these internal motions, but can also explain the observed shifts in rotational constants between {A} and {E} species, and the deviations of the tunnelling frequencies from the expected 2:1 ratio. It also permits the determination of spectral constants free from the contamination effects of the internal dynamics. M.C.D. Tayler, B. Ouyang and B.J. Howard, J. Chem. Phys., {134}, 054316 (2011).

  17. Radiofrequency Thermal Ablation: Increase in Lesion Diameter with Continuous Acetic Acid Infusion

    SciTech Connect

    Lubienski, Andreas Duex, Markus; Lubienski, Katrin; Grenacher, Lars; Kauffmann, Guenter

    2005-12-15

    Purpose. To evaluate the influence of continuous infusion of acetic acid 50% during radiofrequency ablation (RFA) on the size of the thermal lesion produced. Methods. Radiofrequency (RF) was applied to excised bovine liver by using an expandable needle electrode with 10 retractable tines (LeVeen Needle Electrode, RadioTherapeutics, Sunnyvale, CA) connected to a commercially available RF generator (RF 2000, RadioTherapeutics, Sunnyvale, CA). Experiments were performed using three different treatment modalities: RF only (n = 15), RF with continuous saline 0.9% infusion (n = 15), and RF with continuous acetic acid 50% infusion (n = 15). RF duration, power output, tissue impedance, and time to a rapid rise in impedance were recorded. The ablated lesions were evaluated both macroscopically and histologically. Results. The ablated lesions appeared as spherical or ellipsoid, well-demarcated pale areas with a surrounding brown rim with both RF only and RF plus saline 0.9% infusion. In contrast, thermolesions generated with RF in combination with acetic acid 50% infusion were irregular in shape and the central portion was jelly-like. Mean diameter of the coagulation necrosis was 22.3 {+-} 2.1 mm (RF only), 29.2 {+-} 4.8 mm (RF + saline 0.9%) and 30.7 {+-} 5.7 mm (RF + acetic acid 50%), with a significant increase in the RF plus saline 0.9% and RF plus acetic acid 50% groups compared with RF alone. Time to a rapid rise in impedance was significantly prolonged in the RF plus saline 0.9% and RF plus acetic acid 50% groups compared with RF alone. Conclusions. A combination of RF plus acetic acid 50% infusion is able to generate larger thermolesions than RF only or RF combined with saline 0.9% infusion.

  18. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications.

    PubMed

    Saichana, Natsaran; Matsushita, Kazunobu; Adachi, Osao; Frébort, Ivo; Frebortova, Jitka

    2015-11-01

    Acetic acid bacteria are gram-negative obligate aerobic bacteria assigned to the family Acetobacteraceae of Alphaproteobacteria. They are members of the genera Acetobacter, Gluconobacter, Gluconacetobacter, Acidomonas, Asaia, Kozakia, Swaminathania, Saccharibacter, Neoasaia, Granulibacter, Tanticharoenia, Ameyamaea, Neokomagataea, and Komagataeibacter. Many strains of Acetobacter and Komagataeibacter have been known to possess high acetic acid fermentation ability as well as the acetic acid and ethanol resistance, which are considered to be useful features for industrial production of acetic acid and vinegar, the commercial product. On the other hand, Gluconobacter strains have the ability to perform oxidative fermentation of various sugars, sugar alcohols, and sugar acids leading to the formation of several valuable products. Thermotolerant strains of acetic acid bacteria were isolated in order to serve as the new strains of choice for industrial fermentations, in which the cooling costs for maintaining optimum growth and production temperature in the fermentation vessels could be significantly reduced. Genetic modifications by adaptation and genetic engineering were also applied to improve their properties, such as productivity and heat resistance.

  19. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications.

    PubMed

    Saichana, Natsaran; Matsushita, Kazunobu; Adachi, Osao; Frébort, Ivo; Frebortova, Jitka

    2015-11-01

    Acetic acid bacteria are gram-negative obligate aerobic bacteria assigned to the family Acetobacteraceae of Alphaproteobacteria. They are members of the genera Acetobacter, Gluconobacter, Gluconacetobacter, Acidomonas, Asaia, Kozakia, Swaminathania, Saccharibacter, Neoasaia, Granulibacter, Tanticharoenia, Ameyamaea, Neokomagataea, and Komagataeibacter. Many strains of Acetobacter and Komagataeibacter have been known to possess high acetic acid fermentation ability as well as the acetic acid and ethanol resistance, which are considered to be useful features for industrial production of acetic acid and vinegar, the commercial product. On the other hand, Gluconobacter strains have the ability to perform oxidative fermentation of various sugars, sugar alcohols, and sugar acids leading to the formation of several valuable products. Thermotolerant strains of acetic acid bacteria were isolated in order to serve as the new strains of choice for industrial fermentations, in which the cooling costs for maintaining optimum growth and production temperature in the fermentation vessels could be significantly reduced. Genetic modifications by adaptation and genetic engineering were also applied to improve their properties, such as productivity and heat resistance. PMID:25485864

  20. Laboratory Studies of the Tropospheric Loss Processes for Acetic and Peracetic Acid

    NASA Astrophysics Data System (ADS)

    Orlando, J. J.; Tyndall, G. S.

    2002-12-01

    Organic acids are ubiquitous components of tropospheric air and contribute to acid precipitation, particularly in remote regions. These species are present in the troposphere as the result of direct emissions from anthropogenic and biogenic sources, and as the result of photochemical processing of hydrocarbons. Production of organic acids can occur following ozonolysis of unsaturated hydrocarbons, while both organic acids and peroxyacids are formed from the reactions of HO2 with acylperoxy radicals. For example, both acetic and peracetic acid are known products of the reaction of HO2 with acetylperoxy radicals. In this paper, data relevant to the gas-phase tropospheric destruction of both acetic and peracetic acid are reported, including studies of their UV absorption spectra and of their rate coefficients for reaction with OH radicals. The data, the first of their kind for peracetic acid, show that the gas-phase lifetime of this species will be on the order of 10 days, with OH reaction occurring more rapidly than photolysis. Data on the rate coefficient for reaction of OH with acetic acid appear to resolve some conflicting data in the previous literature, and show 1) that reaction of OH with the acetic acid dimer is slow compared to the monomer and 2) that the rate coefficient possesses a negative temperature dependence near room temperature.

  1. Reactivity and reaction intermediates for acetic acid adsorbed on CeO2(111)

    SciTech Connect

    Calaza, Florencia C.; Chen, Tsung -Liang; Mullins, David R.; Xu, Ye; Steven H. Overbury

    2015-05-02

    Adsorption and reaction of acetic acid on a CeO2(1 1 1) surface was studied by a combination of ultra-highvacuum based methods including temperature desorption spectroscopy (TPD), soft X-ray photoelectronspectroscopy (sXPS), near edge X-ray absorption spectroscopy (NEXAFS) and reflection absorption IRspectroscopy (RAIRS), together with density functional theory (DFT) calculations. TPD shows that thedesorption products are strongly dependent upon the initial oxidation state of the CeO2 surface, includingselectivity between acetone and acetaldehyde products. The combination of sXPS and NEXAFS demon-strate that acetate forms upon adsorption at low temperature and is stable to above 500 K, above whichpoint ketene, acetone and acetic acid desorb. Furthermore, DFT and RAIRS show that below 500 K, bridge bondedacetate coexists with a moiety formed by adsorption of an acetate at an oxygen vacancy, formed bywater desorption.

  2. A laboratory study of the effect of acetic acid vapor on atmospheric copper corrosion

    SciTech Connect

    Lopez-Delgado, A.; Cano, E.; Bastidas, J.M.; Lopez, F.A.

    1998-12-01

    A study was made of the copper corrosion rate and corrosion products originated by the action of acetic acid vapor at 100% relative humidity. Copper plates were exposed to an acetic acid contaminated atmosphere for a period of 21 days. Five acetic vapor concentration levels were used. The copper corrosion rate was in the range of 1 to 23 mg/dm{sup 2} day. The corrosion-product layers were characterized using electrochemical, X-ray powder diffraction, Fourier transform infrared spectrometry, and scanning electron microscopy techniques. Thermal and calorimetric studies were also performed. Some of the compounds identified were cuprite (Cu{sub 2}O), copper acetate hydrate [Cu(CH{sub 3}COO){sub 2}{center_dot}2H{sub 2}O], and copper hydroxide acetate [Cu{sub 4}(OH)(CH{sub 3}COO){sub 7}{center_dot}2H{sub 2}O]. This last compound was also characterized. The thickness of the patina layers was 4 to 8 nm for amorphous cuprite, 11 to 48 nm for cuprite, and 225 nm for copper acetate. The patina, in which the cementation process of different corrosion-product layers plays an important role, is formed by the reaction of acetic vapor with copper through porous cuprite paths.

  3. Feulgen staining of mammalian tissues fixed in picro-formol-acetic acid.

    PubMed

    Dutt, M K

    1975-01-01

    The paper describes a highly satisfactory method for in situ localization of DNA in tissues fixed in picro-formol-acetic acid or picro-formol-acetic-chromic acid mixtures following a technique in the Feulgen procedure as devised by the author. Mammalian tissues fixed in these fixatives can be hydrolysed in 6N HCl at 35 degrees C for 10 min, rinsed in water, stained with Schiff reagent after exposing the sections under UV light for 10 min, washed in water, dehydrated through a graduated series of ethanol, cleared in xylol and mounted in DPX. Sections of tissues fixed in picro-formol-acetic-chromic acid mixtures after acid hydrolysis when stained with an aqueous solution of basic fuchsin are also found to be very satisfactory for in situ localization of DNA. PMID:55054

  4. Modeling of yeast Brettanomyces bruxellensis growth at different acetic acid concentrations under aerobic and anaerobic conditions.

    PubMed

    Yahara, Garcia Alvarado; Javier, Mendez Ancona; Tulio, Mata Jimenez Marco; Javier, Gómez Rodriguez; Guadalupe, Aguilar Uscanga Maria

    2007-11-01

    Glucose utilization by Brettanomyces bruxellensis at different acetic acid concentrations under aerobic and anaerobic conditions was investigated. The presence of the organic acid disturbs the growth and fermentative activity of the yeast when its concentration exceeds 2 g l(-1). A mathematical model is proposed for the kinetic behavior analysis of yeast growing in batch culture. A Matlab algorithm was used for estimation of model parameters, whose confidence intervals were also calculated at a 0.95 probability level using a t-Student distribution for f degrees of freedom. The model successfully simulated the batch kinetics observed at different concentrations of acetic acid under both oxygen conditions.

  5. Conversion of Acetic Acid from the Catalytic Pyrolysis of Xylan Over CeO2.

    PubMed

    Lee, Heejin; Ko, Jeong Huy; Kwon, Woo Hyun; Park, Young-Kwon

    2016-05-01

    CeO2 was synthesized hydrothermally in supercritical water and applied to the catalytic pyrolysis of xylan. Acetic acid, which is the main component in bio-oil produced from the non-catalytic pyrolysis of xylan, deteriorates the fuel quality of the oil. Catalysis over CeO2 effectively converted the acetic acid to ketone species, such as acetone, thereby reducing the acidity of the oil considerably. The content of aromatics in bio-oil was also increased substantially by catalysis. PMID:27483777

  6. The Fate of Acetic Acid during Glucose Co-Metabolism by the Spoilage Yeast Zygosaccharomyces bailii

    PubMed Central

    Rodrigues, Fernando; Sousa, Maria João; Ludovico, Paula; Santos, Helena; Côrte-Real, Manuela; Leão, Cecília

    2012-01-01

    Zygosaccharomyces bailii is one of the most widely represented spoilage yeast species, being able to metabolise acetic acid in the presence of glucose. To clarify whether simultaneous utilisation of the two substrates affects growth efficiency, we examined growth in single- and mixed-substrate cultures with glucose and acetic acid. Our findings indicate that the biomass yield in the first phase of growth is the result of the weighted sum of the respective biomass yields on single-substrate medium, supporting the conclusion that biomass yield on each substrate is not affected by the presence of the other at pH 3.0 and 5.0, at least for the substrate concentrations examined. In vivo 13C-NMR spectroscopy studies showed that the gluconeogenic pathway is not operational and that [2−13C]acetate is metabolised via the Krebs cycle leading to the production of glutamate labelled on C2, C3 and C4. The incorporation of [U-14C]acetate in the cellular constituents resulted mainly in the labelling of the protein and lipid pools 51.5% and 31.5%, respectively. Overall, our data establish that glucose is metabolised primarily through the glycolytic pathway, and acetic acid is used as an additional source of acetyl-CoA both for lipid synthesis and the Krebs cycle. This study provides useful clues for the design of new strategies aimed at overcoming yeast spoilage in acidic, sugar-containing food environments. Moreover, the elucidation of the molecular basis underlying the resistance phenotype of Z. bailii to acetic acid will have a potential impact on the improvement of the performance of S. cerevisiae industrial strains often exposed to acetic acid stress conditions, such as in wine and bioethanol production. PMID:23285028

  7. Anhydrous formic acid and acetic anhydride as solvent or additive in nonaqueous titrations.

    PubMed

    Buvári-Barcza, A; Tóth, I; Barcza, L

    2005-09-01

    The use and importance of formic acid and acetic anhydride (Ac2O) is increasing in nonaqueous acid-base titrations, but their interaction with the solutes is poorly understood. This paper attempts to clarify the effect of the solvents; NMR and spectrophotometric investigations were done to reveal the interactions between some bases and the mentioned solvents. Anhydrous formic acid is a typical protogenic solvent but both the relative permittivity and acidity are higher than those of acetic acid (mostly used in assays of bases). These differences originate from the different chemical structures: liquid acetic acid contains basically cyclic dimers while formic acid forms linear associates. Ac2O is obviously not an acidic but an aprotic (very slightly protophilic) solvent, which supposedly dissociates slightly into acetyl (CH3CO+) and acetate (AcO-) ions. In fact, some bases react with Ac2O forming an associate: the Ac+ group is bound to the delta- charged atom of the reactant while AcO- is associated with the delta+ group at appropriate distance.

  8. Acetic Acid Detection Threshold in Synthetic Wine Samples of a Portable Electronic Nose

    PubMed Central

    Macías, Miguel Macías; Manso, Antonio García; Orellana, Carlos Javier García; Velasco, Horacio Manuel González; Caballero, Ramón Gallardo; Chamizo, Juan Carlos Peguero

    2013-01-01

    Wine quality is related to its intrinsic visual, taste, or aroma characteristics and is reflected in the price paid for that wine. One of the most important wine faults is the excessive concentration of acetic acid which can cause a wine to take on vinegar aromas and reduce its varietal character. Thereby it is very important for the wine industry to have methods, like electronic noses, for real-time monitoring the excessive concentration of acetic acid in wines. However, aroma characterization of alcoholic beverages with sensor array electronic noses is a difficult challenge due to the masking effect of ethanol. In this work, in order to detect the presence of acetic acid in synthetic wine samples (aqueous ethanol solution at 10% v/v) we use a detection unit which consists of a commercial electronic nose and a HSS32 auto sampler, in combination with a neural network classifier (MLP). To find the characteristic vector representative of the sample that we want to classify, first we select the sensors, and the section of the sensors response curves, where the probability of detecting the presence of acetic acid will be higher, and then we apply Principal Component Analysis (PCA) such that each sensor response curve is represented by the coefficients of its first principal components. Results show that the PEN3 electronic nose is able to detect and discriminate wine samples doped with acetic acid in concentrations equal or greater than 2 g/L. PMID:23262483

  9. Coproduction of acetic acid and electricity by application of microbial fuel cell technology to vinegar fermentation.

    PubMed

    Tanino, Takanori; Nara, Youhei; Tsujiguchi, Takuya; Ohshima, Takayuki

    2013-08-01

    The coproduction of a useful material and electricity via a novel application of microbial fuel cell (MFC) technology to oxidative fermentation was investigated. We focused on vinegar production, i.e., acetic acid fermentation, as an initial and model useful material that can be produced by oxidative fermentation in combination with MFC technology. The coproduction of acetic acid and electricity by applying MFC technology was successfully demonstrated by the simultaneous progress of acetic acid fermentation and electricity generation through a series of repeated batch fermentations. Although the production rate of acetic acid was very small, it increased with the number of repeated batch fermentations that were conducted. We obtained nearly identical (73.1%) or larger (89.9%) acetic acid yields than that typically achieved by aerated fermentation (75.8%). The open-cycle voltages measured before and after fermentation increased with the total fermentation time and reached a maximum value of 0.521 V prior to the third batch fermentation. The maximum current and power densities measured in this study (19.1 μA/cm² and 2.47 μW/cm², respectively) were obtained after the second batch fermentation.

  10. Acetic acid detection threshold in synthetic wine samples of a portable electronic nose.

    PubMed

    Macías, Miguel Macías; Manso, Antonio García; Orellana, Carlos Javier García; Velasco, Horacio Manuel González; Caballero, Ramón Gallardo; Chamizo, Juan Carlos Peguero

    2012-12-24

    Wine quality is related to its intrinsic visual, taste, or aroma characteristics and is reflected in the price paid for that wine. One of the most important wine faults is the excessive concentration of acetic acid which can cause a wine to take on vinegar aromas and reduce its varietal character. Thereby it is very important for the wine industry to have methods, like electronic noses, for real-time monitoring the excessive concentration of acetic acid in wines. However, aroma characterization of alcoholic beverages with sensor array electronic noses is a difficult challenge due to the masking effect of ethanol. In this work, in order to detect the presence of acetic acid in synthetic wine samples (aqueous ethanol solution at 10% v/v) we use a detection unit which consists of a commercial electronic nose and a HSS32 auto sampler, in combination with a neural network classifier (MLP). To find the characteristic vector representative of the sample that we want to classify, first we select the sensors, and the section of the sensors response curves, where the probability of detecting the presence of acetic acid will be higher, and then we apply Principal Component Analysis (PCA) such that each sensor response curve is represented by the coefficients of its first principal components. Results show that the PEN3 electronic nose is able to detect and discriminate wine samples doped with acetic acid in concentrations equal or greater than 2 g/L.

  11. The Antibacterial Activity of Acetic Acid against Biofilm-Producing Pathogens of Relevance to Burns Patients

    PubMed Central

    Halstead, Fenella D.; Rauf, Maryam; Moiemen, Naiem S.; Bamford, Amy; Wearn, Christopher M.; Fraise, Adam P.; Lund, Peter A.; Oppenheim, Beryl A.; Webber, Mark A.

    2015-01-01

    Introduction Localised infections, and burn wound sepsis are key concerns in the treatment of burns patients, and prevention of colonisation largely relies on biocides. Acetic acid has been shown to have good antibacterial activity against various planktonic organisms, however data is limited on efficacy, and few studies have been performed on biofilms. Objectives We sought to investigate the antibacterial activity of acetic acid against important burn wound colonising organisms growing planktonically and as biofilms. Methods Laboratory experiments were performed to test the ability of acetic acid to inhibit growth of pathogens, inhibit the formation of biofilms, and eradicate pre-formed biofilms. Results Twenty-nine isolates of common wound-infecting pathogens were tested. Acetic acid was antibacterial against planktonic growth, with an minimum inhibitory concentration of 0.16–0.31% for all isolates, and was also able to prevent formation of biofilms (at 0.31%). Eradication of mature biofilms was observed for all isolates after three hours of exposure. Conclusions This study provides evidence that acetic acid can inhibit growth of key burn wound pathogens when used at very dilute concentrations. Owing to current concerns of the reducing efficacy of systemic antibiotics, this novel biocide application offers great promise as a cheap and effective measure to treat infections in burns patients. PMID:26352256

  12. Effectiveness and Toxicity of Several DTPA Broadening Agents for Biological ESR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zaplatin, A. N.; Baker, Kent A.; Kleinhans, F. W.

    1996-03-01

    The effectiveness of a standard ESR broadening agent, potassium trioxalatochromiate (CrOx), for use with the spin-label tempone, was compared to that of diethylenetriaminepentaacetic acid (DTPA) containing an ion (Gd, Cr, Mn, Fe) with a large magnetic moment. Signal attenuation, line broadening, toxicity, and cell membrane permeability were compared. As a broadening agent, CrOx was most effective, followed by Fe-DTPA. CrOx proved mildly toxic while Gd-DTPA and Fe-DTPA were virtually nontoxic. The human red blood cell membrane was tested for permeability to Fe- and Gd-DTPA and found to be impermeable to both. In situations where toxicity to cells is critical, the DTPA chelates, particularly Fe-DTPA, may prove an acceptable substitute for CrOx.

  13. Inhibition of enterobacteria and Listeria growth by lactic, acetic and formic acids.

    PubMed

    Ostling, C E; Lindgren, S E

    1993-07-01

    Minimum inhibitory concentrations (MIC) of undissociated lactic, acetic and formic acids were evaluated for 23 strains of enterobacteria and two of Listeria monocytogenes. The evaluation was performed aerobically and anaerobically in a liquid test system at pH intervals of between 4.2 and 5.4. Growth of the enterobacteria was inhibited at 2-11 mmol l-1, 0.5-14 mmol l-1 and 0.1-1.5 mmol l-1 of undissociated lactic, acetic and formic acids, respectively. The MIC value was slightly lower with anaerobic conditions compared with aerobic conditions. The influence of protons on the inhibition was observed for acetic acid at the low pH values. Undissociated lactic acid was 2 to 5 times more efficient in inhibiting L. monocytogenes than enterobacteria. Acetic acid had a similar inhibitory action on L. monocytogenes compared with enterobacteria. Inorganic acid (HCl) inhibited most enterobacteria at pH 4.0; some strains, however, were able to initiate growth to pH 3.8. The results indicate that the values of undissociated acid which occur in a silage of pH 4.1-4.5 are about 10-100 times higher than required in order to protect the forage from the growth of enterobacteria and L. monocytogenes.

  14. Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid

    PubMed Central

    Giannattasio, Sergio; Guaragnella, Nicoletta; Ždralević, Maša; Marra, Ersilia

    2013-01-01

    Beyond its classical biotechnological applications such as food and beverage production or as a cell factory, the yeast Saccharomyces cerevisiae is a valuable model organism to study fundamental mechanisms of cell response to stressful environmental changes. Acetic acid is a physiological product of yeast fermentation and it is a well-known food preservative due to its antimicrobial action. Acetic acid has recently been shown to cause yeast cell death and aging. Here we shall focus on the molecular mechanisms of S. cerevisiae stress adaptation and programmed cell death in response to acetic acid. We shall elaborate on the intracellular signaling pathways involved in the cross-talk of pro-survival and pro-death pathways underlying the importance of understanding fundamental aspects of yeast cell homeostasis to improve the performance of a given yeast strain in biotechnological applications. PMID:23430312

  15. Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid.

    PubMed

    Giannattasio, Sergio; Guaragnella, Nicoletta; Zdralević, Maša; Marra, Ersilia

    2013-01-01

    Beyond its classical biotechnological applications such as food and beverage production or as a cell factory, the yeast Saccharomyces cerevisiae is a valuable model organism to study fundamental mechanisms of cell response to stressful environmental changes. Acetic acid is a physiological product of yeast fermentation and it is a well-known food preservative due to its antimicrobial action. Acetic acid has recently been shown to cause yeast cell death and aging. Here we shall focus on the molecular mechanisms of S. cerevisiae stress adaptation and programmed cell death in response to acetic acid. We shall elaborate on the intracellular signaling pathways involved in the cross-talk of pro-survival and pro-death pathways underlying the importance of understanding fundamental aspects of yeast cell homeostasis to improve the performance of a given yeast strain in biotechnological applications. PMID:23430312

  16. Effect of acetic acid on physical properties of pregelatinized wheat and corn starch gels.

    PubMed

    Majzoobi, Mahsa; Kaveh, Zahra; Farahnaky, Asgar

    2016-04-01

    Pregelatinized starches are physically modified starches with ability to absorb water and increase viscosity at ambient temperature. The main purpose of this study was to determine how different concentrations of acetic acid (0, 500, 1000, 10,000 mg/kg) can affect functional properties of pregelatinized wheat and corn starches (PGWS and PGCS, respectively) produced by a twin drum drier. With increasing acetic acid following changes occurred for both samples; cold water solubility (at 25 °C) increased, water absorption and apparent cold water viscosity (at 25 °C) reduced, the smooth surface of the starch particles converted to an uneven surface as confirmed by scanning electron microscopy, cohesiveness, consistency and turbidity of the starch gels reduced while their syneresis increased. It was found that in presence of acetic acid, PGWS resulted in higher water absorption and apparent cold water viscosity and produced more cohesive and turbid gels with less syneresis compared to PGCS. PMID:26593546

  17. Effect of acetic acid on physical properties of pregelatinized wheat and corn starch gels.

    PubMed

    Majzoobi, Mahsa; Kaveh, Zahra; Farahnaky, Asgar

    2016-04-01

    Pregelatinized starches are physically modified starches with ability to absorb water and increase viscosity at ambient temperature. The main purpose of this study was to determine how different concentrations of acetic acid (0, 500, 1000, 10,000 mg/kg) can affect functional properties of pregelatinized wheat and corn starches (PGWS and PGCS, respectively) produced by a twin drum drier. With increasing acetic acid following changes occurred for both samples; cold water solubility (at 25 °C) increased, water absorption and apparent cold water viscosity (at 25 °C) reduced, the smooth surface of the starch particles converted to an uneven surface as confirmed by scanning electron microscopy, cohesiveness, consistency and turbidity of the starch gels reduced while their syneresis increased. It was found that in presence of acetic acid, PGWS resulted in higher water absorption and apparent cold water viscosity and produced more cohesive and turbid gels with less syneresis compared to PGCS.

  18. Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting

    NASA Astrophysics Data System (ADS)

    Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia

    2015-12-01

    Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods.

  19. Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting

    PubMed Central

    Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia

    2015-01-01

    Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods. PMID:26640089

  20. 40 CFR 721.10074 - Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acetic acid, 2-chloro-, 1-(3,3... Specific Chemical Substances § 721.10074 Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester. (a... acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester (PMN P-05-568; CAS No. 477218-59-0)...

  1. Acetic acid-catalyzed formation of N-phenylphthalimide from phthalanilic acid: a computational study of the mechanism.

    PubMed

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2015-05-28

    In glacial acetic acid, phthalanilic acid and its monosubstituents are known to be converted to the corresponding phthalimides in relatively good yields. In this study, we computationally investigated the experimentally proposed two-step (addition-elimination or cyclization-dehydration) mechanism at the second-order Møller-Plesset perturbation (MP2) level of theory for the unsubstituted phthalanilic acid, with an explicit acetic acid molecule included in the calculations. In the first step, a gem-diol tetrahedral intermediate is formed by the nucleophilic attack of the amide nitrogen. The second step is dehydration of the intermediate to give N-phenylphthalimide. In agreement with experimental findings, the second step has been shown to be rate-determining. Most importantly, both of the steps are catalyzed by an acetic acid molecule, which acts both as proton donor and acceptor. The present findings, along with those from our previous studies, suggest that acetic acid and other carboxylic acids (in their undissociated forms) can catalyze intramolecular nucleophilic attacks by amide nitrogens and breakdown of the resulting tetrahedral intermediates, acting simultaneously as proton donor and acceptor. In other words, double proton transfers involving a carboxylic acid molecule can be part of an extensive bond reorganization process from cyclic hydrogen-bonded complexes.

  2. Gadolinium-DTPA enhancement of lung radiation fibrosis

    SciTech Connect

    Werthmuller, W.C.; Schiebler, M.L.; Whaley, R.A.; Mauro, M.A.; McCartney, W.H. )

    1989-11-01

    Gadolinium-diethylenetriamine pentaacetic acid (DTPA) enhancement of radiation-induced apical pulmonary fibrosis was observed in two patients previously treated for breast cancer. In one case the fibrosis was biopsied twice, with no change in its CT appearance over 3 years. Gadolinium-DTPA may enhance benign apical fibrosis after radiation therapy and should not, in and of itself, be used as evidence of recurrent malignancy.

  3. Effects of combined heat and acetic acid on natural microflora reduction on cantaloupe melons.

    PubMed

    Fouladkhah, Aliyar; Avens, John S

    2010-05-01

    Produce is an important source of nutrients and phytochemicals, which is important in a healthy diet. However, perishable fresh produce has caused recent outbreaks of foodborne diseases. High level of nutrients and water activity, direct contact with soil, and lack of thermal procedures during primary processing make fresh produce a potential food safety hazard. Fruits and vegetables with rough surfaces can harbor microorganisms and support their multiplication, increasing the risk of this hazard. This study evaluated the effects of extreme thermal processes combined with acetic acid on natural microflora reduction on cantaloupe melons. Melons from a local supermarket were assigned into five treatment groups: control, water at 25 degrees C, water at 95 degrees C, 5% acetic acid at 25 degrees C, and 5% acetic acid at 95 degrees C. Four skin samples were obtained from each melon, separately stomached for 2 min with 0.1% peptone water, and serially diluted. Aerobic plate counts (APC) of dilutions were determined. Statistical analysis (least significant difference-based analysis of variance) showed that there were no significant (P > 0.05) differences in APC among control, water at 25 degrees C, and 5% acetic acid at 25 degrees C. Thermal treatments with water at 95 degrees C, and 5% acetic acid at 95 degrees C, were both significantly (P < 0.05) more effective in APC reduction than were nonthermal treatments, but were not significantly different from each other. Results indicated that a thermal water immersion intervention in primary processing of fresh melons can result in a 3-log reduction of natural microflora surface contamination, but 5% acetic acid will not significantly augment this reduction.

  4. Effect of acetic acid on optical coherence tomography (OCT) images of cervical epithelium.

    PubMed

    Gallwas, Julia; Stanchi, Anna; Dannecker, Christian; Ditsch, Nina; Mueller, Susanna; Mortensen, Uwe; Stepp, Herbert

    2014-11-01

    Optical coherence tomography (OCT) can be used as an adjunct to colposcopy in the identification of precancerous and cancerous cervical lesions. The purpose of this study was to investigate the effect of acetic acid on OCT imaging. OCT images were taken from unsuspicious and suspicious areas of fresh conization specimens immediately after resection and 3 and 10 min after application of 6 % acetic acid. A corresponding histology was obtained from all sites. The images taken 3 and 10 min after application of acetic acid were compared to the initial images with respect to changes in brightness, contrast, and scanning depth employing a standard nonparametric test of differences of proportions. Further, mean intensity backscattering curves were calculated from all OCT images in the histological groups CIN3, inflammation, or normal epithelium. Mean difference profiles within each of these groups were determined, reflecting the mean differences between the condition before application of acetic acid and the exposure times 3 and 10 min, respectively. According to the null hypothesis, the difference profiles do not differ from profiles fluctuating around zero in a stationary way, which implies that the profiles do not differ significantly from each other. The null hypothesis was tested employing the KPSS test. The visual analysis of 137 OCT images from 46 sites of 10 conization specimens revealed a statistically significant increase in brightness for all three groups and a statistically significant decrease in contrast for normal epithelium after 10 min. Further, an increase in scanning depth was noted for normal epithelium after 10 min and for CIN3 after 3 min. The analysis of mean intensity profiles showed an increased backscattering intensity after application of acetic acid. Acetic acid significantly affects the quality of OCT images. Overall brightness and scanning depth increase with the opposite effect regarding the image contrast. Whether the observed changes

  5. [Comparative genomics and evolutionary analysis of CRISPR loci in acetic acid bacteria].

    PubMed

    Kai, Xia; Xinle, Liang; Yudong, Li

    2015-12-01

    The clustered regularly interspaced short palindromic repeat (CRISPR) is a widespread adaptive immunity system that exists in most archaea and many bacteria against foreign DNA, such as phages, viruses and plasmids. In general, CRISPR system consists of direct repeat, leader, spacer and CRISPR-associated sequences. Acetic acid bacteria (AAB) play an important role in industrial fermentation of vinegar and bioelectrochemistry. To investigate the polymorphism and evolution pattern of CRISPR loci in acetic acid bacteria, bioinformatic analyses were performed on 48 species from three main genera (Acetobacter, Gluconacetobacter and Gluconobacter) with whole genome sequences available from the NCBI database. The results showed that the CRISPR system existed in 32 species of the 48 strains studied. Most of the CRISPR-Cas system in AAB belonged to type I CRISPR-Cas system (subtype E and C), but type II CRISPR-Cas system which contain cas9 gene was only found in the genus Acetobacter and Gluconacetobacter. The repeat sequences of some CRISPR were highly conserved among species from different genera, and the leader sequences of some CRISPR possessed conservative motif, which was associated with regulated promoters. Moreover, phylogenetic analysis of cas1 demonstrated that they were suitable for classification of species. The conservation of cas1 genes was associated with that of repeat sequences among different strains, suggesting they were subjected to similar functional constraints. Moreover, the number of spacer was positively correlated with the number of prophages and insertion sequences, indicating the acetic acid bacteria were continually invaded by new foreign DNA. The comparative analysis of CRISR loci in acetic acid bacteria provided the basis for investigating the molecular mechanism of different acetic acid tolerance and genome stability in acetic acid bacteria.

  6. [Comparative genomics and evolutionary analysis of CRISPR loci in acetic acid bacteria].

    PubMed

    Kai, Xia; Xinle, Liang; Yudong, Li

    2015-12-01

    The clustered regularly interspaced short palindromic repeat (CRISPR) is a widespread adaptive immunity system that exists in most archaea and many bacteria against foreign DNA, such as phages, viruses and plasmids. In general, CRISPR system consists of direct repeat, leader, spacer and CRISPR-associated sequences. Acetic acid bacteria (AAB) play an important role in industrial fermentation of vinegar and bioelectrochemistry. To investigate the polymorphism and evolution pattern of CRISPR loci in acetic acid bacteria, bioinformatic analyses were performed on 48 species from three main genera (Acetobacter, Gluconacetobacter and Gluconobacter) with whole genome sequences available from the NCBI database. The results showed that the CRISPR system existed in 32 species of the 48 strains studied. Most of the CRISPR-Cas system in AAB belonged to type I CRISPR-Cas system (subtype E and C), but type II CRISPR-Cas system which contain cas9 gene was only found in the genus Acetobacter and Gluconacetobacter. The repeat sequences of some CRISPR were highly conserved among species from different genera, and the leader sequences of some CRISPR possessed conservative motif, which was associated with regulated promoters. Moreover, phylogenetic analysis of cas1 demonstrated that they were suitable for classification of species. The conservation of cas1 genes was associated with that of repeat sequences among different strains, suggesting they were subjected to similar functional constraints. Moreover, the number of spacer was positively correlated with the number of prophages and insertion sequences, indicating the acetic acid bacteria were continually invaded by new foreign DNA. The comparative analysis of CRISR loci in acetic acid bacteria provided the basis for investigating the molecular mechanism of different acetic acid tolerance and genome stability in acetic acid bacteria. PMID:26704949

  7. (+/-)-1-Tetralone-3-carboxylic acid and (+/-)-1-tetralone-2-acetic acid: hydrogen bonding in two gamma-keto acids.

    PubMed

    Barcon, A; Brunskill, A P; Lalancette, R A; Thompson, H W; Miller, A J

    2001-03-01

    The crystal structure of (+/-)-4-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylic acid (C(11)H(10)O(3)) involves projection of the carboxyl group nearly orthogonal to the aromatic plane and hydrogen bonding of the acid groups by centrosymmetric pairing across the a edge and the center of the chosen cell [O...O = 2.705 (2) A]. Intermolecular C--H...O==C close contacts to translationally related molecules are found for both the ketone (2.55 A) and the acid (2.67 A). In (+/-)-1-oxo-1,2,3,4-tetrahydronaphthalene-2-acetic acid (C(12)H(12)O(3)), the aggregation involves centrosymmetric carboxyl dimers mutually hydrogen bonded across the bc face and the a edge of the chosen cell [O...O = 2.674 (2) A]. A 2.60 A close C--H...O==C contact is found to the carboxyl group of centrosymmetrically related molecule. PMID:11250596

  8. Comparative Indole-3-Acetic Acid Levels in the Slender Pea and Other Pea Phenotypes 1

    PubMed Central

    Law, David M.; Davies, Peter J.

    1990-01-01

    Free indole-3-acetic acid levels were measured by gas chromatography-mass spectrometry in three ultra-tall `slender' Pisum sativum L. lines differing in gibberellin content. Measurements were made for apices and stem elongation zones of light-grown plants and values were compared with wild-type, dwarf, and nana phenotypes in which internode length is genetically regulated, purportedly via the gibberellin level. Indole-3-acetic acid levels of growing stems paralleled growth rates in all lines, and were high in all three slender genotypes. Growth was inhibited by p-chlorophenoxyisobutyric acid, demonstrating the requirement of auxin activity for stem elongation, and also by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. It is concluded that the slender phenotype may arise from constant activation of a gibberellin receptor or transduction chain event leading directly or indirectly to elevated levels of indole-3-acetic acid, and that increased indole-3-acetic acid levels are a significant factor in the promotion of stem elongation. PMID:16667653

  9. A theoretical study on the pH dependence of X-ray emission spectra for aqueous acetic acid

    NASA Astrophysics Data System (ADS)

    Nishida, Naohiro; Tokushima, Takashi; Takahashi, Osamu

    2016-04-01

    We performed theoretical calculations to reproduce the site-selective XES spectra for aqueous acetic acid at the oxygen K-edge. The shape of the experimental XES spectra obtained from aqueous acetic acid drastically changed when the pH value was high. Structure sampling of an aqueous acetic acid cluster model was performed by the ab initio molecular dynamics trajectory. Relative XES peak intensities for the core-hole excited state dynamics simulations were calculated using density functional theory. We found that the theoretical XES spectra reproduced well the experimental spectra and that these calculations gave us electronic and molecular structure information about aqueous acetic acid.

  10. Isolation and characterization of esters of indole-3-acetic acid from the liquid endosperm of the horse chestnut (Aesculus species)

    NASA Technical Reports Server (NTRS)

    Domagalski, W.; Schulze, A.; Bandurski, R. S.

    1987-01-01

    Esters of indole-3-acetic acid were extracted and purified from the liquid endosperm of immature fruits of various species of the horse chestnut (Aesculus parviflora, A. baumanni, A. pavia rubra, and A. pavia humulis). The liquid endosperm contained, at least 12 chromatographically distinct esters. One of these compounds was purified and characterized as an ester of indole-3-acetic acid and myo-inositol. A second compound was found to be an ester of indole-3-acetic acid and the disaccharide rutinose (glucosyl-rhamnose). A third compound was partially characterized as an ester of indole-3-acetic acid and a desoxyaminohexose.

  11. (S) 2-phenyl-2-(p-tolylsulfonylamino)acetic acid. Structure, acidity and its alkali carboxylates

    NASA Astrophysics Data System (ADS)

    Duarte-Hernández, Angélica M.; Contreras, Rosalinda; Suárez-Moreno, Galdina V.; Montes-Tolentino, Pedro; Ramos-García, Iris; González, Felipe J.; Flores-Parra, Angelina

    2015-03-01

    The structure and the preferred conformers of (S) 2-phenyl-2-(p-tolylsulfonylamino)acetic acid (1) are reported. Compound 1 is a derivative of the unnatural aminoacid the (S) phenyl glycine. The X-ray diffraction analyses of the complexes of 1 with water, methanol, pyridine and its own anion are discussed. In order to add information about the acidity of the COOH and NH protons in compound 1, its pKa in DMSO and those of N-benzyl-p-tolylsulfonamide and (S) N-methylbenzyl-p-tolylsulfonamide were determined by cyclic voltammetry. Data improved the scarce information about pKa in DMSO values of sulfonamides. The products of the reactions of compound 1 with one and two equivalents of LiOH, NaOH and KOH in methanol were analyzed. Crystals of the lithium (2) and sodium (3) carboxylates and the dipotassium sulfonylamide acetate (7) were obtained, they are coordination polymers. In compound 2, the lithium is bound to four oxygen atoms with short bond lengths. The coordination of the lithium atom to two carboxylates gives an infinite ribbon by formation of fused six membered rings. In the crystal of compound 3, two pentacoordinated sodium atoms are bridged by three oxygen atoms, one from a water molecule and two from DMSO. The short distance between the sodium atoms (3.123 Å), implies a metal-metal interaction. The sodium couples are linked by two carboxylate groups, forming a planar ribbon of fused twelve membered rings. A notable discovery was a water molecule quenched in the middle of the ring, with a tetra coordinated oxygen atom in a square planar geometry. In compound 7, the carboxylate and the amide are bound to heptacoordinated potassium atoms. The 2D polymer of 7 has a sandwich structure, with the carboxylate and potassium atoms in the inner layer covered by the aromatic rings.

  12. Reactivity and reaction intermediates for acetic acid adsorbed on CeO2(111)

    DOE PAGES

    Calaza, Florencia C.; Chen, Tsung -Liang; Mullins, David R.; Xu, Ye; Steven H. Overbury

    2015-05-02

    Adsorption and reaction of acetic acid on a CeO2(1 1 1) surface was studied by a combination of ultra-highvacuum based methods including temperature desorption spectroscopy (TPD), soft X-ray photoelectronspectroscopy (sXPS), near edge X-ray absorption spectroscopy (NEXAFS) and reflection absorption IRspectroscopy (RAIRS), together with density functional theory (DFT) calculations. TPD shows that thedesorption products are strongly dependent upon the initial oxidation state of the CeO2 surface, includingselectivity between acetone and acetaldehyde products. The combination of sXPS and NEXAFS demon-strate that acetate forms upon adsorption at low temperature and is stable to above 500 K, above whichpoint ketene, acetone and acetic acidmore » desorb. Furthermore, DFT and RAIRS show that below 500 K, bridge bondedacetate coexists with a moiety formed by adsorption of an acetate at an oxygen vacancy, formed bywater desorption.« less

  13. Acetic Acid Bacteria and the Production and Quality of Wine Vinegar

    PubMed Central

    Torija, María Jesús; García-Parrilla, María del Carmen; Troncoso, Ana María

    2014-01-01

    The production of vinegar depends on an oxidation process that is mainly performed by acetic acid bacteria. Despite the different methods of vinegar production (more or less designated as either “fast” or “traditional”), the use of pure starter cultures remains far from being a reality. Uncontrolled mixed cultures are normally used, but this review proposes the use of controlled mixed cultures. The acetic acid bacteria species determine the quality of vinegar, although the final quality is a combined result of technological process, wood contact, and aging. This discussion centers on wine vinegar and evaluates the effects of these different processes on its chemical and sensory properties. PMID:24574887

  14. Acetic acid bacteria and the production and quality of wine vinegar.

    PubMed

    Mas, Albert; Torija, María Jesús; García-Parrilla, María del Carmen; Troncoso, Ana María

    2014-01-01

    The production of vinegar depends on an oxidation process that is mainly performed by acetic acid bacteria. Despite the different methods of vinegar production (more or less designated as either "fast" or "traditional"), the use of pure starter cultures remains far from being a reality. Uncontrolled mixed cultures are normally used, but this review proposes the use of controlled mixed cultures. The acetic acid bacteria species determine the quality of vinegar, although the final quality is a combined result of technological process, wood contact, and aging. This discussion centers on wine vinegar and evaluates the effects of these different processes on its chemical and sensory properties.

  15. DTPA complexation of bismuth in human blood serum.

    PubMed

    Montavon, G; Le Du, A; Champion, J; Rabung, T; Morgenstern, A

    2012-07-28

    The in vivo(212)Pb/(212)Bi generator is promising for application in targeted alpha therapy (TAT) of cancer. One main limitation of its therapeutic application is due to potential release of (212)Bi from the radioconjugate upon radioactive decay of the mother nuclide (212)Pb, potentially leading to irradiation of healthy tissue. The objective of the present work is to assess whether the chelate CHX-A''-DTPA (N-(2-aminoethyl)-trans-1,2-diaminocyclohexane-N,N',N''-pentaacetic acid) bound to a biological carrier molecule may be able to re-complex released (212)Bi under in vivo conditions to limit its translocation from the target site. CHX-A''-DTPA was bound to bovine gamma globulin (BGG) to mimic a model conjugate and the stability of the Bi-CHX-A''-DTPA-BGG conjugate was studied in blood serum by ultrafiltration. TRLFS experiments using Cm(III) as a fluorescent probe demonstrated that linking CHX-A''-DTPA to BGG does not affect the coordination properties of the ligand. Furthermore, comparable stability constants were observed between Bi(III) and free CHX-A''-DTPA, BGG-bound CHX-A''-DTPA and DTPA. The complexation constants determined between Bi(III) and the chelate molecules are sufficiently high to allow ultra trace amounts of the ligand to efficiently compete with serum transferrin controlling Bi(III) speciation in blood plasma conditions. Nevertheless, CHX-A''-DTPA is not able to complex Bi(III) generated in blood serum because of the strong competition between Bi(III) and Fe(II) for the ligand. In other words, CHX-A''-DTPA is not "selective" enough to limit Bi(iii) release in the body when applying the (212)Pb/(212)Bi in vivo generator. PMID:22678751

  16. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Lim, Y. B.; Altieri, K. E.; Seitzinger, S. P.; Turpin, B. J.

    2012-01-01

    Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including pyruvate, oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA). Acetic acid plays a central role in the aqueous oxidation of methylglyoxal and it is a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid (20 μM-10 mM) was oxidized by OH radicals, and pyruvic acid and methylglyoxal experimental samples were analyzed using new analytical methods, in order to better understand the formation of SOA from acetic acid and methylglyoxal. Glyoxylic, glycolic, and oxalic acids formed from acetic acid and OH radicals. In contrast to the aqueous OH radical oxidation of methylglyoxal, the aqueous OH radical oxidation of acetic acid did not produce succinic acid and oligomers. This suggests that the methylgloxal-derived oligomers do not form through the acid catalyzed esterification pathway proposed previously. Using results from these experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  17. Human biodistribution of [111In]diethylenetriaminepentaacetic acid-(DTPA)-D-[Phe1]-octreotide and peroperative detection of endocrine tumors.

