Science.gov

Sample records for acetic acid ethyl

  1. Kinetics of Ethyl Acetate Synthesis Catalyzed by Acidic Resins

    ERIC Educational Resources Information Center

    Antunes, Bruno M.; Cardoso, Simao P.; Silva, Carlos M.; Portugal, Ines

    2011-01-01

    A low-cost experiment to carry out the second-order reversible reaction of acetic acid esterification with ethanol to produce ethyl acetate is presented to illustrate concepts of kinetics and reactor modeling. The reaction is performed in a batch reactor, and the acetic acid concentration is measured by acid-base titration versus time. The…

  2. Ethyl acetate

    Integrated Risk Information System (IRIS)

    Ethyl acetate ; CASRN 141 - 78 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  3. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.

    PubMed

    Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S

    2016-07-08

    Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016.

  4. 40 CFR 721.10074 - Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-dimethylcyclohexyl)ethyl ester. 721.10074 Section 721.10074 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10074 Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester. (a... acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester (PMN P-05-568; CAS No. 477218-59-0)...

  5. 40 CFR 721.10074 - Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-dimethylcyclohexyl)ethyl ester. 721.10074 Section 721.10074 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10074 Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester. (a... acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester (PMN P-05-568; CAS No. 477218-59-0)...

  6. 40 CFR 721.10074 - Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-dimethylcyclohexyl)ethyl ester. 721.10074 Section 721.10074 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10074 Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester. (a... acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester (PMN P-05-568; CAS No. 477218-59-0)...

  7. 40 CFR 721.10074 - Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-dimethylcyclohexyl)ethyl ester. 721.10074 Section 721.10074 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10074 Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester. (a... acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester (PMN P-05-568; CAS No. 477218-59-0)...

  8. 40 CFR 721.10074 - Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-dimethylcyclohexyl)ethyl ester. 721.10074 Section 721.10074 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10074 Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester. (a... acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester (PMN P-05-568; CAS No. 477218-59-0)...

  9. 21 CFR 584.200 - Ethyl alcohol containing ethyl acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ethyl alcohol containing ethyl acetate. 584.200... Ethyl alcohol containing ethyl acetate. The feed additive ethyl alcohol containing ethyl acetate meets the requirement of 27 CFR 21.62, being not less than 92.5 percent ethyl alcohol, each 100...

  10. 21 CFR 584.200 - Ethyl alcohol containing ethyl acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ethyl alcohol containing ethyl acetate. 584.200... Ethyl alcohol containing ethyl acetate. The feed additive ethyl alcohol containing ethyl acetate meets the requirement of 27 CFR 21.62, being not less than 92.5 percent ethyl alcohol, each 100...

  11. 21 CFR 584.200 - Ethyl alcohol containing ethyl acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ethyl alcohol containing ethyl acetate. 584.200... Ethyl alcohol containing ethyl acetate. The feed additive ethyl alcohol containing ethyl acetate meets the requirement of 27 CFR 21.62, being not less than 92.5 percent ethyl alcohol, each 100...

  12. 21 CFR 584.200 - Ethyl alcohol containing ethyl acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ethyl alcohol containing ethyl acetate. 584.200... Ethyl alcohol containing ethyl acetate. The feed additive ethyl alcohol containing ethyl acetate meets the requirement of 27 CFR 21.62, being not less than 92.5 percent ethyl alcohol, each 100...

  13. 21 CFR 584.200 - Ethyl alcohol containing ethyl acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ethyl alcohol containing ethyl acetate. 584.200... Ethyl alcohol containing ethyl acetate. The feed additive ethyl alcohol containing ethyl acetate meets the requirement of 27 CFR 21.62, being not less than 92.5 percent ethyl alcohol, each 100...

  14. Manufacturing Ethyl Acetate From Fermentation Ethanol

    NASA Technical Reports Server (NTRS)

    Rohatgi, Naresh K.; Ingham, John D.

    1991-01-01

    Conceptual process uses dilute product of fermentation instead of concentrated ethanol. Low-concentration ethanol, extracted by vacuum from fermentation tank, and acetic acid constitutes feedstock for catalytic reaction. Product of reaction goes through steps that increases ethyl acetate content to 93 percent by weight. To conserve energy, heat exchangers recycle waste heat to preheat process streams at various points.

  15. PCL-gelatin composite nanofibers electrospun using diluted acetic acid-ethyl acetate solvent system for stem cell-based bone tissue engineering.

    PubMed

    Binulal, N S; Natarajan, Amrita; Menon, Deepthy; Bhaskaran, V K; Mony, Ullas; Nair, Shantikumar V

    2014-01-01

    Composite nanofibrous scaffolds with various poly(ε-caprolactone) (PCL)/gelatin ratios (90:10, 80:20, 70:30, 60:40, 50:50 wt.%) were successfully electrospun using diluted acetic and ethyl acetate mixture. The effects of this solvent system on the solution properties of the composites and its electrospinning properties were investigated. Viscosity and conductivity of the solutions, with the addition of gelatin, allowed for the electrospinning of uniform nanofibers with increasing hydrophilicity and degradation. Composite nanofibers containing 30 and 40 wt.% gelatin showed an optimum combination of hydrophilicity and degradability and also maintained the structural integrity of the scaffold. Human mesenchymal stem cells (hMSCs) showed favorable interaction with and proliferation on, the composite scaffolds. hMSC proliferation was highest in the 30 and 40 wt.% gelatin containing composites. Our experimental data suggested that PCL-gelatin composite nanofibers containing 30-40 wt.% of gelatin and electrospun in diluted acetic acid-ethyl acetate mixture produced nanofiber scaffolds with optimum hydrophilicity, degradability, and bio-functionality for stem cell-based bone tissue engineering.

  16. Field study of the urinary excretion of ethoxyacetic acid during repeated daily exposure to the ethyl ether of ethylene glycol and the ethyl ether of ethylene glycol acetate.

    PubMed

    Veulemans, H; Groeseneken, D; Masschelein, R; Van Vlem, E

    1987-06-01

    The urinary excretion of ethoxyacetic acid (EAA) was studied in a group of five women daily exposed to the ethyl ether of ethylene glycol (EGEE) and the ethyl ether of ethylene glycol acetate (EGEE-Ac) during 5 d of normal production and 7 d after a 12-d production stop. The mean combined exposure concentration of EGEE and EGEE-Ac (expressed in equivalent weight of EGEE) was 14.0 mg/m3 with occasional slight excursions above the current Belgian occupational exposure limit. The daily combined exposure profiles for EGEE and EGEE-Ac were rather constant during the first observation period, but they tended to decrease during the last week. The urinary EAA excretion clearly increased during the work week. Over the weekends the elimination was far from complete, and even after a prolonged nonexposure period of 12 d traces of the metabolite were still detectable. Based on the observations from the first period, a good linear correlation (r = 0.92) was found between the average exposure over 5 d (14.4 mg/m3) and the EAA excretion at the end of the week (105.7 mg/g creatinine). An EAA estimate of 150 +/- 35 mg/g was found to correspond with repeated 5-d full-shift exposures to the respective occupational exposure limit of EGEE (19 mg/m3) or EGEE-Ac (27 mg/m3).

  17. Fragrance material review on ethyl phenyl carbinyl acetate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of ethyl phenyl carbinyl acetate when used as a fragrance ingredient is presented. Ethyl phenyl carbinyl acetate is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for ethyl phenyl carbinyl acetate were evaluated, then summarized, and includes: physical properties; acute toxicity; skin irritation; and skin sensitization data. A safety assessment of the entire AAASAE will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  18. Fragrance material review on 2-(p-tolyloxy)ethyl acetate.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of 2-(p-tolyloxy)ethyl acetate when used as a fragrance ingredient is presented. 2-(p-tolyloxy)ethyl acetate is a member of the fragrance structural group aryl alkyl alcohol simple acid esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2-(p-tolyloxy)ethyl acetate were evaluated, then summarized, and includes physical properties data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances.

  19. Flecainide acetate acetic acid solvates.

    PubMed

    Veldre, Kaspars; Actiņs, Andris; Eglite, Zane

    2011-02-01

    Flecainide acetate forms acetic acid solvates with 0.5 and 2 acetic acid molecules. Powder X-ray diffraction, differential thermal analysis/thermogravimetric, infrared, and potentiometric titration were used to determine the composition of solvates. Flecainide acetate hemisolvate with acetic acid decomposes to form a new crystalline form of flecainide acetate. This form is less stable than the already known polymorphic form at all temperatures, and it is formed due to kinetic reasons. Both flecainide acetate nonsolvated and flecainide acetate hemisolvate forms crystallize in monoclinic crystals, but flecainide triacetate forms triclinic crystals. Solvate formation was not observed when flecainide base was treated with formic acid, propanoic acid, and butanoic acid. Only nonsolvated flecainide salts were obtained in these experiments.

  20. 21 CFR 173.228 - Ethyl acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethyl acetate. 173.228 Section 173.228 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Solvents, Lubricants, Release Agents and...

  1. Pallidol hexa­acetate ethyl acetate monosolvate

    PubMed Central

    Mao, Qinyong; Taylor, Dennis K.; Ng, Seik Weng; Tiekink, Edward R. T.

    2013-01-01

    The entire mol­ecule of pallidol hexa­acetate {systematic name: (±)-(4bR,5R,9bR,10R)-5,10-bis­[4-(acet­yloxy)phen­yl]-4b,5,9b,10-tetra­hydro­indeno­[2,1-a]indene-1,3,6,8-tetrayl tetra­acetate} is completed by the application of twofold rotational symmetry in the title ethyl acetate solvate, C40H34O12·C4H8O2. The ethyl acetate mol­ecule was highly disordered and was treated with the SQUEEZE routine [Spek (2009 ▶). Acta Cryst. D65, 148–155]; the crystallographic data take into account the presence of the solvent. In pallidol hexa­acetate, the dihedral angle between the fused five-membered rings (r.m.s. deviation = 0.100 Å) is 54.73 (6)°, indicating a significant fold in the mol­ecule. Significant twists between residues are also evident as seen in the dihedral angle of 80.70 (5)° between the five-membered ring and the pendent benzene ring to which it is attached. Similarly, the acetate residues are twisted with respect to the benzene ring to which they are attached [C—O(carb­oxy)—C—C torsion angles = −70.24 (14), −114.43 (10) and −72.54 (13)°]. In the crystal, a three-dimensional architecture is sustained by C—H⋯O inter­actions which encompass channels in which the disordered ethyl acetate mol­ecules reside. PMID:24046702

  2. Nitrosation of glycine ethyl ester and ethyl diazoacetate to give the alkylating agent and mutagen ethyl chloro(hydroximino)acetate.

    PubMed

    Zhou, Lin; Haorah, James; Chen, Sheng C; Wang, Xiaojie; Kolar, Carol; Lawson, Terence A; Mirvish, Sidney S

    2004-03-01

    Whereas nitrosation of secondary amines produces nitrosamines, amino acids with primary amino groups and glycine ethyl ester were reported to react with nitrite to give unidentified agents that alkylated 4-(p-nitrobenzyl)pyridine to produce purple dyes and be direct mutagens in the Ames test. We report here that treatment of glycine ethyl ester at 37 degrees C with excess nitrite acidified with HCl, followed by ether extraction, gave 30-40% yields of a product identified as ethyl chloro(hydroximino)acetate [ClC(=NOH)COOEt, ECHA] and a 9% yield of ethyl chloroacetate. The ECHA was identical to that synthesized by a known method from ethyl acetoacetate, strongly alkylated nitrobenzylpyridine, and may have arisen by N-nitrosation of glycine ethyl ester to give ethyl diazoacetate, which was C-nitrosated and reacted with chloride to give ECHA. Nitrosation of ethyl diazoacetate also yielded ECHA. Ethyl nitroacetate was not an intermediate as its nitrosation did not produce ECHA. ECHA reacted with aniline to give ethyl (hydroxamino)(phenylimino)acetate [PhN=C(NHOH)CO2Et]. This product was different from ethyl [(phenylamino)carbonyl]carbamate [PhNHC(=O)NHCO2Et], which was synthesized by reacting ethyl isocyanatoformate (OCN.CO2Et) with aniline. ECHA reacted with guanosine to give a derivative, which may have been a guanine-C(=NOH)CO2Et derivative. ECHA showed moderate toxicity and weak but significant mutagenicity without activation in Salmonella typhimurium TA-100 (mean, 1.31 x control value for 12-18 microg/plats) and for V79 mammalian cells (1.5-1.7 x control value for 60-100 microM). In conclusion, gastric nitrosation of glycine derivatives such as peptides with a N-terminal glycine might produce ECHA analogues that alkylate bases of gastric mucosal DNA and thereby initiate gastric cancer.

  3. Wet in situ transesterification of microalgae using ethyl acetate as a co-solvent and reactant.

    PubMed

    Park, Jeongseok; Kim, Bora; Chang, Yong Keun; Lee, Jae W

    2017-04-01

    This study addresses wet in situ transesterification of microalgae for the production of biodiesel by introducing ethyl acetate as both reactant and co-solvent. Ethyl acetate and acid catalyst are mixed with wet microalgae in one pot and the mixture is heated for simultaneous lipid extraction and transesterification. As a single reactant and co-solvent, ethyl acetate can provide higher FAEE yield and more saccharification of carbohydrates than the case of binary ethanol and chloroform as a reactant and a co-solvent. The optimal yield was 97.8wt% at 114°C and 4.06M catalyst with 6.67mlEtOAC/g dried algae based on experimental results and response surface methodology (RSM). This wet in situ transesterification of microalgae using ethyl acetate doesn't require an additional co-solvent and it also promises more economic benefit as combining extraction and transesterification in a single process.

  4. Atmospheric Oxidation Mechanisms for Diethyl Ether and its Oxidation Products, Ethyl Formate and Ethyl Acetate.

    NASA Astrophysics Data System (ADS)

    Orlando, J. J.; Tyndall, G. S.

    2006-12-01

    Carbon-containing compounds are present in the earth's atmosphere as the result of emissions from natural and anthropogenic sources. Their oxidation in the atmosphere, initiated by such oxidants as OH, ozone, and nitrate radicals, leads to potentially harmful secondary pollutants such as ozone, carbonyl species, organic acids and aerosols. Ethers and esters are two classes of compounds that contribute to the complex array of organic compounds found in anthropogenically-influenced air. Additional ester is present as a result of the oxidation of the ethers. In this paper, the oxidation of diethyl ether and its two main oxidation products, ethyl formate and ethyl acetate, are studied over ranges of temperature, oxygen partial pressure, and NOx concentration, using an environmental chamber / FTIR absorption technique. Major end-products (the esters from diethyl ether; organic acids and anhydrides from the esters) are quantified, and these data are interpreted in terms of the chemistry of the various alkoxy and peroxy radicals generated. Emphasis is placed on the effects of chemical activation on the behavior of the alkoxy radicals, as well as on a novel peroxy radical rearrangement that may contribute to the observed products of ether oxidation under some conditions. Finally, the data are used, in conjunction with data on similar species, to provide a general representation of ether and ester oxidation in the atmosphere.

  5. Antiplasmodial Properties and Bioassay-Guided Fractionation of Ethyl Acetate Extracts from Carica papaya Leaves.

    PubMed

    Melariri, Paula; Campbell, William; Etusim, Paschal; Smith, Peter

    2011-01-01

    We investigated the antiplasmodial properties of crude extracts from Carica papaya leaves to trace the activity through bioassay-guided fractionation. The greatest antiplasmodial activity was observed in the ethyl acetate crude extract. C. papaya showed a high selectivity for P. falciparum against CHO cells with a selectivity index of 249.25 and 185.37 in the chloroquine-sensitive D10 and chloroquine-resistant DD2 strains, respectively. Carica papaya ethyl acetate extract was subjected to bioassay-guided fractionation to ascertain the most active fraction, which was purified and identified using high-pressure liquid chromatography (HPLC) and GC-MS (Gas chromatography-Mass spectrometry) methods. Linoleic and linolenic acids identified from the ethyl acetate fraction showed IC(50) of 6.88 μg/ml and 3.58 μg/ml, respectively. The study demonstrated greater antiplasmodial activity of the crude ethyl acetate extract of Carica papaya leaves with an IC(50) of 2.96 ± 0.14 μg/ml when compared to the activity of the fractions and isolated compounds.

  6. Cytotoxic constituents of ethyl acetate fraction from Dianthus superbus.

    PubMed

    Ding, Chengli; Zhang, Wu; Li, Jie; Lei, Jiachuan; Yu, Jianqing

    2013-01-01

    The ethyl acetate fraction (EE-DS) from Dianthus superbus was found to possess the cytotoxic activity against cancer cells in previous study. To investigate cytotoxic constituents, the bioassay-guided isolation of compounds from EE-DS was performed. Two dianthramides (1 and 2), three flavonoids (3-5), two coumarins (6 and 7) and three other compounds (8-10) were obtained. Structures of isolated compounds were identified by spectroscopic analysis. Cytotoxicity of the compounds against HepG2 cells was evaluated. Compound 1 showed the strongest cytotoxicity, compounds 10, 4, 3 and 5 had moderate cytotoxicity.

  7. Hydroxide as general base in the saponification of ethyl acetate.

    PubMed

    Mata-Segreda, Julio F

    2002-03-13

    The second-order rate constant for the saponification of ethyl acetate at 30.0 degrees C in H(2)O/D(2)O mixtures of deuterium atom fraction n (a proton inventory experiment) obeys the relation k(2)(n) = 0.122 s(-1) M(-1) (1 - n + 1.2n) (1 - n + 0.48n)/(1 - n + 1.4n) (1 - n + 0.68n)(3). This result is interpreted as a process where formation of the tetrahedral intermediate is the rate-determining step and the transition-state complex is formed via nucleophilic interaction of a water molecule with general-base assistance from hydroxide ion, opposite to the direct nucleophilic collision commonly accepted. This mechanistic picture agrees with previous heavy-atom kinetic isotope effect data of Marlier on the alkaline hydrolysis of methyl formate.

  8. Antifungal and antioxidant activity of Crassocephalum bauchiense (Hutch.) Milne-Redh ethyl acetate extract and fractions (Asteraceae)

    PubMed Central

    2014-01-01

    Background Crassocephalum bauchiense is a flowering plant, found in the West Region of Cameroon. Previous studied has highlighted the antibacterial and the dermal toxicological safety as well as the immunomodulatory activities of the ethyl acetate extract of its dry leaves. As an extension of the previous researches, the current work has been undertaken to evaluate the in vitro antifungal and antioxidant activities of C. bauchiense dried leaves ethyl acetate extract and fractions. Methods The extract was obtained by maceration in ethyl acetate and further fractionated into six fractions labeled F1 to F6 by flash chromatography. The antifungal activity of the extract and fractions against yeasts and dermatophytes was evaluated using broth microdilution method. Antioxidant activity was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO) and β-carotene - linoleic acid assays. Results The extract (MIC = 0.125 - 4 mg/ml) was found to be more active on dermatophytes and yeasts compared to the fractions. The ethyl acetate extract and fractions exhibited strong scavenging activity on DPPH (CI50 = 28.57 - 389.38 μg/ml). The fractions F3 and F6 expressed best antioxidant activity on DPPH radicals compared to the crude extract. Conclusion The results of these findings clearly showed that C. bauchiense ethyl acetate extract has a significant antifungal and antioxidant activity. It is therefore a source of active compounds that might be used as antifungal and antioxidant agents. PMID:24742210

  9. Stability and interface properties of thin cellulose ester films adsorbed from acetone and ethyl acetate solutions.

    PubMed

    Amim, Jorge; Kosaka, Priscila M; Petri, Denise F S; Maia, Francisco C B; Miranda, Paulo B

    2009-04-15

    Stability and interface properties of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) films adsorbed from acetone or ethyl acetate onto Si wafers have been investigated by means of contact angle measurements and atomic force microscopy (AFM). Surface energy (gamma(S)(total)) values determined for CAP adsorbed from acetone are larger than those from ethyl acetate. In the case of CAB films adsorbed from ethyl acetate and acetone were similar. Dewetting was observed by AFM only for CAP films prepared from ethyl acetate. Positive values of effective Hamaker constant (A(eff)) were found only for CAP prepared from ethyl acetate, corroborating with dewetting phenomena observed by AFM. On the contrary, negative values of A(eff) were determined for CAP and CAB prepared from acetone and for CAB prepared from ethyl acetate, corroborating with experimental observations. Sum frequency generation (SFG) vibrational spectra indicated that CAP and CAB films prepared from ethyl acetate present more alkyl groups oriented perpendicularly to the polymer-air interface than those films prepared from acetone. Such preferential orientation corroborates with macroscopic contact angle measurements. Moreover, SFG spectra showed that acetone binds strongly to Si wafers, creating a new surface for CAP and CAB films.

  10. 40 CFR 180.595 - Flufenpyr-ethyl; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... residues of the herbicide, flufenpyr-ethyl; acetic acid, -phenoxy]-ethyl ester], in or on the following...) Tolerances are established for residues of the herbicide flufenpyr-ethyl; acetic acid, -phenoxy]-ethyl...

  11. 40 CFR 180.595 - Flufenpyr-ethyl; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... residues of the herbicide, flufenpyr-ethyl; acetic acid, -phenoxy]-ethyl ester], in or on the following...) Tolerances are established for residues of the herbicide flufenpyr-ethyl; acetic acid, -phenoxy]-ethyl...

  12. 40 CFR 180.595 - Flufenpyr-ethyl; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... residues of the herbicide, flufenpyr-ethyl; acetic acid, -phenoxy]-ethyl ester], in or on the following...) Tolerances are established for residues of the herbicide flufenpyr-ethyl; acetic acid, -phenoxy]-ethyl...

  13. 40 CFR 180.595 - Flufenpyr-ethyl; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... residues of the herbicide, flufenpyr-ethyl; acetic acid, -phenoxy]-ethyl ester], in or on the following...) Tolerances are established for residues of the herbicide flufenpyr-ethyl; acetic acid, -phenoxy]-ethyl...

  14. 40 CFR 180.595 - Flufenpyr-ethyl; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... residues of the herbicide, flufenpyr-ethyl; acetic acid, -phenoxy]-ethyl ester], in or on the following...) Tolerances are established for residues of the herbicide flufenpyr-ethyl; acetic acid, -phenoxy]-ethyl...

  15. Understanding the hydrolysis mechanism of ethyl acetate catalyzed by an aqueous molybdocene: a computational chemistry investigation.

    PubMed

    Tílvez, Elkin; Cárdenas-Jirón, Gloria I; Menéndez, María I; López, Ramón

    2015-02-16

    A thoroughly mechanistic investigation on the [Cp2Mo(OH)(OH2)](+)-catalyzed hydrolysis of ethyl acetate has been performed using density functional theory methodology together with continuum and discrete-continuum solvation models. The use of explicit water molecules in the PCM-B3LYP/aug-cc-pVTZ (aug-cc-pVTZ-PP for Mo)//PCM-B3LYP/aug-cc-pVDZ (aug-cc-pVDZ-PP for Mo) computations is crucial to show that the intramolecular hydroxo ligand attack is the preferred mechanism in agreement with experimental suggestions. Besides, the most stable intermediate located along this mechanism is analogous to that experimentally reported for the norbornenyl acetate hydrolysis catalyzed by molybdocenes. The three most relevant steps are the formation and cleavage of the tetrahedral intermediate immediately formed after the hydroxo ligand attack and the acetic acid formation, with the second one being the rate-determining step with a Gibbs energy barrier of 36.7 kcal/mol. Among several functionals checked, B3LYP-D3 and M06 give the best agreement with experiment as the rate-determining Gibbs energy barrier obtained only differs 0.2 and 0.7 kcal/mol, respectively, from that derived from the experimental kinetic constant measured at 296.15 K. In both cases, the acetic acid elimination becomes now the rate-determining step of the overall process as it is 0.4 kcal/mol less stable than the tetrahedral intermediate cleavage. Apart from clarifying the identity of the cyclic intermediate and discarding the tetrahedral intermediate formation as the rate-determining step for the mechanism of the acetyl acetate hydrolysis catalyzed by molybdocenes, the small difference in the Gibbs energy barrier found between the acetic acid formation and the tetrahedral intermediate cleavage also uncovers that the rate-determining step could change when studying the reactivity of carboxylic esters other than ethyl acetate substrate specific toward molybdocenes or other transition metal complexes. Therefore

  16. Comparison of different solid-phase-extraction cartridges for a fatty acid cleanup of the ethyl acetate/cyclohexane based multi-pesticide residue method EN 12393.

    PubMed

    Steinbach, Philipp; Schwack, Wolfgang

    2014-01-03

    SPE cartridges of different anion exchange materials and florisil were compared regarding their efficiency to remove free fatty acids from ethylacetate/cyclohexane (1:1) extracts, their elution profiles and recovery rates for 38 representative pesticides, their contribution to an elevated background during gas chromatography-mass spectrometry (GC-MS), and on possible matrix effects caused by the cartridge material itself. From the seven tested cartridges, only Varian PSA (PSA) and Silicycle SiliaPrep Diamine (SPD) were very well able to retain fatty acids from ethylacetate/cyclohexane solutions and provided satisfying recoveries and elution profiles for the tested pesticides. Thus, with both cartridges a fast and simple cleanup was developed and tested with 86 pesticides as well as with EN 12393 GPC extracts of oat flour. The SPE cleanup clearly improved the identification of pesticides and reduced false negative findings due to retention time shifts and superimpositions of quantifier and/or qualifier ions. As compared with dispersive SPE it was shown, that depending on the amount of sorbent the cleanup efficiency was comparable, but recoveries were generally better for cartridge SPE procedures.

  17. Detoxification of biomass derived acetate via metabolic conversion to ethanol, acetone, isopropanol, or ethyl acetate

    DOEpatents

    Sillers, William Ryan; Van Dijken, Hans; Licht, Steve; Shaw, IV, Arthur J.; Gilbert, Alan Benjamin; Argyros, Aaron; Froehlich, Allan C.; McBride, John E.; Xu, Haowen; Hogsett, David A.; Rajgarhia, Vineet B.

    2017-03-28

    One aspect of the invention relates to a genetically modified thermophilic or mesophilic microorganism, wherein a first native gene is partially, substantially, or completely deleted, silenced, inactivated, or down-regulated, which first native gene encodes a first native enzyme involved in the metabolic production of an organic acid or a salt thereof, thereby increasing the native ability of said thermophilic or mesophilic microorganism to produce lactate or acetate as a fermentation product. In certain embodiments, the aforementioned microorganism further comprises a first non-native gene, which first non-native gene encodes a first non-native enzyme involved in the metabolic production of lactate or acetate. Another aspect of the invention relates to a process for converting lignocellulosic biomass to lactate or acetate, comprising contacting lignocellulosic biomass with a genetically modified thermophilic or mesophilic microorganism.

  18. Screening of Methanol Extract and Ethyl Acetate Fraction of Abies webbiana Lindl. for Neuropharmacological Activities

    PubMed Central

    Parkash, O.; Kumar, D.; Kumar, S.

    2015-01-01

    Despite a long traditional of use of Abies webbiana Lindl. (Talispatra; family-Pinaceae) in the treatment of mental disorders, the plant has not been investigated systematically to validate its traditional claims. Thus, the present investigation was undertaken with an objective to investigate neuropharmacological activities of methanol extract of Abies webbiana aerial parts and its ethyl acetate fraction. Properly identified aerial parts were defatted with petroleum ether and then extracted with methanol in a Soxhlet apparatus. Ethyl acetate fraction was prepared by partitioning methanol extract with ethyl acetate using standard procedure. In acute toxicity study, no mortality was observed in animals after oral administration of 2 g/kg dose of methanol extract. The methanol extract (200 or 400 mg/kg, p.o.) and ethyl acetate fraction (25 or 50 mg/kg, p.o.) were evaluated for antianxiety, anticonvulsant, antidepressant, sedative, antistress and analgesic activities using well established models. The methanol extract and ethyl acetate fraction of Abies webbiana aerial parts exhibited significant antianxiety, anticonvulsant, antidepressant, sedative, antistress and analgesic activities with respect to control. Preliminary phytochemical screening showed presence of flavonoids in bioactive ethyl acetate fraction of Abies webbiana aerial parts. It is finally concluded that flavonoids are the bioactive constituents responsible for most of neuropharmacological activities of Abies webbiana. PMID:26798167

  19. Screening of Methanol Extract and Ethyl Acetate Fraction of Abies webbiana Lindl. for Neuropharmacological Activities.

    PubMed

    Parkash, O; Kumar, D; Kumar, S

    2015-01-01

    Despite a long traditional of use of Abies webbiana Lindl. (Talispatra; family-Pinaceae) in the treatment of mental disorders, the plant has not been investigated systematically to validate its traditional claims. Thus, the present investigation was undertaken with an objective to investigate neuropharmacological activities of methanol extract of Abies webbiana aerial parts and its ethyl acetate fraction. Properly identified aerial parts were defatted with petroleum ether and then extracted with methanol in a Soxhlet apparatus. Ethyl acetate fraction was prepared by partitioning methanol extract with ethyl acetate using standard procedure. In acute toxicity study, no mortality was observed in animals after oral administration of 2 g/kg dose of methanol extract. The methanol extract (200 or 400 mg/kg, p.o.) and ethyl acetate fraction (25 or 50 mg/kg, p.o.) were evaluated for antianxiety, anticonvulsant, antidepressant, sedative, antistress and analgesic activities using well established models. The methanol extract and ethyl acetate fraction of Abies webbiana aerial parts exhibited significant antianxiety, anticonvulsant, antidepressant, sedative, antistress and analgesic activities with respect to control. Preliminary phytochemical screening showed presence of flavonoids in bioactive ethyl acetate fraction of Abies webbiana aerial parts. It is finally concluded that flavonoids are the bioactive constituents responsible for most of neuropharmacological activities of Abies webbiana.

  20. Studies on the mechanism of synthesis of ethyl acetate in Kluyveromyces marxianus DSM 5422.

    PubMed

    Löser, Christian; Urit, Thanet; Keil, Peter; Bley, Thomas

    2015-02-01

    Kluyveromyces marxianus converts whey-borne sugar into ethyl acetate, an environmentally friendly solvent with many applications. K. marxianus DSM 5422 presumably synthesizes ethyl acetate from acetyl-SCoA. Iron limitation as a trigger for this synthesis is explained by a diminished aconitase and succinate dehydrogenase activity (both enzymes depend on iron) causing diversion of acetyl-SCoA from the tricarboxic acid cycle to ester synthesis. Copper limitation as another trigger for ester synthesis in this yeast refers to involvement of the electron transport chain (all ETC complexes depend on iron and complex IV requires copper). This hypothesis was checked by using several ETC inhibitors. Malonate was ineffective but carboxin partially inhibited complex II and initiated ester synthesis. Antimycin A and cyanide as complexes III and IV inhibitors initiated ester synthesis only at moderate levels while higher concentrations disrupted all respiration and caused ethanol formation. A restricted supply of oxygen (the terminal electron acceptor) also initiated some ester synthesis but primarily forced ethanol production. A switch from aerobic to anaerobic conditions nearly stopped ester synthesis and induced ethanol formation. Iron-limited ester formation was compared with anaerobic ethanol production; the ester yield was lower than the ethanol yield but a higher market price, a reduced number of process stages, a faster process, and decreased expenses for product recovery by stripping favor biotechnological ester production.

  1. Ethyl acetate-n-butanol gradient solvent system for high-speed countercurrent chromatography to screen bioactive substances in okra.

    PubMed

    Ying, Hao; Jiang, Heyuan; Liu, Huan; Chen, Fangjuan; Du, Qizhen

    2014-09-12

    High-speed countercurrent chromatographic separation (HSCCC) possesses the property of zero-loss of sample, which is very useful for the screening of bioactive components. In the present study, the ethyl acetate-n-butanol gradient HSCCC solvent system composed of n-hexane-ethyl acetate-n-butanol-water was investigated for the screening of bioactive substances. To screen the antiproliferative compounds in okra extract, we used the stationary phase ethyl acetate-n-butanol-water (1:1:10) as the stationary phase, and eluted the antiproliferative components by 6-steps of gradient using mobile phases n-hexane-ethyl acetate (1:2), n-hexane-ethyl acetate (1:4), n-hexane-ethyl acetate (0:4), n-butanol-ethyl acetate (1:4) n-butanol-ethyl acetate (1:2), n-butanol-ethyl acetate (2:2), and n-butanol-ethyl acetate (2:1). The fractions collected from HSCCC separation with the gradient solvent system were assayed for antiproliferative activity against cancer cells. Bioactive components were identified: a major anti-cancer compound, 4'-hydroxy phenethyl trans-ferulate, with middle activity, and a minor anti-cancer compound, carolignan, with strong activity. The result shows that the gradient solvent system is potential for the screening of bioactive compounds from natural products.

  2. 21 CFR 184.1005 - Acetic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acetic acid. 184.1005 Section 184.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1005 Acetic acid. (a) Acetic acid (C2H4O2, CAS Reg. No. 64-19-7) is known as ethanoic acid. It...

  3. Anti-hepatoma activities of ethyl acetate extract from Ampelopsis sinica root.

    PubMed

    Wang, Jia-Zhi; Huang, Bi-Sheng; Cao, Yan; Chen, Ke-Li; Li, Juan

    2017-03-13

    Ampelopsis sinica root (ASR) is a known hepatoprotective folk traditional Chinese medicine. The anti‑hepatoma activity of ethyl acetate extract from A. sinica root (ASRE) in vitro and in vivo and its possible mechanism were explored. This study was designed to investigate cytotoxicity by MTT assay, induction of apoptosis via Hoechst 33258 staining, scanning electron microscopy and bivariate flow cytometric analysis (Annexin V-FITC/PI), inflammation and apoptosis related genes expression by RT-PCR and p53 protein expression by immunofluorescence assay in HepG2 cells. Then, the antitumor activity in vivo was detected by hepatoma H22 xenograft tumor in mice. The results showed that ASRE had powerful anti‑hepatoma activity in vitro without obvious toxicity on normal cells and could induce HepG2 cell apoptosis. The mechanism may be associated with downregulation of inflammatory cytokines including cyclooxygenase-2, 5-lipoxygenase and FLAP, increase of the ratio of bax/bcl-2, activation caspase-3 and inhibition of survivin, and increased expression of p53 protein. Furthermore, the HPLC assay showed the main compounds of ASRE were gallic acid, catechin and gallic acid ethyl ester. In animal experiments, ASR ethanol extract decreased the tumor weights of hepatoma H22 tumor-bearing mice. Therefore, ASR may be a potential therapeutic agent in the treatment of hepatocellular carcinoma.

  4. Formation of ethyl acetate from whey by Kluyveromyces marxianus on a pilot scale.

    PubMed

    Löser, Christian; Urit, Thanet; Stukert, Anton; Bley, Thomas

    2013-01-10

    Whey arising in huge amounts during milk processing is a valuable renewable resource in the field of White Biotechnology. Kluyveromyces marxianus is able to convert whey-borne lactose into ethyl acetate, an environmentally friendly solvent. Formation of ethyl acetate as a bulk product is triggered by iron (Fe). K. marxianus DSM 5422 was cultivated aerobically in whey-borne medium originally containing 40 μg/L Fe, supplemented with 1, 3 or 10 mg/L Fe in the pre-culture, using an 1 L or 70 L stirred reactor. The highest Fe content in the pre-culture promoted yeast growth in the main culture causing a high sugar consumption for growth and dissatisfactory formation of ethyl acetate, while the lowest Fe content limited yeast growth and promoted ester synthesis but slowed down the process. An intermediate Fe dose (ca. 0.5 μg Fe/g sugar) lastly represented a compromise between some yeast growth, a quite high yield of ethyl acetate and an acceptable duration of the process. The mass of ethyl acetate related to the sugar consumed amounted to 0.113, 0.265 and 0.239 g/g in the three processes corresponding to 21.9%, 51.4% and 46.3% of the theoretically maximum yield. The performance on a pilot scale was somewhat higher than on lab scale.

  5. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is...

  6. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is...

  7. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is...

  8. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is...

  9. 21 CFR 582.1005 - Acetic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is...

  10. Characterization and Antioxidant Properties of Six Algerian Propolis Extracts: Ethyl Acetate Extracts Inhibit Myeloperoxidase Activity

    PubMed Central

    Boufadi, Yasmina Mokhtaria; Soubhye, Jalal; Riazi, Ali; Rousseau, Alexandre; Vanhaeverbeek, Michel; Nève, Jean; Boudjeltia, Karim Zouaoui; Van Antwerpen, Pierre

    2014-01-01

    Because propolis contains many types of antioxidant compounds such as polyphenols and flavonoids, it can be useful in preventing oxidative damages. Ethyl acetate extracts of propolis from several Algerian regions show high activity by scavenging free radicals, preventing lipid peroxidation and inhibiting myeloperoxidase (MPO). By fractioning and assaying ethyl acetate extracts, it was observed that both polyphenols and flavonoids contribute to these activities. A correlation was observed between the polyphenol content and the MPO inhibition. However, it seems that kaempferol, a flavonoid, contributes mainly to the MPO inhibition. This molecule is in a high amount in the ethyl acetate extract and demonstrates the best efficiency towards the enzyme with an inhibiting concentration at 50% of 4 ± 2 μM. PMID:24514562

  11. Extractive fermentation of acetic acid

    SciTech Connect

    Busche, R.M.

    1991-12-31

    In this technoeconomic evaluation of the manufacture of acetic acid by fermentation, the use of the bacterium: Acetobacter suboxydans from the old vinegar process was compared with expected performance of the newer Clostridium thermoaceticum bacterium. Both systems were projected to operate as immobilized cells in a continuous, fluidized bed bioreactor, using solvent extraction to recover the product. Acetobacter metabolizes ethanol aerobically to produce acid at 100 g/L in a low pH medium. This ensures that the product is in the form of a concentrated extractable free acid, rather than as an unextractable salt. Unfortunately, yields from glucose by way of the ethanol fermentation are poor, but near the biological limits of the organisms involved. Conversely, C. thermoaceticum is a thermophilic anaerobe that operates at high fermentation rates on glucose at neutral pH to produce acetate salts directly in substantially quantitative yields. However, it is severely inhibited by product, which restricts concentration to a dilute 20 g/L. An improved Acetobacter system operating with recycled cells at 50 g/L appears capable of producing acid at $0.38/lb, as compared with a $0.29/lb price for synthetic acid. However, this system has only a limited margin for process improvement. The present Clostridium system cannot compete, since the required selling price would be $0.42/lb. However, if the organism could be adapted to tolerate higher product concentrations at acid pH, selling price could be reduced to $0.22/lb, or about 80% of the price of synthetic acid.

  12. 21 CFR 184.1295 - Ethyl formate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Substances Affirmed as GRAS § 184.1295 Ethyl formate. (a) Ethyl formate (C3H6O2, CAS Reg. No. 109-94-4) is also referred to as ethyl methanoate. It is an ester of formic acid and is prepared by esterification of formic acid with ethyl alcohol or by distillation of ethyl acetate and formic acid in the...

  13. 21 CFR 184.1295 - Ethyl formate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Substances Affirmed as GRAS § 184.1295 Ethyl formate. (a) Ethyl formate (C3H6O2, CAS Reg. No. 109-94-4) is also referred to as ethyl methanoate. It is an ester of formic acid and is prepared by esterification of formic acid with ethyl alcohol or by distillation of ethyl acetate and formic acid in the...

  14. 21 CFR 184.1005 - Acetic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acetic acid. 184.1005 Section 184.1005 Food and... Substances Affirmed as GRAS § 184.1005 Acetic acid. (a) Acetic acid (C2H4O2, CAS Reg. No. 64-19-7) is known as ethanoic acid. It occurs naturally in plant and animal tissues. It is produced by fermentation...

  15. 21 CFR 184.1005 - Acetic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acetic acid. 184.1005 Section 184.1005 Food and... Substances Affirmed as GRAS § 184.1005 Acetic acid. (a) Acetic acid (C2H4O2, CAS Reg. No. 64-19-7) is known as ethanoic acid. It occurs naturally in plant and animal tissues. It is produced by fermentation...

  16. 21 CFR 184.1005 - Acetic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acetic acid. 184.1005 Section 184.1005 Food and... Substances Affirmed as GRAS § 184.1005 Acetic acid. (a) Acetic acid (C2H4O2, CAS Reg. No. 64-19-7) is known as ethanoic acid. It occurs naturally in plant and animal tissues. It is produced by fermentation...

  17. 21 CFR 184.1005 - Acetic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acetic acid. 184.1005 Section 184.1005 Food and... Substances Affirmed as GRAS § 184.1005 Acetic acid. (a) Acetic acid (C2H4O2, CAS Reg. No. 64-19-7) is known as ethanoic acid. It occurs naturally in plant and animal tissues. It is produced by fermentation...

  18. Wound healing properties of ethyl acetate fraction of Moringa oleifera in normal human dermal fibroblasts

    PubMed Central

    Gothai, Sivapragasam; Arulselvan, Palanisamy; Tan, Woan Sean; Fakurazi, Sharida

    2016-01-01

    Background/Aim: Wounds are the outcome of injuries to the skin that interrupt the soft tissue. Healing of a wound is a complex and long-drawn-out process of tissue repair and remodeling in response to injury. A large number of plants are used by folklore traditions for the treatment of cuts, wounds and burns. Moringa oleifera (MO) is an herb used as a traditional folk medicine for the treatment of various skin wounds and associated diseases. The underlying mechanisms of wound healing activity of ethyl acetate fraction of MO leaves extract are completely unknown. Materials and Methods: In the current study, ethyl acetate fraction of MO leaves was investigated for its efficacy on cell viability, proliferation and migration (wound closure rate) in human normal dermal fibroblast cells. Results: Results revealed that lower concentration (12.5 µg/ml, 25 µg/ml, and 50 µg/ml) of ethyl acetate fraction of MO leaves showed remarkable proliferative and migratory effect on normal human dermal fibroblasts. Conclusion: This study suggested that ethyl acetate fraction of MO leaves might be a potential therapeutic agent for skin wound healing by promoting fibroblast proliferation and migration through increasing the wound closure rate corroborating its traditional use. PMID:27069722

  19. Two new cucurbitane-type triterpenoid saponins isolated from ethyl acetate extract of Citrullus colocynthis fruit.

    PubMed

    Song, Fei; Dai, Bin; Zhang, Hai-Yan; Xie, Jian-Wei; Gu, Cheng-Zhi; Zhang, Jie

    2015-01-01

    Two new cucurbitacins I (1 and 2), together with eight known compounds (3-10), were isolated from the ethyl acetate extract of the fruit of Citrullus colocynthis. Compounds 3, 5-9 were isolated from C. colocynthis for the first time. The structures of new compounds were determined primarily from IR, HR-MS, 1D-, and 2D-NMR analysis.

  20. Antiamnesic effects of ethyl acetate fraction from chestnut (Castanea crenata var. dulcis) inner skin on Aβ(25-35)-induced cognitive deficits in mice.

    PubMed

    Jeong, Hee-Rok; Jo, Yu Na; Jeong, Ji Hee; Jin, Dong Eun; Song, Byung Gi; Choi, Soo Jung; Shin, Dong-Hoon; Heo, Ho Jin

    2012-12-01

    To investigate neuronal cell protective effects of an ethyl acetate fraction from chestnut inner skin, in vitro assays, including 2',7'-dichlorofluorescein diacetate, 3-[4,5-dimethythiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT), and lactate dehydrogenase (LDH), were performed. Intracellular accumulation of reactive oxygen species resulting from hydrogen peroxide (H(2)O(2)) treatment of PC12 cells was significantly reduced when ethyl acetate fractions were present in the medium compared to PC12 cells treated with H(2)O(2) only. In a cell viability assay using MTT, the ethyl acetate fraction protected against H(2)O(2)-induced neurotoxicity, and inhibited LDH release into the medium. In addition, the ethyl acetate fraction improved in vivo cognitive ability against amyloid β-peptide (Aβ)-induced neuronal deficit. High-performance liquid chromatography analyses showed that gallic acid, catechin, and epicatechin were predominant phenolics in the ethyl acetate fraction. Consequently, the results suggest that chestnut inner skin, including above phenolics, could ameliorate Aβ-induced learning and memory deficiency, and be utilized as effective substances for neurodegenerative disorders, notably Alzheimer's disease.

  1. Bioactivity of Diterpens from the Ethyl Acetate Extract of Kingiodendron pinnatum Rox. Hams

    PubMed Central

    Javarappa, Komal Kumar; Prasad, Attemode Girijanna Devi; Mahadesh Prasad, AJ; Mane, Chetana

    2016-01-01

    Background: Kingiodendron pinnatum Rox. Hams. is an endangered medicinal plant used in gonorrhoe, catarrhal conditions of genito-urinary and respiratory tracts. The scientific and pharmacological formulation of K. pinnatum has not been established so far though it is being traditionally used by tribes of the region. Objective: P hytochemical screening and identification of the bioactive compounds from the ethyl acetate extract of Kingiodendron pinnatum Rox. Hams. Materials and Methods: Chromatographic separation was carried out by thin layer chromatography and column chromatography. Bio-autography of the column fractioned extract and TLC chromatogram were evaluated in vitro for antibacterial activity. The PTLC, HP TLC were used for crude extract and HPLC, LCMS, FTIR, 1HNMR and 13CNMR were employed for the isolated compound in the ethyl acetate extract of K. pinnatum. Results: Evaluation of solvent system for chromatographic separation revealed that ethyl acetate: petroleum ether in the ratio of 7:2.5 ml was the most appropriate one for the separation of diterpene compounds. The antibacterial bio-autography screening of TLC separated compound showed positive activity with Staphylococcus aureus and negative activity with Escherichia coli. Spectroscopic analysis of the isolated compound from the ethyl acetate extract of K. pinnatum revealed the presence of diterpene compound. Conclusion: It is evident from the present study that the ethyl acetate extract of K. pinnatum is rich in diterpene compounds and having potential antibacterial activity. SUMMARY Novel extraction method for phytochemicls from Kingidendron pinnatum at RTAntibacterial property of diterpens extracted from Kingiodendron pinnatum Rox. Hams aganist S. aureus Abbreviations Used: TLC: Thin Layer Chromatography, PTLC: Preparatory Thin Layer Chromatography, HPTLC: High perormence Thin Layer chromatography, HPLC: High Performance Liquid Chromatography, LC-MS: Liquid chromatography Mass Spectra, FTIR

  2. Vesicles protect activated acetic acid.

    PubMed

    Todd, Zoe R; House, Christopher H

    2014-10-01

    Abstract Methyl thioacetate, or activated acetic acid, has been proposed to be central to the origin of life and an important energy currency molecule in early cellular evolution. We have investigated the hydrolysis of methyl thioacetate under various conditions. Its uncatalyzed rate of hydrolysis is about 3 orders of magnitude faster (K=0.00663 s(-1); 100°C, pH 7.5, concentration=0.33 mM) than published rates for its catalyzed production, making it unlikely to accumulate under prebiotic conditions. However, our experiments showed that methyl thioacetate was protected from hydrolysis when inside its own hydrophobic droplets. Further, we found that methyl thioacetate protection from hydrolysis was also possible in droplets of hexane and in the membranes of nonanoic acid vesicles. Thus, the hydrophobic regions of prebiotic vesicles and early cell membranes could have offered a refuge for this energetic molecule, increasing its lifetime in close proximity to the reactions for which it would be needed. This model of early energy storage evokes an additional critical function for the earliest cell membranes.

  3. Electron transfer induced fragmentation of acetic acid

    NASA Astrophysics Data System (ADS)

    Ferreira da Silva, F.; Meneses, G.; Almeida, D.; Limão-Vieira, P.

    2014-04-01

    We present negative ion formation driven by electron transfer in atom (K) molecule (acetic acid) collisions. Acetic acid has been found in the interstellar medium, is also considered a biological related compound and as such studying low energy electron interactions will bring new insights as far as induced chemistry is concerned.

  4. Crystal structures of the solvates of diethylaminogossypol with ethyl acetate and pyridine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The crystal structures of diethylaminogossypol with ethyl acetate (DEAG-EA) and pyridine (DEAG-P) were studied by room-temperature X-ray diffraction. The host-to-guest molecule ratio in these complexes is 2:1 for DEAG-EA and 2:5 for DEAG-P. The crystal and cell parameters for DEAG-EA are C34H40N2O6...

  5. Location and Mapping of an Ethyl Acetate Plume in Mexico City

    NASA Astrophysics Data System (ADS)

    Rogers, T.; Grimsrud, E.; Knighton, W.; Velasco, E.; Lamb, B.; Westberg, H.; Jobson, T.; Alexander, M.; Prazeller, P.; Herndon, S.; Kolb, C.

    2004-12-01

    A major goal of the 2003 Mexico City Metropolitan Area (MCMA) field campaign was to gain a better understanding of the dispersion and transport of volatile organic compounds (VOCs) in this urban airshed. Continuous monitoring of VOCs in the atmosphere and identification and quantification of their emission sources is complicated by two factors: first, there are hundreds of different VOC species released daily in the MCMA atmosphere, and second, few real time (1-10 second) measurement techniques have been available to provide the high resolution spatial and/or temporal data usually required to locate VOC emission sources and measure their flux strength. A relatively new technique, Proton Transfer Reaction Mass Spectometery (PTR-MS) provides this capability and was used to locate and quantify a significant source of ethyl acetate in the Iztapalapa region of Mexico City. Two PTR-MS systems were deployed during the 2003 MCMA campaign, the MSU PTR-MS was operated on-board the Aerodyne Mobile Laboratory while the PNNL instrument located on the roof at the National Center for Environmental Research and Training (Centro Nacional de Investigacion y Capacitacion Ambiental or CENICA). The uniqueness of the ethyl acetate signature allowed the MSU PTR-MS on-board the mobile lab to track the ethyl acetate plume back to its source. A short movie documenting the plume mapping and location of the source of the ethyl acetate emission will be shown. Knowing of the plume source location and the local meteorological conditions, the time resolved responses from the PNNL PTR-MS at the CENCIA location have been applied to a simple plume model to estimate the plume's emission flux strength.

  6. Use of a Batch Reactive Distillation with Dynamic Optimization Strategy to Achieve Industrial Grade Ethyl Acetate

    NASA Astrophysics Data System (ADS)

    Konakom, Kwantip; Saengchan, Aritsara; Kittisupakorn, Paisan; Mujtaba, Iqbal M.

    2011-08-01

    Industrial grade ethyl acetate is available with minimum purity of 85.0%. It is mostly produced by an ethanol esterification in a distillation process on both batch and continuous modes. However, researches on high purity production with short operating time are rarely achieved. Therefore, the objective in this work is to study an approach to produce ethyl acetate of 90.0% by 8 hours using a batch reactive distillation column. Based on open-loop simulations, the distillation with constant reflux ratio cannot achieve the product specification. Thus, the dynamic optimization strategy is proposed to handle this problem. For the process safety—preventing the dried column and fractured, a minimum reflux ratio must be determined in advance and then an optimal reflux profile is calculated to achieve optimal product yield. Simulation results show that the industrial grade ethyl acetate can be produced by the dynamic optimization programming with two or more time intervals. Besides, the increasing of time intervals can produce more distillate product.

  7. 40 CFR 721.10244 - Phosphonic acid, P-[2-[bis(2-hydroxyethyl)amino]ethyl]-, 2-[bis(2- chloroethoxy)phosphinyl]ethyl...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphonic acid, P- ethyl]-, 2- ethyl... New Uses for Specific Chemical Substances § 721.10244 Phosphonic acid, P- ethyl]-, 2- ethyl 2... substance identified as phosphonic acid, P- ethyl]-, 2- ethyl 2-chloroethyl ester (PMN P-09-195; CAS...

  8. 40 CFR 721.10244 - Phosphonic acid, P-[2-[bis(2-hydroxyethyl)amino]ethyl]-, 2-[bis(2- chloroethoxy)phosphinyl]ethyl...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphonic acid, P- ethyl]-, 2- ethyl... New Uses for Specific Chemical Substances § 721.10244 Phosphonic acid, P- ethyl]-, 2- ethyl 2... substance identified as phosphonic acid, P- ethyl]-, 2- ethyl 2-chloroethyl ester (PMN P-09-195; CAS...

  9. 40 CFR 721.10244 - Phosphonic acid, P-[2-[bis(2-hydroxyethyl)amino]ethyl]-, 2-[bis(2- chloroethoxy)phosphinyl]ethyl...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphonic acid, P- ethyl]-, 2- ethyl... New Uses for Specific Chemical Substances § 721.10244 Phosphonic acid, P- ethyl]-, 2- ethyl 2... substance identified as phosphonic acid, P- ethyl]-, 2- ethyl 2-chloroethyl ester (PMN P-09-195; CAS...

  10. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.

    PubMed

    Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai

    2015-05-01

    In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.

  11. Ethyl 2-(2-methyl-1H-benzimidazol-1-yl)acetate

    PubMed Central

    Xu, Guang-Hai; Wang, Wei

    2008-01-01

    A new benzimidazole compound, C12H14N2O2, has been synthesized by the reaction of 2-methyl-1H-benzimidazole and ethyl 2-bromo­acetate. In the crystal structure, weak inter­molecular C—H⋯N hydrogen bonds link the mol­ecules into chains. π⋯π Contacts (centroid⋯centroid distance = 3.713 Å) are observed. A C—H⋯π inter­action is also present. The N—C—C—O torsion angle is 178.4 (2)°. PMID:21201788

  12. Rapid detergent removal from peptide samples with ethyl acetate for mass spectrometry analysis.

    PubMed

    Yeung, Yee-Guide; Stanley, E Richard

    2010-02-01

    Detergents are required for the extraction of hydrophobic proteins and for the maintenance of their solubility in solution. However, the presence of detergents in the peptide samples severely suppresses ionization in mass spectrometry (MS) analysis and decreases chromatographic resolution in LC-MS. Thus, detergents must be removed for sensitive detection of peptides by MS. This unit describes a rapid protocol in which ethyl acetate extraction is used to remove octylglucoside from protease digests without loss of peptides. This procedure can also be used to reduce interference by sodium dodecyl sulfate, Nonidet P-40, or Triton X-100 in peptide samples for MS analysis.

  13. Microhydration of Neutral and Charged Acetic Acid.

    PubMed

    Krishnakumar, Parvathi; Maity, Dilip Kumar

    2017-01-19

    A systematic theoretical study has been carried out on the effect of sequential addition of water molecules to neutral and mono positively charged acetic acid molecules by applying first principle based electronic structure theory. Geometry, dipole moment, and polarizability of hydrated clusters of neutral and mono positively charged acetic acid of the type CH3COOH·nH2O (n = 1-8) and [CH3COOH·nH2O](+) (n = 1, 2) are calculated at the ωB97X-D/aug-cc-pVDZ level of theory. Free energies of formation of the hydrated acid clusters, at different temperatures and pressures are determined. Solvent stabilization energy and interaction energy are also calculated at the CCSD(T)/6-311++G(d,p) level of theory. It is observed that in the case of neutral acetic acid, proton transfer from the acid molecule to solvent water molecules does not occur even with eight water molecules and the acid molecule remains in the undissociated form. High-energy equilibrium structures showing dissociation of acetic acid are obtained in case of hexahydrated and larger hydrated clusters only. However, dissociation of mono positively charged acetic acid occurs with just two water molecules. Interestingly, it is noted that in the case of dissociation, calculated bond dipole moments of the dissociating bonds of acetic acid in microhydated clusters shows a characteristic feature. IR spectra of CH3COOH·nH2O (n = 1-8) and [CH3COOH·nH2O](+) (n = 1-3) clusters are simulated and compared with the available experimental data.

  14. Dynamic Protonation Equilibrium of Solvated Acetic Acid

    SciTech Connect

    Gu, Wei; Frigato, Tomaso; Straatsma, TP; Helms, Volkhard H.

    2007-04-13

    For the first time, the dynamic protonation equilibrium between an amino acid side chain analogue and bulk water as well as the diffusion properties of the excess proton were successfully reproduced through unbiased computer simulations. During a 50 ns Q-HOP MD simulation, two different regimes of proton transfer were observed. Extended phases of frequent proton swapping between acetic acid and nearby water were separated by phases where the proton freely diffuses in the simulation box until it is captured again by acetic acid. The pKa of acetic acid was calculated around 3.0 based on the relative population of protonated and deprotonated states and the diffusion coefficient of excess proton was computed from the average mean squared displacement in the simulation. Both calculated values agree well with the experimental measurements.

  15. Formation of ethyl acetate by Kluyveromyces marxianus on whey during aerobic batch cultivation at specific trace element limitation.

    PubMed

    Urit, Thanet; Stukert, Anton; Bley, Thomas; Löser, Christian

    2012-12-01

    Kluyveromyces marxianus is able to transform lactose into ethyl acetate as a bulk product which offers a chance for an economical reuse of whey-borne sugar. Ethyl acetate is highly volatile and allows its process-integrated recovery by stripping from the aerated bioreactor. Extensive formation of ethyl acetate by K. marxianus DSM 5422 required restriction of yeast growth by a lack of trace elements. Several aerobic batch processes were done in a 1-L stirred reactor using whey-borne culture medium supplemented with an individual trace element solution excluding Mn, Mo, Fe, Cu, or Zn for identifying the trace element(s) crucial for the observed ester synthesis. Only a lack of Fe, Cu, or Zn restricted yeast growth while exclusion of Mn and Mo did not exhibit any effect due to a higher amount of the latter in the used whey. Limitation of growth by Fe or Cu caused significant production of ethyl acetate while limitation by Zn resulted in formation of ethanol. A lack of Fe or Cu obviously makes the respiratory chain inefficient resulting in an increased mitochondrial NADH level followed by a reduced metabolic flux of acetyl-SCoA into the citrate cycle. Synthesis of ethyl acetate from acetyl-SCoA and ethanol by alcoholysis is thus interpreted as an overflow metabolism.

  16. Ethyl Acetate Extract of Artemisia anomala S. Moore Displays Potent Anti-Inflammatory Effect.

    PubMed

    Tan, Xi; Wang, Yuan-Lai; Yang, Xiao-Lu; Zhang, Dan-Dan

    2014-01-01

    Artemisia anomala S. Moore has been widely used in China to treat inflammatory diseases for hundreds of years. However, mechanisms associated with its anti-inflammatory effect are not clear. In this study, we prepared ethyl acetate, petroleum ether, n-BuOH, and aqueous extracts from ethanol extract of Artemisia anomala S. Moore. Comparing anti-inflammatory effects of these extracts, we found that ethyl acetate extract of this herb (EAFA) exhibited the strongest inhibitory effect on nitric oxide (NO) production in LPS/IFN γ -stimulated RAW264.7 cells. EAFA suppressed the production of NO in a time- and dose-dependent manner without eliciting cytotoxicity to RAW264.7 cells. To understand the molecular mechanism underlying EAFA's anti-inflammatory effect, we showed that EAFA increased total cellular anti-oxidant capacity while reducing the amount of inducible nitric oxide synthase (iNOS) in stimulated RAW264.7 cells. EAFA also suppressed the expression of IL-1 β and IL-6, whereas it elevates the level of heme oxygenase-1. These EAFA-induced events were apparently associated with NF- κ B and MAPK signaling pathways because the DNA binding activity of p50/p65 was impaired and the activities of both ERK and JNK were decreased in EFEA-treated cells comparing to untreated cells. Our findings suggest that EAFA exerts its anti-inflammatory effect by inhibiting the expression of iNOS.

  17. Nanofiltration of rhodium tris(triphenylphosphine) catalyst in ethyl acetate solution

    NASA Astrophysics Data System (ADS)

    Shaharun, Maizatul S.; Mustafa, Ahmad K.; Taha, Mohd F.

    2012-09-01

    Solvent resistant nanofiltration (SRNF) using polymer membranes has recently received enhanced attention due to the search for cleaner and more energy-efficient technologies. The large size of the rhodium tris(triphenylphosphine) [HRh(CO)(PPh3)3] catalyst (>400 Da) - relative to other components of the hydroformylation reaction provides the opportunity for a membrane separation based on retention of the catalyst species while permeating the solvent. The compatibility of the solvent-polyimide membrane (DuraMem{trade mark, serif} 200 and DuraMem{trade mark, serif} 500) combinations was assessed in terms of the membrane stability in solvent plus non-zero solvent flux at 2.0 MPa. Good HRh(CO)(PPh3)3 rejection (>0.95) and solvent fluxes of 9.9 L/m2ṡh1 at 2.0 MPa were obtained in the catalyst-ethyl acetate-DuraMem 500 system. The effect of pressure and catalyst concentration on the solvent flux and catalyst rejection was conducted on the catalyst-ethyl acetate-membrane systems. Increasing pressure substantially improved both solvent flux and catalyst rejection, while increasing catalyst concentration was found to be beneficial in terms of substantial increases in catalyst rejection without significantly affecting solvent flux.

  18. Hydrogen production by fermentation using acetic acid and lactic acid.

    PubMed

    Matsumoto, Mitsufumi; Nishimura, Yasuhiko

    2007-03-01

    Microbial hydrogen production from sho-chu post-distillation slurry solution (slurry solution) containing large amounts of organic acids was investigated. The highest hydrogen producer, Clostridium diolis JPCC H-3, was isolated from natural environment and produced hydrogen at 6.03+/-0.15 ml from 5 ml slurry solution in 30 h. Interestingly, the concentration of acetic acid and lactic acid in the slurry solution decreased during hydrogen production. The substrates for hydrogen production by C. diolis JPCC H-3, in particular organic acids, were investigated in an artificial medium. No hydrogen was produced from acetic acid, propionic acid, succinic acid, or citric acid on their own. Hydrogen and butyric acid were produced from a mixture of acetic acid and lactic acid, showing that C. diolis. JPCC H-3 could produce hydrogen from acetic acid and lactic acid. Furthermore, calculation of the Gibbs free energy strongly suggests that this reaction would proceed. In this paper, we describe for the first time microbial hydrogen production from acetic acid and lactic acid by fermentation.

  19. A Binary Host Plant Volatile Lure Combined With Acetic Acid to Monitor Codling Moth (Lepidoptera: Tortricidae).

    PubMed

    Knight, A L; Basoalto, E; Katalin, J; El-Sayed, A M

    2015-10-01

    Field studies were conducted in the United States, Hungary, and New Zealand to evaluate the effectiveness of septa lures loaded with ethyl (E,Z)-2,4-decadienoate (pear ester) and (E)-4,8-dimethyl-1,3,7-nonatriene (nonatriene) alone and in combination with an acetic acid co-lure for both sexes of codling moth, Cydia pomonella (L.). Additional studies were conducted to evaluate these host plant volatiles and acetic acid in combination with the sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone). Traps baited with pear ester/nonatriene + acetic acid placed within orchards treated either with codlemone dispensers or left untreated caught significantly more males, females, and total moths than similar traps baited with pear ester + acetic acid in some assays. Similarly, traps baited with codlemone/pear ester/nonatriene + acetic acid caught significantly greater numbers of moths than traps with codlemone/pear ester + acetic acid lures in some assays in orchards treated with combinational dispensers (dispensers loaded with codlemone/pear ester). These data suggest that monitoring of codling moth can be marginally improved in orchards under variable management plans using a binary host plant volatile lure in combination with codlemone and acetic acid. These results are likely to be most significant in orchards treated with combinational dispensers. Significant increases in the catch of female codling moths in traps with the binary host plant volatile blend plus acetic acid should be useful in developing more effective mass trapping strategies.

  20. Acetal phosphatidic acids: novel platelet aggregating agents.

    PubMed

    Brammer, J P; Maguire, M H; Walaszek, E J; Wiley, R A

    1983-05-01

    1 Palmitaldehyde, olealdehyde and linolealdehyde acetal phosphatidic acids induced rapid shape change and dose-dependent biphasic aggregation of human platelets in platelet-rich plasma; aggregation was reversible at low doses and irreversible at high doses of the acetal phosphatidic acids. The palmitaldehyde congener elicited monophasic dose-dependent aggregation of sheep platelets in platelet-rich plasma.2 The threshold concentration for palmitaldehyde acetal phosphatidic acid (PGAP)-induced platelet aggregation was 2.5-5 muM for human platelets and 0.25-0.5 muM for sheep platelets. PGAP was 4-5 times as potent versus human platelets as the olealdehyde and linolealdehyde acetal phosphatidic acids, which were equipotent.3 PGAP-induced irreversible aggregation of [(14)C]-5-hydroxytryptamine ([(14)C]-5-HT)-labelled human platelets in platelet-rich plasma was accompanied by release of 44.0+/-2.4% (s.e.) of the platelet [(14)C]-5-HT; reversible aggregation was not associated with release. In contrast, PGAP-induced release of [(14)C]-5-HT-labelled sheep platelets was dose-dependent.4 The adenosine diphosphate (ADP) antagonist, 2-methylthio-AMP, and the cyclo-oxygenase inhibitor, aspirin, abolished PGAP-induced second phase aggregation and release in human platelets but did not affect the first, reversible, phase of aggregation. Both the first and second phases of PGAP-induced aggregation were abolished by chlorpromazine, by the phospholipase A(2) inhibitor, mepacrine, and by nmolar concentrations of prostaglandin E(1) (PGE(1)); these agents abolished the second, but not the first phase of ADP-induced aggregation.5 The related phospholipids, lecithin, lysolecithin and phosphatidic acid, at <100 muM, neither induced aggregation of human platelets in platelet-rich plasma, nor modified PGAP-induced aggregation; 1-palmityl lysophosphatidic acid elicited aggregation of human platelets at a threshold concentration of 100 muM.6 It is concluded that the acetal phosphatidic acids

  1. 40 CFR 721.3152 - Ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates (salts). 721.3152 Section 721... Ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates... ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl...

  2. 40 CFR 721.3152 - Ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates (salts). 721.3152 Section 721... Ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates... ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl...

  3. 40 CFR 721.3152 - Ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates (salts). 721.3152 Section 721... Ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates... ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl...

  4. 40 CFR 721.3152 - Ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates (salts). 721.3152 Section 721... Ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl sulfates... ethanaminium, N-ethyl-2-hydroxy-N,N-bis(2-hydroxyethyl)-, diester with C12-18 fatty acids, ethyl...

  5. Enrichment, isolation and characterization of fungi tolerant to 1-ethyl-3-methylimidazolium acetate

    SciTech Connect

    Singer, S.W.; Reddy, A. P.; Gladden, J. M.; Guo, H.; Hazen, T.C.; Simmons, B. A.; VanderGheynst, J. S.

    2010-12-15

    This work aims to characterize microbial tolerance to 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), ionic liquid that has emerged as a novel biomass pretreatment for lignocellulosic biomass. Enrichment experiments performed using inocula treated with [C2mim][OAc] under solid and liquid cultivation yielded fungal populationsdominated by Aspergilli. Ionic liquid-tolerant Aspergillus isolates from these enrichments were capable of growing in a radial plate growth assay in the presence of 10% [C2mim][OAc]. When a [C2mim][OAc]-tolerant Aspergillus fumigatus strain was grown in the presence of switchgrass, endoglucanases and xylanases were secreted that retained residual enzymatic activity in the presence of 20% [C2mim][OAc]. The results of the study suggest tolerance to ionic liquids is a general property of Aspergilli. Tolerance to an industrially important ionic liquid was discovered in a fungal genera that is widely used in biotechnology, including biomass deconstruction.

