Science.gov

Sample records for acetic acid ethanol

  1. A novel fermentation pathway in an Escherichia coli mutant producing succinic acid, acetic acid, and ethanol.

    SciTech Connect

    Donnelly, M. I.; Millard, C. S.; Clark, D. P.; Chen, M. J.; Rathke, J. W.; Southern Illinois Univ.

    1998-04-01

    Escherichia coli strain NZN111, which is unable to grow fermentatively because of insertional inactivation of the genes encoding pyruvate: formate lyase and the fermentative lactate dehydrogenase, gave rise spontaneously to a chromosomal mutation that restored its ability to ferment glucose. The mutant strain, named AFP111, fermented glucose more slowly than did its wild-type ancestor, strain W1485, and generated a very different spectrum of products. AFP111 produced succinic acid, acetic acid, and ethanol in proportions of approx 2:1:1. Calculations of carbon and electron balances accounted fully for the observed products; 1 mol of glucose was converted to 1 mol of succinic acid and 0.5 mol each of acetic acid and ethanol. The data support the emergence in E.coli of a novel succinic acid:acetic acid:ethanol fermentation pathway.

  2. Effect of acetic acid in recycling water on ethanol production for cassava in an integrated ethanol-methane fermentation process.

    PubMed

    Yang, Xinchao; Wang, Ke; Zhang, Jianhua; Tang, Lei; Mao, Zhonggui

    2016-11-01

    Recently, the integrated ethanol-methane fermentation process has been studied to prevent wastewater pollution. However, when the anaerobic digestion reaction runs poorly, acetic acid will accumulate in the recycling water. In this paper, we studied the effect of low concentration of acetic acid (≤25 mM) on ethanol fermentation at different initial pH values (4.2, 5.2 or 6.2). At an initial pH of 4.2, ethanol yields increased by 3.0% and glycerol yields decreased by 33.6% as the acetic acid concentration was increased from 0 to 25 mM. Raising the concentration of acetic acid to 25 mM increased the buffering capacity of the medium without obvious effects on biomass production in the cassava medium. Acetic acid was metabolized by Saccharomyces cerevisiae for the reason that the final concentration of acetic acid was 38.17% lower than initial concentration at pH 5.2 when 25 mM acetic acid was added. These results confirmed that a low concentration of acetic acid in the process stimulated ethanol fermentation. Thus, reducing the acetic acid concentration to a controlled low level is more advantageous than completely removing it.

  3. Interaction effects of lactic acid and acetic acid at different temperatures on ethanol production by Saccharomyces cerevisiae in corn mash.

    PubMed

    Graves, Tara; Narendranath, Neelakantam V; Dawson, Karl; Power, Ronan

    2007-01-01

    The combined effects of lactic acid and acetic acid on ethanol production by S. cerevisiae in corn mash, as influenced by temperature, were examined. Duplicate full factorial experiments (three lactic acid concentrations x three acetic acid concentrations) were performed to evaluate the interaction between lactic and acetic acids on the ethanol production of yeast at each of the three temperatures, 30, 34, and 37 degrees C. Corn mash at 30% dry solids adjusted to pH 4 after lactic and acetic acid addition was used as the substrate. Ethanol production rates and final ethanol concentrations decreased (P<0.001) progressively as the concentration of combined lactic and acetic acids in the corn mash increased and the temperature was raised from 30 to 37 degrees C. At 30 degrees C, essentially no ethanol was produced after 96 h when 0.5% w/v acetic acid was present in the mash (with 0.5, 2, and 4% w/v lactic acid). At 34 and 37 degrees C, the final concentrations of ethanol produced by the yeast were noticeably reduced by the presence of 0.3% w/v acetic acid and >or=2% w/v lactic acid. It can be concluded that, as in previous studies with defined media, lactic acid and acetic acid act synergistically to reduce ethanol production by yeast in corn mash. In addition, the inhibitory effects of combined lactic and acetic acid in corn mash were more apparent at elevated temperatures.

  4. Performance of dairy cows fed high levels of acetic acid or ethanol.

    PubMed

    Daniel, J L P; Amaral, R C; Sá Neto, A; Cabezas-Garcia, E H; Bispo, A W; Zopollatto, M; Cardoso, T L; Spoto, M H F; Santos, F A P; Nussio, L G

    2013-01-01

    Ethanol and acetic acid are common end products from silages. The main objective of this study was to determine whether high concentrations of ethanol or acetic acid in total mixed ration would affect performance in dairy cows. Thirty mid-lactation Holstein cows were grouped in 10 blocks and fed one of the following diets for 7 wk: (1) control (33% Bermuda hay + 67% concentrates), (2) ethanol [control diet + 5% ethanol, dry matter (DM) basis], or (3) acetic acid (control diet + 5% acetic acid, DM basis). Ethanol and acetic acid were diluted in water (1:2) and sprayed onto total mixed rations twice daily before feeding. An equal amount of water was mixed with the control ration. To adapt animals to these treatments, cows were fed only half of the treatment dose during the first week of study. Cows fed ethanol yielded more milk (37.9 kg/d) than those fed the control (35.8 kg/d) or acetic acid (35.3 kg/d) diets, mainly due to the higher DM intake (DMI; 23.7, 22.2, and 21.6 kg/d, respectively). The significant diet × week interaction for DMI, mainly during wk 2 and 3 (when acetic acid reached the full dose), was related to the decrease in DMI observed for the acetic acid treatment. There was a diet × week interaction in excretion of milk energy per DMI during wk 2 and 3, due to cows fed acetic acid sustained milk yield despite lower DMI. Energy efficiency was similar across diets. Blood metabolites (glucose, insulin, nonesterified fatty acids, ethanol, and γ-glutamyl transferase activity) and sensory characteristics of milk were not affected by these treatments. Animal performance suggested similar energy value for the diet containing ethanol compared with other diets. Rumen conversion of ethanol to acetate and a concomitant increase in methane production might be a plausible explanation for the deviation of the predicted energy value based on the heat of combustion. Therefore, the loss of volatile compounds during the drying process in the laboratory should be

  5. Screening and characterization of ethanol-tolerant and thermotolerant acetic acid bacteria from Chinese vinegar Pei.

    PubMed

    Chen, Yang; Bai, Ye; Li, Dongsheng; Wang, Chao; Xu, Ning; Hu, Yong

    2016-01-01

    Acetic acid bacteria (AAB) are important microorganisms in the vinegar industry. However, AAB have to tolerate the presence of ethanol and high temperatures, especially in submerged fermentation (SF), which inhibits AAB growth and acid yield. In this study, seven AAB that are tolerant to temperatures above 40 °C and ethanol concentrations above 10% (v/v) were isolated from Chinese vinegar Pei. All the isolated AAB belong to Acetobacter pasteurianus according to 16S rDNA analysis. Among all AAB, AAB4 produced the highest acid yield under high temperature and ethanol test conditions. At 4% ethanol and 30-40 °C temperatures, AAB4 maintained an alcohol-acid transform ratio of more than 90.5 %. High alcohol-acid transform ratio was still maintained even at higher temperatures, namely, 87.2, 77.1, 14.5 and 2.9% at 41, 42, 43 and 44 °C, respectively. At 30 °C and different initial ethanol concentrations (4-10%), the acid yield by AAB4 increased gradually, although the alcohol-acid transform ratio decreased to some extent. However, 46.5, 8.7 and 0.9% ratios were retained at ethanol concentrations of 11, 12 and 13%, respectively. When compared with AS1.41 (an AAB widely used in China) using a 10 L fermentor, AAB4 produced 42.0 g/L acetic acid at 37 °C with 10% ethanol, whereas AS1.41 almost stopped producing acetic acid. In conclusion, these traits suggest that AAB4 is a valuable strain for vinegar production in SF.

  6. STABILITY OF MFI ZEOLITE-FILLED PDMS MEMBRANES DURING PERVAPORATIVE ETHANOL RECOVERY FROM AQUEOUS MIXTURES CONTAINING ACETIC ACID

    EPA Science Inventory

    Pervaporation is a potential process for recovering bioethanol produced from biomass fermentation. Fermentation broths contain ethanol, water, and a variety of other compounds, often including carboxylic acids. The effects of acetic acid on long-term pervaporation of aqueous et...

  7. Efficient sugar release by acetic acid ethanol-based organosolv pretreatment and enzymatic saccharification.

    PubMed

    Zhang, Hongdan; Wu, Shubin

    2014-12-03

    Acetic acid ethanol-based organosolv pretreatment of sugar cane bagasse was performed to enhance enzymatic hydrolysis. The effect of different parameters (including temperature, reaction time, solvent concentration, and acid catalyst dose) on pretreatment prehydrolyzate and subsequent enzymatic digestibility was determined. During the pretreatment process, 11.83 g of xylose based on 100 g of raw material could be obtained. After the ethanol-based pretreatment, the enzymatic hydrolysis was enhanced and the highest glucose yield of 40.99 g based on 100 g of raw material could be obtained, representing 93.8% of glucose in sugar cane bagasse. The maximum total sugar yields occurred at 190 °C, 45 min, 60:40 ethanol/water, and 5% dosage of acetic acid, reaching 58.36 g (including 17.69 g of xylose and 40.67 g of glucose) based on 100 g of raw material, representing 85.4% of total sugars in raw material. Furthermore, characterization of the pretreated sugar cane bagasse using X-ray diffraction and scanning electron microscopy analyses were also developed. The results suggested that ethanol-based organosolv pretreatment could enhance enzymatic digestibilities because of the delignification and removal of xylan.

  8. High temperature stimulates acetic acid accumulation and enhances the growth inhibition and ethanol production by Saccharomyces cerevisiae under fermenting conditions.

    PubMed

    Woo, Ji-Min; Yang, Kyung-Mi; Kim, Sae-Um; Blank, Lars M; Park, Jin-Byung

    2014-07-01

    Cellular responses of Saccharomyces cerevisiae to high temperatures of up to 42 °C during ethanol fermentation at a high glucose concentration (i.e., 100 g/L) were investigated. Increased temperature correlated with stimulated glucose uptake to produce not only the thermal protectant glycerol but also ethanol and acetic acid. Carbon flux into the tricarboxylic acid (TCA) cycle correlated positively with cultivation temperature. These results indicate that the increased demand for energy (in the form of ATP), most likely caused by multiple stressors, including heat, acetic acid, and ethanol, was matched by both the fermentation and respiration pathways. Notably, acetic acid production was substantially stimulated compared to that of other metabolites during growth at increased temperature. The acetic acid produced in addition to ethanol seemed to subsequently result in adverse effects, leading to increased production of reactive oxygen species. This, in turn, appeared to cause the specific growth rate, and glucose uptake rate reduced leading to a decrease of the specific ethanol production rate far before glucose depletion. These results suggest that adverse effects from heat, acetic acid, ethanol, and oxidative stressors are synergistic, resulting in a decrease of the specific growth rate and ethanol production rate and, hence, are major determinants of cell stability and ethanol fermentation performance of S. cerevisiae at high temperatures. The results are discussed in the context of possible applications.

  9. Effect of manganese ions on ethanol fermentation by xylose isomerase expressing Saccharomyces cerevisiae under acetic acid stress.

    PubMed

    Ko, Ja Kyong; Um, Youngsoon; Lee, Sun-Mi

    2016-12-01

    The efficient fermentation of lignocellulosic hydrolysates in the presence of inhibitors is highly desirable for bioethanol production. Among the inhibitors, acetic acid released during the pretreatment of lignocellulose negatively affects the fermentation performance of biofuel producing organisms. In this study, we evaluated the inhibitory effects of acetic acid on glucose and xylose fermentation by a high performance engineered strain of xylose utilizing Saccharomyces cerevisiae, SXA-R2P-E, harboring a xylose isomerase based pathway. The presence of acetic acid severely decreased the xylose fermentation performance of this strain. However, the acetic acid stress was alleviated by metal ion supplementation resulting in a 52% increased ethanol production rate under 2g/L of acetic acid stress. This study shows the inhibitory effect of acetic acid on an engineered isomerase-based xylose utilizing strain and suggests a simple but effective method to improve the co-fermentation performance under acetic acid stress for efficient bioethanol production.

  10. Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash.

    PubMed

    Graves, Tara; Narendranath, Neelakantam V; Dawson, Karl; Power, Ronan

    2006-06-01

    The effects of lactic and acetic acids on ethanol production by Saccharomyces cerevisiae in corn mash, as influenced by pH and dissolved solids concentration, were examined. The lactic and acetic acid concentrations utilized were 0, 0.5, 1.0, 2.0, 3.0 and 4.0% w/v, and 0, 0.1, 0.2, 0.4, 0.8 and 1.6% w/v, respectively. Corn mashes (20, 25 and 30% dry solids) were adjusted to the following pH levels after lactic or acetic acid addition: 4.0, 4.5, 5.0 or 5.5 prior to yeast inoculation. Lactic acid did not completely inhibit ethanol production by the yeast. However, lactic acid at 4% w/v decreased (P<0.05) final ethanol concentration in all mashes at all pH levels. In 30% solids mash set at pH < or =5, lactic acid at 3% w/v reduced (P<0.05) ethanol production. In contrast, inhibition by acetic acid increased as the concentration of solids in the mash increased and the pH of the medium declined. Ethanol production was completely inhibited in all mashes set at pH 4 in the presence of acetic acid at concentrations > or =0.8% w/v. In 30% solids mash set at pH 4, final ethanol levels decreased (P<0.01) with only 0.1% w/v acetic acid. These results suggest that the inhibitory effects of lactic acid and acetic acid on ethanol production in corn mash fermentation when set at a pH of 5.0-5.5 are not as great as that reported thus far using laboratory media.

  11. Techno-economic Analysis for the Thermochemical Conversion of Lignocellulosic Biomass to Ethanol via Acetic Acid Synthesis

    SciTech Connect

    Zhu, Yunhua; Jones, Susanne B.

    2009-04-01

    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications. As a widely available biomass form, lignocellulosic biomass can have a major impact on domestic transportation fuel supplies and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). This study performs a techno-economic analysis of the thermo chemical conversion of biomass to ethanol, through methanol and acetic acid, followed by hydrogenation of acetic acid to ethanol. The conversion of syngas to methanol and methanol to acetic acid are well-proven technologies with high conversions and yields. This study was undertaken to determine if this highly selective route to ethanol could provide an already established economically attractive route to ethanol. The feedstock was assumed to be wood chips at 2000 metric ton/day (dry basis). Two types of gasification technologies were evaluated: an indirectly-heated gasifier and a directly-heated oxygen-blown gasifier. Process models were developed and a cost analysis was performed. The carbon monoxide used for acetic acid synthesis from methanol and the hydrogen used for hydrogenation were assumed to be purchased and not derived from the gasifier. Analysis results show that ethanol selling prices are estimated to be $2.79/gallon and $2.81/gallon for the indirectly-heated gasifier and the directly-heated gasifier systems, respectively (1stQ 2008$, 10% ROI). These costs are above the ethanol market price for during the same time period ($1.50 - $2.50/gal). The co-production of acetic acid greatly improves the process economics as shown in the figure below. Here, 20% of the acetic acid is diverted from ethanol production and assumed to be sold as a co-product at the prevailing market prices ($0.40 - $0.60/lb acetic acid), resulting in competitive ethanol production costs.

  12. ETHANOL, ACETIC ACID, AND WATER ADSORPTION FROM BINARY AND TERNARY LIQUID MIXTURES ON HIGH-SILICA ZEOLITES

    EPA Science Inventory

    Adsorption isotherms were measured for ethanol, acetic acid, and water adsorbed on high-silica ZSM-5 zeolite powder from binary and ternary liquid mixtures at room temperature. Ethanol and water adsorption on two high-silica ZSM-5 zeolites with different aluminum contents and a h...

  13. Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts.

    PubMed

    Palmqvist, E; Grage, H; Meinander, N Q; Hahn-Hägerdal, B

    1999-04-05

    The influence of the factors acetic acid, furfural, and p-hydroxybenzoic acid on the ethanol yield (YEtOH) of Saccharomyces cerevisiae, bakers' yeast, S. cerevisiae ATCC 96581, and Candida shehatae NJ 23 was investigated using a 2(3)-full factorial design with 3 centrepoints. The results indicated that acetic acid inhibited the fermentation by C. shehatae NJ 23 markedly more than by bakers' yeast, whereas no significant difference in tolerance towards the compounds was detected between the S. cerevisiae strains. Furfural (2 g L-1) and the lignin derived compound p-hydroxybenzoic acid (2 g L-1) did not affect any of the yeasts at the cell mass concentration used. The results indicated that the linear model was not adequate to describe the experimental data (the p-values of curvatures were 0.048 for NJ 23 and 0.091 for bakers' yeast). Based on the results from the 2(3)-full factorial experiment, an extended experiment was designed based on a central composite design to investigate the influence of the factors on the specific growth rate (mu), biomass yield (Yx), volumetric ethanol productivity (QEtOH), and YEtOH. Bakers' yeast was chosen in the extended experiment due to its better tolerance towards acetic acid, which makes it a more interesting organism for use in industrial fermentations of lignocellulosic hydrolysates. The inoculum size was reduced in the extended experiment to reduce any increase in inhibitor tolerance that might be due to a large cell inoculum. By dividing the experiment in blocks containing fermentations performed with the same inoculum preparation on the same day, much of the anticipated systematic variation between the experiments was separated from the experimental error. The results of the fitted model can be summarised as follows: mu was decreased by furfural (0-3 g L-1). Furfural and acetic acid (0-10 g L-1) also interacted negatively on mu. Furfural concentrations up to 2 g L-1 stimulated Yx in the absence of acetic acid whereas higher

  14. Manufacturing Ethyl Acetate From Fermentation Ethanol

    NASA Technical Reports Server (NTRS)

    Rohatgi, Naresh K.; Ingham, John D.

    1991-01-01

    Conceptual process uses dilute product of fermentation instead of concentrated ethanol. Low-concentration ethanol, extracted by vacuum from fermentation tank, and acetic acid constitutes feedstock for catalytic reaction. Product of reaction goes through steps that increases ethyl acetate content to 93 percent by weight. To conserve energy, heat exchangers recycle waste heat to preheat process streams at various points.

  15. Bio-conversion of apple pomace into ethanol and acetic acid: Enzymatic hydrolysis and fermentation.

    PubMed

    Parmar, Indu; Rupasinghe, H P Vasantha

    2013-02-01

    Enzymatic hydrolysis of cellulose present in apple pomace was investigated using process variables such as enzyme activity of commercial cellulase, pectinase and β-glucosidase, temperature, pH, time, pre-treatments and end product separation. The interaction of enzyme activity, temperature, pH and time had a significant effect (P<0.05) on release of glucose. Optimal conditions of enzymatic saccharification were: enzyme activity of cellulase, 43units; pectinase, 183units; β-glucosidase, 41units/g dry matter (DM); temperature, 40°C; pH 4.0 and time, 24h. The sugars were fermented using Saccharomyces cerevisae yielding 19.0g ethanol/100g DM. Further bio-conversion using Acetobacter aceti resulted in the production of acetic acid at a concentration of 61.4g/100g DM. The present study demonstrates an improved process of enzymatic hydrolysis of apple pomace to yield sugars and concomitant bioconversion to produce ethanol and acetic acid.

  16. Effects of glucose, ethanol and acetic acid on regulation of ADH2 gene from Lachancea fermentati

    PubMed Central

    Yaacob, Norhayati; Salleh, Abu Bakar; Abdul Rahman, Nor Aini

    2016-01-01

    Background. Not all yeast alcohol dehydrogenase 2 (ADH2) are repressed by glucose, as reported in Saccharomyces cerevisiae. Pichia stipitis ADH2 is regulated by oxygen instead of glucose, whereas Kluyveromyces marxianus ADH2 is regulated by neither glucose nor ethanol. For this reason, ADH2 regulation of yeasts may be species dependent, leading to a different type of expression and fermentation efficiency. Lachancea fermentati is a highly efficient ethanol producer, fast-growing cells and adapted to fermentation-related stresses such as ethanol and organic acid, but the metabolic information regarding the regulation of glucose and ethanol production is still lacking. Methods. Our investigation started with the stimulation of ADH2 activity from S. cerevisiae and L. fermentati by glucose and ethanol induction in a glucose-repressed medium. The study also embarked on the retrospective analysis of ADH2 genomic and protein level through direct sequencing and sites identification. Based on the sequence generated, we demonstrated ADH2 gene expression highlighting the conserved NAD(P)-binding domain in the context of glucose fermentation and ethanol production. Results. An increase of ADH2 activity was observed in starved L. fermentati (LfeADH2) and S. cerevisiae (SceADH2) in response to 2% (w/v) glucose induction. These suggest that in the presence of glucose, ADH2 activity was activated instead of being repressed. An induction of 0.5% (v/v) ethanol also increased LfeADH2 activity, promoting ethanol resistance, whereas accumulating acetic acid at a later stage of fermentation stimulated ADH2 activity and enhanced glucose consumption rates. The lack in upper stream activating sequence (UAS) and TATA elements hindered the possibility of Adr1 binding to LfeADH2. Transcription factors such as SP1 and RAP1 observed in LfeADH2 sequence have been implicated in the regulation of many genes including ADH2. In glucose fermentation, L. fermentati exhibited a bell-shaped ADH2

  17. Glucose respiration and fermentation in Zygosaccharomyces bailii and Saccharomyces cerevisiae express different sensitivity patterns to ethanol and acetic acid.

    PubMed

    Fernandes, L; Côrte-Real, M; Loureiro, V; Loureiro-Dias, M C; Leão, C

    1997-10-01

    In the yeast Zygosaccharomyces bailii ISA 1307, respiration and fermentation of glucose were exponentially inhibited by ethanol, both processes displaying similar sensitivity to the alcohol. Moreover, the degree of inhibition on fermentation was of the same magnitude as that reported for Saccharomyces cerevisiae. Acetic acid also inhibited these two metabolic processes in Z. bailii, with the kinetics of inhibition again being exponential. However, inhibition of fermentation was much less pronounced than in S. cerevisiae. The values estimated with Z. bailii for the minimum inhibitory concentration of acetic acid ranged from 100 to 240 mmol 1(-1) total acetic acid compared with values of near zero reported for S. cerevisiae. The inhibitory effects of acetic acid on Z. bailii were not significantly potentiated by ethanol.

  18. Ethanol, acetic acid, and water adsorption from binary and ternary liquid mixtures on high-silica zeolites.

    PubMed

    Bowen, Travis C; Vane, Leland M

    2006-04-11

    Adsorption isotherms were measured for ethanol, acetic acid, and water adsorbed on high-silica ZSM-5 zeolite powder from binary and ternary liquid mixtures at room temperature. Ethanol and water adsorption on two high-silica ZSM-5 zeolites with different aluminum contents and a high-silica beta zeolite were also compared. The amounts adsorbed were measured using a recently developed technique that accurately measures the changes in adsorbent/liquid mixture density and liquid concentration. This technique allows the adsorption of each compound in a liquid mixture to be measured. Adsorption data for binary mixtures were fit with the dual-site extended Langmuir model, and the parameters were used to predict ternary adsorption isotherms for each compound with reasonable accuracy. In ternary mixtures, acetic acid competed with ethanol and water for adsorption sites and reduced ethanol adsorption more than it reduced water adsorption.

  19. Transport of acetic acid in Zygosaccharomyces bailii: effects of ethanol and their implications on the resistance of the yeast to acidic environments.

    PubMed Central

    Sousa, M J; Miranda, L; Côrte-Real, M; Leão, C

    1996-01-01

    Cells of Zygosaccharomyces bailii ISA 1307 grown in a medium with acetic acid, ethanol, or glycerol as the sole carbon and energy source transported acetic acid by a saturable transport system. This system accepted propionic and formic acids but not lactic, sorbic, and benzoic acids. When the carbon source was glucose or fructose, the cells displayed activity of a mediated transport system specific for acetic acid, apparently not being able to recognize other monocarboxylic acids. In both types of cells, ethanol inhibited the transport of labelled acetic acid. The inhibition was noncompetitive, and the dependence of the maximum transport rate on the ethanol concentration was found to be exponential. These results reinforced the belief that, under the referenced growth conditions, the acid entered the cells mainly through a transporter protein. The simple diffusion of the undissociated acid appeared to contribute, with a relatively low weight, to the overall acid uptake. It was concluded that in Z. bailii, ethanol plays a protective role against the possible negative effects of acetic acid by inhibiting its transport and accumulation. Thus, the intracellular concentration of the acid could be maintained at levels lower than those expected if the acid entered the cells only by simple diffusion. PMID:8795203

  20. Effect of ethanol, acetaldehyde, acetic Acid, and ethylene on changes in respiration and respiratory metabolites in potato tubers.

    PubMed

    Rychter, A; Janes, H W; Chin, C K; Frenkel, C

    1979-07-01

    Ethanol, acetaldehyde, and acetic acid, when applied in a volatile state in air to potato tubers, led to a climacteric-like upsurge in respiration. The respiratory upsurge was markedly enhanced when the volatiles were applied in 100% O(2).Ethanol induced a decline in the level of 2-phosphoglyceric acid and phosphoenolpyruvate while leading to the accumulation of tricarboxylic acid cycle intermediates including isocitrate and alpha-ketoglutarate. The action of these compounds was similar to, but independent of, the action of ethylene.

  1. Effects of acetic acid, ethanol, and SO(2) on the removal of volatile acidity from acidic wines by two Saccharomyces cerevisiae commercial strains.

    PubMed

    Vilela-Moura, Alice; Schuller, Dorit; Mendes-Faia, Arlete; Côrte-Real, Manuela

    2010-07-01

    Herein, we report the influence of different combinations of initial concentration of acetic acid and ethanol on the removal of acetic acid from acidic wines by two commercial Saccharomyces cerevisiae strains S26 and S29. Both strains reduced the volatile acidity of an acidic wine (1.0 gl(-1) acetic acid and 11% (v/v) ethanol) by 78% and 48%, respectively. Acetic acid removal by strains S26 and S29 was associated with a decrease in ethanol concentration of 0.7 and 1.2% (v/v), respectively. Strain S26 revealed better removal efficiency due to its higher tolerance to stress factors imposed by acidic wines. Sulfur dioxide (SO(2)) in the concentration range 95-170 mg l(-1)inhibits the ability of both strains to reduce the volatile acidity of the acidic wine used under our experimental conditions. Therefore, deacidification should be carried out either in wines stabilized by filtration or in wines with SO(2)concentrations up to 70 mg l(-1). Deacidification of wines with the better performing strain S26 was associated with changes in the concentration of volatile compounds. The most pronounced increase was observed for isoamyl acetate (banana) and ethyl hexanoate (apple, pineapple), with an 18- and 25-fold increment, respectively, to values above the detection threshold. The acetaldehyde concentration of the deacidified wine was 2.3 times higher, and may have a detrimental effect on the wine aroma. Moreover, deacidification led to increased fatty acids concentration, but still within the range of values described for spontaneous fermentations, and with apparently no negative impact on the organoleptical properties.

  2. Characterization of a recombinant flocculent Saccharomyces cerevisiae strain that co-ferments glucose and xylose: II. influence of pH and acetic acid on ethanol production.

    PubMed

    Matsushika, Akinori; Sawayama, Shigeki

    2012-12-01

    The inhibitory effects of pH and acetic acid on the co-fermentation of glucose and xylose in complex medium by recombinant flocculent Saccharomyces cerevisiae MA-R4 were evaluated. In the absence of acetic acid, the fermentation performance of strain MA-R4 was similar between pH 4.0-6.0, but was negatively affected at pH 2.5. The addition of acetic acid to batch cultures resulted in negligible inhibition of several fermentation parameters at pH 6.0, whereas the interactive inhibition of pH and acetic acid on the maximum cell and ethanol concentrations, and rates of sugar consumption and ethanol production were observed at pH levels below 5.4. The inhibitory effect of acetic acid was particularly marked for the consumption rate of xylose, as compared with that of glucose. With increasing initial acetic acid concentration, the ethanol yield slightly increased at pH 5.4 and 6.0, but decreased at pH values lower than 4.7. Notably, ethanol production was nearly completely inhibited under low pH (4.0) and high acetic acid (150-200 mM) conditions. Together, these results indicate that the inhibitory effects of acetic acid and pH on ethanol fermentation by MA-R4 are highly synergistic, although the inhibition can be reduced by increasing the medium pH.

  3. Flecainide acetate acetic acid solvates.

    PubMed

    Veldre, Kaspars; Actiņs, Andris; Eglite, Zane

    2011-02-01

    Flecainide acetate forms acetic acid solvates with 0.5 and 2 acetic acid molecules. Powder X-ray diffraction, differential thermal analysis/thermogravimetric, infrared, and potentiometric titration were used to determine the composition of solvates. Flecainide acetate hemisolvate with acetic acid decomposes to form a new crystalline form of flecainide acetate. This form is less stable than the already known polymorphic form at all temperatures, and it is formed due to kinetic reasons. Both flecainide acetate nonsolvated and flecainide acetate hemisolvate forms crystallize in monoclinic crystals, but flecainide triacetate forms triclinic crystals. Solvate formation was not observed when flecainide base was treated with formic acid, propanoic acid, and butanoic acid. Only nonsolvated flecainide salts were obtained in these experiments.

  4. Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid.

    PubMed

    Abubackar, Haris Nalakath; Veiga, María C; Kennes, Christian

    2015-06-01

    Fermentation of CO or syngas offers an attractive route to produce bioethanol. However, during the bioconversion, one of the challenges to overcome is to reduce the production of acetic acid in order to minimize recovery costs. Different experiments were done with Clostridium autoethanogenum. With the addition of 0.75 μM tungsten, ethanol production from carbon monoxide increased by about 128% compared to the control, without such addition, in batch mode. In bioreactors with continuous carbon monoxide supply, the maximum biomass concentration reached at pH 6.0 was 109% higher than the maximum achieved at pH 4.75 but, interestingly, at pH 4.75, no acetic acid was produced and the ethanol titer reached a maximum of 867 mg/L with minor amounts of 2,3-butanediol (46 mg/L). At the higher pH studied (pH 6.0) in the continuous gas-fed bioreactor, almost equal amounts of ethanol and acetic acid were formed, reaching 907.72 mg/L and 910.69 mg/L respectively.

  5. Density Functional Investigation of the Adsorption of Isooctane, Ethanol, and Acetic Acid on a Water-Covered Fe(100) Surface

    PubMed Central

    2014-01-01

    The presence of water in biofuels poses the question of how it affects the frictional performance of additives in fuels containing organic substances. To investigate the effect of water on the adsorption of molecules present in fuel and its additives we simulated within the framework of density functional theory the adsorption of ethanol, isooctane (2,2,4-trimethylpentane), and acetic acid on a bare and a water-covered Fe(100) surface. Van der Waals interactions are taken into account in our computations. In those molecules, where dispersion forces contribute significantly to the binding mechanism, the water layer has a stronger screening effect. Additionally, this effect can be enhanced by the presence of polar functional groups in the molecule. Thus, with the introduction of a water layer, the adsorption energy of isooctane and ethanol is reduced but it is increased in the case of the acetic acid. The adsorption configuration of ethanol is changed, while the one of acetic acid is moderately, and for isooctane only very slightly altered. Therefore, the effect of a water layer in the adsorption of organic molecules on an Fe(100) surface strongly depends on the type of bond and consequently, so do the tribological properties. PMID:25243045

  6. Density Functional Investigation of the Adsorption of Isooctane, Ethanol, and Acetic Acid on a Water-Covered Fe(100) Surface.

    PubMed

    Bedolla, Pedro O; Feldbauer, Gregor; Wolloch, Michael; Gruber, Christoph; Eder, Stefan J; Dörr, Nicole; Mohn, Peter; Redinger, Josef; Vernes, András

    2014-09-18

    The presence of water in biofuels poses the question of how it affects the frictional performance of additives in fuels containing organic substances. To investigate the effect of water on the adsorption of molecules present in fuel and its additives we simulated within the framework of density functional theory the adsorption of ethanol, isooctane (2,2,4-trimethylpentane), and acetic acid on a bare and a water-covered Fe(100) surface. Van der Waals interactions are taken into account in our computations. In those molecules, where dispersion forces contribute significantly to the binding mechanism, the water layer has a stronger screening effect. Additionally, this effect can be enhanced by the presence of polar functional groups in the molecule. Thus, with the introduction of a water layer, the adsorption energy of isooctane and ethanol is reduced but it is increased in the case of the acetic acid. The adsorption configuration of ethanol is changed, while the one of acetic acid is moderately, and for isooctane only very slightly altered. Therefore, the effect of a water layer in the adsorption of organic molecules on an Fe(100) surface strongly depends on the type of bond and consequently, so do the tribological properties.

  7. Correlation between urinary 2-methoxy acetic acid and exposure of 2- methoxy ethanol

    PubMed Central

    Shih, T. S.; Liou, S. H.; Chen, C. Y.; Chou, J. S.

    1999-01-01

    OBJECTIVES: To examine the correlation between airborne 2-methoxy ethanol (ME) exposures and the urinary 2-methoxy acetic acid (MAA) and to recommend a biological exposure index (BEI) for ME. METHODS: 8 Hour time weighted average (TWA) personal breathing zone samples and urine samples before and after the shift were collected from Monday to Saturday for 27 workers exposed to ME and on Friday for 30 control workers. RESULTS: No correlation was found between airborne exposure to ME and urinary MAA for nine special operation workers due to the use of personal protective equipment. For 18 regular operation workers, a significant correlation (r = 0.702, p = 0.001) was found between urinary MAA (mg/g creatinine) on Friday at the end of the shift and the weekly mean exposures of ME in a 5 day working week. The proposed BEI, which corresponds to exposure for 5 days and 8 hours a day to 5 ppm, extrapolated from the regression equation is 40 mg MAA/g creatinine. A significant correlation was also found between the weekly increase of urinary MAA (Friday after the shift minus Monday before the shift) and the weekly mean exposures of ME (r = 0.741). The recommended value of the weekly increase of urinary MAA for 5 days repeated exposures of 5 ppm ME is 20 mg/g creatinine. No urinary MAA was detected in workers in the non-exposed control group. CONCLUSIONS: The Friday urinary MAA after the shift or the weekly increase of urinary MAA is a specific and a good biomarker of weekly exposure to ME.   PMID:10658546

  8. Synergistic Trap Response of the False Stable Fly and Little House Fly (Diptera: Muscidae) to Acetic Acid and Ethanol, Two Principal Sugar Fermentation Volatiles.

    PubMed

    Landolt, Peter J; Cha, Dong H; Zack, Richard S

    2015-10-01

    In an initial observation, large numbers of muscoid flies (Diptera) were captured as nontarget insects in traps baited with solutions of acetic acid plus ethanol. In subsequent field experiments, numbers of false stable fly Muscina stabulans (Fallén) and little house fly Fannia canicularis (L.) trapped with the combination of acetic acid plus ethanol were significantly higher than those trapped with either chemical alone, or in unbaited traps. Flies were trapped with acetic acid and ethanol that had been formulated in the water of the drowning solution of the trap, or dispensed from polypropylene vials with holes in the vial lids for diffusion of evaporated chemical. Numbers of both species of fly captured were greater with acetic acid and ethanol in glass McPhail traps, compared to four other similar wet trap designs. This combination of chemicals may be useful as an inexpensive and not unpleasant lure for monitoring or removing these two pest fly species.

  9. Effects of ethanol and acetic acid on the transport of malic acid and glucose in the yeast Schizosaccharomyces pombe: implications in wine deacidification.

    PubMed

    Sousa, M J; Mota, M; Leão, C

    1995-02-15

    Ethanol and acetic acid, at concentrations which may occur during wine-making, inhibited the transport of L-malic acid in Schizosaccharomyces pombe. The inhibition was non-competitive, the decrease of the maximum initial velocity following exponential kinetics. Glucose transport was not significantly affected either by ethanol (up to 13%, w/v) or by acetic acid (up to 1.5%, w/v). The uptake of labelled acetic acid followed simple diffusion kinetics, indicating that a carrier was not involved in its transport. Therefore, the undissociated acid appears to be the only form that enters the cells and is probably responsible for the toxic effects. Accordingly, deacidification by Ss. pombe during wine fermentation should take place before, rather than after, the main alcoholic fermentation by Saccharomyces cerevisiae.

  10. Ethanol and acetic acid production from carbon monoxide in a Clostridium strain in batch and continuous gas-fed bioreactors.

    PubMed

    Abubackar, Haris Nalakath; Veiga, María C; Kennes, Christian

    2015-01-20

    The effect of different sources of nitrogen as well as their concentrations on the bioconversion of carbon monoxide to metabolic products such as acetic acid and ethanol by Clostridium autoethanogenum was studied. In a first set of assays, under batch conditions, either NH4Cl, trypticase soy broth or yeast extract (YE) were used as sources of nitrogen. The use of YE was found statistically significant (p < 0.05) on the product spectrum in such batch assays. In another set of experiments, three bioreactors were operated with continuous CO supply, in order to estimate the effect of running conditions on products and biomass formation. The bioreactors were operated under different conditions, i.e., EXP1 (pH = 5.75, YE 1g/L), EXP2 (pH = 4.75, YE 1 g/L) and EXP3 (pH = 5.75, YE 0.2 g/L). When compared to EXP2 and EXP3, it was found that EXP1 yielded the maximum biomass accumulation (302.4 mg/L) and products concentrations, i.e., acetic acid (2147.1 mg/L) and ethanol (352.6 mg/L). This can be attributed to the fact that the higher pH and higher YE concentration used in EXP1 stimulated cell growth and did, consequently, also enhance metabolite production. However, when ethanol is the desired end-product, as a biofuel, the lower pH used in EXP2 was more favourable for solventogenesis and yielded the highest ethanol/acetic acid ratio, reaching a value of 0.54.

  11. Ethanol and Acetic Acid Production from Carbon Monoxide in a Clostridium Strain in Batch and Continuous Gas-Fed Bioreactors

    PubMed Central

    Nalakath Abubackar, Haris; Veiga, María C.; Kennes, Christian

    2015-01-01

    The effect of different sources of nitrogen as well as their concentrations on the bioconversion of carbon monoxide to metabolic products such as acetic acid and ethanol by Clostridium autoethanogenum was studied. In a first set of assays, under batch conditions, either NH4Cl, trypticase soy broth or yeast extract (YE) were used as sources of nitrogen. The use of YE was found statistically significant (p < 0.05) on the product spectrum in such batch assays. In another set of experiments, three bioreactors were operated with continuous CO supply, in order to estimate the effect of running conditions on products and biomass formation. The bioreactors were operated under different conditions, i.e., EXP1 (pH = 5.75, YE 1g/L), EXP2 (pH = 4.75, YE 1 g/L) and EXP3 (pH = 5.75, YE 0.2 g/L). When compared to EXP2 and EXP3, it was found that EXP1 yielded the maximum biomass accumulation (302.4 mg/L) and products concentrations, i.e., acetic acid (2147.1 mg/L) and ethanol (352.6 mg/L). This can be attributed to the fact that the higher pH and higher YE concentration used in EXP1 stimulated cell growth and did, consequently, also enhance metabolite production. However, when ethanol is the desired end-product, as a biofuel, the lower pH used in EXP2 was more favourable for solventogenesis and yielded the highest ethanol/acetic acid ratio, reaching a value of 0.54. PMID:25608591

  12. Nematocyst discharge in Pelagia noctiluca (Cnidaria, Scyphozoa) oral arms can be affected by lidocaine, ethanol, ammonia and acetic acid.

    PubMed

    Morabito, Rossana; Marino, Angela; Dossena, Silvia; La Spada, Giuseppa

    2014-06-01

    Nematocyst discharge and concomitant delivery of toxins is triggered to perform both defence and predation strategies in Cnidarians, and may lead to serious local and systemic reactions in humans. Pelagia noctiluca (Cnidaria, Scyphozoa) is a jellyfish particularly abundant in the Strait of Messina (Italy). After accidental contact with this jellyfish, not discharged nematocysts or even fragments of tentacles or oral arms may tightly adhere to the human skin and, following discharge, severely increase pain and the other adverse consequences of the sting. The aim of the present study is to verify if the local anesthetic lidocaine and other compounds, like alcohols, acetic acid and ammonia, known to provide pain relief after jellyfish stings, may also affect in situ discharge of nematocysts. Discharge was induced by a combined physico-chemical stimulation of oral arms by chemosensitizers (such as N-acetylated sugars, aminoacids, proteins and nucleotides), in the presence or absence of 1% lidocaine, 70% ethanol, 5% acetic acid or 20% ammonia, followed by mechanical stimulation by a non-vibrating test probe. The above mentioned compounds failed to induce discharge per se, and dramatically impaired the chemosensitizer-induced discharge response. We therefore suggest that prompt local treatment of the stung epidermis with lidocaine, acetic acid, ethanol and ammonia may provide substantial pain relief and help in reducing possible harmful local and systemic adverse reaction following accidental contact with P. noctiluca specimens.

  13. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae.

    PubMed

    Casey, Elizabeth; Sedlak, Miroslav; Ho, Nancy W Y; Mosier, Nathan S

    2010-06-01

    A current challenge of the cellulosic ethanol industry is the effect of inhibitors present in biomass hydrolysates. Acetic acid is an example of one such inhibitor that is released during the pretreatment of hemicellulose. This study examined the effect of acetic acid on the cofermentation of glucose and xylose under controlled pH conditions by Saccharomyces cerevisiae 424A(LNH-ST), a genetically engineered industrial yeast strain. Acetic acid concentrations of 7.5 and 15 g L(-1), representing the range of concentrations expected in actual biomass hydrolysates, were tested under controlled pH conditions of 5, 5.5, and 6. The presence of acetic acid in the fermentation media led to a significant decrease in the observed maximum cell biomass concentration. Glucose- and xylose-specific consumption rates decreased as the acetic acid concentration increased, with the inhibitory effect being more severe for xylose consumption. The ethanol production rates also decreased when acetic acid was present, but ethanol metabolic yields increased under the same conditions. The results also revealed that the inhibitory effect of acetic acid could be reduced by increasing media pH, thus confirming that the undissociated form of acetic acid is the inhibitory form of the molecule.

  14. Improved ethanol production from xylose in the presence of acetic acid by the overexpression of the HAA1 gene in Saccharomyces cerevisiae.

    PubMed

    Sakihama, Yuri; Hasunuma, Tomohisa; Kondo, Akihiko

    2015-03-01

    The hydrolysis of lignocellulosic biomass liberates sugars, primarily glucose and xylose, which are subsequently converted to ethanol by microbial fermentation. The rapid and efficient fermentation of xylose by recombinant Saccharomyces cerevisiae strains is limited by weak acids generated during biomass pretreatment processes. In particular, acetic acid negatively affects cell growth, xylose fermentation rate, and ethanol production. The ability of S. cerevisiae to efficiently utilize xylose in the presence of acetic acid is an essential requirement for the cost-effective production of ethanol from lignocellulosic hydrolysates. Here, an acetic acid-responsive transcriptional activator, HAA1, was overexpressed in a recombinant xylose-fermenting S. cerevisiae strain to yield BY4741X/HAA1. This strain exhibited improved cell growth and ethanol production from xylose under aerobic and oxygen limited conditions, respectively, in the presence of acetic acid. The HAA1p regulon enhanced transcript levels in BY4741X/HAA1. The disruption of PHO13, a p-nitrophenylphosphatase gene, in BY4741X/HAA1 led to further improvement in both yeast growth and the ability to ferment xylose, indicating that HAA1 overexpression and PHO13 deletion act by different mechanisms to enhance ethanol production.

  15. The effect of flooding on the exchange of the volatile C2-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphere

    NASA Astrophysics Data System (ADS)

    Rottenberger, S.; Kleiss, B.; Kuhn, U.; Wolf, A.; Piedade, M. T. F.; Junk, W.; Kesselmeier, J.

    2008-02-01

    The effect of root inundation on the leaf emissions of ethanol, acetaldehyde and acetic acid was investigated with 2-3 years old tree seedlings of four Amazonian floodplain species by applying dynamic cuvette systems under greenhouse conditions. Emissions were monitored over a period of several days of inundation using a combination of Proton Transfer Reaction Mass Spectrometry (PTR-MS) and conventional techniques (HPLC, ion chromatography). Under non-flooded conditions, none of the species exhibited significant emissions of any of the compounds. A slight deposition of acetaldehyde and acetic acid was mainly observed, instead. Tree species specific variations in deposition velocities were largely due to variations in stomatal conductance. Flooding of the roots resulted in leaf emissions of ethanol and acetaldehyde by all species, while emissions of acetic acid occurred only by the species exhibiting the highest ethanol and acetaldehyde emission rates. All three compounds showed a similar diurnal emission profile, each displaying an emission burst in the morning, followed by a decline in the evening. This concurrent behavior supports the conclusion, that all three compounds emitted by the leaves are derived from ethanol produced in the roots by alcoholic fermentation, transported to the leaves with the transpiration stream and finally partly converted to acetaldehyde and acetic acid by enzymatic processes. Co-emissions and peaking in the early morning confirmed that root ethanol, after transportation with the transpiration stream to the leaves and enzymatic oxidation to acetaldehyde and acetate, is the metabolic precursor for all compounds emitted. Emission rates substantially varied among tree species, with maxima differing by up to two orders of magnitude (3-200 nmol m-2 min-1 for ethanol and 5-500 nmol m-2 min-1 for acetaldehyde). Acetic acid emissions reached 12 nmol m-2 min-1. The observed differences in emission rates between the tree species are discussed

  16. The effect of flooding on the exchange of the volatile C2-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphere

    NASA Astrophysics Data System (ADS)

    Rottenberger, S.; Kleiss, B.; Kuhn, U.; Wolf, A.; Piedade, M. T. F.; Junk, W.; Kesselmeier, J.

    2008-08-01

    The effect of root inundation on the leaf emissions of ethanol, acetaldehyde and acetic acid in relation to assimilation and transpiration was investigated with 2 3 years old tree seedlings of four Amazonian floodplain species by applying dynamic cuvette systems under greenhouse conditions. Emissions were monitored over a period of several days of inundation using a combination of Proton Transfer Reaction Mass Spectrometry (PTR-MS) and conventional techniques (HPLC, ion chromatography). Under non-flooded conditions, none of the species exhibited measurable emissions of any of the compounds, but rather low deposition of acetaldehyde and acetic acid was observed instead. Tree species specific variations in deposition velocities were largely due to variations in stomatal conductance. Flooding of the roots resulted in leaf emissions of ethanol and acetaldehyde by all species, while emissions of acetic acid were only observed from the species exhibiting the highest ethanol and acetaldehyde emission rates. All three compounds showed a similar diurnal emission profile, each displaying an emission burst in the morning, followed by a decline in the evening. This concurrent behavior supports the conclusion, that all three compounds emitted by the leaves are derived from ethanol produced in the roots by alcoholic fermentation, transported to the leaves with the transpiration stream and finally partly converted to acetaldehyde and acetic acid by enzymatic processes. Co-emissions and peaking in the early morning suggest that root ethanol, after transportation with the transpiration stream to the leaves and enzymatic oxidation to acetaldehyde and acetate, is the metabolic precursor for all compounds emitted, though we can not totally exclude other production pathways. Emission rates substantially varied among tree species, with maxima differing by up to two orders of magnitude (25 1700 nmol m-2 min-1 for ethanol and 5 500 nmol m-2 min-1 for acetaldehyde). Acetic acid emissions

  17. Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1.

    PubMed

    Zhang, Ming-Ming; Zhao, Xin-Qing; Cheng, Cheng; Bai, Feng-Wu

    2015-12-01

    To better understand the contribution of zinc-finger proteins to environmental stress tolerance, particularly inhibition from acetic acid, which is a potent inhibitor for cellulosic ethanol production by microbial fermentations, SET5 and PPR1 were overexpressed in Saccharomyces cerevisiae BY4741. With 5 g/L acetic acid addition, engineered strains BY4741/SET5 and BY4741/PPR1 showed improved growth and enhanced ethanol fermentation performance compared to that with the control strain. Similar results were also observed in ethanol production using corn stover hydrolysate. Further studies indicated that SET5 and PPR1 overexpression in S. cerevisiae significantly improved activities of antioxidant enzymes and ATP generation in the presence of acetic acid, and consequently decreased intracellular accumulation of reactive oxygen species (50.9 and 45.7%, respectively). These results revealed the novel functions of SET5 and PPR1 for the improvement of yeast acetic acid tolerance, and also implicated the involvement of these proteins in oxidative stress defense and energy metabolism in S. cerevisiae. This work also demonstrated that overexpression of SET5 and PPR1 would be a feasible strategy to increase cellulosic ethanol production efficiency.

  18. ADSORPTION AND MEMBRANE SEPARATION MEASUREMENTS WITH MIXTURES OF ETHANOL, ACETIC ACID, AND WATER

    EPA Science Inventory

    Biomass fermentation produces ethanol and other renewable biofuels. Pervaporation using hydrophobic membranes is potentially a cost-effective means of removing biofuels from fermentation broths for small- to medium-scale applications. Silicalite-filled polydimethylsiloxane (PDMS)...

  19. Hydroethanolic extract of Baccharis trimera promotes gastroprotection and healing of acute and chronic gastric ulcers induced by ethanol and acetic acid.

    PubMed

    Dos Reis Lívero, Francislaine Aparecida; da Silva, Luisa Mota; Ferreira, Daniele Maria; Galuppo, Larissa Favaretto; Borato, Debora Gasparin; Prando, Thiago Bruno Lima; Lourenço, Emerson Luiz Botelho; Strapasson, Regiane Lauriano Batista; Stefanello, Maria Élida Alves; Werner, Maria Fernanda de Paula; Acco, Alexandra

    2016-09-01

    Ethanol is a psychoactive substance highly consumed around the world whose health problems include gastric lesions. Baccharis trimera is used in folk medicine for the treatment of gastrointestinal disorders. However, few studies have evaluated its biological and toxic effects. To validate the popular use of B. trimera and elucidate its possible antiulcerogenic and cytotoxic mechanisms, a hydroethanolic extract of B. trimera (HEBT) was evaluated in models of gastric lesions. Rats and mice were used to evaluate the protective and antiulcerogenic effects of HEBT on gastric lesions induced by ethanol, acetic acid, and chronic ethanol consumption. The effects of HEBT were also evaluated in a pylorus ligature model and on gastrointestinal motility. The LD50 of HEBT in mice was additionally estimated. HEBT was analyzed by nuclear magnetic resonance, and a high-performance liquid chromatography fingerprint analysis was performed. Oral HEBT administration significantly reduced the lesion area and the oxidative stress induced by acute and chronic ethanol consumption. However, HEBT did not protect against gastric wall mucus depletion and did not alter gastric secretory volume, pH, or total acidity in the pylorus ligature model. Histologically, HEBT accelerated the healing of chronic gastric ulcers in rats, reflected by contractions of the ulcer base. Flavonoids and caffeoylquinic acids were detected in HEBT, which likely contributed to the therapeutic efficacy of HEBT, preventing or reversing ethanol- and acetic acid-induced ulcers, respectively. HEBT antiulcerogenic activity may be partially attributable to the inhibition of free radical generation and subsequent prevention of lipid peroxidation. Our results indicate that HEBT has both gastroprotective and curative activity in animal models, with no toxicity.

  20. Kinetics of Ethyl Acetate Synthesis Catalyzed by Acidic Resins

    ERIC Educational Resources Information Center

    Antunes, Bruno M.; Cardoso, Simao P.; Silva, Carlos M.; Portugal, Ines

    2011-01-01

    A low-cost experiment to carry out the second-order reversible reaction of acetic acid esterification with ethanol to produce ethyl acetate is presented to illustrate concepts of kinetics and reactor modeling. The reaction is performed in a batch reactor, and the acetic acid concentration is measured by acid-base titration versus time. The…

  1. Extractive fermentation of acetic acid

    SciTech Connect

    Busche, R.M.

    1991-12-31

    In this technoeconomic evaluation of the manufacture of acetic acid by fermentation, the use of the bacterium: Acetobacter suboxydans from the old vinegar process was compared with expected performance of the newer Clostridium thermoaceticum bacterium. Both systems were projected to operate as immobilized cells in a continuous, fluidized bed bioreactor, using solvent extraction to recover the product. Acetobacter metabolizes ethanol aerobically to produce acid at 100 g/L in a low pH medium. This ensures that the product is in the form of a concentrated extractable free acid, rather than as an unextractable salt. Unfortunately, yields from glucose by way of the ethanol fermentation are poor, but near the biological limits of the organisms involved. Conversely, C. thermoaceticum is a thermophilic anaerobe that operates at high fermentation rates on glucose at neutral pH to produce acetate salts directly in substantially quantitative yields. However, it is severely inhibited by product, which restricts concentration to a dilute 20 g/L. An improved Acetobacter system operating with recycled cells at 50 g/L appears capable of producing acid at $0.38/lb, as compared with a $0.29/lb price for synthetic acid. However, this system has only a limited margin for process improvement. The present Clostridium system cannot compete, since the required selling price would be $0.42/lb. However, if the organism could be adapted to tolerate higher product concentrations at acid pH, selling price could be reduced to $0.22/lb, or about 80% of the price of synthetic acid.

  2. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.

    PubMed

    Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai

    2015-05-01

    In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.

  3. Ethanolic extract of roots from Arctium lappa L. accelerates the healing of acetic acid-induced gastric ulcer in rats: Involvement of the antioxidant system.

    PubMed

    da Silva, Luisa Mota; Allemand, Alexandra; Mendes, Daniel Augusto G B; Dos Santos, Ana Cristina; André, Eunice; de Souza, Lauro Mera; Cipriani, Thales Ricardo; Dartora, Nessana; Marques, Maria Consuelo Andrade; Baggio, Cristiane Hatsuko; Werner, Maria Fernanda

    2013-01-01

    We evaluate the curative efficacy of the ethanolic extract (EET) of roots from Arctium lappa (bardana) in healing of chronic gastric ulcers induced by 80% acetic acid in rats and additionally studies the possible mechanisms underlying this action. Oral administration of EET (1, 3, 10 and 30mg/kg) reduced the gastric lesion area in 29.2%, 41.4%, 59.3% and 38.5%, respectively, and at 10mg/kg promoted significant regeneration of the gastric mucosa, which was confirmed by proliferating cell nuclear antigen immunohistochemistry. EET (10mg/kg) treatment did not increase the gastric mucus content but restored the superoxide dismutase activity, prevented the reduction of glutathione levels, reduced lipid hydroperoxides levels, inhibited the myeloperoxidase activity and reduced the microvascular permeability. In addition, EET reduced the free radical generation and increased scavenging of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals in vitro. Furthermore, intraduodenal EET (10 and 30mg/kg) decreased volume and acidity of gastric secretion. Total phenolic compounds were high in EET (Folin-Ciocalteau assay) and the analysis by liquid chromatography-mass spectrometry revealed that the main compounds present in EET were a serie of hydroxycinnamoylquinic acid isomers. In conclusion, these data reveal that EET promotes regeneration of damaged gastric mucosa, probably through its antisecretory and antioxidative mechanisms.

  4. STABILITY OF MFI ZEOLITE-FILLED PDMS MEMBRANES DURING PERVAPORATIVE ETHANOL RECOVERY FROM AQUEOUS MIXTURES CONTAINING ACETIC ACID

    EPA Science Inventory

    Pervaporation is potentially a cost-effective means of recovering biofuels, such as ethanol, from biomass fermentation broths for small- to medium-scale applications (~2 - 20 million liters per year). Hydrophobic zeolite-filled polydimethylsiloxane (PDMS) membranes have been sho...

  5. Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.

    1992-01-01

    A newly discovered microorganism was isolated in a biologically pure culture and designated Clostridium ljungdahlii, having the identifying characteristics of ATCC No. 49587. Cultured in an aqueous nutrient medium under anaerobic conditions, this microorganism is capable of producing ethanol and acetate from CO and H.sub.2 O and/or CO.sub.2 and H.sub.2 in synthesis gas. Under optimal growth conditions, the microorganism produces acetate in preference to ethanol. Conversely, under non-growth conditions, ethanol production is favored over acetate.

  6. Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism

    DOEpatents

    Gaddy, J.L.; Clausen, E.C.

    1992-12-22

    A newly discovered microorganism was isolated in a biologically pure culture and designated Clostridium ljungdahlii, having the identifying characteristics of ATCC No. 49587. Cultured in an aqueous nutrient medium under anaerobic conditions, this microorganism is capable of producing ethanol and acetate from CO and H[sub 2]O and/or CO[sub 2] and H[sub 2] in synthesis gas. Under optimal growth conditions, the microorganism produces acetate in preference to ethanol. Conversely, under non-growth conditions, ethanol production is favored over acetate. 3 figs.

  7. Randomised controlled trial comparing percutaneous radiofrequency thermal ablation, percutaneous ethanol injection, and percutaneous acetic acid injection to treat hepatocellular carcinoma of 3 cm or less

    PubMed Central

    Lin, S-M; Lin, C-J; Lin, C-C; Hsu, C-W; Chen, Y-C

    2005-01-01

    Aims: The aim of this study was to compare the outcomes of radiofrequency thermal ablation (RFTA), percutaneous ethanol injection (PEI), and percutaneous acetic acid injection (PAI) in the treatment of hepatocellular carcinoma (HCC). Patients and methods: A total of 187 patients with HCCs of 3 cm or less were randomly assigned to RFTA (n = 62), PEI (n = 62), or PAI (n = 63). Tumour recurrence and survival rates were assessed. Results: One, two, and three year local recurrence rates were 10%, 14%, and 14% in the RFTA group, 16%, 34%, and 34% in the PEI group, and 14%, 31%, and 31% in the PAI group (RFTA v PEI, p = 0.012; RFTA v PAI, p = 0.017). One, two, and three year survival rates were 93%, 81%, and 74% in the RFTA group, 88%, 66%, and 51% in the PEI group, and 90%, 67%, and 53% in the PAI group (RFTA v PEI, p = 0.031; RFTA v PAI, p = 0.038). One, two, and three year cancer free survival rates were 74%, 60%, and 43% in the RFTA group, 70%, 41%, and 21% in the PEI group, and 71%, 43%, and 23% in the PAI group (RFTA v PEI, p = 0.038; RFTA v PAI, p = 0.041). Tumour size, tumour differentiation, and treatment methods (RFTA v PEI and PAI) were significant factors for local recurrence, overall survival, and cancer free survival. Major complications occurred in 4.8% of patients (two with haemothorax, one gastric perforation) in the RFTA group and in none in two other groups (RFTA v PEI and PAI, p = 0.035). Conclusions: RFTA was superior to PEI and PAI with respect to local recurrence, overall survival, and cancer free survival rates, but RFTA also caused more major complications. PMID:16009687

  8. Genetic dissection of acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Geng, Peng; Xiao, Yin; Hu, Yun; Sun, Haiye; Xue, Wei; Zhang, Liang; Shi, Gui-Yang

    2016-09-01

    Dissection of the hereditary architecture underlying Saccharomyces cerevisiae tolerance to acetic acid is essential for ethanol fermentation. In this work, a genomics approach was used to dissect hereditary variations in acetic acid tolerance between two phenotypically different strains. A total of 160 segregants derived from these two strains were obtained. Phenotypic analysis indicated that the acetic acid tolerance displayed a normal distribution in these segregants, and suggested that the acetic acid tolerant traits were controlled by multiple quantitative trait loci (QTLs). Thus, 220 SSR markers covering the whole genome were used to detect QTLs of acetic acid tolerant traits. As a result, three QTLs were located on chromosomes 9, 12, and 16, respectively, which explained 38.8-65.9 % of the range of phenotypic variation. Furthermore, twelve genes of the candidates fell into the three QTL regions by integrating the QTL analysis with candidates of acetic acid tolerant genes. These results provided a novel avenue to obtain more robust strains.

  9. Overview on mechanisms of acetic acid resistance in acetic acid bacteria.

    PubMed

    Wang, Bin; Shao, Yanchun; Chen, Fusheng

    2015-02-01

    Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided.

  10. Ethanol sorption and partial molar volume in cellulose acetate films

    SciTech Connect

    Bolton, B.A.; Kint, S.; Bailey, G.F.; Scherer, J.R.

    1986-03-13

    The absorption characteristics of cellulose acetate (CA398) and cellulose triacetate membranes for ethanol vapor were determined by integrated optical techniques. Changes in the refractive index and film thicknesses are used to calculate the ethanol concentration within the membrane, to calculate the partial molar volume of sorbed ethanol as a function of ethanol concentration, and to estimate the average void volume of the dry film. The refractive index is shown to be very sensitive to the available void space within the membrane. The average total void space for the films considered here was less than 1% of the dry polymer volume. 22 references, 6 figures, 1 table.

  11. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.

    PubMed

    Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S

    2016-07-08

    Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016.

  12. 21 CFR 184.1005 - Acetic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acetic acid. 184.1005 Section 184.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1005 Acetic acid. (a) Acetic acid (C2H4O2, CAS Reg. No. 64-19-7) is known as ethanoic acid. It...

  13. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is...

  14. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is...

  15. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is...

  16. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is...

  17. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is...

  18. Application of acetate buffer in pH adjustment of sorghum mash and its influence on fuel ethanol fermentation.

    PubMed

    Zhao, Renyong; Bean, Scott R; Crozier-Dodson, Beth Ann; Fung, Daniel Y C; Wang, Donghai

    2009-01-01

    A 2 M sodium acetate buffer at pH 4.2 was tried to simplify the step of pH adjustment in a laboratory dry-grind procedure. Ethanol yields or conversion efficiencies of 18 sorghum hybrids improved significantly with 2.0-5.9% (3.9% on average) of relative increases when the method of pH adjustment changed from traditional HCl to the acetate buffer. Ethanol yields obtained using the two methods were highly correlated (R (2) = 0.96, P < 0.0001), indicating that the acetate buffer did not influence resolution of the procedure to differentiate sorghum hybrids varying in fermentation quality. Acetate retarded the growth of Saccharomyces cerevisiae, but did not affect the overall fermentation rate. With 41-47 mM of undissociated acetic acid in mash of a sorghum hybrid at pH 4.7, rates of glucose consumption and ethanol production were inhibited during exponential phase but promoted during stationary phase. The maximum growth rate constants (mu(max)) were 0.42 and 0.32 h(-1) for cells grown in mashes with pH adjusted by HCl and the acetate buffer, respectively. Viable cell counts of yeast in mashes with pH adjusted by the acetate buffer were 36% lower than those in mashes adjusted by HCl during stationary phase. Coupled to a 5.3% relative increase in ethanol, a 43.6% relative decrease in glycerol was observed, when the acetate buffer was substituted for HCl. Acetate helped to transfer glucose to ethanol more efficiently. The strain tested did not use acetic acid as carbon source. It was suggested that decreased levels of ATP under acetate stress stimulate glycolysis to ethanol formation, increasing its yield at the expense of biomass and glycerol production.

  19. 21 CFR 184.1005 - Acetic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acetic acid. 184.1005 Section 184.1005 Food and... Substances Affirmed as GRAS § 184.1005 Acetic acid. (a) Acetic acid (C2H4O2, CAS Reg. No. 64-19-7) is known as ethanoic acid. It occurs naturally in plant and animal tissues. It is produced by fermentation...

  20. 21 CFR 184.1005 - Acetic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acetic acid. 184.1005 Section 184.1005 Food and... Substances Affirmed as GRAS § 184.1005 Acetic acid. (a) Acetic acid (C2H4O2, CAS Reg. No. 64-19-7) is known as ethanoic acid. It occurs naturally in plant and animal tissues. It is produced by fermentation...

  1. 21 CFR 184.1005 - Acetic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acetic acid. 184.1005 Section 184.1005 Food and... Substances Affirmed as GRAS § 184.1005 Acetic acid. (a) Acetic acid (C2H4O2, CAS Reg. No. 64-19-7) is known as ethanoic acid. It occurs naturally in plant and animal tissues. It is produced by fermentation...

  2. 21 CFR 184.1005 - Acetic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acetic acid. 184.1005 Section 184.1005 Food and... Substances Affirmed as GRAS § 184.1005 Acetic acid. (a) Acetic acid (C2H4O2, CAS Reg. No. 64-19-7) is known as ethanoic acid. It occurs naturally in plant and animal tissues. It is produced by fermentation...

  3. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance.

    PubMed

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification.

  4. L-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss.

    PubMed

    Murakami, Nao; Oba, Mana; Iwamoto, Mariko; Tashiro, Yukihiro; Noguchi, Takuya; Bonkohara, Kaori; Abdel-Rahman, Mohamed Ali; Zendo, Takeshi; Shimoda, Mitsuya; Sakai, Kenji; Sonomoto, Kenji

    2016-01-01

    Glycerol is a by-product in the biodiesel production process and considered as one of the prospective carbon sources for microbial fermentation including lactic acid fermentation, which has received considerable interest due to its potential application. Enterococcus faecalis isolated in our laboratory produced optically pure L-lactic acid from glycerol in the presence of acetic acid. Gas chromatography-mass spectrometry analysis using [1, 2-(13)C2] acetic acid proved that the E. faecalis strain QU 11 was capable of converting acetic acid to ethanol during lactic acid fermentation of glycerol. This indicated that strain QU 11 restored the redox balance by oxidizing excess NADH though acetic acid metabolism, during ethanol production, which resulted in lactic acid production from glycerol. The effects of pH control and substrate concentration on lactic acid fermentation were also investigated. Glycerol and acetic acid concentrations of 30 g/L and 10 g/L, respectively, were expected to be appropriate for lactic acid fermentation of glycerol by strain QU 11 at a pH of 6.5. Furthermore, fed-batch fermentation with 30 g/L glycerol and 10 g/L acetic acid wholly exhibited the best performance including lactic acid production (55.3 g/L), lactic acid yield (0.991 mol-lactic acid/mol-glycerol), total yield [1.08 mol-(lactic acid and ethanol)]/mol-(glycerol and acetic acid)], and total carbon yield [1.06 C-mol-(lactic acid and ethanol)/C-mol-(glycerol and acetic acid)] of lactic acid and ethanol. In summary, the strain QU 11 successfully produced lactic acid from glycerol with acetic acid metabolism, and an efficient fermentation system was established without carbon loss.

  5. Short-term effect of acetate and ethanol on methane formation in biogas sludge.

    PubMed

    Refai, Sarah; Wassmann, Kati; Deppenmeier, Uwe

    2014-08-01

    Biochemical processes in biogas plants are still not fully understood. Especially, the identification of possible bottlenecks in the complex fermentation processes during biogas production might provide potential to increase the performance of biogas plants. To shed light on the question which group of organism constitutes the limiting factor in the anaerobic breakdown of organic material, biogas sludge from different mesophilic biogas plants was examined under various conditions. Therefore, biogas sludge was incubated and analyzed in anaerobic serum flasks under an atmosphere of N2/CO2. The batch reactors mirrored the conditions and the performance of the full-scale biogas plants and were suitable test systems for a period of 24 h. Methane production rates were compared after supplementation with substrates for syntrophic bacteria, such as butyrate, propionate, or ethanol, as well as with acetate and H2+CO2 as substrates for methanogenic archaea. Methane formation rates increased significantly by 35 to 126 % when sludge from different biogas plants was supplemented with acetate or ethanol. The stability of important process parameters such as concentration of volatile fatty acids and pH indicate that ethanol and acetate increase biogas formation without affecting normally occurring fermentation processes. In contrast to ethanol or acetate, other fermentation products such as propionate, butyrate, or H2 did not result in increased methane formation rates. These results provide evidence that aceticlastic methanogenesis and ethanol-oxidizing syntrophic bacteria are not the limiting factor during biogas formation, respectively, and that biogas plant optimization is possible with special focus on methanogenesis from acetate.