    PubMed

    Ohrvall, U; Westlin, J E; Nilsson, S; Wilander, E; Juhlin, C; Rastad, J; Akerström, G

    1995-12-01

    Requisites for preoperative and intraoperative tumor localization with [111In]diethylenetriaminepentaacetic acid-D-[Phe1]-octreotide scanning were explored in 23 patients with endocrine tumors (15 carcinoids, 4 insulinomas, and single cases of gastrinoma, medullary thyroid carcinoma, aldosteronoma, and paraganglioma). The patients were subjected to Octreoscan single photon emission computed tomographic examination prior to surgery and well counter investigation of nuclide uptake in tumors and normal tissues sampled at surgery. Somatostatin receptor-positive tumors demonstrated efficient nuclide accumulation with mean tumor:blood radioactivity ratios of 180-370 (for carcinoids and insulinoma), compared with tissue:blood ratios of 302 for spleen, 42 for liver, and < 10-15 in other normal tissues (pancreas, small intestine, and mesenteric fat). Inefficient preoperative visualization of lesions was related to inconspicuous size, as for primary intestinal carcinoids, tiny liver metastases, and a single small insulinoma. High background activity, pronounced tumor fibrosis, and meager accumulation of tracer also interfered with visualization. Tumor deposits in organs with low background activity (such as carcinoid mesenteric metastases and endocrine pancreatic tumors) were generally most readily detected. Intraoperative investigations with hand-held gamma detector probes were disturbed by obvious high background activity. These investigations revealed two preoperatively unrecognized primary intestinal carcinoids, which, however, were both palpable during surgery. These studies, therefore, had little impact on the surgical strategy. PMID:7493348

  18. Acetate induced enhancement of photocatalytic hydrogen peroxide production from oxalic acid and dioxygen.

    PubMed

    Yamada, Yusuke; Nomura, Akifumi; Miyahigashi, Takamitsu; Ohkubo, Kei; Fukuzumi, Shunichi

    2013-05-01

    The addition of acetate ion to an O2-saturated mixed solution of acetonitrile and water containing oxalic acid as a reductant and 2-phenyl-4-(1-naphthyl)quinolinium ion (QuPh(+)-NA) as a photocatalyst dramatically enhanced the turnover number of hydrogen peroxide (H2O2) production. In this photocatalytic H2O2 production, a base is required to facilitate deprotonation of oxalic acid forming oxalate dianion, which acts as an actual electron donor, whereas a Brønsted acid is also necessary to protonate O2(•-) for production of H2O2 by disproportionation. The addition of acetate ion to a reaction solution facilitates both the deprotonation of oxalic acid and the protonation of O2(•-) owing to a pH buffer effect. The quantum yield of the photocatalytic H2O2 production under photoirradiation (λ = 334 nm) of an O2-saturated acetonitrile-water mixed solution containing acetate ion, oxalic acid and QuPh(+)-NA was determined to be as high as 0.34, which is more than double the quantum yield obtained by using oxalate salt as an electron donor without acetate ion (0.14). In addition, the turnover number of QuPh(+)-NA reached more than 340. The reaction mechanism and the effect of solvent composition on the photocatalytic H2O2 production were scrutinized by using nanosecond laser flash photolysis.

  19. Culture strategies for lipid production using acetic acid as sole carbon source by Rhodosporidium toruloides.

    PubMed

    Huang, Xiang-Feng; Liu, Jia-Nan; Lu, Li-Jun; Peng, Kai-Ming; Yang, Gao-Xiang; Liu, Jia

    2016-04-01

    Rhodosporidium toruloides AS 2.1389 was tested using different concentrations of acetic acid as a low-cost carbon source for the production of microbial lipids, which are good raw materials for biodiesel production. It grew and had higher lipid contents in media containing 4-20 g/L acetic acid as the sole carbon source, compared with that in glucose-containing media under the same culture conditions. At acetic acid concentrations as high as 20 g/L and the optimal carbon-to-nitrogen ratio (C/N) of 200 in a batch culture, the highest biomass production was 4.35 g/L, with a lipid content of 48.2%. At acetic acid concentrations as low as 4 g/L, a sequencing batch culture (SBC) with a C/N of 100 increased biomass production to 4.21 g/L, with a lipid content of 38.6%. These results provide usable culture strategies for lipid production by R. toruloides AS 2.1389 when using diverse waste-derived volatile fatty acids.

  20. Acetic Acid, the active component of vinegar, is an effective tuberculocidal disinfectant.

    PubMed

    Cortesia, Claudia; Vilchèze, Catherine; Bernut, Audrey; Contreras, Whendy; Gómez, Keyla; de Waard, Jacobus; Jacobs, William R; Kremer, Laurent; Takiff, Howard

    2014-02-25

    Effective and economical mycobactericidal disinfectants are needed to kill both Mycobacterium tuberculosis and non-M. tuberculosis mycobacteria. We found that acetic acid (vinegar) efficiently kills M. tuberculosis after 30 min of exposure to a 6% acetic acid solution. The activity is not due to pH alone, and propionic acid also appears to be bactericidal. M. bolletii and M. massiliense nontuberculous mycobacteria were more resistant, although a 30-min exposure to 10% acetic acid resulted in at least a 6-log10 reduction of viable bacteria. Acetic acid (vinegar) is an effective mycobactericidal disinfectant that should also be active against most other bacteria. These findings are consistent with and extend the results of studies performed in the early and mid-20th century on the disinfectant capacity of organic acids. IMPORTANCE Mycobacteria are best known for causing tuberculosis and leprosy, but infections with nontuberculous mycobacteria are an increasing problem after surgical or cosmetic procedures or in the lungs of cystic fibrosis and immunosuppressed patients. Killing mycobacteria is important because Mycobacterium tuberculosis strains can be multidrug resistant and therefore potentially fatal biohazards, and environmental mycobacteria must be thoroughly eliminated from surgical implements and respiratory equipment. Currently used mycobactericidal disinfectants can be toxic, unstable, and expensive. We fortuitously found that acetic acid kills mycobacteria and then showed that it is an effective mycobactericidal agent, even against the very resistant, clinically important Mycobacterium abscessus complex. Vinegar has been used for thousands of years as a common disinfectant, and if it can kill mycobacteria, the most disinfectant-resistant bacteria, it may prove to be a broadly effective, economical biocide with potential usefulness in health care settings and laboratories, especially in resource-poor countries.

  1. A Drug-Repositioning Screening Identifies Pentetic Acid as a Potential Therapeutic Agent for Suppressing the Elastase-Mediated Virulence of Pseudomonas aeruginosa

    PubMed Central

    Gi, Mia; Jeong, Junhui; Lee, Keehoon; Lee, Kang-Mu; Toyofuku, Masanori; Yong, Dong Eun

    2014-01-01

    Pseudomonas aeruginosa, a Gram-negative bacterium of clinical significance, produces elastase as a predominant exoprotease. Here, we screened a library of chemical compounds currently used for human medication and identified diethylene triamine penta-acetic acid (DTPA, pentetic acid) as an agent that suppresses the production of elastase. Elastase activity found in the prototype P. aeruginosa strain PAO1 was significantly decreased when grown with a concentration as low as 20 μM DTPA. Supplementation with Zn2+ or Mn2+ ions restored the suppressive effect of DTPA, suggesting that the DTPA-mediated decrease in elastase activity is associated with ion-chelating activity. In DTPA-treated PAO1 cells, transcription of the elastase-encoding lasB gene and levels of the Pseudomonas quinolone signal (PQS), a molecule that mediates P. aeruginosa quorum sensing (QS), were significantly downregulated, reflecting the potential involvement of the PQS QS system in DTPA-mediated elastase suppression. Biofilm formation was also decreased by DTPA treatment. When A549 alveolar type II-like adenocarcinoma cells were infected with PAO1 cells in the presence of DTPA, A549 cell viability was substantially increased. Furthermore, the intranasal delivery of DTPA to PAO1-infected mice alleviated the pathogenic effects of PAO1 cells in the animals. Together, our results revealed a novel function for a known molecule that may help treat P. aeruginosa airway infection. PMID:25246397

  2. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells.

    PubMed

    Maruta, Hitomi; Yoshimura, Yukihiro; Araki, Aya; Kimoto, Masumi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-01-01

    Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin.

  3. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells.

    PubMed

    Maruta, Hitomi; Yoshimura, Yukihiro; Araki, Aya; Kimoto, Masumi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-01-01

    Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin. PMID:27348124

  4. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells

    PubMed Central

    Maruta, Hitomi; Yoshimura, Yukihiro; Araki, Aya; Kimoto, Masumi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-01-01

    Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin. PMID:27348124

  5. Lipidomic profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii reveals critical changes in lipid composition in response to acetic acid stress.

    PubMed

    Lindberg, Lina; Santos, Aline Xs; Riezman, Howard; Olsson, Lisbeth; Bettiga, Maurizio

    2013-01-01

    When using microorganisms as cell factories in the production of bio-based fuels or chemicals from lignocellulosic hydrolysate, inhibitory concentrations of acetic acid, released from the biomass, reduce the production rate. The undissociated form of acetic acid enters the cell by passive diffusion across the lipid bilayer, mediating toxic effects inside the cell. In order to elucidate a possible link between lipid composition and acetic acid stress, the present study presents detailed lipidomic profiling of the major lipid species found in the plasma membrane, including glycerophospholipids, sphingolipids and sterols, in Saccharomyces cerevisiae (CEN.PK 113_7D) and Zygosaccharomyces bailii (CBS7555) cultured with acetic acid. Detailed physiological characterization of the response of the two yeasts to acetic acid has also been performed in aerobic batch cultivations using bioreactors. Physiological characterization revealed, as expected, that Z. bailii is more tolerant to acetic acid than S. cerevisiae. Z. bailii grew at acetic acid concentrations above 24 g L(-1), while limited growth of S. cerevisiae was observed after 11 h when cultured with only 12 g L(-1) acetic acid. Detailed lipidomic profiling using electrospray ionization, multiple-reaction-monitoring mass spectrometry (ESI-MRM-MS) showed remarkable changes in the glycerophospholipid composition of Z. bailii, including an increase in saturated glycerophospholipids and considerable increases in complex sphingolipids in both S. cerevisiae (IPC 6.2×, MIPC 9.1×, M(IP)2C 2.2×) and Z. bailii (IPC 4.9×, MIPC 2.7×, M(IP)2C 2.7×), when cultured with acetic acid. In addition, the basal level of complex sphingolipids was significantly higher in Z. bailii than in S. cerevisiae, further emphasizing the proposed link between lipid saturation, high sphingolipid levels and acetic acid tolerance. The results also suggest that acetic acid tolerance is associated with the ability of a given strain to generate large

  6. Role of the glyoxylate pathway in acetic acid production by Acetobacter aceti.

    PubMed

    Sakurai, Kenta; Yamazaki, Shoko; Ishii, Masaharu; Igarashi, Yasuo; Arai, Hiroyuki

    2013-01-01

    Wild-type Acetobacter aceti NBRC 14818 possesses genes encoding isocitrate lyase (aceA) and malate synthase (glcB), which constitute the glyoxylate pathway. In contrast, several acetic acid bacteria that are utilized for vinegar production lack these genes. Here, an aceA-glcB knockout mutant of NBRC 14818 was constructed and used for investigating the role of the glyoxylate pathway in acetate productivity. In medium containing ethanol as a carbon source, the mutant grew normally during ethanol oxidation to acetate, but exhibited slower growth than that of the wild-type strain as the accumulated acetate was oxidized. The mutant grew similarly to that of the wild-type strain in medium containing glucose as a carbon source, indicating that the glyoxylate pathway was not necessary for glucose utilization. However, in medium containing both ethanol and glucose, the mutant exhibited significantly poorer growth and lower glucose consumption compared to the wild-type strain. Notably, the mutant oxidized ethanol nearly stoichiometrically to acetate, which was retained in the medium for a longer period of time than the acetate produced by wild-type strain. The features of the aceA-glcB knockout mutant revealed here indicate that the lack of the glyoxylate pathway is advantageous for industrial vinegar production by A. aceti.

  7. Calibration and intercomparison of acetic acid measurements using proton transfer reaction mass spectrometry (PTR-MS)

    USGS Publications Warehouse

    Haase, K.B.; Keene, W.C.; Pszenny, A.A.P.; Mayne, H.R.; Talbot, R.W.; Sive, B.C.

    2012-01-01

    Acetic acid is one of the most abundant organic acids in the ambient atmosphere, with maximum mixing ratios reaching into the tens of parts per billion by volume (ppbv) range. The identities and associated magnitudes of the major sources and sinks for acetic acid are poorly characterized, due in part to the limitation in available measurement techniques. This paper demonstrates that Proton Transfer Reaction Mass Spectrometry (PTR-MS) can reliably quantify acetic acid vapor in ambient air. Three different PTR-MS configurations were calibrated at low ppbv mixing ratios using permeation tubes, which yielded calibration factors between 7.0 and 10.9 normalized counts per second per ppbv (ncps ppbv−1) at a drift tube field strength of 132 townsend (Td). Detection limits ranged from 0.06 to 0.32 ppbv with dwell times of 5 s. These calibration factors showed negligible humidity dependence. Using the experimentally determined calibration factors, PTR-MS measurements of acetic acid during the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) campaign were validated against results obtained using Mist Chambers coupled with Ion Chromatography (MC/IC). An orthogonal least squares linear regression of paired data yielded a slope of 1.14 ± 0.06 (2σ), an intercept of 0.049 ± 20 (2σ) ppbv, and an R2 of 0.78. The median mixing ratio of acetic acid on Appledore Island, ME during the ICARTT campaign was 0.530 ± 0.025 ppbv with a minimum of 0.075 ± 0.004 ppbv, and a maximum of 3.555 ± 0.171 ppbv.

  8. Removal of dicyclohexyl acetic acid from aqueous solution using ultrasound, ozone and their combination.

    PubMed

    Kumar, Pardeep; Headley, John; Peru, Kerry; Bailey, Jon; Dalai, Ajay

    2014-01-01

    Naphthenic acids are a complex mixture of organic components, some of which include saturated alkyl-substituted cycloaliphatic carboxylic acids and acyclic aliphatic acids. They are naturally found in hydrocarbon deposits like oil sand, petroleum, bitumen and crude oil. In this study, the oxidation of a relatively high molecular weight naphthenic acid (Dicyclohexyl acetic acid) was investigated using ozonation, ultrasonication and hydrogen peroxide alone and their combinations. Effects on oxidation of dicyclohexyl acetic acid (DAA) were measured for different concentrations of ozone ranging between 0.7 to 3.3 mg L(-1) and pH in the range 6 to 10. Ultrasonication and hydrogen peroxide alone were not effective to oxidize dicyclohexyl acetic acid, but combining ultrasonication with H2O2 had a significant effect on oxidation of dicyclohexyl acetic acid with maximum removal reaching to 84 ± 2.2% with 81 ± 2.1% reduction in chemical oxygen demand (COD). Synergistic effects were observed for combining ultrasonication with ozonation and resulted in 100% DAA removal with 98 ± 0.8% reduction in COD within 15 min at 3.3 mg L(-1) ozone concentration and 130 Watts ultrasonication power. The reaction conditions obtained for the maximum oxidation of DAA and COD removal were used for the degradation of naphthenic acids mixture extracted from oil sands process water (OSPW). The percentage oxidation of NAs mixture extracted from OSPW was 89.3 ± 1.1% in ozonation and combined ozonation and ultrasonication, but COD removal observed was 65 ± 1.2% and 78 ± 1.4% for ozonation and combined ozonation and ultrasonication treatments, respectively.

  9. [Concentrations and acidity contributions of acetate and formate in precipitation at 14 stations of China].

    PubMed

    He, Xiao-huan; Xu, Xiao-bin; Yu, Xiao-lan; Tang, Jie

    2010-04-01

    To investigate the concentrations of organic acids in precipitation in China and their contributions to the total acidity of precipitation, samples were taken at 14 stations of regional representativeness in 2007 and analyzed for acetate and formate using ion chromatography. In this paper, data of acetate and formate in precipitation at 14 stations are presented, wet depositions of these organic acids are calculated, and contributions of them to the total free acidity (TFA) of precipitation are estimated. Based on the measurements, the mean concentrations of formate at different stations were in the range of 0.96-3.43 micromol/L, and those of acetate in the range of 0-5.13 micromol/L, close to the levels at remote sites in other countries and at the lower ends of concentration ranges from previous measurements in China. Comparisons indicate that the concentrations of the organic acids at remote sites are lower than those at sites in the vicinity of urban areas. The annual wet depositions of formate and acetate were estimated to be in the ranges of 0.38-4.18 mmol/(m2 x a) and 0.06-5.87 mmol/(m2 x a), respectively, with larger depositions in southern China and smaller depositions in northern China. The relative contributions of the two organic acids to the TFA of precipitation were estimated to be in the range of 0.02%-51.6%, with an overall average of 2.95%. This suggests that although acid rain in China is mainly caused by emissions of sulfur and nitrogen oxides, organic acids can significantly contribute to the acidification of precipitation in some regions and during some periods, hence need to be included in observational studies of acid rain.

  10. Batch salicylic acid nitration by nitric acid/acetic acid mixture under isothermal, isoperibolic and adiabatic conditions.

    PubMed

    Andreozzi, R; Canterino, M; Caprio, V; Di Somma, I; Sanchirico, R

    2006-12-01

    Runaway phenomena and thermal explosions can originate during the nitration of salicylic acid by means of a nitric acid/acetic acid mixture when the thermal control is lost, mainly as a result of the formation and thermal decomposition of picric acid. The prediction of the behaviour of this system is thus of great importance in view of possible industrial applications and the need to avoid the occurrence of unwanted dangerous events. During a previous investigation a model was developed to simulate its behaviour when the starting concentration of the substrate is too low, thus, preventing the precipitation of poor soluble intermediates. In this work this model is extended to deal with more concentrated systems even in case of a solid phase separating during the process. To this purpose the previously assessed dependence of the solubility of 3-nitro and 5-nitrosalicylic acids upon temperature and nitric acid concentration is included in the model. It is assumed that when 3-nitro and 5-nitrosalicylic acids are partially suspended in the reacting medium a kinetic regime of "dissolution with reaction" is established; that is, the redissolution of these species is a fast process compared to the successive nitration to give dinitroderivatives. Good results are obtained in the comparison of the experimental data with those calculated both in isoperibolic and adiabatic conditions when the revised model is used.

  11. GENE EXPRESSION PATTERNS OF CD-1 DAY-8 EMBRYO CULTURES EXPOSED TO BROMOCHLORO ACETIC ACID

    EPA Science Inventory

    Gene expression patterns of CD-1 day-8 embryo cultures exposed to bromochloro acetic acid

    Edward D. Karoly?*, Judith E. Schmid* and E. Sidney Hunter III*
    ?Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina and *Reproductiv...

  12. Interaction of acetic acid and phenylacetaldehyde as attractants for trapping pest species of moths (Lepidoptera: Noctuidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenylacetaldehyde is a flower volatile and attractant for many nectar-seeking moths. Acetic acid is a microbial fermentation product that is present in insect sweet baits. It is weakly attractive to some moths and other insects, but can be additive or synergistic with other compounds to make more p...

  13. Detection of Acetic Acid in wine by means of an electronic nose

    NASA Astrophysics Data System (ADS)

    Lozano, Jesús; Álvarez, Fernando; Santos, José Pedro; Horrillo, Carmen

    2011-09-01

    A portable electronic nose (see Fig.1) based on metal oxide semiconductor thin-film sensors has been developed to detect acetic acid present in four types of wines. The wines analyzed are from the same cellar but are made with different varieties of grapes. Data analysis was performed by two pattern recognition methods: principal component analysis (PCA) and Artificial Neural Networks (ANN).

  14. Population dynamics of acetic acid bacteria during traditional wine vinegar production.

    PubMed

    Vegas, Carlos; Mateo, Estibaliz; González, Angel; Jara, Carla; Guillamón, José Manuel; Poblet, Montse; Torija, Ma Jesús; Mas, Albert

    2010-03-31

    The population dynamics of acetic acid bacteria in traditional vinegar production was determined in two independent vinegar plants at both the species and strain level. The effect of barrels made of four different woods upon the population dynamics was also determined. Acetic acid bacteria were isolated on solid media and the species were identified by RFLP-PCR of 16S rRNA genes and confirmed by 16S rRNA gene sequencing, while strains were typed by ERIC-PCR and (GTG)(5)-rep-PCR. The most widely isolated species was Acetobacter pasteurianus, which accounted for 100% of all the isolates during most of the acetification. Gluconacetobacter europaeus only appeared at any notable level at the end of the process in oak barrels from one vinegar plant. The various A. pasteurianus strains showed a clear succession as the concentration of acetic acid increased. In both vinegar plants the relative dominance of different strains was modified as the concentrations of acetic acid increased, and strain diversity tended to reduce at the end of the process.

  15. 40 CFR 180.1258 - Acetic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Acetic acid; exemption from the requirement of a tolerance. 180.1258 Section 180.1258 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1258...

  16. Aqueous-phase hydrogenation of acetic acid over transition metal catalysts

    SciTech Connect

    Olcay, Hakan; Xu, Lijun; Xu, Ye; Huber, George

    2010-01-01

    Catalytic hydrogenation of acetic acid to ethanol has been carried out in aqueous phase on several metals, with ruthenium being the most active and selective. DFT calculations suggest that the initial CO bond scission yielding acetyl is the key step and that the intrinsic reactivity of the metals accounts for the observed activity.

  17. Trapping social wasps (Hymenoptera: Vespidae) in nurseries with acetic acid and isobutanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    European hornet (Vespa crabro L.) damages bark of nursery trees, and several vespids sting nursery personnel when disturbed. We tested acetic acid and isobutanol lures in traps for V. crabro spring queens, to determine the seasonality of vespid captures, and compare the efficacy of patterns of trap...

  18. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false 5-Hydroxyindole acetic acid/serotonin test system. 862.1390 Section 862.1390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  19. Adsorption and Thermal Processing of Glycolaldehyde, Methyl Formate, and Acetic Acid on Graphite at 20 K.

    PubMed

    Burke, Daren J; Puletti, Fabrizio; Woods, Paul M; Viti, Serena; Slater, Ben; Brown, Wendy A

    2015-07-01

    We present the first detailed comparative study of the adsorption and thermal processing of the three astrophysically important C2O2H4 isomers glycolaldehyde, methyl formate, and acetic acid adsorbed on a graphitic grain analogue at 20 K. The ability of the individual molecule to form intermolecular hydrogen bonds is extremely important, dictating the growth modes of the ice on the surface and the measured desorption energies. Methyl formate forms only weak intermolecular bonds and hence wets the graphite surface, forming monolayer, bilayer, and multilayer ices, with the multilayer having a desorption energy of 35 kJ mol(-1). In contrast, glycolaldehyde and acetic acid dewet the surface, forming clusters even at the very lowest coverages. The strength of the intermolecular hydrogen bonding for glycolaldehyde and acetic acid is reflected in their desorption energies (46.8 and 55 kJ mol(-1), respectively), which are comparable to those measured for other hydrogen-bonded species such as water. Infrared spectra show that all three isomers undergo structural changes as a result of thermal processing. In the case of acetic acid and glycolaldehyde, this can be assigned to the formation of well-ordered, crystalline, structures where the molecules form chains of hydrogen-bonded moieties. The data reported here are of relevance to astrochemical studies of hot cores and star-forming regions and can be used to model desorption from interstellar ices during the warm up phase with particular importance for complex organic molecules.

  20. Radiolysis of aqueous solutions of acetic acid in the presence of Na-montmorillonite

    NASA Technical Reports Server (NTRS)

    Navarro-Gonzalez, R.; Negron-Mendoza, A.; Ramos, S.; Ponnamperuma, C.

    1990-01-01

    The gamma-irradiation of 0.8 mol dm-3 aqueous, oxygen-free acetic acid solutions was investigated in the presence or absence of Na-montmorillonite. H2, CH4, CO, CO2, and several polycarboxylic acids were formed in all systems. The primary characteristics observed in the latter system were: (1) Higher yield of the decomposition of acetic acid; (2) Lower yield of the formation of polycarboxylic acids; (3) No effect on the formation of methane; (4) Higher yield of the formation of carbon dioxide; and (5) The reduction of Fe3+ in the octahedral sites of Na-montmorillonite. A possible reaction scheme was proposed to account for the observed changes. The results are important in understanding heterogeneous processes in radiation catalysis and might be significant to prebiotic chemistry.

  1. Improved Butanol-Methanol (BUME) Method by Replacing Acetic Acid for Lipid Extraction of Biological Samples.

    PubMed

    Cruz, Mutya; Wang, Miao; Frisch-Daiello, Jessica; Han, Xianlin

    2016-07-01

    Extraction of lipids from biological samples is a critical step in lipidomics, especially for shotgun lipidomics where lipid extracts are directly infused into a mass spectrometer. The butanol-methanol (BUME) extraction method was originally developed to extract lipids from plasma samples with 1 % acetic acid. Considering some lipids are sensitive to acidic environments, we modified this protocol by replacing acetic acid with lithium chloride solution and extended the modified extraction to tissue samples. Although no significant reduction of plasmalogen levels in the acidic BUME extracts of rat heart samples was found, the modified method was established to extract various tissue samples, including rat liver, heart, and plasma. Essentially identical profiles of the majority of lipid classes were obtained from the extracts of the modified BUME and traditional Bligh-Dyer methods. However, it was found that neither the original, nor the modified BUME method was suitable for 4-hydroxyalkenal species measurement in biological samples. PMID:27245345

  2. CRYSTAL AND MOLECULAR STRUCTURE OF 6,6´-DIMETHOXY-GOSSYPOL:ACETIC ACID (1:1)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    By crystallization from dilute solutions of acetic acid (2-4%) in diethyl ether, acetone, or methyl ethyl ketone, 6,6´-dimethoxy-gossypol forms an inclusion complex with acetic acid in a one-to-one molar ratio. The compound crystallizes in the triclinic P1bar1¯space group and has unit cell dimensio...

  3. Mutants of the pentose-fermenting yeast Pachysolen tannophilus tolerant to hardwood spent sulfite liquor and acetic acid.

    PubMed

    Harner, Nicole K; Bajwa, Paramjit K; Habash, Marc B; Trevors, Jack T; Austin, Glen D; Lee, Hung

    2014-01-01

    A strain development program was initiated to improve the tolerance of the pentose-fermenting yeast Pachysolen tannophilus to inhibitors in lignocellulosic hydrolysates. Several rounds of UV mutagenesis followed by screening were used to select for mutants of P. tannophilus NRRL Y2460 with improved tolerance to hardwood spent sulfite liquor (HW SSL) and acetic acid in separate selection lines. The wild type (WT) strain grew in 50 % (v/v) HW SSL while third round HW SSL mutants (designated UHW301, UHW302 and UHW303) grew in 60 % (v/v) HW SSL, with two of these isolates (UHW302 and UHW303) being viable and growing, respectively, in 70 % (v/v) HW SSL. In defined liquid media containing acetic acid, the WT strain grew in 0.70 % (w/v) acetic acid, while third round acetic acid mutants (designated UAA301, UAA302 and UAA303) grew in 0.80 % (w/v) acetic acid, with one isolate (UAA302) growing in 0.90 % (w/v) acetic acid. Cross-tolerance of HW SSL-tolerant mutants to acetic acid and vice versa was observed with UHW303 able to grow in 0.90 % (w/v) acetic acid and UAA302 growing in 60 % (v/v) HW SSL. The UV-induced mutants retained the ability to ferment glucose and xylose to ethanol in defined media. These mutants of P. tannophilus are of considerable interest for bioconversion of the sugars in lignocellulosic hydrolysates to ethanol.

  4. Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2002-01-01

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  5. Gibbs ensemble Monte Carlo simulation using an optimized potential model: pure acetic acid and a mixture of it with ethylene.

    PubMed

    Zhang, Minhua; Chen, Lihang; Yang, Huaming; Sha, Xijiang; Ma, Jing

    2016-07-01

    Gibbs ensemble Monte Carlo simulation with configurational bias was employed to study the vapor-liquid equilibrium (VLE) for pure acetic acid and for a mixture of acetic acid and ethylene. An improved united-atom force field for acetic acid based on a Lennard-Jones functional form was proposed. The Lennard-Jones well depth and size parameters for the carboxyl oxygen and hydroxyl oxygen were determined by fitting the interaction energies of acetic acid dimers to the Lennard-Jones potential function. Four different acetic acid dimers and the proportions of them were considered when the force field was optimized. It was found that the new optimized force field provides a reasonable description of the vapor-liquid phase equilibrium for pure acetic acid and for the mixture of acetic acid and ethylene. Accurate values were obtained for the saturated liquid density of the pure compound (average deviation: 0.84 %) and for the critical points. The new optimized force field demonstrated greater accuracy and reliability in calculations of the solubility of the mixture of acetic acid and ethylene as compared with the results obtained with the original TraPPE-UA force field.

  6. Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2006-07-11

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  7. 40 CFR 721.10074 - Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-dimethylcyclohexyl)ethyl ester. 721.10074 Section 721.10074 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10074 Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester. (a... acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester (PMN P-05-568; CAS No. 477218-59-0)...

  8. 40 CFR 721.10074 - Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-dimethylcyclohexyl)ethyl ester. 721.10074 Section 721.10074 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10074 Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester. (a... acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester (PMN P-05-568; CAS No. 477218-59-0)...

  9. 40 CFR 721.10074 - Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-dimethylcyclohexyl)ethyl ester. 721.10074 Section 721.10074 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10074 Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester. (a... acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester (PMN P-05-568; CAS No. 477218-59-0)...

  10. 40 CFR 721.10074 - Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-dimethylcyclohexyl)ethyl ester. 721.10074 Section 721.10074 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10074 Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester. (a... acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester (PMN P-05-568; CAS No. 477218-59-0)...

  11. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.304 Acetic acid, , 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as acetic acid, -, 1-methylhexyl ester (PMN...

  12. Antiseptic therapy with a polylacticacid-acetic acid matrix in burns.

    PubMed

    Ryssel, Henning; Gazyakan, Emre; Germann, Günter; Hellmich, Susanne; Riedel, Katrin; Reichenberger, Matthias A; Radu, Christian A

    2010-01-01

    Bacterial colonization and infection are still the major causes of delayed healing and graft rejection following burns and they are furthermore the basis for second and third hit sepsis. Topical treatment is necessary to reduce the incidence of burn wound infection. Silver sulphadiazine (SD-Ag) is a frequently used microbicidal agent. However, this treatment causes adverse reactions and side-effects. Additionally, in recent years multiresistant bacteria, which have not been treated sufficiently, are on the rise. On the basis of experimental data and clinical application of a polylacticacid-acetic acid matrix, we performed this study to establish the effectiveness of the antiseptic therapy with the topical application of a polylacticacid-acetic acid matrix to provide an alternative method for burn treatment, using SD-Ag as a reference. Twenty patients with IIb° or III° burns from the Plastic Surgery and Burns Unit were treated within a matched pair comparative setting. One burned area was treated with SD-Ag, the other corresponding area with the polylacticacid-acetic acid matrix. All patients underwent a necrectomy 4-5 days after the trauma. The excised burned skin was sent to our microbiological laboratory to determine the different bacteria per gram in this tissue. Despite the number of 20 patients, statistical significance was not achieved, there were tendencies to a better antiseptic effectiveness of the polylacticacid-acetic acid matrix. These results suggest that the polylacticacid-acetic acid matrix should be studied in greater depth and could be used as a valid alternative for the topical treatment of burns, as it is equivalent or even more effective than SD-Ag.

  13. Analysis of Vaginal Acetic Acid in Patients Undergoing Treatment for Bacterial Vaginosis

    PubMed Central

    Chaudry, Amjad N.; Travers, Paul J.; Yuenger, Jeffrey; Colletta, Lorraine; Evans, Phillip; Zenilman, Jonathan M.; Tummon, Andrew

    2004-01-01

    A “gold standard” method for the diagnosis of bacterial vaginosis (BV) is lacking. The clinical criteria described by the Amsel technique are subjective and difficult to quantify. Alternatively, the reading of Gram-stained vaginal smears by scoring techniques such as those that use the Nugent or Hay-Ison scoring systems is again subjective, requires expert personnel to perform the reading, and is infrequently used clinically. Recently, a new diagnostic device, the Osmetech Microbial Analyzer—Bacterial Vaginosis (OMA-BV), which determines a patient's BV status on the basis of measurement of the amount of acetic acid present in a vaginal swab specimen, was approved by the Food and Drug Administration. The present study uses the conducting polymer gas-sensing technology of OMA-BV to measure the concentration of acetic acid in the headspace above vaginal swab specimens from patients undergoing treatment for BV with metronidazole. In 97.8% of the cases the level of acetic acid detected fell sharply during the treatment period, crossing from above to below the diagnostic threshold of 900 ppm. The diagnosis obtained on the basis of the level of vaginal acetic acid was compared with the diagnoses obtained by use of the Amsel criteria and the Nugent scoring system both at the time of initial entry into the study and at the repeat samplings on days 7 and 14. The results obtained with OMA-BV showed overall agreements compared with the results of the Amsel and Nugent tests of 98 and 94%, respectively, for the 34 patients monitored through the treatment process. This provides further evidence that the measurement of vaginal acetic acid by headspace analysis with conducting polymer sensors is a valid alternative to present tests for the diagnosis of BV. PMID:15528711

  14. STABILITY OF MFI ZEOLITE-FILLED PDMS MEMBRANES DURING PERVAPORATIVE ETHANOL RECOVERY FROM AQUEOUS MIXTURES CONTAINING ACETIC ACID

    EPA Science Inventory

    Pervaporation is a potential process for recovering bioethanol produced from biomass fermentation. Fermentation broths contain ethanol, water, and a variety of other compounds, often including carboxylic acids. The effects of acetic acid on long-term pervaporation of aqueous et...

  15. A nitrilo-tri-acetic-acid/acetic acid route for the deposition of epitaxial cerium oxide films as high temperature superconductor buffer layers

    SciTech Connect

    Thuy, T.T.; Lommens, P.; Narayanan, V.; Van de Velde, N.; De Buysser, K.; Herman, G.G.; Cloet, V.; Van Driessche, I.

    2010-09-15

    A water based cerium oxide precursor solution using nitrilo-tri-acetic-acid (NTA) and acetic acid as complexing agents is described in detail. This precursor solution is used for the deposition of epitaxial CeO{sub 2} layers on Ni-5at%W substrates by dip-coating. The influence of the complexation behavior on the formation of transparent, homogeneous solutions and gels has been studied. It is found that ethylenediamine plays an important role in the gelification. The growth conditions for cerium oxide films were Ar-5% gas processing atmosphere, a solution concentration level of 0.25 M, a dwell time of 60 min at 900 {sup o}C and 5-30 min at 1050 {sup o}C. X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM), pole figures and spectroscopic ellipsometry were used to characterize the CeO{sub 2} films with different thicknesses. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) was used to determine the carbon residue level in the surface of the cerium oxide film, which was found to be lower than 0.01%. Textured films with a thickness of 50 nm were obtained. - Graphical abstract: Study of the complexation and hydrolysis behavior of Ce{sup 4+} ions in the presence of nitrilo-tri-acetic acid and the subsequent development of an aqueous chemical solution deposition route suited for the processing of textured CeO{sub 2} buffer layers on Ni-W tapes.

  16. Gd-DTPA-loaded polymer-metal complex micelles with high relaxivity for MR cancer imaging.

    PubMed

    Mi, Peng; Cabral, Horacio; Kokuryo, Daisuke; Rafi, Mohammad; Terada, Yasuko; Aoki, Ichio; Saga, Tsuneo; Takehiko, Ishii; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2013-01-01

    Nanodevices for magnetic resonance imaging of cancer were self-assembled to core-shell micellar structures by metal complex formation of K(2)PtCl(6) with diethylenetriaminepentaacetic acid gadolinium (III) dihydrogen (Gd-DTPA), a T(1)-contrast agent, and poly(ethylene glycol)-b-poly{N-[N'-(2-aminoethyl)-2-aminoethyl]aspartamide} (PEG-b-PAsp(DET)) copolymer in aqueous solution. Gd-DTPA-loaded polymeric micelles (Gd-DTPA/m) showed a hydrodynamic diameter of 45 nm and a core size of 22 nm. Confining Gd-DTPA inside the core of the micelles increased the relaxivity of Gd-DTPA more than 13 times (48 mM(-1) s(-1)). In physiological conditions Gd-DTPA/m sustainedly released Gd-DTPA, while the Pt(IV) complexes remain bound to the polymer. Gd-DTPA/m extended the circulation time in plasma and augmented the tumor accumulation of Gd-DTPA leading to successful contrast enhancement of solid tumors. μ-Synchrotron radiation-X-ray fluorescence results confirmed that Gd-DTPA was delivered to the tumor site by the micelles. Our study provides a facile strategy for incorporating contrast agents, dyes and bioactive molecules into nanodevices for developing safe and efficient drug carriers for clinical application.

  17. Chitosan oligosaccharide based Gd-DTPA complex as a potential bimodal magnetic resonance imaging contrast agent.

    PubMed

    Huang, Yan; Cao, Juan; Zhang, Qi; Lu, Zheng-rong; Hua, Ming-qing; Zhang, Xiao-yan; Gao, Hu

    2016-01-01

    A new gadolinium diethylenetriamine pentaacetic acid (DTPA) complex (Gd-DTPA-DMABA-CS11) as a potential bimodal magnetic resonance imaging (MRI) contrast agent with fluorescence was synthesized. It was synthesized by the incorporation of 4-dimethylaminobenzaldehyde (DMABA) and chitosan oligosaccharide (CSn; n=11) with low polydispersity index to DTPA anhydride and then chelated with gadolinium chloride. The structure was characterized by Fourier transform infrared (FTIR), (1)H NMR, elemental analysis and size exclusion chromatography (SEC). MRI measurements in vitro were evaluated. The results indicated that Gd-DTPA-DMABA-CS11 provided higher molar longitudinal relaxivity (r1) (12.95mM(-1)·s(-1)) than that of commercial Gd-DTPA (3.63mM(-1)·s(-1)) at 0.5T. Gd-DTPA-DMABA-CS11 also emitted fluorescence, and the intensity was much stronger than that of Gd-DTPA. Therefore, it can be meanwhile used in fluorescent imaging for improving the sensitivity in clinic diagnosis. Gd-DTPA-DMABA-CS11 as a potential contrast agent is preliminarily stable in vitro. The results of thermodynamic action between Gd-DTPA-DMABA-CS11 and bovine serum albumin (BSA) illustrated that the binding process was exothermic and spontaneous, and the main force was van der Waals' interaction and hydrogen bond. The preliminary study suggested that Gd-DTPA-DMABA-CS11 could be used in both magnetic resonance and fluorescent imaging as a promising bimodal contrast agent.

  18. Clostridium strain which produces acetic acid from waste gases

    DOEpatents

    Gaddy, J.L.

    1997-01-14

    A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 4 figs.

  19. Clostridium stain which produces acetic acid from waste gases

    DOEpatents

    Gaddy, James L.

    1997-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.

  20. A specialized citric acid cycle requiring succinyl-coenzyme A (CoA):acetate CoA-transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter aceti.

    PubMed

    Mullins, Elwood A; Francois, Julie A; Kappock, T Joseph

    2008-07-01

    Microbes tailor macromolecules and metabolism to overcome specific environmental challenges. Acetic acid bacteria perform the aerobic oxidation of ethanol to acetic acid and are generally resistant to high levels of these two membrane-permeable poisons. The citric acid cycle (CAC) is linked to acetic acid resistance in Acetobacter aceti by several observations, among them the oxidation of acetate to CO2 by highly resistant acetic acid bacteria and the previously unexplained role of A. aceti citrate synthase (AarA) in acetic acid resistance at a low pH. Here we assign specific biochemical roles to the other components of the A. aceti strain 1023 aarABC region. AarC is succinyl-coenzyme A (CoA):acetate CoA-transferase, which replaces succinyl-CoA synthetase in a variant CAC. This new bypass appears to reduce metabolic demand for free CoA, reliance upon nucleotide pools, and the likely effect of variable cytoplasmic pH upon CAC flux. The putative aarB gene is reassigned to SixA, a known activator of CAC flux. Carbon overflow pathways are triggered in many bacteria during metabolic limitation, which typically leads to the production and diffusive loss of acetate. Since acetate overflow is not feasible for A. aceti, a CO(2) loss strategy that allows acetic acid removal without substrate-level (de)phosphorylation may instead be employed. All three aar genes, therefore, support flux through a complete but unorthodox CAC that is needed to lower cytoplasmic acetate levels.

  1. Membrane-directed effects of the plant hormones abscisic acid, indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid.

    PubMed

    Schauf, C L; Bringle, B; Stillwell, W

    1987-03-30

    This study examines two ways plant hormones might influence membrane processes, effects on overall permeability and modifications of specific ion channels. Abscisic acid (ABA) and indole-3-acetic acid (IAA) greatly enhanced erythritol permeability in mixed egg lecithin bilayers. In single component dioleoylphosphatidylcholine bilayers ABA was less effective than IAA, while 2,4-dichlorophenoxyacetate (2,4-D) did not affect either system or alter their ABA response. In Myxicola axons ABA and IAA had no effect, while 2,4-D (10 uM) caused a depolarizing shift of voltage-dependent Na+ and K+ activation by 25 +/- 4 mV and 15 +/- 3 mV, consistent with internal negative surface charge changes of -0.002 e-/A2 and -0.0007 e-/A2. We conclude that both generalized and ion channel-directed effects may link plant hormones and intracellular regulation.

  2. Extraction and sorption of acetic acid at pH above pK{sub a} to form calcium magnesium acetate

    SciTech Connect

    Reisinger, H.; King, C.J.

    1995-03-01

    The use of rock salt for deicing roads has many negative effects on automobiles, highway systems, and the environment. Calcium magnesium acetate, hence-forth denoted CMA, has been identified as a more desirable, environmentally benign solid deicer for high-ways, airport runaways, and similar applications. CMA is also of interest as an additive for scavenging sulfur in combustion processes so as to reduce emissions of sulfur oxides and as a catalyst for coal gasification. Different extractants (trioctylphosphine oxide and secondary, tertiary, and quaternary amines) and solid sorbents (tertiary and quaternary amines) were investigated as agents for recovery of acetic acid as part of a process for production of CMA from fermentation acetic acid. The pH and temperature dependencies for uptake of acetic acid by these extractants and sorbents were measured, along with the degrees of regeneration by aqueous suspensions of slaked dolomitic lime. These results enable identification of agents having optimal basicity. Among the extractants, the secondary amine Amberlite LA-2 gave the best combined performance for extraction and regeneration. Among the sorbents, a tertiary amine, Amberlite IRA-35, gave the best performance. Trioctylphosphine oxide does not maintain capacity in the pH range (about 6) most attractive for acetic acid fermentation. Slurred crushed dolomite is not sufficiently basic to accomplish regeneration.

  3. [Conversion of acetic acid to methane by thermophiles]. Progress report, May 15, 1989--May 14, 1993

    SciTech Connect

    Zinder, S.H.

    1993-06-01

    The primary goal of this project is to obtain a better understanding of thermophilic microorganisms which convert acetic acid to CH{sub 4}. The previous funding period represents a departure from earlier research in this laboratory, which was more physiological and ecological. The present work is centered on the biochemistry of the thermophile Methanothrix sp. strain CALS-1. this organism presents a unique opportunity, with its purity and relatively rapid growth, to do comparative biochemical studies with the other major acetotrophic genus Methanosarcina. We previously found that Methanothrix is capable of using acetate at concentrations 100 fold lower than Methanosarcina. This finding suggests that there are significant differences in the pathways of methanogenesis from acetate in the two genera.

  4. Removal of acetic acid from simulated hemicellulosic hydrolysates by emulsion liquid membrane with organophosphorus extractants.

    PubMed

    Lee, Sang Cheol

    2015-09-01

    Selective removal of acetic acid from simulated hemicellulosic hydrolysates containing xylose and sulfuric acid was attempted in a batch emulsion liquid membrane (ELM) system with organophosphorus extractants. Various experimental variables were used to develop a more energy-efficient ELM process. Total operation time of an ELM run with a very small quantity of trioctylphosphine oxide as the extractant was reduced to about a third of those required to attain almost the same extraction efficiency as obtained in previous ELM works without any extractant. Under specific conditions, acetic acid was selectively separated with a high degree of extraction and insignificant loss of xylose, and its purity and enrichment ratio in the stripping phase were higher than 92% and 6, respectively. Also, reused organic membrane solutions exhibited the extraction efficiency as high as fresh organic solutions did. These results showed that the current ELM process would be quite practical.

  5. An on-line potentiometric sequential injection titration process analyser for the determination of acetic acid.

    PubMed

    van Staden, J F; Mashamba, Mulalo G; Stefan, Raluca I

    2002-09-01

    An on-line potentiometric sequential injection titration process analyser for the determination of acetic acid is proposed. A solution of 0.1 mol L(-1) sodium chloride is used as carrier. Titration is achieved by aspirating acetic acid samples between two strong base-zone volumes into a holding coil and by channelling the stack of well-defined zones with flow reversal through a reaction coil to a potentiometric sensor where the peak widths were measured. A linear relationship between peak width and logarithm of the acid concentration was obtained in the range 1-9 g/100 mL. Vinegar samples were analysed without any sample pre-treatment. The method has a relative standard deviation of 0.4% with a sample frequency of 28 samples per hour. The results revealed good agreement between the proposed sequential injection and an automated batch titration method.

  6. Species-dependent effective concentration of DTPA in plasma for chelation of 241Am

    PubMed Central

    Sueda, Katsuhiko; Sadgrove, Matthew P.; Jay, Michael; Di Pasqua, Anthony J.