  6. Identification of Neuroactive Constituents of the Ethyl Acetate Fraction from Cyperi Rhizoma Using Bioactivity-Guided Fractionation

    PubMed Central

    Sim, Yeomoon; Choi, Jin Gyu; Gu, Pil Sung; Ryu, Byeol; Kim, Jeong Hee; Kang, Insug; Jang, Dae Sik; Oh, Myung Sook

    2016-01-01

    Cyperi Rhizoma (CR), the rhizome of Cyperus rotundus L., exhibits neuroprotective effects in in vitro and in vivo models of neuronal diseases. Nevertheless, no study has aimed at finding the neuroactive constituent(s) of CR. In this study, we identified active compounds in a CR extract (CRE) using bioactivity-guided fractionation. We first compared the anti-oxidative and neuroprotective activities of four fractions and the CRE total extract. Only the ethyl acetate (EA) fraction revealed strong activity, and further isolation from the bioactive EA fraction yielded nine constituents: scirpusin A (1), scirpusin B (2), luteolin (3), 6′-acetyl-3,6-diferuloylsucrose (4), 4′,6′ diacetyl-3,6-diferuloylsucrose (5), p-coumaric acid (6), ferulic acid (7), pinellic acid (8), and fulgidic acid (9). The activities of constituents 1–9 were assessed in terms of anti-oxidative, neuroprotective, anti-inflammatory, and anti-amyloid-β activities. Constituents 1, 2, and 3 exhibited strong activities; constituents 1 and 2 were characterized for the first time in this study. These results provide evidence for the value of CRE as a source of multi-functional neuroprotectants, and constituents 1 and 2 may represent new candidates for further development in therapeutic use against neurodegenerative diseases. PMID:27350341

  7. Insecticidal Activity of Ethyl Acetate Extracts from Culture Filtrates of Mangrove Fungal Endophytes

    PubMed Central

    Abraham, Silva; Basukriadi, Adi; Pawiroharsono, Suyanto

    2015-01-01

    In the search for novel potent fungi-derived bioactive compounds for bioinsecticide applications, crude ethyl acetate culture filtrate extracts from 110 mangrove fungal endophytes were screened for their toxicity. Toxicity tests of all extracts against brine shrimp (Artemia salina) larvae were performed. The extracts with the highest toxicity were further examined for insecticidal activity against Spodoptera litura larvae and acetylcholinesterase (AChE) inhibition activity. The results showed that the extracts of five isolates exhibited the highest toxicity to brine shrimp at 50% lethal concentration (LC50) values of 7.45 to 10.24 ppm. These five fungal isolates that obtained from Rhizophora mucronata were identified based on sequence data analysis of the internal transcribed spacer region of rDNA as Aspergillus oryzae (strain BPPTCC 6036), Emericella nidulans (strains BPPTCC 6035 and BPPTCC 6038), A. tamarii (strain BPPTCC 6037), and A. versicolor (strain BPPTCC 6039). The mean percentage of S. litura larval mortality following topical application of the five extracts ranged from 16.7% to 43.3%. In the AChE inhibition assay, the inhibition rates of the five extracts ranged from 40.7% to 48.9%, while eserine (positive control) had an inhibition rate of 96.8%, at a concentration of 100 ppm. The extracts used were crude extracts, so their potential as sources of AChE inhibition compounds makes them likely candidates as neurotoxins. The high-performance liquid chromatography profiles of the five extracts differed, indicating variations in their chemical constituents. This study highlights the potential of culture filtrate ethyl acetate extracts of mangrove fungal endophytes as a source of new potential bioactive compounds for bioinsecticide applications. PMID:26190921

  8. Insecticidal Activity of Ethyl Acetate Extracts from Culture Filtrates of Mangrove Fungal Endophytes.

    PubMed

    Abraham, Silva; Basukriadi, Adi; Pawiroharsono, Suyanto; Sjamsuridzal, Wellyzar

    2015-06-01

    In the search for novel potent fungi-derived bioactive compounds for bioinsecticide applications, crude ethyl acetate culture filtrate extracts from 110 mangrove fungal endophytes were screened for their toxicity. Toxicity tests of all extracts against brine shrimp (Artemia salina) larvae were performed. The extracts with the highest toxicity were further examined for insecticidal activity against Spodoptera litura larvae and acetylcholinesterase (AChE) inhibition activity. The results showed that the extracts of five isolates exhibited the highest toxicity to brine shrimp at 50% lethal concentration (LC50) values of 7.45 to 10.24 ppm. These five fungal isolates that obtained from Rhizophora mucronata were identified based on sequence data analysis of the internal transcribed spacer region of rDNA as Aspergillus oryzae (strain BPPTCC 6036), Emericella nidulans (strains BPPTCC 6035 and BPPTCC 6038), A. tamarii (strain BPPTCC 6037), and A. versicolor (strain BPPTCC 6039). The mean percentage of S. litura larval mortality following topical application of the five extracts ranged from 16.7% to 43.3%. In the AChE inhibition assay, the inhibition rates of the five extracts ranged from 40.7% to 48.9%, while eserine (positive control) had an inhibition rate of 96.8%, at a concentration of 100 ppm. The extracts used were crude extracts, so their potential as sources of AChE inhibition compounds makes them likely candidates as neurotoxins. The high-performance liquid chromatography profiles of the five extracts differed, indicating variations in their chemical constituents. This study highlights the potential of culture filtrate ethyl acetate extracts of mangrove fungal endophytes as a source of new potential bioactive compounds for bioinsecticide applications.

  9. Hormetic effect of ionic liquid 1-ethyl-3-methylimidazolium acetate on bacteria

    SciTech Connect

    Nancharaiah, Y. V.; Francis, A. J.

    2015-02-19

    The biological effect of ionic liquids (ILs) is one of the highly debated topics as they are being contemplated for various industrial applications. 1-ethyl-2-methylimidazolium acetate ([EMIM][Ac]) showed remarkable hormesis on anaerobic Clostridium sp. and aerobic Psueudomonas putida. Bacterial growth was stimulated at up to 2.5 g L-1 and inhibited at > 2.5 g L-1 of ([EMIM][Ac]). The growth of Clostridium sp. and P. putida were higher by 0.4 and 4-fold respectively, in the presense of 0.5 g L-1 of ([EMIM][Ac]). Assessment of the effect of [EMIM][Ac] under different growth conditions showed that the hormesis of [EMIM][Ac] was mediated via regulation of medium pH. Hormetic effect of [EMIM][Ac] was evident only in medium with poor buffering capacity and in the presence of a fermentable substrate as the carbon source. The hormetic effect of [EMIM][Ac] on bacterial growth is most likely associated with the buffering capacity of acetate anion. These observations have implications in ILs toxicity studies and ecological risk assessment.

  10. Hormetic effect of ionic liquid 1-ethyl-3-methylimidazolium acetate on bacteria

    DOE PAGES

    Nancharaiah, Y. V.; Francis, A. J.

    2015-02-19

    The biological effect of ionic liquids (ILs) is one of the highly debated topics as they are being contemplated for various industrial applications. 1-ethyl-2-methylimidazolium acetate ([EMIM][Ac]) showed remarkable hormesis on anaerobic Clostridium sp. and aerobic Psueudomonas putida. Bacterial growth was stimulated at up to 2.5 g L-1 and inhibited at > 2.5 g L-1 of ([EMIM][Ac]). The growth of Clostridium sp. and P. putida were higher by 0.4 and 4-fold respectively, in the presense of 0.5 g L-1 of ([EMIM][Ac]). Assessment of the effect of [EMIM][Ac] under different growth conditions showed that the hormesis of [EMIM][Ac] was mediated via regulationmore » of medium pH. Hormetic effect of [EMIM][Ac] was evident only in medium with poor buffering capacity and in the presence of a fermentable substrate as the carbon source. The hormetic effect of [EMIM][Ac] on bacterial growth is most likely associated with the buffering capacity of acetate anion. These observations have implications in ILs toxicity studies and ecological risk assessment.« less

  11. Validation of an Efficient Method for the Determination of Pesticide Residues in Fruits and Vegetables Using Ethyl Acetate for Extraction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, a version of the “quick, easy, cheap, effective, rugged, and safe” (QuEChERS) method was modified to use ethyl acetate (EtOAc) rather than acetonitrile (MeCN) for extraction in the determination of multiple pesticide residues in fruits and vegetables. EtOAc is better suited than MeCN...

  12. Antihyperlipidemic Activity of the Ethyl-acetate Fraction of Stereospermum Suaveolens in Streptozotocin-induced Diabetic Rats

    PubMed Central

    Thirumalaisamy, Balasubramanian; Prabhakaran, Senthilkumar Gnanavadevel; Marimuthu, Karthikeyan; Chatterjee, Tapan Kumar

    2013-01-01

    Objectives: Dyslipidemia in diabetes mellitus is a significant risk factor for the development of cardiovascular complications. The aim of this study was to evaluate the effect of the ethyl-acetate fraction of an ethanolic extract from Streospermum suaveolens on lipid metabolism in streptozotocin (STZ)-induced diabetic rats. Methods: Diabetes was induced by intraperitonial injection of STZ (50 mg/kg). Diabetic rats were treated with an ethyl-acetate fraction orally at doses of 200 and 400 mg/kg daily for 14 days. On the 15th day, serum lipid profiles, such as total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL), were estimated in experimental rats. The atherogenic (AI) and the coronary risk (CRI) indices were also evaluated. Results: The ethyl-acetate fraction at doses of 200 and 400 mg/kg significantly (P< 0.001) and dose-dependently reduced serum cholesterol, triglycerides and LDL, but increased HDL towards near normal levels as compared to diabetic control rats. The fraction also significantly (P< 0.001) lowered the atherogenic index (AI) and coronary risk index (CAI) in a dose-dependent manner. Conclusion: The present study demonstrated that the ethyl-acetate fraction of Stereospermum suaveolens exhibits a potent antihyperlipidemic activity in hyperglycemic rats and suggests that the plant may have therapeutic value in treating the diabetic complication of hyperlipidemia. PMID:25780672

  13. Overview on mechanisms of acetic acid resistance in acetic acid bacteria.

    PubMed

    Wang, Bin; Shao, Yanchun; Chen, Fusheng

    2015-02-01

    Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided.

  14. Rotational study of the bimolecule acetic acid-fluoroacetic acid

    NASA Astrophysics Data System (ADS)

    Feng, Gang; Gou, Qian; Evangelisti, Luca; Caminati, Walther

    2017-01-01

    The rotational spectrum of the acetic acid-fluoroacetic acid bimolecule was measured by using a pulsed jet Fourier transform microwave spectrometer. One conformer, in which fluoroacetic acid is in trans form, has been observed. The rotational transitions are split into two component lines, due to the internal rotation of the methyl group of acetic acid. From these splittings, the corresponding V3 barrier has been determined. The dissociation energy of this complex has been estimated to 66 kJ/mol. An increase of the distance between the two monomers upon the OH → OD substitution (Ubbelohde effect) has been observed.

  15. Acetic acid vapor levels associated with facial prosthetics

    SciTech Connect

    McElroy, T.H.; Guerra, O.N.; Lee, S.A.

    1985-01-01

    The use of Silastic Medical Adhesive Type A in the fabrication of facial prostheses may cause health hazards to the patient and the operator because of acetic acid emissions. Caution must be exercised to remove acetic acid vapors from the air and unliberated acetic acid from material applied directly to the skin.

  16. Potential biofuel additive from renewable sources--Kinetic study of formation of butyl acetate by heterogeneously catalyzed transesterification of ethyl acetate with butanol.

    PubMed

    Ali, Sami H; Al-Rashed, Osama; Azeez, Fadhel A; Merchant, Sabiha Q

    2011-11-01

    Butyl acetate holds great potential as a sustainable biofuel additive. Heterogeneously catalyzed transesterification of biobutanol and bioethylacetate can produce butyl acetate. This route is eco-friendly and offers several advantages over the commonly used Fischer Esterification. The Amberlite IR 120- and Amberlyst 15-catalyzed transesterification is studied in a batch reactor over a range of catalyst loading (6-12 wt.%), alcohol to ester feed ratio (1:3 to 3:1), and temperature (303.15-333.15K). A butanol mole fraction of 0.2 in the feed is found to be optimum. Amberlite IR 120 promotes faster kinetics under these conditions. The transesterifications studied are slightly exothermic. The moles of solvent sorbed per gram of catalyst decreases (ethanol>butanol>ethyl acetate>butyl acetate) with decrease in solubility parameter. The dual site models, the Langmuir Hinshelwood and Popken models, are the most successful in correlating the kinetics over Amberlite IR 120 and Amberlyst 15, respectively.

  17. [Comparison of protective effects of eight ethyl acetate extracts from Eclipta prostrate on NHBE cells based on component structure theory].

    PubMed

    Ding, Shu-Min; Liu, Dan; Feng, Liang; Zhu, Fen-Xia; Tan, Xiao-Bin; Jia, Xiao-Bin

    2014-08-01

    To analyze and compare the protective effects of active components in different ethyl acetate extracts (EAEEPs) from Eclipta prostrate, in order to study the comparison of materials bases protecting normal human bronchial epithelial (NHBE) cells. The MTT assay was taken to compare the protective effect of different EAEEPs on cigarette smoke extracts (CSE) -induced NHBE cells. The ultra-performance liquid chromatography (UPLC) was applied to analyze the content of phenolic acid, coumaric grass ether and flavonoid in EAEEPs. According to the results, all of the eight EAEEPs (0-200 mg x L(-1)) showed certain protective effect on NHBE cells, with statistical difference. Specifically, the total mass of EAEEP VII (89.15 mg x L(-1)) and EAEEP VIII (57.44 mg x L(-1)), which showed the strongest activity, was not the highest, while EAEEP III (132.25 mg x L(-1)) displayed the highest total mass. In the combination with the "component structure" theory, the analysis showed a significant difference in the mass structure among phenolic acid, coumaric grass ether and flavonoid in EAEEP VIII and EAEEP VIII, which were 1.0: 1. 0: 0.5 and 1.0: 1.9: 0.8, respectively. The results suggested a specific optimal "component structure" relationship may exist in EAEEP, which could provide reference for the material base study and quality control.

  18. Antidiarrhoeal activity of the ethyl acetate extract of Baphia nitida (Papilionaceae).

    PubMed

    Adeyemi, O O; Akindele, A J

    2008-03-28

    In our search for plants useful in the treatment of diarrhoea, we investigated the ethyl acetate extract of Baphia nitida (BN) using intestinal transit, enteropooling and gastric emptying tests in mice and rats. In the castor oil intestinal transit test, BN produced a significant (P<0.05) dose dependent decrease in propulsion with peristaltic index (PI) values of 56.85+/-6.76, 36.84+/-3.04 and 31.98+/-2.60%, respectively at doses of 100, 200 and 400mg/kg vs. 89.33+/-6.28% for control. The effect at 400mg/kg was significantly lower than that of morphine, 10mg/kg, s.c. (20.29+/-3.78%), and was antagonized by isosorbide dinitrate, IDN (150mg/kg, p.o.) but not by yohimbine (1mg/kg, s.c.). This effect was not potentiated by atropine (1mg/kg, s.c.). In the castor oil-induced diarrhoea test, BN produced a significant increase in onset of diarrhoea (103.40+/-8.74, 138.80+/-17.04 and 174.8+/-29.04min, 100 to 400mg/kg, vs. 47.60+/-8.76min for control and 226.10+/-12.57min for morphine). The severity of diarrhoea (diarrhoea score) was dose dependently reduced (19.00+/-2.26, 17.04+/-1.89, 15.00+/-2.05, 100 to 400mg/kg, vs. 31.40+/-2.11 for control and 7.7+/-2.2 for morphine). This effect was not antagonized by IDN or yohimbine. The effect on severity was, however, potentiated by atropine. BN also reduced the number and weight of wet stools but did not have any significant effect on intestinal fluid accumulation and gastric emptying. Results obtained suggest that the ethyl acetate extract of Baphia nitida is endowed with antidiarrhoeal activity possibly mediated by interference with the l-arginine nitric oxide pathway and synergistic with antagonistic action on muscarinic receptors.

  19. Separating acetic acid from furol (furfural) by electrodialysis method

    SciTech Connect

    Guan, S.F.; Li, C.S. Ye, S.T.; Shen, S.Y.; Wang, Y.T.; Yu, S.H.

    1981-01-01

    Furfural production by hydrolysis of fibrous plant materials is accompanied by formation of acetic acid in amounts depending on the material used. The amount of acetic formed in the hydrolysis of the fruit shell of oil-tea camellia (Camellia oleosa) (an oilseed-bearing tree) is equal to the amount of furfural. The acetic acid can be separated from the furfural and concentrated to 10% by electrodialysis. A smaller amount of furfural is separated with acetic acid.

  20. Adaptation and tolerance of bacteria against acetic acid.

    PubMed

    Trček, Janja; Mira, Nuno Pereira; Jarboe, Laura R

    2015-08-01

    Acetic acid is a weak organic acid exerting a toxic effect to most microorganisms at concentrations as low as 0.5 wt%. This toxic effect results mostly from acetic acid dissociation inside microbial cells, causing a decrease of intracellular pH and metabolic disturbance by the anion, among other deleterious effects. These microbial inhibition mechanisms enable acetic acid to be used as a preservative, although its usefulness is limited by the emergence of highly tolerant spoilage strains. Several biotechnological processes are also inhibited by the accumulation of acetic acid in the growth medium including production of bioethanol from lignocellulosics, wine making, and microbe-based production of acetic acid itself. To design better preservation strategies based on acetic acid and to improve the robustness of industrial biotechnological processes limited by this acid's toxicity, it is essential to deepen the understanding of the underlying toxicity mechanisms. In this sense, adaptive responses that improve tolerance to acetic acid have been well studied in Escherichia coli and Saccharomyces cerevisiae. Strains highly tolerant to acetic acid, either isolated from natural environments or specifically engineered for this effect, represent a unique reservoir of information that could increase our understanding of acetic acid tolerance and contribute to the design of additional tolerance mechanisms. In this article, the mechanisms underlying the acetic acid tolerance exhibited by several bacterial strains are reviewed, with emphasis on the knowledge gathered in acetic acid bacteria and E. coli. A comparison of how these bacterial adaptive responses to acetic acid stress fit to those described in the yeast Saccharomyces cerevisiae is also performed. A systematic comparison of the similarities and dissimilarities of the ways by which different microbial systems surpass the deleterious effects of acetic acid toxicity has not been performed so far, although such exchange

  1. Characteristics of lipid extraction from Chlorella sp. cultivated in outdoor raceway ponds with mixture of ethyl acetate and ethanol for biodiesel production.

    PubMed

    Lu, Weidong; Wang, Zhongming; Yuan, Zhenhong

    2015-09-01

    In this work, neutral lipids (NLs) extraction capacity and selectivity of six solvents were firstly compared. In addition, an eco-friendly solvent combination of ethyl acetate and ethanol (EA/E) was proposed and tested for lipid extraction from Chlorella sp. cultivated in outdoor raceway ponds and effect of extraction variables on lipid yield were intensively studied. Results indicated that lipid extraction yield was increased with solvent to biomass ratio but did not vary significantly when the value exceeded 20:1. Lipid yield was found to be strongly dependent on extraction temperature and time. Finally, fatty acid profiles of lipid were determined and results indicated that the major components were octadecanoic acid, palmitic acid, linoleic acid and linolenic acid, demonstrating that the lipid extracted from the Chlorella sp. cultivated in outdoor raceway ponds by EA/E was suitable feedstock for biodiesel production.

  2. Recovery of very dilute acetic acid using ion exchange

    SciTech Connect

    Cloete, F.L.D.; Marais, A.P.

    1995-07-01

    Acetic and related acids occur in many industrial wastewaters, often mixed with several other classes of organic compounds. Acetic acid can be recovered from 1% solutions using weakly basic ion exchange resins. The acid is adsorbed by the free-base form of the resin, which can then be eluted using a slurry of lime to give a solution of calcium acetate. This solution could either be evaporated to crystallize calcium acetate or reacted with sulfuric acid to form acetic acid and gypsum. Laboratory tests of the proposed process gave product solutions of 15--20% acetic acid using pure 1% acetic acid as feed. Some measurements using a typical industrial effluent gave similar recoveries and showed that there was no initial fouling of the resins.

  3. Sphingolipids contribute to acetic acid resistance in Zygosaccharomyces bailii.

    PubMed

    Lindahl, Lina; Genheden, Samuel; Eriksson, Leif A; Olsson, Lisbeth; Bettiga, Maurizio

    2016-04-01

    Lignocellulosic raw material plays a crucial role in the development of sustainable processes for the production of fuels and chemicals. Weak acids such as acetic acid and formic acid are troublesome inhibitors restricting efficient microbial conversion of the biomass to desired products. To improve our understanding of weak acid inhibition and to identify engineering strategies to reduce acetic acid toxicity, the highly acetic-acid-tolerant yeast Zygosaccharomyces bailii was studied. The impact of acetic acid membrane permeability on acetic acid tolerance in Z. bailii was investigated with particular focus on how the previously demonstrated high sphingolipid content in the plasma membrane influences acetic acid tolerance and membrane permeability. Through molecular dynamics simulations, we concluded that membranes with a high content of sphingolipids are thicker and more dense, increasing the free energy barrier for the permeation of acetic acid through the membrane. Z. bailii cultured with the drug myriocin, known to decrease cellular sphingo-lipid levels, exhibited significant growth inhibition in the presence of acetic acid, while growth in medium without acetic acid was unaffected by the myriocin addition. Furthermore, following an acetic acid pulse, the intracellular pH decreased more in myriocin-treated cells than in control cells. This indicates a higher inflow rate of acetic acid and confirms that the reduction in growth of cells cultured with myriocin in the medium with acetic acid was due to an increase in membrane permeability, thereby demonstrating the importance of a high fraction of sphingolipids in the membrane of Z. bailii to facilitate acetic acid resistance; a property potentially transferable to desired production organisms suffering from weak acid stress.

  4. Physical insight into switchgrass dissolution in the ionic liquid 1-ethyl-3-methylimidazolium acetate

    SciTech Connect

    Wang, Hui; Gurau, Gabriela; Pingali, Sai Venkatesh; O'Neil, Hugh; Evans, Barbara R; Urban, Volker S; Heller, William T; Rogers, Robin D

    2014-01-01

    Small-angle neutron scattering was used to characterize solutions of switchgrass and the constituent biopolymers cellulose, hemicellulose, and lignin, as well as a physical mixture of them mimicking the composition of switchgrass, dissolved in the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate. The results demonstrate that the IL dissolves the cellulose fibrils of switchgrass, although a supramolecular biopolymer network remains that is not present in solutions of the individual biopolymers and that does not self-assemble in a solution containing the physical mixture of the individual biopolymers. The persistence of a network-like structure indicates that dissolving switchgrass in the IL does not disrupt all of the physical entanglements and covalent linkages between the biopolymers created during plant growth. Reconstitution of the IL-dissolved switchgrass yields carbohydrate-rich material containing cellulose with a low degree of crystallinity, as determined by powder X-ray diffraction, which impacts potential down-stream uses of the biopolymers produced by the process. The data suggests that the use of chemical additives which would break bonds that exist between the lignin and hemicellulose might improve the purity of the resulting product, but may not be able to disrupt the highly physically-entangled biopolymer network sufficiently to facilitate their separation.

  5. Impact of ionic liquid pretreatment conditions on cellulose crystalline structure using 1-ethyl-3-methylimidazolium acetate.

    PubMed

    Cheng, Gang; Varanasi, Patanjali; Arora, Rohit; Stavila, Vitalie; Simmons, Blake A; Kent, Michael S; Singh, Seema

    2012-08-23

    Ionic liquids (ILs) have been shown to affect cellulose crystalline structure in lignocellulosic biomass during pretreatment. A systematic investigation of the swelling and dissolution processes associated with IL pretreatment is needed to better understand cellulose structural transformation. In this work, 3-20 wt % microcrystalline cellulose (Avicel) solutions were treated with 1-ethyl-3-methylimidazolium acetate ([C(2)mim][OAc]) and a mixture of [C(2)mim][OAc] with the nonsolvent dimethyl sulfoxide (DMSO) at different temperatures. The dissolution process was slowed by decreasing the temperature and increasing cellulose loading, and was further retarded by addition of DMSO, enabling in-depth examination of the intermediate stages of dissolution. Results show that the cellulose I lattice expands and distorts prior to full dissolution in [C(2)mim][OAc] and that upon precipitation the former structure leads to a less ordered intermediate structure, whereas fully dissolved cellulose leads to a mixture of cellulose II and amorphous cellulose. Enzymatic hydrolysis was more rapid for the intermediate structure (crystallinity = 0.34) than for cellulose II (crystallinity = 0.54).

  6. Experimental Determination of Densities and Isobaric Vapor-Liquid Equilibria of Methyl Acetate and Ethyl Acetate with Alcohols (C3 and C4) at 0.3 MPa

    NASA Astrophysics Data System (ADS)

    Susial, Pedro; Estupiñan, Esteban J.; Castillo, Victor D.; Rodríguez-Henríquez, José J.; Apolinario, José C.

    2013-10-01

    The densities and excess volumes were determined at 298.15 K for the methyl acetate + 1-propanol, methyl acetate + 1-butanol, and ethyl acetate + 1-butanol mixtures. The vapor-liquid equilibria data at 0.3 MPa for these binary systems were obtained using a stainless steel equilibrium still. The activity coefficients were obtained from the experimental data using the Hayden and O’Connell method and the Yen and Woods equation. The binary systems in this study showed positive deviations from ideality. The experimental VLE data were verified with the point-to-point test of van Ness using the Barker routine and the Fredenslund criterion. The different versions of the UNIFAC and the ASOG group contribution models were applied.

  7. Submillimeter wave spectrum of acetic acid

    NASA Astrophysics Data System (ADS)

    Ilyushin, Vadim V.; Endres, Christian P.; Lewen, Frank; Schlemmer, Stephan; Drouin, Brian J.

    2013-08-01

    We present a new global study of the submillimeter wave spectrum of the lowest three torsional states of acetic acid (CH3COOH). New measurements involving torsion-rotation transitions with J up to 79 and Ka up to 44 have been carried out between 230 and 845 GHz using the submillimeter wave spectrometers in University of Cologne and Jet Propulsion Laboratory. The new data were combined with previously published measurements and fitted using the rho-axis-method torsion-rotation Hamiltonian. The final fit used 93 parameters to give an overall weighted root-mean-square deviation of 0.85 for a dataset consisting of 7543, 6087, and 5171 transitions belonging, respectively, to the ground, first, and second excited torsional states and 1888 Δvt ≠ 0 transitions. This investigation presents more than a twofold expansion both in the J quantum number and frequency range coverage of the acetic acid spectrum. Numerous inter-torsional interactions have been observed. Furthermore, this is the highest J value ever treated with the rho-axis-method and provides a good test case for the theoretical model in use.

  8. Determination of ethyl glucuronide and fatty acid ethyl esters in hair samples.

    PubMed

    Oppolzer, David; Barroso, Mário; Passarinha, Luís; Gallardo, Eugenia

    2017-04-01

    Hair testing for alcohol biomarkers is an important tool for monitoring alcohol consumption. We propose two methods for assessing alcohol exposure through combined analysis of ethyl glucuronide (EtG) and fatty acid ethyl esters (FAEEs) species (ethyl myristate, palmitate, stearate and oleate) in hair (30 mg). EtG was analysed by liquid chromatography-tandem mass spectrometry, while FAEEs were analysed by gas chromatography-tandem mass spectrometry using electron impact ionization. Both methods were validated according to internationally accepted guidelines. Linearity was proven between 3 and 500 pg/mg for EtG and 30-5000 pg/mg for FAEEs, and the limits of quantification were 3 pg/mg for EtG and 30 pg/mg for each of the four FAEEs. Precision and accuracy were considered adequate, processed EtG samples were found to be stable for up to 96 h left in the injector and processed FAEEs samples for up to 24 h. Matrix effects were not significant. Both methods were applied to the analysis of 15 authentic samples, using the cut-off values proposed by the Society of Hair Testing for interpretation. The results agreed well with the self-reported alcohol consumption in most cases, and demonstrated the suitability of the methods to be applied in routine analysis of alcohol biomarkers, allowing monitoring consumption using low sample amounts.

  9. Testing for ethanol markers in hair: discrepancies after simultaneous quantification of ethyl glucuronide and fatty acid ethyl esters.

    PubMed

    Kintz, P; Nicholson, D

    2014-10-01

    The hair of 97 cases were analysed for ethyl glucuronide (EtG) and fatty acid ethyl esters (FAEE, including ethyl myristate, ethyl palmitate, ethyl oleate and ethyl stearate) according to the Society of Hair Testing guidelines to examine the role of both tests in documenting chronic excessive alcohol drinking, particularly when the results are in contradiction. 27 (27.8%) results were EtG negative and FAEE positive, when applying the SoHT cut-offs, probably due to the use of alcohol-containing hair products. Four cases (4.1%) were EtG positive and FAEE negative that were attributed to the use of herbal lotions containing EtG.

  10. 40 CFR 721.4250 - Hexanoic acid, 2-ethyl-, ethenyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Hexanoic acid, 2-ethyl-, ethenyl ester... Substances § 721.4250 Hexanoic acid, 2-ethyl-, ethenyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as hexanoic acid, 2-ethyl-, ethenyl ester...

  11. 40 CFR 721.4250 - Hexanoic acid, 2-ethyl-, ethenyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hexanoic acid, 2-ethyl-, ethenyl ester... Substances § 721.4250 Hexanoic acid, 2-ethyl-, ethenyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as hexanoic acid, 2-ethyl-, ethenyl ester...

  12. 40 CFR 721.10064 - 2-Propenoic acid, 2-[2-(ethenyloxy)ethoxy]ethyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false 2-Propenoic acid, 2- ethyl ester. 721... Substances § 721.10064 2-Propenoic acid, 2- ethyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 2-propenoic acid, 2- ethyl ester (PMN...

  13. 40 CFR 721.10064 - 2-Propenoic acid, 2-[2-(ethenyloxy)ethoxy]ethyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 2-Propenoic acid, 2- ethyl ester. 721... Substances § 721.10064 2-Propenoic acid, 2- ethyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 2-propenoic acid, 2- ethyl ester (PMN...

  14. 40 CFR 721.10064 - 2-Propenoic acid, 2-[2-(ethenyloxy)ethoxy]ethyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 2-Propenoic acid, 2- ethyl ester. 721... Substances § 721.10064 2-Propenoic acid, 2- ethyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 2-propenoic acid, 2- ethyl ester (PMN...

  15. 40 CFR 721.4250 - Hexanoic acid, 2-ethyl-, ethenyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Hexanoic acid, 2-ethyl-, ethenyl ester... Substances § 721.4250 Hexanoic acid, 2-ethyl-, ethenyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as hexanoic acid, 2-ethyl-, ethenyl ester...

  16. 40 CFR 721.10064 - 2-Propenoic acid, 2-[2-(ethenyloxy)ethoxy]ethyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 2-Propenoic acid, 2- ethyl ester. 721... Substances § 721.10064 2-Propenoic acid, 2- ethyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 2-propenoic acid, 2- ethyl ester (PMN...

  17. 40 CFR 721.4250 - Hexanoic acid, 2-ethyl-, ethenyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Hexanoic acid, 2-ethyl-, ethenyl ester... Substances § 721.4250 Hexanoic acid, 2-ethyl-, ethenyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as hexanoic acid, 2-ethyl-, ethenyl ester...

  18. 40 CFR 721.4250 - Hexanoic acid, 2-ethyl-, ethenyl ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Hexanoic acid, 2-ethyl-, ethenyl ester... Substances § 721.4250 Hexanoic acid, 2-ethyl-, ethenyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as hexanoic acid, 2-ethyl-, ethenyl ester...

  19. 40 CFR 721.10064 - 2-Propenoic acid, 2-[2-(ethenyloxy)ethoxy]ethyl ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false 2-Propenoic acid, 2- ethyl ester. 721... Substances § 721.10064 2-Propenoic acid, 2- ethyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 2-propenoic acid, 2- ethyl ester (PMN...

  20. Tested Demonstrations: Buffer Capacity of Various Acetic Acid-Sodium Acetate Systems: A Lecture Experiment.

    ERIC Educational Resources Information Center

    Donahue, Craig J.; Panek, Mary G.

    1985-01-01

    Background information and procedures are provided for a lecture experiment which uses indicators to illustrate the concept of differing buffer capacities by titrating acetic acid/sodium acetate buffers with 1.0 molar hydrochloric acid and 1.0 molar sodium hydroxide. A table with data used to plot the titration curve is included. (JN)

  1. Effects of ethyl acetate extract of Kaempferia parviflora on brown adipose tissue.

    PubMed

    Kobayashi, Hiroko; Horiguchi-Babamoto, Emi; Suzuki, Mio; Makihara, Hiroko; Tomozawa, Hiroshi; Tsubata, Masahito; Shimada, Tsutomu; Sugiyama, Kiyoshi; Aburada, Masaki

    2016-01-01

    We have previously reported the effects of Kaempferia parviflora (KP), including anti-obesity, preventing various metabolic diseases, and regulating differentiation of white adipose cells. In this study we used Tsumura, Suzuki, Obese Diabetes (TSOD) mice--an animal model of spontaneous obese type II diabetes--and primary brown preadipocytes to examine the effects of the ethyl acetate extract of KP (KPE) on brown adipose tissue, which is one of the energy expenditure organs. TSOD mice were fed with MF mixed with either KPE 0.3 or 1% for 8 weeks. Computed tomography images showed that whitening of brown adipocytes was suppressed in the interscapular tissue of the KPE group. We also examined mRNA expression of uncoupling protein 1 (UCP-1) and β3-adrenalin receptor (β3AR) in brown adipose tissue. As a result, mRNA expression of UCP-1 significantly increased in the KPE 1% treatment group, indicating that KPE activated brown adipose tissue. We then evaluated the direct effects of KPE on brown adipocytes using primary brown preadipocytes isolated from interscapular brown adipocytes in ICR mice. Triacylglycerol (TG) accumulation in primary brown preadipocytes was increased by KPE in a dose-dependent manner. Each mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ), UCP-1, and β3AR exhibited an upward trend compared with the control group. Moreover, some polymethoxyflavonoids (PMFs), the main compound in KP, also increased TG accumulation. This study therefore showed that KPE enhanced the thermogenesis effect of brown adipocytes as well as promoted the differentiation of brown adipocyte cells.

  2. The antihypertensive effect of ethyl acetate extract of radish leaves in spontaneously hypertensive rats

    PubMed Central

    Chung, Da-Hee; Kim, Sun-Hee; Myung, Nahye; Cho, Kang Jin

    2012-01-01

    Radish (Raphanus sativus L.) is a cruciferous vegetable, and its leaves have antioxidant and anticancer properties. This study was conducted to evaluate the effects of ethyl acetate extracts from radish leaves on hypertension in 11-week-old spontaneously hypertensive rats (SHRs). The SHRs were randomly divided into 3 groups of 6 rats each on the basis of initial systolic blood pressure (SBP) and were treated with oral administration of radish leaf extract (0, 30, or 90 mg/kg body weight [bw], respectively) for 5 weeks. Six Wistar rats were used as normotensive controls. The amount of the radish leaf extract had no effect on body weight. The SBP of the SHRs showed a decreasing trend with the consumption of the radish leaf extract. In the third week, the SBP of the group fed 90 mg extract/kg bw reduced from 214 mmHg to 166 mmHg and was significantly lower than that of the normotensive and hypertensive controls. The extract did not show a significant effect on the angiotensin-converting enzyme (ACE) activity in the serum, kidney, and lung. The extract increased the concentration of NO in serum and the activities of antioxidant enzymes such as glutathione peroxidase and catalase in red blood cells (RBCs). The serum concentrations of Na+ and K+ were not significantly different between all groups. However, the fecal concentrations of Na+ and K+ increased; the fecal concentrations of Na+ and K+ for the normotensive and hypertensive controls were not different. Urinary excretion of Na+ was higher in the normotensive Wistar rats than in the SHRs, while that of K+ was not significantly different. These findings indicate that consumption of radish leaves might have had antihypertensive effects in SHRs by increasing the serum concentration of NO and fecal concentration of Na+ and enhancing antioxidant activities. PMID:22977684

  3. Therapeutic effect of ethyl acetate extract from Asparagus cochinchinensis on phthalic anhydride-induced skin inflammation

    PubMed Central

    Sung, Ji-Eun; Lee, Hyun-Ah; Kim, Ji-Eun; Go, Jun; Seo, Eun-Ji; Yun, Woo-Bin; Kim, Dong-Seob; Son, Hong-Joo; Lee, Chung-Yeoul; Lee, Hee-Seob

    2016-01-01

    Asparagus cochinchinensis has been used to treat various diseases including fever, cough, kidney disease, breast cancer, inflammatory disease and brain disease, while IL-4 cytokine has been considered as key regulator on the skin homeostasis and the predisposition toward allergic skin inflammation. However, few studies have investigated its effects and IL-4 correlation on skin inflammation to date. To quantitatively evaluate the suppressive effects of ethyl acetate extracts of A. cochinchinensis (EaEAC) on phthalic anhydride (PA)-induced skin inflammation and investigate the role of IL-4 during their action mechanism, alterations in general phenotype biomarkers and luciferase-derived signals were measured in IL-4/Luc/CNS-1 transgenic (Tg) mice with PA-induced skin inflammation after treatment with EaEAC for 2 weeks. Key phenotype markers including lymph node weight, immunoglobulin E (IgE) concentration, epidermis thickness and number of infiltrated mast cells were significantly decreased in the PA+EaEAC treated group compared with the PA+Vehicle treated group. In addition, expression of IL-1β and TNF-α was also decreased in the PA+EaEAC cotreated group, compared to PA+Vehicle treated group. Furthermore, a significant decrease in the luciferase signal derived from IL-4 promoter was detected in the abdominal region, submandibular lymph node and mesenteric lymph node of the PA+EaEAC treated group, compared to PA+Vehicle treated group. Taken together, these results suggest that EaEAC treatment could successfully improve PA-induced skin inflammation of IL-4/Luc/CNS-1 Tg mice, and that IL-4 cytokine plays a key role in the therapeutic process of EaEAC. PMID:27051441

  4. Differential titration of bases in glacial acetic acid.

    PubMed

    Castellano, T; Medwick, T; Shinkai, J H; Bailey, L

    1981-01-01

    A study of bases in acetic acid and their differential titration was carried out. The overall basicity constants for 20 bases were measured in acetic acid, and the differential titration of five binary mixtures of variable delta pKb values in acetic acid was followed using a glass electrode-modified calomel electrode system. Agreement with literature values was good. A leveling diagram was constructed that indicated that bases stronger than aqueous pKb 10 are leveled to an acetous pKb 5.69, whereas weaker bases are not leveled but instead exhibit their own intrinsic basicity, with the acetous pKb to aqueous pKb values being linearly related (slope 1.18, correlation coefficient 0.962). A minimum acetous delta pKb of four units is required for the satisfactory differential titration of two bases in acetic acid.

  5. Genetic dissection of acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Geng, Peng; Xiao, Yin; Hu, Yun; Sun, Haiye; Xue, Wei; Zhang, Liang; Shi, Gui-Yang

    2016-09-01

    Dissection of the hereditary architecture underlying Saccharomyces cerevisiae tolerance to acetic acid is essential for ethanol fermentation. In this work, a genomics approach was used to dissect hereditary variations in acetic acid tolerance between two phenotypically different strains. A total of 160 segregants derived from these two strains were obtained. Phenotypic analysis indicated that the acetic acid tolerance displayed a normal distribution in these segregants, and suggested that the acetic acid tolerant traits were controlled by multiple quantitative trait loci (QTLs). Thus, 220 SSR markers covering the whole genome were used to detect QTLs of acetic acid tolerant traits. As a result, three QTLs were located on chromosomes 9, 12, and 16, respectively, which explained 38.8-65.9 % of the range of phenotypic variation. Furthermore, twelve genes of the candidates fell into the three QTL regions by integrating the QTL analysis with candidates of acetic acid tolerant genes. These results provided a novel avenue to obtain more robust strains.

  6. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    NASA Technical Reports Server (NTRS)

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  7. 40 CFR 721.7290 - Propanoic acid, 2-(trimethoxysilyl)-, ethyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...)-, ethyl ester. 721.7290 Section 721.7290 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.7290 Propanoic acid, 2-(trimethoxysilyl)-, ethyl ester. (a) Chemical... acid, 2-(trimethoxysilyl)-, ethyl ester (PMN P-01-22; CAS No. 137787-41-8) is subject to...

  8. 40 CFR 721.7290 - Propanoic acid, 2-(trimethoxysilyl)-, ethyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...)-, ethyl ester. 721.7290 Section 721.7290 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.7290 Propanoic acid, 2-(trimethoxysilyl)-, ethyl ester. (a) Chemical... acid, 2-(trimethoxysilyl)-, ethyl ester (PMN P-01-22; CAS No. 137787-41-8) is subject to...

  9. 40 CFR 721.10365 - Butanoic acid, 3-mercapto-2-methyl-, ethyl ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-, ethyl ester. 721.10365 Section 721.10365 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10365 Butanoic acid, 3-mercapto-2-methyl-, ethyl ester. (a) Chemical... acid, 3-mercapto-2-methyl-, ethyl ester (PMN P-10-56; CAS No. 888021-82-7) is subject to...

  10. 40 CFR 721.7290 - Propanoic acid, 2-(trimethoxysilyl)-, ethyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...)-, ethyl ester. 721.7290 Section 721.7290 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.7290 Propanoic acid, 2-(trimethoxysilyl)-, ethyl ester. (a) Chemical... acid, 2-(trimethoxysilyl)-, ethyl ester (PMN P-01-22; CAS No. 137787-41-8) is subject to...

  11. 40 CFR 721.7290 - Propanoic acid, 2-(trimethoxysilyl)-, ethyl ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...)-, ethyl ester. 721.7290 Section 721.7290 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.7290 Propanoic acid, 2-(trimethoxysilyl)-, ethyl ester. (a) Chemical... acid, 2-(trimethoxysilyl)-, ethyl ester (PMN P-01-22; CAS No. 137787-41-8) is subject to...

  12. 40 CFR 721.10365 - Butanoic acid, 3-mercapto-2-methyl-, ethyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-, ethyl ester. 721.10365 Section 721.10365 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10365 Butanoic acid, 3-mercapto-2-methyl-, ethyl ester. (a) Chemical... acid, 3-mercapto-2-methyl-, ethyl ester (PMN P-10-56; CAS No. 888021-82-7) is subject to...

  13. 40 CFR 721.10365 - Butanoic acid, 3-mercapto-2-methyl-, ethyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-, ethyl ester. 721.10365 Section 721.10365 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10365 Butanoic acid, 3-mercapto-2-methyl-, ethyl ester. (a) Chemical... acid, 3-mercapto-2-methyl-, ethyl ester (PMN P-10-56; CAS No. 888021-82-7) is subject to...

  14. 40 CFR 721.7290 - Propanoic acid, 2-(trimethoxysilyl)-, ethyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...)-, ethyl ester. 721.7290 Section 721.7290 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.7290 Propanoic acid, 2-(trimethoxysilyl)-, ethyl ester. (a) Chemical... acid, 2-(trimethoxysilyl)-, ethyl ester (PMN P-01-22; CAS No. 137787-41-8) is subject to...

  15. Viscometric study of chitosan solutions in acetic acid/sodium acetate and acetic acid/sodium chloride.

    PubMed

    Costa, Cristiane N; Teixeira, Viviane G; Delpech, Marcia C; Souza, Josefa Virginia S; Costa, Marcos A S

    2015-11-20

    A viscometric study was carried out at 25°C to assess the physical-chemical behavior in solution and the mean viscometric molar mass (M¯v) of chitosan solutions with different deacetylation degrees, in two solvent mixtures: medium 1-acetic acid 0.3mol/L and sodium acetate 0.2mol/L; and medium 2-acetic acid 0.1mol/L and sodium chloride 0.2mol/L. Different equations were employed, by graphical extrapolation, to calculate the intrinsic viscosities [η] and the viscometric constants, to reveal the solvent's quality: Huggins (H), Kraemer (K) and Schulz-Blaschke (SB). For single-point determination, the equations used were SB, Solomon-Ciuta (SC) and Deb-Chanterjee (DC), resulting in a faster form of analysis. The values of ̄M¯v were calculated by applying the equation of Mark-Houwink-Sakurada. The SB and SC equations were most suitable for single-point determination of [η] and ̄M¯v and the Schulz-Blachke constant (kSB), equal to 0.28, already utilized for various systems, can also be employed to analyze chitosan solutions under the conditions studied.

  16. Recovery of acetic acid from waste streams by extractive distillation.

    PubMed

    Demiral, H; Yildirim, M Ercengiz

    2003-01-01

    Wastes have been considered to be a serious worldwide environmental problem in recent years. Because of increasing pollution, these wastes should be treated. However, industrial wastes can contain a number of valuable organic components. Recovery of these components is important economically. Using conventional distillation techniques, the separation of acetic acid and water is both impractical and uneconomical, because it often requires large number of trays and a high reflux ratio. In practice special techniques are used depending on the concentration of acetic acid. Between 30 and 70% (w/w) acetic acid contents, extractive distillation was suggested. Extractive distillation is a multicomponent-rectification method similar in purpose to azeotropic distillation. In extractive distillation, to a binary mixture which is difficult or impossible to separate by ordinary means, a third component termed an entrainer is added which alters the relative volatility of the original constituents, thus permitting the separation. In our department acetic acid is used as a solvent during the obtaining of cobalt(III) acetate from cobalt(II) acetate by an electrochemical method. After the operation, the remaining waste contains acetic acid. In thiswork, acetic acid which has been found in this waste was recovered by extractive distillation. Adiponitrile and sulfolane were used as high boiling solvents and the effects of solvent feed rate/solution feed rate ratio and type were investigated. According to the experimental results, it was seem that the recovery of acetic acid from waste streams is possible by extractive distillation.

  17. Synthesis of Highly Polymerized Water-soluble Cellulose Acetate by the Side Reaction in Carboxylate Ionic Liquid 1-ethyl-3-methylimidazolium Acetate.

    PubMed

    Pang, Jinhui; Liu, Xin; Yang, Jun; Lu, Fachuang; Wang, Bo; Xu, Feng; Ma, Mingguo; Zhang, Xueming

    2016-09-20

    In the present study, we describe a novel one-step method to prepare water-soluble cellulose acetate (WSCA) with higher degree of polymerization values (DP = 650-680) by in situ activation of carboxyl group in ionic liquid. First of all, cellulose was dissolved in 1-ethyl-3-methylimidazolium acetate (EmimAc) and reacted with dichloroacetyl chloride (Cl2AcCl) in order to make cellulose dichloroacetate. Under various conditions, a series of water soluble products were produced. Elemental analysis and NMR results confirmed that they were cellulose acetate with DS (degree of substitution) values in the range from 0.30 to 0.63. NMR studies demonstrated that Cl2AcCl reacted with acetate anion of EmimAc producing a mixed anhydride that acetylated cellulose. Other acylating reagents such as benzoyl chloride, chloroacetyl chloride can also work similarly. 2D NMR characterization suggested that 6-mono-O-acetyl moiety, 3,6-di-O-acetylcellulose and 2,6-di-O-acetyl cellulose were all synthesized and the reactivity of hydroxyl groups in anhydro-glucose units was in the order C-6>C-3>C-2. This work provides an alternative way to make WSCA, meanwhile, also services as a reminder that the activity of EmimAc toward carbohydrate as acylating reagents could be a problem, because the expected acylated products may not be resulted and recycling of this ionic liquid could also be difficult.

  18. Synthesis of Highly Polymerized Water-soluble Cellulose Acetate by the Side Reaction in Carboxylate Ionic Liquid 1-ethyl-3-methylimidazolium Acetate

    NASA Astrophysics Data System (ADS)

    Pang, Jinhui; Liu, Xin; Yang, Jun; Lu, Fachuang; Wang, Bo; Xu, Feng; Ma, Mingguo; Zhang, Xueming

    2016-09-01

    In the present study, we describe a novel one-step method to prepare water-soluble cellulose acetate (WSCA) with higher degree of polymerization values (DP = 650–680) by in situ activation of carboxyl group in ionic liquid. First of all, cellulose was dissolved in 1-ethyl-3-methylimidazolium acetate (EmimAc) and reacted with dichloroacetyl chloride (Cl2AcCl) in order to make cellulose dichloroacetate. Under various conditions, a series of water soluble products were produced. Elemental analysis and NMR results confirmed that they were cellulose acetate with DS (degree of substitution) values in the range from 0.30 to 0.63. NMR studies demonstrated that Cl2AcCl reacted with acetate anion of EmimAc producing a mixed anhydride that acetylated cellulose. Other acylating reagents such as benzoyl chloride, chloroacetyl chloride can also work similarly. 2D NMR characterization suggested that 6-mono-O-acetyl moiety, 3,6-di-O-acetylcellulose and 2,6-di-O-acetyl cellulose were all synthesized and the reactivity of hydroxyl groups in anhydro-glucose units was in the order C-6>C-3>C-2. This work provides an alternative way to make WSCA, meanwhile, also services as a reminder that the activity of EmimAc toward carbohydrate as acylating reagents could be a problem, because the expected acylated products may not be resulted and recycling of this ionic liquid could also be difficult.

  19. Synthesis of Highly Polymerized Water-soluble Cellulose Acetate by the Side Reaction in Carboxylate Ionic Liquid 1-ethyl-3-methylimidazolium Acetate

    PubMed Central

    Pang, Jinhui; Liu, Xin; Yang, Jun; Lu, Fachuang; Wang, Bo; Xu, Feng; Ma, Mingguo; Zhang, Xueming

    2016-01-01

    In the present study, we describe a novel one-step method to prepare water-soluble cellulose acetate (WSCA) with higher degree of polymerization values (DP = 650–680) by in situ activation of carboxyl group in ionic liquid. First of all, cellulose was dissolved in 1-ethyl-3-methylimidazolium acetate (EmimAc) and reacted with dichloroacetyl chloride (Cl2AcCl) in order to make cellulose dichloroacetate. Under various conditions, a series of water soluble products were produced. Elemental analysis and NMR results confirmed that they were cellulose acetate with DS (degree of substitution) values in the range from 0.30 to 0.63. NMR studies demonstrated that Cl2AcCl reacted with acetate anion of EmimAc producing a mixed anhydride that acetylated cellulose. Other acylating reagents such as benzoyl chloride, chloroacetyl chloride can also work similarly. 2D NMR characterization suggested that 6-mono-O-acetyl moiety, 3,6-di-O-acetylcellulose and 2,6-di-O-acetyl cellulose were all synthesized and the reactivity of hydroxyl groups in anhydro-glucose units was in the order C-6>C-3>C-2. This work provides an alternative way to make WSCA, meanwhile, also services as a reminder that the activity of EmimAc toward carbohydrate as acylating reagents could be a problem, because the expected acylated products may not be resulted and recycling of this ionic liquid could also be difficult. PMID:27644545

  20. Micelles Protect and Concentrate Activated Acetic Acid

    NASA Astrophysics Data System (ADS)

    Todd, Zoe; House, C.

    2014-01-01

    As more and more exoplanets are discovered and the habitability of such planets is considered, one can turn to searching for the origin of life on Earth in order to better understand what makes a habitable planet. Activated acetic acid, or methyl thioacetate, has been proposed to be central to the origin of life on Earth, and also as an important energy currency molecule in early cellular evolution. We have investigated the hydrolysis of methyl thioacetate under various conditions. Its uncatalyzed rate of hydrolysis is about three orders of magnitude faster (K = 0.00663 s^-1; 100°C, pH 7.5, concentration = 0.33mM) than published rates for its catalyzed production making it unlikely to accumulate under prebiotic conditions. However, we also observed that methyl thioacetate was protected from hydrolysis when inside its own hydrophobic droplets. We found that methyl thioacetate protection from hydrolysis was also possible in droplets of hexane and in the membranes of nonanoic acid micelles. Thus, the hydrophobic regions of prebiotic micelles and early cell membranes could have offered a refuge for this energetic molecule increasing its lifetime in close proximity to the reactions for which it would be needed. Methyl thioacetate could thus be important for the origin of life on Earth and perhaps for better understanding the potential habitability of other planets.

  1. Biological Function of Acetic Acid-Improvement in Obesity and Glucose Tolerance by Acetic Acid in Type 2 Diabetic Rats.

    PubMed

    Yamashita, Hiromi

    2016-07-29

    Fatty acids derived from adipose tissue are oxidized by β-oxidation to form ketone bodies as final products under the starving condition. Previously, we found that free acetic acid was formed concomitantly with the production of ketone bodies in isolated rat liver perfusion, and mitochondrial acetyl CoA hydrolase was appeared to be involved with the acetic acid production. It was revealed that acetic acid was formed as a final product of enhanced β-oxidation of fatty acids and utilized as a fuel in extrahepatic tissues under the starving condition. Under the fed condition, β-oxidation is suppressed and acetic acid production is decreased. When acetic acid was taken daily by obesity-linked type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats under the fed condition, it protected OLETF rats against obesity. Furthermore, acetic acid contributed to protect from the accumulation of lipid in the liver as well as abdominal fat in OLETF rats. Transcripts of lipogenic genes in the liver were decreased, while transcripts of myoglobin and Glut4 genes in abdominal muscles were increased in the acetic acid-administered OLETF rats. It is indicated that exogenously administered acetic acid would have effects on lipid metabolism in both the liver and the skeletal muscles, and have function that works against obesity and obesity-linked type 2 diabetes.

  2. Trehalose accumulation enhances tolerance of Saccharomyces cerevisiae to acetic acid.

    PubMed

    Yoshiyama, Yoko; Tanaka, Koichi; Yoshiyama, Kohei; Hibi, Makoto; Ogawa, Jun; Shima, Jun

    2015-02-01

    Trehalose confers protection against various environmental stresses on yeast cells. In this study, trehalase gene deletion mutants that accumulate trehalose at high levels showed significant stress tolerance to acetic acid. The enhancement of trehalose accumulation can thus be considered a target in the breeding of acetic acid-tolerant yeast strains.

  3. Radioimmunoassay of 5-hydroxyindole acetic acid using an iodinated derivative

    SciTech Connect

    Puizillout, J.J.; Delaage, M.A.

    1981-06-01

    A radioimmunoassay for the main catabolite of serotonin, 5-hydroxyindole acetic acid (5-HIAA), was developed by using specific antibodies and iodinated derivative. The synthesis of a /sup 125/I-iodinated analog was performed by coupling 5-HIAA to (125I-)glycyl-tyrosine without any contact between 5-HIAA and iodine or chloramine T. It was purified on a G25 Sephadex column and diluted in citrate buffer up to 2.5 X 10(5) cpm/ml. Antibodies were obtained by coupling 5-HIAA to human serum albumin with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and tested by equilibrium dialysis. After the third immunogen injection, the four rabbits gave antisera capable of binding 50% of iodinated 5-HIIA-glycyl-tyrosine at 1/2000 final dilution. A chemical conversion of the biological samples gives to the antigen molecules a better resemblance to the immunogen, thus conferring a 100-fold gain in specificity and sensitivity. This assay allows 5-HIAA to be determined in small amounts of tissue, blood, cerebrospinal fluid or perfusate without purification with a sensitivity threshold below 0.1 ng. Some applications in cat and rat are presented.

  4. Synthesis and biological activity of thiazolyl-acetic acid derivatives as possible antimicrobial agents.

    PubMed

    Shirai, Akihiro; Fumoto, Yasuko; Shouno, Tomoaki; Maseda, Hideaki; Omasa, Takeshi

    2013-01-01

    5a-h, a series of (5-substituted-2-methyl-1,3-thiazole-4-yl) acetic acids as heterocyclic acetic acid derivatives, was designed and synthesized from ethyl acetoacetate. The synthesized compounds were screened for their antimicrobial activities against bacterial and fungal strains, and their characteristics were investigated by assays under various temperature and pH conditions. Cytotoxicity was evaluated with the use of sheep erythrocytes and human neonate dermal fibroblasts. Similarly, agents such as lauric acid 6 and parabens 7a-b, which are used as preservative agents for commercial cosmetics and detergents, were assayed for comparison. Although the structure of 5a is simple, comprising a thiazole attached with an octyl group and acetic acid moiety, the compound showed stronger and broader antibacterial and antifungal activities among the 5 series against the tested microbes other than gram-negative bacteria. Interestingly, 5a overcame the weak antifungal activity of parabens 7a-b. Also, the cytotoxicity of 5a was less than that of parabens 7a-b, especially to human dermal fibroblasts. These results suggest that thiazolyl-acetic acid 5a is a potentially effective biocide, and that it could be used as a preservative agent in commercially sold cosmetics and detergents, facilitated by the hydrophilic and charge properties of its carboxylic acid moiety.

  5. 1-Ethyl-3-methylimidazolium acetate as a highly efficient organocatalyst for cyanosilylation of carbonyl compounds with trimethylsilyl cyanide

    PubMed Central

    Ullah, Bakhtar; Chen, Jingwen; Zhang, Zhiguo; Xing, Huabin; Yang, Qiwei; Bao, Zongbi; Ren, Qilong

    2017-01-01

    1-Ethyl-3-methylimidazolium acetate is introduced as a robust organocatalyst for solvent-free cyanosilylation of carbonyl compounds with trimethylsilyl cyanide (TMSCN). The catalyst loading can be reduced to as low as 0.1–0.0001 mol % under mild reaction conditions, giving considerably high TOF values from 10,843 h−1 to 10,602,410 h−1 in the field of organocatalyzed transformations. The present protocol not only tolerates with extensive carbonyl compounds but also provides somewhat insight into the mechanism of ionic liquids (ILs)-catalyzed reactions. PMID:28198462

  6. 1-Ethyl-3-methylimidazolium acetate as a highly efficient organocatalyst for cyanosilylation of carbonyl compounds with trimethylsilyl cyanide

    NASA Astrophysics Data System (ADS)

    Ullah, Bakhtar; Chen, Jingwen; Zhang, Zhiguo; Xing, Huabin; Yang, Qiwei; Bao, Zongbi; Ren, Qilong

    2017-02-01

    1-Ethyl-3-methylimidazolium acetate is introduced as a robust organocatalyst for solvent-free cyanosilylation of carbonyl compounds with trimethylsilyl cyanide (TMSCN). The catalyst loading can be reduced to as low as 0.1–0.0001 mol % under mild reaction conditions, giving considerably high TOF values from 10,843 h‑1 to 10,602,410 h‑1 in the field of organocatalyzed transformations. The present protocol not only tolerates with extensive carbonyl compounds but also provides somewhat insight into the mechanism of ionic liquids (ILs)-catalyzed reactions.

  7. Antinociceptive action of (+/-)-cis-(6-ethyl-tetrahydropyran-2-yl)-formic acid in mice.

    PubMed

    Marinho, Bruno G; Miranda, Leandro S M; Gomes, Niele M; Matheus, Maria Eline; Leitão, Suzana G; Vasconcellos, Mario Luiz A A; Fernandes, Patrícia D

    2006-11-21

    The objective of this study was to investigate spinal and supraspinal antinociceptive effects of a new synthetic compound, (+/-)-cis-(6-ethyl-tetrahydropyran-2-yl)-formic acid (tetrahydropyran derivative). Its activity was compared with those from morphine. In peripheral models of inflammation and hyperalgesia, tetrahydropyran derivative significantly reduced nociceptive effect induced by acetic acid or formalin in mice. Tetrahydropyran derivative developed antinociceptive effect on the tail-flick and hot-plate tests with a long-acting curve maintaining the effect for 4 h longer than morphine. The opioid receptor antagonist naloxone totally reverted tetrahydropyran derivative effects on both models. Morphine as well as tetrahydropyran derivative induced tolerance and sedation in mice. However, tetrahydropyran derivative-induced tolerance had its onset retarded and the sedative activity was lower when compared to that induced by morphine. These results indicate that this new substance develops an antinociceptive activity and may be used in the future as a substitute for traditional opioids.

  8. Fermentation of lignocellulosic sugars to acetic acid by Moorella thermoacetica.

    PubMed

    Ehsanipour, Mandana; Suko, Azra Vajzovic; Bura, Renata

    2016-06-01

    A systematic study of bioconversion of lignocellulosic sugars to acetic acid by Moorella thermoacetica (strain ATCC 39073) was conducted. Four different water-soluble fractions (hydrolysates) obtained after steam pretreatment of lignocellulosic biomass were selected and fermented to acetic acid in batch fermentations. M. thermoacetica can effectively ferment xylose and glucose in hydrolysates from wheat straw, forest residues, switchgrass, and sugarcane straw to acetic acid. Xylose and glucose were completely utilized, with xylose being consumed first. M. thermoacetica consumed up to 62 % of arabinose, 49 % galactose and 66 % of mannose within 72 h of fermentation in the mixture of lignocellulosic sugars. The highest acetic acid yield was obtained from sugarcane straw hydrolysate, with 71 % of theoretical yield based on total sugars (17 g/L acetic acid from 24 g/L total sugars). The lowest acetic acid yield was observed in forest residues hydrolysate, with 39 % of theoretical yield based on total sugars (18 g/L acetic acid from 49 g/L total sugars). Process derived compounds from steam explosion pretreatment, including 5-hydroxymethylfurfural (0.4 g/L), furfural (0.1 g/L) and total phenolics (3 g/L), did not inhibit microbial growth and acetic acid production yield. This research identified two major factors that adversely affected acetic acid yield in all hydrolysates, especially in forest residues: (i) glucose to xylose ratio and (ii) incomplete consumption of arabinose, galactose and mannose. For efficient bioconversion of lignocellulosic sugars to acetic acid, it is imperative to have an appropriate balance of sugars in a hydrolysate. Hence, the choice of lignocellulosic biomass and steam pretreatment design are fundamental steps for the industrial application of this process.

  9. Measurement of the rates of oxindole-3-acetic acid turnover, and indole-3-acetic acid oxidation in Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Nonhebel, H. M.; Bandurski, R. S. (Principal Investigator)

    1986-01-01

    Oxindole-3-acetic acid is the principal catabolite of indole-3-acetic acid in Zea mays seedlings. In this paper measurements of the turnover of oxindole-3-acetic acid are presented and used to calculate the rate of indole-3-acetic acid oxidation. [3H]Oxindole-3-acetic acid was applied to the endosperm of Zea mays seedlings and allowed to equilibrate for 24 h before the start of the experiment. The subsequent decrease in its specific activity was used to calculate the turnover rate. The average half-life of oxindole-3-acetic acid in the shoots was found to be 30 h while that in the kernels had an average half-life of 35h. Using previously published values of the pool sizes of oxindole-3-acetic acid in shoots and kernels from seedlings of the same age and variety, and grown under the same conditions, the rate of indole-3-acetic acid oxidation was calculated to be 1.1 pmol plant-1 h-1 in the shoots and 7.1 pmol plant-1 h-1 in the kernels.

  10. Oxidation of indole-3-acetic acid and oxindole-3-acetic acid to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glucopyranoside in Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Nonhebel, H. M.; Bandurski, R. S.

    1984-01-01

    Radiolabeled oxindole-3-acetic acid was metabolized by roots, shoots, and caryopses of dark grown Zea mays seedlings to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glycopyranoside with the simpler name of 7-hydroxyoxindole-3-acetic acid-glucoside. This compound was also formed from labeled indole-3-acetic acid supplied to intact seedlings and root segments. The glucoside of 7-hydroxyoxindole-3-acetic acid was also isolated as an endogenous compound in the caryopses and shoots of 4-day-old seedlings. It accumulates to a level of 4.8 nanomoles per plant in the kernel, more than 10 times the amount of oxindole-3-acetic acid. In the shoot it is present at levels comparable to that of oxindole-3-acetic acid and indole-3-acetic acid (62 picomoles per shoot). We conclude that 7-hydroxyoxindole-3-acetic acid-glucoside is a natural metabolite of indole-3-acetic acid in Z. mays seedlings. From the data presented in this paper and in previous work, we propose the following route as the principal catabolic pathway for indole-3-acetic acid in Zea seedlings: Indole-3-acetic acid --> Oxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid-glucoside.

  11. Examination of sex differences in fatty acid ethyl ester and ethyl glucuronide hair analysis.

    PubMed

    Gareri, Joey; Rao, Chitra; Koren, Gideon

    2014-06-01

    Clinical studies examining performance of fatty acid ethyl esters (FAEE) and ethyl glucuronide (EtG) in identifying excessive alcohol consumption have been primarily conducted in male populations. An impact of hair cosmetics in producing both false-negative EtG results and false-positive FAEE results has been demonstrated, suggesting a possible bias in female populations. This study evaluates FAEE-positive hair samples (>0.50 ng/mg) from n = 199 female and n = 73 male subjects for EtG. Higher FAEE/EtG concordance was observed amongst male over female subjects. Performance of multiple proposed EtG cut-off levels were assessed; amongst female samples, FAEE/EtG concordance was 36.2% (30 pg/mg), 36.7% (27 pg/mg), and 43.7% (20 pg/mg). Non-coloured hair demonstrated a two-fold increase in concordance (41.8 v. 20.8%) over coloured hair in the female cohort. FAEE levels did not differ between male and female subjects; however they were lower in coloured samples (p = 0.046). EtG was lower in female subjects (p = 0.019) and coloured samples (p = 0.026). A total of n = 111 female samples were discordant. Amongst discordant samples (EtG-negative), 26% had evidence of recent alcohol use including consultation histories (n = 20) and detectable cocaethylene (n = 9); 29% of discordant samples were coloured. False-negative risk with ethyl glucuronide analysis in females was mediated by cosmetic colouring. These findings suggest that combined analysis of FAEE and EtG is optimal when assessing a female population and an EtG cut-off of 20 pg/mg is warranted when using combined analysis. While concordant FAEE/EtG-positive findings constitute clear evidence, discordant FAEE/EtG findings should still be considered suggestive evidence of chronic excessive alcohol consumption.

  12. Bioequivalence Demonstration for Ω-3 Acid Ethyl Ester Formulations: Rationale for Modification of Current Guidance.

    PubMed

    Maki, Kevin C; Johns, Colleen; Harris, William S; Puder, Mark; Freedman, Steven D; Thorsteinsson, Thorsteinn; Daak, Ahmed; Rabinowicz, Adrian L; Sancilio, Frederick D

    2017-02-08

    The US Food and Drug Administration (FDA) draft guidance for establishing bioequivalence (BE) of ω-3 acid ethyl esters (containing both eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA] as ethyl esters), used to treat severe hypertriglyceridemia, recommends the conduct of 2 studies: one with participants in the fasting state and one with participants in the fed state. For the fasting study, the primary measures of BE are baseline-adjusted EPA and DHA levels in total plasma lipids. For the fed study, the primary measures of BE are EPA and DHA ethyl esters in plasma. This guidance differs from that established for icosapent ethyl (EPA ethyl esters) in which the primary measure of BE is baseline-adjusted total EPA in plasma lipids for both the fasting and fed states. The FDA guidance for ω-3 acid ethyl esters is not supported by their physiologic characteristics and triglyceride-lowering mechanisms because EPA and DHA ethyl esters are best characterized as pro-drugs. This article presents an argument for amending the FDA draft guidance for ω-3 acid ethyl esters to use baseline-adjusted EPA and DHA in total plasma lipids as the primary measures of BE for both fasting and fed conditions. This change would harmonize the approaches for demonstration of BE for ω-3 acid ethyl esters and icosapent ethyl (EPA ethyl esters) products for future development programs and is the most physiologically rational approach to BE testing.

  13. 40 CFR 721.10300 - Benzeneacetic acid, .alpha.-chloro-.alpha.-phenyl-, ethyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-.alpha.-phenyl-, ethyl ester. 721.10300 Section 721.10300 Protection of Environment ENVIRONMENTAL....-phenyl-, ethyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzeneacetic acid, .alpha.-chloro-.alpha.-phenyl-, ethyl ester (PMN...

  14. 40 CFR 721.10300 - Benzeneacetic acid, .alpha.-chloro-.alpha.-phenyl-, ethyl ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-.alpha.-phenyl-, ethyl ester. 721.10300 Section 721.10300 Protection of Environment ENVIRONMENTAL....-phenyl-, ethyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzeneacetic acid, .alpha.-chloro-.alpha.-phenyl-, ethyl ester (PMN...

  15. 40 CFR 721.10300 - Benzeneacetic acid, .alpha.-chloro-.alpha.-phenyl-, ethyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-.alpha.-phenyl-, ethyl ester. 721.10300 Section 721.10300 Protection of Environment ENVIRONMENTAL....-phenyl-, ethyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzeneacetic acid, .alpha.-chloro-.alpha.-phenyl-, ethyl ester (PMN...

  16. High throughput, colorimetric screening of microbial ester biosynthesis reveals high ethyl acetate production from Kluyveromyces marxianus on C5, C6, and C12 carbon sources.