  6. Percutaneous Sclerotherapy Using Acetic Acid After Failure of Alcohol Ablation in an Intra-abdominal Lymphangioma

    SciTech Connect

    Park, Sang Woo Cha, In Ho; Kim, Kyeong Ah; Hong, Suk Joo; Park, Cheol Min; Chung, Hwan Hoon

    2004-09-15

    We report a case of percutaneous sclerotherapy using acetic acid in a 22-year-old woman with an intra-abdominal cystic lymphangioma who was not successfully treated with ethanol despite multiple trials.

  7. Vesicles protect activated acetic acid.

    PubMed

    Todd, Zoe R; House, Christopher H

    2014-10-01

    Abstract Methyl thioacetate, or activated acetic acid, has been proposed to be central to the origin of life and an important energy currency molecule in early cellular evolution. We have investigated the hydrolysis of methyl thioacetate under various conditions. Its uncatalyzed rate of hydrolysis is about 3 orders of magnitude faster (K=0.00663 s(-1); 100°C, pH 7.5, concentration=0.33 mM) than published rates for its catalyzed production, making it unlikely to accumulate under prebiotic conditions. However, our experiments showed that methyl thioacetate was protected from hydrolysis when inside its own hydrophobic droplets. Further, we found that methyl thioacetate protection from hydrolysis was also possible in droplets of hexane and in the membranes of nonanoic acid vesicles. Thus, the hydrophobic regions of prebiotic vesicles and early cell membranes could have offered a refuge for this energetic molecule, increasing its lifetime in close proximity to the reactions for which it would be needed. This model of early energy storage evokes an additional critical function for the earliest cell membranes.

  8. Characterization of acetic acid bacteria in "traditional balsamic vinegar".

    PubMed

    Gullo, Maria; Caggia, Cinzia; De Vero, Luciana; Giudici, Paolo

    2006-02-01

    This study evaluated the glucose tolerance of acetic acid bacteria strains isolated from Traditional Balsamic Vinegar. The results showed that the greatest hurdle to acetic acid bacteria growth is the high sugar concentration, since the majority of the isolated strains are inhibited by 25% of glucose. Sugar tolerance is an important technological trait because Traditional Balsamic Vinegar is made with concentrated cooked must. On the contrary, ethanol concentration of the cooked and fermented must is less significant for acetic acid bacteria growth. A tentative identification of the isolated strains was done by 16S-23S-5S rDNA PCR/RFLP technique and the isolated strains were clustered: 32 strains belong to Gluconacetobacter xylinus group, two strains to Acetobacter pasteurianus group and one to Acetobacter aceti.

  9. Electron transfer induced fragmentation of acetic acid

    NASA Astrophysics Data System (ADS)

    Ferreira da Silva, F.; Meneses, G.; Almeida, D.; Limão-Vieira, P.

    2014-04-01

    We present negative ion formation driven by electron transfer in atom (K) molecule (acetic acid) collisions. Acetic acid has been found in the interstellar medium, is also considered a biological related compound and as such studying low energy electron interactions will bring new insights as far as induced chemistry is concerned.

  10. Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor.

    PubMed

    Mounir, Majid; Shafiei, Rasoul; Zarmehrkhorshid, Raziyeh; Hamouda, Allal; Ismaili Alaoui, Mustapha; Thonart, Philippe

    2016-02-01

    The activity of bacterial strains significantly influences the quality and the taste of vinegar. Previous studies of acetic acid bacteria have primarily focused on the ability of bacterial strains to produce high amounts of acetic acid. However, few studies have examined the production of gluconic acid during acetous fermentation at high temperatures. The production of vinegar at high temperatures by two strains of acetic acid bacteria isolated from apple and cactus fruits, namely AF01 and CV01, respectively, was evaluated in this study. The simultaneous production of gluconic and acetic acids was also examined in this study. Biochemical and molecular identification based on a 16s rDNA sequence analysis confirmed that these strains can be classified as Acetobacter pasteurianus. To assess the ability of the isolated strains to grow and produce acetic acid and gluconic acid at high temperatures, a semi-continuous fermentation was performed in a 20-L bioreactor. The two strains abundantly grew at a high temperature (41°C). At the end of the fermentation, the AF01 and CV01 strains yielded acetic acid concentrations of 7.64% (w/v) and 10.08% (w/v), respectively. Interestingly, CV01 was able to simultaneously produce acetic and gluconic acids during acetic fermentation, whereas AF01 mainly produced acetic acid. In addition, CV01 was less sensitive to ethanol depletion during semi-continuous fermentation. Finally, the enzymatic study showed that the two strains exhibited high ADH and ALDH enzyme activity at 38°C compared with the mesophilic reference strain LMG 1632, which was significantly susceptible to thermal inactivation.

  11. Detoxification of biomass derived acetate via metabolic conversion to ethanol, acetone, isopropanol, or ethyl acetate

    DOEpatents

    Sillers, William Ryan; Van Dijken, Hans; Licht, Steve; Shaw, IV, Arthur J.; Gilbert, Alan Benjamin; Argyros, Aaron; Froehlich, Allan C.; McBride, John E.; Xu, Haowen; Hogsett, David A.; Rajgarhia, Vineet B.

    2017-03-28

    One aspect of the invention relates to a genetically modified thermophilic or mesophilic microorganism, wherein a first native gene is partially, substantially, or completely deleted, silenced, inactivated, or down-regulated, which first native gene encodes a first native enzyme involved in the metabolic production of an organic acid or a salt thereof, thereby increasing the native ability of said thermophilic or mesophilic microorganism to produce lactate or acetate as a fermentation product. In certain embodiments, the aforementioned microorganism further comprises a first non-native gene, which first non-native gene encodes a first non-native enzyme involved in the metabolic production of lactate or acetate. Another aspect of the invention relates to a process for converting lignocellulosic biomass to lactate or acetate, comprising contacting lignocellulosic biomass with a genetically modified thermophilic or mesophilic microorganism.

  12. Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance.

    PubMed

    Ma, Cui; Wei, Xiaowen; Sun, Cuihuan; Zhang, Fei; Xu, Jianren; Zhao, Xinqing; Bai, Fengwu

    2015-03-01

    Acetic acid is present in cellulosic hydrolysate as a potent inhibitor, and the superior acetic acid tolerance of Saccharomyces cerevisiae ensures good cell viability and efficient ethanol production when cellulosic raw materials are used as substrates. In this study, a mutant strain of S. cerevisiae ATCC4126 (Sc4126-M01) with improved acetic acid tolerance was obtained through screening strains transformed with an artificial zinc finger protein transcription factor (ZFP-TF) library. Further analysis indicated that improved acetic acid tolerance was associated with improved catalase (CAT) activity. The ZFP coding sequence associated with the improved phenotype was identified, and real-time RT-PCR analysis revealed that three of the possible genes involved in the enhanced acetic acid tolerance regulated by this ZFP-TF, namely YFL040W, QDR3, and IKS1, showed decreased transcription levels in Sc4126-M01 in the presence of acetic acid, compared to those in the control strain. Sc4126-M01 mutants having QDR3 and IKS1 deletion (ΔQDR3 and ΔIKS1) exhibited higher acetic acid tolerance than the wild-type strain under acetic acid treatment. Glucose consumption rate and ethanol productivity in the presence of 5 g/L acetic acid were improved in the ΔQDR3 mutant compared to the wild-type strain. Our studies demonstrated that the synthetic ZFP-TF library can be used to improve acetic acid tolerance of S. cerevisiae and that the employment of an artificial transcription factor can facilitate the exploration of novel functional genes involved in stress tolerance of S. cerevisiae.

  13. Acetic Acid Production by an Electrodialysis Fermentation Method with a Computerized Control System

    PubMed Central

    Nomura, Yoshiyuki; Iwahara, Masayoshi; Hongo, Motoyoshi

    1988-01-01

    In acetic acid fermentation by Acetobacter aceti, the acetic acid produced inhibits the production of acetic acid by this microorganism. To alleviate this inhibitory effect, we developed an electrodialysis fermentation method such that acetic acid is continuously removed from the broth. The fermentation unit has a computerized system for the control of the pH and the concentration of ethanol in the fermentation broth. The electrodialysis fermentation system resulted in improved cell growth and higher productivity over an extended period; the productivity exceeded that from non-pH-controlled fermentation. During electrodialysis fermentation in our system, 97.6 g of acetic acid was produced from 86.0 g of ethanol; the amount of acetic acid was about 2.4 times greater than that produced by non-pH-controlled fermentation (40.1 g of acetic acid produced from 33.8 g of ethanol). Maximum productivity of electrodialysis fermentation in our system was 2.13 g/h, a rate which was 1.35 times higher than that of non-pH-controlled fermentation (1.58 g/h). PMID:16347520

  14. Point mutation of H3/H4 histones affects acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Liu, Xiangyong; Zhang, Xiaohua; Zhang, Zhaojie

    2014-10-10

    The molecular mechanism of acetic acid tolerance in yeast remains unclear despite of its importance for efficient cellulosic ethanol production. In this study, we examined the effects of histone H3/H4 point mutations on yeast acetic acid tolerance by comprehensively screening a histone H3/H4 mutant library. A total of 24 histone H3/H4 mutants (six acetic acid resistant and 18 sensitive) were identified. Compared to the wild-type strain, the histone acetic acid-resistant mutants exhibited improved ethanol fermentation performance under acetic acid stress. Genome-wide transcriptome analysis revealed that changes in the gene expression in the acetic acid-resistant mutants H3 K37A and H4 K16Q were mainly related to energy production, antioxidative stress. Our results provide novel insights into yeast acetic acid tolerance on the basis of histone, and suggest a novel approach to improve ethanol production by altering the histone H3/H4 sequences.

  15. Acetic acid bacteria spoilage of bottled red wine -- a review.

    PubMed

    Bartowsky, Eveline J; Henschke, Paul A

    2008-06-30

    Acetic acid bacteria (AAB) are ubiquitous organisms that are well adapted to sugar and ethanol rich environments. This family of Gram-positive bacteria are well known for their ability to produce acetic acid, the main constituent in vinegar. The oxidation of ethanol through acetaldehyde to acetic acid is well understood and characterised. AAB form part of the complex natural microbial flora of grapes and wine, however their presence is less desirable than the lactic acid bacteria and yeast. Even though AAB were described by Pasteur in the 1850s, wine associated AAB are still difficult to cultivate on artificial laboratory media and until more recently, their taxonomy has not been well characterised. Wine is at most risk of spoilage during production and the presence of these strictly aerobic bacteria in grape must and during wine maturation can be controlled by eliminating, or at least limiting oxygen, an essential growth factor. However, a new risk, spoilage of wine by AAB after packaging, has only recently been reported. As wine is not always sterile filtered prior to bottling, especially red wine, it often has a small resident bacterial population (<10(3) cfu/mL), which under conducive conditions might proliferate. Bottled red wines, sealed with natural cork closures, and stored in a vertical upright position may develop spoilage by acetic acid bacteria. This spoilage is evident as a distinct deposit of bacterial biofilm in the neck of the bottle at the interface of the wine and the headspace of air, and is accompanied with vinegar, sherry, bruised apple, nutty, and solvent like off-aromas, depending on the degree of spoilage. This review focuses on the wine associated AAB species, the aroma and flavour changes in wine due to AAB metabolism, discusses the importance of oxygen ingress into the bottle and presents a hypothesis for the mechanism of spoilage of bottled red wine.

  16. Microhydration of Neutral and Charged Acetic Acid.

    PubMed

    Krishnakumar, Parvathi; Maity, Dilip Kumar

    2017-01-19

    A systematic theoretical study has been carried out on the effect of sequential addition of water molecules to neutral and mono positively charged acetic acid molecules by applying first principle based electronic structure theory. Geometry, dipole moment, and polarizability of hydrated clusters of neutral and mono positively charged acetic acid of the type CH3COOH·nH2O (n = 1-8) and [CH3COOH·nH2O](+) (n = 1, 2) are calculated at the ωB97X-D/aug-cc-pVDZ level of theory. Free energies of formation of the hydrated acid clusters, at different temperatures and pressures are determined. Solvent stabilization energy and interaction energy are also calculated at the CCSD(T)/6-311++G(d,p) level of theory. It is observed that in the case of neutral acetic acid, proton transfer from the acid molecule to solvent water molecules does not occur even with eight water molecules and the acid molecule remains in the undissociated form. High-energy equilibrium structures showing dissociation of acetic acid are obtained in case of hexahydrated and larger hydrated clusters only. However, dissociation of mono positively charged acetic acid occurs with just two water molecules. Interestingly, it is noted that in the case of dissociation, calculated bond dipole moments of the dissociating bonds of acetic acid in microhydated clusters shows a characteristic feature. IR spectra of CH3COOH·nH2O (n = 1-8) and [CH3COOH·nH2O](+) (n = 1-3) clusters are simulated and compared with the available experimental data.

  17. Dynamic Protonation Equilibrium of Solvated Acetic Acid

    SciTech Connect

    Gu, Wei; Frigato, Tomaso; Straatsma, TP; Helms, Volkhard H.

    2007-04-13

    For the first time, the dynamic protonation equilibrium between an amino acid side chain analogue and bulk water as well as the diffusion properties of the excess proton were successfully reproduced through unbiased computer simulations. During a 50 ns Q-HOP MD simulation, two different regimes of proton transfer were observed. Extended phases of frequent proton swapping between acetic acid and nearby water were separated by phases where the proton freely diffuses in the simulation box until it is captured again by acetic acid. The pKa of acetic acid was calculated around 3.0 based on the relative population of protonated and deprotonated states and the diffusion coefficient of excess proton was computed from the average mean squared displacement in the simulation. Both calculated values agree well with the experimental measurements.

  18. Effects of Oxygen Availability on Acetic Acid Tolerance and Intracellular pH in Dekkera bruxellensis

    PubMed Central

    Capusoni, Claudia; Arioli, Stefania; Zambelli, Paolo; Moktaduzzaman, M.; Mora, Diego

    2016-01-01

    ABSTRACT The yeast Dekkera bruxellensis, associated with wine and beer production, has recently received attention, because its high ethanol and acid tolerance enables it to compete with Saccharomyces cerevisiae in distilleries that produce fuel ethanol. We investigated how different cultivation conditions affect the acetic acid tolerance of D. bruxellensis. We analyzed the ability of two strains (CBS 98 and CBS 4482) exhibiting different degrees of tolerance to grow in the presence of acetic acid under aerobic and oxygen-limited conditions. We found that the concomitant presence of acetic acid and oxygen had a negative effect on D. bruxellensis growth. In contrast, incubation under oxygen-limited conditions resulted in reproducible growth kinetics that exhibited a shorter adaptive phase and higher growth rates than those with cultivation under aerobic conditions. This positive effect was more pronounced in CBS 98, the more-sensitive strain. Cultivation of CBS 98 cells under oxygen-limited conditions improved their ability to restore their intracellular pH upon acetic acid exposure and to reduce the oxidative damage to intracellular macromolecules caused by the presence of acetic acid. This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can protect against the damage caused by the presence of acetic acid. This aspect is important for optimizing industrial processes performed in the presence of acetic acid. IMPORTANCE This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can have a protective role against the damage caused by the presence of acetic acid. This aspect is important for the optimization of industrial processes performed in the presence of acetic acid. PMID:27235432

  19. Change in the plasmid copy number in acetic acid bacteria in response to growth phase and acetic acid concentration.

    PubMed

    Akasaka, Naoki; Astuti, Wiwik; Ishii, Yuri; Hidese, Ryota; Sakoda, Hisao; Fujiwara, Shinsuke

    2015-06-01

    Plasmids pGE1 (2.5 kb), pGE2 (7.2 kb), and pGE3 (5.5 kb) were isolated from Gluconacetobacter europaeus KGMA0119, and sequence analyses revealed they harbored 3, 8, and 4 genes, respectively. Plasmid copy numbers (PCNs) were determined by real-time quantitative PCR at different stages of bacterial growth. When KGMA0119 was cultured in medium containing 0.4% ethanol and 0.5% acetic acid, PCN of pGE1 increased from 7 copies/genome in the logarithmic phase to a maximum of 12 copies/genome at the beginning of the stationary phase, before decreasing to 4 copies/genome in the late stationary phase. PCNs for pGE2 and pGE3 were maintained at 1-3 copies/genome during all phases of growth. Under a higher concentration of ethanol (3.2%) the PCN for pGE1 was slightly lower in all the growth stages, and those of pGE2 and pGE3 were unchanged. In the presence of 1.0% acetic acid, PCNs were higher for pGE1 (10 copies/genome) and pGE3 (6 copies/genome) during the logarithmic phase. Numbers for pGE2 did not change, indicating that pGE1 and pGE3 increase their PCNs in response to acetic acid. Plasmids pBE2 and pBE3 were constructed by ligating linearized pGE2 and pGE3 into pBR322. Both plasmids were replicable in Escherichia coli, Acetobacter pasteurianus and G. europaeus, highlighting their suitability as vectors for acetic acid bacteria.

  20. Hydrogen production by fermentation using acetic acid and lactic acid.

    PubMed

    Matsumoto, Mitsufumi; Nishimura, Yasuhiko

    2007-03-01

    Microbial hydrogen production from sho-chu post-distillation slurry solution (slurry solution) containing large amounts of organic acids was investigated. The highest hydrogen producer, Clostridium diolis JPCC H-3, was isolated from natural environment and produced hydrogen at 6.03+/-0.15 ml from 5 ml slurry solution in 30 h. Interestingly, the concentration of acetic acid and lactic acid in the slurry solution decreased during hydrogen production. The substrates for hydrogen production by C. diolis JPCC H-3, in particular organic acids, were investigated in an artificial medium. No hydrogen was produced from acetic acid, propionic acid, succinic acid, or citric acid on their own. Hydrogen and butyric acid were produced from a mixture of acetic acid and lactic acid, showing that C. diolis. JPCC H-3 could produce hydrogen from acetic acid and lactic acid. Furthermore, calculation of the Gibbs free energy strongly suggests that this reaction would proceed. In this paper, we describe for the first time microbial hydrogen production from acetic acid and lactic acid by fermentation.

  1. Acetal phosphatidic acids: novel platelet aggregating agents.

    PubMed

    Brammer, J P; Maguire, M H; Walaszek, E J; Wiley, R A

    1983-05-01

    1 Palmitaldehyde, olealdehyde and linolealdehyde acetal phosphatidic acids induced rapid shape change and dose-dependent biphasic aggregation of human platelets in platelet-rich plasma; aggregation was reversible at low doses and irreversible at high doses of the acetal phosphatidic acids. The palmitaldehyde congener elicited monophasic dose-dependent aggregation of sheep platelets in platelet-rich plasma.2 The threshold concentration for palmitaldehyde acetal phosphatidic acid (PGAP)-induced platelet aggregation was 2.5-5 muM for human platelets and 0.25-0.5 muM for sheep platelets. PGAP was 4-5 times as potent versus human platelets as the olealdehyde and linolealdehyde acetal phosphatidic acids, which were equipotent.3 PGAP-induced irreversible aggregation of [(14)C]-5-hydroxytryptamine ([(14)C]-5-HT)-labelled human platelets in platelet-rich plasma was accompanied by release of 44.0+/-2.4% (s.e.) of the platelet [(14)C]-5-HT; reversible aggregation was not associated with release. In contrast, PGAP-induced release of [(14)C]-5-HT-labelled sheep platelets was dose-dependent.4 The adenosine diphosphate (ADP) antagonist, 2-methylthio-AMP, and the cyclo-oxygenase inhibitor, aspirin, abolished PGAP-induced second phase aggregation and release in human platelets but did not affect the first, reversible, phase of aggregation. Both the first and second phases of PGAP-induced aggregation were abolished by chlorpromazine, by the phospholipase A(2) inhibitor, mepacrine, and by nmolar concentrations of prostaglandin E(1) (PGE(1)); these agents abolished the second, but not the first phase of ADP-induced aggregation.5 The related phospholipids, lecithin, lysolecithin and phosphatidic acid, at <100 muM, neither induced aggregation of human platelets in platelet-rich plasma, nor modified PGAP-induced aggregation; 1-palmityl lysophosphatidic acid elicited aggregation of human platelets at a threshold concentration of 100 muM.6 It is concluded that the acetal phosphatidic acids

  2. Acetate and ethanol production from H2 and CO2 by Moorella sp. using a repeated batch culture.

    PubMed

    Sakai, Shinsuke; Nakashimada, Yutaka; Inokuma, Kentaro; Kita, Masayuki; Okada, Hideki; Nishio, Naomichi

    2005-03-01

    The growth inhibition of Moorella sp. HUC22-1 by undissociated acetic acid was analyzed using a non-competitive inhibition model coupled with a pH inhibition model. In the cells grown on H2 and CO2, the inhibition constant, K(p) of the undissociated acetic acid was 6.2 mM (164 mM as the total acetate at pH 6.2, pKa = 4.795, 55 degrees C), which was 1.5-fold higher than that obtained in cells grown on fructose. When a pH-controlled batch culture was performed using a fermentor at pH 6.2 with H2 and CO2, a maximum of 0.92 g/l of dry cell weight and 339 mM of acetate were produced after 220 h, which were 4.4- and 6.8-fold higher than those produced in the pH-uncontrolled batch culture, respectively. In order to reduce acetate inhibition in the culture medium, a repeated batch culture with cell recycling was performed at a constant pH with H2 and CO2. At a pH of 6.2, the total acetate production reached 840 mmol/l-reactor with 4.7 mmol/l-reactor of total ethanol production after 420 h. When the culture pH was maintained at 5.8, which was the optimum for ethanol production, the total ethanol production reached 15.4 mmol/l-reactor after 430 h, although the total acetate production was decreased to 675 mmol/l-reactor.

  3. Zymomonas with improved ethanol production in medium containing concentrated sugars and acetate

    DOEpatents

    Caimi, Perry G.; Chou, Yat-Chen; Franden, Mary Ann; Knoke, Kyle; Tao, Luan; Viitanen, Paul V.; Zhang, Min; Zhang, Yuying

    2010-09-28

    Through screening of a Zymomonas mutant library the himA gene was found to be involved in the inhibitory effect of acetate on Zymomonas performance. Xylose-utilizing Zymomonas further engineered to reduce activity of the himA gene were found to have increased ethanol production in comparison to a parental strain, when cultured in medium comprising xylose and acetate.

  4. Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering.

    PubMed

    Chen, Yingying; Stabryla, Lisa; Wei, Na

    2016-01-29

    Development of acetic acid-resistant Saccharomyces cerevisiae is important for economically viable production of biofuels from lignocellulosic biomass, but the goal remains a critical challenge due to limited information on effective genetic perturbation targets for improving acetic acid resistance in the yeast. This study employed a genomic-library-based inverse metabolic engineering approach to successfully identify a novel gene target, WHI2 (encoding a cytoplasmatic globular scaffold protein), which elicited improved acetic acid resistance in S. cerevisiae. Overexpression of WHI2 significantly improved glucose and/or xylose fermentation under acetic acid stress in engineered yeast. The WHI2-overexpressing strain had 5-times-higher specific ethanol productivity than the control in glucose fermentation with acetic acid. Analysis of the expression of WHI2 gene products (including protein and transcript) determined that acetic acid induced endogenous expression of Whi2 in S. cerevisiae. Meanwhile, the whi2Δ mutant strain had substantially higher susceptibility to acetic acid than the wild type, suggesting the important role of Whi2 in the acetic acid response in S. cerevisiae. Additionally, overexpression of WHI2 and of a cognate phosphatase gene, PSR1, had a synergistic effect in improving acetic acid resistance, suggesting that Whi2 might function in combination with Psr1 to elicit the acetic acid resistance mechanism. These results improve our understanding of the yeast response to acetic acid stress and provide a new strategy to breed acetic acid-resistant yeast strains for renewable biofuel production.

  5. Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering

    PubMed Central

    Chen, Yingying; Stabryla, Lisa

    2016-01-01

    Development of acetic acid-resistant Saccharomyces cerevisiae is important for economically viable production of biofuels from lignocellulosic biomass, but the goal remains a critical challenge due to limited information on effective genetic perturbation targets for improving acetic acid resistance in the yeast. This study employed a genomic-library-based inverse metabolic engineering approach to successfully identify a novel gene target, WHI2 (encoding a cytoplasmatic globular scaffold protein), which elicited improved acetic acid resistance in S. cerevisiae. Overexpression of WHI2 significantly improved glucose and/or xylose fermentation under acetic acid stress in engineered yeast. The WHI2-overexpressing strain had 5-times-higher specific ethanol productivity than the control in glucose fermentation with acetic acid. Analysis of the expression of WHI2 gene products (including protein and transcript) determined that acetic acid induced endogenous expression of Whi2 in S. cerevisiae. Meanwhile, the whi2Δ mutant strain had substantially higher susceptibility to acetic acid than the wild type, suggesting the important role of Whi2 in the acetic acid response in S. cerevisiae. Additionally, overexpression of WHI2 and of a cognate phosphatase gene, PSR1, had a synergistic effect in improving acetic acid resistance, suggesting that Whi2 might function in combination with Psr1 to elicit the acetic acid resistance mechanism. These results improve our understanding of the yeast response to acetic acid stress and provide a new strategy to breed acetic acid-resistant yeast strains for renewable biofuel production. PMID:26826231

  6. Selection of a Bifidobacterium animalis subsp. lactis Strain with a Decreased Ability To Produce Acetic Acid

    PubMed Central

    Margolles, Abelardo

    2012-01-01

    We have characterized a new strain, Bifidobacterium animalis subsp. lactis CECT 7953, obtained by random UV mutagenesis, which produces less acetic acid than the wild type (CECT 7954) in three different experimental settings: De Man-Rogosa-Sharpe broth without sodium acetate, resting cells, and skim milk. Genome sequencing revealed a single Phe-Ser substitution in the acetate kinase gene product that seems to be responsible for the strain's reduced acid production. Accordingly, acetate kinase specific activity was lower in the low acetate producer. Strain CECT 7953 produced less acetate, less ethanol, and more yoghourt-related volatile compounds in skim milk than the wild type did. Thus, CECT 7953 shows promising potential for the development of dairy products fermented exclusively by a bifidobacterial strain. PMID:22389372

  7. Selection of a Bifidobacterium animalis subsp. lactis strain with a decreased ability to produce acetic acid.

    PubMed

    Margolles, Abelardo; Sánchez, Borja

    2012-05-01

    We have characterized a new strain, Bifidobacterium animalis subsp. lactis CECT 7953, obtained by random UV mutagenesis, which produces less acetic acid than the wild type (CECT 7954) in three different experimental settings: De Man-Rogosa-Sharpe broth without sodium acetate, resting cells, and skim milk. Genome sequencing revealed a single Phe-Ser substitution in the acetate kinase gene product that seems to be responsible for the strain's reduced acid production. Accordingly, acetate kinase specific activity was lower in the low acetate producer. Strain CECT 7953 produced less acetate, less ethanol, and more yoghourt-related volatile compounds in skim milk than the wild type did. Thus, CECT 7953 shows promising potential for the development of dairy products fermented exclusively by a bifidobacterial strain.

  8. Rotational study of the bimolecule acetic acid-fluoroacetic acid

    NASA Astrophysics Data System (ADS)

    Feng, Gang; Gou, Qian; Evangelisti, Luca; Caminati, Walther

    2017-01-01

    The rotational spectrum of the acetic acid-fluoroacetic acid bimolecule was measured by using a pulsed jet Fourier transform microwave spectrometer. One conformer, in which fluoroacetic acid is in trans form, has been observed. The rotational transitions are split into two component lines, due to the internal rotation of the methyl group of acetic acid. From these splittings, the corresponding V3 barrier has been determined. The dissociation energy of this complex has been estimated to 66 kJ/mol. An increase of the distance between the two monomers upon the OH → OD substitution (Ubbelohde effect) has been observed.

  9. Acetic acid vapor levels associated with facial prosthetics

    SciTech Connect

    McElroy, T.H.; Guerra, O.N.; Lee, S.A.

    1985-01-01

    The use of Silastic Medical Adhesive Type A in the fabrication of facial prostheses may cause health hazards to the patient and the operator because of acetic acid emissions. Caution must be exercised to remove acetic acid vapors from the air and unliberated acetic acid from material applied directly to the skin.

  10. Candida zemplinina can reduce acetic acid produced by Saccharomyces cerevisiae in sweet wine fermentations.

    PubMed

    Rantsiou, Kalliopi; Dolci, Paola; Giacosa, Simone; Torchio, Fabrizio; Tofalo, Rosanna; Torriani, Sandra; Suzzi, Giovanna; Rolle, Luca; Cocolin, Luca

    2012-03-01

    In this study we investigated the possibility of using Candida zemplinina, as a partner of Saccharomyces cerevisiae, in mixed fermentations of must with a high sugar content, in order to reduce its acetic acid production. Thirty-five C. zemplinina strains, which were isolated from different geographic regions, were molecularly characterized, and their fermentation performances were determined. Five genetically different strains were selected for mixed fermentations with S. cerevisiae. Two types of inoculation were carried out: coinoculation and sequential inoculation. A balance between the two species was generally observed for the first 6 days, after which the levels of C. zemplinina started to decrease. Relevant differences were observed concerning the consumption of sugars, the ethanol and glycerol content, and acetic acid production, depending on which strain was used and which type of inoculation was performed. Sequential inoculation led to the reduction of about half of the acetic acid content compared to the pure S. cerevisiae fermentation, but the ethanol and glycerol amounts were also low. A coinoculation with selected combinations of S. cerevisiae and C. zemplinina resulted in a decrease of ~0.3 g of acetic acid/liter, while maintaining high ethanol and glycerol levels. This study demonstrates that mixed S. cerevisiae and C. zemplinina fermentation could be applied in sweet wine fermentation to reduce the production of acetic acid, connected to the S. cerevisiae osmotic stress response.

  11. Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Zheng, Dao-Qiong; Wu, Xue-Chang; Wang, Pin-Mei; Chi, Xiao-Qin; Tao, Xiang-Lin; Li, Ping; Jiang, Xin-Hang; Zhao, Yu-Hua

    2011-03-01

    Acetic acid existing in a culture medium is one of the most limiting constraints in yeast growth and viability during ethanol fermentation. To improve acetic acid tolerance in Saccharomyces cerevisiae strains, a drug resistance marker-aided genome shuffling approach with higher screen efficiency of shuffled mutants was developed in this work. Through two rounds of genome shuffling of ultraviolet mutants derived from the original strain 308, we obtained a shuffled strain YZ2, which shows significantly faster growth and higher cell viability under acetic acid stress. Ethanol production of YZ2 (within 60 h) was 21.6% higher than that of 308 when 0.5% (v/v) acetic acid was added to fermentation medium. Membrane integrity, higher in vivo activity of the H+-ATPase, and lower oxidative damage after acetic acid treatment are the possible reasons for the acetic acid-tolerance phenotype of YZ2. These results indicated that this novel genome shuffling approach is powerful to rapidly improve the complex traits of industrial yeast strains.

  12. Aqueous-phase hydrogenation of acetic acid over transition metal catalysts

    SciTech Connect

    Olcay, Hakan; Xu, Lijun; Xu, Ye; Huber, George

    2010-01-01

    Catalytic hydrogenation of acetic acid to ethanol has been carried out in aqueous phase on several metals, with ruthenium being the most active and selective. DFT calculations suggest that the initial CO bond scission yielding acetyl is the key step and that the intrinsic reactivity of the metals accounts for the observed activity.

  13. Separating acetic acid from furol (furfural) by electrodialysis method

    SciTech Connect

    Guan, S.F.; Li, C.S. Ye, S.T.; Shen, S.Y.; Wang, Y.T.; Yu, S.H.

    1981-01-01

    Furfural production by hydrolysis of fibrous plant materials is accompanied by formation of acetic acid in amounts depending on the material used. The amount of acetic formed in the hydrolysis of the fruit shell of oil-tea camellia (Camellia oleosa) (an oilseed-bearing tree) is equal to the amount of furfural. The acetic acid can be separated from the furfural and concentrated to 10% by electrodialysis. A smaller amount of furfural is separated with acetic acid.

  14. Adaptation and tolerance of bacteria against acetic acid.

    PubMed

    Trček, Janja; Mira, Nuno Pereira; Jarboe, Laura R

    2015-08-01

    Acetic acid is a weak organic acid exerting a toxic effect to most microorganisms at concentrations as low as 0.5 wt%. This toxic effect results mostly from acetic acid dissociation inside microbial cells, causing a decrease of intracellular pH and metabolic disturbance by the anion, among other deleterious effects. These microbial inhibition mechanisms enable acetic acid to be used as a preservative, although its usefulness is limited by the emergence of highly tolerant spoilage strains. Several biotechnological processes are also inhibited by the accumulation of acetic acid in the growth medium including production of bioethanol from lignocellulosics, wine making, and microbe-based production of acetic acid itself. To design better preservation strategies based on acetic acid and to improve the robustness of industrial biotechnological processes limited by this acid's toxicity, it is essential to deepen the understanding of the underlying toxicity mechanisms. In this sense, adaptive responses that improve tolerance to acetic acid have been well studied in Escherichia coli and Saccharomyces cerevisiae. Strains highly tolerant to acetic acid, either isolated from natural environments or specifically engineered for this effect, represent a unique reservoir of information that could increase our understanding of acetic acid tolerance and contribute to the design of additional tolerance mechanisms. In this article, the mechanisms underlying the acetic acid tolerance exhibited by several bacterial strains are reviewed, with emphasis on the knowledge gathered in acetic acid bacteria and E. coli. A comparison of how these bacterial adaptive responses to acetic acid stress fit to those described in the yeast Saccharomyces cerevisiae is also performed. A systematic comparison of the similarities and dissimilarities of the ways by which different microbial systems surpass the deleterious effects of acetic acid toxicity has not been performed so far, although such exchange

  15. Recovery of very dilute acetic acid using ion exchange

    SciTech Connect

    Cloete, F.L.D.; Marais, A.P.

    1995-07-01

    Acetic and related acids occur in many industrial wastewaters, often mixed with several other classes of organic compounds. Acetic acid can be recovered from 1% solutions using weakly basic ion exchange resins. The acid is adsorbed by the free-base form of the resin, which can then be eluted using a slurry of lime to give a solution of calcium acetate. This solution could either be evaporated to crystallize calcium acetate or reacted with sulfuric acid to form acetic acid and gypsum. Laboratory tests of the proposed process gave product solutions of 15--20% acetic acid using pure 1% acetic acid as feed. Some measurements using a typical industrial effluent gave similar recoveries and showed that there was no initial fouling of the resins.

  16. Acetic acid bacteria in traditional balsamic vinegar: phenotypic traits relevant for starter cultures selection.

    PubMed

    Gullo, Maria; Giudici, Paolo

    2008-06-30

    This review focuses on acetic acid bacteria in traditional balsamic vinegar process. Although several studies are available on acetic acid bacteria ecology, metabolism and nutritional requirements, their activity as well as their technological traits in homemade vinegars as traditional balsamic vinegar is not well known. The basic technology to oxidise cooked grape must to produce traditional balsamic vinegar is performed by the so called "seed-vinegar" that is a microbiologically undefined starter culture obtained from spontaneous acetification of previous raw material. Selected starter cultures are the main technological improvement in order to innovate traditional balsamic vinegar production but until now they are rarely applied. To develop acetic acid bacteria starter cultures, selection criteria have to take in account composition of raw material, acetic acid bacteria metabolic activities, applied technology and desired characteristics of the final product. For traditional balsamic vinegar, significative phenotypical traits of acetic acid bacteria have been highlighted. Basic traits are: ethanol preferred and efficient oxidation, fast rate of acetic acid production, tolerance to high concentration of acetic acid, no overoxidation and low pH resistance. Specific traits are tolerance to high sugar concentration and to a wide temperature range. Gluconacetobacter europaeus and Acetobacter malorum strains can be evaluated to develop selected starter cultures since they show one or more suitable characters.

  17. Sphingolipids contribute to acetic acid resistance in Zygosaccharomyces bailii.

    PubMed

    Lindahl, Lina; Genheden, Samuel; Eriksson, Leif A; Olsson, Lisbeth; Bettiga, Maurizio

    2016-04-01

    Lignocellulosic raw material plays a crucial role in the development of sustainable processes for the production of fuels and chemicals. Weak acids such as acetic acid and formic acid are troublesome inhibitors restricting efficient microbial conversion of the biomass to desired products. To improve our understanding of weak acid inhibition and to identify engineering strategies to reduce acetic acid toxicity, the highly acetic-acid-tolerant yeast Zygosaccharomyces bailii was studied. The impact of acetic acid membrane permeability on acetic acid tolerance in Z. bailii was investigated with particular focus on how the previously demonstrated high sphingolipid content in the plasma membrane influences acetic acid tolerance and membrane permeability. Through molecular dynamics simulations, we concluded that membranes with a high content of sphingolipids are thicker and more dense, increasing the free energy barrier for the permeation of acetic acid through the membrane. Z. bailii cultured with the drug myriocin, known to decrease cellular sphingo-lipid levels, exhibited significant growth inhibition in the presence of acetic acid, while growth in medium without acetic acid was unaffected by the myriocin addition. Furthermore, following an acetic acid pulse, the intracellular pH decreased more in myriocin-treated cells than in control cells. This indicates a higher inflow rate of acetic acid and confirms that the reduction in growth of cells cultured with myriocin in the medium with acetic acid was due to an increase in membrane permeability, thereby demonstrating the importance of a high fraction of sphingolipids in the membrane of Z. bailii to facilitate acetic acid resistance; a property potentially transferable to desired production organisms suffering from weak acid stress.

  18. Zymomonas with improved ethanol production in medium containing concentrated sugars and acetate

    DOEpatents

    Caimi, Perry G [Kennett Square, PA; Chou, Yat-Chen [Lakewood, CO; Franden, Mary Ann [Centennial, CO; Knoke, Kyle [Newark, DE; Tao, Luan [Havertown, PA; Viitanen, Paul V [West Chester, PA; Zhang, Min [Lakewood, CO; Zhang, Yuying [New Hope, PA

    2011-03-01

    Through screening of a Zymomonas mutant library the himA gene was found to be involved in the inhibitory effect of acetate on Zymomonas performance. Xylose-utilizing Zymomonas strains further engineered to reduce activity of the himA gene were found to have increased ethanol production in comparison to a parental strain, when cultured in mixed-sugars medium comprising xylose, and, in particular, in the presence of acetate.

  19. Genome shuffling in the ethanologenic yeast Candida krusei to improve acetic acid tolerance.

    PubMed

    Wei, Pingying; Li, Zilong; He, Peng; Lin, Yuping; Jiang, Ning

    2008-02-01

    Genome shuffling was used to improve the acetic acid tolerance of an ethanologenic yeast, Candida krusei GL560. A mutant, S4-3, was isolated and selected after four rounds of genome shuffling. It was found that the mutant S4-3 had a higher viability in the YNBX (yeast nitrogen base/xylose) medium with acetic acid and grew better in the YPD (yeast extract, peptone and dextrose) medium [1% (w/v) yeast extract, 2% (w/v) peptone and 2% (w/v) glucose] with acetic acid than the parent strain GL560. The mutant S4-3 also improved its multiple stress tolerance to ethanol, H2O2, heat and freeze-thaw. Furthermore, S4-3 showed higher ethanol production than GL560 in EFM (ethanol fermentation medium) with or without acetic acid. The DNA content of S4-3 was similar to its parent strains in the genome shuffling. This suggested that gene exchange, as caused by homologous recombination, may have occurred during the process. Higher membrane integrity and intracellular catalase activity were two possible reasons for the higher acid-tolerance phenotype of S4-3. These results indicated that genome shuffling is a powerful means of rapidly improving the complex traits of non-haploid organisms, while still maintaining robust growth.

  20. Unusal pattern of product inhibition: batch acetic acid fermentation

    SciTech Connect

    Bar, R.; Gainer, J.L.; Kirwan, D.J.

    1987-04-20

    The limited tolerance of microorganisms to their metabolic products results in inhibited growth and product formation. The relationship between the specific growth rate, micro, and the concentration of an inhibitory product has been described by a number of mathematical models. In most cases, micro was found to be inversely proportional to the product concentration and invariably the rate of substrate utilization followed the same pattern. In this communication, the authors report a rather unusual case in which the formation rate of a product, acetic acid, increased with a decreasing growth rate of the microorganism, Acetobacter aceti. Apparently, a similar behavior was mentioned in a review report with respect to Clostridium thermocellum in a batch culture but was not published in the freely circulating literature. The fermentation of ethanol to acetic acid, C/sub 2/H/sub 5/OH + O/sub 2/ = CH/sub 3/COOH + H/sub 2/O is clearly one of the oldest known fermentations. Because of its association with the commercial production of vinegar it has been a subject of extensive but rather technically oriented studies. Suprisingly, the uncommon uncoupling between the inhibited microbial growth and the product formation appears to have been unnoticed. 13 references.

  1. Submillimeter wave spectrum of acetic acid

    NASA Astrophysics Data System (ADS)

    Ilyushin, Vadim V.; Endres, Christian P.; Lewen, Frank; Schlemmer, Stephan; Drouin, Brian J.

    2013-08-01

    We present a new global study of the submillimeter wave spectrum of the lowest three torsional states of acetic acid (CH3COOH). New measurements involving torsion-rotation transitions with J up to 79 and Ka up to 44 have been carried out between 230 and 845 GHz using the submillimeter wave spectrometers in University of Cologne and Jet Propulsion Laboratory. The new data were combined with previously published measurements and fitted using the rho-axis-method torsion-rotation Hamiltonian. The final fit used 93 parameters to give an overall weighted root-mean-square deviation of 0.85 for a dataset consisting of 7543, 6087, and 5171 transitions belonging, respectively, to the ground, first, and second excited torsional states and 1888 Δvt ≠ 0 transitions. This investigation presents more than a twofold expansion both in the J quantum number and frequency range coverage of the acetic acid spectrum. Numerous inter-torsional interactions have been observed. Furthermore, this is the highest J value ever treated with the rho-axis-method and provides a good test case for the theoretical model in use.

  2. Increasing Anaerobic Acetate Consumption and Ethanol Yields in Saccharomyces cerevisiae with NADPH-Specific Alcohol Dehydrogenase

    PubMed Central

    Henningsen, Brooks M.; Hon, Shuen; Covalla, Sean F.; Sonu, Carolina; Argyros, D. Aaron; Barrett, Trisha F.; Wiswall, Erin; Froehlich, Allan C.

    2015-01-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter−1 acetate during fermentation of 114 g liter−1 glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter−1, this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter−1 and raised the ethanol yield to 7% above the wild-type level. PMID:26386051

  3. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase.

    PubMed

    Henningsen, Brooks M; Hon, Shuen; Covalla, Sean F; Sonu, Carolina; Argyros, D Aaron; Barrett, Trisha F; Wiswall, Erin; Froehlich, Allan C; Zelle, Rintze M

    2015-12-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter(-1) acetate during fermentation of 114 g liter(-1) glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter(-1), this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter(-1) and raised the ethanol yield to 7% above the wild-type level.

  4. Mutants of the pentose-fermenting yeast Pachysolen tannophilus tolerant to hardwood spent sulfite liquor and acetic acid.

    PubMed

    Harner, Nicole K; Bajwa, Paramjit K; Habash, Marc B; Trevors, Jack T; Austin, Glen D; Lee, Hung

    2014-01-01

    A strain development program was initiated to improve the tolerance of the pentose-fermenting yeast Pachysolen tannophilus to inhibitors in lignocellulosic hydrolysates. Several rounds of UV mutagenesis followed by screening were used to select for mutants of P. tannophilus NRRL Y2460 with improved tolerance to hardwood spent sulfite liquor (HW SSL) and acetic acid in separate selection lines. The wild type (WT) strain grew in 50 % (v/v) HW SSL while third round HW SSL mutants (designated UHW301, UHW302 and UHW303) grew in 60 % (v/v) HW SSL, with two of these isolates (UHW302 and UHW303) being viable and growing, respectively, in 70 % (v/v) HW SSL. In defined liquid media containing acetic acid, the WT strain grew in 0.70 % (w/v) acetic acid, while third round acetic acid mutants (designated UAA301, UAA302 and UAA303) grew in 0.80 % (w/v) acetic acid, with one isolate (UAA302) growing in 0.90 % (w/v) acetic acid. Cross-tolerance of HW SSL-tolerant mutants to acetic acid and vice versa was observed with UHW303 able to grow in 0.90 % (w/v) acetic acid and UAA302 growing in 60 % (v/v) HW SSL. The UV-induced mutants retained the ability to ferment glucose and xylose to ethanol in defined media. These mutants of P. tannophilus are of considerable interest for bioconversion of the sugars in lignocellulosic hydrolysates to ethanol.

  5. Acetate as an active metabolite of ethanol: studies of locomotion, loss of righting reflex, and anxiety in rodents.

    PubMed

    Pardo, Marta; Betz, Adrienne J; San Miguel, Noemí; López-Cruz, Laura; Salamone, John D; Correa, Mercè

    2013-01-01

    IT HAS BEEN POSTULATED THAT A NUMBER OF THE CENTRAL EFFECTS OF ETHANOL ARE MEDIATED VIA ETHANOL METABOLITES: acetaldehyde and acetate. Ethanol is known to produce a large variety of behavioral actions such anxiolysis, narcosis, and modulation of locomotion. Acetaldehyde contributes to some of those effects although the contribution of acetate is less known. In the present studies, rats and mice were used to assess the acute and chronic effects of acetate after central or peripheral administration. Male Sprague-Dawley rats were used for the comparison between central (intraventricular, ICV) and peripheral (intraperitoneal, IP) administration of acute doses of acetate on locomotion. CD1 male mice were used to study acute IP effects of acetate on locomotion, and also the effects of chronic oral consumption of acetate (0, 500, or 1000 mg/l, during 7, 15, 30, or 60 days) on ethanol- (1.0, 2.0, 4.0, or 4.5 g/kg, IP) induced locomotion, anxiolysis, and loss of righting reflex (LORR). In rats, ICV acetate (0.7-2.8 μmoles) reduced spontaneous locomotion at doses that, in the case of ethanol and acetaldehyde, had previously been shown to stimulate locomotion. Peripheral acute administration of acetate also suppressed locomotion in rats (25-100 mg/kg), but not in mice. In addition, although chronic administration of acetate during 15 days did not have an effect on spontaneous locomotion in an open field, it blocked ethanol-induced locomotion. However, ethanol-induced anxiolysis was not affected by chronic administration of acetate. Chronic consumption of acetate (up to 60 days) did not have an effect on latency to, or duration of LORR induced by ethanol, but significantly increased the number of mice that did not achieve LORR. The present work provides new evidence supporting the hypothesis that acetate should be considered a centrally-active metabolite of ethanol that contributes to some behavioral effects of this alcohol, such as motor suppression.

  6. Acetic Acid Detection Threshold in Synthetic Wine Samples of a Portable Electronic Nose

    PubMed Central

    Macías, Miguel Macías; Manso, Antonio García; Orellana, Carlos Javier García; Velasco, Horacio Manuel González; Caballero, Ramón Gallardo; Chamizo, Juan Carlos Peguero

    2013-01-01

    Wine quality is related to its intrinsic visual, taste, or aroma characteristics and is reflected in the price paid for that wine. One of the most important wine faults is the excessive concentration of acetic acid which can cause a wine to take on vinegar aromas and reduce its varietal character. Thereby it is very important for the wine industry to have methods, like electronic noses, for real-time monitoring the excessive concentration of acetic acid in wines. However, aroma characterization of alcoholic beverages with sensor array electronic noses is a difficult challenge due to the masking effect of ethanol. In this work, in order to detect the presence of acetic acid in synthetic wine samples (aqueous ethanol solution at 10% v/v) we use a detection unit which consists of a commercial electronic nose and a HSS32 auto sampler, in combination with a neural network classifier (MLP). To find the characteristic vector representative of the sample that we want to classify, first we select the sensors, and the section of the sensors response curves, where the probability of detecting the presence of acetic acid will be higher, and then we apply Principal Component Analysis (PCA) such that each sensor response curve is represented by the coefficients of its first principal components. Results show that the PEN3 electronic nose is able to detect and discriminate wine samples doped with acetic acid in concentrations equal or greater than 2 g/L. PMID:23262483

  7. Acetic acid detection threshold in synthetic wine samples of a portable electronic nose.

    PubMed

    Macías, Miguel Macías; Manso, Antonio García; Orellana, Carlos Javier García; Velasco, Horacio Manuel González; Caballero, Ramón Gallardo; Chamizo, Juan Carlos Peguero

    2012-12-24

    Wine quality is related to its intrinsic visual, taste, or aroma characteristics and is reflected in the price paid for that wine. One of the most important wine faults is the excessive concentration of acetic acid which can cause a wine to take on vinegar aromas and reduce its varietal character. Thereby it is very important for the wine industry to have methods, like electronic noses, for real-time monitoring the excessive concentration of acetic acid in wines. However, aroma characterization of alcoholic beverages with sensor array electronic noses is a difficult challenge due to the masking effect of ethanol. In this work, in order to detect the presence of acetic acid in synthetic wine samples (aqueous ethanol solution at 10% v/v) we use a detection unit which consists of a commercial electronic nose and a HSS32 auto sampler, in combination with a neural network classifier (MLP). To find the characteristic vector representative of the sample that we want to classify, first we select the sensors, and the section of the sensors response curves, where the probability of detecting the presence of acetic acid will be higher, and then we apply Principal Component Analysis (PCA) such that each sensor response curve is represented by the coefficients of its first principal components. Results show that the PEN3 electronic nose is able to detect and discriminate wine samples doped with acetic acid in concentrations equal or greater than 2 g/L.

  8. Tested Demonstrations: Buffer Capacity of Various Acetic Acid-Sodium Acetate Systems: A Lecture Experiment.

    ERIC Educational Resources Information Center

    Donahue, Craig J.; Panek, Mary G.

    1985-01-01

    Background information and procedures are provided for a lecture experiment which uses indicators to illustrate the concept of differing buffer capacities by titrating acetic acid/sodium acetate buffers with 1.0 molar hydrochloric acid and 1.0 molar sodium hydroxide. A table with data used to plot the titration curve is included. (JN)

  9. Determinations of ethanol, acetaldehyde and acetate in blood and urine during alcohol oxidation in man.

    PubMed

    Tsukamoto, S; Muto, T; Nagoya, T; Shimamura, M; Saito, M; Tainaka, H

    1989-01-01

    Blood and urine samples were analyzed for ethanol, acetaldehyde and acetate during alcohol oxidation in Japanese men by head space gas chromatography, following the consumption of 16 ml/kg of beer during a 20 min period. The maximum level of blood/urine ethanol was found to be 15-17 mM (20-22 mM), while that of acetaldehyde in a flusher and in non-flushers was 20 microM (52 microM) and 2-5 microM (10-13 microM), respectively. Acetate levels in these groups ranged from 0.2 mM (0.1 mM) to 0.8 mM (1.0 mM). Blood ethanol levels were dose dependent, whereas acetaldehyde and acetate levels reflected individual metabolic rates. The relative concentrations of ethanol and acetaldehyde in blood and that of acetate in alcohol metabolism could be summarized as follows: 7500 (15 mM): 1-3 (2-5 microM); 250-400 (0.5-0.8 mM) for non-flushers; and 7500 (15 mM): 5-10 (10-20 microM): 250-400 (0.5-0.8 mM) for a flusher.

  10. Differential titration of bases in glacial acetic acid.

    PubMed

    Castellano, T; Medwick, T; Shinkai, J H; Bailey, L

    1981-01-01

    A study of bases in acetic acid and their differential titration was carried out. The overall basicity constants for 20 bases were measured in acetic acid, and the differential titration of five binary mixtures of variable delta pKb values in acetic acid was followed using a glass electrode-modified calomel electrode system. Agreement with literature values was good. A leveling diagram was constructed that indicated that bases stronger than aqueous pKb 10 are leveled to an acetous pKb 5.69, whereas weaker bases are not leveled but instead exhibit their own intrinsic basicity, with the acetous pKb to aqueous pKb values being linearly related (slope 1.18, correlation coefficient 0.962). A minimum acetous delta pKb of four units is required for the satisfactory differential titration of two bases in acetic acid.

  11. Gangliosides, or sialic acid, antagonize ethanol intoxication

    SciTech Connect

    Klemm, W.R.; Boyles, R.; Matthew, J.; Cherian, L.

    1988-01-01

    Because ethanol elicits a dose-dependent hydrolysis of brain sialogangliosides, the authors tested the possibility that injected gangliosides might antagonize intoxicating doses of ethanol. Clear anti-intoxication effects were seen at 24 hr post-injection of mixed mouse-brain gangliosides at 125-130 mg/kg, but not at lower or higher doses. Sleep time was reduced on the order of 50%, and roto-rod agility was significantly enhanced. Sialic acid (SA) similarly antagonized ethanol; however, the precursor of SA, N-acetyl-D-mannosamine, as well as ceramide and asialoganglioside did not.

  12. Amperometric determination of acetic acid with a trienzyme/poly(dimethylsiloxane)-bilayer-based sensor.

    PubMed

    Mizutani, F; Sawaguchi, T; Sato, Y; Yabuki, S; Lijima, S

    2001-12-01

    A trienzyme sensor for the amperometric determination of acetic acid was prepared by immobilizing acetate kinase (AK), pyruvate kinase (PK), and pyruvate oxidase (PyOx) on a poly(dimethylsiloxane) (PDMS)-coated electrode. AK catalyzes the phospho-transferring reaction between acetic acid and ATP to form ADP; PK, the phospho-transferring reaction between ADP and phosphoenolpyruvate to form pyruvic acid; and PyOx, the oxidation of pyruvic acid with oxygen. The oxygen consumption could be monitored by using the PDMS-coated electrode without interference from the PyOx reaction product, hydrogen peroxide. Thus, the concentration of acetic acid (5 microM-0.5 mM) could be determined from the decrease in the cathodic current at -0.4 V vs Ag/AgCl. This is the first example of a biosensor that can be used for the determination of acetic acid in ethanol-containing food samples. The acetate-sensing electrode could be used for more than one month.

  13. Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors.

    PubMed

    Shui, Zong-Xia; Qin, Han; Wu, Bo; Ruan, Zhi-yong; Wang, Lu-shang; Tan, Fu-Rong; Wang, Jing-Li; Tang, Xiao-Yu; Dai, Li-Chun; Hu, Guo-Quan; He, Ming-Xiong

    2015-07-01

    Furfural and acetic acid from lignocellulosic hydrolysates are the prevalent inhibitors to Zymomonas mobilis during cellulosic ethanol production. Developing a strain tolerant to furfural or acetic acid inhibitors is difficul by using rational engineering strategies due to poor understanding of their underlying molecular mechanisms. In this study, strategy of adaptive laboratory evolution (ALE) was used for development of a furfural and acetic acid-tolerant strain. After three round evolution, four evolved mutants (ZMA7-2, ZMA7-3, ZMF3-2, and ZMF3-3) that showed higher growth capacity were successfully obtained via ALE method. Based on the results of profiling of cell growth, glucose utilization, ethanol yield, and activity of key enzymes, two desired strains, ZMA7-2 and ZMF3-3, were achieved, which showed higher tolerance under 7 g/l acetic acid and 3 g/l furfural stress condition. Especially, it is the first report of Z. mobilis strain that could tolerate higher furfural. The best strain, Z. mobilis ZMF3-3, has showed 94.84% theoretical ethanol yield under 3-g/l furfural stress condition, and the theoretical ethanol yield of ZM4 is only 9.89%. Our study also demonstrated that ALE method might also be used as a powerful metabolic engineering tool for metabolic engineering in Z. mobilis. Furthermore, the two best strains could be used as novel host for further metabolic engineering in cellulosic ethanol or future biorefinery. Importantly, the two strains may also be used as novel-tolerant model organisms for the genetic mechanism on the "omics" level, which will provide some useful information for inverse metabolic engineering.

  14. Recent advances in nitrogen-fixing acetic acid bacteria.

    PubMed

    Pedraza, Raúl O

    2008-06-30

    Nitrogen is an essential plant nutrient, widely applied as N-fertilizer to improve yield of agriculturally important crops. An interesting alternative to avoid or reduce the use of N-fertilizers could be the exploitation of plant growth-promoting bacteria (PGPB), capable of enhancing growth and yield of many plant species, several of agronomic and ecological significance. PGPB belong to diverse genera, including Azospirillum, Azotobacter, Herbaspirillum, Bacillus, Burkholderia, Pseudomonas, Rhizobium, and Gluconacetobacter, among others. They are capable of promoting plant growth through different mechanisms including (in some cases), the biological nitrogen fixation (BNF), the enzymatic reduction of the atmospheric dinitrogen (N(2)) to ammonia, catalyzed by nitrogenase. Aerobic bacteria able to oxidize ethanol to acetic acid in neutral or acid media are candidates of belonging to the family Acetobacteraceae. At present, this family has been divided into ten genera: Acetobacter, Gluconacetobacter, Gluconobacter, Acidomonas, Asaia, Kozakia, Saccharibacter, Swaminathania, Neoasaia, and Granulibacter. Among them, only three genera include N(2)-fixing species: Gluconacetobacter, Swaminathania and Acetobacter. The first N(2)-fixing acetic acid bacterium (AAB) was described in Brazil. It was found inside tissues of the sugarcane plant, and first named as Acetobacter diazotrophicus, but then renamed as Gluconacetobacter diazotrophicus. Later, two new species within the genus Gluconacetobacter, associated to coffee plants, were described in Mexico: G. johannae and G. azotocaptans. A salt-tolerant bacterium named Swaminathania salitolerans was found associated to wild rice plants. Recently, N(2)-fixing Acetobacter peroxydans and Acetobacter nitrogenifigens, associated with rice plants and Kombucha tea, respectively, were described in India. In this paper, recent advances involving nitrogen-fixing AAB are presented. Their natural habitats, physiological and genetic aspects

  15. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    NASA Technical Reports Server (NTRS)

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  16. Viscometric study of chitosan solutions in acetic acid/sodium acetate and acetic acid/sodium chloride.

    PubMed

    Costa, Cristiane N; Teixeira, Viviane G; Delpech, Marcia C; Souza, Josefa Virginia S; Costa, Marcos A S

    2015-11-20

    A viscometric study was carried out at 25°C to assess the physical-chemical behavior in solution and the mean viscometric molar mass (M¯v) of chitosan solutions with different deacetylation degrees, in two solvent mixtures: medium 1-acetic acid 0.3mol/L and sodium acetate 0.2mol/L; and medium 2-acetic acid 0.1mol/L and sodium chloride 0.2mol/L. Different equations were employed, by graphical extrapolation, to calculate the intrinsic viscosities [η] and the viscometric constants, to reveal the solvent's quality: Huggins (H), Kraemer (K) and Schulz-Blaschke (SB). For single-point determination, the equations used were SB, Solomon-Ciuta (SC) and Deb-Chanterjee (DC), resulting in a faster form of analysis. The values of ̄M¯v were calculated by applying the equation of Mark-Houwink-Sakurada. The SB and SC equations were most suitable for single-point determination of [η] and ̄M¯v and the Schulz-Blachke constant (kSB), equal to 0.28, already utilized for various systems, can also be employed to analyze chitosan solutions under the conditions studied.

  17. Recovery of acetic acid from waste streams by extractive distillation.

    PubMed

    Demiral, H; Yildirim, M Ercengiz

    2003-01-01

    Wastes have been considered to be a serious worldwide environmental problem in recent years. Because of increasing pollution, these wastes should be treated. However, industrial wastes can contain a number of valuable organic components. Recovery of these components is important economically. Using conventional distillation techniques, the separation of acetic acid and water is both impractical and uneconomical, because it often requires large number of trays and a high reflux ratio. In practice special techniques are used depending on the concentration of acetic acid. Between 30 and 70% (w/w) acetic acid contents, extractive distillation was suggested. Extractive distillation is a multicomponent-rectification method similar in purpose to azeotropic distillation. In extractive distillation, to a binary mixture which is difficult or impossible to separate by ordinary means, a third component termed an entrainer is added which alters the relative volatility of the original constituents, thus permitting the separation. In our department acetic acid is used as a solvent during the obtaining of cobalt(III) acetate from cobalt(II) acetate by an electrochemical method. After the operation, the remaining waste contains acetic acid. In thiswork, acetic acid which has been found in this waste was recovered by extractive distillation. Adiponitrile and sulfolane were used as high boiling solvents and the effects of solvent feed rate/solution feed rate ratio and type were investigated. According to the experimental results, it was seem that the recovery of acetic acid from waste streams is possible by extractive distillation.

  18. Micelles Protect and Concentrate Activated Acetic Acid

    NASA Astrophysics Data System (ADS)

    Todd, Zoe; House, C.

    2014-01-01

    As more and more exoplanets are discovered and the habitability of such planets is considered, one can turn to searching for the origin of life on Earth in order to better understand what makes a habitable planet. Activated acetic acid, or methyl thioacetate, has been proposed to be central to the origin of life on Earth, and also as an important energy currency molecule in early cellular evolution. We have investigated the hydrolysis of methyl thioacetate under various conditions. Its uncatalyzed rate of hydrolysis is about three orders of magnitude faster (K = 0.00663 s^-1; 100°C, pH 7.5, concentration = 0.33mM) than published rates for its catalyzed production making it unlikely to accumulate under prebiotic conditions. However, we also observed that methyl thioacetate was protected from hydrolysis when inside its own hydrophobic droplets. We found that methyl thioacetate protection from hydrolysis was also possible in droplets of hexane and in the membranes of nonanoic acid micelles. Thus, the hydrophobic regions of prebiotic micelles and early cell membranes could have offered a refuge for this energetic molecule increasing its lifetime in close proximity to the reactions for which it would be needed. Methyl thioacetate could thus be important for the origin of life on Earth and perhaps for better understanding the potential habitability of other planets.

  19. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.

    PubMed

    Cibis, Katharina Gabriela; Gneipel, Armin; König, Helmut

    2016-02-20

    In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firmicutes, Tenericutes or Thermotogae. According to 16S rRNA gene sequences, most isolates were related to Clostridium sporosphaeroides, Defluviitoga tunisiensis and Dendrosporobacter quercicolus. Acetic, propionic or butyric acid were produced in cultures of isolates affiliated to Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, C. sporosphaeroides, D. quercicolus, Proteiniborus ethanoligenes, Selenomonas bovis and Tepidanaerobacter sp. Isolates related to Thermoanaerobacterium thermosaccharolyticum produced acetic, butyric and lactic acid, and isolates related to D. tunisiensis formed acetic acid. Specific primer sets targeting 16S rRNA gene sequences were designed and used for real-time quantitative PCR (qPCR). The isolates were physiologically characterized and their role in BGP discussed.

  20. Biological Function of Acetic Acid-Improvement in Obesity and Glucose Tolerance by Acetic Acid in Type 2 Diabetic Rats.

    PubMed

    Yamashita, Hiromi

    2016-07-29

    Fatty acids derived from adipose tissue are oxidized by β-oxidation to form ketone bodies as final products under the starving condition. Previously, we found that free acetic acid was formed concomitantly with the production of ketone bodies in isolated rat liver perfusion, and mitochondrial acetyl CoA hydrolase was appeared to be involved with the acetic acid production. It was revealed that acetic acid was formed as a final product of enhanced β-oxidation of fatty acids and utilized as a fuel in extrahepatic tissues under the starving condition. Under the fed condition, β-oxidation is suppressed and acetic acid production is decreased. When acetic acid was taken daily by obesity-linked type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats under the fed condition, it protected OLETF rats against obesity. Furthermore, acetic acid contributed to protect from the accumulation of lipid in the liver as well as abdominal fat in OLETF rats. Transcripts of lipogenic genes in the liver were decreased, while transcripts of myoglobin and Glut4 genes in abdominal muscles were increased in the acetic acid-administered OLETF rats. It is indicated that exogenously administered acetic acid would have effects on lipid metabolism in both the liver and the skeletal muscles, and have function that works against obesity and obesity-linked type 2 diabetes.

  1. Trehalose accumulation enhances tolerance of Saccharomyces cerevisiae to acetic acid.

    PubMed

    Yoshiyama, Yoko; Tanaka, Koichi; Yoshiyama, Kohei; Hibi, Makoto; Ogawa, Jun; Shima, Jun

    2015-02-01

    Trehalose confers protection against various environmental stresses on yeast cells. In this study, trehalase gene deletion mutants that accumulate trehalose at high levels showed significant stress tolerance to acetic acid. The enhancement of trehalose accumulation can thus be considered a target in the breeding of acetic acid-tolerant yeast strains.

  2. Enzymatic production of ethanol from cellulose using soluble cellulose acetate as an intermediate

    SciTech Connect

    Downing, K.M.; Ho, C.S.; Zabriskie, D.W.

    1987-01-01

    A two-stage process for the enzymatic conversion of cellulose to ethanol is proposed as an alternative to currently incomplete and relatively slow enzymatic conversion processes employing natural insoluble cellulose. This alternative approach is designed to promote faster and more complete conversion of cellulose to fermentable sugars through the use of a homogeneous enzymatic hydrolysis reaction. Cellulose is chemically dissolved in the first stage to form water-soluble cellulose acetate (WSCA). The WSCA is then converted to ethanol in a simultaneous saccharification-fermentation with Pestalotiopsis westerdijkii enzymes (containing cellulolytic and acetyl esterase components) and yeast.

  3. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications.

    PubMed

    Saichana, Natsaran; Matsushita, Kazunobu; Adachi, Osao; Frébort, Ivo; Frebortova, Jitka

    2015-11-01

    Acetic acid bacteria are gram-negative obligate aerobic bacteria assigned to the family Acetobacteraceae of Alphaproteobacteria. They are members of the genera Acetobacter, Gluconobacter, Gluconacetobacter, Acidomonas, Asaia, Kozakia, Swaminathania, Saccharibacter, Neoasaia, Granulibacter, Tanticharoenia, Ameyamaea, Neokomagataea, and Komagataeibacter. Many strains of Acetobacter and Komagataeibacter have been known to possess high acetic acid fermentation ability as well as the acetic acid and ethanol resistance, which are considered to be useful features for industrial production of acetic acid and vinegar, the commercial product. On the other hand, Gluconobacter strains have the ability to perform oxidative fermentation of various sugars, sugar alcohols, and sugar acids leading to the formation of several valuable products. Thermotolerant strains of acetic acid bacteria were isolated in order to serve as the new strains of choice for industrial fermentations, in which the cooling costs for maintaining optimum growth and production temperature in the fermentation vessels could be significantly reduced. Genetic modifications by adaptation and genetic engineering were also applied to improve their properties, such as productivity and heat resistance.