    2013-01-01

    Diethylenetriaminepentaacetic acid (DTPA) is a chelating agent that is used to facilitate the elimination of radionuclides, such as americium, from contaminated individuals. Its primary site of action is in the blood, where it competes with various biological ligands, including transferrin and albumin, for the binding of radioactive metals. To evaluate the chelation potential of DTPA under these conditions, the competitive binding of 241Am between DTPA and plasma proteins was studied in rat, beagle and human plasma in vitro. Following incubation of DTPA and 241Am in plasma, the 241Am-bound ligands were fractionated by ultrafiltration and ion-exchange chromatography, and each fraction was assayed for 241Am content by gamma scintillation counting. Dose-response curves of DTPA for 241Am binding were established, and these models were used to calculate the 90% maximal effective concentration, or EC90, of DTPA in each plasma system. The EC90 were determined to be 31.4, 15.9 and 10.0 μM in rat, beagle and human plasma, respectively. These values correspond to plasma concentrations of DTPA that maximize 241Am chelation while minimizing excess DTPA. Based on the pharmacokinetic profile of DTPA in humans, after a standard 30 μmol kg−1 intravenous bolus injection, the plasma concentration of DTPA remains above EC90 for approximately 5.6 h. Likewise, the effective duration of DTPA in rat and beagle were determined to be 0.67 and 1.7 h, respectively. These results suggest that species differences must be considered when translating DTPA efficacy data from animals to humans and offer further insights into improving the current DTPA treatment regimen. PMID:23799506

  7. Formic and acetic acid over the central Amazon region, Brazil. I - Dry season

    NASA Technical Reports Server (NTRS)

    Andreae, M. O.; Andreae, T. W.; Talbot, R. W.; Harriss, R. C.

    1988-01-01

    The concentrations of formic and acetic acids in the gas phase, atmospheric aerosol, and rainwater samples collected in Amazonia at ground level and in the atmosphere during the Amazon Boundary Layer Experiment in July/August 1985 were analyzed by ion exchange chromatography. The diurnal behavior of both acids at ground level and their vertical distribution in the forest canopy point to the existence of vegetative sources as well as to production by chemical reactions in the atmosphere. The concentrations of formic and acetic acids in the gas phase were about 2 orders of magnitude higher than the corresponding concentrations in the atmospheric aerosol. In rainwater, the total formate and acetate represented about one half of the anion equivalents, in contrast to less than 10 percent of the soluble anionic equivalents contributed by these acids in the atmospheric aerosol. The observed levels of these ions in rainwater are considered to be the result of a combination of chemical reactions in hydrometeors and the scavenging of the gaseous acids by cloud droplets.

  8. Exogenous Ghrelin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats

    PubMed Central

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Ceranowicz, Dagmara; Gałązka, Krystyna; Bonior, Joanna; Jaworek, Jolanta; Bartuś, Krzysztof; Gil, Krzysztof; Olszanecki, Rafał; Dembiński, Artur

    2016-01-01

    Previous studies have shown that ghrelin reduces colonic inflammation induced by trinitrobenzene sulfonic acid and dextran sodium sulfate. In the present study we determined the effect of treatment with ghrelin on the course of acetic acid-induced colitis in rats. Rectal administration of 3% acetic acid solution led to induction of colitis in all animals. Damage of the colonic wall was accompanied by an increase in mucosal concentration of pro-inflammatory interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), as well mucosal activity of myeloperoxidase. Moreover, induction of colitis led to a reduction in colonic blood flow and DNA synthesis. Administration of ghrelin after induction of colitis led to faster regeneration of the colonic wall and reduction in colonic levels of IL-1β, TNF-α, and myeloperoxidase. In addition, treatment with ghrelin improved mucosal DNA synthesis and blood flow. Our study disclosed that ghrelin exhibits a strong anti-inflammatory and healing effect in acetic acid-induced colitis. Our current observation in association with previous findings that ghrelin exhibits curative effect in trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis suggest that therapeutic effect of ghrelin in the colon is universal and independent of the primary cause of colitis. PMID:27598133

  9. Exogenous Ghrelin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats.

    PubMed

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Ceranowicz, Dagmara; Gałązka, Krystyna; Bonior, Joanna; Jaworek, Jolanta; Bartuś, Krzysztof; Gil, Krzysztof; Olszanecki, Rafał; Dembiński, Artur

    2016-01-01

    Previous studies have shown that ghrelin reduces colonic inflammation induced by trinitrobenzene sulfonic acid and dextran sodium sulfate. In the present study we determined the effect of treatment with ghrelin on the course of acetic acid-induced colitis in rats. Rectal administration of 3% acetic acid solution led to induction of colitis in all animals. Damage of the colonic wall was accompanied by an increase in mucosal concentration of pro-inflammatory interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), as well mucosal activity of myeloperoxidase. Moreover, induction of colitis led to a reduction in colonic blood flow and DNA synthesis. Administration of ghrelin after induction of colitis led to faster regeneration of the colonic wall and reduction in colonic levels of IL-1β, TNF-α, and myeloperoxidase. In addition, treatment with ghrelin improved mucosal DNA synthesis and blood flow. Our study disclosed that ghrelin exhibits a strong anti-inflammatory and healing effect in acetic acid-induced colitis. Our current observation in association with previous findings that ghrelin exhibits curative effect in trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis suggest that therapeutic effect of ghrelin in the colon is universal and independent of the primary cause of colitis. PMID:27598133

  10. Use of acetic and citric acids to control Salmonella Typhimurium in tahini (sesame paste).

    PubMed

    Al-Nabulsi, Anas A; Olaimat, Amin N; Osaili, Tareq M; Shaker, Reyad R; Zein Elabedeen, Noor; Jaradat, Ziad W; Abushelaibi, Aisha; Holley, Richard A

    2014-09-01

    Since tahini and its products have been linked to Salmonella illness outbreaks and product recalls in recent years, this study assessed the ability of Salmonella Typhimurium to survive or grow in commercial tahini and when hydrated (10% w/v in water), treated with 0.1%-0.5% acetic or citric acids, and stored at 37, 21 and 10 °C for 28 d. S. Typhimurium survived in commercial tahini up to 28 d but was reduced in numbers from 1.7 to 3.3 log10 CFU/ml. However, in the moist or hydrated tahini, significant growth of S. Typhimurium occurred at the tested temperatures. Acetic and citric acids at ≤0.5% reduced S. Typhimurium by 2.7-4.8 log10 CFU/ml and 2.5-3.8 log10 CFU/ml, respectively, in commercial tahini at 28 d. In hydrated tahini the organic acids were more effective. S. Typhimurium cells were not detected in the presence of 0.5% acetic acid after 7 d or with 0.5% citric acid after 21 d at the tested temperatures. The ability of S. Typhimurium to grow or survive in commercial tahini and products containing hydrated tahini may contribute to salmonellosis outbreaks; however, use of acetic and citric acids in ready-to-eat foods prepared from tahini can significantly minimize the risk associated with this pathogen.

  11. A solvent extraction approach to recover acetic acid from mixed waste acids produced during semiconductor wafer process.

    PubMed

    Shin, Chang-Hoon; Kim, Ju-Yup; Kim, Jun-Young; Kim, Hyun-Sang; Lee, Hyang-Sook; Mohapatra, Debasish; Ahn, Jae-Woo; Ahn, Jong-Gwan; Bae, Wookeun

    2009-03-15

    Recovery of acetic acid (HAc) from the waste etching solution discharged from silicon wafer manufacturing process has been attempted by using solvent extraction process. For this purpose 2-ethylhexyl alcohol (EHA) was used as organic solvent. In the pre-treatment stage >99% silicon and hydrofluoric acid was removed from the solution by precipitation. The synthesized product, Na(2)SiF(6) having 98.2% purity was considered of commercial grade having good market value. The waste solution containing 279 g/L acetic acid, 513 g/L nitric acid, 0.9 g/L hydrofluoric acid and 0.030 g/L silicon was used for solvent extraction study. From the batch test results equilibrium conditions for HAc recovery were optimized and found to be 4 stages of extraction at an organic:aqueous (O:A) ratio of 3, 4 stages of scrubbing and 4 stages of stripping at an O:A ratio of 1. Deionized water (DW) was used as stripping agent to elute HAc from organic phase. In the whole batch process 96.3% acetic acid recovery was achieved. Continuous operations were successfully conducted for 100 h using a mixer-settler to examine the feasibility of the extraction system for its possible commercial application. Finally, a complete process flowsheet with material balance for the separation and recovery of HAc has been proposed.

  12. Iron dissolution of dust source materials during simulated acidic processing: the effect of sulfuric, acetic, and oxalic acids.

    PubMed

    Chen, Haihan; Grassian, Vicki H

    2013-09-17

    Atmospheric organic acids potentially display different capacities in iron (Fe) mobilization from atmospheric dust compared with inorganic acids, but few measurements have been made on this comparison. We report here a laboratory investigation of Fe mobilization of coal fly ash, a representative Fe-containing anthropogenic aerosol, and Arizona test dust, a reference source material for mineral dust, in pH 2 sulfuric acid, acetic acid, and oxalic acid, respectively. The effects of pH and solar radiation on Fe dissolution have also been explored. The relative capacities of these three acids in Fe dissolution are in the order of oxalic acid > sulfuric acid > acetic acid. Oxalate forms mononuclear bidentate ligand with surface Fe and promotes Fe dissolution to the greatest extent. Photolysis of Fe-oxalate complexes further enhances Fe dissolution with the concomitant degradation of oxalate. These results suggest that ligand-promoted dissolution of Fe may play a more significant role in mobilizing Fe from atmospheric dust compared with proton-assisted processing. The role of atmospheric organic acids should be taken into account in global-biogeochemical modeling to better access dissolved atmospheric Fe deposition flux at the ocean surface.

  13. Screening and characterization of ethanol-tolerant and thermotolerant acetic acid bacteria from Chinese vinegar Pei.

    PubMed

    Chen, Yang; Bai, Ye; Li, Dongsheng; Wang, Chao; Xu, Ning; Hu, Yong

    2016-01-01

    Acetic acid bacteria (AAB) are important microorganisms in the vinegar industry. However, AAB have to tolerate the presence of ethanol and high temperatures, especially in submerged fermentation (SF), which inhibits AAB growth and acid yield. In this study, seven AAB that are tolerant to temperatures above 40 °C and ethanol concentrations above 10% (v/v) were isolated from Chinese vinegar Pei. All the isolated AAB belong to Acetobacter pasteurianus according to 16S rDNA analysis. Among all AAB, AAB4 produced the highest acid yield under high temperature and ethanol test conditions. At 4% ethanol and 30-40 °C temperatures, AAB4 maintained an alcohol-acid transform ratio of more than 90.5 %. High alcohol-acid transform ratio was still maintained even at higher temperatures, namely, 87.2, 77.1, 14.5 and 2.9% at 41, 42, 43 and 44 °C, respectively. At 30 °C and different initial ethanol concentrations (4-10%), the acid yield by AAB4 increased gradually, although the alcohol-acid transform ratio decreased to some extent. However, 46.5, 8.7 and 0.9% ratios were retained at ethanol concentrations of 11, 12 and 13%, respectively. When compared with AS1.41 (an AAB widely used in China) using a 10 L fermentor, AAB4 produced 42.0 g/L acetic acid at 37 °C with 10% ethanol, whereas AS1.41 almost stopped producing acetic acid. In conclusion, these traits suggest that AAB4 is a valuable strain for vinegar production in SF.

  14. Screening and characterization of ethanol-tolerant and thermotolerant acetic acid bacteria from Chinese vinegar Pei.

    PubMed

    Chen, Yang; Bai, Ye; Li, Dongsheng; Wang, Chao; Xu, Ning; Hu, Yong

    2016-01-01

    Acetic acid bacteria (AAB) are important microorganisms in the vinegar industry. However, AAB have to tolerate the presence of ethanol and high temperatures, especially in submerged fermentation (SF), which inhibits AAB growth and acid yield. In this study, seven AAB that are tolerant to temperatures above 40 °C and ethanol concentrations above 10% (v/v) were isolated from Chinese vinegar Pei. All the isolated AAB belong to Acetobacter pasteurianus according to 16S rDNA analysis. Among all AAB, AAB4 produced the highest acid yield under high temperature and ethanol test conditions. At 4% ethanol and 30-40 °C temperatures, AAB4 maintained an alcohol-acid transform ratio of more than 90.5 %. High alcohol-acid transform ratio was still maintained even at higher temperatures, namely, 87.2, 77.1, 14.5 and 2.9% at 41, 42, 43 and 44 °C, respectively. At 30 °C and different initial ethanol concentrations (4-10%), the acid yield by AAB4 increased gradually, although the alcohol-acid transform ratio decreased to some extent. However, 46.5, 8.7 and 0.9% ratios were retained at ethanol concentrations of 11, 12 and 13%, respectively. When compared with AS1.41 (an AAB widely used in China) using a 10 L fermentor, AAB4 produced 42.0 g/L acetic acid at 37 °C with 10% ethanol, whereas AS1.41 almost stopped producing acetic acid. In conclusion, these traits suggest that AAB4 is a valuable strain for vinegar production in SF. PMID:26712629

  15. Spectroscopic studies on interaction of BSA and Eu(III) complexes with H5ph-dtpa and H5dtpa ligands.

    PubMed

    Kong, Deyong; Qin, Cui; Fan, Ping; Li, Bing; Wang, Jun

    2015-04-01

    An novel aromatic aminopolycarboxylic acid ligand, N-(2-N,N-Dicarboxymethylaminophenyl) ethylenediamine-N,N',N'-triacetic acid (H5ph-dtpa), was synthesized by improving experimental method and its corresponding Eu(III) complex, Na2[EuIII(ph-dtpa)(H2O)]·6H2O, was successfully prepared through heat-refluxing method. As a comparison, the Eu(III) complex with diethylenetriamine-N,N,N',N',N″-pentaacetic acid (H5dtpa) ligand, Na2[Eu(III)(dtpa)(H2O)]·6H2O, was also prepared by the same method. And then, the interaction between prepared Eu(III) complexes ([EuIII(dtpa)(H2O)]2- and [EuIII(ph-dtpa)(H2O)]2-) and bovine serum albumin (BSA) in aqueous solution were studied by the combination of ultraviolet-visible (UV-vis), fluorescence and circular dichroism (CD) spectroscopies. In addition, the binding sites of Eu(III) complexes ([EuIII(dtpa)(H2O)]2- and [EuIII(ph-dtpa)(H2O)]2-) to BSA molecules were also estimated by synchronous fluorescence. Moreover, the theoretical and experimental results show that the Van der Waals, hydrogen bond and π-π stacking interactions are the mainly impulse to the reaction. The binding distances (r) between Eu(III) complexes ([EuIII(dtpa)(H2O)]2- and [EuIII(ph-dtpa)(H2O)]2-) and BSA were obtained according to Förster's non-radiative energy transfer theory. Also, the determined UV-vis absorption spectroscopy, synchronous fluorescence and circular dichroism (CD) spectra showed that the conformation of BSA could be changed in the presence of Eu(III) complexes. The obtained results can help understand the action mode between rare earth metal complexes of aminopolycarboxylic acid ligands with BSA and they are also expected to provide important information of designs of new inspired drugs.

  16. Lactobacillus acidophilus NCFM affects vitamin E acetate metabolism and intestinal bile acid signature in monocolonized mice

    PubMed Central

    Roager, Henrik M; Sulek, Karolina; Skov, Kasper; Frandsen, Henrik L; Smedsgaard, Jørn; Wilcks, Andrea; Skov, Thomas H; Villas-Boas, Silas G; Licht, Tine R

    2014-01-01

    Monocolonization of germ-free (GF) mice enables the study of specific bacterial species in vivo. Lactobacillus acidophilus NCFMTM (NCFM) is a probiotic strain; however, many of the mechanisms behind its health-promoting effect remain unknown. Here, we studied the effects of NCFM on the metabolome of jejunum, cecum, and colon of NCFM monocolonized (MC) and GF mice using liquid chromatography coupled to mass-spectrometry (LC-MS). The study adds to existing evidence that NCFM in vivo affects the bile acid signature of mice, in particular by deconjugation. Furthermore, we confirmed that carbohydrate metabolism is affected by NCFM in the mouse intestine as especially the digestion of oligosaccharides (penta- and tetrasaccharides) was increased in MC mice. Additionally, levels of α-tocopherol acetate (vitamin E acetate) were higher in the intestine of GF mice than in MC mice, suggesting that NCFM affects the vitamin E acetate metabolism. NCFM did not digest vitamin E acetate in vitro, suggesting that direct bacterial metabolism was not the cause of the altered metabolome in vivo. Taken together, our results suggest that NCFM affects intestinal carbohydrate metabolism, bile acid metabolism and vitamin E metabolism, although it remains to be investigated whether this effect is unique to NCFM. PMID:24717228

  17. 99mTc-DTPA aerosol for same-day post-perfusion ventilation imaging: results of a multicentre study.

    PubMed

    Köhn, H; Mostbeck, A; Bachmayr, S; Eber, O; Galvan, G; Holm, C; König, B; Lind, P; Markt, B; Ogris, E

    1993-01-01

    A multicentre study was performed in an attempt to evaluate a submicronic technetium-99m diethylene triamine penta-acetic acid aerosol generated by a newly developed delivery system, the aerosol production equipment (APE nebulizer), for same-day post-perfusion ventilation imaging in patients with clinically suspected pulmonary embolism. Quantitative comparison between the DTPA aerosol and krypton gas demonstrated a close correlation with respect to regional pulmonary distribution of activity and peripheral lung penetration (n = 14, r = 0.94, P < 0.001 and r = 0.75, P < 0.0025, respectively). In 169 consecutive patients, DTPA aerosol images performed immediately following perfusion (inhalation scan I) were compared to those carried out on the next day (inhalation scan II) with respect to image quality and assessment of perfusion-ventilation matches or mismatches. Agreement between inhalation scans I and II with respect to perfusion defects matched or mismatched to ventilation was found in 166/169 (98%) studies. The image quality of inhalation scan I was equal to that of scan II in 72%; inhalation scan I was superior in 11% of cases, while scan II was superior in 17%. This submicronic 99mTc-labelled DTPA aerosol is well suited for fast same-day post-perfusion ventilation imaging in patients with clinical suspicion of pulmonary embolism.

  18. Obestatin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats.

    PubMed

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Bonior, Joanna; Jaworek, Jolanta; Kuśnierz-Cabala, Beata; Konturek, Peter; Ambroży, Tadeusz; Dembiński, Artur

    2016-01-01

    Obestatin, a 23-amino acid peptide derived from the proghrelin, has been shown to exhibit some protective and therapeutic effects in the gut. The aim of present study was to determine the effect of obestatin administration on the course of acetic acid-induced colitis in rats. Materials and Methods. Studies have been performed on male Wistar rats. Colitis was induced by a rectal enema with 3.5% acetic acid solution. Obestatin was administered intraperitoneally twice a day at a dose of 8 nmol/kg, starting 24 h after the induction of colitis. Seven or 14 days after the induction of colitis, the healing rate of the colon was evaluated. Results. Treatment with obestatin after induction of colitis accelerated the healing of colonic wall damage and this effect was associated with a decrease in the colitis-evoked increase in mucosal activity of myeloperoxidase and content of interleukin-1β. Moreover, obestatin administration significantly reversed the colitis-evoked decrease in mucosal blood flow and DNA synthesis. Conclusion. Administration of exogenous obestatin exhibits therapeutic effects in the course of acetic acid-induced colitis and this effect is related, at least in part, to the obestatin-evoked anti-inflammatory effect, an improvement of local blood flow, and an increase in cell proliferation in colonic mucosa.

  19. Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome

    DOE PAGES

    LaBelle, Edward V.; Marshall, Christopher W.; Gilbert, Jack A.; May, Harold D.; Battista, John R.

    2014-10-15

    Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (~5). Hydrogen production by biocathodes poised at -600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ~5–15 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ~6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at -765 mV (0.065 mA/cm2 sterile control at -800 mV) by the Acetobacterium-dominatedmore » community. Supplying -800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured).« less

  20. Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome

    SciTech Connect

    LaBelle, Edward V.; Marshall, Christopher W.; Gilbert, Jack A.; May, Harold D.; Battista, John R.

    2014-10-15

    Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (~5). Hydrogen production by biocathodes poised at -600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ~5–15 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ~6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at -765 mV (0.065 mA/cm2 sterile control at -800 mV) by the Acetobacterium-dominated community. Supplying -800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured).

  1. Influence of Acidic pH on Hydrogen and Acetate Production by an Electrosynthetic Microbiome

    PubMed Central

    LaBelle, Edward V.; Marshall, Christopher W.; Gilbert, Jack A.; May, Harold D.

    2014-01-01

    Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (∼5). Hydrogen production by biocathodes poised at −600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ∼5–15 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ∼6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at −765 mV (0.065 mA/cm2 sterile control at −800 mV) by the Acetobacterium-dominated community. Supplying −800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured). PMID:25333313

  2. Cloning of genes responsible for acetic acid resistance in Acetobacter aceti.

    PubMed

    Fukaya, M; Takemura, H; Okumura, H; Kawamura, Y; Horinouchi, S; Beppu, T

    1990-04-01

    Five acetic acid-sensitive mutants of Acetobacter aceti subsp. aceti no. 1023 were isolated by mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. Three recombinant plasmids that complemented the mutations were isolated from a gene bank of the chromosome DNA of the parental strain constructed in Escherichia coli by using cosmid vector pMVC1. One of these plasmids (pAR1611), carrying about a 30-kilobase-pair (kb) fragment that conferred acetic acid resistance to all five mutants, was further analyzed. Subcloning experiments indicated that a 8.3-kb fragment was sufficient to complement all five mutations. To identify the mutation loci and genes involved in acetic acid resistance, insertional inactivation was performed by insertion of the kanamycin resistance gene derived from E. coli plasmid pACYC177 into the cloned 8.3-kb fragment and successive integration into the chromosome of the parental strain. The results suggested that three genes, designated aarA, aarB, and aarC, were responsible for expression of acetic acid resistance. Gene products of these genes were detected by means of overproduction in E. coli by use of the lac promoter. The amino acid sequence of the aarA gene product deduced from the nucleotide sequence was significantly similar to those of the citrate synthases (CSs) of E. coli and other bacteria. The A. aceti mutants defective in the aarA gene were found to lack CS activity, which was restored by introduction of a plasmid containing the aarA gene. A mutation in the CS gene of E. coli was also complemented by the aarA gene. These results indicate that aarA is the CS gene.

  3. Decadal variations of rainwater formic and acetic acid concentrations in Wilmington, NC, USA

    NASA Astrophysics Data System (ADS)

    Willey, Joan D.; Glinski, Donna A.; Southwell, Melissa; Long, Michael S.; Avery, G. Brooks, Jr.; Kieber, Robert J.

    2011-02-01

    Concentrations of formic and acetic acid from January 2008 through March 2009 were compared to two previous studies at this location (conducted in 1987-1990 and 1996-1998) in order to quantify the extent to which temporal changes in DOC and pH can be explained by changes in these organic acids. The volume weighted 2008 formic and acetic acid concentrations (5.6 and 2.6 μM respectively) have decreased dramatically compared with those observed during the 1996-1998 study (9.9 and 7.3 μM) and are also lower than concentrations observed in the 1987-1990 study (7.4 and 3.6 μM). Changes in formic and acetic acids between 1996-97 and 2008 can account for approximately 50% of the DOC change and 40% of the H + change in rainwater over this same time period. These changes are most pronounced during the growing season, which is also the tourist and high traffic season at this location. Determining causation of these changes is difficult due to multiple biogenic and anthropogenic sources. However, the ratio of formic to acetic acid has also reverted back to a value consistent with reduced vehicular emissions, possibly related to the introduction of improved emission control technology including the use of reformulated gasoline in the late 1990's. Long term monitoring of seasonal, annual, and decadal trends will be of critical importance for evaluating the effects of future changes to atmospheric inputs such as the increased use of ethanol and other alternative fuels.

  4. Dynamics of three organic acids (malic, acetic and succinic acid) in sunflower exposed to cadmium and lead.

    PubMed

    Niu, Zhixin; Li, Xiaodong; Sun, Lina; Sun, Tieheng

    2013-01-01

    Sunflower (Helianthus annuus L.) has been considered as a good candidate for bioaccumulation of heavy metals. In the present study, sunflower was used to enrich the cadmium and lead in sand culture during 90 days. Biomass, Cd and Pb uptake, three organic acids and pH in cultures were investigated. Results showed that the existence of Cd and Pb showed different interactions on the organic acids exudation. In single Cd treatments, malic and acetic acids in Cd10 showed an incremental tendency with time. In the mixed treatments of Cd and Pb, malic acids increased when 10 and 40 mg x L(-1) Cd were added into Pb50, but acetic acids in Pb50 were inhibited by Cd addition. The Cd10 supplied in Pb10 stimulated the secretion of malic and succinic acids. Moreover, the Cd or Pb uptake in sunflower showed various correlations with pH and some organic acids, which might be due to the fact that the Cd and Pb interfere with the organic acids secretion in rhizosphere of sunflower, and the changes of organic acids altered the form and bioavailability of Cd and Pb in cultures conversely.

  5. Methane production from rice straw pretreated by a mixture of acetic-propionic acid.

    PubMed

    Zhao, Rui; Zhang, Zhenya; Zhang, Ruiqin; Li, Miao; Lei, Zhongfang; Utsumi, Motoo; Sugiura, Norio

    2010-02-01

    Rice straw was treated with a mixed solution of acetic acid and propionic acid to enhance its biodegradability. The effect of acid concentration, pretreatment time, and the ratio of solid to liquid on the delignification performance of rice straw were investigated. It was found that the optimal conditions for hydrolysis were 0.75 mol/L acid concentration, 2h pretreatment time and 1:20 solid to liquid ratio. Batch methane fermentation of untreated rice straw, pretreated rice straw, and the hydrolysates (the liquid fraction) of pretreatment were conducted at 35 degrees C for 30 days, and the results indicated that methane production of rice straw can be enhanced by dilute organic acid pretreatment. Moreover, most of the acid in hydrolysates can also be converted into methane gas.

  6. Theoretical study of the hydration of atmospheric nucleation precursors with acetic acid.

    PubMed

    Zhu, Yu-Peng; Liu, Yi-Rong; Huang, Teng; Jiang, Shuai; Xu, Kang-Ming; Wen, Hui; Zhang, Wei-Jun; Huang, Wei

    2014-09-11

    While atmosphere is known to contain a significant fraction of organic substance and the effect of acetic acid to stabilize hydrated sulfuric acids is found to be close that of ammonia, the details about the hydration of (CH3COOH)(H2SO4)2 are poorly understood, especially for the larger clusters with more water molecules. We have investigated structural characteristics and thermodynamics of the hydrates using density functional theory (DFT) at PW91PW91/6-311++G(3df,3pd) level. The phenomena of the structural evolution may exist during the early stage of the clusters formation, and we tentatively proposed a calculation path for the Gibbs free energies of the clusters formation via the structural evolution. The results in this study supply a picture of the first deprotonation of sulfuric acids for a system consisting of two sulfuric acid molecules, an acetic acid molecule, and up to three waters at 0 and 298.15 K, respectively. We also replace one of the sulfuric acids with a bisulfate anion in (CH3COOH)(H2SO4)2 to explore the difference of acid dissociation between two series of clusters and interaction of performance in clusters growth between ion-mediated nucleation and organics-enhanced nucleation.

  7. Inception of Acetic Acid/Water Cluster Growth in Molecular Beams.

    PubMed

    Bende, Attila; Perretta, Giuseppe; Sementa, Paolo; Di Palma, Tonia M

    2015-10-01

    The influence of carboxylic acids on water nucleation in the gas phase has been explored in the supersonic expansion of water vapour mixed with acetic acid (AcA) at various concentrations. The sodium-doping method has been used to detect clusters produced in supersonic expansions by using UV photoionisation. The mass spectra obtained at lower acid concentrations show well-detected Na(+) -AcA(H2O)n and Na(+)-AcA2 (H2O)n clusters up to 200 Da and, in the best cooling expansions, emerging Na(+)-AcAm (H2O)n signals at higher masses and unresolved signals that extend beyond m/e values >1000 Da. These signals, which increase with increasing acid content in water vapour, are an indication that the cluster growth taking place arises from mixed water-acid clusters. Theoretical calculations show that small acid-water clusters are stable and their formation is even thermodynamically favoured with respect to pure water clusters, especially at lower temperatures. These findings suggest that acetic acid may play a significant role as a pre-nucleation embryo in the formation of aerosols in wet environments. PMID:26296812

  8. Soil washing of chromium- and cadmium-contaminated sludge using acids and ethylenediaminetetra acetic acid chelating agent.

    PubMed

    Gitipour, Saeid; Ahmadi, Soheil; Madadian, Edris; Ardestani, Mojtaba

    2016-01-01

    In this research, the effect of soil washing in the removal of chromium- and cadmium-contaminated sludge samples collected from Pond 2 of the Tehran Oil Refinery was investigated. These metals are considered as hazardous substances for human health and the environment. The carcinogenicity of chromate dust has been established for a long time. Cadmium is also a potential environmental toxicant. This study was carried out by collecting sludge samples from different locations in Pond 2. Soil washing was conducted to treat the samples. Chemical agents, such as acetic acid, ethylenediaminetetra acetic acid (EDTA) and hydrochloric acid, were used as washing solutions to remove chromium and cadmium from sludge samples. The results of this study indicated that the highest removal efficiencies from the sludge samples were achieved using a 0.3 M HCl solution with 82.69% and 74.47% for chromium and cadmium, respectively. EDTA (0.1 M) in the best condition extracted 66.81% of cadmium and 72.52% of chromium from the sludges. The lowest efficiency values for the samples, however, were achieved using 3 M acetic acid with 41.7% and 46.96% removals for cadmium and chromium, respectively. The analysis of washed sludge indicated that the heavy metals removal decreased in the order of 3 M acetic acid < 0.1 M EDTA<0.3 M HCl, thus hydrochloric acid appears to offer a greater potential as a washing agent in remediating the sludge samples.

  9. Soil washing of chromium- and cadmium-contaminated sludge using acids and ethylenediaminetetra acetic acid chelating agent.

    PubMed

    Gitipour, Saeid; Ahmadi, Soheil; Madadian, Edris; Ardestani, Mojtaba

    2016-01-01

    In this research, the effect of soil washing in the removal of chromium- and cadmium-contaminated sludge samples collected from Pond 2 of the Tehran Oil Refinery was investigated. These metals are considered as hazardous substances for human health and the environment. The carcinogenicity of chromate dust has been established for a long time. Cadmium is also a potential environmental toxicant. This study was carried out by collecting sludge samples from different locations in Pond 2. Soil washing was conducted to treat the samples. Chemical agents, such as acetic acid, ethylenediaminetetra acetic acid (EDTA) and hydrochloric acid, were used as washing solutions to remove chromium and cadmium from sludge samples. The results of this study indicated that the highest removal efficiencies from the sludge samples were achieved using a 0.3 M HCl solution with 82.69% and 74.47% for chromium and cadmium, respectively. EDTA (0.1 M) in the best condition extracted 66.81% of cadmium and 72.52% of chromium from the sludges. The lowest efficiency values for the samples, however, were achieved using 3 M acetic acid with 41.7% and 46.96% removals for cadmium and chromium, respectively. The analysis of washed sludge indicated that the heavy metals removal decreased in the order of 3 M acetic acid < 0.1 M EDTA<0.3 M HCl, thus hydrochloric acid appears to offer a greater potential as a washing agent in remediating the sludge samples. PMID:26599728

  10. Permeability of acetic acid through organic films at the air-aqueous interface.

    PubMed

    Gilman, Jessica B; Vaida, Veronica

    2006-06-22

    Recent field studies of collected aerosol particles, both marine and continental, show that the outermost layers contain long-chain (C >or= 18) organics. The presence of these long-chain organics could impede the transport of gases and other volatile species across the interface. This could effect the particle's composition, lifetime, and heterogeneous chemistry. In this study, the uptake rate of acetic acid vapor across a clean interface and through films of long-chain organics into an aqueous subphase solution containing an acid-base indicator (bromocresol green) was measured under ambient conditions using visible absorption spectroscopy. Acetic acid is a volatile organic compound (VOC) and is an atmospherically relevant organic acid. The uptake of acetic acid through single-component organic films of 1-octadecanol (C(18)H(38)O), 1-triacontanol (C(30)H(62)O), cis-9-octadecen-1-ol (C(18)H(36)O), and nonacosane (C(29)H(60)) in addition to two mixed films containing equimolar 1-triacontanol/nonacosane and equimolar 1-triacontanol/cis-9-octadecen-1-ol was determined. These species represent long-chain organic compounds that reside at the air-aqueous interface of atmospheric aerosols. The cis-9-octadecen-1-ol film had little effect on the net uptake rate of acetic acid vapor into solution; however, the uptake rate was reduced by almost one-half by an interfacial film of 1-triacontanol. The measured uptake rates were used to calculate the permeability of acetic acid through the various films which ranged from 1.5 x 10(-3) cm s(-1) for 1-triacontanol, the least permeable film, to 2.5 x 10(-2) cm s(-1) for cis-9-octadecen-1-ol, the most permeable film. Both mixed films had permeabilities that were between that of the single-component films comprising the mixture. This shows that the permeability of a mixed film may not be solely determined by the most permeable species in the mixture. The permeabilities of all the films studied here are discussed in relation to their

  11. Protective Effect of Ocimum basilicum Essential Oil Against Acetic Acid-Induced Colitis in Rats.

    PubMed

    Rashidian, Amir; Roohi, Parnia; Mehrzadi, Saeed; Ghannadi, Ali Reza; Minaiyan, Mohsen

    2016-10-01

    Ocimum basilicum L has been traditionally used for the treatment of inflammatory bowel disease in Iran. This study investigates the ameliorative effect of Ocimum basilicum essential oil on an acetic acid-induced colitis model in rats. Ocimum basilicum essential oil with 2 doses (200 and 400 μL/kg) significantly ameliorated wet weight/length ratio of colonic tissue compared to the control group. Higher doses of essential oil (200 and 400 μL/kg) significantly reduced ulcer severity, ulcer area, and ulcer index. On the other hand, histological examination revealed the diminution of total colitis index as a marker for inflammatory cell infiltration in the colonic segments of rats treated with Ocimum basilicum essential oil (200 and 400 μL/kg). The increased level of myeloperoxidase was significantly decreased after the treatment with the essential oil (200 and 400 μL/kg). These results suggest that Ocimum basilicum exhibits protective effect against acetic acid-induced colitis.

  12. DFT computation and experimental analysis of vibrational and electronic spectra of phenoxy acetic acid herbicides

    NASA Astrophysics Data System (ADS)

    Arul Dhas, D.; Hubert Joe, I.; Roy, S. D. D.; Balachandran, S.

    2013-05-01

    An absolute vibrational analysis has been attempted on the basis of experimental FTIR and NIR-FT Raman spectra with calculated vibrational wavenumbers and intensities of phenoxy acetic acids. The equilibrium geometry, bonding features and harmonic vibrational wavenumbers have been calculated with the help of B3LYP method with Dunning correlation consistent basis set aug-cc-pVTZ. The electronic structures of molecular fragments were described in terms of natural bond orbital analysis, which shows intermolecular Osbnd H⋯O and intramolecular Csbnd H⋯O hydrogen bonds. The electronic absorption spectra with different solvents have been investigated in combination with time-dependent density functional theory calculation. The pKa values of phenoxy acetic acids were compared.

  13. The stability of the acetic acid dimer in microhydrated environments and in aqueous solution.

    PubMed

    Pašalić, Hasan; Tunega, Daniel; Aquino, Adélia J A; Haberhauer, Georg; Gerzabek, Martin H; Lischka, Hans

    2012-03-28

    The thermodynamic stability of the acetic acid dimer conformers in microhydrated environments and in aqueous solution was studied by means of molecular dynamics simulations using the density functional based tight binding (DFTB) method. To confirm the reliability of this method for the system studied, density functional theory (DFT) and second order Møller-Plesset perturbation theory (MP2) calculations were performed for comparison. Classical optimized potentials for liquid simulations (OPLS) force field dynamics was used as well. One focus of this work was laid on the study of the capabilities of water molecules to break the hydrogen bonds of the acetic acid dimer. The barrier for insertion of one water molecule into the most stable cyclic dimer is found to lie between 3.25 and 4.8 kcal mol(-1) for the quantum mechanical methods, but only at 1.2 kcal mol(-1) for OPLS. Starting from different acetic acid dimer structures optimized in gas phase, DFTB dynamics simulations give a different picture of the stability in the microhydrated environment (4 to 12 water molecules) as compared to aqueous solution. In the former case all conformers are converted to the hydrated cyclic dimer, which remains stable over the entire simulation time of 1 ns. These results demonstrate that the considered microhydrated environment is not sufficient to dissociate the acetic acid dimer. In aqueous solution, however, the DFTB dynamics shows dissociation of all dimer structures (or processes leading thereto) starting after about 50 ps, demonstrating the capability of the water environment to break up the relatively strong hydrogen bridges. The OPLS dynamics in the aqueous environment shows--in contrast to the DFTB results--immediate dissociation, but a similar long-term behavior.

  14. Determination of Endogenous Indole-3-Acetic Acid in Plagiochila arctica (Hepaticae) 1

    PubMed Central

    Law, David M.; Basile, Dominick V.; Basile, Margaret R.

    1985-01-01

    Endogenous indole-3-acetic acid (IAA) was found in axenically cultured gametophytes of the leafy liverwort, Plagiochila arctica Bryhn and Kaal., by high-performance liquid chromatography with electrochemical detection. Identification of the methylated auxin was confirmed by gas chromatography-mass spectrometry. Addition of 57 micromolar IAA to cultures increased relative production of ethylene. This is the first definitive (gas chromatography-mass spectrometry) demonstration of the natural occurrence of IAA in a bryophyte. PMID:16664164

  15. Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors.

    PubMed

    Shui, Zong-Xia; Qin, Han; Wu, Bo; Ruan, Zhi-yong; Wang, Lu-shang; Tan, Fu-Rong; Wang, Jing-Li; Tang, Xiao-Yu; Dai, Li-Chun; Hu, Guo-Quan; He, Ming-Xiong

    2015-07-01

    Furfural and acetic acid from lignocellulosic hydrolysates are the prevalent inhibitors to Zymomonas mobilis during cellulosic ethanol production. Developing a strain tolerant to furfural or acetic acid inhibitors is difficul by using rational engineering strategies due to poor understanding of their underlying molecular mechanisms. In this study, strategy of adaptive laboratory evolution (ALE) was used for development of a furfural and acetic acid-tolerant strain. After three round evolution, four evolved mutants (ZMA7-2, ZMA7-3, ZMF3-2, and ZMF3-3) that showed higher growth capacity were successfully obtained via ALE method. Based on the results of profiling of cell growth, glucose utilization, ethanol yield, and activity of key enzymes, two desired strains, ZMA7-2 and ZMF3-3, were achieved, which showed higher tolerance under 7 g/l acetic acid and 3 g/l furfural stress condition. Especially, it is the first report of Z. mobilis strain that could tolerate higher furfural. The best strain, Z. mobilis ZMF3-3, has showed 94.84% theoretical ethanol yield under 3-g/l furfural stress condition, and the theoretical ethanol yield of ZM4 is only 9.89%. Our study also demonstrated that ALE method might also be used as a powerful metabolic engineering tool for metabolic engineering in Z. mobilis. Furthermore, the two best strains could be used as novel host for further metabolic engineering in cellulosic ethanol or future biorefinery. Importantly, the two strains may also be used as novel-tolerant model organisms for the genetic mechanism on the "omics" level, which will provide some useful information for inverse metabolic engineering.

  16. Molecular dynamics simulations of the auxin-binding protein 1 in complex with indole-3-acetic acid and naphthalen-1-acetic acid.

    PubMed

    Grandits, Melanie; Oostenbrink, Chris

    2014-10-01

    Auxin-binding protein 1 (ABP1) is suggested to be an auxin receptor which plays an important role in several processes in green plants. Maize ABP1 was simulated with the natural auxin indole-3-acetic acid (IAA) and the synthetic analog naphthalen-1-acetic acid (NAA), to elucidate the role of the KDEL sequence and the helix at the C-terminus. The KDEL sequence weakens the intermolecular interactions between the monomers but stabilizes the C-terminal helix. Conformational changes at the C-terminus occur within the KDEL sequence and are influenced by the binding of the simulated ligands. This observation helps to explain experimental findings on ABP1 interactions with antibodies that are modulated by the presence of auxin, and supports the hypothesis that ABP1 acts as an auxin receptor. Stable hydrogen bonds between the monomers are formed between Glu40 and Glu62, Arg10 and Thr97, Lys39, and Glu62 in all simulations. The amino acids Ile22, Leu25, Trp44, Pro55, Ile130, and Phe149 are located in the binding pocket and are involved in hydrophobic interactions with the ring system of the ligand. Trp151 is stably involved in a face to end interaction with the ligand. The calculated free energy of binding using the linear interaction energy approach showed a higher binding affinity for NAA as compared to IAA. Our simulations confirm the asymmetric behavior of the two monomers, the stronger interaction of NAA than IAA and offers insight into the possible mechanism of ABP1 as an auxin receptor.

  17. A density functional study of crystalline acetic acid and its proton transfer polymorphic forms

    NASA Astrophysics Data System (ADS)

    Rovira, Carme; Novoa, Juan J.

    2000-11-01

    We present a density functional study of the structure and dynamics of solid acetic acid. Our calculations are based on density functional theory combined with molecular dynamics, within the Car-Parrinello scheme. The computed structure of the acetic acid crystal, optimized without symmetry constraints, is in very good agreement with the experiment and reproduces the changes in the intramolecular structure when going from the gas phase to the solid. The cell parameters of the experimental structure are also well reproduced. Cooperative effects along the molecular chains building the crystal are found to be small (1.2 kcal/mol), although larger than it had been previously estimated. The anti conformation of the COOH fragment leads to a stable structure up to 250 K, with an energy of only 3 kcal/mol above that of the known syn form. The energy barrier associated with the most likely pathway for the syn to anti conformations, involving proton transfer along the OH⋯O units (<5.8 kcal/mol) is much smaller than the experimental barrier for the syn/anti isomerism in gas phase and in solution. Intramolecular and intermolecular reorganizations upon change to the anti structure are analyzed. Overall, our results pinpoint the anti form as a good candidate for a possible acetic acid polymorph.

  18. Radioprotective and Apoptotic Properties of a Combination of α-Tocopherol Acetate and Ascorbic Acid.

    PubMed

    Vasil'eva, I N; Bespalov, V G; Baranenko, D A

    2016-06-01

    We studied radioprotective and apoptotic properties of a combination of α-tocopherol acetate and ascorbic acid. α-Tocopherol acetate (10 mg/kg body weight) or ascorbic acid (20 mg/kg) or combination of these agents in the same doses was orally administered to male rats at various terms before and after single whole-body exposure to γ-irradiation in the doses of 2 and 8 Gy. Irradiation increased the frequency of chromosome aberrations in bone marrow cells and plasma level of low-molecular-weight DNA. Vitamin combination administered before or after irradiation significantly reduced the frequency of chromosome aberrations by 2-2.5 times. Administration of this combination 10 min before irradiation 1.5-fold increased the content of low-molecular-weight DNA in blood plasma in comparison with the control animals exposed to radiation. The combination of α-tocopherol acetate and ascorbic acid produced radioprotective effects and enhanced apoptosis in irradiated cells.

  19. A new medium containing mupirocin, acetic acid, and norfloxacin for the selective cultivation of bifidobacteria.

    PubMed

    Vlková, Eva; Salmonová, Hana; Bunešová, Věra; Geigerová, Martina; Rada, Vojtěch; Musilová, Šárka

    2015-08-01

    Various culture media have been proposed for the isolation and selective enumeration of bifidobacteria. Mupirocin is widely used as a selective factor along with glacial acetic acid. TOS (transgalactosylated oligosaccharides) medium supplemented with mupirocin is recommended by the International Dairy Federation for the detection of bifidobacteria in fermented milk products. Mupirocin media with acetic acid are also reliable for intestinal samples in which bifidobacteria predominate. However, for complex samples containing more diverse microbiota, the selectivity of mupirocin media is limited. Resistance to mupirocin has been demonstrated by many anaerobic bacteria, especially clostridia. The objective was to identify an antibiotic that inhibits the growth of clostridia and allows the growth of bifidobacteria, and to use the identified substance to develop a selective cultivation medium for bifidobacteria. The susceptibility of bifidobacteria and clostridia to 12 antibiotics was tested on agar using the disk diffusion method. Only norfloxacin inhibited the growth of clostridia and did not affect the growth of bifidobacteria. Using both pure cultures and faecal samples from infants, adults, calves, lambs, and piglets, the optimal concentration of norfloxacin in solid cultivation media was determined to be 200 mg/L. Our results showed that solid medium containing norfloxacin (200 mg/L) in combination with mupirocin (100 mg/L) and glacial acetic acid (1 mL/L) is suitable for the enumeration and isolation of bifidobacteria from faecal samples of different origins.

  20. Tipepidine enhances the antinociceptive-like action of carbamazepine in the acetic acid writhing test.

    PubMed

    Kawaura, Kazuaki; Miki, Risa; Urashima, Yuri; Honda, Sokichi; Shehata, Ahmed M; Soeda, Fumio; Shirasaki, Tetsuya; Takahama, Kazuo

    2011-01-25

    Several antidepressants have been used to treat severe pain in clinics. Recently, we reported that the centrally acting non-narcotic antitussive (cough suppressant drug), tipepidine produces an antidepressant-like effect in the forced swimming test, although the mechanism of action appears to be quite different from that of known antidepressants. In the present study, we investigated whether a combination of tipepidine and carbamazepine acts synergistically to induce an antinociceptive effect in the acetic acid-induced writhing test in mice. Prior to studying the combination of tipepidine and carbamazepine, the analgesic action of tipepidine alone was also examined in mice. Tipepidine at 5-40mg/kg i.p. significantly reduced the number of writhes induced by acetic acid in mice. Carbamazepine at 20mg/kg i.p. also significantly reduced the writhing reaction. Furthermore, co-administration of carbamazepine (5 and 10mg/kg, i.p.) and tipepidine (2.5mg/kg i.p.) significantly decreased the number of writhes induced by acetic acid. This finding suggests that a combination of carbamazepine and tipepidine may be a new strategy for the treatment of neuropathic pain such as what occurs in trigeminal neuralgia, because the use of carbamazepine is often limited by its adverse effects and by reduction of its analgesic efficacy by microsomal enzyme induction. PMID:21114989

  1. Corrosion resistance of aluminum-magnesium alloys in glacial acetic acid

    SciTech Connect

    Zaitseva, L.V.; Romaniv, V.I.