    PubMed

    Löbs, Ann-Kathrin; Lin, Jyun-Liang; Cook, Megan; Wheeldon, Ian

    2016-10-01

    Advances in genome and metabolic pathway engineering have enabled large combinatorial libraries of mutant microbial hosts for chemical biosynthesis. Despite these advances, strain development is often limited by the lack of high throughput functional assays for effective library screening. Recent synthetic biology efforts have engineered microbes that synthesize acetyl and acyl esters and many yeasts naturally produce esters to significant titers. Short and medium chain volatile esters have value as fragrance and flavor compounds, while long chain acyl esters are potential replacements for diesel fuel. Here, we developed a biotechnology method for the rapid screening of microbial ester biosynthesis. Using a colorimetric reaction scheme, esters extracted from fermentation broth were quantitatively converted to a ferric hydroxamate complex with strong absorbance at 520 nm. The assay was validated for ethyl acetate, ethyl butyrate, isoamyl acetate, ethyl hexanoate, and ethyl octanoate, and achieved a z-factor of 0.77. Screening of ethyl acetate production from a combinatorial library of four Kluyveromyces marxianus strains on seven carbon sources revealed ethyl acetate biosynthesis from C5, C6, and C12 sugars. This newly adapted method rapidly identified novel properties of K. marxianus metabolism and promises to advance high throughput microbial strain engineering for ester biosynthesis.

  17. Computerized image analysis for acetic acid induced intraepithelial lesions

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; Ferris, Daron G.; Lieberman, Rich W.

    2008-03-01

    Cervical Intraepithelial Neoplasia (CIN) exhibits certain morphologic features that can be identified during a visual inspection exam. Immature and dysphasic cervical squamous epithelium turns white after application of acetic acid during the exam. The whitening process occurs visually over several minutes and subjectively discriminates between dysphasic and normal tissue. Digital imaging technologies allow us to assist the physician analyzing the acetic acid induced lesions (acetowhite region) in a fully automatic way. This paper reports a study designed to measure multiple parameters of the acetowhitening process from two images captured with a digital colposcope. One image is captured before the acetic acid application, and the other is captured after the acetic acid application. The spatial change of the acetowhitening is extracted using color and texture information in the post acetic acid image; the temporal change is extracted from the intensity and color changes between the post acetic acid and pre acetic acid images with an automatic alignment. The imaging and data analysis system has been evaluated with a total of 99 human subjects and demonstrate its potential to screening underserved women where access to skilled colposcopists is limited.

  18. Ethyl Acetate Extracts of Semen Impatientis Inhibit Proliferation and Induce Apoptosis of Human Prostate Cancer Cell Lines through AKT/ERK Pathways.

    PubMed

    Wang, Tao; Cai, Yang; Song, Wen; Chen, Ruibao; Hu, Dunmei; Ye, Jianhan; Liu, Lu; Peng, Wei; Zhang, Junfeng; Wang, Shaogang; Yang, Weiming; Liu, Jihong; Ding, Yufeng

    2017-01-01

    Objective. To investigate the inhibitory effect of ethyl acetate extracts of Impatiens balsamina L. on prostate cancer cells. Methods. Impatiens balsamina L. was extracted to get water, ethanol, oil ether, ethyl acetate, and butanol extracts. CCK-8 assay was used to detect the inhibitory effect. Apoptosis rates and cell cycle distribution were detected by flow cytometry. Transwell assay was performed to test the ability of migration. The expressions of Bcl-2, Bax, cleaved-caspase-3, p-ERK, ERK, p-AKT, AKT, cyclin D1, cyclin E, and MMP2 were detected by Western blot. Results. Ethyl acetate extracts had the strongest inhibitory effect. After being treated with different concentrations of ethyl acetate extracts, the percentage of G0/G1 phase increased significantly, cyclin D1 and cyclin E expression decreased, apoptosis rate was significantly higher, and the ability of migration of PC-3 and RV1 was inhibited significantly. Western blot showed that the expressions of Bcl-2, p-ERK, and p-AKT were significantly decreased, but the expressions of Bax and caspase-3 cleavage were increased. Conclusions. Impatiens balsamina L. inhibited the proliferation of human prostate cancer cells; ethyl acetate extracts have the strongest effect. It could inhibit cell proliferation and migration, cause G1 phase arrest, and induce apoptosis probably through inhibition of the AKT and ERK pathways.

  19. Ethyl Acetate Extracts of Semen Impatientis Inhibit Proliferation and Induce Apoptosis of Human Prostate Cancer Cell Lines through AKT/ERK Pathways

    PubMed Central

    Wang, Tao; Cai, Yang; Song, Wen; Chen, Ruibao; Hu, Dunmei; Ye, Jianhan; Liu, Lu; Peng, Wei; Zhang, Junfeng; Yang, Weiming; Liu, Jihong

    2017-01-01

    Objective. To investigate the inhibitory effect of ethyl acetate extracts of Impatiens balsamina L. on prostate cancer cells. Methods. Impatiens balsamina L. was extracted to get water, ethanol, oil ether, ethyl acetate, and butanol extracts. CCK-8 assay was used to detect the inhibitory effect. Apoptosis rates and cell cycle distribution were detected by flow cytometry. Transwell assay was performed to test the ability of migration. The expressions of Bcl-2, Bax, cleaved-caspase-3, p-ERK, ERK, p-AKT, AKT, cyclin D1, cyclin E, and MMP2 were detected by Western blot. Results. Ethyl acetate extracts had the strongest inhibitory effect. After being treated with different concentrations of ethyl acetate extracts, the percentage of G0/G1 phase increased significantly, cyclin D1 and cyclin E expression decreased, apoptosis rate was significantly higher, and the ability of migration of PC-3 and RV1 was inhibited significantly. Western blot showed that the expressions of Bcl-2, p-ERK, and p-AKT were significantly decreased, but the expressions of Bax and caspase-3 cleavage were increased. Conclusions. Impatiens balsamina L. inhibited the proliferation of human prostate cancer cells; ethyl acetate extracts have the strongest effect. It could inhibit cell proliferation and migration, cause G1 phase arrest, and induce apoptosis probably through inhibition of the AKT and ERK pathways. PMID:28386546

  20. Isolation of ethyl acetic based AGF bio-nutrient and its application on the growth of Capsicum annum L. plants

    NASA Astrophysics Data System (ADS)

    Hendrawan, Sonjaya, Yaya; Khoerunnisa, Fitri; Musthapa, Iqbal; Nurmala, Astri Rizki

    2015-12-01

    The study aimed to obtain the bionutrient derived from extraction of AGF leafs in ethyl acetic solvents and to explore its application on the plant growth of capsicum annum L. (curly red chili). Particularly, the fraction of secondary metabolites groups composed bionutrient was intensively elucidated by liquid vacuum chromatography technique. The characterization of secondary metabolites groups was conducted through several methods, i.e. thin layer chromatography, phytochemical screening, and FTIR spectroscopy. The AGF extracts based bionutrient then was applied on capsicum annum L. plants with dosage of 2 and 10 mL/L. The ethyl acetic solvent and commercial nutrient of Phonska and pesticide of curacron (EC 500) were selected as a blank and a positive control to evaluate the growth pattern of capsicum annum L., respectively. The result showed that the CF 1 dan CF2 of AGF extract contained alkaloid and terpenoid of secondary metabolite group, the CF 3, and CF 4 of AGF extracts were dominated by alkaloid, flavonoid, and terpenoid, while the CF 5 of AGF extract contained alkaloid, tannin and terpenoid groups. The CF 2 of AGF extract has the highest growth rate constant of 0.1702 week-1 with the number and heaviest mass of the yield of 82 pieces and 186.60, respectively. It was also showed the significant bio-pesticide activity that should be useful to support plant growth, indicating that AGF extract can be applied as both bio-nutrient and bio-pesticide.

  1. Antibacterial Activity of the Isolation Ethyl Acetate-Soluble Extract Noni Fruit (Morindra citrifolia L.) against Meat Bacterial Decay

    NASA Astrophysics Data System (ADS)

    Nugraheni, E. R.; Nurrakhman, M. B. E.; Munawaroh, H.; Saputri, L.

    2017-02-01

    Noni (Morindra citrifolia L.) is native to Indonesia which have medicinal properties. One of them as an antibacterial. This study aims to determine the antibacterial activity of isolates from the ethanol extract noni fruit to bacterial decay meat is Bacillus licheniformis, Klebsiella pneumonia, Bacillus alvei, Acinetobacter calcoaceticus, and Staphylococcus saprophyticus. The extraction process using the maceration method, and then made a partition by centrifugation ethyl acetate. Soluble part partition showed bacterial growth inhibition activity of the strong to very strong. Furthermore, the ethyl acetate soluble partition on preparative thin layer chromatography produced 5 isolates. Isolates obtained antibacterial activity test performed with a concentration of 20% and 30%. The results of antibacterial test against bacteria test isolates, showing isolates A can not inhibit the growth of bacteria, isolates B and C have medium activity and strong, isolates D and E isolates have activity against bacteria that were tested. MIC and MBC test results showed that the isolates B gives an inhibitory effect (bacteriostatic) against all bacteria. Content analysis of compounds by TLC using the reagents cerium (IV) sulfate indicates a phenol group. Isolates B contains a major compound which can be used as an antibacterial candidate in food preservation replace chemical preservatives.

  2. Determination of permeation parameters of experimental PET films coated with SiOx to ethyl acetate, oxygen and water vapour.

    PubMed

    Adamantiadi, A; Badeka, A; Kontominas, M G

    2001-11-01

    The permeation parameters of conventional PET films, films coated with SiOx and SiOx-coated films laminated to LDPE were determined for ethyl acetate using the permeation cell/gas chromatography method. Permeation to O2 and water vapour was also determined to monitor overall changes in the barrier properties of the experimental films. Coating of the PET film was achieved by a 'directed evaporation' method that increased the yield of the coating process from 30-35 to > 70%. It was shown that the SiOx coating increased the film barrier to ethyl acetate by approximately 20-30 times. Permeation values showed low reproducibility, indicating the need for further development and standardization of the 'directed evaporation' web-coating process. The barrier to oxygen and water vapour increased by 20-25 and 12-14 times respectively after coating. The web-coating speed did not seem to influence the barrier properties of the films. Permeation coefficients, diffusion coefficients and solubility coefficients were calculated for all samples.

  3. Template-assisted hydrothermally obtained titania-ceria composites and their application as catalysts in ethyl acetate oxidation and methanol decomposition with a potential for sustainable environment protection

    NASA Astrophysics Data System (ADS)

    Tsoncheva, Tanya; Mileva, Alexandra; Issa, Gloria; Dimitrov, Momtchil; Kovacheva, Daniela; Henych, Jiří; Scotti, Nicola; Kormunda, Martin; Atanasova, Genoveva; Štengl, Vaclav

    2017-02-01

    High surface area mesoporous ceria-titania binary materials with high Lewis acidity and improved reduction properties were synthesized using template assisted hydrothermal technique. The obtained materials were characterized by low temperature nitrogen physisorption, XRD, SEM, TEM, Raman, UV-vis, XPS, FTIR, FTIR of adsorbed pyridine and thermo-programmed reduction with hydrogen. Their catalytic activity was tested in total oxidation of ethyl acetate and methanol decomposition to CO and hydrogen with a potential application in VOCs elimination and alternative fuels, respectively. The structural changes in the binary materials, which could be tuned by the variation in the Ce/Ti ratio and the temperature of hydrothermal treatment, provoked significant changes in their textural, surface and redox properties, which is in close relation to the catalytic activity and selectivity in various catalytic processes. The intimate contact between the individual oxides results in the formation of different catalytic active sites and their role in the studied catalytic reactions was discussed in details.

  4. Uranyl complexes of n-alkanediaminotetra-acetic acids.

    PubMed

    Gonçalves, M L; Mota, A M; da Silva, J J

    1984-07-01

    The uranyl complexes of n-propanediaminetetra-acetic acid, n-butanediaminetetra-acetic acid and n-hexanediaminetetra-acetic acid have been studied by potentiometry, with computer evaluation of the titration data by the MINIQUAD program. Stability constants of the 1:1 and 2:1 metal:ligand chelates have been determined as well as the respective hydrolysis and polymerization constants at 25 degrees in 0.10M and 1.00M KNO(3). The influence of the length of the alkane chain of the ligands on the complexes formed is discussed.

  5. Interaction of Ethyl Alcohol Vapor with Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun

    2006-01-01

    We investigated the uptake of ethyl alcohol (ethanol) vapor by sulfuric acid solutions over the range approx.40 to approx.80 wt % H2SO4 and temperatures of 193-273 K. Laboratory studies used a fast flow-tube reactor coupled to an electron-impact ionization mass spectrometer for detection of ethanol and reaction products. The uptake coefficients ((gamma)) were measured and found to vary from 0.019 to 0.072, depending upon the acid composition and temperature. At concentrations greater than approx.70 wt % and in dilute solutions colder than 220 K, the values approached approx.0.07. We also determined the effective solubility constant of ethanol in approx.40 wt % H2SO4 in the temperature range 203-223 K. The potential implications to the budget of ethanol in the global troposphere are briefly discussed.

  6. Disproportionation Kinetics of Hypoiodous Acid As Catalyzed and Suppressed by Acetic Acid-Acetate Buffer.

    PubMed

    Urbansky, Edward T.; Cooper, Brian T.; Margerum, Dale W.

    1997-03-26

    The kinetics of the disproportionation of hypoiodous acid to give iodine and iodate ion (5HOI right harpoon over left harpoon 2I(2) + IO(3)(-) + H(+) + 2H(2)O) are investigated in aqueous acetic acid-sodium acetate buffer. The rate of iodine formation is followed photometrically at -log [H(+)] = 3.50, 4.00, 4.50, and 5.00, &mgr; = 0.50 M (NaClO(4)), and 25.0 degrees C. Both catalytic and inhibitory buffer effects are observed. The first process is proposed to be a disproportionation of iodine(I) to give HOIO and I(-); the iodide then reacts with HOI to give I(2). The reactive species (acetato-O)iodine(I), CH(3)CO(2)I, is postulated to increase the rate by assisting in the formation of I(2)O, a steady-state species that hydrolyzes to give HOIO and I(2). Inhibition is postulated to result from the formation of the stable ion bis(acetato-O)iodate(I), (CH(3)CO(2))(2)I(-), as buffer concentration is increased. This species is observed spectrophotometrically with a UV absorption shoulder (lambda = 266 nm; epsilon = 530 M(-)(1) cm(-)(1)). The second process is proposed to be a disproportionation of HOIO to give IO(3)(-) and I(2). Above 1 M total buffer, the reaction becomes reversible with less than 90% I(2) formation. Rate and equilibrium constants are resolved and reported for the proposed mechanism.

  7. Sequential injection redox or acid-base titration for determination of ascorbic acid or acetic acid.

    PubMed

    Lenghor, Narong; Jakmunee, Jaroon; Vilen, Michael; Sara, Rolf; Christian, Gary D; Grudpan, Kate

    2002-12-06

    Two sequential injection titration systems with spectrophotometric detection have been developed. The first system for determination of ascorbic acid was based on redox reaction between ascorbic acid and permanganate in an acidic medium and lead to a decrease in color intensity of permanganate, monitored at 525 nm. A linear dependence of peak area obtained with ascorbic acid concentration up to 1200 mg l(-1) was achieved. The relative standard deviation for 11 replicate determinations of 400 mg l(-1) ascorbic acid was 2.9%. The second system, for acetic acid determination, was based on acid-base titration of acetic acid with sodium hydroxide using phenolphthalein as an indicator. The decrease in color intensity of the indicator was proportional to the acid content. A linear calibration graph in the range of 2-8% w v(-1) of acetic acid with a relative standard deviation of 4.8% (5.0% w v(-1) acetic acid, n=11) was obtained. Sample throughputs of 60 h(-1) were achieved for both systems. The systems were successfully applied for the assays of ascorbic acid in vitamin C tablets and acetic acid content in vinegars, respectively.

  8. Ethyl 2-acetyl­hydrazono-2-phenyl­acetate

    PubMed Central

    Xu, Liang-Zhong; Yi, Xu; An, Guang-Wei; Zhang, Gong-Sheng; Li, Chun-Fang

    2008-01-01

    The title compound, C12H14N2O3, was synthesized as an inter­mediate for the synthesis of metamitron. The benzene ring forms dihedral angles of 86.3 (2) and 10.0 (3)° with the ethyl group and the acetyl­imino plane, respectively. The crystal structure involves inter­molecular C—H⋯O and N—H⋯O hydrogen bonds. PMID:21200890

  9. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl and ethyl esters of fatty acids produced... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters... following prescribed conditions: (a) The additive consists of a mixture of either methyl or ethyl esters...

  10. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methyl and ethyl esters of fatty acids produced... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters... following prescribed conditions: (a) The additive consists of a mixture of either methyl or ethyl esters...

  11. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Methyl and ethyl esters of fatty acids produced... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters... following prescribed conditions: (a) The additive consists of a mixture of either methyl or ethyl esters...

  12. Degradation by acetic acid for crystalline Si photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Masuda, Atsushi; Uchiyama, Naomi; Hara, Yukiko

    2015-04-01

    The degradation of crystalline Si photovoltaic modules during damp-heat test was studied using some test modules with and without polymer film insertion by observing electrical and electroluminescence properties and by chemical analyses. Acetic acid generated by the hydrolysis decomposition of ethylene vinyl acetate used as an encapsulant is the main origin of degradation. The change in electroluminescence images is explained on the basis of the corrosion of electrodes by acetic acid. On the other hand, little change was observed at the pn junction even after damp-heat test for a long time. Therefore, carrier generation occurs even after degradation; however, such generated carriers cannot be collected owing to corrosion of electrodes. The guiding principle that module structure and module materials without saving acetic acid into the modules was obtained.

  13. Effect of the ionic liquid 1-ethyl-3-methylimidazolium acetate on the phase transition of starch: dissolution or gelatinization?

    PubMed

    Mateyawa, Sainimili; Xie, David Fengwei; Truss, Rowan W; Halley, Peter J; Nicholson, Timothy M; Shamshina, Julia L; Rogers, Robin D; Boehm, Michael W; McNally, Tony

    2013-04-15

    This work revealed that the interactions between starch, the ionic liquid 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]), and water might contribute to the phase transition (gelatinization, dissolution, or both) of native starch at reduced temperature. Using mixtures of water and [Emim][OAc] at certain ratios (7.2/1 and 10.8/1 mol/mol), both the gelatinization and dissolution of the starch occur competitively, but also in a synergistic manner. At lower [Emim][OAc] concentration (water/[Emim][OAc] molar ratio≥25.0/1), mainly gelatinization occurs which is slightly impeded by the strong interaction between water and [Emim][OAc]; while at higher [Emim][OAc] concentration (water/[Emim][OAc] molar ratio≤2.8/1), the dissolution of starch is the major form of phase transition, possibly restricted by the difficulty of [Emim][OAc] to interact with starch.

  14. Antibacterial activity of Pyrrosia petiolosa ethyl acetate extract against Staphylococcus aureus by decreasing hla and sea virulence genes.

    PubMed

    Song, Liju; Cao, Mei; Chen, Chong; Qi, Panpan; Li, Ningzhe; Wu, Daoyan; Peng, Jingshan; Wang, Xuege; Zhang, Mao; Hu, Guoku; Zhao, Jian

    2017-06-01

    The aim of this study was to explore the antibacterial activity of Pyrrosia petiolosa ethyl acetate extract (PPEAE) against Staphylococcus aureus in vitro and analyse its chemical components by gas chromatograph-mass spectrometry. The results of anti-microbial assay revealed that PPEAE had strong inhibitory activity against S .aureus, with MIC and MBC of 7.8 and 15.6 mg/mL, respectively. The transcriptional levels of hla and sea were reduced to 14.33 and 46.39% at the MIC compared to the control. Analysing test result exhibited that eugenol made a great contribution to antibacterial activity. This experiment indicated that PPEAE had prominent antibacterial activity against S. aureus.

  15. Tetrazole acetic acid: Tautomers, conformers, and isomerization

    SciTech Connect

    Araujo-Andrade, C.; Reva, I. Fausto, R.

    2014-02-14

    Monomers of (tetrazol-5-yl)-acetic acid (TAA) were obtained by sublimation of the crystalline compound and the resulting vapors were isolated in cryogenic nitrogen matrices at 13 K. The conformational and tautomeric composition of TAA in the matrix was characterized by infrared spectroscopy and vibrational calculations carried out at the B3LYP/6-311++G(d,p) level. TAA may adopt two tautomeric modifications, 1H- and 2H-, depending on the position of the annular hydrogen atom. Two-dimensional potential energy surfaces (PESs) of TAA were theoretically calculated at the MP2/6-311++G(d,p) level, for each tautomer. Four and six symmetry-unique minima were located on these PESs, for 1H- and 2H-TAA, respectively. The energetics of the detected minima was subsequently refined by calculations at the QCISD level. Two 1H- and three 2H-conformers fall within the 0–8 kJ mol{sup −1} energy range and should be appreciably populated at the sublimation temperature (∼330 K). Observation of only one conformer for each tautomer (1ccc and 2pcc) is explained in terms of calculated barriers to conformational rearrangements. All conformers with the cis O=COH moiety are separated by low barriers (less than 10 kJ mol{sup −1}) and collapse to the most stable 1ccc (1H-) and 2pcc (2H-) forms during deposition of the matrix. On the trans O=COH surfaces, the relative energies are very high (between 12 and 27 kJ mol{sup −1}). The trans forms are not thermally populated at the sublimation conditions and were not detected in matrices. One high-energy form in each tautomer, 1cct (1H-) and 2pct (2H-), was found to differ from the most stable form only by rotation of the OH group and separated from other forms by high barriers. This opened a perspective for their stabilization in a matrix. 1cct and 2pct were generated in the matrices selectively by means of narrow-band near-infrared (NIR) irradiations of the samples at 6920 and 6937 cm{sup −1}, where the first OH stretching overtone

  16. In-vivo Antioxidant Effects of Ethyl Acetate Fraction of Mentha spicata L. on 4-Nitroquinoline-1-Oxide Injected Mice.

    PubMed

    Arumugam, Ponnan; Ramesh, Arabandi

    2011-01-01

    Antioxidant effects of ethyl acetate fraction of Mentha spicata (L.) were evaluated against 4-nitroquinoline-1-oxide injected mice. For this study, experiment setup consisted of 36 albino mice of either sex divided into 6 groups: Control (25% DMSO in water), ethyl acetate fraction (EAF) alone group (80, 160 mg/Kg body weight-bwt), 4-NQO (7.5 mg/Kg bwt-IP) alone and 4-NQO + EAF. EAF and vehicles were administered orally for five consecutive days. 4-NQO (7.5 mg/Kg bwt) was injected intraperitoneally on the 6(th) day. After 24 h, the animals were killed; liver sample was extracted and used for bio-assay. 4-NQO alone treated group decreased (27-60%) the antioxidant activities and promoted lipid peroxidation (LPO-60%) over their respective control values. Pretreatment with EAF, at the maximum dose (160 mg/Kg bwt) brought down the LPO up to 87% enhanced by 4-NQO. Among the enzymatic antioxidants, glutathione S-transferase (GST) was the most affected enzyme with 4-NQO and the least was catalase (CAT). Pretreatment with EAF (160 mg/Kg bwt), the restoration of antioxidants like glutathione peroxidase, superoxide dismutase, and CAT were found equal or less than 1.2 fold higher than that of the respective control values whereas, GST was observed to be the most restored antioxidant. Be reduced glutathione (GSH) and the least vitamin C over their control values. EAF restored the GSH and Vitamin E levels were found to be 1.2 fold higher than the respective control values.

  17. Development of cellulose acetate propionate membrane for separation of ethanol and ethyl tert-butyl ether mixtures

    SciTech Connect

    Luo, G.S.; Niang, M.; Schaetzel, P.

    1997-04-01

    For pervaporation separation of ethanol and ethyl tert-butyl ether mixtures, a cellulose acetate propionate membrane was chosen as the experimental membrane because of its high selectivity and good mass fluxes. The properties of the membranes were evaluated by the pervaporation separation of mixtures of ethyl tert-butyl ether/ethanol and the sorption experiments. The experimental results showed that the selectivity and the permeates depend on the ethanol concentration in the feed and the experimental temperature. With increases of the ethanol weight fraction in the feed and the temperature, the total and partial mass fluxes increased. With respect to the temperature, ethanol mass flux obeys the Arrhenius equation. The selectivity of this membrane decreases as the temperature and the ethanol concentration in the feed increase. This membrane shows special characteristics at the azeotropic composition. In the vicinity of the azeotropic point, minimum values of ethanol concentration in the permeate and in sorption solution are obtained. The swelling ratios increase when temperature and the ethanol concentration in the feed are increasing. The ethanol concentration in the sorption solution is also influenced by the temperature and the mixture`s composition. When the temperature increases, the sorption selectivity of the membrane decreases.

  18. Hypoglycemic Effect of Ethanol and Ethyl Acetate Extract of Phellinus baumii Fruiting Body in Streptozotocin-Induced Diabetic Mice

    PubMed Central

    Wang, Wen-Han; Wu, Fei-Hua; Yang, Yan; Wu, Na; Zhang, Jing-Song; Feng, Na; Tang, Chuan-Hong

    2015-01-01

    We investigated hypoglycemic effect of ethanol (EtOH) and ethyl acetate extract acetate (AcOEt) extracts in streptozotocin- (STZ-) induced diabetic mice. Our data showed the maximum inhibitory effect on the fasting plasma glucose (FPG) level was detected in STZ-induced diabetic mice administered with 400 mg/kg AcOEt extract of P. baumii. A lower glycated albumin (GA) level and a higher insulin level were observed in 400 mg/kg AcOEt and EtOH extract groups. Moreover, 400 mg/kg AcOEt and EtOH extract exhibited a stronger effect on increasing size and cell number of islets. The insulin expression level of β-cells and integrated optical density (IOD) value were significantly increased by the administration of 400 mg/kg AcOEt and EtOH extracts. Taken together, AcOEt and EtOH extracts of P. baumii fruiting body exhibited considerable hypoglycemic effect on STZ-induced diabetic mice. PMID:26221177

  19. Mixtures of the 1-ethyl-3-methylimidazolium acetate ionic liquid with different inorganic salts: insights into their interactions.

    PubMed

    Oliveira, Filipe S; Cabrita, Eurico J; Todorovic, Smilja; Bernardes, Carlos E S; Lopes, José N Canongia; Hodgson, Jennifer L; MacFarlane, Douglas R; Rebelo, Luís P N; Marrucho, Isabel M

    2016-01-28

    In this work, we explore the interactions between the ionic liquid 1-ethyl-3-methylimidazolim acetate and different inorganic salts belonging to two different cation families, those based on ammonium and others based on sodium. NMR and Raman spectroscopy are used to screen for changes in the molecular environment of the ions in the ionic liquid + inorganic salt mixtures as compared to pure ionic liquid. The ion self-diffusion coefficients are determined from NMR data, allowing the discussion of the ionicity values of the ionic liquid + inorganic salt mixtures calculated using different methods. Our data reveal that preferential interactions are established between the ionic liquid and ammonium-based salts, as opposed to sodium-based salts. Computational calculations show the formation of aggregates between the ionic liquid and the inorganic salt, which is consistent with the spectroscopic data, and indicate that the acetate anion of the ionic liquid establishes preferential interactions with the ammonium cation of the inorganic salts, leaving the imidazolium cation less engaged in the media.

  20. Electrochemical Partial Reforming of Ethanol into Ethyl Acetate Using Ultrathin Co3O4 Nanosheets as a Highly Selective Anode Catalyst

    PubMed Central

    2016-01-01

    Electrochemical partial reforming of organics provides an alternative strategy to produce valuable organic compounds while generating H2 under mild conditions. In this work, highly selective electrochemical reforming of ethanol into ethyl acetate is successfully achieved by using ultrathin Co3O4 nanosheets with exposed (111) facets as an anode catalyst. Those nanosheets were synthesized by a one-pot, templateless hydrothermal method with the use of ammonia. NH3 was demonstrated critical to the overall formation of ultrathin Co3O4 nanosheets. With abundant active sites on Co3O4 (111), the as-synthesized ultrathin Co3O4 nanosheets exhibited enhanced electrocatalytic activities toward water and ethanol oxidations in alkaline media. More importantly, over the Co3O4 nanosheets, the electrooxidation from ethanol to ethyl acetate was so selective that no other oxidation products were yielded. With such a high selectivity, an electrolyzer cell using Co3O4 nanosheets as the anode electrocatalyst and Ni–Mo nanopowders as the cathode electrocatalyst has been successfully built for ethanol reforming. The electrolyzer cell was readily driven by a 1.5 V battery to achieve the effective production of both H2 and ethyl acetate. After the bulk electrolysis, about 95% of ethanol was electrochemically reformed into ethyl acetate. This work opens up new opportunities in designing a material system for building unique devices to generate both hydrogen and high-value organics at room temperature by utilizing electric energy from renewable sources. PMID:27610415

  1. Photodissociation spectroscopy of the Mg{sup +}-acetic acid complex

    SciTech Connect

    Abate, Yohannes; Kleiber, P. D.

    2006-11-14

    We have studied the structure and photodissociation of Mg{sup +}-acetic acid clusters. Ab initio calculations suggest four relatively strongly bound ground state isomers for the [MgC{sub 2}H{sub 4}O{sub 2}]{sup +} complex. These isomers include the cis and trans forms of the Mg{sup +}-acetic acid association complex with Mg{sup +} bonded to the carbonyl O atom of acetic acid, the Mg{sup +}-acetic acid association complex with Mg{sup +} bonded to the hydroxyl O atom of acetic acid, or to a Mg{sup +}-ethenediol association complex. Photodissociation through the Mg{sup +}-based 3p<-3s absorption bands in the near UV leads to direct (nonreactive) and reactive dissociation products: Mg{sup +}, MgOH{sup +}, Mg(H{sub 2}O){sup +}, CH{sub 3}CO{sup +}, and MgCH{sub 3}{sup +}. At low energies the dominant reactive quenching pathway is through dehydration to Mg(H{sub 2}O){sup +}, but additional reaction channels involving C-H and C-C bond activation are also open at higher energies.

  2. Simultaneous acetic acid separation and monosaccharide concentration by reverse osmosis.

    PubMed

    Zhou, Fanglei; Wang, Cunwen; Wei, Jiang

    2013-03-01

    This study aimed to investigate the feasibility and efficiency of simultaneous acetic acid separation and sugar concentration in model lignocellulosic hydrolyzates by reverse osmosis. The effects of operation parameters such as pH, temperature, pressure and feed concentration on the solute retentions were examined with a synthetic xylose–glucose–acetic acid model solution. Results showed that the monosaccharides were almost completely rejected at above 20 bar, while the acetic acid retention increased with the increase in pH and pressure, and decreased with the temperature increase. The maximum separation factors of acetic acid over xylose and glucose reached as high as 211.5 and 228.4 at pH 2.93 (the initial pH of model lignocellulosic hydrolyzates), 40 °C and 20 bar. Furthermore, the concentration and diafiltration process were employed at optimal operation conditions. Consequently, a high sugar concentration and a beneficially lower acetic acid concentration were simultaneously achieved by reverse osmosis.

  3. Effects of acetic acid, ethanol, and SO(2) on the removal of volatile acidity from acidic wines by two Saccharomyces cerevisiae commercial strains.

    PubMed

    Vilela-Moura, Alice; Schuller, Dorit; Mendes-Faia, Arlete; Côrte-Real, Manuela

    2010-07-01

    Herein, we report the influence of different combinations of initial concentration of acetic acid and ethanol on the removal of acetic acid from acidic wines by two commercial Saccharomyces cerevisiae strains S26 and S29. Both strains reduced the volatile acidity of an acidic wine (1.0 gl(-1) acetic acid and 11% (v/v) ethanol) by 78% and 48%, respectively. Acetic acid removal by strains S26 and S29 was associated with a decrease in ethanol concentration of 0.7 and 1.2% (v/v), respectively. Strain S26 revealed better removal efficiency due to its higher tolerance to stress factors imposed by acidic wines. Sulfur dioxide (SO(2)) in the concentration range 95-170 mg l(-1)inhibits the ability of both strains to reduce the volatile acidity of the acidic wine used under our experimental conditions. Therefore, deacidification should be carried out either in wines stabilized by filtration or in wines with SO(2)concentrations up to 70 mg l(-1). Deacidification of wines with the better performing strain S26 was associated with changes in the concentration of volatile compounds. The most pronounced increase was observed for isoamyl acetate (banana) and ethyl hexanoate (apple, pineapple), with an 18- and 25-fold increment, respectively, to values above the detection threshold. The acetaldehyde concentration of the deacidified wine was 2.3 times higher, and may have a detrimental effect on the wine aroma. Moreover, deacidification led to increased fatty acids concentration, but still within the range of values described for spontaneous fermentations, and with apparently no negative impact on the organoleptical properties.

  4. Characterization of acetic acid bacteria in "traditional balsamic vinegar".

    PubMed

    Gullo, Maria; Caggia, Cinzia; De Vero, Luciana; Giudici, Paolo

    2006-02-01

    This study evaluated the glucose tolerance of acetic acid bacteria strains isolated from Traditional Balsamic Vinegar. The results showed that the greatest hurdle to acetic acid bacteria growth is the high sugar concentration, since the majority of the isolated strains are inhibited by 25% of glucose. Sugar tolerance is an important technological trait because Traditional Balsamic Vinegar is made with concentrated cooked must. On the contrary, ethanol concentration of the cooked and fermented must is less significant for acetic acid bacteria growth. A tentative identification of the isolated strains was done by 16S-23S-5S rDNA PCR/RFLP technique and the isolated strains were clustered: 32 strains belong to Gluconacetobacter xylinus group, two strains to Acetobacter pasteurianus group and one to Acetobacter aceti.

  5. [Research of imidazo[1,2-a]benzimidazole derivatives. XXX. Synthesis and properties of (imidazo[1,2-a]benzimidazolyl-2)acetic acid derivatives].

    PubMed

    Anisimova, V A; Tolpygin, I E; Spasov, A A; Serdiuk, T S; Sukhov, A G

    2011-01-01

    Ethyl esters of (9-subtituted-imidazo[1,2-a]benzimidazolyl-2)acetic acids were synthesized. The chemical properties of these esters (hydrolysis, decarboxylation, hydrazinolysis) and biological activity (fungicidal, antimicrobial, antiarrhythmic activity, and also affects on the brain rhythmogenesis) of the prepared compounds were studied.

  6. Catalysis of the Carbonylation of Alcohols to Carboxylic Acids Including Acetic Acid Synthesis from Methanol.

    ERIC Educational Resources Information Center

    Forster, Denis; DeKleva, Thomas W.

    1986-01-01

    Monsanto's highly successful synthesis of acetic acid from methanol and carbon monoxide illustrates use of new starting materials to replace pretroleum-derived ethylene. Outlines the fundamental aspects of the acetic acid process and suggests ways of extending the synthesis to higher carboxylic acids. (JN)

  7. 40 CFR 721.10243 - Phosphonic acid, P-[2-[bis(2-hydroxyethyl)amino]ethyl]-, bis(2-chloroethyl) ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphonic acid, P- ethyl]-, bis(2... Specific Chemical Substances § 721.10243 Phosphonic acid, P- ethyl]-, bis(2-chloroethyl) ester. (a... phosphonic acid, P- ethyl]-, bis(2-chloroethyl) ester (PMN P-09-193; CAS No. 55088-28-3) is subject...

  8. 40 CFR 721.10243 - Phosphonic acid, P-[2-[bis(2-hydroxyethyl)amino]ethyl]-, bis(2-chloroethyl) ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphonic acid, P- ethyl]-, bis(2... Specific Chemical Substances § 721.10243 Phosphonic acid, P- ethyl]-, bis(2-chloroethyl) ester. (a... phosphonic acid, P- ethyl]-, bis(2-chloroethyl) ester (PMN P-09-193; CAS No. 55088-28-3) is subject...

  9. 40 CFR 721.10243 - Phosphonic acid, P-[2-[bis(2-hydroxyethyl)amino]ethyl]-, bis(2-chloroethyl) ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphonic acid, P- ethyl]-, bis(2... Specific Chemical Substances § 721.10243 Phosphonic acid, P- ethyl]-, bis(2-chloroethyl) ester. (a... phosphonic acid, P- ethyl]-, bis(2-chloroethyl) ester (PMN P-09-193; CAS No. 55088-28-3) is subject...

  10. Effect of preparation method on the surface characteristics and activity of the Pd/OMS-2 catalysts for the oxidation of carbon monoxide, toluene, and ethyl acetate

    NASA Astrophysics Data System (ADS)

    Liu, Lisha; Song, Yong; Fu, Zhidan; Ye, Qing; Cheng, Shuiyuan; Kang, Tianfang; Dai, Hongxing

    2017-02-01

    The cryptomelane-type manganese oxide octahedral molecular sieve (OMS-2)-supported Pd (0.5 wt% Pd/OMS-2-DP, 0.5 wt% Pd/OMS-2-PI, and 0.5 wt% Pd/OMS-2-EX) catalysts were prepared by the deposition-precipitation, pre-incorporation, and ion-exchanging strategies, respectively. It is shown that the preparation method exerted an important effect on the physicochemical property of the sample. Among the OMS-2-supported Pd catalysts, 0.5 wt% Pd/OMS-2-DP possessed the highest surface (Mn2+ + Mn3+)/Mn4+ atomic ratio and the highest surface Pd loading and acid sites. The 0.5 wt% Pd/OMS-2 catalysts outperformed the Pd-free counterpart, among which 0.5 wt% Pd/OMS-2-DP presented the best catalytic activity (T50% and T90% were 25 and 55 °C for CO oxidation, 240 and 285 °C for toluene oxidation, and 160 and 200 °C for ethyl acetate oxidation, respectively). We believe that the high Pd surface loading, high surface atomic ratio of (Mn2+ + Mn3+)/Mn4+, and good low-temperature reducibility, good oxygen mobility, and high acidity were responsible for the excellent performance of the 0.5 wt% Pd/OMS-2-DP catalyst.

  11. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  12. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  13. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  14. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  15. Condensation of acetol and acetic acid vapor with sprayed liquid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A cellulose-derived fraction of biomass pyrolysis vapor was simulated by evaporating acetol and acetic acid (AA) from flasks on a hot plate. The liquid in the flasks was infused with heated nitrogen. The vapor/nitrogen stream was superheated in a tube oven and condensed by contact with a cloud of ...

  16. Intramolecular carbon isotope distribution of acetic acid in vinegar.

    PubMed

    Hattori, Ryota; Yamada, Keita; Kikuchi, Makiko; Hirano, Satoshi; Yoshida, Naohiro

    2011-09-14

    Compound-specific carbon isotope analysis of acetic acid is useful for origin discrimination and quality control of vinegar. Intramolecular carbon isotope distributions, which are each carbon isotope ratios of the methyl and carboxyl carbons in the acetic acid molecule, may be required to obtain more detailed information to discriminate such origin. In this study, improved gas chromatography-pyrolysis-gas chromatography-combustion-isotope ratio mass spectrometry (GC-Py-GC-C-IRMS) combined with headspace solid-phase microextraction (HS-SPME) was used to measure the intramolecular carbon isotope distributions of acetic acid in 14 Japanese vinegars. The results demonstrated that the methyl carbons of acetic acid molecules in vinegars produced from plants were mostly isotopically depleted in (13)C relative to the carboxyl carbon. Moreover, isotopic differences (δ(13)C(carboxyl) - δ(13)C(methyl)) had a wide range from -0.3 to 18.2‰, and these values differed among botanical origins, C3, C4, and CAM plants.

  17. Evaluation of Antibacterial, Antineoplastic, and Immunomodulatory Activity of Paullinia cupana Seeds Crude Extract and Ethyl-Acetate Fraction.

    PubMed

    Carvalho, Lidiane Vasconcelos do Nascimento; Cordeiro, Marina Ferraz; E Lins, Thiago Ubiratan Lins; Sampaio, Maria Clara Pinheiro Duarte; de Mello, Gabriela Souto Vieira; da Costa, Valécia de Cassia Mendonça; Marques, Leila Larisa Medeiros; Klein, Traudi; de Mello, João Carlos Palazzo; Cavalcanti, Isabella Macário Ferro; Pitta, Ivan da Rocha; Galdino da Rocha Pitta, Maira; Rêgo, Moacyr Jesus Barreto de Melo

    2016-01-01

    Paullinia cupana (Guarana) is a native plant of Amazon region that has very traditional importance. Its seeds are rich in bioactive compounds, including tannins, which exhibit relevant properties. Objective. This study aimed to evaluate antibacterial, antineoplastic, and immunomodulatory activity of P. cupana seeds crude extract (CE) and ethyl-acetate fraction (EAF). Methods. Antibacterial activity was evaluated by determination of minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). Antineoplastic activity was evaluated by MTT assays in hepatocellular carcinoma (HepG2), breast adenocarcinoma (MCF-7), ductal carcinoma (T47-D), non-Hodgkin's B cell lymphoma (Toledo), T cell leukemia (Jukart), and Acute Leukemia (HL-60) cell lines. BALB/c mice splenocytes were treated to assess IFN-γ, IL-6, IL-17, and IL-10 levels by sandwich ELISA. Results. CE and EAF were not toxic to peripheral blood cells and splenocytes. CE and EAF fractions showed a bacteriostatic activity (MIC = 250 μg/mL) and presented IC50 values of 70.25 μg/mL and 61.18 μg/mL in HL-60 leukemia cell line. All cytokines evaluated had their levels reduced after treatment, following dose-response model. Discussion and Conclusion. Different biological activities were observed for both CE and EAF, suggesting P. cupana as a source of bioactive substances, especially tannins that may be used for several diseases treatments.

  18. Antitumor Activities of Ethyl Acetate Extracts from Selaginella doederleinii Hieron In Vitro and In Vivo and Its Possible Mechanism

    PubMed Central

    Li, Juan; Zhao, Ping; Ma, Wen-tao; Feng, Xie-he; Chen, Ke-li

    2015-01-01

    The antitumor activities of ethyl acetate extracts from Selaginella doederleinii Hieron (SD extracts) in vitro and in vivo and its possible mechanism were investigated. HPLC method was developed for chemical analysis. SD extracts were submitted to 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay on different cells, flow cytometry, and RT-PCR analysis using HepG2 cell and antitumor activity in vivo using H-22 xenograft tumor mice. Six biflavonoids from SD extracts were submitted to molecular docking assay. The results showed that SD extracts had considerable antitumor activity in vitro and in vivo without obvious toxicity on normal cells and could induce cell apoptosis. The mechanisms of tumorigenesis and cell apoptosis induced by SD extracts may be associated with decreasing the ratio of bcl-2 and bax mRNA level, activating caspase-3, suppressing survivin, and decreasing the gene expression of COX-2, 5-LOX, FLAP, and 12-LOX mRNA. The main active component in SD extracts is biflavonoids and some exhibited strong interactions with COX-2, 5-LOX, 12-LOX, and 15-LOX. These results offering evidence of possible mechanisms of SD extracts suppress cell proliferation and promote apoptosis and provide the molecular theoretical basis of clinical application of S. doederleinii for cancer therapy. PMID:25866543

  19. Cellular Anti-Melanogenic Effects of a Euryale ferox Seed Extract Ethyl Acetate Fraction via the Lysosomal Degradation Machinery

    PubMed Central

    Baek, Seung-Hwa; Nam, In-Jeong; Kwak, Hyeong Seob; Kim, Ki-Chan; Lee, Sang-Han

    2015-01-01

    The aim of this study was to investigate the effect of ethyl acetate fraction of Euryale ferox seed extracts (Efse-EA) on melanogenesis in immortalized mouse melanocyte cell line, melan-a. Efse-EA showed strong dose-dependent mushroom tyrosinase inhibitory activity. Treatment of melan-a cells with 30 μg/mL Efse-EA produced strong inhibition of cellular tyrosinase and melanin synthesis. Efse-EA significantly reduced the levels of melanogenesis-related proteins, such as tyrosinase, tyrosinase-related proteins 1 and 2, and microphthalmia-associated transcription factor. Because Efse-EA treatment reduced tyrosinase protein levels without changing its mRNA expression, we investigated whether this decrease was related to proteasomal or lysosomal degradation of tyrosinase. We found that chloroquine, a lysosomal proteolysis inhibitor, almost completely abolished both the down-regulation of tyrosinase and the inhibition of melanin synthesis induced by Efse-EA. These results suggested that Efse-EA may contribute to the inhibition of melanogenesis by altering lysosomal degradation of tyrosinase, and that this extract may provide a new cosmetic skin-whitening agent. PMID:25915032

  20. Cellular Anti-Melanogenic Effects of a Euryale ferox Seed Extract Ethyl Acetate Fraction via the Lysosomal Degradation Machinery.

    PubMed

    Baek, Seung-Hwa; Nam, In-Jeong; Kwak, Hyeong Seob; Kim, Ki-Chan; Lee, Sang-Han

    2015-04-23

    The aim of this study was to investigate the effect of ethyl acetate fraction of Euryale ferox seed extracts (Efse-EA) on melanogenesis in immortalized mouse melanocyte cell line, melan-a. Efse-EA showed strong dose-dependent mushroom tyrosinase inhibitory activity. Treatment of melan-a cells with 30 μg/mL Efse-EA produced strong inhibition of cellular tyrosinase and melanin synthesis. Efse-EA significantly reduced the levels of melanogenesis-related proteins, such as tyrosinase, tyrosinase-related proteins 1 and 2, and microphthalmia-associated transcription factor. Because Efse-EA treatment reduced tyrosinase protein levels without changing its mRNA expression, we investigated whether this decrease was related to proteasomal or lysosomal degradation of tyrosinase. We found that chloroquine, a lysosomal proteolysis inhibitor, almost completely abolished both the down-regulation of tyrosinase and the inhibition of melanin synthesis induced by Efse-EA. These results suggested that Efse-EA may contribute to the inhibition of melanogenesis by altering lysosomal degradation of tyrosinase, and that this extract may provide a new cosmetic skin-whitening agent.

  1. Relative Study of Luminescent Properties with Judd-Ofelt Characterization in Trivalent Europium Complexes Comprising ethyl-(4-fluorobenzoyl) Acetate.

    PubMed

    Devi, Rekha; Chahar, Sangeeta; Khatkar, S P; Taxak, V B; Boora, Priti

    2017-03-13

    Five new europium(III) complexes Eu(p-EFBA)3.(H2O)2 (C1), Eu(p-EFBA)3.neo (C2), Eu(p-EFBA)3.batho (C3), Eu(p-EFBA)3.phen (C4), Eu(p-EFBA)3.bipy (C5) have been synthesized by using ethyl-(4-fluorobenzoyl) acetate (p-EFBA) as β-ketoester ligand and neocuproine (neo), bathophenanthroline (batho), 1,10-phenanthroline (phen) and 2,2-bipyridyl (bipy) as ancillary ligands. The synthesized complexes C1-C5 were characterized by elemental analysis, nuclear magnetic resonance spectroscopy ((1)H-NMR), infrared (IR) spectroscopy, thermogravimetric analysis (TG/DTG), UV-visible and photoluminescence (PL) spectroscopy. The relative study of luminescence spectra of complexes with the previously reported complexes of isomeric ligand (ortho and meta substituted ligand) indicate the higher luminescence properties of complexes as an effect of fluorine position on β-ketoester ligand. The para substituted ligand shows a remarkable effect on quantum efficiencies and Judd-Ofelt intensity parameters (Ω2, Ω4) of the complexes. The higher value of intensity parameter Ω2 associated with hypersensitive (5)D0 → (7)F2 transition of europium(III) ion revealing highly polarizable ligand field. The purposed energy transfer mechanism of complexes indicates the efficient energy transfer in complexes.

  2. Characteristics of starch-based films with different amylose contents plasticised by 1-ethyl-3-methylimidazolium acetate.

    PubMed

    Xie, Fengwei; Flanagan, Bernadine M; Li, Ming; Truss, Rowan W; Halley, Peter J; Gidley, Michael J; McNally, Tony; Shamshina, Julia L; Rogers, Robin D

    2015-05-20

    Starch-based films plasticised by an ionic liquid, 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]), were prepared by a simple compression moulding process, facilitated by the strong plasticisation effect of [Emim][OAc]. The effects of amylose content of starch (regular vs. high-amylose maize) and relative humidity (RH) during ageing of the samples on a range of structural and material characteristics were investigated. Surprisingly, plasticisation by [Emim][OAc] made the effect of amylose content insignificant, contrary to most previous studies when other plasticisers were used. In other words, [Emim][OAc] changed the underlying mechanism responsible for mechanical properties from the entanglement of starch macromolecules (mainly amylose), which has been reported as a main responsible factor previously. The crystallinity of the plasticised starch samples was low and thus was unlikely to have a major contribution to the material characteristics, although the amylose content impacted on the crystalline structure and the mobility of amorphous parts in the samples to some extent. Therefore, RH conditioning and thus the sample water content was the major factor influencing the mechanical properties, glass transition temperature, and electrical conductivity of the starch films. This suggests the potential application of ionic liquid-plasticised starch materials in areas where the control of properties by environmental RH is desired.

  3. Evaluation of Antibacterial, Antineoplastic, and Immunomodulatory Activity of Paullinia cupana Seeds Crude Extract and Ethyl-Acetate Fraction

    PubMed Central

    Carvalho, Lidiane Vasconcelos do Nascimento; Cordeiro, Marina Ferraz; e Lins, Thiago Ubiratan Lins; Sampaio, Maria Clara Pinheiro Duarte; de Mello, Gabriela Souto Vieira; da Costa, Valécia de Cassia Mendonça; Marques, Leila Larisa Medeiros; Klein, Traudi; de Mello, João Carlos Palazzo; Cavalcanti, Isabella Macário Ferro; Pitta, Ivan da Rocha

    2016-01-01

    Paullinia cupana (Guarana) is a native plant of Amazon region that has very traditional importance. Its seeds are rich in bioactive compounds, including tannins, which exhibit relevant properties. Objective. This study aimed to evaluate antibacterial, antineoplastic, and immunomodulatory activity of P. cupana seeds crude extract (CE) and ethyl-acetate fraction (EAF). Methods. Antibacterial activity was evaluated by determination of minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). Antineoplastic activity was evaluated by MTT assays in hepatocellular carcinoma (HepG2), breast adenocarcinoma (MCF-7), ductal carcinoma (T47-D), non-Hodgkin's B cell lymphoma (Toledo), T cell leukemia (Jukart), and Acute Leukemia (HL-60) cell lines. BALB/c mice splenocytes were treated to assess IFN-γ, IL-6, IL-17, and IL-10 levels by sandwich ELISA. Results. CE and EAF were not toxic to peripheral blood cells and splenocytes. CE and EAF fractions showed a bacteriostatic activity (MIC = 250 μg/mL) and presented IC50 values of 70.25 μg/mL and 61.18 μg/mL in HL-60 leukemia cell line. All cytokines evaluated had their levels reduced after treatment, following dose-response model. Discussion and Conclusion. Different biological activities were observed for both CE and EAF, suggesting P. cupana as a source of bioactive substances, especially tannins that may be used for several diseases treatments. PMID:28053639

  4. Ethyl acetate extract of Hypericum japonicum induces apoptosis via the mitochondria-dependent pathway in vivo and in vitro.

    PubMed

    Zhuang, Qunchuan; Li, Jing; Chen, Youqin; Lin, Jiumao; Lai, Faze; Chen, Xuzheng; Lin, Xindeng; Peng, Jun

    2015-10-01

    The widely-used Chinese medicinal herb Hypericum japonicum, also known as Hypericum japonicum Thunb or Tianjihuang, displays potent anti‑carcinogenic effects against liver cancer. However, the molecular mechanism underlying the therapeutic effects of Hypericum japonicum remains to be elucidated. The present study investigated the in vivo efficacy of ethyl acetate extract of Hypericum japonicum (EAEHJ) against tumor growth in an H22 cell‑bearing liver cancer mouse model. Treatment with EAEHJ significantly reduced tumor weight, but had no effect on murine body weight. The results of the present study also showed that EAEHJ induced H22 cell apoptosis in vivo. In addition, the anti‑carcinogenic effects of EAEHJ were investigated in vitro. The results of the present study demonstrate that both phospholipid asymmetry in the plasma membrane and mitochondrial membrane potential were deregulated in HepG2 human hepatoma cells, following treatment with EAEHJ. Treatment with EAEHJ also increased the ratio of pro‑apoptotic B‑cell lymphoma 2 (Bcl‑2)‑associated X protein (Bax) to anti‑apoptotic Bcl‑2, and activated the caspase‑9 signaling pathway. These results suggest that EAEHJ is able to trigger the apoptosis of liver cancer cells via the mitochondria-dependent pathway.

  5. Antidiabetic Activity of Self Nanoemulsifying Drug Delivery System from Bay Leaves (Eugenia polyantha Wight) Ethyl Acetate Fraction

    NASA Astrophysics Data System (ADS)

    Prihapsara, F.; Harini, M.; Widiyani, T.; Artanti, A. N.; Ani, I. L.

    2017-02-01

    Insulin resistance is caused by inability of target tissues to insulin response. Bay leaves (Eugenia polyantha Wight) fraction or extract have been used for the treatment of antidibetic mellitus type-2 resistance insulin (ADMRI) but it has low solubility and bioavailability. To overcome these problems, ethyl acetate fraction of bay leaves was formulated into self nanoemulsifying drug delivery system (SNEDDS) using Virgin Coconut Oil (VCO) as a carrier oil. This study aims to produce nanoherbal medicine, determine effect of nanoherbal preparation derived from bay leaves as an anti-ADMRI. The results showed that the optimum SNEDDS formula was tween 80 : PEG 400 : Virgin Coconut Oil (30% : 60% : 10%) in 5 mL. It has emulsification time 13.00 seconds with the average of droplet size value 84.5 nanometer and zeta potential value ± 0.2 mV. Morphological observation showed the nanoemulsion particles has spherical shaped and stable in different pH media. Hypoglycaemic effect of single dose metformin, SNEDDS, combination a-half dose of SNEEDS with metformin value is 28.3%; 15.6%; 34.6% respectively.

  6. Michrochip chromatography using an open-tubular microchannel and a ternary water-ACN-ethyl acetate mixture carrier solution.

    PubMed

    Matsuda, Takafumi; Yamashita, Kenichi; Maeda, Hideaki; Hashimoto, Masahiko; Tsukagoshi, Kazuhiko

    2013-03-01

    A capillary chromatography system has been developed using a ternary mixed-solvents solution, i.e. water-hydrophilic/hydrophobic organic solvent mixture as a carrier solution. Here, we tried to carry out the chromatographic system on a microchip incorporating the open-tubular microchannels. A model analyte solution of isoluminol isothiocyanate (ILITC) and ILITC-labeled biomolecule was injected to the double T-junction part on the microchip. The analyte solution was delivered in the separation microchannel (40 μm deep, 100 μm wide, and 22 cm long) with the ternary water-ACN-ethyl acetate mixture carrier solution (3:8:4 volume ratio, the organic solvent rich or 15:3:2 volume ratio, the water-rich). The analyte, free-ILITC and labeled BSA mixture, was separated through the microchannel, where the carrier solvents were radially distributed in the separation channel generating inner and outer phases. The outer phase acts as a pseudo-stationary phase under laminar flow conditions in the system. The ILITC and the labeled BSA were eluted and detected with chemiluminescence reaction.

  7. Ethyl acetate extract of Peperomia tetraphylla induces cytotoxicity, cell cycle arrest, and apoptosis in lymphoma U937 cells.

    PubMed

    Yu, Dayong; Yang, Xiuxiu; Lu, Xuan; Shi, Liying; Feng, Baomin

    2016-12-01

    The current study evaluated the cytotoxicity and the mechanism of apoptotic induction by Peperomia tetraphylla in U937 lymphoma cells. The results showed that P. tetraphylla ethyl acetate extract (EAEPT) inhibited the cell growth in U937 cells by MTT assay. After the U937 cells were treated with EAEPT, the cells exhibited marked morphological features of apoptosis (Hoechst 33342 staining) and the number of apoptotic cell (Annexin V-FITC/PI staining) increased. The treatment of EAEPT could induce loss of mitochondrial membrane potential (MMP) and increase the ROS level. Moreover, EAEPT treatment resulted in the accumulation of cells at S phase. We found that EAEPT could induce the cleavage of the caspase 3, caspase 8, caspase 9 and Bid. And the treatment of EAEPT could increase expression of Bax and down-regulate the expression of CCNB1, CCND1 and CDK1. The sub-fraction of EAEPT, namely EASub1 demonstrated the highest cytotoxicity activity on U937 cells. It was confirmed that EAEPT could inhibit the growth of U937 cells by blocking the cell cycle and prompted apoptosis via the ROS-medicated mitochondria pathway in vitro.

  8. Ethyl acetate Salix alba leaves extract-loaded chitosan-based hydrogel film for wound dressing applications.

    PubMed

    Qureshi, Mohammad A; Khatoon, Fehmeeda; Rizvi, Moshahid A; Zafaryab, Md

    2015-01-01

    High toxicity and multidrug resistance associated with various standard antimicrobial drugs have necessitated search for safer alternatives in plant-derived materials. In this study, we performed biological examination of chitosan-based hydrogel film loaded with ethyl acetate Salix alba leaves extract against 11 standard laboratory strains. FTIR showed regeneration of saccharide peak in CP1A at 1047 cm(-1) and increased in height of other peaks. DSC exothermic decomposition peaks at 112 °C, 175 °C and 251 °C reveal the effect of extract on hydrogel film. From FESEM images, three-dimensional cross-linking and extract easily seen in the globular form from the surface. MTT assay on HEK 293 cells showed that CP1A was non-toxic. Minimum inhibitory concentration ranges from 4000 μg/ml to 125 μg/ml. Enterococcus faecium, Candida glabrata and Candida tropicalis were the most resistant, while Salmonella typhi and Candida guilliermondii were the most susceptible micro-organisms.

  9. Inhibition of Hepatitis C Virus Replication and Viral Helicase by Ethyl Acetate Extract of the Marine Feather Star Alloeocomatella polycladia

    PubMed Central

    Yamashita, Atsuya; Salam, Kazi Abdus; Furuta, Atsushi; Matsuda, Yasuyoshi; Fujita, Osamu; Tani, Hidenori; Fujita, Yoshihisa; Fujimoto, Yuusuke; Ikeda, Masanori; Kato, Nobuyuki; Sakamoto, Naoya; Maekawa, Shinya; Enomoto, Nobuyuki; Nakakoshi, Masamichi; Tsubuki, Masayoshi; Sekiguchi, Yuji; Tsuneda, Satoshi; Akimitsu, Nobuyoshi; Noda, Naohiro; Tanaka, Junichi; Moriishi, Kohji

    2012-01-01

    Hepatitis C virus (HCV) is a causative agent of acute and chronic hepatitis, leading to the development of hepatic cirrhosis and hepatocellular carcinoma. We prepared extracts from 61 marine organisms and screened them by an in vitro fluorescence assay targeting the viral helicase (NS3), which plays an important role in HCV replication, to identify effective candidates for anti-HCV agents. An ethyl acetate-soluble fraction of the feather star Alloeocomatella polycladia exhibited the strongest inhibition of NS3 helicase activity, with an IC50 of 11.7 µg/mL. The extract of A. polycladia inhibited interaction between NS3 and RNA but not ATPase of NS3. Furthermore, the replication of the replicons derived from three HCV strains of genotype 1b in cultured cells was suppressed by the extract with an EC50 value of 23 to 44 µg/mL, which is similar to the IC50 value of the NS3 helicase assay. The extract did not induce interferon or inhibit cell growth. These results suggest that the unknown compound(s) included in A. polycladia can inhibit HCV replication by suppressing the helicase activity of HCV NS3. This study may present a new approach toward the development of a novel therapy for chronic hepatitis C. PMID:22690141

  10. Vinegar Production from Jabuticaba (Myrciaria jaboticaba) Fruit Using Immobilized Acetic Acid Bacteria

    PubMed Central

    Silva, Monique Suela; Cristina de Souza, Angélica; Magalhăes-Guedes, Karina Teixeira; Ribeiro, Fernanda Severo de Rezende; Schwan, Rosane Freitas

    2016-01-01

    Summary Cell immobilization comprises the retention of metabolically active cells inside a polymeric matrix. In this study, the production of jabuticaba (Myrciaria jaboticaba) vinegar using immobilized Acetobacter aceti and Gluconobacter oxydans cells is proposed as a new method to prevent losses of jabuticaba fruit surplus. The pulp of jabuticaba was processed and Saccharomyces cerevisiae CCMA 0200 was used to ferment the must for jabuticaba wine production. Sugars, alcohols (ethanol and glycerol) and organic acids were assayed by high-performance liquid chromatography. Volatile compounds were determined by gas chromatography-flame ionization detector. The ethanol content of the produced jabuticaba wine was approx. 74.8 g/L (9.5% by volume) after 168 h of fermentation. Acetic acid fermentation for vinegar production was performed using a mixed culture of immobilized A. aceti CCT 0190 and G. oxydans CCMA 0350 cells. The acetic acid yield was 74.4% and productivity was 0.29 g/(L·h). The vinegar had particularly high concentrations of citric (6.67 g/L), malic (7.02 g/L) and succinic (5.60 g/L) acids. These organic acids give a suitable taste and flavour to the vinegar. Seventeen compounds (aldehydes, higher alcohols, terpene, acetate, diether, furans, acids, ketones and ethyl esters) were identified in the jabuticaba vinegar. In conclusion, vinegar was successfully produced from jabuticaba fruits using yeast and immobilized mixed cultures of A. aceti and G. oxydans. To the best of our knowledge, this is the first study to use mixed culture of immobilized cells for the production of jabuticaba vinegar. PMID:27956867

  11. Vinegar Production from Jabuticaba (Myrciaria jaboticaba) Fruit Using Immobilized Acetic Acid Bacteria.

    PubMed

    Dias, Disney Ribeiro; Silva, Monique Suela; Cristina de Souza, Angélica; Magalhăes-Guedes, Karina Teixeira; Ribeiro, Fernanda Severo de Rezende; Schwan, Rosane Freitas

    2016-09-01

    Cell immobilization comprises the retention of metabolically active cells inside a polymeric matrix. In this study, the production of jabuticaba (Myrciaria jaboticaba) vinegar using immobilized Acetobacter aceti and Gluconobacter oxydans cells is proposed as a new method to prevent losses of jabuticaba fruit surplus. The pulp of jabuticaba was processed and Saccharomyces cerevisiae CCMA 0200 was used to ferment the must for jabuticaba wine production. Sugars, alcohols (ethanol and glycerol) and organic acids were assayed by high-performance liquid chromatography. Volatile compounds were determined by gas chromatography-flame ionization detector. The ethanol content of the produced jabuticaba wine was approx. 74.8 g/L (9.5% by volume) after 168 h of fermentation. Acetic acid fermentation for vinegar production was performed using a mixed culture of immobilized A. aceti CCT 0190 and G. oxydans CCMA 0350 cells. The acetic acid yield was 74.4% and productivity was 0.29 g/(L·h). The vinegar had particularly high concentrations of citric (6.67 g/L), malic (7.02 g/L) and succinic (5.60 g/L) acids. These organic acids give a suitable taste and flavour to the vinegar. Seventeen compounds (aldehydes, higher alcohols, terpene, acetate, diether, furans, acids, ketones and ethyl esters) were identified in the jabuticaba vinegar. In conclusion, vinegar was successfully produced from jabuticaba fruits using yeast and immobilized mixed cultures of A. aceti and G. oxydans. To the best of our knowledge, this is the first study to use mixed culture of immobilized cells for the production of jabuticaba vinegar.

  12. 40 CFR 721.1950 - 2-Butenedioic acid (Z), mono(2-((1-oxopropenyloxy)ethyl) ester .

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-oxopropenyloxy)ethyl) ester . 721.1950 Section 721.1950 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1950 2-Butenedioic acid (Z), mono(2-((1-oxopropenyloxy)ethyl) ester . (a... 2-butenedioic acid (Z), mono(2-((1-oxopropenyloxy)ethyl) ester (PMN P-85-543) is subject...

  13. 40 CFR 721.1950 - 2-Butenedioic acid (Z), mono(2-((1-oxopropenyloxy)ethyl) ester .

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-oxopropenyloxy)ethyl) ester . 721.1950 Section 721.1950 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1950 2-Butenedioic acid (Z), mono(2-((1-oxopropenyloxy)ethyl) ester . (a... 2-butenedioic acid (Z), mono(2-((1-oxopropenyloxy)ethyl) ester (PMN P-85-543) is subject...

  14. 40 CFR 721.1950 - 2-Butenedioic acid (Z), mono(2-((1-oxopropenyloxy)ethyl) ester .

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-oxopropenyloxy)ethyl) ester . 721.1950 Section 721.1950 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1950 2-Butenedioic acid (Z), mono(2-((1-oxopropenyloxy)ethyl) ester . (a... 2-butenedioic acid (Z), mono(2-((1-oxopropenyloxy)ethyl) ester (PMN P-85-543) is subject...

  15. 40 CFR 721.1950 - 2-Butenedioic acid (Z), mono(2-((1-oxopropenyloxy)ethyl) ester .

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-oxopropenyloxy)ethyl) ester . 721.1950 Section 721.1950 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1950 2-Butenedioic acid (Z), mono(2-((1-oxopropenyloxy)ethyl) ester . (a... 2-butenedioic acid (Z), mono(2-((1-oxopropenyloxy)ethyl) ester (PMN P-85-543) is subject...

  16. 40 CFR 721.1950 - 2-Butenedioic acid (Z), mono(2-((1-oxopropenyloxy)ethyl) ester .

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-oxopropenyloxy)ethyl) ester . 721.1950 Section 721.1950 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1950 2-Butenedioic acid (Z), mono(2-((1-oxopropenyloxy)ethyl) ester . (a... 2-butenedioic acid (Z), mono(2-((1-oxopropenyloxy)ethyl) ester (PMN P-85-543) is subject...

  17. Occurrence and metabolism of 7-hydroxy-2-indolinone-3-acetic acid in Zea mays

    NASA Technical Reports Server (NTRS)

    Lewer, P.; Bandurski, R. S.

    1987-01-01

    7-Hydroxy-2-indolinone-3-acetic acid was identified as a catabolite of indole-3-acetic acid in germinating kernels of Zea mays and found to be present in amounts of ca 3.1 nmol/kernel. 7-Hydroxy-2-indolinone-3-acetic acid was shown to be a biosynthetic intermediate between 2-indolinone-3-acetic acid and 7-hydroxy-2-indolinone-3-acetic acid-7'-O-glucoside in both kernels and roots of Zea mays. Further metabolism of 7-hydroxy-2-[5-3H]-indolinone-3-acetic acid-7'-O-glucoside occurred to yield tritiated water plus, as yet, uncharacterized products.

  18. In Vivo Antioxidant and Anti-Skin-Aging Activities of Ethyl Acetate Extraction from Idesia polycarpa Defatted Fruit Residue in Aging Mice Induced by D-Galactose

    PubMed Central

    Jia, Ran-ran; Chen, Fang

    2014-01-01

    Two different concentrations of D-galactose (D-gal) induced organism and skin aging in Kunming mice were used to examine comprehensively the antioxidant and antiaging activities of ethyl acetate extraction (EAE) from Idesia polycarpa defatted fruit residue for the first time. The oxygen radical absorbance capacity (ORAC) of EAE was 13.09 ± 0.11 μmol Trolox equivalents (TE)/mg, which showed EAE had great in vitro free radical scavenging and antioxidant activity. Biochemical indexes and morphological analysis of all tested tissues showed that EAE could effectively improve the total antioxidant capacity (T-AOC) of the antioxidant defense system of the aging mice, enhance the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) of tissues and serum, increase glutathione (GSH) content and decrease the malondialdehyde (MDA) content, and maintain the skin collagen, elastin, and moisture content. Meanwhile, EAE could effectively attenuate the morphological damage in brain, liver, kidney, and skin induced by D-gal and its effect was not less than that of the well-known L-ascorbic acid (VC) and α-tocopherol (VE). Overall, EAE is a potent natural antiaging agent with great antioxidant activity, which can be developed as a new medicine and cosmetic for the treatment of age-related conditions. PMID:24971146

  19. Comparison of Kato-Katz, ethyl-acetate sedimentation, and Midi Parasep® in the diagnosis of hookworm, Ascaris and Trichuris infections in the context of an evaluation of rural sanitation in India.