  4. Fermentation of lignocellulosic sugars to acetic acid by Moorella thermoacetica.

    PubMed

    Ehsanipour, Mandana; Suko, Azra Vajzovic; Bura, Renata

    2016-06-01

    A systematic study of bioconversion of lignocellulosic sugars to acetic acid by Moorella thermoacetica (strain ATCC 39073) was conducted. Four different water-soluble fractions (hydrolysates) obtained after steam pretreatment of lignocellulosic biomass were selected and fermented to acetic acid in batch fermentations. M. thermoacetica can effectively ferment xylose and glucose in hydrolysates from wheat straw, forest residues, switchgrass, and sugarcane straw to acetic acid. Xylose and glucose were completely utilized, with xylose being consumed first. M. thermoacetica consumed up to 62 % of arabinose, 49 % galactose and 66 % of mannose within 72 h of fermentation in the mixture of lignocellulosic sugars. The highest acetic acid yield was obtained from sugarcane straw hydrolysate, with 71 % of theoretical yield based on total sugars (17 g/L acetic acid from 24 g/L total sugars). The lowest acetic acid yield was observed in forest residues hydrolysate, with 39 % of theoretical yield based on total sugars (18 g/L acetic acid from 49 g/L total sugars). Process derived compounds from steam explosion pretreatment, including 5-hydroxymethylfurfural (0.4 g/L), furfural (0.1 g/L) and total phenolics (3 g/L), did not inhibit microbial growth and acetic acid production yield. This research identified two major factors that adversely affected acetic acid yield in all hydrolysates, especially in forest residues: (i) glucose to xylose ratio and (ii) incomplete consumption of arabinose, galactose and mannose. For efficient bioconversion of lignocellulosic sugars to acetic acid, it is imperative to have an appropriate balance of sugars in a hydrolysate. Hence, the choice of lignocellulosic biomass and steam pretreatment design are fundamental steps for the industrial application of this process.

  5. The fraction of cells that resume growth after acetic acid addition is a strain-dependent parameter of acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Swinnen, Steve; Fernández-Niño, Miguel; González-Ramos, Daniel; van Maris, Antonius J A; Nevoigt, Elke

    2014-06-01

    High acetic acid tolerance of Saccharomyces cerevisiae is a relevant phenotype in industrial biotechnology when using lignocellulosic hydrolysates as feedstock. A screening of 38 S. cerevisiae strains for tolerance to acetic acid revealed considerable differences, particularly with regard to the duration of the latency phase. To understand how this phenotype is quantitatively manifested, four strains exhibiting significant differences were studied in more detail. Our data show that the duration of the latency phase is primarily determined by the fraction of cells within the population that resume growth. Only this fraction contributed to the exponential growth observed after the latency phase, while all other cells persisted in a viable but non-proliferating state. A remarkable variation in the size of the fraction was observed among the tested strains differing by several orders of magnitude. In fact, only 11 out of 10(7)  cells of the industrial bioethanol production strain Ethanol Red resumed growth after exposure to 157 mM acetic acid at pH 4.5, while this fraction was 3.6 × 10(6) (out of 10(7)  cells) in the highly acetic acid tolerant isolate ATCC 96581. These strain-specific differences are genetically determined and represent a valuable starting point to identify genetic targets for future strain improvement.

  6. Measurement of the rates of oxindole-3-acetic acid turnover, and indole-3-acetic acid oxidation in Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Nonhebel, H. M.; Bandurski, R. S. (Principal Investigator)

    1986-01-01

    Oxindole-3-acetic acid is the principal catabolite of indole-3-acetic acid in Zea mays seedlings. In this paper measurements of the turnover of oxindole-3-acetic acid are presented and used to calculate the rate of indole-3-acetic acid oxidation. [3H]Oxindole-3-acetic acid was applied to the endosperm of Zea mays seedlings and allowed to equilibrate for 24 h before the start of the experiment. The subsequent decrease in its specific activity was used to calculate the turnover rate. The average half-life of oxindole-3-acetic acid in the shoots was found to be 30 h while that in the kernels had an average half-life of 35h. Using previously published values of the pool sizes of oxindole-3-acetic acid in shoots and kernels from seedlings of the same age and variety, and grown under the same conditions, the rate of indole-3-acetic acid oxidation was calculated to be 1.1 pmol plant-1 h-1 in the shoots and 7.1 pmol plant-1 h-1 in the kernels.

  7. Oxidation of indole-3-acetic acid and oxindole-3-acetic acid to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glucopyranoside in Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Nonhebel, H. M.; Bandurski, R. S.

    1984-01-01

    Radiolabeled oxindole-3-acetic acid was metabolized by roots, shoots, and caryopses of dark grown Zea mays seedlings to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glycopyranoside with the simpler name of 7-hydroxyoxindole-3-acetic acid-glucoside. This compound was also formed from labeled indole-3-acetic acid supplied to intact seedlings and root segments. The glucoside of 7-hydroxyoxindole-3-acetic acid was also isolated as an endogenous compound in the caryopses and shoots of 4-day-old seedlings. It accumulates to a level of 4.8 nanomoles per plant in the kernel, more than 10 times the amount of oxindole-3-acetic acid. In the shoot it is present at levels comparable to that of oxindole-3-acetic acid and indole-3-acetic acid (62 picomoles per shoot). We conclude that 7-hydroxyoxindole-3-acetic acid-glucoside is a natural metabolite of indole-3-acetic acid in Z. mays seedlings. From the data presented in this paper and in previous work, we propose the following route as the principal catabolic pathway for indole-3-acetic acid in Zea seedlings: Indole-3-acetic acid --> Oxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid-glucoside.

  8. Saccharification behavior of cellulose acetate during enzymatic processing for microbial ethanol production.

    PubMed

    Hama, Shinji; Nakano, Kohsuke; Onodera, Kaoru; Nakamura, Masashi; Noda, Hideo; Kondo, Akihiko

    2014-04-01

    This study was conducted to realize the potential application of cellulose acetate to enzymatic processing, followed by microbial ethanol fermentation. To eliminate the effect of steric hindrance of acetyl groups on the action of cellulase, cellulose acetate was subjected to deacetylation in the presence of 1N sodium hydroxide and a mixture of methanol/acetone, yielding 88.8-98.6% at 5-20% substrate loadings during a 48h saccharification at 50°C. Ethanol fermentation using Saccharomyces cerevisiae attained a high yield of 92.3% from the initial glucose concentration of 44.2g/L; however, a low saccharification yield was obtained at 35°C, decreasing efficiency during simultaneous saccharification and fermentation (SSF). Presaccharification at 50°C prior to SSF without increasing the total process time attained the ethanol titers of 19.8g/L (5% substrate), 38.0g/L (10% substrate), 55.9g/L (15% substrate), and 70.9g/L (20% substrate), which show a 12.0-16.2% improvement in ethanol yield.

  9. Computerized image analysis for acetic acid induced intraepithelial lesions

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; Ferris, Daron G.; Lieberman, Rich W.

    2008-03-01

    Cervical Intraepithelial Neoplasia (CIN) exhibits certain morphologic features that can be identified during a visual inspection exam. Immature and dysphasic cervical squamous epithelium turns white after application of acetic acid during the exam. The whitening process occurs visually over several minutes and subjectively discriminates between dysphasic and normal tissue. Digital imaging technologies allow us to assist the physician analyzing the acetic acid induced lesions (acetowhite region) in a fully automatic way. This paper reports a study designed to measure multiple parameters of the acetowhitening process from two images captured with a digital colposcope. One image is captured before the acetic acid application, and the other is captured after the acetic acid application. The spatial change of the acetowhitening is extracted using color and texture information in the post acetic acid image; the temporal change is extracted from the intensity and color changes between the post acetic acid and pre acetic acid images with an automatic alignment. The imaging and data analysis system has been evaluated with a total of 99 human subjects and demonstrate its potential to screening underserved women where access to skilled colposcopists is limited.

  10. Uranyl complexes of n-alkanediaminotetra-acetic acids.

    PubMed

    Gonçalves, M L; Mota, A M; da Silva, J J

    1984-07-01

    The uranyl complexes of n-propanediaminetetra-acetic acid, n-butanediaminetetra-acetic acid and n-hexanediaminetetra-acetic acid have been studied by potentiometry, with computer evaluation of the titration data by the MINIQUAD program. Stability constants of the 1:1 and 2:1 metal:ligand chelates have been determined as well as the respective hydrolysis and polymerization constants at 25 degrees in 0.10M and 1.00M KNO(3). The influence of the length of the alkane chain of the ligands on the complexes formed is discussed.

  11. Disproportionation Kinetics of Hypoiodous Acid As Catalyzed and Suppressed by Acetic Acid-Acetate Buffer.

    PubMed

    Urbansky, Edward T.; Cooper, Brian T.; Margerum, Dale W.

    1997-03-26

    The kinetics of the disproportionation of hypoiodous acid to give iodine and iodate ion (5HOI right harpoon over left harpoon 2I(2) + IO(3)(-) + H(+) + 2H(2)O) are investigated in aqueous acetic acid-sodium acetate buffer. The rate of iodine formation is followed photometrically at -log [H(+)] = 3.50, 4.00, 4.50, and 5.00, &mgr; = 0.50 M (NaClO(4)), and 25.0 degrees C. Both catalytic and inhibitory buffer effects are observed. The first process is proposed to be a disproportionation of iodine(I) to give HOIO and I(-); the iodide then reacts with HOI to give I(2). The reactive species (acetato-O)iodine(I), CH(3)CO(2)I, is postulated to increase the rate by assisting in the formation of I(2)O, a steady-state species that hydrolyzes to give HOIO and I(2). Inhibition is postulated to result from the formation of the stable ion bis(acetato-O)iodate(I), (CH(3)CO(2))(2)I(-), as buffer concentration is increased. This species is observed spectrophotometrically with a UV absorption shoulder (lambda = 266 nm; epsilon = 530 M(-)(1) cm(-)(1)). The second process is proposed to be a disproportionation of HOIO to give IO(3)(-) and I(2). Above 1 M total buffer, the reaction becomes reversible with less than 90% I(2) formation. Rate and equilibrium constants are resolved and reported for the proposed mechanism.

  12. Acetate as an active metabolite of ethanol: studies of locomotion, loss of righting reflex, and anxiety in rodents

    PubMed Central

    Pardo, Marta; Betz, Adrienne J.; San Miguel, Noemí; López-Cruz, Laura; Salamone, John D.; Correa, Mercè

    2013-01-01

    It has been postulated that a number of the central effects of ethanol are mediated via ethanol metabolites: acetaldehyde and acetate. Ethanol is known to produce a large variety of behavioral actions such anxiolysis, narcosis, and modulation of locomotion. Acetaldehyde contributes to some of those effects although the contribution of acetate is less known. In the present studies, rats and mice were used to assess the acute and chronic effects of acetate after central or peripheral administration. Male Sprague-Dawley rats were used for the comparison between central (intraventricular, ICV) and peripheral (intraperitoneal, IP) administration of acute doses of acetate on locomotion. CD1 male mice were used to study acute IP effects of acetate on locomotion, and also the effects of chronic oral consumption of acetate (0, 500, or 1000 mg/l, during 7, 15, 30, or 60 days) on ethanol- (1.0, 2.0, 4.0, or 4.5 g/kg, IP) induced locomotion, anxiolysis, and loss of righting reflex (LORR). In rats, ICV acetate (0.7–2.8 μmoles) reduced spontaneous locomotion at doses that, in the case of ethanol and acetaldehyde, had previously been shown to stimulate locomotion. Peripheral acute administration of acetate also suppressed locomotion in rats (25–100 mg/kg), but not in mice. In addition, although chronic administration of acetate during 15 days did not have an effect on spontaneous locomotion in an open field, it blocked ethanol-induced locomotion. However, ethanol-induced anxiolysis was not affected by chronic administration of acetate. Chronic consumption of acetate (up to 60 days) did not have an effect on latency to, or duration of LORR induced by ethanol, but significantly increased the number of mice that did not achieve LORR. The present work provides new evidence supporting the hypothesis that acetate should be considered a centrally-active metabolite of ethanol that contributes to some behavioral effects of this alcohol, such as motor suppression. PMID:23847487

  13. Zinc, magnesium, and calcium ion supplementation confers tolerance to acetic acid stress in industrial Saccharomyces cerevisiae utilizing xylose.

    PubMed

    Ismail, Ku Syahidah Ku; Sakamoto, Takatoshi; Hasunuma, Tomohisa; Zhao, Xin-Qing; Kondo, Akihiko

    2014-12-01

    Lignocellulosic biomass is a potential substrate for ethanol production. However, pretreatment of lignocellulosic materials produces inhibitory compounds such as acetic acid, which negatively affect ethanol production by Saccharomyces cerevisiae. Supplementation of the medium with three metal ions (Zn(2+) , Mg(2+) , and Ca(2+) ) increased the tolerance of S. cerevisiae toward acetic acid compared to the absence of the ions. Ethanol production from xylose was most improved (by 34%) when the medium was supplemented with 2 mM Ca(2+) , followed by supplementation with 3.5 mM Mg(2+) (29% improvement), and 180 μM Zn(2+) (26% improvement). Higher ethanol production was linked to high cell viability in the presence of metal ions. Comparative transcriptomics between the supplemented cultures and the control suggested that improved cell viability resulted from the induction of genes controlling the cell wall and membrane. Only one gene, FIT2, was found to be up-regulated in common between the three metal ions. Also up-regulation of HXT1 and TKL1 might enhance xylose consumption in the presence of acetic acid. Thus, the addition of ionic nutrients is a simple and cost-effective method to improve the acetic acid tolerance of S. cerevisiae.

  14. Sequential injection redox or acid-base titration for determination of ascorbic acid or acetic acid.

    PubMed

    Lenghor, Narong; Jakmunee, Jaroon; Vilen, Michael; Sara, Rolf; Christian, Gary D; Grudpan, Kate

    2002-12-06

    Two sequential injection titration systems with spectrophotometric detection have been developed. The first system for determination of ascorbic acid was based on redox reaction between ascorbic acid and permanganate in an acidic medium and lead to a decrease in color intensity of permanganate, monitored at 525 nm. A linear dependence of peak area obtained with ascorbic acid concentration up to 1200 mg l(-1) was achieved. The relative standard deviation for 11 replicate determinations of 400 mg l(-1) ascorbic acid was 2.9%. The second system, for acetic acid determination, was based on acid-base titration of acetic acid with sodium hydroxide using phenolphthalein as an indicator. The decrease in color intensity of the indicator was proportional to the acid content. A linear calibration graph in the range of 2-8% w v(-1) of acetic acid with a relative standard deviation of 4.8% (5.0% w v(-1) acetic acid, n=11) was obtained. Sample throughputs of 60 h(-1) were achieved for both systems. The systems were successfully applied for the assays of ascorbic acid in vitamin C tablets and acetic acid content in vinegars, respectively.

  15. A specialized citric acid cycle requiring succinyl-coenzyme A (CoA):acetate CoA-transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter aceti.

    PubMed

    Mullins, Elwood A; Francois, Julie A; Kappock, T Joseph

    2008-07-01

    Microbes tailor macromolecules and metabolism to overcome specific environmental challenges. Acetic acid bacteria perform the aerobic oxidation of ethanol to acetic acid and are generally resistant to high levels of these two membrane-permeable poisons. The citric acid cycle (CAC) is linked to acetic acid resistance in Acetobacter aceti by several observations, among them the oxidation of acetate to CO2 by highly resistant acetic acid bacteria and the previously unexplained role of A. aceti citrate synthase (AarA) in acetic acid resistance at a low pH. Here we assign specific biochemical roles to the other components of the A. aceti strain 1023 aarABC region. AarC is succinyl-coenzyme A (CoA):acetate CoA-transferase, which replaces succinyl-CoA synthetase in a variant CAC. This new bypass appears to reduce metabolic demand for free CoA, reliance upon nucleotide pools, and the likely effect of variable cytoplasmic pH upon CAC flux. The putative aarB gene is reassigned to SixA, a known activator of CAC flux. Carbon overflow pathways are triggered in many bacteria during metabolic limitation, which typically leads to the production and diffusive loss of acetate. Since acetate overflow is not feasible for A. aceti, a CO(2) loss strategy that allows acetic acid removal without substrate-level (de)phosphorylation may instead be employed. All three aar genes, therefore, support flux through a complete but unorthodox CAC that is needed to lower cytoplasmic acetate levels.

  16. Plasma membrane proteins Yro2 and Mrh1 are required for acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Takabatake, Akiko; Kawazoe, Nozomi; Izawa, Shingo

    2015-03-01

    Yro2 and its paralogous protein Mrh1 of Saccharomyces cerevisiae have seven predicted transmembrane domains and predominantly localize to the plasma membrane. Their physiological functions and regulation of gene expression have not yet been elucidated in detail. We herein demonstrated that MRH1 was constitutively expressed, whereas the expression of YRO2 was induced by acetic acid stress and entering the stationary phase. Fluorescence microscopic analysis revealed that Mrh1 and Yro2 were distributed as small foci in the plasma membrane under acetic acid stress conditions. The null mutants of these genes (mrh1∆, yro2∆, and mrh1∆yro2∆) showed delayed growth and a decrease in the productivity of ethanol in the presence of acetic acid, indicating that Yro2 and Mrh1 are involved in tolerance to acetic acid stress.

  17. Fourier transform infrared study on hydrogen bonding species of carboxylic acids in supercritical carbon dioxide with ethanol

    SciTech Connect

    Yamamoto, Morio; Iwai, Yoshio; Nakajima, Taro; Arai, Yasuhiko

    1999-05-06

    Supercritical fluid extraction has been given much attention recently as one of the new separation technologies in the chemical industry. Fourier transform infrared (FTIR) spectroscopy has been used to determine the equilibrium constants of the dimerization for carboxylic acid (acetic acid or palmitic acid) and the amount of hydrogen bonding species between carboxylic acid and ethanol in supercritical CO{sub 2}. Experiments were carried out at 308.2--313.2 K and 10.0--20.0 MPa. The noticeable band was the C{double_bond}O stretching band for carboxylic acid. In the binary system (supercritical CO{sub 2} + carboxylic acid), the equilibrium constants of the dimerization between the carboxylic acid monomer and dimer decrease with increasing pressure and temperature. The equilibrium constants of palmitic acid are larger than those of acetic acid. In a ternary system (supercritical CO{sub 2} + carboxylic acid + ethanol), the amount of hydrogen bonding species between carboxylic acid and ethanol in supercritical CO{sub 2} increases with the increasing mole fraction of added ethanol. Furthermore, the authors confirm that the solubility enhancement by ethanol used as an entrainer in supercritical CO{sub 2} related to the amount of hydrogen bonding species between carboxylic acid and ethanol.

  18. Degradation by acetic acid for crystalline Si photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Masuda, Atsushi; Uchiyama, Naomi; Hara, Yukiko

    2015-04-01

    The degradation of crystalline Si photovoltaic modules during damp-heat test was studied using some test modules with and without polymer film insertion by observing electrical and electroluminescence properties and by chemical analyses. Acetic acid generated by the hydrolysis decomposition of ethylene vinyl acetate used as an encapsulant is the main origin of degradation. The change in electroluminescence images is explained on the basis of the corrosion of electrodes by acetic acid. On the other hand, little change was observed at the pn junction even after damp-heat test for a long time. Therefore, carrier generation occurs even after degradation; however, such generated carriers cannot be collected owing to corrosion of electrodes. The guiding principle that module structure and module materials without saving acetic acid into the modules was obtained.

  19. Tetrazole acetic acid: Tautomers, conformers, and isomerization

    SciTech Connect

    Araujo-Andrade, C.; Reva, I. Fausto, R.

    2014-02-14

    Monomers of (tetrazol-5-yl)-acetic acid (TAA) were obtained by sublimation of the crystalline compound and the resulting vapors were isolated in cryogenic nitrogen matrices at 13 K. The conformational and tautomeric composition of TAA in the matrix was characterized by infrared spectroscopy and vibrational calculations carried out at the B3LYP/6-311++G(d,p) level. TAA may adopt two tautomeric modifications, 1H- and 2H-, depending on the position of the annular hydrogen atom. Two-dimensional potential energy surfaces (PESs) of TAA were theoretically calculated at the MP2/6-311++G(d,p) level, for each tautomer. Four and six symmetry-unique minima were located on these PESs, for 1H- and 2H-TAA, respectively. The energetics of the detected minima was subsequently refined by calculations at the QCISD level. Two 1H- and three 2H-conformers fall within the 0–8 kJ mol{sup −1} energy range and should be appreciably populated at the sublimation temperature (∼330 K). Observation of only one conformer for each tautomer (1ccc and 2pcc) is explained in terms of calculated barriers to conformational rearrangements. All conformers with the cis O=COH moiety are separated by low barriers (less than 10 kJ mol{sup −1}) and collapse to the most stable 1ccc (1H-) and 2pcc (2H-) forms during deposition of the matrix. On the trans O=COH surfaces, the relative energies are very high (between 12 and 27 kJ mol{sup −1}). The trans forms are not thermally populated at the sublimation conditions and were not detected in matrices. One high-energy form in each tautomer, 1cct (1H-) and 2pct (2H-), was found to differ from the most stable form only by rotation of the OH group and separated from other forms by high barriers. This opened a perspective for their stabilization in a matrix. 1cct and 2pct were generated in the matrices selectively by means of narrow-band near-infrared (NIR) irradiations of the samples at 6920 and 6937 cm{sup −1}, where the first OH stretching overtone

  20. Inhibition effects on fermentation of hardwood extracted hemicelluloses by acetic acid and sodium.

    PubMed

    Walton, Sara; van Heiningen, Adriaan; van Walsum, Peter

    2010-03-01

    Extraction of hemicellulose from hardwood chips prior to pulping is a possible method for producing ethanol and acetic acid in an integrated forest bio-refinery, adding value to wood components normally relegated to boiler fuel. Hemicellulose was extracted from hardwood chips using green liquor, a pulping liquor intermediate consisting of aqueous NaOH, Na(2)CO(3), and Na(2)S, at 160 degrees C, held for 110 min in a 20 L rocking digester. The extracted liquor contained 3.7% solids and had a pH of 5.6. The organic content of the extracts was mainly xylo-oligosaccharides and acetic acid. Because it was dilute, the hemicellulose extract was concentrated by evaporation in a thin film evaporator. Concentrates from the evaporator reached levels of up to 10% solids. Inhibitors such as acetic acid and sodium were also concentrated by this method, presenting a challenge for the fermentation organisms. Fermentation experiments were conducted with Escherichia coli K011. The un-concentrated extract supported approximately 70% conversion of the initial sugars in 14 h. An extract evaporated down to 6% solids was also fermentable while a 10% solids extract was not initially fermentable. Strain conditioning was later found to enable fermentation at this level of concentration. Alternative processing schemes or inhibitor removal prior to fermentation are necessary to produce ethanol economically.

  1. Alcohol and aldehyde dehydrogenase from Saccharomyces cerevisiae: specific activity and influence on the production of acetic acid, ethanol and higher alcohols in the first 48 h of fermentation of grape must.

    PubMed

    Millán, C; Mauricio, J C; Ortega, J M

    1990-01-01

    The changes in the specific activity of alcohol dehydrogenase (ADH-I and ADH-II) and aldehyde dehydrogenases [AIDH-NADP+ and AIDH-NAD(P)+] from Saccharomyces cerevisiae during the first 48 h of fermentation of grape must were investigated. The biosynthesis of ADH-I and AIDH-NADP+ took place basically during the adaptation of the yeasts to the must (first 4 h), while that of ADH-II occurred immediately after exponential growth (after 12 h). From the products produced by the yeast, only the specific rate of production of ethanol was found to be directly related to the specific activity of ADH-I.

  2. Photodissociation spectroscopy of the Mg{sup +}-acetic acid complex

    SciTech Connect

    Abate, Yohannes; Kleiber, P. D.

    2006-11-14

    We have studied the structure and photodissociation of Mg{sup +}-acetic acid clusters. Ab initio calculations suggest four relatively strongly bound ground state isomers for the [MgC{sub 2}H{sub 4}O{sub 2}]{sup +} complex. These isomers include the cis and trans forms of the Mg{sup +}-acetic acid association complex with Mg{sup +} bonded to the carbonyl O atom of acetic acid, the Mg{sup +}-acetic acid association complex with Mg{sup +} bonded to the hydroxyl O atom of acetic acid, or to a Mg{sup +}-ethenediol association complex. Photodissociation through the Mg{sup +}-based 3p<-3s absorption bands in the near UV leads to direct (nonreactive) and reactive dissociation products: Mg{sup +}, MgOH{sup +}, Mg(H{sub 2}O){sup +}, CH{sub 3}CO{sup +}, and MgCH{sub 3}{sup +}. At low energies the dominant reactive quenching pathway is through dehydration to Mg(H{sub 2}O){sup +}, but additional reaction channels involving C-H and C-C bond activation are also open at higher energies.

  3. Simultaneous acetic acid separation and monosaccharide concentration by reverse osmosis.

    PubMed

    Zhou, Fanglei; Wang, Cunwen; Wei, Jiang

    2013-03-01

    This study aimed to investigate the feasibility and efficiency of simultaneous acetic acid separation and sugar concentration in model lignocellulosic hydrolyzates by reverse osmosis. The effects of operation parameters such as pH, temperature, pressure and feed concentration on the solute retentions were examined with a synthetic xylose–glucose–acetic acid model solution. Results showed that the monosaccharides were almost completely rejected at above 20 bar, while the acetic acid retention increased with the increase in pH and pressure, and decreased with the temperature increase. The maximum separation factors of acetic acid over xylose and glucose reached as high as 211.5 and 228.4 at pH 2.93 (the initial pH of model lignocellulosic hydrolyzates), 40 °C and 20 bar. Furthermore, the concentration and diafiltration process were employed at optimal operation conditions. Consequently, a high sugar concentration and a beneficially lower acetic acid concentration were simultaneously achieved by reverse osmosis.

  4. Catalysis of the Carbonylation of Alcohols to Carboxylic Acids Including Acetic Acid Synthesis from Methanol.

    ERIC Educational Resources Information Center

    Forster, Denis; DeKleva, Thomas W.

    1986-01-01

    Monsanto's highly successful synthesis of acetic acid from methanol and carbon monoxide illustrates use of new starting materials to replace pretroleum-derived ethylene. Outlines the fundamental aspects of the acetic acid process and suggests ways of extending the synthesis to higher carboxylic acids. (JN)

  5. Vinegar Production from Jabuticaba (Myrciaria jaboticaba) Fruit Using Immobilized Acetic Acid Bacteria

    PubMed Central

    Silva, Monique Suela; Cristina de Souza, Angélica; Magalhăes-Guedes, Karina Teixeira; Ribeiro, Fernanda Severo de Rezende; Schwan, Rosane Freitas

    2016-01-01

    Summary Cell immobilization comprises the retention of metabolically active cells inside a polymeric matrix. In this study, the production of jabuticaba (Myrciaria jaboticaba) vinegar using immobilized Acetobacter aceti and Gluconobacter oxydans cells is proposed as a new method to prevent losses of jabuticaba fruit surplus. The pulp of jabuticaba was processed and Saccharomyces cerevisiae CCMA 0200 was used to ferment the must for jabuticaba wine production. Sugars, alcohols (ethanol and glycerol) and organic acids were assayed by high-performance liquid chromatography. Volatile compounds were determined by gas chromatography-flame ionization detector. The ethanol content of the produced jabuticaba wine was approx. 74.8 g/L (9.5% by volume) after 168 h of fermentation. Acetic acid fermentation for vinegar production was performed using a mixed culture of immobilized A. aceti CCT 0190 and G. oxydans CCMA 0350 cells. The acetic acid yield was 74.4% and productivity was 0.29 g/(L·h). The vinegar had particularly high concentrations of citric (6.67 g/L), malic (7.02 g/L) and succinic (5.60 g/L) acids. These organic acids give a suitable taste and flavour to the vinegar. Seventeen compounds (aldehydes, higher alcohols, terpene, acetate, diether, furans, acids, ketones and ethyl esters) were identified in the jabuticaba vinegar. In conclusion, vinegar was successfully produced from jabuticaba fruits using yeast and immobilized mixed cultures of A. aceti and G. oxydans. To the best of our knowledge, this is the first study to use mixed culture of immobilized cells for the production of jabuticaba vinegar. PMID:27956867

  6. Vinegar Production from Jabuticaba (Myrciaria jaboticaba) Fruit Using Immobilized Acetic Acid Bacteria.

    PubMed

    Dias, Disney Ribeiro; Silva, Monique Suela; Cristina de Souza, Angélica; Magalhăes-Guedes, Karina Teixeira; Ribeiro, Fernanda Severo de Rezende; Schwan, Rosane Freitas

    2016-09-01

    Cell immobilization comprises the retention of metabolically active cells inside a polymeric matrix. In this study, the production of jabuticaba (Myrciaria jaboticaba) vinegar using immobilized Acetobacter aceti and Gluconobacter oxydans cells is proposed as a new method to prevent losses of jabuticaba fruit surplus. The pulp of jabuticaba was processed and Saccharomyces cerevisiae CCMA 0200 was used to ferment the must for jabuticaba wine production. Sugars, alcohols (ethanol and glycerol) and organic acids were assayed by high-performance liquid chromatography. Volatile compounds were determined by gas chromatography-flame ionization detector. The ethanol content of the produced jabuticaba wine was approx. 74.8 g/L (9.5% by volume) after 168 h of fermentation. Acetic acid fermentation for vinegar production was performed using a mixed culture of immobilized A. aceti CCT 0190 and G. oxydans CCMA 0350 cells. The acetic acid yield was 74.4% and productivity was 0.29 g/(L·h). The vinegar had particularly high concentrations of citric (6.67 g/L), malic (7.02 g/L) and succinic (5.60 g/L) acids. These organic acids give a suitable taste and flavour to the vinegar. Seventeen compounds (aldehydes, higher alcohols, terpene, acetate, diether, furans, acids, ketones and ethyl esters) were identified in the jabuticaba vinegar. In conclusion, vinegar was successfully produced from jabuticaba fruits using yeast and immobilized mixed cultures of A. aceti and G. oxydans. To the best of our knowledge, this is the first study to use mixed culture of immobilized cells for the production of jabuticaba vinegar.

  7. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  8. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  9. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  10. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  11. Solvent extraction of organic acids from stillage for its re-use in ethanol production process.

    PubMed

    Castro, G A; Caicedo, L A; Alméciga-Díaz, C J; Sanchez, O F

    2010-06-01

    Stillage re-use in the fermentation stage in ethanol production is a technique used for the reduction of water and fermentation nutrients consumption. However, the inhibitory effect on yeast growth of the by-products and feed components that remains in stillage increases with re-use and reduces the number of possible recycles. Several methods such as ultrafiltration, electrodialysis and advanced oxidation processes have been used in stillage treatment prior its re-use in the fermentation stage. Nevertheless, few studies evaluating the effect of solvent extraction as a stillage treatment option have been performed. In this work, the inhibitory effect of serial stillage recycling over ethanol and biomass production was determined, using acetic acid as a monitoring compound during the fermentation and solvent extraction process. Raw palm oil methyl ester showed the highest acetic acid extraction from the aqueous phase, presenting a distribution coefficient of 3.10 for a 1:1 aqueous phase mixture:solvent ratio. Re-using stillage without treatment allowed up to three recycles with an ethanol production of 53.7 +/- 2.0 g L(-1), which was reduced 25% in the fifth recycle. Alternatively, treated stillage allowed up to five recycles with an ethanol final concentration of 54.7 +/- 1.3 g L(- 1). These results show that reduction of acetic acid concentration by an extraction process with raw palm oil methyl ester before re-using stillage improves the number of recycles without a major effect on ethanol production. The proposed process generates a palm oil methyl ester that contains organic acids, among other by-products, that could be used for product recovery and as an alternative fuel.

  12. [Improvement of acetic acid tolerance and fermentation performance of industrial Saccharomyces cerevisiae by overexpression of flocculent gene FLO1 and FLO1c].

    PubMed

    Du, Zhaoli; Cheng, Yanfei; Zhu, Hui; He, Xiuping; Zhang, Borun

    2015-02-01

    Flocculent gene FLO1 and its truncated form FLO1c with complete deletion of repeat unit C were expressed in a non-flocculent industrial strain Saccharomyces cerevisiae CE6 to generate recombinant flocculent strains 6-AF1 and 6-AF1c respectively. Both strains of 6-AF1 and 6-AF1c displayed strong flocculation and better cell growth than the control strain CE6-V carrying the empty vector under acetic acid stress. Moreover, the flocculent strains converted glucose to ethanol at much higher rates than the control strain CE6-V under acetic acid stress. In the presence of 0.6% (V/V) acetic acid, the average ethanol production rates of 6-AF1 and 6-AF1c were 1.56 and 1.62 times of that of strain CE6-V, while the ethanol production rates of 6-AF1 and 6-AF1c were 1.21 and 1.78 times of that of strain CE6-V under 1.0% acetic acid stress. Results in this study indicate that acetic acid tolerance and fermentation performance of industrial S. cerevisiae under acetic acid stress can be improved largely by flocculation endowed by expression of flocculent genes, especially FLO1c.

  13. Pervaporation of water and ethanol using a cellulose acetate butyrate membrane

    SciTech Connect

    Wu, W.S.; Lau, W.W.Y.; Rangaiah, G.P.; Sourirajan, S. . Dept. of Chemical Engineering)

    1993-10-15

    Okada and Matsuura's transport equations for pervaporation give rise to three fundamental parameters, namely, interfacial saturation vapor pressure P*, liquid transport parameter A/[delta], and vapor transport parameter B/[delta]. The effects of the chemical nature of the membrane material and the upstream operating pressures of 101.3 and 303.9 kPa on the above parameters were investigated from the pervaporation data at laboratory temperature (24 C) for water and ethanol using a cellulose acetate butyrate membrane. The results show that the P. values are essentially unaffected by the upstream pressure, and that they are generally higher than the literature values of saturation vapor pressure at 24 C. Further, the values for A/[delta] and B/[delta] tend to increase with increased upstream pressure for both systems studied. These results are discussed.

  14. Condensation of acetol and acetic acid vapor with sprayed liquid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A cellulose-derived fraction of biomass pyrolysis vapor was simulated by evaporating acetol and acetic acid (AA) from flasks on a hot plate. The liquid in the flasks was infused with heated nitrogen. The vapor/nitrogen stream was superheated in a tube oven and condensed by contact with a cloud of ...

  15. Intramolecular carbon isotope distribution of acetic acid in vinegar.

    PubMed

    Hattori, Ryota; Yamada, Keita; Kikuchi, Makiko; Hirano, Satoshi; Yoshida, Naohiro

    2011-09-14

    Compound-specific carbon isotope analysis of acetic acid is useful for origin discrimination and quality control of vinegar. Intramolecular carbon isotope distributions, which are each carbon isotope ratios of the methyl and carboxyl carbons in the acetic acid molecule, may be required to obtain more detailed information to discriminate such origin. In this study, improved gas chromatography-pyrolysis-gas chromatography-combustion-isotope ratio mass spectrometry (GC-Py-GC-C-IRMS) combined with headspace solid-phase microextraction (HS-SPME) was used to measure the intramolecular carbon isotope distributions of acetic acid in 14 Japanese vinegars. The results demonstrated that the methyl carbons of acetic acid molecules in vinegars produced from plants were mostly isotopically depleted in (13)C relative to the carboxyl carbon. Moreover, isotopic differences (δ(13)C(carboxyl) - δ(13)C(methyl)) had a wide range from -0.3 to 18.2‰, and these values differed among botanical origins, C3, C4, and CAM plants.

  16. Comparative Genomics of Acetobacterpasteurianus Ab3, an Acetic Acid Producing Strain Isolated from Chinese Traditional Rice Vinegar Meiguichu

    PubMed Central

    Xia, Kai; Li, Yudong; Sun, Jing; Liang, Xinle

    2016-01-01

    Acetobacter pasteurianus, an acetic acid resistant bacterium belonging to alpha-proteobacteria, has been widely used to produce vinegar in the food industry. To understand the mechanism of its high tolerance to acetic acid and robust ability of oxidizing ethanol to acetic acid (> 12%, w/v), we described the 3.1 Mb complete genome sequence (including 0.28 M plasmid sequence) with a G+C content of 52.4% of A. pasteurianus Ab3, which was isolated from the traditional Chinese rice vinegar (Meiguichu) fermentation process. Automatic annotation of the complete genome revealed 2,786 protein-coding genes and 73 RNA genes. The comparative genome analysis among A. pasteurianus strains revealed that A. pasteurianus Ab3 possesses many unique genes potentially involved in acetic acid resistance mechanisms. In particular, two-component systems or toxin-antitoxin systems may be the signal pathway and modulatory network in A. pasteurianus to cope with acid stress. In addition, the large numbers of unique transport systems may also be related to its acid resistance capacity and cell fitness. Our results provide new clues to understanding the underlying mechanisms of acetic acid resistance in Acetobacter species and guiding industrial strain breeding for vinegar fermentation processes. PMID:27611790

  17. Comparative Genomics of Acetobacterpasteurianus Ab3, an Acetic Acid Producing Strain Isolated from Chinese Traditional Rice Vinegar Meiguichu.

    PubMed

    Xia, Kai; Li, Yudong; Sun, Jing; Liang, Xinle

    2016-01-01

    Acetobacter pasteurianus, an acetic acid resistant bacterium belonging to alpha-proteobacteria, has been widely used to produce vinegar in the food industry. To understand the mechanism of its high tolerance to acetic acid and robust ability of oxidizing ethanol to acetic acid (> 12%, w/v), we described the 3.1 Mb complete genome sequence (including 0.28 M plasmid sequence) with a G+C content of 52.4% of A. pasteurianus Ab3, which was isolated from the traditional Chinese rice vinegar (Meiguichu) fermentation process. Automatic annotation of the complete genome revealed 2,786 protein-coding genes and 73 RNA genes. The comparative genome analysis among A. pasteurianus strains revealed that A. pasteurianus Ab3 possesses many unique genes potentially involved in acetic acid resistance mechanisms. In particular, two-component systems or toxin-antitoxin systems may be the signal pathway and modulatory network in A. pasteurianus to cope with acid stress. In addition, the large numbers of unique transport systems may also be related to its acid resistance capacity and cell fitness. Our results provide new clues to understanding the underlying mechanisms of acetic acid resistance in Acetobacter species and guiding industrial strain breeding for vinegar fermentation processes.

  18. Development of cellulose acetate propionate membrane for separation of ethanol and ethyl tert-butyl ether mixtures

    SciTech Connect

    Luo, G.S.; Niang, M.; Schaetzel, P.

    1997-04-01

    For pervaporation separation of ethanol and ethyl tert-butyl ether mixtures, a cellulose acetate propionate membrane was chosen as the experimental membrane because of its high selectivity and good mass fluxes. The properties of the membranes were evaluated by the pervaporation separation of mixtures of ethyl tert-butyl ether/ethanol and the sorption experiments. The experimental results showed that the selectivity and the permeates depend on the ethanol concentration in the feed and the experimental temperature. With increases of the ethanol weight fraction in the feed and the temperature, the total and partial mass fluxes increased. With respect to the temperature, ethanol mass flux obeys the Arrhenius equation. The selectivity of this membrane decreases as the temperature and the ethanol concentration in the feed increase. This membrane shows special characteristics at the azeotropic composition. In the vicinity of the azeotropic point, minimum values of ethanol concentration in the permeate and in sorption solution are obtained. The swelling ratios increase when temperature and the ethanol concentration in the feed are increasing. The ethanol concentration in the sorption solution is also influenced by the temperature and the mixture`s composition. When the temperature increases, the sorption selectivity of the membrane decreases.

  19. Occurrence and metabolism of 7-hydroxy-2-indolinone-3-acetic acid in Zea mays

    NASA Technical Reports Server (NTRS)

    Lewer, P.; Bandurski, R. S.

    1987-01-01

    7-Hydroxy-2-indolinone-3-acetic acid was identified as a catabolite of indole-3-acetic acid in germinating kernels of Zea mays and found to be present in amounts of ca 3.1 nmol/kernel. 7-Hydroxy-2-indolinone-3-acetic acid was shown to be a biosynthetic intermediate between 2-indolinone-3-acetic acid and 7-hydroxy-2-indolinone-3-acetic acid-7'-O-glucoside in both kernels and roots of Zea mays. Further metabolism of 7-hydroxy-2-[5-3H]-indolinone-3-acetic acid-7'-O-glucoside occurred to yield tritiated water plus, as yet, uncharacterized products.

  20. Characteristics of lipid extraction from Chlorella sp. cultivated in outdoor raceway ponds with mixture of ethyl acetate and ethanol for biodiesel production.

    PubMed

    Lu, Weidong; Wang, Zhongming; Yuan, Zhenhong

    2015-09-01

    In this work, neutral lipids (NLs) extraction capacity and selectivity of six solvents were firstly compared. In addition, an eco-friendly solvent combination of ethyl acetate and ethanol (EA/E) was proposed and tested for lipid extraction from Chlorella sp. cultivated in outdoor raceway ponds and effect of extraction variables on lipid yield were intensively studied. Results indicated that lipid extraction yield was increased with solvent to biomass ratio but did not vary significantly when the value exceeded 20:1. Lipid yield was found to be strongly dependent on extraction temperature and time. Finally, fatty acid profiles of lipid were determined and results indicated that the major components were octadecanoic acid, palmitic acid, linoleic acid and linolenic acid, demonstrating that the lipid extracted from the Chlorella sp. cultivated in outdoor raceway ponds by EA/E was suitable feedstock for biodiesel production.

  1. Decadal variations of rainwater formic and acetic acid concentrations in Wilmington, NC, USA

    NASA Astrophysics Data System (ADS)

    Willey, Joan D.; Glinski, Donna A.; Southwell, Melissa; Long, Michael S.; Avery, G. Brooks, Jr.; Kieber, Robert J.

    2011-02-01

    Concentrations of formic and acetic acid from January 2008 through March 2009 were compared to two previous studies at this location (conducted in 1987-1990 and 1996-1998) in order to quantify the extent to which temporal changes in DOC and pH can be explained by changes in these organic acids. The volume weighted 2008 formic and acetic acid concentrations (5.6 and 2.6 μM respectively) have decreased dramatically compared with those observed during the 1996-1998 study (9.9 and 7.3 μM) and are also lower than concentrations observed in the 1987-1990 study (7.4 and 3.6 μM). Changes in formic and acetic acids between 1996-97 and 2008 can account for approximately 50% of the DOC change and 40% of the H + change in rainwater over this same time period. These changes are most pronounced during the growing season, which is also the tourist and high traffic season at this location. Determining causation of these changes is difficult due to multiple biogenic and anthropogenic sources. However, the ratio of formic to acetic acid has also reverted back to a value consistent with reduced vehicular emissions, possibly related to the introduction of improved emission control technology including the use of reformulated gasoline in the late 1990's. Long term monitoring of seasonal, annual, and decadal trends will be of critical importance for evaluating the effects of future changes to atmospheric inputs such as the increased use of ethanol and other alternative fuels.

  2. Comparison of Cultivable Acetic Acid Bacterial Microbiota in Organic and Conventional Apple Cider Vinegar.

    PubMed

    Štornik, Aleksandra; Skok, Barbara; Trček, Janja

    2016-03-01

    Organic apple cider vinegar is produced from apples that go through very restricted treatment in orchard. During the first stage of the process, the sugars from apples are fermented by yeasts to cider. The produced ethanol is used as a substrate by acetic acid bacteria in a second separated bioprocess. In both, the organic and conventional apple cider vinegars the ethanol oxidation to acetic acid is initiated by native microbiota that survived alcohol fermentation. We compared the cultivable acetic acid bacterial microbiota in the production of organic and conventional apple cider vinegars from a smoothly running oxidation cycle of a submerged industrial process. In this way we isolated and characterized 96 bacteria from organic and 72 bacteria from conventional apple cider vinegar. Using the restriction analysis of the PCR-amplified 16S-23S rRNA gene ITS regions, we identified four different HaeIII and five different HpaII restriction profiles for bacterial isolates from organic apple cider vinegar. Each type of restriction profile was further analyzed by sequence analysis of the 16S-23S rRNA gene ITS regions, resulting in identification of the following species: Acetobacter pasteurianus (71.90%), Acetobacter ghanensis (12.50%), Komagataeibacter oboediens (9.35%) and Komagataeibacter saccharivorans (6.25%). Using the same analytical approach in conventional apple cider vinegar, we identified only two different HaeIII and two different HpaII restriction profiles of the 16S‒23S rRNA gene ITS regions, which belong to the species Acetobacter pasteurianus (66.70%) and Komagataeibacter oboediens (33.30%). Yeasts that are able to resist 30 g/L of acetic acid were isolated from the acetic acid production phase and further identified by sequence analysis of the ITS1-5.8S rDNA‒ITS2 region as Candida ethanolica, Pichia membranifaciens and Saccharomycodes ludwigii. This study has shown for the first time that the bacterial microbiota for the industrial production of

  3. Comparison of Cultivable Acetic Acid Bacterial Microbiota in Organic and Conventional Apple Cider Vinegar

    PubMed Central

    Štornik, Aleksandra; Skok, Barbara

    2016-01-01

    Summary Organic apple cider vinegar is produced from apples that go through very restricted treatment in orchard. During the first stage of the process, the sugars from apples are fermented by yeasts to cider. The produced ethanol is used as a substrate by acetic acid bacteria in a second separated bioprocess. In both, the organic and conventional apple cider vinegars the ethanol oxidation to acetic acid is initiated by native microbiota that survived alcohol fermentation. We compared the cultivable acetic acid bacterial microbiota in the production of organic and conventional apple cider vinegars from a smoothly running oxidation cycle of a submerged industrial process. In this way we isolated and characterized 96 bacteria from organic and 72 bacteria from conventional apple cider vinegar. Using the restriction analysis of the PCR-amplified 16S−23S rRNA gene ITS regions, we identified four different HaeIII and five different HpaII restriction profiles for bacterial isolates from organic apple cider vinegar. Each type of restriction profile was further analyzed by sequence analysis of the 16S−23S rRNA gene ITS regions, resulting in identification of the following species: Acetobacter pasteurianus (71.90%), Acetobacter ghanensis (12.50%), Komagataeibacter oboediens (9.35%) and Komagataeibacter saccharivorans (6.25%). Using the same analytical approach in conventional apple cider vinegar, we identified only two different HaeIII and two different HpaII restriction profiles of the 16S‒23S rRNA gene ITS regions, which belong to the species Acetobacter pasteurianus (66.70%) and Komagataeibacter oboediens (33.30%). Yeasts that are able to resist 30 g/L of acetic acid were isolated from the acetic acid production phase and further identified by sequence analysis of the ITS1−5.8S rDNA‒ITS2 region as Candida ethanolica, Pichia membranifaciens and Saccharomycodes ludwigii. This study has shown for the first time that the bacterial microbiota for the industrial

  4. Improvement of acetic acid tolerance and fermentation performance of Saccharomyces cerevisiae by disruption of the FPS1 aquaglyceroporin gene.

    PubMed

    Zhang, Jun-Guo; Liu, Xiu-Ying; He, Xiu-Ping; Guo, Xue-Na; Lu, Ying; Zhang, Bo-Run

    2011-02-01

    The FPS1 gene coding for the Fps1p aquaglyceroporin protein of an industrial strain of Saccharomyces cerevisiae was disrupted by inserting CUP1 gene. Wild-type strain, CE25, could only grow on YPD medium containing less than 0.45% (v/v) acetic acid, while recombinant strain T12 with FPS1 disruption could grow on YPD medium with 0.6% (v/v) acetic acid. Under 0.4% (v/v) acetic acid stress (pH 4.26), ethanol production and cell growth rates of T12 were 1.7 ± 0.1 and 0.061 ± 0.003 g/l h, while those of CE25 were 1.2 ± 0.1 and 0.048 ± 0.003 g/l h, respectively. FPS1 gene disruption in an industrial ethanologenic yeast thus increases cell growth and ethanol yield under acetic acid stress, which suggests the potential utility of FPS1 gene disruption for bioethanol production from renewable resources such as lignocelluloses.

  5. Identification and characterization of thermotolerant acetic acid bacteria strains isolated from coconut water vinegar in Sri Lanka.

    PubMed

    Perumpuli, P A B N; Watanabe, Taisuke; Toyama, Hirohide

    2014-01-01

    From the pellicle formed on top of brewing coconut water vinegar in Sri Lanka, three Acetobacter strains (SL13E-2, SL13E-3, and SL13E-4) that grow at 42 °C and four Gluconobacter strains (SL13-5, SL13-6, SL13-7, and SL13-8) grow at 37 °C were identified as Acetobacter pasteurianus and Gluconobacter frateurii, respectively. Acetic acid production by the isolated Acetobacter strains was examined. All three strains gave 4% acetic acid from 6% initial ethanol at 37 °C, and 2.5% acetic acid from 4% initial ethanol at 40 °C. Compared with the two other strains, SL13E-4 showed both slower growth and slower acetic acid production. As well as the thermotolerant SKU1108 strain, the activities of the alcohol dehydrogenase and the aldehyde dehydrogenase of SL13E-2 and SL13E-4 were more stable than those of the mesophilic strain. The isolated strains were used to produce coconut water vinegar at higher temperatures than typically used for vinegar production.

  6. A continuous acetic acid system for polyacrylamide gel electrophoresis of gliadins and other prolamines.

    PubMed

    Clements, R L

    1988-02-01

    A polyacrylamide gel electrophoresis system buffered by acetic acid alone was developed for electrophoresis of prolamines. When applied to gliadin electrophoresis, the acetic acid system produces more bands than does a conventional aluminum lactate-lactic acid system (using 12% acrylamide gels). The acetic acid system is relatively simple, requiring a single buffer component that is universally available in high purity.

  7. [Conversion of acetic acid to methane by thermophiles: Progress report

    SciTech Connect

    Zinder, S.

    1991-12-31

    The objective of this project is to provide an understanding of thermophilic anaerobic microorganisms capable of breaking down acetic acid, the precursor of two-thirds of the methane produced by anaerobic bioreactors. Recent results include: (1) the isolation of Methanothrix strain CALLS-1, which grows much more rapidly than mesophilic strains; (2) the demonstration that thermophilic cultures of Methanosarcina and Methanothrix show minimum thresholds for acetate utilization of 1--2.5 mM and 10--20{mu}m respectively, in agreement with ecological data indicating that Methanothrix is favored by low acetate concentration; (3) the demonstration of high levels of thermostable acetyl-coA synthetase and carbon monoxide dehydrogenase in cell-free extracts of Methanothrix strains CALS-1; (4) the demonstration of methanogenesis from acetate and ATP in cell free extracts of strain CALS-1. (5) the demonstration that methanogenesis from acetate required 2 ATP/methane, and, in contrast to Methanosarcina, was independent of hydrogen and other electron donors; (6) the finding that entropy effects must be considered when predicting the level of hydrogen in thermophilic syntrophic cultures. (7) the isolation and characterization of the Desulfotomaculum thermoacetoxidans. Current research is centered on factors which allow thermophilic Methanothrix to compete with Methanosarcina.

  8. (Conversion of acetic acid to methane by thermophiles: Progress report)

    SciTech Connect

    Zinder, S.

    1991-01-01

    The objective of this project is to provide an understanding of thermophilic anaerobic microorganisms capable of breaking down acetic acid, the precursor of two-thirds of the methane produced by anaerobic bioreactors. Recent results include: (1) the isolation of Methanothrix strain CALLS-1, which grows much more rapidly than mesophilic strains; (2) the demonstration that thermophilic cultures of Methanosarcina and Methanothrix show minimum thresholds for acetate utilization of 1--2.5 mM and 10--20{mu}m respectively, in agreement with ecological data indicating that Methanothrix is favored by low acetate concentration; (3) the demonstration of high levels of thermostable acetyl-coA synthetase and carbon monoxide dehydrogenase in cell-free extracts of Methanothrix strains CALS-1; (4) the demonstration of methanogenesis from acetate and ATP in cell free extracts of strain CALS-1. (5) the demonstration that methanogenesis from acetate required 2 ATP/methane, and, in contrast to Methanosarcina, was independent of hydrogen and other electron donors; (6) the finding that entropy effects must be considered when predicting the level of hydrogen in thermophilic syntrophic cultures. (7) the isolation and characterization of the Desulfotomaculum thermoacetoxidans. Current research is centered on factors which allow thermophilic Methanothrix to compete with Methanosarcina.

  9. Very high gravity ethanol and fatty acid production of Zymomonas mobilis without amino acid and vitamin.

    PubMed

    Wang, Haoyong; Cao, Shangzhi; Wang, William Tianshuo; Wang, Kaven Tianyv; Jia, Xianhui

    2016-06-01

    Very high gravity (VHG) fermentation is the mainstream technology in ethanol industry, which requires the strains be resistant to multiple stresses such as high glucose concentration, high ethanol concentration, high temperature and harsh acidic conditions. To our knowledge, it was not reported previously that any ethanol-producing microbe showed a high performance in VHG fermentations without amino acid and vitamin. Here we demonstrate the engineering of a xylose utilizing recombinant Zymomonas mobilis for VHG ethanol fermentations. The recombinant strain can produce ethanol up to 136 g/L without amino acid and vitamin with a theoretical yield of 90 %, which is significantly superior to that produced by all the reported ethanol-producing strains. The intracellular fatty acids of the bacterial were about 16 % of the bacterial dry biomass, with the ratio of ethanol:fatty acids was about 273:1 (g/g). The recombinant strain was achieved by a multivariate-modular strategy tackles with the multiple stresses which are closely linked to the ethanol productivity of Z. mobilis. The over-expression of metB/yfdZ operon enabled the growth of the recombinant Z. mobilis in a chemically defined medium without amino acid and vitamin; and the fatty acids overproduction significantly increased ethanol tolerance and ethanol production. The coupled production of ethanol with fatty acids of the Z. mobilis without amino acid and vitamin under VHG fermentation conditions may permit a significant reduction of the production cost of ethanol and microbial fatty acids.

  10. Evaporation kinetics of acetic acid-water solutions

    NASA Astrophysics Data System (ADS)

    Duffey, K.; Wong, N.; Saykally, R.; Cohen, R. C.

    2012-12-01

    The transport of water molecules across vapor-liquid interfaces in the atmosphere is a crucial step in the formation and evolution of cloud droplets. Despite decades of study, the effects of solutes on the mechanism and rate of evaporation and condensation remain poorly characterized. The present work aims to determine the effect of atmospherically-relevant solutes on the evaporation rate of water. In our experiments, we create a train of micron-sized droplets and measure their temperature via Raman thermometry as they undergo evaporation without condensation. Analysis of the cooling rate yields the evaporation coefficient (γ). Previous work has shown that inorganic salts have little effect on γ, with surface-adsorbing anions causing a slight reduction in the coefficient from that measured for pure water. Organic acids are ubiquitous in aqueous aerosol and have been shown to disrupt the surface structure of water. Here we describe measurements of the evaporation rate of acetic acid solutions, showing that acetic acid reduces γ to a larger extent than inorganic ions, and that γ decreases with increasing acetic acid concentration.

  11. Crystal structure of febuxostat-acetic acid (1/1).

    PubMed

    Wu, Min; Hu, Xiu-Rong; Gu, Jian-Ming; Tang, Gu-Ping

    2015-05-01

    The asymmetric unit of the title compound [systematic name: 2-(3-cyano-4-iso-butyl-oxyphen-yl)-4-methyl-thia-zole-5-carb-oxy-lic acid-acetic acid (1/1)], C16H16N2O3S·CH3COOH, contains a febuxostat mol-ecule and an acetic acid mol-ecule. In the febuxostat mol-ecule, the thia-zole ring is nearly coplanar with the benzene ring [dihedral angle = 3.24 (2)°]. In the crystal, the febuxostat and acetic acid mol-ecules are linked by O-H⋯O, O-H⋯N hydrogen bonds and weak C-H⋯O hydrogen bonds, forming supra-molecular chains propagating along the b-axis direction. π-π stacking is observed between nearly parallel thia-zole and benzene rings of adjacent mol-ecules; the centroid-to-centroid distances are 3.8064 (17) and 3.9296 (17) Å.

  12. Uptake and Dissolution of Gaseous Ethanol in Sulfuric Acid

    NASA Technical Reports Server (NTRS)

    Michelsen, Rebecca R.; Staton, Sarah J. R.; Iraci, Laura T.

    2006-01-01

    The solubility of gas-phase ethanol (ethyl alcohol, CH3CH2OH, EtOH) in aqueous sulfuric acid solutions was measured in a Knudsen cell reactor over ranges of temperature (209-237 K) and acid composition (39-76 wt % H2SO4). Ethanol is very soluble under these conditions: effective Henry's law coefficients, H*, range from 4 x 10(exp 4) M/atm in the 227 K, 39 wt % acid to greater than 10(exp 7) M/atm in the 76 wt % acid. In 76 wt % sulfuric acid, ethanol solubility exceeds that which can be precisely determined using the Knudsen cell technique but falls in the range of 10(exp 7)-10(exp 10) M/atm. The equilibrium concentration of ethanol in upper tropospheric/lower stratospheric (UT/LS) sulfate particles is calculated from these measurements and compared to other small oxygenated organic compounds. Even if ethanol is a minor component in the gas phase, it may be a major constituent of the organic fraction in the particle phase. No evidence for the formation of ethyl hydrogen sulfate was found under our experimental conditions. While the protonation of ethanol does augment solubility at higher acidity, the primary reason H* increases with acidity is an increase in the solubility of molecular (i.e., neutral) ethanol.

  13. Models construction for acetone-butanol-ethanol fermentations with acetate/butyrate consecutively feeding by graph theory.

    PubMed

    Li, Zhigang; Shi, Zhongping; Li, Xin

    2014-05-01

    Several fermentations with consecutively feeding of acetate/butyrate were conducted in a 7 L fermentor and the results indicated that exogenous acetate/butyrate enhanced solvents productivities by 47.1% and 39.2% respectively, and changed butyrate/acetate ratios greatly. Then extracellular butyrate/acetate ratios were utilized for calculation of acids rates and the results revealed that acetate and butyrate formation pathways were almost blocked by corresponding acids feeding. In addition, models for acetate/butyrate feeding fermentations were constructed by graph theory based on calculation results and relevant reports. Solvents concentrations and butanol/acetone ratios of these fermentations were also calculated and the results of models calculation matched fermentation data accurately which demonstrated that models were constructed in a reasonable way.

  14. Ethanol Production by Selected Intestinal Microorganisms and Lactic Acid Bacteria Growing under Different Nutritional Conditions

    PubMed Central

    Elshaghabee, Fouad M. F.; Bockelmann, Wilhelm; Meske, Diana; de Vrese, Michael; Walte, Hans-Georg; Schrezenmeir, Juergen; Heller, Knut J.

    2016-01-01

    To gain some specific insight into the roles microorganisms might play in non-alcoholic fatty liver disease (NAFLD), some intestinal and lactic acid bacteria and one yeast (Anaerostipes caccae, Bacteroides thetaiotaomicron, Bifidobacterium longum, Enterococcus fecalis, Escherichia coli, Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus plantarum, Weissella confusa, Saccharomyces cerevisiae) were characterized by high performance liquid chromatography for production of ethanol when grown on different carbohydrates: hexoses (glucose and fructose), pentoses (arabinose and ribose), disaccharides (lactose and lactulose), and inulin. Highest amounts of ethanol were produced by S. cerevisiae, L. fermentum, and W. confusa on glucose and by S. cerevisiae and W. confusa on fructose. Due to mannitol-dehydrogenase expressed in L. fermentum, ethanol production on fructose was significantly (P < 0.05) reduced. Pyruvate and citrate, two potential electron acceptors for regeneration of NAD+/NADP+, drastically reduced ethanol production with acetate produced instead in L. fermentum grown on glucose and W. confusa grown on glucose and fructose, respectively. In fecal slurries prepared from feces of four overweight volunteers, ethanol was found to be produced upon addition of fructose. Addition of A. caccae, L. acidophilus, L. fermentum, as well as citrate and pyruvate, respectively, abolished ethanol production. However, addition of W. confusa resulted in significantly (P < 0.05) increased production of ethanol. These results indicate that microorganisms like W. confusa, a hetero-fermentative, mannitol-dehydrogenase negative lactic acid bacterium, may promote NAFLD through ethanol produced from sugar fermentation, while other intestinal bacteria and homo- and hetero-fermentative but mannitol-dehydrogenase positive lactic acid bacteria may not promote NAFLD. Also, our studies indicate that dietary factors interfering with gastrointestinal microbiota and microbial

  15. Absence of Rtt109p, a fungal-specific histone acetyltransferase, results in improved acetic acid tolerance of Saccharomyces cerevisiae.

    PubMed

    Cheng, Cheng; Zhao, Xinqing; Zhang, Mingming; Bai, Fengwu

    2016-03-01

    RTT109 is a histone acetyltransferase for the acetylation of histone H3. It is still not clear whether RTT109 plays a role in regulation of gene expression under environmental stresses. In this study, the involvement of RTT109 in acetic acid stress tolerance of Saccharomyces cerevisiae was investigated. It was revealed that the absence of RTT109 enhanced resistance to 5.5 g L(-1) acetic acid, which was indicated by improved growth of RTT109Δ mutant compared with that of the wild-type BY4741 strain. Meanwhile, the lag phase was shortened for 48 h and glucose consumption completed 36 h in advance for RTT109Δ mutant compared to the wild-type strain, with ethanol production rate increased from 0.39 to 0.60 g L(-1) h(-1). Significantly, elevated transcription levels of HSP12, CTT1 and GSH1, as well as increased activities of antioxidant enzymes were observed in RTT109Δ under acetic acid stress. Improved flocculation of RTT109Δ compared to that of the control strain BY4741 under the acetic acid stress was also observed. These results suggest that the absence of RTT109 not only activates transcription of stress responsive genes, but also improves resistance to oxidative stress, which ultimately contributes to improved acetic acid tolerance in S. cerevisiae.

  16. 40 CFR 721.10448 - Acetic acid, hydroxy- methoxy-, methyl ester, reaction products with substituted alkylamine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ester, reaction products with substituted alkylamine (generic). 721.10448 Section 721.10448 Protection... Acetic acid, hydroxy- methoxy-, methyl ester, reaction products with substituted alkylamine (generic). (a... generically as acetic acid, hydroxymethoxy-, methyl ester, reaction products with substituted alkylamine...

  17. 40 CFR 721.10448 - Acetic acid, hydroxy- methoxy-, methylester, reaction products with substituted alkylamine...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-, methylester, reaction products with substituted alkylamine (generic). 721.10448 Section 721.10448 Protection... Acetic acid, hydroxy- methoxy-, methylester, reaction products with substituted alkylamine (generic). (a... generically as acetic acid, hydroxymethoxy-, methyl ester, reaction products with substituted alkylamine...

  18. Coulometric titration of bases in acetic acid and acetonitrile media.

    PubMed

    Vajgand, V J; Mihajlović, R

    1969-09-01

    The working conditions and the results for coulometric titration of milligram amounts of some bases in 0.1M sodium perchlorate in a mixture of acetic acid and acetic anhydride (1:6), are given. Determinations were made both by coulometric back-titration or direct titration at the platinum anode. Back-titration was done in the catholyte, by coulometric titration of the excess of added perchloric acid. The titration end-point was detected photometrically with Crystal Violet as indicator. The direct titration of bases was done at the platinum anode, in the same electrolyte, to which hydroquinone was added as anode depolarizer and as the source of hydrogen ions, Malachite Green being used as indicator. Similarly, bases can be determined in acetonitrile if sodium perchlorate, hydroquinone and Malachite Green are added to the solvent. Errors are below 1 %, and the precision is satisfactory.

  19. Acetic acid pretreatment improves the hardness of cooked potato slices.

    PubMed

    Zhao, Wenlin; Shehzad, Hussain; Yan, Shoulei; Li, Jie; Wang, Qingzhang

    2017-08-01

    The effects of acetic acid pretreatment on the texture of cooked potato slices were investigated in this work. Potato slices were pretreated with acetic acid immersion (AAI), distilled water immersion (DWI), or no immersion (NI). Subsequently, the cell wall material of the pretreated samples was isolated and fractioned to evaluate changes in the monosaccharide content and molar mass (MM), and the hardness and microscopic structure of the potato slices in different pretreatments before and after cooking were determined. The results showed that the highest firmness was obtained with more intact structure of the cell wall for cooked potato slices with AAI pretreatment. Furthermore, the MM and sugar ratio demonstrated that the AAI pretreated potato slices contained a higher content of the small molecular polysaccharides of cell walls, especially in the hemicellulose fraction. This work may provide a reference for potato processing.

  20. Acetic acid enhances endurance capacity of exercise-trained mice by increasing skeletal muscle oxidative properties.

    PubMed

    Pan, Jeong Hoon; Kim, Jun Ho; Kim, Hyung Min; Lee, Eui Seop; Shin, Dong-Hoon; Kim, Seongpil; Shin, Minkyeong; Kim, Sang Ho; Lee, Jin Hyup; Kim, Young Jun

    2015-01-01

    Acetic acid has been shown to promote glycogen replenishment in skeletal muscle during exercise training. In this study, we investigated the effects of acetic acid on endurance capacity and muscle oxidative metabolism in the exercise training using in vivo mice model. In exercised mice, acetic acid induced a significant increase in endurance capacity accompanying a reduction in visceral adipose depots. Serum levels of non-esterified fatty acid and urea nitrogen were significantly lower in acetic acid-fed mice in the exercised mice. Importantly, in the mice, acetic acid significantly increased the muscle expression of key enzymes involved in fatty acid oxidation and glycolytic-to-oxidative fiber-type transformation. Taken together, these findings suggest that acetic acid improves endurance exercise capacity by promoting muscle oxidative properties, in part through the AMPK-mediated fatty acid oxidation and provide an important basis for the application of acetic acid as a major component of novel ergogenic aids.

  1. First Acetic Acid Survey with CARMA in Hot Molecular Cores

    NASA Astrophysics Data System (ADS)

    Shiao, Y.-S. Jerry; Looney, Leslie W.; Remijan, Anthony J.; Snyder, Lewis E.; Friedel, Douglas N.

    2010-06-01

    Acetic acid (CH3COOH) has been detected mainly in hot molecular cores where the distribution between oxygen (O) and nitrogen (N) containing molecular species is cospatial within the telescope beam. Previous work has presumed that similar cores with cospatial O and N species may be an indicator for detecting acetic acid. However, does this presumption hold as higher spatial resolution observations of large O- and N-containing molecules become available? As the number of detected acetic acid sources is still low, more observations are needed to support this postulate. In this paper, we report the first acetic acid survey conducted with the Combined Array for Research in Millimeter-wave Astronomy at 3 mm wavelengths toward G19.61-0.23, G29.96-0.02, and IRAS 16293-2422. We have successfully detected CH3COOH via two transitions toward G19.61-0.23 and tentatively confirmed the detection toward IRAS 16293-2422 A. The determined column density of CH3COOH is 2.0(1.0) × 1016 cm-2 and the abundance ratio of CH3COOH to methyl formate (HCOOCH3) is 2.2(0.1) × 10-1 toward G19.61-0.23. Toward IRAS 16293 A, the determined column density of CH3COOH is ~1.6 × 1015 cm-2 and the abundance ratio of CH3COOH to methyl formate (HCOOCH3) is ~1.0 × 10-1, both of which are consistent with abundance ratios determined toward other hot cores. Finally, we model all known line emission in our passband to determine physical conditions in the regions and introduce a new metric to better reveal weak spectral features that are blended with stronger lines or that may be near the 1σ-2σ detection limit.

  2. Acetic acid recovery from a hybrid biological-hydrothermal treatment process of sewage sludge - a pilot plant study.

    PubMed

    Andrews, J; Dare, P; Estcourt, G; Gapes, D; Lei, R; McDonald, B; Wijaya, N

    2015-01-01

    A two-stage process consisting of anaerobic fermentation followed by sub-critical wet oxidation was used to generate acetic acid from sewage sludge at pilot scale. Volatile fatty acids, dominated by propionic acid, were produced over 4-6 days in the 2,000 L fermentation reactor, which also achieved 31% solids reduction. Approximately 96% of the carbon was retained in solution over the fermentation stage. Using a 200 L wet oxidation reactor operating in batch mode, the second stage achieved 98% volatile suspended solids (VSS) destruction and 67% total chemical oxygen demand (tCOD) destruction. Acetic acid produced in this stage was recalcitrant to further degradation and was retained in solution. The gross yield from VSS was 16% for acetic acid and 21% for volatile fatty acids across the process, higher than reported yields for wet oxidation alone. The pilot plant results showed that 72% of the incoming phosphorus was retained in the solids, 94% of the nitrogen became concentrated in solution and 41% of the carbon was converted to a soluble state, in a more degradable form. Acetic acid produced from the process has the potential to be used to offset ethanol requirements in biological nutrient removal plants.