    1984-05-01

    Vessels for the storage and conveyance of glacial acetic acid are produced from ADO and AD1 aluminum, which are distinguished by corrosion resistance, weldability and workability in the hot and cold conditions but have low tensile strength. Aluminum-magnesium alloys are stronger materials close in corrosion resistance to technical purity aluminum. An investigation was made of the basic alloying components on the corrosion resistance of these alloys in glacial acetic acid. Both the base metal and the weld joints were tested. With an increase in temperature the corrosion rate of all of the tested materials increases by tens of times. The metals with higher magnesium content show more pitting damage. The relationship of the corrosion resistance of the alloys to magnesium content is confirmed by the similar intensity of failure of the joint metal of all of the investigated alloys and by electrochemical investigations. The data shows that AMg3 alloy is close to technically pure ADO aluminum. However, the susceptibility of even this material to local corrosion eliminates the possibility of the use of aluminum-magnesium alloys as reliable constructional materials in glacial acetic acid.

  2. Improving the environmental profile of wood panels via co-production of ethanol and acetic acid.

    PubMed

    Earles, J Mason; Halog, Anthony; Shaler, Stephen

    2011-11-15

    The oriented strand board (OSB) biorefinery is an emerging technology that could improve the building, transportation, and chemical sectors' environmental profiles. By adding a hot water extraction stage to conventional OSB panel manufacturing, hemicellulose polysaccharides can be extracted from wood strands and converted to renewably sourced ethanol and acetic acid. Replacing fossil-based gasoline and acetic acid has the potential to reduce greenhouse gas (GHG) emissions, among other possible impacts. At the same time, hemicellulose extraction could improve the environmental profile of OSB panels by reducing the level of volatile organic compounds (VOCs) emitted during manufacturing. In this study, the life cycle significance of such GHG, VOC, and other emission reductions was investigated. A process model was developed based on a mix of laboratory and industrial-level mass and energy flow data. Using these data a life cycle assessment (LCA) model was built. Sensitive process parameters were identified and used to develop a target production scenario for the OSB biorefinery. The findings suggest that the OSB biorefinery's deployment could substantially improve human and ecosystem health via reduction of select VOCs compared to conventionally produced OSB, gasoline, and acetic acid. Technological advancements are needed, however, to achieve desirable GHG reductions. PMID:21967719

  3. A new medium containing mupirocin, acetic acid, and norfloxacin for the selective cultivation of bifidobacteria.

    PubMed

    Vlková, Eva; Salmonová, Hana; Bunešová, Věra; Geigerová, Martina; Rada, Vojtěch; Musilová, Šárka

    2015-08-01

    Various culture media have been proposed for the isolation and selective enumeration of bifidobacteria. Mupirocin is widely used as a selective factor along with glacial acetic acid. TOS (transgalactosylated oligosaccharides) medium supplemented with mupirocin is recommended by the International Dairy Federation for the detection of bifidobacteria in fermented milk products. Mupirocin media with acetic acid are also reliable for intestinal samples in which bifidobacteria predominate. However, for complex samples containing more diverse microbiota, the selectivity of mupirocin media is limited. Resistance to mupirocin has been demonstrated by many anaerobic bacteria, especially clostridia. The objective was to identify an antibiotic that inhibits the growth of clostridia and allows the growth of bifidobacteria, and to use the identified substance to develop a selective cultivation medium for bifidobacteria. The susceptibility of bifidobacteria and clostridia to 12 antibiotics was tested on agar using the disk diffusion method. Only norfloxacin inhibited the growth of clostridia and did not affect the growth of bifidobacteria. Using both pure cultures and faecal samples from infants, adults, calves, lambs, and piglets, the optimal concentration of norfloxacin in solid cultivation media was determined to be 200 mg/L. Our results showed that solid medium containing norfloxacin (200 mg/L) in combination with mupirocin (100 mg/L) and glacial acetic acid (1 mL/L) is suitable for the enumeration and isolation of bifidobacteria from faecal samples of different origins. PMID:25865525

  4. Reductions of aldehydes and ketones with a readily available N-heterocyclic carbene borane and acetic acid

    PubMed Central

    Lamm, Vladimir; Pan, Xiangcheng

    2013-01-01

    Summary Acetic acid promotes the reduction of aldehydes and ketones by the readily available N-heterocyclic carbene borane, 1,3-dimethylimidazol-2-ylidene borane. Aldehydes are reduced over 1–24 h at room temperature with 1 equiv of acetic acid and 0.5 equiv of the NHC-borane. Ketone reductions are slower but can be accelerated by using 5 equiv of acetic acid. Aldehydes can be selectively reduced in the presence of ketones. On a small scale, products are isolated by evaporation of the reaction mixture and direct chromatography. PMID:23616812

  5. Biotransformations of 2-hydroxy-2-(ethoxyphenylphosphinyl)acetic acid and the determination of the absolute configuration of all isomers.

    PubMed

    Majewska, Paulina

    2015-08-01

    2-Hydroxy-2-(ethoxyphenylphosphinyl)acetic acid, a new type of organophosphorus compound possessing two stereogenic centers, was investigated. Racemic 2-butyryloxy-2-(ethoxyphenylphosphinyl)acetic acid was synthesized and hydrolyzed using four bacterial species as biocatalysts. In all cases the reaction was more or less stereoselective and isomers bearing a phosphorus atom with an (SP)-configuration were hydrolyzed preferentially. The observed (1)H and (31)P NMR chemical shifts of Mosher esters of 2-hydroxy-2-(ethoxyphenylphosphinyl)acetic acid were correlated with the configurations of both stereogenic centers of all four stereoisomers.

  6. Potential antibacterial activity of coumarin and coumarin-3-acetic acid derivatives.

    PubMed

    Chattha, Fauzia Anjum; Munawar, Munawar Ali; Nisa, Mehrun; Ashraf, Mohammad; Kousar, Samina; Arshad, Shafia

    2015-05-01

    Coumarin and coumarin-3-acetic acid derivatives were synthesized by reacting phenols with malic acid, ethyl acetoacetate and ethyl acetylsuccinate in appropriate reaction conditions. All synthesized compounds were subjected to test for their antimicrobial activities against variety of gram positive (Bacillus subtilis, Staphylococcus aureus) and gram negative bacterial stains (Shigella sonnei, Escherichia coli) by agar dilution method. Several of them exhibited appreciable good antibacterial activity against the different strains of gram positive and gram negative bacteria. These findings suggest a great potential of these compounds for screening and use as antibacterial agents for further studies with a battery of bacteria.

  7. Effective Trapping of Fruit Flies with Cultures of Metabolically Modified Acetic Acid Bacteria

    PubMed Central

    Ishii, Yuri; Akasaka, Naoki; Goda, Itsuko; Sakoda, Hisao

    2015-01-01

    Acetoin in vinegar is an attractant to fruit flies when combined with acetic acid. To make vinegar more effective in attracting fruit flies with increased acetoin production, Komagataeibacter europaeus KGMA0119 was modified by specific gene disruption of the acetohydroxyacid isomeroreductase gene (ilvC). A previously constructed mutant lacking the putative ligand-sensing region in the leucine-responsive regulatory protein (KeLrp, encoded by Kelrp) was also used. The ilvC and Kelrp disruptants (KGMA5511 and KGMA7203, respectively) produced greater amounts of acetoin (KGMA5511, 0.11%; KGMA7203, 0.13%) than the wild-type strain KGMA0119 (0.069%). KGMA7203 produced a trace amount of isobutyric acid (0.007%), but the other strains did not. These strains produced approximately equal amounts of acetic acid (0.7%). The efficiency of fruit fly attraction was investigated with cultured Drosophila melanogaster. D. melanogaster flies (approximately 1,500) were released inside a cage (2.5 m by 2.5 m by 1.5 m) and were trapped with a device containing vinegar and a sticky sheet. The flies trapped on the sticky sheet were counted. The cell-free supernatant from KGMA7203 culture captured significantly more flies (19.36 to 36.96% of released flies) than did KGMA0119 (3.25 to 11.40%) and KGMA5511 (6.87 to 21.50%) cultures. Contrastingly, a 0.7% acetic acid solution containing acetoin (0.13%) and isobutyric acid (0.007%), which mimicked the KGMA7203 supernatant, captured significantly fewer flies (0.88 to 4.57%). Furthermore, the KGMA0119 supernatant with additional acetoin (0.13%) and isobutyric acid (0.007%) captured slightly more flies than the original KGMA0119 supernatant but fewer than the KGMA7203 supernatant, suggesting that the synergistic effects of acetic acid, acetoin, isobutyric acid, and unidentified metabolites achieved the efficient fly trapping of the KGMA7203 supernatant. PMID:25595769

  8. Lewis base activation of Lewis acids: catalytic, enantioselective addition of glycolate-derived silyl ketene acetals to aldehydes.

    PubMed

    Denmark, Scott E; Chung, Won-Jin

    2008-06-20

    A catalytic system involving silicon tetrachloride and a chiral, Lewis basic bisphosphoramide catalyst is effective for the addition of glycolate-derived silyl ketene acetals to aldehydes. It was found that the sense of diastereoselectivity could be modulated by changing the size of the substituents on the silyl ketene acetals. In general, the trimethylsilyl ketene acetals derived from methyl glycolates with a large protecting group on the alpha-oxygen provide enantiomerically enriched alpha,beta-dihydroxy esters with high syn-diastereoselectivity, whereas the tert-butyldimethylsilyl ketene acetals derived from bulky esters of alpha-methoxyacetic acid provide enantiomerically enriched alpha,beta-dihydroxy esters with high anti-diastereoselecitvity.

  9. Influence of DTPA Treatment on Internal Dose Estimates.

    PubMed

    Davesne, Estelle; Blanchardon, Eric; Peleau, Bernadette; Correze, Philippe; Bohand, Sandra; Franck, Didier

    2016-06-01

    In case of internal contamination with plutonium materials, a treatment with diethylene triamine pentaacetic acid (DTPA) can be administered in order to reduce plutonium body burden and consequently avoid some radiation dose. DTPA intravenous injections or inhalation can start almost immediately after intake, in parallel with urinary and fecal bioassay sampling for dosimetric follow-up. However, urine and feces excretion will be significantly enhanced by the DTPA treatment. As internal dose is calculated from bioassay results, the DTPA effect on excretion has to be taken into account. A common method to correct bioassay data is to divide it by a factor representing the excretion enhancement under DTPA treatment by intravenous injection. Its value may be based on a nominal reference or observed after a break in the treatment. The aim of this study was to estimate the influence of this factor on internal dose by comparing the dose estimated using default or upper and lower values of the enhancement factor for 11 contamination cases. The observed upper and lower values of the enhancement factor were 18.7 and 63.0 for plutonium and 24.9 and 28.8 for americium. For americium, a default factor of 25 is proposed. This work demonstrates that the use of a default DTPA enhancement factor allows the determination of the magnitude of the contamination because dose estimated could vary by a factor of 2 depending on the value of the individual DTPA enhancement factor. In case of significant intake, an individual enhancement factor should be determined to obtain a more reliable dose assessment. PMID:27115221

  10. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Lim, Y. B.; Altieri, K. E.; Seitzinger, S. P.; Turpin, B. J.

    2011-06-01

    Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA). Acetic acid is an important intermediate in aqueous methylglyoxal oxidation and a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. Altieri et al. (2008) proposed that acetic acid was the precursor of oligoesters observed in methylglyoxal oxidation. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid at concentrations relevant to atmospheric waters (20 μM-10 mM) was oxidized by OH radical. Products were analyzed by ion chromatography (IC), electrospray ionization mass spectrometry (ESI-MS), and IC-ESI-MS. The formation of glyoxylic, glycolic, and oxalic acids were observed. In contrast to methylglyoxal oxidation, succinic acid and oligomers were not detected. Using results from these and methylglyoxal + OH radical experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  11. High Acetic Acid Production Rate Obtained by Microbial Electrosynthesis from Carbon Dioxide.

    PubMed

    Jourdin, Ludovic; Grieger, Timothy; Monetti, Juliette; Flexer, Victoria; Freguia, Stefano; Lu, Yang; Chen, Jun; Romano, Mark; Wallace, Gordon G; Keller, Jurg

    2015-11-17

    High product specificity and production rate are regarded as key success parameters for large-scale applicability of a (bio)chemical reaction technology. Here, we report a significant performance enhancement in acetate formation from CO2, reaching comparable productivity levels as in industrial fermentation processes (volumetric production rate and product yield). A biocathode current density of -102 ± 1 A m(-2) and an acetic acid production rate of 685 ± 30 (g m(-2) day(-1)) have been achieved in this study. High recoveries of 94 ± 2% of the CO2 supplied as the sole carbon source and 100 ± 4% of electrons into the final product (acetic acid) were achieved after development of a mature biofilm, reaching an elevated product titer of up to 11 g L(-1). This high product specificity is remarkable for mixed microbial cultures, which would make the product downstream processing easier and the technology more attractive. This performance enhancement was enabled through the combination of a well-acclimatized and enriched microbial culture (very fast start-up after culture transfer), coupled with the use of a newly synthesized electrode material, EPD-3D. The throwing power of the electrophoretic deposition technique, a method suitable for large-scale production, was harnessed to form multiwalled carbon nanotube coatings onto reticulated vitreous carbon to generate a hierarchical porous structure. PMID:26484732

  12. High Acetic Acid Production Rate Obtained by Microbial Electrosynthesis from Carbon Dioxide.

    PubMed

    Jourdin, Ludovic; Grieger, Timothy; Monetti, Juliette; Flexer, Victoria; Freguia, Stefano; Lu, Yang; Chen, Jun; Romano, Mark; Wallace, Gordon G; Keller, Jurg

    2015-11-17

    High product specificity and production rate are regarded as key success parameters for large-scale applicability of a (bio)chemical reaction technology. Here, we report a significant performance enhancement in acetate formation from CO2, reaching comparable productivity levels as in industrial fermentation processes (volumetric production rate and product yield). A biocathode current density of -102 ± 1 A m(-2) and an acetic acid production rate of 685 ± 30 (g m(-2) day(-1)) have been achieved in this study. High recoveries of 94 ± 2% of the CO2 supplied as the sole carbon source and 100 ± 4% of electrons into the final product (acetic acid) were achieved after development of a mature biofilm, reaching an elevated product titer of up to 11 g L(-1). This high product specificity is remarkable for mixed microbial cultures, which would make the product downstream processing easier and the technology more attractive. This performance enhancement was enabled through the combination of a well-acclimatized and enriched microbial culture (very fast start-up after culture transfer), coupled with the use of a newly synthesized electrode material, EPD-3D. The throwing power of the electrophoretic deposition technique, a method suitable for large-scale production, was harnessed to form multiwalled carbon nanotube coatings onto reticulated vitreous carbon to generate a hierarchical porous structure.

  13. The adsorption of acetic acid on clean and oxygen-covered Au/Pd(100) alloy surfaces

    NASA Astrophysics Data System (ADS)

    Li, Zhenjun; Tysoe, Wilfred T.

    2012-12-01

    The adsorption of acetic acid is studied on clean and oxygen-covered Au/Pd(100) alloys as a function of gold content by temperature-programmed desorption and reflection-absorption infrared spectroscopy. Au/Pd(100) forms ordered alloys such that, for gold coverages above ~ 0.5 monolayers, only isolated palladium atoms surrounded by gold nearest neighbors are present. Predominantly molecular acetic acid forms on Au/Pd(100) alloy surfaces for gold coverages greater than ~ 0.56 ML, and desorbs with an activation energy of ~ 59 kJ/mol. Heating this surface also forms some η1-acetate species which decompose to form CO and hydrogen. On alloy surfaces with palladium-palladium bridge sites, η1-acetate species initially form, but rapidly convert into η2-species. They thermally decompose to form CO and hydrogen, with a small portion rehydrogenating to form acetic acid between 280 and 321 K depending on gold coverage. The presence of oxygen on both Pd(100) and Au/Pd(100) alloys facilitates acetate dehydrogenation so that only η2-acetate species form on these surfaces. The presence of oxygen also serves to stabilize the acetate species.

  14. Measurement of the isotope ratio of acetic acid in vinegar by HS-SPME-GC-TC/C-IRMS.

    PubMed

    Hattori, Ryota; Yamada, Keita; Shibata, Hiroki; Hirano, Satoshi; Tajima, Osamu; Yoshida, Naohiro

    2010-06-23

    Acetic acid is the main ingredient of vinegar, and the worth of vinegar often depends on the fermentation of raw materials. In this study, we have developed a simple and rapid method for discriminating the fermentation of the raw materials of vinegar by measuring the hydrogen and carbon isotope ratio of acetic acid using head space solid-phase microextraction (HS-SPME) combined with gas chromatography-high temperature conversion or combustion-isotope ratio mass spectrometry (GC-TC/C-IRMS). The measurement of acetic acid in vinegar by this method was possible with repeatabilities (1sigma) of +/-5.0 per thousand for hydrogen and +/-0.4 per thousand for carbon, which are sufficient to discriminate the origin of acetic acid. The fermentation of raw materials of several vinegars was evaluated by this method.

  15. Syntrophic acetate oxidation in two-phase (acid-methane) anaerobic digesters.

    PubMed

    Shimada, T; Morgenroth, E; Tandukar, M; Pavlostathis, S G; Smith, A; Raskin, L; Kilian, R E

    2011-01-01

    The microbial processes involved in two-phase anaerobic digestion were investigated by operating a laboratory-scale acid-phase (AP) reactor and analyzing two full-scale, two-phase anaerobic digesters operated under mesophilic (35 °C) conditions. The digesters received a blend of primary sludge and waste activated sludge (WAS). Methane levels of 20% in the laboratory-scale reactor indicated the presence of methanogenic activity in the AP. A phylogenetic analysis of an archaeal 16S rRNA gene clone library of one of the full-scale AP digesters showed that 82% and 5% of the clones were affiliated with the orders Methanobacteriales and Methanosarcinales, respectively. These results indicate that substantial levels of aceticlastic methanogens (order Methanosarcinales) were not maintained at the low solids retention times and acidic conditions (pH 5.2-5.5) of the AP, and that methanogenesis was carried out by hydrogen-utilizing methanogens of the order Methanobacteriales. Approximately 43, 31, and 9% of the archaeal clones from the methanogenic phase (MP) digester were affiliated with the orders Methanosarcinales, Methanomicrobiales, and Methanobacteriales, respectively. A phylogenetic analysis of a bacterial 16S rRNA gene clone library suggested the presence of acetate-oxidizing bacteria (close relatives of Thermacetogenium phaeum, 'Syntrophaceticus schinkii,' and Clostridium ultunense). The high abundance of hydrogen consuming methanogens and the presence of known acetate-oxidizing bacteria suggest that acetate utilization by acetate oxidizing bacteria in syntrophic interaction with hydrogen-utilizing methanogens was an important pathway in the second-stage of the two-phase digestion, which was operated at high ammonium-N concentrations (1.0 and 1.4 g/L). A modified version of the IWA Anaerobic Digestion Model No. 1 (ADM1) with extensions for syntrophic acetate oxidation and weak-acid inhibition adequately described the dynamic profiles of volatile acid production

  16. Surface enhanced Raman spectra of carbonate, hydrocarbonate, and substituted acetic acids on silver hydrosols

    NASA Astrophysics Data System (ADS)

    Kai, Sun; Chaozhi, Wan; Guangzhi, Xu

    1989-01-01

    The SERS spectra of carbonate, hydrocarbonate and several substituted acetic acids absorbed on silver hydrosols are recorded. The greatest enhancement of E' modes is shown in the spectrum of carbonate, from which the carbonate is deduced to be absorbed in an "end on" configuration, rather than flat on the surface. The spectrum of the hydrocarbonate solution shows the most enhanced bands at about 925 and 620 cm -1, which cannot be explained clearly. All the substituted acids have a most enhanced bands at about 1630 cm -1, revealing that the acids are initially adsorbed in a single bonding state through the carboxyl group. The change in the SERS spectra of the acids with time indicates that a bidentate bridging adsorbed state may be formed after some time.

  17. Sources and sinks of formic, acetic, and pyruvic acids over central Amazonia. II - Wet season

    NASA Technical Reports Server (NTRS)

    Talbot, R. W.; Andreae, M. O.; Berresheim, H.; Jacob, D. J.; Beecher, K. M.

    1990-01-01

    Potential sources and sinks of formic, acetic, and pyruvic acids over the Amazon forest were investigated using a photochemical model and data collected on gas phase concentrations of these acids in the forest canopy, boundary layer, and free troposphere over the central Amazon Basin during the 1987 wet season. It was found that the atmospheric reactions previously suggested in the literature as sources of carboxylic acids (i.e., the gas phase decomposition of isoprene, the reaction between CH3CO3 and a peroxide, and aqueous phase oxidation of CH2O) appear to be too slow to explain the observed concentrations, suggesting that other atmospheric reactions, so far unidentified, could make a major contribution to the carboxylic acid budgets.

  18. MOF-Derived Tungstated Zirconia as Strong Solid Acids toward High Catalytic Performance for Acetalization.

    PubMed

    Wang, Peng; Feng, Jian; Zhao, Yupei; Wang, Shaobin; Liu, Jian

    2016-09-14

    A strong solid acid, tungstated zirconia (WZ), has been prepared first using tungstate immobilized UiO-66 as precursors through a "double-solvent" impregnation method under mild calcination temperature. With moderate W contents, the as-synthesized WZ catalysts possess a high density of acid sites, and the proper heat treatment also has facilely led to a bunch of oligomeric tungsten clusters on stabilized tetragonal ZrO2. The resultant solid acids show an improved catalytic performance toward the benzaldehyde's acetalization in comparison with traditional zirconium hydroxide-prepared WZ. Notably, due to large surface area and additionally introduced strong acid sites, the MOF-derived WZ catalysts afforded conversion up to 86.0%. The facile method endows the WZ catalysts with superior catalytic activities and excellent recyclability, thus opening a new avenue for preparation of metal oxide-based solid superacids and superbases. PMID:27557351

  19. Mesoxalaldehyde acetals

    SciTech Connect

    Gordeeva, G.N.; Kalashnikov, S.M.; Popov, Yu.N.; Kruglov, E.A.; Imashev, U.B.

    1987-11-10

    The treatment of methylglyoxal acetals by alkyl nitrites in the presence of the corresponding aliphatic alcohols and hydrochloric acid leads to the formation of linear mesoxalaldehyde acetals, whose structure was established by NMR spectroscopy and mass spectrometry. The major pathways for the decomposition of these molecules upon electron impact were established.

  20. Radiolabeled acetate as a tracer of myocardial tricarboxylic acid cycle flux

    SciTech Connect

    Buxton, D.B.; Schwaiger, M.; Nguyen, A.; Phelps, M.E.; Schelbert, H.R.

    1988-09-01

    The kinetics of (1-14C)acetate oxidation in isolated perfused rat hearts have been determined over a range of perfusion conditions. Effluent measurements demonstrated that 14CO2 cleared biexponentially over 50 minutes after bolus injection of (1-14C)acetate into normoxic hearts perfused with 5 mM glucose and 10 mU/ml insulin. The clearance half-time (t1/2) for the predominant initial clearance phase was 3.1 +/- 0.5 minutes (n = 4). MVO2 was varied over a fourfold range by hypoxia and phenylephrine stimulation (t1/2, 7.2 +/- 1.2 and 2.2 +/- 0.2 minutes, respectively) and in the presence of alternate substrates (lactate, 2 mM; DL-3-hydroxybutyrate, 20 mM; and palmitate, 0.1 mM), which did not modify either tricarboxylic acid (TCA) cycle flux or acetate kinetics. A good correlation (r = 0.93) was observed between k, the rate constant for the initial phase of 14CO2 clearance, and TCA cycle flux, estimated from oxygen consumption. In contrast to results with (1-14C)acetate, lactate (2 mM) increased t1/2 for 14CO2 clearance from a bolus injection of (1-14C)palmitate from 3.0 +/- 0.4 minutes (n = 3) at control to 4.3 +/- 0.2 minutes (n = 3, p less than 0.01). Addition of acetate in nontracer amounts (0.5 or 5 mM) caused significant underestimation of TCA cycle flux when estimated with (1-14C)acetate. 14CO2 clearance accounted for 88-98% of total effluent 14C between 10 and 20 minutes after (1-14C)acetate bolus injection; rate constants for clearance of 14CO2 and total 14C clearance were very similar during this period, and these two rate constants did not differ significantly from each other under any conditions tested.

  1. Gd-DTPA T1 relaxivity in brain tissue obtained by convection-enhanced delivery, magnetic resonance imaging and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Haar, Peter J.; Broaddus, William C.; Chen, Zhi-jian; Fatouros, Panos P.; Gillies, George T.; Corwin, Frank D.

    2010-06-01

    A common approach to quantify gadolinium (Gd) contrast agents involves measuring the post-contrast change in T1 rate and then using the constant T1 relaxivity R to determine the contrast agent concentration. Because this method is fast and non-invasive, it could be potentially valuable in many areas of brain research. However, to accurately measure contrast agent concentrations in the brain, the T1 relaxivity R of the specific agent must be accurately known. Furthermore, the macromolecular content and compartmentalization of the brain extracellular space (ECS) are expected to significantly alter R from values measured in aqueous solutions. In this study, the T1 relaxivity R of gadolinium-diethylene-triamine penta-acetic acid (Gd-DTPA) was measured following direct interstitial infusions of three different contrast agent concentrations to the parenchyma of rat brains. Changes in magnetic resonance (MR) T1 values were compared to brain slice concentrations determined with inductively coupled plasma atomic emission spectroscopy (ICP-AES) to determine R in 15 rats. Additionally, samples of cerebrospinal fluid, blood and urine were analyzed to evaluate possible Gd-DTPA clearance from the brain. The T1 relaxivity R of Gd-DTPA in the brain ECS was measured to be 5.35 (mM s)-1 in a 2.4 T field. This value is considerably higher than estimations used in studies by other groups. Measurements of brain Gd-DTPA tissue concentrations using MRI and ICP-AES demonstrated a high degree of coincidence. Clearance of Gd-DTPA was minimal at the time point immediately after infusion. These results suggest that the environment of the brain does in fact significantly affect Gd T1 relaxivity, and that MRI can accurately measure contrast agent concentrations when this relaxivity is well characterized.

  2. Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: auxotrophy confounds the use of yeast deletion libraries for strain improvement.

    PubMed

    Ding, Jun; Bierma, Jan; Smith, Mark R; Poliner, Eric; Wolfe, Carole; Hadduck, Alex N; Zara, Severino; Jirikovic, Mallori; van Zee, Kari; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T

    2013-08-01

    Acetic acid inhibition of yeast fermentation has a negative impact in several industrial processes. As an initial step in the construction of a Saccharomyces cerevisiae strain with increased tolerance for acetic acid, mutations conferring resistance were identified by screening a library of deletion mutants in a multiply auxotrophic genetic background. Of the 23 identified mutations, 11 were then introduced into a prototrophic laboratory strain for further evaluation. Because none of the 11 mutations was found to increase resistance in the prototrophic strain, potential interference by the auxotrophic mutations themselves was investigated. Mutants carrying single auxotrophic mutations were constructed and found to be more sensitive to growth inhibition by acetic acid than an otherwise isogenic prototrophic strain. At a concentration of 80 mM acetic acid at pH 4.8, the initial uptake of uracil, leucine, lysine, histidine, tryptophan, phosphate, and glucose was lower in the prototrophic strain than in a non-acetic acid-treated control. These findings are consistent with two mechanisms by which nutrient uptake may be inhibited. Intracellular adenosine triphosphate (ATP) levels were severely decreased upon acetic acid treatment, which likely slowed ATP-dependent proton symport, the major form of transport in yeast for nutrients other than glucose. In addition, the expression of genes encoding some nutrient transporters was repressed by acetic acid, including HXT1 and HXT3 that encode glucose transporters that operate by facilitated diffusion. These results illustrate how commonly used genetic markers in yeast deletion libraries complicate the effort to isolate strains with increased acetic acid resistance.

  3. Survival mechanism of Escherichia coli O157:H7 against combined treatment with acetic acid and sodium chloride.

    PubMed

    Lee, Sun-Young; Kang, Dong-Hyun

    2016-05-01

    The combination of salt and acid is commonly used in the production of many foods, including pickles and fermented foods. However, in our previous studies, the addition of salt significantly reduced the inhibitory effect of acetic acid on Escherichia coli O157:H7 in laboratory media and pickled cucumbers. Therefore, this study was conducted to determine the mechanism by which salt confers resistance against acetic acid in E. coli O157:H7. The addition of high concentrations (up to 9% or 15% [w/v]) of salt increased the resistance of E. coli O157:H7 to acetic acid treatment. Combined treatment with acetic acid and salt showed varying results among different bacterial strains (an antagonistic effect for E. coli O157:H7 and Shigella and a synergistic effect for Listeria monocytogenes and Staphylococcus aureus). The addition of salt increased the cytoplasmic pH of E. coli O157:H7, but decreased the cytoplasmic pH of L. monocytogenes and S. aureus on treatment with acetic acid. Therefore, the addition of salt increases the acid resistance of E. coli O157:H7 possibly by increasing its acid resistance response and consequently preventing the acidification of its cytoplasm by organic acids.

  4. New insights into formation of trivalent actinides complexes with DTPA.

    PubMed

    Leguay, Sébastien; Vercouter, Thomas; Topin, Sylvain; Aupiais, Jean; Guillaumont, Dominique; Miguirditchian, Manuel; Moisy, Philippe; Le Naour, Claire

    2012-12-01

    Complexation of trivalent actinides with DTPA (diethylenetriamine pentaacetic acid) was studied as a function of pcH and temperature in (Na,H)Cl medium of 0.1 M ionic strength. Formation constants of both complexes AnHDTPA(-) and AnDTPA(2-) (where An stands for Am, Cm, and Cf) were determined by TRLFS, CE-ICP-MS, spectrophotometry, and solvent extraction. The values of formation constants obtained from the different techniques are coherent and consistent with reinterpreted literature data, showing a higher stability of Cf complexes than Am and Cm complexes. The effect of temperature indicates that formation constants of protonated and nonprotonated complexes are exothermic with a high positive entropic contribution. DFT calculations were also performed on the An/DTPA system. Geometry optimizations were conducted on AnDTPA(2-) and AnHDTPA(-) considering all possible protonation sites. For both complexes, one and two water molecules in the first coordination sphere of curium were also considered. DFT calculations indicate that the lowest energy structures correspond to protonation on oxygen that is not involved in An-DTPA bonds and that the structures with two water molecules are not stable.

  5. Effect of acetic acid on Saccharomyces carlsbergensis ATCC 6269 batch ethanol production monitored by flow cytometry.

    PubMed

    Freitas, Cláudia; Neves, Elisabete; Reis, Alberto; Passarinho, Paula C; da Silva, Teresa Lopes

    2012-11-01

    Bioethanol produced from lignocellulosic materials has been considered a sustainable alternative fuel. Such type of raw materials have a huge potential, but their hydrolysis into mono-sugars releases toxic compounds such as weak acids, which affect the microorganisms' physiology, inhibiting the growth and ethanol production. Acetic acid (HAc) is the most abundant weak acid in the lignocellulosic materials hydrolysates. In order to understand the physiological changes of Saccharomyces carlsbergensis when fermenting in the presence of different acetic acid (HAc) concentrations, the yeast growth was monitored by multi-parameter flow cytometry at same time that the ethanol production was assessed. The membrane potential stain DiOC(6)(3) fluorescence intensity decreased as the HAc concentration increased, which was attributed to the plasmic membrane potential reduction as a result of the toxic effect of the HAc undissociated form. Nevertheless, the proportion of cells with permeabilized membrane did not increase with the HAc concentration increase. Fermentations ending at lower external pH and higher ethanol concentrations depicted the highest proportions of permeabilized cells and cells with increased reactive oxygen species levels. Flow cytometry allowed monitoring, near real time (at-line), the physiological states of the yeast during the fermentations. The information obtained can be used to optimize culture conditions to improve bioethanol production. PMID:22971830

  6. Effect of acetic acid on Saccharomyces carlsbergensis ATCC 6269 batch ethanol production monitored by flow cytometry.

    PubMed

    Freitas, Cláudia; Neves, Elisabete; Reis, Alberto; Passarinho, Paula C; da Silva, Teresa Lopes

    2012-11-01

    Bioethanol produced from lignocellulosic materials has been considered a sustainable alternative fuel. Such type of raw materials have a huge potential, but their hydrolysis into mono-sugars releases toxic compounds such as weak acids, which affect the microorganisms' physiology, inhibiting the growth and ethanol production. Acetic acid (HAc) is the most abundant weak acid in the lignocellulosic materials hydrolysates. In order to understand the physiological changes of Saccharomyces carlsbergensis when fermenting in the presence of different acetic acid (HAc) concentrations, the yeast growth was monitored by multi-parameter flow cytometry at same time that the ethanol production was assessed. The membrane potential stain DiOC(6)(3) fluorescence intensity decreased as the HAc concentration increased, which was attributed to the plasmic membrane potential reduction as a result of the toxic effect of the HAc undissociated form. Nevertheless, the proportion of cells with permeabilized membrane did not increase with the HAc concentration increase. Fermentations ending at lower external pH and higher ethanol concentrations depicted the highest proportions of permeabilized cells and cells with increased reactive oxygen species levels. Flow cytometry allowed monitoring, near real time (at-line), the physiological states of the yeast during the fermentations. The information obtained can be used to optimize culture conditions to improve bioethanol production.

  7. Gluconacetobacter kakiaceti sp. nov., an acetic acid bacterium isolated from a traditional Japanese fruit vinegar.

    PubMed

    Iino, Takao; Suzuki, Rei; Tanaka, Naoto; Kosako, Yoshimasa; Ohkuma, Moriya; Komagata, Kazuo; Uchimura, Tai

    2012-07-01

    Two novel acetic acid bacteria, strains G5-1(T) and I5-1, were isolated from traditional kaki vinegar (produced from fruits of kaki, Diospyros kaki Thunb.), collected in Kumamoto Prefecture, Japan. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains G5-1(T) and I5-1 formed a distinct subline in the genus Gluconacetobacter and were closely related to Gluconacetobacter swingsii DST GL01(T) (99.3% 16S rRNA gene sequence similarity). The isolates showed 96-100% DNA-DNA relatedness with each other, but <53% DNA-DNA relatedness with closely related members of the genus Gluconacetobacter. The isolates could be distinguished from closely related members of the genus Gluconacetobacter by not producing 2- and 5-ketogluconic acids from glucose, producing cellulose, growing without acetic acid and with 30% (w/v) d-glucose, and producing acid from sugars and alcohols. Furthermore, the genomic DNA G+C contents of strains G5-1(T) and I5-1 were a little higher than those of their closest phylogenetic neighbours. On the basis of the phenotypic characteristics and phylogenetic position, strains G5-1(T) and I5-1 are assigned to a novel species, for which the name Gluconacetobacter kakiaceti sp. nov. is proposed; the type strain is G5-1(T) (=JCM 25156(T)=NRIC 0798(T)=LMG 26206(T)).

  8. A mutation affecting the synthesis of 4-chloroindole-3-acetic acid.

    PubMed

    Ross, John J; Tivendale, Nathan D; Davidson, Sandra E; Reid, James B; Davies, Noel W; Quittenden, Laura J; Smith, Jason A

    2012-12-01

    Traditionally, schemes depicting auxin biosynthesis in plants have been notoriously complex. They have involved up to four possible pathways by which the amino acid tryptophan might be converted to the main active auxin, indole-3-acetic acid (IAA), while another pathway was suggested to bypass tryptophan altogether. It was also postulated that different plants use different pathways, further adding to the complexity. In 2011, however, it was suggested that one of the four tryptophan-dependent pathways, via indole-3-pyruvic acid (IPyA), is the main pathway in Arabidopsis thaliana, although concurrent operation of one or more other pathways has not been excluded. We recently showed that, for seeds of Pisum sativum (pea), it is possible to go one step further. Our new evidence indicates that the IPyA pathway is the only tryptophan-dependent IAA synthesis pathway operating in pea seeds. We also demonstrated that the main auxin in developing pea seeds, 4-chloroindole-3-acetic acid (4-Cl-IAA), which accumulates to levels far exceeding those of IAA, is synthesized via a chlorinated version of the IPyA pathway. PMID:23073010

  9. Tin-117m-labeled stannic (Sn/sup 4 +/) chelate of diethylenetriamine pentaacetic acid (DTPA) for application in diagnosis and therapy

    DOEpatents

    Srivastava, S.C.; Meinken, G.E.; Richards, P.

    1983-08-25

    The radiopharmaceutical reagents of this invention and the class of Tin-117m radiopharmaceuticals are therapeutic and diagnostic agents that incorporate gamma-emitting nuclides that localize in bone after intravenous injection in mammals (mice, rats, dogs, and rabbits). Images reflecting bone structure or function can then be obtained by a scintillation camera that detects the distribution of ionizing radiation emitted by the radioactive agent. Tin-117m-labeled chelates of stannic tin localize almost exclusively in cortical bone. Upon intravenous injection of the reagent, the preferred chelates are phosphonate compounds, preferable, PYP, MDP, EHDP, and DTPA. This class of reagents is therapeutically and diagnostically useful in skeletal scintigraphy and for the radiotherapy of bone tumors and other disorders.

  10. Different response to acetic acid stress in Saccharomyces cerevisiae wild-type and l-ascorbic acid-producing strains.

    PubMed

    Martani, Francesca; Fossati, Tiziana; Posteri, Riccardo; Signori, Lorenzo; Porro, Danilo; Branduardi, Paola

    2013-09-01

    Biotechnological processes are of increasing significance for industrial production of fine and bulk chemicals, including biofuels. Unfortunately, under operative conditions microorganisms meet multiple stresses, such as non-optimal pH, temperature, oxygenation and osmotic stress. Moreover, they have to face inhibitory compounds released during the pretreatment of lignocellulosic biomasses, which constitute the preferential substrate for second-generation processes. Inhibitors include furan derivatives, phenolic compounds and weak organic acids, among which acetic acid is one of the most abundant and detrimental for cells. They impair cellular metabolism and growth, reducing the productivity of the process: therefore, the development of robust cell factories with improved production rates and resistance is of crucial importance. Here we show that a yeast strain engineered to endogenously produce vitamin C exhibits an increased tolerance compared to the parental strain when exposed to acetic acid at moderately toxic concentrations, measured as viability on plates. Starting from this evidence, we investigated more deeply: (a) the nature and levels of reactive oxygen species (ROS); (b) the activation of enzymes that act directly as detoxifiers of reactive oxygen species, such as superoxide dismutase (SOD) and catalase, in parental and engineered strains during acetic acid stress. The data indicate that the engineered strain can better recover from stress by limiting ROS accumulation, independently from SOD activation. The engineered yeast can be proposed as a model for further investigating direct and indirect mechanism(s) by which an antioxidant can rescue cells from organic acid damage; moreover, these studies will possibly provide additional targets for further strain improvements.

  11. Different response to acetic acid stress in Saccharomyces cerevisiae wild-type and l-ascorbic acid-producing strains.

    PubMed

    Martani, Francesca; Fossati, Tiziana; Posteri, Riccardo; Signori, Lorenzo; Porro, Danilo; Branduardi, Paola

    2013-09-01

    Biotechnological processes are of increasing significance for industrial production of fine and bulk chemicals, including biofuels. Unfortunately, under operative conditions microorganisms meet multiple stresses, such as non-optimal pH, temperature, oxygenation and osmotic stress. Moreover, they have to face inhibitory compounds released during the pretreatment of lignocellulosic biomasses, which constitute the preferential substrate for second-generation processes. Inhibitors include furan derivatives, phenolic compounds and weak organic acids, among which acetic acid is one of the most abundant and detrimental for cells. They impair cellular metabolism and growth, reducing the productivity of the process: therefore, the development of robust cell factories with improved production rates and resistance is of crucial importance. Here we show that a yeast strain engineered to endogenously produce vitamin C exhibits an increased tolerance compared to the parental strain when exposed to acetic acid at moderately toxic concentrations, measured as viability on plates. Starting from this evidence, we investigated more deeply: (a) the nature and levels of reactive oxygen species (ROS); (b) the activation of enzymes that act directly as detoxifiers of reactive oxygen species, such as superoxide dismutase (SOD) and catalase, in parental and engineered strains during acetic acid stress. The data indicate that the engineered strain can better recover from stress by limiting ROS accumulation, independently from SOD activation. The engineered yeast can be proposed as a model for further investigating direct and indirect mechanism(s) by which an antioxidant can rescue cells from organic acid damage; moreover, these studies will possibly provide additional targets for further strain improvements. PMID:23847041

  12. Impact of gluconic fermentation of strawberry using acetic acid bacteria on amino acids and biogenic amines profile.

    PubMed

    Ordóñez, J L; Sainz, F; Callejón, R M; Troncoso, A M; Torija, M J; García-Parrilla, M C

    2015-07-01

    This paper studies the amino acid profile of beverages obtained through the fermentation of strawberry purée by a surface culture using three strains belonging to different acetic acid bacteria species (one of Gluconobacter japonicus, one of Gluconobacter oxydans and one of Acetobacter malorum). An HPLC-UV method involving diethyl ethoxymethylenemalonate (DEEMM) was adapted and validated. From the entire set of 21 amino acids, multiple linear regressions showed that glutamine, alanine, arginine, tryptophan, GABA and proline were significantly related to the fermentation process. Furthermore, linear discriminant analysis classified 100% of the samples correctly in accordance with the microorganism involved. G. japonicus consumed glucose most quickly and achieved the greatest decrease in amino acid concentration. None of the 8 biogenic amines were detected in the final products, which could serve as a safety guarantee for these strawberry gluconic fermentation beverages, in this regard.

  13. Auxin Biosynthesis: Are the Indole-3-Acetic Acid and Phenylacetic Acid Biosynthesis Pathways Mirror Images?1[OPEN

    PubMed Central

    Nichols, David S.; Smith, Jason; Chourey, Prem S.; McAdam, Erin L.; Quittenden, Laura

    2016-01-01

    The biosynthesis of the main auxin in plants (indole-3-acetic acid [IAA]) has been elucidated recently and is thought to involve the sequential conversion of Trp to indole-3-pyruvic acid to IAA. However, the pathway leading to a less well studied auxin, phenylacetic acid (PAA), remains unclear. Here, we present evidence from metabolism experiments that PAA is synthesized from the amino acid Phe, via phenylpyruvate. In pea (Pisum sativum), the reverse reaction, phenylpyruvate to Phe, is also demonstrated. However, despite similarities between the pathways leading to IAA and PAA, evidence from mutants in pea and maize (Zea mays) indicate that IAA biosynthetic enzymes are not the main enzymes for PAA biosynthesis. Instead, we identified a putative aromatic aminotransferase (PsArAT) from pea that may function in the PAA synthesis pathway. PMID:27208245

  14. Regulation of indole-3-acetic acid biosynthesis by branched-chain amino acids in Enterobacter cloacae UW5.

    PubMed

    Parsons, Cassandra V; Harris, Danielle M M; Patten, Cheryl L

    2015-09-01

    The soil bacterium Enterobacter cloacae UW5 produces the rhizosphere signaling molecule indole-3-acetic acid (IAA) via the indolepyruvate pathway. Expression of indolepyruvate decarboxylase, a key pathway enzyme encoded by ipdC, is upregulated by the transcription factor TyrR in response to aromatic amino acids. Some members of the TyrR regulon may also be controlled by branched-chain amino acids and here we show that expression from the ipdC promoter and production of IAA are downregulated by valine, leucine and isoleucine. Regulation of the IAA synthesis pathway by both aromatic and branched-chain amino acids suggests a broader role for this pathway in bacterial physiology, beyond plant interactions.

  15. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium salt. 721.2076 Section 721...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... identified as D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium...

  16. The Partitioning of Acetic, Formic, and Phosphoric Acids Between Liquid Water and Steam

    SciTech Connect

    Gruszkiewicz, M.S.; Marshall, S.L.; Palmer, D.A.; Simonson, J.M.

    1999-06-22

    The chemical carryover of impurities and treatment chemicals from the boiler to the steam phase, and ultimately to the low-pressure turbine and condenser, can be quantified based on laboratory experiments preformed over ranges of temperature, pH, and composition. The two major assumptions are that thermodynamic equilibrium is maintained and no deposition, adsorption or decomposition occurs. The most recent results on acetic, formic and phosphoric acids are presented with consideration of the effects of hydrolysis and dimerization reactions. Complications arising from thermal decomposition of the organic acids are discussed. The partitioning constants for these acids and other solutes measured in this program have been incorporated into a simple thermodynamic computer code that calculates the effect of chemical and mechanical carryover on the composition of the condensate formed to varying extents in the water/steam cycle.

  17. Okadaic acid: An additional non-phorbol-12-tetradecanoate-13-acetate-type tumor promoter

    SciTech Connect

    Suganuma, Masami; Fujiki, Hirota; Suguri, Hiroko; Yoshizawa, Shigeru; Hirota, Mitsuru; Nakayasu, Michie ); Ojika, Makoto; Wakamatsu, Kazumasa; Yamada, Kiyoyuki ); Sugimura, Takashi )

    1988-03-01

    Okadaic acid is a polyether compound of a C{sub 38} fatty acid, isolated from a black sponge, Halichondria okadai. Previous studies showed that okadaic acid is a skin irritant and induces ornithine decarboxylase in mouse skin 4 hr after its application to the skin. This induction was strongly inhibited by pretreatment of the skin with 13-cis-retinoic acid. A two-stage carcinogenesis experiment in mouse skin initiated by a single application of 100 {mu}g of 7,12-dimethylbenz(a)anthracene (DMBA) and followed by application of 10 {mu}g of okadaic acid twice a week revealed that okadaic acid is a potent additional tumor promoter: tumors developed in 93% of the mice treated with DMBA and okadaic acid by week 16. In contrast, tumors were found in only one mouse each in the groups treated with DMBA alone or okadaic acid alone. An average of 2.6 tumors per mouse was found in week 30 in the group treated with DMBA and okadaic acid. Unlike phorbol 12-tetradecanoate 13-acetate (TPA), teleocidin, and aplysiatoxin, okadaic acid did not inhibit the specific binding of ({sup 3}H)TPA to a mouse skin particulate fraction when added up to 100 {mu}M or activate calcium-activated, phospholipid-dependent protein kinase (protein kinase C) in vitro when added up to 1.2 {mu}M. Therefore, the actions of okadaic acid and phorbol ester may be mediated in different ways. These results show that okadaic acid is a non-TPA-type tumor promoter in mouse skin carcinogenesis.