    PubMed

    Funk, Anna L; Boisson, Sophie; Clasen, Thomas; Ensink, Jeroen H J

    2013-06-01

    The Kato-Katz, conventional ethyl-acetate sedimentation, and Midi Parasep(®) methods for diagnosing infection with soil-transmitted helminths were compared. The Kato-Katz technique gave the best overall diagnostic performance with the highest results in all measures (prevalence, faecal egg count, sensitivity) followed by the conventional ethyl-acetate and then the Midi Parasep(®) technique. The Kato-Katz technique showed a significantly higher faecal egg count and sensitivity for both hookworm and Trichuris as compared to the Midi Parasep(®) technique. The conventional ethyl-acetate technique produced smaller pellets and showed lower pellet mobility as compared to the Midi Parasep(®).

  20. Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor.

    PubMed

    Mounir, Majid; Shafiei, Rasoul; Zarmehrkhorshid, Raziyeh; Hamouda, Allal; Ismaili Alaoui, Mustapha; Thonart, Philippe

    2016-02-01

    The activity of bacterial strains significantly influences the quality and the taste of vinegar. Previous studies of acetic acid bacteria have primarily focused on the ability of bacterial strains to produce high amounts of acetic acid. However, few studies have examined the production of gluconic acid during acetous fermentation at high temperatures. The production of vinegar at high temperatures by two strains of acetic acid bacteria isolated from apple and cactus fruits, namely AF01 and CV01, respectively, was evaluated in this study. The simultaneous production of gluconic and acetic acids was also examined in this study. Biochemical and molecular identification based on a 16s rDNA sequence analysis confirmed that these strains can be classified as Acetobacter pasteurianus. To assess the ability of the isolated strains to grow and produce acetic acid and gluconic acid at high temperatures, a semi-continuous fermentation was performed in a 20-L bioreactor. The two strains abundantly grew at a high temperature (41°C). At the end of the fermentation, the AF01 and CV01 strains yielded acetic acid concentrations of 7.64% (w/v) and 10.08% (w/v), respectively. Interestingly, CV01 was able to simultaneously produce acetic and gluconic acids during acetic fermentation, whereas AF01 mainly produced acetic acid. In addition, CV01 was less sensitive to ethanol depletion during semi-continuous fermentation. Finally, the enzymatic study showed that the two strains exhibited high ADH and ALDH enzyme activity at 38°C compared with the mesophilic reference strain LMG 1632, which was significantly susceptible to thermal inactivation.

  1. Ethyl 2-(1,2,3,4-tetrahydro­spiro­[carba­zole-3,2′-[1,3]dioxolan]-9-yl)acetate

    PubMed Central

    Löffler, Philipp M. G.; Ulven, Trond; Bond, Andrew D.

    2009-01-01

    In the title compound, C18H21NO4, the hydrogenated six-membered ring of the carbazole unit adopts a half-chair conformation. The dioxolane ring and ethyl­acetate substituent point to opposite sides of the carbazole plane. The ethyl­acetate substituent adopts an essentially fully extended conformation, and its mean plane forms a dihedral angle of 83.8 (1)° with respect to the carbazole mean plane. The mol­ecules are arranged into stacks in which the carbazole planes form a dihedral angle of 4.4 (1)° and have an approximate inter­planar separation of 3.6 Å. PMID:21582427

  2. Validation and uncertainty analysis of a multi-residue method for pesticides in grapes using ethyl acetate extraction and liquid chromatography-tandem mass spectrometry.

    PubMed

    Banerjee, Kaushik; Oulkar, Dasharath P; Dasgupta, Soma; Patil, Shubhangi B; Patil, Sangram H; Savant, Rahul; Adsule, Pandurang G

    2007-11-30

    A method was validated for the multi-residue analysis of 82 pesticides in grapes at ethyl acetate (10 mL); cleaned by dispersive solid phase extraction and the results were obtained by liquid chromatography-tandem mass spectrometry. Reduction in sample size and proportion of ethyl acetate for extraction did not affect accuracy or precision of analysis when compared to the reported methods and was also statistically similar to the QuEChERS technique. The method was rugged (HorRat < 0.5) with <20% measurement uncertainties. Limit of quantification was <10 ng/g with recoveries 70-120% for most pesticides. The method offers cheaper and safer alternative to typical multi-residue analysis methods for grape.

  3. A continuous acetic acid system for polyacrylamide gel electrophoresis of gliadins and other prolamines.

    PubMed

    Clements, R L

    1988-02-01

    A polyacrylamide gel electrophoresis system buffered by acetic acid alone was developed for electrophoresis of prolamines. When applied to gliadin electrophoresis, the acetic acid system produces more bands than does a conventional aluminum lactate-lactic acid system (using 12% acrylamide gels). The acetic acid system is relatively simple, requiring a single buffer component that is universally available in high purity.

  4. [Conversion of acetic acid to methane by thermophiles: Progress report

    SciTech Connect

    Zinder, S.

    1991-12-31

    The objective of this project is to provide an understanding of thermophilic anaerobic microorganisms capable of breaking down acetic acid, the precursor of two-thirds of the methane produced by anaerobic bioreactors. Recent results include: (1) the isolation of Methanothrix strain CALLS-1, which grows much more rapidly than mesophilic strains; (2) the demonstration that thermophilic cultures of Methanosarcina and Methanothrix show minimum thresholds for acetate utilization of 1--2.5 mM and 10--20{mu}m respectively, in agreement with ecological data indicating that Methanothrix is favored by low acetate concentration; (3) the demonstration of high levels of thermostable acetyl-coA synthetase and carbon monoxide dehydrogenase in cell-free extracts of Methanothrix strains CALS-1; (4) the demonstration of methanogenesis from acetate and ATP in cell free extracts of strain CALS-1. (5) the demonstration that methanogenesis from acetate required 2 ATP/methane, and, in contrast to Methanosarcina, was independent of hydrogen and other electron donors; (6) the finding that entropy effects must be considered when predicting the level of hydrogen in thermophilic syntrophic cultures. (7) the isolation and characterization of the Desulfotomaculum thermoacetoxidans. Current research is centered on factors which allow thermophilic Methanothrix to compete with Methanosarcina.

  5. (Conversion of acetic acid to methane by thermophiles: Progress report)

    SciTech Connect

    Zinder, S.

    1991-01-01

    The objective of this project is to provide an understanding of thermophilic anaerobic microorganisms capable of breaking down acetic acid, the precursor of two-thirds of the methane produced by anaerobic bioreactors. Recent results include: (1) the isolation of Methanothrix strain CALLS-1, which grows much more rapidly than mesophilic strains; (2) the demonstration that thermophilic cultures of Methanosarcina and Methanothrix show minimum thresholds for acetate utilization of 1--2.5 mM and 10--20{mu}m respectively, in agreement with ecological data indicating that Methanothrix is favored by low acetate concentration; (3) the demonstration of high levels of thermostable acetyl-coA synthetase and carbon monoxide dehydrogenase in cell-free extracts of Methanothrix strains CALS-1; (4) the demonstration of methanogenesis from acetate and ATP in cell free extracts of strain CALS-1. (5) the demonstration that methanogenesis from acetate required 2 ATP/methane, and, in contrast to Methanosarcina, was independent of hydrogen and other electron donors; (6) the finding that entropy effects must be considered when predicting the level of hydrogen in thermophilic syntrophic cultures. (7) the isolation and characterization of the Desulfotomaculum thermoacetoxidans. Current research is centered on factors which allow thermophilic Methanothrix to compete with Methanosarcina.

  6. High-yield synthesis of bioactive ethyl cinnamate by enzymatic esterification of cinnamic acid.

    PubMed

    Wang, Yun; Zhang, Dong-Hao; Zhang, Jiang-Yan; Chen, Na; Zhi, Gao-Ying

    2016-01-01

    In this paper, Lipozyme TLIM-catalyzed synthesis of ethyl cinnamate through esterification of cinnamic acid with ethanol was studied. In order to increase the yield of ethyl cinnamate, several media, including acetone, isooctane, DMSO and solvent-free medium, were investigated in this reaction. The reaction showed a high yield by using isooctane as reaction medium, which was found to be much higher than the yields reported previously. Furthermore, several parameters such as shaking rate, water activity, reaction temperature, substrate molar ratio and enzyme loading had important influences on this reaction. For instance, when temperature increased from 10 to 50 °C, the initial reaction rate increased by 18 times and the yield of ethyl cinnamate increased by 6.2 times. Under the optimum conditions, lipase-catalyzed synthesis of ethyl cinnamate gave a maximum yield of 99%, which was of general interest for developing industrial processes for the preparation of ethyl cinnamate.

  7. Identification of Pyrogallol in the Ethyl Acetate-Soluble Part of Coffee as the Main Contributor to Its Xanthine Oxidase Inhibitory Activity.

    PubMed

    Honda, Sari; Masuda, Toshiya

    2016-10-10

    In this study, ethyl acetate-soluble parts of hot-water extracts from roasted coffee beans were found to demonstrate potent xanthine oxidase (XO) inhibition. The XO inhibitory activities and chlorogenic lactone contents (chlorogenic lactones have previously been identified as XO inhibitors in roast coffee) were measured for ethyl acetate-soluble parts prepared from coffee beans roasted to three different degrees. Although chlorogenic lactone contents decreased with higher degrees of roasting, the XO inhibitory activity did not decrease. These data led us to investigate new potent inhibitors present in these ethyl acetate-soluble extracts. Repeated assay-guided purifications afforded a highly potent XO inhibitor, which was eluted before chlorogenic lactones via medium-pressure chromatography using an octadecylsilica gel column. The obtained inhibitor was identified as pyrogallol (1,2,3-trihydroxybenzene), which had an IC50 of 0.73 μmol L(-1), much stronger than that of other related polyphenolic compounds. Quantitative analysis of pyrogallol and chlorogenic lactones revealed that pyrogallol (at concentrations of 33.9 ± 4.2 nmol mL(-1) in light roast coffee and 39.4 ± 3.9 nmol mL(-1) in dark roast coffee) was the main XO inhibitor in hot-water extracts of roasted coffee beans (i.e., drinking coffee).

  8. Evaporation kinetics of acetic acid-water solutions

    NASA Astrophysics Data System (ADS)

    Duffey, K.; Wong, N.; Saykally, R.; Cohen, R. C.

    2012-12-01

    The transport of water molecules across vapor-liquid interfaces in the atmosphere is a crucial step in the formation and evolution of cloud droplets. Despite decades of study, the effects of solutes on the mechanism and rate of evaporation and condensation remain poorly characterized. The present work aims to determine the effect of atmospherically-relevant solutes on the evaporation rate of water. In our experiments, we create a train of micron-sized droplets and measure their temperature via Raman thermometry as they undergo evaporation without condensation. Analysis of the cooling rate yields the evaporation coefficient (γ). Previous work has shown that inorganic salts have little effect on γ, with surface-adsorbing anions causing a slight reduction in the coefficient from that measured for pure water. Organic acids are ubiquitous in aqueous aerosol and have been shown to disrupt the surface structure of water. Here we describe measurements of the evaporation rate of acetic acid solutions, showing that acetic acid reduces γ to a larger extent than inorganic ions, and that γ decreases with increasing acetic acid concentration.

  9. Crystal structure of febuxostat-acetic acid (1/1).

    PubMed

    Wu, Min; Hu, Xiu-Rong; Gu, Jian-Ming; Tang, Gu-Ping

    2015-05-01

    The asymmetric unit of the title compound [systematic name: 2-(3-cyano-4-iso-butyl-oxyphen-yl)-4-methyl-thia-zole-5-carb-oxy-lic acid-acetic acid (1/1)], C16H16N2O3S·CH3COOH, contains a febuxostat mol-ecule and an acetic acid mol-ecule. In the febuxostat mol-ecule, the thia-zole ring is nearly coplanar with the benzene ring [dihedral angle = 3.24 (2)°]. In the crystal, the febuxostat and acetic acid mol-ecules are linked by O-H⋯O, O-H⋯N hydrogen bonds and weak C-H⋯O hydrogen bonds, forming supra-molecular chains propagating along the b-axis direction. π-π stacking is observed between nearly parallel thia-zole and benzene rings of adjacent mol-ecules; the centroid-to-centroid distances are 3.8064 (17) and 3.9296 (17) Å.

  10. Acetic acid bacteria spoilage of bottled red wine -- a review.

    PubMed

    Bartowsky, Eveline J; Henschke, Paul A

    2008-06-30

    Acetic acid bacteria (AAB) are ubiquitous organisms that are well adapted to sugar and ethanol rich environments. This family of Gram-positive bacteria are well known for their ability to produce acetic acid, the main constituent in vinegar. The oxidation of ethanol through acetaldehyde to acetic acid is well understood and characterised. AAB form part of the complex natural microbial flora of grapes and wine, however their presence is less desirable than the lactic acid bacteria and yeast. Even though AAB were described by Pasteur in the 1850s, wine associated AAB are still difficult to cultivate on artificial laboratory media and until more recently, their taxonomy has not been well characterised. Wine is at most risk of spoilage during production and the presence of these strictly aerobic bacteria in grape must and during wine maturation can be controlled by eliminating, or at least limiting oxygen, an essential growth factor. However, a new risk, spoilage of wine by AAB after packaging, has only recently been reported. As wine is not always sterile filtered prior to bottling, especially red wine, it often has a small resident bacterial population (<10(3) cfu/mL), which under conducive conditions might proliferate. Bottled red wines, sealed with natural cork closures, and stored in a vertical upright position may develop spoilage by acetic acid bacteria. This spoilage is evident as a distinct deposit of bacterial biofilm in the neck of the bottle at the interface of the wine and the headspace of air, and is accompanied with vinegar, sherry, bruised apple, nutty, and solvent like off-aromas, depending on the degree of spoilage. This review focuses on the wine associated AAB species, the aroma and flavour changes in wine due to AAB metabolism, discusses the importance of oxygen ingress into the bottle and presents a hypothesis for the mechanism of spoilage of bottled red wine.

  11. 40 CFR 721.10448 - Acetic acid, hydroxy- methoxy-, methyl ester, reaction products with substituted alkylamine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ester, reaction products with substituted alkylamine (generic). 721.10448 Section 721.10448 Protection... Acetic acid, hydroxy- methoxy-, methyl ester, reaction products with substituted alkylamine (generic). (a... generically as acetic acid, hydroxymethoxy-, methyl ester, reaction products with substituted alkylamine...

  12. 40 CFR 721.10448 - Acetic acid, hydroxy- methoxy-, methylester, reaction products with substituted alkylamine...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-, methylester, reaction products with substituted alkylamine (generic). 721.10448 Section 721.10448 Protection... Acetic acid, hydroxy- methoxy-, methylester, reaction products with substituted alkylamine (generic). (a... generically as acetic acid, hydroxymethoxy-, methyl ester, reaction products with substituted alkylamine...

  13. Modification and re-validation of the ethyl acetate-based multi-residue method for pesticides in produce

    PubMed Central

    Rooseboom, Astrid; van Dam, Ruud; Roding, Marleen; Arondeus, Karin; Sunarto, Suryati

    2007-01-01

    The ethyl acetate-based multi-residue method for determination of pesticide residues in produce has been modified for gas chromatographic (GC) analysis by implementation of dispersive solid-phase extraction (using primary–secondary amine and graphitized carbon black) and large-volume (20 μL) injection. The same extract, before clean-up and after a change of solvent, was also analyzed by liquid chromatography with tandem mass spectrometry (LC–MS–MS). All aspects related to sample preparation were re-assessed with regard to ease and speed of the analysis. The principle of the extraction procedure (solvent, salt) was not changed, to avoid the possibility invalidating data acquired over past decades. The modifications were made with techniques currently commonly applied in routine laboratories, GC–MS and LC–MS–MS, in mind. The modified method enables processing (from homogenization until final extracts for both GC and LC) of 30 samples per eight hours per person. Limits of quantification (LOQs) of 0.01 mg kg−1 were achieved with both GC–MS (full-scan acquisition, 10 mg matrix equivalent injected) and LC–MS–MS (2 mg injected) for most of the pesticides. Validation data for 341 pesticides and degradation products are presented. A compilation of analytical quality-control data for pesticides routinely analyzed by GC–MS (135 compounds) and LC–MS–MS (136 compounds) in over 100 different matrices, obtained over a period of 15 months, are also presented and discussed. At the 0.05 mg kg−1 level acceptable recoveries were obtained for 93% (GC–MS) and 92% (LC–MS–MS) of pesticide–matrix combinations. PMID:17563885

  14. Genomic saturation mutagenesis and polygenic analysis identify novel yeast genes affecting ethyl acetate production, a non-selectable polygenic trait

    PubMed Central

    Abt, Tom Den; Souffriau, Ben; Foulquié-Moreno, Maria R.; Duitama, Jorge; Thevelein, Johan M.

    2016-01-01

    Isolation of mutants in populations of microorganisms has been a valuable tool in experimental genetics for decades. The main disadvantage, however, is the inability of isolating mutants in non-selectable polygenic traits. Most traits of organisms, however, are non-selectable and polygenic, including industrially important properties of microorganisms. The advent of powerful technologies for polygenic analysis of complex traits has allowed simultaneous identification of multiple causative mutations among many thousands of irrelevant mutations. We now show that this also applies to haploid strains of which the genome has been loaded with induced mutations so as to affect as many non-selectable, polygenic traits as possible. We have introduced about 900 mutations into single haploid yeast strains using multiple rounds of EMS mutagenesis, while maintaining the mating capacity required for genetic mapping. We screened the strains for defects in flavor production, an important non-selectable, polygenic trait in yeast alcoholic beverage production. A haploid strain with multiple induced mutations showing reduced ethyl acetate production in semi-anaerobic fermentation, was selected and the underlying quantitative trait loci (QTLs) were mapped using pooled-segregant whole-genome sequence analysis after crossing with an unrelated haploid strain. Reciprocal hemizygosity analysis and allele exchange identified PMA1 and CEM1 as causative mutant alleles and TPS1 as a causative genetic background allele. The case of CEM1 revealed that relevant mutations without observable effect in the haploid strain with multiple induced mutations (in this case due to defective mitochondria) can be identified by polygenic analysis as long as the mutations have an effect in part of the segregants (in this case those that regained fully functional mitochondria). Our results show that genomic saturation mutagenesis combined with complex trait polygenic analysis could be used successfully to

  15. Harpagophytum Procumbens Ethyl Acetate Fraction Reduces Fluphenazine-Induced Vacuous Chewing Movements and Oxidative Stress in Rat Brain.

    PubMed

    Schaffer, Larissa Finger; de Freitas, Catiuscia Molz; Chiapinotto Ceretta, Ana Paula; Peroza, Luis Ricardo; de Moraes Reis, Elizete; Krum, Bárbara Nunes; Busanello, Alcindo; Boligon, Aline Augusti; Sudati, Jéssie Haigert; Fachinetto, Roselei; Wagner, Caroline

    2016-05-01

    Long-term treatment with fluphenazine is associated with manifestation of extrapyramidal side effects, such as tardive dyskinesia. The molecular mechanisms related to the pathophysiology of TD remain unclear, and several hypotheses, including a role for oxidative stress, have been proposed. Harpagophytum procumbens is an herbal medicine used mainly due to anti-inflammatory effects, but it also exhibits antioxidant effects. We investigated the effect of ethyl acetate fraction of H. procumbens (EAF HP) in fluphenazine-induced orofacial dyskinesia by evaluating behavioral parameters at different times (vacuous chewing movements (VCM's) and locomotor and exploratory activity), biochemical serological analyses, and biochemical markers of oxidative stress of the liver, kidney, cortex, and striatum. Chronic administration of fluphenazine (25 mg/kg, intramuscular (i.m) significantly increased the VCMs at all analyzed times (2, 7, 14, and 21 days), and this was inhibited by EAF HP (especially at a dose of 30 mg/kg). Fluphenazine decreased locomotion and exploratory activity, and EAF HP did not improve this decrease. Fluphenazine induced oxidative damage, as identified by changes in catalase activity and ROS levels in the cortex and striatum, which was reduced by EAF HP, especially in the striatum. In the cortex, EAF HP was protective against fluphenazine-induced changes in catalase activity but not against the increase in ROS level. Furthermore, EAF HP was shown to be safe, since affected serum biochemical parameters or parameters of oxidative stress in the liver and kidney. These findings suggest that the H. procumbens is a promising therapeutic agent for the treatment of involuntary oral movements.

  16. Determination of amitraz and its transformation products in pears by ethyl acetate extraction and liquid chromatography-tandem mass spectrometry.

    PubMed

    Tokman, Nilgun; Soler, Carla; Farré, Marinel la; Picó, Yolanda; Barceló, Damià

    2009-04-10

    A method has been developed for identification and quantification of the acaricide amitraz and its transformation products, 2,4-dimethylaniline (DMA), 2,4-dimethylformamidine (DMF) and N-2,4-dimethylphenyl-N-methylformamidine (DMPF) in pears. The analytes were extracted using ethyl acetate and anhydrous sodium sulphate. Analysis was performed by liquid chromatography-electrospray tandem mass spectrometry (LC-ESI-MS/MS) in the positive ion mode using a triple quadrupole (QqQ) instrument. Two precursor-product ion transitions were monitored for each compound in the selected reaction monitoring (SRM) mode. The method was validated with pears taken from the orchard before the amitraz treatment and spiked at the limit of quantification (LOQ), 10 times the LOQ and the maximum residue limit (MRL). Recoveries were between 70 and 106% and relative standard deviations were below 19% (n=5 at each spiked level). Excellent sensitivity resulted in limits of detection (LODs) for all the compounds below 10 microg kg(-1). Quantification was carried out using matrix-matched standards calibration, response was a linear function of the concentration from the LOQs to, at least, three orders of magnitude. Recoveries and standard deviations were comparable to those obtained after hydrolysis of amitraz and its metabolites to DMA. Occurrence of amitraz and its metabolites in field-treated pears showed that, seven days after the treatment, DMPF and DMF are the main degradation products. This work reports for the first time the use of a conventional pesticide multiresidue method and LC-ESI-MS/MS for determining amitraz and its metabolites in pears.

  17. Different characteristic effects of ageing on starch-based films plasticised by 1-ethyl-3-methylimidazolium acetate and by glycerol.

    PubMed

    Zhang, Binjia; Xie, Fengwei; Zhang, Tianlong; Chen, Ling; Li, Xiaoxi; Truss, Rowan W; Halley, Peter J; Shamshina, Julia L; McNally, Tony; Rogers, Robin D

    2016-08-01

    The focus of this study was on the effects of plasticisers (the ionic liquid 1-ethyl-3-methylimidazolium acetate, or [Emim][OAc]; and glycerol) on the changes of starch structure on multiple length scales, and the variation in properties of plasticised starch-based films, during ageing. The films were prepared by a simple melt compression moulding process, followed by storage at different relative humidity (RH) environments. Compared with glycerol, [Emim][OAc] could result in greater homogeneity in [Emim][OAc]-plasticised starch-based films (no gel-like aggregates and less molecular order (crystallites) on the nano-scale). Besides, much weaker starch-starch interactions but stronger starch-[Emim][OAc] interactions at the molecular level led to reduced strength and stiffness but increased flexibility of the films. More importantly, [Emim][OAc] (especially at high content) was revealed to more effectively maintain the plasticised state during ageing than glycerol: the densification (especially in the amorphous regions) was suppressed; and the structural characteristics especially on the nano-scale were stabilised (especially at a high RH), presumably due to the suppressed starch molecular interactions by [Emim][OAc] as confirmed by Raman spectroscopy. Such behaviour contributed to stabilised mechanical properties. Nonetheless, the crystallinity and thermal stability of starch-based films with both plasticisers were much less affected by ageing and moisture uptake during storage (42 days), but mostly depended on the plasticiser type and content. As starch is a typical semi-crystalline bio-polymer containing abundant hydroxyl groups and strong hydrogen bonding, the findings here could also be significant in creating materials from other similar biopolymers with tailored sensitivity and properties to the environment.

  18. Activation of apoptosis by ethyl acetate fraction of ethanol extract of Dianthus superbus in HepG2 cell line.

    PubMed

    Yu, Jian-Qing; Yin, Yan; Lei, Jia-Chuan; Zhang, Xiu-Qiao; Chen, Wei; Ding, Cheng-Li; Wu, Shan; He, Xiao-Yu; Liu, Yan-Wen; Zou, Guo-Lin

    2012-02-01

    Dianthus superbus L. is commonly used as a traditional Chinese medicine. We recently showed that ethyl acetate fraction (EE-DS) from ethanol extract of D. superbus exhibited the strongest antioxidant and cytotoxic activities. In this study, we examined apoptosis of HepG2 cells induced by EE-DS, and the mechanism underlying apoptosis was also investigated. Treatment of HepG2 cells with EE-DS (20-80 μg/ml) for 48 h led to a significant dose-dependent increase in the percentage of cells in sub-G1 phase by analysis of the content of DNA in cells, and a large number of apoptotic bodies containing nuclear fragments were observed in cells treated with 80 μg/ml of EE-DS for 24 h by using Hoechst 33258 staining. These data show that EE-DS can induce apoptosis of HepG2 cells. Immunoblot analysis showed that EE-DS significantly suppressed the expressions of Bcl-2 and NF-κB. Treatment of cells with EE-DS (80 μg/ml) for 48 h resulted in significant increase of cytochrome c in the cytosol, which indicated cytochrome c release from mitochondria. Activation of caspase-9 and -3 were also determined when the cells treated with EE-DS. The results suggest that apoptosis of HepG2 cells induced by EE-DS could be through the mitochondrial intrinsic pathway. High performance liquid chromatography (HPLC) data showed that the composition of EE-DS is complicated. Further studies are needed to find the effective constituents of EE-DS.

  19. Ethyl Acetate Extract of Origanum vulgare L. ssp. hirtum Prevents Streptozotocin-Induced Diabetes in C57BL/6 Mice.

    PubMed

    Vujicic, Milica; Nikolic, Ivana; Kontogianni, Vassiliki G; Saksida, Tamara; Charisiadis, Pantelis; Vasic, Bobana; Stosic-Grujicic, Stanislava; Gerothanassis, Ioannis P; Tzakos, Andreas G; Stojanovic, Ivana

    2016-07-01

    Type 1 diabetes (T1D) is an autoimmune disease that develops as a consequence of pancreatic β-cell death induced by proinflammatory mediators. Because Origanum vulgare L. ssp. hirtum (Greek oregano) contains antiinflammatory molecules, we hypothesized that it might be beneficial for the treatment of T1D. An ethyl acetate extract of oregano (EAO) was prepared from the leaves by a polar extraction method. Phytochemical composition was determined by liquid chromatography-UV diode array coupled to ion-trap mass spectrometry with electrospray ionization interface (LC/DAD/ESI-MS(n) ). In vitro immunomodulatory effect of EAO was estimated by measuring proliferation (MTT) or cytokine secretion (ELISA) from immune cells. Diabetes was induced by multiple low doses of streptozotocin (MLDS) in male C57BL/6 mice and EAO was administered intraperitoneally for 10 d. Determination of cellular composition (flow cytometry) and cytokine production (ELISA) was performed on 12th d after diabetes induction. EAO suppressed the function of both macrophages and lymphocytes in vitro. In vivo, EAO treatment significantly preserved pancreatic islets and reduced diabetes incidence in MLDS-challenged mice. Besides down-modulatory effect on macrophages, EAO reduced the number of total CD4(+) and activated CD4(+) CD25(+) T cells. Furthermore, EAO affected the number of T helper 1 (Th1) and T helper 17 (Th17) cells through downregulation of their key transcription factors T-bet and RORγT. Because EAO treatment protects mice from development of hyperglycemia by reducing proinflammatory macrophage/Th1/Th17 response, this plant extract could represent a basis for future diabetes therapy.

  20. Genomic saturation mutagenesis and polygenic analysis identify novel yeast genes affecting ethyl acetate production, a non-selectable polygenic trait.

    PubMed

    Abt, Tom Den; Souffriau, Ben; Foulquié-Moreno, Maria R; Duitama, Jorge; Thevelein, Johan M

    2016-03-18

    Isolation of mutants in populations of microorganisms has been a valuable tool in experimental genetics for decades. The main disadvantage, however, is the inability of isolating mutants in non-selectable polygenic traits. Most traits of organisms, however, are non-selectable and polygenic, including industrially important properties of microorganisms. The advent of powerful technologies for polygenic analysis of complex traits has allowed simultaneous identification of multiple causative mutations among many thousands of irrelevant mutations. We now show that this also applies to haploid strains of which the genome has been loaded with induced mutations so as to affect as many non-selectable, polygenic traits as possible. We have introduced about 900 mutations into single haploid yeast strains using multiple rounds of EMS mutagenesis, while maintaining the mating capacity required for genetic mapping. We screened the strains for defects in flavor production, an important non-selectable, polygenic trait in yeast alcoholic beverage production. A haploid strain with multiple induced mutations showing reduced ethyl acetate production in semi-anaerobic fermentation, was selected and the underlying quantitative trait loci (QTLs) were mapped using pooled-segregant whole-genome sequence analysis after crossing with an unrelated haploid strain. Reciprocal hemizygosity analysis and allele exchange identified PMA1 and CEM1 as causative mutant alleles and TPS1 as a causative genetic background allele. The case of CEM1 revealed that relevant mutations without observable effect in the haploid strain with multiple induced mutations (in this case due to defective mitochondria) can be identified by polygenic analysis as long as the mutations have an effect in part of the segregants (in this case those that regained fully functional mitochondria). Our results show that genomic saturation mutagenesis combined with complex trait polygenic analysis could be used successfully to

  1. Coulometric titration of bases in acetic acid and acetonitrile media.

    PubMed

    Vajgand, V J; Mihajlović, R

    1969-09-01

    The working conditions and the results for coulometric titration of milligram amounts of some bases in 0.1M sodium perchlorate in a mixture of acetic acid and acetic anhydride (1:6), are given. Determinations were made both by coulometric back-titration or direct titration at the platinum anode. Back-titration was done in the catholyte, by coulometric titration of the excess of added perchloric acid. The titration end-point was detected photometrically with Crystal Violet as indicator. The direct titration of bases was done at the platinum anode, in the same electrolyte, to which hydroquinone was added as anode depolarizer and as the source of hydrogen ions, Malachite Green being used as indicator. Similarly, bases can be determined in acetonitrile if sodium perchlorate, hydroquinone and Malachite Green are added to the solvent. Errors are below 1 %, and the precision is satisfactory.

  2. Acetic acid pretreatment improves the hardness of cooked potato slices.

    PubMed

    Zhao, Wenlin; Shehzad, Hussain; Yan, Shoulei; Li, Jie; Wang, Qingzhang

    2017-08-01

    The effects of acetic acid pretreatment on the texture of cooked potato slices were investigated in this work. Potato slices were pretreated with acetic acid immersion (AAI), distilled water immersion (DWI), or no immersion (NI). Subsequently, the cell wall material of the pretreated samples was isolated and fractioned to evaluate changes in the monosaccharide content and molar mass (MM), and the hardness and microscopic structure of the potato slices in different pretreatments before and after cooking were determined. The results showed that the highest firmness was obtained with more intact structure of the cell wall for cooked potato slices with AAI pretreatment. Furthermore, the MM and sugar ratio demonstrated that the AAI pretreated potato slices contained a higher content of the small molecular polysaccharides of cell walls, especially in the hemicellulose fraction. This work may provide a reference for potato processing.

  3. Acetic acid enhances endurance capacity of exercise-trained mice by increasing skeletal muscle oxidative properties.

    PubMed

    Pan, Jeong Hoon; Kim, Jun Ho; Kim, Hyung Min; Lee, Eui Seop; Shin, Dong-Hoon; Kim, Seongpil; Shin, Minkyeong; Kim, Sang Ho; Lee, Jin Hyup; Kim, Young Jun

    2015-01-01

    Acetic acid has been shown to promote glycogen replenishment in skeletal muscle during exercise training. In this study, we investigated the effects of acetic acid on endurance capacity and muscle oxidative metabolism in the exercise training using in vivo mice model. In exercised mice, acetic acid induced a significant increase in endurance capacity accompanying a reduction in visceral adipose depots. Serum levels of non-esterified fatty acid and urea nitrogen were significantly lower in acetic acid-fed mice in the exercised mice. Importantly, in the mice, acetic acid significantly increased the muscle expression of key enzymes involved in fatty acid oxidation and glycolytic-to-oxidative fiber-type transformation. Taken together, these findings suggest that acetic acid improves endurance exercise capacity by promoting muscle oxidative properties, in part through the AMPK-mediated fatty acid oxidation and provide an important basis for the application of acetic acid as a major component of novel ergogenic aids.

  4. First Acetic Acid Survey with CARMA in Hot Molecular Cores

    NASA Astrophysics Data System (ADS)

    Shiao, Y.-S. Jerry; Looney, Leslie W.; Remijan, Anthony J.; Snyder, Lewis E.; Friedel, Douglas N.

    2010-06-01

    Acetic acid (CH3COOH) has been detected mainly in hot molecular cores where the distribution between oxygen (O) and nitrogen (N) containing molecular species is cospatial within the telescope beam. Previous work has presumed that similar cores with cospatial O and N species may be an indicator for detecting acetic acid. However, does this presumption hold as higher spatial resolution observations of large O- and N-containing molecules become available? As the number of detected acetic acid sources is still low, more observations are needed to support this postulate. In this paper, we report the first acetic acid survey conducted with the Combined Array for Research in Millimeter-wave Astronomy at 3 mm wavelengths toward G19.61-0.23, G29.96-0.02, and IRAS 16293-2422. We have successfully detected CH3COOH via two transitions toward G19.61-0.23 and tentatively confirmed the detection toward IRAS 16293-2422 A. The determined column density of CH3COOH is 2.0(1.0) × 1016 cm-2 and the abundance ratio of CH3COOH to methyl formate (HCOOCH3) is 2.2(0.1) × 10-1 toward G19.61-0.23. Toward IRAS 16293 A, the determined column density of CH3COOH is ~1.6 × 1015 cm-2 and the abundance ratio of CH3COOH to methyl formate (HCOOCH3) is ~1.0 × 10-1, both of which are consistent with abundance ratios determined toward other hot cores. Finally, we model all known line emission in our passband to determine physical conditions in the regions and introduce a new metric to better reveal weak spectral features that are blended with stronger lines or that may be near the 1σ-2σ detection limit.

  5. Determination of the main hydrolysis product of O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate, ethyl methylphosphonic acid, in human serum.

    PubMed

    Katagi, M; Nishikawa, M; Tatsuno, M; Tsuchihashi, H

    1997-02-21

    For the unequivocal proof of the use of a nerve agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX), a rapid, accurate and sensitive method which allows us to identify its main hydrolysis product ethyl methylphosphonic acid (EMPA) in human serum was explored by GC-MS. GC-MS analysis was performed after solvent extraction with acetonitrile in acidic conditions from the serum sample, which was previously deproteinized by micro-ultrafiltration, and subsequent tert.-butyldimethylsilyl derivatization with N-methyl-N-(tert.-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) with 1% tert.-butyldimethylsilyl chloride (t-BDMSC). Linear calibration curves were obtained in the concentration range from 50 to 500 ng/ml for EMPA in the full-scan EI mode and from 5 to 50 ng/ml for EMPA in the SIM EI mode. The relative standard deviation obtained at a sample concentration of 50 ng/ml was 8.4% in the full-scan mode and 7.3% in the SIM mode. Upon applying the full-scan EI and CI mode, 40 ng/ml and 80 ng/ml were the detection limits. Using the SIM-EI mode, in which the ion at m/z 153 was chosen, the limit was 3 ng/ml.

  6. 21 CFR 175.350 - Vinyl acetate/crotonic acid copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Vinyl acetate/crotonic acid copolymer. 175.350... COATINGS Substances for Use as Components of Coatings § 175.350 Vinyl acetate/crotonic acid copolymer. A copolymer of vinyl acetate and crotonic acid may be safely used as a coating or as a component of a...

  7. 40 CFR 180.1258 - Acetic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Acetic acid; exemption from the... Exemptions From Tolerances § 180.1258 Acetic acid; exemption from the requirement of a tolerance. An... acetic acid when used as a preservative on post-harvest agricultural commodities intended for animal...

  8. 75 FR 52269 - Acetic Acid Ethenyl Ester, Polymer With Oxirane; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ...-2010-0429; FRL-8841-2] Acetic Acid Ethenyl Ester, Polymer With Oxirane; Tolerance Exemption AGENCY... from the requirement of a tolerance for residues of acetic acid ethenyl ester, polymer with oxirane... permissible level for residues of acetic acid ethenyl ester, polymer with oxirane on food or feed...

  9. 75 FR 40736 - Acetic Acid; Exemption from the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-14

    ... AGENCY 40 CFR Part 180 Acetic Acid; Exemption from the Requirement of a Tolerance AGENCY: Environmental... for acetic acid by establishing an exemption from the requirement of a tolerance for residues of acetic acid, also known as vinegar in or on all food crops resulting from unintentional spray and...

  10. Effect of succinic acid and tween-80 on glucuronidation of 2-ethyl-6-methyl-3-hydroxypyridine.

    PubMed

    Baranov, P A; Kravtsova, O U; Sariev, A K; Sherdev, V P

    2008-07-01

    We studied the effect of succinic acid on the process of glucuronidation of 2-ethyl-6-methyl-3-hydroxypyridine after peroral and intraperitoneal administration in the form of succinate or a base. Since the basic form of 2-ethyl-6-methyl-3-hydroxypyridine is insoluble in water, it was administered in 5% Tween-80. It was necessary to evaluate also the effect of Tween-80 on glucuronidation of 2-ethyl-6-methyl-3-hydroxypyridine in different administration routes. Quantitative assay of glucuronidated fractions was performed by the method of reversed-phase HPLC with fluorometrical detection. The detection limit for this method was 10 ng/ml. We confirmed that the major excretion pathway for 2-ethyl-6-methyl-3-hydroxypyridine is conjugation with glucuronic acid. It was found that succinic acid increased excretion of glucuronidated metabolite after both peroral and intraperitoneal administration of 2-ethyl-6-methyl-3-hydroxypyridine in the form of succinate and base in 5% Tween-80. The effect of Tween-80 was detected only after peroral administration, which was probably related to its effect on absorption of this compound. Tween-80 increased excretion of glucuronate after peroral administration of 2-ethyl-6-methyl-3-hydroxypyridine in the form of succinate and in 5% Tween solution.

  11. Indole-3-acetic acid in plant-microbe interactions.

    PubMed

    Duca, Daiana; Lorv, Janet; Patten, Cheryl L; Rose, David; Glick, Bernard R

    2014-07-01

    Indole-3-acetic acid (IAA) is an important phytohormone with the capacity to control plant development in both beneficial and deleterious ways. The ability to synthesize IAA is an attribute that many bacteria including both plant growth-promoters and phytopathogens possess. There are three main pathways through which IAA is synthesized; the indole-3-pyruvic acid, indole-3-acetamide and indole-3-acetonitrile pathways. This chapter reviews the factors that effect the production of this phytohormone, the role of IAA in bacterial physiology and in plant-microbe interactions including phytostimulation and phytopathogenesis.

  12. Change in the plasmid copy number in acetic acid bacteria in response to growth phase and acetic acid concentration.

    PubMed

    Akasaka, Naoki; Astuti, Wiwik; Ishii, Yuri; Hidese, Ryota; Sakoda, Hisao; Fujiwara, Shinsuke

    2015-06-01

    Plasmids pGE1 (2.5 kb), pGE2 (7.2 kb), and pGE3 (5.5 kb) were isolated from Gluconacetobacter europaeus KGMA0119, and sequence analyses revealed they harbored 3, 8, and 4 genes, respectively. Plasmid copy numbers (PCNs) were determined by real-time quantitative PCR at different stages of bacterial growth. When KGMA0119 was cultured in medium containing 0.4% ethanol and 0.5% acetic acid, PCN of pGE1 increased from 7 copies/genome in the logarithmic phase to a maximum of 12 copies/genome at the beginning of the stationary phase, before decreasing to 4 copies/genome in the late stationary phase. PCNs for pGE2 and pGE3 were maintained at 1-3 copies/genome during all phases of growth. Under a higher concentration of ethanol (3.2%) the PCN for pGE1 was slightly lower in all the growth stages, and those of pGE2 and pGE3 were unchanged. In the presence of 1.0% acetic acid, PCNs were higher for pGE1 (10 copies/genome) and pGE3 (6 copies/genome) during the logarithmic phase. Numbers for pGE2 did not change, indicating that pGE1 and pGE3 increase their PCNs in response to acetic acid. Plasmids pBE2 and pBE3 were constructed by ligating linearized pGE2 and pGE3 into pBR322. Both plasmids were replicable in Escherichia coli, Acetobacter pasteurianus and G. europaeus, highlighting their suitability as vectors for acetic acid bacteria.

  13. Determination of gaseous formic acid and acetic acid by pulsed ultraviolet photoacoustic spectroscopy

    SciTech Connect

    Cvijin, P.V.; Gilmore, D.A.; Atkinson, G.H.

    1988-07-01

    The quantitative determination of gaseous formic acid and acetic acid by photoacoustic spectroscopy (PAS) using pulsed laser excitation in the ultraviolet is reported. Instrumentation utilizing continuously tunable laser excitation in the 220-nm wavelength region is used to record time-resolved PA signals from samples of each acid. Detection limits of 140 ppbv for formic acid and 120 ppbv for acetic acid in dry nitrogen at one atmosphere total pressure are attained. Considerable background signal originating from atmospheric oxygen is found to impose limitations on the detection sensitive with air samples.

  14. Analysis of methylphosphonic acid, ethyl methylphosphonic acid and isopropyl methylphosphonic acid at low microgram per liter levels in groundwater.

    PubMed

    Sega, G A; Tomkins, B A; Griest, W H

    1997-11-28

    A method is described for determining methylphosphonic acid, ethyl methylphosphonic acid and isopropyl methylphosphonic acid, which are hydrolysis products of the nerve agents VX (S-2-diisopropylaminoethyl O-ethyl methylphosphonothiolate) and GB (sarin, isopropylmethyl phosphonofluoridate). The analytes are extracted from 50 ml groundwater using a solid-phase extraction column packed with 500 mg of silica with a bonded quaternary amine phase, and are eluted and derivatized with methanolic trimethylphenylammonium hydroxide. Separation and quantitation are achieved using a capillary column gas chromatograph equipped with a flame photometric detector operated in its phosphorus-selective mode. Two independent statistically-unbiased procedures were employed to determine the detection limits, which ranged between 3 and 9 micrograms/l, for the three analytes.

  15. Distinct effects of sorbic acid and acetic acid on the electrophysiology and metabolism of Bacillus subtilis.

    PubMed

    van Beilen, J W A; Teixeira de Mattos, M J; Hellingwerf, K J; Brul, S

    2014-10-01

    Sorbic acid and acetic acid are among the weak organic acid preservatives most commonly used to improve the microbiological stability of foods. They have similar pKa values, but sorbic acid is a far more potent preservative. Weak organic acids are most effective at low pH. Under these circumstances, they are assumed to diffuse across the membrane as neutral undissociated acids. We show here that the level of initial intracellular acidification depends on the concentration of undissociated acid and less on the nature of the acid. Recovery of the internal pH depends on the presence of an energy source, but acidification of the cytosol causes a decrease in glucose flux. Furthermore, sorbic acid is a more potent uncoupler of the membrane potential than acetic acid. Together these effects may also slow the rate of ATP synthesis significantly and may thus (partially) explain sorbic acid's effectiveness.

  16. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance.

    PubMed

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification.

  17. Determination of tertiary amines and salts of organic acids in acetic acid by catalytic thermometric titration.

    PubMed

    Vajgand, V J; Gaál, F F

    1967-03-01

    A new method of determination of tertiary amines and salts of organic adds in acetic acid solution, to which about 2 % of water and 8% acetic anhydride are added, is described. After the equivalence point, the excess of perchloric acid catalyses the exothermic reaction of water with acetic anhydride. The end-point is determined from the graph of temperature against volume of added titrant. If a slightly soluble compound is produced during the titration, the precision of the new method is superior to that of the potentiometric method.

  18. Cost-effectiveness of ethyl-eicosapentaenoic acid in the treatment of bipolar disorder

    PubMed Central

    Frangou, Sophia; McCrone, Paul

    2013-01-01

    Background: This study develops an economic model to evaluate the cost-effectiveness of ethyl-eicosapentaenoic acid (ethyl-EPA) as an adjunct treatment of bipolar I disorder. Methods: A 1-year Markov model is used incorporating three health states: euthymic, manic and depressive. The model was populated using outcomes from a clinical trial on clinical efficacy and other published literature. Results: The incremental cost-effectiveness ratio (ICER) per quality-adjusted life year (QALY) of ethyl-EPA in comparison with placebo was estimated to be -£2,782 in 2008/09 prices, the negative ICER indicating ethyl-EPA to be a more effective and less costly treatment option than placebo in terms of cost savings of other resource use. Conclusions: The sensitivity analysis indicated that the results were robust. Future research covering a longer time period using broader costs of the disease will be required to consolidate these findings. PMID:24167678

  19. Higher hypochlorous acid scavenging activity of ethyl pyruvate compared to its sodium salt.

    PubMed

    Olek, Robert Antoni; Ziolkowski, Wieslaw; Kaczor, Jan Jacek; Wierzba, Tomasz Henryk; Antosiewicz, Jedrzej

    2011-01-01

    Although a number of studies have focused on the higher ethyl pyruvate antioxidative activity than its sodium salt under various stress conditions, and the greater protective properties of the ester form have been suggested as the effect of better cell membrane penetration, the molecular mechanism has remained unclear. The aim of the present study was therefore to compare the antioxidative activities of sodium and ethyl pyruvate under in vitro conditions by using a liver homogenate as the model for cell membrane transport deletion. The potential effect of ethanol was also evaluated, and hypochlorous acid was used as an oxidant. Our data indicate the concentration-dependent scavenging potency of both sodium and ethyl pyruvate, with the ester having higher activity. This effect was not related to the presence of ethanol. Better protection of the liver homogenate by ethyl pyruvate was also apparent, despite the fact that cell membrane transport was omitted.

  20. Formation of biologically relevant carboxylic acids during the gamma irradiation of acetic acid

    NASA Technical Reports Server (NTRS)

    Negron-Mendoza, A.; Ponnamperuma, C.

    1976-01-01

    Irradiation of aqueous solutions of acetic acid with gamma rays produced several carboxylic acids in small yield. Their identification was based on the technique of gas chromatography combined with mass spectrometry. Some of these acids are Krebs Cycle intermediates. Their simultaneous formation in experiments simulating the primitive conditions on the earth suggests that metabolic pathways may have had their origin in prebiotic chemical processes.

  1. A novel fermentation pathway in an Escherichia coli mutant producing succinic acid, acetic acid, and ethanol.

    SciTech Connect

    Donnelly, M. I.; Millard, C. S.; Clark, D. P.; Chen, M. J.; Rathke, J. W.; Southern Illinois Univ.

    1998-04-01

    Escherichia coli strain NZN111, which is unable to grow fermentatively because of insertional inactivation of the genes encoding pyruvate: formate lyase and the fermentative lactate dehydrogenase, gave rise spontaneously to a chromosomal mutation that restored its ability to ferment glucose. The mutant strain, named AFP111, fermented glucose more slowly than did its wild-type ancestor, strain W1485, and generated a very different spectrum of products. AFP111 produced succinic acid, acetic acid, and ethanol in proportions of approx 2:1:1. Calculations of carbon and electron balances accounted fully for the observed products; 1 mol of glucose was converted to 1 mol of succinic acid and 0.5 mol each of acetic acid and ethanol. The data support the emergence in E.coli of a novel succinic acid:acetic acid:ethanol fermentation pathway.

  2. 40 CFR 721.10457 - 1,2-Benzenedicarboxylic acid, mixed esters with benzyl alc., cyclohexanol, 2-ethyl-1-hexanol...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... esters with benzyl alc., cyclohexanol, 2-ethyl-1-hexanol, fumaric acid and propylene glycol. 721.10457...-hexanol, fumaric acid and propylene glycol. (a) Chemical substance and significant new uses subject to... alc., cyclohexanol, 2-ethyl-1-hexanol, fumaric acid and propylene glycol (PMN P-03-154; CAS No....

  3. 40 CFR 721.10457 - 1,2-Benzenedicarboxylic acid, mixed esters with benzyl alc., cyclohexanol, 2-ethyl-1-hexanol...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... esters with benzyl alc., cyclohexanol, 2-ethyl-1-hexanol, fumaric acid and propylene glycol. 721.10457...-hexanol, fumaric acid and propylene glycol. (a) Chemical substance and significant new uses subject to... alc., cyclohexanol, 2-ethyl-1-hexanol, fumaric acid and propylene glycol (PMN P-03-154; CAS No....

  4. Fatty Acid Ethyl Esters Are Less Toxic Than Their Parent Fatty Acids Generated during Acute Pancreatitis

    PubMed Central

    Patel, Krutika; Durgampudi, Chandra; Noel, Pawan; Trivedi, Ram N.; de Oliveira, Cristiane; Singh, Vijay P.

    2017-01-01

    Although ethanol causes acute pancreatitis (AP) and lipolytic fatty acid (FA) generation worsens AP, the contribution of ethanol metabolites of FAs, ie, FA ethyl esters (FAEEs), to AP outcomes is unclear. Previously, pancreata of dying alcoholics and pancreatic necrosis in severe AP, respectively, showed high FAEEs and FAs, with oleic acid (OA) and its ethyl esters being the most abundant. We thus compared the toxicities of FAEEs and their parent FAs in severe AP. Pancreatic acini and peripheral blood mononuclear cells were exposed to FAs or FAEEs in vitro. The triglyceride of OA (i.e., glyceryl tri-oleate) or OAEE was injected into the pancreatic ducts of rats, and local and systemic severities were studied. Unsaturated FAs at equimolar concentrations to FAEEs induced a larger increase in cytosolic calcium, mitochondrial depolarization, and necro-apoptotic cell death. Glyceryl tri-oleate but not OAEE resulted in 70% mortality with increased serum OA, a severe inflammatory response, worse pancreatic necrosis, and multisystem organ failure. Our data show that FAs are more likely to worsen AP than FAEEs. Our observations correlate well with the high pancreatic FAEE concentrations in alcoholics without pancreatitis and high FA concentrations in pancreatic necrosis. Thus, conversion of FAs to FAEE may ameliorate AP in alcoholics. PMID:26878214

  5. Effect of acetic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    PubMed

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-09-01

    An integrated citric acid-methane fermentation process was proposed to solve the problem of extraction wastewater in citric acid fermentation process. Extraction wastewater was treated by anaerobic digestion and then recycled for the next batch of citric acid fermentation to eliminate wastewater discharge and reduce water resource consumption. Acetic acid as an intermediate product of methane fermentation was present in anaerobic digestion effluent. In this study, the effect of acetic acid on citric acid fermentation was investigated and results showed that lower concentration of acetic acid could promote Aspergillus niger growth and citric acid production. 5-Cyano-2,3-ditolyl tetrazolium chloride (CTC) staining was used to quantify the activity of A. niger cells, and the results suggested that when acetic acid concentration was above 8 mM at initial pH 4.5, the morphology of A. niger became uneven and the part of the cells' activity was significantly reduced, thereby resulting in deceasing of citric acid production. Effects of acetic acid on citric acid fermentation, as influenced by initial pH and cell number in inocula, were also examined. The result indicated that inhibition by acetic acid increased as initial pH declined and was rarely influenced by cell number in inocula.

  6. Covalent interaction of chloroacetic and acetic acids with cholesterol.

    PubMed

    Bhat, H K; Ansari, G A

    1989-01-01

    The covalent interaction of chloroacetic acid with rat liver lipids was studied in vivo. Rats were given a single oral dose (8.75 mg/kg, 50 microCi) of 1-[14C]chloroacetic acid and sacrificed after 24 hours. Lipids extracted from the livers were separated into neutral lipids and phospholipids by solid-phase extraction using sep-pak silica cartridges. The neutral lipid fraction was further fractionated by preparative thin-layer chromatography followed by reverse-phase high-performance liquid chromatography. The fraction corresponding to the retention time of standard cholesteryl chloroacetate gave a pseudomolecular ion peak at m/z 480/482 ratio: (3:1) on ammonia chemical ionization mass spectrometry, and the fragmentation pattern was found to be similar to that of the standard sample. Under similar conditions, acetic acid resulted in the formation of cholesteryl acetate. The effect of such conjugation reactions on the cell membrane and their contribution to toxicity is presently unknown.

  7. Radioiron utilization and gossypol acetic acid in male rats

    SciTech Connect

    Tone, J.N.; Jensen, D.R.

    1985-01-01

    The 24-h incorporation of VZFe into circulating red blood cells, bone marrow, urine, liver, spleen, and skeletal muscle was measured in splenectomized and sham-splenectomized rats which had received a daily, oral dose of gossypol acetic acid (20 mg GAA/kg body wt) for 91 days. A significant decrease in total body weight gain was observed in all GAA treated animals. Splenectomized rats dosed with GAA exhibited a significant decrease in hemoglobin concentration, hematocrit and erythrocyte count. A significant increase in VZFe incorporation by red blood cells and a decrease in hepatic incorporation of VZFe indicate a preferential utilization of iron in erythropoiesis among GAA treated animals.

  8. FIRST ACETIC ACID SURVEY WITH CARMA IN HOT MOLECULAR CORES

    SciTech Connect

    Shiao, Y.-S. Jerry; Looney, Leslie W.; Snyder, Lewis E.; Friedel, Douglas N.; Remijan, Anthony J. E-mail: aremijan@nrao.ed

    2010-06-10

    Acetic acid (CH{sub 3}COOH) has been detected mainly in hot molecular cores where the distribution between oxygen (O) and nitrogen (N) containing molecular species is cospatial within the telescope beam. Previous work has presumed that similar cores with cospatial O and N species may be an indicator for detecting acetic acid. However, does this presumption hold as higher spatial resolution observations of large O- and N-containing molecules become available? As the number of detected acetic acid sources is still low, more observations are needed to support this postulate. In this paper, we report the first acetic acid survey conducted with the Combined Array for Research in Millimeter-wave Astronomy at 3 mm wavelengths toward G19.61-0.23, G29.96-0.02, and IRAS 16293-2422. We have successfully detected CH{sub 3}COOH via two transitions toward G19.61-0.23 and tentatively confirmed the detection toward IRAS 16293-2422 A. The determined column density of CH{sub 3}COOH is 2.0(1.0) x 10{sup 16} cm{sup -2} and the abundance ratio of CH{sub 3}COOH to methyl formate (HCOOCH{sub 3}) is 2.2(0.1) x 10{sup -1} toward G19.61-0.23. Toward IRAS 16293 A, the determined column density of CH{sub 3}COOH is {approx}1.6 x 10{sup 15} cm{sup -2} and the abundance ratio of CH{sub 3}COOH to methyl formate (HCOOCH{sub 3}) is {approx}1.0 x 10{sup -1}, both of which are consistent with abundance ratios determined toward other hot cores. Finally, we model all known line emission in our passband to determine physical conditions in the regions and introduce a new metric to better reveal weak spectral features that are blended with stronger lines or that may be near the 1{sigma}-2{sigma} detection limit.

  9. Effect of total hydroalcholic extract of Nigella sativa and its n-hexane and ethyl acetate fractions on ACHN and GP-293 cell lines.

    PubMed

    Shahraki, Samira; Khajavirad, Abolfazl; Shafei, Mohammad Naser; Mahmoudi, Mahmoud; Tabasi, Nafisa Sadat

    2016-01-01

    Medicinal plants are noted for their many advantages including the ability to treat diseases such as cancer. In this study, we examined the antitumor effect of the medicinal plant Nigella sativa on the morphology, survival, and apoptosis of ACHN (human renal adenocarcinoma) and GP-293 (normal renal epithelial) cell lines. From a hydroalcoholic extract of N. sativa, n-hexane and ethyl acetate fractions were extracted. Cells were treated with various concentrations of total hydroalcholic extract and n-hexane and ethyl acetate fractions; cell viability, morphological changes, and apoptosis were then determined. Results were presented as mean ± standard error of the mean (SEM). One-way analysis of variance (ANOVA) was applied for the statistical analysis of the data. The total extract and the fractions in a dose- and time-dependent manner reduced the cell viability in ACHN with no effect on the GP-293 cell line. In addition, the total extract resulted in more morphological changes in the ACHN cells compared to the GP-293 cells. The effect of the total extract in inducing apoptosis after 48 hours in the ACHN cell line was greater than in GP-293. In addition, the effect of the two fractions was lower than the total extract at all used concentrations. Therefore, the effect of total extract and n-hexane and ethyl acetate fractions of N. sativa on cell viability and apoptosis in the ACHN cell line is greater than in the GP-293 cell line. However, the effect of the total extract is higher than either of the two fractions on their own.

  10. Diabetic therapeutic effects of ethyl acetate fraction from the roots of Musa paradisiaca and seeds of Eugenia jambolana in streptozotocin-induced male diabetic rats.

    PubMed

    Panda, D K; Ghosh, Debidas; Bhat, B; Talwar, S K; Jaggi, M; Mukherjee, R

    2009-11-01

    The folklore medicine of primitive people has been greatly appreciated for centuries. Many researchers study the curative efficiency and mode of action of various medicinal plants. Serum glucose level, lipid profile, glucose tolerance, hepatic and muscle glycogen contents as well as the activities of hepatic hexokinase and glucose-6-phosphatase recovered significantly after oral administration of ethyl acetate fractions of Eugenia jambolana (E. jambolana) or Musa paradisiaca (M. paradisiaca) in separate (E. jambolana L.: 200 mg/kg of body weight and M. paradisiaca: 100 mg/kg of body weight) or combined form for 90 days (twice a day through gavage) to streptozotocin-induced diabetic rats. The loss in body weight of diabetic animals was reversed and serum levels of insulin as well as C-peptide, which were found to be reduced in diabetic rats, increased significantly after oral administration of the fractions. A histological study of the rats' pancreas revealed that after 90 days of oral treatment with the plant fractions in separate or combined form, the size and volume of pancreatic islets in diabetic treated rats increased significantly compared with the diabetic control group. Treatment of diabetic rats with the combined dose (300 mg/kg of body weight) of plant fractions (200 mg E. jambolana and 100 mg M. paradisiaca) was found to be more effective than treatment with the individual fraction. The doses of E. jambolana and M. paradisiaca selected for this study are the optimum antihyperglycemic doses of the plant fractions, which were determined after conducting a dose-dependent study at various dose levels (50-500 mg/kg) in our pilot experiments. The plant fractions were found to be free from metabolic toxicity. Through HPTLC finger printing, three different compounds were noted in the ethyl acetate fraction of E. jambolana L. and eight different compounds in the ethyl acetate fraction of M. paradisiaca L.

  11. Quantitative Structure of an Acetate Dye Molecule Analogue at the TiO2-Acetic Acid Interface.

    PubMed

    Hussain, Hadeel; Torrelles, Xavier; Cabailh, Gregory; Rajput, Parasmani; Lindsay, Robert; Bikondoa, Oier; Tillotson, Marcus; Grau-Crespo, Ricardo; Zegenhagen, Jörg; Thornton, Geoff

    2016-04-14

    The positions of atoms in and around acetate molecules at the rutile TiO2(110) interface with 0.1 M acetic acid have been determined with a precision of ±0.05 Å. Acetate is used as a surrogate for the carboxylate groups typically employed to anchor monocarboxylate dye molecules to TiO2 in dye-sensitized solar cells (DSSC). Structural analysis reveals small domains of ordered (2 × 1) acetate molecules, with substrate atoms closer to their bulk terminated positions compared to the clean UHV surface. Acetate is found in a bidentate bridge position, binding through both oxygen atoms to two 5-fold titanium atoms such that the molecular plane is along the [001] azimuth. Density functional theory calculations provide adsorption geometries in excellent agreement with experiment. The availability of these structural data will improve the accuracy of charge transport models for DSSC.

  12. Quantitative Structure of an Acetate Dye Molecule Analogue at the TiO2–Acetic Acid Interface

    PubMed Central

    2016-01-01

    The positions of atoms in and around acetate molecules at the rutile TiO2(110) interface with 0.1 M acetic acid have been determined with a precision of ±0.05 Å. Acetate is used as a surrogate for the carboxylate groups typically employed to anchor monocarboxylate dye molecules to TiO2 in dye-sensitized solar cells (DSSC). Structural analysis reveals small domains of ordered (2 × 1) acetate molecules, with substrate atoms closer to their bulk terminated positions compared to the clean UHV surface. Acetate is found in a bidentate bridge position, binding through both oxygen atoms to two 5-fold titanium atoms such that the molecular plane is along the [001] azimuth. Density functional theory calculations provide adsorption geometries in excellent agreement with experiment. The availability of these structural data will improve the accuracy of charge transport models for DSSC. PMID:27110318

  13. Anticancer Effects of 1,3-Dihydroxy-2-Methylanthraquinone and the Ethyl Acetate Fraction of Hedyotis Diffusa Willd against HepG2 Carcinoma Cells Mediated via Apoptosis

    PubMed Central

    Li, Yun-lan; Zhang, Jiali; Min, Dong; Hongyan, Zhou; Lin, Niu; Li, Qing-shan

    2016-01-01

    Hedyotis Diffusa Willd, used in Traditional Chinese Medicine, is a treatment for various diseases including cancer, owing to its mild effectiveness and low toxicity. The aim of this study was to identify the main anticancer components in Hedyotis Diffusa Willd, and explore mechanisms underlying their activity. Hedyotis Diffusa Willd was extracted and fractionated using ethyl acetate to obtain the H-Ethyl acetate fraction, which showed higher anticancer activity than the other fractions obtained against HepG2 cells with sulforhodamine B assays. The active component of the H-Ethyl acetate fraction was identified to be 1,3-dihydroxy-2-methylanthraquinone (DMQ) with much high inhibitory rate up to 48.9 ± 3.3% and selectivity rate up to 9.4 ± 4.5 folds (p<0.01) at 125 μmol/L. HepG2 cells treated with the fraction and DMQ visualized morphologically using light and fluorescence microscopy. Annexin V—fluorescein isothiocyanate / propidium iodide staining flow cytometry, DNA ladder and cell cycle distribution assays. Mechanistic studies showed up-regulation of caspase-3, -8, and -9 proteases activities (p<0.001), indicating involvement of mitochondrial apoptotic and death receptor pathways. Further studies revealed that reactive oxygen species in DMQ and the fraction treated HepG2 cells increased (p<0.01) while mitochondrial membrane potential reduced significantly (p<0.001) compared to the control by flow cytometry assays. Western blot analysis showed that Bax, p53, Fas, FasL, p21 and cytoplasmic cytochrome C were up-regulated (p<0.01), while Bcl-2, mitochondrial cytochrome C, cyclin E and CDK 2 were down-regulated dose-dependently (p<0.01). The reverse transcriptase-polymerase chain reaction showed that mRNA expressions of p53 and Bax increased (p<0.001) while that of Bcl-2 decreased (p<0.001). Pre-treatment with caspase-8 inhibitor Z-IETD-FMK, or caspase-9 inhibitor Z-LEHD-FMK, attenuated the growth-inhibitory and apoptosis-inducing effects of DMQ and the fraction

  14. Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance.

    PubMed

    Ma, Cui; Wei, Xiaowen; Sun, Cuihuan; Zhang, Fei; Xu, Jianren; Zhao, Xinqing; Bai, Fengwu

    2015-03-01

    Acetic acid is present in cellulosic hydrolysate as a potent inhibitor, and the superior acetic acid tolerance of Saccharomyces cerevisiae ensures good cell viability and efficient ethanol production when cellulosic raw materials are used as substrates. In this study, a mutant strain of S. cerevisiae ATCC4126 (Sc4126-M01) with improved acetic acid tolerance was obtained through screening strains transformed with an artificial zinc finger protein transcription factor (ZFP-TF) library. Further analysis indicated that improved acetic acid tolerance was associated with improved catalase (CAT) activity. The ZFP coding sequence associated with the improved phenotype was identified, and real-time RT-PCR analysis revealed that three of the possible genes involved in the enhanced acetic acid tolerance regulated by this ZFP-TF, namely YFL040W, QDR3, and IKS1, showed decreased transcription levels in Sc4126-M01 in the presence of acetic acid, compared to those in the control strain. Sc4126-M01 mutants having QDR3 and IKS1 deletion (ΔQDR3 and ΔIKS1) exhibited higher acetic acid tolerance than the wild-type strain under acetic acid treatment. Glucose consumption rate and ethanol productivity in the presence of 5 g/L acetic acid were improved in the ΔQDR3 mutant compared to the wild-type strain. Our studies demonstrated that the synthetic ZFP-TF library can be used to improve acetic acid tolerance of S. cerevisiae and that the employment of an artificial transcription factor can facilitate the exploration of novel functional genes involved in stress tolerance of S. cerevisiae.

  15. [Effect of acetic acid on adsorption of acid phosphatase by some soil colloids and clay minerals].

    PubMed

    Zhao, Zhenhua; Huang, Qiaoyun; Jiang, Xin; Yu, Guifen; Wang, Fang; Li, Xueyuan

    2004-03-01

    This paper studied the effect of acetic acid with different concentrations and pH values on the adsorption of acid phosphatase by some soil colloids and clay minerals (SCCM). The results showed that the pH values for the maximum adsorption of the enzyme were between the IEP of the enzyme and the PZC of SCCM. In the acetic acid systems, the amount of the enzyme adsorbed by SCCM was in the order of goethite > yellow brown soil > latosol > kaolinite > delta-MnO2. A remarkable influence of acetic acid concentration on the adsorption amount and the binding energy of the enzyme was observed. With the increase of the concentration from 0 to 200 mmol.L-1 in the system, acetic acid exhibited an enhanced effect, followed by an inhibition action on the adsorption of the enzyme on SCCM. The changes of the binding energy (K value) for the enzyme on SCCM were on the contrary to those of the maximum adsorption. The possible mechanisms for the influence of acetic acid on the adsorption of enzyme by SCCM were also discussed.

  16. Unusal pattern of product inhibition: batch acetic acid fermentation

    SciTech Connect

    Bar, R.; Gainer, J.L.; Kirwan, D.J.

    1987-04-20

    The limited tolerance of microorganisms to their metabolic products results in inhibited growth and product formation. The relationship between the specific growth rate, micro, and the concentration of an inhibitory product has been described by a number of mathematical models. In most cases, micro was found to be inversely proportional to the product concentration and invariably the rate of substrate utilization followed the same pattern. In this communication, the authors report a rather unusual case in which the formation rate of a product, acetic acid, increased with a decreasing growth rate of the microorganism, Acetobacter aceti. Apparently, a similar behavior was mentioned in a review report with respect to Clostridium thermocellum in a batch culture but was not published in the freely circulating literature. The fermentation of ethanol to acetic acid, C/sub 2/H/sub 5/OH + O/sub 2/ = CH/sub 3/COOH + H/sub 2/O is clearly one of the oldest known fermentations. Because of its association with the commercial production of vinegar it has been a subject of extensive but rather technically oriented studies. Suprisingly, the uncommon uncoupling between the inhibited microbial growth and the product formation appears to have been unnoticed. 13 references.