  3. 21 CFR 175.350 - Vinyl acetate/crotonic acid copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Vinyl acetate/crotonic acid copolymer. 175.350... COATINGS Substances for Use as Components of Coatings § 175.350 Vinyl acetate/crotonic acid copolymer. A copolymer of vinyl acetate and crotonic acid may be safely used as a coating or as a component of a...

  4. 40 CFR 180.1258 - Acetic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Acetic acid; exemption from the... Exemptions From Tolerances § 180.1258 Acetic acid; exemption from the requirement of a tolerance. An... acetic acid when used as a preservative on post-harvest agricultural commodities intended for animal...

  5. 75 FR 52269 - Acetic Acid Ethenyl Ester, Polymer With Oxirane; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ...-2010-0429; FRL-8841-2] Acetic Acid Ethenyl Ester, Polymer With Oxirane; Tolerance Exemption AGENCY... from the requirement of a tolerance for residues of acetic acid ethenyl ester, polymer with oxirane... permissible level for residues of acetic acid ethenyl ester, polymer with oxirane on food or feed...

  6. 75 FR 40736 - Acetic Acid; Exemption from the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-14

    ... AGENCY 40 CFR Part 180 Acetic Acid; Exemption from the Requirement of a Tolerance AGENCY: Environmental... for acetic acid by establishing an exemption from the requirement of a tolerance for residues of acetic acid, also known as vinegar in or on all food crops resulting from unintentional spray and...

  7. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor.

    PubMed

    Guadalupe Medina, Víctor; Almering, Marinka J H; van Maris, Antonius J A; Pronk, Jack T

    2010-01-01

    In anaerobic cultures of wild-type Saccharomyces cerevisiae, glycerol production is essential to reoxidize NADH produced in biosynthetic processes. Consequently, glycerol is a major by-product during anaerobic production of ethanol by S. cerevisiae, the single largest fermentation process in industrial biotechnology. The present study investigates the possibility of completely eliminating glycerol production by engineering S. cerevisiae such that it can reoxidize NADH by the reduction of acetic acid to ethanol via NADH-dependent reactions. Acetic acid is available at significant amounts in lignocellulosic hydrolysates of agricultural residues. Consistent with earlier studies, deletion of the two genes encoding NAD-dependent glycerol-3-phosphate dehydrogenase (GPD1 and GPD2) led to elimination of glycerol production and an inability to grow anaerobically. However, when the E. coli mhpF gene, encoding the acetylating NAD-dependent acetaldehyde dehydrogenase (EC 1.2.1.10; acetaldehyde+NAD++coenzyme A<-->acetyl coenzyme A+NADH+H+), was expressed in the gpd1Delta gpd2Delta strain, anaerobic growth was restored by supplementation with 2.0 g liter(-1) acetic acid. The stoichiometry of acetate consumption and growth was consistent with the complete replacement of glycerol formation by acetate reduction to ethanol as the mechanism for NADH reoxidation. This study provides a proof of principle for the potential of this metabolic engineering strategy to improve ethanol yields, eliminate glycerol production, and partially convert acetate, which is a well-known inhibitor of yeast performance in lignocellulosic hydrolysates, to ethanol. Further research should address the kinetic aspects of acetate reduction and the effect of the elimination of glycerol production on cellular robustness (e.g., osmotolerance).

  8. Production of fuel ethanol from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation.

    PubMed

    Sun, Zhao-Yong; Tang, Yue-Qin; Iwanaga, Tomohiro; Sho, Tomohiro; Kida, Kenji

    2011-12-01

    An efficient process for the production of fuel ethanol from bamboo that consisted of hydrolysis with concentrated sulfuric acid, removal of color compounds, separation of acid and sugar, hydrolysis of oligosaccharides and subsequent continuous ethanol fermentation was developed. The highest sugar recovery efficiency was 81.6% when concentrated sulfuric acid hydrolysis was carried out under the optimum conditions. Continuous separation of acid from the saccharified liquid after removal of color compounds with activated carbon was conducted using an improved simulated moving bed (ISMB) system, and 98.4% of sugar and 90.5% of acid were recovered. After oligosaccharide hydrolysis and pH adjustment, the unsterilized saccharified liquid was subjected to continuous ethanol fermentation using Saccharomycescerevisiae strain KF-7. The ethanol concentration, the fermentation yield based on glucose and the ethanol productivity were approximately 27.2 g/l, 92.0% and 8.2 g/l/h, respectively. These results suggest that the process is effective for production of fuel ethanol from bamboo.

  9. Indole-3-acetic acid in plant-microbe interactions.

    PubMed

    Duca, Daiana; Lorv, Janet; Patten, Cheryl L; Rose, David; Glick, Bernard R

    2014-07-01

    Indole-3-acetic acid (IAA) is an important phytohormone with the capacity to control plant development in both beneficial and deleterious ways. The ability to synthesize IAA is an attribute that many bacteria including both plant growth-promoters and phytopathogens possess. There are three main pathways through which IAA is synthesized; the indole-3-pyruvic acid, indole-3-acetamide and indole-3-acetonitrile pathways. This chapter reviews the factors that effect the production of this phytohormone, the role of IAA in bacterial physiology and in plant-microbe interactions including phytostimulation and phytopathogenesis.

  10. Determination of gaseous formic acid and acetic acid by pulsed ultraviolet photoacoustic spectroscopy

    SciTech Connect

    Cvijin, P.V.; Gilmore, D.A.; Atkinson, G.H.

    1988-07-01

    The quantitative determination of gaseous formic acid and acetic acid by photoacoustic spectroscopy (PAS) using pulsed laser excitation in the ultraviolet is reported. Instrumentation utilizing continuously tunable laser excitation in the 220-nm wavelength region is used to record time-resolved PA signals from samples of each acid. Detection limits of 140 ppbv for formic acid and 120 ppbv for acetic acid in dry nitrogen at one atmosphere total pressure are attained. Considerable background signal originating from atmospheric oxygen is found to impose limitations on the detection sensitive with air samples.

  11. Distinct effects of sorbic acid and acetic acid on the electrophysiology and metabolism of Bacillus subtilis.

    PubMed

    van Beilen, J W A; Teixeira de Mattos, M J; Hellingwerf, K J; Brul, S

    2014-10-01

    Sorbic acid and acetic acid are among the weak organic acid preservatives most commonly used to improve the microbiological stability of foods. They have similar pKa values, but sorbic acid is a far more potent preservative. Weak organic acids are most effective at low pH. Under these circumstances, they are assumed to diffuse across the membrane as neutral undissociated acids. We show here that the level of initial intracellular acidification depends on the concentration of undissociated acid and less on the nature of the acid. Recovery of the internal pH depends on the presence of an energy source, but acidification of the cytosol causes a decrease in glucose flux. Furthermore, sorbic acid is a more potent uncoupler of the membrane potential than acetic acid. Together these effects may also slow the rate of ATP synthesis significantly and may thus (partially) explain sorbic acid's effectiveness.

  12. Behavioral effects of intraventricular injections of low doses of ethanol, acetaldehyde, and acetate in rats: studies with low and high rate operant schedules.

    PubMed

    Arizzi, Maria N; Correa, Merce; Betz, Adrienne J; Wisniecki, Anna; Salamone, John D

    2003-12-17

    Although ethanol is typically classed as a sedative-hypnotic, low doses of ethanol have been shown to stimulate locomotor activity in mice. However, in rats the typical response to peripheral administration of ethanol is a dose-dependent suppression of motor activity and operant responding. The present study was undertaken to determine the effects of intraventricular (ICV) infusions of ethanol, acetaldehyde, and acetate on operant performance in rats. ICV injections of ethanol, acetaldehyde, or acetate were given to rats previously trained on either a differential-reinforcement-of-low-rates-of-responding (DRL) 30-s schedule, which generates low rates of responding, or a fixed ratio 5 (FR5) schedule, which generates relatively high rates. Ethanol, acetaldehyde, and acetate all produced a rate-increasing effect in rats on the DRL 30-s schedule at moderate doses (2.8 and 1.4 micromol, respectively). Acetate also produced a rate-decreasing effect on the DRL 30-s schedule at a larger dose (8.8 micromol). Performance on the FR5 schedule was unaltered by ethanol and acetaldehyde, even at doses as high as 17.6 micromol. However, acetate produced a rate-decreasing effect on the FR5 schedule at doses of 4.4, 5.6, and 8.8 micromol. Central administration of low doses of ethanol and its metabolites can increase operant responding on some schedules in rats. Acetate is the substance that is most potent for producing rate-suppressing effects. These results indicate that the major metabolites of ethanol are pharmacologically active when injected into the brain, and suggest that acetate may mediate some of the rate-suppressing effects of ethanol, such as sedation, ataxia or motor slowing.

  13. Determination of tertiary amines and salts of organic acids in acetic acid by catalytic thermometric titration.

    PubMed

    Vajgand, V J; Gaál, F F

    1967-03-01

    A new method of determination of tertiary amines and salts of organic adds in acetic acid solution, to which about 2 % of water and 8% acetic anhydride are added, is described. After the equivalence point, the excess of perchloric acid catalyses the exothermic reaction of water with acetic anhydride. The end-point is determined from the graph of temperature against volume of added titrant. If a slightly soluble compound is produced during the titration, the precision of the new method is superior to that of the potentiometric method.

  14. Formation of biologically relevant carboxylic acids during the gamma irradiation of acetic acid

    NASA Technical Reports Server (NTRS)

    Negron-Mendoza, A.; Ponnamperuma, C.

    1976-01-01

    Irradiation of aqueous solutions of acetic acid with gamma rays produced several carboxylic acids in small yield. Their identification was based on the technique of gas chromatography combined with mass spectrometry. Some of these acids are Krebs Cycle intermediates. Their simultaneous formation in experiments simulating the primitive conditions on the earth suggests that metabolic pathways may have had their origin in prebiotic chemical processes.

  15. Nucleic acid molecules conferring enhanced ethanol tolerance and microorganisms having enhanced tolerance to ethanol

    DOEpatents

    Brown, Steven; Guss, Adam; Yang, Shihui; Karpinets, Tatiana; Lynd, Lee; Shao, Xiongjun

    2014-01-14

    The present invention provides isolated nucleic acid molecules which encode a mutant acetaldehyde-CoA/alcohol dehydrogenase or mutant alcohol dehydrogenase and confer enhanced tolerance to ethanol. The invention also provides related expression vectors, genetically engineered microorganisms having enhanced tolerance to ethanol, as well as methods of making and using such genetically modified microorganisms for production of biofuels based on fermentation of biomass materials.

  16. Effect of acetic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    PubMed

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-09-01

    An integrated citric acid-methane fermentation process was proposed to solve the problem of extraction wastewater in citric acid fermentation process. Extraction wastewater was treated by anaerobic digestion and then recycled for the next batch of citric acid fermentation to eliminate wastewater discharge and reduce water resource consumption. Acetic acid as an intermediate product of methane fermentation was present in anaerobic digestion effluent. In this study, the effect of acetic acid on citric acid fermentation was investigated and results showed that lower concentration of acetic acid could promote Aspergillus niger growth and citric acid production. 5-Cyano-2,3-ditolyl tetrazolium chloride (CTC) staining was used to quantify the activity of A. niger cells, and the results suggested that when acetic acid concentration was above 8 mM at initial pH 4.5, the morphology of A. niger became uneven and the part of the cells' activity was significantly reduced, thereby resulting in deceasing of citric acid production. Effects of acetic acid on citric acid fermentation, as influenced by initial pH and cell number in inocula, were also examined. The result indicated that inhibition by acetic acid increased as initial pH declined and was rarely influenced by cell number in inocula.

  17. Inverse metabolic engineering based on transient acclimation of yeast improves acid-containing xylose fermentation and tolerance to formic and acetic acids.

    PubMed

    Hasunuma, Tomohisa; Sakamoto, Takatoshi; Kondo, Akihiko

    2016-01-01

    Improving the production of ethanol from xylose is an important goal in metabolic engineering of Saccharomyces cerevisiae. Furthermore, S. cerevisiae must produce ethanol in the presence of weak acids (formate and acetate) generated during pre-treatment of lignocellulosic biomass. In this study, weak acid-containing xylose fermentation was significantly improved using cells that were acclimated to the weak acids during pre-cultivation. Transcriptome analyses showed that levels of transcripts for transcriptional/translational machinery-related genes (RTC3 and ANB1) were enhanced by formate and acetate acclimation. Recombinant yeast strains overexpressing RTC3 and ANB1 demonstrated improved ethanol production from xylose in the presence of the weak acids, along with improved tolerance to the acids. Novel metabolic engineering strategy based on the combination of short-term acclimation and system-wide analysis was developed, which can develop stress-tolerant strains in a short period of time, although conventional evolutionary engineering approach has required long periods of time to isolate inhibitor-adapted strains.

  18. Covalent interaction of chloroacetic and acetic acids with cholesterol.

    PubMed

    Bhat, H K; Ansari, G A

    1989-01-01

    The covalent interaction of chloroacetic acid with rat liver lipids was studied in vivo. Rats were given a single oral dose (8.75 mg/kg, 50 microCi) of 1-[14C]chloroacetic acid and sacrificed after 24 hours. Lipids extracted from the livers were separated into neutral lipids and phospholipids by solid-phase extraction using sep-pak silica cartridges. The neutral lipid fraction was further fractionated by preparative thin-layer chromatography followed by reverse-phase high-performance liquid chromatography. The fraction corresponding to the retention time of standard cholesteryl chloroacetate gave a pseudomolecular ion peak at m/z 480/482 ratio: (3:1) on ammonia chemical ionization mass spectrometry, and the fragmentation pattern was found to be similar to that of the standard sample. Under similar conditions, acetic acid resulted in the formation of cholesteryl acetate. The effect of such conjugation reactions on the cell membrane and their contribution to toxicity is presently unknown.

  19. Molecular identification and physiological characterization of yeasts, lactic acid bacteria and acetic acid bacteria isolated from heap and box cocoa bean fermentations in West Africa.

    PubMed

    Visintin, Simonetta; Alessandria, Valentina; Valente, Antonio; Dolci, Paola; Cocolin, Luca

    2016-01-04

    Yeast, lactic acid bacteria (LAB) and acetic acid bacteria (AAB) populations, isolated from cocoa bean heap and box fermentations in West Africa, have been investigated. The fermentation dynamicswere determined by viable counts, and 106 yeasts, 105 LAB and 82 AAB isolateswere identified by means of rep-PCR grouping and sequencing of the rRNA genes. During the box fermentations, the most abundant species were Saccharomyces cerevisiae, Candida ethanolica, Lactobacillus fermentum, Lactobacillus plantarum, Acetobacter pasteurianus and Acetobacter syzygii, while S. cerevisiae, Schizosaccharomyces pombe, Hanseniaspora guilliermondii, Pichia manshurica, C. ethanolica, Hanseniaspora uvarum, Lb. fermentum, Lb. plantarum, A. pasteurianus and Acetobacter lovaniensis were identified in the heap fermentations. Furthermore, the most abundant species were molecularly characterized by analyzing the rep-PCR profiles. Strains grouped according to the type of fermentations and their progression during the transformation process were also highlighted. The yeast, LAB and AAB isolates were physiologically characterized to determine their ability to grow at different temperatures, as well as at different pH, and ethanol concentrations, tolerance to osmotic stress, and lactic acid and acetic acid inhibition. Temperatures of 45 °C, a pH of 2.5 to 3.5, 12% (v/v) ethanol and high concentrations of lactic and acetic acid have a significant influence on the growth of yeasts, LAB and AAB. Finally, the yeastswere screened for enzymatic activity, and the S. cerevisiae, H. guilliermondii, H. uvarumand C. ethanolica species were shown to possess several enzymes that may impact the quality of the final product.

  20. Radioiron utilization and gossypol acetic acid in male rats

    SciTech Connect

    Tone, J.N.; Jensen, D.R.

    1985-01-01

    The 24-h incorporation of VZFe into circulating red blood cells, bone marrow, urine, liver, spleen, and skeletal muscle was measured in splenectomized and sham-splenectomized rats which had received a daily, oral dose of gossypol acetic acid (20 mg GAA/kg body wt) for 91 days. A significant decrease in total body weight gain was observed in all GAA treated animals. Splenectomized rats dosed with GAA exhibited a significant decrease in hemoglobin concentration, hematocrit and erythrocyte count. A significant increase in VZFe incorporation by red blood cells and a decrease in hepatic incorporation of VZFe indicate a preferential utilization of iron in erythropoiesis among GAA treated animals.

  1. FIRST ACETIC ACID SURVEY WITH CARMA IN HOT MOLECULAR CORES

    SciTech Connect

    Shiao, Y.-S. Jerry; Looney, Leslie W.; Snyder, Lewis E.; Friedel, Douglas N.; Remijan, Anthony J. E-mail: aremijan@nrao.ed

    2010-06-10

    Acetic acid (CH{sub 3}COOH) has been detected mainly in hot molecular cores where the distribution between oxygen (O) and nitrogen (N) containing molecular species is cospatial within the telescope beam. Previous work has presumed that similar cores with cospatial O and N species may be an indicator for detecting acetic acid. However, does this presumption hold as higher spatial resolution observations of large O- and N-containing molecules become available? As the number of detected acetic acid sources is still low, more observations are needed to support this postulate. In this paper, we report the first acetic acid survey conducted with the Combined Array for Research in Millimeter-wave Astronomy at 3 mm wavelengths toward G19.61-0.23, G29.96-0.02, and IRAS 16293-2422. We have successfully detected CH{sub 3}COOH via two transitions toward G19.61-0.23 and tentatively confirmed the detection toward IRAS 16293-2422 A. The determined column density of CH{sub 3}COOH is 2.0(1.0) x 10{sup 16} cm{sup -2} and the abundance ratio of CH{sub 3}COOH to methyl formate (HCOOCH{sub 3}) is 2.2(0.1) x 10{sup -1} toward G19.61-0.23. Toward IRAS 16293 A, the determined column density of CH{sub 3}COOH is {approx}1.6 x 10{sup 15} cm{sup -2} and the abundance ratio of CH{sub 3}COOH to methyl formate (HCOOCH{sub 3}) is {approx}1.0 x 10{sup -1}, both of which are consistent with abundance ratios determined toward other hot cores. Finally, we model all known line emission in our passband to determine physical conditions in the regions and introduce a new metric to better reveal weak spectral features that are blended with stronger lines or that may be near the 1{sigma}-2{sigma} detection limit.

  2. High acetone-butanol-ethanol production in pH-stat co-feeding of acetate and glucose.

    PubMed

    Gao, Ming; Tashiro, Yukihiro; Wang, Qunhui; Sakai, Kenji; Sonomoto, Kenji

    2016-08-01

    We previously reported the metabolic analysis of butanol and acetone production from exogenous acetate by (13)C tracer experiments (Gao et al., RSC Adv., 5, 8486-8495, 2015). To clarify the influence of acetate on acetone-butanol-ethanol (ABE) production, we first performed an enzyme assay in Clostridium saccharoperbutylacetonicum N1-4. Acetate addition was found to drastically increase the activities of key enzymes involved in the acetate uptake (phosphate acetyltransferase and CoA transferase), acetone formation (acetoacetate decarboxylase), and butanol formation (butanol dehydrogenase) pathways. Subsequently, supplementation of acetate during acidogenesis and early solventogenesis resulted in a significant increase in ABE production. To establish an efficient ABE production system using acetate as a co-substrate, several shot strategies were investigated in batch culture. Batch cultures with two substrate shots without pH control produced 14.20 g/L butanol and 23.27 g/L ABE with a maximum specific butanol production rate of 0.26 g/(g h). Furthermore, pH-controlled (at pH 5.5) batch cultures with two substrate shots resulted in not only improved acetate consumption but also a further increase in ABE production. Finally, we obtained 15.13 g/L butanol and 24.37 g/L ABE at the high specific butanol production rate of 0.34 g/(g h) using pH-stat co-feeding method. Thus, in this study, we established a high ABE production system using glucose and acetate as co-substrates in a pH-stat co-feeding system with C. saccharoperbutylacetonicum N1-4.

  3. Quantitative Structure of an Acetate Dye Molecule Analogue at the TiO2-Acetic Acid Interface.

    PubMed

    Hussain, Hadeel; Torrelles, Xavier; Cabailh, Gregory; Rajput, Parasmani; Lindsay, Robert; Bikondoa, Oier; Tillotson, Marcus; Grau-Crespo, Ricardo; Zegenhagen, Jörg; Thornton, Geoff

    2016-04-14

    The positions of atoms in and around acetate molecules at the rutile TiO2(110) interface with 0.1 M acetic acid have been determined with a precision of ±0.05 Å. Acetate is used as a surrogate for the carboxylate groups typically employed to anchor monocarboxylate dye molecules to TiO2 in dye-sensitized solar cells (DSSC). Structural analysis reveals small domains of ordered (2 × 1) acetate molecules, with substrate atoms closer to their bulk terminated positions compared to the clean UHV surface. Acetate is found in a bidentate bridge position, binding through both oxygen atoms to two 5-fold titanium atoms such that the molecular plane is along the [001] azimuth. Density functional theory calculations provide adsorption geometries in excellent agreement with experiment. The availability of these structural data will improve the accuracy of charge transport models for DSSC.

  4. Quantitative Structure of an Acetate Dye Molecule Analogue at the TiO2–Acetic Acid Interface

    PubMed Central

    2016-01-01

    The positions of atoms in and around acetate molecules at the rutile TiO2(110) interface with 0.1 M acetic acid have been determined with a precision of ±0.05 Å. Acetate is used as a surrogate for the carboxylate groups typically employed to anchor monocarboxylate dye molecules to TiO2 in dye-sensitized solar cells (DSSC). Structural analysis reveals small domains of ordered (2 × 1) acetate molecules, with substrate atoms closer to their bulk terminated positions compared to the clean UHV surface. Acetate is found in a bidentate bridge position, binding through both oxygen atoms to two 5-fold titanium atoms such that the molecular plane is along the [001] azimuth. Density functional theory calculations provide adsorption geometries in excellent agreement with experiment. The availability of these structural data will improve the accuracy of charge transport models for DSSC. PMID:27110318

  5. Strain typing of acetic acid bacteria responsible for vinegar production by the submerged elaboration method.

    PubMed

    Fernández-Pérez, Rocío; Torres, Carmen; Sanz, Susana; Ruiz-Larrea, Fernanda

    2010-12-01

    Strain typing of 103 acetic acid bacteria isolates from vinegars elaborated by the submerged method from ciders, wines and spirit ethanol, was carried on in this study. Two different molecular methods were utilised: pulsed field gel electrophoresis (PFGE) of total DNA digests with a number of restriction enzymes, and enterobacterial repetitive intergenic consensus (ERIC) - PCR analysis. The comparative study of both methods showed that restriction fragment PFGE of SpeI digests of total DNA was a suitable method for strain typing and for determining which strains were present in vinegar fermentations. Results showed that strains of the species Gluconacetobacter europaeus were the most frequent leader strains of fermentations by the submerged method in the studied vinegars, and among them strain R1 was the predominant one. Results showed as well that mixed populations (at least two different strains) occurred in vinegars from cider and wine, whereas unique strains were found in spirit vinegars, which offered the most stressing conditions for bacterial growth.

  6. Graft Loss Due to Percutaneous Sclerotherapy of a Lymphocele Using Acetic Acid After Renal Transplantation

    SciTech Connect

    Adani, Gian Luigi Baccarani, Umberto; Bresadola, Vittorio; Lorenzin, Dario; Montanaro, Domenico; Risaliti, Andrea; Terrosu, Giovanni; Sponza, Massimo; Bresadola, Fabrizio

    2005-12-15

    Development of lymphoceles after renal transplantation is a well-described complication that occurs in up to 40% of recipients. The gold standard approach for the treatment of symptomatic cases is not well defined yet. Management options include simple aspiration, marsupialization by a laparotomy or laparoscopy, and percutaneous sclerotherapy using different chemical agents. Those approaches can be associated, and they depend on type, dimension, and localization of the lymphocele. Percutaneous sclerotherapy is considered to be less invasive than the surgical approach; it can be used safely and effectively, with low morbidity, in huge, rapidly accumulating lymphoceles. Moreover, this approach is highly successful, and the complication rate is acceptable; the major drawback is a recurrence rate close to 20%. We herewith report a renal transplant case in which the patient developed a symptomatic lymphocele that was initially treated by ultrasound-guided percutaneous sclerotherapy with ethanol and thereafter using acetic acid for early recurrence. A few hours after injection of acetic acid in the lymphatic cavity, the patient started to complain of acute pain localized to the renal graft and fever. An ultrasound of the abdomen revealed thrombosis of the renal vein and artery. The patient was immediately taken to the operating room, where the diagnosis of vascular thrombosis was confirmed and the graft was urgently explanted. In conclusion, we strongly suggest avoiding the use of acetic acid as a slerosating agent for the percutaneous treatment of post-renal transplant lymphocele because, based on our experience, it could be complicated by vascular thrombosis of the kidney, ending in graft loss.

  7. [Effect of acetic acid on adsorption of acid phosphatase by some soil colloids and clay minerals].

    PubMed

    Zhao, Zhenhua; Huang, Qiaoyun; Jiang, Xin; Yu, Guifen; Wang, Fang; Li, Xueyuan

    2004-03-01

    This paper studied the effect of acetic acid with different concentrations and pH values on the adsorption of acid phosphatase by some soil colloids and clay minerals (SCCM). The results showed that the pH values for the maximum adsorption of the enzyme were between the IEP of the enzyme and the PZC of SCCM. In the acetic acid systems, the amount of the enzyme adsorbed by SCCM was in the order of goethite > yellow brown soil > latosol > kaolinite > delta-MnO2. A remarkable influence of acetic acid concentration on the adsorption amount and the binding energy of the enzyme was observed. With the increase of the concentration from 0 to 200 mmol.L-1 in the system, acetic acid exhibited an enhanced effect, followed by an inhibition action on the adsorption of the enzyme on SCCM. The changes of the binding energy (K value) for the enzyme on SCCM were on the contrary to those of the maximum adsorption. The possible mechanisms for the influence of acetic acid on the adsorption of enzyme by SCCM were also discussed.

  8. Evaluation of clastogenicity of formic acid, acetic acid and lactic acid on cultured mammalian cells.

    PubMed

    Morita, T; Takeda, K; Okumura, K

    1990-03-01

    Using Chinese hamster ovary K1 cells, chromosomal aberration tests were carried out with formic acid, acetic acid and lactic acid, and the relationship between the pH of the medium and the clastogenic activity was examined. The medium used was Ham's F12 supplemented with 17 mM NaHCO3 and 10% fetal calf serum. All of these acids induced chromosomal aberrations at the initial pH of ca. 6.0 or below (about 10-14 mM of each acid) both with and without S9 mix. Exposure of cells to about pH 5.7 or below (about 12-16 mM of each acid) was found to be toxic. When the culture medium was first acidified with each of these acids and then neutralized to pH 6.4 or pH 7.2 with NaOH, no clastogenic activity was observed. Using F12 medium supplemented with 34 mM NaHCO3 as a buffer, no clastogenic activity was observed at doses up to 25 mM of these acids (initial pH 5.8-6.0). However, it was found that about 10% of the cells had aberrations at pH 5.7 or below (27.5-32.5 mM of each acid). Furthermore, when 30 mM HEPES was used as a buffer, chromosomal aberrations were not induced at doses up to 20 mM formic acid and acetic acid (initial pH 7.0-7.1), and at doses up to 30 mM lactic acid (initial pH 6.6). In the initial pH range of 6.4-6.7 (25-32.5 mM of each acid), chromosomal aberrations were observed. The above results show that these acids themselves are non-clastogenic, and the pseudo-positive reactions attributable to non-physiological pH could be eliminated by either neutralization of the treatment medium or enhancement of the buffering ability.

  9. Reduction in environmental impact of sulfuric acid hydrolysis of bamboo for production of fuel ethanol.

    PubMed

    Sun, Zhao-Yong; Tang, Yue-Qin; Morimura, Shigeru; Kida, Kenji

    2013-01-01

    Fuel ethanol can be produced from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation. To reduce the environmental impact of this process, treatment of the stillage, reuse of the sulfuric acid and reduction of the process water used were studied. The total organic carbon (TOC) concentration of stillage decreased from 29,688 to 269 mg/l by thermophilic methane fermentation followed by aerobic treatment. Washing the solid residue from acid hydrolysis with effluent from the biological treatment increased the sugar recovery from 69.3% to 79.3%. Sulfuric acid recovered during the acid-sugar separation process was condensed and reused for hydrolysis, resulting in a sugar recovery efficiency of 76.8%, compared to 80.1% when fresh sulfuric acid was used. After acetate removal, the condensate could be reused as elution water in the acid-sugar separation process. As much as 86.3% of the process water and 77.6% of the sulfuric acid could be recycled.

  10. Heterogeneous Reactions of Acetic Acid with Oxide Surfaces: Effects of Mineralogy and Relative Humidity.

    PubMed

    Tang, Mingjin; Larish, Whitney A; Fang, Yuan; Gankanda, Aruni; Grassian, Vicki H

    2016-07-21

    We have investigated the heterogeneous uptake of gaseous acetic acid on different oxides including γ-Al2O3, SiO2, and CaO under a range of relative humidity conditions. Under dry conditions, the uptake of acetic acid leads to the formation of both acetate and molecularly adsorbed acetic acid on γ-Al2O3 and CaO and only molecularly adsorbed acetic acid on SiO2. More importantly, under the conditions of this study, dimers are the major form for molecularly adsorbed acetic acid on all three particle surfaces investigated, even at low acetic acid pressures under which monomers are the dominant species in the gas phase. We have also determined saturation surface coverages for acetic acid adsorption on these three oxides under dry conditions as well as Langmuir adsorption constants in some cases. Kinetic analysis shows that the reaction rate of acetic acid increases by a factor of 3-5 for γ-Al2O3 when relative humidity increases from 0% to 15%, whereas for SiO2 particles, acetic acid and water are found to compete for surface adsorption sites.

  11. Evaluation of sanitizing efficacy of acetic acid on Piper betle leaves and its effect on antioxidant properties.

    PubMed

    Singla, Richu; Ganguli, Abhijit; Ghosh, Moushumi; Sohal, Sapna

    2009-01-01

    The sanitizing efficacy of acetic acid and its effect on health beneficial properties of Piper betle leaves were determined. Betel leaves artificially inoculated with Aeromonas, Salmonella and Yersinia were subjected to organic acid (citric acid, acetic acid and lactic acid) treatment. Pathogen populations reduced by 4 log upon individual inoculation and up to 2 log in a mixed cocktail following treatment with 2% acetic acid during storage up to 20 h at 28 degrees C, indicating a residual antimicrobial effect on pathogen during storage. Antioxidant potential ethanolic extracts of both raw and treated P. betle leaves were assayed for free radical scavenging activities against 2,2-diphenyl-1-picryhydrazyl. Polyphenols, flavonoids and the reducing power of treated and untreated P. betle were also compared. No significant (P>0.05) changes were observed in antioxidant status; flavonoids, polyphenols and reducing power of treated betel leaves. Results indicate the feasibility of a simple intervention strategy for inactivating pathogens in edible leaves of P. betle.

  12. Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform.

    PubMed

    Wei, Na; Oh, Eun Joong; Million, Gyver; Cate, Jamie H D; Jin, Yong-Su

    2015-06-19

    The inability of fermenting microorganisms to use mixed carbon components derived from lignocellulosic biomass is a major technical barrier that hinders the development of economically viable cellulosic biofuel production. In this study, we integrated the fermentation pathways of both hexose and pentose sugars and an acetic acid reduction pathway into one Saccharomyces cerevisiae strain for the first time using synthetic biology and metabolic engineering approaches. The engineered strain coutilized cellobiose, xylose, and acetic acid to produce ethanol with a substantially higher yield and productivity than the control strains, and the results showed the unique synergistic effects of pathway coexpression. The mixed substrate coutilization strategy is important for making complete and efficient use of cellulosic carbon and will contribute to the development of consolidated bioprocessing for cellulosic biofuel. The study also presents an innovative metabolic engineering approach whereby multiple substrate consumption pathways can be integrated in a synergistic way for enhanced bioconversion.

  13. Benzylidene Acetal Protecting Group as Carboxylic Acid Surrogate: Synthesis of Functionalized Uronic Acids and Sugar Amino Acids.

    PubMed

    Banerjee, Amit; Senthilkumar, Soundararasu; Baskaran, Sundarababu

    2016-01-18

    Direct oxidation of the 4,6-O-benzylidene acetal protecting group to C-6 carboxylic acid has been developed that provides an easy access to a wide range of biologically important and synthetically challenging uronic acid and sugar amino acid derivatives in good yields. The RuCl3 -NaIO4 -mediated oxidative cleavage method eliminates protection and deprotection steps and the reaction takes place under mild conditions. The dual role of the benzylidene acetal, as a protecting group and source of carboxylic acid, was exploited in the efficient synthesis of six-carbon sialic acid analogues and disaccharides bearing uronic acids, including glycosaminoglycan analogues.

  14. Escherichia coli and Salmonella enterica are protected against acetic acid, but not hydrochloric acid, by hypertonicity.

    PubMed

    Chapman, B; Ross, T

    2009-06-01

    Chapman et al. (B. Chapman, N. Jensen, T Ross, and M. B. Cole, Appl. Environ. Microbiol. 72:5165-5172, 2006) demonstrated that an increased NaCl concentration prolongs survival of Escherichia coli O157 SERL 2 in a broth model simulating the aqueous phase of a food dressing or sauce containing acetic acid. We examined the responses of five other E. coli strains and four Salmonella enterica strains to increasing concentrations of NaCl under conditions of lethal acidity and observed that the average "lag" time prior to inactivation decreases in the presence of hydrochloric acid but not in the presence of acetic acid. For E. coli in the presence of acetic acid, the lag time increased with increasing NaCl concentrations up to 2 to 4% at pH 4.0, up to 4 to 6% at pH 3.8, and up to 4 to 7% (wt/wt of water) NaCl at pH 3.6. Salmonella was inactivated more rapidly by combined acetic acid and NaCl stresses than E. coli, but increasing NaCl concentrations still decreased the lag time prior to inactivation in the presence of acetic acid; at pH 4.0 up to 1 to 4% NaCl was protective, and at pH 3.8 up to 1 to 2% NaCl delayed the onset of inactivation. Sublethal injury kinetics suggest that this complex response is a balance between the lethal effects of acetic acid, against which NaCl is apparently protective, and the lethal effects of the NaCl itself. Compared against 3% NaCl, 10% (wt/wt of water) sucrose with 0.5% NaCl (which has similar osmotic potential) was found to be equally protective against adverse acetic acid conditions. We propose that hypertonicity may directly affect the rate of diffusion of acetic acid into cells and hence cell survival.

  15. Visible Light-Driven Photocatalytic Activity of Oleic Acid-Coated TiO2 Nanoparticles Synthesized from Absolute Ethanol Solution

    NASA Astrophysics Data System (ADS)

    Li, Huihui; Liu, Bin; Yin, Shu; Sato, Tsugio; Wang, Yuhua

    2015-10-01

    The one-step synthesis of oleic acid-coated TiO2 nanoparticles with visible light-driven photocatalytic activity was reported by this manuscript, using oleic acid-ethanol as crucial starting materials. The photocatalytic degradation of nitrogen monoxide (deNOx) in the gas phase was investigated in a continuous reactor using a series of TiO2 semiconductors, prepared from oleic acid- or acetic acid-ethanol solution. The surface modification on TiO2 by organic fatty acid, oleic acid, could reinvest TiO2 photocatalyst with the excellent visible light response. The deNOx ability is almost as high as 30 % destruction in the visible light region ( λ > 510 nm) which is similar to the nitrogen-doped TiO2. Meanwhile, acetic acid, a monobasic acid, has a weaker ability on visible light modification of TiO2.

  16. Modulation of Acetone-Butanol-Ethanol Fermentation by Carbon Monoxide and Organic Acids

    PubMed Central

    Datta, Rathin; Zeikus, J. G.

    1985-01-01

    Metabolic modulation of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum with carbon monoxide (CO) and organic acids is described. CO, which is a known inhibitor of hydrogenase, was found to be effective in the concentration range of dissolved CO corresponding to a CO partial pressure of 0.1 to 0.2 atm. Metabolic modulation by CO was particularly effective when organic acids such as acetic and butyric acids were added to the fermentation as electron sinks. The uptake of organic acids was enhanced, and increases in butyric acid uptake by 50 to 200% over control were observed. Hydrogen production could be reduced by 50% and the ratio of solvents could be controlled by CO modulation and organic acid addition. Acetone production could be eliminated if desired. Butanol yield could be increased by 10 to 15%. Total solvent yield could be increased 1 to 3% and the electron efficiency to acetone-butanol-ethanol solvents could be increased from 73 to 78% for controls to 80 to 85% for CO- and organic acid-modulated fermentations. Based on these results, the dynamic nature of electron flow in this fermentation has been elucidated and mechanisms for metabolic control have been hypothesized. PMID:16346746

  17. Value of furfural/ethanol coproduction from acid hydrolysis processes

    SciTech Connect

    Parker, S.; Calnon, M.; Feinberg, D.; Power, A.; Weiss, L.

    1983-08-01

    The benefits of two modifications in the acid hydrolysis of cellulosic feedstocks for the production of ethanol fuels were investigated: marketing of the by-product furfural and xylose fermentation. Preliminary analysis indicate that the furfural by-product furfural and xylose fermentation. Perliminary analyses indicate that the furfural by-product credit is more beneficial at a minimum net profit of $0.08/lb of furfural. For this credit to have a major impact on ethanol production costs, new markets for large quantities of furfural must be identified. Furfural can be an alternative feedstock for hydrocarbon-based commodity chemicals. The costs and profitabilities of producing five chemicals from furfurals as opposed to conventional hydrocarbon-based feedstocks were studied. The furfural processes for production of styrene and butadiene were found to be marginally competitive or not competitive. The furfural processes for adipic acid, maleic anhydride, and butanol could be competitive. Results of analysis by a computer model of the petrochemical industry indicate that with furfural markets additional to these three furfural processes, over 2.5 x 10/sup 9/ gal of ethanol could be marketed at about $1.00/gal. Converting the xylose stream to ethanol has about the same effect on the selling price of ethanol as the furfural credit. The greatest ethanol production will result from xylose fermentation, but the furfural credit offers large near-term profits and has a more diversified impact on reducing petroleum product demand. 6 figures, 17 tables.

  18. Acid hydrolysis of sweet potato for ethanol production

    SciTech Connect

    Kim, K.; Hamdy, M.K.

    1985-01-01

    Studies were conducted to establish optimal conditions for the acid hydrolysis of sweet potato for maximal ethanol yield. The starch contents of two sweet potato cultivars (Georgia Red and TG-4), based on fresh weight, were 21.1 +/- 0.6% and 27.5 +/- 1.6%, respectively. The results of acid hydrolysis experiments showed the following: (1) both hydrolysis rate and hydroxymethylfurfural (HMF) concentration were a function of HCL concentration, temperature, and time; (2) the reducing sugars were rapidly formed with elevated concentrations of HCl and temperature, but also destroyed quickly; and (3) HMF concentration increased significantly with the concentration of HCl, temperature, and hydrolysis time. Maximum reducing sugar value of 84.2 DE and 0.056% HMF (based on wet weight) was achieved after heating 8% SPS for 15 min in 1N HCl at 110/sup 0/C. Degraded 8% SPS (1N HCl, 97/sup 0/C for 20 min or 110/sup 0/C for 10 min) was utilized as substrate for ethanol fermentation and 3.8% ethanol (v/v) was produced from 1400 mL fermented wort. This is equal to 41.6 g ethanol (200 proof) from 400 g of fresh sweet potato tuber (Georgia Red) or an ethanol yield potential of 431 gal of 200-proof ethanol/acre (from 500 bushel tubers/acre).

  19. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    SciTech Connect

    Mondala, Andro; Hernandez, Rafael; French, Todd; McFarland, Linda; Sparks, Darrell; Holmes, William; Haque, Monica

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 + 0.7% and 8.8 + 3.2% w/w, respectively, which were lower than the control (17.8 + 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 + 0.6% w/w for 2 g L -1 acetic acid and 4.2 + 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.

  20. Improvement in HPLC separation of acetic acid and levulinic acid in the profiling of biomass hydrolysate.

    PubMed

    Xie, Rui; Tu, Maobing; Wu, Yonnie; Adhikari, Sushil

    2011-04-01

    5-Hydroxymethylfurfural (HMF) and furfural could be separated by the Aminex HPX-87H column chromatography, however, the separation and quantification of acetic acid and levulinic acid in biomass hydrolysate have been difficult with this method. In present study, the HPLC separation of acetic acid and levulinic acid on Aminex HPX-87H column has been investigated by varying column temperature, flow rate, and sulfuric acid content in the mobile phase. The column temperature was found critical in resolving acetic acid and levulinic acid. The resolution for two acids increased dramatically from 0.42 to 1.86 when the column temperature was lowered from 60 to 30 °C. So did the capacity factors for levulinic acid that was increased from 1.20 to 1.44 as the column temperature dropped. The optimum column temperature for the separation was found at 45 °C. Variation in flow rate and sulfuric acid concentration improved not as much as the column temperature did.

  1. Transcript and metabolite alterations increase ganoderic acid content in Ganoderma lucidum using acetic acid as an inducer.

    PubMed

    Ren, Ang; Li, Xiong-Biao; Miao, Zhi-Gang; Shi, Liang; Jaing, Ai-Liang; Zhao, Ming-Wen

    2014-12-01

    Acetic acid at 5-8 mM increased ganoderic acid (GA) accumulation in Ganoderma lucidum. After optimization by the response surface methodology, the GA content reached 5.5/100 mg dry weight, an increase of 105% compared with the control. The intermediate metabolites of GA biosynthesis, lanosterol and squalene also increased to 47 and 15.8 μg/g dry weight, respectively, in response to acetic acid. Acetic acid significantly induced transcription levels of sqs, lano, hmgs and cyp51 in the GA biosynthesis pathway. An acetic acid-unregulated acetyl coenzyme A synthase (acs) gene was selected from ten candidate homologous acs genes. The results indicate that acetic acid alters the expression of genes related to acetic acid assimilation and increases GA biosynthesis and the metabolic levels of lanosterol, squalene and GA-a, thereby resulting in GA accumulation.

  2. Corrosion behavior of mild steel in acetic acid solutions

    SciTech Connect

    Singh, M.M.; Gupta, A.

    2000-04-01

    The corrosion behavior of mild steel in acetic acid (CH{sub 3}COOH) solutions was studied by weight loss and potentiostatic polarization techniques. The variation in corrosion rate of mild steel with concentrations of CH{sub 3}COOH, evaluated by weight loss and electrochemical techniques, showed marked resemblance. From both techniques, the maximum corrosion rate was observed for 20% CH{sub 3}COOH solution at all three experimental temperatures (25, 35, and 45 C). Anodic polarization curves showed active-passive behavior at each concentration, except at 80% CH{sub 3}COOH. Critical current density (i{sub c}) passive current density (I{sub n}), primary passivation potential (E{sub pp}), and potential for passivity (E{sub p}) had their highest values in 20% CH{sub 3}COOH solution. With an increase in temperature, while the anodic polarization curves shifted toward higher current density region at each concentration, the passive region became progressively less distinguishable. With the addition of sodium acetate (NaCOOCH{sub 3}) as a supporting electrolyte, the passive range was enlarged substantially. However, the transpassive region commenced at more or less the same potential. Cathodic polarization curves were almost identical irrespective of the concentration of CH{sub 3}COOH or temperature.

  3. Hepatic mitochondrial dysfunction induced by fatty acids and ethanol.

    PubMed

    Gyamfi, Daniel; Everitt, Hannah E; Tewfik, Ihab; Clemens, Dahn L; Patel, Vinood B

    2012-12-01

    Understanding the key aspects of the pathogenesis of alcoholic fatty liver disease particularly alterations to mitochondrial function remains to be resolved. The role of fatty acids in this regard requires further investigation due to their involvement in fatty liver disease and obesity. This study aimed to characterize the early effects of saturated and unsaturated fatty acids alone on liver mitochondrial function and during concomitant ethanol exposure using isolated liver mitochondria and VA-13 cells (Hep G2 cells that efficiently express alcohol dehydrogenase). Liver mitochondria or VA-13 cells were treated with increasing concentrations of palmitic or arachidonic acid (1 to 160 μM) for 24 h with or without 100 mM ethanol. The results showed that in isolated liver mitochondria both palmitic and arachidonic acids significantly reduced state 3 respiration in a concentration-dependent manner (P<0.001), implicating their ionophoric activities. Increased ROS production occurred in a dose-dependent manner especially in the presence of rotenone (complex I inhibitor), which was significantly more prominent in arachidonic acid at 80 μM (+970%, P<0.001) than palmitic acid (+40%, P<0.01). In VA-13 cells, ethanol alone and both fatty acids (40 μM) were able to decrease the mitochondrial membrane potential and cellular ATP levels and increase lipid formation. ROS production was significantly increased with arachidonic acid (+110%, P<0.001) exhibiting a greater effect than palmitic acid (+39%, P<0.05). While in the presence of ethanol, the drop in the mitochondrial membrane potential, cellular ATP levels, and increased lipid formation were further enhanced by both fatty acids, but with greater effect in the case of arachidonic acid, which also correlated with significant cytotoxicity (P<0.001). This study confirms the ability of fatty acids to promote mitochondrial injury in the development of alcoholic fatty liver disease.

  4. Production of caproic acid by cocultures of ruminal cellulolytic bacteria and Clostridium kluyveri grown on cellulose and ethanol.

    PubMed

    Kenealy, W R; Cao, Y; Weimer, P J

    1995-12-01

    Ruminal cellulolytic bacteria (Fibrobacter succinogenes S85 or Ruminococcus flavefaciens FD-1) were combined with the non-ruminal bacterium Clostridium kluyveri and grown together on cellulose and ethanol. Succinate and acetate produced by the cellulolytic organisms were converted to butyrate and caproate only when the culture medium was supplemented with ethanol. Ethanol (244 mM) and butyrate (30 mM at pH 6.8) did not inhibit cellulose digestion or product formation by S85 or FD-1; however caproate (30 mM at pH 6.8) was moderately inhibitory to FD-1. Succinate consumption and caproate production were sensitive to culture pH, with more caproic acid being produced when the culture was controlled at a pH near neutrality. In a representative experiment under conditions of controlled pH (at 6.8) 6.0 g cellulose l-1 and 4.4 g ethanol l-1 were converted to 2.6 g butyrate l-1 and 4.6 g caproate l-1. The results suggest that bacteria that efficiently produce low levels of ethanol and acetate or succinate from cellulose should be useful in cocultures for the production of caproic acid, a potentially useful industrial chemical and bio-fuel precursor.

  5. Fermentation method producing ethanol

    DOEpatents

    Wang, Daniel I. C.; Dalal, Rajen

    1986-01-01

    Ethanol is the major end product of an anaerobic, thermophilic fermentation process using a mutant strain of bacterium Clostridium thermosaccharolyticum. This organism is capable of converting hexose and pentose carbohydrates to ethanol, acetic and lactic acids. Mutants of Clostridium thermosaccharolyticum are capable of converting these substrates to ethanol in exceptionally high yield and with increased productivity. Both the mutant organism and the technique for its isolation are provided.

  6. Development of Acetic Acid Removal Technology for the UREX+Process

    SciTech Connect

    Robert M. Counce; Jack S. Watson

    2009-06-30

    It is imperative that acetic acid is removed from a waste stream in the UREX+process so that nitric acid can be recycled and possible interference with downstreatm steps can be avoidec. Acetic acid arises from acetohydrozamic acid (AHA), and is used to suppress plutonium in the first step of the UREX+process. Later, it is hydrolyzed into hydroxyl amine nitrate and acetic acid. Many common separation technologies were examined, and solvent extraction was determined to be the best choice under process conditions. Solvents already used in the UREX+ process were then tested to determine if they would be sufficient for the removal of acetic acid. The tributyl phosphage (TBP)-dodecane diluent, used in both UREX and NPEX, was determined to be a solvent system that gave sufficient distribution coefficients for acetic acid in addition to a high separation factor from nitric acid.

  7. Acetic acid in aged vinegar affects molecular targets for thrombus disease management.

    PubMed

    Jing, Li; Yanyan, Zhang; Junfeng, Fan

    2015-08-01

    To elucidate the mechanism underlying the action of dietary vinegar on antithrombotic activity, acetic acid, the main acidic component of dietary vinegar, was used to determine antiplatelet and fibrinolytic activity. The results revealed that acetic acid significantly inhibits adenosine diphosphate (ADP)-, collagen-, thrombin-, and arachidonic acid (AA)-induced platelet aggregation. Acetic acid (2.00 mM) reduced AA-induced platelet aggregation to approximately 36.82 ± 1.31%, and vinegar (0.12 mL L(-1)) reduced the platelet aggregation induced by AA to 30.25 ± 1.34%. Further studies revealed that acetic acid exerts its effects by inhibiting cyclooxygenase-1 and the formation of thromboxane-A2. Organic acids including acetic acid, formic acid, lactic acid, citric acid, and malic acid also showed fibrinolytic activity; specifically, the fibrinolytic activity of acetic acid amounted to 1.866 IU urokinase per mL. Acetic acid exerted its fibrinolytic activity by activating plasminogen during fibrin crossing, thus leading to crosslinked fibrin degradation by the activated plasmin. These results suggest that organic acids in dietary vinegar play important roles in the prevention and cure of cardiovascular diseases.

  8. Synthesis and characterization of acetic acid and ethanoic acid (based)-maleimide

    NASA Astrophysics Data System (ADS)

    Poad, Siti Nashwa Mohd; Hassan, Nurul Izzaty; Hassan, Nur Hasyareeda

    2016-11-01

    A new route to the synthesis of maleimide is described. 2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)acetic acid maleimide (1) and 2-(4-(2,5-Dioxo-2,5-dihydro- 1H-pyrrol-1-yl)phenyl)ethanoic acid maleimide (2) have been synthesized by the reaction of maleic anhydride with glycine and 4-aminophenyl acetic aicd. Maleimide (1) was synthesized by conventional technique while maleimide (2) was synthesized by microwave method. The compounds were characterized using FT-Infrared (FT-IR), 1H and 13C Nuclear Magnetic Resonance (NMR) spectroscopies and Mass Spectrometry.

  9. Crystal structure of 7,8-benzocoumarin-4-acetic acid.

    PubMed

    Swamy, R Ranga; Gowda, Ramakrishna; Gowda, K V Arjuna; Basanagouda, Mahantesha

    2015-08-01

    The fused-ring system in the title compound [systematic name: 2-(2-oxo-2H-benzo[h]chromen-4-yl)acetic acid], C15H10O4, is almost planar (r.m.s. deviation = 0.031 Å) and the Car-C-C=O (ar = aromatic) torsion angle for the side chain is -134.4 (3)°. In the crystal, mol-ecules are linked by O-H⋯O hydrogen bonds, generating [100] C(8) chains, where the acceptor atom is the exocyclic O atom of the fused-ring system. The packing is consolidated by a very weak C-H⋯O hydrogen bond to the same acceptor atom. Together, these inter-actions lead to undulating (001) layers in the crystal.

  10. The Ground and First Excited Torsional States of Acetic Acid.

    PubMed

    Ilyushin, V. V.; Alekseev, E. A.; Dyubko, S. F.; Podnos, S. V.; Kleiner, I.; Margulès, L.; Wlodarczak, G.; Demaison, J.; Cosléou, J.; Maté, B.; Karyakin, E. N.; Golubiatnikov, G. Yu.; Fraser, G. T.; Suenram, R. D.; Hougen, J. T.

    2001-02-01

    A global fit of microwave and millimeter-wave rotational transitions in the ground and first excited torsional states (v(t) = 0 and 1) of acetic acid (CH(3)COOH) is reported, which combines older measurements from the literature with new measurements from Kharkov, Lille, and NIST. The fit uses a model developed initially for acetaldehyde and methanol-type internal rotor molecules. It requires 34 parameters to achieve a unitless weighted standard deviation of 0.84 for a total of 2518 data and includes A- and E-species transitions with J

  11. The influence of pretreatment with ghrelin on the development of acetic-acid-induced colitis in rats.

    PubMed

    Maduzia, D; Matuszyk, A; Ceranowicz, D; Warzecha, Z; Ceranowicz, P; Fyderek, K; Galazka, K; Dembinski, A

    2015-12-01

    Ghrelin has been primarily shown to exhibit protective and therapeutic effect in the gut. Pretreatment with ghrelin inhibits the development of acute pancreatitis and accelerates pancreatic recovery in the course of this disease. In the stomach, ghrelin reduces gastric mucosal damage induced by ethanol, stress or alendronate, as well as accelerates the healing of acetic acid-induced gastric and duodenal ulcer. The aim of present studies was to investigate the effect of pretreatment with ghrelin on the development of acetic acid-induced colitis. Studies have been performed on male Wistar rats. Animals were treated intraperitoneally with saline (control) or ghrelin (4, 8 or 16 nmol/kg/dose). Saline or ghrelin was given twice: 8 and 1 h before induction of colitis. Colitis was induced by a rectal enema with 1 ml of 4% solution of acetic acid and the severity of colitis was assessed 1 or 24 hours after induction of inflammation. Rectal administration of acetic acid induced colitis in all animals. Damage of colonic wall was seen at the macroscopic and microscopic level. This effect was accompanied by a reduction in colonic blood flow and mucosal DNA synthesis. Moreover, induction of colitis significantly increased mucosal concentration of pro-inflammatory interleukin-1β (IL-1β), activity of myeloperoxidase and concentration of malondialdehyde (MDA). Mucosal activity of superoxide dismutase (SOD) was reduced. Pretreatment with ghrelin reduced the area and grade of mucosal damage. This effect was accompanied by an improvement of blood flow, DNA synthesis and SOD activity in colonic mucosa. Moreover, ghrelin administration reduced mucosal concentration of IL-1β and MDA, as well as decreased mucosal activity of myeloperoxidase. Administration of ghrelin protects the large bowel against the development of the acetic acid-induced colitis and this effect seems to be related to the ghrelin-evoked anti-inflammatory and anti-oxidative effects.

  12. Transcriptome analysis of acetic-acid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance.

    PubMed

    Lee, Yeji; Nasution, Olviyani; Choi, Eunyong; Choi, In-Geol; Kim, Wankee; Choi, Wonja

    2015-08-01

    Acetic acid inhibits the metabolic activities of Saccharomyces cerevisiae. Therefore, a better understanding of how S. cerevisiae cells acquire the tolerance to acetic acid is of importance to develop robust yeast strains to be used in industry. To do this, we examined the transcriptional changes that occur at 12 h post-exposure to acetic acid, revealing that 56 and 58 genes were upregulated and downregulated, respectively. Functional categorization of them revealed that 22 protein synthesis genes and 14 stress response genes constituted the largest portion of the upregulated and downregulated genes, respectively. To evaluate the association of the regulated genes with acetic acid tolerance, 3 upregulated genes (DBP2, ASC1, and GND1) were selected among 34 non-protein synthesis genes, and 54 viable mutants individually deleted for the downregulated genes were retrieved from the non-essential haploid deletion library. Strains overexpressing ASC1 and GND1 displayed enhanced tolerance to acetic acid, whereas a strain overexpressing DBP2 was sensitive. Fifty of 54 deletion mutants displayed enhanced acetic acid tolerance. Three chosen deletion mutants (hsps82Δ, ato2Δ, and ssa3Δ) were also tolerant to benzoic acid but not propionic and sorbic acids. Moreover, all those five (two overexpressing and three deleted) strains were more efficient in proton efflux and lower in membrane permeability and internal hydrogen peroxide content than controls. Individually or in combination, those physiological changes are likely to contribute at least in part to enhanced acetic acid tolerance. Overall, information of our transcriptional profile was very useful to identify molecular factors associated with acetic acid tolerance.

  13. Detection of CIN by naked eye visualization after application of acetic acid.

    PubMed

    Londhe, M; George, S S; Seshadri, L

    1997-06-01

    A prospective study was undertaken to determine the sensitivity and specificity of acetic application to the cervix followed by naked eye visualization as a screening test for detection of cervical intraepithelial neoplasia. Three hundred and seventy two sexually active woman in the reproductive age group were studied. All the women underwent Papanicolaou test, acetic acid test and colposcopy. One hundred and seventy five woman were acetic acid test negative, 197 women were acetic acid test positive. The sensitivity of acetic acid test was 72.4%, specificity 54% and false negative rate 15.2%, as compared to papanicolaou test which had a sensitivity of 13.2%, specificity of 96.3% and false negative rate of 24.4%. The advantage of the acetic acid test lies in its easy technique, low cost and high sensitivity which are important factors for determining the efficacy of any screening programme in developing countries.

  14. Acetic acid and aromatics units planned in China

    SciTech Connect

    Alperowicz, N.

    1993-01-27

    The Shanghai Wujing Chemical Complex (SWCC; Shanghai) is proceeding with construction of an acetic acid plant. The 100,000-m.t./year until will use BP Chemicals carbonylation technology, originally developed by Monsanto. John Brown has been selected by China National Technical Import Corp. (CNTIC) to supply the plant, Chinese sources say. The UK contractor, which competed against Mitsui Engineering Shipbuilding (Tokyo) and Lurgi (Frankfurt), has built a similar plant for BP in the UK, although using different technology. The new plant will require 54,000 m.t./year of methanol, which is available onsite. Carbon monoxide will be delivered from a new plant. The acetic acid unit will joint two other acetic plants in China supplied some time ago by Uhde (Dortmund). SWCC is due to be integrated with two adjacent complexes to form Shanghai Pacific Chemical. Meanwhile, four groups are competing to supply a UOP-process aromatics complex for Jilin Chemical Industrial Corp. They are Toyo Engineering, Lurgi, Lucky/Foster Wheeler, and Eurotechnica. The complex will include plants with annual capacities for 115,000 m.t. of benzene, 90,000 m.t. of ortho-xylene, 93,000 m.t. of mixed xylenes, and 20,000 m.t. of toluene. The plants will form part of a $2-billion petrochemical complex based on a 300,000-m.t./year ethylene plant awarded last year to a consortium of Samsung Engineering and Linde. Downstream plants will have annual capacities for 120,000 m.t. of linear low-density polyethylene, 80,000 m.t. of ethylene oxide, 100,000 m.t. of ethylene glycol, 80,000 m.t. of phenol, 100,000 m.t. of acrylonitrile, 20,000 m.t. of sodium cyanide, 40,000 m.t. of phthalic anhydride, 40,000 m.t. of ethylene propylene rubber, 20,000 m.t. of styrene butadiene styrene, and 30,000 m.t. of acrylic fiber.

  15. Gluconacetobacter medellinensis sp. nov., cellulose- and non-cellulose-producing acetic acid bacteria isolated from vinegar.

    PubMed

    Castro, Cristina; Cleenwerck, Ilse; Trcek, Janja; Zuluaga, Robin; De Vos, Paul; Caro, Gloria; Aguirre, Ricardo; Putaux, Jean-Luc; Gañán, Piedad

    2013-03-01

    The phylogenetic position of a cellulose-producing acetic acid bacterium, strain ID13488, isolated from commercially available Colombian homemade fruit vinegar, was investigated. Analyses using nearly complete 16S rRNA gene sequences, nearly complete 16S-23S rRNA gene internal transcribed spacer (ITS) sequences, as well as concatenated partial sequences of the housekeeping genes dnaK, groEL and rpoB, allocated the micro-organism to the genus Gluconacetobacter, and more precisely to the Gluconacetobacter xylinus group. Moreover, the data suggested that the micro-organism belongs to a novel species in this genus, together with LMG 1693(T), a non-cellulose-producing strain isolated from vinegar by Kondo and previously classified as a strain of Gluconacetobacter xylinus. DNA-DNA hybridizations confirmed this finding, revealing a DNA-DNA relatedness value of 81 % between strains ID13488 and LMG 1693(T), and values <70 % between strain LMG 1693(T) and the type strains of the closest phylogenetic neighbours. Additionally, the classification of strains ID13488 and LMG 1693(T) into a single novel species was supported by amplified fragment length polymorphism (AFLP) and (GTG)5-PCR DNA fingerprinting data, as well as by phenotypic data. Strains ID13488 and LMG 1693(T) could be differentiated from closely related species of the genus Gluconacetobacter by their ability to produce 2- and 5-keto-d-gluconic acid from d-glucose, their ability to produce acid from sucrose, but not from 1-propanol, and their ability to grow on 3 % ethanol in the absence of acetic acid and on ethanol, d-ribose, d-xylose, sucrose, sorbitol, d-mannitol and d-gluconate as carbon sources. The DNA G+C content of strains ID13488 and LMG 1693(T) was 58.0 and 60.7 mol%, respectively. The major ubiquinone of LMG 1693(T) was Q-10. Taken together these data indicate that strains ID13488 and LMG 1693(T) represent a novel species of the genus Gluconacetobacter for which the name Gluconacetobacter

  16. Effects of lactic acid bacteria contamination on lignocellulosic ethanol fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Slower fermentation rates, mixed sugar compositions, and lower sugar concentrations may make lignocellulosic fermentations more susceptible to contamination by lactic acid bacteria (LAB), which is a common and costly problem to the corn-based fuel ethanol industry. To examine the effects of LAB con...

  17. Ethanol production with dilute acid hydrolysis using partially dried lignocellulosics

    DOEpatents

    Nguyen, Quang A.; Keller, Fred A.; Tucker, Melvin P.

    2003-12-09

    A process of converting lignocellulosic biomass to ethanol, comprising hydrolyzing lignocellulosic materials by subjecting dried lignocellulosic material in a reactor to a catalyst comprised of a dilute solution of a strong acid and a metal salt to lower the activation energy (i.e., the temperature) of cellulose hydrolysis and ultimately obtain higher sugar yields.

  18. Formic acid and acetic acid measurements during the Southern California Air Quality Study

    NASA Astrophysics Data System (ADS)

    Grosjean, Daniel

    As part of the Southern California Air Quality Study (SCAQS), ambient levels of gas phase formic acid and acetic acid have been measured at four locations: a 'control' site (San Nicholas Island), a source-dominated coastal site (Long Beach) and two inland smog receptor sites (Claremont and Palm Springs). Samples were collected on alkaline traps and were analyzed by size exclusion liquid chromatography with ultraviolet detection. Levels of gas phase formic acid (up to 19 ppb) and acetic acid (up to 17 ppb) exhibited diurnal (frequent night-time maxima), spatial and seasonal variations. During summer smog episodes, concentrations increased from 0.6 ppb at the 'control' site to up to 13-19 ppb at the inland smog receptor sites reflecting primary emissions and in situ formation during transport inland. The acetic acid/formic acid (A/F) ratio decreased from coastal to inland sites. At the coastal site levels of both acids and the A/F ratio were substantially higher during the fall than during the summer.

  19. Phenyl Acetate Preparation from Phenol and Acetic Acid: Reassessment of a Common Textbook Misconception.

    ERIC Educational Resources Information Center

    Hocking, M. B.

    1980-01-01

    Reassesses a common textbook misconception that "...phenols cannot be esterified directly." Results of experiments are discussed and data tables provided of an effective method for the direct preparation of phenyl acetate. (CS)

  20. [Advances in functional genomics studies underlying acetic acid tolerance of Saccharomyces cerevisiae].

    PubMed

    Zhao, Xinqing; Zhang, Mingming; Xu, Guihong; Xu, Jianren; Bai, Fengwu

    2014-03-01

    Industrial microorganisms are subject to various stress conditions, including products and substrates inhibitions. Therefore, improvement of stress tolerance is of great importance for industrial microbial production. Acetic acid is one of the major inhibitors in the cellulosic hydrolysates, which affects seriously on cell growth and metabolism of Saccharomyces cerevisiae. Studies on the molecular mechanisms underlying adaptive response and tolerance of acetic acid of S. cerevisiae benefit breeding of robust strains of industrial yeast for more efficient production. In recent years, more insights into the molecular mechanisms underlying acetic acid tolerance have been revealed through analysis of global gene expression and metabolomics analysis, as well as phenomics analysis by single gene deletion libraries. Novel genes related to response to acetic acid and improvement of acetic acid tolerance have been identified, and novel strains with improved acetic acid tolerance were constructed by modifying key genes. Metal ions including potassium and zinc play important roles in acetic acid tolerance in S. cerevisiae, and the effect of zinc was first discovered in our previous studies on flocculating yeast. Genes involved in cell wall remodeling, membrane transport, energy metabolism, amino acid biosynthesis and transport, as well as global transcription regulation were discussed. Exploration and modification of the molecular mechanisms of yeast acetic acid tolerance will be done further on levels such as post-translational modifications and synthetic biology and engineering; and the knowledge obtained will pave the way for breeding robust strains for more efficient bioconversion of cellulosic materials to produce biofuels and bio-based chemicals.

  1. Atmospheric geochemistry of formic and acetic acids at a mid-latitude temperate site

    NASA Technical Reports Server (NTRS)

    Talbot, R. W.; Beecher, K. M.; Harriss, R. C.; Cofer, R. W., III

    1988-01-01

    Tropospheric concentrations of formic and acetic acids in the gas, the aerosol, and the rainwater phases were determined in samples collected 1-2 m above ground level at an open field site in eastern Virginia. These acids were found to occur principally (98 percent or above) in the gas phase, with a marked annual seasonality, averaging 1890 ppt for formate and 1310 ppt for acetate during the growing season, as compared to 695 ppt and 700 ppt, respectively, over the nongrowing season. The data support the hypothesis that biogenic emissions from vegatation are important sources of atmospheric formic and acetic acid during the local growing season. The same time trends were observed for precipitation, although with less defined seasonality. The relative increase of the acetic acid/formic acid ratio during the nongrowing season points to the dominance of anthropogenic inputs of acetic acid from motor vehicles and biomass combustion in the wintertime.

  2. Modification of wheat starch with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures I. Thermophysical and pasting properties.

    PubMed

    Subarić, Drago; Ačkar, Durđica; Babić, Jurislav; Sakač, Nikola; Jozinović, Antun

    2014-10-01

    The aim of this research was to investigate the influence of modification with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures on thermophysical and pasting properties of wheat starch. Starch was isolated from two wheat varieties and modified with mixtures of succinic acid and acetic anhydride, and azelaic acid and acetic anhydride in 4, 6 and 8 % (w/w). Thermophysical, pasting properties, swelling power, solubility and amylose content of modified starches were determined. The results showed that modifications with mixtures of afore mentioned dicarboxylic acids with acetic anhydride decreased gelatinisation and pasting temperatures. Gelatinisation enthalpy of Golubica starch increased, while of Srpanjka starch decreased by modifications. Retrogradation after 7 and 14 day-storage at 4 °C decreased after modifications of both starches. Maximum, hot and cold paste viscosity of both starches increased, while stability during shearing at high temperatures decreased. % setback of starches modified with azelaic acid/acetic anhydride mixture decreased. Swelling power and solubility of both starches increased by both modifications.