  18. Toxicokinetics and Oral Bioavailability of Halogenated Acetic Acids Mixtures in Naive and GSTzeta-Depleted Rats

    SciTech Connect

    Saghir, Shakil A.; Schultz, Irv R.

    2005-04-01

    Pharmacokinetics of halogenated acetic acid (HAA) mixtures in native and GSTzeta depleted rats was investigated. Rats were administered orally or i.v. to Mixture-1 (monobromo- dichloro-, chlorodibromo-, tribromo- acetic acids) or Mixture-2 (bromochloro-, dibromo-, trichloro- bromodichloro- acetic acids) at a dose of 25 ?mol/kg HAA and blood samples collected up to 36 h. GSTzeta depleted rats were also orally dosed with each mixture and euthanized at 0.25, 0.5, 1, 2 and 4 h to determine tissue distribution. In Mixture-1, GSTzeta depletion only affected the pharmacokinetics of DCAA, which increased the elimination t? from 9 min to 1.3 h. After oral administration, DCAA exhibited a complex time-course plasma profile with secondary peaks appearing long after completion of the initial absorption phase. This phenomenon coincided with elevated DCA levels in the lower portion of the GI tract compared to CDBAA and TBAA. For Mixture-2, all di-HAAs were eliminated extremely rapidly from plasma in both na?ve and GSTzeta depleted animals (t? was 4-11 min in na?ve and 11-24 min in GSTzeta depleted rats), t? of BDCAA and TCAA was 3.5 and 12 h in na?ve and 2.3 and 7.5 h in GSTzeta depleted rats. The primary difference in the pharmacokinetics among HAAs when administered as mixture was the total body clearance (Clb) which was reduced compared to after individual administration. These results suggest competitive interactions between tri- and di-HAAs beyond what would be predicted from individual HAA studies. For di-HAAs, the total dose is important as clearance is dose dependent due to competition for GSTzeta. When considering HAAs dosimetry, importance should be placed on both the components of the mixture and prior exposure history to di-HAAs.

  19. The role of methanogens in acetic acid production under different salinity conditions.

    PubMed

    Xiao, Keke; Guo, Chenghong; Maspolim, Yogananda; Zhou, Yan; Ng, Wun Jern

    2016-10-01

    In this study, a fed-batch acidogenic reactor was operated at a 3 d hydraulic retention time (HRT) and fed with alkaline pre-treated sludge to investigate salinity effects on methanogens' abundance, activities and their consumption of produced acetic acid (HAc) and total volatile fatty acids (VFAs). The salinity concentration was increased step-wise by adding sodium chloride. At 3‰ (parts per thousand) salinity, the average produced volatile fatty acids (VFAs) concentration was 2410.16 ± 637.62 mg COD L(-1) and 2.70 ± 0.36 L methane was produced daily in the acidogenic reactor. Further batch tests indicated methanogens showed a HAc degradation rate of 3.81 mg COD g(-1) VSS h(-1) at initial HAc concentration of 1150 mg COD L(-1), and showed tolerance up to 16‰ salinity (3.76 g Na(+) L(-1)) as indicated by a constant HAc degradation rate. The microbiological study indicated this can be related to the predominance of acetate-utilizing Methanosarcinaceae and Methanomicrobiales in the reactor. However, with salinity increased to 20‰ and 40‰, increases in VFAs and HAc production and decreases in methane production, methanogens population, acidogenic bacteria population and acidification extent were observed. This study demonstrated presence of acetate-utilizing methanogens in an acidogenic reactor and their high tolerance to salinity, as well as their negative impacts on net VFAs production. The results would suggest the presence of methanogens in the acidogenic reactor should not be ignored and the recovery of methane from the acidogenic reactor needs to be considered to avoid carbon loss. PMID:27421101

  20. Graft Loss Due to Percutaneous Sclerotherapy of a Lymphocele Using Acetic Acid After Renal Transplantation

    SciTech Connect

    Adani, Gian Luigi Baccarani, Umberto; Bresadola, Vittorio; Lorenzin, Dario; Montanaro, Domenico; Risaliti, Andrea; Terrosu, Giovanni; Sponza, Massimo; Bresadola, Fabrizio

    2005-12-15

    Development of lymphoceles after renal transplantation is a well-described complication that occurs in up to 40% of recipients. The gold standard approach for the treatment of symptomatic cases is not well defined yet. Management options include simple aspiration, marsupialization by a laparotomy or laparoscopy, and percutaneous sclerotherapy using different chemical agents. Those approaches can be associated, and they depend on type, dimension, and localization of the lymphocele. Percutaneous sclerotherapy is considered to be less invasive than the surgical approach; it can be used safely and effectively, with low morbidity, in huge, rapidly accumulating lymphoceles. Moreover, this approach is highly successful, and the complication rate is acceptable; the major drawback is a recurrence rate close to 20%. We herewith report a renal transplant case in which the patient developed a symptomatic lymphocele that was initially treated by ultrasound-guided percutaneous sclerotherapy with ethanol and thereafter using acetic acid for early recurrence. A few hours after injection of acetic acid in the lymphatic cavity, the patient started to complain of acute pain localized to the renal graft and fever. An ultrasound of the abdomen revealed thrombosis of the renal vein and artery. The patient was immediately taken to the operating room, where the diagnosis of vascular thrombosis was confirmed and the graft was urgently explanted. In conclusion, we strongly suggest avoiding the use of acetic acid as a slerosating agent for the percutaneous treatment of post-renal transplant lymphocele because, based on our experience, it could be complicated by vascular thrombosis of the kidney, ending in graft loss.

  1. Glycolaldehyde, methyl formate and acetic acid adsorption and thermal desorption from interstellar ices

    NASA Astrophysics Data System (ADS)

    Burke, Daren J.; Puletti, Fabrizio; Brown, Wendy A.; Woods, Paul M.; Viti, Serena; Slater, Ben

    2015-02-01

    We have undertaken a detailed investigation of the adsorption, desorption and thermal processing of the astrobiologically significant isomers glycolaldehyde, acetic acid and methyl formate. Here, we present the results of laboratory infrared and temperature programmed desorption (TPD) studies of the three isomers from model interstellar ices adsorbed on a carbonaceous dust grain analogue surface. Laboratory infrared data show that the isomers can be clearly distinguished on the basis of their infrared spectra, which has implications for observations of interstellar ice spectra. Laboratory TPD data also show that the three isomers can be distinguished on the basis of their thermal desorption behaviour. In particular, TPD data show that the isomers cannot be treated the same way in astrophysical models of desorption. The desorption of glycolaldehyde and acetic acid from water-dominated ices is very similar, with desorption being mainly dictated by water ice. However, methyl formate also desorbs from the surface of the ice, as a pure desorption feature, and therefore desorbs at a lower temperature than the other two isomers. This is more clearly indicated by models of the desorption on astrophysical time-scales corresponding to the heating rate of 25 and 5 M⊙ stars. For a 25 M⊙ star, our model shows that a proportion of the methyl formate can be found in the gas phase at earlier times compared to glycolaldehyde and acetic acid. This has implications for the observation and detection of these molecules, and potentially explains why methyl formate has been observed in a wider range of astrophysical environments than the other two isomers.

  2. The role of methanogens in acetic acid production under different salinity conditions.

    PubMed

    Xiao, Keke; Guo, Chenghong; Maspolim, Yogananda; Zhou, Yan; Ng, Wun Jern

    2016-10-01

    In this study, a fed-batch acidogenic reactor was operated at a 3 d hydraulic retention time (HRT) and fed with alkaline pre-treated sludge to investigate salinity effects on methanogens' abundance, activities and their consumption of produced acetic acid (HAc) and total volatile fatty acids (VFAs). The salinity concentration was increased step-wise by adding sodium chloride. At 3‰ (parts per thousand) salinity, the average produced volatile fatty acids (VFAs) concentration was 2410.16 ± 637.62 mg COD L(-1) and 2.70 ± 0.36 L methane was produced daily in the acidogenic reactor. Further batch tests indicated methanogens showed a HAc degradation rate of 3.81 mg COD g(-1) VSS h(-1) at initial HAc concentration of 1150 mg COD L(-1), and showed tolerance up to 16‰ salinity (3.76 g Na(+) L(-1)) as indicated by a constant HAc degradation rate. The microbiological study indicated this can be related to the predominance of acetate-utilizing Methanosarcinaceae and Methanomicrobiales in the reactor. However, with salinity increased to 20‰ and 40‰, increases in VFAs and HAc production and decreases in methane production, methanogens population, acidogenic bacteria population and acidification extent were observed. This study demonstrated presence of acetate-utilizing methanogens in an acidogenic reactor and their high tolerance to salinity, as well as their negative impacts on net VFAs production. The results would suggest the presence of methanogens in the acidogenic reactor should not be ignored and the recovery of methane from the acidogenic reactor needs to be considered to avoid carbon loss.

  3. Efficient sugar release by acetic acid ethanol-based organosolv pretreatment and enzymatic saccharification.

    PubMed

    Zhang, Hongdan; Wu, Shubin

    2014-12-01

    Acetic acid ethanol-based organosolv pretreatment of sugar cane bagasse was performed to enhance enzymatic hydrolysis. The effect of different parameters (including temperature, reaction time, solvent concentration, and acid catalyst dose) on pretreatment prehydrolyzate and subsequent enzymatic digestibility was determined. During the pretreatment process, 11.83 g of xylose based on 100 g of raw material could be obtained. After the ethanol-based pretreatment, the enzymatic hydrolysis was enhanced and the highest glucose yield of 40.99 g based on 100 g of raw material could be obtained, representing 93.8% of glucose in sugar cane bagasse. The maximum total sugar yields occurred at 190 °C, 45 min, 60:40 ethanol/water, and 5% dosage of acetic acid, reaching 58.36 g (including 17.69 g of xylose and 40.67 g of glucose) based on 100 g of raw material, representing 85.4% of total sugars in raw material. Furthermore, characterization of the pretreated sugar cane bagasse using X-ray diffraction and scanning electron microscopy analyses were also developed. The results suggested that ethanol-based organosolv pretreatment could enhance enzymatic digestibilities because of the delignification and removal of xylan.

  4. Direct carbon-carbon coupling of furanics with acetic acid over Brønsted zeolites.

    PubMed

    Gumidyala, Abhishek; Wang, Bin; Crossley, Steven

    2016-09-01

    Effective carbon-carbon coupling of acetic acid to form larger products while minimizing CO2 emissions is critical to achieving a step change in efficiency for the production of transportation fuels from sustainable biomass. We report the direct acylation of methylfuran with acetic acid in the presence of water, all of which can be readily produced from biomass. This direct coupling limits unwanted polymerization of furanics while producing acetyl methylfuran. Reaction kinetics and density functional theory calculations illustrate that the calculated apparent barrier for the dehydration of the acid to form surface acyl species is similar to the experimentally measured barrier, implying that this step plays a significant role in determining the net reaction rate. Water inhibits the overall rate, but selectivity to acylated products is not affected. We show that furanic species effectively stabilize the charge of the transition state, therefore lowering the overall activation barrier. These results demonstrate a promising new route to C-C bond-forming reactions for the production of higher-value products from biomass.

  5. Direct carbon-carbon coupling of furanics with acetic acid over Brønsted zeolites

    PubMed Central

    Gumidyala, Abhishek; Wang, Bin; Crossley, Steven

    2016-01-01

    Effective carbon-carbon coupling of acetic acid to form larger products while minimizing CO2 emissions is critical to achieving a step change in efficiency for the production of transportation fuels from sustainable biomass. We report the direct acylation of methylfuran with acetic acid in the presence of water, all of which can be readily produced from biomass. This direct coupling limits unwanted polymerization of furanics while producing acetyl methylfuran. Reaction kinetics and density functional theory calculations illustrate that the calculated apparent barrier for the dehydration of the acid to form surface acyl species is similar to the experimentally measured barrier, implying that this step plays a significant role in determining the net reaction rate. Water inhibits the overall rate, but selectivity to acylated products is not affected. We show that furanic species effectively stabilize the charge of the transition state, therefore lowering the overall activation barrier. These results demonstrate a promising new route to C–C bond–forming reactions for the production of higher-value products from biomass. PMID:27652345

  6. Direct carbon-carbon coupling of furanics with acetic acid over Brønsted zeolites

    PubMed Central

    Gumidyala, Abhishek; Wang, Bin; Crossley, Steven

    2016-01-01

    Effective carbon-carbon coupling of acetic acid to form larger products while minimizing CO2 emissions is critical to achieving a step change in efficiency for the production of transportation fuels from sustainable biomass. We report the direct acylation of methylfuran with acetic acid in the presence of water, all of which can be readily produced from biomass. This direct coupling limits unwanted polymerization of furanics while producing acetyl methylfuran. Reaction kinetics and density functional theory calculations illustrate that the calculated apparent barrier for the dehydration of the acid to form surface acyl species is similar to the experimentally measured barrier, implying that this step plays a significant role in determining the net reaction rate. Water inhibits the overall rate, but selectivity to acylated products is not affected. We show that furanic species effectively stabilize the charge of the transition state, therefore lowering the overall activation barrier. These results demonstrate a promising new route to C–C bond–forming reactions for the production of higher-value products from biomass.

  7. Direct carbon-carbon coupling of furanics with acetic acid over Brønsted zeolites.

    PubMed

    Gumidyala, Abhishek; Wang, Bin; Crossley, Steven

    2016-09-01

    Effective carbon-carbon coupling of acetic acid to form larger products while minimizing CO2 emissions is critical to achieving a step change in efficiency for the production of transportation fuels from sustainable biomass. We report the direct acylation of methylfuran with acetic acid in the presence of water, all of which can be readily produced from biomass. This direct coupling limits unwanted polymerization of furanics while producing acetyl methylfuran. Reaction kinetics and density functional theory calculations illustrate that the calculated apparent barrier for the dehydration of the acid to form surface acyl species is similar to the experimentally measured barrier, implying that this step plays a significant role in determining the net reaction rate. Water inhibits the overall rate, but selectivity to acylated products is not affected. We show that furanic species effectively stabilize the charge of the transition state, therefore lowering the overall activation barrier. These results demonstrate a promising new route to C-C bond-forming reactions for the production of higher-value products from biomass. PMID:27652345

  8. Lead acetate trihydrate precursor route to synthesize novel ultrafine lead oxide from spent lead acid battery pastes

    NASA Astrophysics Data System (ADS)

    Sun, Xiaojuan; Yang, Jiakuan; Zhang, Wei; Zhu, Xinfeng; Hu, Yuchen; Yang, Danni; Yuan, Xiqing; Yu, Wenhao; Dong, Jinxin; Wang, Haifeng; Li, Lei; Vasant Kumar, R.; Liang, Sha

    2014-12-01

    A novel green recycling process is investigated to prepare lead acetate trihydrate precursors and novel ultrafine lead oxide from spent lead acid battery pastes. The route contains the following four processes. (1) The spent lead pastes are desulphurized by (NH4)2CO3. (2) The desulphurized pastes are converted into lead acetate solution by leaching with acetic acid solution and H2O2; (3) The Pb(CH3COO)2·3H2O precursor is crystallized and purified from the lead acetate solution with the addition of glacial acetic acid; (4) The novel ultrafine lead oxide is prepared by the calcination of lead acetate trihydrate precursor in N2 or air at 320-400 °C. Both the lead acetate trihydrate and lead oxide products are characterized by TG-DTA, XRD, and SEM techniques. The calcination products are mainly α-PbO, β-PbO, and a small amount of metallic Pb. The particle size of the calcination products in air is significantly larger than that in N2. Cyclic voltammetry measurements of the novel ultrafine lead oxide products show good reversibility and cycle stability. The assembled batteries using the lead oxide products as cathode active materials show a good cyclic stability in 80 charge/discharge cycles with the depth of discharge (DOD) of 100%.

  9. Simultaneous determination of 2-naphthoxyacetic acid and indole-3-acetic acid by first derivation synchronous fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Xiangxiang; Wan, Yiqun

    2013-07-01

    A simple, rapid, sensitive and selective method for simultaneously determining 2-naphthoxyacetic acid (BNOA) and Indole-3-Acetic Acid (IAA) in mixtures has been developed using derivation synchronous fluorescence spectroscopy based on their synchronous fluorescence. The synchronous fluorescence spectra were obtained with Δλ = 100 nm in a pH 8.5 NaH2PO4-NaOH buffer solution, and the detected wavelengths of quantitative analysis were set at 239 nm for BNOA and 293 nm for IAA respectively. The over lapped fluorescence spectra were well separated by the synchronous derivative method. Under optimized conditions, the limits of detection (LOD) were 0.003 μg/mL for BNOA and 0.012 μg/mL for IAA. This method is simple and expeditious, and it has been successfully applied to the determination of 2-naphthoxyacetic acid and indole-3-acetic acid in fruit juice samples with satisfactory results. The samples were only filtrated through a 0.45 μm membrane filter, which was free from the tedious separation procedures. The obtaining recoveries were in the range of 83.88-87.43% for BNOA and 80.76-86.68% for IAA, and the relative standard deviations were all less than 5.0%. Statistical comparison of the results with high performance liquid chromatography Mass Spectrometry (HPLC-MS) method revealed good agreement and proved that there were no significant difference in the accuracy and precision between these two methods.

  10. Bifunctional DTPA-type ligand

    SciTech Connect

    Gansow, O.A.; Brechbiel, M.W.

    1990-03-26

    The subject matter of the invention relates to bifunctional cyclohexyl DTPA ligands and methods of using these compounds. Specifically, such ligands are useful for radiolabeling proteins with radioactive metals, and can consequently be utilized with respect to radioimmunoimaging and/or radioimmunotherapy.

  11. Iodine--iodide reference electrode for potentiometric titrations of bases in acetic acid.

    PubMed

    Maccà, Carlo; Soldà, Lidia

    2002-03-01

    The suitability of the half-cell Pt/I2, KI in glacial acetic acid as reference electrode for potentiometric titrations of weak bases in the same medium was investigated. This electrode is easily prepared. It has been found very convenient in use and performing at least as well as the best electrodes used for the same purpose. Some phenomenological aspects of the behaviour of the above half-cell, of interest for the use as the reference electrode in the laboratory practice have been observed, that show important differences respect aqueous medium and other organic solvents.

  12. XAS and RIXS study of acetic acid and methyl formate in liquid

    NASA Astrophysics Data System (ADS)

    Takahashi, O.; Nishida, N.; Kanai, S.; Horikawa, Y.; Tokushima, T.

    2016-05-01

    Structure of acetic acid (AA) and methyl formate (MF) in the liquid phase is studied using X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES) experimentally and theoretically. Two distinct XES spectra are observed by tuning photon energy for both molecules. Model structure in the liquid phase is constructed using the classical and first principle molecular dynamics simulations, and XES spectra are calculated using density functional theory. Calculated XES spectra are consistent with experimental ones. The effect of core-hole induced excited state molecular dynamics are discussed.

  13. Hydroxylamine hydrochloride-acetic acid-soluble and -insoluble fractions of pelagic sediment: Readsorption revisited

    USGS Publications Warehouse

    Piper, D.Z.; Wandless, G.A.

    1992-01-01

    The extraction of the rare earth elements (REE) from deep-ocean pelagic sediment, using hydroxylamine hydrochloride-acetic acid, leads to the separation of approximately 70% of the bulk REE content into the soluble fraction and 30% into the insoluble fraction. The REE pattern of the soluble fraction, i.e., the content of REE normalized to average shale on an element-by-element basis and plotted against atomic number, resembles the pattern for seawater, whereas the pattern, as well as the absolute concentrations, in the insoluble fraction resembles the North American shale composite. These results preclude significant readsorption of the REE by the insoluble phases during the leaching procedure.

  14. Benzimidazole as corrosion inhibitor for heat treated 6061 Al- SiCp composite in acetic acid

    NASA Astrophysics Data System (ADS)

    Chacko, Melby; Nayak, Jagannath

    2015-06-01

    6061 Al-SiCpcomposite was solutionizedat 350 °C for 30 minutes and water quenched. It was then underaged at 140 °C (T6 treatment). The aging behaviour of the composite was studied using Rockwell B hardness measurement. Corrosion behaviour of the underaged sample was studied in different concentrations of acetic acid and at different temperatures. Benzimidazole at different concentrations was used for the inhibition studies. Inhibition efficiency of benzimidazole was calculated for different experimental conditions. Thermodynamic parameters were found out which suggested benzimidazole is an efficient inhibitor and it adsorbed on to the surface of composite by mixed adsorption where chemisorption is predominant.

  15. Crystal structure of 3-acet-oxy-2-methyl-benzoic acid.

    PubMed

    Saranya, Matheswaran; Subashini, Annamalai; Arunagiri, Chidambaram; Muthiah, Packianathan Thomas

    2015-07-01

    In the title mol-ecule, C10H10O4, the carb-oxy-lic acid group is twisted by 11.37 (15)° from the plane of the benzene ring and the acet-oxy group is twisted from this plane by 86.60 (17)°. In the crystal, mol-ecules are linked by pairs of O-H⋯O hydrogen bonds, forming inversion dimers with the expected R 2 (2)(8) graph-set motif. PMID:26279915

  16. Ternary liquid-liquid equilibria measurement for epoxidized soybean oil + acetic acid + water.

    PubMed

    Cai, Shuang-Fei; Wang, Li-Sheng; Yan, Guo-Qing; Li, Yi; Feng, Yun-Xia; Linghu, Rong-Gang

    2012-01-01

    Liquid-liquid equilibria (LLE) data were measured for ternary system epoxidized soybean oil (ESO) + acetic acid + water at 313.15, 323.15 and 333.15 K, respectively. The consistency of the measured LLE data was tested, using Othmer-Tobias correlation and root-mean-square deviation (sigma) in mass fraction of water in the lower phase and average value of the absolute difference (AAD) between experimental mass fraction of epoxidized soybean oil in the upper phase and that calculated using Othmer-Tobias correlation.

  17. Synthesis, DTPA coupling and radio labeling of cationic aminodextran

    SciTech Connect

    Subramanian, G.; McAfee, J.G.; Schneider, R.F.; Zapf-Longo, C.; Palladino, E.; Lyons, B.J.; Roskopf, M.

    1984-01-01

    In glomerular diseases, the normal anionic charge of the basement membrane is lost at an early stage. Glomerular damage in rats has been detected more readily with cationic dextrans than with inulin. Hence, the authors attempted to demonstrate this phenomenon in vivo in rats with labeled cationic dextran. Aminated Dextran (AMDEX) was prepared by treating Dextran(mol. wt approx. = 15k) with sodium methoxide followed by a bromethylamine HBr in DMSO resulting in 10-25 aminogroups per mole. DTPA cyclic dianhydride was coupled to AMDEX using a weight ratio of 1:10 in 0.2 - 1.0 ml 0.42 M Hepes buffer at pH 7.4. Free DTPA was removed by gel filtration (Sephadex P6DG) or by using Centricon-10 (AMICON) centrifugal microconcentrators. AMDEX coupled with DTPA was labeled with Indium-111 in 0.25 M acetate buffer. Labeling yields were >90% by gel chromatography and electrophoresis (pH8.2 Barbitol buffer). AMEXDTPA was labeled also by ligand exchange with Tc-99m-Sn-citrate at neutral pH with a labeling yield of 30%. On electrophoresis, all the labeled samples retained their cationic character. The distribution of purified In-111 AMDEX, was compared with simultaneously IV injected Tc-99m DTPA in rats. The 2 hour urinary excretion, and renal clearance (calculated from the biexponential plasma clearance) were slower (70 to 80%) than those of DTPA, due to the larger molecular size of AMDEX. By 1 hr., 5% of the administered activity was retained in each kidney, probably due to adherence to anionic binding sites.

  18. Comparative Genomics of Acetobacterpasteurianus Ab3, an Acetic Acid Producing Strain Isolated from Chinese Traditional Rice Vinegar Meiguichu.

    PubMed

    Xia, Kai; Li, Yudong; Sun, Jing; Liang, Xinle

    2016-01-01

    Acetobacter pasteurianus, an acetic acid resistant bacterium belonging to alpha-proteobacteria, has been widely used to produce vinegar in the food industry. To understand the mechanism of its high tolerance to acetic acid and robust ability of oxidizing ethanol to acetic acid (> 12%, w/v), we described the 3.1 Mb complete genome sequence (including 0.28 M plasmid sequence) with a G+C content of 52.4% of A. pasteurianus Ab3, which was isolated from the traditional Chinese rice vinegar (Meiguichu) fermentation process. Automatic annotation of the complete genome revealed 2,786 protein-coding genes and 73 RNA genes. The comparative genome analysis among A. pasteurianus strains revealed that A. pasteurianus Ab3 possesses many unique genes potentially involved in acetic acid resistance mechanisms. In particular, two-component systems or toxin-antitoxin systems may be the signal pathway and modulatory network in A. pasteurianus to cope with acid stress. In addition, the large numbers of unique transport systems may also be related to its acid resistance capacity and cell fitness. Our results provide new clues to understanding the underlying mechanisms of acetic acid resistance in Acetobacter species and guiding industrial strain breeding for vinegar fermentation processes.

  19. Comparative Genomics of Acetobacterpasteurianus Ab3, an Acetic Acid Producing Strain Isolated from Chinese Traditional Rice Vinegar Meiguichu

    PubMed Central

    Xia, Kai; Li, Yudong; Sun, Jing; Liang, Xinle

    2016-01-01

    Acetobacter pasteurianus, an acetic acid resistant bacterium belonging to alpha-proteobacteria, has been widely used to produce vinegar in the food industry. To understand the mechanism of its high tolerance to acetic acid and robust ability of oxidizing ethanol to acetic acid (> 12%, w/v), we described the 3.1 Mb complete genome sequence (including 0.28 M plasmid sequence) with a G+C content of 52.4% of A. pasteurianus Ab3, which was isolated from the traditional Chinese rice vinegar (Meiguichu) fermentation process. Automatic annotation of the complete genome revealed 2,786 protein-coding genes and 73 RNA genes. The comparative genome analysis among A. pasteurianus strains revealed that A. pasteurianus Ab3 possesses many unique genes potentially involved in acetic acid resistance mechanisms. In particular, two-component systems or toxin-antitoxin systems may be the signal pathway and modulatory network in A. pasteurianus to cope with acid stress. In addition, the large numbers of unique transport systems may also be related to its acid resistance capacity and cell fitness. Our results provide new clues to understanding the underlying mechanisms of acetic acid resistance in Acetobacter species and guiding industrial strain breeding for vinegar fermentation processes. PMID:27611790

  20. Comparative Genomics of Acetobacterpasteurianus Ab3, an Acetic Acid Producing Strain Isolated from Chinese Traditional Rice Vinegar Meiguichu.

    PubMed

    Xia, Kai; Li, Yudong; Sun, Jing; Liang, Xinle

    2016-01-01

    Acetobacter pasteurianus, an acetic acid resistant bacterium belonging to alpha-proteobacteria, has been widely used to produce vinegar in the food industry. To understand the mechanism of its high tolerance to acetic acid and robust ability of oxidizing ethanol to acetic acid (> 12%, w/v), we described the 3.1 Mb complete genome sequence (including 0.28 M plasmid sequence) with a G+C content of 52.4% of A. pasteurianus Ab3, which was isolated from the traditional Chinese rice vinegar (Meiguichu) fermentation process. Automatic annotation of the complete genome revealed 2,786 protein-coding genes and 73 RNA genes. The comparative genome analysis among A. pasteurianus strains revealed that A. pasteurianus Ab3 possesses many unique genes potentially involved in acetic acid resistance mechanisms. In particular, two-component systems or toxin-antitoxin systems may be the signal pathway and modulatory network in A. pasteurianus to cope with acid stress. In addition, the large numbers of unique transport systems may also be related to its acid resistance capacity and cell fitness. Our results provide new clues to understanding the underlying mechanisms of acetic acid resistance in Acetobacter species and guiding industrial strain breeding for vinegar fermentation processes. PMID:27611790

  1. Gluconacetobacter maltaceti sp. nov., a novel vinegar producing acetic acid bacterium.

    PubMed

    Slapšak, Nina; Cleenwerck, Ilse; De Vos, Paul; Trček, Janja

    2013-02-01

    Comparison of HaeIII- and HpaII-restriction profiles of PCR-amplified 16S-23S rDNA ITS regions of Gluconacetobacter sp. LMG 1529(T) and SKU 1109 with restriction profiles of reference strains of acetic acid bacteria described by Trček and Teuber [34] revealed the same but unique restriction profiles for LMG 1529(T) and SKU 1109. Further analyses of nearly complete 16S rRNA gene sequences, nearly complete 16S-23S rDNA ITS sequences, as well as concatenated partial sequences of the housekeeping genes dnaK, groEL and rpoB, allocated both strains to a single phylogenetic cluster well separated from the other species of the genus Gluconacetobacter. DNA-DNA hybridizations confirmed their novel species identity by 73% DNA-DNA relatedness between both strains, and values below the species level (<70%) between SKU 1109 and the type strains of the closest phylogenetic neighbors. The classification of strains LMG 1529(T) and SKU 1109 into a single novel species was confirmed also by AFLP and (GTG)(5)-PCR DNA fingerprinting data, as well as by phenotypic data. Strains LMG 1529(T) and SKU 1109 can be differentiated from their closely related Gluconacetobacter species, Gluconacetobacter entanii and Gluconacetobacter hansenii, by their ability to form 2-keto-d-gluconic acid from d-glucose, their ability to use d-mannitol, d-gluconate and glycerol as carbon source and form acid from d-fructose, and their ability to grow without acetic acid. The major fatty acid of LMG 1529(T) and SKU 1109 is C(18:1ω7c) (60.2-64.8%). The DNA G+C content of LMG 1529(T) and SKU 1109 is 62.5 and 63.3mol% respectively. The name Gluconacetobacter maltaceti sp. nov. is proposed. The type strain is LMG 1529(T) (=NBRC 14815(T)=NCIMB 8752(T)).

  2. The efficiency of a DTPA-based solvent in the dissolution of barium sulfate scale deposits

    SciTech Connect

    Putnis, A.; Putnis, C.V.; Paul, J.M.

    1995-11-01

    This paper describes kinetic experiments to determine the rate at which Ba ions are mobilized from crystalline barium sulfate into aqueous solution by a solvent in which the active ingredient is a strong chelating agent for Ba ions (DTPA -- diethylene triamine pentaacetic acid). The experiments define the temperature dependence and hence the activation energy of the dissolution process, the surface area dependence and most importantly the dependence on the concentration of the DTPA in solution. In a 0.05M DTPA solution the dissolution rate of barium sulfate is highly temperature dependent with an activation energy of {approximately}45 kJ/mol. This value suggests that the rate is controlled by the desorption of a BA-DTPA surface complex. Surface complexation is further identified as the key to barium sulfate dissolution by the observation that over the concentration range 0.5M to 0.05M DTPA the initial dissolution rate is inversely related to the DTPA concentration. The activation energy remains unaltered but the absolute dissolution rate is increased. In other words, a 0.05M DTPA solution is more efficient as a solvent than a 0.5M solution. This unexpected result is interpreted in terms of a passivation of the barium sulfate surface by the formation of a surface complex layer at high DTPA concentrations.

  3. Techno-economic Analysis for the Thermochemical Conversion of Lignocellulosic Biomass to Ethanol via Acetic Acid Synthesis

    SciTech Connect

    Zhu, Yunhua; Jones, Susanne B.

    2009-04-01

    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications. As a widely available biomass form, lignocellulosic biomass can have a major impact on domestic transportation fuel supplies and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). This study performs a techno-economic analysis of the thermo chemical conversion of biomass to ethanol, through methanol and acetic acid, followed by hydrogenation of acetic acid to ethanol. The conversion of syngas to methanol and methanol to acetic acid are well-proven technologies with high conversions and yields. This study was undertaken to determine if this highly selective route to ethanol could provide an already established economically attractive route to ethanol. The feedstock was assumed to be wood chips at 2000 metric ton/day (dry basis). Two types of gasification technologies were evaluated: an indirectly-heated gasifier and a directly-heated oxygen-blown gasifier. Process models were developed and a cost analysis was performed. The carbon monoxide used for acetic acid synthesis from methanol and the hydrogen used for hydrogenation were assumed to be purchased and not derived from the gasifier. Analysis results show that ethanol selling prices are estimated to be $2.79/gallon and $2.81/gallon for the indirectly-heated gasifier and the directly-heated gasifier systems, respectively (1stQ 2008$, 10% ROI). These costs are above the ethanol market price for during the same time period ($1.50 - $2.50/gal). The co-production of acetic acid greatly improves the process economics as shown in the figure below. Here, 20% of the acetic acid is diverted from ethanol production and assumed to be sold as a co-product at the prevailing market prices ($0.40 - $0.60/lb acetic acid), resulting in competitive ethanol production costs.

  4. Intravenous Acetate Elicits a Greater Free Fatty Acid Rebound in Normal than Hyperinsulinaemic Humans

    PubMed Central

    Fernandes, Judlyn; Vogt, Janet; Wolever, Thomas MS

    2014-01-01

    Background/Objectives Colonic fermentation of dietary fiber may improve insulin sensitivity via the metabolic effects of short chain fatty acids (SCFA) in reducing free fatty acids (FFA). The main objectives of this study were to compare peripheral uptake of acetate (AC) in participants with normal (< 40pmol/L, NI) and high (≥ 40pmol/L, HI) plasma-insulin and the ability of AC to reduce FFA in both groups. Subject/Methods Overnight fasted NI (n = 9) and HI (n = 9) participants were given an intravenous (IV) infusion of 140 mmol/L sodium acetate at 3 different rates over 90 minutes. The total amount of AC infused was 51.85 mmols. Results Acetate clearance in NI participants was not significantly different than that in HI participants (2.11 ± 0.23 vs 2.09 ± 0.24 ml/min). FFA fell in both groups, but rebounded to a greater extent in NI than HI participants (time × group interaction, P = 0.001). Significant correlations between insulin resistance (IR) indices (HOMA-IR, Matsuda and Insulinogenic Index) vs FFA rebound during IV AC infusion were also observed. Conclusions These findings suggest that AC uptake is similar in both groups. Participants with lower plasma insulin and lower IR indices had a greater FFA rebound. These results support the hypothesis that increasing AC concentrations in the systemic circulation may reduce lipolysis and plasma FFA concentrations and thus improve insulin sensitivity. More in-depth studies are needed to look at the effects of SCFA on FFA metabolism in insulin resistant participants. PMID:22828730

  5. High temperature stimulates acetic acid accumulation and enhances the growth inhibition and ethanol production by Saccharomyces cerevisiae under fermenting conditions.

    PubMed

    Woo, Ji-Min; Yang, Kyung-Mi; Kim, Sae-Um; Blank, Lars M; Park, Jin-Byung

    2014-07-01

    Cellular responses of Saccharomyces cerevisiae to high temperatures of up to 42 °C during ethanol fermentation at a high glucose concentration (i.e., 100 g/L) were investigated. Increased temperature correlated with stimulated glucose uptake to produce not only the thermal protectant glycerol but also ethanol and acetic acid. Carbon flux into the tricarboxylic acid (TCA) cycle correlated positively with cultivation temperature. These results indicate that the increased demand for energy (in the form of ATP), most likely caused by multiple stressors, including heat, acetic acid, and ethanol, was matched by both the fermentation and respiration pathways. Notably, acetic acid production was substantially stimulated compared to that of other metabolites during growth at increased temperature. The acetic acid produced in addition to ethanol seemed to subsequently result in adverse effects, leading to increased production of reactive oxygen species. This, in turn, appeared to cause the specific growth rate, and glucose uptake rate reduced leading to a decrease of the specific ethanol production rate far before glucose depletion. These results suggest that adverse effects from heat, acetic acid, ethanol, and oxidative stressors are synergistic, resulting in a decrease of the specific growth rate and ethanol production rate and, hence, are major determinants of cell stability and ethanol fermentation performance of S. cerevisiae at high temperatures. The results are discussed in the context of possible applications.

  6. Synthesis of hierarchical SnO2 nanoflowers with enhanced acetic acid gas sensing properties

    NASA Astrophysics Data System (ADS)

    Jin, W. X.; Ma, S. Y.; Tie, Z. Z.; Li, W. Q.; Luo, J.; Cheng, L.; Xu, X. L.; Wang, T. T.; Jiang, X. H.; Mao, Y. Z.

    2015-10-01

    Different morphologies hierarchical flower-like tin dioxide (SnO2) nanostructures were fabricated by changing the volume ratio of glycol and de-ionized water (Vg:Vw = 0, 1:2, 1:1 and 2:1) under a template-free and low-cost hydrothermal method and subsequent calcinations. The architectures, morphologies and gas sensing performances of the products were characterized by X-ray diffraction patterns (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) and gas-sensing measurement device. It can be observed that all the nanoflowers were composed of two-dimensional (2D) nanosheets, and the thickness of nanosheets is only about 9 nm when Vg:Vw = 1:1. The sensor based on the product of Vg:Vw = 1:1 exhibited excellent gas sensing performance toward 500 ppm acetic acid at 260 °C, and the response value of this sensor was about 153.6, which was above 7.5 times higher than that of ammonia (about 20.3). In addition, the 3D flower-like SnO2 nanostructures exhibited not only high response and selectivity to ppm level acetone, but also fast response and recovery time within 10 s, demonstrating it can be used as a potential candidate for detecting acetic acid. Finally, the possible formation mechanism was proposed, too.

  7. Dynamics of H Atom Production from Photodissociation of Acetic Acid-d(1).

    PubMed

    Park, Sung Man; Kwon, Chan Ho; Kim, Hong Lae

    2015-09-10

    Detailed dissociation dynamics of H(D) from acetic acid-d1 (CH3COOD) has been investigated upon electronic excitation to the (1)(n,π*), S1 state at 205 nm by measuring laser-induced fluorescence spectra of the fragment H(D) atoms. In addition, quantum yields for the H(D) atom dissociation channels, CH3COO + D and CH2COOD + H, were measured, which are 0.07 ± 0.03 and 0.17 ± 0.03, respectively. From the Doppler broadened spectra, the center-of-mass translational energy releases into products were obtained. To determine the detailed dissociation dynamics, two-dimensional potential energy surfaces along the reaction coordinate including the coordinate directly coupled to the dissociation coordinate were examined by employing quantum chemical calculations. For the CH3COO + D channel, the coupled coordinate is the dihedral angle of D against the COO plane. The dissociation of D(H) from acetic acid should take place along the triplet surface via surface crossing from the initially excited S1 state. Along the triplet surface, an exit channel barrier exists, which originates from the structural difference between the T1 and the product asymptotes, especially the dihedral angle of D against the COO plane. The observed translational energy releases were successfully estimated by the barrier impulsive model based upon the calculated two-dimensional potential energy surfaces at the B3LYP/cc-pVDZ level of theory. PMID:26294176

  8. Protective Effect of Ocimum basilicum Essential Oil Against Acetic Acid-Induced Colitis in Rats.

    PubMed

    Rashidian, Amir; Roohi, Parnia; Mehrzadi, Saeed; Ghannadi, Ali Reza; Minaiyan, Mohsen

    2016-10-01

    Ocimum basilicum L has been traditionally used for the treatment of inflammatory bowel disease in Iran. This study investigates the ameliorative effect of Ocimum basilicum essential oil on an acetic acid-induced colitis model in rats. Ocimum basilicum essential oil with 2 doses (200 and 400 μL/kg) significantly ameliorated wet weight/length ratio of colonic tissue compared to the control group. Higher doses of essential oil (200 and 400 μL/kg) significantly reduced ulcer severity, ulcer area, and ulcer index. On the other hand, histological examination revealed the diminution of total colitis index as a marker for inflammatory cell infiltration in the colonic segments of rats treated with Ocimum basilicum essential oil (200 and 400 μL/kg). The increased level of myeloperoxidase was significantly decreased after the treatment with the essential oil (200 and 400 μL/kg). These results suggest that Ocimum basilicum exhibits protective effect against acetic acid-induced colitis. PMID:26620574

  9. FIA-fluorimetric determination of the pesticide 3-indolyl acetic acid.

    PubMed

    Calatayud, J Martínez; de Ascenção, J Gonçalves; Albert-García, J R

    2006-01-01

    The paper presents the determination of the pesticide 3-indolyl acetic acid based on its native fluorescence; the method has been optimised either in a flow injection analysis (FIA) assembly or in batch. Maximum fluorescence intensity was observed at basic pH solutions at lambda(exc) = 280 nm and lambda(em) = 364 nm. The influence of different empirical parameters as pH, surfactants presence, solvent polarity, solved oxygen amount, and temperature was studied; highest outputs only required the pH in aqueous solutions to be adjusted over the range 9.5-10.5. Different calibration ranges were obtained by working with three different sensitivity scales of the fluorimeter either in flow injection analysis or batch. With the high sensitivity scale and FIA, the linear dynamic range was from 0.005 to 0.6 mg L(-1) 3-indolyl acetic acid; with an relative standard deviation (RSD) of 4.9% inter-day reproducibility. A large series of potential interferents was studied and finally, the method was applied to several water samples.

  10. Saturable uptake of indol-3yl-acetic Acid by maize roots.

    PubMed

    Martin, H V; Pilet, P E

    1986-07-01

    The uptake of 5-[(3)H]indol-3yl-acetic acid (IAA(*)) by segments of Zea mays L. roots was measured in the presence of nonradioactive indol-3yl-acetic acid (IAA degrees ) at different concentrations. IAA uptake was found to have a nonsaturable component and a saturable part with (at pH 5.0) an apparent K(m) of 0.285 micromolar and apparent V(max) 55.0 picomoles per gram fresh mass per minute. These results are consistent with those which might be expected for a saturable carrier capable of regulating IAA levels. High performance liquid chromatography analyses showed that very little metabolism of IAA(*) took place during 4 minute uptake experiments. Whereas nonsaturable uptake was similar for all 2 millimeter long segments prepared within the 2 to 10 millimeter region, saturable uptake was greatest for the 2 to 4 millimeter region. High levels of uptake by stelar (as compared with cortical) segments are partly attributable to the saturable carrier, and also to a high level of uptake by nonsaturable processes. The carrier may play an essential role in controlling IAA levels in maize roots, especially the accumulation of IAA in the apical region. The increase in saturable uptake toward the root tip may also contribute to the acropetal polarity of auxin transport.

  11. Preclinical in vitro and in vivo activity of 5,6-dimethylxanthenone-4-acetic acid.

    PubMed Central

    Laws, A. L.; Matthew, A. M.; Double, J. A.; Bibby, M. C.

    1995-01-01

    5,6-Dimethylxanthenone-4-acetic acid (5,6-MeXAA) is a fused tricyclic analogue of flavone acetic acid (FAA) which was developed in an attempt to improve on the activity of FAA. Previous studies have shown 5,6-MeXAA to be curative in 80% of mice bearing colon 38 tumours and 12 times more dose potent than FAA. This investigation has demonstrated that a murine colon tumour cell line (MAC15A) is approximately 60 times more sensitive to 5,6-MeXAA than to FAA, although these differences were not seen in three human cell lines tested. 5,6-MeXAA caused significant blood flow shutdown and haemorrhagic necrosis in subcutaneous MAC15A tumours in syngeneic and nude hosts, but measurable changes in tumour volume were seen only in syngeneic hosts. 5,6-MeXAA was inactive against intraperitoneal MAC15A but produced significant anti-tumour effects against the same cell line inoculated via an intravenous route. FAA has been shown previously to be inactive in this model. Interestingly, the effects against lung colonies were not accompanied by obvious necrotic changes, suggesting that they may be the result of increased direct cytotoxicity rather than an indirect host mechanism. Further studies to investigate the effects against systemic tumour deposits are under way. Images Figure 3 PMID:7779712

  12. Structural study of anhydrous tendon chitosan obtained via chitosan/acetic acid complex.

    PubMed

    Okuyama, K; Noguchi, K; Hanafusa, Y; Osawa, K; Ogawa, K

    1999-12-01

    The molecular structure and packing arrangement of anhydrous tendon chitosan was determined by the X-ray fibre diffraction method together with the linked-atom least-squares refinement technique. The specimen was prepared from chitosan/acetic acid complex which was obtained by exposing tendon chitosan to acetic acid vapour at room temperature for several days. There is high degree of orientation and crystallinity compared with the specimen obtained by the annealing method. Two chitosan chains are present in an orthorhombic unit cell of dimensions a = 8.26(2), b = 8.50(1), c (fibre axis) = 10.43(2) A and space group P2(1)2(1)2(1). The 2-fold helical chain is stabilised by O3 triple bond O5 hydrogen bond with the gt orientation of O6. There are direct hydrogen bonds (N2 triple bond O6) between adjacent chains along the a-axis, which makes a sheet structure parallel to the ac-plane. On the other hand, no hydrogen bond is found between the sheets.

  13. Azithromycin and erythromycin ameliorate the extent of colonic damage induced by acetic acid in rats

    SciTech Connect

    Mahgoub, Afaf . E-mail: afaf_mahgoub@yahoo.com; El-Medany, Azza; Mustafa, Ali; Arafah, Maha; Moursi, Mahmoud

    2005-05-15

    Ulcerative colitis is a common inflammatory bowel disease (IBD) of unknown etiology. Recent studies have revealed the role of some microorganisms in the initiation and perpetuation of IBD. The role of antibiotics in the possible modulation of colon inflammation is still uncertain. In this study, we evaluated the effects of two macrolides, namely azithromycin and erythromycin, at different doses on the extent and severity of ulcerative colitis caused by intracolonic administration of 3% acetic acid in rats. The lesions and the inflammatory response were assessed by histology and measurement of myeloperoxidase (MPO) activity, nitric oxide synthetase (NOS) and tumor necrosis factor alpha (TNF{alpha}) in colonic tissues. Inflammation following acetic acid instillation was characterized by oedema, diffuse inflammatory cell infiltration and necrosis. Increase in MPO, NOS and TNF{alpha} was detected in the colonic tissues. Administration of either azithromycin or erythromycin at different dosage (10, 20 and 40 mg/kg orally, daily for 5 consecutive days) significantly (P < 0.05) reduced the colonic damage, MPO and NOS activities as well as TNF{alpha} level. This reduction was highly significant with azithromycin when given at a dose of 40 mg/kg. It is concluded that azithromycin and erythromycin may have a beneficial therapeutic role in ulcerative colitis.