  17. Evaluation of clastogenicity of formic acid, acetic acid and lactic acid on cultured mammalian cells.

    PubMed

    Morita, T; Takeda, K; Okumura, K

    1990-03-01

    Using Chinese hamster ovary K1 cells, chromosomal aberration tests were carried out with formic acid, acetic acid and lactic acid, and the relationship between the pH of the medium and the clastogenic activity was examined. The medium used was Ham's F12 supplemented with 17 mM NaHCO3 and 10% fetal calf serum. All of these acids induced chromosomal aberrations at the initial pH of ca. 6.0 or below (about 10-14 mM of each acid) both with and without S9 mix. Exposure of cells to about pH 5.7 or below (about 12-16 mM of each acid) was found to be toxic. When the culture medium was first acidified with each of these acids and then neutralized to pH 6.4 or pH 7.2 with NaOH, no clastogenic activity was observed. Using F12 medium supplemented with 34 mM NaHCO3 as a buffer, no clastogenic activity was observed at doses up to 25 mM of these acids (initial pH 5.8-6.0). However, it was found that about 10% of the cells had aberrations at pH 5.7 or below (27.5-32.5 mM of each acid). Furthermore, when 30 mM HEPES was used as a buffer, chromosomal aberrations were not induced at doses up to 20 mM formic acid and acetic acid (initial pH 7.0-7.1), and at doses up to 30 mM lactic acid (initial pH 6.6). In the initial pH range of 6.4-6.7 (25-32.5 mM of each acid), chromosomal aberrations were observed. The above results show that these acids themselves are non-clastogenic, and the pseudo-positive reactions attributable to non-physiological pH could be eliminated by either neutralization of the treatment medium or enhancement of the buffering ability.

  18. High dose eicosapentaenoic acid ethyl ester: effects on lipids and neutrophil leukotriene production in normal volunteers.

    PubMed Central

    Hawthorne, A B; Filipowicz, B L; Edwards, T J; Hawkey, C J

    1990-01-01

    1. A 93% pure ethyl ester of eicosapentaenoic acid was investigated for tolerability and biochemical effects on neutrophil leukotriene synthesis and plasma lipoproteins when given in high dose. Six healthy volunteers received 6 g eicosapentaenoic acid ethyl ester daily for 6 weeks, followed by a 4 week wash-out and then 18 g daily for 6 weeks. 2. There was inhibition of neutrophil leukotriene B4 and 5-hydroxyeicosatetraenoic acid synthesis, with no significant differences between low and high dose. 3. There was a dose dependent increase in leukotriene B5 and 5-hydroxyeicosatetraenoic acid acid synthesis. 4. Plasma triglycerides were reduced maximally on 6 g daily, with no greater suppression at 18 g daily. 5. Plasma cholesterol was only suppressed significantly at 18 g daily. 6. The 6 g daily dose was well tolerated but the 18 g daily dose produced diarrhoea and steatorrhoea. PMID:2169832

  19. Synthesis and comparative anti-phlogistic potency of new proteinogenic amino acid conjugates of 2-[2,6-dichlorophenyl-1-amino]phenyl acetic acid "diclofenac".

    PubMed

    Shalaby, A M; Abo-Ghalia, A M; el-Araky, W I; Awad, H M

    1998-01-01

    New proteinogenic amino acids conjugates of 2-[2,6-dichlorophenyl-1-amino]phenyl acetic acid "Diclofenac", [I] were synthesized. Glycine methyl ester and L-methionine ethyl ester were coupled with [I] via the active ester method to give the corresponding 2-[2,6-dichlorophenyl-1-amino]benzyl carboxy N-amino acid ester of the type [IIa, b], respectively, which were hydrolyzed in alkaline medium to yield the free amino acids [IIIa, b]. Condensation of IIIa with glycine methyl ester using a modified classical carbodiimide (DCCI) method gave the corresponding, "Diclofenac" glycylglycine methyl ester [IVa]. Hydrolysis of compounds IVa gives the corresponding acid Va. Thionation of compounds IIb and IVa by reaction with Lewesson's Reagent (LR), afforded the corresponding thio-analogues (VIa and IVb). Interestingly, while retaining considerable comparative anti-phlogistic activity (anti-inflammatory and analgesic), the synthesized candidates proved to be practically nonulcerogenic in rats.

  20. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to...

  1. Interaction effects of lactic acid and acetic acid at different temperatures on ethanol production by Saccharomyces cerevisiae in corn mash.

    PubMed

    Graves, Tara; Narendranath, Neelakantam V; Dawson, Karl; Power, Ronan

    2007-01-01

    The combined effects of lactic acid and acetic acid on ethanol production by S. cerevisiae in corn mash, as influenced by temperature, were examined. Duplicate full factorial experiments (three lactic acid concentrations x three acetic acid concentrations) were performed to evaluate the interaction between lactic and acetic acids on the ethanol production of yeast at each of the three temperatures, 30, 34, and 37 degrees C. Corn mash at 30% dry solids adjusted to pH 4 after lactic and acetic acid addition was used as the substrate. Ethanol production rates and final ethanol concentrations decreased (P<0.001) progressively as the concentration of combined lactic and acetic acids in the corn mash increased and the temperature was raised from 30 to 37 degrees C. At 30 degrees C, essentially no ethanol was produced after 96 h when 0.5% w/v acetic acid was present in the mash (with 0.5, 2, and 4% w/v lactic acid). At 34 and 37 degrees C, the final concentrations of ethanol produced by the yeast were noticeably reduced by the presence of 0.3% w/v acetic acid and >or=2% w/v lactic acid. It can be concluded that, as in previous studies with defined media, lactic acid and acetic acid act synergistically to reduce ethanol production by yeast in corn mash. In addition, the inhibitory effects of combined lactic and acetic acid in corn mash were more apparent at elevated temperatures.

  2. Heterogeneous Reactions of Acetic Acid with Oxide Surfaces: Effects of Mineralogy and Relative Humidity.

    PubMed

    Tang, Mingjin; Larish, Whitney A; Fang, Yuan; Gankanda, Aruni; Grassian, Vicki H

    2016-07-21

    We have investigated the heterogeneous uptake of gaseous acetic acid on different oxides including γ-Al2O3, SiO2, and CaO under a range of relative humidity conditions. Under dry conditions, the uptake of acetic acid leads to the formation of both acetate and molecularly adsorbed acetic acid on γ-Al2O3 and CaO and only molecularly adsorbed acetic acid on SiO2. More importantly, under the conditions of this study, dimers are the major form for molecularly adsorbed acetic acid on all three particle surfaces investigated, even at low acetic acid pressures under which monomers are the dominant species in the gas phase. We have also determined saturation surface coverages for acetic acid adsorption on these three oxides under dry conditions as well as Langmuir adsorption constants in some cases. Kinetic analysis shows that the reaction rate of acetic acid increases by a factor of 3-5 for γ-Al2O3 when relative humidity increases from 0% to 15%, whereas for SiO2 particles, acetic acid and water are found to compete for surface adsorption sites.

  3. Benzylidene Acetal Protecting Group as Carboxylic Acid Surrogate: Synthesis of Functionalized Uronic Acids and Sugar Amino Acids.

    PubMed

    Banerjee, Amit; Senthilkumar, Soundararasu; Baskaran, Sundarababu

    2016-01-18

    Direct oxidation of the 4,6-O-benzylidene acetal protecting group to C-6 carboxylic acid has been developed that provides an easy access to a wide range of biologically important and synthetically challenging uronic acid and sugar amino acid derivatives in good yields. The RuCl3 -NaIO4 -mediated oxidative cleavage method eliminates protection and deprotection steps and the reaction takes place under mild conditions. The dual role of the benzylidene acetal, as a protecting group and source of carboxylic acid, was exploited in the efficient synthesis of six-carbon sialic acid analogues and disaccharides bearing uronic acids, including glycosaminoglycan analogues.

  4. Escherichia coli and Salmonella enterica are protected against acetic acid, but not hydrochloric acid, by hypertonicity.

    PubMed

    Chapman, B; Ross, T

    2009-06-01

    Chapman et al. (B. Chapman, N. Jensen, T Ross, and M. B. Cole, Appl. Environ. Microbiol. 72:5165-5172, 2006) demonstrated that an increased NaCl concentration prolongs survival of Escherichia coli O157 SERL 2 in a broth model simulating the aqueous phase of a food dressing or sauce containing acetic acid. We examined the responses of five other E. coli strains and four Salmonella enterica strains to increasing concentrations of NaCl under conditions of lethal acidity and observed that the average "lag" time prior to inactivation decreases in the presence of hydrochloric acid but not in the presence of acetic acid. For E. coli in the presence of acetic acid, the lag time increased with increasing NaCl concentrations up to 2 to 4% at pH 4.0, up to 4 to 6% at pH 3.8, and up to 4 to 7% (wt/wt of water) NaCl at pH 3.6. Salmonella was inactivated more rapidly by combined acetic acid and NaCl stresses than E. coli, but increasing NaCl concentrations still decreased the lag time prior to inactivation in the presence of acetic acid; at pH 4.0 up to 1 to 4% NaCl was protective, and at pH 3.8 up to 1 to 2% NaCl delayed the onset of inactivation. Sublethal injury kinetics suggest that this complex response is a balance between the lethal effects of acetic acid, against which NaCl is apparently protective, and the lethal effects of the NaCl itself. Compared against 3% NaCl, 10% (wt/wt of water) sucrose with 0.5% NaCl (which has similar osmotic potential) was found to be equally protective against adverse acetic acid conditions. We propose that hypertonicity may directly affect the rate of diffusion of acetic acid into cells and hence cell survival.

  5. Conversion of furfuryl alcohol into ethyl levulinate using solid acid catalysts.

    PubMed

    Lange, Jean-Paul; van de Graaf, Wouter D; Haan, René J

    2009-01-01

    Furfural, a potential coproduct of levulinic acid, can be converted into levulinic acid via hydrogenation to furfuryl alcohol and subsequent ethanolysis to ethyl levulinate. The ethanolysis reaction is known to proceed in the presence of H(2)SO(4). We show here that several strongly acidic resins are comparably effective catalysts for this reaction. Optimal performance is achieved by balancing the number of acid sites with their accessibility in the resin. Acidic zeolites such as H-ZSM-5 also catalyze this reaction, although with a lower activity and a higher co-production of diethyl ether.

  6. Recent advances in nitrogen-fixing acetic acid bacteria.

    PubMed

    Pedraza, Raúl O

    2008-06-30

    Nitrogen is an essential plant nutrient, widely applied as N-fertilizer to improve yield of agriculturally important crops. An interesting alternative to avoid or reduce the use of N-fertilizers could be the exploitation of plant growth-promoting bacteria (PGPB), capable of enhancing growth and yield of many plant species, several of agronomic and ecological significance. PGPB belong to diverse genera, including Azospirillum, Azotobacter, Herbaspirillum, Bacillus, Burkholderia, Pseudomonas, Rhizobium, and Gluconacetobacter, among others. They are capable of promoting plant growth through different mechanisms including (in some cases), the biological nitrogen fixation (BNF), the enzymatic reduction of the atmospheric dinitrogen (N(2)) to ammonia, catalyzed by nitrogenase. Aerobic bacteria able to oxidize ethanol to acetic acid in neutral or acid media are candidates of belonging to the family Acetobacteraceae. At present, this family has been divided into ten genera: Acetobacter, Gluconacetobacter, Gluconobacter, Acidomonas, Asaia, Kozakia, Saccharibacter, Swaminathania, Neoasaia, and Granulibacter. Among them, only three genera include N(2)-fixing species: Gluconacetobacter, Swaminathania and Acetobacter. The first N(2)-fixing acetic acid bacterium (AAB) was described in Brazil. It was found inside tissues of the sugarcane plant, and first named as Acetobacter diazotrophicus, but then renamed as Gluconacetobacter diazotrophicus. Later, two new species within the genus Gluconacetobacter, associated to coffee plants, were described in Mexico: G. johannae and G. azotocaptans. A salt-tolerant bacterium named Swaminathania salitolerans was found associated to wild rice plants. Recently, N(2)-fixing Acetobacter peroxydans and Acetobacter nitrogenifigens, associated with rice plants and Kombucha tea, respectively, were described in India. In this paper, recent advances involving nitrogen-fixing AAB are presented. Their natural habitats, physiological and genetic aspects

  7. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    SciTech Connect

    Mondala, Andro; Hernandez, Rafael; French, Todd; McFarland, Linda; Sparks, Darrell; Holmes, William; Haque, Monica

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 + 0.7% and 8.8 + 3.2% w/w, respectively, which were lower than the control (17.8 + 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 + 0.6% w/w for 2 g L -1 acetic acid and 4.2 + 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.

  8. Improvement in HPLC separation of acetic acid and levulinic acid in the profiling of biomass hydrolysate.

    PubMed

    Xie, Rui; Tu, Maobing; Wu, Yonnie; Adhikari, Sushil

    2011-04-01

    5-Hydroxymethylfurfural (HMF) and furfural could be separated by the Aminex HPX-87H column chromatography, however, the separation and quantification of acetic acid and levulinic acid in biomass hydrolysate have been difficult with this method. In present study, the HPLC separation of acetic acid and levulinic acid on Aminex HPX-87H column has been investigated by varying column temperature, flow rate, and sulfuric acid content in the mobile phase. The column temperature was found critical in resolving acetic acid and levulinic acid. The resolution for two acids increased dramatically from 0.42 to 1.86 when the column temperature was lowered from 60 to 30 °C. So did the capacity factors for levulinic acid that was increased from 1.20 to 1.44 as the column temperature dropped. The optimum column temperature for the separation was found at 45 °C. Variation in flow rate and sulfuric acid concentration improved not as much as the column temperature did.

  9. Transcript and metabolite alterations increase ganoderic acid content in Ganoderma lucidum using acetic acid as an inducer.

    PubMed

    Ren, Ang; Li, Xiong-Biao; Miao, Zhi-Gang; Shi, Liang; Jaing, Ai-Liang; Zhao, Ming-Wen

    2014-12-01

    Acetic acid at 5-8 mM increased ganoderic acid (GA) accumulation in Ganoderma lucidum. After optimization by the response surface methodology, the GA content reached 5.5/100 mg dry weight, an increase of 105% compared with the control. The intermediate metabolites of GA biosynthesis, lanosterol and squalene also increased to 47 and 15.8 μg/g dry weight, respectively, in response to acetic acid. Acetic acid significantly induced transcription levels of sqs, lano, hmgs and cyp51 in the GA biosynthesis pathway. An acetic acid-unregulated acetyl coenzyme A synthase (acs) gene was selected from ten candidate homologous acs genes. The results indicate that acetic acid alters the expression of genes related to acetic acid assimilation and increases GA biosynthesis and the metabolic levels of lanosterol, squalene and GA-a, thereby resulting in GA accumulation.

  10. Corrosion behavior of mild steel in acetic acid solutions

    SciTech Connect

    Singh, M.M.; Gupta, A.

    2000-04-01

    The corrosion behavior of mild steel in acetic acid (CH{sub 3}COOH) solutions was studied by weight loss and potentiostatic polarization techniques. The variation in corrosion rate of mild steel with concentrations of CH{sub 3}COOH, evaluated by weight loss and electrochemical techniques, showed marked resemblance. From both techniques, the maximum corrosion rate was observed for 20% CH{sub 3}COOH solution at all three experimental temperatures (25, 35, and 45 C). Anodic polarization curves showed active-passive behavior at each concentration, except at 80% CH{sub 3}COOH. Critical current density (i{sub c}) passive current density (I{sub n}), primary passivation potential (E{sub pp}), and potential for passivity (E{sub p}) had their highest values in 20% CH{sub 3}COOH solution. With an increase in temperature, while the anodic polarization curves shifted toward higher current density region at each concentration, the passive region became progressively less distinguishable. With the addition of sodium acetate (NaCOOCH{sub 3}) as a supporting electrolyte, the passive range was enlarged substantially. However, the transpassive region commenced at more or less the same potential. Cathodic polarization curves were almost identical irrespective of the concentration of CH{sub 3}COOH or temperature.

  11. Monitoring codling moth (Lepidoptera: Tortricidae) in sex phermone-treated orchards with (E)-4,8-dimethyl-1,3,7-nonatriene or pear ester in combination with codlemone and acetic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traps baited with ethyl (E,Z)-2,4-decadienoate (pear ester) or (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) in two- or three-way combinations with the sex pheromone (E,E)-8,10-dodecadien-1-ol (codlemone) and acetic acid (AA) were evaluated for codling moth, Cydia pomonella (L.). All studies were conduct...

  12. Cocrystallization out of the blue: DL-mandelic acid/ethyl-DL-mandelate cocrystal

    NASA Astrophysics Data System (ADS)

    Tumanova, Natalia; Payen, Ricky; Springuel, Géraldine; Norberg, Bernadette; Robeyns, Koen; Le Duff, Cécile; Wouters, Johan; Leyssens, Tom

    2017-01-01

    This work focuses on a peculiar behavior of racemic mandelic acid in ethanol solution. Dissolution of racemic mandelic acid in ethanol followed by evaporation to dryness results in a DL-mandelic acid/ethyl-DL-mandelate cocrystal. This behavior indicates that racemic mandelic acid tends not only to transform into an ester in ethanol, but also to cocrystallize with untransformed acid molecules. Cocrystal formation for mandelic acid in ethanol was found to be reproducible under various conditions. DL-tropic acid and DL-phenyllactic acid that contain similar functional groups and that were tested as well, on the other hand, showed no cocrystal formation: DL-phenyllactic acid partly converted into an ester, whereas DL-tropic acid mostly recrystallized.

  13. Enzymatic synthesis of fatty acid ethyl esters by utilizing camellia oil soapstocks and diethyl carbonate.

    PubMed

    Wang, Yingying; Cao, Xuejun

    2011-11-01

    This study was reported on a novel process for fatty acid ethyl esters preparation by transesterification and esterification from renewable low-cost feedstock camellia oil soapstocks and friendly acyl acceptor diethyl carbonate. The main components of product were 83.9% ethyl oleate, 8.9% ethyl palmitate, 4.7% ethyl linoleate and 2.1% ethyl stearate, which could be used as eco-friendly renewable resources or additives of industrial solvent and fossil fuel. The effects of molar ratio of diethyl carbonate to soapstocks oil, lipases, organic solvent, reaction temperature and time were investigated, and process conditions were optimized. The yield was up to 98.4% in solvent-free system with molar ratio of diethyl carbonate to soapstocks oil 3:1 and 5% Novozym 435 (based on the weight of soapstocks oil) at 50 °C and 180 rpm for 24 h. Moreover, there was no obvious loss in the yield after lipases were reused for 10 batches without treatment under optimized conditions.

  14. Development of Acetic Acid Removal Technology for the UREX+Process

    SciTech Connect

    Robert M. Counce; Jack S. Watson

    2009-06-30

    It is imperative that acetic acid is removed from a waste stream in the UREX+process so that nitric acid can be recycled and possible interference with downstreatm steps can be avoidec. Acetic acid arises from acetohydrozamic acid (AHA), and is used to suppress plutonium in the first step of the UREX+process. Later, it is hydrolyzed into hydroxyl amine nitrate and acetic acid. Many common separation technologies were examined, and solvent extraction was determined to be the best choice under process conditions. Solvents already used in the UREX+ process were then tested to determine if they would be sufficient for the removal of acetic acid. The tributyl phosphage (TBP)-dodecane diluent, used in both UREX and NPEX, was determined to be a solvent system that gave sufficient distribution coefficients for acetic acid in addition to a high separation factor from nitric acid.

  15. Acetic acid in aged vinegar affects molecular targets for thrombus disease management.

    PubMed

    Jing, Li; Yanyan, Zhang; Junfeng, Fan

    2015-08-01

    To elucidate the mechanism underlying the action of dietary vinegar on antithrombotic activity, acetic acid, the main acidic component of dietary vinegar, was used to determine antiplatelet and fibrinolytic activity. The results revealed that acetic acid significantly inhibits adenosine diphosphate (ADP)-, collagen-, thrombin-, and arachidonic acid (AA)-induced platelet aggregation. Acetic acid (2.00 mM) reduced AA-induced platelet aggregation to approximately 36.82 ± 1.31%, and vinegar (0.12 mL L(-1)) reduced the platelet aggregation induced by AA to 30.25 ± 1.34%. Further studies revealed that acetic acid exerts its effects by inhibiting cyclooxygenase-1 and the formation of thromboxane-A2. Organic acids including acetic acid, formic acid, lactic acid, citric acid, and malic acid also showed fibrinolytic activity; specifically, the fibrinolytic activity of acetic acid amounted to 1.866 IU urokinase per mL. Acetic acid exerted its fibrinolytic activity by activating plasminogen during fibrin crossing, thus leading to crosslinked fibrin degradation by the activated plasmin. These results suggest that organic acids in dietary vinegar play important roles in the prevention and cure of cardiovascular diseases.

  16. Synthesis and characterization of acetic acid and ethanoic acid (based)-maleimide

    NASA Astrophysics Data System (ADS)

    Poad, Siti Nashwa Mohd; Hassan, Nurul Izzaty; Hassan, Nur Hasyareeda

    2016-11-01

    A new route to the synthesis of maleimide is described. 2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)acetic acid maleimide (1) and 2-(4-(2,5-Dioxo-2,5-dihydro- 1H-pyrrol-1-yl)phenyl)ethanoic acid maleimide (2) have been synthesized by the reaction of maleic anhydride with glycine and 4-aminophenyl acetic aicd. Maleimide (1) was synthesized by conventional technique while maleimide (2) was synthesized by microwave method. The compounds were characterized using FT-Infrared (FT-IR), 1H and 13C Nuclear Magnetic Resonance (NMR) spectroscopies and Mass Spectrometry.

  17. Crystal structure of 7,8-benzocoumarin-4-acetic acid.

    PubMed

    Swamy, R Ranga; Gowda, Ramakrishna; Gowda, K V Arjuna; Basanagouda, Mahantesha

    2015-08-01

    The fused-ring system in the title compound [systematic name: 2-(2-oxo-2H-benzo[h]chromen-4-yl)acetic acid], C15H10O4, is almost planar (r.m.s. deviation = 0.031 Å) and the Car-C-C=O (ar = aromatic) torsion angle for the side chain is -134.4 (3)°. In the crystal, mol-ecules are linked by O-H⋯O hydrogen bonds, generating [100] C(8) chains, where the acceptor atom is the exocyclic O atom of the fused-ring system. The packing is consolidated by a very weak C-H⋯O hydrogen bond to the same acceptor atom. Together, these inter-actions lead to undulating (001) layers in the crystal.

  18. The Ground and First Excited Torsional States of Acetic Acid.

    PubMed

    Ilyushin, V. V.; Alekseev, E. A.; Dyubko, S. F.; Podnos, S. V.; Kleiner, I.; Margulès, L.; Wlodarczak, G.; Demaison, J.; Cosléou, J.; Maté, B.; Karyakin, E. N.; Golubiatnikov, G. Yu.; Fraser, G. T.; Suenram, R. D.; Hougen, J. T.

    2001-02-01

    A global fit of microwave and millimeter-wave rotational transitions in the ground and first excited torsional states (v(t) = 0 and 1) of acetic acid (CH(3)COOH) is reported, which combines older measurements from the literature with new measurements from Kharkov, Lille, and NIST. The fit uses a model developed initially for acetaldehyde and methanol-type internal rotor molecules. It requires 34 parameters to achieve a unitless weighted standard deviation of 0.84 for a total of 2518 data and includes A- and E-species transitions with J

  19. Transcriptome analysis of acetic-acid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance.

    PubMed

    Lee, Yeji; Nasution, Olviyani; Choi, Eunyong; Choi, In-Geol; Kim, Wankee; Choi, Wonja

    2015-08-01

    Acetic acid inhibits the metabolic activities of Saccharomyces cerevisiae. Therefore, a better understanding of how S. cerevisiae cells acquire the tolerance to acetic acid is of importance to develop robust yeast strains to be used in industry. To do this, we examined the transcriptional changes that occur at 12 h post-exposure to acetic acid, revealing that 56 and 58 genes were upregulated and downregulated, respectively. Functional categorization of them revealed that 22 protein synthesis genes and 14 stress response genes constituted the largest portion of the upregulated and downregulated genes, respectively. To evaluate the association of the regulated genes with acetic acid tolerance, 3 upregulated genes (DBP2, ASC1, and GND1) were selected among 34 non-protein synthesis genes, and 54 viable mutants individually deleted for the downregulated genes were retrieved from the non-essential haploid deletion library. Strains overexpressing ASC1 and GND1 displayed enhanced tolerance to acetic acid, whereas a strain overexpressing DBP2 was sensitive. Fifty of 54 deletion mutants displayed enhanced acetic acid tolerance. Three chosen deletion mutants (hsps82Δ, ato2Δ, and ssa3Δ) were also tolerant to benzoic acid but not propionic and sorbic acids. Moreover, all those five (two overexpressing and three deleted) strains were more efficient in proton efflux and lower in membrane permeability and internal hydrogen peroxide content than controls. Individually or in combination, those physiological changes are likely to contribute at least in part to enhanced acetic acid tolerance. Overall, information of our transcriptional profile was very useful to identify molecular factors associated with acetic acid tolerance.

  20. Detection of CIN by naked eye visualization after application of acetic acid.

    PubMed

    Londhe, M; George, S S; Seshadri, L

    1997-06-01

    A prospective study was undertaken to determine the sensitivity and specificity of acetic application to the cervix followed by naked eye visualization as a screening test for detection of cervical intraepithelial neoplasia. Three hundred and seventy two sexually active woman in the reproductive age group were studied. All the women underwent Papanicolaou test, acetic acid test and colposcopy. One hundred and seventy five woman were acetic acid test negative, 197 women were acetic acid test positive. The sensitivity of acetic acid test was 72.4%, specificity 54% and false negative rate 15.2%, as compared to papanicolaou test which had a sensitivity of 13.2%, specificity of 96.3% and false negative rate of 24.4%. The advantage of the acetic acid test lies in its easy technique, low cost and high sensitivity which are important factors for determining the efficacy of any screening programme in developing countries.

  1. Acetic acid and aromatics units planned in China

    SciTech Connect

    Alperowicz, N.

    1993-01-27

    The Shanghai Wujing Chemical Complex (SWCC; Shanghai) is proceeding with construction of an acetic acid plant. The 100,000-m.t./year until will use BP Chemicals carbonylation technology, originally developed by Monsanto. John Brown has been selected by China National Technical Import Corp. (CNTIC) to supply the plant, Chinese sources say. The UK contractor, which competed against Mitsui Engineering Shipbuilding (Tokyo) and Lurgi (Frankfurt), has built a similar plant for BP in the UK, although using different technology. The new plant will require 54,000 m.t./year of methanol, which is available onsite. Carbon monoxide will be delivered from a new plant. The acetic acid unit will joint two other acetic plants in China supplied some time ago by Uhde (Dortmund). SWCC is due to be integrated with two adjacent complexes to form Shanghai Pacific Chemical. Meanwhile, four groups are competing to supply a UOP-process aromatics complex for Jilin Chemical Industrial Corp. They are Toyo Engineering, Lurgi, Lucky/Foster Wheeler, and Eurotechnica. The complex will include plants with annual capacities for 115,000 m.t. of benzene, 90,000 m.t. of ortho-xylene, 93,000 m.t. of mixed xylenes, and 20,000 m.t. of toluene. The plants will form part of a $2-billion petrochemical complex based on a 300,000-m.t./year ethylene plant awarded last year to a consortium of Samsung Engineering and Linde. Downstream plants will have annual capacities for 120,000 m.t. of linear low-density polyethylene, 80,000 m.t. of ethylene oxide, 100,000 m.t. of ethylene glycol, 80,000 m.t. of phenol, 100,000 m.t. of acrylonitrile, 20,000 m.t. of sodium cyanide, 40,000 m.t. of phthalic anhydride, 40,000 m.t. of ethylene propylene rubber, 20,000 m.t. of styrene butadiene styrene, and 30,000 m.t. of acrylic fiber.

  2. L-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss.

    PubMed

    Murakami, Nao; Oba, Mana; Iwamoto, Mariko; Tashiro, Yukihiro; Noguchi, Takuya; Bonkohara, Kaori; Abdel-Rahman, Mohamed Ali; Zendo, Takeshi; Shimoda, Mitsuya; Sakai, Kenji; Sonomoto, Kenji

    2016-01-01

    Glycerol is a by-product in the biodiesel production process and considered as one of the prospective carbon sources for microbial fermentation including lactic acid fermentation, which has received considerable interest due to its potential application. Enterococcus faecalis isolated in our laboratory produced optically pure L-lactic acid from glycerol in the presence of acetic acid. Gas chromatography-mass spectrometry analysis using [1, 2-(13)C2] acetic acid proved that the E. faecalis strain QU 11 was capable of converting acetic acid to ethanol during lactic acid fermentation of glycerol. This indicated that strain QU 11 restored the redox balance by oxidizing excess NADH though acetic acid metabolism, during ethanol production, which resulted in lactic acid production from glycerol. The effects of pH control and substrate concentration on lactic acid fermentation were also investigated. Glycerol and acetic acid concentrations of 30 g/L and 10 g/L, respectively, were expected to be appropriate for lactic acid fermentation of glycerol by strain QU 11 at a pH of 6.5. Furthermore, fed-batch fermentation with 30 g/L glycerol and 10 g/L acetic acid wholly exhibited the best performance including lactic acid production (55.3 g/L), lactic acid yield (0.991 mol-lactic acid/mol-glycerol), total yield [1.08 mol-(lactic acid and ethanol)]/mol-(glycerol and acetic acid)], and total carbon yield [1.06 C-mol-(lactic acid and ethanol)/C-mol-(glycerol and acetic acid)] of lactic acid and ethanol. In summary, the strain QU 11 successfully produced lactic acid from glycerol with acetic acid metabolism, and an efficient fermentation system was established without carbon loss.

  3. Combined use of fatty acid ethyl esters and ethyl glucuronide in hair for diagnosis of alcohol abuse: interpretation and advantages.

    PubMed

    Pragst, F; Rothe, M; Moench, B; Hastedt, M; Herre, S; Simmert, D

    2010-03-20

    In this study the combined use of fatty acid ethyl esters (FAEE) and ethyl glucuronide (EtG) for diagnoses of chronically excessive alcohol abuse is investigated at 174 hair samples from driving ability examination, workplace testing and child custody cases for family courts and evaluated with respect to the basics of interpretation. Using the cut-off values of 0.50 ng/mg for FAEE and 25 pg/mg for EtG, both markers were in agreement in 75% of the cases with 103 negative and 28 positive results and there were 30 cases with FAEE positive and EtG negative and 13 cases with FAEE negative and EtG positive. As the theoretical basis of interpretation, the pharmacokinetics of FAEE and EtG is reviewed for all steps between drinking of ethanol to incorporation in hair with particular attention to relationships between alcohol dose and concentrations in hair. It is shown that the concentrations of both markers are essentially determined by the area under the ethanol concentration in blood vs. time curve AUC(EtOH), despite large inter-individual variations. It is demonstrated by calculation of AUC(EtOH) on monthly basis for moderate, risky and heavy drinking that AUC(EtOH) increases very strongly in the range between 60 and 120 g ethanol per day. This specific feature which is caused by the zero-order elimination of ethanol is a favorable prerequisite for a high discrimination power of the hair testing for alcohol abuse. From the consideration of the different profiles of FAEE and EtG along the hair and in agreement with the literature survey, a standardized hair segment 0-3 cm is proposed with cut-off values of 0.5 ng/mg for FAEE and 30 pg/mg for EtG. This improves also the agreement between FAEE and EtG results in the cases of the present study. A scheme for combined interpretation of FAEE and EtG is proposed which uses the levels of abstinence and the double of the cut-off values as criteria in addition to the cut-off's. Considering the large variations in the relationship

  4. Effects of Oxygen Availability on Acetic Acid Tolerance and Intracellular pH in Dekkera bruxellensis

    PubMed Central

    Capusoni, Claudia; Arioli, Stefania; Zambelli, Paolo; Moktaduzzaman, M.; Mora, Diego

    2016-01-01

    ABSTRACT The yeast Dekkera bruxellensis, associated with wine and beer production, has recently received attention, because its high ethanol and acid tolerance enables it to compete with Saccharomyces cerevisiae in distilleries that produce fuel ethanol. We investigated how different cultivation conditions affect the acetic acid tolerance of D. bruxellensis. We analyzed the ability of two strains (CBS 98 and CBS 4482) exhibiting different degrees of tolerance to grow in the presence of acetic acid under aerobic and oxygen-limited conditions. We found that the concomitant presence of acetic acid and oxygen had a negative effect on D. bruxellensis growth. In contrast, incubation under oxygen-limited conditions resulted in reproducible growth kinetics that exhibited a shorter adaptive phase and higher growth rates than those with cultivation under aerobic conditions. This positive effect was more pronounced in CBS 98, the more-sensitive strain. Cultivation of CBS 98 cells under oxygen-limited conditions improved their ability to restore their intracellular pH upon acetic acid exposure and to reduce the oxidative damage to intracellular macromolecules caused by the presence of acetic acid. This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can protect against the damage caused by the presence of acetic acid. This aspect is important for optimizing industrial processes performed in the presence of acetic acid. IMPORTANCE This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can have a protective role against the damage caused by the presence of acetic acid. This aspect is important for the optimization of industrial processes performed in the presence of acetic acid. PMID:27235432

  5. Improved monitoring of female codling moth (Lepidoptera: Tortricidae) with pear ester plus acetic acid in sex pheromone-treated orchards.

    PubMed

    Knight, Alan

    2010-08-01

    The performance of clear delta traps baited with 3.0 mg of pear ester, ethyl (E,Z)-2,4-decadienoate, and 5.0 ml of acetic acid in separate lures was compared with orange delta traps baited with a single lure containing 3.0 mg of both pear ester and the sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone) for codling moth, Cydia pomonella (L.), in apple, Malus domestica (Borkhausen). Residual analyses and field tests demonstrated that both the pear ester and acetic acid lures were effective for at least 8 wk. The two trap-lure combinations caught a similar number of total moths in an orchard treated with sex pheromone dispensers during short-term trials in 2008. However, the mean catch of female moths was significantly higher and male moths significantly lower in clear traps baited with pear ester and acetic acid versus orange traps baited with pear ester and codlemone. Season-long studies were conducted with these two trap-lure combinations in orchards treated with (n = 6) and without (n = 7) sex pheromone dispensers during 2009. The two trap-lure combinations caught similar numbers of moths in dispenser-treated orchards. In contrast, total catch was significantly higher (>2-fold) in the orange compared with the clear traps in untreated orchards. The clear caught >6-fold more females than the orange trap in both types of orchards. These studies suggest that deploying clear delta traps baited with pear ester and acetic acid can be an effective monitoring tool for female codling moth and an alternative to codlemone-baited traps in sex pheromone-treated orchards.

  6. Design, synthesis and SAR studies of GABA uptake inhibitors derived from 2-substituted pyrrolidine-2-yl-acetic acids.

    PubMed

    Steffan, Tobias; Renukappa-Gutke, Thejavathi; Höfner, Georg; Wanner, Klaus T

    2015-03-15

    In this paper, we disclose the design and synthesis of a series of 2-substituted pyrrolidine-2-yl-acetic acid as core structures and the N-arylalkyl derivatives thereof as potential GABA transport inhibitors. The 2-position in the side chain of pyrrolidine-2-yl-acetic acid derivatives was substituted with alkyl, hydroxy and amino groups to modulate the activity and selectivity to mGAT1 and mGAT4 proteins. SAR studies of the compounds performed for the four mouse GABA transporter proteins (mGAT1-mGAT4) implied significant potencies and subtype selectivities for 2-hydroxy-2-pyrrolidine-2-yl-acetic acid derivatives. The racemate rac-(u)-13c exhibited the highest potency (pIC50 5.67) at and selectivity for mGAT1 in GABA uptake assays. In fact, the potency of rac-(u)-13c at hGAT-1 (pIC50 6.14) was even higher than its potency at mGAT1. These uptake results for rac-(u)-13c are in line with the binding affinities to the aforesaid proteins mGAT1 (pKi 6.99) and hGAT-1 (pKi 7.18) determined by MS Binding Assay based on NO711 as marker quantified by LC-ESI-MS-MS analysis. Interestingly, the 2-hydroxy-2-pyrrolidine-2-yl-acetic acid rac-(u)-13d containing 2-{[tris(4-methoxyphenyl)]methoxy} ethyl group at the nitrogen atom of the pyrrolidine ring showed high potency at mGAT4 and a comparatively better selectivity for this protein (>15 against mGAT3) than the well known mGAT4 uptake inhibitor (S)-SNAP-5114.

  7. Formic acid and acetic acid measurements during the Southern California Air Quality Study

    NASA Astrophysics Data System (ADS)

    Grosjean, Daniel

    As part of the Southern California Air Quality Study (SCAQS), ambient levels of gas phase formic acid and acetic acid have been measured at four locations: a 'control' site (San Nicholas Island), a source-dominated coastal site (Long Beach) and two inland smog receptor sites (Claremont and Palm Springs). Samples were collected on alkaline traps and were analyzed by size exclusion liquid chromatography with ultraviolet detection. Levels of gas phase formic acid (up to 19 ppb) and acetic acid (up to 17 ppb) exhibited diurnal (frequent night-time maxima), spatial and seasonal variations. During summer smog episodes, concentrations increased from 0.6 ppb at the 'control' site to up to 13-19 ppb at the inland smog receptor sites reflecting primary emissions and in situ formation during transport inland. The acetic acid/formic acid (A/F) ratio decreased from coastal to inland sites. At the coastal site levels of both acids and the A/F ratio were substantially higher during the fall than during the summer.

  8. Phenyl Acetate Preparation from Phenol and Acetic Acid: Reassessment of a Common Textbook Misconception.

    ERIC Educational Resources Information Center

    Hocking, M. B.

    1980-01-01

    Reassesses a common textbook misconception that "...phenols cannot be esterified directly." Results of experiments are discussed and data tables provided of an effective method for the direct preparation of phenyl acetate. (CS)

  9. 40 CFR 721.10326 - 2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ester, polymer with butyl 2-propenoate, ethyl 2-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2... 2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2-propenoate (1:2), 2,2'-(1,2-diazenediyl)bis - and...

  10. [Advances in functional genomics studies underlying acetic acid tolerance of Saccharomyces cerevisiae].

    PubMed

    Zhao, Xinqing; Zhang, Mingming; Xu, Guihong; Xu, Jianren; Bai, Fengwu

    2014-03-01

    Industrial microorganisms are subject to various stress conditions, including products and substrates inhibitions. Therefore, improvement of stress tolerance is of great importance for industrial microbial production. Acetic acid is one of the major inhibitors in the cellulosic hydrolysates, which affects seriously on cell growth and metabolism of Saccharomyces cerevisiae. Studies on the molecular mechanisms underlying adaptive response and tolerance of acetic acid of S. cerevisiae benefit breeding of robust strains of industrial yeast for more efficient production. In recent years, more insights into the molecular mechanisms underlying acetic acid tolerance have been revealed through analysis of global gene expression and metabolomics analysis, as well as phenomics analysis by single gene deletion libraries. Novel genes related to response to acetic acid and improvement of acetic acid tolerance have been identified, and novel strains with improved acetic acid tolerance were constructed by modifying key genes. Metal ions including potassium and zinc play important roles in acetic acid tolerance in S. cerevisiae, and the effect of zinc was first discovered in our previous studies on flocculating yeast. Genes involved in cell wall remodeling, membrane transport, energy metabolism, amino acid biosynthesis and transport, as well as global transcription regulation were discussed. Exploration and modification of the molecular mechanisms of yeast acetic acid tolerance will be done further on levels such as post-translational modifications and synthetic biology and engineering; and the knowledge obtained will pave the way for breeding robust strains for more efficient bioconversion of cellulosic materials to produce biofuels and bio-based chemicals.

  11. Atmospheric geochemistry of formic and acetic acids at a mid-latitude temperate site

    NASA Technical Reports Server (NTRS)

    Talbot, R. W.; Beecher, K. M.; Harriss, R. C.; Cofer, R. W., III

    1988-01-01

    Tropospheric concentrations of formic and acetic acids in the gas, the aerosol, and the rainwater phases were determined in samples collected 1-2 m above ground level at an open field site in eastern Virginia. These acids were found to occur principally (98 percent or above) in the gas phase, with a marked annual seasonality, averaging 1890 ppt for formate and 1310 ppt for acetate during the growing season, as compared to 695 ppt and 700 ppt, respectively, over the nongrowing season. The data support the hypothesis that biogenic emissions from vegatation are important sources of atmospheric formic and acetic acid during the local growing season. The same time trends were observed for precipitation, although with less defined seasonality. The relative increase of the acetic acid/formic acid ratio during the nongrowing season points to the dominance of anthropogenic inputs of acetic acid from motor vehicles and biomass combustion in the wintertime.

  12. Modification of wheat starch with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures I. Thermophysical and pasting properties.

    PubMed

    Subarić, Drago; Ačkar, Durđica; Babić, Jurislav; Sakač, Nikola; Jozinović, Antun

    2014-10-01

    The aim of this research was to investigate the influence of modification with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures on thermophysical and pasting properties of wheat starch. Starch was isolated from two wheat varieties and modified with mixtures of succinic acid and acetic anhydride, and azelaic acid and acetic anhydride in 4, 6 and 8 % (w/w). Thermophysical, pasting properties, swelling power, solubility and amylose content of modified starches were determined. The results showed that modifications with mixtures of afore mentioned dicarboxylic acids with acetic anhydride decreased gelatinisation and pasting temperatures. Gelatinisation enthalpy of Golubica starch increased, while of Srpanjka starch decreased by modifications. Retrogradation after 7 and 14 day-storage at 4 °C decreased after modifications of both starches. Maximum, hot and cold paste viscosity of both starches increased, while stability during shearing at high temperatures decreased. % setback of starches modified with azelaic acid/acetic anhydride mixture decreased. Swelling power and solubility of both starches increased by both modifications.

  13. Antinociceptive Effect of Tephrosia sinapou Extract in the Acetic Acid, Phenyl-p-benzoquinone, Formalin, and Complete Freund's Adjuvant Models of Overt Pain-Like Behavior in Mice.

    PubMed

    Martinez, Renata M; Zarpelon, Ana C; Domiciano, Talita P; Georgetti, Sandra R; Baracat, Marcela M; Moreira, Isabel C; Andrei, Cesar C; Verri, Waldiceu A; Casagrande, Rubia

    2016-01-01

    Tephrosia toxicaria, which is currently known as Tephrosia sinapou (Buc'hoz) A. Chev. (Fabaceae), is a source of compounds such as flavonoids. T. sinapou has been used in Amazonian countries traditional medicine to alleviate pain and inflammation. The purpose of this study was to evaluate the analgesic effects of T. sinapou ethyl acetate extract in overt pain-like behavior models in mice by using writhing response and flinching/licking tests. We demonstrated in this study that T. sinapou extract inhibited, in a dose (1-100 mg/kg) dependent manner, acetic acid- and phenyl-p-benzoquinone- (PBQ-) induced writhing response. Furthermore, it was active via intraperitoneal, subcutaneous, and peroral routes of administration. T. sinapou extract also inhibited formalin- and complete Freund's adjuvant- (CFA-) induced flinching/licking at 100 mg/kg dose. In conclusion, these findings demonstrate that T. sinapou ethyl acetate extract reduces inflammatory pain in the acetic acid, PBQ, formalin, and CFA models of overt pain-like behavior. Therefore, the potential of analgesic activity of T. sinapou indicates that it deserves further investigation.

  14. Antinociceptive Effect of Tephrosia sinapou Extract in the Acetic Acid, Phenyl-p-benzoquinone, Formalin, and Complete Freund's Adjuvant Models of Overt Pain-Like Behavior in Mice

    PubMed Central

    Martinez, Renata M.; Zarpelon, Ana C.; Domiciano, Talita P.; Georgetti, Sandra R.; Baracat, Marcela M.; Moreira, Isabel C.; Andrei, Cesar C.; Verri, Waldiceu A.; Casagrande, Rubia

    2016-01-01

    Tephrosia toxicaria, which is currently known as Tephrosia sinapou (Buc'hoz) A. Chev. (Fabaceae), is a source of compounds such as flavonoids. T. sinapou has been used in Amazonian countries traditional medicine to alleviate pain and inflammation. The purpose of this study was to evaluate the analgesic effects of T. sinapou ethyl acetate extract in overt pain-like behavior models in mice by using writhing response and flinching/licking tests. We demonstrated in this study that T. sinapou extract inhibited, in a dose (1–100 mg/kg) dependent manner, acetic acid- and phenyl-p-benzoquinone- (PBQ-) induced writhing response. Furthermore, it was active via intraperitoneal, subcutaneous, and peroral routes of administration. T. sinapou extract also inhibited formalin- and complete Freund's adjuvant- (CFA-) induced flinching/licking at 100 mg/kg dose. In conclusion, these findings demonstrate that T. sinapou ethyl acetate extract reduces inflammatory pain in the acetic acid, PBQ, formalin, and CFA models of overt pain-like behavior. Therefore, the potential of analgesic activity of T. sinapou indicates that it deserves further investigation. PMID:27293981

  15. Mixture Toxicity of SN2-Reactive Soft Electrophiles: 3. Evaluation of Ethyl α-Halogenated Acetates with α-Halogenated Acetonitriles

    PubMed Central

    Pöch, G.; Schultz, T. W.

    2014-01-01

    Mixture toxicity for each of four ethyl α-halogenated acetates (ExACs) with each of three α-halogenated acetonitriles (xANs) was assessed. Inhibition of bioluminescence in Vibrio fischeri was measured after 15, 30 and 45-min of exposure. Concentration-response curves were developed for each chemical at each exposure duration and used to develop predicted concentration-response curves for the dose-addition and independence models of combined effect. Concentration-response curves for each mixture and each exposure duration were then evaluated against the predicted curves, using three metrics per model: 1) EC50-based additivity quotient (AQ) or independence quotient (IQ) values, 2) mean AQ (mAQ) or mean IQ (mIQ) values, calculated by averaging the EC25, EC50 and EC75 AQ or IQ values, and 3) deviation values from additivity (DV-A) or independence (DV-I). Mixture toxicity for ethyl iodoacetate (EIAC) was dose-additive with each of the xANs at all exposure durations and was often consistent with independence as well. The same was true for mixture toxicity of ethyl bromoacetate (EBAC) with each xAN. However, for the two more slowly reactive chemicals ethyl chloroacetate (ECAC) and ethyl fluoroacetate (EFAC) mixture toxicity with each xAN only became consistent with dose-addition upon increasing exposure duration. Consistency with independence for both ECAC and EFAC with the xANs was essentially limited to the EC50-IQ metric; thereby demonstrating the utility of calculating the mean quotient (mAQ, mIQ) and deviation value (DV-A, DV-I) metrics. Upon review of these findings with those from the first two papers in the series, the results suggest that instances in which mixture toxicity was not consistent with dose-addition relate: 1) to differences in the capability of the chemicals to form strong H-bonds with water and 2) to differences in relative reactivity and time-dependent toxicity levels of the chemicals. PMID:24368709

  16. Oxidation of Indole-3-Acetic Acid-Amino Acid Conjugates by Horseradish Peroxidase

    PubMed Central

    Park, Ro Dong; Park, Chang Kyu

    1987-01-01

    The stability of 21 amino acid conjugates of indole-3-acetic acid (IAA) toward horseradish peroxidase (HRP) was studied. The IAA conjugates of Arg, Ile, Leu, Tyr, and Val were oxidized readily by peroxidase. Those of Ala, β-Ala, Asp, Cys, Gln, Glu, Gly, and Lys were not degraded and their recovery was above 92% after 1 hour incubation with HRP. A correlation between the stability of IAA conjugates toward peroxidase-catalyzed oxidation and the hydrophobicity of the amino acid moiety conjugated to IAA was demonstrated. Polar amino acid conjugates of IAA are more resistant to HRP-catalyzed oxidation. PMID:16665529

  17. Evidence for a Complex Between Thf and Acetic Acid from Broadband Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zaleski, Daniel P.; Bittner, Dror M.; Mullaney, John Connor; Stephens, Susanna L.; King, Adrian; Habgood, Matthew; Walker, Nick

    2015-06-01

    Evidence for a complex between tetrahydrofuran (THF) and acetic acid from broadband rotational spectroscopy will be presented. Transitions believed to belong to the complex were first identified in a gas mixture containing small amounts of THF, triethyl borane, and acetic acid balanced in argon. Ab initio calculations suggest a complex between THF and acetic acid is more likely to form compared to the analogous acetic acid complex with triethyl borane, the initial target. The observed rotational constants are also more similar to those predicted for a complex formed between THF and acetic acid, than for those of a complex formed between triethyl borane and acetic acid. Subsequently, multiple isotopologues of acetic acid have been measured, confirming its presence in the structure. No information has yet been obtained through isotopic substitution within the THF sub-unit. Ab initio calculations predict the most likely structure is one where the acetic acid subunit coordinates over the ring creating a "bridge" between the THF oxygen, the carboxylic O-H, and the carbonyl oxygen to a hydrogen atom on the back of the ring.

  18. Efficacy of Acetic Acid against Listeria monocytogenes Attached to Poultry Skin during Refrigerated Storage.

    PubMed

    Gonzalez-Fandos, Elena; Herrera, Barbara

    2014-09-11

    This work evaluates the effect of acetic acid dipping on the growth of L. monocytogenes on poultry legs stored at 4 °C for eight days. Fresh inoculated chicken legs were dipped into either a 1% or 2% acetic acid solution (v/v) or distilled water (control). Changes in mesophiles, psychrotrophs, Enterobacteriaceae counts and sensorial characteristics (odor, color, texture and overall appearance) were also evaluated. The shelf life of the samples washed with acetic acid was extended by at least two days over the control samples washed with distilled water. L. monocytogenes counts before decontamination were 5.57 log UFC/g, and after treatment with 2% acetic acid (Day 0), L. monocytogenes counts were 4.47 log UFC/g. Legs washed with 2% acetic acid showed a significant (p < 0.05) inhibitory effect on L. monocytogenes compared to control legs, with a decrease of about 1.31 log units after eight days of storage. Sensory quality was not adversely affected by acetic acid. This study demonstrates that while acetic acid did reduce populations of L. monocytogenes on meat, it did not completely inactivate the pathogen. The application of acetic acid may be used as an additional hurdle contributing to extend the shelf life of raw poultry and reducing populations of L. monocytogenes.

  19. Microbiological preservation of cucumbers for bulk storage by the use of acetic acid and food preservatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial growth did not occur when cucumbers were preserved without a thermal process by storage in solutions containing acetic acid, sodium benzoate, and calcium chloride to maintain tissue firmness. The concentrations of acetic acid and sodium benzoate required to assure preservation were low en...

  20. Quantification of fatty acid ethyl esters (FAEE) and ethyl glucuronide (EtG) in meconium for detection of alcohol abuse during pregnancy: Correlation study between both biomarkers.

    PubMed

    Cabarcos, Pamela; Tabernero, María Jesús; Otero, José Luís; Míguez, Martha; Bermejo, Ana María; Martello, Simona; De Giovanni, Nadia; Chiarotti, Marcello

    2014-11-01

    This article presents results from 47 meconium samples, which were analyzed for fatty acid ethyl esters (FAEE) and ethyl glucuronide (EtG) for detection of gestational alcohol consumption. A validated microwave assisted extraction (MAE) method in combination with GC-MS developed in the Institute of Forensic Science (Santiago de Compostela) was used for FAEE and the cumulative concentration of ethyl myristate, ethyl palmitate and ethyl stearate with a cut-off of 600ng/g was applied for interpretation. A simple method for identification and quantification of EtG has been evaluated by ultrasonication followed solid phase extraction (SPE). Successful validation parameters were obtained for both biochemical markers of alcohol intake. FAEE and EtG concentrations in meconium ranged between values lower than LOD and 32,892ng/g or 218ng/g respectively. We have analyzed FAEE and EtG in the same meconium aliquot, enabling comparison of the efficiency of gestational ethanol exposure detection. Certain agreement between the two biomarkers was found as they are both a very specific alcohol markers, making it a useful analysis for confirmation.

  1. Electromembrane extraction and HPLC analysis of haloacetic acids and aromatic acetic acids in wastewater.

    PubMed

    Alhooshani, Khalid; Basheer, Chanbasha; Kaur, Jagjit; Gjelstad, Astrid; Rasmussen, Knut E; Pedersen-Bjergaard, Stig; Lee, Hian Kee

    2011-10-30

    For the first time, haloacetic acids and aromatic acetic acids were extracted from wastewater samples using electromembrane extraction (EME). A thin layer of toluene immobilized on the walls of a polypropylene membrane envelope served as an artificial supported liquid membrane (SLM). The haloacetic acids (HAAs) (chloroacetic acid, dichloroacetic acid, and trifluoroacetic acid) and aromatic acetic acids (phenylacetic acid and p-hydroxyphenylacetic acid) were extracted through the SLM and into an alkalized aqueous buffer solution. The buffer solution was located inside the membrane envelope. The electrical potential difference sustained over the membrane acted as the driving force for the transport of haloacetic acids into the membrane by electrokinetic migration. After extraction, the extracts were analyzed by high-performance liquid chromatography-ultraviolet detection. The detection limits were between 0.072 and 40.3 ng L(-1). The calibration plot linearity was in the range of 5 and 200 μg L(-1) while the correlation coefficients for the analytes ranged from 0.9932 to 0.9967. Relative recoveries were in the range of 87-106%. The extraction efficiency was found to be comparable to that of solid-phase extraction.

  2. Sulfur Ylides. Communication 1. Cyclopropanation of. cap alpha. ,. beta. -unsaturated Ketones with Ethyl (dimethylsulfuranylidene) acetate generated in the presence of phase-transfer catalysts

    SciTech Connect

    Tolstikov, G.A.; Galin, F.Z.; Iskandarova V.N.; Khalilov, L.M.; Panasenko, A.A.

    1986-04-01

    This paper presents a modified method for the cyclopropanation of alpha, beta-unsaturated ketones with ethyl (dimethylsulfuranylidene) acetate, generated in situ from a sulfonium salt with 85% KOH in the presence of a phase-transfer catalyst, and studies the sterochemistry of the polysubstituted cyclopropanes. The chemical shifts of the carbon atoms of the cyclopropane rings of the isomer pairs are close together in the C 13 NMR spectra, which makes the assignment of the signals of C/sup 2/ and C/sup 3/ and the sterochemical assignment of each isomer to the cis and the trans series difficult. It is shown that the signals of the carboxyl carbon atoms differ not more than 0.65 ppm in the isomer pairs.

  3. Mechanistic Insights on C-O and C-C Bond Activation and Hydrogen Insertion during Acetic Acid Hydrogenation Catalyzed by Ruthenium Clusters in Aqueous Medium

    SciTech Connect

    Shangguan, Junnan; Olarte, Mariefel V.; Chin, Ya-Huei

    2016-06-07

    Catalytic pathways for acetic acid (CH3COOH) and hydrogen (H2) reactions on dispersed Ru clusters in the aqueous medium and the associated kinetic requirements for C-O and C-C bond cleavages and hydrogen insertion are established from rate and isotopic assessments. CH3COOH reacts with H2 in steps that either retain its carbon backbone and lead to ethanol, ethyl acetate, and ethane (47-95 %, 1-23 %, and 2-17 % carbon selectivities, respectively) or break its C-C bond and form methane (1-43 % carbon selectivities) at moderate temperatures (413-523 K) and H2 pressures (10-60 bar, 298 K). Initial CH3COOH activation is the kinetically relevant step, during which CH3C(O)-OH bond cleaves on a metal site pair at Ru cluster surfaces nearly saturated with adsorbed hydroxyl (OH*) and acetate (CH3COO*) intermediates, forming an adsorbed acetyl (CH3CO*) and hydroxyl (OH*) species. Acetic acid turnover rates increase proportionally with both H2 (10-60 bar) and CH3COOH concentrations at low CH3COOH concentrations (<0.83 M), but decrease from first to zero order as the CH3COOH concentration and the CH3COO* coverages increase and the vacant Ru sites concomitantly decrease. Beyond the initial CH3C(O)-OH bond activation, sequential H-insertions on the surface acetyl species (CH3CO*) lead to C2 products and their derivative (ethanol, ethane, and ethyl acetate) and the competitive C-C bond cleavage of CH3CO* causes the eventual methane formation. The instantaneous carbon selectivities towards C2 species (ethanol, ethane, and ethyl acetate) increase linearly with the concentration of proton-type Hδ+ (derived from carboxylic acid dissociation) and chemisorbed H*. The selectivities towards C2 products decrease with increasing temperature, because of higher observed barriers for C-C bond cleavage than H-insertion. This study offers an interpretation of mechanism and energetics and provides kinetic evidence of carboxylic acid assisted proton-type hydrogen (Hδ+) shuffling during H

  4. Usefulness of Icosapent Ethyl (Eicosapentaenoic Acid Ethyl Ester) in Women to Lower Triglyceride Levels (Results from the MARINE and ANCHOR Trials).

    PubMed

    Mosca, Lori; Ballantyne, Christie M; Bays, Harold E; Guyton, John R; Philip, Sephy; Doyle, Ralph T; Juliano, Rebecca A

    2017-02-01

    There are limited data on the efficacy and safety of triglyceride (TG)-lowering agents in women. We conducted subgroup analyses of the effects of icosapent ethyl (a high-purity prescription form of the ethyl ester of the omega-3 fatty acid, eicosapentaenoic acid) on TG levels (primary efficacy variable) and other atherogenic and inflammatory parameters in a total of 215 women with a broad range of TG levels (200-2000 mg/dl) enrolled in two 12-week placebo-controlled trials: MARINE (n = 18; placebo, n = 18) and ANCHOR (n = 91; placebo, n = 88). Icosapent ethyl 4 g/day significantly reduced TG levels from baseline to week 12 versus placebo in both MARINE (-22.7%; p = 0.0327) and ANCHOR (-21.5%; p <0.0001) without increasing low-density lipoprotein cholesterol levels. Significant improvements were also observed in non-high-density lipoprotein cholesterol levels in MARINE (-15.7%; p = 0.0082) and ANCHOR (-14.2%; p <0.0001) and total cholesterol levels in MARINE (-14.9%; p = 0.0023) and ANCHOR (-12.1%; p <0.0001), along with significant increases of >500% in eicosapentaenoic acid levels in plasma and red blood cells (all p <0.001). Icosapent ethyl was well tolerated, with adverse-event profiles comparable with findings in the overall studies. In conclusion, icosapent ethyl 4 g/day significantly reduced TG levels and other atherogenic parameters in women without increasing low-density lipoprotein cholesterol levels compared with placebo; the clinical implications of these findings are being evaluated in the REDUCtion of Cardiovascular Events With Eicosapentaenoic Acid [EPA]-Intervention Trial (REDUCE-IT) cardiovascular outcomes study.

  5. Circumvention of defective neutral amino acid transport in Hartnup disease using tryptophan ethyl ester.

    PubMed Central

    Jonas, A J; Butler, I J

    1989-01-01

    Tryptophan ethyl ester, a lipid-soluble tryptophan derivative, was used to bypass defective gastrointestinal neutral amino acid transport in a child with Hartnup disease. The child's baseline tryptophan concentrations in serum (20 +/- 6 microM) and cerebrospinal fluid (1.0 +/- 0.2 microM) were persistently less than 50% of normal values. Cerebrospinal fluid 5-hydroxyindoleacetic acid (5-HIAA), a serotonin metabolite, was also less than 50% of normal (21 +/- 2 ng/ml). Serum tryptophan concentrations increased only modestly and briefly after an oral challenge with 200 mg/kg of oral L-tryptophan, reflecting the absorptive defect. An oral challenge with 200 mg/kg of tryptophan ethyl ester resulted in a prompt increase in serum tryptophan to a peak of 555 microM. Sustained treatment with 20 mg/kg q6h resulted in normalization of serum (66 +/- 15 microM) and cerebrospinal fluid tryptophan concentrations (mean = 2.3 microM). Cerebrospinal fluid 5-HIAA increased to more normal concentrations (mean = 33 ng/ml). No toxicity was observed over an 8-mo period of treatment, chronic diarrhea resolved, and body weight, which had remained unchanged for 7 mo before ester therapy, increased by approximately 26%. We concluded that tryptophan ethyl ester is effective at circumventing defective gastrointestinal neutral amino acid transport and may be useful in the treatment of Hartnup disease. PMID:2472426

  6. Cognitive enhancing and antioxidant activity of ethyl acetate soluble fraction of the methanol extract of Hibiscus rosa sinensis in scopolamine-induced amnesia

    PubMed Central

    Nade, Vandana S.; Kanhere, Sampat V.; Kawale, Laxman A.; Yadav, Adhikrao V.

    2011-01-01

    Objective: The objective of the present study was to evaluate the cognitive enhancing and antioxidant activity of Hibiscus rosa sinensis. Materials and Methods: The learning and memory was impaired by administration of scopolamine (1 mg/kg, i.p.) in mice which is associated with altered brain oxidative status. The object recognition test (ORT) and passive avoidance test (PAT) were used to assess cognitive enhancing activity. Animals were treated with an ethyl acetate soluble fraction of the methanol extract of H. sinensis (25, 50 and 100 mg/kg, p.o). Results: The ethyl acetate soluble fraction of the methanol extract of H. sinensis (EASF) attenuated amnesia induced by scopolamine and aging. The discrimination index (DI) was significantly decreased in the aged and scopolamine group in ORT. Pretreatment with EASF significantly increased the DI. In PAT, scopolamine-treated mice exhibited significantly shorter step-down latencies (SDL). EASF treatment showed a significant increase in SDL in young, aged as well as in scopolamine-treated animals. The biochemical analysis of brain revealed that scopolamine treatment increased lipid peroxidation and decreased levels of superoxide dismutase (SOD) and glutathione reductase (GSH). Administration of extract significantly reduced LPO and reversed the decrease in brain SOD and GSH levels. The administration of H. sinensis improved memory in amnesic mice and prevented the oxidative stress associated with scopolamine. The mechanism of such protection of H. sinensis may be due to augmentation of cellular antioxidants. Conclusion: The results of the present study suggested that H. sinensis had a protective role against age and scopolamine-induced amnesia, indicating its utility in management of cognitive disorders. PMID:21572646

  7. Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2

    PubMed Central

    Qian, Qingli; Zhang, Jingjing; Cui, Meng; Han, Buxing

    2016-01-01

    Acetic acid is an important bulk chemical that is currently produced via methanol carbonylation using fossil based CO. Synthesis of acetic acid from the renewable and cheap CO2 is of great importance, but state of the art routes encounter difficulties, especially in reaction selectivity and activity. Here we report a route to produce acetic acid from CO2, methanol and H2. The reaction can be efficiently catalysed by Ru–Rh bimetallic catalyst using imidazole as the ligand and LiI as the promoter in 1,3-dimethyl-2-imidazolidinone (DMI) solvent. It is confirmed that methanol is hydrocarboxylated into acetic acid by CO2 and H2, which accounts for the outstanding reaction results. The reaction mechanism is proposed based on the control experiments. The strategy opens a new way for acetic acid production and CO2 transformation, and represents a significant progress in synthetic chemistry. PMID:27165850

  8. Glacial Acetic Acid Adverse Events: Case Reports and Review of the Literature

    PubMed Central

    Doles, William; Wilkerson, Garrett; Morrison, Samantha

    2015-01-01

    Glacial acetic acid is a dangerous chemical that has been associated with several adverse drug events involving patients over recent years. When diluted to the proper concentration, acetic acid solutions have a variety of medicinal uses. Unfortunately, despite warnings, the improper dilution of concentrated glacial acetic acid has resulted in severe burns and other related morbidities. We report on 2 additional case reports of adverse drug events involving glacial acetic acid as well as a review of the literature. A summary of published case reports is provided, including the intended and actual concentration of glacial acetic acid involved, the indication for use, degree of exposure, and resultant outcome. Strategies that have been recommended to improve patient safety are summarized within the context of the key elements of the medication use process. PMID:26448660

  9. RESTORATION OF NORMAL GLUTAMIC ACID TRANSPORT IN VITAMIN B6-DEFICIENT LACTOBACILLUS PLANTARUM BY ACETATE, AMMONIUM, AND VITAMIN B6,

    DTIC Science & Technology

    GLUTAMIC ACID, * LACTOBACILLUS , VITAMIN B COMPLEX, METABOLIC DISEASES, VITAMIN B COMPLEX, ACETATES, AMMONIUM COMPOUNDS, CHLORAMPHENICOL, DEOXYRIBONUCLEIC ACIDS, AMINO ACIDS, PENICILLINS, CELL WALL, SYNTHESIS, OSMOSIS.

  10. Acetic acid induces pH-independent cellular energy depletion in Salmonella enterica.

    PubMed

    Tan, Sin Mei; Lee, Sui Mae; Dykes, Gary A

    2015-03-01

    Weak organic acids are widely used as preservatives and disinfectants in the food industry. Despite their widespread use, the antimicrobial mode of action of organic acids is still not fully understood. This study investigated the effect of acetic acid on the cell membranes and cellular energy generation of four Salmonella strains. Using a nucleic acid/protein assay, it was established that acetic acid did not cause leakage of intracellular components from the strains. A scanning electron microscopy study further confirmed that membrane disruption was not the antimicrobial mode of action of acetic acid. Some elongated Salmonella cells observed in the micrographs indicated a possibility that acetic acid may inhibit DNA synthesis in the bacterial cells. Using an ATP assay, it was found that at a neutral pH, acetic acid caused cellular energy depletion with an ADP/ATP ratio in the range between 0.48 and 2.63 (p<0.05) that was apparent for the four Salmonella strains. We suggest that this effect was probably due solely to the action of undissociated acid molecules. The antimicrobial effect of acetic acid was better under acidic conditions (ADP/ATP ratio of 5.56 ± 1.27; p<0.05), where the role of both pH and undissociated acid molecules can act together. We concluded that the inhibitory effect of acetic acid is not solely attributable to acidic pH but also to undissociated acid molecules. This finding has implication for the use of acetic acid as an antimicrobial against Salmonella on food products, such as chicken meat, which can buffer its pH.

  11. Metabolic regulation of the plant hormone indole-3-acetic acid

    SciTech Connect

    Jerry D. Cohen

    2009-11-01

    The phytohormone indole-3-acetic acid (IAA, auxin) is important for many aspects of plant growth, development and responses to the environment yet the routes to is biosynthesis and mechanisms for regulation of IAA levels remain important research questions. A critical issue concerning the biosynthesis if IAA in plants is that redundant pathways for IAA biosynthesis exist in plants. We showed that these redundant pathways and their relative contribution to net IAA production are under both developmental and environmental control. We worked on three fundamental problems related to how plants get their IAA: 1) An in vitro biochemical approach was used to define the tryptophan dependent pathway to IAA using maize endosperm, where relatively large amounts of IAA are produced over a short developmental period. Both a stable isotope dilution and a protein MS approach were used to identify intermediates and enzymes in the reactions. 2) We developed an in vitro system for analysis of tryptophan-independent IAA biosynthesis in maize seedlings and we used a metabolite profiling approach to isolate intermediates in this reaction. 3) Arabidopsis contains a small family of genes that encode potential indolepyruvate decarboxylase enzymes. We cloned these genes and studied plants that are mutant in these genes and that over-express each member in the family in terms of the level and route of IAA biosynthesis. Together, these allowed further development of a comprehensive picture of the pathways and regulatory components that are involved in IAA homeostasis in higher plants.

  12. Acetic acid chromoendoscopy: Improving neoplasia detection in Barrett's esophagus

    PubMed Central

    Chedgy, Fergus J Q; Subramaniam, Sharmila; Kandiah, Kesavan; Thayalasekaran, Sreedhari; Bhandari, Pradeep

    2016-01-01

    Barrett’s esophagus (BE) is an important condition given its significant premalignant potential and dismal five-year survival outcomes of advanced esophageal adenocarcinoma. It is therefore suggested that patients with a diagnosis of BE undergo regular surveillance in order to pick up dysplasia at an earlier stage to improve survival. Current “gold-standard” surveillance protocols suggest targeted biopsy of visible lesions followed by four quadrant random biopsies every 2 cm. However, this method of Barrett’s surveillance is fraught with poor endoscopist compliance as the procedures are time consuming and poorly tolerated by patients. There are also significant miss-rates with this technique for the detection of neoplasia as only 13% of early neoplastic lesions appear as visible nodules. Despite improvements in endoscope resolution these problems persist. Chromoendoscopy is an extremely useful adjunct to enhance mucosal visualization and characterization of Barrett’s mucosa. Acetic acid chromoendoscopy (AAC) is a simple, non-proprietary technique that can significantly improve neoplasia detection rates. This topic highlight summarizes the current evidence base behind AAC for the detection of neoplasia in BE and provides an insight into the direction of travel for further research in this area. PMID:27433088

  13. Evaluation of the morphological changes of gastric mucosa induced by a low concentration of acetic acid using a rat model.