  3. Sol-gel process for preparing YBa{sub 2}Cu{sub 4}O{sub 8} precursors from Y, Ba, and Cu acidic acetates/ammonia/ascorbic acid systems

    SciTech Connect

    Deptula, A.; Lada, W.; Olczak, T.; Goretta, K.C.; Di Bartolomeo, A.; Casadio, S.

    1995-08-01

    Sols were prepared by addition of ammonia to acidic acetate solutions of Y{sup 3+}, Ba{sup 2+}, and Cu{sup 2+}. Ascorbic acid was added to a part of the sol. The resultant sols were gelled to a shard, a film, or microspheres by evaporation at 60 C or by extraction of water from drops of emulsion suspended in 2-ethylhexanol-1. Addition of ethanol to the sols facilitated the formation of gel films, fabricated by a dipping technique, on glass or silver substrates. At 100 C, gels that were formed in the presence of ascorbic acid were perfectly amorphous, in contrast to the crystalline acetate gels. Conversion of the amorphous ascorbate gels to final products was easier than for the acetate gels. The quality of coatings prepared from ascorbate gels was superior to that of acetate gel coatings.

  4. Oxidation of Indole-3-Acetic Acid-Amino Acid Conjugates by Horseradish Peroxidase

    PubMed Central

    Park, Ro Dong; Park, Chang Kyu

    1987-01-01

    The stability of 21 amino acid conjugates of indole-3-acetic acid (IAA) toward horseradish peroxidase (HRP) was studied. The IAA conjugates of Arg, Ile, Leu, Tyr, and Val were oxidized readily by peroxidase. Those of Ala, β-Ala, Asp, Cys, Gln, Glu, Gly, and Lys were not degraded and their recovery was above 92% after 1 hour incubation with HRP. A correlation between the stability of IAA conjugates toward peroxidase-catalyzed oxidation and the hydrophobicity of the amino acid moiety conjugated to IAA was demonstrated. Polar amino acid conjugates of IAA are more resistant to HRP-catalyzed oxidation. PMID:16665529

  5. Short-term adaptation improves the fermentation performance of Saccharomyces cerevisiae in the presence of acetic acid at low pH.

    PubMed

    Sànchez i Nogué, Violeta; Narayanan, Venkatachalam; Gorwa-Grauslund, Marie F

    2013-08-01

    The release of acetic acid due to deacetylation of the hemicellulose fraction during the treatment of lignocellulosic biomass contributes to the inhibitory character of the generated hydrolysates. In the present study, we identified a strain-independent adaptation protocol consisting of pre-cultivating the strain at pH 5.0 in the presence of at least 4 g L⁻¹ acetic acid that enabled aerobic growth and improved fermentation performance of Saccharomyces cerevisiae cells at low pH (3.7) and in the presence of inhibitory levels of acetic acid (6 g L⁻¹). During anaerobic cultivation with adapted cells of strain TMB3500, the specific ethanol production rate was increased, reducing the fermentation time to 48 %.

  6. Evidence for a Complex Between Thf and Acetic Acid from Broadband Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zaleski, Daniel P.; Bittner, Dror M.; Mullaney, John Connor; Stephens, Susanna L.; King, Adrian; Habgood, Matthew; Walker, Nick

    2015-06-01

    Evidence for a complex between tetrahydrofuran (THF) and acetic acid from broadband rotational spectroscopy will be presented. Transitions believed to belong to the complex were first identified in a gas mixture containing small amounts of THF, triethyl borane, and acetic acid balanced in argon. Ab initio calculations suggest a complex between THF and acetic acid is more likely to form compared to the analogous acetic acid complex with triethyl borane, the initial target. The observed rotational constants are also more similar to those predicted for a complex formed between THF and acetic acid, than for those of a complex formed between triethyl borane and acetic acid. Subsequently, multiple isotopologues of acetic acid have been measured, confirming its presence in the structure. No information has yet been obtained through isotopic substitution within the THF sub-unit. Ab initio calculations predict the most likely structure is one where the acetic acid subunit coordinates over the ring creating a "bridge" between the THF oxygen, the carboxylic O-H, and the carbonyl oxygen to a hydrogen atom on the back of the ring.

  7. Efficacy of Acetic Acid against Listeria monocytogenes Attached to Poultry Skin during Refrigerated Storage.

    PubMed

    Gonzalez-Fandos, Elena; Herrera, Barbara

    2014-09-11

    This work evaluates the effect of acetic acid dipping on the growth of L. monocytogenes on poultry legs stored at 4 °C for eight days. Fresh inoculated chicken legs were dipped into either a 1% or 2% acetic acid solution (v/v) or distilled water (control). Changes in mesophiles, psychrotrophs, Enterobacteriaceae counts and sensorial characteristics (odor, color, texture and overall appearance) were also evaluated. The shelf life of the samples washed with acetic acid was extended by at least two days over the control samples washed with distilled water. L. monocytogenes counts before decontamination were 5.57 log UFC/g, and after treatment with 2% acetic acid (Day 0), L. monocytogenes counts were 4.47 log UFC/g. Legs washed with 2% acetic acid showed a significant (p < 0.05) inhibitory effect on L. monocytogenes compared to control legs, with a decrease of about 1.31 log units after eight days of storage. Sensory quality was not adversely affected by acetic acid. This study demonstrates that while acetic acid did reduce populations of L. monocytogenes on meat, it did not completely inactivate the pathogen. The application of acetic acid may be used as an additional hurdle contributing to extend the shelf life of raw poultry and reducing populations of L. monocytogenes.

  8. Microbiological preservation of cucumbers for bulk storage by the use of acetic acid and food preservatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial growth did not occur when cucumbers were preserved without a thermal process by storage in solutions containing acetic acid, sodium benzoate, and calcium chloride to maintain tissue firmness. The concentrations of acetic acid and sodium benzoate required to assure preservation were low en...

  9. A Binary Host Plant Volatile Lure Combined With Acetic Acid to Monitor Codling Moth (Lepidoptera: Tortricidae).

    PubMed

    Knight, A L; Basoalto, E; Katalin, J; El-Sayed, A M

    2015-10-01

    Field studies were conducted in the United States, Hungary, and New Zealand to evaluate the effectiveness of septa lures loaded with ethyl (E,Z)-2,4-decadienoate (pear ester) and (E)-4,8-dimethyl-1,3,7-nonatriene (nonatriene) alone and in combination with an acetic acid co-lure for both sexes of codling moth, Cydia pomonella (L.). Additional studies were conducted to evaluate these host plant volatiles and acetic acid in combination with the sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone). Traps baited with pear ester/nonatriene + acetic acid placed within orchards treated either with codlemone dispensers or left untreated caught significantly more males, females, and total moths than similar traps baited with pear ester + acetic acid in some assays. Similarly, traps baited with codlemone/pear ester/nonatriene + acetic acid caught significantly greater numbers of moths than traps with codlemone/pear ester + acetic acid lures in some assays in orchards treated with combinational dispensers (dispensers loaded with codlemone/pear ester). These data suggest that monitoring of codling moth can be marginally improved in orchards under variable management plans using a binary host plant volatile lure in combination with codlemone and acetic acid. These results are likely to be most significant in orchards treated with combinational dispensers. Significant increases in the catch of female codling moths in traps with the binary host plant volatile blend plus acetic acid should be useful in developing more effective mass trapping strategies.

  10. Electromembrane extraction and HPLC analysis of haloacetic acids and aromatic acetic acids in wastewater.

    PubMed

    Alhooshani, Khalid; Basheer, Chanbasha; Kaur, Jagjit; Gjelstad, Astrid; Rasmussen, Knut E; Pedersen-Bjergaard, Stig; Lee, Hian Kee

    2011-10-30

    For the first time, haloacetic acids and aromatic acetic acids were extracted from wastewater samples using electromembrane extraction (EME). A thin layer of toluene immobilized on the walls of a polypropylene membrane envelope served as an artificial supported liquid membrane (SLM). The haloacetic acids (HAAs) (chloroacetic acid, dichloroacetic acid, and trifluoroacetic acid) and aromatic acetic acids (phenylacetic acid and p-hydroxyphenylacetic acid) were extracted through the SLM and into an alkalized aqueous buffer solution. The buffer solution was located inside the membrane envelope. The electrical potential difference sustained over the membrane acted as the driving force for the transport of haloacetic acids into the membrane by electrokinetic migration. After extraction, the extracts were analyzed by high-performance liquid chromatography-ultraviolet detection. The detection limits were between 0.072 and 40.3 ng L(-1). The calibration plot linearity was in the range of 5 and 200 μg L(-1) while the correlation coefficients for the analytes ranged from 0.9932 to 0.9967. Relative recoveries were in the range of 87-106%. The extraction efficiency was found to be comparable to that of solid-phase extraction.

  11. Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2

    PubMed Central

    Qian, Qingli; Zhang, Jingjing; Cui, Meng; Han, Buxing

    2016-01-01

    Acetic acid is an important bulk chemical that is currently produced via methanol carbonylation using fossil based CO. Synthesis of acetic acid from the renewable and cheap CO2 is of great importance, but state of the art routes encounter difficulties, especially in reaction selectivity and activity. Here we report a route to produce acetic acid from CO2, methanol and H2. The reaction can be efficiently catalysed by Ru–Rh bimetallic catalyst using imidazole as the ligand and LiI as the promoter in 1,3-dimethyl-2-imidazolidinone (DMI) solvent. It is confirmed that methanol is hydrocarboxylated into acetic acid by CO2 and H2, which accounts for the outstanding reaction results. The reaction mechanism is proposed based on the control experiments. The strategy opens a new way for acetic acid production and CO2 transformation, and represents a significant progress in synthetic chemistry. PMID:27165850

  12. Glacial Acetic Acid Adverse Events: Case Reports and Review of the Literature

    PubMed Central

    Doles, William; Wilkerson, Garrett; Morrison, Samantha

    2015-01-01

    Glacial acetic acid is a dangerous chemical that has been associated with several adverse drug events involving patients over recent years. When diluted to the proper concentration, acetic acid solutions have a variety of medicinal uses. Unfortunately, despite warnings, the improper dilution of concentrated glacial acetic acid has resulted in severe burns and other related morbidities. We report on 2 additional case reports of adverse drug events involving glacial acetic acid as well as a review of the literature. A summary of published case reports is provided, including the intended and actual concentration of glacial acetic acid involved, the indication for use, degree of exposure, and resultant outcome. Strategies that have been recommended to improve patient safety are summarized within the context of the key elements of the medication use process. PMID:26448660

  13. RESTORATION OF NORMAL GLUTAMIC ACID TRANSPORT IN VITAMIN B6-DEFICIENT LACTOBACILLUS PLANTARUM BY ACETATE, AMMONIUM, AND VITAMIN B6,

    DTIC Science & Technology

    GLUTAMIC ACID, * LACTOBACILLUS , VITAMIN B COMPLEX, METABOLIC DISEASES, VITAMIN B COMPLEX, ACETATES, AMMONIUM COMPOUNDS, CHLORAMPHENICOL, DEOXYRIBONUCLEIC ACIDS, AMINO ACIDS, PENICILLINS, CELL WALL, SYNTHESIS, OSMOSIS.

  14. Acetic acid induces pH-independent cellular energy depletion in Salmonella enterica.

    PubMed

    Tan, Sin Mei; Lee, Sui Mae; Dykes, Gary A

    2015-03-01

    Weak organic acids are widely used as preservatives and disinfectants in the food industry. Despite their widespread use, the antimicrobial mode of action of organic acids is still not fully understood. This study investigated the effect of acetic acid on the cell membranes and cellular energy generation of four Salmonella strains. Using a nucleic acid/protein assay, it was established that acetic acid did not cause leakage of intracellular components from the strains. A scanning electron microscopy study further confirmed that membrane disruption was not the antimicrobial mode of action of acetic acid. Some elongated Salmonella cells observed in the micrographs indicated a possibility that acetic acid may inhibit DNA synthesis in the bacterial cells. Using an ATP assay, it was found that at a neutral pH, acetic acid caused cellular energy depletion with an ADP/ATP ratio in the range between 0.48 and 2.63 (p<0.05) that was apparent for the four Salmonella strains. We suggest that this effect was probably due solely to the action of undissociated acid molecules. The antimicrobial effect of acetic acid was better under acidic conditions (ADP/ATP ratio of 5.56 ± 1.27; p<0.05), where the role of both pH and undissociated acid molecules can act together. We concluded that the inhibitory effect of acetic acid is not solely attributable to acidic pH but also to undissociated acid molecules. This finding has implication for the use of acetic acid as an antimicrobial against Salmonella on food products, such as chicken meat, which can buffer its pH.

  15. Production of hydrogen, ethanol and volatile fatty acids from the seaweed carbohydrate mannitol.

    PubMed

    Xia, Ao; Jacob, Amita; Herrmann, Christiane; Tabassum, Muhammad Rizwan; Murphy, Jerry D

    2015-10-01

    Fermentative hydrogen from seaweed is a potential biofuel of the future. Mannitol, which is a typical carbohydrate component of seaweed, was used as a substrate for hydrogen fermentation. The theoretical specific hydrogen yield (SHY) of mannitol was calculated as 5 mol H2/mol mannitol (615.4 mL H2/g mannitol) for acetic acid pathway, 3 mol H2/mol mannitol (369.2 mL H2/g mannitol) for butyric acid pathway and 1 mol H2/mol mannitol (123.1 mL H2/g mannitol) for lactic acid and ethanol pathways. An optimal SHY of 1.82 mol H2/mol mannitol (224.2 mL H2/g mannitol) was obtained by heat pre-treated anaerobic digestion sludge under an initial pH of 8.0, NH4Cl concentration of 25 mM, NaCl concentration of 50mM and mannitol concentration of 10 g/L. The overall energy conversion efficiency achieved was 96.1%. The energy was contained in the end products, hydrogen (17.2%), butyric acid (38.3%) and ethanol (34.2%).

  16. Electrochemical Partial Reforming of Ethanol into Ethyl Acetate Using Ultrathin Co3O4 Nanosheets as a Highly Selective Anode Catalyst

    PubMed Central

    2016-01-01

    Electrochemical partial reforming of organics provides an alternative strategy to produce valuable organic compounds while generating H2 under mild conditions. In this work, highly selective electrochemical reforming of ethanol into ethyl acetate is successfully achieved by using ultrathin Co3O4 nanosheets with exposed (111) facets as an anode catalyst. Those nanosheets were synthesized by a one-pot, templateless hydrothermal method with the use of ammonia. NH3 was demonstrated critical to the overall formation of ultrathin Co3O4 nanosheets. With abundant active sites on Co3O4 (111), the as-synthesized ultrathin Co3O4 nanosheets exhibited enhanced electrocatalytic activities toward water and ethanol oxidations in alkaline media. More importantly, over the Co3O4 nanosheets, the electrooxidation from ethanol to ethyl acetate was so selective that no other oxidation products were yielded. With such a high selectivity, an electrolyzer cell using Co3O4 nanosheets as the anode electrocatalyst and Ni–Mo nanopowders as the cathode electrocatalyst has been successfully built for ethanol reforming. The electrolyzer cell was readily driven by a 1.5 V battery to achieve the effective production of both H2 and ethyl acetate. After the bulk electrolysis, about 95% of ethanol was electrochemically reformed into ethyl acetate. This work opens up new opportunities in designing a material system for building unique devices to generate both hydrogen and high-value organics at room temperature by utilizing electric energy from renewable sources. PMID:27610415

  17. Characterization of low-acetic-acid-producing yeast isolated from 2-deoxyglucose-resistant mutants and its application to high-gravity brewing.

    PubMed

    Mizuno, Akihiro; Tabei, Hideaki; Iwahuti, Masahumi

    2006-01-01

    We isolated a mutant with low acetic acid and high ethanol productivities from 2-deoxyglucose-resistant mutants of brewers' yeast NCYC1245 (Saccharomyces cerevisiae). To determine the mechanism for these properties in the mutant (2DGR19) during fermentation, gene expression and enzyme activity related to acetic acid and ethanol production were investigated. DNA microarray analysis revealed that the transcriptional levels of many genes involved in glycolysis were higher in 2DGR19 than in NCYC1245. Among these transcriptional levels of 2DGR19 relative to NCYC1245, the expression level of ADH4 encoding alcohol dehydrogenase (ADH) was highest, which corresponded to the high ADH activity in 2DGR19. Quantitative PCR analysis also revealed that the transcriptional level of ADH4 was the highest among ADH1 to ADH4. Although no significant differences in the transcriptional levels of ALD2 to ALD6 encoding acetaldehyde dehydrogenase (ALD) between 2DGR19 and NCYC1245 were observed, ALD activity in 2DGR19 was lower. Using quantitative PCR analysis, ALD6 was found to be the most highly expressed among the ALD2 to ALD6 genes. These results indicate that ALD6 contributes to a low ALD activity, depending on post-transcriptional regulation. A high ADH activity appeared to be the major reason for the high ethanol productivity of 2DGR19. A low ALD activity was considered to be principally responsible for a low acetic acid productivity, although a high ADH activity also might have played a role. Beer brewed using 2DGR19 in pilot-scale high-gravity brewing contained about half as much acetic acid and 1.1% more ethanol compared with that brewed using NCYC1245. The use of 2DGR19 may overcome difficulties associated with high-gravity brewing.

  18. Metabolic regulation of the plant hormone indole-3-acetic acid

    SciTech Connect

    Jerry D. Cohen

    2009-11-01

    The phytohormone indole-3-acetic acid (IAA, auxin) is important for many aspects of plant growth, development and responses to the environment yet the routes to is biosynthesis and mechanisms for regulation of IAA levels remain important research questions. A critical issue concerning the biosynthesis if IAA in plants is that redundant pathways for IAA biosynthesis exist in plants. We showed that these redundant pathways and their relative contribution to net IAA production are under both developmental and environmental control. We worked on three fundamental problems related to how plants get their IAA: 1) An in vitro biochemical approach was used to define the tryptophan dependent pathway to IAA using maize endosperm, where relatively large amounts of IAA are produced over a short developmental period. Both a stable isotope dilution and a protein MS approach were used to identify intermediates and enzymes in the reactions. 2) We developed an in vitro system for analysis of tryptophan-independent IAA biosynthesis in maize seedlings and we used a metabolite profiling approach to isolate intermediates in this reaction. 3) Arabidopsis contains a small family of genes that encode potential indolepyruvate decarboxylase enzymes. We cloned these genes and studied plants that are mutant in these genes and that over-express each member in the family in terms of the level and route of IAA biosynthesis. Together, these allowed further development of a comprehensive picture of the pathways and regulatory components that are involved in IAA homeostasis in higher plants.

  19. Acetic acid chromoendoscopy: Improving neoplasia detection in Barrett's esophagus

    PubMed Central

    Chedgy, Fergus J Q; Subramaniam, Sharmila; Kandiah, Kesavan; Thayalasekaran, Sreedhari; Bhandari, Pradeep

    2016-01-01

    Barrett’s esophagus (BE) is an important condition given its significant premalignant potential and dismal five-year survival outcomes of advanced esophageal adenocarcinoma. It is therefore suggested that patients with a diagnosis of BE undergo regular surveillance in order to pick up dysplasia at an earlier stage to improve survival. Current “gold-standard” surveillance protocols suggest targeted biopsy of visible lesions followed by four quadrant random biopsies every 2 cm. However, this method of Barrett’s surveillance is fraught with poor endoscopist compliance as the procedures are time consuming and poorly tolerated by patients. There are also significant miss-rates with this technique for the detection of neoplasia as only 13% of early neoplastic lesions appear as visible nodules. Despite improvements in endoscope resolution these problems persist. Chromoendoscopy is an extremely useful adjunct to enhance mucosal visualization and characterization of Barrett’s mucosa. Acetic acid chromoendoscopy (AAC) is a simple, non-proprietary technique that can significantly improve neoplasia detection rates. This topic highlight summarizes the current evidence base behind AAC for the detection of neoplasia in BE and provides an insight into the direction of travel for further research in this area. PMID:27433088

  20. Radioimmunoassay of 5-hydroxyindole acetic acid using an iodinated derivative

    SciTech Connect

    Puizillout, J.J.; Delaage, M.A.

    1981-06-01

    A radioimmunoassay for the main catabolite of serotonin, 5-hydroxyindole acetic acid (5-HIAA), was developed by using specific antibodies and iodinated derivative. The synthesis of a /sup 125/I-iodinated analog was performed by coupling 5-HIAA to (125I-)glycyl-tyrosine without any contact between 5-HIAA and iodine or chloramine T. It was purified on a G25 Sephadex column and diluted in citrate buffer up to 2.5 X 10(5) cpm/ml. Antibodies were obtained by coupling 5-HIAA to human serum albumin with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and tested by equilibrium dialysis. After the third immunogen injection, the four rabbits gave antisera capable of binding 50% of iodinated 5-HIIA-glycyl-tyrosine at 1/2000 final dilution. A chemical conversion of the biological samples gives to the antigen molecules a better resemblance to the immunogen, thus conferring a 100-fold gain in specificity and sensitivity. This assay allows 5-HIAA to be determined in small amounts of tissue, blood, cerebrospinal fluid or perfusate without purification with a sensitivity threshold below 0.1 ng. Some applications in cat and rat are presented.

  1. Bombella intestini gen. nov., sp. nov., an acetic acid bacterium isolated from bumble bee crop.

    PubMed

    Li, Leilei; Praet, Jessy; Borremans, Wim; Nunes, Olga C; Manaia, Célia M; Cleenwerck, Ilse; Meeus, Ivan; Smagghe, Guy; De Vuyst, Luc; Vandamme, Peter

    2015-01-01

    In the frame of a bumble bee gut microbiota study, acetic acid bacteria (AAB) were isolated using a combination of direct isolation methods and enrichment procedures. MALDI-TOF MS profiling of the isolates and a comparison of these profiles with profiles of established AAB species identified most isolates as Asaia astilbis or as 'Commensalibacter intestini', except for two isolates (R-52486 and LMG 28161(T)) that showed an identical profile. A nearly complete 16S rRNA gene sequence of strain LMG 28161(T) was determined and showed the highest pairwise similarity to Saccharibacter floricola S-877(T) (96.5%), which corresponded with genus level divergence in the family Acetobacteraceae. Isolate LMG 28161(T) was subjected to whole-genome shotgun sequencing; a 16S-23S rRNA internal transcribed spacer (ITS) sequence as well as partial sequences of the housekeeping genes dnaK, groEL and rpoB were extracted for phylogenetic analyses. The obtained data confirmed that this isolate is best classified into a new genus in the family Acetobacteraceae. The DNA G+C content of strain LMG 28161(T) was 54.9 mol%. The fatty acid compositions of isolates R-52486 and LMG 28161(T) were similar to those of established AAB species [with C18:1ω7c (43.1%) as the major component], but the amounts of fatty acids such as C19:0 cyclo ω8c, C14:0 and C14:0 2-OH enabled to differentiate them. The major ubiquinone was Q-10. Both isolates could also be differentiated from the known genera of AAB by means of biochemical characteristics, such as their inability to oxidize ethanol to acetic acid, negligible acid production from melibiose, and notable acid production from d-fructose, sucrose and d-mannitol. In addition, they produced 2-keto-d-gluconate, but not 5-keto-d-gluconate from d-glucose. Therefore, the name Bombella intestini gen nov., sp. nov. is proposed for this new taxon, with LMG 28161(T) ( =DSM 28636(T) =R-52487(T)) as the type strain of the type species.

  2. Evaluation of the morphological changes of gastric mucosa induced by a low concentration of acetic acid using a rat model.

    PubMed

    Nakao, Ken-ichiro; Ro, Ayako; Kibayashi, Kazuhiko

    2014-02-01

    Oral ingestion of concentrated acetic acid causes corrosive injury of the gastrointestinal tract. To assess the effects of a low concentration of acetic acid on gastric mucosa, we examined the gastric mucosal changes in rats at 1 and 3 days after the injection of 5% or 25% acetic acid into the gastric lumen. The area of the gastric ulcerative lesions in the 25% acetic acid group was significantly larger than that in the 5% acetic acid group. The lesion area was reduced significantly at 3 days after injection in the 5% acetic acid group, whereas no significant difference in lesion area was observed at 1 and 3 days in the 25% acetic acid group. Histologically, corrosive necrosis was limited to the mucosal layer in the 5% acetic acid group, whereas necrosis extended throughout the gastric wall in the 25% acetic acid group. At 3 days post-injection, the 25% acetic acid group showed widespread persistent inflammation, whereas the 5% acetic acid group showed widespread appearance of fibroblasts indicative of a healing process. These results indicate that a low concentration of acetic acid damages the gastric mucosa and that the degree of mucosal damage depends on the concentration of acetic acid.

  3. Acetic Acid Bacteria, Newly Emerging Symbionts of Insects▿

    PubMed Central

    Crotti, Elena; Rizzi, Aurora; Chouaia, Bessem; Ricci, Irene; Favia, Guido; Alma, Alberto; Sacchi, Luciano; Bourtzis, Kostas; Mandrioli, Mauro; Cherif, Ameur; Bandi, Claudio; Daffonchio, Daniele

    2010-01-01

    Recent research in microbe-insect symbiosis has shown that acetic acid bacteria (AAB) establish symbiotic relationships with several insects of the orders Diptera, Hymenoptera, Hemiptera, and Homoptera, all relying on sugar-based diets, such as nectars, fruit sugars, or phloem sap. To date, the fruit flies Drosophila melanogaster and Bactrocera oleae, mosquitoes of the genera Anopheles and Aedes, the honey bee Apis mellifera, the leafhopper Scaphoideus titanus, and the mealybug Saccharicoccus sacchari have been found to be associated with the bacterial genera Acetobacter, Gluconacetobacter, Gluconobacter, Asaia, and Saccharibacter and the novel genus Commensalibacter. AAB establish symbiotic associations with the insect midgut, a niche characterized by the availability of diet-derived carbohydrates and oxygen and by an acidic pH, selective factors that support AAB growth. AAB have been shown to actively colonize different insect tissues and organs, such as the epithelia of male and female reproductive organs, the Malpighian tubules, and the salivary glands. This complex topology of the symbiosis indicates that AAB possess the keys for passing through body barriers, allowing them to migrate to different organs of the host. Recently, AAB involvement in the regulation of innate immune system homeostasis of Drosophila has been shown, indicating a functional role in host survival. All of these lines of evidence indicate that AAB can play different roles in insect biology, not being restricted to the feeding habit of the host. The close association of AAB and their insect hosts has been confirmed by the demonstration of multiple modes of transmission between individuals and to their progeny that include vertical and horizontal transmission routes, comprising a venereal one. Taken together, the data indicate that AAB represent novel secondary symbionts of insects. PMID:20851977

  4. Cell wall dynamics modulate acetic acid-induced apoptotic cell death of Saccharomyces cerevisiae

    PubMed Central

    Rego, António; Duarte, Ana M.; Azevedo, Flávio; Sousa, Maria J.; Côrte-Real, Manuela; Chaves, Susana R.

    2014-01-01

    Acetic acid triggers apoptotic cell death in Saccharomyces cerevisiae, similar to mammalian apoptosis. To uncover novel regulators of this process, we analyzed whether impairing MAPK signaling affected acetic acid-induced apoptosis and found the mating-pheromone response and, especially, the cell wall integrity pathways were the major mediators, especially the latter, which we characterized further. Screening downstream effectors of this pathway, namely targets of the transcription factor Rlm1p, highlighted decreased cell wall remodeling as particularly important for acetic acid resistance. Modulation of cell surface dynamics therefore emerges as a powerful strategy to increase acetic acid resistance, with potential application in industrial fermentations using yeast, and in biomedicine to exploit the higher sensitivity of colorectal carcinoma cells to apoptosis induced by acetate produced by intestinal propionibacteria. PMID:28357256

  5. Scaleable production and separation of fermentation-derived acetic acid. Final CRADA report.

    SciTech Connect

    Snyder, S. W.; Energy Systems

    2010-02-08

    Half of U.S. acetic acid production is used in manufacturing vinyl acetate monomer (VAM) and is economical only in very large production plants. Nearly 80% of the VAM is produced by methanol carbonylation, which requires high temperatures and exotic construction materials and is energy intensive. Fermentation-derived acetic acid production allows for small-scale production at low temperatures, significantly reducing the energy requirement of the process. The goal of the project is to develop a scaleable production and separation process for fermentation-derived acetic acid. Synthesis gas (syngas) will be fermented to acetic acid, and the fermentation broth will be continuously neutralized with ammonia. The acetic acid product will be recovered from the ammonium acid broth using vapor-based membrane separation technology. The process is summarized in Figure 1. The two technical challenges to success are selecting and developing (1) microbial strains that efficiently ferment syngas to acetic acid in high salt environments and (2) membranes that efficiently separate ammonia from the acetic acid/water mixture and are stable at high enough temperature to facilitate high thermal cracking of the ammonium acetate salt. Fermentation - Microbial strains were procured from a variety of public culture collections (Table 1). Strains were incubated and grown in the presence of the ammonium acetate product and the fastest growing cultures were selected and incubated at higher product concentrations. An example of the performance of a selected culture is shown in Figure 2. Separations - Several membranes were considered. Testing was performed on a new product line produced by Sulzer Chemtech (Germany). These are tubular ceramic membranes with weak acid functionality (see Figure 3). The following results were observed: (1) The membranes were relatively fragile in a laboratory setting; (2) Thermally stable {at} 130 C in hot organic acids; (3) Acetic acid rejection > 99%; and (4

  6. Absorption cross section for the 5νOH stretch of acetic acid and peracetic acid

    NASA Astrophysics Data System (ADS)

    Begashaw, I. G.; Collingwood, M.; Bililign, S.

    2009-12-01

    We report measurements of the absorption cross sections for the vibrational O-H stretch (5νOH) overtone transitions in glacial acetic acid and peracetic acid. The photochemistry that results from overtone excitation has been shown to lead to OH radical production in molecules containing O-H (HNO3, H2O2). In addition the overtone excitation has been observed to result in light initiated chemical reaction. A Cavity ring-down spectroscopy (CRDS) instrument comprising of an Nd:YAG pumped dye laser and 620nm high reflectivity mirrors (R=99.995%) was used to measure the cross sections. The dye laser wavelength was calibrated using water vapor spectrum and the HITRAN 2008 database. The instrument’s minimum detectable absorption is αmin =4.5 *10-9cm-1 Hz-1/2 at 2σ noise level near the peak of the absorption feature. This measurement is the first for acetic acid at this excitation level. Preliminary results for acetic acid show the peak occurs near 615nm. Procedures for separating the monomer and dimer contribution will be presented. We would like to acknowledge support from NSF award #0803016 and NOAA-EPP award #NA06OAR4810187.

  7. Beneficial Effect of Acetic Acid on the Xylose Utilization and Bacterial Cellulose Production by Gluconacetobacter xylinus.

    PubMed

    Yang, Xiao-Yan; Huang, Chao; Guo, Hai-Jun; Xiong, Lian; Luo, Jun; Wang, Bo; Chen, Xue-Fang; Lin, Xiao-Qing; Chen, Xin-De

    2014-09-01

    In this work, acetic acid was found as one promising substrate to improve xylose utilization by Gluconacetobacter xylinus CH001. Also, with the help of adding acetic acid into medium, the bacterial cellulose (BC) production by G. xylinus was increased significantly. In the medium containing 3 g l(-1) acetic acid, the optimal xylose concentration for BC production was 20 g l(-1). In the medium containing 20 g l(-1) xylose, the xylose utilization and BC production by G. xylinus were stimulated by acetic acid within certain concentration. The highest BC yield (1.35 ± 0.06 g l(-1)) was obtained in the medium containing 20 g l(-1) xylose and 3 g l(-1) acetic acid after 14 days. This value was 6.17-fold higher than the yield (0.21 ± 0.01 g l(-1)) in the medium only containing 20 g l(-1) xylose. The results analyzed by FE-SEM, FTIR, and XRD showed that acetic acid affected little on the microscopic morphology and physicochemical characteristics of BC. Base on the phenomenon observed, lignocellulosic acid hydrolysates (xylose and acetic acid are main carbon sources present in it) could be considered as one potential substrate for BC production.

  8. Tolerance to acetic acid is improved by mutations of the TATA-binding protein gene.

    PubMed

    An, Jieun; Kwon, Hyeji; Kim, Eunjung; Lee, Young Mi; Ko, Hyeok Jin; Park, Hongjae; Choi, In-Geol; Kim, Sooah; Kim, Kyoung Heon; Kim, Wankee; Choi, Wonja

    2015-03-01

    Screening a library of overexpressing mutant alleles of the TATA-binding gene SPT15 yielded two Saccharomyces cerevisiae strains (MRRC 3252 and 3253) with enhanced tolerance to acetic acid. They were also tolerant to propionic acid and hydrogen peroxide. Transcriptome profile analysis identified 58 upregulated genes and 106 downregulated genes in MRRC 3252. Stress- and protein synthesis-related transcription factors were predominantly enriched in the upregulated and downregulated genes respectively. Eight deletion mutants for some of the highly downregulated genes were acetic acid-tolerant. The level of intracellular reactive oxygen species was considerably lessened in MRRC 3252 and 3253 upon exposure to acetic acid. Metabolome profile analysis revealed that intracellular concentrations of 5 and 102 metabolites were increased and decreased, respectively, in MRRC 3252, featuring a large increase of urea and a significant decrease of amino acids. The dur1/2Δmutant, in which the urea degradation gene DUR1/2 is deleted, displayed enhanced tolerance to acetic acid. Enhanced tolerance to acetic acid was also observed on the medium containing a low concentration of amino acids. Taken together, this study identified two SPT15 alleles, nine gene deletions and low concentration of amino acids in the medium that confer enhanced tolerance to acetic acid.

  9. Microbial process for the preparation of acetic acid, as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2004-06-22

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  10. Microbial process for the preparation of acetic acid, as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2007-03-27

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  11. In vitro bile acid binding and short-chain fatty acid profile of flax fiber and ethanol co-products.

    PubMed

    Fodje, Adele M L; Chang, Peter R; Leterme, Pascal

    2009-10-01

    Fibers from flaxseed and co-products from ethanol production could be potential sources of dietary fiber in human diet. In vitro fermentation and bile acid binding models were used to investigate the metabolic effects of lignaMax (Bioriginal Food and Science Corp., Saskatoon, SK, Canada) flax meal, spent flax meal, soluble flax gum, wheat insoluble fiber (WIF), and rye insoluble fiber (RIF). Wheat and rye bran were used as reference samples. Bile acid binding of substrates was analysed at taurocholate ([(14)C]taurocholate) concentration of 12.5 mM. Soluble flax gum showed the highest bile acid binding (0.57 micromol/mg of fiber) (P acid binding between wheat bran (0.2 micromol/mg of fiber) and WIF (0.26 micromol/mg of fiber). RIF had higher (P acid binding (0.20 micromol/mg of fiber) than rye bran (0.13 micromol/mg of fiber). Substrates were hydrolyzed and incubated with pig fecal samples. Short-chain fatty acid (SCFA) profile and gas accumulation (G(f)) were compared. Soluble flax gum generated the highest amount of acetic and propionic acids. SCFA profiles of wheat/rye brans and WIF/RIF were similar (except for butyric acid). G(f) for soluble flax gum was greater (P < .001) than that of spent flax meal. G(f) values of the wheat samples were similar, whereas the G(f) of the rye bran was higher (P < .001) than that of RIF. Fractional degradation rate (micro(t = T/2)) (P < .001) was also recorded. The highest mu(t = T/2) was observed for the soluble flax gum. Oil-depleted flaxseed fractions and WIF/RIF (co-products from ethanol production) could be potential sources of dietary fiber in human nutrition.

  12. Effects of acetic acid on the viability of Ascaris lumbricoides eggs

    PubMed Central

    Beyhan, Yunus E.; Yilmaz, Hasan; Hokelek, Murat

    2016-01-01

    Objectives: To investigate the effects of acetic acid on durable Ascaris lumbricoides (A. lumbricoides) eggs to determine the effective concentration of vinegar and the implementation period to render the consumption of raw vegetables more reliable. Methods: This experimental study was performed in May 2015 in the Parasitology Laboratory, Faculty of Medicine, Yuzuncu Yil University, Van, Turkey. The A. lumbricoides eggs were divided into 2 groups. Eggs in the study group were treated with 1, 3, 5, and 10% acetic acid concentrations, and eggs in the control group were treated with Eosin. The eggs’ viability was observed at the following points in time during the experiment: 0, 10, 15, 20, 30, 45, and 60 minutes. Results: The 1% acetic acid was determined insufficient on the viability of Ascaris eggs. At the 30th minute, 3% acetic acid demonstrated 95% effectiveness, and at 5% concentration, all eggs lost their viability. Treatment of acetic acid at the ratio of 4.8% in 30 minutes, or a ratio of 4.3% in 60 minutes is required for full success of tretment. Conclusion: Since Ascaris eggs have 3 layers and are very resistant, the acetic acid concentration, which can be effective on these eggs are thought to be effective also on many other parasitic agents. In order to attain an active protection, after washing the vegetables, direct treatment with a vinegar containing 5% acetic acid for 30 minutes is essential. PMID:26905351

  13. Indole-3-Acetic Acid Biosynthesis in Colletotrichum gloeosporioides f. sp. aeschynomene

    PubMed Central

    Robinson, M.; Riov, J.; Sharon, A.

    1998-01-01

    We characterized the biosynthesis of indole-3-acetic acid by the mycoherbicide Colletotrichum gloeosporioides f. sp. aeschynomene. Auxin production was tryptophan dependent. Compounds from the indole-3-acetamide and indole-3-pyruvic acid pathways were detected in culture filtrates. Feeding experiments and in vitro assay confirmed the presence of both pathways. Indole-3-acetamide was the major pathway utilized by the fungus to produce indole-3-acetic acid in culture. PMID:9835603

  14. Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement

    PubMed Central

    Muralidharan, Pooja; Sarmah, Swapnalee; Marrs, James A.

    2014-01-01

    Fetal Alcohol Spectrum Disorder (FASD) is caused by prenatal alcohol exposure, producing craniofacial, sensory, motor, and cognitive defects. FASD is highly prevalent in low socioeconomic populations, which are frequently accompanied by malnutrition. FASD-associated ocular pathologies include microphthalmia, optic nerve hypoplasia, and cataracts. The present study characterizes specific retinal tissue defects, identifies ethanol-sensitive stages during retinal development, and dissects the effect of nutrient supplements, such as retinoic acid (RA) and folic acid (FA) on ethanol-induced retinal defects. Exposure to pathophysiological concentrations of ethanol (during midblastula transition through somitogenesis; 2–24 hours post fertilization [hpf]) altered critical transcription factor expression involved in retinal cell differentiation, and produced severe retinal ganglion cell, photoreceptor, and Müller glial differentiation defects. Ethanol exposure did not alter retinal cell differentiation induction, but increased retinal cell death and proliferation. RA and FA nutrient co-supplementation rescued retinal photoreceptor and ganglion cell differentiation defects. Ethanol exposure during retinal morphogenesis stages (16–24 hpf) produced retinal defects like those seen with ethanol exposure between 2–24 hpf. Significantly, during an ethanol-sensitive time window (16–24 hpf), RA co-supplementation moderately rescued these defects, whereas FA co-supplementation showed significant rescue of optic nerve and photoreceptor differentiation defects. Interestingly, RA, but not FA, supplementation after ethanol exposure could reverse ethanol-induced optic nerve and photoreceptor differentiation defects. Our results indicate that various ethanol-sensitive events underlie FASD-associated retinal defects. Nutrient supplements like retinoids and folate were effective in alleviating ethanol-induced retinal defects. PMID:25541501

  15. Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement.

    PubMed

    Muralidharan, Pooja; Sarmah, Swapnalee; Marrs, James A

    2015-03-01

    Fetal Alcohol Spectrum Disorder (FASD) is caused by prenatal alcohol exposure, producing craniofacial, sensory, motor, and cognitive defects. FASD is highly prevalent in low socioeconomic populations, which are frequently accompanied by malnutrition. FASD-associated ocular pathologies include microphthalmia, optic nerve hypoplasia, and cataracts. The present study characterizes specific retinal tissue defects, identifies ethanol-sensitive stages during retinal development, and dissects the effect of nutrient supplements, such as retinoic acid (RA) and folic acid (FA) on ethanol-induced retinal defects. Exposure to pathophysiological concentrations of ethanol (during midblastula transition through somitogenesis; 2-24 h post fertilization [hpf]) altered critical transcription factor expression involved in retinal cell differentiation, and produced severe retinal ganglion cell, photoreceptor, and Müller glial differentiation defects. Ethanol exposure did not alter retinal cell differentiation induction, but increased retinal cell death and proliferation. RA and FA nutrient co-supplementation rescued retinal photoreceptor and ganglion cell differentiation defects. Ethanol exposure during retinal morphogenesis stages (16-24 hpf) produced retinal defects like those seen with ethanol exposure between 2 and 24 hpf. Significantly, during an ethanol-sensitive time window (16-24 hpf), RA co-supplementation moderately rescued these defects, whereas FA co-supplementation showed significant rescue of optic nerve and photoreceptor differentiation defects. Interestingly, RA, but not FA, supplementation after ethanol exposure could reverse ethanol-induced optic nerve and photoreceptor differentiation defects. Our results indicate that various ethanol-sensitive events underlie FASD-associated retinal defects. Nutrient supplements like retinoids and folate were effective in alleviating ethanol-induced retinal defects.

  16. Influence of ethanol and temperature on the cellular fatty acid composition of Zygosaccharomyces bailii spoilage yeasts.

    PubMed

    Baleiras Couto, M M; Huis in't Veld, J H

    1995-03-01

    Changes in the fatty acid profile of Zygosaccharomyces bailii strains, isolated from different sources, after growth at increasing concentrations of ethanol and/or decreasing temperatures were determined. Differences in fatty acid composition between Zygosaccharomyces bailii strains at standard conditions (25 degrees C, 0% initial ethanol) were observed and could be related to ethanol tolerance. Zygosaccharomyces bailii strain isolated from wine showed the highest ethanol tolerance in relation to growth rate. Surprisingly, an increase in ethanol concentration or a decrease in growth temperature caused a decrease in the degree of unsaturation of total cellular fatty acids. On the other hand, the mean chain length increased (high ethanol concentration) or decreased (low temperature) depending on the stress factor. When both stress situations (high ethanol concentration and low temperature) were present at the same time, the degree of unsaturation remained approximately constant. With decreasing temperatures, the C16/C18 ratio increased in studies of initial ethanol content below 5%, and above 5% ethanol, decreased.

  17. Dispersion in the presence of acetic acid or ammonia confers gliadin-like characteristics to the glutenin in wheat gluten.

    PubMed

    Murakami, Tetsuya; Kitabatake, Naofumi; Tani, Fumito

    2015-02-01

    Spray-dried gluten has unique properties and is commercially available in the food industry worldwide. In this study, we examined the viscoelastic properties of gluten powder prepared by dispersion in the presence of acetic acid or an ammonia solvent and then followed by lyophilization instead of a spray drying. Mixograph measurements showed that the acid- and ammonia-treated gluten powders had marked decreases in the time to peak dough resistance when compared with the control gluten powder. The integrals of the dough resistance and bandwidth for 3 min after peak dough resistance decreased in both treated gluten powders. Similar phenomena were observed when gliadin was supplemented to gluten powders. Basic and acidic conditions were applied to the acid- and ammonia-treated gluten powders, respectively, and the viscoelastic behaviors were found to depend on the pH in the gluten dispersion just before lyophilization. These behaviors suggest that gluten may assume a reversible change in viscoelasticity by a fluctuation in pH during gluten dispersion. SDS-PAGE showed that the extractable proteins substantially increased in some polymeric glutenins including the low molecular weight-glutenin subunit (LMW-GS) when the ammonia-treated gluten powder was extracted with 70% ethanol. In contrast, the extractable proteins markedly increased in many polymeric glutenins including the high molecular weight-glutenin subunit and/or the LMW-GS when the acid-treated gluten powder was extracted with 70% ethanol. It thus follows that the extractability of polymeric glutenin to ethanol increases similarly to gliadin when gluten is exposed to an acidic or a basic pH condition; therefore, glutenin adopts gliadin-like characteristics.

  18. Sugar-Based Ethanol Biorefinery: Ethanol, Succinic Acid and By-Product Production

    SciTech Connect

    Donal F. Day

    2009-03-31

    The work conducted in this project is an extension of the developments itemized in DE-FG-36-04GO14236. This program is designed to help the development of a biorefinery based around a raw sugar mill, which in Louisiana is an underutilized asset. Some technical questions were answered regarding the addition of a biomass to ethanol facility to existing sugar mills. The focus of this work is on developing technology to produce ethanol and valuable by-products from bagasse. Three major areas are addressed, feedstock storage, potential by-products and the technology for producing ethanol from dilute ammonia pre-treated bagasse. Sugar mills normally store bagasse in a simple pile. During the off season there is a natural degradation of the bagasse, due to the composting action of microorganisms in the pile. This has serious implications if bagasse must be stored to operate a bagasse/biorefinery for a 300+ day operating cycle. Deterioration of the fermentables in bagasse was found to be 6.5% per month, on pile storage. This indicates that long term storage of adequate amounts of bagasse for year-round operation is probably not feasible. Lignin from pretreatment seemed to offer a potential source of valuable by-products. Although a wide range of phenolic compounds were present in the effluent from dilute ammonia pretreatment, the concentrations of each (except for benzoic acid) were too low to consider for extraction. The cellulosic hydrolysis system was modified to produce commercially recoverable quantities of cellobiose, which has a small but growing market in the food process industries. A spin-off of this led to the production of a specific oligosaccharide which appears to have both medical and commercial implications as a fungal growth inhibitor. An alternate use of sugars produced from biomass hydrolysis would be to produce succinic acid as a chemical feedstock for other conversions. An organism was developed which can do this bioconversion, but the economics of

  19. Theophylline-7-acetic acid derivatives with amino acids as anti-tuberculosis agents.

    PubMed

    Voynikov, Yulian; Valcheva, Violeta; Momekov, Georgi; Peikov, Plamen; Stavrakov, Georgi

    2014-07-15

    A series of amides were synthesized by condensation of theophylline-7-acetic acid and eight commercially available amino acid methyl ester hydrochlorides. Consecutive hydrolysis of six of the amido-esters resulted in the formation of corresponding amido-acids. The newly synthesized compounds were evaluated for their in vitro activity against Mycobacterium tuberculosis H37Rv. The activity varied depending on the amino acid fragments and in seven cases exerted excellent values with MICs 0.46-0.26 μM. Assessment of the cytotoxicity revealed that the compounds were not cytotoxic against the human embryonal kidney cell line HEK-293T. The theophylline-7-acetamides containing amino acid moieties appear to be promising lead compounds for the development of antimycobacterial agents.

  20. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acetic acid, , 1-methyl hexyl ester... Substances § 721.304 Acetic acid, , 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as acetic acid, -, 1-methylhexyl ester (PMN...

  1. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acetic acid, , 1-methyl hexyl ester... Substances § 721.304 Acetic acid, , 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as acetic acid, -, 1-methylhexyl ester (PMN...

  2. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acetic acid, , 1-methyl hexyl ester... Substances § 721.304 Acetic acid, , 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as acetic acid, -, 1-methylhexyl ester (PMN...

  3. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acetic acid, , 1-methyl hexyl ester... Substances § 721.304 Acetic acid, , 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as acetic acid, -, 1-methylhexyl ester (PMN...

  4. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acetic acid, , 1-methyl hexyl ester... Substances § 721.304 Acetic acid, , 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as acetic acid, -, 1-methylhexyl ester (PMN...

  5. Isolation of cellulose from rice straw and its conversion into cellulose acetate catalyzed by phosphotungstic acid.

    PubMed

    Fan, Guozhi; Wang, Min; Liao, Chongjing; Fang, Tao; Li, Jianfen; Zhou, Ronghui

    2013-04-15

    Cellulose was isolated from rice straw by pretreatment with dilute alkaline and acid solutions successively, and it was further transferred into cellulose acetate in the presence of acetic anhydride and phosphotungstic acid (H3PW12O40·6H2O). The removal of hemicellulose and lignin was affected by the concentration of KOH and the immersion time in acetic acid solution, and 83wt.% content of cellulose in the treated rice straw was obtained after pretreatment with 4% KOH and immersion in acetic acid for 5h. Phosphotungstic acid was found to be an effective catalyst for the acetylation of the cellulose derived from rice straw. The degree of substitution (DS) values revealed a significant effect for the solubility of cellulose acetate, and the acetone-soluble cellulose acetate with DS values around 2.2 can be obtained by changing the amount of phosphotungstic acid and the time of acetylation. Both the structure of cellulose separated from rice straw and cellulose acetate were confirmed by FTIR and XRD.

  6. Hypoglycemic Effect of Ethanol and Ethyl Acetate Extract of Phellinus baumii Fruiting Body in Streptozotocin-Induced Diabetic Mice

    PubMed Central

    Wang, Wen-Han; Wu, Fei-Hua; Yang, Yan; Wu, Na; Zhang, Jing-Song; Feng, Na; Tang, Chuan-Hong

    2015-01-01

    We investigated hypoglycemic effect of ethanol (EtOH) and ethyl acetate extract acetate (AcOEt) extracts in streptozotocin- (STZ-) induced diabetic mice. Our data showed the maximum inhibitory effect on the fasting plasma glucose (FPG) level was detected in STZ-induced diabetic mice administered with 400 mg/kg AcOEt extract of P. baumii. A lower glycated albumin (GA) level and a higher insulin level were observed in 400 mg/kg AcOEt and EtOH extract groups. Moreover, 400 mg/kg AcOEt and EtOH extract exhibited a stronger effect on increasing size and cell number of islets. The insulin expression level of β-cells and integrated optical density (IOD) value were significantly increased by the administration of 400 mg/kg AcOEt and EtOH extracts. Taken together, AcOEt and EtOH extracts of P. baumii fruiting body exhibited considerable hypoglycemic effect on STZ-induced diabetic mice. PMID:26221177

  7. Fuel ethanol production from corn stover under optimized dilute phosphoric acid pretreatment and enzymatic hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethanol is a renewable oxygenated fuel. Dilute acid pretreatment is a promising pretreatment technology for conversion of lignocellulosic biomass to fuel ethanol. Generation of fermentable sugars from corn stover involves pretreatment and enzymatic saccharification. Pretreatment is crucial as nat...

  8. Two crystalline polymorphic forms of α-( N-benzoxazolin-2-one)acetic acid

    NASA Astrophysics Data System (ADS)

    Ashurov, J. M.; Izotova, L. Yu.; Ibragimov, B. T.; Mukhamedov, N. S.

    2017-01-01

    Two crystalline polymorphic forms of α-( N-benzoxazolin-2-one)acetic acid (BAA) are prepared by changing the temperature of its crystallization from solution in ethanol. Crystallographic data of the α-form are determined: a = 12.7769(17) Å, b = 8.2574(9) Å, c = 16.7390(19) Å, β = 105.087(13)°, space group C2/ c, V = 1705.2(4) Å3, and Z = 8, while those of β form are a = 5.2854(4) Å, b = 5.9880(4) Å, c = 13.4509(5) Å, β = 94.666(4)°, space group P21, V = 424.30(4) Å3, and Z = 2. It is found that BAA molecules of the α form combine into infinite one-dimensional chains arranged along axis b by means of O‒H···O and C‒H···O hydrogen bonds, and these chains are crosslinked via C‒H···O hydrogen bonds to form a threedimensional structure. The β form has another system of hydrogen bonds, one of which is bifurcated (O4···O2, O4···O3), and the π-π-interactions between the benzoxazolinone fragments of BAA molecules combined into a chain also arranged along axis b are observed. Calorimetric analysis shows that the polymorphic transition from the α form to the β form occurs at 129°C.

  9. Acute intestinal injury induced by acetic acid and casein: prevention by intraluminal misoprostol

    SciTech Connect

    Miller, M.J.; Zhang, x.J.; Gu, x.A.; Clark, D.A. )

    1991-07-01

    Acute injury was established in anesthetized rabbits by intraluminal administration of acetic acid with and without bovine casein, into loops of distal small intestine. Damage was quantified after 45 minutes by the blood-to-lumen movement of {sup 51}Cr-labeled ethylenediaminetetraacetic acid (EDTA) and fluorescein isothiocyanate-tagged bovine serum albumin as well as luminal fluid histamine levels. The amount of titratable acetic acid used to lower the pH of the treatment solutions to pH 4.0 was increased by the addition of calcium gluconate. Luminal acetic acid caused a 19-fold increase in {sup 51}Cr-EDTA accumulation over saline controls; casein did not modify this effect. In saline controls, loop fluid histamine levels bordered on the limits of detection (1 ng/g) but were elevated 19-fold by acetic acid exposure and markedly increased (118-fold) by the combination of acid and casein. Intraluminal misoprostol (3 or 30 micrograms/mL), administered 30 minutes before acetic acid, significantly attenuated the increase in epithelial permeability (luminal {sup 51}Cr-EDTA, fluorescein isothiocyanate-bovine serum albumin accumulation) and histamine release (P less than 0.05). Diphenhydramine, alone or in combination with cimetidine, and indomethacin (5 mg/kg IV) were not protective. It is concluded that exposure of the epithelium to acetic acid promotes the transepithelial movement of casein leading to enhanced mast cell activation and mucosal injury. Damage to the epithelial barrier can be prevented by misoprostol.

  10. Laboratory and field measurements to constrain atmospheric sources of acetic and formic acids

    NASA Astrophysics Data System (ADS)

    Baasandorj, M.; Hu, L.; Mitroo, D.; Martinez, R.; Walker, M.; Williams, B. J.; Millet, D. B.

    2013-12-01

    Acetic and formic acids are the most abundant organic acids in the atmosphere. They play an important role in atmospheric aqueous chemistry as they can influence the acidity of precipitation, cloud droplets, and atmospheric aerosols. Sources of these acids are highly uncertain, but include secondary production from VOC oxidation, direct emissions, and possibly organic aerosol aging. Here we present measurements of formic and acetic acid, along with a suite of other gas and particle phase species, from a field study in St. Louis during summer 2013. Calibration procedures and results are discussed, and we interpret the ambient formic and acetic acid measurements in terms of patterns of variability and implied constraints on sources. Finally, we present results from oxidative aging experiments on both ambient and test organic aerosol designed to assess the importance of this mechanism as a source of gas-phase carboxylic acids.

  11. Mechanistic Insights on C-O and C-C Bond Activation and Hydrogen Insertion during Acetic Acid Hydrogenation Catalyzed by Ruthenium Clusters in Aqueous Medium

    SciTech Connect

    Shangguan, Junnan; Olarte, Mariefel V.; Chin, Ya-Huei

    2016-06-07

    Catalytic pathways for acetic acid (CH3COOH) and hydrogen (H2) reactions on dispersed Ru clusters in the aqueous medium and the associated kinetic requirements for C-O and C-C bond cleavages and hydrogen insertion are established from rate and isotopic assessments. CH3COOH reacts with H2 in steps that either retain its carbon backbone and lead to ethanol, ethyl acetate, and ethane (47-95 %, 1-23 %, and 2-17 % carbon selectivities, respectively) or break its C-C bond and form methane (1-43 % carbon selectivities) at moderate temperatures (413-523 K) and H2 pressures (10-60 bar, 298 K). Initial CH3COOH activation is the kinetically relevant step, during which CH3C(O)-OH bond cleaves on a metal site pair at Ru cluster surfaces nearly saturated with adsorbed hydroxyl (OH*) and acetate (CH3COO*) intermediates, forming an adsorbed acetyl (CH3CO*) and hydroxyl (OH*) species. Acetic acid turnover rates increase proportionally with both H2 (10-60 bar) and CH3COOH concentrations at low CH3COOH concentrations (<0.83 M), but decrease from first to zero order as the CH3COOH concentration and the CH3COO* coverages increase and the vacant Ru sites concomitantly decrease. Beyond the initial CH3C(O)-OH bond activation, sequential H-insertions on the surface acetyl species (CH3CO*) lead to C2 products and their derivative (ethanol, ethane, and ethyl acetate) and the competitive C-C bond cleavage of CH3CO* causes the eventual methane formation. The instantaneous carbon selectivities towards C2 species (ethanol, ethane, and ethyl acetate) increase linearly with the concentration of proton-type Hδ+ (derived from carboxylic acid dissociation) and chemisorbed H*. The selectivities towards C2 products decrease with increasing temperature, because of higher observed barriers for C-C bond cleavage than H-insertion. This study offers an interpretation of mechanism and energetics and provides kinetic evidence of carboxylic acid assisted proton-type hydrogen (Hδ+) shuffling during H

  12. The antimicrobial effect of acetic acid--an alternative to common local antiseptics?

    PubMed

    Ryssel, H; Kloeters, O; Germann, G; Schäfer, Th; Wiedemann, G; Oehlbauer, M

    2009-08-01

    Acetic acid has been commonly used in medicine for more than 6000 years for the disinfection of wounds and especially as an antiseptic agent in the treatment and prophylaxis of the plague. The main goal of this study was to prove the suitability of acetic acid, in low concentration of 3%, as a local antiseptic agent, especially for use in salvage procedures in problematic infections caused by organisms such as Proteus vulgaris, Acinetobacter baumannii or Pseudomonas aeruginosa. This study was designed to compare the in vitro antimicrobial effect of acetic acid with those of common local antiseptics such as povidone-iodine 11% (Betaisodona), polyhexanide 0.04% (Lavasept), mafenide 5% and chlohexidine gluconate 1.5% cetrimide 15% (Hibicet). Former studies suggest the bactericidal effect of acetic acid, but these data are very heterogeneous; therefore, a standardised in vitro study was conducted. To cover the typical bacterial spectrum of a burn unit, the following Gram-negative and Gram-positive bacterial strains were tested: Escherichia coli, P. vulgaris, P. aeruginosa, A. baumannii, Enterococcus faecalis, Staphylococcus epidermidis, methicillin-resistant Staphylococcus aureus (MRSA) and beta-haemolytic Streptococcus group A and B. The tests showed excellent bactericidal effect of acetic acid, particularly with problematic Gram-negative bacteria such as P. vulgaris, P. aeruginosa and A. baumannii. The microbiological spectrum of acetic acid is wide, even when tested at a low concentration of 3%. In comparison to our currently used antiseptic solutions, it showed similar - in some bacteria, even better - bactericidal properties. An evaluation of the clinical value of topical application of acetic acid is currently underway. It can be concluded that acetic acid in a concentration of 3% has excellent bactericidal effect and, therefore, seems to be suitable as a local antiseptic agent, but further clinical studies are necessary.

  13. Iontophoretic enhancement of leuprolide acetate by fatty acids, limonene, and depilatory lotions through porcine epidermis.

    PubMed

    Rastogi, Sumeet K; Singh, Jagdish

    2004-11-01

    The effect of chemical enhancers (e.g., fatty acids, limonene, depilatory lotions) and iontophoresis was investigated on the in vitro permeability of leuprolide acetate through porcine epidermis. Franz diffusion cells and Scepter iontophoretic power source were used for the percutaneous absorption studies. Anodal iontophoresis was performed at 0.2 mA/cm2 current density. Fatty acids used were palmitic (C16:0), palmitoleic (C16:1), stearic (C18:0), oleic (C18:1), linoleic (C18:2), and linolenic (C18:3) acids. The passive and iontophoretic flux were significantly (p < 0.05) greater through fatty acids-treated porcine epidermis in comparison to the control (untreated epidermis) for leuprolide acetate. The passive and iontophoretic permeability of leuprolide acetate increased with increasing number of cis double bonds. Among the fatty acids tested, linolenic acid (C18:3) exhibited the maximum permeability of leuprolide acetate during passive (51.42 x 10(-4) cm/hr) and iontophoretic (318.98 x 10(-4) cm/hr) transport. The passive and iontophoretic flux of leuprolide acetate were significantly (p < 0.05) greater through the limonene and depilatory lotion treated epidermis in comparison to their respective control. In conclusion, iontophoresis in combination with chemical enhancers synergistically increased (p < 0.05) the in vitro permeability of leuprolide acetate through porcine epidermis.

  14. Effects of acetic acid and lactic acid on physicochemical characteristics of native and cross-linked wheat starches.

    PubMed

    Majzoobi, Mahsa; Beparva, Paniz

    2014-03-15

    The effects of two common organic acids; lactic and acetic acids (150 mg/kg) on physicochemical properties of native and cross-linked wheat starches were investigated prior and after gelatinization. These acids caused formation of some cracks and spots on the granules. The intrinsic viscosity of both starches decreased in the presence of the acids particularly after gelatinization. Water solubility increased while water absorption reduced after addition of the acids. The acids caused reduction in gelatinization temperature and enthalpy of gelatinization of both starches. The starch gels became softer, less cohesive, elastic and gummy when acids were added. These changes may indicate the degradation of the starch molecules by the acids. Cross-linked wheat starch was more resistant to the acids. However, both starches became more susceptible to the acids after gelatinization. The effect of lactic acid on physicochemical properties of both starches before and after gelatinization was greater than acetic acid.

  15. [Advances in the progress of anti-bacterial biofilms properties of acetic acid].

    PubMed

    Gao, Xinxin; Jin, Zhenghua; Chen, Xinxin; Yu, Jia'ao

    2016-06-01

    Bacterial biofilms are considered to be the hindrance in the treatment of chronic wound, because of their tolerance toward antibiotics and other antimicrobial agents. They also have strong ability to escape from the host immune attack. Acetic acid, as a kind of organic weak acid, can disturb the biofilms by freely diffusing through the bacterial biofilms and bacterial cell membrane structure. Then the acid dissociates to release the hydrogen ions, leading to the disorder of the acid-base imbalance, change of protein conformation, and the degradation of the DNA within the membranes. This paper reviews the literature on the characteristics and treatment strategies of the bacterial biofilms and the acetic acid intervention on them, so as to demonstrate the roles acetic acid may play in the treatment of chronic wound, and thus provide a convincing treatment strategy for this kind of disease.

  16. Citric acid cycle in the hyperthermophilic archaeon Pyrobaculum islandicum grown autotrophically, heterotrophically, and mixotrophically with acetate.

    PubMed

    Hu, Yajing; Holden, James F

    2006-06-01

    The hyperthermophilic archaeon Pyrobaculum islandicum uses the citric acid cycle in the oxidative and reductive directions for heterotrophic and autotrophic growth, respectively, but the control of carbon flow is poorly understood. P. islandicum was grown at 95 degrees C autotrophically, heterotrophically, and mixotrophically with acetate, H2, and small amounts of yeast extract and with thiosulfate as the terminal electron acceptor. The autotrophic growth rates and maximum concentrations of cells were significantly lower than those in other media. The growth rates on H2 and 0.001% yeast extract with and without 0.05% acetate were the same, but the maximum concentration of cells was fourfold higher with acetate. There was no growth with acetate if 0.001% yeast extract was not present, and addition of H2 to acetate-containing medium greatly increased the growth rates and maximum concentrations of cells. P. islandicum cultures assimilated 14C-labeled acetate in the presence of H2 and yeast extract with an efficiency of 55%. The activities of 11 of 19 enzymes involved in the central metabolism of P. islandicum were regulated under the three different growth conditions. Pyruvate synthase and acetate:coenzyme A (CoA) ligase (ADP-forming) activities were detected only in heterotrophically grown cultures. Citrate synthase activity decreased in autotrophic and acetate-containing cultures compared to the activity in heterotrophic cultures. Acetylated citrate lyase, acetate:CoA ligase (AMP forming), and phosphoenolpyruvate carboxylase activities increased in autotrophic and acetate-containing cultures. Citrate lyase activity was higher than ATP citrate synthase activity in autotrophic cultures. These data suggest that citrate lyase and AMP-forming acetate:CoA ligase, but not ATP citrate synthase, work opposite citrate synthase to control the direction of carbon flow in the citric acid cycle.

  17. Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae.

    PubMed

    Wright, Jeremiah; Bellissimi, Eleonora; de Hulster, Erik; Wagner, Andreas; Pronk, Jack T; van Maris, Antonius J A

    2011-05-01

    Acetic acid tolerance of Saccharomyces cerevisiae is crucial for the production of bioethanol and other bulk chemicals from lignocellulosic plant-biomass hydrolysates, especially at a low pH. This study explores two evolutionary engineering strategies for the improvement of acetic acid tolerance of the xylose-fermenting S. cerevisiae RWB218, whose anaerobic growth on xylose at pH 4 is inhibited at acetic acid concentrations >1 g L(-1) : (1) sequential anaerobic, batch cultivation (pH 4) at increasing acetic acid concentrations and (2) prolonged anaerobic continuous cultivation without pH control, in which acidification by ammonium assimilation generates selective pressure for acetic acid tolerance. After c. 400 generations, the sequential-batch and continuous selection cultures grew on xylose at pH≤4 with 6 and 5 g L(-1) acetic acid, respectively. In the continuous cultures, the specific xylose-consumption rate had increased by 75% to 1.7 g xylose g(-1) biomass h(-1) . After storage of samples from both selection experiments at -80 °C and cultivation without acetic acid, they failed to grow on xylose at pH 4 in the presence of 5 g L(-1) acetic acid. Characterization in chemostat cultures with linear acetic acid gradients demonstrated an acetate-inducible acetic acid tolerance in samples from the continuous selection protocol.

  18. Elimination of acetate production to improve ethanol yield during continuous synthesis gas fermentation by engineered biocatalyst Clostridium sp. MTEtOH550.

    PubMed

    Berzin, Vel; Kiriukhin, Michael; Tyurin, Michael

    2012-05-01

    Acetogen strain Clostridum sp. MT653 produced acetate 273 mM (p < 0.005) and ethanol 250 mM (p < 0.005) from synthesis gas blend mixture of 64% CO and 36% H(2). Clostridum sp. MT653 was metabolically engineered to the biocatalyst strain Clostridium sp. MTEtOH550. The biocatalyst increased ethanol yield to 590 mM with no acetate production during single-stage continuous syngas fermentation due to expression of synthetic adh cloned in a multi-copy number expression vector. The acetate production was eliminated by inactivation of the pta gene in Clostridium sp. MTEtOH550. Gene introduction and gene elimination were achieved only using Syngas Biofuels Energy, Inc. electroporation generator. The electrotransformation efficiencies were 8.0 ± 0.2 × 10(6) per microgram of transforming DNA of the expression vector at cell viability ~15%. The frequency of suicidal vector integration to inactivate pta was ~10(-5) per the number of recipient cells. This is the first report on elimination of acetate production and overexpression of synthetic adh gene to engineer acetogen biocatalyst for selective biofuel ethanol production during continuous syngas fermentation.

  19. Pretreatment of corn stover with diluted acetic acid for enhancement of acidogenic fermentation.

    PubMed

    Zhao, Xu; Wang, Lijuan; Lu, Xuebin; Zhang, Shuting

    2014-04-01

    A Box-Behnken design of response surface method was used to optimize acetic acid-catalyzed hydrothermal pretreatment of corn stover, in respect to acid concentration (0.05-0.25%), treatment time (5-15 min) and reaction temperature (180-210°C). Acidogenic fermentations with different initial pH and hydrolyzates were also measured to evaluate the optimal pretreatment conditions for maximizing acid production. The results showed that pretreatment with 0.25% acetic acid at 191°C for 7.74 min was found to be the most optimal condition for pretreatment of corn stover under which the production of acids can reach the highest level. Acidogenic fermentation with the hydrolyzate of pretreatment at the optimal condition at the initial pH=5 was shown to be butyric acid type fermentation, producing 21.84 g acetic acid, 7.246 g propionic acid, 9.170 butyric acid and 1.035 g isovaleric acid from 100g of corn stover in 900 g of water containing 2.25 g acetic acid.