  14. Biosynthesis of indole-3-acetic acid via the indole-3-acetamide pathway in Streptomyces spp.

    PubMed

    Manulis, S; Shafrir, H; Epstein, E; Lichter, A; Barash, I

    1994-05-01

    Various Streptomyces spp. including S. violaceus, S. scabies, S. griseus, S. exfoliatus, S. coelicolor and S. lividans secrete indole-3-acetic acid (IAA) when fed with L-tryptophan (Trp). Production of IAA was detected in Streptomyces strains causing potato scab as well as in non-pathogenic strains. The pathways for IAA synthesis from Trp were investigated in S. violaceus and S. exfoliatus. Indole-3-acetamide (IAM), indole-3-lactic acid (ILA), indole-3-ethanol (IEt) and IAA were identified by HPLC and GC-MS. Streptomyces cells were capable of catabolizing IAM, ILA, IEt and indole-3-acetaldehyde (IAAId) into IAA. Incorporation of radioactivity into IAM, IAA and ILA but not IEt was detected when cells were fed with L-[3-14C]tryptophan. Results indicate the presence of the IAM pathway (Trp-->IAM-->IAA) and the possible presence of additional pathways for IAA biosynthesis in Streptomyces. PMID:8025670

  15. Rhodanine-3-acetic acid derivatives as inhibitors of fungal protein mannosyl transferase 1 (PMT1).

    PubMed

    Orchard, Michael G; Neuss, Judi C; Galley, Carl M S; Carr, Andrew; Porter, David W; Smith, Phillip; Scopes, David I C; Haydon, David; Vousden, Katherine; Stubberfield, Colin R; Young, Kate; Page, Martin

    2004-08-01

    The first inhibitors of fungal protein: mannosyl transferase 1 (PMT1) are described. They are based upon rhodanine-3-acetic acid and several compounds have been identified, for example, 5-[[3-(1-phenylethoxy)-4-(2-phenylethoxy)phenyl]methylene]-4-oxo-2-thioxo-3-thiazolidineacetic acid (5a), which inhibit Candida albicans PMT1 with IC(50)s in the range 0.2-0.5 microM. Members of the series are effective in inducing changes in morphology of C. albicans in vitro that have previously been associated with loss of the transferase activity. These compounds could serve as useful tools for studying the effects of protein O-mannosylation and its relevance in the search for novel antifungal agents. PMID:15225710

  16. An intercomparison of measurement systems for vapor and particulate phase concentrations of formic and acetic acids

    NASA Technical Reports Server (NTRS)

    Keene, William C.; Talbot, Robert W.; Andreae, Meinrat O.; Beecher, Kristene; Berresheim, Harold

    1989-01-01

    During June 1986, eight systems for measuring vapor phase and four for measuring particulate phase concentrations of formic acid (HCOOH) and acetic acid (CH3COOH) were intercompared in central Virginia. HCOOH and CH3COOH vapors were sampled by condensate, mist, Chromosorb 103 GC resin, NaOH-coated annular denuders, NaOH-impregnated quartz filters, K2CO3 and NaCO3-impregnated cellulose filters, and Nylasorb membranes. Atmospheric aerosol was collected on Teflon and Nuclepore filters using both hi-vol and lo-vol systems to measure particulate phase concentrations. Performances of the mist chamber and K2CO3-impregnated filter techniques were evaluated using zero air and ambient air spiked with HCOOH(g) and CH3COOH(g), and formaldehyde from permeation sources. The advantages and drawbacks of these methods are reported and discussed.

  17. A novel kinetic model for polysaccharide dissolution during atmospheric acetic acid pretreatment of sugarcane bagasse.

    PubMed

    Zhao, Xuebing; Morikawa, Yuichi; Qi, Feng; Zeng, Jing; Liu, Dehua

    2014-01-01

    Acetic acid (AcH) pretreatment of sugarcane bagasse with the catalysis of sulfuric acid (SA) could greatly enhance the enzymatic digestibility of cellulose. However, polysaccharide dissolution happened inevitably during the pretreatment. It was found that the simplest model, which assumes that the total polysaccharides were reactive to be dissolved, could not well describe the kinetic behavior of polysaccharide dissolution. A novel pseudo-homogenous kinetic model was thus developed by introducing a parameter termed as "potential dissolution degree" (δ(d)) based on the multilayered structure of cell wall. It was found that solid xylan and glucan dissolutions were a first-order reaction with respect to the dissolvable fraction. Due to the delignification action of AcH, polysaccharide dissolutions were enhanced in AcH media compared with those in aqueous system. Acetylizations of cellulose and sugars were also observed, and AcH concentration showed a significant influence on the degree of acetylization.

  18. Effect of zinc sulphate on acetic acid-induced gastric ulceration in rats.

    PubMed

    Li, K M

    1990-09-01

    The effects of zinc sulphate on gastric ulcer healing rate and mucosal mucus content of acetic acid-induced ulceration in rats have been assessed. Daily treatment with zinc sulphate progressively accelerated ulcer healing in a dose-dependent manner with a significant increase observed on day 15 after ulcer induction in rats treated with 44 and 88 mg kg-1 zinc sulphate. A significant increase in gastric mucosal adherent mucus was also observed in those animals treated with 88 mg kg-1 zinc sulphate. The results suggest that a minimum treatment period of 15 days is needed for the zinc sulphate to be effective, and that zinc ions may promote gastric ulcer healing by enhancing mucus formation to prevent acid back-diffusion into the gastric mucosa.

  19. Biorefining of wheat straw using an acetic and formic acid based organosolv fractionation process.

    PubMed

    Snelders, Jeroen; Dornez, Emmie; Benjelloun-Mlayah, Bouchra; Huijgen, Wouter J J; de Wild, Paul J; Gosselink, Richard J A; Gerritsma, Jort; Courtin, Christophe M

    2014-03-01

    To assess the potential of acetic and formic acid organosolv fractionation of wheat straw as basis of an integral biorefinery concept, detailed knowledge on yield, composition and purity of the obtained streams is needed. Therefore, the process was performed, all fractions extensively characterized and the mass balance studied. Cellulose pulp yield was 48% of straw dry matter, while it was 21% and 27% for the lignin and hemicellulose-rich fractions. Composition analysis showed that 67% of wheat straw xylan and 96% of lignin were solubilized during the process, resulting in cellulose pulp of 63% purity, containing 93% of wheat straw cellulose. The isolated lignin fraction contained 84% of initial lignin and had a purity of 78%. A good part of wheat straw xylan (58%) ended up in the hemicellulose-rich fraction, half of it as monomeric xylose, together with proteins (44%), minerals (69%) and noticeable amounts of acids used during processing.

  20. Synthesis and evaluation of mutual azo prodrug of 5-aminosalicylic acid linked to 2-phenylbenzoxazole-2-yl-5-acetic acid in ulcerative colitis

    PubMed Central

    Jilani, Jamal A; Shomaf, Maha; Alzoubi, Karem H

    2013-01-01

    In this study, the syntheses of 4-aminophenylbenzoxazol-2-yl-5-acetic acid, (an analogue of a known nonsteroidal anti-inflammatory drug [NSAID]) and 5-[4-(benzoxazol-2-yl-5-acetic acid)phenylazo]-2-hydroxybenzoic acid (a novel mutual azo prodrug of 5-aminosalicylic acid [5-ASA]) are reported. The structures of the synthesized compounds were confirmed using infrared (IR), hydrogen-1 nuclear magnetic resonance (1H NMR), and mass spectrometry (MS) spectroscopy. Incubation of the azo compound with rat cecal contents demonstrated the susceptibility of the prepared azo prodrug to bacterial azoreductase enzyme. The azo compound and the 4-aminophenylbenzoxazol-2-yl-5-acetic acid were evaluated for inflammatory bowel diseases, in trinitrobenzenesulfonic acid (TNB)-induced colitis in rats. The synthesized diazo compound and the 4-aminophenylbenzoxazol-2-yl-5-acetic acid were found to be as effective as 5-aminosalicylic acid for ulcerative colitis. The results of this work suggest that the 4-aminophenylbenzoxazol-2-yl-5-acetic acid may represent a new lead for treatment of ulcerative colitis. PMID:23983456

  1. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-12-01

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.

  2. Draft Genome Sequences of Gluconobacter cerinus CECT 9110 and Gluconobacter japonicus CECT 8443, Acetic Acid Bacteria Isolated from Grape Must

    PubMed Central

    Sainz, Florencia

    2016-01-01

    We report here the draft genome sequences of Gluconobacter cerinus strain CECT9110 and Gluconobacter japonicus CECT8443, acetic acid bacteria isolated from grape must. Gluconobacter species are well known for their ability to oxidize sugar alcohols into the corresponding acids. Our objective was to select strains to oxidize effectively d-glucose. PMID:27365351

  3. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics

    PubMed Central

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-01-01

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains. PMID:26691589

  4. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics.

    PubMed

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-12-22

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.

  5. Developmental toxicity of mixtures: the water disinfection by-products dichloro-, dibromo- and bromochloro acetic acid in rat embryo culture

    EPA Science Inventory

    The chlorination of drinking water results in production of numerous disinfection by-products (DBPs). One of the important classes of DBPs is the haloacetic acids. We have previously shown that the haloacetic acids (HAs), dichloro (DCA), dibromo (DBA) and bromochloro (BCA) acetic...

  6. Quantifying Effect of Lactic, Acetic, and Propionic Acids on Growth of Molds Isolated from Spoiled Bakery Products.

    PubMed

    Dagnas, Stéphane; Gauvry, Emilie; Onno, Bernard; Membré, Jeanne-Marie

    2015-09-01

    The combined effect of undissociated lactic acid (0 to 180 mmol/liter), acetic acid (0 to 60 mmol/liter), and propionic acid (0 to 12 mmol/liter) on growth of the molds Aspergillus niger, Penicillium corylophilum, and Eurotium repens was quantified at pH 3.8 and 25°C on malt extract agar acid medium. The impact of these acids on lag time for growth (λ) was quantified through a gamma model based on the MIC. The impact of these acids on radial growth rate (μ) was analyzed statistically through polynomial regression. Concerning λ, propionic acid exhibited a stronger inhibitory effect (MIC of 8 to 20 mmol/liter depending on the mold species) than did acetic acid (MIC of 23 to 72 mmol/liter). The lactic acid effect was null on E. repens and inhibitory on A. niger and P. corylophilum. These results were validated using independent sets of data for the three acids at pH 3.8 but for only acetic and propionic acids at pH 4.5. Concerning μ, the effect of acetic and propionic acids was slightly inhibitory for A. niger and P. corylophilum but was not significant for E. repens. In contrast, lactic acid promoted radial growth of all three molds. The gamma terms developed here for these acids will be incorporated in a predictive model for temperature, water activity, and acid. More generally, results for μ and λ will be used to identify and evaluate solutions for controlling bakery product spoilage.

  7. Quantifying Effect of Lactic, Acetic, and Propionic Acids on Growth of Molds Isolated from Spoiled Bakery Products.

    PubMed

    Dagnas, Stéphane; Gauvry, Emilie; Onno, Bernard; Membré, Jeanne-Marie

    2015-09-01

    The combined effect of undissociated lactic acid (0 to 180 mmol/liter), acetic acid (0 to 60 mmol/liter), and propionic acid (0 to 12 mmol/liter) on growth of the molds Aspergillus niger, Penicillium corylophilum, and Eurotium repens was quantified at pH 3.8 and 25°C on malt extract agar acid medium. The impact of these acids on lag time for growth (λ) was quantified through a gamma model based on the MIC. The impact of these acids on radial growth rate (μ) was analyzed statistically through polynomial regression. Concerning λ, propionic acid exhibited a stronger inhibitory effect (MIC of 8 to 20 mmol/liter depending on the mold species) than did acetic acid (MIC of 23 to 72 mmol/liter). The lactic acid effect was null on E. repens and inhibitory on A. niger and P. corylophilum. These results were validated using independent sets of data for the three acids at pH 3.8 but for only acetic and propionic acids at pH 4.5. Concerning μ, the effect of acetic and propionic acids was slightly inhibitory for A. niger and P. corylophilum but was not significant for E. repens. In contrast, lactic acid promoted radial growth of all three molds. The gamma terms developed here for these acids will be incorporated in a predictive model for temperature, water activity, and acid. More generally, results for μ and λ will be used to identify and evaluate solutions for controlling bakery product spoilage. PMID:26319723

  8. [Effect of acetic acid, furfural and 5-hydroxymethylfurfural on production of 2,3-butanediol by Klebsiella oxytoca].

    PubMed

    Wu, Jing; Cheng, Keke; Li, Wenying; Feng, Jie; Zhang, Jian'an

    2013-03-01

    To get the tolerability and consumption of Klebsiella oxytoca on major inhibitors in lignocelluloses hydrolysate, we studied the effect of acetic acid, furfural and 5-hydroxymethylfurfural on production of 2,3-butanediol by Klebsiella oxytoca. The metabolites of furfural and 5-hydroxymethylfurfural were measured. The results show that when acetic acid, furfural and 5-hydroxymethylfurfural was individually added, tolerance threshold for Klebsiella oxytoca was 30 g/L, 4 g/L and 5 g/L, respectively. Acetic acid was likely used as substrate to produce 2,3-butanediol. The yield of 2,3-butanediol increased when acetic acid concentration was lower than 30 g/L. In the fermentation, more than 70% 5-hydroxymethylfurfural was converted to 2,5-furandimethanol. All furfural and the rest of 5-hydroxymethylfurfural were metabolized by Klebsiella oxytoca. It showed that in the detoxification process of 2,3-butanediol production using lignocelluloses hydrolysate, furfural should be given priority to remove and a certain concentration of acetic acid is not need to removal.

  9. Absence of Rtt109p, a fungal-specific histone acetyltransferase, results in improved acetic acid tolerance of Saccharomyces cerevisiae.

    PubMed

    Cheng, Cheng; Zhao, Xinqing; Zhang, Mingming; Bai, Fengwu

    2016-03-01

    RTT109 is a histone acetyltransferase for the acetylation of histone H3. It is still not clear whether RTT109 plays a role in regulation of gene expression under environmental stresses. In this study, the involvement of RTT109 in acetic acid stress tolerance of Saccharomyces cerevisiae was investigated. It was revealed that the absence of RTT109 enhanced resistance to 5.5 g L(-1) acetic acid, which was indicated by improved growth of RTT109Δ mutant compared with that of the wild-type BY4741 strain. Meanwhile, the lag phase was shortened for 48 h and glucose consumption completed 36 h in advance for RTT109Δ mutant compared to the wild-type strain, with ethanol production rate increased from 0.39 to 0.60 g L(-1) h(-1). Significantly, elevated transcription levels of HSP12, CTT1 and GSH1, as well as increased activities of antioxidant enzymes were observed in RTT109Δ under acetic acid stress. Improved flocculation of RTT109Δ compared to that of the control strain BY4741 under the acetic acid stress was also observed. These results suggest that the absence of RTT109 not only activates transcription of stress responsive genes, but also improves resistance to oxidative stress, which ultimately contributes to improved acetic acid tolerance in S. cerevisiae.

  10. Absence of Rtt109p, a fungal-specific histone acetyltransferase, results in improved acetic acid tolerance of Saccharomyces cerevisiae.

    PubMed

    Cheng, Cheng; Zhao, Xinqing; Zhang, Mingming; Bai, Fengwu

    2016-03-01

    RTT109 is a histone acetyltransferase for the acetylation of histone H3. It is still not clear whether RTT109 plays a role in regulation of gene expression under environmental stresses. In this study, the involvement of RTT109 in acetic acid stress tolerance of Saccharomyces cerevisiae was investigated. It was revealed that the absence of RTT109 enhanced resistance to 5.5 g L(-1) acetic acid, which was indicated by improved growth of RTT109Δ mutant compared with that of the wild-type BY4741 strain. Meanwhile, the lag phase was shortened for 48 h and glucose consumption completed 36 h in advance for RTT109Δ mutant compared to the wild-type strain, with ethanol production rate increased from 0.39 to 0.60 g L(-1) h(-1). Significantly, elevated transcription levels of HSP12, CTT1 and GSH1, as well as increased activities of antioxidant enzymes were observed in RTT109Δ under acetic acid stress. Improved flocculation of RTT109Δ compared to that of the control strain BY4741 under the acetic acid stress was also observed. These results suggest that the absence of RTT109 not only activates transcription of stress responsive genes, but also improves resistance to oxidative stress, which ultimately contributes to improved acetic acid tolerance in S. cerevisiae. PMID:26851403

  11. Short-Chain Fatty Acid Acetate Stimulates Adipogenesis and Mitochondrial Biogenesis via GPR43 in Brown Adipocytes.

    PubMed

    Hu, Jiamiao; Kyrou, Ioannis; Tan, Bee K; Dimitriadis, Georgios K; Ramanjaneya, Manjunath; Tripathi, Gyanendra; Patel, Vanlata; James, Sean; Kawan, Mohamed; Chen, Jing; Randeva, Harpal S

    2016-05-01

    Short-chain fatty acids play crucial roles in a range of physiological functions. However, the effects of short-chain fatty acids on brown adipose tissue have not been fully investigated. We examined the role of acetate, a short-chain fatty acid formed by fermentation in the gut, in the regulation of brown adipocyte metabolism. Our results show that acetate up-regulates adipocyte protein 2, peroxisomal proliferator-activated receptor-γ coactivator-1α, and uncoupling protein-1 expression and affects the morphological changes of brown adipocytes during adipogenesis. Moreover, an increase in mitochondrial biogenesis was observed after acetate treatment. Acetate also elicited the activation of ERK and cAMP response element-binding protein, and these responses were sensitive to G(i/o)-type G protein inactivator, Gβγ-subunit inhibitor, phospholipase C inhibitor, and MAPK kinase inhibitor, indicating a role for the G(i/o)βγ/phospholipase C/protein kinase C/MAPK kinase signaling pathway in these responses. These effects of acetate were mimicked by treatment with 4-chloro-α-(1-methylethyl)-N-2-thiazolylbenzeneacetamide, a synthetic G protein-coupled receptor 43 (GPR43) agonist and were impaired in GPR43 knockdown cells. Taken together, our results indicate that acetate may have important physiological roles in brown adipocytes through the activation of GPR43. PMID:26990063

  12. Cloning and biochemical characterization of indole-3-acetic acid-amino acid synthetase PsGH3 from pea.

    PubMed

    Ostrowski, Maciej; Mierek-Adamska, Agnieszka; Porowińska, Dorota; Goc, Anna; Jakubowska, Anna

    2016-10-01

    Phytohormone conjugation is one of the mechanisms that maintains a proper hormonal homeostasis and that is necessary for the realization of physiological responses. Gretchen Hagen 3 (GH3) acyl acid amido synthetases convert indole-3-acetic acid (IAA) to IAA-amino acid conjugates by ATP-dependent reactions. IAA-aspartate (IAA-Asp) exists as a predominant amide conjugate of auxin in pea tissues and acts as an intermediate during IAA catabolism. Here we report a novel recombinant indole-3-acetic acid-amido synthetase in Pisum sativum. In silico analysis shows that amino acid sequence of PsGH3 has the highest homology to Medicago truncatula GH3.3. The recombinant His-tag-PsGH3 fusion protein has been obtained in E. coli cells and is a soluble monomeric polypeptide with molecular mass of 69.18 kDa. The PsGH3 was purified using Ni(2+)-affinity chromatography and native PAGE. Kinetic analysis indicates that the enzyme strongly prefers IAA and L-aspartate as substrates for conjugation revealing Km(ATP) = 0.49 mM, Km(L-Asp) = 2.2 mM, and Km(IAA) = 0.28 mM. Diadenosine pentaphosphate (Ap5A) competes with ATP for catalytic site and diminishes the PsGH3 affinity toward ATP approximately 1.11-fold indicating Ki = 8.5 μM. L-Tryptophan acts as an inhibitor of IAA-amido synthesizing activity by competition with L-aspartate. Inorganic pyrophosphatase (PPase) hydrolyzing pyrophosphate to two phosphate ions, potentiates IAA-Asp synthetase activity of PsGH3. Our results demonstrate that PsGH3 is a novel enzyme that is involved in auxin metabolism in pea seeds.

  13. Modified technique to recover microsporidian spores in sodium acetate-acetic acid-formalin-fixed fecal samples by light microscopy and correlation with transmission electron microscopy.

    PubMed Central

    Carter, P L; MacPherson, D W; McKenzie, R A

    1996-01-01

    Microsporidia are an emerging cause of significant disease, particularly in the immunocompromised host. Until recently, the diagnosis of enteric infections has required invasive sampling, the use of expensive technology, and considerable technological expertise. The purpose of the present study was to examine three modifications to the processing of fecal specimens for light microscopy (LM) examination for microsporidian spores: the use of pretreatment with potassium hydroxide, modified centrifugation conditions, and a modified staining technique. A sodium acetate-acetic acid-formalin-fixed fecal sample containing numerous microsporidian spores confirmed to be positive by transmission electron microscopy (TEM) was used in all studies performed. A simulation of a heavy to lightly infected individual was used. The results of LM were correlated with those of TEM. Duplicate smears were stained with Weber's modified trichrome and Giemsa (GS) stains. The stained slides were randomized and examined blindly by LM at x 625 and x 1,250 magnifications. A portion of the dilutions after centrifugation were fixed for TEM. The Weber modified trichrome stain performance rating was higher than the Giemsa stain rating because of ease of interpretation, and material stained with Weber modified trichrome stain required less examination time at a lower magnification. The number of positive smears and the quantity of spores detected were significantly higher following pretreatment of the sample with KOH. TEM was positive only when numerous spores were present, but the quality of the photomicrographs was superior after pretreatment with KOH. Pretreatment of sodium acetate-acetic acid-formalin-fixed fecal samples with 10% KOH and then a 5-min centrifugation time and staining with Weber modified trichrome stain provide for the excellent recovery of microsporidia in the routine diagnostic parasitology laboratory. PMID:8897162

  14. Mechanistic investigation of the uncatalyzed esterification reaction of acetic acid and acid halides with methanol: a DFT study.

    PubMed

    Lawal, Monsurat M; Govender, Thavendran; Maguire, Glenn E M; Honarparvar, Bahareh; Kruger, Hendrik G

    2016-10-01

    Implementation of catalysts to drive reactions from reactants to products remains a burden to synthetic and organic chemists. In spite of investigations into the kinetics and mechanism of catalyzed esterification reactions, less effort has been made to explore the possibility of an uncatalyzed esterification process. Therefore, a comprehensive mechanistic perspective for the uncatalyzed mechanism at the molecular level is presented. Herein, we describe the non-catalyzed esterification reaction of acetic acid and its halide derivatives (XAc, where X= OH, F, Cl, Br, I) with methanol (MeOH) through a concerted process. The reaction in vacuum and methanol was performed using the density functional theory (DFT) method at M06-2X level with def2-TZVP basis set after a careful literature survey and computations. Esterification through cyclic 4- or 6-membered transition state structures in one- or two-step concerted mechanisms were investigated. The present study outlines the possible cyclic geometry conformations that may occur during experiments at simple ratio of reactants. The free energy of activation for acetic acid and acetyl chloride are 36 kcal mol(-1) and 21 kcal mol(-1), respectively. These are in good agreement with available experimental results from the literature. The selected quantum chemical descriptors proved to be useful tools in chemical reactivity prediction for the reaction mechanism. This quantum mechanics study can serve as a necessary step towards revisiting uncatalyzed reaction mechanisms in some classical organic reactions. PMID:27604278

  15. Acetate and other Volatile Fatty Acids - Key Intermediates in marine sediment metabolism - Thermodynamic and kinetic implications

    NASA Astrophysics Data System (ADS)

    Glombitza, C.; Jaussi, M.; Røy, H.; Jørgensen, B. B.

    2014-12-01

    Volatile fatty acids (VFAs) play important roles as key intermediates in the anaerobic metabolism of subsurface microbial communities. Usually they are present in marine sediment pore water in low concentrations as a result of balanced production and consumption, both occurring in the same sediment zone. Thus their low concentrations represent a steady state condition regulated by either thermodynamics or kinetics. We have developed a novel analytical approach for the parallel measurement of several VFAs directly from marine pore water without any sample pretreatment by the use of a 2-dimensional ion chromatography coupled to mass spectrometry. In a first study we analyzed acetate, formate, and propionate in pore water from sediment cores retrieved from 5 different stations within and offshore of the Godhåbsfjord (Greenland). The sediment cores represent different sedimentological conditions, ranging from a typical marine sedimentation site to a glacier/freshwater dominated site. In addition to VFA concentrations, we measured sulfate concentrations, sulfate reduction rates, and cell abundances. We calculated the Gibbs free energy (ΔG) available for sulfate reduction (SR), as well as the VFA turnover times by the in-situ SR rates. The turnover time for acetate by SR ranged from several hours to days in the top cm of sediment and increased to several hundred years at the bottom of the SR zone. From the associated cell abundances we calculated that the VFA turnover times were significantly longer than the diffusion times of the VFA between individual cells. This shows that VFA consumption in the SR zone, and concomitantly the observed pore water concentrations, are not constrained by diffusion. DG values for SR using acetate were >36 kJ/mol which is significantly above the lower limit for anaerobic microbial energy metabolism. It thus remains unclear what controls the VFA concentrations in the sediment.

  16. Removal and recovery of furfural, 5-hydroxymethylfurfural, and acetic acid from aqueous solutions using a soluble polyelectrolyte.

    PubMed

    Carter, Brian; Gilcrease, Patrick C; Menkhaus, Todd J

    2011-09-01

    In the cellulosic ethanol process, furfural, 5-hydroxymethylfurfural (HMF), and acetic acid are formed during the high temperature acidic pretreatment step needed to convert biomass into fermentable sugars. These compounds can inhibit cellulase enzymes and fermentation organisms at relatively low concentrations (≥ 1 g/L). Effective removal of these inhibitory compounds would allow the use of more severe pretreatment conditions to improve sugar yields and lead to more efficient fermentations; if recovered and purified, they could also be sold as valuable by-products. This study investigated the separation of aldhehydes (furfural and HMF) and organic acid (acetic acid) inhibitory compounds from simple aqueous solutions by using polyethyleneimene (PEI), a soluble cationic polyelectrolyte. PEI added to simple solutions of each inhibitor at a ratio of 1 mol of functional group to 1 mol inhibitor removed up to 89.1, 58.6, and 81.5 wt% of acetic acid, HMF, and furfural, respectively. Furfural and HMF were recovered after removal by washing the polyelectrolyte/inhibitor complex with dilute sulfuric acid solution. Recoveries up to 81.0 and 97.0 wt% were achieved for furfural and HMF, respectively. The interaction between PEI and acetic acid was easily disrupted by the addition of chloride ions, sulfate ions, or hydroxide ions. The use of soluble polymers for the removal and recovery of inhibitory compounds from biomass slurries is a promising approach to enhance the efficiency and economics of an envisioned biorefinery.

  17. Acetic acid recovery from a hybrid biological-hydrothermal treatment process of sewage sludge - a pilot plant study.

    PubMed

    Andrews, J; Dare, P; Estcourt, G; Gapes, D; Lei, R; McDonald, B; Wijaya, N

    2015-01-01

    A two-stage process consisting of anaerobic fermentation followed by sub-critical wet oxidation was used to generate acetic acid from sewage sludge at pilot scale. Volatile fatty acids, dominated by propionic acid, were produced over 4-6 days in the 2,000 L fermentation reactor, which also achieved 31% solids reduction. Approximately 96% of the carbon was retained in solution over the fermentation stage. Using a 200 L wet oxidation reactor operating in batch mode, the second stage achieved 98% volatile suspended solids (VSS) destruction and 67% total chemical oxygen demand (tCOD) destruction. Acetic acid produced in this stage was recalcitrant to further degradation and was retained in solution. The gross yield from VSS was 16% for acetic acid and 21% for volatile fatty acids across the process, higher than reported yields for wet oxidation alone. The pilot plant results showed that 72% of the incoming phosphorus was retained in the solids, 94% of the nitrogen became concentrated in solution and 41% of the carbon was converted to a soluble state, in a more degradable form. Acetic acid produced from the process has the potential to be used to offset ethanol requirements in biological nutrient removal plants.

  18. Acetic acid recovery from a hybrid biological-hydrothermal treatment process of sewage sludge - a pilot plant study.

    PubMed

    Andrews, J; Dare, P; Estcourt, G; Gapes, D; Lei, R; McDonald, B; Wijaya, N

    2015-01-01

    A two-stage process consisting of anaerobic fermentation followed by sub-critical wet oxidation was used to generate acetic acid from sewage sludge at pilot scale. Volatile fatty acids, dominated by propionic acid, were produced over 4-6 days in the 2,000 L fermentation reactor, which also achieved 31% solids reduction. Approximately 96% of the carbon was retained in solution over the fermentation stage. Using a 200 L wet oxidation reactor operating in batch mode, the second stage achieved 98% volatile suspended solids (VSS) destruction and 67% total chemical oxygen demand (tCOD) destruction. Acetic acid produced in this stage was recalcitrant to further degradation and was retained in solution. The gross yield from VSS was 16% for acetic acid and 21% for volatile fatty acids across the process, higher than reported yields for wet oxidation alone. The pilot plant results showed that 72% of the incoming phosphorus was retained in the solids, 94% of the nitrogen became concentrated in solution and 41% of the carbon was converted to a soluble state, in a more degradable form. Acetic acid produced from the process has the potential to be used to offset ethanol requirements in biological nutrient removal plants. PMID:25768220

  19. Staining of proteins in gels with Coomassie G-250 without organic solvent and acetic acid.

    PubMed

    Lawrence, Ann-Marie; Besir, H Uuml Seyin

    2009-01-01

    In classical protein staining protocols using Coomassie Brilliant Blue (CBB), solutions with high contents of toxic and flammable organic solvents (Methanol, Ethanol or 2-Propanol) and acetic acid are used for fixation, staining and destaining of proteins in a gel after SDS-PAGE. To speed up the procedure, heating the staining solution in the microwave oven for a short time is frequently used. This usually results in evaporation of toxic or hazardous Methanol, Ethanol or 2-Propanol and a strong smell of acetic acid in the lab which should be avoided due to safety considerations. In a protocol originally published in two patent applications by E.M. Wondrak (US2001046709 (A1), US6319720 (B1)), an alternative composition of the staining solution is described in which no organic solvent or acid is used. The CBB is dissolved in bidistilled water (60-80 mg of CBB G-250 per liter) and 35 mM HCl is added as the only other compound in the staining solution. The CBB staining of the gel is done after SDS-PAGE and thorough washing of the gel in bidistilled water. By heating the gel during the washing and staining steps, the process can be finished faster and no toxic or hazardous compounds are evaporating. The staining of proteins occurs already within 1 minute after heating the gel in staining solution and is fully developed after 15-30 min with a slightly blue background that is destained completely by prolonged washing of the stained gel in bidistilled water, without affecting the stained protein bands. PMID:19684570

  20. Hydrogen production from steam reforming of acetic acid over Cu-Zn supported calcium aluminate.

    PubMed

    Mohanty, Pravakar; Patel, Madhumita; Pant, Kamal K

    2012-11-01

    Hydrogen can be produced by catalytic steam reforming (CSR) of biomass-derived oil. Typically bio oil contains 12-14% acetic acid; therefore, this acid was chosen as model compound for reforming of biooil with the help of a Cu-Zn/Ca-Al catalyst for high yield of H(2) with low CH(4) and CO content. Calcium aluminate support was prepared by solid-solid reaction at 1350°C. X-ray diffraction indicates 12CaO·7Al(2)O(3) as major, CaA(l4)O(7) and Ca(5)A(l6)O(14) as minor phases. Cu and Zn were loaded onto the support by wet-impregnation at 10 and 1wt.%, respectively. The catalysts were characterized by Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy TEM and the surface area for both support and Cu-Zn were 10.5 and 5.8m(2)/g, respectively. CSR was carried out in a tubular fixed bed reactor (I.D.=19mm) at temperatures between 600 and 800°C with 3-g loadings and (H(2)O/acetic acid) wt. ratio of 9:1. Significantly high (80%) yield of hydrogen was obtained over Cu-Zn/Ca-Al catalyst, as incorporation of Zn enhanced the H(2) yield by reducing deactivation of the catalyst. The coke formation on the support (Ca-12/Al-7) surface was negligible due to the presence of excess oxygen in the 12CaO·7Al(2)O(3) phase.

  1. Hydrogen production from steam reforming of acetic acid over Cu-Zn supported calcium aluminate.

    PubMed

    Mohanty, Pravakar; Patel, Madhumita; Pant, Kamal K

    2012-11-01

    Hydrogen can be produced by catalytic steam reforming (CSR) of biomass-derived oil. Typically bio oil contains 12-14% acetic acid; therefore, this acid was chosen as model compound for reforming of biooil with the help of a Cu-Zn/Ca-Al catalyst for high yield of H(2) with low CH(4) and CO content. Calcium aluminate support was prepared by solid-solid reaction at 1350°C. X-ray diffraction indicates 12CaO·7Al(2)O(3) as major, CaA(l4)O(7) and Ca(5)A(l6)O(14) as minor phases. Cu and Zn were loaded onto the support by wet-impregnation at 10 and 1wt.%, respectively. The catalysts were characterized by Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy TEM and the surface area for both support and Cu-Zn were 10.5 and 5.8m(2)/g, respectively. CSR was carried out in a tubular fixed bed reactor (I.D.=19mm) at temperatures between 600 and 800°C with 3-g loadings and (H(2)O/acetic acid) wt. ratio of 9:1. Significantly high (80%) yield of hydrogen was obtained over Cu-Zn/Ca-Al catalyst, as incorporation of Zn enhanced the H(2) yield by reducing deactivation of the catalyst. The coke formation on the support (Ca-12/Al-7) surface was negligible due to the presence of excess oxygen in the 12CaO·7Al(2)O(3) phase. PMID:22944490

  2. Azospirillum brasilense Produces the Auxin-Like Phenylacetic Acid by Using the Key Enzyme for Indole-3-Acetic Acid Biosynthesis

    PubMed Central

    Somers, E.; Ptacek, D.; Gysegom, P.; Srinivasan, M.; Vanderleyden, J.

    2005-01-01

    An antimicrobial compound was isolated from Azospirillum brasilense culture extracts by high-performance liquid chromatography and further identified by gas chromatography-mass spectrometry as the auxin-like molecule, phenylacetic acid (PAA). PAA synthesis was found to be mediated by the indole-3-pyruvate decarboxylase, previously identified as a key enzyme in indole-3-acetic acid (IAA) production in A. brasilense. In minimal growth medium, PAA biosynthesis by A. brasilense was only observed in the presence of phenylalanine (or precursors thereof). This observation suggests deamination of phenylalanine, decarboxylation of phenylpyruvate, and subsequent oxidation of phenylacetaldehyde as the most likely pathway for PAA synthesis. Expression analysis revealed that transcription of the ipdC gene is upregulated by PAA, as was previously described for IAA and synthetic auxins, indicating a positive feedback regulation. The synthesis of PAA by A. brasilense is discussed in relation to previously reported biocontrol properties of A. brasilense. PMID:15812004

  3. Effects of urea and acetic acid on the heme axial ligation structure of ferric myoglobin at very acidic pH.

    PubMed

    Droghetti, Enrica; Sumithran, Suganya; Sono, Masanori; Antalík, Marián; Fedurco, Milan; Dawson, John H; Smulevich, Giulietta

    2009-09-01

    The heme iron coordination of ferric myoglobin (Mb) in the presence of 9.0M urea and 8.0M acetic acid at acidic pH values has been probed by electronic absorption, magnetic circular dichroism and resonance Raman spectroscopic techniques. Unlike Mb at pH 2.0, where heme is not released from the protein despite the acid denaturation and the loss of the axial ligand, upon increasing the concentration of either urea or acetic acid, a spin state change is observed, and a novel, non-native six-coordinated high-spin species prevails, where heme is released from the protein.

  4. Effects of urea and acetic acid on the heme axial ligation structure of ferric myoglobin at very acidic pH

    PubMed Central

    Droghetti, Enrica; Sumithran, Suganya; Sono, Masanori; Antalík, Marián; Fedurco, Milan; Dawson, John H.; Smulevich, Giulietta

    2009-01-01

    The heme iron coordination of ferric myoglobin (Mb) in the presence of 9.0 M urea and 8.0 M acetic acid at acidic pH values has been probed by electronic absorption, magnetic circular dichroism and resonance Raman spectroscopic techniques. Unlike Mb at pH 2.0, where heme is not released from the protein despite the acid denaturation and the loss of the axial ligand, upon increasing the concentration of either urea or acetic acid, a spin state change is observed, and a novel, non-native six-coordinated high spin species prevails, where heme is released from the protein. PMID:19622342

  5. (+/-)-3-Oxocyclohexanecarboxylic and -acetic acids: contrasting hydrogen-bonding patterns in two homologous keto acids.

    PubMed

    Barcon, Alan; Brunskill, Andrew P J; Lalancette, Roger A; Thompson, Hugh W

    2002-03-01

    The crystal structures for the title compounds reveal fundamentally different hydrogen-bonding patterns. (+/-)-3-Oxocyclohexanecarboxylic acid, C(7)H(10)O(3), displays acid-to-ketone catemers having a glide relationship for successive components of the hydrogen-bonding chains which advance simultaneously by two cells in a and one in c [O...O = 2.683 (3) A and O-H...O = 166]. A pair of intermolecular close contacts exists involving the acid carbonyl group. The asymmetric unit in (+/-)-3-oxocyclohexaneacetic acid, C(8)H(12)O(3), utilizes only one of two available isoenthalpic conformers and its aggregation involves mutual hydrogen bonding by centrosymmetric carboxyl dimerization [O.O = 2.648 (3) A and O-H...O = 171]. Intermolecular close contacts exist for both the ketone and the acid carbonyl group. PMID:11870311

  6. Growth inhibitory effect of grape phenolics against wine spoilage yeasts and acetic acid bacteria.

    PubMed

    Pastorkova, E; Zakova, T; Landa, P; Novakova, J; Vadlejch, J; Kokoska, L

    2013-02-15

    This paper investigates the in vitro antimicrobial potential of 15 grape phenolic compounds of various chemical classes (phenolic acids, stilbenes and flavonoids) using the broth microdilution method against yeasts and acetic acid bacteria frequently occurring in deteriorated wine. Pterostilbene (MICs=32-128 μg/mL), resveratrol (MICs=256-512 μg/mL) and luteolin (MICs=256-512 μg/mL) are among six active compounds that possessed the strongest inhibitory effects against all microorganisms tested. In the case of phenolic acids, myricetin, p-coumaric and ferulic acids exhibited selective antimicrobial activity (MICs=256-512 μg/mL), depending upon yeasts and bacteria tested. In comparison with potassium metabisulphite, all microorganisms tested were more susceptible to the phenolics. The results revealed the antibacterial and antiyeast effects against wine spoilage microorganisms of several highly potent phenolics naturally occurring in grapes. These findings also provide arguments for further investigation of stilbenes as prospective compounds reducing the need for the use of sulphites in winemaking.

  7. Bombella intestini gen. nov., sp. nov., an acetic acid bacterium isolated from bumble bee crop.

    PubMed

    Li, Leilei; Praet, Jessy; Borremans, Wim; Nunes, Olga C; Manaia, Célia M; Cleenwerck, Ilse; Meeus, Ivan; Smagghe, Guy; De Vuyst, Luc; Vandamme, Peter

    2015-01-01

    In the frame of a bumble bee gut microbiota study, acetic acid bacteria (AAB) were isolated using a combination of direct isolation methods and enrichment procedures. MALDI-TOF MS profiling of the isolates and a comparison of these profiles with profiles of established AAB species identified most isolates as Asaia astilbis or as 'Commensalibacter intestini', except for two isolates (R-52486 and LMG 28161(T)) that showed an identical profile. A nearly complete 16S rRNA gene sequence of strain LMG 28161(T) was determined and showed the highest pairwise similarity to Saccharibacter floricola S-877(T) (96.5%), which corresponded with genus level divergence in the family Acetobacteraceae. Isolate LMG 28161(T) was subjected to whole-genome shotgun sequencing; a 16S-23S rRNA internal transcribed spacer (ITS) sequence as well as partial sequences of the housekeeping genes dnaK, groEL and rpoB were extracted for phylogenetic analyses. The obtained data confirmed that this isolate is best classified into a new genus in the family Acetobacteraceae. The DNA G+C content of strain LMG 28161(T) was 54.9 mol%. The fatty acid compositions of isolates R-52486 and LMG 28161(T) were similar to those of established AAB species [with C18:1ω7c (43.1%) as the major component], but the amounts of fatty acids such as C19:0 cyclo ω8c, C14:0 and C14:0 2-OH enabled to differentiate them. The major ubiquinone was Q-10. Both isolates could also be differentiated from the known genera of AAB by means of biochemical characteristics, such as their inability to oxidize ethanol to acetic acid, negligible acid production from melibiose, and notable acid production from d-fructose, sucrose and d-mannitol. In addition, they produced 2-keto-d-gluconate, but not 5-keto-d-gluconate from d-glucose. Therefore, the name Bombella intestini gen nov., sp. nov. is proposed for this new taxon, with LMG 28161(T) ( =DSM 28636(T) =R-52487(T)) as the type strain of the type species.

  8. Bombella intestini gen. nov., sp. nov., an acetic acid bacterium isolated from bumble bee crop.

    PubMed

    Li, Leilei; Praet, Jessy; Borremans, Wim; Nunes, Olga C; Manaia, Célia M; Cleenwerck, Ilse; Meeus, Ivan; Smagghe, Guy; De Vuyst, Luc; Vandamme, Peter

    2015-01-01

    In the frame of a bumble bee gut microbiota study, acetic acid bacteria (AAB) were isolated using a combination of direct isolation methods and enrichment procedures. MALDI-TOF MS profiling of the isolates and a comparison of these profiles with profiles of established AAB species identified most isolates as Asaia astilbis or as 'Commensalibacter intestini', except for two isolates (R-52486 and LMG 28161(T)) that showed an identical profile. A nearly complete 16S rRNA gene sequence of strain LMG 28161(T) was determined and showed the highest pairwise similarity to Saccharibacter floricola S-877(T) (96.5%), which corresponded with genus level divergence in the family Acetobacteraceae. Isolate LMG 28161(T) was subjected to whole-genome shotgun sequencing; a 16S-23S rRNA internal transcribed spacer (ITS) sequence as well as partial sequences of the housekeeping genes dnaK, groEL and rpoB were extracted for phylogenetic analyses. The obtained data confirmed that this isolate is best classified into a new genus in the family Acetobacteraceae. The DNA G+C content of strain LMG 28161(T) was 54.9 mol%. The fatty acid compositions of isolates R-52486 and LMG 28161(T) were similar to those of established AAB species [with C18:1ω7c (43.1%) as the major component], but the amounts of fatty acids such as C19:0 cyclo ω8c, C14:0 and C14:0 2-OH enabled to differentiate them. The major ubiquinone was Q-10. Both isolates could also be differentiated from the known genera of AAB by means of biochemical characteristics, such as their inability to oxidize ethanol to acetic acid, negligible acid production from melibiose, and notable acid production from d-fructose, sucrose and d-mannitol. In addition, they produced 2-keto-d-gluconate, but not 5-keto-d-gluconate from d-glucose. Therefore, the name Bombella intestini gen nov., sp. nov. is proposed for this new taxon, with LMG 28161(T) ( =DSM 28636(T) =R-52487(T)) as the type strain of the type species. PMID:25336723

  9. 40 CFR 721.2076 - D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false D-Glucuronic acid, polymer with 6...-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium magnesium potassium sodium... identified as D-Glucuronic acid, polymer with 6-deoxy-L-mannose and D-glucose, acetate, calcium...

  10. Butyric acid production from softwood hydrolysate by acetate-consuming Clostridium sp. S1 with high butyric acid yield and selectivity.

    PubMed

    Kim, Minsun; Kim, Ki-Yeon; Lee, Kyung Min; Youn, Sung Hun; Lee, Sun-Mi; Woo, Han Min; Oh, Min-Kyu; Um, Youngsoon

    2016-10-01

    The aim of this work was to study the butyric acid production from softwood hydrolysate by acetate-consuming Clostridium sp. S1. Results showed that Clostridium sp. S1 produced butyric acid by simultaneously utilizing glucose and mannose in softwood hydrolysate and, more remarkably, it consumed acetic acid in hydrolysate. Clostridium sp. S1 utilized each of glucose, mannose, and xylose as well as mixed sugars simultaneously with partially repressed xylose utilization. When softwood (Japanese larch) hydrolysate containing glucose and mannose as the main sugars was used, Clostridium sp. S1 produced 21.17g/L butyric acid with the yield of 0.47g/g sugar and the selectivity of 1 (g butyric acid/g total acids) owing to the consumption of acetic acid in hydrolysate. The results demonstrate potential of Clostridium sp. S1 to produce butyric acid selectively and effectively from hydrolysate not only by utilizing mixed sugars simultaneously but also by converting acetic acid to butyric acid. PMID:27474955

  11. Formic and Acetic Acid Observations over Colorado by Chemical Ionization Mass Spectrometry and Organic Acids' Role in Air Quality

    NASA Astrophysics Data System (ADS)

    Treadaway, V.; O'Sullivan, D. W.; Heikes, B.; Silwal, I.; McNeill, A.