    PubMed

    Nakao, Ken-ichiro; Ro, Ayako; Kibayashi, Kazuhiko

    2014-02-01

    Oral ingestion of concentrated acetic acid causes corrosive injury of the gastrointestinal tract. To assess the effects of a low concentration of acetic acid on gastric mucosa, we examined the gastric mucosal changes in rats at 1 and 3 days after the injection of 5% or 25% acetic acid into the gastric lumen. The area of the gastric ulcerative lesions in the 25% acetic acid group was significantly larger than that in the 5% acetic acid group. The lesion area was reduced significantly at 3 days after injection in the 5% acetic acid group, whereas no significant difference in lesion area was observed at 1 and 3 days in the 25% acetic acid group. Histologically, corrosive necrosis was limited to the mucosal layer in the 5% acetic acid group, whereas necrosis extended throughout the gastric wall in the 25% acetic acid group. At 3 days post-injection, the 25% acetic acid group showed widespread persistent inflammation, whereas the 5% acetic acid group showed widespread appearance of fibroblasts indicative of a healing process. These results indicate that a low concentration of acetic acid damages the gastric mucosa and that the degree of mucosal damage depends on the concentration of acetic acid.

  14. Acetic Acid Bacteria, Newly Emerging Symbionts of Insects▿

    PubMed Central

    Crotti, Elena; Rizzi, Aurora; Chouaia, Bessem; Ricci, Irene; Favia, Guido; Alma, Alberto; Sacchi, Luciano; Bourtzis, Kostas; Mandrioli, Mauro; Cherif, Ameur; Bandi, Claudio; Daffonchio, Daniele

    2010-01-01

    Recent research in microbe-insect symbiosis has shown that acetic acid bacteria (AAB) establish symbiotic relationships with several insects of the orders Diptera, Hymenoptera, Hemiptera, and Homoptera, all relying on sugar-based diets, such as nectars, fruit sugars, or phloem sap. To date, the fruit flies Drosophila melanogaster and Bactrocera oleae, mosquitoes of the genera Anopheles and Aedes, the honey bee Apis mellifera, the leafhopper Scaphoideus titanus, and the mealybug Saccharicoccus sacchari have been found to be associated with the bacterial genera Acetobacter, Gluconacetobacter, Gluconobacter, Asaia, and Saccharibacter and the novel genus Commensalibacter. AAB establish symbiotic associations with the insect midgut, a niche characterized by the availability of diet-derived carbohydrates and oxygen and by an acidic pH, selective factors that support AAB growth. AAB have been shown to actively colonize different insect tissues and organs, such as the epithelia of male and female reproductive organs, the Malpighian tubules, and the salivary glands. This complex topology of the symbiosis indicates that AAB possess the keys for passing through body barriers, allowing them to migrate to different organs of the host. Recently, AAB involvement in the regulation of innate immune system homeostasis of Drosophila has been shown, indicating a functional role in host survival. All of these lines of evidence indicate that AAB can play different roles in insect biology, not being restricted to the feeding habit of the host. The close association of AAB and their insect hosts has been confirmed by the demonstration of multiple modes of transmission between individuals and to their progeny that include vertical and horizontal transmission routes, comprising a venereal one. Taken together, the data indicate that AAB represent novel secondary symbionts of insects. PMID:20851977

  15. 40 CFR 721.10505 - Phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol mono-C12...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... diesters with 2-ethyl-1-hexanol and polyethylene glycol mono-C12-16-alkyl ethers. 721.10505 Section 721... Phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol mono-C12-16-alkyl... identified as phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol...

  16. 40 CFR 721.10505 - Phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol mono-C12...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... diesters with 2-ethyl-1-hexanol and polyethylene glycol mono-C12-16-alkyl ethers. 721.10505 Section 721... Phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol mono-C12-16-alkyl... identified as phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol...

  17. Cell wall dynamics modulate acetic acid-induced apoptotic cell death of Saccharomyces cerevisiae

    PubMed Central

    Rego, António; Duarte, Ana M.; Azevedo, Flávio; Sousa, Maria J.; Côrte-Real, Manuela; Chaves, Susana R.

    2014-01-01

    Acetic acid triggers apoptotic cell death in Saccharomyces cerevisiae, similar to mammalian apoptosis. To uncover novel regulators of this process, we analyzed whether impairing MAPK signaling affected acetic acid-induced apoptosis and found the mating-pheromone response and, especially, the cell wall integrity pathways were the major mediators, especially the latter, which we characterized further. Screening downstream effectors of this pathway, namely targets of the transcription factor Rlm1p, highlighted decreased cell wall remodeling as particularly important for acetic acid resistance. Modulation of cell surface dynamics therefore emerges as a powerful strategy to increase acetic acid resistance, with potential application in industrial fermentations using yeast, and in biomedicine to exploit the higher sensitivity of colorectal carcinoma cells to apoptosis induced by acetate produced by intestinal propionibacteria. PMID:28357256

  18. Scaleable production and separation of fermentation-derived acetic acid. Final CRADA report.

    SciTech Connect

    Snyder, S. W.; Energy Systems

    2010-02-08

    Half of U.S. acetic acid production is used in manufacturing vinyl acetate monomer (VAM) and is economical only in very large production plants. Nearly 80% of the VAM is produced by methanol carbonylation, which requires high temperatures and exotic construction materials and is energy intensive. Fermentation-derived acetic acid production allows for small-scale production at low temperatures, significantly reducing the energy requirement of the process. The goal of the project is to develop a scaleable production and separation process for fermentation-derived acetic acid. Synthesis gas (syngas) will be fermented to acetic acid, and the fermentation broth will be continuously neutralized with ammonia. The acetic acid product will be recovered from the ammonium acid broth using vapor-based membrane separation technology. The process is summarized in Figure 1. The two technical challenges to success are selecting and developing (1) microbial strains that efficiently ferment syngas to acetic acid in high salt environments and (2) membranes that efficiently separate ammonia from the acetic acid/water mixture and are stable at high enough temperature to facilitate high thermal cracking of the ammonium acetate salt. Fermentation - Microbial strains were procured from a variety of public culture collections (Table 1). Strains were incubated and grown in the presence of the ammonium acetate product and the fastest growing cultures were selected and incubated at higher product concentrations. An example of the performance of a selected culture is shown in Figure 2. Separations - Several membranes were considered. Testing was performed on a new product line produced by Sulzer Chemtech (Germany). These are tubular ceramic membranes with weak acid functionality (see Figure 3). The following results were observed: (1) The membranes were relatively fragile in a laboratory setting; (2) Thermally stable {at} 130 C in hot organic acids; (3) Acetic acid rejection > 99%; and (4

  19. Absorption cross section for the 5νOH stretch of acetic acid and peracetic acid

    NASA Astrophysics Data System (ADS)

    Begashaw, I. G.; Collingwood, M.; Bililign, S.

    2009-12-01

    We report measurements of the absorption cross sections for the vibrational O-H stretch (5νOH) overtone transitions in glacial acetic acid and peracetic acid. The photochemistry that results from overtone excitation has been shown to lead to OH radical production in molecules containing O-H (HNO3, H2O2). In addition the overtone excitation has been observed to result in light initiated chemical reaction. A Cavity ring-down spectroscopy (CRDS) instrument comprising of an Nd:YAG pumped dye laser and 620nm high reflectivity mirrors (R=99.995%) was used to measure the cross sections. The dye laser wavelength was calibrated using water vapor spectrum and the HITRAN 2008 database. The instrument’s minimum detectable absorption is αmin =4.5 *10-9cm-1 Hz-1/2 at 2σ noise level near the peak of the absorption feature. This measurement is the first for acetic acid at this excitation level. Preliminary results for acetic acid show the peak occurs near 615nm. Procedures for separating the monomer and dimer contribution will be presented. We would like to acknowledge support from NSF award #0803016 and NOAA-EPP award #NA06OAR4810187.

  20. Beneficial Effect of Acetic Acid on the Xylose Utilization and Bacterial Cellulose Production by Gluconacetobacter xylinus.

    PubMed

    Yang, Xiao-Yan; Huang, Chao; Guo, Hai-Jun; Xiong, Lian; Luo, Jun; Wang, Bo; Chen, Xue-Fang; Lin, Xiao-Qing; Chen, Xin-De

    2014-09-01

    In this work, acetic acid was found as one promising substrate to improve xylose utilization by Gluconacetobacter xylinus CH001. Also, with the help of adding acetic acid into medium, the bacterial cellulose (BC) production by G. xylinus was increased significantly. In the medium containing 3 g l(-1) acetic acid, the optimal xylose concentration for BC production was 20 g l(-1). In the medium containing 20 g l(-1) xylose, the xylose utilization and BC production by G. xylinus were stimulated by acetic acid within certain concentration. The highest BC yield (1.35 ± 0.06 g l(-1)) was obtained in the medium containing 20 g l(-1) xylose and 3 g l(-1) acetic acid after 14 days. This value was 6.17-fold higher than the yield (0.21 ± 0.01 g l(-1)) in the medium only containing 20 g l(-1) xylose. The results analyzed by FE-SEM, FTIR, and XRD showed that acetic acid affected little on the microscopic morphology and physicochemical characteristics of BC. Base on the phenomenon observed, lignocellulosic acid hydrolysates (xylose and acetic acid are main carbon sources present in it) could be considered as one potential substrate for BC production.

  1. Ethyl acetate fraction of adlay bran ethanolic extract inhibits oncogene expression and suppresses DMH-induced preneoplastic lesions of the colon in F344 rats through an anti-inflammatory pathway.

    PubMed

    Chung, Cheng-Pei; Hsu, Hsin-Yi; Huang, Din-Wen; Hsu, Hsing-Hua; Lin, Ju-Tsui; Shih, Chun-Kuang; Chiang, Wenchang

    2010-07-14

    Adlay ( Coix lachryma-jobi L. var. ma-yuen Stapf) is a grass crop and was reported to possess anti-inflammatory activity and an antiproliferative effect in cancer cell lines. The purpose of this study was to evaluate the effects of the ethyl acetate fraction of an adlay bran ethanolic extract (ABE-Ea) on colon carcinogenesis in an animal model and investigate its mechanism. Male F344 rats received 1,2-dimethylhydrazine (DMH) and consumed different doses of ABE-Ea. The medium-dose group (17.28 mg of ABE-Ea/day) exhibited the best suppressive effect on colon carcinogenesis and prevented preneoplastic mucin-depleted foci (MDF) formation. Moreover, RAS and Ets2 oncogenes were significantly down-regulated in this group compared to the negative control group, whereas Wee1, a gene involved in the cell cycle, was up-regulated. Cyclooxygenase-2 (COX-2) protein expression was significantly suppressed in all colons receiving the ABE-Ea, indicating that ABE-Ea delayed carcinogenesis by suppressing chronic inflammation. ABE-Ea included considerable a proportion of phenolic compounds, and ferulic acid was the major phenolic acid (5206 microg/g ABE-Ea) on the basis of HPLC analysis. Results from this study suggest that ABE-Ea suppressed DMH-indued preneoplastic lesions of the colon in F344 rats and that ferulic acid may be one of the active compounds.

  2. Selection of a Bifidobacterium animalis subsp. lactis Strain with a Decreased Ability To Produce Acetic Acid

    PubMed Central

    Margolles, Abelardo

    2012-01-01

    We have characterized a new strain, Bifidobacterium animalis subsp. lactis CECT 7953, obtained by random UV mutagenesis, which produces less acetic acid than the wild type (CECT 7954) in three different experimental settings: De Man-Rogosa-Sharpe broth without sodium acetate, resting cells, and skim milk. Genome sequencing revealed a single Phe-Ser substitution in the acetate kinase gene product that seems to be responsible for the strain's reduced acid production. Accordingly, acetate kinase specific activity was lower in the low acetate producer. Strain CECT 7953 produced less acetate, less ethanol, and more yoghourt-related volatile compounds in skim milk than the wild type did. Thus, CECT 7953 shows promising potential for the development of dairy products fermented exclusively by a bifidobacterial strain. PMID:22389372

  3. Selection of a Bifidobacterium animalis subsp. lactis strain with a decreased ability to produce acetic acid.

    PubMed

    Margolles, Abelardo; Sánchez, Borja

    2012-05-01

    We have characterized a new strain, Bifidobacterium animalis subsp. lactis CECT 7953, obtained by random UV mutagenesis, which produces less acetic acid than the wild type (CECT 7954) in three different experimental settings: De Man-Rogosa-Sharpe broth without sodium acetate, resting cells, and skim milk. Genome sequencing revealed a single Phe-Ser substitution in the acetate kinase gene product that seems to be responsible for the strain's reduced acid production. Accordingly, acetate kinase specific activity was lower in the low acetate producer. Strain CECT 7953 produced less acetate, less ethanol, and more yoghourt-related volatile compounds in skim milk than the wild type did. Thus, CECT 7953 shows promising potential for the development of dairy products fermented exclusively by a bifidobacterial strain.

  4. Tolerance to acetic acid is improved by mutations of the TATA-binding protein gene.

    PubMed

    An, Jieun; Kwon, Hyeji; Kim, Eunjung; Lee, Young Mi; Ko, Hyeok Jin; Park, Hongjae; Choi, In-Geol; Kim, Sooah; Kim, Kyoung Heon; Kim, Wankee; Choi, Wonja

    2015-03-01

    Screening a library of overexpressing mutant alleles of the TATA-binding gene SPT15 yielded two Saccharomyces cerevisiae strains (MRRC 3252 and 3253) with enhanced tolerance to acetic acid. They were also tolerant to propionic acid and hydrogen peroxide. Transcriptome profile analysis identified 58 upregulated genes and 106 downregulated genes in MRRC 3252. Stress- and protein synthesis-related transcription factors were predominantly enriched in the upregulated and downregulated genes respectively. Eight deletion mutants for some of the highly downregulated genes were acetic acid-tolerant. The level of intracellular reactive oxygen species was considerably lessened in MRRC 3252 and 3253 upon exposure to acetic acid. Metabolome profile analysis revealed that intracellular concentrations of 5 and 102 metabolites were increased and decreased, respectively, in MRRC 3252, featuring a large increase of urea and a significant decrease of amino acids. The dur1/2Δmutant, in which the urea degradation gene DUR1/2 is deleted, displayed enhanced tolerance to acetic acid. Enhanced tolerance to acetic acid was also observed on the medium containing a low concentration of amino acids. Taken together, this study identified two SPT15 alleles, nine gene deletions and low concentration of amino acids in the medium that confer enhanced tolerance to acetic acid.

  5. Microbial process for the preparation of acetic acid, as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2004-06-22

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  6. Microbial process for the preparation of acetic acid, as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2007-03-27

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  7. Acetic Acid Production by an Electrodialysis Fermentation Method with a Computerized Control System

    PubMed Central

    Nomura, Yoshiyuki; Iwahara, Masayoshi; Hongo, Motoyoshi

    1988-01-01

    In acetic acid fermentation by Acetobacter aceti, the acetic acid produced inhibits the production of acetic acid by this microorganism. To alleviate this inhibitory effect, we developed an electrodialysis fermentation method such that acetic acid is continuously removed from the broth. The fermentation unit has a computerized system for the control of the pH and the concentration of ethanol in the fermentation broth. The electrodialysis fermentation system resulted in improved cell growth and higher productivity over an extended period; the productivity exceeded that from non-pH-controlled fermentation. During electrodialysis fermentation in our system, 97.6 g of acetic acid was produced from 86.0 g of ethanol; the amount of acetic acid was about 2.4 times greater than that produced by non-pH-controlled fermentation (40.1 g of acetic acid produced from 33.8 g of ethanol). Maximum productivity of electrodialysis fermentation in our system was 2.13 g/h, a rate which was 1.35 times higher than that of non-pH-controlled fermentation (1.58 g/h). PMID:16347520

  8. Effects of acetic acid on the viability of Ascaris lumbricoides eggs

    PubMed Central

    Beyhan, Yunus E.; Yilmaz, Hasan; Hokelek, Murat

    2016-01-01

    Objectives: To investigate the effects of acetic acid on durable Ascaris lumbricoides (A. lumbricoides) eggs to determine the effective concentration of vinegar and the implementation period to render the consumption of raw vegetables more reliable. Methods: This experimental study was performed in May 2015 in the Parasitology Laboratory, Faculty of Medicine, Yuzuncu Yil University, Van, Turkey. The A. lumbricoides eggs were divided into 2 groups. Eggs in the study group were treated with 1, 3, 5, and 10% acetic acid concentrations, and eggs in the control group were treated with Eosin. The eggs’ viability was observed at the following points in time during the experiment: 0, 10, 15, 20, 30, 45, and 60 minutes. Results: The 1% acetic acid was determined insufficient on the viability of Ascaris eggs. At the 30th minute, 3% acetic acid demonstrated 95% effectiveness, and at 5% concentration, all eggs lost their viability. Treatment of acetic acid at the ratio of 4.8% in 30 minutes, or a ratio of 4.3% in 60 minutes is required for full success of tretment. Conclusion: Since Ascaris eggs have 3 layers and are very resistant, the acetic acid concentration, which can be effective on these eggs are thought to be effective also on many other parasitic agents. In order to attain an active protection, after washing the vegetables, direct treatment with a vinegar containing 5% acetic acid for 30 minutes is essential. PMID:26905351

  9. Acetic acid bacteria in traditional balsamic vinegar: phenotypic traits relevant for starter cultures selection.

    PubMed

    Gullo, Maria; Giudici, Paolo

    2008-06-30

    This review focuses on acetic acid bacteria in traditional balsamic vinegar process. Although several studies are available on acetic acid bacteria ecology, metabolism and nutritional requirements, their activity as well as their technological traits in homemade vinegars as traditional balsamic vinegar is not well known. The basic technology to oxidise cooked grape must to produce traditional balsamic vinegar is performed by the so called "seed-vinegar" that is a microbiologically undefined starter culture obtained from spontaneous acetification of previous raw material. Selected starter cultures are the main technological improvement in order to innovate traditional balsamic vinegar production but until now they are rarely applied. To develop acetic acid bacteria starter cultures, selection criteria have to take in account composition of raw material, acetic acid bacteria metabolic activities, applied technology and desired characteristics of the final product. For traditional balsamic vinegar, significative phenotypical traits of acetic acid bacteria have been highlighted. Basic traits are: ethanol preferred and efficient oxidation, fast rate of acetic acid production, tolerance to high concentration of acetic acid, no overoxidation and low pH resistance. Specific traits are tolerance to high sugar concentration and to a wide temperature range. Gluconacetobacter europaeus and Acetobacter malorum strains can be evaluated to develop selected starter cultures since they show one or more suitable characters.

  10. Point mutation of H3/H4 histones affects acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Liu, Xiangyong; Zhang, Xiaohua; Zhang, Zhaojie

    2014-10-10

    The molecular mechanism of acetic acid tolerance in yeast remains unclear despite of its importance for efficient cellulosic ethanol production. In this study, we examined the effects of histone H3/H4 point mutations on yeast acetic acid tolerance by comprehensively screening a histone H3/H4 mutant library. A total of 24 histone H3/H4 mutants (six acetic acid resistant and 18 sensitive) were identified. Compared to the wild-type strain, the histone acetic acid-resistant mutants exhibited improved ethanol fermentation performance under acetic acid stress. Genome-wide transcriptome analysis revealed that changes in the gene expression in the acetic acid-resistant mutants H3 K37A and H4 K16Q were mainly related to energy production, antioxidative stress. Our results provide novel insights into yeast acetic acid tolerance on the basis of histone, and suggest a novel approach to improve ethanol production by altering the histone H3/H4 sequences.

  11. Indole-3-Acetic Acid Biosynthesis in Colletotrichum gloeosporioides f. sp. aeschynomene

    PubMed Central

    Robinson, M.; Riov, J.; Sharon, A.

    1998-01-01

    We characterized the biosynthesis of indole-3-acetic acid by the mycoherbicide Colletotrichum gloeosporioides f. sp. aeschynomene. Auxin production was tryptophan dependent. Compounds from the indole-3-acetamide and indole-3-pyruvic acid pathways were detected in culture filtrates. Feeding experiments and in vitro assay confirmed the presence of both pathways. Indole-3-acetamide was the major pathway utilized by the fungus to produce indole-3-acetic acid in culture. PMID:9835603

  12. Theophylline-7-acetic acid derivatives with amino acids as anti-tuberculosis agents.

    PubMed

    Voynikov, Yulian; Valcheva, Violeta; Momekov, Georgi; Peikov, Plamen; Stavrakov, Georgi

    2014-07-15

    A series of amides were synthesized by condensation of theophylline-7-acetic acid and eight commercially available amino acid methyl ester hydrochlorides. Consecutive hydrolysis of six of the amido-esters resulted in the formation of corresponding amido-acids. The newly synthesized compounds were evaluated for their in vitro activity against Mycobacterium tuberculosis H37Rv. The activity varied depending on the amino acid fragments and in seven cases exerted excellent values with MICs 0.46-0.26 μM. Assessment of the cytotoxicity revealed that the compounds were not cytotoxic against the human embryonal kidney cell line HEK-293T. The theophylline-7-acetamides containing amino acid moieties appear to be promising lead compounds for the development of antimycobacterial agents.

  13. Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering.

    PubMed

    Chen, Yingying; Stabryla, Lisa; Wei, Na

    2016-01-29

    Development of acetic acid-resistant Saccharomyces cerevisiae is important for economically viable production of biofuels from lignocellulosic biomass, but the goal remains a critical challenge due to limited information on effective genetic perturbation targets for improving acetic acid resistance in the yeast. This study employed a genomic-library-based inverse metabolic engineering approach to successfully identify a novel gene target, WHI2 (encoding a cytoplasmatic globular scaffold protein), which elicited improved acetic acid resistance in S. cerevisiae. Overexpression of WHI2 significantly improved glucose and/or xylose fermentation under acetic acid stress in engineered yeast. The WHI2-overexpressing strain had 5-times-higher specific ethanol productivity than the control in glucose fermentation with acetic acid. Analysis of the expression of WHI2 gene products (including protein and transcript) determined that acetic acid induced endogenous expression of Whi2 in S. cerevisiae. Meanwhile, the whi2Δ mutant strain had substantially higher susceptibility to acetic acid than the wild type, suggesting the important role of Whi2 in the acetic acid response in S. cerevisiae. Additionally, overexpression of WHI2 and of a cognate phosphatase gene, PSR1, had a synergistic effect in improving acetic acid resistance, suggesting that Whi2 might function in combination with Psr1 to elicit the acetic acid resistance mechanism. These results improve our understanding of the yeast response to acetic acid stress and provide a new strategy to breed acetic acid-resistant yeast strains for renewable biofuel production.

  14. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acetic acid, , 1-methyl hexyl ester... Substances § 721.304 Acetic acid, , 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as acetic acid, -, 1-methylhexyl ester (PMN...

  15. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acetic acid, , 1-methyl hexyl ester... Substances § 721.304 Acetic acid, , 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as acetic acid, -, 1-methylhexyl ester (PMN...

  16. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acetic acid, , 1-methyl hexyl ester... Substances § 721.304 Acetic acid, , 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as acetic acid, -, 1-methylhexyl ester (PMN...

  17. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acetic acid, , 1-methyl hexyl ester... Substances § 721.304 Acetic acid, , 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as acetic acid, -, 1-methylhexyl ester (PMN...

  18. Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering

    PubMed Central

    Chen, Yingying; Stabryla, Lisa

    2016-01-01

    Development of acetic acid-resistant Saccharomyces cerevisiae is important for economically viable production of biofuels from lignocellulosic biomass, but the goal remains a critical challenge due to limited information on effective genetic perturbation targets for improving acetic acid resistance in the yeast. This study employed a genomic-library-based inverse metabolic engineering approach to successfully identify a novel gene target, WHI2 (encoding a cytoplasmatic globular scaffold protein), which elicited improved acetic acid resistance in S. cerevisiae. Overexpression of WHI2 significantly improved glucose and/or xylose fermentation under acetic acid stress in engineered yeast. The WHI2-overexpressing strain had 5-times-higher specific ethanol productivity than the control in glucose fermentation with acetic acid. Analysis of the expression of WHI2 gene products (including protein and transcript) determined that acetic acid induced endogenous expression of Whi2 in S. cerevisiae. Meanwhile, the whi2Δ mutant strain had substantially higher susceptibility to acetic acid than the wild type, suggesting the important role of Whi2 in the acetic acid response in S. cerevisiae. Additionally, overexpression of WHI2 and of a cognate phosphatase gene, PSR1, had a synergistic effect in improving acetic acid resistance, suggesting that Whi2 might function in combination with Psr1 to elicit the acetic acid resistance mechanism. These results improve our understanding of the yeast response to acetic acid stress and provide a new strategy to breed acetic acid-resistant yeast strains for renewable biofuel production. PMID:26826231

  19. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acetic acid, , 1-methyl hexyl ester... Substances § 721.304 Acetic acid, , 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as acetic acid, -, 1-methylhexyl ester (PMN...

  20. Isolation of cellulose from rice straw and its conversion into cellulose acetate catalyzed by phosphotungstic acid.

    PubMed

    Fan, Guozhi; Wang, Min; Liao, Chongjing; Fang, Tao; Li, Jianfen; Zhou, Ronghui

    2013-04-15

    Cellulose was isolated from rice straw by pretreatment with dilute alkaline and acid solutions successively, and it was further transferred into cellulose acetate in the presence of acetic anhydride and phosphotungstic acid (H3PW12O40·6H2O). The removal of hemicellulose and lignin was affected by the concentration of KOH and the immersion time in acetic acid solution, and 83wt.% content of cellulose in the treated rice straw was obtained after pretreatment with 4% KOH and immersion in acetic acid for 5h. Phosphotungstic acid was found to be an effective catalyst for the acetylation of the cellulose derived from rice straw. The degree of substitution (DS) values revealed a significant effect for the solubility of cellulose acetate, and the acetone-soluble cellulose acetate with DS values around 2.2 can be obtained by changing the amount of phosphotungstic acid and the time of acetylation. Both the structure of cellulose separated from rice straw and cellulose acetate were confirmed by FTIR and XRD.

  1. Acute intestinal injury induced by acetic acid and casein: prevention by intraluminal misoprostol

    SciTech Connect

    Miller, M.J.; Zhang, x.J.; Gu, x.A.; Clark, D.A. )

    1991-07-01

    Acute injury was established in anesthetized rabbits by intraluminal administration of acetic acid with and without bovine casein, into loops of distal small intestine. Damage was quantified after 45 minutes by the blood-to-lumen movement of {sup 51}Cr-labeled ethylenediaminetetraacetic acid (EDTA) and fluorescein isothiocyanate-tagged bovine serum albumin as well as luminal fluid histamine levels. The amount of titratable acetic acid used to lower the pH of the treatment solutions to pH 4.0 was increased by the addition of calcium gluconate. Luminal acetic acid caused a 19-fold increase in {sup 51}Cr-EDTA accumulation over saline controls; casein did not modify this effect. In saline controls, loop fluid histamine levels bordered on the limits of detection (1 ng/g) but were elevated 19-fold by acetic acid exposure and markedly increased (118-fold) by the combination of acid and casein. Intraluminal misoprostol (3 or 30 micrograms/mL), administered 30 minutes before acetic acid, significantly attenuated the increase in epithelial permeability (luminal {sup 51}Cr-EDTA, fluorescein isothiocyanate-bovine serum albumin accumulation) and histamine release (P less than 0.05). Diphenhydramine, alone or in combination with cimetidine, and indomethacin (5 mg/kg IV) were not protective. It is concluded that exposure of the epithelium to acetic acid promotes the transepithelial movement of casein leading to enhanced mast cell activation and mucosal injury. Damage to the epithelial barrier can be prevented by misoprostol.

  2. Precipitation polymerization in acetic acid: study of the solvent effect on the morphology of poly(divinylbenzene).

    PubMed

    Yan, Qing; Zhao, Tongyang; Bai, Yaowen; Zhang, Fen; Yang, Wantai

    2009-03-12

    This paper reports on two important results regarding the precipitation polymerization of poly(divinylbenzene) (PDVB) in acetic acid (HAc). (1) Acetic acid is a novel kind of solvent worthy of investigation because it is amphipathic and innoxious. Thus, two kinds of model solvents, methyl ethyl ketone (MEK) and n-heptane, were selected to investigate the solvent effect on the particle morphology of PDVB-55 during precipitation polymerization in acetic acid. Monodisperse PDVB-55 microspheres were obtained with an MEK content of 30 vol % and a DVB loading of 2 vol %. Odd-shaped particles were found to almost disappear when MEK was added. For MEK contents up to 90 vol %, space-filling macrogels consisting of small particles with diameters of around 10 nm were obtained. More homocoagulated particles were produced when n-heptane was added, for which concentrations up to 50 vol % gave rise to cauliflower-like particles. Thus, in the acetic acid system, microspheres, pumpkin-like particles, macrogels, and coagulum could be successfully obtained. (2) The preparation of nonpolar PDVB-55 particles could be more predictable. For the first time-based on the regulation of former studies--the regularity of the dispersive term (delta(d)) on the particle morphology for a PDVB precipitation polymerization system was reported. The three-dimensional Hansen solubility parameters were utilized to perfect the regularity of the Hildebrand solubility parameter. Microspheres or particles were formed in the range of moderate delta values for both parameters, i.e., delta = 20.2-24.3 MPa1/2 or delta = 16 MPa1/2. What was even more important, delta(d) was found to be around 15.4 MPa1/2, and delta(h) should be below 13.5 MPa1/2. Cyclohexane, cyclohexanone, n-butyl acetate, and 1,4-dioxane were used to verify this regularity, and positive results were obtained. Stable, uniform, and well-separated PDVB-55 microspheres and particles were produced as a result of interaction forces between oligomers

  3. Laboratory and field measurements to constrain atmospheric sources of acetic and formic acids

    NASA Astrophysics Data System (ADS)

    Baasandorj, M.; Hu, L.; Mitroo, D.; Martinez, R.; Walker, M.; Williams, B. J.; Millet, D. B.

    2013-12-01

    Acetic and formic acids are the most abundant organic acids in the atmosphere. They play an important role in atmospheric aqueous chemistry as they can influence the acidity of precipitation, cloud droplets, and atmospheric aerosols. Sources of these acids are highly uncertain, but include secondary production from VOC oxidation, direct emissions, and possibly organic aerosol aging. Here we present measurements of formic and acetic acid, along with a suite of other gas and particle phase species, from a field study in St. Louis during summer 2013. Calibration procedures and results are discussed, and we interpret the ambient formic and acetic acid measurements in terms of patterns of variability and implied constraints on sources. Finally, we present results from oxidative aging experiments on both ambient and test organic aerosol designed to assess the importance of this mechanism as a source of gas-phase carboxylic acids.

  4. Discovery and characterization of [(cyclopentyl)ethyl]benzoic acid inhibitors of microsomal prostaglandin E synthase-1.

    PubMed

    Partridge, Katherine M; Antonysamy, Stephen; Bhattachar, Shobha N; Chandrasekhar, Srinivasan; Fisher, Matthew J; Fretland, Adrian; Gooding, Karen; Harvey, Anita; Hughes, Norman E; Kuklish, Steven L; Luz, John G; Manninen, Peter R; McGee, James E; Mudra, Daniel R; Navarro, Antonio; Norman, Bryan H; Quimby, Steven J; Schiffler, Matthew A; Sloan, Ashley V; Warshawsky, Alan M; Weller, Jennifer M; York, Jeremy S; Yu, Xiao-Peng

    2017-03-15

    We describe a novel class of acidic mPGES-1 inhibitors with nanomolar enzymatic and human whole blood (HWB) potency. Rational design in conjunction with structure-based design led initially to the identification of anthranilic acid 5, an mPGES-1 inhibitor with micromolar HWB potency. Structural modifications of 5 improved HWB potency by over 1000×, reduced CYP2C9 single point inhibition, and improved rat clearance, which led to the selection of [(cyclopentyl)ethyl]benzoic acid compound 16 for clinical studies. Compound 16 showed an IC80 of 24nM for inhibition of PGE2 formation in vitro in LPS-stimulated HWB. A single oral dose resulted in plasma concentrations of 16 that exceeded its HWB IC80 in both rat (5mg/kg) and dog (3mg/kg) for over twelve hours.

  5. Percutaneous Sclerotherapy Using Acetic Acid After Failure of Alcohol Ablation in an Intra-abdominal Lymphangioma

    SciTech Connect

    Park, Sang Woo Cha, In Ho; Kim, Kyeong Ah; Hong, Suk Joo; Park, Cheol Min; Chung, Hwan Hoon

    2004-09-15

    We report a case of percutaneous sclerotherapy using acetic acid in a 22-year-old woman with an intra-abdominal cystic lymphangioma who was not successfully treated with ethanol despite multiple trials.

  6. The antimicrobial effect of acetic acid--an alternative to common local antiseptics?

    PubMed

    Ryssel, H; Kloeters, O; Germann, G; Schäfer, Th; Wiedemann, G; Oehlbauer, M

    2009-08-01

    Acetic acid has been commonly used in medicine for more than 6000 years for the disinfection of wounds and especially as an antiseptic agent in the treatment and prophylaxis of the plague. The main goal of this study was to prove the suitability of acetic acid, in low concentration of 3%, as a local antiseptic agent, especially for use in salvage procedures in problematic infections caused by organisms such as Proteus vulgaris, Acinetobacter baumannii or Pseudomonas aeruginosa. This study was designed to compare the in vitro antimicrobial effect of acetic acid with those of common local antiseptics such as povidone-iodine 11% (Betaisodona), polyhexanide 0.04% (Lavasept), mafenide 5% and chlohexidine gluconate 1.5% cetrimide 15% (Hibicet). Former studies suggest the bactericidal effect of acetic acid, but these data are very heterogeneous; therefore, a standardised in vitro study was conducted. To cover the typical bacterial spectrum of a burn unit, the following Gram-negative and Gram-positive bacterial strains were tested: Escherichia coli, P. vulgaris, P. aeruginosa, A. baumannii, Enterococcus faecalis, Staphylococcus epidermidis, methicillin-resistant Staphylococcus aureus (MRSA) and beta-haemolytic Streptococcus group A and B. The tests showed excellent bactericidal effect of acetic acid, particularly with problematic Gram-negative bacteria such as P. vulgaris, P. aeruginosa and A. baumannii. The microbiological spectrum of acetic acid is wide, even when tested at a low concentration of 3%. In comparison to our currently used antiseptic solutions, it showed similar - in some bacteria, even better - bactericidal properties. An evaluation of the clinical value of topical application of acetic acid is currently underway. It can be concluded that acetic acid in a concentration of 3% has excellent bactericidal effect and, therefore, seems to be suitable as a local antiseptic agent, but further clinical studies are necessary.

  7. Evaluation of Antiradical and Anti-Inflammatory Activities of Ethyl Acetate and Butanolic Subfractions of Agelanthus dodoneifolius (DC.) Polhill & Wiens (Loranthaceae) Using Equine Myeloperoxidase and Both PMA-Activated Neutrophils and HL-60 Cells

    PubMed Central

    Boly, Rainatou; Franck, Thierry; Kohnen, Stephan; Lompo, Marius; Guissou, Innocent Pierre; Dubois, Jacques; Serteyn, Didier; Mouithys-Mickalad, Ange

    2015-01-01

    The ethyl acetate and n-butanolic subfractions of Agelanthus dodoneifolius were investigated for their antioxidant and antimyeloperoxidase (MPO) activities. The reactive oxygen species (ROS) generation was assessed by lucigenin-enhanced chemiluminescence (CL) and dichlorofluorescein- (DCF-) induced fluorescence techniques from phorbol myristate acetate- (PMA-) stimulated equine neutrophils and human myeloid cell line HL-60, respectively. In parallel, the effects of the tested subfractions were evaluated on the total MPO release by stimulated neutrophils and on the specific MPO activity by means of immunological assays. The results showed the potent activity of the butanolic subfraction, at least in respect of the chemiluminescence test (IC50 = 0.3 ± 0.1 µg/mL) and the ELISA and SIEFED assays (IC50 = 2.8 ± 1.2 µg/mL and 1.3 ± 1.0 µg/mL), respectively. However, the ethyl acetate subfraction was found to be the most potent in the DCF assay as at the highest concentration, DCF fluorescence intensity decreases of about 50%. Moreover, we demonstrated that the ethyl acetate subfraction was rich in catechin (16.51%) while it was not easy to identify the main compounds in the butanolic subfraction using the UPLC-MS/MS technique. Nevertheless, taken together, our results provide evidence that Agelanthus dodoneifolius subfractions may represent potential sources of natural antioxidants and of antimyeloperoxidase compounds. PMID:25821497

  8. A 2,4-dichlorophenoxyacetic acid analog screened using a maize coleoptile system potentially inhibits indole-3-acetic acid influx in Arabidopsis thaliana

    PubMed Central

    Suzuki, Hiromi; Matano, Naoyuki; Nishimura, Takeshi; Koshiba, Tomokazu

    2014-01-01

    Studies using inhibitors of indole-3-acetic acid (IAA) transport, not only for efflux but influx carriers, provide many aspects of auxin physiology in plants. 1-Naphtoxyacetic acid (1-NOA), an analog of the synthetic auxin 1-N-naphtalene acetic acid (NAA), inhibits the IAA influx carrier AUX1. However, 1-NOA also shows auxin activity because of its structural similarity to NAA. In this study, we have identified another candidate inhibitor of the IAA influx carrier. The compound, “7-B3; ethyl 2-[(2-chloro-4-nitrophenyl)thio]acetate,” is a 2,4-dichlorophenoxyacetic acid (2,4-D) analog. At high concentrations (> 300 µM), 7-B3 slightly reduced IAA transport and tropic curvature of maize coleoptiles, whereas lower concentrations had almost no effect. We have analyzed the effects of 7-B3 on Arabidopsis thaliana seedlings. 7-B3 rescued the 2,4-D-inhibited root elongation, but not the NAA-inhibited root elongation. The effect of 7-B3 was weaker than that of 1-NOA. Both 1-NOA and 7-B3 inhibited DR5::GUS expression induced by IAA and 2,4-D, but not that induced by NAA. At high concentrations, 1-NOA exhibited auxin activity, but 7-B3 did not. Furthermore, 7-B3 inhibited apical hook formation in etiolated seedlings more effectively than 1-NOA did. These results indicate that 7-B3 is a potential inhibitor of IAA influx that has almost no effect on IAA efflux or auxin signaling. PMID:24800738

  9. A 2,4-dichlorophenoxyacetic acid analog screened using a maize coleoptile system potentially inhibits indole-3-acetic acid influx in Arabidopsis thaliana.

    PubMed

    Suzuki, Hiromi; Matano, Naoyuki; Nishimura, Takeshi; Koshiba, Tomokazu

    2014-05-05

    Studies using inhibitors of indole-3-acetic acid (IAA) transport, not only for efflux but influx carriers, provide many aspects of auxin physiology in plants. 1-Naphtoxyacetic acid (1-NOA), an analog of the synthetic auxin 1-N-naphtalene acetic acid (NAA), inhibits the IAA influx carrier AUX1. However, 1-NOA also shows auxin activity because of its structural similarity to NAA. In this study, we have identified another candidate inhibitor of the IAA influx carrier. The compound, "7-B3; ethyl 2-[(2-chloro-4-nitrophenyl)thio]acetate," is a 2,4-dichlorophenoxyacetic acid (2,4-D) analog. At high concentrations (> 300 µM), 7-B3 slightly reduced IAA transport and tropic curvature of maize coleoptiles, whereas lower concentrations had almost no effect. We have analyzed the effects of 7-B3 on Arabidopsis thaliana seedlings. 7-B3 rescued the 2,4-D-inhibited root elongation, but not the NAA-inhibited root elongation. The effect of 7-B3 was weaker than that of 1-NOA. Both 1-NOA and 7-B3 inhibited DR5::GUS expression induced by IAA and 2,4-D, but not that induced by NAA. At high concentrations, 1-NOA exhibited auxin activity, but 7-B3 did not. Furthermore, 7-B3 inhibited apical hook formation in etiolated seedlings more effectively than did 1-NOA. These results indicate that 7-B3 is a potential inhibitor of IAA influx that has almost no effect on IAA efflux or auxin signaling.

  10. Iontophoretic enhancement of leuprolide acetate by fatty acids, limonene, and depilatory lotions through porcine epidermis.

    PubMed

    Rastogi, Sumeet K; Singh, Jagdish

    2004-11-01

    The effect of chemical enhancers (e.g., fatty acids, limonene, depilatory lotions) and iontophoresis was investigated on the in vitro permeability of leuprolide acetate through porcine epidermis. Franz diffusion cells and Scepter iontophoretic power source were used for the percutaneous absorption studies. Anodal iontophoresis was performed at 0.2 mA/cm2 current density. Fatty acids used were palmitic (C16:0), palmitoleic (C16:1), stearic (C18:0), oleic (C18:1), linoleic (C18:2), and linolenic (C18:3) acids. The passive and iontophoretic flux were significantly (p < 0.05) greater through fatty acids-treated porcine epidermis in comparison to the control (untreated epidermis) for leuprolide acetate. The passive and iontophoretic permeability of leuprolide acetate increased with increasing number of cis double bonds. Among the fatty acids tested, linolenic acid (C18:3) exhibited the maximum permeability of leuprolide acetate during passive (51.42 x 10(-4) cm/hr) and iontophoretic (318.98 x 10(-4) cm/hr) transport. The passive and iontophoretic flux of leuprolide acetate were significantly (p < 0.05) greater through the limonene and depilatory lotion treated epidermis in comparison to their respective control. In conclusion, iontophoresis in combination with chemical enhancers synergistically increased (p < 0.05) the in vitro permeability of leuprolide acetate through porcine epidermis.

  11. Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Zheng, Dao-Qiong; Wu, Xue-Chang; Wang, Pin-Mei; Chi, Xiao-Qin; Tao, Xiang-Lin; Li, Ping; Jiang, Xin-Hang; Zhao, Yu-Hua

    2011-03-01

    Acetic acid existing in a culture medium is one of the most limiting constraints in yeast growth and viability during ethanol fermentation. To improve acetic acid tolerance in Saccharomyces cerevisiae strains, a drug resistance marker-aided genome shuffling approach with higher screen efficiency of shuffled mutants was developed in this work. Through two rounds of genome shuffling of ultraviolet mutants derived from the original strain 308, we obtained a shuffled strain YZ2, which shows significantly faster growth and higher cell viability under acetic acid stress. Ethanol production of YZ2 (within 60 h) was 21.6% higher than that of 308 when 0.5% (v/v) acetic acid was added to fermentation medium. Membrane integrity, higher in vivo activity of the H+-ATPase, and lower oxidative damage after acetic acid treatment are the possible reasons for the acetic acid-tolerance phenotype of YZ2. These results indicated that this novel genome shuffling approach is powerful to rapidly improve the complex traits of industrial yeast strains.

  12. Amperometric determination of acetic acid with a trienzyme/poly(dimethylsiloxane)-bilayer-based sensor.

    PubMed

    Mizutani, F; Sawaguchi, T; Sato, Y; Yabuki, S; Lijima, S

    2001-12-01

    A trienzyme sensor for the amperometric determination of acetic acid was prepared by immobilizing acetate kinase (AK), pyruvate kinase (PK), and pyruvate oxidase (PyOx) on a poly(dimethylsiloxane) (PDMS)-coated electrode. AK catalyzes the phospho-transferring reaction between acetic acid and ATP to form ADP; PK, the phospho-transferring reaction between ADP and phosphoenolpyruvate to form pyruvic acid; and PyOx, the oxidation of pyruvic acid with oxygen. The oxygen consumption could be monitored by using the PDMS-coated electrode without interference from the PyOx reaction product, hydrogen peroxide. Thus, the concentration of acetic acid (5 microM-0.5 mM) could be determined from the decrease in the cathodic current at -0.4 V vs Ag/AgCl. This is the first example of a biosensor that can be used for the determination of acetic acid in ethanol-containing food samples. The acetate-sensing electrode could be used for more than one month.

  13. Effects of acetic acid and lactic acid on physicochemical characteristics of native and cross-linked wheat starches.

    PubMed

    Majzoobi, Mahsa; Beparva, Paniz

    2014-03-15

    The effects of two common organic acids; lactic and acetic acids (150 mg/kg) on physicochemical properties of native and cross-linked wheat starches were investigated prior and after gelatinization. These acids caused formation of some cracks and spots on the granules. The intrinsic viscosity of both starches decreased in the presence of the acids particularly after gelatinization. Water solubility increased while water absorption reduced after addition of the acids. The acids caused reduction in gelatinization temperature and enthalpy of gelatinization of both starches. The starch gels became softer, less cohesive, elastic and gummy when acids were added. These changes may indicate the degradation of the starch molecules by the acids. Cross-linked wheat starch was more resistant to the acids. However, both starches became more susceptible to the acids after gelatinization. The effect of lactic acid on physicochemical properties of both starches before and after gelatinization was greater than acetic acid.

  14. Effect of manganese ions on ethanol fermentation by xylose isomerase expressing Saccharomyces cerevisiae under acetic acid stress.

    PubMed

    Ko, Ja Kyong; Um, Youngsoon; Lee, Sun-Mi

    2016-12-01

    The efficient fermentation of lignocellulosic hydrolysates in the presence of inhibitors is highly desirable for bioethanol production. Among the inhibitors, acetic acid released during the pretreatment of lignocellulose negatively affects the fermentation performance of biofuel producing organisms. In this study, we evaluated the inhibitory effects of acetic acid on glucose and xylose fermentation by a high performance engineered strain of xylose utilizing Saccharomyces cerevisiae, SXA-R2P-E, harboring a xylose isomerase based pathway. The presence of acetic acid severely decreased the xylose fermentation performance of this strain. However, the acetic acid stress was alleviated by metal ion supplementation resulting in a 52% increased ethanol production rate under 2g/L of acetic acid stress. This study shows the inhibitory effect of acetic acid on an engineered isomerase-based xylose utilizing strain and suggests a simple but effective method to improve the co-fermentation performance under acetic acid stress for efficient bioethanol production.

  15. [Advances in the progress of anti-bacterial biofilms properties of acetic acid].

    PubMed

    Gao, Xinxin; Jin, Zhenghua; Chen, Xinxin; Yu, Jia'ao

    2016-06-01

    Bacterial biofilms are considered to be the hindrance in the treatment of chronic wound, because of their tolerance toward antibiotics and other antimicrobial agents. They also have strong ability to escape from the host immune attack. Acetic acid, as a kind of organic weak acid, can disturb the biofilms by freely diffusing through the bacterial biofilms and bacterial cell membrane structure. Then the acid dissociates to release the hydrogen ions, leading to the disorder of the acid-base imbalance, change of protein conformation, and the degradation of the DNA within the membranes. This paper reviews the literature on the characteristics and treatment strategies of the bacterial biofilms and the acetic acid intervention on them, so as to demonstrate the roles acetic acid may play in the treatment of chronic wound, and thus provide a convincing treatment strategy for this kind of disease.

  16. The fraction of cells that resume growth after acetic acid addition is a strain-dependent parameter of acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Swinnen, Steve; Fernández-Niño, Miguel; González-Ramos, Daniel; van Maris, Antonius J A; Nevoigt, Elke

    2014-06-01

    High acetic acid tolerance of Saccharomyces cerevisiae is a relevant phenotype in industrial biotechnology when using lignocellulosic hydrolysates as feedstock. A screening of 38 S. cerevisiae strains for tolerance to acetic acid revealed considerable differences, particularly with regard to the duration of the latency phase. To understand how this phenotype is quantitatively manifested, four strains exhibiting significant differences were studied in more detail. Our data show that the duration of the latency phase is primarily determined by the fraction of cells within the population that resume growth. Only this fraction contributed to the exponential growth observed after the latency phase, while all other cells persisted in a viable but non-proliferating state. A remarkable variation in the size of the fraction was observed among the tested strains differing by several orders of magnitude. In fact, only 11 out of 10(7)  cells of the industrial bioethanol production strain Ethanol Red resumed growth after exposure to 157 mM acetic acid at pH 4.5, while this fraction was 3.6 × 10(6) (out of 10(7)  cells) in the highly acetic acid tolerant isolate ATCC 96581. These strain-specific differences are genetically determined and represent a valuable starting point to identify genetic targets for future strain improvement.

  17. In situ morphological assessment of apoptosis induced by Phaleria macrocarpa (Boerl.) fruit ethyl acetate fraction (PMEAF) in MDA-MB-231 cells by microscopy observation.

    PubMed

    Kavitha, Nowroji; Chen, Yeng; Kanwar, Jagat R; Sasidharan, Sreenivasan

    2017-03-01

    Phaleria macrocarpa (Boerl.) is a well-known medicinal plant and have been extensively used as traditional medicine for ages in treatment of various diseases. The purpose of this study was to determine the in situ cytotoxicity effect P. macrocarpa fruit ethyl acetate fraction (PMEAF) by using various conventional and modern microscopy techniques. The cytotoxicity of PMEAF treated MDA-MB-231 cells was determined through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay and CyQuant Cell Proliferation Assay after 24h of treatment. Both results were indicated that the PMEAF is a potential anticancer agent with the average IC50 values of 18.10μg/mL by inhibiting the MDA-MB-231 cell proliferation. Various conventional and modern microscopy techniques such as light microscopy, holographic microscopy, transmission (TEM) and scanning (SEM) electron microscope were used for the observation of morphological changes in PMEAF treated MDA-MB-231cells for 24h. The characteristic of apoptotic cell death includes cell shrinkage, membrane blebs, chromatin condensation and the formation of apoptotic bodies were observed. PMEAF might be the best candidate for developing more potent anticancer drugs or chemo-preventive supplements.

  18. Ethyl Acetate Fraction of Amomum xanthioides Exerts Antihepatofibrotic Actions via the Regulation of Fibrogenic Cytokines in a Dimethylnitrosamine-Induced Rat Model

    PubMed Central

    Lee, Sung-Bae; Kim, Hyeong-Geug; Kim, Hyo-Seon; Lee, Jin-Seok; Im, Hwi-Jin; Kim, Won-Yong

    2016-01-01

    Amomum xanthioides has been traditionally used to treat diverse digestive system disorders in the Asian countries. We investigated antihepatofibrotic effects of ethyl acetate fraction of Amomum xanthioides (EFAX). Liver fibrosis is induced by dimethylnitrosamine (DMN) injection (intraperitoneally, 10 mg/kg of DMN for 4 weeks to Sprague-Dawley rats). EFAX (25 or 50 mg/kg), silymarin (50 mg/kg), or distilled water was orally administered every day. The DMN injection drastically altered body and organ mass, serum biochemistry, and platelet count, while EFAX treatment significantly attenuated this alteration. Severe liver fibrosis is determined by trichrome staining and measurement of hydroxyproline contents. EFAX treatment significantly attenuated these symptoms as well as the increase in oxidative by-products of lipid and protein metabolism in liver tissues. DMN induced a dramatic activation of hepatic stellate cells and increases in the levels of protein and gene expression of transforming growth factor-beta (TGF-β), platelet derived growth factor-beta (PDGF-β), and connective tissue growth factor (CTGF). Immunohistochemical analyses revealed increases in the levels of protein and gene expression of α-smooth muscle actin. These alterations were significantly normalized by EFAX treatment. Our findings demonstrate the potent antihepatofibrotic properties of EFAX via modulation of fibrogenic cytokines, especially TGF-β in the liver fibrosis rat model. PMID:27594891

  19. Evaluation of hydroxyapatite-bioglass and hydroxyapatite-ethyl vinyl acetate composite extracts on antioxidant defense mechanism and genotoxicity: an in vitro study.

    PubMed

    Arun, M; Silja, P K; Mohanan, P V

    2011-09-01

    Hydroxyapatite-bioglass (HA BG) and hydroxyapatite-ethyl vinyl acetate (HA EVA) are two composite materials that have been developed for bone substitution. Their activity on antioxidant defense mechanism and genotoxicity has not been investigated before. To further confirm its biocompatibility, the present study was undertaken to investigate the effect of HA BG and HA EVA on mice liver antioxidant mechanism along with chromosomal aberrations in human lymphocytes. Physiological saline extract of HA BG and HA EVA showed no adverse effect on liver antioxidant mechanism compared to the cyclophosphamide (CP)-induced toxicity on mice liver homogenate. The results were judged from the in vitro studies made on reduced glutathione, glutathione reductase and lipid peroxidation. These results were well supported by CP- and mytomycin C (MC)-induced genotoxicity studies on human lymphocytes in the presence and absence of a metabolic activator (S9). Hence, it was suggested that these tests could be considered for preliminary toxicological screening of materials intended for clinical applications ahead of in vivo animal model evaluation.

  20. Chemical fingerprint and metabolic profile analysis of ethyl acetate fraction of Gastrodia elata by ultra performance liquid chromatography/quadrupole-time of flight mass spectrometry.

    PubMed

    Tang, Chunlan; Wang, Li; Liu, Xinxin; Cheng, Mengchun; Xiao, Hongbin

    2016-02-01

    The chemical fingerprint and metabolic profile of traditional Chinese medicine is very complicated and has been a great challenge. In the present study, chemical fingerprint of ethyl acetate fraction of Gastrodia elata (EtAcGE) and metabolic profile of rat plasma sample after intragastric administration of EtAcGE (2.5g/kg) were investigated using ultra-high performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry (UPLC/Q-TOF MS). A total of 38 chemical constituents of EtAcGE were identified by comparing their retention time, accurate molecular mass and characteristic fragment ions with those of references, or tentatively characterized by comparing molecular formula, fragment ions with that of known compound or information available in literature. And 40 compounds were detected in dosed rat plasma sample, including 16 prototypes and 24 metabolites underwent metabolic process of glucuronidation, glucosylation, sulfation, methylation, hydroxylation, dehydrogenation or mixed modes. The metabolic "soft spots" was hydroxyl or carboxy group. This is the first research for chemical fingerprint and metabolic profile of EtAcGE, which lay a foundation for the further investigation of EtAcGE.

  1. Comparative evaluation of the metabolic effects of hydroxytyrosol and its lipophilic derivatives (hydroxytyrosyl acetate and ethyl hydroxytyrosyl ether) in hypercholesterolemic rats.

    PubMed

    Tabernero, María; Sarriá, Beatriz; Largo, Carlota; Martínez-López, Sara; Madrona, Andrés; Espartero, José Luis; Bravo, Laura; Mateos, Raquel

    2014-07-25

    Hydroxytyrosol (HT), a virgin olive oil phenolic phytochemical with proven health benefits, has been used to generate new lipophilic antioxidants to preserve fats and oils against autoxidation. The aim of this work is to comparatively evaluate the physiological effects of HT and its lipophilic derivatives, hydroxytyrosyl acetate (HT-Ac) and ethyl hydroxytyrosyl ether (HT-Et), in high-cholesterol fed animals. Male Wistar rats (n = 8) were fed a standard diet (C group), a cholesterol-rich diet (Chol group) or a cholesterol-rich diet supplemented with phenolic compounds (HT group, HT-Ac group and HT-Et group) for 8 weeks. Body and tissue weights, the lipid profile, redox status, and biochemical, hormonal, and inflammatory biomarkers were evaluated. Plasma levels of total cholesterol, LDL cholesterol, glucose, insulin and leptin, as well as malondialdehyde in serum increased in Chol compared to C (p < 0.05). Rats fed the test diets had improved glucose, insulin, leptin and MDA levels and antioxidant capacity status, with HT-Ac being the most effective compound. The studied phenolic compounds also modulated TNF-α and IL-1β plasma levels compared to Chol. HT-Ac and HT-Et improved adipose tissue distribution and adipokine production, decreasing MCP-1 and IL-1β levels. Our results confirm the metabolic effects of HT, which are maintained and even improved by hydrophobic derivatives, particularly HT-Ac.

  2. Characteristics of starch-based films plasticised by glycerol and by the ionic liquid 1-ethyl-3-methylimidazolium acetate: a comparative study.

    PubMed

    Xie, Fengwei; Flanagan, Bernadine M; Li, Ming; Sangwan, Parveen; Truss, Rowan W; Halley, Peter J; Strounina, Ekaterina V; Whittaker, Andrew K; Gidley, Michael J; Dean, Katherine M; Shamshina, Julia L; Rogers, Robin D; McNally, Tony

    2014-10-13

    This paper reports the plasticisation effect of the ionic liquid, 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]), as compared with the traditionally used plasticiser, glycerol, on the characteristics of starch-based films. For minimising the additional effect of processing, a simple compression moulding process (which involves minimal shear) was used for preparation of starch-based films. The results show that [Emim][OAc] was favourable for plasticisation, i.e., disruption of starch granules (by scanning electron microscopy), and could result in a more amorphous structure in the starch-based materials (by X-ray diffraction and dynamic mechanical analysis). (13)C CP/MAS and SPE/MAS NMR spectroscopy revealed that not only was the crystallinity reduced by [Emim][OAc], but also the amorphous starch present was plasticised to a more mobile form as indicated by the appearance of amorphous starch in the SPE/MAS spectrum. Mechanical results illustrate that, when either glycerol or [Emim][OAc] was used, a higher plasticiser content could contribute to higher flexibility. In spite of the accelerated thermal degradation of starch by [Emim][OAc] as shown by thermogravimetric analysis, the biodegradation study revealed the antimicrobial effect of [Emim][OAc] on the starch-based materials. Considering the high-amylose starch used here which is typically difficult to gelatinise in a traditional plasticiser (water and/or glycerol), [Emim][OAc] is demonstrated to be a promising plasticiser for starch to develop "green" flexible antimicrobial materials for novel applications.

  3. Pre-dispersed organo-montmorillonite (organo-MMT) nanofiller: Morphology, cytocompatibility and impact on flexibility, toughness and biostability of biomedical ethyl vinyl acetate (EVA) copolymer.

    PubMed

    Osman, Azlin F; M Fitri, Tuty Fareyhynn; Rakibuddin, Md; Hashim, Fatimah; Tuan Johari, Syed Ahmad Tajudin; Ananthakrishnan, Rajakumar; Ramli, Rafiza

    2017-05-01

    Polymer-clay based nanocomposites are among the attractive materials to be applied for various applications, including biomedical. The incorporation of the nano sized clay (nanoclay) into polymer matrices can result in their remarkable improvement in mechanical, thermal and barrier properties as long as the nanofillers are well exfoliated and dispersed throughout the matrix. In this work, exfoliation strategy through pre-dispersing process of the organically modified montmorillonite (organo-MMT) nanofiller was done to obtain ethyl vinyl acetate (EVA) nanocomposite with improved flexibility, toughness, thermal stability and biostability. Our results indicated that the degree of organo-MMT exfoliation affects its cytotoxicity level and the properties of the resulting EVA nanocomposite. The pre-dispersed organo-MMT by ultrasonication in water possesses higher degree of exfoliation as compared to its origin condition and significantly performed reduced cytotoxicity level. Beneficially, this nanofiller also enhanced the EVA flexibility, thermal stability and biostability upon the in vitro exposure. We postulated that these were due to plasticizing effect and enhanced EVA-nanofiller interactions contributing to more stable chemical bonds in the main copolymer chains. Improvement in copolymer flexibility is beneficial for close contact with human soft tissue, while enhancement in toughness and biostability is crucial to extend its life expectancy as insulation material for implantable device.

  4. Antidepressant-like effects of the ethyl acetate soluble fraction of the root bark of Morus alba on the immobility behavior of rats in the forced swim test.

    PubMed

    Lim, Dong Wook; Kim, Yun Tai; Park, Ji-Hae; Baek, Nam-In; Han, Daeseok

    2014-06-12

    In this study, the antidepressant-like effects of Morus alba fractions in rats were investigated in the forced swim test (FST). Male Wistar rats (9-week-old) were administered orally the M. alba ethyl acetate (EtOAc 30 and 100 mg/kg) and M. alba n-butanol fractions (n-BuOH 30 and 100 mg/kg) every day for 7 consecutive days. On day 7, 1 h after the final administration of the fractions, the rats were exposed to the FST. M. alba EtOAc fraction at the dose of 100 mg/kg induced a decrease in immobility behavior (p < 0.01) with a concomitant increase in both climbing (p < 0.05) and swimming (p < 0.05) behaviors when compared with the control group, and M. alba EtOAc fraction at the dose of 100 mg/kg decreased the hypothalamic-pituitary-adrenal (HPA) axis response to the stress, as indicated by an attenuated corticosterone response and decreased c-fos immunoreactivity in the hippocampal and hypothalamic paraventricular nucleus (PVN) region. These findings demonstrated that M. alba EtOAc fraction have beneficial effects on depressive behaviors and restore both altered c-fos expression and HPA activity.

  5. Citric acid cycle in the hyperthermophilic archaeon Pyrobaculum islandicum grown autotrophically, heterotrophically, and mixotrophically with acetate.

    PubMed

    Hu, Yajing; Holden, James F

    2006-06-01

    The hyperthermophilic archaeon Pyrobaculum islandicum uses the citric acid cycle in the oxidative and reductive directions for heterotrophic and autotrophic growth, respectively, but the control of carbon flow is poorly understood. P. islandicum was grown at 95 degrees C autotrophically, heterotrophically, and mixotrophically with acetate, H2, and small amounts of yeast extract and with thiosulfate as the terminal electron acceptor. The autotrophic growth rates and maximum concentrations of cells were significantly lower than those in other media. The growth rates on H2 and 0.001% yeast extract with and without 0.05% acetate were the same, but the maximum concentration of cells was fourfold higher with acetate. There was no growth with acetate if 0.001% yeast extract was not present, and addition of H2 to acetate-containing medium greatly increased the growth rates and maximum concentrations of cells. P. islandicum cultures assimilated 14C-labeled acetate in the presence of H2 and yeast extract with an efficiency of 55%. The activities of 11 of 19 enzymes involved in the central metabolism of P. islandicum were regulated under the three different growth conditions. Pyruvate synthase and acetate:coenzyme A (CoA) ligase (ADP-forming) activities were detected only in heterotrophically grown cultures. Citrate synthase activity decreased in autotrophic and acetate-containing cultures compared to the activity in heterotrophic cultures. Acetylated citrate lyase, acetate:CoA ligase (AMP forming), and phosphoenolpyruvate carboxylase activities increased in autotrophic and acetate-containing cultures. Citrate lyase activity was higher than ATP citrate synthase activity in autotrophic cultures. These data suggest that citrate lyase and AMP-forming acetate:CoA ligase, but not ATP citrate synthase, work opposite citrate synthase to control the direction of carbon flow in the citric acid cycle.

  6. Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae.

    PubMed

    Wright, Jeremiah; Bellissimi, Eleonora; de Hulster, Erik; Wagner, Andreas; Pronk, Jack T; van Maris, Antonius J A

    2011-05-01

    Acetic acid tolerance of Saccharomyces cerevisiae is crucial for the production of bioethanol and other bulk chemicals from lignocellulosic plant-biomass hydrolysates, especially at a low pH. This study explores two evolutionary engineering strategies for the improvement of acetic acid tolerance of the xylose-fermenting S. cerevisiae RWB218, whose anaerobic growth on xylose at pH 4 is inhibited at acetic acid concentrations >1 g L(-1) : (1) sequential anaerobic, batch cultivation (pH 4) at increasing acetic acid concentrations and (2) prolonged anaerobic continuous cultivation without pH control, in which acidification by ammonium assimilation generates selective pressure for acetic acid tolerance. After c. 400 generations, the sequential-batch and continuous selection cultures grew on xylose at pH≤4 with 6 and 5 g L(-1) acetic acid, respectively. In the continuous cultures, the specific xylose-consumption rate had increased by 75% to 1.7 g xylose g(-1) biomass h(-1) . After storage of samples from both selection experiments at -80 °C and cultivation without acetic acid, they failed to grow on xylose at pH 4 in the presence of 5 g L(-1) acetic acid. Characterization in chemostat cultures with linear acetic acid gradients demonstrated an acetate-inducible acetic acid tolerance in samples from the continuous selection protocol.

  7. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the following prescribed conditions: (a)...

  8. Pretreatment of corn stover with diluted acetic acid for enhancement of acidogenic fermentation.

    PubMed

    Zhao, Xu; Wang, Lijuan; Lu, Xuebin; Zhang, Shuting

    2014-04-01

    A Box-Behnken design of response surface method was used to optimize acetic acid-catalyzed hydrothermal pretreatment of corn stover, in respect to acid concentration (0.05-0.25%), treatment time (5-15 min) and reaction temperature (180-210°C). Acidogenic fermentations with different initial pH and hydrolyzates were also measured to evaluate the optimal pretreatment conditions for maximizing acid production. The results showed that pretreatment with 0.25% acetic acid at 191°C for 7.74 min was found to be the most optimal condition for pretreatment of corn stover under which the production of acids can reach the highest level. Acidogenic fermentation with the hydrolyzate of pretreatment at the optimal condition at the initial pH=5 was shown to be butyric acid type fermentation, producing 21.84 g acetic acid, 7.246 g propionic acid, 9.170 butyric acid and 1.035 g isovaleric acid from 100g of corn stover in 900 g of water containing 2.25 g acetic acid.

  9. Conformational equilibria and large-amplitude motions in dimers of carboxylic acids: rotational spectrum of acetic acid-difluoroacetic acid.

    PubMed

    Gou, Qian; Feng, Gang; Evangelisti, Luca; Caminati, Walther

    2014-10-06

    We report the rotational spectra of two conformers of the acetic acid-difluoroacetic acid adduct (CH3COOH-CHF2COOH) and supply information on its internal dynamics. The two conformers differ from each other, depending on the trans or gauche orientation of the terminal -CHF2 group. Both conformers display splittings of the rotational transitions, due to the internal rotation of the methyl group of acetic acid. The corresponding barriers are determined to be V3(trans)=99.8(3) and V3(gauche)=90.5(9) cm(-1) (where V3 is the methyl rotation barrier height). The gauche form displays a further doubling of the rotational transitions, due to the tunneling motion of the -CHF2 group between its two equivalent conformations. The corresponding B2 barrier is estimated to be 108(2) cm(-1). The increase in the distance between the two monomers upon OH→OD deuteration (the Ubbelohde effect) is determined.

  10. Thermal decarboxylation of acetic acid: Implications for origin of natural gas

    USGS Publications Warehouse

    Kharaka, Y.K.; Carothers, W.W.; Rosenbauer, R.J.

    1983-01-01

    Laboratory experiments on the thermal decarboxylation of solutions of acetic acid at 200??C and 300??C were carried out in hydrothermal equipment allowing for on-line sampling of both the gas and liquid phases for chemical and stable-carbon-isotope analyses. The solutions had ambient pH values between 2.5 and 7.1; pH values and the concentrations of the various acetate species at the conditions of the experiments were computed using a chemical model. Results show that the concentrations of acetic acid, and not total acetate in solution, control the reaction rates which follow a first order equation based on decreasing concentrations of acetic acid with time. The decarboxylation rates at 200??C (1.81 ?? 10-8 per second) and 300??C (8.17 ?? 10-8 per second) and the extrapolated rates at lower temperatures are relatively high. The activation energy of decarboxylation is only 8.1 kcal/mole. These high decarboxylation rates, together with the distribution of short-chained aliphatic acid anions in formation waters, support the hypothesis that acid anions are precursors for an important portion of natural gas. Results of the ??13C values of CO2, CH4, and total acetate show a reasonably constant fractionation factor of about 20 permil between CO2 and CH4 at 300??C. The ??13C values of CO2 and CH4 are initially low and become higher as decarboxylation increases. ?? 1983.