  20. Conformational equilibria and large-amplitude motions in dimers of carboxylic acids: rotational spectrum of acetic acid-difluoroacetic acid.

    PubMed

    Gou, Qian; Feng, Gang; Evangelisti, Luca; Caminati, Walther

    2014-10-06

    We report the rotational spectra of two conformers of the acetic acid-difluoroacetic acid adduct (CH3COOH-CHF2COOH) and supply information on its internal dynamics. The two conformers differ from each other, depending on the trans or gauche orientation of the terminal -CHF2 group. Both conformers display splittings of the rotational transitions, due to the internal rotation of the methyl group of acetic acid. The corresponding barriers are determined to be V3(trans)=99.8(3) and V3(gauche)=90.5(9) cm(-1) (where V3 is the methyl rotation barrier height). The gauche form displays a further doubling of the rotational transitions, due to the tunneling motion of the -CHF2 group between its two equivalent conformations. The corresponding B2 barrier is estimated to be 108(2) cm(-1). The increase in the distance between the two monomers upon OH→OD deuteration (the Ubbelohde effect) is determined.

  1. Thermal decarboxylation of acetic acid: Implications for origin of natural gas

    USGS Publications Warehouse

    Kharaka, Y.K.; Carothers, W.W.; Rosenbauer, R.J.

    1983-01-01

    Laboratory experiments on the thermal decarboxylation of solutions of acetic acid at 200??C and 300??C were carried out in hydrothermal equipment allowing for on-line sampling of both the gas and liquid phases for chemical and stable-carbon-isotope analyses. The solutions had ambient pH values between 2.5 and 7.1; pH values and the concentrations of the various acetate species at the conditions of the experiments were computed using a chemical model. Results show that the concentrations of acetic acid, and not total acetate in solution, control the reaction rates which follow a first order equation based on decreasing concentrations of acetic acid with time. The decarboxylation rates at 200??C (1.81 ?? 10-8 per second) and 300??C (8.17 ?? 10-8 per second) and the extrapolated rates at lower temperatures are relatively high. The activation energy of decarboxylation is only 8.1 kcal/mole. These high decarboxylation rates, together with the distribution of short-chained aliphatic acid anions in formation waters, support the hypothesis that acid anions are precursors for an important portion of natural gas. Results of the ??13C values of CO2, CH4, and total acetate show a reasonably constant fractionation factor of about 20 permil between CO2 and CH4 at 300??C. The ??13C values of CO2 and CH4 are initially low and become higher as decarboxylation increases. ?? 1983.

  2. Extraction of ethanol with higher carboxylic acid solvents and their toxicity to yeast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a screening exercise for ethanol-selective extraction solvents, partitioning of ethanol and water from a 5 wt% aqueous solution into several C8 – C18 carboxylic acids was studied. Results for the acids are compared with those from alcohols of similar structure. In all cases studied, the acids exh...

  3. Microwave Spectroscopy and Proton Transfer Dynamics in the Formic Acid-Acetic Acid Dimer

    NASA Astrophysics Data System (ADS)

    Howard, B. J.; Steer, E.; Page, F.; Tayler, M.; Ouyang, B.; Leung, H. O.; Marshall, M. D.; Muenter, J. S.

    2012-06-01

    The rotational spectrum of the doubly hydrogen-bonded {hetero} dimer formed between formic acid and acetic acid has been recorded between 4 and 18 GHz using a pulsed-nozzle Fourier transform microwave spectrometer. Each rigid-molecule rotational transition is split into four as a result of two concurrent tunnelling motions, one being proton transfer between the two acid molecules, and the other the torsion/rotation of the methyl group within the acetic acid. We present a full assignment of the spectrum for {J} = 1 to {J} = 7 for these four torsion/tunnelling states. Spectra have been observed for the main isotopic species, with deuterium substitution at the C of the formic acid and all 13C species in natural abundance, The observed transitions are fitted to within a few kilohertz using a molecule-fixed effective rotational Hamiltonian for the separate {A} and {E} vibrational species of the G12 permutation-inversion group which is applicable to this complex. To reduce the effects of internal angular momentum, a non-principal axis system is used throughout. Interpretation of the internal motion uses an internal-vibration and overall rotation scheme, and full sets of rotational and centrifugal distortion constants are determined. The proton tunnelling rates and the internal angular momentum of the methyl group in the {E} states is interpreted in terms of a dynamical model which involves coupled proton transfer and internal rotation. The resulting potential energy surface not only describes these internal motions, but can also explain the observed shifts in rotational constants between {A} and {E} species, and the deviations of the tunnelling frequencies from the expected 2:1 ratio. It also permits the determination of spectral constants free from the contamination effects of the internal dynamics. M.C.D. Tayler, B. Ouyang and B.J. Howard, J. Chem. Phys., {134}, 054316 (2011).

  4. Conductometric simultaneous determination of acetic acid, monochloroacetic acid and trichloroacetic acid using orthogonal signal correction-partial least squares.

    PubMed

    Ghorbani, R; Ghasemi, J; Abdollahi, B

    2006-04-17

    A simultaneous conductometric titration method for determination of mixtures of acetic acid, monochloroacetic acid and trichloroacetic acid based on the multivariate calibration partial least squares is proposed. It is possible to obtain an adjustable model to relate squared concentration values of the mixtures used in the calibration range by conductance. The effect of orthogonal signal correction (OSC) as a preprocessing technique used to remove the information unrelated to the target variables is studied. The calibration model was build using conductometric titrations data of 16 mixtures of three acids. The concentration matrix was designed by a orthogonal design. The root mean squares error of prediction (RMSEP) for acetic acid, monochloroacetic acid and trichloroacetic acid with and without OSC were 0.08, 0.30 and 0.08, and 0.15, 0.40 and 0.18, respectively. The results obtained by OSC-PLS are better than the PLS and this indicate the successful application of the OSC filter as a good preprocessing method in multivariate calibration methods. The proposed procedure allows the simultaneous determination of these acids, in the synthetic mixtures.

  5. Pretreatment of eucalyptus wood chips for enzymatic saccharification using combined sulfuric acid-free ethanol cooking and ball milling.

    PubMed

    Teramoto, Yoshikuni; Tanaka, Noriko; Lee, Seung-Hwan; Endo, Takashi

    2008-01-01

    A combined sulfuric acid-free ethanol cooking and pulverization process was developed in order to achieve the complete saccharification of the cellulosic component of woody biomass, thereby avoiding the problems associated with the use of strong acid catalysts. Eucalyptus wood chips were used as a raw material and exposed to an ethanol/water/acetic acid mixed solvent in an autoclave. This process can cause the fibrillation of wood chips. During the process, the production of furfural due to an excessive degradation of polysaccharide components was extremely low and delignification was insignificant. Therefore, the cooking process is regarded not as a delignification but as an activation of the original wood. Subsequently, the activated solid products were pulverized by ball-milling in order to improve their enzymatic digestibility. Enzymatic hydrolysis experiments demonstrated that the conversion of the cellulosic components into glucose attained 100% under optimal conditions. Wide-angle X-ray diffractometry and particle size distribution analysis revealed that the scale affecting the improvement of enzymatic digestibility ranged from 10 nm to 1 microm. Field emission scanning electron microscopy depicted that the sulfuric acid-free ethanol cooking induced a pore formation by the removal of part of the lignin and hemicellulose fractions in the size range from a few of tens nanometers to several hundred nanometers.

  6. Radiofrequency Thermal Ablation: Increase in Lesion Diameter with Continuous Acetic Acid Infusion

    SciTech Connect

    Lubienski, Andreas Duex, Markus; Lubienski, Katrin; Grenacher, Lars; Kauffmann, Guenter

    2005-12-15

    Purpose. To evaluate the influence of continuous infusion of acetic acid 50% during radiofrequency ablation (RFA) on the size of the thermal lesion produced. Methods. Radiofrequency (RF) was applied to excised bovine liver by using an expandable needle electrode with 10 retractable tines (LeVeen Needle Electrode, RadioTherapeutics, Sunnyvale, CA) connected to a commercially available RF generator (RF 2000, RadioTherapeutics, Sunnyvale, CA). Experiments were performed using three different treatment modalities: RF only (n = 15), RF with continuous saline 0.9% infusion (n = 15), and RF with continuous acetic acid 50% infusion (n = 15). RF duration, power output, tissue impedance, and time to a rapid rise in impedance were recorded. The ablated lesions were evaluated both macroscopically and histologically. Results. The ablated lesions appeared as spherical or ellipsoid, well-demarcated pale areas with a surrounding brown rim with both RF only and RF plus saline 0.9% infusion. In contrast, thermolesions generated with RF in combination with acetic acid 50% infusion were irregular in shape and the central portion was jelly-like. Mean diameter of the coagulation necrosis was 22.3 {+-} 2.1 mm (RF only), 29.2 {+-} 4.8 mm (RF + saline 0.9%) and 30.7 {+-} 5.7 mm (RF + acetic acid 50%), with a significant increase in the RF plus saline 0.9% and RF plus acetic acid 50% groups compared with RF alone. Time to a rapid rise in impedance was significantly prolonged in the RF plus saline 0.9% and RF plus acetic acid 50% groups compared with RF alone. Conclusions. A combination of RF plus acetic acid 50% infusion is able to generate larger thermolesions than RF only or RF combined with saline 0.9% infusion.

  7. Vapor-liquid equilibrium measurements at 101. 32 kPa for binary mixtures of methyl acetate + ethanol or 1-propanol

    SciTech Connect

    Ortega, J.: Susial, P.; de Alfonso, C. )

    1990-07-01

    This paper reports on isobaric vapor-liquid equilibrium data at 101.32 {plus minus} 0.02 kPa for methyl acetate (1) + ethane (2) or + 1-propanol (2). The results are compared with those predicted by the UNIFAC and ASOG methods. The methyl acetate (1) + ethanol (2) system forms an azeotrope at 329.8 K and a molar concentration of x{sub 1} = 0.958. Both methods predict the vapor-phase compositions equally well, with overall mean errors of less than 5%.

  8. Interaction between oxalic acid and titania in aqueous ethanol dispersions.

    PubMed

    Dahlsten, Per; Rosenholm, Jarl B

    2013-02-15

    The charging effects resulting from adsorption of oxalic acid and oxalate anions on titania (anatase) surfaces in anhydrous or mixed water-ethanol suspensions is summarized. The suddenly enhanced electrical conductance with respect to titania free solutions has previously been explained in terms of surface-induced electrolytic dissociation (SIED) of weak acids. A recently published model has previously been found to successfully characterize the complex SIED effect. The model is evaluated experimentally by recording the conductance and pH of the dispersion and the zeta potential of the particles. The experimental results can be condensed to master curves, which reveal the major properties of the systems and facilitate further modeling of extensive experimental results. The equilibrium and transport properties of solutions and particles were related, but different mechanisms was found to be active in each case. The results suggest that at least three adsorption equilibria should be considered in order to improve the model.

  9. A case report of a chemical burn due to the misuse of glacial acetic acid.

    PubMed

    Yoo, Jun-Ho; Roh, Si-Gyun; Lee, Nae-Ho; Yang, Kyung-Moo; Moon, Ji-Hyun

    2010-12-01

    As young and elastic skin is what everyone dreams of, various measures have been implemented including chemical, laser resurfacing and dermabrasion to improve the condition of ageing skin. However, the high cost of these procedures prevents the poor from having access to treatment. Glacial acetic acid is widely used as a substitute for chemical peeling because it is readily easily available and affordable. However, its use can result in a number of serious complications. A 28-year-old female patient was admitted to our hospital with deep second-degree chemical burns on her face caused by the application of a mixture of glacial acetic acid and flour for chemical peeling. During a 6-month follow-up, hypertrophic scarring developed on the both nasolabial folds despite scar management. Glacial acetic acid is a concentrated form of the organic acid, which gives vinegar its sour taste and pungent smell, and it is also an important reagent during the production of organic compounds. Unfortunately, misleading information regarding the use of glacial acetic acid for chemical peeling is causing serious chemical burns. Furthermore, there is high possibility of a poor prognosis, which includes inflammation, hypertrophic scar formation and pigmentation associated with its misuse. Therefore, we report a case of facial chemical burning, due to the misuse of glacial acetic acid, and hope that this report leads to a better understanding regarding the use of this reagent.

  10. Laboratory Studies of the Tropospheric Loss Processes for Acetic and Peracetic Acid

    NASA Astrophysics Data System (ADS)

    Orlando, J. J.; Tyndall, G. S.

    2002-12-01

    Organic acids are ubiquitous components of tropospheric air and contribute to acid precipitation, particularly in remote regions. These species are present in the troposphere as the result of direct emissions from anthropogenic and biogenic sources, and as the result of photochemical processing of hydrocarbons. Production of organic acids can occur following ozonolysis of unsaturated hydrocarbons, while both organic acids and peroxyacids are formed from the reactions of HO2 with acylperoxy radicals. For example, both acetic and peracetic acid are known products of the reaction of HO2 with acetylperoxy radicals. In this paper, data relevant to the gas-phase tropospheric destruction of both acetic and peracetic acid are reported, including studies of their UV absorption spectra and of their rate coefficients for reaction with OH radicals. The data, the first of their kind for peracetic acid, show that the gas-phase lifetime of this species will be on the order of 10 days, with OH reaction occurring more rapidly than photolysis. Data on the rate coefficient for reaction of OH with acetic acid appear to resolve some conflicting data in the previous literature, and show 1) that reaction of OH with the acetic acid dimer is slow compared to the monomer and 2) that the rate coefficient possesses a negative temperature dependence near room temperature.

  11. Mechanisms underlying the transport and intracellular metabolism of acetic acid in the presence of glucose in the yeast Zygosaccharomyces bailii.

    PubMed

    Sousa, M J; Rodrigues, F; Côrte-Real, M; Leão, C

    1998-03-01

    Zygosaccharomyces bailii ISA 1307 displays biphasic growth in a medium containing a mixture of glucose (0.5%, w/v) and acetic acid (0.5%, w/v), pH 5.0 and 3.0. In cells harvested during the first growth phase, no activity of a mediated acetic acid transport system was found. Incubation of these cells in phosphate buffer with cycloheximide for 1 h restored activity of an acetic acid carrier which behaved as the one present in glucose-grown cells. These results indicated that the acetic acid carrier is probably present in cells from the first growth phase of the mixed medium but its activity was affected by the presence of acetic acid in the culture medium. In glucose-grown cells, after incubation in phosphate buffer with glucose and acetic acid, the activity of the acetic acid carrier decreased significantly with increased acid concentration in the incubation buffer. At acid concentrations above 16.7 mM, no significant carrier activity was detectable. Furthermore, the intracellular acid concentration increased with the extracellular one and was inversely correlated with the activity of the acetic acid carrier, suggesting the involvement of a feedback inhibition mechanism in the regulation of the carrier. During biphasic growth, the first phase corresponded to a simultaneous consumption of glucose and acetic acid, and the second to the utilization of the remaining acid. The enzyme acetyl-CoA synthetase was active in both growth phases, even in the presence of glucose. Activity of isocitrate lyase and phosphoenolpyruvate carboxykinase was found only in acetic-acid-grown cells. Thus it appears that both membrane transport and acetyl-CoA synthetase and their regulation are important for Z. bailii to metabolize acetic acid in the presence of glucose. This fact correlates with the high resistance of this yeast to environments with mixtures of sugars and acetic acid such as those often present during wine fermentation.

  12. The Acetic Acid Tolerance Response induces cross-protection to salt stress in Salmonella typhimurium.

    PubMed

    Greenacre, E J; Brocklehurst, T F

    2006-10-15

    Salmonella typhimurium induces an Acid Tolerance Response (ATR) upon exposure to mildly acidic conditions in order to protect itself against severe acid shock. This response can also induce cross-protection to other stresses such as heat and salt. We investigated whether both the acetic acid induced and lactic acid induced ATR in S. typhimurium provided cross-protection to a salt stress at 20 degrees C. Acid-adapted cells were challenged with both a sodium chloride (NaCl) and potassium chloride (KCl) shock and their ability to survive ascertained. Acetic acid adaptation provided cells with protection against both NaCl and KCl stress. However, lactic acid adaptation did not protect against either osmotic stressor and rendered cells hypersensitive to NaCl. These results have implications for the food industry where hurdle technology means multiple sub-lethal stresses such as mild pH and low salt are commonly used in the preservation of products.

  13. Reactivity and reaction intermediates for acetic acid adsorbed on CeO2(111)

    SciTech Connect

    Calaza, Florencia C.; Chen, Tsung -Liang; Mullins, David R.; Xu, Ye; Steven H. Overbury

    2015-05-02

    Adsorption and reaction of acetic acid on a CeO2(1 1 1) surface was studied by a combination of ultra-highvacuum based methods including temperature desorption spectroscopy (TPD), soft X-ray photoelectronspectroscopy (sXPS), near edge X-ray absorption spectroscopy (NEXAFS) and reflection absorption IRspectroscopy (RAIRS), together with density functional theory (DFT) calculations. TPD shows that thedesorption products are strongly dependent upon the initial oxidation state of the CeO2 surface, includingselectivity between acetone and acetaldehyde products. The combination of sXPS and NEXAFS demon-strate that acetate forms upon adsorption at low temperature and is stable to above 500 K, above whichpoint ketene, acetone and acetic acid desorb. Furthermore, DFT and RAIRS show that below 500 K, bridge bondedacetate coexists with a moiety formed by adsorption of an acetate at an oxygen vacancy, formed bywater desorption.

  14. Techno-economic analysis for incorporating a liquid-liquid extraction system to remove acetic acid into a proposed commercial scale biorefinery.

    PubMed

    Aghazadeh, Mahdieh; Engelberth, Abigail S

    2016-07-08

    Mitigating the effect of fermentation inhibitors in bioethanol plants can have a great positive impact on the economy of this industry. Liquid-liquid extraction (LLE) using ethyl acetate is able to remove fermentation inhibitors-chiefly, acetic acid-from an aqueous solution used to produce bioethanol. The fermentation broth resulting from LLE has higher performance for ethanol yield and its production rate. Previous techno-economic analyses focused on second-generation biofuel production did not address the impact of removing the fermentation inhibitors on the economic performance of the biorefinery. A comprehensive analysis of applying a separation system to mitigate the fermentation inhibition effect and to provide an analysis on the economic impact of removal of acetic acid from corn stover hydrolysate on the overall revenue of the biorefinery is necessary. This study examines the pros and cons associated with implementing LLE column along with the solvent recovery system into a commercial scale bioethanol plant. Using details from the NREL-developed model of corn stover biorefinery, the capital costs associated with the equipment and the operating cost for the use of solvent were estimated and the results were compared with the profit gain due to higher ethanol production. Results indicate that the additional capital will add 1% to the total capital and manufacturing cost will increase by 5.9%. The benefit arises from the higher ethanol production rate and yield as a consequence of inhibitor extraction and results in a $0.35 per gallon reduction in the minimum ethanol selling price (MESP). © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:971-977, 2016.

  15. The Fate of Acetic Acid during Glucose Co-Metabolism by the Spoilage Yeast Zygosaccharomyces bailii

    PubMed Central

    Rodrigues, Fernando; Sousa, Maria João; Ludovico, Paula; Santos, Helena; Côrte-Real, Manuela; Leão, Cecília

    2012-01-01

    Zygosaccharomyces bailii is one of the most widely represented spoilage yeast species, being able to metabolise acetic acid in the presence of glucose. To clarify whether simultaneous utilisation of the two substrates affects growth efficiency, we examined growth in single- and mixed-substrate cultures with glucose and acetic acid. Our findings indicate that the biomass yield in the first phase of growth is the result of the weighted sum of the respective biomass yields on single-substrate medium, supporting the conclusion that biomass yield on each substrate is not affected by the presence of the other at pH 3.0 and 5.0, at least for the substrate concentrations examined. In vivo 13C-NMR spectroscopy studies showed that the gluconeogenic pathway is not operational and that [2−13C]acetate is metabolised via the Krebs cycle leading to the production of glutamate labelled on C2, C3 and C4. The incorporation of [U-14C]acetate in the cellular constituents resulted mainly in the labelling of the protein and lipid pools 51.5% and 31.5%, respectively. Overall, our data establish that glucose is metabolised primarily through the glycolytic pathway, and acetic acid is used as an additional source of acetyl-CoA both for lipid synthesis and the Krebs cycle. This study provides useful clues for the design of new strategies aimed at overcoming yeast spoilage in acidic, sugar-containing food environments. Moreover, the elucidation of the molecular basis underlying the resistance phenotype of Z. bailii to acetic acid will have a potential impact on the improvement of the performance of S. cerevisiae industrial strains often exposed to acetic acid stress conditions, such as in wine and bioethanol production. PMID:23285028

  16. The fate of acetic acid during glucose co-metabolism by the spoilage yeast Zygosaccharomyces bailii.

    PubMed

    Rodrigues, Fernando; Sousa, Maria João; Ludovico, Paula; Santos, Helena; Côrte-Real, Manuela; Leão, Cecília

    2012-01-01

    Zygosaccharomyces bailii is one of the most widely represented spoilage yeast species, being able to metabolise acetic acid in the presence of glucose. To clarify whether simultaneous utilisation of the two substrates affects growth efficiency, we examined growth in single- and mixed-substrate cultures with glucose and acetic acid. Our findings indicate that the biomass yield in the first phase of growth is the result of the weighted sum of the respective biomass yields on single-substrate medium, supporting the conclusion that biomass yield on each substrate is not affected by the presence of the other at pH 3.0 and 5.0, at least for the substrate concentrations examined. In vivo(13)C-NMR spectroscopy studies showed that the gluconeogenic pathway is not operational and that [2-(13)C]acetate is metabolised via the Krebs cycle leading to the production of glutamate labelled on C(2), C(3) and C(4). The incorporation of [U-(14)C]acetate in the cellular constituents resulted mainly in the labelling of the protein and lipid pools 51.5% and 31.5%, respectively. Overall, our data establish that glucose is metabolised primarily through the glycolytic pathway, and acetic acid is used as an additional source of acetyl-CoA both for lipid synthesis and the Krebs cycle. This study provides useful clues for the design of new strategies aimed at overcoming yeast spoilage in acidic, sugar-containing food environments. Moreover, the elucidation of the molecular basis underlying the resistance phenotype of Z. bailii to acetic acid will have a potential impact on the improvement of the performance of S. cerevisiae industrial strains often exposed to acetic acid stress conditions, such as in wine and bioethanol production.

  17. The role of glass composition in the behaviour of glass acetic acid and glass lactic acid cements.

    PubMed

    Shahid, Saroash; Billington, R W; Pearson, G J

    2008-02-01

    Cements have recently been described, made from glass ionomer glass reacted with acetic and lactic acid instead of polymeric carboxylic acid. From their behaviour a theory relating to a possible secondary setting mechanism of glass ionomer has been adduced. However, only one glass (G338) was used throughout. In this study a much simpler glass ionomer glass (MP4) was compared with G338. This produced very different results. With acetic acid G338 formed cement which became resistant to water over a period of hours, as previously reported, MP4 formed cement which was never stable to water. With lactic acid G338 behaved similarly to G338 with acetic acid, again as reported, but MP4 produced a cement which was completely resistant to water at early exposure and unusually became slightly less resistant if exposure was delayed for 6 h or more. These findings indicate that the theories relating to secondary setting in glass ionomer maturation may need revision.

  18. Acetic acid treatment in S. cerevisiae creates significant energy deficiency and nutrient starvation that is dependent on the activity of the mitochondrial transcriptional complex Hap2-3-4-5

    PubMed Central

    Kitanovic, Ana; Bonowski, Felix; Heigwer, Florian; Ruoff, Peter; Kitanovic, Igor; Ungewiss, Christin; Wölfl, Stefan

    2012-01-01

    Metabolic pathways play an indispensable role in supplying cellular systems with energy and molecular building blocks for growth, maintenance and repair and are tightly linked with lifespan and systems stability of cells. For optimal growth and survival cells rapidly adopt to environmental changes. Accumulation of acetic acid in stationary phase budding yeast cultures is considered to be a primary mechanism of chronological aging and induction of apoptosis in yeast, which has prompted us to investigate the dependence of acetic acid toxicity on extracellular conditions in a systematic manner. Using an automated computer controlled assay system, we investigated and model the dynamic interconnection of biomass yield- and growth rate-dependence on extracellular glucose concentration, pH conditions and acetic acid concentration. Our results show that toxic concentrations of acetic acid inhibit glucose consumption and reduce ethanol production. In absence of carbohydrates uptake, cells initiate synthesis of storage carbohydrates, trehalose and glycogen, and upregulate gluconeogenesis. Accumulation of trehalose and glycogen, and induction of gluconeogenesis depends on mitochondrial activity, investigated by depletion of the Hap2-3-4-5 complex. Analyzing the activity of glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate kinase (PYK), and glucose-6-phosphate dehydrogenase (G6PDH) we found that while high acetic acid concentration increased their activity, lower acetic acids concentrations significantly inhibited these enzymes. With this study we determined growth and functional adjustment of metabolism to acetic acid accumulation in a complex range of extracellular conditions. Our results show that substantial acidification of the intracellular environment, resulting from accumulation of dissociated acetic acid in the cytosol, is required for acetic acid toxicity, which creates a state of energy deficiency and nutrient starvation. PMID:23050242

  19. Acetic acid treatment in S. cerevisiae creates significant energy deficiency and nutrient starvation that is dependent on the activity of the mitochondrial transcriptional complex Hap2-3-4-5.

    PubMed

    Kitanovic, Ana; Bonowski, Felix; Heigwer, Florian; Ruoff, Peter; Kitanovic, Igor; Ungewiss, Christin; Wölfl, Stefan

    2012-01-01

    Metabolic pathways play an indispensable role in supplying cellular systems with energy and molecular building blocks for growth, maintenance and repair and are tightly linked with lifespan and systems stability of cells. For optimal growth and survival cells rapidly adopt to environmental changes. Accumulation of acetic acid in stationary phase budding yeast cultures is considered to be a primary mechanism of chronological aging and induction of apoptosis in yeast, which has prompted us to investigate the dependence of acetic acid toxicity on extracellular conditions in a systematic manner. Using an automated computer controlled assay system, we investigated and model the dynamic interconnection of biomass yield- and growth rate-dependence on extracellular glucose concentration, pH conditions and acetic acid concentration. Our results show that toxic concentrations of acetic acid inhibit glucose consumption and reduce ethanol production. In absence of carbohydrates uptake, cells initiate synthesis of storage carbohydrates, trehalose and glycogen, and upregulate gluconeogenesis. Accumulation of trehalose and glycogen, and induction of gluconeogenesis depends on mitochondrial activity, investigated by depletion of the Hap2-3-4-5 complex. Analyzing the activity of glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate kinase (PYK), and glucose-6-phosphate dehydrogenase (G6PDH) we found that while high acetic acid concentration increased their activity, lower acetic acids concentrations significantly inhibited these enzymes. With this study we determined growth and functional adjustment of metabolism to acetic acid accumulation in a complex range of extracellular conditions. Our results show that substantial acidification of the intracellular environment, resulting from accumulation of dissociated acetic acid in the cytosol, is required for acetic acid toxicity, which creates a state of energy deficiency and nutrient starvation.

  20. Acetate accumulation enhances mixed culture fermentation of biomass to lactic acid.

    PubMed

    Khor, Way Cern; Roume, Hugo; Coma, Marta; Vervaeren, Han; Rabaey, Korneel

    2016-10-01

    Lactic acid is a high-in-demand chemical, which can be produced through fermentation of lignocellulosic feedstock. However, fermentation of complex substrate produces a mixture of products at efficiencies too low to justify a production process. We hypothesized that the background acetic acid concentration plays a critical role in lactic acid yield; therefore, its retention via selective extraction of lactic acid or its addition would improve overall lactic acid production and eliminate net production of acetic acid. To test this hypothesis, we added 10 g/L of acetate to fermentation broth to investigate its effect on products composition and concentration and bacterial community evolution using several substrate-inoculum combinations. With rumen fluid inoculum, lactate concentrations increased by 80 ± 12 % (cornstarch, p < 0.05) and 16.7 ± 0.4 % (extruded grass, p < 0.05) while with pure culture inoculum (Lactobacillus delbrueckii and genetically modified (GM) Escherichia coli), a 4 to 23 % increase was observed. Using rumen fluid inoculum, the bacterial community was enriched within 8 days to >69 % lactic acid bacteria (LAB), predominantly Lactobacillaceae. Higher acetate concentration promoted a more diverse LAB population, especially on non-inoculated bottles. In subsequent tests, acetate was added in a semi-continuous percolation system with grass as substrate. These tests confirmed our findings producing lactate at concentrations 26 ± 5 % (p < 0.05) higher than the control reactor over 20 days operation. Overall, our work shows that recirculating acetate has the potential to boost lactic acid production from waste biomass to levels more attractive for application.

  1. The Antibacterial Activity of Acetic Acid against Biofilm-Producing Pathogens of Relevance to Burns Patients

    PubMed Central

    Halstead, Fenella D.; Rauf, Maryam; Moiemen, Naiem S.; Bamford, Amy; Wearn, Christopher M.; Fraise, Adam P.; Lund, Peter A.; Oppenheim, Beryl A.; Webber, Mark A.

    2015-01-01

    Introduction Localised infections, and burn wound sepsis are key concerns in the treatment of burns patients, and prevention of colonisation largely relies on biocides. Acetic acid has been shown to have good antibacterial activity against various planktonic organisms, however data is limited on efficacy, and few studies have been performed on biofilms. Objectives We sought to investigate the antibacterial activity of acetic acid against important burn wound colonising organisms growing planktonically and as biofilms. Methods Laboratory experiments were performed to test the ability of acetic acid to inhibit growth of pathogens, inhibit the formation of biofilms, and eradicate pre-formed biofilms. Results Twenty-nine isolates of common wound-infecting pathogens were tested. Acetic acid was antibacterial against planktonic growth, with an minimum inhibitory concentration of 0.16–0.31% for all isolates, and was also able to prevent formation of biofilms (at 0.31%). Eradication of mature biofilms was observed for all isolates after three hours of exposure. Conclusions This study provides evidence that acetic acid can inhibit growth of key burn wound pathogens when used at very dilute concentrations. Owing to current concerns of the reducing efficacy of systemic antibiotics, this novel biocide application offers great promise as a cheap and effective measure to treat infections in burns patients. PMID:26352256

  2. Coproduction of acetic acid and electricity by application of microbial fuel cell technology to vinegar fermentation.

    PubMed

    Tanino, Takanori; Nara, Youhei; Tsujiguchi, Takuya; Ohshima, Takayuki

    2013-08-01

    The coproduction of a useful material and electricity via a novel application of microbial fuel cell (MFC) technology to oxidative fermentation was investigated. We focused on vinegar production, i.e., acetic acid fermentation, as an initial and model useful material that can be produced by oxidative fermentation in combination with MFC technology. The coproduction of acetic acid and electricity by applying MFC technology was successfully demonstrated by the simultaneous progress of acetic acid fermentation and electricity generation through a series of repeated batch fermentations. Although the production rate of acetic acid was very small, it increased with the number of repeated batch fermentations that were conducted. We obtained nearly identical (73.1%) or larger (89.9%) acetic acid yields than that typically achieved by aerated fermentation (75.8%). The open-cycle voltages measured before and after fermentation increased with the total fermentation time and reached a maximum value of 0.521 V prior to the third batch fermentation. The maximum current and power densities measured in this study (19.1 μA/cm² and 2.47 μW/cm², respectively) were obtained after the second batch fermentation.

  3. Regeneration of basic sorbents used in the recovery of acetic acid from dilute aqueous solution

    SciTech Connect

    Ng, M.; King, C.J.

    1988-10-01

    The regeneration of basic sorbents used in the recovery of dilute aqueous acetic acid was explored. The regeneration methods studied were solvent leaching and vaporization. The resins used were weak base anion exchange resins, Dow Chemical Company's Dowex MWA-1 (tertiary amine resin) and Celanese Corporation's Aurorez (polybenzimidazole resin). The equilibrium between the aqueous acetic acid solution and the resins was measured in batch experiments. The composite isotherms calculated from these data wee comparable to those of other researchers. Methanol was used as the solvent to leach acetic acid from the resin. The equilibrium data from the batch experiments were used in the local-equilibrium theory of fixed-bed devices to model the desorption behavior of acetic acid in methanol. Both sorption and desorption equilibrium data were used in chemical complexation models to obtain sorption affinities and capacities of the resin for acetic acid. However, the amount of methanol needed to achieve a high degree of regeneration was too large to be economical. 15 refs., 25 figs., 3 tabs.

  4. Crystal structure of a mixed-ligand dinuclear Ba-Zn complex with 2-meth-oxy-ethanol having tri-phenyl-acetate and chloride bridges.

    PubMed

    Utko, Józef; Sobocińska, Maria; Dobrzyńska, Danuta; Lis, Tadeusz

    2015-07-01

    The dinuclear barium-zinc complex, μ-chlorido-1:2κ(2) Cl:Cl-chlorido-2κCl-bis-(2-meth-oxy-ethanol-1κO)bis-(2-meth-oxy-ethanol-1κ(2) O,O')bis-(μ-tri-phenyl-acetato-1:2κ(2) O:O')bariumzinc, [BaZn(C20H15O2)2Cl2(C3H8O2)4], has been synthesized by the reaction of barium tri-phenyl-acetate, anhydrous zinc chloride and 2-meth-oxy-ethanol in the presence of toluene. The barium and zinc metal cations in the dinuclear complex are linked via one chloride anion and carboxyl-ate O atoms of the tri-phenyl-acetate ligands, giving a Ba⋯Zn separation of 3.9335 (11) Å. The irregular nine-coordinate BaO8Cl coordination centres comprise eight O-atom donors, six of them from 2-meth-oxy-ethanol ligands (four from two bidentate O,O'-chelate inter-actions and two from monodentate inter-actions), two from bridging tri-phenyl-acetate ligands and one from a bridging Cl donor. The distorted tetra-hedral coordination sphere of zinc comprises two O-atom donors from the tri-phenyl-acetate ligands and two Cl donors (one bridging and one terminal). In the crystal, O-H⋯Cl, O-H⋯O and C-H⋯Cl inter-molecular inter-actions form a layered structure, lying parallel to (001).

  5. Antimicrobial activity of ethanol, glycerol monolaurate or lactic acid against Listeria monocytogenes.

    PubMed

    Oh, D H; Marshall, D L

    1993-12-01

    Minimal inhibitory concentrations (MIC) and antimicrobial effects of glycerol monolaurate (monolaurin), ethanol and lactic acid, either alone or in combination, against Listeria monocytogenes in tryptic soy broth were determined. Ethanol at concentrations up to 1.25% did not inhibit growth, but growth was strongly inhibited in the presence of 5% ethanol. MIC values of monolaurin and ethanol alone were 10 micrograms/ml (0.001%) and 50,000 micrograms/ml (5%), respectively. However, MIC values were not changed when monolaurin was combined with ethanol. When 5 micrograms/ml monolaurin was combined with 5% ethanol, the inhibitory effect of the combination was similar to the most active compound alone after 24 h incubation. These data indicate little interaction between monolaurin and ethanol against L. monocytogenes. MIC value of lactic acid alone was 5000 micrograms/ml (0.5%), but was lower when 1.25% ethanol was combined with 0.25% lactic acid. When 2.5% ethanol was combined with 0.25% lactic acid, the combination did not increase the inhibitory effect of the most active single compound alone. This result also indicates that there was little interaction between ethanol and lactic acid.

  6. Ethanol production from cotton gin trash using optimised dilute acid pretreatment and whole slurry fermentation processes.

    PubMed

    McIntosh, S; Vancov, T; Palmer, J; Morris, S

    2014-12-01

    Cotton ginning trash (CGT) collected from Australian cotton gins was evaluated for bioethanol production. CGT composition varied between ginning operations and contained high levels of extractives (26-28%), acid-insoluble material (17-22%) and holocellulose (42-50%). Pretreatment conditions of time (4-20 min), temperature (160-220 °C) and sulfuric acid concentration (0-2%) were optimised using a central composite design. Response surface modelling revealed that CGT fibre pretreated at 180 °C in 0.8% H2SO4 for 12 min was optimal for maximising enzymatic glucose recoveries and achieved yields of 89% theoretical, whilst the total accumulated levels of furans and acetic acid remained relatively low at <1 and 2 g/L respectively. Response surface modelling also estimated maximum xylose recovery in pretreated liquors (87% theoretical) under the set conditions of 150 °C in 1.9% H2SO4 for 23.8 min. Yeast fermentations yielded high ethanol titres of 85%, 88% and 70% theoretical from glucose generated from: (a) enzymatic hydrolysis of washed pretreated fibres, (b) enzymatic hydrolysis of whole pretreated slurries and (c) simultaneous saccharification fermentations, respectively.

  7. Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast.

    PubMed

    Nigam, J N

    2002-08-07

    Water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate has been utilized as a substrate for ethanol production using Pichia stipitis NRRL Y-7124. Hydrolysate fermentability was considerable improved by boiling, and overliming up to pH 10.0 with solid Ca(OH)(2) in combination with sodium sulfite. The percent total sugar utilized and ethanol yield (Y(p/s)) for the untreated hydrolysate were 20.15+/-0.17% and 0.19+/-0.003 g(p) g(s)(-1), respectively, compared with 76.0+/-0.32% and 0.35 g(p) g(s)(-1), respectively for the treated material. The fermentation was very effective at an aeration rate of 0.02 v/v/m, temperature 30+/-0.2 degrees C and pH 6.0+/-0.2. However, the volumetric productivity (Q(p)) was still considerably less than observed in a simulated synthetic hydrolysate medium with a sugar composition similar to the hemicellulose acid hydrolysate. L-Arabinose was not fermented but assimilated. The presence of acetic acid in the hydrolysate decreased the ethanol yield and productivity considerably.

  8. Quantitative determination of carboxylic acids, amino acids, carbohydrates, ethanol and hydroxymethylfurfural in honey by (1)H NMR.

    PubMed

    del Campo, Gloria; Zuriarrain, Juan; Zuriarrain, Andoni; Berregi, Iñaki

    2016-04-01

    A method using (1)H NMR spectroscopy has been developed to quantify simultaneously thirteen analytes in honeys without previous separation or pre-concentration steps. The method has been successfully applied to determine carboxylic acids (acetic, formic, lactic, malic and succinic acids), amino acids (alanine, phenylalanine, proline and tyrosine), carbohydrates (α- and β-glucose and fructose), ethanol and hydroxymethylfurfural in eucalyptus, heather, lavender, orange blossom, thyme and rosemary honeys. Quantification was performed by using the area of the signal of each analyte in the honey spectra, together with external standards. The regression analysis of the signal area against concentration plots, used for the calibration of each analyte, indicates a good linearity over the concentration ranges found in honeys, with correlation coefficients higher than 0.985 for the thirteen quantified analytes. The recovery studies give values over the 93.7-105.4% range with relative standard deviations lower than 7.4%. Good precision, with relative standard deviations over the range of 0.78-5.21% is obtained.

  9. Mechanistic Insights Underlying Tolerance to Acetic Acid Stress in Vaginal Candida glabrata Clinical Isolates.

    PubMed

    Cunha, Diana V; Salazar, Sara B; Lopes, Maria M; Mira, Nuno P

    2017-01-01

    During colonization of the vaginal tract Candida glabrata cells are challenged with the presence of acetic acid at a low pH, specially when dysbiosis occurs. To avoid exclusion from this niche C. glabrata cells are expected to evolve efficient adaptive responses to cope with this stress; however, these responses remain largely uncharacterized, especially in vaginal strains. In this work a cohort of 18 vaginal strains and 2 laboratory strains (CBS138 and KUE100) were phenotyped for their tolerance against inhibitory concentrations of acetic acid at pH 4. Despite some heterogeneity has been observed among the vaginal strains tested, in general these strains were considerably more tolerant to acetic acid than the laboratory strains. To tackle the mechanistic insights behind this differential level of tolerance observed, a set of vaginal strains differently tolerant to acetic acid (VG281∼VG49 < VG99 < VG216) and the highly susceptible laboratory strain KUE100 were selected for further studies. When suddenly challenged with acetic acid the more tolerant vaginal strains exhibited a higher activity of the plasma membrane proton pump CgPma1 and a reduced internal accumulation of the acid, these being two essential features to maximize tolerance. Based on the higher level of resistance exhibited by the vaginal strains against the action of a β-1,3-glucanase, it is hypothesized that the reduced internal accumulation of acetic acid inside these strains may originate from them having a different cell wall structure resulting in a reduced porosity to undissociated acetic acid molecules. Both the vaginal and the two laboratory strains were found to consume acetic acid in the presence of glucose indicating that metabolization of the acid is used by C. glabrata species as a detoxification mechanism. The results gathered in this study advance the current knowledge on the mechanisms underlying the increased competitiveness of C. glabrata in the vaginal tract, a knowledge that can

  10. Mechanistic Insights Underlying Tolerance to Acetic Acid Stress in Vaginal Candida glabrata Clinical Isolates

    PubMed Central

    Cunha, Diana V.; Salazar, Sara B.; Lopes, Maria M.; Mira, Nuno P.

    2017-01-01

    During colonization of the vaginal tract Candida glabrata cells are challenged with the presence of acetic acid at a low pH, specially when dysbiosis occurs. To avoid exclusion from this niche C. glabrata cells are expected to evolve efficient adaptive responses to cope with this stress; however, these responses remain largely uncharacterized, especially in vaginal strains. In this work a cohort of 18 vaginal strains and 2 laboratory strains (CBS138 and KUE100) were phenotyped for their tolerance against inhibitory concentrations of acetic acid at pH 4. Despite some heterogeneity has been observed among the vaginal strains tested, in general these strains were considerably more tolerant to acetic acid than the laboratory strains. To tackle the mechanistic insights behind this differential level of tolerance observed, a set of vaginal strains differently tolerant to acetic acid (VG281∼VG49 < VG99 < VG216) and the highly susceptible laboratory strain KUE100 were selected for further studies. When suddenly challenged with acetic acid the more tolerant vaginal strains exhibited a higher activity of the plasma membrane proton pump CgPma1 and a reduced internal accumulation of the acid, these being two essential features to maximize tolerance. Based on the higher level of resistance exhibited by the vaginal strains against the action of a β-1,3-glucanase, it is hypothesized that the reduced internal accumulation of acetic acid inside these strains may originate from them having a different cell wall structure resulting in a reduced porosity to undissociated acetic acid molecules. Both the vaginal and the two laboratory strains were found to consume acetic acid in the presence of glucose indicating that metabolization of the acid is used by C. glabrata species as a detoxification mechanism. The results gathered in this study advance the current knowledge on the mechanisms underlying the increased competitiveness of C. glabrata in the vaginal tract, a knowledge that can

  11. Microarray-based transcriptome of Listeria monocytogenes adapted to sublethal concentrations of acetic acid, lactic acid, and hydrochloric acid.

    PubMed

    Tessema, Girum Tadesse; Møretrø, Trond; Snipen, Lars; Heir, Even; Holck, Askild; Naterstad, Kristine; Axelsson, Lars

    2012-09-01

    Listeria monocytogenes , an important foodborne pathogen, commonly encounters organic acids in food-related environments. The transcriptome of L. monocytogenes L502 was analyzed after adaptation to pH 5 in the presence of acetic acid, lactic acid, or hydrochloric acid (HCl) at 25 °C, representing a condition encountered in mildly acidic ready-to-eat food kept at room temperature. The acid-treated cells were compared with a reference culture with a pH of 6.7 at the time of RNA harvesting. The number of genes and magnitude of transcriptional responses were higher for the organic acids than for HCl. Protein coding genes described for low pH stress, energy transport and metabolism, virulence determinates, and acid tolerance response were commonly regulated in the 3 acid-stressed cultures. Interestingly, the transcriptional levels of histidine and cell wall biosynthetic operons were upregulated, indicating possible universal response against low pH stress in L. monocytogenes. The opuCABCD operon, coding proteins for compatible solutes transport, and the transcriptional regulator sigL were significantly induced in the organic acids, strongly suggesting key roles during organic acid stress. The present study revealed the complex transcriptional responses of L. monocytogenes towards food-related acidulants and opens the roadmap for more specific and in-depth future studies.

  12. Use of pooled sodium acetate acetic acid formalin-preserved fecal specimens for the detection of intestinal parasites.

    PubMed

    Gaafar, Maha R

    2011-01-01

    This study aimed at comparing detection of intestinal parasites from single unpreserved stool sample vs. sodium acetate acetic acid formalin (SAF)-preserved pooled samples, and stained with chlorazol black dye in routine practice. Unpreserved samples were collected from 120 patients and represented as Group I. Other three SAF-preserved samples were collected from the same patients over a 6-day period and represented as Groups IIa, IIb, and IIc. The latter groups were equally subdivided into two subgroups. The first subgroup of each of the three samples was examined individually, whereas the second subgroup of each were pooled and examined as a single specimen. All groups were examined by the routine diagnostic techniques; however, in group II when the diagnosis was uncertain, the chlorazol black dye staining procedure was carried out. Results demonstrated that out of 74 patients who continued the study, 12 cases (16%) were positive in group I, compared with 29 (39%) in the subgroups examined individually, and 27 (36%) in the pooled subgroups. Therefore, pooling of preserved fecal samples is an efficient and economical procedure for the detection of parasites. Furthermore, the chlorazol black dye was simple and effective in detecting the nuclear details of different parasites.

  13. Comparison of fresh versus sodium acetate acetic acid formalin preserved stool specimens for diagnosis of intestinal protozoal infections.

    PubMed

    Mank, T G; Zaat, J O; Blotkamp, J; Polderman, A M

    1995-12-01

    The use of sodium acetate acetic acid formalin (SAF)-preserved stool specimens was compared with that of nonpreserved specimens for the recovery of intestinal protozoa. A total of 247 patients, 170 with diarrhea of more than one week's duration and 77 refugees, were asked to collect a stool specimen. Each specimen was placed into two vials, one empty, the other containing SAF fixative. Laboratory investigations included microscopic examination of the concentrated sediment and direct wet smears from both types of stool specimens and the microscopic examination of a permanent stained smear from the unsedimented, SAF-preserved stool specimens. Examination of SAF-preserved stool specimens revealed intestinal protozoa in 149 of the 247 patients. With the conventional procedure using unpreserved stool specimens, intestinal protozoa were found in 89 of the 247 patients. The results show that the examination of SAF-preserved stool specimens, consisting of the microscopic examination of both the concentrated sediment and the permanent stained smear from the unsedimented material, increases the chance of recovering intestinal protozoa as compared to the conventional procedure.

  14. Effect of acetic acid on physical properties of pregelatinized wheat and corn starch gels.

    PubMed

    Majzoobi, Mahsa; Kaveh, Zahra; Farahnaky, Asgar

    2016-04-01

    Pregelatinized starches are physically modified starches with ability to absorb water and increase viscosity at ambient temperature. The main purpose of this study was to determine how different concentrations of acetic acid (0, 500, 1000, 10,000 mg/kg) can affect functional properties of pregelatinized wheat and corn starches (PGWS and PGCS, respectively) produced by a twin drum drier. With increasing acetic acid following changes occurred for both samples; cold water solubility (at 25 °C) increased, water absorption and apparent cold water viscosity (at 25 °C) reduced, the smooth surface of the starch particles converted to an uneven surface as confirmed by scanning electron microscopy, cohesiveness, consistency and turbidity of the starch gels reduced while their syneresis increased. It was found that in presence of acetic acid, PGWS resulted in higher water absorption and apparent cold water viscosity and produced more cohesive and turbid gels with less syneresis compared to PGCS.

  15. The lifespan-promoting effect of acetic acid and Reishi polysaccharide.

    PubMed

    Chuang, Ming-Hong; Chiou, Shyh-Horng; Huang, Chun-Hao; Yang, Wen-Bin; Wong, Chi-Huey

    2009-11-15

    Using Caenorhabditis elegans as a model organism, various natural substances and commercial health-food supplements were screened to evaluate their effects on longevity. Among the substances tested, acetic acid and Reishi polysaccharide fraction 3 (RF3) were shown to increase the expression of the lifespan and longevity-related transcription factor DAF-16 in C. elegans. We have shown that RF3 activates DAF-16 expression via TIR-1 receptor and MAPK pathway whereas acetic acid inhibits the trans-membrane receptor DAF-2 of the insulin/IGF-1 pathway to indirectly activate DAF-16 expression. In addition, a mixture of acetic acid and RF3 possesses a combined effect 30-40% greater than either substance used alone. A proteomic analysis of C. elegans using 2-DE and LC-MS/MS was then carried out, and 15 differentially expressed proteins involved in the lifespan-promoting activity were identified.

  16. Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting

    PubMed Central

    Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia

    2015-01-01

    Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods. PMID:26640089

  17. Acetic acid induces a programmed cell death process in the food spoilage yeast Zygosaccharomyces bailii.

    PubMed

    Ludovico, Paula; Sansonetty, Filipe; Silva, Manuel T; Côrte-Real, Manuela

    2003-03-01

    Here we show that 320-800 mM acetic acid induces in Zygosaccharomyces bailii a programmed cell death (PCD) process that is inhibited by cycloheximide, is accompanied by structural and biochemical alterations typical of apoptosis, and occurs in cells with preserved mitochondrial and plasma membrane integrity (as revealed by rhodamine 123 (Rh123) and propidium iodide (PI) staining, respectively). Mitochondrial ultrastructural changes, namely decrease of the cristae number, formation of myelinic bodies and swelling were also seen. Exposure to acetic acid above 800 mM resulted in killing by necrosis. The occurrence of an acetic acid-induced active cell death process in Z. bailii reinforces the concept of a physiological role of the PCD in the normal yeast life cycle.

  18. Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting

    NASA Astrophysics Data System (ADS)

    Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia

    2015-12-01

    Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods.

  19. Inhibition of spoilage mould conidia by acetic acid and sorbic acid involves different modes of action, requiring modification of the classical weak-acid theory.

    PubMed

    Stratford, Malcolm; Plumridge, Andrew; Nebe-von-Caron, Gerhardt; Archer, David B

    2009-11-30

    Fungal spoilage of many foods is prevented by weak-acid preservatives such as sorbic acid or acetic acid. We show that sorbic and acetic acids do not both inhibit cells by lowering of internal pH alone and that the "classical weak-acid theory" must be revised. The "classical weak-acid theory" suggests that all lipophilic acids with identical pK(a) values are equally effective as preservatives, causing inhibition by diffusion of molecular acids into the cell, dissociation, and subsequent acidification of the cytoplasm. Using a number of spoilage fungi from different genera, we have shown that sorbic acid was far more toxic than acetic acid, and no correlation existed between resistance to acetic acid and resistance to sorbic acid. The molar ratio of minimum inhibitory concentrations (MICs) (acetic: sorbic) was 58 for Paecilomyces variotii and 14 for Aspergillus phoenicis. Using flow cytometry on germinating conidia of Aspergillusniger, acetic acid at pH 4.0 caused an immediate decline in the mean cytoplasmic pH (pH(i)) falling from neutrality to approximately pH 4.7 at the MIC (80 mM). Sorbic acid also caused a rapid but far smaller drop in pH(i), at the MIC (4.5 mM); the pH remained above pH 6.3. Over 0-5 mM, a number of other weak acids caused a similar fall in cytoplasmic pH. It was concluded that while acetic acid inhibition of A. niger conidia was due to cytoplasmic acidification, inhibition by sorbic acid was not. A possible membrane-mediated mode of action of sorbic acid is discussed.

  20. A PCR assay for detection of acetic acid-tolerant lactic acid bacteria in acidic food products.

    PubMed

    Nakano, Shigeru; Matsumura, Atsushi; Yamada, Toshihiro

    2004-03-01

    A PCR assay for the detection of acetic acid-tolerant lactic acid bacteria in the genera of Lactobacillus and Pediococcus was developed in this study. Primers targeting the bacterial 16S rRNA gene were newly designed and used in this PCR assay. To determine the specificity of the assay, 56 different bacterial strains (of 33 genera), 2 fungi, 3 animals, and 4 plants were tested. Results were positive for most tested bacterial members of 16S rRNA gene-based phylogenetic groups (classified in the Lactobacillus casei and Pediococcus group), including Lactobacillus fructivorans, Lactobacillus brevis, Lactobacillus buchneri, Lactobacillus plantarum, and Lactobacillus paracasei. For all other bacterial strains and eukaryote tested, results were negative. Bacterial DNA for PCR was prepared with a simple procedure with the use of Chelex 100 resin from culture after growth in deMan Rogosa Sharpe broth (pH 6.0). To test this PCR assay for the monitoring of the acetic acid-tolerant lactic acid bacteria, L. fructivorans was inoculated into several acidic food as an indicator. Before the PCR, the inoculation of 10 to 50 CFU of bacteria per g of food was followed by a 28-h enrichment culture step, and the PCR assay allowed the detection of bacterial cells. Including the enrichment culture step, the entire PCR detection process can be completed within 30 h.

  1. 2H NMR and 13C-IRMS analyses of acetic acid from vinegar, 18O-IRMS analysis of water in vinegar: international collaborative study report.

    PubMed

    Thomas, Freddy; Jamin, Eric

    2009-09-01

    An international collaborative study of isotopic methods applied to control the authenticity of vinegar was organized in order to support the recognition of these procedures as official methods. The determination of the 2H/1H ratio of the methyl site of acetic acid by SNIF-NMR (site-specific natural isotopic fractionation-nuclear magnetic resonance) and the determination of the 13C/12C ratio, by IRMS (isotope ratio mass spectrometry) provide complementary information to characterize the botanical origin of acetic acid and to detect adulterations of vinegar using synthetic acetic acid. Both methods use the same initial steps to recover pure acetic acid from vinegar. In the case of wine vinegar, the determination of the 18O/16O ratio of water by IRMS allows to differentiate wine vinegar from vinegars made from dried grapes. The same set of vinegar samples was used to validate these three determinations. The precision parameters of the method for measuring delta13C (carbon isotopic deviation) were found to be similar to the values previously obtained for similar methods applied to wine ethanol or sugars extracted from fruit juices: the average repeatability (r) was 0.45 per thousand, and the average reproducibility (R) was 0.91 per thousand. As expected from previous in-house study of the uncertainties, the precision parameters of the method for measuring the 2H/1H ratio of the methyl site were found to be slightly higher than the values previously obtained for similar methods applied to wine ethanol or fermentation ethanol in fruit juices: the average repeatability was 1.34 ppm, and the average reproducibility was 1.62 ppm. This precision is still significantly smaller than the differences between various acetic acid sources (delta13C and delta18O) and allows a satisfactory discrimination of vinegar types. The precision parameters of the method for measuring delta18O were found to be similar to the values previously obtained for other methods applied to wine and

  2. Acetic acid-catalyzed formation of N-phenylphthalimide from phthalanilic acid: a computational study of the mechanism.

    PubMed

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2015-05-28

    In glacial acetic acid, phthalanilic acid and its monosubstituents are known to be converted to the corresponding phthalimides in relatively good yields. In this study, we computationally investigated the experimentally proposed two-step (addition-elimination or cyclization-dehydration) mechanism at the second-order Møller-Plesset perturbation (MP2) level of theory for the unsubstituted phthalanilic acid, with an explicit acetic acid molecule included in the calculations. In the first step, a gem-diol tetrahedral intermediate is formed by the nucleophilic attack of the amide nitrogen. The second step is dehydration of the intermediate to give N-phenylphthalimide. In agreement with experimental findings, the second step has been shown to be rate-determining. Most importantly, both of the steps are catalyzed by an acetic acid molecule, which acts both as proton donor and acceptor. The present findings, along with those from our previous studies, suggest that acetic acid and other carboxylic acids (in their undissociated forms) can catalyze intramolecular nucleophilic attacks by amide nitrogens and breakdown of the resulting tetrahedral intermediates, acting simultaneously as proton donor and acceptor. In other words, double proton transfers involving a carboxylic acid molecule can be part of an extensive bond reorganization process from cyclic hydrogen-bonded complexes.

  3. Effects of combined heat and acetic acid on natural microflora reduction on cantaloupe melons.

    PubMed

    Fouladkhah, Aliyar; Avens, John S

    2010-05-01

    Produce is an important source of nutrients and phytochemicals, which is important in a healthy diet. However, perishable fresh produce has caused recent outbreaks of foodborne diseases. High level of nutrients and water activity, direct contact with soil, and lack of thermal procedures during primary processing make fresh produce a potential food safety hazard. Fruits and vegetables with rough surfaces can harbor microorganisms and support their multiplication, increasing the risk of this hazard. This study evaluated the effects of extreme thermal processes combined with acetic acid on natural microflora reduction on cantaloupe melons. Melons from a local supermarket were assigned into five treatment groups: control, water at 25 degrees C, water at 95 degrees C, 5% acetic acid at 25 degrees C, and 5% acetic acid at 95 degrees C. Four skin samples were obtained from each melon, separately stomached for 2 min with 0.1% peptone water, and serially diluted. Aerobic plate counts (APC) of dilutions were determined. Statistical analysis (least significant difference-based analysis of variance) showed that there were no significant (P > 0.05) differences in APC among control, water at 25 degrees C, and 5% acetic acid at 25 degrees C. Thermal treatments with water at 95 degrees C, and 5% acetic acid at 95 degrees C, were both significantly (P < 0.05) more effective in APC reduction than were nonthermal treatments, but were not significantly different from each other. Results indicated that a thermal water immersion intervention in primary processing of fresh melons can result in a 3-log reduction of natural microflora surface contamination, but 5% acetic acid will not significantly augment this reduction.

  4. [Comparative genomics and evolutionary analysis of CRISPR loci in acetic acid bacteria].

    PubMed

    Kai, Xia; Xinle, Liang; Yudong, Li

    2015-12-01

    The clustered regularly interspaced short palindromic repeat (CRISPR) is a widespread adaptive immunity system that exists in most archaea and many bacteria against foreign DNA, such as phages, viruses and plasmids. In general, CRISPR system consists of direct repeat, leader, spacer and CRISPR-associated sequences. Acetic acid bacteria (AAB) play an important role in industrial fermentation of vinegar and bioelectrochemistry. To investigate the polymorphism and evolution pattern of CRISPR loci in acetic acid bacteria, bioinformatic analyses were performed on 48 species from three main genera (Acetobacter, Gluconacetobacter and Gluconobacter) with whole genome sequences available from the NCBI database. The results showed that the CRISPR system existed in 32 species of the 48 strains studied. Most of the CRISPR-Cas system in AAB belonged to type I CRISPR-Cas system (subtype E and C), but type II CRISPR-Cas system which contain cas9 gene was only found in the genus Acetobacter and Gluconacetobacter. The repeat sequences of some CRISPR were highly conserved among species from different genera, and the leader sequences of some CRISPR possessed conservative motif, which was associated with regulated promoters. Moreover, phylogenetic analysis of cas1 demonstrated that they were suitable for classification of species. The conservation of cas1 genes was associated with that of repeat sequences among different strains, suggesting they were subjected to similar functional constraints. Moreover, the number of spacer was positively correlated with the number of prophages and insertion sequences, indicating the acetic acid bacteria were continually invaded by new foreign DNA. The comparative analysis of CRISR loci in acetic acid bacteria provided the basis for investigating the molecular mechanism of different acetic acid tolerance and genome stability in acetic acid bacteria.

  5. Effect of acetic acid on optical coherence tomography (OCT) images of cervical epithelium.

    PubMed

    Gallwas, Julia; Stanchi, Anna; Dannecker, Christian; Ditsch, Nina; Mueller, Susanna; Mortensen, Uwe; Stepp, Herbert

    2014-11-01

    Optical coherence tomography (OCT) can be used as an adjunct to colposcopy in the identification of precancerous and cancerous cervical lesions. The purpose of this study was to investigate the effect of acetic acid on OCT imaging. OCT images were taken from unsuspicious and suspicious areas of fresh conization specimens immediately after resection and 3 and 10 min after application of 6 % acetic acid. A corresponding histology was obtained from all sites. The images taken 3 and 10 min after application of acetic acid were compared to the initial images with respect to changes in brightness, contrast, and scanning depth employing a standard nonparametric test of differences of proportions. Further, mean intensity backscattering curves were calculated from all OCT images in the histological groups CIN3, inflammation, or normal epithelium. Mean difference profiles within each of these groups were determined, reflecting the mean differences between the condition before application of acetic acid and the exposure times 3 and 10 min, respectively. According to the null hypothesis, the difference profiles do not differ from profiles fluctuating around zero in a stationary way, which implies that the profiles do not differ significantly from each other. The null hypothesis was tested employing the KPSS test. The visual analysis of 137 OCT images from 46 sites of 10 conization specimens revealed a statistically significant increase in brightness for all three groups and a statistically significant decrease in contrast for normal epithelium after 10 min. Further, an increase in scanning depth was noted for normal epithelium after 10 min and for CIN3 after 3 min. The analysis of mean intensity profiles showed an increased backscattering intensity after application of acetic acid. Acetic acid significantly affects the quality of OCT images. Overall brightness and scanning depth increase with the opposite effect regarding the image contrast. Whether the observed changes

  6. Comparative Indole-3-Acetic Acid Levels in the Slender Pea and Other Pea Phenotypes 1

    PubMed Central

    Law, David M.; Davies, Peter J.

    1990-01-01

    Free indole-3-acetic acid levels were measured by gas chromatography-mass spectrometry in three ultra-tall `slender' Pisum sativum L. lines differing in gibberellin content. Measurements were made for apices and stem elongation zones of light-grown plants and values were compared with wild-type, dwarf, and nana phenotypes in which internode length is genetically regulated, purportedly via the gibberellin level. Indole-3-acetic acid levels of growing stems paralleled growth rates in all lines, and were high in all three slender genotypes. Growth was inhibited by p-chlorophenoxyisobutyric acid, demonstrating the requirement of auxin activity for stem elongation, and also by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. It is concluded that the slender phenotype may arise from constant activation of a gibberellin receptor or transduction chain event leading directly or indirectly to elevated levels of indole-3-acetic acid, and that increased indole-3-acetic acid levels are a significant factor in the promotion of stem elongation. PMID:16667653

  7. Synthesis and biological activity of thiazolyl-acetic acid derivatives as possible antimicrobial agents.

    PubMed

    Shirai, Akihiro; Fumoto, Yasuko; Shouno, Tomoaki; Maseda, Hideaki; Omasa, Takeshi

    2013-01-01

    5a-h, a series of (5-substituted-2-methyl-1,3-thiazole-4-yl) acetic acids as heterocyclic acetic acid derivatives, was designed and synthesized from ethyl acetoacetate. The synthesized compounds were screened for their antimicrobial activities against bacterial and fungal strains, and their characteristics were investigated by assays under various temperature and pH conditions. Cytotoxicity was evaluated with the use of sheep erythrocytes and human neonate dermal fibroblasts. Similarly, agents such as lauric acid 6 and parabens 7a-b, which are used as preservative agents for commercial cosmetics and detergents, were assayed for comparison. Although the structure of 5a is simple, comprising a thiazole attached with an octyl group and acetic acid moiety, the compound showed stronger and broader antibacterial and antifungal activities among the 5 series against the tested microbes other than gram-negative bacteria. Interestingly, 5a overcame the weak antifungal activity of parabens 7a-b. Also, the cytotoxicity of 5a was less than that of parabens 7a-b, especially to human dermal fibroblasts. These results suggest that thiazolyl-acetic acid 5a is a potentially effective biocide, and that it could be used as a preservative agent in commercially sold cosmetics and detergents, facilitated by the hydrophilic and charge properties of its carboxylic acid moiety.

  8. Inhibition of microbial xylitol production by acetic acid and its relation with fermentative parameters.

    PubMed

    Morita, T A; Silva, S S

    2000-01-01

    Precipitated sugarcane bagasse hemicellulosic hydrolysate containing acetic acid was fermented by Candida guilliermondii FTI20037 under different operational conditions (pH 4.0 and 7.0, three aeration rates). At pH 7.0 and kLa of 10 (0.75 vvm) and 22.5/h (3.0 vvm) the acetic acid had not been consumed until the end of the fermentations, whereas at the same pH and kLa of 35/h (4.5 vvm) the acid was rapidly consumed and acetic acid inhibition was not important. On the other hand, fermentations at an initial pH of 4.0 and kLa of 22.5 and 35/h required less time for the acid uptake than fermentations at kLa of 10/h. The acetic acid assimilation by the yeast indicates the ability of this strain to ferment in partially detoxified medium, making possible the utilization of the sugarcane bagasse hydrolysate in this bio-process. The effects on xylitol yield and production are reported.

  9. Reactivity and reaction intermediates for acetic acid adsorbed on CeO2(111)

    DOE PAGES

    Calaza, Florencia C.; Chen, Tsung -Liang; Mullins, David R.; ...

    2015-05-02

    Adsorption and reaction of acetic acid on a CeO2(1 1 1) surface was studied by a combination of ultra-highvacuum based methods including temperature desorption spectroscopy (TPD), soft X-ray photoelectronspectroscopy (sXPS), near edge X-ray absorption spectroscopy (NEXAFS) and reflection absorption IRspectroscopy (RAIRS), together with density functional theory (DFT) calculations. TPD shows that thedesorption products are strongly dependent upon the initial oxidation state of the CeO2 surface, includingselectivity between acetone and acetaldehyde products. The combination of sXPS and NEXAFS demon-strate that acetate forms upon adsorption at low temperature and is stable to above 500 K, above whichpoint ketene, acetone and acetic acidmore » desorb. Furthermore, DFT and RAIRS show that below 500 K, bridge bondedacetate coexists with a moiety formed by adsorption of an acetate at an oxygen vacancy, formed bywater desorption.« less

  10. (S) 2-phenyl-2-(p-tolylsulfonylamino)acetic acid. Structure, acidity and its alkali carboxylates

    NASA Astrophysics Data System (ADS)

    Duarte-Hernández, Angélica M.; Contreras, Rosalinda; Suárez-Moreno, Galdina V.; Montes-Tolentino, Pedro; Ramos-García, Iris; González, Felipe J.; Flores-Parra, Angelina

    2015-03-01

    The structure and the preferred conformers of (S) 2-phenyl-2-(p-tolylsulfonylamino)acetic acid (1) are reported. Compound 1 is a derivative of the unnatural aminoacid the (S) phenyl glycine. The X-ray diffraction analyses of the complexes of 1 with water, methanol, pyridine and its own anion are discussed. In order to add information about the acidity of the COOH and NH protons in compound 1, its pKa in DMSO and those of N-benzyl-p-tolylsulfonamide and (S) N-methylbenzyl-p-tolylsulfonamide were determined by cyclic voltammetry. Data improved the scarce information about pKa in DMSO values of sulfonamides. The products of the reactions of compound 1 with one and two equivalents of LiOH, NaOH and KOH in methanol were analyzed. Crystals of the lithium (2) and sodium (3) carboxylates and the dipotassium sulfonylamide acetate (7) were obtained, they are coordination polymers. In compound 2, the lithium is bound to four oxygen atoms with short bond lengths. The coordination of the lithium atom to two carboxylates gives an infinite ribbon by formation of fused six membered rings. In the crystal of compound 3, two pentacoordinated sodium atoms are bridged by three oxygen atoms, one from a water molecule and two from DMSO. The short distance between the sodium atoms (3.123 Å), implies a metal-metal interaction. The sodium couples are linked by two carboxylate groups, forming a planar ribbon of fused twelve membered rings. A notable discovery was a water molecule quenched in the middle of the ring, with a tetra coordinated oxygen atom in a square planar geometry. In compound 7, the carboxylate and the amide are bound to heptacoordinated potassium atoms. The 2D polymer of 7 has a sandwich structure, with the carboxylate and potassium atoms in the inner layer covered by the aromatic rings.