    2015-12-01

    Formic acid (HFo) and acetic acid (HAc) have both natural and anthropogenic sources and a role in the atmospheric processing of carbon. These organic acids also have an increasing importance in setting the acidity of rain and snow as precipitation nitrate and sulfate concentrations have decreased. Primary emissions for both organic acids include biomass burning, agriculture, and motor vehicle emissions. Secondary production is also a substantial source for both acids especially from biogenic precursors, secondary organic aerosols (SOAs), and photochemical production from volatile organic compounds (VOCs) and oxygenated volatile organic compounds (OVOCs). Chemical transport models underestimate organic acid concentrations and recent research has sought to develop additional production mechanisms. Here we report HFo and HAc measurements during two campaigns over Colorado using the peroxide chemical ionization mass spectrometer (PCIMS). Iodide clusters of both HFo and HAc were recorded at mass-to-charge ratios of 173 and 187, respectively. The PCIMS was flown aboard the NCAR Gulfstream-V platform during the Deep Convective Clouds and Chemistry Experiment (DC3) and aboard the NCAR C-130 during the Front Range Air Pollution and Photochemistry Experiment (FRAPPE). The DC3 observations were made in May and June 2012 extending from the surface to 13 km over the central and eastern United States. FRAPPE observations were made in July and August 2014 from the surface to 7 km over Colorado. DC3 measurements reported here are focused over the Colorado Front Range and complement the FRAPPE observations. DC3 HFo altitude profiles are characterized by a decrease up to 6 km followed by an increase either back to boundary layer mixing ratio values or higher (a "C" shape). Organic acid measurements from both campaigns are interpreted with an emphasis on emission sources (both natural and anthropogenic) over Colorado and in situ photochemical production especially ozone precursors.

  12. Translocation of radiolabeled indole-3-acetic acid and indole-3-acetyl-myo-inositol from kernel to shoot of Zea mays L

    NASA Technical Reports Server (NTRS)

    Chisnell, J. R.; Bandurski, R. S.

    1988-01-01

    Either 5-[3H]indole-3-acetic acid (IAA) or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm of kernels of dark-grown Zea mays seedlings. The distribution of total radioactivity, radiolabeled indole-3-acetic acid, and radiolabeled ester conjugated indole-3-acetic acid, in the shoots was then determined. Differences were found in the distribution and chemical form of the radiolabeled indole-3-acetic acid in the shoot depending upon whether 5-[3H]indole-3-acetic acid or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm. We demonstrated that indole-3-acetyl-myo-inositol applied to the endosperm provides both free and ester conjugated indole-3-acetic acid to the mesocotyl and coleoptile. Free indole-3-acetic acid applied to the endosperm supplies some of the indole-3-acetic acid in the mesocotyl but essentially no indole-3-acetic acid to the coleoptile or primary leaves. It is concluded that free IAA from the endosperm is not a source of IAA for the coleoptile. Neither radioactive indole-3-acetyl-myo-inositol nor IAA accumulates in the tip of the coleoptile or the mesocotyl node and thus these studies do not explain how the coleoptile tip controls the amount of IAA in the shoot.

  13. Isotopic composition of Murchison organic compounds: Intramolecular carbon isotope fractionation of acetic acid. Simulation studies of cosmochemical organic syntheses

    NASA Technical Reports Server (NTRS)

    Yuen, G. U.; Cronin, J. R.; Blair, N. E.; Desmarais, D. J.; Chang, S.

    1991-01-01

    Recently, in our laboratories, samples of Murchison acetic acid were decarboxylated successfully and the carbon isotopic composition was measured for the methane released by this procedure. These analyses showed significant differences in C-13/C-12 ratios for the methyl and carboxyl carbons of the acetic acid molecule, strongly suggesting that more than one carbon source may be involved in the synthesis of the Murchison organic compounds. On the basis of this finding, laboratory model systems simulating cosmochemical synthesis are being studied, especially those processes capable of involving two or more starting carbon sources.

  14. Contribution of acetic acid to the hydrolysis of lignocellulosic biomass under abiotic conditions.

    PubMed

    Trzcinski, Antoine P; Stuckey, David C

    2015-06-01

    Acetic acid was used in abiotic experiments to adjust the solution pH and investigate its influence on the chemical hydrolysis of the Organic Fraction of Municipal Solid Waste (OFMSW). Soluble chemical oxygen demand (SCOD) was used to measure the hydrolysis under oxidative conditions (positive oxidation-reduction potential values), and pH 4 allowed for 20% (±2%) of the COD added to be solubilized, whereas only 12% (±1%) was solubilized at pH7. Under reducing conditions (negative oxidation-reduction potential values) and pH 4, 32.3% (±3%) of the OFMSW was solubilized which shows that acidogenesis at pH 4 during the anaerobic digestion of solid waste can result in chemical hydrolysis. In comparison, bacterial hydrolysis resulted in 54% (±6%) solubilization.

  15. Ultrastructure of Sheep Primordial Follicles Cultured in the Presence of Indol Acetic Acid, EGF, and FSH

    PubMed Central

    Andrade, Evelyn Rabelo; Maddox-Hyttel, Poul; Landim-Alvarenga, Fernanda Da Cruz; Viana Silva, José Roberto; Alfieri, Amauri Alcindo; Seneda, Marcelo Marcondes; Figueiredo, José Ricardo; Toniolli, Ricardo

    2011-01-01

    The aim of this study was to investigate the ultrastructural characteristics of primordial follicles after culturing of sheep ovarian cortical slices in the presence of indol acetic acid (IAA), Epidermal Growth Factor (EGF), and FSH. To evaluate ultrastructure of primordial follicles cultured in MEM (control) or in MEM containing IAA, EGF, and FSH, fragments of cultured tissue were processes for transmission electron microscopy. Except in the control, primordial follicles cultured in supplemented media for 6 d were ultrastructurally normal. They had oocyte with intact nucleus and the cytoplasm contained heterogeneous-sized lipid droplets and numerous round or elongated mitochondria with intact parallel cristae were observed. Rough endoplasmic reticulum (RER) was rarely found. The granulosa cells cytoplasm contained a great number of mitochondria and abundant RER. In conclusion, the presence of IAA, EGF, and FSH helped to maintain ultrastructural integrity of sheep primordial follicles cultured in vitro. PMID:21188166

  16. Utilization of Vinegar for Isolation of Cellulose Producing Acetic Acid Bacteria

    SciTech Connect

    Aydin, Y. Andelib; Aksoy, Nuran Deveci

    2010-06-17

    Wastes of traditionally fermented Turkish vinegar were used in the isolation of cellulose producing acetic acid bacteria. Waste material was pre-enriched in Hestrin-Schramm medium and microorganisms were isolated by plating dilution series on HS agar plates The isolated strains were subjected to elaborate biochemical and physiological tests for identification. Test results were compared to those of reference strains Gluconacetobacter xylinus DSM 46604, Gluconacetobacter hansenii DSM 5602 and Gluconacetobacter liquefaciens DSM 5603. Seventeen strains, out of which only three were found to secrete the exopolysaccharide cellulose. The highest cellulose yield was recorded as 0.263+-0.02 g cellulose L{sup -1} for the strain AS14 which resembled Gluconacetobacter hansenii in terms of biochemical tests.

  17. Utilization of Vinegar for Isolation of Cellulose Producing Acetic Acid Bacteria

    NASA Astrophysics Data System (ADS)

    Aydin, Y. Andelib; Aksoy, Nuran Deveci

    2010-06-01

    Wastes of traditionally fermented Turkish vinegar were used in the isolation of cellulose producing acetic acid bacteria. Waste material was pre-enriched in Hestrin-Schramm medium and microorganisms were isolated by plating dilution series on HS agar plates The isolated strains were subjected to elaborate biochemical and physiological tests for identification. Test results were compared to those of reference strains Gluconacetobacter xylinus DSM 46604, Gluconacetobacter hansenii DSM 5602 and Gluconacetobacter liquefaciens DSM 5603. Seventeen strains, out of which only three were found to secrete the exopolysaccharide cellulose. The highest cellulose yield was recorded as 0.263±0.02 g cellulose L-1 for the strain AS14 which resembled Gluconacetobacter hansenii in terms of biochemical tests.

  18. Strain typing of acetic acid bacteria responsible for vinegar production by the submerged elaboration method.

    PubMed

    Fernández-Pérez, Rocío; Torres, Carmen; Sanz, Susana; Ruiz-Larrea, Fernanda

    2010-12-01

    Strain typing of 103 acetic acid bacteria isolates from vinegars elaborated by the submerged method from ciders, wines and spirit ethanol, was carried on in this study. Two different molecular methods were utilised: pulsed field gel electrophoresis (PFGE) of total DNA digests with a number of restriction enzymes, and enterobacterial repetitive intergenic consensus (ERIC) - PCR analysis. The comparative study of both methods showed that restriction fragment PFGE of SpeI digests of total DNA was a suitable method for strain typing and for determining which strains were present in vinegar fermentations. Results showed that strains of the species Gluconacetobacter europaeus were the most frequent leader strains of fermentations by the submerged method in the studied vinegars, and among them strain R1 was the predominant one. Results showed as well that mixed populations (at least two different strains) occurred in vinegars from cider and wine, whereas unique strains were found in spirit vinegars, which offered the most stressing conditions for bacterial growth.

  19. Acetic acid bacteria genomes reveal functional traits for adaptation to life in insect guts.

    PubMed

    Chouaia, Bessem; Gaiarsa, Stefano; Crotti, Elena; Comandatore, Francesco; Degli Esposti, Mauro; Ricci, Irene; Alma, Alberto; Favia, Guido; Bandi, Claudio; Daffonchio, Daniele

    2014-04-01

    Acetic acid bacteria (AAB) live in sugar rich environments, including food matrices, plant tissues, and the gut of sugar-feeding insects. By comparing the newly sequenced genomes of Asaia platycodi and Saccharibacter sp., symbionts of Anopheles stephensi and Apis mellifera, respectively, with those of 14 other AAB, we provide a genomic view of the evolutionary pattern of this bacterial group and clues on traits that explain the success of AAB as insect symbionts. A specific pre-adaptive trait, cytochrome bo3 ubiquinol oxidase, appears ancestral in AAB and shows a phylogeny that is congruent with that of the genomes. The functional properties of this terminal oxidase might have allowed AAB to adapt to the diverse oxygen levels of arthropod guts.

  20. Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms

    PubMed Central

    Fu, Shih-Feng; Wei, Jyuan-Yu; Chen, Hung-Wei; Liu, Yen-Yu; Lu, Hsueh-Yu; Chou, Jui-Yu

    2015-01-01

    Plants as well as microorganisms, including bacteria and fungi, produce indole-3-acetic acid (IAA). IAA is the most common plant hormone of the auxin class and it regulates various aspects of plant growth and development. Thus, research is underway globally to exploit the potential for developing IAA-producing fungi for promoting plant growth and protection for sustainable agriculture. Phylogenetic evidence suggests that IAA biosynthesis evolved independently in bacteria, microalgae, fungi, and plants. Present studies show that IAA regulates the physiological response and gene expression in these microorganisms. The convergent evolution of IAA production leads to the hypothesis that natural selection might have favored IAA as a widespread physiological code in these microorganisms and their interactions. We summarize recent studies of IAA biosynthetic pathways and discuss the role of IAA in fungal ecology. PMID:26179718

  1. Acetic Acid Bacteria Genomes Reveal Functional Traits for Adaptation to Life in Insect Guts

    PubMed Central

    Chouaia, Bessem; Gaiarsa, Stefano; Crotti, Elena; Comandatore, Francesco; Degli Esposti, Mauro; Ricci, Irene; Alma, Alberto; Favia, Guido; Bandi, Claudio; Daffonchio, Daniele

    2014-01-01

    Acetic acid bacteria (AAB) live in sugar rich environments, including food matrices, plant tissues, and the gut of sugar-feeding insects. By comparing the newly sequenced genomes of Asaia platycodi and Saccharibacter sp., symbionts of Anopheles stephensi and Apis mellifera, respectively, with those of 14 other AAB, we provide a genomic view of the evolutionary pattern of this bacterial group and clues on traits that explain the success of AAB as insect symbionts. A specific pre-adaptive trait, cytochrome bo3 ubiquinol oxidase, appears ancestral in AAB and shows a phylogeny that is congruent with that of the genomes. The functional properties of this terminal oxidase might have allowed AAB to adapt to the diverse oxygen levels of arthropod guts. PMID:24682158

  2. Response to flavone acetic acid (NSC 347512) of primary and metastatic human colorectal carcinoma xenografts.

    PubMed Central

    Giavazzi, R.; Garofalo, A.; Damia, G.; Garattini, S.; D'Incalci, M.

    1988-01-01

    The antitumour activity of flavone acetic acid (FAA) was evaluated against two human colorectal carcinoma (HCC) lines, HCC-P2988 and HCC-M1410, transplanted into nude mice. On repeated i.v. injection of 200 mg kg-1 every 4 days FAA was moderately active against the s.c. growing HCC-P2988. HCC-M1410 transplanted s.c. was almost unresponsive in the same experimental conditions. In contrast, FAA (200 mg kg-1 i.v. every 4 days, repeated three times) significantly reduced liver tumour colonies produced by the HCC-M1410 cells injected intrasplenically into nude mice. These findings suggest that FAA has potential activity against human colorectal carcinoma, particularly against liver metastases. Images Figure 3 Figure 4 PMID:3355765

  3. Vapor phase ketonization of acetic acid on ceria based metal oxides

    SciTech Connect

    Liu, Changjun; Karim, Ayman M.; Lebarbier, Vanessa MC; Mei, Donghai; Wang, Yong

    2013-12-01

    The activities of CeO2, Mn2O3-CeO2 and ZrO2-CeO2 were measured for acetic acid ketonization under reaction conditions relevant to pyrolysis vapor upgrading. We show that the catalyst ranking changed depending on the reaction conditions. Mn2O3-CeO2 was the most active catalyst at 350 oC, while ZrO2 - CeO2 was the most active catalyst at 450 oC. Under high CO2 and steam concentration in the reactants, Mn2O3-CeO2 was the most active catalyst at 350 and 450 °C. The binding energies of steam and CO2 with the active phase were calculated to provide the insight into the tolerance of Mn2O3-CeO2 to steam and CO2.

  4. Ruthenium recovery from acetic acid waste water through sorption with bacterial biosorbent fibers.

    PubMed

    Kwak, In Seob; Won, Sung Wook; Chung, Yong Sik; Yun, Yeoung-Sang

    2013-01-01

    A fibrous bacterial biosorbent was developed to bind precious metal-organic complexes in batch and column processes. Polyethylenimine (PEI)-modified bacterial biosorbent fiber (PBBF) was prepared by spinning Corynebacterium glutamicum biomass-chitosan blends, coating them with PEI and cross-linking with glutaraldehyde. When an acetic acid waste solution containing 1822.9mg/L Ru was used as a model waste solution, Ru uptake by the PBBF was 16.5 times higher than that of the commercial ion exchange resin, Lewatit MonoPlus M600. The maximum amounts of Ru uptake were 110.5, 16.0 and 6.7mg/g for PBBF, raw biomass, and Lewatit MonoPlus M600, respectively. In a flow-through packed bed, PBBF exhibited the breakthrough time of 42.32h. Therefore, PBBF can be considered as an alternative sorbent for recovery of anionic metal-organic complexes from waste solutions.

  5. Acetic acid effects on methanogens in the second stage of a two-stage anaerobic system.

    PubMed

    Xiao, Keke; Guo, Chenghong; Zhou, Yan; Maspolim, Yogananda; Ng, Wun-Jern

    2016-02-01

    This study reports on biomass tolerance towards high concentrations of acetic acid (HAc) within the system. Biomass from the second stage of a two-stage anaerobic sludge digestion system was used for this study. Microbial community analysis by 454 pyrosequencing highlighted hydrogenotrophic Methanomicrobiales was the predominant archaeal population in the second stage (>99% of the total archaeal community). Second stage biomass degraded HAc up to 4200 mg HAc L(-1) without observable lag phase. However, at HAc-shock loading of 7400 mg HAc L(-1), it showed a one day lag phase associated with decreased biomass activity. After stepwise HAc-acclimation over 27 d, the biomass degraded HAc of up to 8200 mg HAc L(-1) without observable lag phase. The dominance of Methanomicrobiales had remained unchanged in proportion - while the total archaeal population increased during acclimation. This study showed stepwise acclimation could be an approach to accommodate HAc accumulation and hence higher concentrations resulting from an enhanced first stage.

  6. Treatment of Myositis Ossificans with acetic acid phonophoresis: a case series

    PubMed Central

    Bagnulo, Angela; Gringmuth, Robert

    2014-01-01

    Objective To create awareness of myositis ossificans (MO) as a potential complication of muscle contusion by presenting its clinical presentation and diagnostic features. An effective method of treatment is offered for those patients who develop traumatic MO. Management: Patients in this case series developed traumatic MO, confirmed on diagnostic ultrasound. Patients participated in a treatment regimen consisting of phonophoresis of acetic acid with ultrasound. Outcome: In all cases, a trial of phonophoresis therapy significantly decreased patient signs, symptoms and the size of the calcification on diagnostic ultrasound in most at a 4-week post diagnosis mark. Discussion: Due to the potential damage to the muscle and its function, that surgical excision carries; safe effective methods of conservative treatment for MO are crucial. MO deserves more attention in the literature due to its common presentation in athletes. PMID:25550659

  7. Sensitizers containing donor cascade and rhodanine-3-acetic acid moieties for dye-sensitized solar cells

    SciTech Connect

    Wu, Quan-Ping; Zhang, Lu; Liang, Mao; Sun, Zhe; Xue, Song

    2011-01-15

    Three organic dyes with D-{pi}-D-{pi}-A structure based on triarylamine, dimethylarylamine, and rhodanine-3-acetic acid moieties are designed and synthesized. Incorporating thiophene moieties into the system affords sensitizers with high molar extinction coefficients. These dyes were applied into nanocrystalline TiO{sub 2} dye-sensitized solar cells through standard operations. For a typical device the maximal monochromatic incident photon-to-current conversion efficiency (IPCE) can reach 73%, with a short-circuit photocurrent density (J{sub sc}) of 7.3 mA/cm{sup 2}, an open-circuit voltage (V{sub oc}) of 636 mV, and a fill factor (ff) of 0.61, corresponding to an overall conversion efficiency ({eta}) of 2.86%. (author)

  8. THE USE OF ACETIC ACID IONTOPHORESIS IN THE MANAGEMENT OF A SOFT TISSUE INJURY

    PubMed Central

    Ebaugh, David

    2010-01-01

    Background: Contusions are common injuries that occur in athletics. If repeated, complications like myositis ossificans can occur. This case describes the examination and treatment of an athlete with an acute soft tissue injury. Objective: To describe the treatment approach used with a hockey player who sustained a soft tissue injury in his upper extremity. Case Description: A 19 year old male sustained a soft tissue injury to his upper arm while playing hockey. The athlete complained of pain rated a 2-3 out of 10. He had a well circumscribed, firm, 8 by 5 centimeter palpable mass present along the lateral arm, and was able to passively flex his elbow from 56° to 135°, demonstrating a 56° loss of elbow extension. Functionally, he was able to perform most activities of daily living, but he was unable to play hockey. Over 29 days, the athlete was treated one time with pulsed ultrasound and ice and nine times with iontophoresis using a 2% acetic acid solution. Additionally, the athlete performed pain-free active range of motion exercises for the elbow. Outcome: Following treatment, the athlete's pain resolved, the palpable mass disappeared, and his passive range of motion at the elbow was 0° to 135°. Most importantly, the athlete was able to resume playing hockey. Discussion: Acetic acid iontophoresis may be a successful intervention for soft tissue injuries of the upper extremity. In this case, it appeared helpful in decreasing the athlete's impairments and contributed to quicker resumption of all functional activities in less time than previously reported in the literature using traditional treatment interventions. PMID:21655380

  9. Bacterial dynamics and metabolite changes in solid-state acetic acid fermentation of Shanxi aged vinegar.

    PubMed

    Li, Sha; Li, Pan; Liu, Xiong; Luo, Lixin; Lin, Weifeng

    2016-05-01

    Solid-state acetic acid fermentation (AAF), a natural or semi-controlled fermentation process driven by reproducible microbial communities, is an important technique to produce traditional Chinese cereal vinegars. Highly complex microbial communities and metabolites are involved in traditional Chinese solid-state AAF, but the association between microbiota and metabolites during this process are still poorly understood. In this study, we performed amplicon 16S rRNA gene sequencing on the Illumina MiSeq platform, PCR-denaturing gradient gel electrophoresis, and metabolite analysis to trace the bacterial dynamics and metabolite changes under AAF process. A succession of bacterial assemblages was observed during the AAF process. Lactobacillales dominated all the stages. However, Acetobacter species in Rhodospirillales were considerably accelerated during AAF until the end of fermentation. Quantitative PCR results indicated that the biomass of total bacteria showed a "system microbe self-domestication" process in the first 3 days, and then peaked at the seventh day before gradually decreasing until the end of AAF. Moreover, a total of 88 metabolites, including 8 organic acids, 16 free amino acids, and 66 aroma compounds were detected during AAF. Principal component analysis and cluster analyses revealed the high correlation between the dynamics of bacterial community and metabolites.

  10. Darmstoff analogues. 3. Actions of choline esters of acetal phosphatidic acids on visceral smooth muscle.

    PubMed

    Marx, M H; Wiley, R A; Satchell, D G; Maguire, M H

    1989-06-01

    A number of naturally occurring phospholipids, e.g. the acetal phosphatidic acid derivatives that comprise Darmstoff (1) and the phosphatidylcholine derivative platelet activating factor (PAF), cause contraction of certain visceral smooth muscles and cause platelet activation. Because the Darmstoff phosphatidic acids and PAF are structurally similar, it was of interest to compare the biological actions of choline esters of Darmstoff with those of PAF and of the parent Darmstoff phosphatidic acids. To this end, [(2-pentadecyl-1,3-dioxolan-4-yl)methyl]phosphocholine (3a), [[2-(cis-8-heptadecenyl)-1,3-dioxolan-4-yl]methyl]phosphocho line (3b), and [[2-(cis-8-pentadecenyl)-1,3-dioxolan-4-yl]methyl]phosphocho line (3c) were synthesized. Compounds 3a, 3b, 3c, and PAF caused dose-dependent relaxation of taenia coli strips. In contrast, the unesterified materials 1a and 1b, as well as lyso-PAF, caused contraction in taenia coli strips. Thus, the contractile effect of Darmstoff is reversed on esterification with choline. In preparations of whole trachea, both 1a and 3a had contractile effects similar to those of PAF.

  11. Acetic Acid Can Catalyze Succinimide Formation from Aspartic Acid Residues by a Concerted Bond Reorganization Mechanism: A Computational Study

    PubMed Central

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2015-01-01

    Succinimide formation from aspartic acid (Asp) residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe) as a model compound, we propose the possibility that acetic acid (AA), which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition) to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds) occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism. PMID:25588215

  12. Evaluation of the tolerance of acetic acid and 2-furaldehyde on the growth of Pichia stipitis and its respiratory deficient.

    PubMed

    Ortiz-Muñiz, B; Rasgado-Mellado, J; Solis-Pacheco, J; Nolasco-Hipólito, C; Domínguez-González, J M; Aguilar-Uscanga, M G

    2014-10-01

    The use of lignocellulosic residues for ethanol production is limited by toxic compounds in fermenting yeasts present in diluted acid hydrolysates like acetic acid and 2-furaldehyde. The respiratory deficient phenotype gives the cell the ability to resist several toxic compounds. So the aim of this work was to evaluate the tolerance to toxic compounds present in lignocellulosic hydrolysates like acetic acid and 2-furaldehyde in Pichia stipitis and its respiratory deficient strains. The respiratory deficient phenotype was induced by exposure to chemical agents such as acriflavine, acrylamide and rhodamine; 23 strains were obtained. The selection criterion was based on increasing specific ethanol yield (g ethanol g(-1) biomass) with acetic acid and furaldehyde tolerance. The screening showed that P. stipitis NRRL Y-7124 ACL 2-1RD (lacking cytochrome c), obtained using acrylamide, presented the highest specific ethanol production rate (1.82 g g(-1 )h(-1)). Meanwhile, the ACF8-3RD strain showed the highest acetic acid tolerance (7.80 g L(-1)) and the RHO2-3RD strain was able to tolerate up to 1.5 g L(-1) 2-furaldehyde with a growth and ethanol production inhibition of 23 and 22 %, respectively. The use of respiratory deficient yeast phenotype is a strategy for ethanol production improvement in a medium with toxic compounds such as hydrolysed sugarcane bagasse amongst others.

  13. Gluconacetobacter medellinensis sp. nov., cellulose- and non-cellulose-producing acetic acid bacteria isolated from vinegar.

    PubMed

    Castro, Cristina; Cleenwerck, Ilse; Trcek, Janja; Zuluaga, Robin; De Vos, Paul; Caro, Gloria; Aguirre, Ricardo; Putaux, Jean-Luc; Gañán, Piedad

    2013-03-01

    The phylogenetic position of a cellulose-producing acetic acid bacterium, strain ID13488, isolated from commercially available Colombian homemade fruit vinegar, was investigated. Analyses using nearly complete 16S rRNA gene sequences, nearly complete 16S-23S rRNA gene internal transcribed spacer (ITS) sequences, as well as concatenated partial sequences of the housekeeping genes dnaK, groEL and rpoB, allocated the micro-organism to the genus Gluconacetobacter, and more precisely to the Gluconacetobacter xylinus group. Moreover, the data suggested that the micro-organism belongs to a novel species in this genus, together with LMG 1693(T), a non-cellulose-producing strain isolated from vinegar by Kondo and previously classified as a strain of Gluconacetobacter xylinus. DNA-DNA hybridizations confirmed this finding, revealing a DNA-DNA relatedness value of 81 % between strains ID13488 and LMG 1693(T), and values <70 % between strain LMG 1693(T) and the type strains of the closest phylogenetic neighbours. Additionally, the classification of strains ID13488 and LMG 1693(T) into a single novel species was supported by amplified fragment length polymorphism (AFLP) and (GTG)5-PCR DNA fingerprinting data, as well as by phenotypic data. Strains ID13488 and LMG 1693(T) could be differentiated from closely related species of the genus Gluconacetobacter by their ability to produce 2- and 5-keto-d-gluconic acid from d-glucose, their ability to produce acid from sucrose, but not from 1-propanol, and their ability to grow on 3 % ethanol in the absence of acetic acid and on ethanol, d-ribose, d-xylose, sucrose, sorbitol, d-mannitol and d-gluconate as carbon sources. The DNA G+C content of strains ID13488 and LMG 1693(T) was 58.0 and 60.7 mol%, respectively. The major ubiquinone of LMG 1693(T) was Q-10. Taken together these data indicate that strains ID13488 and LMG 1693(T) represent a novel species of the genus Gluconacetobacter for which the name Gluconacetobacter

  14. An atom-economic approach to carboxylic acids via Pd-catalyzed direct addition of formic acid to olefins with acetic anhydride as a co-catalyst.

    PubMed

    Wang, Yang; Ren, Wenlong; Shi, Yian

    2015-08-21

    An effective Pd-catalyzed hydrocarboxylation of olefins using formic acid with acetic anhydride as a co-catalyst is described. A variety of carboxylic acids are obtained in good yields with high regioselectivities under mild reaction conditions without the use of toxic CO gas.

  15. Influence of phenolic acids on indole acetic acid production and on the type III secretion system gene transcription in food-associated Pseudomonas fluorescens KM05.

    PubMed

    Myszka, Kamila; Schmidt, Marcin T; Olejnik-Schmidt, Agnieszka K; Leja, Katarzyna; Czaczyk, Katarzyna

    2014-12-01

    The purpose of these investigations was to evaluate the reduction capability of phenolic acids (ferulic, chlorogenic, gallic, and p-coumaric acids) on indole acetic acid synthesis by food-associated Pseudomonas fluorescens KM05. Specific genetic primer for the type III secretion system (TTSS) in P. fluorescens KM05 was designed and the influence of phenolic acids on its expression was investigated. In the work the ferulic and chlorogenic acids at the concentration of 0.02 and 0.04 μg/ml affected on bacterial growth pattern and the signal molecules production. The phenolic acids, that were appreciable effective against P. fluorescens KM05 indole acetic acid production, significantly suppressed TTSS gene.

  16. Kinetics of trihalogenated acetic acid metabolism and isoform specificity in liver microsomes.

    PubMed

    Saghir, Shakil A; Ghanayem, Burhan I; Schultz, Irvin R

    2011-10-01

    This study determined the metabolism of 3 drinking water disinfection by-products (halogenated acetic acids [HAAs]), bromodichloroacetic acid (BDCAA), chlorodibromoacetic acid (CDBAA), and tribromoacetic acid (TBAA), using rat, mouse, human liver microsomes, and recombinant P450. Metabolism proceeded by reductive debromination forming a di-HAA; the highest under nitrogen >2% oxygen > atmospheric headspaces. V (max) for the loss of tri-HAA was 4 to 5 times higher under nitrogen than atmospheric headspace. Intrinsic metabolic clearance was TBAA>CDBAA>BDCAA. At the high substrate concentrations, tri-HAA consumption rate was 2 to 3 times higher than the formation of di-HAA. Liberation of Br(-) from TBAA corresponded to the expected amount produced after DBAA formation, indicating retention of Br(-) by additional metabolite/metabolites. Subsequent experiments with CDBAA detected negligible formation of chlorodibromomethane (CDBM) and failed to account for the missing tri-HAA. Carbon monoxide and especially diphenyleneiodonium ([DPI] P450 reductase inhibitor) blocked CDBAA metabolism. Other chemical inhibitors were only partially able to block CDBAA metabolism. Most effective were inhibitors of CYP 2E1 and CYP 3A4. Immunoinhibition studies using human liver microsomes and anti-human CYP 2E1 antibodies were successful in reducing CDBAA metabolism. However, CDBAA metabolism in wild-type (WT) and CYP 2E1 knockout (KO) mouse liver microsomes was similar, suggesting significant interspecies differences in CYP isoform in tri-HAA metabolism. Additional assessment of CYP isoform involvement was complicated by the finding that recombinantly expressed rat and human P450 reductase was able to metabolize CDBAA, which may be a contributing factor in interspecies differences in tri-HAA metabolism.

  17. The tryptophan conjugates of jasmonic and indole-3-acetic acids are endogenous auxin inhibitors.

    PubMed

    Staswick, Paul E

    2009-07-01

    Most conjugates of plant hormones are inactive, and some function to reduce the active hormone pool. This study characterized the activity of the tryptophan (Trp) conjugate of jasmonic acid (JA-Trp) in Arabidopsis (Arabidopsis thaliana). Unexpectedly, JA-Trp caused agravitropic root growth in seedlings, unlike JA or nine other JA-amino acid conjugates. The response was dose dependent from 1 to 100 microm, was independent of the COI1 jasmonate signaling locus, and unlike the jasmonate signal JA-isoleucine, JA-Trp minimally inhibited root growth. The Trp conjugate with indole-3-acetic acid (IAA-Trp) produced a similar response, while Trp alone and conjugates with benzoic and cinnamic acids did not. JA-Trp and IAA-Trp at 25 microm nearly eliminated seedling root inhibition caused by 2 microm IAA. The TIR1 auxin receptor is required for activity because roots of tir1-1 grew only approximately 60% of wild-type length on IAA plus JA-Trp, even though tir1-1 is auxin resistant. However, neither JA-Trp nor IAA-Trp interfered with IAA-dependent interaction between TIR1 and Aux/IAA7 in cell-free assays. Trp conjugates inhibited IAA-stimulated lateral root production and DR5-beta-glucuronidase gene expression. JA-deficient mutants were hypersensitive to IAA and a Trp-overaccumulating mutant was less sensitive, suggesting endogenous conjugates affect auxin sensitivity. Conjugates were present at 5.8 pmol g(-1) fresh weight or less in roots, seedlings, leaves, and flowers, and the values increased approximately 10-fold in roots incubated in 25 microm Trp and IAA or JA at 2 microm. These results show that JA-Trp and IAA-Trp constitute a previously unrecognized mechanism to regulate auxin action.

  18. Preferential Stereocomplex Crystallization in Enantiomeric Blends of Cellulose Acetate-g-Poly(lactic acid)s with Comblike Topology.

    PubMed

    Bao, Jianna; Han, Lili; Shan, Guorong; Bao, Yongzhong; Pan, Pengju

    2015-10-01

    Although stereocomplex (sc) crystallization is highly effective for improving the thermal resistance of poly(lactic acid) (PLA), it is much less predominant than homocrystallization in high-molecular-weight (HMW) poly(l-lactic acid)/ poly(d-lactic acid) (PLLA/PDLA) racemic blends. In this contribution, the sc crystallization of HMW PLLA/PDLA racemic blends was facilitated by using comblike PLAs with cellulose acetate as the backbone. Competing crystallization kinetics, polymorphic crystalline structure, and structural transition of comblike PLLA/PDLA blends with a wide range of MWs were investigated and compared with the corresponding linear/comblike and linear blends. The HMW comblike blend is preferentially crystallized in sc polymorphs and exhibits a faster crystallization rate than does the corresponding linear blend. The sc crystallites are predominantly formed in nonisothermal cold crystallization and isothermal crystallization at temperatures above 120 °C for the comblike blends. Except for the facilitated sc formation in primary crystallization, synchrotron radiation WAXD analysis indicates that the presence of a comblike component also facilitates the transition or recrystallization from homocrystallite (hc) to sc crystallite upon heating. Preferential sc formation of comblike blends is probably attributable to the favorable interdigitation between enantiomeric branches and the increased mobility of polymer segments. After crystallization under the same temperature, the comblike blends, which mainly contain sc crystallites, show smaller long periods and thinner crystalline lamellae than do the corresponding PLLA with homocrystalline structures.

  19. ETHANOL, ACETIC ACID, AND WATER ADSORPTION FROM BINARY AND TERNARY LIQUID MIXTURES ON HIGH-SILICA ZEOLITES

    EPA Science Inventory

    Adsorption isotherms were measured for ethanol, acetic acid, and water adsorbed on high-silica ZSM-5 zeolite powder from binary and ternary liquid mixtures at room temperature. Ethanol and water adsorption on two high-silica ZSM-5 zeolites with different aluminum contents and a h...

  20. Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A mixture of acetic acid, furfural and phenol (AFP), three representative lignocellulose derived inhibitors, significantly inhibited the growth and bioethanol production of Saccharomyces cerevisiae. In order to uncover mechanisms behind the enhanced tolerance of an inhibitor-tolerant S.cerevisiae s...

  1. Identification and characterization of thermotolerant acetic acid bacteria strains isolated from coconut water vinegar in Sri Lanka.

    PubMed

    Perumpuli, P A B N; Watanabe, Taisuke; Toyama, Hirohide

    2014-01-01

    From the pellicle formed on top of brewing coconut water vinegar in Sri Lanka, three Acetobacter strains (SL13E-2, SL13E-3, and SL13E-4) that grow at 42 °C and four Gluconobacter strains (SL13-5, SL13-6, SL13-7, and SL13-8) grow at 37 °C were identified as Acetobacter pasteurianus and Gluconobacter frateurii, respectively. Acetic acid production by the isolated Acetobacter strains was examined. All three strains gave 4% acetic acid from 6% initial ethanol at 37 °C, and 2.5% acetic acid from 4% initial ethanol at 40 °C. Compared with the two other strains, SL13E-4 showed both slower growth and slower acetic acid production. As well as the thermotolerant SKU1108 strain, the activities of the alcohol dehydrogenase and the aldehyde dehydrogenase of SL13E-2 and SL13E-4 were more stable than those of the mesophilic strain. The isolated strains were used to produce coconut water vinegar at higher temperatures than typically used for vinegar production.

  2. Metal-organic coordination architectures of azole heterocycle ligands bearing acetic acid groups: Synthesis, structure and magnetic properties

    SciTech Connect

    Hu Bowen; Zhao Jiongpeng; Yang Qian; Hu Tongliang; Du Wenping; Bu Xianhe

    2009-10-15

    Four new coordination complexes with azole heterocycle ligands bearing acetic acid groups, [Co(L{sup 1}){sub 2}]{sub n} (1), [CuL{sup 1}N{sub 3}]{sub n} (2), [Cu(L{sup 2}){sub 2}.0.5C{sub 2}H{sub 5}OH.H{sub 2}O]{sub n} (3) and [Co(L{sup 2}){sub 2}]{sub n} (4) (here, HL{sup 1}=1H-imidazole-1-yl-acetic acid, HL{sup 2}=1H-benzimidazole-1-yl-acetic acid) have been synthesized and structurally characterized. Single-crystal structure analysis shows that 3 and 4 are 2D complexes with 4{sup 4}-sql topologies, while another 2D complex 1 has a (4{sup 3}){sub 2}(4{sup 6})-kgd topology. And 2 is a 3D complex composed dinuclear mu{sub 1,1}-bridging azido Cu{sup II} entities with distorted rutile topology. The magnetic properties of 1 and 2 have been studied. - Graphical Abstract: The synthesis, crystal structure, and magnetic properties of the new coordination complexes with azole heterocycle ligands bearing acetic acid groups are reported.

  3. Acetic Acid Sclerotherapy for Treatment of a Bile Leak from an Isolated Bile Duct After Laparoscopic Cholecystectomy

    SciTech Connect

    Choi, Gibok Eun, Choong Ki; Choi, HyunWook

    2011-02-15

    Bile leak after laparoscopic cholecystectomy is not uncommon, and it mainly occurs from the cystic duct stump and can be easily treated by endoscopic techniques. However, treatment for leakage from an isolated bile duct can be troublesome. We report a successful case of acetic acid sclerotherapy for bile leak from an isolated bile duct after laparoscopic cholecystectomy.

  4. Liquid phase esterification of acetic acid over WO3 promoted β-SiC in a solvent free system.

    PubMed

    Mishra, Gopa; Behera, Gobinda C; Singh, S K; Parida, K M

    2012-12-21

    A series of tungstate promoted β-SiC catalysts was synthesized by a wetness impregnation method. The as synthesized catalysts were unambiguously characterized by XRD, Raman, FTIR, XPS, UV-Vis DRS, TEM, BET surface areas and FE-SEM, and simultaneously the total amount of the acidity of the catalysts was estimated by NH(3)-TPD. The catalytic activities of the synthesized materials were tested in the liquid phase esterification of acetic acid with n-butanol in a solvent free medium. The reaction parameters were optimized to a temperature of 120 °C, molar ratio of butanol and acetic acid of 1:2 and a reaction time of 6 h after performing a number of experiments. Under the optimum conditions, the catalytic esterification revealed a significant effect of 88% conversion with 100% selectivity to butyl acetate in 20 wt% WO(3)/β-SiC. This is the first report on the effective utilization of β-SiC as a catalyst support for liquid phase esterification of acetic acid.

  5. 2-Aryl(pyrrolidin-4-yl)acetic acids are potent agonists of sphingosine-1-phosphate (S1P) receptors.

    PubMed

    Yan, Lin; Budhu, Richard; Huo, Pei; Lynch, Christopher L; Hale, Jeffrey J; Mills, Sander G; Hajdu, Richard; Keohane, Carol A; Rosenbach, Mark J; Milligan, James A; Shei, Gan-Ju; Chrebet, Gary; Bergstrom, James; Card, Deborah; Mandala, Suzanne M

    2006-07-01

    A series of 2-aryl(pyrrolidin-4-yl)acetic acids were synthesized and their biological activities were evaluated as agonists of S1P receptors. These analogs were able to induce lowering of lymphocyte counts in the peripheral blood of mice and were found to have good overall pharmacokinetic properties in rat.

  6. Formic and Acetic Acids in Degradation Products of Plant Volatiles Elicit Olfactory and Behavioral Responses from an Insect Vector.

    PubMed

    George, Justin; Robbins, Paul S; Alessandro, Rocco T; Stelinski, Lukasz L; Lapointe, Stephen L

    2016-05-01

    Volatile phytochemicals play a role in orientation by phytophagous insects. We studied antennal and behavioral responses of the Asian citrus psyllid, Diaphorina citri, vector of the citrus greening disease pathogen. Little or no response to citrus leaf volatiles was detected by electroantennography. Glass cartridges prepared with β-ocimene or citral produced no response initially but became stimulatory after several days. Both compounds degraded completely in air to a number of smaller molecules. Two peaks elicited large antennal responses and were identified as acetic and formic acids. Probing by D. citri of a wax substrate containing odorants was significantly increased by a blend of formic and acetic acids compared with either compound separately or blends containing β-ocimene and/or citral. Response surface modeling based on a 4-component mixture design and a 2-component mixture-amount design predicted an optimal probing response on wax substrate containing a blend of formic and acetic acids. Our study suggests that formic and acetic acids play a role in host selection by D. citri and perhaps by phytophagous insects in general even when parent compounds from which they are derived are not active. These results have implications for the investigation of arthropod olfaction and may lead to elaboration of attract-and-kill formulations to reduce nontarget effects of chemical control in agriculture. PMID:26857741

  7. Production of acetic acid by hydrothermal two-step process of vegetable wastes for use as a road deicer

    NASA Astrophysics Data System (ADS)

    Jin, F.; Watanabe, Y.; Kishita, A.; Enomoto, H.; Kishida, H.

    2008-07-01

    This study aimed to produce acetic acid from vegetable wastes by a new hydrothermal two-step process. A continuous flow reaction system with a maximum treatment capacity of 2 kg/h of dry biomass developed by us was used. Five kinds of vegetables of carrots, white radish, chinese cabbage, cabbage and potato were selected as the representation of vegetable wastes. First, batch experiments with the selected vegetables were performed under the condition of 300°C, 1 min for the first step, and 300°C, 1 min and 70% oxygen supply for the second step, which is the optimum condition for producing acetic acid in the case of using starch as test material. The highest yields of acetic acid from five vegetables were almost the same as those obtained from starch. Subsequently, similar the highest yield of acetic acid and experimental conditions from vegetables were also obtained successfully using the continuous flow reaction system. These results should be useful for developing an industrial scale process.

  8. Protective effect of Agave americana Linn. leaf extract in acetic acid-induced ulcerative colitis in rats

    PubMed Central

    Mannasaheb, Basheerahmed A.A.; Kulkarni, Preeti V.; Sangreskopp, Mashood Ahmed; Savant, Chetan; Mohan, Anjana

    2015-01-01

    Introduction: Natural plants always provide core compounds for new drug development. In the present life and food style, inflammatory bowel disease has become common and needs a lead compound for its drug development. Aim: To evaluate the effect of Agave americana Linn. leaf extract in acetic acid-induced ulcerative colitis in rats based on its traditional anti-inflammatory use. Materials and Methods: Male Wistar rats were pretreated with A. americana leaf extract in the dose of 200 and 400 mg/kg p.o. daily for 7 days. On 8th day, 2 ml of 4% v/v acetic acid in saline was instilled into rats’ rectum. Prednisolone was used as standard drug and it was administered on the day of acetic acid instillation and continued for 3 days. Extract treatment was continued till 11th day. Body weight, ulcer score, colonic muscle contraction, antioxidant activity and histopathology were studied. Statistical analysis was performed using Parametric one-way analysis of variance followed by Tukey's posttest. Results: A. americana have retained total body weight significantly (P < 0.01) and decreased colon weight/length ratio. Extract have shown a significant decrease (P < 0.001) in ulcer scores, myeloperoxidase, lipid peroxidase activity. Further, extract have shown significant improvement in colonic muscle contraction, histopathology of colon etc., which is comparable with standard drug. Conclusion: A. americana possess protective effect against acetic acid-induced colitis in rats. PMID:26730148

  9. Gas-Phase Thermal Tautomerization of Imidazole-Acetic Acid: Theoretical and Computational Investigations.

    PubMed

    Aziz, Saadullah G; Osman, Osman I; Elroby, Shaaban A; Hilal, Rifaat H

    2015-11-04

    The gas-phase thermal tautomerization reaction between imidazole-4-acetic (I) and imidazole-5-acetic (II) acids was monitored using the traditional hybrid functional (B3LYP) and the long-range corrected functionals (CAM-B3LYP and ωB97XD) with 6-311++G** and aug-cc-pvdz basis sets. The roles of the long-range and dispersion corrections on their geometrical parameters, thermodynamic functions, kinetics, dipole moments, Highest Occupied Molecular Orbital-Lowest Unoccupied Molecular Orbital (HOMO-LUMO) energy gaps and total hyperpolarizability were investigated. All tested levels of theory predicted the preference of I over II by 0.750-0.877 kcal/mol. The origin of predilection of I is assigned to the H-bonding interaction (nN8→σ*O14-H15). This interaction stabilized I by 15.07 kcal/mol. The gas-phase interconversion between the two tautomers assumed a 1,2-proton shift mechanism, with two transition states (TS), TS1 and TS2, having energy barriers of 47.67-49.92 and 49.55-52.69 kcal/mol, respectively, and an sp³-type intermediate. A water-assisted 1,3-proton shift route brought the barrier height down to less than 20 kcal/mol in gas-phase and less than 12 kcal/mol in solution. The relatively high values of total hyperpolarizability of I compared to II were interpreted and discussed.

  10. Hyaluronic acid embedded cellulose acetate phthlate core/shell nanoparticulate carrier of 5-fluorouracil.

    PubMed

    Garg, Ashish; Rai, Gopal; Lodhi, Santram; Jain, Alok Pal; Yadav, Awesh K

    2016-06-01

    Aim of this research was to prepare hyaluronic acid-modified-cellulose acetate phthalate (HAC) core shell nanoparticles (NPs) of 5-fluorouracil (5-FU). HAC copolymer was synthesized and confirmed by fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy. HAC NPs with 5-FU were prepared using HAC copolymer and compared with 5-FU loaded cellulose acetate phthalate (CAP) NPs. NPs were characterized by atomic force microscopy (AFM), particle size, zeta potential, polydispersity index, entrapment efficiency, in-vitro release, differential scanning calorimetry (DSC) and X-ray diffraction (XRD). HAC NPs were found slower release (97.30% in 48h) than (99.25% in 8h) CAP NPs. In cytotoxicity studies, showed great cytotoxic potential of 5-FU loaded HAC NPs in A549, MDA-MD-435 and SK-OV-3 cancer cellline. HAC NPs showing least hemolytic than CAP NPs and 5-FU. Area under curve (AUC), maximum plasma concentration (Cmax), mean residence time (MRT) and time to reach maximum plasma concentration Tmax), were observed 4398.1±7.90μgh/mL, 145.45±2.25μg/L, 45.74±0.25h, 72±0.50h, respectively of HAC NPs and 119.92±1.78μgh/mL, 46.38±3.42μg/L, 1.2±0.25h, 0.5±0.02h were observed in plain 5-FU solution. In conclusion, HAC NPs is effective deliver carrier of 5-FU for lung cancer.