  11. Fatty acid ethyl ester synthesis in the preparation of scotch whiskey.

    PubMed

    Goss, K A; Alharethi, R; Laposata, M

    1999-04-01

    Fatty acid ethyl esters (FAEE), nonoxidative ethanol metabolites present in human organs commonly damaged by ethanol abuse, have been implicated as mediators of organ damage. FAEE are additives in various foods and beverages to provide flavor or fragrance, and therefore are common dietary lipid constituents. We hypothesized that FAEE could be generated during alcoholic beverage production because fatty acids are present within microorganisms and ethanol is generated during the fermentation process. In this report, we demonstrate that FAEE are present in commercially available scotch beverages, and that in the preparation of scotch, FAEE can be produced during the fermentation reaction as a result of FAEE synthase activity in the yeast. Following ingestion of scotch, preformed FAEE are delivered to GI tract. The consequences of ingestion of FAEE in scotch, if any, remain to be determined.

  12. Performance of dairy cows fed high levels of acetic acid or ethanol.

    PubMed

    Daniel, J L P; Amaral, R C; Sá Neto, A; Cabezas-Garcia, E H; Bispo, A W; Zopollatto, M; Cardoso, T L; Spoto, M H F; Santos, F A P; Nussio, L G

    2013-01-01

    Ethanol and acetic acid are common end products from silages. The main objective of this study was to determine whether high concentrations of ethanol or acetic acid in total mixed ration would affect performance in dairy cows. Thirty mid-lactation Holstein cows were grouped in 10 blocks and fed one of the following diets for 7 wk: (1) control (33% Bermuda hay + 67% concentrates), (2) ethanol [control diet + 5% ethanol, dry matter (DM) basis], or (3) acetic acid (control diet + 5% acetic acid, DM basis). Ethanol and acetic acid were diluted in water (1:2) and sprayed onto total mixed rations twice daily before feeding. An equal amount of water was mixed with the control ration. To adapt animals to these treatments, cows were fed only half of the treatment dose during the first week of study. Cows fed ethanol yielded more milk (37.9 kg/d) than those fed the control (35.8 kg/d) or acetic acid (35.3 kg/d) diets, mainly due to the higher DM intake (DMI; 23.7, 22.2, and 21.6 kg/d, respectively). The significant diet × week interaction for DMI, mainly during wk 2 and 3 (when acetic acid reached the full dose), was related to the decrease in DMI observed for the acetic acid treatment. There was a diet × week interaction in excretion of milk energy per DMI during wk 2 and 3, due to cows fed acetic acid sustained milk yield despite lower DMI. Energy efficiency was similar across diets. Blood metabolites (glucose, insulin, nonesterified fatty acids, ethanol, and γ-glutamyl transferase activity) and sensory characteristics of milk were not affected by these treatments. Animal performance suggested similar energy value for the diet containing ethanol compared with other diets. Rumen conversion of ethanol to acetate and a concomitant increase in methane production might be a plausible explanation for the deviation of the predicted energy value based on the heat of combustion. Therefore, the loss of volatile compounds during the drying process in the laboratory should be

  13. Characterization of N-methylated amino acids by GC-MS after ethyl chloroformate derivatization.

    PubMed

    Reddy, B Sudarshana; Chary, V Naresh; Pavankumar, P; Prabhakar, S

    2016-08-01

    Methylation is an essential metabolic process in the biological systems, and it is significant for several biological reactions in living organisms. Methylated compounds are known to be involved in most of the bodily functions, and some of them serve as biomarkers. Theoretically, all α-amino acids can be methylated, and it is possible to encounter them in most animal/plant samples. But the analytical data, especially the mass spectral data, are available only for a few of the methylated amino acids. Thus, it is essential to generate mass spectral data and to develop mass spectrometry methods for the identification of all possible methylated amino acids for future metabolomic studies. In this study, all N-methyl and N,N-dimethyl amino acids were synthesized by the methylation of α-amino acids and characterized by a GC-MS method. The methylated amino acids were derivatized with ethyl chloroformate and analyzed by GC-MS under EI and methane/CI conditions. The EI mass spectra of ethyl chloroformate derivatives of N-methyl (1-18) and N,N-dimethyl amino acids (19-35) showed abundant [M-COOC2 H5 ](+) ions. The fragment ions due to loss of C2 H4 , CO2 , (CO2  + C2 H4 ) from [M-COOC2 H5 ](+) were of structure indicative for 1-18. The EI spectra of 19-35 showed less number of fragment ions when compared with those of 1-18. The side chain group (R) caused specific fragment ions characteristic to its structure. The methane/CI spectra of the studied compounds showed [M + H](+) ions to substantiate their molecular weights. The detected EI fragment ions were characteristic of the structure that made easy identification of the studied compounds, including isomeric/isobaric compounds. Fragmentation patterns of the studied compounds (1-35) were confirmed by high-resolution mass spectra data and further substantiated by the data obtained from (13) C2 -labeled glycines and N-ethoxycarbonyl methoxy esters. The method was applied to human plasma samples for the identification

  14. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.

    PubMed

    Cibis, Katharina Gabriela; Gneipel, Armin; König, Helmut

    2016-02-20

    In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firmicutes, Tenericutes or Thermotogae. According to 16S rRNA gene sequences, most isolates were related to Clostridium sporosphaeroides, Defluviitoga tunisiensis and Dendrosporobacter quercicolus. Acetic, propionic or butyric acid were produced in cultures of isolates affiliated to Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, C. sporosphaeroides, D. quercicolus, Proteiniborus ethanoligenes, Selenomonas bovis and Tepidanaerobacter sp. Isolates related to Thermoanaerobacterium thermosaccharolyticum produced acetic, butyric and lactic acid, and isolates related to D. tunisiensis formed acetic acid. Specific primer sets targeting 16S rRNA gene sequences were designed and used for real-time quantitative PCR (qPCR). The isolates were physiologically characterized and their role in BGP discussed.

  15. Semipurified Ethyl Acetate Partition of Methanolic Extract of Melastoma malabathricum Leaves Exerts Gastroprotective Activity Partly via Its Antioxidant-Antisecretory-Anti-Inflammatory Action and Synergistic Action of Several Flavonoid-Based Compounds

    PubMed Central

    Ismail Suhaimy, Noor Wahida; Noor Azmi, Ahmad Khusairi; Mohtarrudin, Norhafizah; Cheema, Manraj Singh

    2017-01-01

    Recent study has demonstrated the gastroprotective activity of crude methanolic extract of M. malabathricum leaves. The present study evaluated the gastroprotective potential of semipurified extracts (partitions): petroleum ether, ethyl acetate (EAMM), and aqueous obtained from the methanolic extract followed by the elucidation of the gastroprotective mechanisms of the most effective partition. Using the ethanol-induced gastric ulcer assay, all partitions exerted significant gastroprotection, with EAMM being the most effective partition. EAMM significantly (i) reduced the volume and acidity (free and total) while increasing the pH of gastric juice and enhanced the gastric wall mucus secretion when assessed using the pylorus ligation assay, (ii) increased the enzymatic and nonenzymatic antioxidant activity of the stomach tissue, (iii) lost its gastroprotective activity following pretreatment with N-omega-nitro-L-arginine methyl ester (L-NAME; NO blocker) or carbenoxolone (CBXN; NP-SH blocker), (iv) exerted antioxidant activity against various in vitro oxidation assays, and (v) showed moderate in vitro anti-inflammatory activity via the LOX-modulated pathway. In conclusion, EAMM exerts a remarkable NO/NP-SH-dependent gastroprotective effect that is attributed to its antisecretory and antioxidant activities, ability to stimulate the gastric mucus production and endogenous antioxidant system, and synergistic action of several gastroprotective-induced flavonoids. PMID:28168011

  16. Semipurified Ethyl Acetate Partition of Methanolic Extract of Melastoma malabathricum Leaves Exerts Gastroprotective Activity Partly via Its Antioxidant-Antisecretory-Anti-Inflammatory Action and Synergistic Action of Several Flavonoid-Based Compounds.

    PubMed

    Ismail Suhaimy, Noor Wahida; Noor Azmi, Ahmad Khusairi; Mohtarrudin, Norhafizah; Omar, Maizatul Hasyima; Tohid, Siti Farah Md; Cheema, Manraj Singh; Teh, Lay Kek; Salleh, Mohd Zaki; Zakaria, Zainul Amiruddin

    2017-01-01

    Recent study has demonstrated the gastroprotective activity of crude methanolic extract of M. malabathricum leaves. The present study evaluated the gastroprotective potential of semipurified extracts (partitions): petroleum ether, ethyl acetate (EAMM), and aqueous obtained from the methanolic extract followed by the elucidation of the gastroprotective mechanisms of the most effective partition. Using the ethanol-induced gastric ulcer assay, all partitions exerted significant gastroprotection, with EAMM being the most effective partition. EAMM significantly (i) reduced the volume and acidity (free and total) while increasing the pH of gastric juice and enhanced the gastric wall mucus secretion when assessed using the pylorus ligation assay, (ii) increased the enzymatic and nonenzymatic antioxidant activity of the stomach tissue, (iii) lost its gastroprotective activity following pretreatment with N-omega-nitro-L-arginine methyl ester (L-NAME; NO blocker) or carbenoxolone (CBXN; NP-SH blocker), (iv) exerted antioxidant activity against various in vitro oxidation assays, and (v) showed moderate in vitro anti-inflammatory activity via the LOX-modulated pathway. In conclusion, EAMM exerts a remarkable NO/NP-SH-dependent gastroprotective effect that is attributed to its antisecretory and antioxidant activities, ability to stimulate the gastric mucus production and endogenous antioxidant system, and synergistic action of several gastroprotective-induced flavonoids.

  17. Development of Paper, Chemical Agent Detector, 3-Way Liquid Containing Non-Mutagenic Dyes. 2. Replacement of the Blue Indicator Dye Ethyl-bis-(2,4- Dinitrophenyl Acetate (EDA)

    DTIC Science & Technology

    1988-06-01

    OL JU)OY (ý2ýPj 00 (V)~ Oetence nationale DTI DEVELOPIIEnT OF PAPER, CHEMICAL AGENT DETECTOR, 3-WAY LIQUID CONTAINING NON-MUTAGENIC DYES . Hi...REPLACEMENT OF THE BLUE INflICATOR DYE ETH.YL-b is-(2.4-DI NITROPH ENYL) ACETATE IEDA) by D. Thoravala, J.W. Bovenkampb, R.W. Betsa and B.V. Lcroixb...NON-MUTAGENIC DYES . n-REPLACEMENT OF THE BLUE INDICATOR DYE ETHYL-bis-(2,4-DINITROPHENYL) ACETATE (EDA) by D. Thoraval and R.W. Bets Anachemic Canada

  18. Microwave Spectroscopy and Proton Transfer Dynamics in the Formic Acid-Acetic Acid Dimer

    NASA Astrophysics Data System (ADS)

    Howard, B. J.; Steer, E.; Page, F.; Tayler, M.; Ouyang, B.; Leung, H. O.; Marshall, M. D.; Muenter, J. S.

    2012-06-01

    The rotational spectrum of the doubly hydrogen-bonded {hetero} dimer formed between formic acid and acetic acid has been recorded between 4 and 18 GHz using a pulsed-nozzle Fourier transform microwave spectrometer. Each rigid-molecule rotational transition is split into four as a result of two concurrent tunnelling motions, one being proton transfer between the two acid molecules, and the other the torsion/rotation of the methyl group within the acetic acid. We present a full assignment of the spectrum for {J} = 1 to {J} = 7 for these four torsion/tunnelling states. Spectra have been observed for the main isotopic species, with deuterium substitution at the C of the formic acid and all 13C species in natural abundance, The observed transitions are fitted to within a few kilohertz using a molecule-fixed effective rotational Hamiltonian for the separate {A} and {E} vibrational species of the G12 permutation-inversion group which is applicable to this complex. To reduce the effects of internal angular momentum, a non-principal axis system is used throughout. Interpretation of the internal motion uses an internal-vibration and overall rotation scheme, and full sets of rotational and centrifugal distortion constants are determined. The proton tunnelling rates and the internal angular momentum of the methyl group in the {E} states is interpreted in terms of a dynamical model which involves coupled proton transfer and internal rotation. The resulting potential energy surface not only describes these internal motions, but can also explain the observed shifts in rotational constants between {A} and {E} species, and the deviations of the tunnelling frequencies from the expected 2:1 ratio. It also permits the determination of spectral constants free from the contamination effects of the internal dynamics. M.C.D. Tayler, B. Ouyang and B.J. Howard, J. Chem. Phys., {134}, 054316 (2011).

  19. Conductometric simultaneous determination of acetic acid, monochloroacetic acid and trichloroacetic acid using orthogonal signal correction-partial least squares.

    PubMed

    Ghorbani, R; Ghasemi, J; Abdollahi, B

    2006-04-17

    A simultaneous conductometric titration method for determination of mixtures of acetic acid, monochloroacetic acid and trichloroacetic acid based on the multivariate calibration partial least squares is proposed. It is possible to obtain an adjustable model to relate squared concentration values of the mixtures used in the calibration range by conductance. The effect of orthogonal signal correction (OSC) as a preprocessing technique used to remove the information unrelated to the target variables is studied. The calibration model was build using conductometric titrations data of 16 mixtures of three acids. The concentration matrix was designed by a orthogonal design. The root mean squares error of prediction (RMSEP) for acetic acid, monochloroacetic acid and trichloroacetic acid with and without OSC were 0.08, 0.30 and 0.08, and 0.15, 0.40 and 0.18, respectively. The results obtained by OSC-PLS are better than the PLS and this indicate the successful application of the OSC filter as a good preprocessing method in multivariate calibration methods. The proposed procedure allows the simultaneous determination of these acids, in the synthetic mixtures.

  20. Radiofrequency Thermal Ablation: Increase in Lesion Diameter with Continuous Acetic Acid Infusion

    SciTech Connect

    Lubienski, Andreas Duex, Markus; Lubienski, Katrin; Grenacher, Lars; Kauffmann, Guenter

    2005-12-15

    Purpose. To evaluate the influence of continuous infusion of acetic acid 50% during radiofrequency ablation (RFA) on the size of the thermal lesion produced. Methods. Radiofrequency (RF) was applied to excised bovine liver by using an expandable needle electrode with 10 retractable tines (LeVeen Needle Electrode, RadioTherapeutics, Sunnyvale, CA) connected to a commercially available RF generator (RF 2000, RadioTherapeutics, Sunnyvale, CA). Experiments were performed using three different treatment modalities: RF only (n = 15), RF with continuous saline 0.9% infusion (n = 15), and RF with continuous acetic acid 50% infusion (n = 15). RF duration, power output, tissue impedance, and time to a rapid rise in impedance were recorded. The ablated lesions were evaluated both macroscopically and histologically. Results. The ablated lesions appeared as spherical or ellipsoid, well-demarcated pale areas with a surrounding brown rim with both RF only and RF plus saline 0.9% infusion. In contrast, thermolesions generated with RF in combination with acetic acid 50% infusion were irregular in shape and the central portion was jelly-like. Mean diameter of the coagulation necrosis was 22.3 {+-} 2.1 mm (RF only), 29.2 {+-} 4.8 mm (RF + saline 0.9%) and 30.7 {+-} 5.7 mm (RF + acetic acid 50%), with a significant increase in the RF plus saline 0.9% and RF plus acetic acid 50% groups compared with RF alone. Time to a rapid rise in impedance was significantly prolonged in the RF plus saline 0.9% and RF plus acetic acid 50% groups compared with RF alone. Conclusions. A combination of RF plus acetic acid 50% infusion is able to generate larger thermolesions than RF only or RF combined with saline 0.9% infusion.

  1. Physiological and transcriptional characterization of Saccharomyces cerevisiae engineered for production of fatty acid ethyl esters.

    PubMed

    de Jong, Bouke Wim; Siewers, Verena; Nielsen, Jens

    2016-02-01

    Saccharomyces cerevisiae has previously been engineered to become a cell factory for the production of fatty acid ethyl esters (FAEEs), molecules suitable for crude diesel replacement. To find new metabolic engineering targets for the improvement of FAEE cell factories, three different FAEE-producing strains of S. cerevisiae, constructed previously, were compared and characterized by quantification of key fluxes and genome-wide transcription analysis. From both the physiological and the transcriptional data, it was indicated that strain CB2I20, with high expression of a heterologous wax ester synthase gene (ws2) and strain BdJ15, containing disruptions of genes DGA1, LRO1, ARE1, ARE2 and POX1, which prevent the conversion of acyl-CoA to sterol esters, triacylglycerides and the degradation to acetyl-CoA, triggered oxidative stress that consequently influenced cellular growth. In the latter strain, stress was possibly triggered by disabling the buffering capacity of lipid droplets in encapsulating toxic fatty acids such as oleic acid. Additionally, it was indicated that there was an increased demand for NADPH required for the reduction steps in fatty acid biosynthesis. In conclusion, our analysis clearly shows that engineering of fatty acid biosynthesis results in transcriptional reprogramming and has a significant effect on overall cellular metabolism.

  2. [Degradation of urea and ethyl carbamate in Chinese Rice wine by recombinant acid urease].

    PubMed

    Zhou, Jianli; Kang, Zhen; Liu, Qingtao; Du, Guocheng; Chen, Jian

    2016-01-01

    Ethyl carbamate (EC) as a potential carcinogen commonly exists in traditional fermented foods. It is important eliminate urea that is the precursors of EC in many fermented foods, including Chinese Rice wine. On the basis of achieving high-level overexpression of food-grade ethanol-resistant acid urease, we studied the hydrolysis of urea and EC with the recombinant acid urease. Recombinant acid urease showed degraded urea in both the simulated system with ethanol and Chinese Rice wine (60 mg/L of urea was completely degraded within 25 h), indicating that the recombinant enzyme is suitable for the elimination of urea in Chinese Rice wine. Although recombinant acid urease also has degradation catalytic activity on EC, no obvious degradation of EC was observed. Further investigation results showed that the Km value for urea and EC of the recombinant acid urease was 0.7147 mmol/L and 41.32 mmol/L, respectively. The results provided theoretical foundation for realizing simultaneous degradation of urea and EC.

  3. A case report of a chemical burn due to the misuse of glacial acetic acid.

    PubMed

    Yoo, Jun-Ho; Roh, Si-Gyun; Lee, Nae-Ho; Yang, Kyung-Moo; Moon, Ji-Hyun

    2010-12-01

    As young and elastic skin is what everyone dreams of, various measures have been implemented including chemical, laser resurfacing and dermabrasion to improve the condition of ageing skin. However, the high cost of these procedures prevents the poor from having access to treatment. Glacial acetic acid is widely used as a substitute for chemical peeling because it is readily easily available and affordable. However, its use can result in a number of serious complications. A 28-year-old female patient was admitted to our hospital with deep second-degree chemical burns on her face caused by the application of a mixture of glacial acetic acid and flour for chemical peeling. During a 6-month follow-up, hypertrophic scarring developed on the both nasolabial folds despite scar management. Glacial acetic acid is a concentrated form of the organic acid, which gives vinegar its sour taste and pungent smell, and it is also an important reagent during the production of organic compounds. Unfortunately, misleading information regarding the use of glacial acetic acid for chemical peeling is causing serious chemical burns. Furthermore, there is high possibility of a poor prognosis, which includes inflammation, hypertrophic scar formation and pigmentation associated with its misuse. Therefore, we report a case of facial chemical burning, due to the misuse of glacial acetic acid, and hope that this report leads to a better understanding regarding the use of this reagent.

  4. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications.

    PubMed

    Saichana, Natsaran; Matsushita, Kazunobu; Adachi, Osao; Frébort, Ivo; Frebortova, Jitka

    2015-11-01

    Acetic acid bacteria are gram-negative obligate aerobic bacteria assigned to the family Acetobacteraceae of Alphaproteobacteria. They are members of the genera Acetobacter, Gluconobacter, Gluconacetobacter, Acidomonas, Asaia, Kozakia, Swaminathania, Saccharibacter, Neoasaia, Granulibacter, Tanticharoenia, Ameyamaea, Neokomagataea, and Komagataeibacter. Many strains of Acetobacter and Komagataeibacter have been known to possess high acetic acid fermentation ability as well as the acetic acid and ethanol resistance, which are considered to be useful features for industrial production of acetic acid and vinegar, the commercial product. On the other hand, Gluconobacter strains have the ability to perform oxidative fermentation of various sugars, sugar alcohols, and sugar acids leading to the formation of several valuable products. Thermotolerant strains of acetic acid bacteria were isolated in order to serve as the new strains of choice for industrial fermentations, in which the cooling costs for maintaining optimum growth and production temperature in the fermentation vessels could be significantly reduced. Genetic modifications by adaptation and genetic engineering were also applied to improve their properties, such as productivity and heat resistance.

  5. Ethanol contamination leads to Fatty acid ethyl esters in hair samples.

    PubMed

    De Giovanni, Nadia; Donadio, Giuseppe; Chiarotti, Marcello

    2008-03-01

    The diagnosis of alcoholism is a topical subject of discussion; in fact, many studies have been published on the determination of biochemical markers useful to this target. Fatty acid ethyl esters (FAEE) are minor metabolites of ethanol, and their usefulness has been demonstrated by their detection in hair using a headspace solid-phase microextraction-gas chromatographic-mass spectrometric technique. Environmental contamination in the analysis of drugs of abuse is a well-known focus of discussion between scientists. In the same way, interference from the surroundings could be hypothesized in FAEE detection. To assess the influence of ethanol contamination, an in vitro experiment was performed, leaving hair in an atmosphere saturated with ethanol vapors for 15 days. The spontaneous production of FAEE was demonstrated by analyzing hair day by day. In fact, we observed a constant increase of ethyl myristate, palmitate, and stearate that reached very high concentrations at the end of the investigation. Although the experiment was managed in a stressed way and could not represent real life, its purpose was to focus the attention of researchers on the problem of hair contamination that can occur, for example, with ethanol-containing cosmetics. Therefore, care in interpretation must be taken into account, especially with such a volatile molecule.

  6. Isolation and identification of products from alkylation of nucleic acids: ethyl- and isopropyl-purines.

    PubMed Central

    Lawley, P D; Orr, D J; Jarman, M

    1975-01-01

    Ethylation and isopropylation of guanine in alkaline solution, or of adenine in formic acid, by alkyl methanesulphonates gave the following products: 1-, N2-, 3-, O6-, 7- and 9-alkylguanines; 1-, 3-, 7- and 9-alkyladenines. The products were identified from their characteristic u.v-absorption spectra, by comparison with either known ethyladenines or with the corresponding known methyladenines, and were also characterized by mass spectrometry. Their chromatographic properties on paper, t.l.c. and various columns were determined. DNA was alkylated in neutral solution with 14C-labelled alkyl methanesulphonates and the ratios of the alkylpurines formed were obtained, and compared for alkylation by methyl, ethyl and isopropyl methanesulphonates and by N-methyl-N-nitrosourea. The extents of alkylation at O-6 of guanine relative to those at N-7 of guanine varied with the reactivity of the methylating agents according to the predictions of Swain & Scott (1953) relating nucleophilicity of the groups alkylated with the substrate constants of the alkylating agents. The relative extents of alkylation at N-3 of adenine did not follow this correlation. PMID:172066

  7. Laboratory Studies of the Tropospheric Loss Processes for Acetic and Peracetic Acid

    NASA Astrophysics Data System (ADS)

    Orlando, J. J.; Tyndall, G. S.

    2002-12-01

    Organic acids are ubiquitous components of tropospheric air and contribute to acid precipitation, particularly in remote regions. These species are present in the troposphere as the result of direct emissions from anthropogenic and biogenic sources, and as the result of photochemical processing of hydrocarbons. Production of organic acids can occur following ozonolysis of unsaturated hydrocarbons, while both organic acids and peroxyacids are formed from the reactions of HO2 with acylperoxy radicals. For example, both acetic and peracetic acid are known products of the reaction of HO2 with acetylperoxy radicals. In this paper, data relevant to the gas-phase tropospheric destruction of both acetic and peracetic acid are reported, including studies of their UV absorption spectra and of their rate coefficients for reaction with OH radicals. The data, the first of their kind for peracetic acid, show that the gas-phase lifetime of this species will be on the order of 10 days, with OH reaction occurring more rapidly than photolysis. Data on the rate coefficient for reaction of OH with acetic acid appear to resolve some conflicting data in the previous literature, and show 1) that reaction of OH with the acetic acid dimer is slow compared to the monomer and 2) that the rate coefficient possesses a negative temperature dependence near room temperature.

  8. Mechanisms underlying the transport and intracellular metabolism of acetic acid in the presence of glucose in the yeast Zygosaccharomyces bailii.

    PubMed

    Sousa, M J; Rodrigues, F; Côrte-Real, M; Leão, C

    1998-03-01

    Zygosaccharomyces bailii ISA 1307 displays biphasic growth in a medium containing a mixture of glucose (0.5%, w/v) and acetic acid (0.5%, w/v), pH 5.0 and 3.0. In cells harvested during the first growth phase, no activity of a mediated acetic acid transport system was found. Incubation of these cells in phosphate buffer with cycloheximide for 1 h restored activity of an acetic acid carrier which behaved as the one present in glucose-grown cells. These results indicated that the acetic acid carrier is probably present in cells from the first growth phase of the mixed medium but its activity was affected by the presence of acetic acid in the culture medium. In glucose-grown cells, after incubation in phosphate buffer with glucose and acetic acid, the activity of the acetic acid carrier decreased significantly with increased acid concentration in the incubation buffer. At acid concentrations above 16.7 mM, no significant carrier activity was detectable. Furthermore, the intracellular acid concentration increased with the extracellular one and was inversely correlated with the activity of the acetic acid carrier, suggesting the involvement of a feedback inhibition mechanism in the regulation of the carrier. During biphasic growth, the first phase corresponded to a simultaneous consumption of glucose and acetic acid, and the second to the utilization of the remaining acid. The enzyme acetyl-CoA synthetase was active in both growth phases, even in the presence of glucose. Activity of isocitrate lyase and phosphoenolpyruvate carboxykinase was found only in acetic-acid-grown cells. Thus it appears that both membrane transport and acetyl-CoA synthetase and their regulation are important for Z. bailii to metabolize acetic acid in the presence of glucose. This fact correlates with the high resistance of this yeast to environments with mixtures of sugars and acetic acid such as those often present during wine fermentation.

  9. The Acetic Acid Tolerance Response induces cross-protection to salt stress in Salmonella typhimurium.

    PubMed

    Greenacre, E J; Brocklehurst, T F

    2006-10-15

    Salmonella typhimurium induces an Acid Tolerance Response (ATR) upon exposure to mildly acidic conditions in order to protect itself against severe acid shock. This response can also induce cross-protection to other stresses such as heat and salt. We investigated whether both the acetic acid induced and lactic acid induced ATR in S. typhimurium provided cross-protection to a salt stress at 20 degrees C. Acid-adapted cells were challenged with both a sodium chloride (NaCl) and potassium chloride (KCl) shock and their ability to survive ascertained. Acetic acid adaptation provided cells with protection against both NaCl and KCl stress. However, lactic acid adaptation did not protect against either osmotic stressor and rendered cells hypersensitive to NaCl. These results have implications for the food industry where hurdle technology means multiple sub-lethal stresses such as mild pH and low salt are commonly used in the preservation of products.

  10. Reactivity and reaction intermediates for acetic acid adsorbed on CeO2(111)

    SciTech Connect

    Calaza, Florencia C.; Chen, Tsung -Liang; Mullins, David R.; Xu, Ye; Steven H. Overbury

    2015-05-02

    Adsorption and reaction of acetic acid on a CeO2(1 1 1) surface was studied by a combination of ultra-highvacuum based methods including temperature desorption spectroscopy (TPD), soft X-ray photoelectronspectroscopy (sXPS), near edge X-ray absorption spectroscopy (NEXAFS) and reflection absorption IRspectroscopy (RAIRS), together with density functional theory (DFT) calculations. TPD shows that thedesorption products are strongly dependent upon the initial oxidation state of the CeO2 surface, includingselectivity between acetone and acetaldehyde products. The combination of sXPS and NEXAFS demon-strate that acetate forms upon adsorption at low temperature and is stable to above 500 K, above whichpoint ketene, acetone and acetic acid desorb. Furthermore, DFT and RAIRS show that below 500 K, bridge bondedacetate coexists with a moiety formed by adsorption of an acetate at an oxygen vacancy, formed bywater desorption.

  11. The Fate of Acetic Acid during Glucose Co-Metabolism by the Spoilage Yeast Zygosaccharomyces bailii

    PubMed Central

    Rodrigues, Fernando; Sousa, Maria João; Ludovico, Paula; Santos, Helena; Côrte-Real, Manuela; Leão, Cecília

    2012-01-01

    Zygosaccharomyces bailii is one of the most widely represented spoilage yeast species, being able to metabolise acetic acid in the presence of glucose. To clarify whether simultaneous utilisation of the two substrates affects growth efficiency, we examined growth in single- and mixed-substrate cultures with glucose and acetic acid. Our findings indicate that the biomass yield in the first phase of growth is the result of the weighted sum of the respective biomass yields on single-substrate medium, supporting the conclusion that biomass yield on each substrate is not affected by the presence of the other at pH 3.0 and 5.0, at least for the substrate concentrations examined. In vivo 13C-NMR spectroscopy studies showed that the gluconeogenic pathway is not operational and that [2−13C]acetate is metabolised via the Krebs cycle leading to the production of glutamate labelled on C2, C3 and C4. The incorporation of [U-14C]acetate in the cellular constituents resulted mainly in the labelling of the protein and lipid pools 51.5% and 31.5%, respectively. Overall, our data establish that glucose is metabolised primarily through the glycolytic pathway, and acetic acid is used as an additional source of acetyl-CoA both for lipid synthesis and the Krebs cycle. This study provides useful clues for the design of new strategies aimed at overcoming yeast spoilage in acidic, sugar-containing food environments. Moreover, the elucidation of the molecular basis underlying the resistance phenotype of Z. bailii to acetic acid will have a potential impact on the improvement of the performance of S. cerevisiae industrial strains often exposed to acetic acid stress conditions, such as in wine and bioethanol production. PMID:23285028

  12. The fate of acetic acid during glucose co-metabolism by the spoilage yeast Zygosaccharomyces bailii.

    PubMed

    Rodrigues, Fernando; Sousa, Maria João; Ludovico, Paula; Santos, Helena; Côrte-Real, Manuela; Leão, Cecília

    2012-01-01

    Zygosaccharomyces bailii is one of the most widely represented spoilage yeast species, being able to metabolise acetic acid in the presence of glucose. To clarify whether simultaneous utilisation of the two substrates affects growth efficiency, we examined growth in single- and mixed-substrate cultures with glucose and acetic acid. Our findings indicate that the biomass yield in the first phase of growth is the result of the weighted sum of the respective biomass yields on single-substrate medium, supporting the conclusion that biomass yield on each substrate is not affected by the presence of the other at pH 3.0 and 5.0, at least for the substrate concentrations examined. In vivo(13)C-NMR spectroscopy studies showed that the gluconeogenic pathway is not operational and that [2-(13)C]acetate is metabolised via the Krebs cycle leading to the production of glutamate labelled on C(2), C(3) and C(4). The incorporation of [U-(14)C]acetate in the cellular constituents resulted mainly in the labelling of the protein and lipid pools 51.5% and 31.5%, respectively. Overall, our data establish that glucose is metabolised primarily through the glycolytic pathway, and acetic acid is used as an additional source of acetyl-CoA both for lipid synthesis and the Krebs cycle. This study provides useful clues for the design of new strategies aimed at overcoming yeast spoilage in acidic, sugar-containing food environments. Moreover, the elucidation of the molecular basis underlying the resistance phenotype of Z. bailii to acetic acid will have a potential impact on the improvement of the performance of S. cerevisiae industrial strains often exposed to acetic acid stress conditions, such as in wine and bioethanol production.

  13. The role of glass composition in the behaviour of glass acetic acid and glass lactic acid cements.

    PubMed

    Shahid, Saroash; Billington, R W; Pearson, G J

    2008-02-01

    Cements have recently been described, made from glass ionomer glass reacted with acetic and lactic acid instead of polymeric carboxylic acid. From their behaviour a theory relating to a possible secondary setting mechanism of glass ionomer has been adduced. However, only one glass (G338) was used throughout. In this study a much simpler glass ionomer glass (MP4) was compared with G338. This produced very different results. With acetic acid G338 formed cement which became resistant to water over a period of hours, as previously reported, MP4 formed cement which was never stable to water. With lactic acid G338 behaved similarly to G338 with acetic acid, again as reported, but MP4 produced a cement which was completely resistant to water at early exposure and unusually became slightly less resistant if exposure was delayed for 6 h or more. These findings indicate that the theories relating to secondary setting in glass ionomer maturation may need revision.

  14. Acetate accumulation enhances mixed culture fermentation of biomass to lactic acid.

    PubMed

    Khor, Way Cern; Roume, Hugo; Coma, Marta; Vervaeren, Han; Rabaey, Korneel

    2016-10-01

    Lactic acid is a high-in-demand chemical, which can be produced through fermentation of lignocellulosic feedstock. However, fermentation of complex substrate produces a mixture of products at efficiencies too low to justify a production process. We hypothesized that the background acetic acid concentration plays a critical role in lactic acid yield; therefore, its retention via selective extraction of lactic acid or its addition would improve overall lactic acid production and eliminate net production of acetic acid. To test this hypothesis, we added 10 g/L of acetate to fermentation broth to investigate its effect on products composition and concentration and bacterial community evolution using several substrate-inoculum combinations. With rumen fluid inoculum, lactate concentrations increased by 80 ± 12 % (cornstarch, p < 0.05) and 16.7 ± 0.4 % (extruded grass, p < 0.05) while with pure culture inoculum (Lactobacillus delbrueckii and genetically modified (GM) Escherichia coli), a 4 to 23 % increase was observed. Using rumen fluid inoculum, the bacterial community was enriched within 8 days to >69 % lactic acid bacteria (LAB), predominantly Lactobacillaceae. Higher acetate concentration promoted a more diverse LAB population, especially on non-inoculated bottles. In subsequent tests, acetate was added in a semi-continuous percolation system with grass as substrate. These tests confirmed our findings producing lactate at concentrations 26 ± 5 % (p < 0.05) higher than the control reactor over 20 days operation. Overall, our work shows that recirculating acetate has the potential to boost lactic acid production from waste biomass to levels more attractive for application.

  15. Acetic Acid Detection Threshold in Synthetic Wine Samples of a Portable Electronic Nose

    PubMed Central

    Macías, Miguel Macías; Manso, Antonio García; Orellana, Carlos Javier García; Velasco, Horacio Manuel González; Caballero, Ramón Gallardo; Chamizo, Juan Carlos Peguero

    2013-01-01

    Wine quality is related to its intrinsic visual, taste, or aroma characteristics and is reflected in the price paid for that wine. One of the most important wine faults is the excessive concentration of acetic acid which can cause a wine to take on vinegar aromas and reduce its varietal character. Thereby it is very important for the wine industry to have methods, like electronic noses, for real-time monitoring the excessive concentration of acetic acid in wines. However, aroma characterization of alcoholic beverages with sensor array electronic noses is a difficult challenge due to the masking effect of ethanol. In this work, in order to detect the presence of acetic acid in synthetic wine samples (aqueous ethanol solution at 10% v/v) we use a detection unit which consists of a commercial electronic nose and a HSS32 auto sampler, in combination with a neural network classifier (MLP). To find the characteristic vector representative of the sample that we want to classify, first we select the sensors, and the section of the sensors response curves, where the probability of detecting the presence of acetic acid will be higher, and then we apply Principal Component Analysis (PCA) such that each sensor response curve is represented by the coefficients of its first principal components. Results show that the PEN3 electronic nose is able to detect and discriminate wine samples doped with acetic acid in concentrations equal or greater than 2 g/L. PMID:23262483

  16. The Antibacterial Activity of Acetic Acid against Biofilm-Producing Pathogens of Relevance to Burns Patients

    PubMed Central

    Halstead, Fenella D.; Rauf, Maryam; Moiemen, Naiem S.; Bamford, Amy; Wearn, Christopher M.; Fraise, Adam P.; Lund, Peter A.; Oppenheim, Beryl A.; Webber, Mark A.

    2015-01-01

    Introduction Localised infections, and burn wound sepsis are key concerns in the treatment of burns patients, and prevention of colonisation largely relies on biocides. Acetic acid has been shown to have good antibacterial activity against various planktonic organisms, however data is limited on efficacy, and few studies have been performed on biofilms. Objectives We sought to investigate the antibacterial activity of acetic acid against important burn wound colonising organisms growing planktonically and as biofilms. Methods Laboratory experiments were performed to test the ability of acetic acid to inhibit growth of pathogens, inhibit the formation of biofilms, and eradicate pre-formed biofilms. Results Twenty-nine isolates of common wound-infecting pathogens were tested. Acetic acid was antibacterial against planktonic growth, with an minimum inhibitory concentration of 0.16–0.31% for all isolates, and was also able to prevent formation of biofilms (at 0.31%). Eradication of mature biofilms was observed for all isolates after three hours of exposure. Conclusions This study provides evidence that acetic acid can inhibit growth of key burn wound pathogens when used at very dilute concentrations. Owing to current concerns of the reducing efficacy of systemic antibiotics, this novel biocide application offers great promise as a cheap and effective measure to treat infections in burns patients. PMID:26352256

  17. Candida zemplinina can reduce acetic acid produced by Saccharomyces cerevisiae in sweet wine fermentations.

    PubMed

    Rantsiou, Kalliopi; Dolci, Paola; Giacosa, Simone; Torchio, Fabrizio; Tofalo, Rosanna; Torriani, Sandra; Suzzi, Giovanna; Rolle, Luca; Cocolin, Luca

    2012-03-01

    In this study we investigated the possibility of using Candida zemplinina, as a partner of Saccharomyces cerevisiae, in mixed fermentations of must with a high sugar content, in order to reduce its acetic acid production. Thirty-five C. zemplinina strains, which were isolated from different geographic regions, were molecularly characterized, and their fermentation performances were determined. Five genetically different strains were selected for mixed fermentations with S. cerevisiae. Two types of inoculation were carried out: coinoculation and sequential inoculation. A balance between the two species was generally observed for the first 6 days, after which the levels of C. zemplinina started to decrease. Relevant differences were observed concerning the consumption of sugars, the ethanol and glycerol content, and acetic acid production, depending on which strain was used and which type of inoculation was performed. Sequential inoculation led to the reduction of about half of the acetic acid content compared to the pure S. cerevisiae fermentation, but the ethanol and glycerol amounts were also low. A coinoculation with selected combinations of S. cerevisiae and C. zemplinina resulted in a decrease of ~0.3 g of acetic acid/liter, while maintaining high ethanol and glycerol levels. This study demonstrates that mixed S. cerevisiae and C. zemplinina fermentation could be applied in sweet wine fermentation to reduce the production of acetic acid, connected to the S. cerevisiae osmotic stress response.

  18. Acetic acid detection threshold in synthetic wine samples of a portable electronic nose.

    PubMed

    Macías, Miguel Macías; Manso, Antonio García; Orellana, Carlos Javier García; Velasco, Horacio Manuel González; Caballero, Ramón Gallardo; Chamizo, Juan Carlos Peguero

    2012-12-24

    Wine quality is related to its intrinsic visual, taste, or aroma characteristics and is reflected in the price paid for that wine. One of the most important wine faults is the excessive concentration of acetic acid which can cause a wine to take on vinegar aromas and reduce its varietal character. Thereby it is very important for the wine industry to have methods, like electronic noses, for real-time monitoring the excessive concentration of acetic acid in wines. However, aroma characterization of alcoholic beverages with sensor array electronic noses is a difficult challenge due to the masking effect of ethanol. In this work, in order to detect the presence of acetic acid in synthetic wine samples (aqueous ethanol solution at 10% v/v) we use a detection unit which consists of a commercial electronic nose and a HSS32 auto sampler, in combination with a neural network classifier (MLP). To find the characteristic vector representative of the sample that we want to classify, first we select the sensors, and the section of the sensors response curves, where the probability of detecting the presence of acetic acid will be higher, and then we apply Principal Component Analysis (PCA) such that each sensor response curve is represented by the coefficients of its first principal components. Results show that the PEN3 electronic nose is able to detect and discriminate wine samples doped with acetic acid in concentrations equal or greater than 2 g/L.

  19. Coproduction of acetic acid and electricity by application of microbial fuel cell technology to vinegar fermentation.

    PubMed

    Tanino, Takanori; Nara, Youhei; Tsujiguchi, Takuya; Ohshima, Takayuki

    2013-08-01

    The coproduction of a useful material and electricity via a novel application of microbial fuel cell (MFC) technology to oxidative fermentation was investigated. We focused on vinegar production, i.e., acetic acid fermentation, as an initial and model useful material that can be produced by oxidative fermentation in combination with MFC technology. The coproduction of acetic acid and electricity by applying MFC technology was successfully demonstrated by the simultaneous progress of acetic acid fermentation and electricity generation through a series of repeated batch fermentations. Although the production rate of acetic acid was very small, it increased with the number of repeated batch fermentations that were conducted. We obtained nearly identical (73.1%) or larger (89.9%) acetic acid yields than that typically achieved by aerated fermentation (75.8%). The open-cycle voltages measured before and after fermentation increased with the total fermentation time and reached a maximum value of 0.521 V prior to the third batch fermentation. The maximum current and power densities measured in this study (19.1 μA/cm² and 2.47 μW/cm², respectively) were obtained after the second batch fermentation.

  20. Regeneration of basic sorbents used in the recovery of acetic acid from dilute aqueous solution

    SciTech Connect

    Ng, M.; King, C.J.

    1988-10-01

    The regeneration of basic sorbents used in the recovery of dilute aqueous acetic acid was explored. The regeneration methods studied were solvent leaching and vaporization. The resins used were weak base anion exchange resins, Dow Chemical Company's Dowex MWA-1 (tertiary amine resin) and Celanese Corporation's Aurorez (polybenzimidazole resin). The equilibrium between the aqueous acetic acid solution and the resins was measured in batch experiments. The composite isotherms calculated from these data wee comparable to those of other researchers. Methanol was used as the solvent to leach acetic acid from the resin. The equilibrium data from the batch experiments were used in the local-equilibrium theory of fixed-bed devices to model the desorption behavior of acetic acid in methanol. Both sorption and desorption equilibrium data were used in chemical complexation models to obtain sorption affinities and capacities of the resin for acetic acid. However, the amount of methanol needed to achieve a high degree of regeneration was too large to be economical. 15 refs., 25 figs., 3 tabs.

  1. Detection of arc genes related with the ethyl carbamate precursors in wine lactic acid bacteria.

    PubMed

    Araque, Isabel; Gil, Joana; Carreté, Ramon; Bordons, Albert; Reguant, Cristina

    2009-03-11

    Trace amounts of the carcinogen ethyl carbamate can appear in wine by the reaction of ethanol with compounds such as citrulline and carbamyl phosphate, which are produced from arginine degradation by some wine lactic acid bacteria (LAB). In this work, the presence of arc genes for the arginine-deiminase pathway was studied in several strains of different species of LAB. Their ability to degrade arginine was also studied. To detect the presence of arc genes, degenerate primers were designed from the alignment of protein sequences in already sequenced LAB. The usefulness of these degenerate primers has been proven by sequencing some of the amplified PCR fragments and searching for homologies with published sequences of the same species and related ones. Correlation was found between the presence of genes and the ability to degrade arginine. Degrading strains included all heterofermentative lactobacilli, Oenococcus oeni , Pediococcus pentosaceus , and some strains of Leuconostoc mesenteroides and Lactobacillus plantarum .

  2. Method for the purification of bis (2-ethyl-hexyl)phosphoric acid

    DOEpatents

    Schulz, W.W.

    1974-02-19

    Foreign products including the neutral organophosphorous compounds and the iron salts normally present in commercial bis(2ethyl-hexyl) phosphoric acid(HDEHP), and the radiolytic degradation products of HDEHP on exposure of HDEHP to beta and gamma irradiation are removed from HDEHP containing one or more of such products by contacting the said foreign product containing HDEHP with a macroreticular anion exchange resin in base form whereby the DEHP- ion of HDEHP exchanges with the anion of the resin and is thus adsorbed on the resin and the said foreign products are not adsorbed and will pass through a bed of particles of the resin. The adsorbed DEHP- ion is then eluted from the resin and acidified to form and recover the purified HDEHP. (auth)

  3. Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts.

    PubMed

    Palmqvist, E; Grage, H; Meinander, N Q; Hahn-Hägerdal, B

    1999-04-05

    The influence of the factors acetic acid, furfural, and p-hydroxybenzoic acid on the ethanol yield (YEtOH) of Saccharomyces cerevisiae, bakers' yeast, S. cerevisiae ATCC 96581, and Candida shehatae NJ 23 was investigated using a 2(3)-full factorial design with 3 centrepoints. The results indicated that acetic acid inhibited the fermentation by C. shehatae NJ 23 markedly more than by bakers' yeast, whereas no significant difference in tolerance towards the compounds was detected between the S. cerevisiae strains. Furfural (2 g L-1) and the lignin derived compound p-hydroxybenzoic acid (2 g L-1) did not affect any of the yeasts at the cell mass concentration used. The results indicated that the linear model was not adequate to describe the experimental data (the p-values of curvatures were 0.048 for NJ 23 and 0.091 for bakers' yeast). Based on the results from the 2(3)-full factorial experiment, an extended experiment was designed based on a central composite design to investigate the influence of the factors on the specific growth rate (mu), biomass yield (Yx), volumetric ethanol productivity (QEtOH), and YEtOH. Bakers' yeast was chosen in the extended experiment due to its better tolerance towards acetic acid, which makes it a more interesting organism for use in industrial fermentations of lignocellulosic hydrolysates. The inoculum size was reduced in the extended experiment to reduce any increase in inhibitor tolerance that might be due to a large cell inoculum. By dividing the experiment in blocks containing fermentations performed with the same inoculum preparation on the same day, much of the anticipated systematic variation between the experiments was separated from the experimental error. The results of the fitted model can be summarised as follows: mu was decreased by furfural (0-3 g L-1). Furfural and acetic acid (0-10 g L-1) also interacted negatively on mu. Furfural concentrations up to 2 g L-1 stimulated Yx in the absence of acetic acid whereas higher

  4. Ethyl acetate extract from marine sponge Hyattella cribriformis exhibit potent anticancer activity by promoting tubulin polymerization as evidenced mitotic arrest and induction of apoptosis

    PubMed Central

    Annamalai, Pazhanimuthu; Thayman, Malini; Rajan, Sowmiya; Raman, Lakshmi Sundaram; Ramasubbu, Sankar; Perumal, Pachiappan

    2015-01-01

    Background: Marine sponges are important sources of bioactive compounds. Objective: This study investigated the anticancer properties of Hyattella cribriformis ethyl acetate (EA) fraction in various cancer and normal cell lines. Materials and Methods: anticancer assay was carried out in 15 cell lines to evaluate the anticancer potential of the EA fraction. Impact on cell cycle distribution was determined using flow cytometry. The fraction was investigated for interfering microtubules assembly in both in vitro and cellular assay. Further studies were conducted to determine the fraction induced cell death (apoptosis) using calcein/propidium iodide dual staining, activated caspase-3 and phosphorylation of Bcl-2 protein at Ser70. DNA fragmentation assay was performed to confirm the apoptosis. Results: EA fraction exhibited potent inhibition of cancer cell growth and resulted in 50% growth inhibition (GI50) of 0.27 μg/mL in A673 cell line. Sarcoma (MG-63, Saos-2) and ovarian (SK-OV-3 and OVCAR-3) cancer cell lines also showed superior anticancer activity GI50 of 1.0 μg/mL. Colon and breast cancer cell lines exhibited moderate GI compare other cancer cell lines and normal human lung fibroblast showed GI50 of 15.6 μg/mL. EA fraction showed potent G2/M phase arrest in A673 cell line and induced apoptosis at 48 h exposure. EA fraction promoted microtubule polymerization in tubulin polymerization assay and increased level of polymerized tubulin in the HeLa cells. Fraction induced the activation of caspase-3 and phosphorylation of Bcl-2 anti-apoptotic protein. Fraction induced DNA fragmentation in HeLa cells as evidence of apoptosis. Conclusion: Marine sponge H. cribriformis EA fraction exhibited potent anticancer activity through tubulin polymerization and induction of apoptosis. PMID:25829774

  5. Synergistic Anti-bacterial Effects of Phellinus baumii Ethyl Acetate Extracts and β-Lactam Antimicrobial Agents Against Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Hong, Seung Bok; Rhee, Man Hee; Yun, Bong-Sik; Lim, Young Hoon; Song, Hyung Geun

    2016-01-01

    Background The development of new drugs or alternative therapies effective against methicillin-resistant Staphylococcus aureus (MRSA) is of great importance, and various natural anti-MRSA products are good candidates for combination therapies. We evaluated the antibacterial activities of a Phellinus baumii ethyl acetate extract (PBEAE) and its synergistic effects with β-lactams against MRSA. Methods The broth microdilution method was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the PBEAE. The PBEAE synergistic effects were determined by evaluating the MICs of anti-staphylococcal antibiotic mixtures, with or without PBEAE. Anti-MRSA synergistic bactericidal effects of the PBEAE and β-lactams were assessed by time-killing assay. An ELISA was used to determine the effect of the PBEAE on penicillin binding protein (PBP)2a production. Results The MICs and MBCs of PBEAE against MRSA were 256-512 and 1,024-2,048 µg/mL, respectively. The PBEAE significantly reduced MICs of all β-lactams tested, including oxacillin, cefazolin, cefepime, and penicillin. However, the PBEAE had little or no effect on the activity of non-β-lactams. Time-killing assays showed that the synergistic effects of two β-lactams (oxacillin and cefazolin) with the PBEAE were bactericidal in nature (Δlog10 colony forming unit/mL at 24 hr: 2.34-2.87 and 2.10-3.04, respectively). The PBEAE induced a dose-dependent decrease in PBP2a production by MRSA, suggesting that the inhibition of PBP2a production was a major synergistic mechanism between the β-lactams and the PBEAE. Conclusions PBEAE can enhance the efficacy of β-lactams for combined therapy in patients infected with MRSA. PMID:26709257

  6. Validation of a novel method to identify in utero ethanol exposure: simultaneous meconium extraction of fatty acid ethyl esters, ethyl glucuronide, and ethyl sulfate followed by LC-MS/MS quantification.

    PubMed

    Himes, Sarah K; Concheiro, Marta; Scheidweiler, Karl B; Huestis, Marilyn A

    2014-03-01

    Presence of fatty acid ethyl esters (FAEE), ethyl glucuronide (EtG), and ethyl sulfate (EtS) in meconium, the first neonatal feces, identifies maternal alcohol consumption during pregnancy. Current meconium alcohol marker assays require separate analyses for FAEE and EtG/EtS. We describe development and validation of the first quantitative liquid chromatography tandem mass spectrometry assay for 9 FAEEs, EtG, and EtS in 100 mg meconium. For the first time, these alcohol markers are analyzed in the same meconium aliquot, enabling comparison of the efficiency of gestational ethanol exposure detection. 100 mg meconium was homogenized in methanol and centrifuged. The supernatant was divided, and applied to two different solid phase extraction columns for optimized analyte recovery. Limits of quantification for ethyl laurate, myristate, linolenate, palmitoleate, arachidonate, linoleate, palmitate, oleate, and stearate ranged from 25-50 ng/g, with calibration curves to 2,500-5,000 ng/g. EtG and EtS linear dynamic ranges were 5-1,000 and 2.5-500 ng/g, respectively. Mean bias and between-day imprecision were <15 %. Extraction efficiencies were 51.2-96.5 %. Matrix effects ranged from -84.7 to 16.0 %, but were compensated for by matched deuterated internal standards when available. All analytes were stable (within ±20 % change from baseline) in 3 authentic positive specimens, analyzed in triplicate, after 3 freeze/thaw cycles (-20 °C). Authentic EtG and EtS also were stable after 12 h at room temperature and 72 h at 4 °C; some FAEE showed instability under these conditions, although there was large inter-subject variability. This novel method accurately detects multiple alcohol meconium markers and enables comparison of markers for maternal alcohol consumption.

  7. Validation of a novel method to identify in utero ethanol exposure: simultaneous meconium extraction of fatty acid ethyl esters, ethyl glucuronide, and ethyl sulfate followed by LC-MS/MS quantification

    PubMed Central

    Himes, Sarah K.; Concheiro, Marta; Scheidweiler, Karl B.

    2015-01-01

    Presence of fatty acid ethyl esters (FAEE), ethyl glucuronide (EtG), and ethyl sulfate (EtS) in meconium, the first neonatal feces, identifies maternal alcohol consumption during pregnancy. Current meconium alcohol marker assays require separate analyses for FAEE and EtG/EtS. We describe development and validation of the first quantitative liquid chromatography tandem mass spectrometry assay for 9 FAEEs, EtG, and EtS in 100 mg meconium. For the first time, these alcohol markers are analyzed in the same meconium aliquot, enabling comparison of the efficiency of gestational ethanol exposure detection. 100 mg meconium was homogenized in methanol and centrifuged. The supernatant was divided, and applied to two different solid phase extraction columns for optimized analyte recovery. Limits of quantification for ethyl laurate, myristate, linolenate, palmitoleate, arachidonate, linoleate, palmitate, oleate, and stearate ranged from 25–50 ng/g, with calibration curves to 2,500–5,000 ng/g. EtG and EtS linear dynamic ranges were 5–1,000 and 2.5–500 ng/g, respectively. Mean bias and between-day imprecision were <15 %. Extraction efficiencies were 51.2–96.5 %. Matrix effects ranged from −84.7 to 16.0 %, but were compensated for by matched deuterated internal standards when available. All analytes were stable (within ±20 % change from baseline) in 3 authentic positive specimens, analyzed in triplicate, after 3 freeze/thaw cycles (−20 °C). Authentic EtG and EtS also were stable after 12 h at room temperature and 72 h at 4 °C; some FAEE showed instability under these conditions, although there was large inter-subject variability. This novel method accurately detects multiple alcohol meconium markers and enables comparison of markers for maternal alcohol consumption. PMID:24408304

  8. Mechanistic Insights Underlying Tolerance to Acetic Acid Stress in Vaginal Candida glabrata Clinical Isolates.

    PubMed

    Cunha, Diana V; Salazar, Sara B; Lopes, Maria M; Mira, Nuno P

    2017-01-01

    During colonization of the vaginal tract Candida glabrata cells are challenged with the presence of acetic acid at a low pH, specially when dysbiosis occurs. To avoid exclusion from this niche C. glabrata cells are expected to evolve efficient adaptive responses to cope with this stress; however, these responses remain largely uncharacterized, especially in vaginal strains. In this work a cohort of 18 vaginal strains and 2 laboratory strains (CBS138 and KUE100) were phenotyped for their tolerance against inhibitory concentrations of acetic acid at pH 4. Despite some heterogeneity has been observed among the vaginal strains tested, in general these strains were considerably more tolerant to acetic acid than the laboratory strains. To tackle the mechanistic insights behind this differential level of tolerance observed, a set of vaginal strains differently tolerant to acetic acid (VG281∼VG49 < VG99 < VG216) and the highly susceptible laboratory strain KUE100 were selected for further studies. When suddenly challenged with acetic acid the more tolerant vaginal strains exhibited a higher activity of the plasma membrane proton pump CgPma1 and a reduced internal accumulation of the acid, these being two essential features to maximize tolerance. Based on the higher level of resistance exhibited by the vaginal strains against the action of a β-1,3-glucanase, it is hypothesized that the reduced internal accumulation of acetic acid inside these strains may originate from them having a different cell wall structure resulting in a reduced porosity to undissociated acetic acid molecules. Both the vaginal and the two laboratory strains were found to consume acetic acid in the presence of glucose indicating that metabolization of the acid is used by C. glabrata species as a detoxification mechanism. The results gathered in this study advance the current knowledge on the mechanisms underlying the increased competitiveness of C. glabrata in the vaginal tract, a knowledge that can

  9. Mechanistic Insights Underlying Tolerance to Acetic Acid Stress in Vaginal Candida glabrata Clinical Isolates

    PubMed Central

    Cunha, Diana V.; Salazar, Sara B.; Lopes, Maria M.; Mira, Nuno P.

    2017-01-01

    During colonization of the vaginal tract Candida glabrata cells are challenged with the presence of acetic acid at a low pH, specially when dysbiosis occurs. To avoid exclusion from this niche C. glabrata cells are expected to evolve efficient adaptive responses to cope with this stress; however, these responses remain largely uncharacterized, especially in vaginal strains. In this work a cohort of 18 vaginal strains and 2 laboratory strains (CBS138 and KUE100) were phenotyped for their tolerance against inhibitory concentrations of acetic acid at pH 4. Despite some heterogeneity has been observed among the vaginal strains tested, in general these strains were considerably more tolerant to acetic acid than the laboratory strains. To tackle the mechanistic insights behind this differential level of tolerance observed, a set of vaginal strains differently tolerant to acetic acid (VG281∼VG49 < VG99 < VG216) and the highly susceptible laboratory strain KUE100 were selected for further studies. When suddenly challenged with acetic acid the more tolerant vaginal strains exhibited a higher activity of the plasma membrane proton pump CgPma1 and a reduced internal accumulation of the acid, these being two essential features to maximize tolerance. Based on the higher level of resistance exhibited by the vaginal strains against the action of a β-1,3-glucanase, it is hypothesized that the reduced internal accumulation of acetic acid inside these strains may originate from them having a different cell wall structure resulting in a reduced porosity to undissociated acetic acid molecules. Both the vaginal and the two laboratory strains were found to consume acetic acid in the presence of glucose indicating that metabolization of the acid is used by C. glabrata species as a detoxification mechanism. The results gathered in this study advance the current knowledge on the mechanisms underlying the increased competitiveness of C. glabrata in the vaginal tract, a knowledge that can

  10. Microarray-based transcriptome of Listeria monocytogenes adapted to sublethal concentrations of acetic acid, lactic acid, and hydrochloric acid.

    PubMed

    Tessema, Girum Tadesse; Møretrø, Trond; Snipen, Lars; Heir, Even; Holck, Askild; Naterstad, Kristine; Axelsson, Lars

    2012-09-01

    Listeria monocytogenes , an important foodborne pathogen, commonly encounters organic acids in food-related environments. The transcriptome of L. monocytogenes L502 was analyzed after adaptation to pH 5 in the presence of acetic acid, lactic acid, or hydrochloric acid (HCl) at 25 °C, representing a condition encountered in mildly acidic ready-to-eat food kept at room temperature. The acid-treated cells were compared with a reference culture with a pH of 6.7 at the time of RNA harvesting. The number of genes and magnitude of transcriptional responses were higher for the organic acids than for HCl. Protein coding genes described for low pH stress, energy transport and metabolism, virulence determinates, and acid tolerance response were commonly regulated in the 3 acid-stressed cultures. Interestingly, the transcriptional levels of histidine and cell wall biosynthetic operons were upregulated, indicating possible universal response against low pH stress in L. monocytogenes. The opuCABCD operon, coding proteins for compatible solutes transport, and the transcriptional regulator sigL were significantly induced in the organic acids, strongly suggesting key roles during organic acid stress. The present study revealed the complex transcriptional responses of L. monocytogenes towards food-related acidulants and opens the roadmap for more specific and in-depth future studies.

  11. Use of pooled sodium acetate acetic acid formalin-preserved fecal specimens for the detection of intestinal parasites.

    PubMed

    Gaafar, Maha R

    2011-01-01

    This study aimed at comparing detection of intestinal parasites from single unpreserved stool sample vs. sodium acetate acetic acid formalin (SAF)-preserved pooled samples, and stained with chlorazol black dye in routine practice. Unpreserved samples were collected from 120 patients and represented as Group I. Other three SAF-preserved samples were collected from the same patients over a 6-day period and represented as Groups IIa, IIb, and IIc. The latter groups were equally subdivided into two subgroups. The first subgroup of each of the three samples was examined individually, whereas the second subgroup of each were pooled and examined as a single specimen. All groups were examined by the routine diagnostic techniques; however, in group II when the diagnosis was uncertain, the chlorazol black dye staining procedure was carried out. Results demonstrated that out of 74 patients who continued the study, 12 cases (16%) were positive in group I, compared with 29 (39%) in the subgroups examined individually, and 27 (36%) in the pooled subgroups. Therefore, pooling of preserved fecal samples is an efficient and economical procedure for the detection of parasites. Furthermore, the chlorazol black dye was simple and effective in detecting the nuclear details of different parasites.

  12. Comparison of fresh versus sodium acetate acetic acid formalin preserved stool specimens for diagnosis of intestinal protozoal infections.

    PubMed

    Mank, T G; Zaat, J O; Blotkamp, J; Polderman, A M

    1995-12-01

    The use of sodium acetate acetic acid formalin (SAF)-preserved stool specimens was compared with that of nonpreserved specimens for the recovery of intestinal protozoa. A total of 247 patients, 170 with diarrhea of more than one week's duration and 77 refugees, were asked to collect a stool specimen. Each specimen was placed into two vials, one empty, the other containing SAF fixative. Laboratory investigations included microscopic examination of the concentrated sediment and direct wet smears from both types of stool specimens and the microscopic examination of a permanent stained smear from the unsedimented, SAF-preserved stool specimens. Examination of SAF-preserved stool specimens revealed intestinal protozoa in 149 of the 247 patients. With the conventional procedure using unpreserved stool specimens, intestinal protozoa were found in 89 of the 247 patients. The results show that the examination of SAF-preserved stool specimens, consisting of the microscopic examination of both the concentrated sediment and the permanent stained smear from the unsedimented material, increases the chance of recovering intestinal protozoa as compared to the conventional procedure.

  13. Effect of acetic acid on physical properties of pregelatinized wheat and corn starch gels.

    PubMed

    Majzoobi, Mahsa; Kaveh, Zahra; Farahnaky, Asgar

    2016-04-01

    Pregelatinized starches are physically modified starches with ability to absorb water and increase viscosity at ambient temperature. The main purpose of this study was to determine how different concentrations of acetic acid (0, 500, 1000, 10,000 mg/kg) can affect functional properties of pregelatinized wheat and corn starches (PGWS and PGCS, respectively) produced by a twin drum drier. With increasing acetic acid following changes occurred for both samples; cold water solubility (at 25 °C) increased, water absorption and apparent cold water viscosity (at 25 °C) reduced, the smooth surface of the starch particles converted to an uneven surface as confirmed by scanning electron microscopy, cohesiveness, consistency and turbidity of the starch gels reduced while their syneresis increased. It was found that in presence of acetic acid, PGWS resulted in higher water absorption and apparent cold water viscosity and produced more cohesive and turbid gels with less syneresis compared to PGCS.

  14. The lifespan-promoting effect of acetic acid and Reishi polysaccharide.

    PubMed

    Chuang, Ming-Hong; Chiou, Shyh-Horng; Huang, Chun-Hao; Yang, Wen-Bin; Wong, Chi-Huey

    2009-11-15

    Using Caenorhabditis elegans as a model organism, various natural substances and commercial health-food supplements were screened to evaluate their effects on longevity. Among the substances tested, acetic acid and Reishi polysaccharide fraction 3 (RF3) were shown to increase the expression of the lifespan and longevity-related transcription factor DAF-16 in C. elegans. We have shown that RF3 activates DAF-16 expression via TIR-1 receptor and MAPK pathway whereas acetic acid inhibits the trans-membrane receptor DAF-2 of the insulin/IGF-1 pathway to indirectly activate DAF-16 expression. In addition, a mixture of acetic acid and RF3 possesses a combined effect 30-40% greater than either substance used alone. A proteomic analysis of C. elegans using 2-DE and LC-MS/MS was then carried out, and 15 differentially expressed proteins involved in the lifespan-promoting activity were identified.

  15. Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting

    PubMed Central

    Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia

    2015-01-01

    Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods. PMID:26640089

  16. Acetic acid induces a programmed cell death process in the food spoilage yeast Zygosaccharomyces bailii.

    PubMed

    Ludovico, Paula; Sansonetty, Filipe; Silva, Manuel T; Côrte-Real, Manuela

    2003-03-01

    Here we show that 320-800 mM acetic acid induces in Zygosaccharomyces bailii a programmed cell death (PCD) process that is inhibited by cycloheximide, is accompanied by structural and biochemical alterations typical of apoptosis, and occurs in cells with preserved mitochondrial and plasma membrane integrity (as revealed by rhodamine 123 (Rh123) and propidium iodide (PI) staining, respectively). Mitochondrial ultrastructural changes, namely decrease of the cristae number, formation of myelinic bodies and swelling were also seen. Exposure to acetic acid above 800 mM resulted in killing by necrosis. The occurrence of an acetic acid-induced active cell death process in Z. bailii reinforces the concept of a physiological role of the PCD in the normal yeast life cycle.

  17. Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting

    NASA Astrophysics Data System (ADS)

    Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia

    2015-12-01

    Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods.

  18. Inhibition of spoilage mould conidia by acetic acid and sorbic acid involves different modes of action, requiring modification of the classical weak-acid theory.

    PubMed

    Stratford, Malcolm; Plumridge, Andrew; Nebe-von-Caron, Gerhardt; Archer, David B

    2009-11-30

    Fungal spoilage of many foods is prevented by weak-acid preservatives such as sorbic acid or acetic acid. We show that sorbic and acetic acids do not both inhibit cells by lowering of internal pH alone and that the "classical weak-acid theory" must be revised. The "classical weak-acid theory" suggests that all lipophilic acids with identical pK(a) values are equally effective as preservatives, causing inhibition by diffusion of molecular acids into the cell, dissociation, and subsequent acidification of the cytoplasm. Using a number of spoilage fungi from different genera, we have shown that sorbic acid was far more toxic than acetic acid, and no correlation existed between resistance to acetic acid and resistance to sorbic acid. The molar ratio of minimum inhibitory concentrations (MICs) (acetic: sorbic) was 58 for Paecilomyces variotii and 14 for Aspergillus phoenicis. Using flow cytometry on germinating conidia of Aspergillusniger, acetic acid at pH 4.0 caused an immediate decline in the mean cytoplasmic pH (pH(i)) falling from neutrality to approximately pH 4.7 at the MIC (80 mM). Sorbic acid also caused a rapid but far smaller drop in pH(i), at the MIC (4.5 mM); the pH remained above pH 6.3. Over 0-5 mM, a number of other weak acids caused a similar fall in cytoplasmic pH. It was concluded that while acetic acid inhibition of A. niger conidia was due to cytoplasmic acidification, inhibition by sorbic acid was not. A possible membrane-mediated mode of action of sorbic acid is discussed.

  19. A PCR assay for detection of acetic acid-tolerant lactic acid bacteria in acidic food products.

    PubMed

    Nakano, Shigeru; Matsumura, Atsushi; Yamada, Toshihiro

    2004-03-01

    A PCR assay for the detection of acetic acid-tolerant lactic acid bacteria in the genera of Lactobacillus and Pediococcus was developed in this study. Primers targeting the bacterial 16S rRNA gene were newly designed and used in this PCR assay. To determine the specificity of the assay, 56 different bacterial strains (of 33 genera), 2 fungi, 3 animals, and 4 plants were tested. Results were positive for most tested bacterial members of 16S rRNA gene-based phylogenetic groups (classified in the Lactobacillus casei and Pediococcus group), including Lactobacillus fructivorans, Lactobacillus brevis, Lactobacillus buchneri, Lactobacillus plantarum, and Lactobacillus paracasei. For all other bacterial strains and eukaryote tested, results were negative. Bacterial DNA for PCR was prepared with a simple procedure with the use of Chelex 100 resin from culture after growth in deMan Rogosa Sharpe broth (pH 6.0). To test this PCR assay for the monitoring of the acetic acid-tolerant lactic acid bacteria, L. fructivorans was inoculated into several acidic food as an indicator. Before the PCR, the inoculation of 10 to 50 CFU of bacteria per g of food was followed by a 28-h enrichment culture step, and the PCR assay allowed the detection of bacterial cells. Including the enrichment culture step, the entire PCR detection process can be completed within 30 h.