  11. A theoretical study on the pH dependence of X-ray emission spectra for aqueous acetic acid

    NASA Astrophysics Data System (ADS)

    Nishida, Naohiro; Tokushima, Takashi; Takahashi, Osamu

    2016-04-01

    We performed theoretical calculations to reproduce the site-selective XES spectra for aqueous acetic acid at the oxygen K-edge. The shape of the experimental XES spectra obtained from aqueous acetic acid drastically changed when the pH value was high. Structure sampling of an aqueous acetic acid cluster model was performed by the ab initio molecular dynamics trajectory. Relative XES peak intensities for the core⿿hole excited state dynamics simulations were calculated using density functional theory. We found that the theoretical XES spectra reproduced well the experimental spectra and that these calculations gave us electronic and molecular structure information about aqueous acetic acid.

  12. Isolation and characterization of esters of indole-3-acetic acid from the liquid endosperm of the horse chestnut (Aesculus species)

    NASA Technical Reports Server (NTRS)

    Domagalski, W.; Schulze, A.; Bandurski, R. S.

    1987-01-01

    Esters of indole-3-acetic acid were extracted and purified from the liquid endosperm of immature fruits of various species of the horse chestnut (Aesculus parviflora, A. baumanni, A. pavia rubra, and A. pavia humulis). The liquid endosperm contained, at least 12 chromatographically distinct esters. One of these compounds was purified and characterized as an ester of indole-3-acetic acid and myo-inositol. A second compound was found to be an ester of indole-3-acetic acid and the disaccharide rutinose (glucosyl-rhamnose). A third compound was partially characterized as an ester of indole-3-acetic acid and a desoxyaminohexose.

  13. Acetic Acid Bacteria and the Production and Quality of Wine Vinegar

    PubMed Central

    Torija, María Jesús; García-Parrilla, María del Carmen; Troncoso, Ana María

    2014-01-01

    The production of vinegar depends on an oxidation process that is mainly performed by acetic acid bacteria. Despite the different methods of vinegar production (more or less designated as either “fast” or “traditional”), the use of pure starter cultures remains far from being a reality. Uncontrolled mixed cultures are normally used, but this review proposes the use of controlled mixed cultures. The acetic acid bacteria species determine the quality of vinegar, although the final quality is a combined result of technological process, wood contact, and aging. This discussion centers on wine vinegar and evaluates the effects of these different processes on its chemical and sensory properties. PMID:24574887

  14. Complex internal rearrangement processes triggered by electron transfer to acetic acid

    NASA Astrophysics Data System (ADS)

    Limão-Vieira, P.; Meneses, G.; Cunha, T.; Gil, A.; Calhorda, M. J.; García, G.; Ferreira da Silva, F.

    2015-09-01

    We present negative ion formation from collisions of 100 eV neutral potassium atoms with acetic acid (CH3COOH) and its deuterated analogue molecules (CH3COOD, CD3COOH). From the negative ion time-of-flight (TOF) mass spectra, OH- is the main fragment detected accounting on average for more than 25% of the total anion yield. The complex internal rearrangement processes triggered by electron transfer to acetic acid have been evaluated with the help of theoretical calculations at the DFT levels explaining the fragmentation channel yielding OH-.

  15. Acetic acid bacteria and the production and quality of wine vinegar.

    PubMed

    Mas, Albert; Torija, María Jesús; García-Parrilla, María del Carmen; Troncoso, Ana María

    2014-01-01

    The production of vinegar depends on an oxidation process that is mainly performed by acetic acid bacteria. Despite the different methods of vinegar production (more or less designated as either "fast" or "traditional"), the use of pure starter cultures remains far from being a reality. Uncontrolled mixed cultures are normally used, but this review proposes the use of controlled mixed cultures. The acetic acid bacteria species determine the quality of vinegar, although the final quality is a combined result of technological process, wood contact, and aging. This discussion centers on wine vinegar and evaluates the effects of these different processes on its chemical and sensory properties.

  16. Activation of apoptosis by ethyl acetate fraction of ethanol extract of Dianthus superbus in HepG2 cell line.

    PubMed

    Yu, Jian-Qing; Yin, Yan; Lei, Jia-Chuan; Zhang, Xiu-Qiao; Chen, Wei; Ding, Cheng-Li; Wu, Shan; He, Xiao-Yu; Liu, Yan-Wen; Zou, Guo-Lin

    2012-02-01

    Dianthus superbus L. is commonly used as a traditional Chinese medicine. We recently showed that ethyl acetate fraction (EE-DS) from ethanol extract of D. superbus exhibited the strongest antioxidant and cytotoxic activities. In this study, we examined apoptosis of HepG2 cells induced by EE-DS, and the mechanism underlying apoptosis was also investigated. Treatment of HepG2 cells with EE-DS (20-80 μg/ml) for 48 h led to a significant dose-dependent increase in the percentage of cells in sub-G1 phase by analysis of the content of DNA in cells, and a large number of apoptotic bodies containing nuclear fragments were observed in cells treated with 80 μg/ml of EE-DS for 24 h by using Hoechst 33258 staining. These data show that EE-DS can induce apoptosis of HepG2 cells. Immunoblot analysis showed that EE-DS significantly suppressed the expressions of Bcl-2 and NF-κB. Treatment of cells with EE-DS (80 μg/ml) for 48 h resulted in significant increase of cytochrome c in the cytosol, which indicated cytochrome c release from mitochondria. Activation of caspase-9 and -3 were also determined when the cells treated with EE-DS. The results suggest that apoptosis of HepG2 cells induced by EE-DS could be through the mitochondrial intrinsic pathway. High performance liquid chromatography (HPLC) data showed that the composition of EE-DS is complicated. Further studies are needed to find the effective constituents of EE-DS.

  17. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Lim, Y. B.; Altieri, K. E.; Seitzinger, S. P.; Turpin, B. J.

    2012-01-01

    Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including pyruvate, oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA). Acetic acid plays a central role in the aqueous oxidation of methylglyoxal and it is a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid (20 μM-10 mM) was oxidized by OH radicals, and pyruvic acid and methylglyoxal experimental samples were analyzed using new analytical methods, in order to better understand the formation of SOA from acetic acid and methylglyoxal. Glyoxylic, glycolic, and oxalic acids formed from acetic acid and OH radicals. In contrast to the aqueous OH radical oxidation of methylglyoxal, the aqueous OH radical oxidation of acetic acid did not produce succinic acid and oligomers. This suggests that the methylgloxal-derived oligomers do not form through the acid catalyzed esterification pathway proposed previously. Using results from these experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  18. Short-chain fatty acids activate AMP-activated protein kinase and ameliorate ethanol-induced intestinal barrier dysfunction in Caco-2 cell monolayers.

    PubMed

    Elamin, Elhaseen E; Masclee, Ad A; Dekker, Jan; Pieters, Harm-Jan; Jonkers, Daisy M

    2013-12-01

    Short-chain fatty acids (SCFAs) have been shown to promote intestinal barrier function, but their protective effects against ethanol-induced intestinal injury and underlying mechanisms remain essentially unknown. The aim of the study was to analyze the influence of SCFAs on ethanol-induced barrier dysfunction and to examine the role of AMP-activated protein kinase (AMPK) as a possible mechanism using Caco-2 monolayers. The monolayers were treated apically with butyrate (2, 10, or 20 mmol/L), propionate (4, 20, or 40 mmol/L), or acetate (8, 40, or 80 mmol/L) for 1 h before ethanol (40 mmol/L) for 3 h. Barrier function was analyzed by measurement of transepithelial resistance and permeation of fluorescein isothiocyanate-labeled dextran. Distribution of the tight junction (TJ) proteins zona occludens-1, occludin, and filamentous-actin (F-actin) was examined by immunofluorescence. Metabolic stress was determined by measuring oxidative stress, mitochondrial function, and ATP using dichlorofluorescein diacetate, dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide, and bioluminescence assay, respectively. AMPK was knocked down by small interfering RNA (siRNA), and its activity was assessed by a cell-based ELISA. Exposure to ethanol significantly impaired barrier function compared with controls (P < 0.0001), disrupted TJ and F-actin cytoskeleton integrity, and induced metabolic stress. However, pretreatment with 2 mmol/L butyrate, 4 mmol/L propionate, and 8 mmol/L acetate significantly alleviated the ethanol-induced barrier dysfunction, TJ and F-actin disruption, and metabolic stress compared with ethanol-exposed monolayers (P < 0.0001). The promoting effects on barrier function were abolished by inhibiting AMPK using either compound C or siRNA. These observations indicate that SCFAs exhibit protective effects against ethanol-induced barrier disruption via AMPK activation, suggesting a potential for SCFAs as prophylactic and/or therapeutic factors against ethanol

  19. Formic and acetic acid over the central Amazon region, Brazil 1. Dry season

    SciTech Connect

    Andreae, M.O.; Talbot, R.W.; Andreae, T.W.; Harriss, R.C.

    1988-02-20

    We have determined the atmospheric concentrations of formic and acetic acid in the gas phase, in aerosols, and in rain during the dry season (July--August 1985) in the Amazonia region of Brazil. At ground level the average concentrations of gas phase formic and acetic acid were 1.6 +- 0.6 and 2.2 +- 1.0 ppb, respectively. The diurnal behavior of both acids at ground level and their vertical distribution in the forest canopy point to the existence of vegetative sources as well as to production by chemical reactions in the atmosphere. Dry deposition of the gaseous acids appears to be a major sink. The concentrations of formic and acetic acid in the gas phase were about 2 orders of magnitude higher than concentrations of the corresponding species in the atmospheric aerosol. About 50--60%/sub 0/ of the aerosol (total) formate and acetate were in the size fraction below 1.0 ..mu..m diameter.

  20. Monolaurin and acetic acid inactivation of Listeria monocytogenes attached to stainless steel.

    PubMed

    Oh, D H; Marshall, D L

    1996-03-01

    Individual and combined antimicrobial effects of monolaurin and acetic acid on Listeria monocytogenes planktonic cells or stainless-steel-adherent cells were determined in order to evaluate cell viability during a 25-min exposure period at 25 degrees C. A 10(7)-colony-forming units (CFU)/ml population of planktonic cells was completely inactivated by the synergistic combination of 1% acetic acid with 50 or 100 microg/ml of monolaurin within 25 or 20 min, respectively. Either compound alone caused partial but incomplete inactivation within the same time periods. A population of 10(5) CFU/cm2 of 1-day adherent cells on stainless steel was completely inactivated within 25 min, but with the highest concentrations of the combined chemicals, i.e., 1% acetic acid and 100 microg/ml of monolaurin. The combined chemical treatment again synergistically produced greater inhibition. A 10(6)-CFU/cm2 population of 7-day adherent cells was not completely inactivated within 25 min of exposure, although counts did decline. The results demonstrate increased resistance of attached L. monocytogenes to acetic acid and monolaurin and show that resistance increased with culture age. Combinations of organic acids and monolaurin might be considered as sanitizers of food contact surfaces, but activities of such combinations are likely to be less than other commonly used sanitizers.

  1. Acetate induced enhancement of photocatalytic hydrogen peroxide production from oxalic acid and dioxygen.

    PubMed

    Yamada, Yusuke; Nomura, Akifumi; Miyahigashi, Takamitsu; Ohkubo, Kei; Fukuzumi, Shunichi

    2013-05-09

    The addition of acetate ion to an O2-saturated mixed solution of acetonitrile and water containing oxalic acid as a reductant and 2-phenyl-4-(1-naphthyl)quinolinium ion (QuPh(+)-NA) as a photocatalyst dramatically enhanced the turnover number of hydrogen peroxide (H2O2) production. In this photocatalytic H2O2 production, a base is required to facilitate deprotonation of oxalic acid forming oxalate dianion, which acts as an actual electron donor, whereas a Brønsted acid is also necessary to protonate O2(•-) for production of H2O2 by disproportionation. The addition of acetate ion to a reaction solution facilitates both the deprotonation of oxalic acid and the protonation of O2(•-) owing to a pH buffer effect. The quantum yield of the photocatalytic H2O2 production under photoirradiation (λ = 334 nm) of an O2-saturated acetonitrile-water mixed solution containing acetate ion, oxalic acid and QuPh(+)-NA was determined to be as high as 0.34, which is more than double the quantum yield obtained by using oxalate salt as an electron donor without acetate ion (0.14). In addition, the turnover number of QuPh(+)-NA reached more than 340. The reaction mechanism and the effect of solvent composition on the photocatalytic H2O2 production were scrutinized by using nanosecond laser flash photolysis.

  2. Culture strategies for lipid production using acetic acid as sole carbon source by Rhodosporidium toruloides.

    PubMed

    Huang, Xiang-Feng; Liu, Jia-Nan; Lu, Li-Jun; Peng, Kai-Ming; Yang, Gao-Xiang; Liu, Jia

    2016-04-01

    Rhodosporidium toruloides AS 2.1389 was tested using different concentrations of acetic acid as a low-cost carbon source for the production of microbial lipids, which are good raw materials for biodiesel production. It grew and had higher lipid contents in media containing 4-20 g/L acetic acid as the sole carbon source, compared with that in glucose-containing media under the same culture conditions. At acetic acid concentrations as high as 20 g/L and the optimal carbon-to-nitrogen ratio (C/N) of 200 in a batch culture, the highest biomass production was 4.35 g/L, with a lipid content of 48.2%. At acetic acid concentrations as low as 4 g/L, a sequencing batch culture (SBC) with a C/N of 100 increased biomass production to 4.21 g/L, with a lipid content of 38.6%. These results provide usable culture strategies for lipid production by R. toruloides AS 2.1389 when using diverse waste-derived volatile fatty acids.

  3. Sphingolipid biosynthesis upregulation by TOR complex 2-Ypk1 signaling during yeast adaptive response to acetic acid stress.

    PubMed

    Guerreiro, Joana F; Muir, Alexander; Ramachandran, Subramaniam; Thorner, Jeremy; Sá-Correia, Isabel

    2016-12-01

    Acetic acid-induced inhibition of yeast growth and metabolism limits the productivity of industrial fermentation processes, especially when lignocellulosic hydrolysates are used as feedstock in industrial biotechnology. Tolerance to acetic acid of food spoilage yeasts is also a problem in the preservation of acidic foods and beverages. Thus understanding the molecular mechanisms underlying adaptation and tolerance to acetic acid stress is increasingly important in industrial biotechnology and the food industry. Prior genetic screens for Saccharomyces cerevisiae mutants with increased sensitivity to acetic acid identified loss-of-function mutations in the YPK1 gene, which encodes a protein kinase activated by the target of rapamycin (TOR) complex 2 (TORC2). We show in the present study by several independent criteria that TORC2-Ypk1 signaling is stimulated in response to acetic acid stress. Moreover, we demonstrate that TORC2-mediated Ypk1 phosphorylation and activation is necessary for acetic acid tolerance, and occurs independently of Hrk1, a protein kinase previously implicated in the cellular response to acetic acid. In addition, we show that TORC2-Ypk1-mediated activation of l-serine:palmitoyl-CoA acyltransferase, the enzyme complex that catalyzes the first committed step of sphingolipid biosynthesis, is required for acetic acid tolerance. Furthermore, analysis of the sphingolipid pathway using inhibitors and mutants indicates that it is production of certain complex sphingolipids that contributes to conferring acetic acid tolerance. Consistent with that conclusion, promoting sphingolipid synthesis by adding exogenous long-chain base precursor phytosphingosine to the growth medium enhanced acetic acid tolerance. Thus appropriate modulation of the TORC2-Ypk1-sphingolipid axis in industrial yeast strains may have utility in improving fermentations of acetic acid-containing feedstocks.

  4. Acetic Acid, the Active Component of Vinegar, Is an Effective Tuberculocidal Disinfectant

    PubMed Central

    Cortesia, Claudia; Vilchèze, Catherine; Bernut, Audrey; Contreras, Whendy; Gómez, Keyla; de Waard, Jacobus; Jacobs, William R.; Kremer, Laurent; Takiff, Howard

    2014-01-01

    ABSTRACT Effective and economical mycobactericidal disinfectants are needed to kill both Mycobacterium tuberculosis and non-M. tuberculosis mycobacteria. We found that acetic acid (vinegar) efficiently kills M. tuberculosis after 30 min of exposure to a 6% acetic acid solution. The activity is not due to pH alone, and propionic acid also appears to be bactericidal. M. bolletii and M. massiliense nontuberculous mycobacteria were more resistant, although a 30-min exposure to 10% acetic acid resulted in at least a 6-log10 reduction of viable bacteria. Acetic acid (vinegar) is an effective mycobactericidal disinfectant that should also be active against most other bacteria. These findings are consistent with and extend the results of studies performed in the early and mid-20th century on the disinfectant capacity of organic acids. IMPORTANCE  Mycobacteria are best known for causing tuberculosis and leprosy, but infections with nontuberculous mycobacteria are an increasing problem after surgical or cosmetic procedures or in the lungs of cystic fibrosis and immunosuppressed patients. Killing mycobacteria is important because Mycobacterium tuberculosis strains can be multidrug resistant and therefore potentially fatal biohazards, and environmental mycobacteria must be thoroughly eliminated from surgical implements and respiratory equipment. Currently used mycobactericidal disinfectants can be toxic, unstable, and expensive. We fortuitously found that acetic acid kills mycobacteria and then showed that it is an effective mycobactericidal agent, even against the very resistant, clinically important Mycobacterium abscessus complex. Vinegar has been used for thousands of years as a common disinfectant, and if it can kill mycobacteria, the most disinfectant-resistant bacteria, it may prove to be a broadly effective, economical biocide with potential usefulness in health care settings and laboratories, especially in resource-poor countries. PMID:24570366

  5. Acetic Acid, the active component of vinegar, is an effective tuberculocidal disinfectant.

    PubMed

    Cortesia, Claudia; Vilchèze, Catherine; Bernut, Audrey; Contreras, Whendy; Gómez, Keyla; de Waard, Jacobus; Jacobs, William R; Kremer, Laurent; Takiff, Howard

    2014-02-25

    Effective and economical mycobactericidal disinfectants are needed to kill both Mycobacterium tuberculosis and non-M. tuberculosis mycobacteria. We found that acetic acid (vinegar) efficiently kills M. tuberculosis after 30 min of exposure to a 6% acetic acid solution. The activity is not due to pH alone, and propionic acid also appears to be bactericidal. M. bolletii and M. massiliense nontuberculous mycobacteria were more resistant, although a 30-min exposure to 10% acetic acid resulted in at least a 6-log10 reduction of viable bacteria. Acetic acid (vinegar) is an effective mycobactericidal disinfectant that should also be active against most other bacteria. These findings are consistent with and extend the results of studies performed in the early and mid-20th century on the disinfectant capacity of organic acids. IMPORTANCE Mycobacteria are best known for causing tuberculosis and leprosy, but infections with nontuberculous mycobacteria are an increasing problem after surgical or cosmetic procedures or in the lungs of cystic fibrosis and immunosuppressed patients. Killing mycobacteria is important because Mycobacterium tuberculosis strains can be multidrug resistant and therefore potentially fatal biohazards, and environmental mycobacteria must be thoroughly eliminated from surgical implements and respiratory equipment. Currently used mycobactericidal disinfectants can be toxic, unstable, and expensive. We fortuitously found that acetic acid kills mycobacteria and then showed that it is an effective mycobactericidal agent, even against the very resistant, clinically important Mycobacterium abscessus complex. Vinegar has been used for thousands of years as a common disinfectant, and if it can kill mycobacteria, the most disinfectant-resistant bacteria, it may prove to be a broadly effective, economical biocide with potential usefulness in health care settings and laboratories, especially in resource-poor countries.

  6. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells.

    PubMed

    Maruta, Hitomi; Yoshimura, Yukihiro; Araki, Aya; Kimoto, Masumi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-01-01

    Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin.

  7. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells

    PubMed Central

    Maruta, Hitomi; Yoshimura, Yukihiro; Araki, Aya; Kimoto, Masumi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-01-01

    Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin. PMID:27348124

  8. Nitrogen addition influences formation of aroma compounds, volatile acidity and ethanol in nitrogen deficient media fermented by Saccharomyces cerevisiae wine strains.

    PubMed

    Barbosa, Catarina; Falco, Virgilio; Mendes-Faia, Arlete; Mendes-Ferreira, Ana

    2009-08-01

    The effects of nitrogen addition into nitrogen deficient/depleted media on the release of aroma compounds post-fermentation were investigated in three commercial yeast strains of Saccharomyces cerevisiae which highlight the yeast strain effect as well as nitrogen effects. By comparing the two timings of nitrogen addition, prior to fermentation or later at stationary phase (72 h), it was shown that nitrogen addition at stationary phase significantly decreases ethanol and acetic acid formation and significantly increases the following compounds: 2-phenylethanol, ethyl isobutyrate, 2-phenylethyl acetate, ethyl 2-methylbutyrate and ethyl propionate in the three strains, and also isovaleric acid, isoamyl alcohol and ethyl isovalerate in both PYCC4072 and UCD522. The strain EC1118 produced significantly less medium chain fatty acids, hexanoic, octanoic and decanoic acids and their respective esters after nitrogen addition. Therefore, timing of nitrogen addition to a ferment media can vary the concentration of certain aroma compound and might provide a means for varying wine composition.

  9. Candida krusei produces ethanol without production of succinic acid; a potential advantage for ethanol recovery by pervaporation membrane separation.

    PubMed

    Nakayama, Shunichi; Morita, Tomotake; Negishi, Hideyuki; Ikegami, Toru; Sakaki, Keiji; Kitamoto, Dai

    2008-08-01

    The development of fermentative yeasts secreting no organic acids is highly desirable for ethanol production coupled with membrane separation processes, because the acidic byproduct, succinic acid, significantly inhibits the membrane permeation of ethanol. Of the Pichia and Candida yeasts tested, Candida krusei IA-1 showed the highest ethanol productivity [55 g L(-1) day(-1) from 150 g L(-1) (w/v) of glucose], comparable to the strains of Saccharomyces cerevisiae, and produced much less of the acid (0.6 g L(-1) day(-1)) than the Saccharomyces strains (1.5-1.8 g L(-1) day(-1)) under semi-aerobic conditions. Interestingly, under aerobic conditions, strain IA-1 showed no production of the acid. Stain IA-1 exhibited a good assimilation of the acid, while S. cerevisiae NBRC 0216 showed no assimilation. The activity of succinate dehydrogenase (SDH) in strain IA-1 was 37.5 mU mg(-1), and 7.8-fold higher than that in S. cerevisiae strain NBRC 0216. More significantly, SDH1 was abundantly transcribed in strain IA-1, different from that in strain NBRC 0216, regardless of the culture conditions. From these results, C. krusei IA-1 efficiently takes up succinic acid and metabolizes it in the Krebs cycle, producing an extremely low level of byproducts in the culture medium. Therefore, C. krusei is not only a promising alternative to S. cerevisiae but also a suitable model for metabolic engineering of S. cerevisiae.

  10. Enhancement effect of ethanol on lipid and fatty acid accumulation and composition of Scenedesmus sp.

    PubMed

    Wu, Chengchen; Wang, Wei; Yue, Long; Yang, Zhen; Fu, Qiuguo; Ye, Qingfu

    2013-07-01

    The effects of ethanol concentration gradients along with varied cultivation times on lipid and fatty acid accumulation and composition of Scenedesmus sp. were studied. The maximum increment of algal density, lipid productivity, lipid content and fatty acid content were 6.61, 11.75, 1.34 and 3.14 times higher than the control group under 12h photoperiod. Algal light deprivation inhibited ethanol positive effects on algal growth and lipid biomass. The cumulative quantity of C16:0 and C18:0 decreased correspondingly with the increase of ethanol concentrations and cultivation times. Besides, unsaturated fatty acids appeared early in algal cells and increased 57.02% in maximum. However, only 2.27% (14)C was transferred from ethanol to fatty acids. The results indicated that adding proper amount of ethanol in algal culture medium was beneficial to biodiesel feedstock production and biodiesel properties.

  11. Improving ethanol production from alfalfa stems via ambient-temperature acid pretreatment and washing.

    PubMed

    Zhou, Shengfei; Weimer, Paul J; Hatfield, Ronald D; Runge, Troy M; Digman, Matthew

    2014-10-01

    The concept of co-production of liquid fuel (ethanol) along with animal feed on farm was proposed, and the strategy of using ambient-temperature acid pretreatment, ensiling and washing to improve ethanol production from alfalfa stems was investigated. Alfalfa stems were separated and pretreated with sulfuric acid at ambient-temperature after harvest, and following ensiling, after which the ensiled stems were subjected to simultaneous saccharification and fermentation (SSF) for ethanol production. Ethanol yield was improved by ambient-temperature sulfuric acid pretreatment before ensiling, and by washing before SSF. It was theorized that the acid pretreatment at ambient temperature partially degraded hemicellulose, and altered cell wall structure, resulted in improved cellulose accessibility, whereas washing removed soluble ash in substrates which could inhibit the SSF. The pH of stored alfalfa stems can be used to predict the ethanol yield, with a correlation coefficient of +0.83 for washed alfalfa stems.

  12. The influence of surface oxygen and hydroxyl groups on the dehydrogenation of ethylene, acetic acid and hydrogenated vinyl acetate on pure Pd(1 0 0): A DFT study

    NASA Astrophysics Data System (ADS)

    Huang, Yanping; Dong, Xiuqin; Yu, Yingzhe; Zhang, Minhua

    2016-12-01

    On the basis of a Langmuir-Hinshelwood-type mechanism, the dehydrogenation of ethylene, acetic acid and hydrogenated vinyl acetate (VAH) on pure Pd(1 0 0) with surface oxygen atoms (Os) and hydroxyl groups (OHs) was studied with density functional theory (DFT) method. Our calculation results show that both Os and OHs can consistently reduce the activation energies of dehydrogenation of ethylene, acetic acid and VAH to some degree with only one exception that OHs somehow increase the activation energy of VAH. Based on Langmuir-Hinshelwood mechanism, the three dehydrogenation reactions in presence of surface Os and OHs are almost consistently favored, compared with the corresponding processes on clean Pd(1 0 0) surfaces, and thus a Langmuir-Hinshelwood-type mechanism may not be excluded beforehand when investigating the microscopic performance of the oxygen-assisted vinyl acetate synthesis on Pd(1 0 0) catalysts.

  13. Lipidomic Profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii Reveals Critical Changes in Lipid Composition in Response to Acetic Acid Stress

    PubMed Central

    Riezman, Howard; Olsson, Lisbeth; Bettiga, Maurizio

    2013-01-01

    When using microorganisms as cell factories in the production of bio-based fuels or chemicals from lignocellulosic hydrolysate, inhibitory concentrations of acetic acid, released from the biomass, reduce the production rate. The undissociated form of acetic acid enters the cell by passive diffusion across the lipid bilayer, mediating toxic effects inside the cell. In order to elucidate a possible link between lipid composition and acetic acid stress, the present study presents detailed lipidomic profiling of the major lipid species found in the plasma membrane, including glycerophospholipids, sphingolipids and sterols, in Saccharomyces cerevisiae (CEN.PK 113_7D) and Zygosaccharomyces bailii (CBS7555) cultured with acetic acid. Detailed physiological characterization of the response of the two yeasts to acetic acid has also been performed in aerobic batch cultivations using bioreactors. Physiological characterization revealed, as expected, that Z. bailii is more tolerant to acetic acid than S. cerevisiae. Z. bailii grew at acetic acid concentrations above 24 g L−1, while limited growth of S. cerevisiae was observed after 11 h when cultured with only 12 g L−1 acetic acid. Detailed lipidomic profiling using electrospray ionization, multiple-reaction-monitoring mass spectrometry (ESI-MRM-MS) showed remarkable changes in the glycerophospholipid composition of Z. bailii, including an increase in saturated glycerophospholipids and considerable increases in complex sphingolipids in both S. cerevisiae (IPC 6.2×, MIPC 9.1×, M(IP)2C 2.2×) and Z. bailii (IPC 4.9×, MIPC 2.7×, M(IP)2C 2.7×), when cultured with acetic acid. In addition, the basal level of complex sphingolipids was significantly higher in Z. bailii than in S. cerevisiae, further emphasizing the proposed link between lipid saturation, high sphingolipid levels and acetic acid tolerance. The results also suggest that acetic acid tolerance is associated with the ability of a given strain to generate large

  14. Lipidomic profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii reveals critical changes in lipid composition in response to acetic acid stress.

    PubMed

    Lindberg, Lina; Santos, Aline Xs; Riezman, Howard; Olsson, Lisbeth; Bettiga, Maurizio

    2013-01-01

    When using microorganisms as cell factories in the production of bio-based fuels or chemicals from lignocellulosic hydrolysate, inhibitory concentrations of acetic acid, released from the biomass, reduce the production rate. The undissociated form of acetic acid enters the cell by passive diffusion across the lipid bilayer, mediating toxic effects inside the cell. In order to elucidate a possible link between lipid composition and acetic acid stress, the present study presents detailed lipidomic profiling of the major lipid species found in the plasma membrane, including glycerophospholipids, sphingolipids and sterols, in Saccharomyces cerevisiae (CEN.PK 113_7D) and Zygosaccharomyces bailii (CBS7555) cultured with acetic acid. Detailed physiological characterization of the response of the two yeasts to acetic acid has also been performed in aerobic batch cultivations using bioreactors. Physiological characterization revealed, as expected, that Z. bailii is more tolerant to acetic acid than S. cerevisiae. Z. bailii grew at acetic acid concentrations above 24 g L(-1), while limited growth of S. cerevisiae was observed after 11 h when cultured with only 12 g L(-1) acetic acid. Detailed lipidomic profiling using electrospray ionization, multiple-reaction-monitoring mass spectrometry (ESI-MRM-MS) showed remarkable changes in the glycerophospholipid composition of Z. bailii, including an increase in saturated glycerophospholipids and considerable increases in complex sphingolipids in both S. cerevisiae (IPC 6.2×, MIPC 9.1×, M(IP)2C 2.2×) and Z. bailii (IPC 4.9×, MIPC 2.7×, M(IP)2C 2.7×), when cultured with acetic acid. In addition, the basal level of complex sphingolipids was significantly higher in Z. bailii than in S. cerevisiae, further emphasizing the proposed link between lipid saturation, high sphingolipid levels and acetic acid tolerance. The results also suggest that acetic acid tolerance is associated with the ability of a given strain to generate large

  15. Calibration and intercomparison of acetic acid measurements using proton transfer reaction mass spectrometry (PTR-MS)

    USGS Publications Warehouse

    Haase, K.B.; Keene, W.C.; Pszenny, A.A.P.; Mayne, H.R.; Talbot, R.W.; Sive, B.C.

    2012-01-01

    Acetic acid is one of the most abundant organic acids in the ambient atmosphere, with maximum mixing ratios reaching into the tens of parts per billion by volume (ppbv) range. The identities and associated magnitudes of the major sources and sinks for acetic acid are poorly characterized, due in part to the limitation in available measurement techniques. This paper demonstrates that Proton Transfer Reaction Mass Spectrometry (PTR-MS) can reliably quantify acetic acid vapor in ambient air. Three different PTR-MS configurations were calibrated at low ppbv mixing ratios using permeation tubes, which yielded calibration factors between 7.0 and 10.9 normalized counts per second per ppbv (ncps ppbv−1) at a drift tube field strength of 132 townsend (Td). Detection limits ranged from 0.06 to 0.32 ppbv with dwell times of 5 s. These calibration factors showed negligible humidity dependence. Using the experimentally determined calibration factors, PTR-MS measurements of acetic acid during the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) campaign were validated against results obtained using Mist Chambers coupled with Ion Chromatography (MC/IC). An orthogonal least squares linear regression of paired data yielded a slope of 1.14 ± 0.06 (2σ), an intercept of 0.049 ± 20 (2σ) ppbv, and an R2 of 0.78. The median mixing ratio of acetic acid on Appledore Island, ME during the ICARTT campaign was 0.530 ± 0.025 ppbv with a minimum of 0.075 ± 0.004 ppbv, and a maximum of 3.555 ± 0.171 ppbv.

  16. Removal of dicyclohexyl acetic acid from aqueous solution using ultrasound, ozone and their combination.

    PubMed

    Kumar, Pardeep; Headley, John; Peru, Kerry; Bailey, Jon; Dalai, Ajay

    2014-01-01

    Naphthenic acids are a complex mixture of organic components, some of which include saturated alkyl-substituted cycloaliphatic carboxylic acids and acyclic aliphatic acids. They are naturally found in hydrocarbon deposits like oil sand, petroleum, bitumen and crude oil. In this study, the oxidation of a relatively high molecular weight naphthenic acid (Dicyclohexyl acetic acid) was investigated using ozonation, ultrasonication and hydrogen peroxide alone and their combinations. Effects on oxidation of dicyclohexyl acetic acid (DAA) were measured for different concentrations of ozone ranging between 0.7 to 3.3 mg L(-1) and pH in the range 6 to 10. Ultrasonication and hydrogen peroxide alone were not effective to oxidize dicyclohexyl acetic acid, but combining ultrasonication with H2O2 had a significant effect on oxidation of dicyclohexyl acetic acid with maximum removal reaching to 84 ± 2.2% with 81 ± 2.1% reduction in chemical oxygen demand (COD). Synergistic effects were observed for combining ultrasonication with ozonation and resulted in 100% DAA removal with 98 ± 0.8% reduction in COD within 15 min at 3.3 mg L(-1) ozone concentration and 130 Watts ultrasonication power. The reaction conditions obtained for the maximum oxidation of DAA and COD removal were used for the degradation of naphthenic acids mixture extracted from oil sands process water (OSPW). The percentage oxidation of NAs mixture extracted from OSPW was 89.3 ± 1.1% in ozonation and combined ozonation and ultrasonication, but COD removal observed was 65 ± 1.2% and 78 ± 1.4% for ozonation and combined ozonation and ultrasonication treatments, respectively.

  17. Interaction of acetic acid and phenylacetaldehyde as attractants for trapping pest species of moths (Lepidoptera: Noctuidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenylacetaldehyde is a flower volatile and attractant for many nectar-seeking moths. Acetic acid is a microbial fermentation product that is present in insect sweet baits. It is weakly attractive to some moths and other insects, but can be additive or synergistic with other compounds to make more p...

  18. 21 CFR 175.350 - Vinyl acetate/crotonic acid copolymer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Vinyl acetate/crotonic acid copolymer. 175.350 Section 175.350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS OF COATINGS Substances for Use as Components...

  19. 21 CFR 175.350 - Vinyl acetate/crotonic acid copolymer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Vinyl acetate/crotonic acid copolymer. 175.350 Section 175.350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS...

  20. 21 CFR 175.350 - Vinyl acetate/crotonic acid copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Vinyl acetate/crotonic acid copolymer. 175.350 Section 175.350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS...

  1. 21 CFR 175.350 - Vinyl acetate/crotonic acid copolymer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Vinyl acetate/crotonic acid copolymer. 175.350 Section 175.350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS...

  2. GENE EXPRESSION PATTERNS OF CD-1 DAY-8 EMBRYO CULTURES EXPOSED TO BROMOCHLORO ACETIC ACID

    EPA Science Inventory

    Gene expression patterns of CD-1 day-8 embryo cultures exposed to bromochloro acetic acid

    Edward D. Karoly?*, Judith E. Schmid* and E. Sidney Hunter III*
    ?Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina and *Reproductiv...

  3. Trapping social wasps (Hymenoptera: Vespidae) in nurseries with acetic acid and isobutanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    European hornet (Vespa crabro L.) damages bark of nursery trees, and several vespids sting nursery personnel when disturbed. We tested acetic acid and isobutanol lures in traps for V. crabro spring queens, to determine the seasonality of vespid captures, and compare the efficacy of patterns of trap...

  4. Acetic acid-induced programmed cell death and release of volatile organic compounds in Chlamydomonas reinhardtii.

    PubMed

    Zuo, Zhaojiang; Zhu, Yerong; Bai, Yanling; Wang, Yong

    2012-02-01

    Acetic acid widely spreads in atmosphere, aquatic ecosystems containing residues and anoxic soil. It can inhibit aquatic plant germination and growth, and even cause programmed cell death (PCD) of yeast. In the present study, biochemical and physiological responses of the model unicellular green algae Chlamydomonas reinhardtii were examined after acetic acid stress. H(2)O(2) burst was found in C. reinhardtii after acetic acid stress at pH 5.0 for 10 min. The photosynthetic pigments were degraded, gross photosynthesis and respiration were disappeared gradually, and DNA fragmentation was also detected. Those results indicated that C. reinhardtii cells underwent a PCD but not a necrotic, accidental cell death event. It was noticed that C. reinhardtii cells in PCD released abundant volatile organic compounds (VOCs) upon acetic acid stress. Therefore, we analyzed the VOCs and tested their effects on other normal cells. The treatment of C. reinhardtii cultures with VOCs reduced the cell density and increased antioxidant enzyme activity. Therefore, a function of VOCs as infochemicals involved in cell-to-cell communication at the conditions of applied stress is suggested.

  5. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false 5-Hydroxyindole acetic acid/serotonin test system. 862.1390 Section 862.1390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  6. Vinegar (20% acetic acid) broadcast application for broadleaf weed control in spring-transplanted onions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic weed control research was conducted in southeast Oklahoma to determine the effect of broadcast over-the-top applications of acetic acid (vinegar) on weed control efficacy, crop injury and onion yields. The experiment included 6 weed control treatments (2 application volumes, 2 hand-weeding ...

  7. Population dynamics of acetic acid bacteria during traditional wine vinegar production.

    PubMed

    Vegas, Carlos; Mateo, Estibaliz; González, Angel; Jara, Carla; Guillamón, José Manuel; Poblet, Montse; Torija, Ma Jesús; Mas, Albert

    2010-03-31

    The population dynamics of acetic acid bacteria in traditional vinegar production was determined in two independent vinegar plants at both the species and strain level. The effect of barrels made of four different woods upon the population dynamics was also determined. Acetic acid bacteria were isolated on solid media and the species were identified by RFLP-PCR of 16S rRNA genes and confirmed by 16S rRNA gene sequencing, while strains were typed by ERIC-PCR and (GTG)(5)-rep-PCR. The most widely isolated species was Acetobacter pasteurianus, which accounted for 100% of all the isolates during most of the acetification. Gluconacetobacter europaeus only appeared at any notable level at the end of the process in oak barrels from one vinegar plant. The various A. pasteurianus strains showed a clear succession as the concentration of acetic acid increased. In both vinegar plants the relative dominance of different strains was modified as the concentrations of acetic acid increased, and strain diversity tended to reduce at the end of the process.

  8. Integration of succinic acid and ethanol production with potential application in a corn or barley biorefinery.

    PubMed

    Nghiem, Nhuan P; Hicks, Kevin B; Johnston, David B

    2010-11-01

    Production of succinic acid from glucose by Escherichia coli strain AFP184 was studied in a batch fermentor. The bases used for pH control included NaOH, KOH, NH(4)OH, and Na(2)CO(3). The yield of succinic acid without and with carbon dioxide supplied by an adjacent ethanol fermentor using either corn or barley as feedstock was examined. The carbon dioxide gas from the ethanol fermentor was sparged directly into the liquid media in the succinic acid fermentor without any pretreatment. Without the CO(2) supplement, the highest succinic acid yield was observed with Na(2)CO(3), followed by NH(4)OH, and lowest with the other two bases. When the CO(2) produced in the ethanol fermentation was sparged into the media in the succinic acid fermentor, no improvement of succinic acid yield was observed with Na(2)CO(3). However, several-fold increases in succinic acid yield were observed with the other bases, with NH(4)OH giving the highest yield increase. The yield of succinic acid with CO(2) supplement from the ethanol fermentor when NH(4)OH was used for pH control was equal to that obtained when Na(2)CO(3) was used, with or without CO(2) supplementation. The benefit of sparging CO(2) from ethanol fermentation on the yield of succinic acid demonstrated the feasibility of integration of succinic acid fermentation with ethanol fermentation in a biorefinery for production of fuels and industrial chemicals.

  9. Batch salicylic acid nitration by nitric acid/acetic acid mixture under isothermal, isoperibolic and adiabatic conditions.

    PubMed

    Andreozzi, R; Canterino, M; Caprio, V; Di Somma, I; Sanchirico, R

    2006-12-01

    Runaway phenomena and thermal explosions can originate during the nitration of salicylic acid by means of a nitric acid/acetic acid mixture when the thermal control is lost, mainly as a result of the formation and thermal decomposition of picric acid. The prediction of the behaviour of this system is thus of great importance in view of possible industrial applications and the need to avoid the occurrence of unwanted dangerous events. During a previous investigation a model was developed to simulate its behaviour when the starting concentration of the substrate is too low, thus, preventing the precipitation of poor soluble intermediates. In this work this model is extended to deal with more concentrated systems even in case of a solid phase separating during the process. To this purpose the previously assessed dependence of the solubility of 3-nitro and 5-nitrosalicylic acids upon temperature and nitric acid concentration is included in the model. It is assumed that when 3-nitro and 5-nitrosalicylic acids are partially suspended in the reacting medium a kinetic regime of "dissolution with reaction" is established; that is, the redissolution of these species is a fast process compared to the successive nitration to give dinitroderivatives. Good results are obtained in the comparison of the experimental data with those calculated both in isoperibolic and adiabatic conditions when the revised model is used.

  10. Radiolysis of aqueous solutions of acetic acid in the presence of Na-montmorillonite

    NASA Technical Reports Server (NTRS)

    Navarro-Gonzalez, R.; Negron-Mendoza, A.; Ramos, S.; Ponnamperuma, C.

    1990-01-01

    The gamma-irradiation of 0.8 mol dm-3 aqueous, oxygen-free acetic acid solutions was investigated in the presence or absence of Na-montmorillonite. H2, CH4, CO, CO2, and several polycarboxylic acids were formed in all systems. The primary characteristics observed in the latter system were: (1) Higher yield of the decomposition of acetic acid; (2) Lower yield of the formation of polycarboxylic acids; (3) No effect on the formation of methane; (4) Higher yield of the formation of carbon dioxide; and (5) The reduction of Fe3+ in the octahedral sites of Na-montmorillonite. A possible reaction scheme was proposed to account for the observed changes. The results are important in understanding heterogeneous processes in radiation catalysis and might be significant to prebiotic chemistry.

  11. Acidic ionic liquid as "quasi-homogeneous" catalyst for controllable synthesis of cellulose acetate.

    PubMed

    Tian, Dong; Han, Yangyang; Lu, Canhui; Zhang, Xinxing; Yuan, Guiping

    2014-11-26

    In this paper, we demonstrated that acidic ionic liquids (ILs) can be used as "quasi-homogeneous" catalysts for the efficient acetylation of cellulose. Unlike existing techniques that use large amount of ILs as solvent to dissolve and acetylate cellulose, a small amount of acidic ILs was used as catalyst in this study to overcome the low efficiency associated with relatively high viscosity and costs of ILs during homogeneous acetylation. Fully substituted cellulose acetate with a conversion of 88.8% was obtained by using only 9 mol% IL 1-vinyl-3-(3-sulfopropyl) imidazolium hydrogen sulfate as catalyst, which is much higher than that of common commercialized solid acid catalysts. The degree of substitution and solubility of the obtained cellulose acetate can be facilely controlled by varying the concentration of ILs and reaction time. The dual function of swelling and catalyzing of acidic ILs for the acetylation of cellulose is responsible for the excellent catalytic performance.

  12. Bioconversion of H2/CO 2 by acetogen enriched cultures for acetate and ethanol production: the impact of pH.

    PubMed

    Xu, Shuyun; Fu, Bo; Zhang, Lijuan; Liu, He

    2015-06-01

    Syngas fermentation into ethanol and other bioproducts by mixed cultures is considered a promising biotechnology. Effects of pH on product generation and microbial community during H2/CO2 utilization by acetogen enrichment cultures were investigated in this work. The maximum acetate concentration reached 95.41 mmol L(-1) at pH 7, which was 71.7, 21.8 and 50.9% higher than at pH 5, 9 and 11, respectively. The maximum ethanol concentration at pH 7 was 45.7, 50, 72% higher than that at pH 5, 9 and 11, respectively. The CO dehydrogenase (CODH) gene copy number was highest at pH 7, indicating that metabolically active acetogens reached their highest level at pH 7. The CODH gene copy number at pH 9 was lower than at pH 7, but higher than at pH 5 and 11. Correspondingly, the enrichment cultures at pH 7 had the highest species richness and diversity, while those at pH 9 had the second highest diversity, and those at pH 5 and 11 had the lowest diversity. The shift in microbial community structure and the different active acetogen contents resulting from different pHs were responsible for the differences in acetate and ethanol production.

  13. Analysis of Vaginal Acetic Acid in Patients Undergoing Treatment for Bacterial Vaginosis

    PubMed Central

    Chaudry, Amjad N.; Travers, Paul J.; Yuenger, Jeffrey; Colletta, Lorraine; Evans, Phillip; Zenilman, Jonathan M.; Tummon, Andrew

    2004-01-01

    A “gold standard” method for the diagnosis of bacterial vaginosis (BV) is lacking. The clinical criteria described by the Amsel technique are subjective and difficult to quantify. Alternatively, the reading of Gram-stained vaginal smears by scoring techniques such as those that use the Nugent or Hay-Ison scoring systems is again subjective, requires expert personnel to perform the reading, and is infrequently used clinically. Recently, a new diagnostic device, the Osmetech Microbial Analyzer—Bacterial Vaginosis (OMA-BV), which determines a patient's BV status on the basis of measurement of the amount of acetic acid present in a vaginal swab specimen, was approved by the Food and Drug Administration. The present study uses the conducting polymer gas-sensing technology of OMA-BV to measure the concentration of acetic acid in the headspace above vaginal swab specimens from patients undergoing treatment for BV with metronidazole. In 97.8% of the cases the level of acetic acid detected fell sharply during the treatment period, crossing from above to below the diagnostic threshold of 900 ppm. The diagnosis obtained on the basis of the level of vaginal acetic acid was compared with the diagnoses obtained by use of the Amsel criteria and the Nugent scoring system both at the time of initial entry into the study and at the repeat samplings on days 7 and 14. The results obtained with OMA-BV showed overall agreements compared with the results of the Amsel and Nugent tests of 98 and 94%, respectively, for the 34 patients monitored through the treatment process. This provides further evidence that the measurement of vaginal acetic acid by headspace analysis with conducting polymer sensors is a valid alternative to present tests for the diagnosis of BV. PMID:15528711

  14. 40 CFR 721.10074 - Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-dimethylcyclohexyl)ethyl ester. 721.10074 Section 721.10074 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10074 Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester. (a... acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester (PMN P-05-568; CAS No. 477218-59-0)...

  15. 40 CFR 721.10074 - Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-dimethylcyclohexyl)ethyl ester. 721.10074 Section 721.10074 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10074 Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester. (a... acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester (PMN P-05-568; CAS No. 477218-59-0)...

  16. 40 CFR 721.10074 - Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-dimethylcyclohexyl)ethyl ester. 721.10074 Section 721.10074 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10074 Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester. (a... acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester (PMN P-05-568; CAS No. 477218-59-0)...

  17. 40 CFR 721.10074 - Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-dimethylcyclohexyl)ethyl ester. 721.10074 Section 721.10074 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10074 Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester. (a... acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester (PMN P-05-568; CAS No. 477218-59-0)...

  18. 40 CFR 721.10074 - Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-dimethylcyclohexyl)ethyl ester. 721.10074 Section 721.10074 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10074 Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester. (a... acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester (PMN P-05-568; CAS No. 477218-59-0)...

  19. Gibbs ensemble Monte Carlo simulation using an optimized potential model: pure acetic acid and a mixture of it with ethylene.

    PubMed

    Zhang, Minhua; Chen, Lihang; Yang, Huaming; Sha, Xijiang; Ma, Jing

    2016-07-01

    Gibbs ensemble Monte Carlo simulation with configurational bias was employed to study the vapor-liquid equilibrium (VLE) for pure acetic acid and for a mixture of acetic acid and ethylene. An improved united-atom force field for acetic acid based on a Lennard-Jones functional form was proposed. The Lennard-Jones well depth and size parameters for the carboxyl oxygen and hydroxyl oxygen were determined by fitting the interaction energies of acetic acid dimers to the Lennard-Jones potential function. Four different acetic acid dimers and the proportions of them were considered when the force field was optimized. It was found that the new optimized force field provides a reasonable description of the vapor-liquid phase equilibrium for pure acetic acid and for the mixture of acetic acid and ethylene. Accurate values were obtained for the saturated liquid density of the pure compound (average deviation: 0.84 %) and for the critical points. The new optimized force field demonstrated greater accuracy and reliability in calculations of the solubility of the mixture of acetic acid and ethylene as compared with the results obtained with the original TraPPE-UA force field.

  20. Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2006-07-11

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  1. Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2002-01-01

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  2. A nitrilo-tri-acetic-acid/acetic acid route for the deposition of epitaxial cerium oxide films as high temperature superconductor buffer layers

    SciTech Connect

    Thuy, T.T.; Lommens, P.; Narayanan, V.; Van de Velde, N.; De Buysser, K.; Herman, G.G.; Cloet, V.; Van Driessche, I.

    2010-09-15

    A water based cerium oxide precursor solution using nitrilo-tri-acetic-acid (NTA) and acetic acid as complexing agents is described in detail. This precursor solution is used for the deposition of epitaxial CeO{sub 2} layers on Ni-5at%W substrates by dip-coating. The influence of the complexation behavior on the formation of transparent, homogeneous solutions and gels has been studied. It is found that ethylenediamine plays an important role in the gelification. The growth conditions for cerium oxide films were Ar-5% gas processing atmosphere, a solution concentration level of 0.25 M, a dwell time of 60 min at 900 {sup o}C and 5-30 min at 1050 {sup o}C. X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM), pole figures and spectroscopic ellipsometry were used to characterize the CeO{sub 2} films with different thicknesses. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) was used to determine the carbon residue level in the surface of the cerium oxide film, which was found to be lower than 0.01%. Textured films with a thickness of 50 nm were obtained. - Graphical abstract: Study of the complexation and hydrolysis behavior of Ce{sup 4+} ions in the presence of nitrilo-tri-acetic acid and the subsequent development of an aqueous chemical solution deposition route suited for the processing of textured CeO{sub 2} buffer layers on Ni-W tapes.

  3. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption

    PubMed Central

    Xie, Guoxiang; Zhong, Wei; Li, Houkai; Li, Qiong; Qiu, Yunping; Zheng, Xiaojiao; Chen, Huiyuan; Zhao, Xueqing; Zhang, Shucha; Zhou, Zhanxiang; Zeisel, Steven H.; Jia, Wei

    2013-01-01

    Our understanding of the bile acid metabolism is limited by the fact that previous analyses have primarily focused on a selected few circulating bile acids; the bile acid profiles of the liver and gastrointestinal tract pools are rarely investigated. Here, we determined how chronic ethanol consumption altered the bile acids in multiple body compartments (liver, gastrointestinal tract, and serum) of rats. Rats were fed a modified Lieber-DeCarli liquid diet with 38% of calories as ethanol (the amount equivalent of 4–5 drinks in humans). While conjugated bile acids predominated in the liver (98.3%), duodenum (97.8%), and ileum (89.7%), unconjugated bile acids comprised the largest proportion of measured bile acids in serum (81.2%), the cecum (97.7%), and the rectum (97.5%). In particular, taurine-conjugated bile acids were significantly decreased in the liver and gastrointestinal tract of ethanol-treated rats, while unconjugated and glycine-conjugated species increased. Ethanol consumption caused increased expression of genes involved in bile acid biosynthesis, efflux transport, and reduced expression of genes regulating bile acid influx transport in the liver. These results provide an improved understanding of the systemic modulations of bile acid metabolism in mammals through the gut-liver axis.—Xie, G., Zhong, W., Li, H., Li, Q., Qiu, Y., Zheng, X., Chen, H., Zhao, X., Zhang, S., Zhou, Z., Zeisel, S. H., Jia, W. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption. PMID:23709616

  4. Primary Action of Indole-3-acetic Acid in Crown Gall Tumors

    PubMed Central

    Rausch, Thomas; Kahl, Günter; Hilgenberg, Willy

    1984-01-01

    Exogenously added indole-3-acetic acid at a concentration of 100 micromolars stimulates d-glucose uptake (or 3-O-methyl-d-glucose uptake) by 25% in crown gall tumors induced on potato tuber tissue by Agrobacterium tumefaciens strain C 58. The titration of the endogenous IAA with the auxin antagonist 2-naphthaleneacetic acid at 100 micromolars reduces d-glucose uptake by about 80%. The apparent inhibition constant Ki is 21 micromolars. Other auxin antagonists like 1-naphthoxyacetic acid and 2-(p-chlorophenoxy)-2-methylpropionic acid show similar effects. The uptake of the amino acids leucine, methionine, tryptophan, lysine, and aspartic acid is also inhibited by 2-naphthaleneacetic acid to similar degrees. The auxins 1-naphthaleneacetic acid and 2-naphthoxyacetic acid at concentrations between 10 and 100 micromolars inhibit solute uptake only slightly (inhibition less than 20%). The impact of the results on the postulated role of indole-3-acetic acid as a modifier of the electrochemical proton gradient across the plasmalemma in crown gall tumor tissue is discussed. PMID:16663625

  5. Primary Action of Indole-3-acetic Acid in Crown Gall Tumors: Increase of Solute Uptake.

    PubMed

    Rausch, T; Kahl, G; Hilgenberg, W

    1984-06-01

    Exogenously added indole-3-acetic acid at a concentration of 100 micromolars stimulates d-glucose uptake (or 3-O-methyl-d-glucose uptake) by 25% in crown gall tumors induced on potato tuber tissue by Agrobacterium tumefaciens strain C 58. The titration of the endogenous IAA with the auxin antagonist 2-naphthaleneacetic acid at 100 micromolars reduces d-glucose uptake by about 80%. The apparent inhibition constant K(i) is 21 micromolars. Other auxin antagonists like 1-naphthoxyacetic acid and 2-(p-chlorophenoxy)-2-methylpropionic acid show similar effects. The uptake of the amino acids leucine, methionine, tryptophan, lysine, and aspartic acid is also inhibited by 2-naphthaleneacetic acid to similar degrees. The auxins 1-naphthaleneacetic acid and 2-naphthoxyacetic acid at concentrations between 10 and 100 micromolars inhibit solute uptake only slightly (inhibition less than 20%). The impact of the results on the postulated role of indole-3-acetic acid as a modifier of the electrochemical proton gradient across the plasmalemma in crown gall tumor tissue is discussed.

  6. Clostridium strain which produces acetic acid from waste gases

    DOEpatents

    Gaddy, J.L.

    1997-01-14

    A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 4 figs.

  7. Clostridium stain which produces acetic acid from waste gases

    DOEpatents

    Gaddy, James L.

    1997-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.

  8. Reversal of ethanol-induced hepatotoxicity by cinnamic and syringic acids in mice.

    PubMed

    Yan, Sheng-Lei; Wang, Zhi-Hong; Yen, Hsiu-Fang; Lee, Yi-Ju; Yin, Mei-Chin

    2016-12-01

    Ethanol was used to induce acute hepatotoxicity in mice. Effects of cinnamic acid (CA) and syringic acid (SA) post-intake for hepatic recovery from alcoholic injury was investigated. Ethanol treated mice were supplied by CA or SA at 40 or 80 mg/kg BW/day for 5 days. Results showed that ethanol stimulated protein expression of CYP2E1, p47(phox), gp91(phox), cyclooxygenase-2 and nuclear factor kappa B in liver. CA or SA post-intake restricted hepatic expression of these molecules. Ethanol suppressed nuclear factor erythroid 2-related factor (Nrf2) expression, and CA or SA enhanced Nrf2 expression in cytosolic and nuclear fractions. Ethanol increased the release of reactive oxygen species, oxidized glutathione, interleukin-6, tumor necrosis factor-alpha, nitric acid and prostaglandin E2. CA or SA lowered hepatic production of these oxidative and inflammatory factors. Histological data revealed that ethanol administration caused obvious foci of inflammatory cell infiltration, and CA or SA post-intake improved hepatic inflammatory infiltration. These findings support that cinnamic acid and syringic acid are potent nutraceutical agents for acute alcoholic liver disease therapy. However, potential additive or synergistic benefits of cinnamic and syringic acids against ethanol-induced hepatotoxicity need to be investigated.

  9. Integration of Succinic Acid Production in a Dry Mill Ethanol Facility

    SciTech Connect

    2006-08-01

    This project seeks to address both issues for a dry mill ethanol biorefinery by lowering the cost of sugars with the development of an advanced pretreatment process, improving the economics of succinic acid (SA), and developing a model of an ethanol dry mill to evaluate the impact of adding different products and processes to a dry mill.

  10. Effect of ethanol on metabolism of purine bases (hypoxanthine, xanthine, and uric acid).

    PubMed

    Yamamoto, Tetsuya; Moriwaki, Yuji; Takahashi, Sumio

    2005-06-01

    There are many factors that contribute to hyperuricemia, including obesity, insulin resistance, alcohol consumption, diuretic use, hypertension, renal insufficiency, genetic makeup, etc. Of these, alcohol (ethanol) is the most important. Ethanol enhances adenine nucleotide degradation and increases lactic acid level in blood, leading to hyperuricemia. In beer, purines also contribute to an increase in plasma uric acid. Although rare, dehydration and ketoacidosis (due to ethanol ingestion) are associated with the ethanol-induced increase in serum uric acid levels. Ethanol also increases the plasma concentrations and urinary excretion of hypoxanthine and xanthine via the acceleration of adenine nucleotide degradation and a possible weak inhibition of xanthine dehydrogenase activity. Since many factors such as the ALDH2*1 gene and ADH2*2 gene, daily drinking habits, exercise, and dehydration enhance the increase in plasma concentration of uric acid induced by ethanol, it is important to pay attention to these factors, as well as ingested ethanol volume, type of alcoholic beverage, and the administration of anti-hyperuricemic agents, to prevent and treat ethanol-induced hyperuricemia.

  11. Improving ethanol production from alfalfa stems via ambient-temperature acid pretreatment and washing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The concept of co-production of liquid fuel (ethanol) along with animal feed on farm was proposed. The strategy of using ambient-temperature acid pretreatment, ensiling, and washing to improve ethanol production from alfalfa stems was investigated. Alfalfa stems were separated and pretreated with su...

  12. Isolation and characterization of acetic acid-tolerant galactose-fermenting strains of Saccharomyces cerevisiae from a spent sulfite liquor fermentation plant.

    PubMed Central

    Lindén, T; Peetre, J; Hahn-Hägerdal, B

    1992-01-01

    From a continuous spent sulfite liquor fermentation plant, two species of yeast were isolated, Saccharomyces cerevisiae and Pichia membranaefaciens. One of the isolates of S. cerevisiae, no. 3, was heavily flocculating and produced a higher ethanol yield from spent sulfite liquor than did commercial baker's yeast. The greatest difference between isolate 3 and baker's yeast was that of galactose fermentation, even when galactose utilization was induced, i.e., when they were grown in the presence of galactose, prior to fermentation. Without acetic acid present, both baker's yeast and isolate 3 fermented glucose and galactose sequentially. Galactose fermentation with baker's yeast was strongly inhibited by acetic acid at pH values below 6. Isolate 3 fermented galactose, glucose, and mannose without catabolite repression in the presence of acetic acid, even at pH 4.5. The xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) activities were determined in some of the isolates as well as in two strains of S. cerevisiae (ATCC 24860 and baker's yeast) and Pichia stipitis CBS 6054. The S. cerevisiae strains manifested xylose reductase activity that was 2 orders of magnitude less than the corresponding P. stipitis value of 890 nmol/min/mg of protein. The xylose dehydrogenase activity was 1 order of magnitude less than the corresponding activity of P. stipitis (330 nmol/min/mg of protein). Images PMID:1622236

  13. Hydrolytic and alcoholytic dephosphorylation of nucleotides by acid phosphatase in the presence of ethanol.

    PubMed

    Tomaszewski, M; Buchowicz, J

    1971-08-01

    The effect of ethanol on the activity of acid phosphatase from wheat germ was studied, by using ribonucleoside monophosphates as the enzyme substrates. The nucleotides were effectively degraded to the corresponding nucleosides in the presence of ethanol at all concentrations tested, including a 96% (v/v) solution. However, the nucleotide dephosphorylation was accompanied by the liberation of orthophosphate only when the concentration of ethanol in the assay mixture did not exceed 15%. No inorganic phosphate was liberated when ethanol was present at higher concentrations. Instead, monoethyl phosphate was formed in quantities expected for orthophosphate. The results are explained in terms of phosphatase-catalysed alcoholysis.

  14. Handling of glycerides of acetic acid by rat small intestine in vitro

    PubMed Central

    Barry, R. J. C.; Jackson, M. J.; Smyth, D. H.

    1966-01-01

    1. When mono-, di- and triacetins are incubated with sacs of rat everted intestine, they enter the epithelial cells and are hydrolysed to free glycerol and acetic acid. 2. The rate-limiting step in the process is the entry of glyceride into the epithelial cell. 3. The three acetins enter the epithelial cell at the same rate, and the mechanism of this remains unknown. 4. The acetate released appears in higher concentrations on the serosal side, and the relation of this to the mechanism for transfer of volatile fatty acids is discussed. 5. It is not necessary to postulate a special mechanism for entry of volatile fatty acids into the cell. PMID:5950558

  15. Removal of acetic acid from simulated hemicellulosic hydrolysates by emulsion liquid membrane with organophosphorus extractants.

    PubMed

    Lee, Sang Cheol

    2015-09-01

    Selective removal of acetic acid from simulated hemicellulosic hydrolysates containing xylose and sulfuric acid was attempted in a batch emulsion liquid membrane (ELM) system with organophosphorus extractants. Various experimental variables were used to develop a more energy-efficient ELM process. Total operation time of an ELM run with a very small quantity of trioctylphosphine oxide as the extractant was reduced to about a third of those required to attain almost the same extraction efficiency as obtained in previous ELM works without any extractant. Under specific conditions, acetic acid was selectively separated with a high degree of extraction and insignificant loss of xylose, and its purity and enrichment ratio in the stripping phase were higher than 92% and 6, respectively. Also, reused organic membrane solutions exhibited the extraction efficiency as high as fresh organic solutions did. These results showed that the current ELM process would be quite practical.

  16. Purification and Partial Characterization of a Glucan Containing Indole-3-acetic Acid 1

    PubMed Central

    Piskornik, Zdzislaw; Bandurski, Robert S.

    1972-01-01

    The “bound auxin” of Zea mays, first described by Berger and Avery (Amer. J. Bot. 1944; 31: 199-203) has been purified and partially characterized. It is an indole-3-acetic acid-containing, high molecular weight, lipophilic cellulosicglucan. The indole-3-acetic acid is in ester linkage as evidenced by indoleacetamide formation upon ammonolysis. The glucan is of variable chain length and comprises, in general, 35 to 50 per cent of the dry weight of the compound. The glucosidic residues are β 1 → 4 linked and are hydrolyzed by cellulase. Mild acid hydrolysis produces cellobiose and cellotriose. Other components, as yet unidentified, of the compound are described. PMID:16658117

  17. An on-line potentiometric sequential injection titration process analyser for the determination of acetic acid.

    PubMed

    van Staden, J F; Mashamba, Mulalo G; Stefan, Raluca I

    2002-09-01

    An on-line potentiometric sequential injection titration process analyser for the determination of acetic acid is proposed. A solution of 0.1 mol L(-1) sodium chloride is used as carrier. Titration is achieved by aspirating acetic acid samples between two strong base-zone volumes into a holding coil and by channelling the stack of well-defined zones with flow reversal through a reaction coil to a potentiometric sensor where the peak widths were measured. A linear relationship between peak width and logarithm of the acid concentration was obtained in the range 1-9 g/100 mL. Vinegar samples were analysed without any sample pre-treatment. The method has a relative standard deviation of 0.4% with a sample frequency of 28 samples per hour. The results revealed good agreement between the proposed sequential injection and an automated batch titration method.

  18. Formic and acetic acid over the central Amazon region, Brazil. I - Dry season

    NASA Technical Reports Server (NTRS)

    Andreae, M. O.; Andreae, T. W.; Talbot, R. W.; Harriss, R. C.

    1988-01-01

    The concentrations of formic and acetic acids in the gas phase, atmospheric aerosol, and rainwater samples collected in Amazonia at ground level and in the atmosphere during the Amazon Boundary Layer Experiment in July/August 1985 were analyzed by ion exchange chromatography. The diurnal behavior of both acids at ground level and their vertical distribution in the forest canopy point to the existence of vegetative sources as well as to production by chemical reactions in the atmosphere. The concentrations of formic and acetic acids in the gas phase were about 2 orders of magnitude higher than the corresponding concentrations in the atmospheric aerosol. In rainwater, the total formate and acetate represented about one half of the anion equivalents, in contrast to less than 10 percent of the soluble anionic equivalents contributed by these acids in the atmospheric aerosol. The observed levels of these ions in rainwater are considered to be the result of a combination of chemical reactions in hydrometeors and the scavenging of the gaseous acids by cloud droplets.

  19. Exogenous Ghrelin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats.

    PubMed

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Ceranowicz, Dagmara; Gałązka, Krystyna; Bonior, Joanna; Jaworek, Jolanta; Bartuś, Krzysztof; Gil, Krzysztof; Olszanecki, Rafał; Dembiński, Artur

    2016-09-01

    Previous studies have shown that ghrelin reduces colonic inflammation induced by trinitrobenzene sulfonic acid and dextran sodium sulfate. In the present study we determined the effect of treatment with ghrelin on the course of acetic acid-induced colitis in rats. Rectal administration of 3% acetic acid solution led to induction of colitis in all animals. Damage of the colonic wall was accompanied by an increase in mucosal concentration of pro-inflammatory interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), as well mucosal activity of myeloperoxidase. Moreover, induction of colitis led to a reduction in colonic blood flow and DNA synthesis. Administration of ghrelin after induction of colitis led to faster regeneration of the colonic wall and reduction in colonic levels of IL-1β, TNF-α, and myeloperoxidase. In addition, treatment with ghrelin improved mucosal DNA synthesis and blood flow. Our study disclosed that ghrelin exhibits a strong anti-inflammatory and healing effect in acetic acid-induced colitis. Our current observation in association with previous findings that ghrelin exhibits curative effect in trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis suggest that therapeutic effect of ghrelin in the colon is universal and independent of the primary cause of colitis.