  11. Gas-Phase Thermal Tautomerization of Imidazole-Acetic Acid: Theoretical and Computational Investigations

    PubMed Central

    Aziz, Saadullah G.; Osman, Osman I.; Elroby, Shaaban A.; Hilal, Rifaat H.

    2015-01-01

    The gas-phase thermal tautomerization reaction between imidazole-4-acetic (I) and imidazole-5-acetic (II) acids was monitored using the traditional hybrid functional (B3LYP) and the long-range corrected functionals (CAM-B3LYP and ωB97XD) with 6-311++G** and aug-cc-pvdz basis sets. The roles of the long-range and dispersion corrections on their geometrical parameters, thermodynamic functions, kinetics, dipole moments, Highest Occupied Molecular Orbital–Lowest Unoccupied Molecular Orbital (HOMO–LUMO) energy gaps and total hyperpolarizability were investigated. All tested levels of theory predicted the preference of I over II by 0.750–0.877 kcal/mol. The origin of predilection of I is assigned to the H-bonding interaction (nN8→σ*O14–H15). This interaction stabilized I by 15.07 kcal/mol. The gas-phase interconversion between the two tautomers assumed a 1,2-proton shift mechanism, with two transition states (TS), TS1 and TS2, having energy barriers of 47.67–49.92 and 49.55–52.69 kcal/mol, respectively, and an sp3-type intermediate. A water-assisted 1,3-proton shift route brought the barrier height down to less than 20 kcal/mol in gas-phase and less than 12 kcal/mol in solution. The relatively high values of total hyperpolarizability of I compared to II were interpreted and discussed. PMID:26556336

  12. Indole-3-acetic acid in Fusarium graminearum: Identification of biosynthetic pathways and characterization of physiological effects.

    PubMed

    Luo, Kun; Rocheleau, Hélène; Qi, Peng-Fei; Zheng, You-Liang; Zhao, Hui-Yan; Ouellet, Thérèse

    2016-09-01

    Fusarium graminearum is a devastating pathogenic fungus causing fusarium head blight (FHB) of wheat. This fungus can produce indole-3-acetic acid (IAA) and a very large amount of IAA accumulates in wheat head tissues during the first few days of infection by F. graminearum. Using liquid culture conditions, we have determined that F. graminearum can use tryptamine (TAM) and indole-3-acetonitrile (IAN) as biosynthetic intermediates to produce IAA. It is the first time that F. graminearum is shown to use the l-tryptophan-dependent TAM and IAN pathways rather than the indole-3-acetamide or indole-3-pyruvic acid pathways to produce IAA. Our experiments also showed that exogenous IAA was metabolized by F. graminearum. Exogenous IAA, TAM, and IAN inhibited mycelial growth; IAA and IAN also affected the hyphae branching pattern and delayed macroconidium germination. IAA and TAM had a small positive effect on the production of the mycotoxin 15-ADON while IAN inhibited its production. Our results showed that IAA and biosynthetic intermediates had a significant effect on F. graminearum physiology and suggested a new area of exploration for fungicidal compounds. PMID:27567719

  13. The N-acetylcysteine-insensitive acetic acid-induced yeast programmed cell death occurs without macroautophagy.

    PubMed

    Antonacci, Lucia; Guaragnella, Nicoletta; Ždralevic, Maša; Passarella, Salvatore; Marra, Ersilia; Giannattasio, Sergio

    2012-12-01

    Programmed cell death can occur through two separate pathways caused by treatment of Saccharomyces cerevisiae with acetic acid (AA-PCD), which differ from one another essentially with respect to their sensitivity to N-acetylcysteine (NAC) and to the role played by cytochrome c and metacaspase YCA1. Moreover, yeast can also undergo macroautophagy which occurs in NAC-insensitive manner. In order to gain some insight into the relationship between AA-PCD and macroautophagy use was made of WT and knock-out cells lacking YCA1 and/or cytochrome c. We show that i. macroautophagy is modulated by YCA1 and by cytochrome c in a negative and positive manner, respectively, ii. the NAC-insensitive AA-PCD and macroautophagy differ from one another and iii. NAC-insensitive AA-PCD pathway takes place essentially without macroautophagy, even if the shift of extracellular pH to acidic values required for AA-PCD to occur leads itself to increased or decreased macroautophagy in YCA1 or cytochrome c-lacking cells. PMID:23072389

  14. Asaia siamensis sp. nov., an acetic acid bacterium in the alpha-proteobacteria.

    PubMed

    Katsura, K; Kawasaki, H; Potacharoen, W; Saono, S; Seki, T; Yamada, Y; Uchimura, T; Komagata, K

    2001-03-01

    Five bacterial strains were isolated from tropical flowers collected in Thailand and Indonesia by the enrichment culture approach for acetic acid bacteria. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolates were located within the cluster of the genus Asaia. The isolates constituted a group separate from Asaia bogorensis on the basis of DNA relatedness values. Their DNA G+C contents were 58.6-59.7 mol%, with a range of 1.1 mol%, which were slightly lower than that of A. bogorensis (59.3-61.0 mol%), the type species of the genus Asaia. The isolates had morphological, physiological and biochemical characteristics similar to A. bogorensis strains, but the isolates did not produce acid from dulcitol. On the basis of the results obtained, the name Asaia siamensis sp. nov. is proposed for these isolates. Strain S60-1T, isolated from a flower of crown flower (dok rak, Calotropis gigantea) collected in Bangkok, Thailand, was designated the type strain ( = NRIC 0323T = JCM 10715T = IFO 16457T).

  15. Analysis of Bacterial Diversity During Acetic Acid Fermentation of Tianjin Duliu Aged Vinegar by 454 Pyrosequencing.

    PubMed

    Peng, Qian; Yang, Yanping; Guo, Yanyun; Han, Ye

    2015-08-01

    The vinegar pei harbors complex bacterial communities. Prior studies revealing the bacterial diversity involved were mainly conducted by culture-dependent methods and PCR-DGGE. In this study, 454 pyrosequencing was used to investigate the bacterial communities in vinegar pei during the acetic acid fermentation (AAF) of Tianjin Duliu aged vinegar (TDAV). The results showed that there were 7 phyla and 24 families existing in the vinegar pei, with 2 phyla (Firmicutes, Protebacteria) and 4 families (Lactobacillaceae, Acetobacteracae, Enterobacteriaceae, Chloroplast) predominating. The genus-level identification revealed that 9 genera were the relatively stable, consistent components in different stages of AAF, including the most abundant genus Lactobacillus followed by Acetobacter and Serratia. Additionally, the bacterial community in the early fermentation stage was more complex than those in the later stages, indicating that the accumulation of organic acids provided an appropriate environment to filter unwanted bacteria and to accelerate the growth of required ones. This study provided basic information of bacterial patterns in vinegar pei and relevant changes during AAF of TDAV, and could be used as references in the following study on the implementation of starter culture as well as the improvement of AAF process.

  16. Variation in indole-3-acetic acid transport and its relationship with growth in etiolated lupin hypocotyls.

    PubMed

    Nicolás, Juana Inés López; Acosta, Manuel; Sánchez-Bravo, José

    2007-07-01

    The relationship between the variation in polar auxin transport (PAT) and elongating growth in etiolated Lupinus albus hypocotyls was investigated. Parameters of auxin transport, such as the amount transported, intensity of the transport and sensitivity to 1-N-naphthylphthalamic acid (NPA) inhibition were measured in isolated sections from different sites (apical, middle and basal) along the hypocotyls in seedlings of different ages. Auxin transport was studied by applying radioactive indole-3-acetic acid (IAA) to upright and inverted sections. Basipetal transport was much higher than acropetal and very sensitive to NPA inhibition, which indicates that transport is polarized. Polarity was expressed as the NPA-induced inhibition and the basipetal/acropetal ratio. As a rule, both the amount of IAA transported and the polarity varied with the age of the seedlings, with values increasing from 3 to 5d and then decreasing. Both parameters were higher in apical (where most growth is localized) than in middle and basal regions, although this longitudinal gradient tended to disappear with aging as hypocotyl growth slowed and finally ceased. The application of NPA did not modify hypocotyl elongation in 5-d-old intact seedlings. Derooting of the seedlings drastically reduced elongation in the control, while NPA partially restored the growth, which suggests that NPA induces an increase in auxin in the elongation region. These results suggest that a basipetally decreasing gradient in PAT along the hypocotyl, which changes with age, may be responsible for auxin distribution pattern controlling growth.

  17. Tracheal blood flow and luminal clearance of [sup 99m][Tc]-DTPA in sheep

    SciTech Connect

    Hanafi, Z.; Corfield, D.R.; Webber, S.E.; Widdicombe, J.G. )

    1992-10-01

    Tracheal blood flow and [sup 99m][Tc]-labeled diethylenetriamine pentaacetic acid (DTPA) clearance were measured in the sheep trachea in vivo. The tracheal arteries were isolated and perfused. An isolated segment of tracheal lumen was filled with Krebs-Henseleit solution containing [sup 99m][Tc]-DTPA, and radioactivity was measured in blood from a catheterized tracheal vein. Infusions at constant pressure of methacholine (n=5), albuterol (n=6), and histamine (n=5) increased arterial inflow and venous outflow but decreased [sup 99m][Tc]-DTPA output and concentration. Phenylephrine (n=9) decreased arterial inflow and venous outflow but increased [sup 99m][Tc]-DTPA output and concentration. When the tracheal arteries were initially perfused at constant flow and the flow rate was then changed, 50% increases in flow (n=5) increased perfusion pressure and venous outflow but decreased [sup 99m][Tc]-DTPA output and concentration. Decreases in flow of 50% (n=3) and 100% (n=10) decreased perfusion pressure and venous outflow but increased [sup 99m][Tc]-DTPA output and concentration. Infusion of the same drugs at constant flow produced significant changes in perfusion pressure but no significant changes in venous outflow or, except for histamine, in [sup 99m][Tc]-DTPA output. Thus [sup 99m][Tc]-DTPA output was inversely related to both mechanically and drug-induced changes in tracheal blood flow but, except for histamine, was not directly affected by the drugs. The results may be due to redistribution of blood between collateral circuits and altered interstitial fluid volume affecting [sup 99m][Tc]-DTPA transport across the interstitium. 24 refs., 6 figs., 3 tabs.

  18. Sol-gel process for preparation of YBa{sub 2}Cu{sub 4}O{sub 8} from acidic acetates/ammonia/ascorbic acid systems

    SciTech Connect

    Deptula, A.; Lada, W.; Olczak, T.; Goretta, K.C.; Bartolomeo, A.; Casadio, S.

    1997-03-01

    YBa{sub 2}Cu{sub 4}O{sub x} sols were prepared by addition of ammonia to acidic acetate solutions of Y{sup 3+}, Ba{sup 2+}, and Cu{sup 2+}. Ascorbic acid was added to part of the sol. The resultant sols were gelled to a shard or a coating by evaporation at 60 C. Addition of ethanol to the sols facilitated formation of gel coatings, fabricated by a dipping technique, on Ag or glass or substrates. At 100 C, gels formed in the presence of ascorbic acid were perfectly amorphous, in contrast to crystalline acetate gels. The quality of coatings prepared from ascorbate gels was superior to that of acetate gel coatings.

  19. Characterization of a recombinant flocculent Saccharomyces cerevisiae strain that co-ferments glucose and xylose: II. influence of pH and acetic acid on ethanol production.

    PubMed

    Matsushika, Akinori; Sawayama, Shigeki

    2012-12-01

    The inhibitory effects of pH and acetic acid on the co-fermentation of glucose and xylose in complex medium by recombinant flocculent Saccharomyces cerevisiae MA-R4 were evaluated. In the absence of acetic acid, the fermentation performance of strain MA-R4 was similar between pH 4.0-6.0, but was negatively affected at pH 2.5. The addition of acetic acid to batch cultures resulted in negligible inhibition of several fermentation parameters at pH 6.0, whereas the interactive inhibition of pH and acetic acid on the maximum cell and ethanol concentrations, and rates of sugar consumption and ethanol production were observed at pH levels below 5.4. The inhibitory effect of acetic acid was particularly marked for the consumption rate of xylose, as compared with that of glucose. With increasing initial acetic acid concentration, the ethanol yield slightly increased at pH 5.4 and 6.0, but decreased at pH values lower than 4.7. Notably, ethanol production was nearly completely inhibited under low pH (4.0) and high acetic acid (150-200 mM) conditions. Together, these results indicate that the inhibitory effects of acetic acid and pH on ethanol fermentation by MA-R4 are highly synergistic, although the inhibition can be reduced by increasing the medium pH. PMID:23076570

  20. Root-uptake of (14)C derived from acetic acid and (14)C transfer to rice edible parts.

    PubMed

    Ogiyama, Shinichi; Suzuki, Hiroyuki; Inubushi, Kazuyuki; Takeda, Hiroshi; Uchida, Shigeo

    2010-02-01

    Three types of culture experiments using paddy rice (Oryza sativa L.) were performed to examine root-uptake of (14)C in the form of acetic acid: double pot experiment (hydroponics), wet culture experiment (submerged sand medium), and chamber experiment (hydroponics and submerged sand medium). The (14)C radioactivity in the plant, mediums, and atmospheric carbon dioxide ((14)CO(2)) in the chamber were determined, and the distribution of (14)C in the plant was visualized using autoradiography. In the double pot experiment, the shoot of the plant and the lower root which was soaked in the culture solution had (14)C radioactivity, but the upper root which did not have contact with the solution had none. There were also (14)C radioactivity in the grains and roots in the wet culture experiment. Results of the chamber experiment showed that (14)CO(2) gas was released from the culture solution in both types of cultures. Results indicated that the (14)C-acetic acid absorbed by rice plant through its root would be very small. Most of the (14)C-acetic acid was transformed into gaseous forms either in the culture solution or rhizosphere. A relatively longer time would be needed to assimilate (14)C derived from acetic acid to grain parts after it was once absorbed by the shoot through the root. Availability of (14)C for the plant in sand culture was considered to be decreased compared with that for the plant in the hydroponics experiment. It was suggested that rice plant absorbed and assimilated (14)C through the plant roots not because of uptake of (14)C-acetic acid but because of uptake of (14)C in gaseous forms such as (14)CO(2). PMID:19962904

  1. Cartilage and bone malformations in the head of zebrafish (Danio rerio) embryos following exposure to disulfiram and acetic acid hydrazide

    SciTech Connect

    Strecker, Ruben; Weigt, Stefan; Braunbeck, Thomas

    2013-04-15

    In order to investigate teratogenic effects, especially on cartilage and bone formation, zebrafish embryos were exposed for 144 h to the dithiocarbamate pesticide disulfiram (20–320 μg/L) and acetic acid hydrazide (0.375–12 g/L), a degradation product of isoniazid. After fixation and full-mount staining, disulfiram could be shown to induce strong cartilage malformations after exposure to ≥ 80 μg/L, whereas acetic acid hydrazide caused cartilage alterations only from 1.5 g/L. Undulating notochords occurred after exposure to disulfiram even at the lowest test concentration of 20 μg/L, whereas at the two lowest concentrations of acetic acid hydrazide (0.375 and 0.75 g/L) mainly fractures of the notochord were observed. Concentrations of acetic acid hydrazide ≥ 1.5 g/L resulted in undulated notochords similar to disulfiram. Cartilages and ossifications of the cranium, including the cleithrum, were individually analyzed assessing the severity of malformation and the degree of ossification in a semi-quantitative approach. Cartilages of the neurocranium such as the ethmoid plate proved to be more stable than cartilages of the pharyngeal skeleton such as Meckel's cartilage. Hence, ossification proved significantly more susceptible than cartilage. The alterations induced in the notochord as well as in the cranium might well be of ecological relevance, since notochord malformation is likely to result in impaired swimming and cranial malformation might compromise regular food uptake. - Highlights: ► Disulfiram and acetic acid hydrazide as notochord, cartilage and bone teratogens ► Zebrafish embryos to model effects on single cartilages and bones in the head ► LC50 calculation and head length measurements after six days post-fertilization ► Lethality, head length and teratogenic effects are dose-dependent. ► Cartilages of the neurocranium are the most stable elements in the head.

  2. The influence of pretreatment with ghrelin on the development of acetic-acid-induced colitis in rats.

    PubMed

    Maduzia, D; Matuszyk, A; Ceranowicz, D; Warzecha, Z; Ceranowicz, P; Fyderek, K; Galazka, K; Dembinski, A

    2015-12-01

    Ghrelin has been primarily shown to exhibit protective and therapeutic effect in the gut. Pretreatment with ghrelin inhibits the development of acute pancreatitis and accelerates pancreatic recovery in the course of this disease. In the stomach, ghrelin reduces gastric mucosal damage induced by ethanol, stress or alendronate, as well as accelerates the healing of acetic acid-induced gastric and duodenal ulcer. The aim of present studies was to investigate the effect of pretreatment with ghrelin on the development of acetic acid-induced colitis. Studies have been performed on male Wistar rats. Animals were treated intraperitoneally with saline (control) or ghrelin (4, 8 or 16 nmol/kg/dose). Saline or ghrelin was given twice: 8 and 1 h before induction of colitis. Colitis was induced by a rectal enema with 1 ml of 4% solution of acetic acid and the severity of colitis was assessed 1 or 24 hours after induction of inflammation. Rectal administration of acetic acid induced colitis in all animals. Damage of colonic wall was seen at the macroscopic and microscopic level. This effect was accompanied by a reduction in colonic blood flow and mucosal DNA synthesis. Moreover, induction of colitis significantly increased mucosal concentration of pro-inflammatory interleukin-1β (IL-1β), activity of myeloperoxidase and concentration of malondialdehyde (MDA). Mucosal activity of superoxide dismutase (SOD) was reduced. Pretreatment with ghrelin reduced the area and grade of mucosal damage. This effect was accompanied by an improvement of blood flow, DNA synthesis and SOD activity in colonic mucosa. Moreover, ghrelin administration reduced mucosal concentration of IL-1β and MDA, as well as decreased mucosal activity of myeloperoxidase. Administration of ghrelin protects the large bowel against the development of the acetic acid-induced colitis and this effect seems to be related to the ghrelin-evoked anti-inflammatory and anti-oxidative effects.

  3. The influence of pretreatment with ghrelin on the development of acetic-acid-induced colitis in rats.

    PubMed

    Maduzia, D; Matuszyk, A; Ceranowicz, D; Warzecha, Z; Ceranowicz, P; Fyderek, K; Galazka, K; Dembinski, A

    2015-12-01

    Ghrelin has been primarily shown to exhibit protective and therapeutic effect in the gut. Pretreatment with ghrelin inhibits the development of acute pancreatitis and accelerates pancreatic recovery in the course of this disease. In the stomach, ghrelin reduces gastric mucosal damage induced by ethanol, stress or alendronate, as well as accelerates the healing of acetic acid-induced gastric and duodenal ulcer. The aim of present studies was to investigate the effect of pretreatment with ghrelin on the development of acetic acid-induced colitis. Studies have been performed on male Wistar rats. Animals were treated intraperitoneally with saline (control) or ghrelin (4, 8 or 16 nmol/kg/dose). Saline or ghrelin was given twice: 8 and 1 h before induction of colitis. Colitis was induced by a rectal enema with 1 ml of 4% solution of acetic acid and the severity of colitis was assessed 1 or 24 hours after induction of inflammation. Rectal administration of acetic acid induced colitis in all animals. Damage of colonic wall was seen at the macroscopic and microscopic level. This effect was accompanied by a reduction in colonic blood flow and mucosal DNA synthesis. Moreover, induction of colitis significantly increased mucosal concentration of pro-inflammatory interleukin-1β (IL-1β), activity of myeloperoxidase and concentration of malondialdehyde (MDA). Mucosal activity of superoxide dismutase (SOD) was reduced. Pretreatment with ghrelin reduced the area and grade of mucosal damage. This effect was accompanied by an improvement of blood flow, DNA synthesis and SOD activity in colonic mucosa. Moreover, ghrelin administration reduced mucosal concentration of IL-1β and MDA, as well as decreased mucosal activity of myeloperoxidase. Administration of ghrelin protects the large bowel against the development of the acetic acid-induced colitis and this effect seems to be related to the ghrelin-evoked anti-inflammatory and anti-oxidative effects. PMID:26769837

  4. Protective Effect of the Methanolic Extract of Malva parviflora L. leaves on Acetic Acid-induced Ulcerative Colitis in Rats

    PubMed Central

    Dugani, Aisha; Dakhil, Bushra; Treesh, Soad

    2016-01-01

    Background/Aims: Inflammatory bowel disease (IBD) is a general term describing chronic, idiopathic relapsing, inflammatory conditions of the gastrointestinal tract of unknown etiology. Previous studies have indicated that Malva parviflora leaf extract possesses anti-inflammatory, antioxidant, and antiulcerogenic activity. activity. This work aimed to investigatee the anti-inflammatory effect of the methanolic (MEMP) and aqueous (AEMP) extracts of M. parviflora leaves on acetic acid-induced colitis in rats. Materials and Methods: 42 male Wistar albino rats were divided into seven groups (n = 6). Group I: Normal saline control group with no colitis; Group II: Acetic acid colitis group; Group III: 100 mg/kg/5 d MEMP; Group IV: 200 mg/kg/5 d.MEMP; Group V: 100 mg/kg/5 d AEMP; Group VI: 200 mg/kg/5 d AEMP; Group VII: Prednisolone group (2 mg/kg/5 d). Treatments were followed by induction of colitis using intrarectal instillation of 2 mL of 4% acetic acid. Colon damage was evaluated macroscopically (spleen weight/body weight, colon weight/length ratio) and the histological changes were also recorded. Results: The results of this study showed that acetic acid caused severe inflammation of the colon and a significant increase in spleen weight/body weight, and an increase in colon weight/length ratio compared with normal control group. Pretreatment with MEMP and AEMP for 5 days followed by induction of colitis resulted in a significant attenuation of spleen weight and colon weight/length ratio compared with acetic acid control group. Methanolic extract provided better anticolitic effect than aqueous extract; the effect was prominent at the dose of 200 mg/kg. Histopathological findings confirmed the protective effect of the MEMP. Conclusion: In conclusion, MEMP could ameliorate mucosal damage in experimentally induced colitis when given orally. PMID:27184642

  5. L-arginine augments the antioxidant effect of garlic against acetic acid-induced ulcerative colitis in rats.

    PubMed

    Harisa, Gamal Eldin I; Abo-Salem, Osama M; El-Sayed, El-Sayed M; Taha, Ehab I; El-Halawany, Nermin

    2009-10-01

    Garlic contains many sulfhydryl compounds that act as antioxidants. However, the role of nitric oxide (NO) in inflammation is controversial. The aim of the present study is to investigate the possible protective effect of garlic against acetic acid-induced ulcerative colitis in rats, as well as the probable modulatory effect of L-arginine (NO precursor) on garlic activity. Intra-rectal inoculation of rats with 4% acetic acid for 3 consecutive days caused a significant increase in the colon weight and marked decrease in the colon length. In addition, acetic acid induced a significant increase in serum levels of nitrate as well as colonic tissue content of malondialdehyde (MDA). Moreover, colonic tissue contents of glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were markedly reduced. On the other hand, pre-treatment of rats with garlic (0.25 g/kgbwt, orally) for 4 consecutive weeks and 3 days during induction of colitis significantly reduced the increase in the colon weight induced by acetic acid and ameliorated alterations in oxidant and antioxidant parameters. Interestingly, oral co-administration of garlic (0.25 g/kgbwt) and L-arginine (625 mg/kgbwt) for the same period of garlic administration mitigated the changes in both colon weight and length induced by acetic acid and increased garlic effect on colon tissue contents of MDA and GSH. In conclusion, L-arginine can augment the protective effect of garlic against ulcerative colitis; an effect that might be mainly attributed to its NO donating property resulting in enhancement of garlic antioxidant effect. Further studies will be needed to determine which one of the active ingredients of garlic has the main antioxidant effect to be used with L-arginine. PMID:19783514

  6. Improvement of sensitivity of electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES) for mercury using acetic acid medium.

    PubMed

    Shekhar, R

    2012-05-15

    A method has been developed to improve the sensitivity of the electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES) for mercury determination. Effects of various low molecular weight organic solvents at different volume percentages as well as at different acid molarities on the mercury signal were investigated using ELCAD-AES. The addition of few percent of organic solvent, acetic acid produced significant enhancement in mercury signal. Acetic acid of 5% (v/v) with the 0.2M acidity has been found to give 500% enhancement for mercury signal in flow injection mode. Under the optimized parameters the repeatability, expressed as the percentage relative standard deviation of spectral peak area for mercury with 5% acetic acid was found to be 10% for acid blank solution and 5% for 20 ng/mL mercury standard based on multiple measurements with a multiple sample loading in flow injection mode. Limit of detection of this method was determined to be 2 ng/mL for inorganic mercury. The proposed method has been validated by determining mercury in certified reference materials, Tuna fish (IAEA-350) and Aquatic plant (BCR-060). Accuracy of the method for the mercury determination in the reference materials has been found to be between 3.5% and 5.9%. This study enhances the utility of ELCAD-AES for various types of biological and environmental materials to quantify total mercury at very low levels. PMID:22483872

  7. Improvement of sensitivity of electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES) for mercury using acetic acid medium.

    PubMed

    Shekhar, R

    2012-05-15

    A method has been developed to improve the sensitivity of the electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES) for mercury determination. Effects of various low molecular weight organic solvents at different volume percentages as well as at different acid molarities on the mercury signal were investigated using ELCAD-AES. The addition of few percent of organic solvent, acetic acid produced significant enhancement in mercury signal. Acetic acid of 5% (v/v) with the 0.2M acidity has been found to give 500% enhancement for mercury signal in flow injection mode. Under the optimized parameters the repeatability, expressed as the percentage relative standard deviation of spectral peak area for mercury with 5% acetic acid was found to be 10% for acid blank solution and 5% for 20 ng/mL mercury standard based on multiple measurements with a multiple sample loading in flow injection mode. Limit of detection of this method was determined to be 2 ng/mL for inorganic mercury. The proposed method has been validated by determining mercury in certified reference materials, Tuna fish (IAEA-350) and Aquatic plant (BCR-060). Accuracy of the method for the mercury determination in the reference materials has been found to be between 3.5% and 5.9%. This study enhances the utility of ELCAD-AES for various types of biological and environmental materials to quantify total mercury at very low levels.

  8. Myrrh attenuates oxidative and inflammatory processes in acetic acid-induced ulcerative colitis

    PubMed Central

    Fatani, Amal Jamil; Alrojayee, Fatima Salih; Parmar, Mihir Yogeshkumar; Abuohashish, Hatem Mustafa; Ahmed, Mohammed Mahboobuddin; Al-Rejaie, Salim Salih

    2016-01-01

    The pathogenesis of ulcerative colitis (UC) has been associated with a weakened antioxidant capacity and increased inflammatory processes. Myrrh is traditionally used for the treatment of inflammatory diseases due to its antioxidant and anti-inflammatory properties. The present study aimed to evaluate the effects of myrrh on an experimental rat model of UC. UC was induced in rats using acetic acid (AA) after pre-treatment with myrrh (125, 250 or 500 mg/kg/day) or mesalazine (MES; 300 mg/kg/day) for 7 days. The levels of various inflammatory cytokines, prostaglandin E2 (PGE2) and nitric oxide (NO) in the rat colon tissues were assessed. In addition, the colonic levels of thiobarbituric acid reactive substances (TBARS) and non-protein sulfhydryl groups (NP-SH), as well as the activities of superoxide dismutase (SOD) and catalase (CAT), were estimated. Furthermore, total protein (TP) contents and the levels of DNA and RNA were measured, and histopathological changes in colonic tissues were analyzed. The results indicated that the levels of pro-inflammatory cytokines, PGE2, NO and TBARS were markedly increased. By contrast, the levels of interleukin-10, NP-SH, TP and nucleic acids, and the enzymatic activities of SOD and CAT were significantly decreased in the AA model group. In addition, pretreatment with myrrh and MES was able to attenuate the impaired oxidative stress response and upregulation of inflammatory biomarkers. Furthermore, the enzymatic activities of SOD and CAT were near to normal in the myrrh and MES pretreated groups. The ability of myrrh to protect against UC was further confirmed by histopathological analysis, and the high dose of myrrh exerted an effect comparable to MES. In conclusion, the results of the present study suggested that myrrh has potent therapeutic value in the amelioration of experimental colitis in laboratory animals by downregulating the expression of proinflammatory mediators and improving endogenous antioxidative activities. PMID

  9. Acetic acid treatments to keep postharvest quality of "Regina" and "Taloppo" table grapes.

    PubMed

    Venditti, T; D'Hallewin, G; Dore, A; Molinu, M G; Fiori, P; Angiolino, C; Agabbio, M

    2008-01-01

    The most important postharvest pathogen for table grape is Botrytis cinerea (gray mold), which cause a rapid deterioration of fruit. An effective control of the disease during storage is difficult and remains an unsolved problem since no pesticide treatments are allowed by European legislation. GRAS compounds, employed with no restriction as preservatives in Europe and North America, are possible candidates to fulfil this gap. The aim of this work is to study the efficacy of Acetic Acid (AAC), used as postharvest treatment to control Botrytis cinerea on "Regina" and "Taloppo" table grapes, by Laboratory and storage tests. The activity of this compound was first assessed with laboratory tests, treating at different concentrations (0, 5, 10, 20, 50, 75 and 100 microl/L) of AAC vapors, for 15 minutes, single berries inoculated with B. cinerea. After treatments fruit was incubated at 20 degrees C for one week. The in vivo experiment took place by using the most promising AAC concentrations (50, 75 and 100 microl/L) followed by eight weeks of storage at 5 degrees C and 95% of relative humidity (RH) and four days at 20 degrees C and 85% RH (simulated shelf-life conditions). At the end of the in vivo experiment decay, weight loss and visual assessment were evaluated. Almost all treatments, after eight weeks of storage, reduced the incidence of gray mould. The best results were achieved by using 50 ppm of AAC, gaining a reduction of decay, compared to untreated "Taloppo" and "Regina" grapes of 61.0% and 41.4%, respectively. Following the simulated shelf-life period differences between treated and untreated (control) became no significant for "Taloppo" grape, while the lowest decay percentage was reached with 50 microl/L of AAC for "Regina" grape (52% of reduction if compared to control). Regarding fruit weight loss all treatments did not affect significantly this parameter that ranged between 8.2% and 11.5% after eight weeks of storage and 13.5% and 18.2% after shelf

  10. Distinct Characteristics of Indole-3-Acetic Acid and Phenylacetic Acid, Two Common Auxins in Plants.

    PubMed

    Sugawara, Satoko; Mashiguchi, Kiyoshi; Tanaka, Keita; Hishiyama, Shojiro; Sakai, Tatsuya; Hanada, Kousuke; Kinoshita-Tsujimura, Kaori; Yu, Hong; Dai, Xinhua; Takebayashi, Yumiko; Takeda-Kamiya, Noriko; Kakimoto, Tatsuo; Kawaide, Hiroshi; Natsume, Masahiro; Estelle, Mark; Zhao, Yunde; Hayashi, Ken-Ichiro; Kamiya, Yuji; Kasahara, Hiroyuki

    2015-08-01

    The phytohormone auxin plays a central role in many aspects of plant growth and development. IAA is the most studied natural auxin that possesses the property of polar transport in plants. Phenylacetic acid (PAA) has also been recognized as a natural auxin for >40 years, but its role in plant growth and development remains unclear. In this study, we show that IAA and PAA have overlapping regulatory roles but distinct transport characteristics as auxins in plants. PAA is widely distributed in vascular and non-vascular plants. Although the biological activities of PAA are lower than those of IAA, the endogenous levels of PAA are much higher than those of IAA in various plant tissues in Arabidopsis. PAA and IAA can regulate the same set of auxin-responsive genes through the TIR1/AFB pathway in Arabidopsis. IAA actively forms concentration gradients in maize coleoptiles in response to gravitropic stimulation, whereas PAA does not, indicating that PAA is not actively transported in a polar manner. The induction of the YUCCA (YUC) genes increases PAA metabolite levels in Arabidopsis, indicating that YUC flavin-containing monooxygenases may play a role in PAA biosynthesis. Our results provide new insights into the regulation of plant growth and development by different types of auxins. PMID:26076971

  11. Distinct Characteristics of Indole-3-Acetic Acid and Phenylacetic Acid, Two Common Auxins in Plants

    PubMed Central

    Sugawara, Satoko; Mashiguchi, Kiyoshi; Tanaka, Keita; Hishiyama, Shojiro; Sakai, Tatsuya; Hanada, Kousuke; Kinoshita-Tsujimura, Kaori; Yu, Hong; Dai, Xinhua; Takebayashi, Yumiko; Takeda-Kamiya, Noriko; Kakimoto, Tatsuo; Kawaide, Hiroshi; Natsume, Masahiro; Estelle, Mark; Zhao, Yunde; Hayashi, Ken-ichiro; Kamiya, Yuji; Kasahara, Hiroyuki

    2015-01-01

    The phytohormone auxin plays a central role in many aspects of plant growth and development. IAA is the most studied natural auxin that possesses the property of polar transport in plants. Phenylacetic acid (PAA) has also been recognized as a natural auxin for >40 years, but its role in plant growth and development remains unclear. In this study, we show that IAA and PAA have overlapping regulatory roles but distinct transport characteristics as auxins in plants. PAA is widely distributed in vascular and non-vascular plants. Although the biological activities of PAA are lower than those of IAA, the endogenous levels of PAA are much higher than those of IAA in various plant tissues in Arabidopsis. PAA and IAA can regulate the same set of auxin-responsive genes through the TIR1/AFB pathway in Arabidopsis. IAA actively forms concentration gradients in maize coleoptiles in response to gravitropic stimulation, whereas PAA does not, indicating that PAA is not actively transported in a polar manner. The induction of the YUCCA (YUC) genes increases PAA metabolite levels in Arabidopsis, indicating that YUC flavin-containing monooxygenases may play a role in PAA biosynthesis. Our results provide new insights into the regulation of plant growth and development by different types of auxins. PMID:26076971

  12. Distinct Characteristics of Indole-3-Acetic Acid and Phenylacetic Acid, Two Common Auxins in Plants.

    PubMed

    Sugawara, Satoko; Mashiguchi, Kiyoshi; Tanaka, Keita; Hishiyama, Shojiro; Sakai, Tatsuya; Hanada, Kousuke; Kinoshita-Tsujimura, Kaori; Yu, Hong; Dai, Xinhua; Takebayashi, Yumiko; Takeda-Kamiya, Noriko; Kakimoto, Tatsuo; Kawaide, Hiroshi; Natsume, Masahiro; Estelle, Mark; Zhao, Yunde; Hayashi, Ken-Ichiro; Kamiya, Yuji; Kasahara, Hiroyuki

    2015-08-01

    The phytohormone auxin plays a central role in many aspects of plant growth and development. IAA is the most studied natural auxin that possesses the property of polar transport in plants. Phenylacetic acid (PAA) has also been recognized as a natural auxin for >40 years, but its role in plant growth and development remains unclear. In this study, we show that IAA and PAA have overlapping regulatory roles but distinct transport characteristics as auxins in plants. PAA is widely distributed in vascular and non-vascular plants. Although the biological activities of PAA are lower than those of IAA, the endogenous levels of PAA are much higher than those of IAA in various plant tissues in Arabidopsis. PAA and IAA can regulate the same set of auxin-responsive genes through the TIR1/AFB pathway in Arabidopsis. IAA actively forms concentration gradients in maize coleoptiles in response to gravitropic stimulation, whereas PAA does not, indicating that PAA is not actively transported in a polar manner. The induction of the YUCCA (YUC) genes increases PAA metabolite levels in Arabidopsis, indicating that YUC flavin-containing monooxygenases may play a role in PAA biosynthesis. Our results provide new insights into the regulation of plant growth and development by different types of auxins.

  13. Studies on the growth and indole-3-acetic acid and abscisic acid content of Zea mays seedlings grown in microgravity

    NASA Technical Reports Server (NTRS)

    Schulze, A.; Jensen, P. J.; Desrosiers, M.; Buta, J. G.; Bandurski, R. S.

    1992-01-01

    Measurements were made of the fresh weight, dry weight, dry weight-fresh weight ratio, free and conjugated indole-3-acetic acid, and free and conjugated abscisic acid in seedlings of Zea mays grown in darkness in microgravity and on earth. Imbibition of the dry kernels was 17 h prior to launch. Growth was for 5 d at ambient orbiter temperature and at a chronic accelerational force of the order of 3 x 10(-5) times earth gravity. Weights and hormone content of the microgravity seedlings were, with minor exceptions, not statistically different from seedlings grown in normal gravity. The tissues of the shuttle-grown plants appeared normal and the seedlings differed only in the lack of orientation of roots and shoots. These findings, based upon 5 d of growth in microgravity, cannot be extrapolated to growth in microgravity for weeks, months, and years, as might occur on a space station. Nonetheless, it is encouraging, for prospects of bioregeneration of the atmosphere and food production in a space station, that no pronounced differences in the parameters measured were apparent during the 5 d of plant seedling growth in microgravity.

  14. Citric acid and ethylene diamine tetra-acetic acid as effective washing agents to treat sewage sludge for agricultural reuse.

    PubMed

    Ren, Xianghao; Yan, Rui; Wang, Hong-Cheng; Kou, Ying-Ying; Chae, Kyu-Jung; Kim, In S; Park, Yong-Jin; Wang, Ai-Jie

    2015-12-01

    This paper presents the effects of different concentrations of citric acid (CA) and ethylene diamine tetra-acetic acid (EDTA) when used as additive reagents for the treatment of sewage sludge for agricultural use. Herein, both the retention of nutrients and removal of metals from the sewage sludge are examined. The average removal rate for the metals after treatment by CA decreased in the order Cu>Pb>Cd>Cr>Zn, while the rates after treatment by EDTA decreased in the order of Pb>Cu>Cr>Cd>Zn. After treatment with CA and EDTA, total nitrogen and total phosphorus concentrations in the sludge decreased, while the content of available nitrogen and Olsen-P increased. In addition, a multi-criteria analysis model-fuzzy analytic network process method (with 3 main factors and 12 assessment sub-factors) was adopted to evaluate the effectiveness of different treatment methods. The results showed that the optimal CA and EDTA concentrations for sewage sludge treatment were 0.60 and 0.125 mol/L, respectively.

  15. Transport of the two natural auxins, indole-3-butyric acid and indole-3-acetic acid, in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Rashotte, Aaron M.; Poupart, Julie; Waddell, Candace S.; Muday, Gloria K.; Brown, C. S. (Principal Investigator)

    2003-01-01

    Polar transport of the natural auxin indole-3-acetic acid (IAA) is important in a number of plant developmental processes. However, few studies have investigated the polar transport of other endogenous auxins, such as indole-3-butyric acid (IBA), in Arabidopsis. This study details the similarities and differences between IBA and IAA transport in several tissues of Arabidopsis. In the inflorescence axis, no significant IBA movement was detected, whereas IAA is transported in a basipetal direction from the meristem tip. In young seedlings, both IBA and IAA were transported only in a basipetal direction in the hypocotyl. In roots, both auxins moved in two distinct polarities and in specific tissues. The kinetics of IBA and IAA transport appear similar, with transport rates of 8 to 10 mm per hour. In addition, IBA transport, like IAA transport, is saturable at high concentrations of auxin, suggesting that IBA transport is protein mediated. Interestingly, IAA efflux inhibitors and mutations in genes encoding putative IAA transport proteins reduce IAA transport but do not alter IBA movement, suggesting that different auxin transport protein complexes are likely to mediate IBA and IAA transport. Finally, the physiological effects of IBA and IAA on hypocotyl elongation under several light conditions were examined and analyzed in the context of the differences in IBA and IAA transport. Together, these results present a detailed picture of IBA transport and provide the basis for a better understanding of the transport of these two endogenous auxins.

  16. Citric acid and ethylene diamine tetra-acetic acid as effective washing agents to treat sewage sludge for agricultural reuse.

    PubMed

    Ren, Xianghao; Yan, Rui; Wang, Hong-Cheng; Kou, Ying-Ying; Chae, Kyu-Jung; Kim, In S; Park, Yong-Jin; Wang, Ai-Jie

    2015-12-01

    This paper presents the effects of different concentrations of citric acid (CA) and ethylene diamine tetra-acetic acid (EDTA) when used as additive reagents for the treatment of sewage sludge for agricultural use. Herein, both the retention of nutrients and removal of metals from the sewage sludge are examined. The average removal rate for the metals after treatment by CA decreased in the order Cu>Pb>Cd>Cr>Zn, while the rates after treatment by EDTA decreased in the order of Pb>Cu>Cr>Cd>Zn. After treatment with CA and EDTA, total nitrogen and total phosphorus concentrations in the sludge decreased, while the content of available nitrogen and Olsen-P increased. In addition, a multi-criteria analysis model-fuzzy analytic network process method (with 3 main factors and 12 assessment sub-factors) was adopted to evaluate the effectiveness of different treatment methods. The results showed that the optimal CA and EDTA concentrations for sewage sludge treatment were 0.60 and 0.125 mol/L, respectively. PMID:26235448

  17. Validation of a multi-analyte HPLC-DAD method for determination of uric acid, creatinine, homovanillic acid, niacinamide, hippuric acid, indole-3-acetic acid and 2-methylhippuric acid in human urine.

    PubMed

    Remane, Daniela; Grunwald, Soeren; Hoeke, Henrike; Mueller, Andrea; Roeder, Stefan; von Bergen, Martin; Wissenbach, Dirk K

    2015-08-15

    During the last decades exposure sciences and epidemiological studies attracts more attention to unravel the mechanisms for the development of chronic diseases. According to this an existing HPLC-DAD method for determination of creatinine in urine samples was expended for seven analytes and validated. Creatinine, uric acid, homovanillic acid, niacinamide, hippuric acid, indole-3-acetic acid, and 2-methylhippuric acid were separated by gradient elution (formate buffer/methanol) using an Eclipse Plus C18 Rapid Resolution column (4.6mm×100mm). No interfering signals were detected in mobile phase. After injection of blank urine samples signals for the endogenous compounds but no interferences were detected. All analytes were linear in the selected calibration range and a non weighted calibration model was chosen. Bias, intra-day and inter-day precision for all analytes were below 20% for quality control (QC) low and below 10% for QC medium and high. The limits of quantification in mobile phase were in line with reported reference values but had to be adjusted in urine for homovanillic acid (45mg/L), niacinamide 58.5(mg/L), and indole-3-acetic acid (63mg/L). Comparison of creatinine data obtained by the existing method with those of the developed method showing differences from -120mg/L to +110mg/L with a mean of differences of 29.0mg/L for 50 authentic urine samples. Analyzing 50 authentic urine samples, uric acid, creatinine, hippuric acid, and 2-methylhippuric acid were detected in (nearly) all samples. However, homovanillic acid was detected in 40%, niacinamide in 4% and indole-3-acetic acid was never detected within the selected samples.

  18. Experimental and DFT studies of the conversion of ethanol and acetic acid on PtSn-based catalysts.

    PubMed

    Alcala, Rafael; Shabaker, John W; Huber, George W; Sanchez-Castillo, Marco A; Dumesic, James A

    2005-02-17

    Reaction kinetics studies were conducted for the conversions of ethanol and acetic acid over silica-supported Pt and Pt/Sn catalysts at temperatures from 500 to 600 K. Addition of Sn to Pt catalysts inhibits the decomposition of ethanol to CO, CH4, and C2H6, such that PtSn-based catalysts are active for dehydrogenation of ethanol to acetaldehyde. Furthermore, PtSn-based catalysts are selective for the conversion of acetic acid to ethanol, acetaldehyde, and ethyl acetate, whereas Pt catalysts lead mainly to decomposition products such as CH4 and CO. These results are interpreted using density functional theory (DFT) calculations for various adsorbed species and transition states on Pt(111) and Pt3Sn(111) surfaces. The Pt3Sn alloy slab was selected for DFT studies because results from in situ (119)Sn Mössbauer spectroscopy and CO adsorption microcalorimetry of silica-supported Pt/Sn catalysts indicate that Pt-Sn alloy is the major phase present. Accordingly, results from DFT calculations show that transition-state energies for C-O and C-C bond cleavage in ethanol-derived species increase by 25-60 kJ/mol on Pt3Sn(111) compared to Pt(111), whereas energies of transition states for dehydrogenation reactions increase by only 5-10 kJ/mol. Results from DFT calculations show that transition-state energies for CH3CO-OH bond cleavage increase by only 12 kJ/mol on Pt3Sn(111) compared to Pt(111). The suppression of C-C bond cleavage in ethanol and acetic acid upon addition of Sn to Pt is also confirmed by microcalorimetric and infrared spectroscopic measurements at 300 K of the interactions of ethanol and acetic acid with Pt and PtSn on a silica support that had been silylated to remove silanol groups. PMID:16851198

  19. [Kinetic model of enhanced biological phosphorus removal with mixed acetic and propionic acids as carbon sources. (III): Model application].

    PubMed

    Zhang, Chao; Chen, Yin-Guang

    2013-03-01

    The kinetic model based on SCFAs metabolism was applied for the prediction of phosphorus-and glycogen-accumulating organisms (PAO and GAO) competition with different carbon sources and m(P)/m(COD) ratios. When acetic acid was used as the sole carbon source, the biomass compositions were almost the same as those before cultivation, and neither PAO nor GAO could be out-competed from EBPR. However, increasing propionic acid in the influent helped PAO to be the predominance organism, and EBPR performance kept excellent when the ratio of propionate to mixed acids (acetate + p