  20. 40 CFR 721.8450 - 2-Propenoic acid, 2-methyl-, 2-[3-(2H-benzotriazol-2-yl)-4-hydroxyphenyl]ethyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ester. 721.8450 Section 721.8450 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.8450 2-Propenoic acid, 2-methyl-, 2- ethyl ester. (a) Chemical substance... acid, 2-methyl-, 2- ethyl ester, (PMN P-90-333) is subject to reporting under this section for...

  1. 40 CFR 721.8450 - 2-Propenoic acid, 2-methyl-, 2-[3-(2H-benzotriazol-2-yl)-4-hydroxyphenyl]ethyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ester. 721.8450 Section 721.8450 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.8450 2-Propenoic acid, 2-methyl-, 2- ethyl ester. (a) Chemical substance... acid, 2-methyl-, 2- ethyl ester, (PMN P-90-333) is subject to reporting under this section for...

  2. Toxic fluorine compounds. The use of the ω-fluorine atom in the study of the metabolism of fatty acids containing ethyl, n-propyl and isopropyl branches

    PubMed Central

    Pattison, F. L. M.; Peters, D. A. V.

    1966-01-01

    1. Some ω-fluoroalkanoic acids containing a branched ethyl, n-propyl or isopropyl group in the α- or β-position have been prepared. 2. A study of the toxicity of these acids revealed that the ethyl group partially inhibited, and the n-propyl and isopropyl groups completely inhibited, the normal processes of oxidative degradation. PMID:5911518

  3. Acetic acid-catalyzed formation of N-phenylphthalimide from phthalanilic acid: a computational study of the mechanism.

    PubMed

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2015-05-28

    In glacial acetic acid, phthalanilic acid and its monosubstituents are known to be converted to the corresponding phthalimides in relatively good yields. In this study, we computationally investigated the experimentally proposed two-step (addition-elimination or cyclization-dehydration) mechanism at the second-order Møller-Plesset perturbation (MP2) level of theory for the unsubstituted phthalanilic acid, with an explicit acetic acid molecule included in the calculations. In the first step, a gem-diol tetrahedral intermediate is formed by the nucleophilic attack of the amide nitrogen. The second step is dehydration of the intermediate to give N-phenylphthalimide. In agreement with experimental findings, the second step has been shown to be rate-determining. Most importantly, both of the steps are catalyzed by an acetic acid molecule, which acts both as proton donor and acceptor. The present findings, along with those from our previous studies, suggest that acetic acid and other carboxylic acids (in their undissociated forms) can catalyze intramolecular nucleophilic attacks by amide nitrogens and breakdown of the resulting tetrahedral intermediates, acting simultaneously as proton donor and acceptor. In other words, double proton transfers involving a carboxylic acid molecule can be part of an extensive bond reorganization process from cyclic hydrogen-bonded complexes.

  4. Nipecotic acid ethyl ester: a cholinergic agonist that may differentiate muscarinic receptor subtypes

    SciTech Connect

    Zorn, S.H.; Duman, R.S.; Enna, S.J.; Krogsgaard-Larsen, P.; Micheletti, R.; Giraldo, E.; Giachetti, A.

    1986-03-05

    Reports indicate that nipecotic acid ethyl ester (NAEE) displays cholinomimetic properties in vivo. In the present study a series of physiological and biochemical tests were conducted to characterize this action. NAEE had a negative inotropic effect on the guinea pig atrium, and stimulated contraction of the guinea pig ileum and isolated mouse stomach strip at concentrations similar to bethanechol (BCH). The atrial and ilial effects were reversed by atropine. Unlike BCH, NAEE had no effect on basal acid secretion in the isolated mouse stomach at concentrations < 100 ..mu..M. NAEE was more potent than carbachol (CCH) in displacing /sup 3/H-ONB binding from rat brain membranes. The potency of NAEE to inhibit antagonist binding in rat heart membranes was enhanced by Mg/sup + +/ (Hill coefficient < 1.0) and reduced by Gpp(NH)p. Like CCH, NAEE inhibited GTP-stimulated adenylate cyclase in rat brain striatal membranes. As compared to CCH, NAEE had little effect (< 5%) as a stimulator of inositol phosphate (IP) production in rat brain slices. The results indicate that NAEE is a direct-acting muscarinic receptor agonist. Moreover, its differential effects on acid secretion, IP accumulation, and adenylate cyclase suggest that it may be useful for defining cholinergic receptor subclasses.

  5. Effects of combined heat and acetic acid on natural microflora reduction on cantaloupe melons.

    PubMed

    Fouladkhah, Aliyar; Avens, John S

    2010-05-01

    Produce is an important source of nutrients and phytochemicals, which is important in a healthy diet. However, perishable fresh produce has caused recent outbreaks of foodborne diseases. High level of nutrients and water activity, direct contact with soil, and lack of thermal procedures during primary processing make fresh produce a potential food safety hazard. Fruits and vegetables with rough surfaces can harbor microorganisms and support their multiplication, increasing the risk of this hazard. This study evaluated the effects of extreme thermal processes combined with acetic acid on natural microflora reduction on cantaloupe melons. Melons from a local supermarket were assigned into five treatment groups: control, water at 25 degrees C, water at 95 degrees C, 5% acetic acid at 25 degrees C, and 5% acetic acid at 95 degrees C. Four skin samples were obtained from each melon, separately stomached for 2 min with 0.1% peptone water, and serially diluted. Aerobic plate counts (APC) of dilutions were determined. Statistical analysis (least significant difference-based analysis of variance) showed that there were no significant (P > 0.05) differences in APC among control, water at 25 degrees C, and 5% acetic acid at 25 degrees C. Thermal treatments with water at 95 degrees C, and 5% acetic acid at 95 degrees C, were both significantly (P < 0.05) more effective in APC reduction than were nonthermal treatments, but were not significantly different from each other. Results indicated that a thermal water immersion intervention in primary processing of fresh melons can result in a 3-log reduction of natural microflora surface contamination, but 5% acetic acid will not significantly augment this reduction.

  6. [Comparative genomics and evolutionary analysis of CRISPR loci in acetic acid bacteria].

    PubMed

    Kai, Xia; Xinle, Liang; Yudong, Li

    2015-12-01

    The clustered regularly interspaced short palindromic repeat (CRISPR) is a widespread adaptive immunity system that exists in most archaea and many bacteria against foreign DNA, such as phages, viruses and plasmids. In general, CRISPR system consists of direct repeat, leader, spacer and CRISPR-associated sequences. Acetic acid bacteria (AAB) play an important role in industrial fermentation of vinegar and bioelectrochemistry. To investigate the polymorphism and evolution pattern of CRISPR loci in acetic acid bacteria, bioinformatic analyses were performed on 48 species from three main genera (Acetobacter, Gluconacetobacter and Gluconobacter) with whole genome sequences available from the NCBI database. The results showed that the CRISPR system existed in 32 species of the 48 strains studied. Most of the CRISPR-Cas system in AAB belonged to type I CRISPR-Cas system (subtype E and C), but type II CRISPR-Cas system which contain cas9 gene was only found in the genus Acetobacter and Gluconacetobacter. The repeat sequences of some CRISPR were highly conserved among species from different genera, and the leader sequences of some CRISPR possessed conservative motif, which was associated with regulated promoters. Moreover, phylogenetic analysis of cas1 demonstrated that they were suitable for classification of species. The conservation of cas1 genes was associated with that of repeat sequences among different strains, suggesting they were subjected to similar functional constraints. Moreover, the number of spacer was positively correlated with the number of prophages and insertion sequences, indicating the acetic acid bacteria were continually invaded by new foreign DNA. The comparative analysis of CRISR loci in acetic acid bacteria provided the basis for investigating the molecular mechanism of different acetic acid tolerance and genome stability in acetic acid bacteria.

  7. Effect of acetic acid on optical coherence tomography (OCT) images of cervical epithelium.

    PubMed

    Gallwas, Julia; Stanchi, Anna; Dannecker, Christian; Ditsch, Nina; Mueller, Susanna; Mortensen, Uwe; Stepp, Herbert

    2014-11-01

    Optical coherence tomography (OCT) can be used as an adjunct to colposcopy in the identification of precancerous and cancerous cervical lesions. The purpose of this study was to investigate the effect of acetic acid on OCT imaging. OCT images were taken from unsuspicious and suspicious areas of fresh conization specimens immediately after resection and 3 and 10 min after application of 6 % acetic acid. A corresponding histology was obtained from all sites. The images taken 3 and 10 min after application of acetic acid were compared to the initial images with respect to changes in brightness, contrast, and scanning depth employing a standard nonparametric test of differences of proportions. Further, mean intensity backscattering curves were calculated from all OCT images in the histological groups CIN3, inflammation, or normal epithelium. Mean difference profiles within each of these groups were determined, reflecting the mean differences between the condition before application of acetic acid and the exposure times 3 and 10 min, respectively. According to the null hypothesis, the difference profiles do not differ from profiles fluctuating around zero in a stationary way, which implies that the profiles do not differ significantly from each other. The null hypothesis was tested employing the KPSS test. The visual analysis of 137 OCT images from 46 sites of 10 conization specimens revealed a statistically significant increase in brightness for all three groups and a statistically significant decrease in contrast for normal epithelium after 10 min. Further, an increase in scanning depth was noted for normal epithelium after 10 min and for CIN3 after 3 min. The analysis of mean intensity profiles showed an increased backscattering intensity after application of acetic acid. Acetic acid significantly affects the quality of OCT images. Overall brightness and scanning depth increase with the opposite effect regarding the image contrast. Whether the observed changes

  8. Comparative Indole-3-Acetic Acid Levels in the Slender Pea and Other Pea Phenotypes 1

    PubMed Central

    Law, David M.; Davies, Peter J.

    1990-01-01

    Free indole-3-acetic acid levels were measured by gas chromatography-mass spectrometry in three ultra-tall `slender' Pisum sativum L. lines differing in gibberellin content. Measurements were made for apices and stem elongation zones of light-grown plants and values were compared with wild-type, dwarf, and nana phenotypes in which internode length is genetically regulated, purportedly via the gibberellin level. Indole-3-acetic acid levels of growing stems paralleled growth rates in all lines, and were high in all three slender genotypes. Growth was inhibited by p-chlorophenoxyisobutyric acid, demonstrating the requirement of auxin activity for stem elongation, and also by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. It is concluded that the slender phenotype may arise from constant activation of a gibberellin receptor or transduction chain event leading directly or indirectly to elevated levels of indole-3-acetic acid, and that increased indole-3-acetic acid levels are a significant factor in the promotion of stem elongation. PMID:16667653

  9. Inhibition of microbial xylitol production by acetic acid and its relation with fermentative parameters.

    PubMed

    Morita, T A; Silva, S S

    2000-01-01

    Precipitated sugarcane bagasse hemicellulosic hydrolysate containing acetic acid was fermented by Candida guilliermondii FTI20037 under different operational conditions (pH 4.0 and 7.0, three aeration rates). At pH 7.0 and kLa of 10 (0.75 vvm) and 22.5/h (3.0 vvm) the acetic acid had not been consumed until the end of the fermentations, whereas at the same pH and kLa of 35/h (4.5 vvm) the acid was rapidly consumed and acetic acid inhibition was not important. On the other hand, fermentations at an initial pH of 4.0 and kLa of 22.5 and 35/h required less time for the acid uptake than fermentations at kLa of 10/h. The acetic acid assimilation by the yeast indicates the ability of this strain to ferment in partially detoxified medium, making possible the utilization of the sugarcane bagasse hydrolysate in this bio-process. The effects on xylitol yield and production are reported.

  10. Reactivity and reaction intermediates for acetic acid adsorbed on CeO2(111)

    DOE PAGES

    Calaza, Florencia C.; Chen, Tsung -Liang; Mullins, David R.; ...

    2015-05-02

    Adsorption and reaction of acetic acid on a CeO2(1 1 1) surface was studied by a combination of ultra-highvacuum based methods including temperature desorption spectroscopy (TPD), soft X-ray photoelectronspectroscopy (sXPS), near edge X-ray absorption spectroscopy (NEXAFS) and reflection absorption IRspectroscopy (RAIRS), together with density functional theory (DFT) calculations. TPD shows that thedesorption products are strongly dependent upon the initial oxidation state of the CeO2 surface, includingselectivity between acetone and acetaldehyde products. The combination of sXPS and NEXAFS demon-strate that acetate forms upon adsorption at low temperature and is stable to above 500 K, above whichpoint ketene, acetone and acetic acidmore » desorb. Furthermore, DFT and RAIRS show that below 500 K, bridge bondedacetate coexists with a moiety formed by adsorption of an acetate at an oxygen vacancy, formed bywater desorption.« less

  11. (S) 2-phenyl-2-(p-tolylsulfonylamino)acetic acid. Structure, acidity and its alkali carboxylates

    NASA Astrophysics Data System (ADS)

    Duarte-Hernández, Angélica M.; Contreras, Rosalinda; Suárez-Moreno, Galdina V.; Montes-Tolentino, Pedro; Ramos-García, Iris; González, Felipe J.; Flores-Parra, Angelina

    2015-03-01

    The structure and the preferred conformers of (S) 2-phenyl-2-(p-tolylsulfonylamino)acetic acid (1) are reported. Compound 1 is a derivative of the unnatural aminoacid the (S) phenyl glycine. The X-ray diffraction analyses of the complexes of 1 with water, methanol, pyridine and its own anion are discussed. In order to add information about the acidity of the COOH and NH protons in compound 1, its pKa in DMSO and those of N-benzyl-p-tolylsulfonamide and (S) N-methylbenzyl-p-tolylsulfonamide were determined by cyclic voltammetry. Data improved the scarce information about pKa in DMSO values of sulfonamides. The products of the reactions of compound 1 with one and two equivalents of LiOH, NaOH and KOH in methanol were analyzed. Crystals of the lithium (2) and sodium (3) carboxylates and the dipotassium sulfonylamide acetate (7) were obtained, they are coordination polymers. In compound 2, the lithium is bound to four oxygen atoms with short bond lengths. The coordination of the lithium atom to two carboxylates gives an infinite ribbon by formation of fused six membered rings. In the crystal of compound 3, two pentacoordinated sodium atoms are bridged by three oxygen atoms, one from a water molecule and two from DMSO. The short distance between the sodium atoms (3.123 Å), implies a metal-metal interaction. The sodium couples are linked by two carboxylate groups, forming a planar ribbon of fused twelve membered rings. A notable discovery was a water molecule quenched in the middle of the ring, with a tetra coordinated oxygen atom in a square planar geometry. In compound 7, the carboxylate and the amide are bound to heptacoordinated potassium atoms. The 2D polymer of 7 has a sandwich structure, with the carboxylate and potassium atoms in the inner layer covered by the aromatic rings.

  12. A theoretical study on the pH dependence of X-ray emission spectra for aqueous acetic acid

    NASA Astrophysics Data System (ADS)

    Nishida, Naohiro; Tokushima, Takashi; Takahashi, Osamu

    2016-04-01

    We performed theoretical calculations to reproduce the site-selective XES spectra for aqueous acetic acid at the oxygen K-edge. The shape of the experimental XES spectra obtained from aqueous acetic acid drastically changed when the pH value was high. Structure sampling of an aqueous acetic acid cluster model was performed by the ab initio molecular dynamics trajectory. Relative XES peak intensities for the core⿿hole excited state dynamics simulations were calculated using density functional theory. We found that the theoretical XES spectra reproduced well the experimental spectra and that these calculations gave us electronic and molecular structure information about aqueous acetic acid.

  13. Isolation and characterization of esters of indole-3-acetic acid from the liquid endosperm of the horse chestnut (Aesculus species)

    NASA Technical Reports Server (NTRS)

    Domagalski, W.; Schulze, A.; Bandurski, R. S.

    1987-01-01

    Esters of indole-3-acetic acid were extracted and purified from the liquid endosperm of immature fruits of various species of the horse chestnut (Aesculus parviflora, A. baumanni, A. pavia rubra, and A. pavia humulis). The liquid endosperm contained, at least 12 chromatographically distinct esters. One of these compounds was purified and characterized as an ester of indole-3-acetic acid and myo-inositol. A second compound was found to be an ester of indole-3-acetic acid and the disaccharide rutinose (glucosyl-rhamnose). A third compound was partially characterized as an ester of indole-3-acetic acid and a desoxyaminohexose.

  14. Effect of acetic acid in recycling water on ethanol production for cassava in an integrated ethanol-methane fermentation process.

    PubMed

    Yang, Xinchao; Wang, Ke; Zhang, Jianhua; Tang, Lei; Mao, Zhonggui

    2016-11-01

    Recently, the integrated ethanol-methane fermentation process has been studied to prevent wastewater pollution. However, when the anaerobic digestion reaction runs poorly, acetic acid will accumulate in the recycling water. In this paper, we studied the effect of low concentration of acetic acid (≤25 mM) on ethanol fermentation at different initial pH values (4.2, 5.2 or 6.2). At an initial pH of 4.2, ethanol yields increased by 3.0% and glycerol yields decreased by 33.6% as the acetic acid concentration was increased from 0 to 25 mM. Raising the concentration of acetic acid to 25 mM increased the buffering capacity of the medium without obvious effects on biomass production in the cassava medium. Acetic acid was metabolized by Saccharomyces cerevisiae for the reason that the final concentration of acetic acid was 38.17% lower than initial concentration at pH 5.2 when 25 mM acetic acid was added. These results confirmed that a low concentration of acetic acid in the process stimulated ethanol fermentation. Thus, reducing the acetic acid concentration to a controlled low level is more advantageous than completely removing it.

  15. Acetic Acid Bacteria and the Production and Quality of Wine Vinegar

    PubMed Central

    Torija, María Jesús; García-Parrilla, María del Carmen; Troncoso, Ana María

    2014-01-01

    The production of vinegar depends on an oxidation process that is mainly performed by acetic acid bacteria. Despite the different methods of vinegar production (more or less designated as either “fast” or “traditional”), the use of pure starter cultures remains far from being a reality. Uncontrolled mixed cultures are normally used, but this review proposes the use of controlled mixed cultures. The acetic acid bacteria species determine the quality of vinegar, although the final quality is a combined result of technological process, wood contact, and aging. This discussion centers on wine vinegar and evaluates the effects of these different processes on its chemical and sensory properties. PMID:24574887

  16. Complex internal rearrangement processes triggered by electron transfer to acetic acid

    NASA Astrophysics Data System (ADS)

    Limão-Vieira, P.; Meneses, G.; Cunha, T.; Gil, A.; Calhorda, M. J.; García, G.; Ferreira da Silva, F.

    2015-09-01

    We present negative ion formation from collisions of 100 eV neutral potassium atoms with acetic acid (CH3COOH) and its deuterated analogue molecules (CH3COOD, CD3COOH). From the negative ion time-of-flight (TOF) mass spectra, OH- is the main fragment detected accounting on average for more than 25% of the total anion yield. The complex internal rearrangement processes triggered by electron transfer to acetic acid have been evaluated with the help of theoretical calculations at the DFT levels explaining the fragmentation channel yielding OH-.

  17. Acetic acid bacteria and the production and quality of wine vinegar.

    PubMed

    Mas, Albert; Torija, María Jesús; García-Parrilla, María del Carmen; Troncoso, Ana María

    2014-01-01

    The production of vinegar depends on an oxidation process that is mainly performed by acetic acid bacteria. Despite the different methods of vinegar production (more or less designated as either "fast" or "traditional"), the use of pure starter cultures remains far from being a reality. Uncontrolled mixed cultures are normally used, but this review proposes the use of controlled mixed cultures. The acetic acid bacteria species determine the quality of vinegar, although the final quality is a combined result of technological process, wood contact, and aging. This discussion centers on wine vinegar and evaluates the effects of these different processes on its chemical and sensory properties.

  18. Detecting alcohol abuse: traditional blood alcohol markers compared to ethyl glucuronide (EtG) and fatty acid ethyl esters (FAEEs) measurement in hair.

    PubMed

    Hastedt, Martin; Büchner, Mara; Rothe, Michael; Gapert, René; Herre, Sieglinde; Krumbiegel, Franziska; Tsokos, Michael; Kienast, Thorsten; Heinz, Andreas; Hartwig, Sven

    2013-12-01

    Alcohol abuse is a common problem in society; however, the technical capabilities of evaluating individual alcohol consumption using objective biomarkers are rather limited at present. In recent years research has focused on alcohol markers using hair analysis but data on performance and reliable cut-off values are still lacking. In this study 169 candidates were tested to compare traditional biomarkers, such as carbohydrate-deficient-transferrin (CDT), gamma glutamyl transferase (GGT), aspartate amino transferase, alanine amino transferase and the mean corpuscular volume of the erythrocytes, with alcohol markers detectable in hair such as ethyl glucuronide (EtG) and fatty acid ethyl esters (FAEEs). This study revealed that EtG, GGT and CDT showed the best results, demonstrating areas under the curve calculated from receiver operating characteristics of 0.941, 0.943 and 0.899 respectively. The lowest false-negative and false-positive rates were obtained by using a combined interpretation system for hair EtG and FAEEs. All markers demonstrated only low to moderate correlations. Optimum cut-off values for differentiation between social and chronic excessive drinking calculated for hair EtG and FAEEs were 28 pg/mg and 0.675 ng/mg, respectively. The critical values published in the "Consensus on Alcohol Markers 2012" by the Society of Hair Testing were confirmed.

  19. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Lim, Y. B.; Altieri, K. E.; Seitzinger, S. P.; Turpin, B. J.

    2012-01-01

    Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including pyruvate, oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA). Acetic acid plays a central role in the aqueous oxidation of methylglyoxal and it is a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid (20 μM-10 mM) was oxidized by OH radicals, and pyruvic acid and methylglyoxal experimental samples were analyzed using new analytical methods, in order to better understand the formation of SOA from acetic acid and methylglyoxal. Glyoxylic, glycolic, and oxalic acids formed from acetic acid and OH radicals. In contrast to the aqueous OH radical oxidation of methylglyoxal, the aqueous OH radical oxidation of acetic acid did not produce succinic acid and oligomers. This suggests that the methylgloxal-derived oligomers do not form through the acid catalyzed esterification pathway proposed previously. Using results from these experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  20. Formic and acetic acid over the central Amazon region, Brazil 1. Dry season

    SciTech Connect

    Andreae, M.O.; Talbot, R.W.; Andreae, T.W.; Harriss, R.C.

    1988-02-20

    We have determined the atmospheric concentrations of formic and acetic acid in the gas phase, in aerosols, and in rain during the dry season (July--August 1985) in the Amazonia region of Brazil. At ground level the average concentrations of gas phase formic and acetic acid were 1.6 +- 0.6 and 2.2 +- 1.0 ppb, respectively. The diurnal behavior of both acids at ground level and their vertical distribution in the forest canopy point to the existence of vegetative sources as well as to production by chemical reactions in the atmosphere. Dry deposition of the gaseous acids appears to be a major sink. The concentrations of formic and acetic acid in the gas phase were about 2 orders of magnitude higher than concentrations of the corresponding species in the atmospheric aerosol. About 50--60%/sub 0/ of the aerosol (total) formate and acetate were in the size fraction below 1.0 ..mu..m diameter.

  1. Monolaurin and acetic acid inactivation of Listeria monocytogenes attached to stainless steel.

    PubMed

    Oh, D H; Marshall, D L

    1996-03-01

    Individual and combined antimicrobial effects of monolaurin and acetic acid on Listeria monocytogenes planktonic cells or stainless-steel-adherent cells were determined in order to evaluate cell viability during a 25-min exposure period at 25 degrees C. A 10(7)-colony-forming units (CFU)/ml population of planktonic cells was completely inactivated by the synergistic combination of 1% acetic acid with 50 or 100 microg/ml of monolaurin within 25 or 20 min, respectively. Either compound alone caused partial but incomplete inactivation within the same time periods. A population of 10(5) CFU/cm2 of 1-day adherent cells on stainless steel was completely inactivated within 25 min, but with the highest concentrations of the combined chemicals, i.e., 1% acetic acid and 100 microg/ml of monolaurin. The combined chemical treatment again synergistically produced greater inhibition. A 10(6)-CFU/cm2 population of 7-day adherent cells was not completely inactivated within 25 min of exposure, although counts did decline. The results demonstrate increased resistance of attached L. monocytogenes to acetic acid and monolaurin and show that resistance increased with culture age. Combinations of organic acids and monolaurin might be considered as sanitizers of food contact surfaces, but activities of such combinations are likely to be less than other commonly used sanitizers.

  2. Acetate induced enhancement of photocatalytic hydrogen peroxide production from oxalic acid and dioxygen.

    PubMed

    Yamada, Yusuke; Nomura, Akifumi; Miyahigashi, Takamitsu; Ohkubo, Kei; Fukuzumi, Shunichi

    2013-05-09

    The addition of acetate ion to an O2-saturated mixed solution of acetonitrile and water containing oxalic acid as a reductant and 2-phenyl-4-(1-naphthyl)quinolinium ion (QuPh(+)-NA) as a photocatalyst dramatically enhanced the turnover number of hydrogen peroxide (H2O2) production. In this photocatalytic H2O2 production, a base is required to facilitate deprotonation of oxalic acid forming oxalate dianion, which acts as an actual electron donor, whereas a Brønsted acid is also necessary to protonate O2(•-) for production of H2O2 by disproportionation. The addition of acetate ion to a reaction solution facilitates both the deprotonation of oxalic acid and the protonation of O2(•-) owing to a pH buffer effect. The quantum yield of the photocatalytic H2O2 production under photoirradiation (λ = 334 nm) of an O2-saturated acetonitrile-water mixed solution containing acetate ion, oxalic acid and QuPh(+)-NA was determined to be as high as 0.34, which is more than double the quantum yield obtained by using oxalate salt as an electron donor without acetate ion (0.14). In addition, the turnover number of QuPh(+)-NA reached more than 340. The reaction mechanism and the effect of solvent composition on the photocatalytic H2O2 production were scrutinized by using nanosecond laser flash photolysis.

  3. Genome shuffling in the ethanologenic yeast Candida krusei to improve acetic acid tolerance.

    PubMed

    Wei, Pingying; Li, Zilong; He, Peng; Lin, Yuping; Jiang, Ning

    2008-02-01

    Genome shuffling was used to improve the acetic acid tolerance of an ethanologenic yeast, Candida krusei GL560. A mutant, S4-3, was isolated and selected after four rounds of genome shuffling. It was found that the mutant S4-3 had a higher viability in the YNBX (yeast nitrogen base/xylose) medium with acetic acid and grew better in the YPD (yeast extract, peptone and dextrose) medium [1% (w/v) yeast extract, 2% (w/v) peptone and 2% (w/v) glucose] with acetic acid than the parent strain GL560. The mutant S4-3 also improved its multiple stress tolerance to ethanol, H2O2, heat and freeze-thaw. Furthermore, S4-3 showed higher ethanol production than GL560 in EFM (ethanol fermentation medium) with or without acetic acid. The DNA content of S4-3 was similar to its parent strains in the genome shuffling. This suggested that gene exchange, as caused by homologous recombination, may have occurred during the process. Higher membrane integrity and intracellular catalase activity were two possible reasons for the higher acid-tolerance phenotype of S4-3. These results indicated that genome shuffling is a powerful means of rapidly improving the complex traits of non-haploid organisms, while still maintaining robust growth.

  4. Culture strategies for lipid production using acetic acid as sole carbon source by Rhodosporidium toruloides.

    PubMed

    Huang, Xiang-Feng; Liu, Jia-Nan; Lu, Li-Jun; Peng, Kai-Ming; Yang, Gao-Xiang; Liu, Jia

    2016-04-01

    Rhodosporidium toruloides AS 2.1389 was tested using different concentrations of acetic acid as a low-cost carbon source for the production of microbial lipids, which are good raw materials for biodiesel production. It grew and had higher lipid contents in media containing 4-20 g/L acetic acid as the sole carbon source, compared with that in glucose-containing media under the same culture conditions. At acetic acid concentrations as high as 20 g/L and the optimal carbon-to-nitrogen ratio (C/N) of 200 in a batch culture, the highest biomass production was 4.35 g/L, with a lipid content of 48.2%. At acetic acid concentrations as low as 4 g/L, a sequencing batch culture (SBC) with a C/N of 100 increased biomass production to 4.21 g/L, with a lipid content of 38.6%. These results provide usable culture strategies for lipid production by R. toruloides AS 2.1389 when using diverse waste-derived volatile fatty acids.

  5. Sphingolipid biosynthesis upregulation by TOR complex 2-Ypk1 signaling during yeast adaptive response to acetic acid stress.

    PubMed

    Guerreiro, Joana F; Muir, Alexander; Ramachandran, Subramaniam; Thorner, Jeremy; Sá-Correia, Isabel

    2016-12-01

    Acetic acid-induced inhibition of yeast growth and metabolism limits the productivity of industrial fermentation processes, especially when lignocellulosic hydrolysates are used as feedstock in industrial biotechnology. Tolerance to acetic acid of food spoilage yeasts is also a problem in the preservation of acidic foods and beverages. Thus understanding the molecular mechanisms underlying adaptation and tolerance to acetic acid stress is increasingly important in industrial biotechnology and the food industry. Prior genetic screens for Saccharomyces cerevisiae mutants with increased sensitivity to acetic acid identified loss-of-function mutations in the YPK1 gene, which encodes a protein kinase activated by the target of rapamycin (TOR) complex 2 (TORC2). We show in the present study by several independent criteria that TORC2-Ypk1 signaling is stimulated in response to acetic acid stress. Moreover, we demonstrate that TORC2-mediated Ypk1 phosphorylation and activation is necessary for acetic acid tolerance, and occurs independently of Hrk1, a protein kinase previously implicated in the cellular response to acetic acid. In addition, we show that TORC2-Ypk1-mediated activation of l-serine:palmitoyl-CoA acyltransferase, the enzyme complex that catalyzes the first committed step of sphingolipid biosynthesis, is required for acetic acid tolerance. Furthermore, analysis of the sphingolipid pathway using inhibitors and mutants indicates that it is production of certain complex sphingolipids that contributes to conferring acetic acid tolerance. Consistent with that conclusion, promoting sphingolipid synthesis by adding exogenous long-chain base precursor phytosphingosine to the growth medium enhanced acetic acid tolerance. Thus appropriate modulation of the TORC2-Ypk1-sphingolipid axis in industrial yeast strains may have utility in improving fermentations of acetic acid-containing feedstocks.

  6. Acetic Acid, the Active Component of Vinegar, Is an Effective Tuberculocidal Disinfectant

    PubMed Central

    Cortesia, Claudia; Vilchèze, Catherine; Bernut, Audrey; Contreras, Whendy; Gómez, Keyla; de Waard, Jacobus; Jacobs, William R.; Kremer, Laurent; Takiff, Howard

    2014-01-01

    ABSTRACT Effective and economical mycobactericidal disinfectants are needed to kill both Mycobacterium tuberculosis and non-M. tuberculosis mycobacteria. We found that acetic acid (vinegar) efficiently kills M. tuberculosis after 30 min of exposure to a 6% acetic acid solution. The activity is not due to pH alone, and propionic acid also appears to be bactericidal. M. bolletii and M. massiliense nontuberculous mycobacteria were more resistant, although a 30-min exposure to 10% acetic acid resulted in at least a 6-log10 reduction of viable bacteria. Acetic acid (vinegar) is an effective mycobactericidal disinfectant that should also be active against most other bacteria. These findings are consistent with and extend the results of studies performed in the early and mid-20th century on the disinfectant capacity of organic acids. IMPORTANCE  Mycobacteria are best known for causing tuberculosis and leprosy, but infections with nontuberculous mycobacteria are an increasing problem after surgical or cosmetic procedures or in the lungs of cystic fibrosis and immunosuppressed patients. Killing mycobacteria is important because Mycobacterium tuberculosis strains can be multidrug resistant and therefore potentially fatal biohazards, and environmental mycobacteria must be thoroughly eliminated from surgical implements and respiratory equipment. Currently used mycobactericidal disinfectants can be toxic, unstable, and expensive. We fortuitously found that acetic acid kills mycobacteria and then showed that it is an effective mycobactericidal agent, even against the very resistant, clinically important Mycobacterium abscessus complex. Vinegar has been used for thousands of years as a common disinfectant, and if it can kill mycobacteria, the most disinfectant-resistant bacteria, it may prove to be a broadly effective, economical biocide with potential usefulness in health care settings and laboratories, especially in resource-poor countries. PMID:24570366

  7. Acetic Acid, the active component of vinegar, is an effective tuberculocidal disinfectant.

    PubMed

    Cortesia, Claudia; Vilchèze, Catherine; Bernut, Audrey; Contreras, Whendy; Gómez, Keyla; de Waard, Jacobus; Jacobs, William R; Kremer, Laurent; Takiff, Howard

    2014-02-25

    Effective and economical mycobactericidal disinfectants are needed to kill both Mycobacterium tuberculosis and non-M. tuberculosis mycobacteria. We found that acetic acid (vinegar) efficiently kills M. tuberculosis after 30 min of exposure to a 6% acetic acid solution. The activity is not due to pH alone, and propionic acid also appears to be bactericidal. M. bolletii and M. massiliense nontuberculous mycobacteria were more resistant, although a 30-min exposure to 10% acetic acid resulted in at least a 6-log10 reduction of viable bacteria. Acetic acid (vinegar) is an effective mycobactericidal disinfectant that should also be active against most other bacteria. These findings are consistent with and extend the results of studies performed in the early and mid-20th century on the disinfectant capacity of organic acids. IMPORTANCE Mycobacteria are best known for causing tuberculosis and leprosy, but infections with nontuberculous mycobacteria are an increasing problem after surgical or cosmetic procedures or in the lungs of cystic fibrosis and immunosuppressed patients. Killing mycobacteria is important because Mycobacterium tuberculosis strains can be multidrug resistant and therefore potentially fatal biohazards, and environmental mycobacteria must be thoroughly eliminated from surgical implements and respiratory equipment. Currently used mycobactericidal disinfectants can be toxic, unstable, and expensive. We fortuitously found that acetic acid kills mycobacteria and then showed that it is an effective mycobactericidal agent, even against the very resistant, clinically important Mycobacterium abscessus complex. Vinegar has been used for thousands of years as a common disinfectant, and if it can kill mycobacteria, the most disinfectant-resistant bacteria, it may prove to be a broadly effective, economical biocide with potential usefulness in health care settings and laboratories, especially in resource-poor countries.

  8. Crystal structure of ethyl 2-[9-(5-bromo-2-hy-droxy-phen-yl)-1,8-dioxo-1,2,3,4,5,6,7,8,9,10-deca-hydro-acridin-10-yl]acetate.

    PubMed

    Mohamed, Shaaban K; Akkurt, Mehmet; Jasinski, Jerry P; Abdelhamid, Antar A; Tamam, Asmaa H; Albayati, Mustafa R

    2015-12-01

    In the title compound, C23H24BrNO5, the central 1,4-di-hydro-pyridine ring of the 1,2,3,4,5,6,7,8,9,10-deca-hydro-acridine ring system adopts a half-chair conformation. The two cyclo-hexene rings fused to the central ring both have a twisted-boat conformation. The mean planes of the bromo-hydroxy-phenyl ring and the major and minor components of the disordered ethyl amino-acetate moiety make dihedral angles of 78.99 (12), 85.9 (2) and 88.3 (9)°, respectively, with the 1,4-di-hydro-pyridine ring. The terminal ethyl group of the ethyl amino-acetate moiety is disordered over two sets of sites with refined occupancies of 0.768 (17) and 0.232 (17). The mol-ecular conformation is stabilized by an intra-molecular O-H⋯O hydrogen bond, forming an S(8) ring motif. In the crystal, C-H⋯O hydrogen bonds connect the mol-ecules into layers parallel to (001), enclosing R 1 (2)(7) ring motifs.

  9. Effects of the addition of dimer acid alkyl esters on the properties of ethyl cellulose.

    PubMed

    Lee, Sangjun; Ko, Kwang-Hwan; Shin, Jihoon; Kim, Nam-Kyun; Kim, Young-Wun; Kim, Joon-Seop

    2015-05-05

    In this study, we synthesized dimer acid (DA) esters, having short to long alkyl chains, (DA-Cn) by the Diels-Alder reaction and subsequent esterification reaction of fatty acids that were prepared by the hydrolysis of waste vegetable oil. It was found that the DA-Cn were thermally more stable than common petroleum-based plasticizer DOP. When the DOP, DA, or DA-Cn with short alkyl chains were added to ethyl cellulose (EC), the optical clarity and SEM images of the samples showed their good miscibility with those additives in a micro-scale. It was also found that the rubbery modulus of the EC decreased with increasing amount of additives; the type of the additives did not affect the rates of the decrease in the rubbery modulus. The main transition temperatures of the EC containing either DA or DA-C1 or DA-C4 decreased with increasing amounts of those additives and were comparable to that of the DOP-containing EC. The above findings suggested that the DA and its esters with short alkyl chains could act as effective plasticizer and, thus, could be used instead of the DOP. In addition, the results obtained from tensile testing and leaching experiments implied that the DA might be better plasticizer than the DA-C1 and DA-C4, at least in some cases, because of hydrogen-bonding with the EC.

  10. Photosynthetic CO2 Conversion to Fatty Acid Ethyl Esters (FAEEs) Using Engineered Cyanobacteria.

    PubMed

    Lee, Hyun Jeong; Choi, Jaeyeon; Lee, Sun-Mi; Um, Youngsoon; Sim, Sang Jun; Kim, Yunje; Woo, Han Min

    2017-02-15

    Metabolic engineering of cyanobacteria has received attention as a sustainable strategy to convert carbon dioxide to fatty acid-derived chemicals that are widely used in the food and chemical industries. Herein, Synechococcus elongatus PCC 7942, a model cyanobacterium, was engineered for the first time to produce fatty acid ethyl esters (FAEEs) from CO2. Due to the lack of an endogenous ethanol production pathway and wax ester synthase (AftA) activity in the wild-type cyanobacterium, we metabolically engineered S. elongatus PCC 7942 by expressing heterologous AftA and introducing the ethanol pathway, resulting in detectable peaks of FAEEs. To enhance FAEE production, a heterologous phosphoketolase pathway was introduced in the FAEE-producing strain to supply acetyl-CoA. Subsequent optimization of the cyanobacterial culture with a hexadecane overlay resulted in engineered S. elongatus PCC 7942 that produced photosynthetic FAEEs (10.0 ± 0.7 mg/L/OD730) from CO2. This paper is the first report of photosynthetic production of FAEEs from CO2 in cyanobacteria.

  11. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells.

    PubMed

    Maruta, Hitomi; Yoshimura, Yukihiro; Araki, Aya; Kimoto, Masumi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-01-01

    Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin.

  12. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells

    PubMed Central

    Maruta, Hitomi; Yoshimura, Yukihiro; Araki, Aya; Kimoto, Masumi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-01-01

    Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin. PMID:27348124

  13. Synthesis of medium chain length fatty acid ethyl esters in engineered Escherichia coli using endogenously produced medium chain fatty acids.

    PubMed

    Fan, Liping; Liu, Junfeng; Nie, Kaili; Liu, Luo; Wang, Fang; Tan, Tianwei; Deng, Li

    2013-07-10

    Microbial biosynthesis of fatty acid-derived biofuels from renewable carbon sources has attracted significant attention in recent years. Free fatty acids (FFAs) can be used as precursors for the production of micro-diesel. The expression of codon optimized two plants (Umbellularia californica and Cinnamomum camphora) medium-chain acyl-acyl carrier protein (ACP) thioesterase genes (ucFatB and ccFatB) in Escherichia coli resulted in a very high level of extractable medium-chain-specific hydrolytic activity and caused large accumulation of medium-chain free fatty acids. By heterologous co-expression of acyl-coenzyme A:diacylglycerol acyltransferase from Acinetobacter baylyi ADP1, specific plant thioesterases in E. coli, with supplementation of exogenous ethanol, resulted in drastic changes in fatty acid ethyl esters (FAEEs) composition ranging from 12:0 to 18:1. Through an optimized microbial shake-flask fermentation of two modified E. coli strains, yielded FFAs and FAEEs in the concentration of approximately 500 mg L(-1)/250 mg L(-1) and 2.01 mg g(-1)/1.99 mg g(-1), respectively. The optimal ethanol level for FAEEs yield in the two recombinant strains was reached at the 3% ethanol concentration, which was about 5.4-fold and 1.93-fold higher than that of 1% ethanol concentration.

  14. The influence of surface oxygen and hydroxyl groups on the dehydrogenation of ethylene, acetic acid and hydrogenated vinyl acetate on pure Pd(1 0 0): A DFT study

    NASA Astrophysics Data System (ADS)

    Huang, Yanping; Dong, Xiuqin; Yu, Yingzhe; Zhang, Minhua

    2016-12-01

    On the basis of a Langmuir-Hinshelwood-type mechanism, the dehydrogenation of ethylene, acetic acid and hydrogenated vinyl acetate (VAH) on pure Pd(1 0 0) with surface oxygen atoms (Os) and hydroxyl groups (OHs) was studied with density functional theory (DFT) method. Our calculation results show that both Os and OHs can consistently reduce the activation energies of dehydrogenation of ethylene, acetic acid and VAH to some degree with only one exception that OHs somehow increase the activation energy of VAH. Based on Langmuir-Hinshelwood mechanism, the three dehydrogenation reactions in presence of surface Os and OHs are almost consistently favored, compared with the corresponding processes on clean Pd(1 0 0) surfaces, and thus a Langmuir-Hinshelwood-type mechanism may not be excluded beforehand when investigating the microscopic performance of the oxygen-assisted vinyl acetate synthesis on Pd(1 0 0) catalysts.

  15. 1,3-Diferuloyl-sn-glycerol from the biocatalytic transesterification of ethyl 4-hydroxy-3-methoxy cinnamic acid (ethyl ferulate) and soybean oil.

    PubMed

    Compton, David L; Laszlo, Joseph A

    2009-06-01

    1,3-Diferuloyl-sn-glycerol is found ubiquitously throughout the plant kingdom, possessing ultraviolet adsorbing and antioxidant properties. Diferuloyl glycerol was synthesized and isolated as a byproduct in up to 5% yield from a pilot plant scale packed-bed, biocatalytic transesterification of ethyl ferulate with soybean oil or mono- and diacylglycerols from soybean oil. The yield of the diferuloyl glycerol byproduct was directly proportional to the overall water concentration of the bioreactor. The isolated diferuloyl glycerol exhibited good ultraviolet adsorbing properties, 280-360 nm with a lambda(max) 322 nm, and compared well to the efficacy of commercial sunscreen active ingredients. The antioxidant capacity of diferuloyl glycerol (0.25-2.5 mM) was determined by its ability to scavenge 2,2-diphenyl-1-picrylhydrazyl radicals and was comparable to that of ferulic acid. At current pilot plant scale production capacity, 120 kg diferuloyl glycerol byproduct could be isolated per year.

  16. Lipidomic Profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii Reveals Critical Changes in Lipid Composition in Response to Acetic Acid Stress

    PubMed Central

    Riezman, Howard; Olsson, Lisbeth; Bettiga, Maurizio

    2013-01-01

    When using microorganisms as cell factories in the production of bio-based fuels or chemicals from lignocellulosic hydrolysate, inhibitory concentrations of acetic acid, released from the biomass, reduce the production rate. The undissociated form of acetic acid enters the cell by passive diffusion across the lipid bilayer, mediating toxic effects inside the cell. In order to elucidate a possible link between lipid composition and acetic acid stress, the present study presents detailed lipidomic profiling of the major lipid species found in the plasma membrane, including glycerophospholipids, sphingolipids and sterols, in Saccharomyces cerevisiae (CEN.PK 113_7D) and Zygosaccharomyces bailii (CBS7555) cultured with acetic acid. Detailed physiological characterization of the response of the two yeasts to acetic acid has also been performed in aerobic batch cultivations using bioreactors. Physiological characterization revealed, as expected, that Z. bailii is more tolerant to acetic acid than S. cerevisiae. Z. bailii grew at acetic acid concentrations above 24 g L−1, while limited growth of S. cerevisiae was observed after 11 h when cultured with only 12 g L−1 acetic acid. Detailed lipidomic profiling using electrospray ionization, multiple-reaction-monitoring mass spectrometry (ESI-MRM-MS) showed remarkable changes in the glycerophospholipid composition of Z. bailii, including an increase in saturated glycerophospholipids and considerable increases in complex sphingolipids in both S. cerevisiae (IPC 6.2×, MIPC 9.1×, M(IP)2C 2.2×) and Z. bailii (IPC 4.9×, MIPC 2.7×, M(IP)2C 2.7×), when cultured with acetic acid. In addition, the basal level of complex sphingolipids was significantly higher in Z. bailii than in S. cerevisiae, further emphasizing the proposed link between lipid saturation, high sphingolipid levels and acetic acid tolerance. The results also suggest that acetic acid tolerance is associated with the ability of a given strain to generate large

  17. Lipidomic profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii reveals critical changes in lipid composition in response to acetic acid stress.

    PubMed

    Lindberg, Lina; Santos, Aline Xs; Riezman, Howard; Olsson, Lisbeth; Bettiga, Maurizio

    2013-01-01

    When using microorganisms as cell factories in the production of bio-based fuels or chemicals from lignocellulosic hydrolysate, inhibitory concentrations of acetic acid, released from the biomass, reduce the production rate. The undissociated form of acetic acid enters the cell by passive diffusion across the lipid bilayer, mediating toxic effects inside the cell. In order to elucidate a possible link between lipid composition and acetic acid stress, the present study presents detailed lipidomic profiling of the major lipid species found in the plasma membrane, including glycerophospholipids, sphingolipids and sterols, in Saccharomyces cerevisiae (CEN.PK 113_7D) and Zygosaccharomyces bailii (CBS7555) cultured with acetic acid. Detailed physiological characterization of the response of the two yeasts to acetic acid has also been performed in aerobic batch cultivations using bioreactors. Physiological characterization revealed, as expected, that Z. bailii is more tolerant to acetic acid than S. cerevisiae. Z. bailii grew at acetic acid concentrations above 24 g L(-1), while limited growth of S. cerevisiae was observed after 11 h when cultured with only 12 g L(-1) acetic acid. Detailed lipidomic profiling using electrospray ionization, multiple-reaction-monitoring mass spectrometry (ESI-MRM-MS) showed remarkable changes in the glycerophospholipid composition of Z. bailii, including an increase in saturated glycerophospholipids and considerable increases in complex sphingolipids in both S. cerevisiae (IPC 6.2×, MIPC 9.1×, M(IP)2C 2.2×) and Z. bailii (IPC 4.9×, MIPC 2.7×, M(IP)2C 2.7×), when cultured with acetic acid. In addition, the basal level of complex sphingolipids was significantly higher in Z. bailii than in S. cerevisiae, further emphasizing the proposed link between lipid saturation, high sphingolipid levels and acetic acid tolerance. The results also suggest that acetic acid tolerance is associated with the ability of a given strain to generate large

  18. Calibration and intercomparison of acetic acid measurements using proton transfer reaction mass spectrometry (PTR-MS)

    USGS Publications Warehouse

    Haase, K.B.; Keene, W.C.; Pszenny, A.A.P.; Mayne, H.R.; Talbot, R.W.; Sive, B.C.

    2012-01-01

    Acetic acid is one of the most abundant organic acids in the ambient atmosphere, with maximum mixing ratios reaching into the tens of parts per billion by volume (ppbv) range. The identities and associated magnitudes of the major sources and sinks for acetic acid are poorly characterized, due in part to the limitation in available measurement techniques. This paper demonstrates that Proton Transfer Reaction Mass Spectrometry (PTR-MS) can reliably quantify acetic acid vapor in ambient air. Three different PTR-MS configurations were calibrated at low ppbv mixing ratios using permeation tubes, which yielded calibration factors between 7.0 and 10.9 normalized counts per second per ppbv (ncps ppbv−1) at a drift tube field strength of 132 townsend (Td). Detection limits ranged from 0.06 to 0.32 ppbv with dwell times of 5 s. These calibration factors showed negligible humidity dependence. Using the experimentally determined calibration factors, PTR-MS measurements of acetic acid during the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) campaign were validated against results obtained using Mist Chambers coupled with Ion Chromatography (MC/IC). An orthogonal least squares linear regression of paired data yielded a slope of 1.14 ± 0.06 (2σ), an intercept of 0.049 ± 20 (2σ) ppbv, and an R2 of 0.78. The median mixing ratio of acetic acid on Appledore Island, ME during the ICARTT campaign was 0.530 ± 0.025 ppbv with a minimum of 0.075 ± 0.004 ppbv, and a maximum of 3.555 ± 0.171 ppbv.

  19. Removal of dicyclohexyl acetic acid from aqueous solution using ultrasound, ozone and their combination.

    PubMed

    Kumar, Pardeep; Headley, John; Peru, Kerry; Bailey, Jon; Dalai, Ajay

    2014-01-01

    Naphthenic acids are a complex mixture of organic components, some of which include saturated alkyl-substituted cycloaliphatic carboxylic acids and acyclic aliphatic acids. They are naturally found in hydrocarbon deposits like oil sand, petroleum, bitumen and crude oil. In this study, the oxidation of a relatively high molecular weight naphthenic acid (Dicyclohexyl acetic acid) was investigated using ozonation, ultrasonication and hydrogen peroxide alone and their combinations. Effects on oxidation of dicyclohexyl acetic acid (DAA) were measured for different concentrations of ozone ranging between 0.7 to 3.3 mg L(-1) and pH in the range 6 to 10. Ultrasonication and hydrogen peroxide alone were not effective to oxidize dicyclohexyl acetic acid, but combining ultrasonication with H2O2 had a significant effect on oxidation of dicyclohexyl acetic acid with maximum removal reaching to 84 ± 2.2% with 81 ± 2.1% reduction in chemical oxygen demand (COD). Synergistic effects were observed for combining ultrasonication with ozonation and resulted in 100% DAA removal with 98 ± 0.8% reduction in COD within 15 min at 3.3 mg L(-1) ozone concentration and 130 Watts ultrasonication power. The reaction conditions obtained for the maximum oxidation of DAA and COD removal were used for the degradation of naphthenic acids mixture extracted from oil sands process water (OSPW). The percentage oxidation of NAs mixture extracted from OSPW was 89.3 ± 1.1% in ozonation and combined ozonation and ultrasonication, but COD removal observed was 65 ± 1.2% and 78 ± 1.4% for ozonation and combined ozonation and ultrasonication treatments, respectively.

  20. Diminution of Hepatic Response to 7, 12-dimethylbenz(α)anthracene by Ethyl Acetate Fraction of Acacia catechu Willd. through Modulation of Xenobiotic and Anti-Oxidative Enzymes in Rats

    PubMed Central

    Kumar, Rakesh; Kaur, Rajbir; Singh, Amrit Pal; Arora, Saroj

    2014-01-01

    Background Liver is the primary metabolizing site of body and is prone to damage by exogenous as well as endogenous intoxicants. Polycyclic aromatic hydrocarbons such as 7, 12- dimethylbenz(α)anthracene (DMBA) is an exogenous hepatotoxin, which is well known for modulating phase I, II and anti-oxidative enzymes of liver. Plants contain plethora of polyphenolic compounds which can reverse the damaging effect of various xenobiotics. The present study investigated protective role of the ethyl acetate fraction of Acacia catechu Willd. (EAF) against DMBA induced alteration in hepatic metabolizing and anti-oxidative enzymes in rats. Methodology and Principal Findings The rats were subjected to hepatic damage by treating with DMBA for 7 weeks on alternative days and treatment schedule was terminated at the end of 14 weeks. The rats were euthanized at the end of protocol and livers were homogenized. The liver homogenates were used to analyse phase I (NADPH-cytochrome P450 reducatse, NADH-cytochrome b5 reductase, cytochrome P420, cytochrome b5), phase II (glutathione-S-transferase, DT diaphorase and γ-Glutamyl transpeptidase) and antioxidative enzymes (catalase, superoxide dismutase, ascorbate peroxidase, glutathione reductase, guiacol peroxidase and lactate dehydrogenase). Furthermore, other oxidative stress parameters (thiobarbituric acid reactive substances, lipid hydroperoxides and conjugated dienes and reduced glutathione) and liver marker enzymes (serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase and alkaline phosphatase) were also studied. The DMBA induced significant changes in activity of hepatic enzymes that was reversed by treatment with three dose levels of EAF. Conclusion It is concluded that EAF affords hepato-protection against DMBA in rats through modulation of phase I, II and anti-oxidative enzymes. PMID:24587216

  1. Interaction of acetic acid and phenylacetaldehyde as attractants for trapping pest species of moths (Lepidoptera: Noctuidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenylacetaldehyde is a flower volatile and attractant for many nectar-seeking moths. Acetic acid is a microbial fermentation product that is present in insect sweet baits. It is weakly attractive to some moths and other insects, but can be additive or synergistic with other compounds to make more p...

  2. 21 CFR 175.350 - Vinyl acetate/crotonic acid copolymer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Vinyl acetate/crotonic acid copolymer. 175.350 Section 175.350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS OF COATINGS Substances for Use as Components...

  3. 21 CFR 175.350 - Vinyl acetate/crotonic acid copolymer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Vinyl acetate/crotonic acid copolymer. 175.350 Section 175.350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS...

  4. 21 CFR 175.350 - Vinyl acetate/crotonic acid copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Vinyl acetate/crotonic acid copolymer. 175.350 Section 175.350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS...

  5. 21 CFR 175.350 - Vinyl acetate/crotonic acid copolymer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Vinyl acetate/crotonic acid copolymer. 175.350 Section 175.350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS...

  6. GENE EXPRESSION PATTERNS OF CD-1 DAY-8 EMBRYO CULTURES EXPOSED TO BROMOCHLORO ACETIC ACID

    EPA Science Inventory

    Gene expression patterns of CD-1 day-8 embryo cultures exposed to bromochloro acetic acid

    Edward D. Karoly?*, Judith E. Schmid* and E. Sidney Hunter III*
    ?Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina and *Reproductiv...

  7. Trapping social wasps (Hymenoptera: Vespidae) in nurseries with acetic acid and isobutanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    European hornet (Vespa crabro L.) damages bark of nursery trees, and several vespids sting nursery personnel when disturbed. We tested acetic acid and isobutanol lures in traps for V. crabro spring queens, to determine the seasonality of vespid captures, and compare the efficacy of patterns of trap...

  8. Aqueous-phase hydrogenation of acetic acid over transition metal catalysts

    SciTech Connect

    Olcay, Hakan; Xu, Lijun; Xu, Ye; Huber, George

    2010-01-01

    Catalytic hydrogenation of acetic acid to ethanol has been carried out in aqueous phase on several metals, with ruthenium being the most active and selective. DFT calculations suggest that the initial CO bond scission yielding acetyl is the key step and that the intrinsic reactivity of the metals accounts for the observed activity.

  9. Acetic acid-induced programmed cell death and release of volatile organic compounds in Chlamydomonas reinhardtii.

    PubMed

    Zuo, Zhaojiang; Zhu, Yerong; Bai, Yanling; Wang, Yong

    2012-02-01

    Acetic acid widely spreads in atmosphere, aquatic ecosystems containing residues and anoxic soil. It can inhibit aquatic plant germination and growth, and even cause programmed cell death (PCD) of yeast. In the present study, biochemical and physiological responses of the model unicellular green algae Chlamydomonas reinhardtii were examined after acetic acid stress. H(2)O(2) burst was found in C. reinhardtii after acetic acid stress at pH 5.0 for 10 min. The photosynthetic pigments were degraded, gross photosynthesis and respiration were disappeared gradually, and DNA fragmentation was also detected. Those results indicated that C. reinhardtii cells underwent a PCD but not a necrotic, accidental cell death event. It was noticed that C. reinhardtii cells in PCD released abundant volatile organic compounds (VOCs) upon acetic acid stress. Therefore, we analyzed the VOCs and tested their effects on other normal cells. The treatment of C. reinhardtii cultures with VOCs reduced the cell density and increased antioxidant enzyme activity. Therefore, a function of VOCs as infochemicals involved in cell-to-cell communication at the conditions of applied stress is suggested.

  10. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false 5-Hydroxyindole acetic acid/serotonin test system. 862.1390 Section 862.1390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  11. Vinegar (20% acetic acid) broadcast application for broadleaf weed control in spring-transplanted onions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic weed control research was conducted in southeast Oklahoma to determine the effect of broadcast over-the-top applications of acetic acid (vinegar) on weed control efficacy, crop injury and onion yields. The experiment included 6 weed control treatments (2 application volumes, 2 hand-weeding ...

  12. Population dynamics of acetic acid bacteria during traditional wine vinegar production.

    PubMed

    Vegas, Carlos; Mateo, Estibaliz; González, Angel; Jara, Carla; Guillamón, José Manuel; Poblet, Montse; Torija, Ma Jesús; Mas, Albert

    2010-03-31

    The population dynamics of acetic acid bacteria in traditional vinegar production was determined in two independent vinegar plants at both the species and strain level. The effect of barrels made of four different woods upon the population dynamics was also determined. Acetic acid bacteria were isolated on solid media and the species were identified by RFLP-PCR of 16S rRNA genes and confirmed by 16S rRNA gene sequencing, while strains were typed by ERIC-PCR and (GTG)(5)-rep-PCR. The most widely isolated species was Acetobacter pasteurianus, which accounted for 100% of all the isolates during most of the acetification. Gluconacetobacter europaeus only appeared at any notable level at the end of the process in oak barrels from one vinegar plant. The various A. pasteurianus strains showed a clear succession as the concentration of acetic acid increased. In both vinegar plants the relative dominance of different strains was modified as the concentrations of acetic acid increased, and strain diversity tended to reduce at the end of the process.

  13. Batch salicylic acid nitration by nitric acid/acetic acid mixture under isothermal, isoperibolic and adiabatic conditions.

    PubMed

    Andreozzi, R; Canterino, M; Caprio, V; Di Somma, I; Sanchirico, R

    2006-12-01

    Runaway phenomena and thermal explosions can originate during the nitration of salicylic acid by means of a nitric acid/acetic acid mixture when the thermal control is lost, mainly as a result of the formation and thermal decomposition of picric acid. The prediction of the behaviour of this system is thus of great importance in view of possible industrial applications and the need to avoid the occurrence of unwanted dangerous events. During a previous investigation a model was developed to simulate its behaviour when the starting concentration of the substrate is too low, thus, preventing the precipitation of poor soluble intermediates. In this work this model is extended to deal with more concentrated systems even in case of a solid phase separating during the process. To this purpose the previously assessed dependence of the solubility of 3-nitro and 5-nitrosalicylic acids upon temperature and nitric acid concentration is included in the model. It is assumed that when 3-nitro and 5-nitrosalicylic acids are partially suspended in the reacting medium a kinetic regime of "dissolution with reaction" is established; that is, the redissolution of these species is a fast process compared to the successive nitration to give dinitroderivatives. Good results are obtained in the comparison of the experimental data with those calculated both in isoperibolic and adiabatic conditions when the revised model is used.

  14. Thermal tolerance and survival of Cronobacter sakazakii in powdered infant formula supplemented with vanillin, ethyl vanillin, and vanillic acid.

    PubMed

    Yemiş, Gökçe Polat; Pagotto, Franco; Bach, Susan; Delaquis, Pascal

    2012-09-01

    The thermal tolerance Cronobacter sakazakii was examined in sterile powdered infant formula (PIF) rehydrated at 58 °C in water or apple juice supplemented with vanillin, ethyl vanillin, or vanillic acid. All three compounds decreased thermal tolerance during-rehydration and the lowest decimal reduction time (D-value, 0.19 ± 0.01 min) was measured in PIF rehydrated in apple juice supplemented with 20 mM vanillic acid. At this level of supplementation no C. sakazakii were detected in PIF stored for 48 h at 10 and 24 h at 21 °C subsequent to a sublethal heat treatment. Thermal tolerance during rehydration and survival in reconstituted PIF were influenced by compound type, concentration, and temperature. Supplementation of PIF with vanillin, ethyl vanillin, or vanillic acid could enhance the safety of PIF or other dehydrated foods contaminated with C. sakazakii.

  15. Radiolysis of aqueous solutions of acetic acid in the presence of Na-montmorillonite

    NASA Technical Reports Server (NTRS)

    Navarro-Gonzalez, R.; Negron-Mendoza, A.; Ramos, S.; Ponnamperuma, C.

    1990-01-01

    The gamma-irradiation of 0.8 mol dm-3 aqueous, oxygen-free acetic acid solutions was investigated in the presence or absence of Na-montmorillonite. H2, CH4, CO, CO2, and several polycarboxylic acids were formed in all systems. The primary characteristics observed in the latter system were: (1) Higher yield of the decomposition of acetic acid; (2) Lower yield of the formation of polycarboxylic acids; (3) No effect on the formation of methane; (4) Higher yield of the formation of carbon dioxide; and (5) The reduction of Fe3+ in the octahedral sites of Na-montmorillonite. A possible reaction scheme was proposed to account for the observed changes. The results are important in understanding heterogeneous processes in radiation catalysis and might be significant to prebiotic chemistry.

  16. Acidic ionic liquid as "quasi-homogeneous" catalyst for controllable synthesis of cellulose acetate.

    PubMed

    Tian, Dong; Han, Yangyang; Lu, Canhui; Zhang, Xinxing; Yuan, Guiping

    2014-11-26

    In this paper, we demonstrated that acidic ionic liquids (ILs) can be used as "quasi-homogeneous" catalysts for the efficient acetylation of cellulose. Unlike existing techniques that use large amount of ILs as solvent to dissolve and acetylate cellulose, a small amount of acidic ILs was used as catalyst in this study to overcome the low efficiency associated with relatively high viscosity and costs of ILs during homogeneous acetylation. Fully substituted cellulose acetate with a conversion of 88.8% was obtained by using only 9 mol% IL 1-vinyl-3-(3-sulfopropyl) imidazolium hydrogen sulfate as catalyst, which is much higher than that of common commercialized solid acid catalysts. The degree of substitution and solubility of the obtained cellulose acetate can be facilely controlled by varying the concentration of ILs and reaction time. The dual function of swelling and catalyzing of acidic ILs for the acetylation of cellulose is responsible for the excellent catalytic performance.

  17. Parameters Affecting Ethyl Ester Production by Saccharomyces cerevisiae during Fermentation▿

    PubMed Central

    Saerens, S. M. G.; Delvaux, F.; Verstrepen, K. J.; Van Dijck, P.; Thevelein, J. M.; Delvaux, F. R.

    2008-01-01

    Volatile esters are responsible for the fruity character of fermented beverages and thus constitute a vital group of aromatic compounds in beer and wine. Many fermentation parameters are known to affect volatile ester production. In order to obtain insight into the production of ethyl esters during fermentation, we investigated the influence of several fermentation variables. A higher level of unsaturated fatty acids in the fermentation medium resulted in a general decrease in ethyl ester production. On the other hand, a higher fermentation temperature resulted in greater ethyl octanoate and decanoate production, while a higher carbon or nitrogen content of the fermentation medium resulted in only moderate changes in ethyl ester production. Analysis of the expression of the ethyl ester biosynthesis genes EEB1 and EHT1 after addition of medium-chain fatty acid precursors suggested that the expression level is not the limiting factor for ethyl ester production, as opposed to acetate ester production. Together with the previous demonstration that provision of medium-chain fatty acids, which are the substrates for ethyl ester formation, to the fermentation medium causes a strong increase in the formation of the corresponding ethyl esters, this result further supports the hypothesis that precursor availability has an important role in ethyl ester production. We concluded that, at least in our fermentation conditions and with our yeast strain, the fatty acid precursor level rather than the activity of the biosynthetic enzymes is the major limiting factor for ethyl ester production. The expression level and activity of the fatty acid biosynthetic enzymes therefore appear to be prime targets for flavor modification by alteration of process parameters or through strain selection. PMID:17993562

  18. Modulation of lipid peroxidation and antioxidant enzymes in murine salivary gland by dietary fatty acid ethyl esters.

    PubMed

    Avula, C P; Fernandes, G

    1999-01-01

    The present study was undertaken to investigate the effect of n-9, n-6, and n-3 dietary fatty acid ethyl esters on basal (uninduced) and Fe2+/ascorbate (induced) lipid peroxidation (LPO) in salivary gland (SG) of mice. Feeding n-3 ethyl ester polyunsaturated fatty acids (PUFA) increased the uninduced and induced LPO in SG homogenates. In contrast, feeding olive oil ethyl esters (n-9) significantly lowered the induced and uninduced LPO in SG tissue. Salivary gland susceptibility to LPO increased in the order of: olive oil < corn oil < safflower oil < n-3 ethyl esters. Olive oil esters in the diet increased primarily the 18:1 levels in SG tissue. Whereas feeding n-3 PUFA notably increased the superoxide dismutase (SOD) and catalase activities in SG homogenates, no significant changes were seen between n-9 and n-6 PUFA-fed mice. Lower levels of Vitamin E (Vit E) in the tissues of n-3 PUFA-fed mice indicate that the higher the dietary lipid unsaturation, the higher the requirement for Vit E in the diet. Our results indicate that, similar to other organs, salivary gland susceptibility to uninduced or induced oxidation depends on the source of dietary PUFA. In conclusion, feeding olive oil increases the resistance of SGs to induced and uninduced LPO.

  19. Analysis of Vaginal Acetic Acid in Patients Undergoing Treatment for Bacterial Vaginosis

    PubMed Central

    Chaudry, Amjad N.; Travers, Paul J.; Yuenger, Jeffrey; Colletta, Lorraine; Evans, Phillip; Zenilman, Jonathan M.; Tummon, Andrew

    2004-01-01

    A “gold standard” method for the diagnosis of bacterial vaginosis (BV) is lacking. The clinical criteria described by the Amsel technique are subjective and difficult to quantify. Alternatively, the reading of Gram-stained vaginal smears by scoring techniques such as those that use the Nugent or Hay-Ison scoring systems is again subjective, requires expert personnel to perform the reading, and is infrequently used clinically. Recently, a new diagnostic device, the Osmetech Microbial Analyzer—Bacterial Vaginosis (OMA-BV), which determines a patient's BV status on the basis of measurement of the amount of acetic acid present in a vaginal swab specimen, was approved by the Food and Drug Administration. The present study uses the conducting polymer gas-sensing technology of OMA-BV to measure the concentration of acetic acid in the headspace above vaginal swab specimens from patients undergoing treatment for BV with metronidazole. In 97.8% of the cases the level of acetic acid detected fell sharply during the treatment period, crossing from above to below the diagnostic threshold of 900 ppm. The diagnosis obtained on the basis of the level of vaginal acetic acid was compared with the diagnoses obtained by use of the Amsel criteria and the Nugent scoring system both at the time of initial entry into the study and at the repeat samplings on days 7 and 14. The results obtained with OMA-BV showed overall agreements compared with the results of the Amsel and Nugent tests of 98 and 94%, respectively, for the 34 patients monitored through the treatment process. This provides further evidence that the measurement of vaginal acetic acid by headspace analysis with conducting polymer sensors is a valid alternative to present tests for the diagnosis of BV. PMID:15528711

  20. Gibbs ensemble Monte Carlo simulation using an optimized potential model: pure acetic acid and a mixture of it with ethylene.

    PubMed

    Zhang, Minhua; Chen, Lihang; Yang, Huaming; Sha, Xijiang; Ma, Jing

    2016-07-01

    Gibbs ensemble Monte Carlo simulation with configurational bias was employed to study the vapor-liquid equilibrium (VLE) for pure acetic acid and for a mixture of acetic acid and ethylene. An improved united-atom force field for acetic acid based on a Lennard-Jones functional form was proposed. The Lennard-Jones well depth and size parameters for the carboxyl oxygen and hydroxyl oxygen were determined by fitting the interaction energies of acetic acid dimers to the Lennard-Jones potential function. Four different acetic acid dimers and the proportions of them were considered when the force field was optimized. It was found that the new optimized force field provides a reasonable description of the vapor-liquid phase equilibrium for pure acetic acid and for the mixture of acetic acid and ethylene. Accurate values were obtained for the saturated liquid density of the pure compound (average deviation: 0.84 %) and for the critical points. The new optimized force field demonstrated greater accuracy and reliability in calculations of the solubility of the mixture of acetic acid and ethylene as compared with the results obtained with the original TraPPE-UA force field.