  20. Exogenous Ghrelin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats

    PubMed Central

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Ceranowicz, Dagmara; Gałązka, Krystyna; Bonior, Joanna; Jaworek, Jolanta; Bartuś, Krzysztof; Gil, Krzysztof; Olszanecki, Rafał; Dembiński, Artur

    2016-01-01

    Previous studies have shown that ghrelin reduces colonic inflammation induced by trinitrobenzene sulfonic acid and dextran sodium sulfate. In the present study we determined the effect of treatment with ghrelin on the course of acetic acid-induced colitis in rats. Rectal administration of 3% acetic acid solution led to induction of colitis in all animals. Damage of the colonic wall was accompanied by an increase in mucosal concentration of pro-inflammatory interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), as well mucosal activity of myeloperoxidase. Moreover, induction of colitis led to a reduction in colonic blood flow and DNA synthesis. Administration of ghrelin after induction of colitis led to faster regeneration of the colonic wall and reduction in colonic levels of IL-1β, TNF-α, and myeloperoxidase. In addition, treatment with ghrelin improved mucosal DNA synthesis and blood flow. Our study disclosed that ghrelin exhibits a strong anti-inflammatory and healing effect in acetic acid-induced colitis. Our current observation in association with previous findings that ghrelin exhibits curative effect in trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis suggest that therapeutic effect of ghrelin in the colon is universal and independent of the primary cause of colitis. PMID:27598133

  1. Development of an Alcohol Dehydrogenase Biosensor for Ethanol Determination with Toluidine Blue O Covalently Attached to a Cellulose Acetate Modified Electrode

    PubMed Central

    Alpat, Şenol; Telefoncu, Azmi

    2010-01-01

    In this work, a novel voltammetric ethanol biosensor was constructed using alcohol dehydrogenase (ADH). Firstly, alcohol dehydrogenase was immobilized on the surface of a glassy carbon electrode modified by cellulose acetate (CA) bonded to toluidine blue O (TBO). Secondly, the surface was covered by a glutaraldehyde/bovine serum albumin (BSA) cross-linking procedure to provide a new voltammetric sensor for the ethanol determination. In order to fabricate the biosensor, a new electrode matrix containing insoluble Toluidine Blue O (TBO) was obtained from the process, and enzyme/coenzyme was combined on the biosensor surface. The influence of various experimental conditions was examined for the characterization of the optimum analytical performance. The developed biosensor exhibited sensitive and selective determination of ethanol and showed a linear response between 1 × 10−5 M and 4 × 10−4 M ethanol. A detection limit calculated as three times the signal-to-noise ratio was 5.0 × 10−6 M. At the end of the 20th day, the biosensor still retained 50% of its initial activity. PMID:22315566

  2. Development of an alcohol dehydrogenase biosensor for ethanol determination with toluidine blue O covalently attached to a cellulose acetate modified electrode.

    PubMed

    Alpat, Senol; Telefoncu, Azmi

    2010-01-01

    In this work, a novel voltammetric ethanol biosensor was constructed using alcohol dehydrogenase (ADH). Firstly, alcohol dehydrogenase was immobilized on the surface of a glassy carbon electrode modified by cellulose acetate (CA) bonded to toluidine blue O (TBO). Secondly, the surface was covered by a glutaraldehyde/bovine serum albumin (BSA) cross-linking procedure to provide a new voltammetric sensor for the ethanol determination. In order to fabricate the biosensor, a new electrode matrix containing insoluble Toluidine Blue O (TBO) was obtained from the process, and enzyme/coenzyme was combined on the biosensor surface. The influence of various experimental conditions was examined for the characterization of the optimum analytical performance. The developed biosensor exhibited sensitive and selective determination of ethanol and showed a linear response between 1 × 10(-5) M and 4 × 10(-4) M ethanol. A detection limit calculated as three times the signal-to-noise ratio was 5.0 × 10(-6) M. At the end of the 20(th) day, the biosensor still retained 50% of its initial activity.

  3. Modification of the Farr assay using ethanol-ammonium acetate precipitation and its application to the measurement of affinity of anti-HCG produced in several species.

    PubMed

    Thanavala, Y M; Hay, F C

    1978-01-01

    A double isotope modified Farr assay was used to determine the total binding sites and affinity of antibodies to human chorionic gonadotrophin. Precipitation of the antigen--antibody complex at equilibrium with ammonium sulphate gave very high levels of nonspecific binding. Good discrimination over background was observed using a specific anti-immunoglobulin serum. However since we were interested in measuring the affinity of antibodies raised in several animal species it was more appropriate to use a single nonspecies precipitating reagent. We found that the use of a mixture of ethanol-ammonium acetate gave very low levels of non-specific binding in baboons, marmosets, rabbits and mice.

  4. Acid hydrolysis of Curcuma longa residue for ethanol and lactic acid fermentation.

    PubMed

    Nguyen, Cuong Mai; Nguyen, Thanh Ngoc; Choi, Gyung Ja; Choi, Yong Ho; Jang, Kyoung Soo; Park, Youn-Je; Kim, Jin-Cheol

    2014-01-01

    This research examines the acid hydrolysis of Curcuma longa waste, to obtain the hydrolysate containing lactic acid and ethanol fermentative sugars. A central composite design for describing regression equations of variables was used. The selected optimum condition was 4.91% sulphuric acid, 122.68°C and 50 min using the desirability function under the following conditions: the maximum reducing sugar (RS) yield is within the limited range of the 5-hydroxymethylfurfural (HMF) and furfural concentrations. Under the condition, the obtained solution contained 144 g RS/L, 0.79 g furfural/L and 2.59 g HMF/L and was directly fermented without a detoxification step. The maximum product concentration, average productivity, RS conversion and product yield were 115.36 g/L, 2.88 g/L/h, 89.43% and 64% for L-lactic acid; 113.92 g/L, 2.59 g/L/h, 88.31% and 63.29% for D-lactic acid; and 55.03 g/L, 1.38 g/L/h, 42.66 and 30.57%, respectively, for ethanol using a 7-L jar fermenter.

  5. Use of acetic and citric acids to control Salmonella Typhimurium in tahini (sesame paste).

    PubMed

    Al-Nabulsi, Anas A; Olaimat, Amin N; Osaili, Tareq M; Shaker, Reyad R; Zein Elabedeen, Noor; Jaradat, Ziad W; Abushelaibi, Aisha; Holley, Richard A

    2014-09-01

    Since tahini and its products have been linked to Salmonella illness outbreaks and product recalls in recent years, this study assessed the ability of Salmonella Typhimurium to survive or grow in commercial tahini and when hydrated (10% w/v in water), treated with 0.1%-0.5% acetic or citric acids, and stored at 37, 21 and 10 °C for 28 d. S. Typhimurium survived in commercial tahini up to 28 d but was reduced in numbers from 1.7 to 3.3 log10 CFU/ml. However, in the moist or hydrated tahini, significant growth of S. Typhimurium occurred at the tested temperatures. Acetic and citric acids at ≤0.5% reduced S. Typhimurium by 2.7-4.8 log10 CFU/ml and 2.5-3.8 log10 CFU/ml, respectively, in commercial tahini at 28 d. In hydrated tahini the organic acids were more effective. S. Typhimurium cells were not detected in the presence of 0.5% acetic acid after 7 d or with 0.5% citric acid after 21 d at the tested temperatures. The ability of S. Typhimurium to grow or survive in commercial tahini and products containing hydrated tahini may contribute to salmonellosis outbreaks; however, use of acetic and citric acids in ready-to-eat foods prepared from tahini can significantly minimize the risk associated with this pathogen.

  6. [Spectroscopic analysis of the interaction of ethanol and acid phosphatase from wheat germ].

    PubMed

    Xu, Dong-mei; Liu, Guang-shen; Wang, Li-ming; Liu, Wei-ping

    2004-11-01

    Conformational and activity changes of acid phosphatase from wheat germ in ethanol solutions of different concentrations were measured by fluorescence spectra and differential UV-absorption spectra. The effect of ethanol on kinetics of acid phosphatase was determined by using the double reciprocal plot. The results indicate the ethanol has a significant effect on the activity and conformation of acid phosphatase. The activity of acid phosphatase decreased linearly with increasing the concentration of ethanol. Differential UV-absorption spectra of the enzyme denatured in ethanol solutions showed two positive peaks at 213 and 234 nm, respectively. The peaks on the differential UV-absorption spectra suggested that the conformation of enzyme molecule changed from orderly structure to out-of-order crispation. The fluorescence emission peak intensity of the enzyme gradually strengthened with increasing ethanol concentration, which is in concordance with the conformational change of the microenvironments of tyrosine and tryptophan residues. The results indicate that the expression of the enzyme activity correlates with the stability and integrity of the enzyme conformation to a great degree. Ethanol is uncompetitive inhibitor of acid phosphatase.

  7. A solvent extraction approach to recover acetic acid from mixed waste acids produced during semiconductor wafer process.

    PubMed

    Shin, Chang-Hoon; Kim, Ju-Yup; Kim, Jun-Young; Kim, Hyun-Sang; Lee, Hyang-Sook; Mohapatra, Debasish; Ahn, Jae-Woo; Ahn, Jong-Gwan; Bae, Wookeun

    2009-03-15

    Recovery of acetic acid (HAc) from the waste etching solution discharged from silicon wafer manufacturing process has been attempted by using solvent extraction process. For this purpose 2-ethylhexyl alcohol (EHA) was used as organic solvent. In the pre-treatment stage >99% silicon and hydrofluoric acid was removed from the solution by precipitation. The synthesized product, Na(2)SiF(6) having 98.2% purity was considered of commercial grade having good market value. The waste solution containing 279 g/L acetic acid, 513 g/L nitric acid, 0.9 g/L hydrofluoric acid and 0.030 g/L silicon was used for solvent extraction study. From the batch test results equilibrium conditions for HAc recovery were optimized and found to be 4 stages of extraction at an organic:aqueous (O:A) ratio of 3, 4 stages of scrubbing and 4 stages of stripping at an O:A ratio of 1. Deionized water (DW) was used as stripping agent to elute HAc from organic phase. In the whole batch process 96.3% acetic acid recovery was achieved. Continuous operations were successfully conducted for 100 h using a mixer-settler to examine the feasibility of the extraction system for its possible commercial application. Finally, a complete process flowsheet with material balance for the separation and recovery of HAc has been proposed.

  8. Lactic acid as potential substitute of acetic acid for dissolution of chitosan: preharvest application to Butterhead lettuce.

    PubMed

    Goñi, María Gabriela; Tomadoni, Bárbara; Roura, Sara Inés; Moreira, María Del Rosario

    2017-03-01

    Chitosan must be dissolved in acid solution to activate its antimicrobial properties. The objectives of present study were to determine whether acetic and lactic acids used to dissolve chitosan would influence its effectiveness to control the native microflora of Butterhead lettuce at harvest and during postharvest storage (7-8 °C, 5 days). Chitosan was applied as a SINGLE DOSE (14, 10, 7, 3 or 0 days previous to harvest) or in SUCCESSIVE DOSES (at 14 + 10 + 7+3 + 0 days prior to harvest). Although chitosan in acetic acid showed antimicrobial activity, treated plants showed dried brown stains which significantly reduced sensorial quality. Chitosan in lactic acid applied in a SINGLE DOSE at harvest or in SUCCESSIVE DOSES reduced microbial counts of all populations at harvest without affecting sensorial quality. After postharvest storage, lettuce treated with SUCCESSIVE APPLICATIONS of chitosan in lactic acid presented significant reductions in the microbial populations compared with untreated sample (-2.02 log in yeast and molds, -1.83 log in total coliforms, -1.4 log CFU g(-1) in mesophilic bacteria and -1.1 log in psychrophilic bacteria). In conclusion, replacement of acetic by lactic acid did not affect the antimicrobial activity of chitosan, reducing microbial counts at harvest and after postharvest storage without affecting sensorial quality.

  9. Iron dissolution of dust source materials during simulated acidic processing: the effect of sulfuric, acetic, and oxalic acids.

    PubMed

    Chen, Haihan; Grassian, Vicki H

    2013-09-17

    Atmospheric organic acids potentially display different capacities in iron (Fe) mobilization from atmospheric dust compared with inorganic acids, but few measurements have been made on this comparison. We report here a laboratory investigation of Fe mobilization of coal fly ash, a representative Fe-containing anthropogenic aerosol, and Arizona test dust, a reference source material for mineral dust, in pH 2 sulfuric acid, acetic acid, and oxalic acid, respectively. The effects of pH and solar radiation on Fe dissolution have also been explored. The relative capacities of these three acids in Fe dissolution are in the order of oxalic acid > sulfuric acid > acetic acid. Oxalate forms mononuclear bidentate ligand with surface Fe and promotes Fe dissolution to the greatest extent. Photolysis of Fe-oxalate complexes further enhances Fe dissolution with the concomitant degradation of oxalate. These results suggest that ligand-promoted dissolution of Fe may play a more significant role in mobilizing Fe from atmospheric dust compared with proton-assisted processing. The role of atmospheric organic acids should be taken into account in global-biogeochemical modeling to better access dissolved atmospheric Fe deposition flux at the ocean surface.

  10. Uptake and Reactions of Formaldehyde, Acetaldehyde, Acetone, Propanal and Ethanol in Sulfuric Acid solutions at 200-240 K: Implications for upper tropospheric aerosol composition

    NASA Astrophysics Data System (ADS)

    Iraci, L. T.; Williams, M. B.; Axson, J.; Michelsen, R.

    2007-12-01

    The production of light absorbing, organic material in aerosol that is normally considered to be transparent in the UV and visible wavelength regions has significant implications for biogeochemical cycling and climate modelling. Production mechanisms likely involve carbonyl compounds such as formaldehyde, acetone, acetaldehyde and propanal that are present in significant quantities in the upper troposphere (UT). In this study, we have performed experiments focusing on a class of acid catalyzed carbonyl reactions, the formation of acetals. R2C=O + 2R'OH --> R2C(OR')2 + H2O Using a Knudsen cell apparatus, we have measured the rate of uptake of formaldehyde, acetaldehyde, acetone, propanal, and ethanol into sulfuric acid solutions ranging between 40-70 wt% of acid, containing 0-0.1 M of ethanol, acetone or formaldehyde at temperatures of 220-250 K. For all reactant pairs, the aldol condensation path, including self reaction, should be insignificant at the acidities studied. Evidence for reaction between organics was observed for all pairs, except those involving propanal which were likely limited by the very low solubility. We attribute enhanced uptake to the formation of acetals, such as 1,1-diethoxyethane and 2,2- diethoxypropane, among others. Enhanced uptake was observed to proceed on timescales > 1 hour and sometimes shows complex dependence on acidity that is likely related to speciation of the individual carbonyls in acidic solution. The acetal products do not absorb in the visible but are less volatile than parent molecules, allowing for accumulation in sulfuric acid particles, and enhanced uptake. Cross reactions of carbonyls with alcohols in sulfuric acid medium have not been previously measured, yet methanol and ethanol show high solubility and are present at significant concentrations in the UT. Thus even at slow reaction rates, the acetal reaction has ample starting material and proceeds under conditions common to the UT. We will present results for the

  11. Bacillus spp. produce antibacterial activities against lactic acid bacteria that contaminate fuel ethanol plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid bacteria (LAB) frequently contaminate commercial fuel ethanol fermentations, reducing yields and decreasing profitability of biofuel production. Microorganisms from environmental sources in different geographic regions of Thailand were tested for antibacterial activity against LAB. Fou...

  12. Prediction of liquid-liquid equilibrium for systems of vegetable oils, fatty acids, and ethanol

    SciTech Connect

    Batista, E.; Monnerat, S.; Stragevitch, L.; Pina, C.G.; Goncalves, C.B.; Meirelles, A.J.A.

    1999-12-01

    Group interaction parameters for the UNIFAC and ASOG models were specially adjusted for predicting liquid-liquid equilibrium (LLE) for systems of vegetable oils, fatty acids, and ethanol at temperatures ranging from 20 to 45 C. Experimental liquid-liquid equilibrium data for systems of triolein, oleic acid, and ethanol and of triolein, stearic acid, and ethanol were measured and utilized in the adjustment. The average percent deviation between experimental and calculated compositions was 0.79% and 0.52% for the UNIFAC and ASOG models, respectively. The prediction of liquid-liquid equilibrium for systems of vegetable oils, fatty acids, and ethanol was quite successful, with an average deviation of 1.31% and 1.32% for the UNIFAC and ASOG models, respectively.

  13. New insights into the mechanisms of acetic acid resistance in Acetobacter pasteurianus using iTRAQ-dependent quantitative proteomic analysis.

    PubMed

    Xia, Kai; Zang, Ning; Zhang, Junmei; Zhang, Hong; Li, Yudong; Liu, Ye; Feng, Wei; Liang, Xinle

    2016-12-05

    Acetobacter pasteurianus is the main starter in rice vinegar manufacturing due to its remarkable abilities to resist and produce acetic acid. Although several mechanisms of acetic acid resistance have been proposed and only a few effector proteins have been identified, a comprehensive depiction of the biological processes involved in acetic acid resistance is needed. In this study, iTRAQ-based quantitative proteomic analysis was adopted to investigate the whole proteome of different acidic titers (3.6, 7.1 and 9.3%, w/v) of Acetobacter pasteurianus Ab3 during the vinegar fermentation process. Consequently, 1386 proteins, including 318 differentially expressed proteins (p<0.05), were identified. Compared to that in the low titer circumstance, cells conducted distinct biological processes under high acetic acid stress, where >150 proteins were differentially expressed. Specifically, proteins involved in amino acid metabolic processes and fatty acid biosynthesis were differentially expressed, which may contribute to the acetic acid resistance of Acetobacter. Transcription factors, two component systems and toxin-antitoxin systems were implicated in the modulatory network at multiple levels. In addition, the identification of proteins involved in redox homeostasis, protein metabolism, and the cell envelope suggested that the whole cellular system is mobilized in response to acid stress. These findings provide a differential proteomic profile of acetic acid resistance in Acetobacter pasteurianus and have potential application to highly acidic rice vinegar manufacturing.

  14. Ethanol production from industrial hemp: effect of combined dilute acid/steam pretreatment and economic aspects.

    PubMed

    Kuglarz, Mariusz; Gunnarsson, Ingólfur B; Svensson, Sven-Erik; Prade, Thomas; Johansson, Eva; Angelidaki, Irini

    2014-07-01

    In the present study, combined steam (140-180°C) and dilute-acid pre-hydrolysis (0.0-2.0%) were applied to industrial hemp (Cannabis sativa L.), as pretreatment for lignocellulosic bioethanol production. The influence of the pretreatment conditions and cultivation type on the hydrolysis and ethanol yields was also evaluated. Pretreatment with 1% sulfuric acid at 180°C resulted in the highest glucose yield (73-74%) and ethanol yield of 75-79% (0.38-0.40 g-ethanol/g-glucose). Taking into account the costs of biomass processing, from field to ethanol facility storage, the field-dried hemp pretreated at the optimal conditions showed positive economic results. The type of hemp cultivation (organic or conventional) did not influence significantly the effectiveness of the pretreatment as well as subsequent enzymatic hydrolysis and ethanol fermentation.

  15. Lactobacillus acidophilus NCFM affects vitamin E acetate metabolism and intestinal bile acid signature in monocolonized mice.

    PubMed

    Roager, Henrik M; Sulek, Karolina; Skov, Kasper; Frandsen, Henrik L; Smedsgaard, Jørn; Wilcks, Andrea; Skov, Thomas H; Villas-Boas, Silas G; Licht, Tine R

    2014-01-01

    Monocolonization of germ-free (GF) mice enables the study of specific bacterial species in vivo. Lactobacillus acidophilus NCFM(TM) (NCFM) is a probiotic strain; however, many of the mechanisms behind its health-promoting effect remain unknown. Here, we studied the effects of NCFM on the metabolome of jejunum, cecum, and colon of NCFM monocolonized (MC) and GF mice using liquid chromatography coupled to mass-spectrometry (LC-MS). The study adds to existing evidence that NCFM in vivo affects the bile acid signature of mice, in particular by deconjugation. Furthermore, we confirmed that carbohydrate metabolism is affected by NCFM in the mouse intestine as especially the digestion of oligosaccharides (penta- and tetrasaccharides) was increased in MC mice. Additionally, levels of α-tocopherol acetate (vitamin E acetate) were higher in the intestine of GF mice than in MC mice, suggesting that NCFM affects the vitamin E acetate metabolism. NCFM did not digest vitamin E acetate in vitro, suggesting that direct bacterial metabolism was not the cause of the altered metabolome in vivo. Taken together, our results suggest that NCFM affects intestinal carbohydrate metabolism, bile acid metabolism and vitamin E metabolism, although it remains to be investigated whether this effect is unique to NCFM.

  16. Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome

    DOE PAGES

    LaBelle, Edward V.; Marshall, Christopher W.; Gilbert, Jack A.; ...

    2014-10-15

    Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (~5). Hydrogen production by biocathodes poised at -600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ~5–15 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ~6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at -765 mV (0.065 mA/cm2 sterile control at -800 mV) by the Acetobacterium-dominatedmore » community. Supplying -800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured).« less

  17. Obestatin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats

    PubMed Central

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Bonior, Joanna; Jaworek, Jolanta; Kuśnierz-Cabala, Beata; Konturek, Peter; Ambroży, Tadeusz; Dembiński, Artur

    2016-01-01

    Obestatin, a 23-amino acid peptide derived from the proghrelin, has been shown to exhibit some protective and therapeutic effects in the gut. The aim of present study was to determine the effect of obestatin administration on the course of acetic acid-induced colitis in rats. Materials and Methods. Studies have been performed on male Wistar rats. Colitis was induced by a rectal enema with 3.5% acetic acid solution. Obestatin was administered intraperitoneally twice a day at a dose of 8 nmol/kg, starting 24 h after the induction of colitis. Seven or 14 days after the induction of colitis, the healing rate of the colon was evaluated. Results. Treatment with obestatin after induction of colitis accelerated the healing of colonic wall damage and this effect was associated with a decrease in the colitis-evoked increase in mucosal activity of myeloperoxidase and content of interleukin-1β. Moreover, obestatin administration significantly reversed the colitis-evoked decrease in mucosal blood flow and DNA synthesis. Conclusion. Administration of exogenous obestatin exhibits therapeutic effects in the course of acetic acid-induced colitis and this effect is related, at least in part, to the obestatin-evoked anti-inflammatory effect, an improvement of local blood flow, and an increase in cell proliferation in colonic mucosa. PMID:26798415

  18. Obestatin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats.

    PubMed

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Bonior, Joanna; Jaworek, Jolanta; Kuśnierz-Cabala, Beata; Konturek, Peter; Ambroży, Tadeusz; Dembiński, Artur

    2016-01-01

    Obestatin, a 23-amino acid peptide derived from the proghrelin, has been shown to exhibit some protective and therapeutic effects in the gut. The aim of present study was to determine the effect of obestatin administration on the course of acetic acid-induced colitis in rats. Materials and Methods. Studies have been performed on male Wistar rats. Colitis was induced by a rectal enema with 3.5% acetic acid solution. Obestatin was administered intraperitoneally twice a day at a dose of 8 nmol/kg, starting 24 h after the induction of colitis. Seven or 14 days after the induction of colitis, the healing rate of the colon was evaluated. Results. Treatment with obestatin after induction of colitis accelerated the healing of colonic wall damage and this effect was associated with a decrease in the colitis-evoked increase in mucosal activity of myeloperoxidase and content of interleukin-1β. Moreover, obestatin administration significantly reversed the colitis-evoked decrease in mucosal blood flow and DNA synthesis. Conclusion. Administration of exogenous obestatin exhibits therapeutic effects in the course of acetic acid-induced colitis and this effect is related, at least in part, to the obestatin-evoked anti-inflammatory effect, an improvement of local blood flow, and an increase in cell proliferation in colonic mucosa.

  19. Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome

    SciTech Connect

    LaBelle, Edward V.; Marshall, Christopher W.; Gilbert, Jack A.; May, Harold D.; Battista, John R.

    2014-10-15

    Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (~5). Hydrogen production by biocathodes poised at -600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ~5–15 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ~6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at -765 mV (0.065 mA/cm2 sterile control at -800 mV) by the Acetobacterium-dominated community. Supplying -800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured).

  20. Influence of Acidic pH on Hydrogen and Acetate Production by an Electrosynthetic Microbiome

    PubMed Central

    LaBelle, Edward V.; Marshall, Christopher W.; Gilbert, Jack A.; May, Harold D.

    2014-01-01

    Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (∼5). Hydrogen production by biocathodes poised at −600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ∼5–15 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ∼6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at −765 mV (0.065 mA/cm2 sterile control at −800 mV) by the Acetobacterium-dominated community. Supplying −800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured). PMID:25333313

  1. Novel wine yeast with mutations in YAP1 that produce less acetic acid during fermentation.

    PubMed

    Cordente, Antonio G; Cordero-Bueso, Gustavo; Pretorius, Isak S; Curtin, Christopher D

    2013-02-01

    Acetic acid, a byproduct formed during yeast alcoholic fermentation, is the main component of volatile acidity (VA). When present in high concentrations in wine, acetic acid imparts an undesirable 'vinegary' character that results in a significant reduction in quality and sales. Previously, it has been shown that saké yeast strains resistant to the antifungal cerulenin produce significantly lower levels of VA. In this study, we used a classical mutagenesis method to isolate a series of cerulenin-resistant strains, derived from a commercial diploid wine yeast. Four of the selected strains showed a consistent low-VA production phenotype after small-scale fermentation of different white and red grape musts. Specific mutations in YAP1, a gene encoding a transcription factor required for oxidative stress tolerance, were found in three of the four low-VA strains. When integrated into the genome of a haploid wine strain, the mutated YAP1 alleles partially reproduced the low-VA production phenotype of the diploid cerulenin-resistant strains, suggesting that YAP1 might play a role in (regulating) acetic acid production during fermentation. This study offers prospects for the development of low-VA wine yeast starter strains that could assist winemakers in their effort to consistently produce wine to definable quality specifications.

  2. Negative Pressure Wound Therapy of Chronically Infected Wounds Using 1% Acetic Acid Irrigation

    PubMed Central

    Lee, Byeong Ho; Lee, Hye Kyung; Kim, Hyoung Suk; Moon, Min Seon; Suh, In Suck

    2015-01-01

    Background Negative-pressure wound therapy (NPWT) induces angiogenesis and collagen synthesis to promote tissue healing. Although acetic acid soaks normalize alkali wound conditions to raise tissue oxygen saturation and deconstruct the biofilms of chronic wounds, frequent dressing changes are required. Methods Combined use of NPWT and acetic acid irrigation was assessed in the treatment of chronic wounds, instilling acetic acid solution (1%) beneath polyurethane membranes twice daily for three weeks under continuous pressure (125 mm Hg). Clinical photographs, pH levels, cultures, and debrided fragments of wounds were obtained pre- and posttreatment. Tissue immunostaining (CD31, Ki-67, and CD45) and reverse transcription-polymerase chain reaction (vascular endothelial growth factor [VEGF], vascular endothelial growth factor receptor [VEGFR]; procollagen; hypoxia-inducible factor 1 alpha [HIF-1-alpha]; matrix metalloproteinase [MMP]-1,-3,-9; and tissue inhibitor of metalloproteinase [TIMP]) were also performed. Results Wound sizes tended to diminish with the combined therapy, accompanied by drops in wound pH (weakly acidic or neutral) and less evidence of infection. CD31 and Ki-67 immunostaining increased (P<0.05) post-treatment, as did the levels of VEGFR, procollagen, and MMP-1 (P<0.05), whereas the VEGF, HIF-1-alpha, and MMP-9/TIMP levels declined (P<0.05). Conclusions By combining acetic acid irrigation with negative-pressure dressings, both the pH and the size of chronic wounds can be reduced and infections be controlled. This approach may enhance angiogenesis and collagen synthesis in wounds, restoring the extracellular matrix. PMID:25606491

  3. Mathematical modeling of the fermentation of acid-hydrolyzed pyrolytic sugars to ethanol by the engineered strain Escherichia coli ACCC 11177.

    PubMed

    Chang, Dongdong; Yu, Zhisheng; Islam, Zia Ul; Zhang, Hongxun

    2015-05-01

    Pyrolysate from waste cotton was acid hydrolyzed and detoxified to yield pyrolytic sugars, which were fermented to ethanol by the strain Escherichia coli ACCC 11177. Mathematical models based on the fermentation data were also constructed. Pyrolysate containing an initial levoglucosan concentration of 146.34 g/L gave a glucose yield of 150 % after hydrolysis, suggesting that other compounds were hydrolyzed to glucose as well. Ethyl acetate-based extraction of bacterial growth inhibitors with an ethyl acetate/hydrolysate ratio of 1:0.5 enabled hydrolysate fermentation by E. coli ACCC 11177, without a standard absorption treatment. Batch processing in a fermenter exhibited a maximum ethanol yield and productivity of 0.41 g/g and 0.93 g/L·h(-1), respectively. The cell growth rate (r x ) was consistent with a logistic equation [Formula: see text], which was determined as a function of cell growth (X). Glucose consumption rate (r s ) and ethanol formation rate (r p ) were accurately validated by the equations [Formula: see text] and [Formula: see text], respectively. Together, our results suggest that combining mathematical models with fermenter fermentation processes can enable optimized ethanol production from cellulosic pyrolysate with E. coli. Similar approaches may facilitate the production of other commercially important organic substances.

  4. Dynamics of three organic acids (malic, acetic and succinic acid) in sunflower exposed to cadmium and lead.

    PubMed

    Niu, Zhixin; Li, Xiaodong; Sun, Lina; Sun, Tieheng

    2013-01-01

    Sunflower (Helianthus annuus L.) has been considered as a good candidate for bioaccumulation of heavy metals. In the present study, sunflower was used to enrich the cadmium and lead in sand culture during 90 days. Biomass, Cd and Pb uptake, three organic acids and pH in cultures were investigated. Results showed that the existence of Cd and Pb showed different interactions on the organic acids exudation. In single Cd treatments, malic and acetic acids in Cd10 showed an incremental tendency with time. In the mixed treatments of Cd and Pb, malic acids increased when 10 and 40 mg x L(-1) Cd were added into Pb50, but acetic acids in Pb50 were inhibited by Cd addition. The Cd10 supplied in Pb10 stimulated the secretion of malic and succinic acids. Moreover, the Cd or Pb uptake in sunflower showed various correlations with pH and some organic acids, which might be due to the fact that the Cd and Pb interfere with the organic acids secretion in rhizosphere of sunflower, and the changes of organic acids altered the form and bioavailability of Cd and Pb in cultures conversely.

  5. Effect of ethanol on acid secretion by isolated gastric glands from rabbit

    SciTech Connect

    Reichstein, B.J.; Okamoto, C.; Forte, J.G.

    1986-08-01

    Isolated gastric glands from rabbit, as well as basolateral and microsomal membranes derived therefrom, were used to examine the effect of ethanol on several parameters related to acid secretion. Low concentrations of ethanol, 0.2%-5% (vol/vol), had no effect on basal aminopyrine accumulation by isolated gastric glands but significantly potentiated aminopyrine accumulation stimulated by histamine. In contrast, this dose range of ethanol inhibited aminopyrine accumulation stimulated by forskolin or dibutyryl-cyclic adenosine monophosphate. This dose range of ethanol produced a similar effect on adenylate cyclase activity of basolateral membranes from isolated gastric glands, with potentiation of histamine stimulation and inhibition of forskolin stimulation. Low-dose ethanol was found to produce increased proton permeability of the apical membrane of the parietal cell but had no effect on hydrogen-potassium-stimulated adenosine triphosphatase activity. Ethanol (10%) significantly inhibited all parameters of acid secretion studied. Ethanol has a biphasic effect on acid secretion with potentiation of histamine-stimulated aminopyrine accumulation and adenylate cyclase activity at low doses and inhibition of all parameters of acid secretion at high doses.

  6. Theoretical study of the hydration of atmospheric nucleation precursors with acetic acid.

    PubMed

    Zhu, Yu-Peng; Liu, Yi-Rong; Huang, Teng; Jiang, Shuai; Xu, Kang-Ming; Wen, Hui; Zhang, Wei-Jun; Huang, Wei

    2014-09-11

    While atmosphere is known to contain a significant fraction of organic substance and the effect of acetic acid to stabilize hydrated sulfuric acids is found to be close that of ammonia, the details about the hydration of (CH3COOH)(H2SO4)2 are poorly understood, especially for the larger clusters with more water molecules. We have investigated structural characteristics and thermodynamics of the hydrates using density functional theory (DFT) at PW91PW91/6-311++G(3df,3pd) level. The phenomena of the structural evolution may exist during the early stage of the clusters formation, and we tentatively proposed a calculation path for the Gibbs free energies of the clusters formation via the structural evolution. The results in this study supply a picture of the first deprotonation of sulfuric acids for a system consisting of two sulfuric acid molecules, an acetic acid molecule, and up to three waters at 0 and 298.15 K, respectively. We also replace one of the sulfuric acids with a bisulfate anion in (CH3COOH)(H2SO4)2 to explore the difference of acid dissociation between two series of clusters and interaction of performance in clusters growth between ion-mediated nucleation and organics-enhanced nucleation.

  7. Soil washing of chromium- and cadmium-contaminated sludge using acids and ethylenediaminetetra acetic acid chelating agent.

    PubMed

    Gitipour, Saeid; Ahmadi, Soheil; Madadian, Edris; Ardestani, Mojtaba

    2016-01-01

    In this research, the effect of soil washing in the removal of chromium- and cadmium-contaminated sludge samples collected from Pond 2 of the Tehran Oil Refinery was investigated. These metals are considered as hazardous substances for human health and the environment. The carcinogenicity of chromate dust has been established for a long time. Cadmium is also a potential environmental toxicant. This study was carried out by collecting sludge samples from different locations in Pond 2. Soil washing was conducted to treat the samples. Chemical agents, such as acetic acid, ethylenediaminetetra acetic acid (EDTA) and hydrochloric acid, were used as washing solutions to remove chromium and cadmium from sludge samples. The results of this study indicated that the highest removal efficiencies from the sludge samples were achieved using a 0.3 M HCl solution with 82.69% and 74.47% for chromium and cadmium, respectively. EDTA (0.1 M) in the best condition extracted 66.81% of cadmium and 72.52% of chromium from the sludges. The lowest efficiency values for the samples, however, were achieved using 3 M acetic acid with 41.7% and 46.96% removals for cadmium and chromium, respectively. The analysis of washed sludge indicated that the heavy metals removal decreased in the order of 3 M acetic acid < 0.1 M EDTA<0.3 M HCl, thus hydrochloric acid appears to offer a greater potential as a washing agent in remediating the sludge samples.

  8. Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain.

    PubMed

    Bellissimi, Eleonora; van Dijken, Johannes P; Pronk, Jack T; van Maris, Antonius J A

    2009-05-01

    Acetic acid, an inhibitor released during hydrolysis of lignocellulosic feedstocks, has previously been shown to negatively affect the kinetics and stoichiometry of sugar fermentation by (engineered) Saccharomyces cerevisiae strains. This study investigates the effects of acetic acid on S. cerevisiae RWB 218, an engineered xylose-fermenting strain based on the Piromyces XylA (xylose isomerase) gene. Anaerobic batch cultures on synthetic medium supplemented with glucose-xylose mixtures were grown at pH 5 and 3.5, with and without addition of 3 g L(-1) acetic acid. In these cultures, consumption of the sugar mixtures followed a diauxic pattern. At pH 5, acetic acid addition caused increased glucose consumption rates, whereas specific xylose consumption rates were not significantly affected. In contrast, at pH 3.5 acetic acid had a strong and specific negative impact on xylose consumption rates, which, after glucose depletion, slowed down dramatically, leaving 50% of the xylose unused after 48 h of fermentation. Xylitol production was absent (<0.10 g L(-1)) in all cultures. Xylose fermentation in acetic -acid-stressed cultures at pH 3.5 could be restored by applying a continuous, limiting glucose feed, consistent with a key role of ATP regeneration in acetic acid tolerance.

  9. Protective Effect of Ocimum basilicum Essential Oil Against Acetic Acid-Induced Colitis in Rats.

    PubMed

    Rashidian, Amir; Roohi, Parnia; Mehrzadi, Saeed; Ghannadi, Ali Reza; Minaiyan, Mohsen

    2016-10-01

    Ocimum basilicum L has been traditionally used for the treatment of inflammatory bowel disease in Iran. This study investigates the ameliorative effect of Ocimum basilicum essential oil on an acetic acid-induced colitis model in rats. Ocimum basilicum essential oil with 2 doses (200 and 400 μL/kg) significantly ameliorated wet weight/length ratio of colonic tissue compared to the control group. Higher doses of essential oil (200 and 400 μL/kg) significantly reduced ulcer severity, ulcer area, and ulcer index. On the other hand, histological examination revealed the diminution of total colitis index as a marker for inflammatory cell infiltration in the colonic segments of rats treated with Ocimum basilicum essential oil (200 and 400 μL/kg). The increased level of myeloperoxidase was significantly decreased after the treatment with the essential oil (200 and 400 μL/kg). These results suggest that Ocimum basilicum exhibits protective effect against acetic acid-induced colitis.

  10. DFT computation and experimental analysis of vibrational and electronic spectra of phenoxy acetic acid herbicides

    NASA Astrophysics Data System (ADS)

    Arul Dhas, D.; Hubert Joe, I.; Roy, S. D. D.; Balachandran, S.

    2013-05-01

    An absolute vibrational analysis has been attempted on the basis of experimental FTIR and NIR-FT Raman spectra with calculated vibrational wavenumbers and intensities of phenoxy acetic acids. The equilibrium geometry, bonding features and harmonic vibrational wavenumbers have been calculated with the help of B3LYP method with Dunning correlation consistent basis set aug-cc-pVTZ. The electronic structures of molecular fragments were described in terms of natural bond orbital analysis, which shows intermolecular Osbnd H⋯O and intramolecular Csbnd H⋯O hydrogen bonds. The electronic absorption spectra with different solvents have been investigated in combination with time-dependent density functional theory calculation. The pKa values of phenoxy acetic acids were compared.

  11. Isolation of residual lignin from softwood kraft pulp. Advantages of the acetic acid acidolysis method.

    PubMed

    Lachenal, Dominique; Mortha, Gérard; Sevillano, Rose-Marie; Zaroubine, Michail

    2004-01-01

    Lignin in kraft pulp was extracted by enzymatic hydrolysis of the carbohydrates, acidolysis with dioxane-water-HCl (conventional method), and acidolysis with acetic acid-water-ZnCl2. The latter method was shown to extract lignin with a better yield than for conventional acidolysis and with a much lower content in impurities than for enzymatic hydrolysis. It was confirmed by 13C NMR analysis of the lignin samples that conventional hydrolysis modified the lignin polymer, causing the cleavage of some aryl-ether linkages. The cleavage was also observed on a model compound submitted to the same extraction conditions. In that respect, the acetic acid-water-ZnCl2 method was less damaging and consequently more suitable for analytical purposes.

  12. [Magnification endoscopy diagnosis of Barrett's esophagus with methylene blue and acetic acid].

    PubMed

    Yagi, Kazuyoshi; Nakamura, Atsuo; Sekine, Atsuo

    2005-08-01

    Intestinal metaplasia of Barrett's esophagus is pre-cancerous lesion and it is important to diagnose intestinal metaplasia by endoscopic examination. Predefined 4 quadrant sampling technique is popular in western countries. However, chromoendoscopy or magnification endoscopy have been tried to diagnose intestinal metaplasia. We have carried out magnification endoscopy with methylene blue and magnification endoscopy with acetic acid. In magnification endoscopy with methylene blue, intestinal metaplasia showed blue-staining area with tubulaous or cavernous pattern. In magnification endoscopy with acetic acid, all of epithelium of Barrett's esophagus changed to whitening surface and it was easy to observe the structure of each epithelium. Intestinal metaplasia showed tubulaous or villous, although fundic type showed pits of small round and cardiac type showed oval pattern with central-slit pits.

  13. Palladium-Catalyzed α-Arylation of Aryl Acetic Acid Derivatives via Dienolate Intermediates with Aryl Chlorides and Bromides

    PubMed Central

    2016-01-01

    To date, examples of α-arylation of carboxylic acids remain scarce. Using a deprotonative cross-coupling process (DCCP), a method for palladium-catalyzed γ-arylation of aryl acetic acids with aryl halides has been developed. This protocol is applicable to a wide range of aryl bromides and chlorides. A procedure for the palladium-catalyzed α-arylation of styryl acetic acids is also described. PMID:25582024

  14. Comparison of solid-state and submerged-state fermentation for the bioprocessing of switchgrass to ethanol and acetate by Clostridium phytofermentans.

    PubMed

    Jain, Abhiney; Morlok, Charles K; Henson, J Michael

    2013-01-01

    The conversion of sustainable energy crops using microbiological fermentation to biofuels and bioproducts typically uses submerged-state processes. Alternatively, solid-state fermentation processes have several advantages when compared to the typical submerged-state processes. This study compares the use of solid-state versus submerged-state fermentation using the mesophilic anaerobic bacterium Clostridium phytofermentans in the conversion of switchgrass to the end products of ethanol, acetate, and hydrogen. A shift in the ratio of metabolic products towards more acetate and hydrogen production than ethanol production was observed when C. phytofermentans was grown under solid-state conditions as compared to submerged-state conditions. Results indicated that the end product concentrations (in millimolar) obtained using solid-state fermentation were higher than using submerged-state fermentation. In contrast, the total fermentation products (in weight of product per weight of carbohydrates consumed) and switchgrass conversion were higher for submerged-state fermentation. The conversion of xylan was greater than glucan conversion under both fermentation conditions. An initial pH of 7 and moisture content of 80 % resulted in maximum end products formation. Scanning electron microscopy study showed the presence of biofilm formed by C. phytofermentans growing on switchgrass under submerged-state fermentation whereas bacterial cells attached to surface and no apparent biofilm was observed when grown under solid-state fermentation. To our knowledge, this is the first study reporting consolidated bioprocessing of a lignocellulosic substrate by a mesophilic anaerobic bacterium under solid-state fermentation conditions.

  15. Determination of Endogenous Indole-3-Acetic Acid in Plagiochila arctica (Hepaticae) 1

    PubMed Central

    Law, David M.; Basile, Dominick V.; Basile, Margaret R.

    1985-01-01

    Endogenous indole-3-acetic acid (IAA) was found in axenically cultured gametophytes of the leafy liverwort, Plagiochila arctica Bryhn and Kaal., by high-performance liquid chromatography with electrochemical detection. Identification of the methylated auxin was confirmed by gas chromatography-mass spectrometry. Addition of 57 micromolar IAA to cultures increased relative production of ethylene. This is the first definitive (gas chromatography-mass spectrometry) demonstration of the natural occurrence of IAA in a bryophyte. PMID:16664164

  16. Identification of Indole-3-Acetic Acid in the Basidiomycete Schizophyllum commune 1

    PubMed Central

    Epstein, Ephraim; Miles, Philip G.

    1967-01-01

    Indole-3-acetic acid (IAA) was detected in the ether extracts of culture filtrates of indigotin-producing strains of the basidiomycete Schizophyllum commune. Several solvents, known to give distinctly different RF values for IAA, and 3 location reagents gave identical results with synthetic IAA and IAA found in the extract. Confirmation was obtained by the Avena straight growth test, split pea test, and ultraviolet absorption spectrum. PMID:16656596

  17. Synthesis and Reactivity of (18)F-Labeled α,α-Difluoro-α-(aryloxy)acetic Acids.

    PubMed

    Khotavivattana, Tanatorn; Calderwood, Samuel; Verhoog, Stefan; Pfeifer, Lukas; Preshlock, Sean; Vasdev, Neil; Collier, Thomas L; Gouverneur, Véronique

    2017-02-03

    In this work, we describe the (18)F-labeling of α,α-difluoro-α-(aryloxy)acetic acid derivatives and demonstrate that these building blocks are amenable to post-(18)F-fluorination functionalization. Protodecarboxylation offers a new entry to (18)F-difluoromethoxyarene, and the value of this approach is further demonstrated with coupling processes leading to representative (18)F-labeled TRPV1 inhibitors and TRPV1 antagonists.

  18. Molecular dynamics simulations of the auxin-binding protein 1 in complex with indole-3-acetic acid and naphthalen-1-acetic acid.

    PubMed

    Grandits, Melanie; Oostenbrink, Chris

    2014-10-01

    Auxin-binding protein 1 (ABP1) is suggested to be an auxin receptor which plays an important role in several processes in green plants. Maize ABP1 was simulated with the natural auxin indole-3-acetic acid (IAA) and the synthetic analog naphthalen-1-acetic acid (NAA), to elucidate the role of the KDEL sequence and the helix at the C-terminus. The KDEL sequence weakens the intermolecular interactions between the monomers but stabilizes the C-terminal helix. Conformational changes at the C-terminus occur within the KDEL sequence and are influenced by the binding of the simulated ligands. This observation helps to explain experimental findings on ABP1 interactions with antibodies that are modulated by the presence of auxin, and supports the hypothesis that ABP1 acts as an auxin receptor. Stable hydrogen bonds between the monomers are formed between Glu40 and Glu62, Arg10 and Thr97, Lys39, and Glu62 in all simulations. The amino acids Ile22, Leu25, Trp44, Pro55, Ile130, and Phe149 are located in the binding pocket and are involved in hydrophobic interactions with the ring system of the ligand. Trp151 is stably involved in a face to end interaction with the ligand. The calculated free energy of binding using the linear interaction energy approach showed a higher binding affinity for NAA as compared to IAA. Our simulations confirm the asymmetric behavior of the two monomers, the stronger interaction of NAA than IAA and offers insight into the possible mechanism of ABP1 as an auxin receptor.

  19. Density functional theory study of acetic acid steam reforming on Ni(111)

    NASA Astrophysics Data System (ADS)

    Ran, Yan-Xiong; Du, Zhen-Yi; Guo, Yun-Peng; Feng, Jie; Li, Wen-Ying

    2017-04-01

    Catalytic steam reforming of bio-oil is a promising process to convert biomass into hydrogen. To shed light on this process, acetic acid is selected as the model compound of the oxygenates in bio-oil, and density functional theory is applied to investigate the mechanism of acetic acid steam reforming on the Ni(111) surface. The most favorable pathway of this process on the Ni(111) surface is suggested as CH3COOH* → CH3COO* → CH3CO* → CH2CO* → CH2* + CO* → CH* → CHOH* → CHO* → CO*, followed by the water gas shift reaction to produce CO2 and H2. CH* species are identified as the major carbon deposition precursor, and the water gas shift reaction is the rate-determining step during the whole acetic acid steam reforming process, as CO* + OH* → cis-COOH* is kinetically restricted with the highest barrier of 1.85 eV. Furthermore, the formation pathways and initial dissociation of important intermediates acetone and acetaldehyde are also investigated.

  20. Corrosion resistance of aluminum-magnesium alloys in glacial acetic acid

    SciTech Connect

    Zaitseva, L.V.; Romaniv, V.I.

    1984-05-01

    Vessels for the storage and conveyance of glacial acetic acid are produced from ADO and AD1 aluminum, which are distinguished by corrosion resistance, weldability and workability in the hot and cold conditions but have low tensile strength. Aluminum-magnesium alloys are stronger materials close in corrosion resistance to technical purity aluminum. An investigation was made of the basic alloying components on the corrosion resistance of these alloys in glacial acetic acid. Both the base metal and the weld joints were tested. With an increase in temperature the corrosion rate of all of the tested materials increases by tens of times. The metals with higher magnesium content show more pitting damage. The relationship of the corrosion resistance of the alloys to magnesium content is confirmed by the similar intensity of failure of the joint metal of all of the investigated alloys and by electrochemical investigations. The data shows that AMg3 alloy is close to technically pure ADO aluminum. However, the susceptibility of even this material to local corrosion eliminates the possibility of the use of aluminum-magnesium alloys as reliable constructional materials in glacial acetic acid.

  1. Acetic acid and lithium chloride effects on hydrothermal carbonization of lignocellulosic biomass.

    PubMed

    Lynam, Joan G; Coronella, Charles J; Yan, Wei; Reza, Mohammad T; Vasquez, Victor R

    2011-05-01

    As a renewable non-food resource, lignocellulosic biomass has great potential as an energy source or feedstock for further conversion. However, challenges exist with supply logistics of this geographically scattered and perishable resource. Hydrothermal carbonization treats any kind of biomass in 200 to 260°C compressed water under an inert atmosphere to produce a hydrophobic solid of reduced mass and increased fuel value. A maximum in higher heating value (HHV) was found when 0.4 g of acetic acid was added per g of biomass. If 1g of LiCl and 0.4 g of acetic acid were added per g of biomass to the initial reaction solution, a 30% increase in HHV was found compared to the pretreatment with no additives, along with greater mass reduction. LiCl addition also reduces reaction pressure. Addition of acetic acid and/or LiCl to hydrothermal carbonization each contribute to increased HHV and reduced mass yield of the solid product.

  2. Value of acetic acid screening for flat genital condylomata in men.

    PubMed

    Schultz, R E; Skelton, H G

    1988-04-01

    Application of acetic acid solution to the genital skin followed by magnified examination permits the detection of grossly inapparent flat condylomata acuminata. To evaluate the accuracy of this screening method, the male sexual partners of 36 women with genital condylomata were examined by this method and biopsies were obtained when results were positive. Of 47 biopsies of acetowhite (the whitish change that occurs when an epithelial surface is stained with acetic acid) lesions there were 26 cases of histologically confirmed condylomata, 9 of koilocytotic atypia and 12 with false positive results. There were 25 men whose sexual partners had cervical condylomata and cervical dysplasia. In this subgroup, considered to be at higher risk for flat condylomata, the screening method revealed 15 cases of condylomata, 6 of koilocytotic atypia and 4 in which no changes by acetic acid could be found. The extensive involvement of genital skin with flat condylomata in this subgroup raises doubts as to the practicality of treatment. Nevertheless, before treatment is rendered a punch biopsy for confirmation of the screening test is advised.

  3. Intermolecular proton-transfer in acetic acid clusters induced by vacuum-ultraviolet photoionization

    NASA Astrophysics Data System (ADS)

    Ohta, Keisuke; Matsuda, Yoshiyuki; Mikami, Naohiko; Fujii, Asuka

    2009-11-01

    Infrared (IR) spectroscopy based on vacuum-ultraviolet one-photon ionization detection was carried out to investigate geometric structures of neutral and cationic clusters of acetic acid: (CH3COOH)2, CH3COOH-CH3OH, and CH3COOH-H2O. All the neutral clusters have cyclic-type intermolecular structures, in which acetic acid and solvent molecules act as both hydrogen donors and acceptors, and two hydrogen-bonds are formed. On the other hand, (CH3COOH)2+ and (CH3COOH-CH3OH)+ form proton-transferred structures, where the acetic acid moiety donates the proton to the counter molecule. (CH3COOH-H2O)+ has a non-proton-transferred structure, where CH3COOH+ and H2O are hydrogen-bonded. The origin of these structural differences among the cluster cations is discussed with the relative sizes of the proton affinities of the cluster components and the potential energy curves along the proton-transfer coordinate.

  4. Biotransformations of 2-hydroxy-2-(ethoxyphenylphosphinyl)acetic acid and the determination of the absolute configuration of all isomers.

    PubMed

    Majewska, Paulina

    2015-08-01

    2-Hydroxy-2-(ethoxyphenylphosphinyl)acetic acid, a new type of organophosphorus compound possessing two stereogenic centers, was investigated. Racemic 2-butyryloxy-2-(ethoxyphenylphosphinyl)acetic acid was synthesized and hydrolyzed using four bacterial species as biocatalysts. In all cases the reaction was more or less stereoselective and isomers bearing a phosphorus atom with an (SP)-configuration were hydrolyzed preferentially. The observed (1)H and (31)P NMR chemical shifts of Mosher esters of 2-hydroxy-2-(ethoxyphenylphosphinyl)acetic acid were correlated with the configurations of both stereogenic centers of all four stereoisomers.

  5. The integration of acetic acid iontophoresis, orthotic therapy and physical rehabilitation for chronic plantar fasciitis: a case study

    PubMed Central

    Costa, Ivano A; Dyson, Anita

    2007-01-01

    A 15-year-old female soccer player presented with chronic plantar fasciitis. She was treated with acetic acid iontophoresis and a combination of rehabilitation protocols, ultrasound, athletic taping, custom orthotics and soft tissue therapies with symptom resolution and return to full activities within a period of 6 weeks. She reported no significant return of symptoms post follow-up at 2 months. Acetic acid iontophoresis has shown promising results and further studies should be considered to determine clinical effectiveness. The combination of acetic acid iontophoresis with conservative treatments may promote recovery within a shorter duration compared to the use of one-method treatment approaches. PMID:17885679

  6. Relationships between the resistance of yeasts to acetic, propanoic and benzoic acids and to methyl paraben and pH.

    PubMed

    Warth, A D

    1989-07-01

    Minimum inhibitory concentrations of acetic, propanoic and benzoic acids and methyl paraben were determined at pH 3.50 for 22 isolates of 11 yeast species, differing in their resistance to preservatives. Growth in the presence of benzoic acid enhanced the resistance of yeasts to benzoic and the other weak acid preservatives, but not to methyl paraben. Resistance to acetic, propanoic and benzoic acids was strongly correlated, but was not closely related to resistance to methyl paraben. Minimum pH for growth was not related to resistance to the weak acids. The results suggest that growth in the presence of weak-acid preservatives involves a common resistance mechanism.

  7. Deciphering the origin of cooperative catalysis by dirhodium acetate and chiral spiro phosphoric acid in an asymmetric amination reaction.

    PubMed

    Kisan, Hemanta K; Sunoj, Raghavan B

    2014-12-04

    The mechanism of asymmetric amination of diazo-acetate by tert-butyl carbamate catalyzed by dirhodium tetra(trifluoro)acetate and chiral SPINOL-phosphoric acid is examined using DFT (M06 and B3LYP) computations. A cooperative participation of both catalysts is noticed in the stereo-controlling transition state of the reaction.

  8. Adaptive response to acetic acid in the highly resistant yeast species Zygosaccharomyces bailii revealed by quantitative proteomics.

    PubMed

    Guerreiro, Joana F; Mira, Nuno P; Sá-Correia, Isabel

    2012-08-01

    Zygosaccharomyces bailii is the most tolerant yeast species to acetic acid-induced toxicity, being able to grow in the presence of concentrations of this food preservative close to the legal limits. For this reason, Z. bailii is the most important microbial contaminant of acidic food products but the mechanisms behind this intrinsic resistance to acetic acid are very poorly characterized. To gain insights into the adaptive response and tolerance to acetic acid in Z. bailii, we explored an expression proteomics approach, based on quantitative 2DE, to identify alterations occurring in the protein content in response to sudden exposure or balanced growth in the presence of an inhibitory but nonlethal concentration of this weak acid. A coordinate increase in the content of proteins involved in cellular metabolism, in particular, in carbohydrate metabolism (Mdh1p, Aco1p, Cit1p, Idh2p, and Lpd1p) and energy generation (Atp1p and Atp2p), as well as in general and oxidative stress response (Sod2p, Dak2p, Omp2p) was registered. Results reinforce the concept that glucose and acetic acid are coconsumed in Z. bailii, with acetate being channeled into the tricarboxylic acid cycle. When acetic acid is the sole carbon source, results suggest the activation of gluconeogenic and pentose phosphate pathways, based on the increased content of several proteins of these pathways after glucose exhaustion.

  9. The CgHaa1-Regulon Mediates Response and Tolerance to Acetic Acid Stress in the Human Pathogen Candida glabrata

    PubMed Central

    Bernardo, Ruben T.; Cunha, Diana V.; Wang, Can; Pereira, Leonel; Silva, Sónia; Salazar, Sara B.; Schröder, Markus S.; Okamoto, Michiyo; Takahashi-Nakaguchi, Azusa; Chibana, Hiroji; Aoyama, Toshihiro; Sá-Correia, Isabel; Azeredo, Joana; Butler, Geraldine; Mira, Nuno Pereira

    2016-01-01

    To thrive in the acidic vaginal tract, Candida glabrata has to cope with high concentrations of acetic acid. The mechanisms underlying C. glabrata tolerance to acetic acid at low pH remain largely uncharacterized. In this work, the essential role of the CgHaa1 transcription factor (encoded by ORF CAGL0L09339g) in the response and tolerance of C. glabrata to acetic acid is demonstrated. Transcriptomic analysis showed that CgHaa1 regulates, directly or indirectly, the expression of about 75% of the genes activated under acetic acid stress. CgHaa1-activated targets are involved in multiple physiological functions including membrane transport, metabolism of carbohydrates and amino acids, regulation of the activity of the plasma membrane H+-ATPase, and adhesion. Under acetic acid stress, CgHaa1 increased the activity and the expression of the CgPma1 proton pump and contributed to increased colonization of vaginal epithelial cells by C. glabrata. CgHAA1, and two identified CgHaa1-activated targets, CgTPO3 and CgHSP30, are herein demonstrated to be determinants of C. glabrata tolerance to acetic acid. The protective effect of CgTpo3 and of CgHaa1 was linked to a role of these proteins in reducing the accumulation of acetic acid inside C. glabrata cells. In response to acetic acid stress, marked differences were found in the regulons controlled by CgHaa1 and by its S. cerevisiae ScHaa1 ortholog, demonstrating a clear divergent evolution of the two regulatory networks. The results gathered in this study significantly advance the understanding of the molecular mechanisms underlying the success of C. glabrata as a vaginal colonizer. PMID:27815348

  10. The CgHaa1-Regulon Mediates Response and Tolerance to Acetic Acid Stress in the Human Pathogen Candida glabrata.

    PubMed

    Bernardo, Ruben T; Cunha, Diana V; Wang, Can; Pereira, Leonel; Silva, Sónia; Salazar, Sara B; Schröder, Markus S; Okamoto, Michiyo; Takahashi-Nakaguchi, Azusa; Chibana, Hiroji; Aoyama, Toshihiro; Sá-Correia, Isabel; Azeredo, Joana; Butler, Geraldine; Mira, Nuno Pereira

    2017-01-05

    To thrive in the acidic vaginal tract, Candida glabrata has to cope with high concentrations of acetic acid. The mechanisms underlying C. glabrata tolerance to acetic acid at low pH remain largely uncharacterized. In this work, the essential role of the CgHaa1 transcription factor (encoded by ORF CAGL0L09339g) in the response and tolerance of C. glabrata to acetic acid is demonstrated. Transcriptomic analysis showed that CgHaa1 regulates, directly or indirectly, the expression of about 75% of the genes activated under acetic acid stress. CgHaa1-activated targets are involved in multiple physiological functions including membrane transport, metabolism of carbohydrates and amino acids, regulation of the activity of the plasma membrane H(+)-ATPase, and adhesion. Under acetic acid stress, CgHaa1 increased the activity and the expression of the CgPma1 proton pump and contributed to increased colonization of vaginal epithelial cells by C. glabrata CgHAA1, and two identified CgHaa1-activated targets, CgTPO3 and CgHSP30, are herein demonstrated to be determinants of C. glabrata tolerance to acetic acid. The protective effect of CgTpo3 and of CgHaa1 was linked to a role of these proteins in reducing the accumulation of acetic acid inside C. glabrata cells. In response to acetic acid stress, marked differences were found in the regulons controlled by CgHaa1 and by its S. cerevisiae ScHaa1 ortholog, demonstrating a clear divergent evolution of the two regulatory networks. The results gathered in this study significantly advance the understanding of the molecular mechanisms underlying the success of C. glabrata as a vaginal colonizer.

  11. Partial molar volumes of some alpha-amino acids in aqueous sodium acetate solutions at 308.15 K.

    PubMed

    Wang, J; Yan, Z; Zhuo, K; Lu, J

    1999-08-30

    The apparent molar volumes V(2,phi) have been determined for glycine, DL-alpha-alanine, DL-alpha-amino-n-butyric acid, DL-valine and DL-leucine in aqueous solutions of 0.5, 1.0, 1.5 and 2.0 mol kg(-1) sodium acetate by density measurements at 308.15 K. These data have been used to derive the infinite dilution apparent molar volumes V(0)(2,phi) for the amino acids in aqueous sodium acetate solutions and the standard volumes of transfer, Delta(t)V(0), of the amino acids from water to aqueous sodium acetate solutions. It has been observed that both V(0)(2,phi) and Delta(t)V(0) vary linearly with increasing number of carbon atoms in the alkyl chain of the amino acids. These linear correlations have been utilized to estimate the contributions of the charged end groups (NH(3)(+), COO(-)), CH(2) group and other alkyl chains of the amino acids to V(0)(2,phi) and Delta(t)V(0). The results show that V(0)(2,phi) values for (NH(3)(+), COO(-)) groups increase with sodium acetate concentration, and those for CH(2) are almost constant over the studied sodium acetate concentration range. The transfer volume increases and the hydration number of the amino acids decreases with increasing electrolyte concentrations. These facts indicate that strong interactions occur between the ions of sodium acetate and the charged centers of the amino acids. The volumetric interaction parameters of the amino acids with sodium acetate were calculated in water. The pair interaction parameters are found to be positive and decreased with increasing alkyl chain length of the amino acids, suggesting that sodium acetate has a stronger dehydration effect on amino acids which have longer hydrophobic alkyl chains. These phenomena are discussed by means of the co-sphere overlap model.

  12. Effective Trapping of Fruit Flies with Cultures of Metabolically Modified Acetic Acid Bacteria

    PubMed Central

    Ishii, Yuri; Akasaka, Naoki; Goda, Itsuko; Sakoda, Hisao

    2015-01-01

    Acetoin in vinegar is an attractant to fruit flies when combined with acetic acid. To make vinegar more effective in attracting fruit flies with increased acetoin production, Komagataeibacter europaeus KGMA0119 was modified by specific gene disruption of the acetohydroxyacid isomeroreductase gene (ilvC). A previously constructed mutant lacking the putative ligand-sensing region in the leucine-responsive regulatory protein (KeLrp, encoded by Kelrp) was also used. The ilvC and Kelrp disruptants (KGMA5511 and KGMA7203, respectively) produced greater amounts of acetoin (KGMA5511, 0.11%; KGMA7203, 0.13%) than the wild-type strain KGMA0119 (0.069%). KGMA7203 produced a trace amount of isobutyric acid (0.007%), but the other strains did not. These strains produced approximately equal amounts of acetic acid (0.7%). The efficiency of fruit fly attraction was investigated with cultured Drosophila melanogaster. D. melanogaster flies (approximately 1,500) were released inside a cage (2.5 m by 2.5 m by 1.5 m) and were trapped with a device containing vinegar and a sticky sheet. The flies trapped on the sticky sheet were counted. The cell-free supernatant from KGMA7203 culture captured significantly more flies (19.36 to 36.96% of released flies) than did KGMA0119 (3.25 to 11.40%) and KGMA5511 (6.87 to 21.50%) cultures. Contrastingly, a 0.7% acetic acid solution containing acetoin (0.13%) and isobutyric acid (0.007%), which mimicked the KGMA7203 supernatant, captured significantly fewer flies (0.88 to 4.57%). Furthermore, the KGMA0119 supernatant with additional acetoin (0.13%) and isobutyric acid (0.007%) captured slightly more flies than the original KGMA0119 supernatant but fewer than the KGMA7203 supernatant, suggesting that the synergistic effects of acetic acid, acetoin, isobutyric acid, and unidentified metabolites achieved the efficient fly trapping of the KGMA7203 supernatant. PMID:25595769

  13. Lewis base activation of Lewis acids: catalytic, enantioselective addition of glycolate-derived silyl ketene acetals to aldehydes.

    PubMed

    Denmark, Scott E; Chung, Won-Jin

    2008-06-20

    A catalytic system involving silicon tetrachloride and a chiral, Lewis basic bisphosphoramide catalyst is effective for the addition of glycolate-derived silyl ketene acetals to aldehydes. It was found that the sense of diastereoselectivity could be modulated by changing the size of the substituents on the silyl ketene acetals. In general, the trimethylsilyl ketene acetals derived from methyl glycolates with a large protecting group on the alpha-oxygen provide enantiomerically enriched alpha,beta-dihydroxy esters with high syn-diastereoselectivity, whereas the tert-butyldimethylsilyl ketene acetals derived from bulky esters of alpha-methoxyacetic acid provide enantiomerically enriched alpha,beta-dihydroxy esters with high anti-diastereoselecitvity.

  14. Simultaneous saccharification and ethanol fermentation of oxalic acid pretreated corncob assessed with response surface methodology.

    PubMed

    Lee, Jae-Won; Rodrigues, Rita C L B; Jeffries, Thomas W

    2009-12-01

    Response surface methodology was used to evaluate optimal time, temperature and oxalic acid concentration for simultaneous saccharification and fermentation (SSF) of corncob particles by Pichia stipitis CBS 6054. Fifteen different conditions for pretreatment were examined in a 2(3) full factorial design with six axial points. Temperatures ranged from 132 to 180 degrees C, time from 10 to 90 min and oxalic acid loadings from 0.01 to 0.038 g/g solids. Separate maxima were found for enzymatic saccharification and hemicellulose fermentation, respectively, with the condition for maximum saccharification being significantly more severe. Ethanol production was affected by reaction temperature more than by oxalic acid and reaction time over the ranges examined. The effect of reaction temperature was significant at a 95% confidence level in its effect on ethanol production. Oxalic acid and reaction time were statistically significant at the 90% level. The highest ethanol concentration (20 g/l) was obtained after 48 h with an ethanol volumetric production rate of 0.42 g ethanol l(-1) h(-1). The ethanol yield after SSF with P. stipitis was significantly higher than predicted by sequential saccharification and fermentation of substrate pretreated under the same condition. This was attributed to the secretion of beta-glucosidase by P. stipitis. During SSF, free extracellular beta-glucosidase activity was 1.30 pNPG U/g with P. stipitis, while saccharification without the yeast was 0.66 pNPG U/g.

  15. Influence of ethanol on the pharmacokinetics of methylphenidate's metabolites ritalinic acid and ethylphenidate.

    PubMed

    Koehm, Michaela; Kauert, Gerold F; Toennes, Stefan W

    2010-01-01

    In view of the widespread application of methylphenidate for attention-deficit/ hyperactivity disorder (ADHD) therapy its interaction with alcohol was investigated in an in-vitro assay and in a study involving 9 male volunteers. The study conditions were: methylphenidate (20 mg) only, methylphenidate followed by ethanol (0.8 g/kg body weight) and ethanol followed by methylphenidate. Methylphenidate (CAS 113-45-1), ritalinic acid (CAS 19395-41-6) and ethylphenidate (CAS 57413-43-1) were assayed in blood samples collected up to 7 h after ingestion using liquid chromatography-mass spectrometry (LC/MS). It was found that methylphenidate is hydrolyzed to ritalinic acid by the same esterase that degrades cocaine. In the presence of ethanol this is inhibited and the active metabolite ethylphenidate is formed. The pharmacokinetic evaluation showed that methylphenidate concentrations were not markedly affected by ethanol, but ritalinic acid concentrations were lower, especially if ethanol was ingested first. Ethylphenidate concentrations were low with only about 10% of methylphenidate concentrations suggesting that concurrent ethanol use does not impair methylphenidate's therapeutic efficacy. Unexpectedly one subject exhibited a methylphenidate hydrolysis defect yielding very high methylphenidate and low ritalinic acid concentrations in all study conditions.

  16. Metabolic flux modeling of detoxification of acetic acid by Ralstonia eutropha at slightly alkaline pH levels.

    PubMed

    Yu, J; Wang, J

    2001-06-20

    Ralstonia eutropha grows on and produces polyhydroxyalkanoates (PHAs) from fermentation acids. Acetic acid, one major organic acid from acidogenesis of organic wastes, has an inhibitory effect on the bacterium at slightly alkaline pH (6 g HAc/L at pH 8). The tolerance of R. eutropha to acetate, however, was increased significantly up to 15 g/L at the slightly alkaline pH level with high cell mass concentration. A metabolic cell model with five fluxes is proposed to depict the detoxification mechanism including mass transfer and acetyl-CoA formation of acetic acid and the formation of three final metabolic products, polyhydroxybutyrate (PHB), active biomass, and CO(2). The fluxes were measured under different conditions such as cell mass concentration, acetic acid concentration, and medium composition. The experimental results indicate that